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SYNOPSIS

The responge of both single and multi-degree of freedom systems
is examined aé- a function of structural parameters. These parameters
are either the variation of mass at a structural node or the varlation
of stiffness between two points in the structure (as represented by a
linear spring). In both single and multi-degree of freedom systems
the variation of either a mass or a‘ stiffness parameter 1s seen to
produce a circular response locus in the complex plane at some other
point in the structure. The form of the circular response locus is
verified experimentally by varying a single stiffness parameter in a
aimple test gtructure. Where two or more parameters are varied |
simultaneously them an area of feasible response is formed in the

complex plane, for any given values of the parsmeters the response must

lie within the bounds of this region.

~

The properties of the response circle and feasible resﬁonse R
regions. are inwatigated aend are used to develop criteris which enable the
relative effectivemess of parameters in achieving a desired response toi
be determined. These effectiveness criteria are used in the analysis'
of a simplified model of a helicopter fuselage aﬁd are shown to be
successful in highlighting sensitive areas of the fuselage for the
purpoge of structural modification. An  interactive computer programme

which is used:pq perform the above mentioned analyses on structural .’

moflels is also described.
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CHAPTER 1

INTRODUCTION

1.1. Research Motivation.

The motivation for the research presented in this thesis came
from the helicopter industry. The problem, which is a common one, concefns
the undesirable rotor induced vibration levels tﬁat often exist in a

helicopter fuselage. The design specifications for modern helicopters include

_ the maximm permissible vibratory acceleration levels that are allowed to

exist 1n.certain parts of the fuselage structure; of particular importance
are the passenger and crew areas where gonsiderable digcomfort can‘ be
experienced as a result of high levels of vibration. If this particular
specification is not achieved then modifications must bé made to the atructure
in order to reduce the vibratory response to an acceptable level.

The vibratory forces and moments that are inherent in the operation

of a helicopter rotor are produced at the rotor head. These are the
" resultant of loads genérated on an individual rotor blade at frequencies

which are multiples of the rotor speed. Depending on the number of roto:
blades‘ used certain frequency components reinforce each 6ther end others
cancel out. The most important of these non-cancelling components is/,
the fundamental onerwhich occurs at a frequency which is equal 1o the
product of ‘the number of blades and the rotor speed. The loads £hat are
generated at the rotor head are vertical, longitudinal and lateral shear
forces éﬁd rolling and -pitching moments. It is the response of the
airframe to these loadings that'coﬁstitutes the vibratory problem of

the helicopter.

During the design process there are several aspects of the -helicopter

. :‘ _1-



{

\

1.1. (Continued) ' |
design that are considered in order to ensure that vibration levels are
kept to a minimum. There are thres main methods by which this may be
achieved, namely,

a) By reducing the vibratory force input to the fuselage.

b) By the use of force cancellation devices such as dynamic

vibration absorbers.

¢) By means of structural modifications.
In the case of the Westland Lynx helicopter method (a) was used indirectly
in an attempt to dynamically isoclate thp engine and main rotor gearbox
from the fuselage using flexible mountings [21] The geometry and dynamio
characteristicsof the engine and gearbax couplings and supportis were varied
in order to find the configuration that gave the smallest response at the
goarbox mownting points. In method (b) the use of vibration sbsorbers
is avoided wherever possible at the design stage since these often impose

a considerable weight penalty on the structure. Another method that is

comonly used, which involves structural modification, 1s to estimate the

]
'

natural frequencies of the structure and to détermine whether any of these
are close to the major excitation frequency. Where this is the case then
structural modification is employed to move the offending frequenc& away from
that of the excitafion forces. There are however, difficulties in this
type of approach for it is not always obvious which areas of the airframe
are mogst suitable for structural modificaticn. Thus there 1s the real
need to be able to predict accurately the effect of structural modifications

on the respanse at points in the airfrane.

Even though efforts are made during the design stage of the helicopter

' to reduce vibration levels it 1s often found when the helicopter is first

flight tested that these are still macceptable and there is usually

- . .-2_



1.1. (Continued)

considerable pressure on the dynami;:ists involved to come up with a
satisfactory solution to the problem. At this stage there are two main
methods of reducing undesirsble vibration levels, namely, by using
vibration absorbers and by structural modification.

In the first instance structursl modification is often used to
help solve the problem. A series of potentially useful modifications 1s
drawn up and ea.ch‘ modification is tried in twmn, under flight conditions,
in order to determine how effective it is in reducing the required
vibration levels. Where a particular modificatlon is fouﬁd to be
guccessful then it is incorporated into the existing structure. Most
modifications involve stiffening up the structure Iin some way and are
chosen largely on the basis of experience and intuition. The choiées are
sometimes influenced by results from an analysis of a simplified model
of the helicopter; the model used in the case of the Iynx helicopter is
described in Chapter L.

Having modified the structure to the best effect by incorporating
certain modificatiogzs the vibratory response \may be further reduced by
means of dynamic vibration absorbers. These may be used to suppress
vibration globally with respect to the fuselage itself or locally at |
| specified points in the structure. The simplest vibration absorber consists
of .a mass, spring, dashpot system which is tuned to resonate at the
excitation frequency of the structure. This type of absorber is usually
mounted close to the point at which the vibration level is to be reduced
and is "intendegl to suppress vibration only on a local basis. In
practice the mass din such a device is usually an existing piece of heavy
equipment such .as a battery; an example of a battery absorber is shown in
figure 1:1. (a). Other t?pes of gbsorber, which suppress vibration globally,

| =3
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"1.1; (continued)
are normallysituated close to the source of excitation. Typical
examples of these :Lnglude the bifilar pendulum sgbsorber,DAVI absorbers
and the Bell "Nodamagic" system. |

The bifilar pendulum sbsorber was first used to reduce torsional

vibration in an engine cranksha.ft.lzz]

Where the helicopter is
concerned, a set of bifilar absorbers is fitted in the plane of the
rotor head as shown in figure 1.1. (b) and is effective in reducing
forces in +that plane. The absgorber consists of & large mass which
acts as the pendﬁlum bob. and is mounted at the end of a very small
radius arm. Unlike some types of absorber, ‘once the pendula have
been tuned to a given frequency then they remain in tune even if .
the frequency changes. This is due to the fact that the dynamic
stiffness of the pendulum, as provided by the centrifugal force, increases

- or decreases with a similar change in the rotor ‘frequency. The bifilar

absorber has been successfully applied in practice to production

helicopters by the Sikorsky Aircraft Company 23,

~ The Dynamic Anti-Resonant Vibration Isolation Sysfem (DAVI) was
patented by the Karman Aireraft Corporation [21‘] and consists of the
mass,spring arrangement shown schematically in figure 1.2. (a). The
gystem is tuned to thé excitation frequency such that the mass A resonates
on the end of the rigid bar. In any practical application the engine
and main rotor gearbox would most 1likely be mounted on a set of absorbers
in an attempt to isolate this substructure from the rest of +he fuselage.

- DAVI sbsorbers are at present still in an experimental form and have
" not . : been applied in & practical situation.

A similar arrangement to the DAVI absorber is the 'Bell®Nodamagio®

l,l system shomn in figure 1.2. (b). The main rotor gearbex is momted

L

\
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1.1. (Continued)

on a beam supported by elastomeric bearings. The beam and carried mass
are tuned to resonate in the first "free-free™ normal mode of the beam
at the external excitatimm frequency. The beam supports are positioned
to coincide wiﬁh the nodes of the normal mode in an attempt to minimise
any forces transmitted to the airframe.

Dynamic absorbers are essentially force cancellation devices and
are often very effective in reducing vibratory responses. Their main
disadvantage, however, is that they often impose a considerable weight
penalty on the structure, e.g. the bifilar can add as much as L% to the
total weight of the helicopter. Battery absorﬁers and other similar
devices, with the exception of the bifilar, also have to be tuned to a
given frequency in order to operate in an optimum mamer.  The rotor
. speed, which is governed, can vary in certain circumstances by a small
amount and if this does hﬁppen then the excitation frequency changes and
thé absorber becomes detuned and is coﬁs‘equentlx-not so effective.

It is evident that whenever a structural modification has to be
made, whether 1t is at the design stage of the heliéOpter or during the
ﬁight‘test trials, then there is always the probiem of identifying | those
areas of the struct&e that have the greatest potential in either affecting |
or reducing the desired vibratory responses. Thus although the primary
aim of any investigation wsing structural quification would be +to reduce
to a minimum the vibration levels in selected areas of the helicopter
' fusela'geg there are . two seclzondary aims of a more general nature. Firstly,
there is the need to devélop techniques which will give a better understanding
of the wﬁy in which the dynamie résponse of a complex structure varies as

'_ & functia_n of its structural parasmeters, and secondly,criteria must be

i
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1.1. (Continued)
developed which will highlight areas within the structure which are

potentially effective in reducing the desired vibration levels.

1.2,  Existing Tecfmiques Related to the Problem of Minimising Structqral

Re@onse .

1.21. Structural Optimisation.

Computer bases formal optimisation routines are cmérﬂ.y used
in the Aerospace industry in a wide variety of applications. A general
optimisation procedure contains an objective function,varisbles and
a set of constra:b;lts which may be ap plied to the parameters themselves
or which may be of an independent n;a.ture such as stiffaess or frequency
requirements. Typically, an optimisation proéedure can. be applied to-a
finite element model of a complex structure in order to achieve a
minimum weight configuration. The structure would normally be subjected
to a set of excitation forces and the variables in the problem would be
the sizes of the elements. The constraints could include any of the
following: stregss constraints, constraints on the displacements and also
on the sizes of the elements. An example of a procedure such as this
is glven by Venksayya [25.].
" - Dynamic comstraints can be considered in the optimisation process,

®.g. 1t might be required that one or more of the natural frequencies

of the structure should assume given values or alternatively that there
shoul_d be a given interval between bw-o natural freqﬁencies..’rm-nerlaél
develops & procedure which proportions the members of an elastic structure
8o that-one or more of its natural’frequencies assumes a8 given value

and the total 1;1333 of the strucure is a' minimum. Constraints of this
form are normally considered in order to satlsfy the: flutter requirements

of fixed wing aircraft.



1.21. (Continued)

A pafticularly practical method has been developed by Taig snd
Kerr 291 at the British Aireraft Corporation where automated optimisation
methods are routinely used in the design of all new aircraft. The
method is capable ofl producing a minimun weight structure whilst considering
strength, stiffness and frequency réquiréments simultaneously; The
approach 1s based on the strain energy density of individual structursl
elements and all the sbove mentioned requirements are developed in terms
"of these. The variables congidered in the process are real structural
pammeters and there is consequently ﬁo need to perform a subsequent design
operation in order to convert idealised structure dimensions to feasible |
detall siées. |

The problem of minimising structural response can be tackled using
formal optimisation techniques. The method requires a mathematical
model of the structure in order to calculate the dynamic response of the
system due to a given set of excitation forces. The response at one
or more points in the structure is minimised as & function of a given set
of structural parameters. Constraints can be‘ imposed on the sizes of

the parameters as in the previous problems. Ellis [27]

of Westland
HelicoptersLtd., describes a process by ﬁhich a very much simplified model
of the upper decking structure, main gear box and engine of a helicopter
was optimised in order that the'forcé Inputs to the fuselape were a
minimum. The problem contained only a few variable parameters representing
the geometry and stiffness of the substructure. A Simplex procedure was

| used in the optimisation routine and the results obtalned were used in
order %o obtain a feel for the lvibration problem of the helicopter. An

l ~attempt was subsequently made to optimise & simple model of the whole

\ helicopter containing 20 nodes and 25 linearly tapered beam elementa.
‘ .
\ .

-

[
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1.21. (Continued)
In this particular case it was required to minimise the response in
the area of the pilot's seat subject to variations in the flexibility
of elements in the engine-géarbox area. It was found that fhe
procedure required approximately 1%; hours of C.P.U. time for one
computer run and the ldea was consequently abandoned.

The results of the latter application demonstrate  quite clearly
one of the main disadvantages of formal optimisabtion procedures. It
is apparent that in large structures there are often many thousands
of parameters anci to consider each of these as variablesin an
optimisation process would be beyond the scope of even the largest and
most. efficient of modern d|a;)r computers. A reduced selection of the
most 1likely parameters would therefore have to be chosen as the variables
in the problem. However, this approach is not entirely satisfactory
for there is no way of knowing whether the minimum solution achieved
is a global minimum or just a local e, i.e. c‘ould a better solution
have been achleved using a different set of parameters? The results from
an optimisation process also give no indication as to the relative
effectiveness of given ioarametem for the purpose of achieving a minimum
sclution, and by virtue of the predetermined way in which the search
for this minimum is carried cut the process effectively lacks the freedom
which enables any sort of feel or insight into the problem to be obtained.

1.22. Small Perturbation Analysis as a Method of Determining the

Senzgitivity of Eigenvalues to Parameter Changes 1n Dynamical
‘Systems.

The three methods outlined in this section can be used in an

. indirect manner to assess the effect. of sgtructural modifications on the

d;rnamic regponse of a system. The methods attempt in one way or another

| 4o determine the sensitivity of eigenvalues %o changes in certain

y

T | - ~10-



1.22.  (Continued)

parameters of the system. It is assumed that if any close natural
frequencies of the system can be moved away from the excitation freq@ncy
then this will result in a reduction of the total dynamic resiaonse of

- the system due to the contributions of the associated

narmal modes. Of the three methods examined only those of Sciarra are
aimed directly at the reduction of structural response. The methads of
Newman and Simpson are of a more academic nature and are aimed more
specifically at the problem of flutter in aireraft 1ifting surfaces.

The Methods of Scilarra. [26,17,18]

Sciarra considers the problem of reducing the dynamic response
of a helicopter fuselage directly. Two distinct approaches are used,
. namely, dynamic vibration absorption and structural modificetion.

Vibration Absorbers.

A technique 4s developed that will predict the effect an
structural response of introducing dynamic vibration absorbers into
the gystem. The amount by which the vibration - levels can be reduced at
specified points in the structure is celculated and is used as a measure
of the effectiveness of the absorber. Where more than one absorber is
used then Sclarra shows that it is sometimes necessary to detune one or
more of them in order to achieve the optimum reduction in vibratory )
response. DBecause of the weight penalty incurred by using vibration
absorbers this approach is usually anly used after an attempt has been
nade at structural modification. |
Structural Modification.

In the second approach it is assumed that if the natural
frequencies of the structure are moved away from the excitation

fréquepc:r' then this will result in 'a general lowering of the dynamic

~11-



1.22, (Continued)
response of the system. The problem thus redwes to one of assessing
the effect of changes in structural parameters on particular r_:étural
frequencies of the system. The effectiveness of parameters is based
on the strain energy of individual structural elements. In the first
instance a finite element analysis is performed to yield the eigenvalues
and eigenvectors of the system, then the modal strain energy di‘stribution
throughout the structure is found for the mode shape whose natural
frequency is +to be modified. The strain energies of each structural
element are calculated and listed in descending order, those elements
with the highest values are considered the best. candidates for
modification of the natural frequency. An alternative method of
caleulating the strain energies wusing the dampéd forced response in
place of the mode shape is also mentioned. Sciarra points out that
the procedure can be made more optimal from the point of view of
minimising welght by considering strain energy densities rather than strain
energy alone.
This technique is useful in that it indicates the potentially

effective elements for the purpose of structwral modification. The use
of atrain enerér as an effectiveness criterion is seen to be relevant ‘-
in as much that vibration levels -were reduced using the suggested g

modifications; the method, however, doesmot give any direct indication
.88 Yo the magnitude of the parameter changes that would be required.

[30]

. One way of resizing structural elements is given as

by o (strain energy density of the elememt)
(max strain energy density of any element ).

»  whera At is the change in the parameter (area, thickness, moment of inLyrtia)

and & is an arbitrary constant which represents the maximum allowable weight

: y | ’ | : ~1o-
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1.22, (Continued)

penalty. - It is not however, obvious whether the magnitude of the
pafameter change chosenin this way will produce the optimum reduction
in wvibration levels. The process by which real structural 'parameters
are used to reduce the dynamic response is involved and contains
gseveral assumptions; the flow diagram shown in figure 1.3. represents

this process.

[Structural Parameter]
- |strain Energy Density]
¥

[Natural Frequencie s|

— ¥
[Normal Mode - Shapes]
* .

|Structural Respons—ei

The Route by which Structural Response is Affected by Changes in a

Structural Parameter.

Figure 1.3.
The Method of Newman [}’]

This method is aimed specifically at the problem of flutter of

~adrcraft 1ifting surfaces, although the analysis could be applied to thé
equations of motion of eny linear dynamical system. The technique
involves the 'reductio:n of the general - equations of motion of an N

degree of freedon system to a set of first order differential equations of

the farm
T3 kA . )
§ =ug - ax)
A - | |
Where ai . %"‘1 1“1,2,0...11
and 31 = ﬂ;‘: ) i“l,a,-coon

13— .
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1.22. (Continued)

9 being the generalised coordinates of the system and Mis a (2n x 2n)
matrix whose elements .are functions of the system matrices such. a3 mass,
stiffness and damping. If A, are the eignevalues of M then the

me‘_t.hod gets out to determine the rate of change of Ai with the
individual elements of M, i.e. to find d_)_\i. This derivative is

dmj,
refersd to as the condition number for the jkt'h element of M with respect

" to the it'h eigenvalue. Those elements with the largest condition

numbers are considered to be the ones to which the eigenvalue is most
senagltive.
The method can thus be used to identify the potentially effective

elements for the purpose of altering a given eigenvalue. However,

" any change in a real structural parameter usually affects more than

)

one element of matrix M which may result in an undesirable effect on
the elgenvalue under consideration. For the same reasms the reverse
process of relating an element m, 3 to any given paramgter is
complex, and consequently it is most likely that conslderable difficulties -
would be experienced should this method be applied to a practical
problen.

A method sgimilar +to that of Newman is given by Woodcock s) .

The method is used to calculate the eigenvalue gensitivities, only this

time they are "cbtained without having to redwe the equaticas of motion

. of the system to a set of first order differentisls.

The Method of Simpson

by

[2]

In this'\ method the sensitivities of eigenvalues to changes in

structural parameters are determined using techriiques suggested by
2 . ' [ . . b .
Kren [ o] for the solution of large scale eigenvalue problems. Kron's

method ‘can lﬁe"'ap;‘:li’ed‘ to the solution of eigenvalué problems which

‘\\ aré tod iargg for a given computer to handle. “fhérlﬁéchﬁi‘éiu‘e"fequires

i I BN ok N A
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1.22. (Continued)

that the composite system be split into N subsystems, for each of
which the eigenvaluzs may be extracted easily. The equations of
motion of the composite system are derived by recourse to the .concept
of a constrained primitive Lagrangian followed by en application of
Hamilton's principle. An "Intersection Lambda ™ matrix is derived
whose order is small compared with that of the composite system. The

eigenvalues of this matrix are identical to those of the composition
system and can be extracted quite easily.

Simpson congiders a change in a structural parameter ® in
one of the subsystems and develops an expression for the eigenvalue
sensitivity . _d_)_L_; an expression for the eigenvector snsitivitles is
also developg'ds. The method provides useful information concerning
the gensitivities of eigenvaluesdirectly in terms of real structural |.
parameters, and unlike the methods of Newman and Woodcock the procedure'
13 not further complicated if a structural parameter affects more than
one element of the mass or stiffness matrices.

The methods of Newman, Simpson and Woodcock are very much of an
academic nature and would probably contain serious limitations when
applied %o a truely practical problem. Thé method of Sciarra on the |
other hand, has been developed from a practical view point and has b;en
proved successful in its application. |

1.3.  Vibration Control Using Strucbural Manipulation.

The theory develped in this thesis is based on a 1little known
prol‘)ertyJ of linear structures i‘.hat' ‘was first noticed by Vincent [3_!
of Westland HelicoptersLtd. If a structwre d1s excited by a single
| : ginug_,j_odgl force whilst either mass at a point or the stiffness
between two points (as represented by a linear spring ) is

~15-



1.3. (Continued)
| continuously veried then the response in the complex plane at some other
point is seen to trace out a circular locus. This simple yet elegant
result forms the basis for all the subsequent analysis that is daveloped.
By way of an introduction to this approach the response of
a single degree of freedom system is determined as a function of mass,
stiffness and damping. The variation of all three of these parameters
is seen to produce a circular locﬁs. Throughout the analysis
structural response is given in terms of receptances, i.e. response
per unit force. The theory is extended to cover the case of
parameter variations in milti-degree of freedom systems. For the variation
of a single mass or stiffness parameter the simple circular locus is
ghown to exist. However, where two parameters are varied simultaneously
en area of "feasible response" is found in the complex plane and for any
given values of the two chosen parameters the resultant response must
lie within the bounds of the feasible region. It will be shown that
it is possible to determine whether a desired responé.e is feagible or
‘ not for any given combination of parameters. * A general matrix equation
for the response as a function of M variable parameters is also
developed.
With reference to the practical application of this theory,
criteria are developed for the purpose of assessing the effectiveness
or sensitivity of parameters; several oi; the properties of respcnse
circles and feasible response regions are 1ncorporated in these. Thé
criteria can b? used to determine areas of a structure which are
potentially efféctive in reducing vibrat;ion levels. The practica.i -
application of the theory is demonsfrated using a simplified model of

a helicopter fuselagg. The analys;is is undertaeken in order 1bo

~16-



1.3. (Continved)
highlight sensitive areas of the fuselage for structural modification
in order to reduce vibration levels in the passenger and crew areas.
The results are compared with those obtained from a practical analysis.
An experimental anslysis is undertaken to verify the form of the
circular response locus as a function of varlable stiffness. The
analysis is performed on a simple test structure in which the stiffness
of a linear spring element is varied. The results obtained are
compared with those predicted theorstically.
An inferdctive computer program is developed for the purposs of

testing the theory. The program is used as an aid o the research

process and also as a means of performing practical analyses on
structures containing up to 60 degrees of freedom.

The methods outlined in the following chapters form the basis|
for a“completely new approach to the problem of vibratlon reduction
by means of structural modification. The method 1s intended to give a
better understanding and also a "feel® for the problem, both of which

~

are lacking 'in existing techniques.
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CHAPTER 2

THE EFFECT OF PARAMETER CHANGES ON THE RESPONSE OF

A SINGLE DEGREE OF FREEDOM SYSTEM

2.1. Equations of Motion.

Although possibly of little practicai importance, a brief
study of the various parameter changes in a simple one degree of

freedom system is helpful in understending similar changes in more

. complicated cases. It is intended to show how the response of the

system varies with frequency, mass, stiffness and damplng.
b The equations of motion of a single degree of freedom system
subject to harmonic excitation at circular frequencyw may be written

mX + E'ﬁ kx= Fe 1oy (2.1)
w

where m is the mass, k the stiffness and F the magnitude of the
excitation. The damping, represented by constant h, is considered '
to be hysteretic in the analysis that follovfs. The steady state
solution for the rESponsé is given by ' |

it (2.2)

x = G{Ww)Fe
where

g{w) = | .1

(k - mef) + ih (2.3)

‘a.nd is the complex receptance of the gystem. Since the receptance'

is the response per unit magnitude of excitation, it is this quantity

that 1is cgnaidered in the ensuing analysis rather than the response
itself.
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The Responise of a Single Degree of Freedom System

as 8 Function of Frequency

2.1.
-?iﬁ?re 1 i




e

2.2, The Variation of Frequency.

The results of varying frequency are well known and so need
only be considered briefly. It can be shown that the locus of the - '
tip of the receptance vector G(w) in the complex plane, aswvariles,

is a circle dismeter 1/h passing through the origin and centre on the

L]

projection of the three dimensional locus prodﬁced by including

negative imaginary axis " Figure 2.1. shows the circle as a

as the vertical coordinate. The complete circle can only be realised
by consldering imaginary values ofwi.e.h92<0 (shown dotted in the
figure). Various points of interest, including the direction in
which the circle is traced out for increasing values of w, are also

~ showm. '

2.3. The Variastion of Mass and Stiffness.

The circular locus described in section 2.2. arises by virtue
of the variation in the real part of the denominator (k - mwz) in
equation 2.3. Thus, it may be seen that a variation inm or k
produces the same locus. For increasing values of k the direction in
which the locus is traced out (anti-clockwise) is opposite to that for
increasing values of m and wz. Arcs corregponding to negative values
of m and k exist in a manner similar to that for w2< 0. f.iated -
below are the coordinates in the'complex plane corresponding to some -

of the more important values of m, k andw.

Wam=k =w [0, 0]
W=m=o [k/G* + 12), -0/ (& + n%))
T K=o e/ e ), s e )]

If the circles for G(k) are plotted in three dimensions for all -values
of O, a c:l.?cular cylindrical envelope is developed. Figure 2.2.
ghows é.piotorial representation of this.
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2.3. (Continued)

Those parts of the loci corresponding to negative values of"
k are shown as dotted lines. In addition it is possible to plot, en
the. envelope, curves of constant k; these are of the same tybe as
those shown in Figure 2.1. |

2.4. The Variation of Damping.

Varying the demping coeffilcient h in equation 2.3. produces a
circular locus diameter k/(k - m(oz) with its centre on the real axls
and passing through the origin. Inhereca?/_ the circle lies on the
~ positive real axis (forwc f? on the negative real axis) and the locus

is traced out in an anti-clockwise direction for increasing values
of h (for W< \/1_? the direction is clockwise ).

' In pracl'iraiice inherent damping in a structure is a difficult
quantity t'o model precisely and it is not envisaged that parameter
| chanpges of this form wouid be used to alter tha_st.ructural cfnaract—
eristics. Consequently, the effects of changes in structural damping
are not considered further in this analysis.
2.5, Conclusions. .

It has been demonstrated that the independent variation of any
of the parameters in a single deéree of freedom system produces a simple
c¢ircular locus in the complex plsne. When an increase or decrease in
stiffnessi is accompanied by a similar chenge in the mass, as is often
the case in practice, a variation in one pa.rametér tends to cancel
out the effect of a change in the other; but clearly combinations of
parameter changea do not further complicate the analysis.

It ‘H‘ill be shown in Chapter 3 that the simple form of the

oircular locus carries over to systems with many degrees of freedom, -
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for varying mass and stiffness, but not for varying frequency.



CHAPTER 3

PARAMETFR CHANGES IN MULTI-DEGREE OF FREEDOM SYSTEMS

3.1. Tntroduction.

The general case of an N degree of freedom system subjected
to a single point excitation is considered. The respbnse at any
point in the structure is examined and the main properties are
developed for the case of varying stiffmess. At the end of the
gection varying' mass is considered, and is seen to produce a response
locus of the same type as that obtained for varying stiffness. The
complete development of the theory for variable mass is shown to be un-
necessary since, by implication, the properties and observations for
this are similar to those appertaining to variable stiffness. 4 simple
analogy 1s made between variable mass as a paramefer and a speclal
cage of variable stiffness. In this way it is possible to use just
one set of equations to describe the respense at a point in a structure
as a function of mass ,. gtiffness or mixed parameters.

The effect on the response is examined for the variation of
one, two and M atiffnesé parameters. Having developed the theory,
certain facts and observations are made within the analysis; some
information is given only on the grounds that it is interesting, whilst -
a fuller ﬁreatment and discussion of the application of the theory is

| given in Chapter L.

3.2.. - Response as a Function of a Single Varisgble Stiffness

- Paramater. ) -

 As in the single degree of freedom case, the responss of the
system 1s expressed in terms of rscaptances.‘ The latter follow from
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3.2, !Gmtinued)

congideratic of the equations of motion of an N degree of

freedom gystem which may be writtgn |
- pei¥t - (3.1)

Y
+CX +

(111

M

o
I=
1]

where M, C and K are the mass, damping end stiffness matrices
regpectively. The system is considered to be subject to harmonic
excitation at circular frequency (> and, since no further advantage .
may be gainad from using hysteretic daaﬁping, the damping is considered

to be viscous. The steady astate solution for the response is given

- xe'™® (3.2)
where | .

x -8 (3.3)
and G =[§-gu2 +  iCW] - (3.4)

which is the receptance matrix for +the system. Figwe 3.l. shows
schematically the system to which the equations apply. It represents
a structure having many degrees of freedom, for which it is required to
examine the response at a materisl point g due to a single forced
excitation at point p. The structure is modified by inserting a
linear spring of stiffnegs k between points r and s having mutuslly
compatible degrees of freedon. The spring is adjusted so as to exer'E |
zero force when the system is in equilibrium.

=25



Figure 3.l.

Schematic Representation of the Structure and Varlable Stiffness Element

Consldering the original structure as a free body, the
- Introduced spring exerts forces Fr and Fs at points r and 8 respect-
ively, where _ -
F.= k(xs -xr) = Ty (3.5)
This gives a relationslip between the .pa.rameter k and the structural
variables of force and displacement. Equation 3.5 thus provides a
. rigorous definition of the form of the parameter change where stiffness
. is concerned. The foreing vectc;r F in equation 3.3 now contains ‘three
non-zero elements Fp, F » and Fs s the }gtter two being dependent on 1:.‘t1e;I

structural displacements X and x a? whilst thé elements of immediate
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3.2, (Continved)

interest in the displacement vector x are xq, x, and x_. BY
partitioning and expanding the relevant parts of equation 3.3. we can
write

x =G F «G F +G F
q qQp P qr r qs 8

- | .6
X, = G F + G F. +GF (3.6)

Xg © Gspr * Gerr * GssFa

Where G:I. 3 is the complex receptance giving the displacement at point i
"due to akforce at point J. The forcing terms Fr and Fs may be
substituted from equation 3.5. and subsequent elimination of xr‘ and
x, in equation 3.6, gives
- + - -

qu k (Gsp Grp)(qu G )

*q s (3.7.)
F - -
P 1+k (Grr * Gss Grs Gsr)

This 1s now the modified complex receptance between points p and q in

terms of the variable parameter k and the original receptances G:l 5°
Equation 3.7. may be written in the more general form |
o = u + iv | ' .
= (o +14f) + k(a + 1b) (3.8)

1+ k(c+ id)

x
where K= F‘A and a, b, c, d, e and £ are all real canstants. -
b : .

Now from equation 3.8.

(u-e)+ilv-f)= a+id
1/k + ¢ + id
andremangingthia gives

[ﬂH+c+ﬁ-(a+ﬂ)Ku-ﬂmih-fﬂ

u-’.e) +(v-f)

}

2=



3.2. (Continued)
then equating the imaginary parts and thus eliminating k leads

to the equation .
d{u-6C+ (v-2P] =blu-e)=-alv-1)
which on simplifying gives
Cfa- (e+ve)] 2 4 [ve (- a2a) 2
- 32 . b2
La
" which is the equation of a circle radius al + l:»2
. _ La
and centre [e + b/2d, f - a/2di
Thu,s, as k varies between - 00 and +9 the locus of the tip of the
::eceptance vector K traces out a circle in the complex plane. It is
interesting to_ note that equation 3.8. may be regarded as providing a
mapping from 1.:.he k plane, which 1s in general complex, toAthe of plane.
This may be seen to be an example of the bilinear class of mappings
represented by the general equation

w = ak+ b
ck + d

[7]

where a,:b, ¢ and d are complex constants and for which it is known
that circles and straight lines ( a circle with infinite radius) in the
k plane 1inap into eircles or straight lines in the w planse. .1In
this case we consider only real values of k, providing a straight line in
the k plane, which meps into a circle in theyplane. If dsmping were
incorpor;s.ted into the stiffness by introducing an imaginary component
1ntow 1'.119i parameter k, then, provided that both real and imagina.ry’_parts
cen be pﬁ.otted on & straight line, the mapping on %o the p(plan; 1s

]
i

still s oircle.

! . ' ' :
* The geametric propert:lés of the response circle in the &« plane -
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3.2, (Continued)

depend on{ the constants a, b, ¢, d, e and f which in tun depend
indirectly on the examination and forcing points and on the positim
of the introduced spring. Appendix A contains a table relafing

these constants to the camplex receptances Gi 3

Equation 3.7; has been derived for the case where pZq#r¥ 8.
However, it is possible to consider conditions other than these, and
1isted below are the results for the combinations of p, q, r and 8
encountered in practice.
(1) porqg=rors. Itcan be shown that
equation 3.7 Btili applies with the relevant
gubscripts interchanged.
(2) p=q=r ors. The subscripts may be
interchanged as in case (1).
(3) rors=o. This can be interpreted as
indicating that the introduced spring has
one of its ends anchored to a ground

reference point as shown below.

structure

e




3.2. (Cantinued )
In this case
F, =~
and expanding equstion 3.3. as before we obtain
= g +k{-G_0
w X )

rp qr (3,9)
1 + kG
T

x‘-1
r,
This result may be obtained directly from equation 3.7. by cansidering
the subscript s to be zero, with the condition that G:I. j = O where 1
or j= 0. Thus, a zero subscript may be taken as referring to a
rigid point for which the cross receptance between this and sny .other
point is zero. It can now be seen that one equation, namely equation 3.7;
can be used for all possible values and combinations of p, q, r and s.
In the latter half of this section some‘of the more impartant
properties of response circles are examined with a view to obtaining a
better unde—rstanding of how a particular parameter change affects the

responge of the system.

x
In equation 3.8. the complex receptance oX= FS- may be
‘ P

split into its real and imaginary components which are

.'1_1-‘- e+kla+ Kk(ac+ bd)]_ - ; (3.10)
1+ 2¢k + k2 (o2 + %) ’

v=2+k [(b+Kklbe-ad)] ' (3.11)

' 14~2cl‘:+k2(c2 +d2)

These equations lead to:the coordinates of two important
point:s on the response circle, néniel:r those at which k = 0 andk -?0 3
substitut‘fl.ng\ these values in equations 3.10. and 3.11. gives -
| jk‘- 0 veeess [8,f])

1
: L
r

N 1

=50~



3.2, (Continued )

02+&2 02+d2

k.w ...-.e+ac+bd, f*bc-ad]

It is these two points which bownd the arc of the circle
corresponding to negat:l.vp values of k. There are, however, two arcs
to choose from, and it is necessary to determine the direction in which
the locus is traced out for increasing values of k before any decision

can be made.

e = s e - -

-
Re (k)

. —==-negative k

, Figure 3.2.
Response Circle far Varying Stiffness

3]
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3.2. (Continued) - ‘

Figure 3.2. represents :a typical response circle andle defines
the angle betweeu; its horizontal diaemeter and any other point correa-
ponding to a given value of k. From equation 3.10. and equa.tion 3.1.

© can be obtained a3 a function of k and may be written

G - ‘“’/2 + Tan T %:‘l{] -2 Tent [‘gﬁ*-ck] (3.12)

The congstant d in the second term in the sbove equation is not cancelled
since its sign plays a significant part in determining the quadrant
in which the angle & 1ies. 1In order to determine whether © 1s an
increasing or decreasing function of k, it is necessary to calculate

i@_’ from equation 3.12. Thus, by differentiating with respect to k,
dk - _

we obtain

_d4e = -2d (3.13)

dk 1+ ck)® + a%%°

from which it can be seen that the locus travels in an anti-clockwise
direction for the negative values of the constant d that invariably
occur in practice. In addition to this, it is interesting to note

that the point at which g'i? is & meximm, 1.e.

k=_-c¢

e+ a® ' _ e

18 displaced by 90° rownd the circle from the point at which %i?—

is a minimum (in fact zero, occuring at k = @ ). The rate of change of
l9 with k is a useful quantity in that it bears a direct relationship
to tl;e ability of any given parameter to change the response of the ;
system. This property can be seen from esquation 3.13. to depend

only on t:he position of the introduced spring and not on the examination

and forciin'g points q and p. ' Equation 3.12. can be rearranged to

T |

) =32- : |



3.2, (Continusad)

give k as a functiom of © 1.e.

k = tanp
d - ¢ tan p

p = W + tant [%%] - e
, 2 2

This is an extremely useful equation, particularly in the computational

where

side of the analysis where it is often necessary to calculate the
stiffness value corresponding to a given response.
| At the Tbegining of this sectim, it was assumed that the -

stiffness parameter k was real. However, the implication of 'th_:ls on
the bounded nature of the responge is not lmmediately obvious. In
order to clarify this point, consider equation 3.10. with the constant
e omitted for convenience |

W o= klat+k (ac + bd)] (3.14)

1+ 2ck + K (c2 + d2)

This gives the real coordinate of the response as a function of k.
Equation 3.1li. may now be rearranged to give a quadratic in k which is
12 [vf’(c2 +d®) - (ac +bd)] +k (cu-8)+u (3.15)
= 0 -

Solving thia equation for k yields two roots for any given value of
u., and if these roots are to bq_rea.i, as :‘Ls.the requiremsnt in
p;ractice,%then the following condi‘t.ion must be satisfied

. hu -hubd-a < 0 (316)
By conaidering the 1:lm1ting case where equation 3.16. is gero and
solving for u, then



3.2. (Continued )

which corresponds to the real coordinate for the centre of the’
respanse circle plus or minus its radius. The imaginary component
for the response given by equation 3.1l. may be ansglysed in exactly

the same menner, and is found to yield the result that
‘v = -a;‘/a2+b2

2d

for the condition that k is real. When these two observations are
taken together, the implication is that there are finite limits imposed
on the maximum and minimum size of the receptance vector owing to the
real nature of the parameter k.
As with 'I:.he single degree of freedom case (see Figure 2.2.)
it is possible, by introducing the forcing frequency as a coordinate .
to construct a surface corresponding to a given stiffness parameter
upon which three dimensional response curves can be drawn for various
valuss of that parameter. Figure 3.3. shows a pictorial representation
. of a ty'pichl surface, the response curve cdrresponding to k=0 (shom
dotted) is] projected below on to the complex plane. The latter 1s
often referred to as the Kennedy—f‘ancu plot for the system. -
1;1 the last half of this:section s consideration has been  _
glven to same of the properties of resﬁonse circles in the complex plane.
In Chapter L these will be expanded and discussed in more detail,
and a description will be given of how these principles can be applied

)

to practical examples ’ o
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3.3. ‘Response as 8 Function of Two Parameters.

As in Section 3.2., the response at point q, on the
structurae, due to a force at point p, is sought. [This time the
variaeble stiffness elements kl and k2 are connected between pbint-s
r, 8 and t, v reSpectiveilLy. The forces Fr’ FB, Ft and l""r are glven
by

Foe kg (x - x) =-F | (3.17)

F, = Kk, (xv - x.) =-F
Equations 3.3. can agein be used to give the relevant equatims
x, = ?Giij i=q, r, 8, t, v (3.18)'
. J'Psq,rrsa,t':v'
substituting for Fr’ Fs, Ft and Fv in equations 3.18. and eliminating

xr,. Xgs Xy and X gi?es

xg Gt g By )+ Py0k,) (3.19) ;
% ) @3 Gp) + @) 0p)
where £ 1 (kz) are complex linear functions of k, and are given in
full in Appendix B. In ofder to understand how the locus of -i;-,-q- ,
P

in equation 3.19. appears on the complex plane as If.l and ka vary
simultaneously it is necessary to examine how the function behaves
when one paramet.er varies and the other is held constant. If, far
i.nstange, Jki is held constant whi}l.st kz is allowed to. vary then it can
be seen that equation 3.19 provides a mapping of the same type.' as that
givenwin equation 3.7.;, i.e. it results in a circular locus. If k1_
asgumes a di.fferent value then another circular locus is produced - as

k, varies. If all possible values of kf are considered thén the

oorr;eap&zd‘:!.ng fr._.z loci lie on the circular locus for the system when k.'

N . "
| : =36~
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303. (Cont.‘l.nued) ‘
alone is varyix;g. This is 1llustrated in Figure 3.h.
gImoclk kzl ,

Figure 3.h.
' Response Circles for Two' Structural Parameters

-




3.3. (Continued)

By considering all possible combinations of Icl and k2 s 8
region in the complex plane is formed, inside which the response at point
q die to an oscillatory force at point p must lie. This is referred to
as a "Feasible Response Region®. Figure 3.5. shows an example produced

in the same manner as indicated in Figwre 3.k

38



.Feagible Response Regjon made up of Response Circles.
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3.3, (Continued)
On examination the region appears to have two boundarles

snd 1s doubly covered, 1.e. a given response may be achieved using

" elther of two pairs of values of k1 and kz. The bomda:'ies; however,

do not exhibit this property, for it may be deduced from the graphical
construction that on eny boundary the e¢ircles for k’l and k2 intersect
at a tangent. Thus, there can only exist one pair of values of k._L,

k. for each point on the boundary. These facts may now be obtained

2
in a more rigorous fashion. Mathematically the boundaries are given
when the Jacoblan

d (u,v) /D iy sky)

18 zero 6] 1.0.

du
dv v
k2

ar, alternatively :
m (¥, '5___  (3.20).
Bk

where —-S-k—— is the complex conjugate _-—-— and
' 2

; ol= u +i1lr-;_:x£
. F .
. P

‘ Equation 3.20 is of second orde::' in k’.l. and k2, thus confirming the

possible existence of two boundaries. By virtue of the fact that the
values of Ic'l and k, on these boundaries are wiquely defined it is
poasible to calculate their coordinates diréctly. Subatituting a

~40-
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3.3. (Continued) .

range of values for k, into equation 3.20. (see Appendix C for expanded
version of this equation) the two corresponding values of k2 (one for
each boundary) and hence the coordinates of that point may be calculated.
By chooging enough values of kl the bowndaries may be plotted directlyl
Figure 3.6. shows some examples of typical Feasible Regimns. The
systen for which these were calculated is described in Appendix D.
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The Boundaries of Some Typical Feasible Response‘ Regions.
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K is the ;m X m- diagonal matrix; of stiffness parametersk

3.4 Response as a Genersl Function of M Variable Parameters.

In Section 3.3. the setting up end reduction of equations
3.6. to give a single expression for the complex receptance in
equation 3.7. becomes rapidly more complex as the number of varisbles
considered increases. As a consequence of this a general matrix

expression for the complex receptance, in terms of M variable parameters,

is developed.

The response at the examination point q may be written in

terms of the external force, internsl spring force and the corresponding

il .
=0 Pt &, (qu - qu) + kz.sz (Gq3,- th)

receptances G
x

q

ceave K8 (G5 op = Gos op) (3.21)

i

where k, is the ith variable stiffness parameter and

Sy % Ty - Ty
is the extensiom of the 1D spring (kzi and x2£-1 being .the actual
displacement st .e_ach end). Equation 3.21. may be alternatively .
expressed 0 |

x = G F + Ak ' .22
q @p — ‘ | (3.22)

Whers A is a (1 x m) row vector of terms

{(qu - qu), (G -G h) (Gq,Zm_l - Gq, om )}‘

| 1’andé

isamx 1) colum vector of extensions.

‘ The values of 5 4 may th?;nselves be expressed in the same way

e

as ‘xq in equation 3.22. )
S 1™ F (Gap Glp) 8 k1 [(G22 - G21) G1 - G]_'I.)] -
kz S 2 [(Gzh - G23) - (Glh- 613)] 2000 seRe e
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3.4 -(Cmtinued)
§," R, (G = 0y) -Sl ko [(Gp = Gy) = (G5 = Oy)] cesose

e 8

§0 F, Con,p = Con1,p) "t ¥ndn [Con,2n = O2m, 20-1)

= Cpny, 2n = %one1, 2m -2 (3.23)
This may also be written in matrix forn § = F B - ck§ which
gtves & =|1+cx]lrp (3.24)

Where B is the (m x 1) colwum vector of terms.

{(G?_,p - Glp), (th - G3p) (Gam,p - sz_l’p)}
and C i3 the (m :'c‘m) matrix of complex constants whose elements are

glven by

Cyy = (GBpy o4 N Gy, 23-1) = ©au.1, 23 = Gog1, 24-1)

' The expressim for 8 in equation 3.24. may be substituted into equation

3.220 to giVQ

5 6, *+ Al +cl™ B (3.25)

p [

4 : x ‘ . '
which provides the complex receptance 17*3 as a general function of m
' p

variable stiffness paramef.ers. Although any number of parameters may
be consideéred, the reduction of equation 395. to give a single expr:e:ssion
is sti11 complicated by the inversiumn of the terms in the brackets.
3.5. T}ariable Mass. '

]}n order to understand what effect a varistion of mass has
|

. on the res;ponse of a system, it :Lp negessary to consider what forces

an additional mass exerts on a point in an accelerating structure.



3.5. (Continued )

: L
Consider a point X with acceleration x r at which an additional

mass m is attached. The inertia force exerted on that point is
given by

F.= ~mx ' (3.26)

using the solution farX given in equation 3.2. F, may be obtained
directly in terms of the displacement X, i.e.
2.
= ) -2
Fr r.nm X (3.27)
As in Sections 3.2. and 3.3. equation 3.3. may be expanded to give
=G F +G F (3.28)
qp q .

Subatituting for Fr from equation 3.27. and eliminating X, between
equations3.28 gives the following expression for the receptance as a
function of the varisble parsmeter m. ‘

2, .
F 1~ mL:ZG
P , vy

This is of the same form as equation 3.7. and thus results in a
circular J],ocus on the complex plane as m varies between - ® and + OO
The direction in which the locus bravels can again be shown to depend
on the sién of the constant das tfefined in Section 3.2. The inesged‘d.v; :
valliles of 3dfmmd in practice com't;ined with the negative sign in the
denominatér of equation 3.29 caus?e the locus to travel in a clockwise
direction.for :an-eé.aing values of m; this agrees with the ;'eaulta
obtained écr the single degree of fregdorm case.

Having shown that varying mass produces circular locus
in the con!;plex plene, it can be further demonstrated that the equations

< :
and properties ‘of response circles derived for varylng stiffness also
i ! .
L]
S o



3.5. | (Continued)

apply :t‘o:."l varying mass. To do this an analogy must be drawn between

mags and gtiffness as varlable parameters. Consider a grounded stiffness

parameter attached at a point x, in the structure. The farce the
spring exerts on that point is given by '

Fp = -kx, | . . (3.30)

Now the farce exerted by an additional mass, m, at the same point x,

is given by
® :
F o=mx, (3.31)

where m" = mw2. Equaticn 3.31. is identical to equation 3.30 apart
from the change in sipgn of the parasmeter. Thus, the general equation
| ‘

~ for the response which is glven by

= 3 k - -
X T Ogp * Ky - G )Gy - Gg)

a g8’ (3.32)
FP 1 k(G'rr *Ggp = O - Gsr)

may be used for varying mass if those constants multiplied by the

| parameter k are modiflied by changing thé:l.r signs. Now s for the mass

parameter defined in equation 3.31. the response equation 3.32.

4

becomes
=G +k (G G ' '
T 0% tE Ol (3.33.)
F 1-kg ' g
P rr

where aJ.lé the G, 3 with a subscript s are set to zero and the aigns of

those remaining constants which are multiplied by k are changed.
Since equ.ation 3.33. refers to vqriable mass, then

_ k= m*-e. mwz S S N
and X =G +mna G G
_%g qpP ( rp gqr )
. 2 . .
Fp 1 - mw Gﬁr 1



3.5. (Continued )

which is identical to equation 3.29. The simplicity of this approach
can also be used in the equation describing the response as a function
of two variable parameters. Thus, it is possible to use just;. e set
of wniversal equations which apply for mass, stiffness and mixed
cambinations of parameters. It should be remembered that in using
this method the mass parameter refers to. n" and should be divided by
&)2 to obtain the trus value of the parameter n.
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CHAPTER L

THE ASSESSMENT AND EFFECT OF PARAMETER CHANGES

» h-lo Introduc ticon.

The theory governing parameter changes in both single and
multi-degree of freedom systems has been 'developed in the two previous
cﬁapters. In Chapter L the tecmiques involved in the practical |
application of this theory are discussed. Particular emphasis is
placed on the abﬂity of any given parameter or parameters io change |
the response at a specified point in a atructure; +this ability is
interpreted as be:lng representative of the effectiveness of those

| parameters. Several criteria are developed which enable the effective-
ness of the parameters to be measured.

Other aspects considered here include the feasibility of
achieving a desired respbnse » minimum responses and the relationship
between ldealised parameters and those encountered in real structures.
In the last section, same interesting, but less well developed,

- techniques are discussed, including the case where multiple responses
are .enmined as functions of structural parasmeters. '

h.2.  The Feasibility of Achieving a Desired Response Using . -

One or Two Parameters. |
! i
Lh.2. A S:lngle Varisble Parameter.

In the most genersl case it is required to know whether or
not a speciﬁ.ed response is feasible using Just one variable parameter.

The desired resptmse is given in terms ‘of its real and imaginary

- components l.1.n the complex plane. These compcnents may be obtained as
functions of the chosen stiffness parameter k and are given by |

| o
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ho21. <00ntinued)

u=eo + k(a + k{ac+bd)) - : (L.1)
1 + 2¢k + K (c2+d°) |

v = £+ kb +k(be-gd)) C(5.2)
1 + 2ck + k2(c>+ d°)

If the required response is feasible, then it should be possible to
choose a value of k which when substituted into equations L.1l. and L.2.
ylelds the desired coordinates. The condition for feasibility may be |

determined mathematically by re-arranging equations L4.l. and 4.2, into

quadratics in k. Thess ars respectively

kz((u-e)(c2¥d2) - (ac+bd)) + k(2c(u-e)~a) + (u-e) = O | (h.j)

and

1 ((v-£)(c?+a°) - (be-ed)) + k(2b(v-£)-b) + (v-£) = 0 (b.L)
By substituting the desired coordinates (u,v) into the sbove equations,
and then solving for k in each, it 1s possible to determine whether
or not the response is feasible. The condition is simple; if any
of the fowr roots of the equations are imaginary, then the response is
not feasible. VWhere all fowr roots are real, then the one coincident
root in each pair is the value of k that will provide the desired
response. | |

| A].ithough this general approsch does cover all possible resporixse
reqtﬂ.renzen;ta s 1t 1is found that in most practical cases of manipulatiﬁé
a etructu.z% to produce a desired #ibratory regponse, the aim would be to
minimiase the response over all or part of the structure. (An exce.ption
to this woruld be in oarder to change a normal mode shape). Tht;a, in
the caae where zero or & minimum reSponse is sought, then a slightly

different *approach to the solut.ion of the problem is needed.

§
1

b

i
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l.l.o 2. (C ontinued )

Imac (k)

A

L
Re a{k}

Figure L.1.

Calculating the Minimum ﬁesponse for & Given Parameter
| < Y

Figure h.lé. shows a typical respox%se circle. The value of k corresponding
to tf'xe mini.nmm responge vector is ;;given by the intersection of the -
circle and the straight line Joini?ng the centre of the circle to the

orig.:me ?The minimum response may alternatively be calculated Sy

cmai;.derinfg the square of the magnitude of the response vector [afl2 = (u2~ +v
The value (‘)f k corresponding to the minimun of [@|? 1s the same as that
for |a}.  Substituting for w and v fram equations L4.1. end 4.2. gives
|orl2 as a{.functim of k | A |

H
i
i

lc] ¢ = (ax® + sz + C) o - (4.5)
. (sz + Q]k "'R) ;

: . ’ 50~



L.21. (éontinued)
where A, B, C, P, Q and R are real constants and are defined in
Appendix I. The minimum valus oro(]2 is obtained by differentiating
equation 4.5. with respect to k and equating the result to ze-ro.
This leads to the following quadratic in k
1P (AQ-BP) + 2k(AR-CQ) + (BR-FC) = O (4.6)

The roots of this equation are the values of k correasponding to the
maximm and minimum values of |ocr2. Which of the two values of k
corresponds to the minimum velus of |aPmay be determined in the wsual
way by substituting each value in twrn into the second derivative of

chlz with respect to k and examining the sign of the- resultant. The
first and second derivatives of Itx]z with respe;:tfo k are given in Appendix
I.

4.22. Two Variable Parameters.

Determining the feasibility or minimum of a response using only
one variable'paramet& posegs few problems mathematically. However, -
the solution to the same problems becomes scmewhat more complicated
when considering two or more parameters. Tlie advantages of unsing two
paramaters as opposed to one are considerable, for if a desireci response
is to be attainable, then it must lie within the corresponding.: feasible
response région as defined in cm;iter 3, Section 3.3. The ch;nces of
achieving s desired responge are t;hus greatly increased using two
parameters > and so indeed is the possibility of achleving zero response.

; The direct calculation of Ethe minimum of a response as a function
of tﬂro’pm-ei!meter_a is complex mathematically and is not considered here.
Far more ix%xportant is the possibility of'achieving zero regponse, i.e. does
the relevax:it feasible region encompass the origin ? Consider first the

general oa?'e of the feasibility of any response &= u + iv. The response
, ! , S ‘ ,
i S =51~
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L4.22.  (Continued)
vactor may be written as a function of the two stiffness paraneters
o:-g+1;3+91+192 1.7

9'3 + 1 eh

where A4 and B are real constants ande’li' are linear functims of
k.l. and k2 as defined in Appendix C. The deslred response coordina‘bes!
(u,v) may be substituted into equation L4.7. and, re-arranged, this
glves
B-v)8) - (a-w) B5i((av) B + (Bv) B;) =6, +1, (1.8)

i Equating the real and imaginary parts of equation L.8. in turn
gives \ |

&l - (B-v)e'h - (&~u) -63 h.9)

8, = )8, - Bv) &, (1:10)

Equation 4.9. may be re-arranged to give kl as a fwction of Ic2

which is then substituted into equation h.\lO. to give a quadratic in kz.
' If the roots of this quadratic are real, then the desired response is
feasible and the correspond:l.ng va.lues of Ifl can be determined by
substituti%g the calculated valueer of k, into equation L.9. amd solving for
lf.l ‘ Eithpr of the two pairs of Yalues of k; and k, may be used to achieve
the idesirled' response.  The fea-ai‘l.bility of zZero response is just a
spec;ial c;.se of this analysis and needs no further explanation .

. Although {the abili‘f.y to determine the feasibility of- a response
1s usefulfin itself, it does not give eny indication as to the - -
effectivengss of the parameter or parmneters being used to achieve that
response, ‘ However, it could be argued that if a given response is
feasible tl}en the parameter that produces that responsge must be totally

effective far the purpose for which it was intended. Thus, :lt is
I i |
. =52
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h.22. {Continued)

possible to use feasibility as an effective criterion. The: exact.
definition of this will be given in Section L.k«
L4.3.:  The Criteria Governing the Effectlveness of Parameter Changes.

Prior to the development of any criteria f,br the purpose of
Judging the effectiveness of parameters, it is necessary to define
just what it is that the parameters are required to be effective in
doing. The objectives of any given parameter change may be cgtegoriaed
into one of thres groups, namely, |

i) to achieve any gensral response; .
ii) to achieve a minimum response;
i11) to achieve zero response.

Having defined and chogsen a suitable objective, attention may
now be focused on the parameters themselves in an attempt to determine
which of the avalilable selectiuns is most offective in achieving the |
desired goal. 1In the cases of (1) and (iii), if the objective is
achieved, then it is not possible to judge cne parameter as being more
effective than another. Where a minimum response is required, the .

~ effectiveness criterion is the size of the minimum response obtained for

.each parameter; +the smaller the value the more effective the pai'ameterr

is. Minimum response is not so much a measure of sensitivity, but a

simple statement of the ability of a parameter to achieve gzero response.

In this instance and those that follow, effectiveness is not cansidered
"to be an a;,bsolute quantity but is intended to refer to the relative
i . L

merits-of parameterso ; :
i L
In: practical applicationsof structural manipulation s it 7

is advantageoua to be able to recogniae regions in a structure which are

more effective than ot.hars in ptroducing changes :I.n a sPeeified I'e83pONnso.

=53~
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h.3. (Continued)
The existence of such regions can be identified by the presence of
an sbundance of effective parameters w:‘l.t.hin_ them. These parameters,
however, are not requiréd to be effective in producing a specﬁic |
response, but should possess the ability to affect changes in the
response over as wide a range as possible. 1In this instance, the .
diameter of the response circle is chosen as the effectliveness
eriterion, and is considered to be representative of the ability of
that parameter to change thé response under consideration. By
calculating the circle diameters for all the available paramsters,
their relative effectiveniesa may be determined. |
' Where the aim of the process of menipulation is to reduce the

response at & point in the structure to a minimum, then the latier

| criterion may be modified slightly to take this into account. Con-

sider the two response circles shown in Figure L.2. correspondong to

parameter I{l and parameter k2. On the basis of circle diameter paramster

Ia- would be considered to be mare effective in changing the response than
,parameterﬁkz. o ) Coe

H '

ﬂmcx(k)

P : Figure 4.2.

Response Circles
54~
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Lh.3. (Continued)

Bowever, where it is required to minimise the response parameter kl

13 ineffective, whi}_.e k2 is by c;mparison far more effective., Thus,
with the bias towards minimisetion, a new ef fectiveness criterion may

be defined as the portion of the response circle for which the response
may be reduced over its present value. The amount by which the
reaponse may be reduced can be _represented by the line AB shown in
Figure k.3. This, however, do@s not take into account the size of

the circle, a.ndlhence a moré representative measure would be the length
of the are CD. This 1s referred to as the bias dlameter of the
circle.

| ' The criteria that have been developed in this gection have bea -

formilated in order to highlight certain qualities of structural
. parameters. The best criteria for achiaviné desired response| character-

istics can only emerge as & result of the experience gained :h:lE using them.

A Imaclk)

-

‘ ‘ -
; Readk)

- ‘ ', . FiEEE h°3° :
The Portion of the Circle Effective in Decreasing the nagnit{ude

of the Responsae
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Lk.i.  The Practical Application of Effectivencss Criteria to

a Helic opter Fuselage.

t

This chapter deals with the practical -application of ‘structural
manipulation and would not be complete without an example to illuatrate |
the use of the techniques developed.  In addition, the example '
helps to define and explain more clearly the bases upn which the -
effectiveness criteria lie.

The example chosgen is representative of the practical problem: -
which provided the incentive for this research. Under considerat_.it;n
is the very much simplified two-dimensiocnal model of a helicopter
fuselage. The structure contains 20 nodes intercomnected by 25
linearlj tapering beam elements. Each nocie possesses three degrees
of freedom, two translation end one rotation, making a total of 60
degrees of fraeedom. The layout of the model along with the element
and node numbering is shown in Figures L.l. and L.5. respectively.

Mass and stiffness data for the model was obtained from Westland
Helicopters Limited, whilst damping was included in the form of a percent-
age of critical damping in each normal mode. \ The analysis was
performed using the structural manipulation programm daacribad in
Chapter 5, . the aim being to datem,ine which parts of the fuselage
- structure were most Bensitive in reducing the rotor induced vi‘nration
levels in 'I,:.he region of the pilottz'a geat (Node 18 in Figure L. 5 ) The
structure was excited by a sinuaoi,dal torque s of frequency 21.7 Hz at
noda ‘8.’ ,Bot.h the vertical and horizontal responses at node 18 were
examined, qlthough only the results for the latter have been included
here. O:nly at-iffnesa parameters connected between adjacent nodes were
oonside;ed.‘: In this way parameter changes could be directly related to
| existing structural elementa. By imposing this restriction the

§ {
i . . !
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' (Continued )
total number of parameters being associated with each element was
three. These are. defined in Figure L.6. The total number of

stiffness parameters associated with the structure was 75.
2 5

N\ L element N b

’é . ) '/6'

Parameter coordinates [1,4]
- [2,5]
(3, 6]

Figure L.6.
Stiffness Parameters Associated with an Element

Four criteria were used in order to determine those parts of thé
. structure which were most effective in reducing the vibratiocn levels.

Firstly, by considering just one parameter at a time, “the followlng were
caleulated far each of the 75 parametarsx-

1) ! Circle diameter.
i) ! Bias Diameter. i a ‘ -
: ' ‘ B
141) | Minimum Re:aponse. .

The values Icorresponding to (1) and (:!.:i.) have been sorted in
descending order snd are normalisecil such that they lie in the mnge
0-1l. The Yalue cme is assigned to the most effective parameter, and
zero to thmleast offective paramatar. It should be remembered tha‘t
theae orita?ia are used to determin'[e relative quantities and are not

indicative of absolute effectiveness. Where minimum response is

A ' =59~



L.k (Continued)

concerned the velues encountered are usually spreaﬂ over a wide range
making them unsuitable for normalisation in the manner Just ‘described.
Gonséquently, the logarithms of the inverse of the minimum responses
have been calculated, sorted and normalised in the range O-l.

Each paremster has associated with it three sensitivity values;
these are useci in two ways to produce an equivalent figure for the
elements of the structure. Every element has associated with it
three parameters, the first value assigned to the element is that of
the most sensitive parameter. This is intended to show that if an
" element has an effective parameter associsted with it, then that element

is effective regardless of the effectiveness of the other two related
parameters. The second measure is the avefage sensitivity far the three
parameters.

The results are presented in the farm of line grsphs where the |
ordinates refer to the various effectiveness criteria and the horizontal -
axis represents the various elements of the structure. For each
element, the shaded ordinate refers to the best perameter value, wh‘ils'_b
the _unshaded ordinate shows the average of the three parafneter values. . |

Thé fourth criterion involves parameters cambined in pairs.
Each pair '-.,rgs assessed to see if it could produce zero response at
the pilot'zi; seat. In the case of':,- gtiffmess, there were 75 parémetera
and 2,775 ﬁossible paired combinatiions , many of which s'at.isfied: the
required cr‘:i.’oarion. The number of times an elemsnt occurred in a
successful pair was noted and the results were tabulated in descending
arde1:, havi:ng been normalised in the range O-1 as befare. This _

measx%:_'a_cst? be interpreted as providing the relative affeeti\:raness of a

{
50~
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k.l (Continued )
given element to acf.ually produce zero response in conjunction with
another undefined element. The results for element occurrence are
also presented as line graphs.

The four criteria outlined sbove were recalculated, only
this time the variable paremeters were changes in point mass = a% each
of the nodes. The total number of parameters in this case was 60.
The results for variable masrs are plotted as line graphs in exactly
the same way as for the stiffness parameters. This time the numbers
on the x axis refer to the structure nodes and have been arranged
in groups representing well defined areas of the structwre. The
results far both variable mass and stiffness are given in Figures h.T; -
.1h. It will be noted that in Figure L.1ll. the ordinate referring
to the best paramater valus has been anitted. The values that
should have been presented hei-e were all unity or very cloge to unity,
and their presence tended to obscure the remaining ordinates. |

“
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k.la. Di-!acussion of Results.

It is already known that, for this particular helicopter,
the gear box and tail boam are suitable areas for modification in
orde.r to alleviate vibration in the area of the Pilot's seat. This
knowledge was galned over a period of time through a process of trial
and error, helped by a limited smownt of theoretical analysis. As a
result of this, the gear bax mountings were considersbly stiffened and
80 was ths tall boom between nodes 22 and 23.

The results for variable stiffness shown in Figures L.7. -
4.10. are mutually consistent in that they show the same three sengitive
areas in the fuselage, namely, the gear box, tall boom and fuselage
sides. This agrees broadly with what is kmovn sbout the helicopter.
What is interesting is that the same measagé coames across regardless aof
the criterion chosen, which tends to indicate the relevency of the

chosen criteria. In considering these three main areas, the importance

© of the gear box and fuselage sides is intuitively obvicus., The former

since it 1s close to the source of excitation, and the latter because

of its ability to transmit forces, mainly in shear, to the i‘ront sub= -

' structure. The importance of the tail boom is not so intuitively

obvious an it is encouragjrng that the analysis has highlighted this area.
The results far variable mass shown in Figures 4.11. = L.1lk.
are reaaon:ably consistent for all but the bias diameter criterion.  The

i
gear box a.nd fuselage sides are again highlighted as sensitive areas,

. with nodesf 6 and 19 being shown to be particularly effective by the circle

diameter criterion. The minimmsresponse criterion shows nodes 8 "and
18 to be sensitive in the redmtion of vibration levels; this is
mtuitively obvioun since these nodes represent the forcing and examinatim

=70~



.21, (Contimued)

points respectively. 4An mfinito‘increase in mass at either of thease
points would effectively reduce the reaponse to zero. It is
intei‘esting to note how the sensitivity to changes in mass varies along
the tail boom. The circle diameter, minimum response and node
occurrence criteria all indicate that relative effectiveness decreases
towards the énd of the tall boom. Vhere stiffness parameters are
concerned, with the possible exception of element 23, the circle
diameter and minimum response criteria indicate 1l;ha reverse trend, i.e.
effectiveness increases along the tail boom. For both mass and stiff-
ness parameters the engine is indicated as a relatively 1nsensit;ve area.
‘Of the four criteria used in the analysis of the helicopter
fuselage, only the blas diameter results have proved in any way in-
conclusive. For stiffness parameters the results are less well defined
but still indicate the same sensitive areas as the other criteria.
For mass parsmeters, however, the results seem to show no trends what-

goever; this seems strange when it 1is considared that the bias diameter

_criterion oontains elements of the circle diameter and minimum response

ocriteria, which both indicate clearly the sensitive areas in the structure.

The conclustions drawn here are tentative ones based on a

! 1 i‘
li.mi‘yed amount of experience in this particular field of interpretation.
The éxercis;e was primarily intended to demonstrate the use of the

! ' :
various cril‘.teria developed in this ‘section. Howsver, although there is

still a grefat deal of work to be dome oa the development of this

_practical 'form of analysis, there is strong evidence to indicats its

power and potential. i

i
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Lh.5. Parameter Changes in Real Structures.

This section is complementary to the previous one in that it
deals with some aspects of the practical implementation of structural
manipulation. -The emphasis here is placed on the relationship between
the simple parameters used throughout this analysis and those encountered
in real structures. The simplicity of the aforementioned smalysis comes
as a direct result of the form of the parameter changes chosen.

It would, however, be' unrealistic to expect similar changes to be elther en-
- countered or useful in any ‘pra‘ctical gense. VWhat is required is a
direct relationship between the practical structural parameters such as
beam dimensiom, web  depth and skin thickness and the ldealised 1inear
spring parameters. Progress can be made in this direction by |
constructing an eﬁuivalent spring model of a simple finite element.
i Consider the simple beam element shown in Figure L.15(a).  The
wmiform beam, which is inextensible, possesses four degrees of freedam
| Tys Tps r:,’l and rh a3 ghown, seccmd moment of area I and Young'!s Modulus
E. The atg.ffness matrix for the beam is well known and is given
in Figure 4.15(b). ‘ |
| By considering the equilibrium of the beam, the following
relatimships may be obtained
i | Fa i' “F (ho11)’
3 ' F, - BL=-F.+F “'E | (4.12)
B L
The!Fa two relationships :Lm;?ly an interdependency between same T
of the elements of the stiffness n}atrix K. In fact, if elementa kﬂ,

I, and k, Ie.re known, then the valuss of &ll the other elements can be

determined using equation 4.11., h.12. and syrrm:etry These three terms
farm the olements of the st:l.ffneas matrix of the cantilever beam shown

'l ; ?
i
! T2

1
|
;
i o ‘
{
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L.5. (Continued)

in Figure 4.16(a).

\j
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| Figure 4.16.

Cantilever Beam and Equivalent Spring System

The equiva1lent apr:?.ng system shom;a in Figure L.16(b) consists of two
rigid beams, total length i, hinémi st a distance x from the free end.
A rotatio]i:al spring of stiffnessi k, canmects the beams at thé hinge,
whilst a 1:Lnea.r spring of sti.fi‘nesa k2 is situated in the conatran.nt
arrangament at the free end of 'bhe bean. For the two aystems to be
equival_ent, the elements of their respective stiffness matrices must be

the same, , Hence, equating the relevant terms leads to the fallowing
i ’ : -

T4



b5, (géntimued)
valuss of kl, k2 and x

k'.l. =1/L _
K, = 120> (4.13) |

x =072
Using these values, the beam in Figure 4.15(a) may be represented
by the equivalent spring system shown in Figure L.15 (c).
The theory can be extended to cover the general case of a
linearly tapering' beam with second moment of area Io at ome end
and a taper ratio r. The analysis proceeds along the same lines as
for the wmiform beam, but requires that the stiffness matrix for a
Mapered - beanm be determined. This is given in Appendix K and refers
to a beam of I cross sectiom. | The stiffness matrix could,; however,
- have been calculated for a beam of any cross section. Equating the _
elements of the two stiffness matrices as before gives th§ following values -
of ky, kyand x

"‘1“12 (2r2+r+2)

513
' k=l @helr’e10f e bred) (held)
1a (21;'21i + 1r+2) i -

E..

x=0 (171'2 +6rg+ 7)
12 (2r2+r]§r?J

|
|

It 'will be noted that these valueis degenerate to those given :I.:{x
equation L. 13 when the taper ratio is wnity.

It has been ahown that & finite element beam can be modelled
in terms of the simple parsmeters used in the structural manipulatim
theory.. ,'I'hese parameters are directly related to the real structural

variablas r, Eand I 0" However, the parameters I:l and k, cannot be

i
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4.5. (C9ntinued)

varied iudépendeht]y since they are directly related. This situation

leads to the consideration of a special case of parameter varigtion s

namely, two stifméas parameters varying simultaneously but in a

related manner. ' |
ICcna:l.der the simplest case where the two parametors‘kl and k2

have the following linear relationship N '

=Bk (4.15)
whereis a real constant. The respcnse at a point in the structure
. may be given as a function of k1 andk2 and ig

; &= 8k, + bk, + ckk, (4.16)
1l + dk,l + ek2 + fk1k2 -

where the constants é., b, ¢, d, e and £ are complex and are defined

in Appendix C. The constant qu has been amitted from equation 4.16. for
. ' ' .

the sake of gimpifcity. Substituting for k, from equation L.15. gives
' ' | = R120p+k1(a +bp )‘ \ - (L.17)
g+ lq@s op)+1

Equation 4.17. may be considered es providing a mapping from the k.l

plane to thelcxplhne. Any complex mapping such as this may be made up

of a seriea; of simpler mappings. lIn this case, there are two ll_nappings

which take the form ' 3

| |
—_ !

!
L zeages o
- - Ck) + D
and | _ o= 22 +E , (L19)

where the co?stmts A, B, C, D and E are all complex. Equation 4.18.

1

is an emplée of a Bilinear Class of mapping and maps straight lines in the
\ - ' )

-\

1
)
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" closer in#estigation into their lrln.athematical properties. \

|
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4.5. (Continued)

k, plane fnto circles in the 2z plane. Equation L.19. maps the
circles in thez plane into Cassini Ovals in the o plane [7] _A
Cassini Oval or Cassinian is a higher plane curve of the same type as
Cartesian Ovals, 1imacions and cardioids (see Figwre L.17.). A
Cassinian is defined as the locus of a point which moves so that the
product of its distance from two fixed points ( O, + a) is a constant

k°.  The equation of this curve in cartesian coordinates is ' |

s 32 e 2 - el = 2

where 02 =k + 32. If k< a, there are two separate ovals each
enclosing a focus end the curve is said to be bipartite. If k> a
the two ovals merge into one. When k = &, the curve is a lemniscate.
The boundaries of the feasible reSponse regions are examples of this
type of curve. AThus , waen two stiffness parameters are variéd in
a related manner, the response no longer lies within s feasible region
but Onaclo;aed curve whose form 1s determined by the nature of the
relationahélp between the two paran::et.ers. The analysis of these curves
1a known to be complex, but t.he:rei is sufficient justification for a

A girect relationship between real structural pa.rmneteqs and
linear spring elements ha.s been shcmn to exist. The practical applica'bim

| :
of the theory developed around thji.a work has not been attempted,

| | ' '
~ but it i3 clear that real parameter changes can only be represented

by_cbmbina?.ions of idealised parameters. The variation of these

:parametersé ina related manner imposes tighter restrictions on the --

response .a‘;t. a point in the structure than if they had been al'.l.pﬁad to

vary mylep?ndent.ly.
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L.6. Other Techniques for Assimilating the Effectiveness of

Parameter Changes. }

This last section contains soms of the more interesting
aspects of the main analysis which have not been fully developed,
but which may have potential wusefulness. A single response is
examined as a functim of frequency and stiffness and the case of
multiple responses as functions of etmctufal paramsters is also
- considered.

L4.61. TResponse as a Function of Frequency end Stiffness.

In Chapter 3, an example was given of a three dimensional
responge plot, for which the response was congsidered as a function of
frequency and stiffness. The plot consists of a set of response
circles representing a single variable pa;rametef and calculated over
a range of frequency. If an infinite number of circles were plotted'
in the given range, then a cylindrical envelope would be developed
upon which the response must lie for & given value of stiffness and
" frequency. Figures _h.l&. and l.19, show two examples of these
plots, both were cﬂcﬁlated uging the mathema;c.ical model of the
experimental structure desoribed in Chapter 6. These plots can be
used to give some indication of the effectiveness of gingle parameters
as a funet:l.m of frequency. The size of the response circle, which has
already belen used as an effectiveneee -eriteria, can be plotted
againgt frequency and the resulting graph represents ‘the relative
effec?:.ireneee of that parameter in a given frequency range. In order
to produce ?hie graph, the frequency range of interest is chosen and the
cirele umeur for the given parameter is calculated at & specified

number of pdints within that range. 4 curve is then fitted through

) 79~
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L.61. (Cpntinued)

these po:lnts and the resulting graph is shown in Figures }4.20. and
k.21, These are .the circle diameter against frequency plot-_s
refei-ring to the same systems that were used to produce Figures L4.18.
and 4.19; They do, however, include the graphs for several other !
parameters as well. The peaks in these plots ma;y be intermreted as
boing representative of frequency renges in which the associated para-
meters are potentially effective. The curves were produced using the
atructurgl menipulation progrsmme. The process by which they are
obtained can be time-consuming, for 1t involves calculating new

receptance matrices for each value of fregquency.

h.62, Multiple Responses as a Function of Structural Parsmeters.

Consideration so far in this analysis has been given exclusively
to examining the behaviow of a single responsge as. a function of one
~or more structural parameters. Hoawever, it is often desirabﬁle to be
able to consider a set of raa;p‘mses collectively. 1In this section
a get of n responses are considered as a function of a single stiff-
ness paramster k. The sim being to calculate the value of k for which
" the sum oi‘i'the responge vectors is & minimum. It will be shown that,
once formu],ated the problem cannot be tackled analytically but must .
be solved thing an iterative procedure. The case in which the

responses al.re considered as a func{tion of more than one parameter is

not considered. 3
5
In ii’oe simplest form the problem involves calculating the minimum
of a singla response as a funct.ion of one stiffness parameter. This

case was dealt with in Section L. 21., and was found to have an analytical

Bolnt:!.a; .

Consider a set of n responses ¢¢j and a single variable stiffneas

-82-
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h.62. (dontinued )

parameter k3 it is required to find the value of k for which .gr—'l o] .
is a minimum. If p is the point of excitation and the pérameter k

i3 attached to the structure at points r and s, the response -Ct 4 1s

glven by

®, = 0y + (G, = G )Gy, - Gy,)) (1s.20)

1+ k(c;n, +6_ -6, - Gsr)

which may be writlen more generally

+ if k(ai + ibi) C (4e21)

oy - u.-!-.'ur-'-e_,L 1

i i

1 k(ci-ridi)

The real and imaginary compenents of @, are

' u, = ey + k(ai + k(aici + bidi))' ' (4.22)
. N : )
) 2, 2,2
1+ Zcik + K (ci +d, )
and
. | o
vy gy ¢kl + ko, - aydy)) (w.23)
2, 2 2 '
1+29ik+k (ci *di )
Now -

L
oy = (g + vy

1
- (Aikz + Bk, C)°

(4.2L)

|
{
i
H
|
} : 2 . %

E . (Pik +iQik + ai)

where 4., fni,.- C,» P, Q ‘ad R,jare defined in Appendix I.

n .
The minimim of the function iz:ﬂ ch 1|18 glven when T
. . )

]
:
!
t
1
;

2 s e b *
d (r'¢ = d =0 '
j a& il_-‘l[ ls = 31 k. lc] s
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4.62. (Continued)
The first derivation of|cri| with respsct to k is

2 -3 2 i
:P‘i\ = (ak" + Bk + )% (aak + By )-(2Pjk + Q) (Ajk +B ke + c,)

2 . 2 3/2
dk - 2(Pk" + Qk +R,) | 2(Pik *Qk+ R,)
(4.25)
It will be noted from equation 4.20. that P Q:l. and R:I. are functions

of the position of the pa.rameter k anly and therefore are the same -

for all 4. Thus

2 -3 A 2 -3 |
= (P + Qk+ R )T 2, ((AK° + Bk + C;)7° (24,k + B,))

zn
=1 -d-l“il
dk 2

2
k"'c.t)

[ (2Pik + Q_j.)(Pj‘Ic2 + Q.‘Lk + Ri)-3/2 :2:.‘1 (.A.ikz + B:!.

& -  (.26)
Equating equation L.26. to zero gives '

2 n 2 1
PR+ Qk +Ry) w3 (A + Bk +C )R

2Pk + Q,) z:ﬂ (20,k + Bi)(Aikzd-Bik * ci)'%
' | N (.27)
o which cannot be readily solved analytically. Consequently, the
root of equation h.26. corresponding to the minimum value of 22_1 lq: 1[
ia obtainetii using an iterative search procedure. (Nottingham -
Algorithms% Group Library Subroutine EOGBAF {13} '). The routine
‘requires the gradient of the function and a good initial estimate of
the requirl?d roc'rb; " The latter :is obtained by calculating the
minimum oflthe function Zi I l which is assumed to be a good
app-ox:imatf,.on of the required minimmn and can be determined analyticany Thef"

‘sum of - the squaresof the moduli ,«-w‘;‘ 'I;he response vectors is given by

| 3 22 e eqeer)t 3 @l +Bk+0)l(h.28)'
\ R 0 TRETRI T g, e TR G G
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L4.62. (Continued)
If the first derivative, with respect to k, of equation 4.28. is
calculated and eql;ated to zero then the follcw.’mé quadratic in k
18 obtained

i (o - Bry) + 2Ry - To)+ By -Bg) =0  (h29)

wheres

Equation L.29. can be solved and the root corresponding to the minimum
value of } |& i|2 is found in the usual way .fram the second derivative
of the function. In practice the iterative procedure coverges
rapidly using this initial estimate.

Using the structural manipulation programme, the minimum of :'l'.he
sun of a 86t of response vectors is calculated for all the available
stiffness ﬁ:arame'ters in a given system. Thga results are gorted in |
» .ascending cirder of minimum respange and tabulated to give the sum of

the response vectora and the correfsponding value of the stiffness |

b

parameter.']' 3

;
i ! ) .
1. | ‘ ' ;
i | ‘ _
| |

! I



; CHAPTER 5

COMPUTATIONAL ANALYSIS

5.10 Intl'Oductimo

The mathematical analysis outlined in the previous chapters
includes a certain smount of matrix algebra, in particula:_' the solution
of eigenvalue problems and the inversion of matrices. Where the oxder
of the matricesinvolved is greater than three, then the solution of |
these problems becomes too complex to be pwfdﬁed by hand and it is
necessary to resort to the computer to perform these tasks. Initially,
programmes were written to perform specific operations in order to test
tﬁe theory being'developed; however, it became increasingly obvious ‘_that
the computer was golng to become m indispensable tool playing %a majdr
role In the development of the analysis. The programmes that Thad
already been developed were being expanded to provide ever more
detalled and diversified forms of information, and it soon beceme
apparent that the process as a whole was beco;ning too slow and complicated
to be eble to produce the required results in an efficient manner. | What
was needed was a more general int‘eractive programme capable of fast data.
* hendling md with the facilities uo perfarm sny or all of the calculations
previouslyl handled by separate pnogrames. A Structural Manipulation
Programme was congequently writ‘beni to run on-line on the ICL h75 ,
cornputer operated by the Edinburgh Regional Computing Centre. "Ihe
programme ujras ‘intended as a resear!ch tool which could be expanded wiﬁhout
impa:ll.ring iits performance and which could be run as a truly interactive
process byieithecr speeding up or eliminating the time-consuming procedures
no:mally aaaocia.‘bed with matrix operaticms.
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! i
| |
5010 (.cmtinu&l)

In the sections that follow, it is not intended to give
a detailed description of the internal operation of the programme,
instead the underlying concepts behind the programming techniﬁuea
and the general capabilities of the programme are discussed.

5.2, ‘The Structural Manipulation Programme.

$.21. General Description.

The Structural Manipulation Programms, which contains
apprmd.matély 5,000 statements, is designed to run on-line using the
Edinburgh Multi;Accesé System. The input and ocutput of data to and
from the process i1s achileved uéing a teletype, although there l1s the
capability of using other devices. The programme consists of a8 main
driver sectlon and a set of 27 external routines. The driver sectim
contains procedures which ellow the external routines to be selected 1.'?
order to perform specific mathematical operations. The external
routines are designed as self-contained wnits which are independent
of the rest of the process in a manner which allows them to be added
to or deletgd from the system without affecting the existing procedu;'es.
‘Although the programme is large, the sections of it that are iused in any
one given operation are by comparld.son relatively small and can; be
executed with the maximum of speed and efficiency. Thus, by virtus of
the wa,y ili\ which the programme is put together s it 1s Integrated
yot oapable of continuous develc:pment and expansion without impeairing
the e.t‘i‘ici;.ency of the exigting sections.

-

Tl';e Structural Manipulati?n Programme 1z designed to perform
analyses on the mathematical modeis of real structures. This usually
takes the form of mathematical oppa-atims which use data from the

receptanc e matrices of the relevant syatems. The calculation of these
i f

=80~ o ;
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5.21. (Continued)
matrices is time consumin,é, .but they need only be calculated once for
a glven valué of f;-equency. In very broad terms the programme performs
operations in three main areas, namely, reading in system dat;a, calculating
the receptance matrices for the system and performing mathematical analyses.
using the receptance data. The system data takes the farm of mass |
stiffness and damping matrices, M, K and C respectively. Where damping
is not given explicitly in the form of a matrix, then it may be
included as a percentage of crit.icsi damping in each normal mode. This
involves the calculation of eigenvalues of the system and also the
generalised transformation matrix formed from the assoclated eigenv]ectors.
The damping matrix in the generalised coardinate system can be
caloulated from these values and then transformed back into the original
coordinate gystem, (detalls of this along with the calculation of the real
and imaginary parts of the receptance matrix are given in Seotion 5.22).
A simplified flow diagram of the programme is given in Figure 5.l. i

Once the system data has been read in and the receptance matrices
calculated, then the main dr:l.verl section of the programme is en‘becred
.and the qser is then asked to aelect any one of the Lk optiona ava:llable

|
in the pcrogrmne. Some of the ?ore inmportant optlions are described

below. ; L | '-*

| (1)  The real and imaginary parts of the receptance
matrix are calculated for a constant value of i j
frequency, option (1) allows this valus to be

‘\ changed and +the new receptance matrices :

‘ + calculated. o

(IT) . The natural frequencies and normal mods shapes

of the system can be listed. : :
1 ! . l . i



start < new system
‘{ Teletype .
Input < Store mapping
data < ‘ file
< Data file-
v Punch cards
Dampin
m_atr& 9 _No
given ? _ > Calculate the
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driver
sec tion
) <
Select - External :
an i ,
option Routines
: :
{ | |
; ) ) |
Exit ? o .
' !
tYes ' |
' |
STOP : :

' PROGRAM_FLOW DIAGRAM

Figure 5.1.
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5.21, (Continued)

(III) Both mass and stiffness parameters can be
considered in the programme; a stiffness
parameter is defined as the change in stiffness
between two mutually compatible points in the
structure which are referred to as the spring
coordinates. A mass parameter ls defined as the
éhange in mass at one of the structural nodes,
this point being referred to as the mass coordinate.
There are no restrictions imposed on the points

~at which mass may be varied in the struweiwre.
Where stiffness is concerned, then any of the
following restrictions may be applied to the
parameterga-

No restrictions, i.e. stiffness may be

varied between any two spring coordinates.

Parameters may be restricted to being

associated with existing structural elements.
| é -
i Grounded parame'ters s 1.e. a spring connected"
|
between any point in the structure and gromd, -
may not be allcwed. ‘
Option (ITI) may be used to impose any of these restrictions

on the selected parameters.

Structural Manipulatim theory may be used to

| determine what the' response at a point in the -

; structure will be ii'o:- s given value -of a para-

mater. This par‘ametér change may be incorporated

| into the system by inserting ths paremster valup into
S - -g2- - 0



5,21,

(Continved)

()
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(Continued)
the structure stiffness matrix. If the
parameter value is k and the spring coordinates
are r and 5, then the following elements of the
stiffness matrix are modified:

k(r,r) = k(r,r) + k

‘k(s,8) —> k(s,s) + k

k(r,s) —> k(r,s) - k

k(s,r) —> k(s,r) -k
Option (IV) is used to insert both mass and stiffness |
parameter valuss into their respective matrices. :
Checks are made +o ensure that the matrices
remain positive definite.
It will be noted in option (IV) that the predicted
response should be achieved where that particu!lar
parameter value is inserted into the stiffness
matrix, and the new receptanc; matrices for thei
system are calculated. Where the damping in the
system was originally specified in matrix form,
then the response is achieved. However, where
the damping is specified as a percentage of critical .
damping in each nomal mode, then a change in the
mass or stiffness t!;ia.ta results in a change of d?mping
since the latter depends on the eigenvalues ofjthe, .
gystem.  Option (V) may be used to ensure that the
generalised demping matrix remsins constant when the

modified receptsnce matrices are ocaloulated. See



(Continued)
(V). (Continued )
Section 5.22. (Damping)

(VI) For a given parameter, forcing polnt and response |
examination point, the data concerning the response
circle produced by that parameter change can be

© listed. | The following data is given:
The diameter and position of the centre of the

~ eircle, the response coordinates of the points
at which the parameter is zero and infinity and the
valus of the minimum responss.

(VII)  Given the restrictions imposed by option (III) there
are procedures within the prdgranme which will select
automatically all the possible.paremeter changas
within the structure. Option (VII) is used 't'§
calculate the circle diamster, blas dismeter snd

m:l.nimmn responge for a1l the chosen parameters.
These three valﬁes are taken\ as being represenltativel

of the ré}.ative effectiveness of the parameters. The

exact definitim'o‘f these criteria is given in Chapte.r’

L, Section h.3.. * The effectiveness criteria are |

| sorted, noa-mansec{ in the renge O-1 and listed in
descending_order. l Where all the parameters arfe |
associated with el'fements » then a further snalysis

\ is parfme@ g;lvifng the relative efi‘ectivenessi of _.

| - structural elements baséd on the effectiveness of

the parameters associated with them.

=04 ' : ‘,A



5.21. (Continued )

(VIII)

(x)

Option (VIII) uses the same 1list of parameters

as 1s given in optimn (VII), only this time the
parametars are combined in pairs and each pair

is assessed to see if 1t can produce zero response.
The total number of parameters, the number of
possible paired combinations and the number of
pairs achieving zero response are listed. An
element snalysis similar +to that in option (VII)

1s performed where the number of times a given ‘

element occurs in a successful palr of parameters
is tabulated in descending order, the values having
been normalised in the range 0-1 (See Chapter h,l
Section L.3.). When a given pair is successful

in achieving zero response, then the values of those
parameters can also be listed.

The Structural Manipulation programme may be used

to plot out the following graphical informationi-

(a) Three-dimensionsl response plots as

fwmectims of frequency and stiffness.
- See Figure 4.18, and h.i9. '
(b)_ Graphs of c;',.rcle ‘diameter against frequ.e:;lcy.
See Figure L.20, and L.21. !
(¢)  The boundaries of.the feasible response .

regions. See Figwre 3.6. : e

d) The construction of feasible response

regions from response circles. See
Figm 3.ho ’ .



5.21. | (Continued )

(x) Option (X) is used to consider a set of responses
as a-function of a single variable stiffness parameter.
The sum of the magnitudes of the response vectorgls
minimised as a function of the stiffness parameter.
The procedure may be used to select all the possible
stiffness parameters as in option (VII) and to
calculate the minimum vector sum 'for each parameter.
The vector sums are listed in ascending order, with the
values of the paraméte:rs used to produce them.

(X1) The programme contains its own finite ele'meﬁt
capabllities which can i:e used to generate structure
stiffness matrices. Option (XI) allows any system
~data associated with the elements and nodes of the
atructﬁre to be altered on an individual basis w;ithout
having to resubmit all the other associated
data. This may take the form\ of changes to mass or .
inertia data, Young's Modulus, second moment of area of
beam elements, the position of structuwre nodes and the
cannectiviify of elements.

(XII)  There are procedures for listing thé following system
datas- lReceptanc:e matrices 3 the constants inyolved
! in both single and Edouble parameter regponse equations

; |
) \ (see Appendices A a.'nd B), 81l the system data smch as

| mass, stiffness and damping matrices, node coordinates and

| element oonnec‘:tiﬁfb;.y..
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5.21. (Continued)

(x1TI) The programme possesses the ability to retain
various forms of useful system data from cne rmn
to the next. This eliminatesl the need to re-
calculate data each time the programms is run,
thus saving time; in addition, the maximum amount
of information on the s:fstem is always available.
The following list gives an indication of the type
of data retained:- |
| Mass, stiffness and damping matrices.
Eigenvalues, elgenvectors and trans--
formation Imatrices .
. _ . | The receptance matrices (calculated
' for the last specified value of frequency).
A1) element and node data. |
A camplete record of all the systems ever
' uséd and a descript:ion of the graphical
| output flrom the programme.
p A record of any alterations that have °
: been macleﬁ1 to individuel systems. :
Most of the opti!ons not mentioned here peri‘ornil only
. " trivial tasks whic;:h are not directly associa1;,ed with
structursl manipulstion. An example of the output
from the programme for some of the aforementioned

\ o
, | | options is given in Appendix G. T

~' : | -
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5.22. Programming Technigques.

File Mapping.
The fast data handling capabllities of the Structural

Menipulation Programme are achieved using the file mapping facilities
available on the ICL 475 computer. Normally, a programme allocates
storage space for the arrays and variables that are declared within
it and before any analysis can take place data must be read in ad
assigned to the relevant variables. Tﬁis procedure must take
place every time tﬂe programme is run even if the input data is the
same on each occasion.. ~ When the arrays are large, then the time
taken to read in the data can be quite considerable, and this is not
desirable in an esgentially interactive ﬁrocess. However, if file
mapping techniques are used, then once the inpﬁt data has been read in
there 1s no need to repeat this operation on subsequent occasims.

File mapping involves the mapping of programme varisbles on to
a file. (A file is an area of computer storage space which is
assigned to a specified user process). - The allocation of storage

space for programme varisbles is arranged to coincide exaétly with the

' space asgigned to a stare mapping file. Thus, once valuss have been

assigned to these variables, then the data is stored from run to mm
on the store map file, and when the programme is re-run the same storage

space is allocated for the variablea and they automatically have the same

values assigned to them as on the previous ru. If the valuea of the

variables are changed whilst running the programme, then these changes
are automat.ica.uy echoed in the store map file. The maxinnm :8ize of
array the progrenms is capable of handling in this manner is about 60 x
60. Ffor a system of this size the amownt of storage space the programe
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5.22. (Continued)

needs is approximately 29: X bytes, which is far in excess of what would
normally be allowed using conventlonal téchniques. The maximum use

of the store map file is made by storing useful programme generated
data such as natural frequencies and normal mode shapes in the same
manner. Thus, file mapping techniques not only save valuable running
time, but also ellow for larger amownts of computer storage space to
be used than would normally be possible. |
Coordinate Systems.

One of the more important features of any mathematical model
1s the coordinate system in which it is defined. All the information
concerning the model is given at points whose positions are défined
~ in this coordinate system. The information that 1s of interest here
.concerns the node and element numbering and the numbering of the
degrees of freedom of the model. Two systems ére used in the
programme, the user gystem and the redundant system. The node and
element numbering of the Istructm-e i3 the same in both systems, snd
is arbitrarily defined by the user. The ;cwo systems differ in the:
numbering of the degrees of freedom of the structure. If the |
structure possesses n active degrees of freedom, m nodes and the
maximum number of degrees of freedom for any node is £, then the
number of redundant degrees of freedom is given by ;

: @ x m)-n &
- Only 1:.he ;ctd.ve degrees of freedo%n are numbered in the user system
whereas th]e redundant system incl%xdes the inactive ones as weli!.. .- In
both sysi%ems the numbers are assigned such that they increase! sequentially
with tl‘w .n?:ode numbers. This is llaest illustrated by an example.

| i
Gonsider the simple strusture shown in Figure 5.2. It consists of
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5.22, (Continued)

Coordinate Systems (Ccntinued).

three inextensible besams rigidly connected at nodes 2 and 3. The
mm nunber of degrees of freedom at any node is two and the number

of redundant degrees of freedom is five.

. N3 z
®,)2 | - ®2_‘_

X
Y{rot)
~, ‘
® @
FIrIrITRITIR . eIy ‘
| - (@) node number
2 degree of freedom
numbet
Figwe 5.2.

Degree of Freedom Numbering in a Simple Structure
The numbering of the degrees of freedam in the two systems is given.

in Tebles 5.1. and 5.2.

rd \i . |
L , - —

'
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5.22. (Continued)

Node X y (rot) Node x ¥y (rot)
1 0 0 1 1 2
2 1 2 2 3 L
3 1 3 3 5 6
N 0 0 L 7 8
Tsble 5.1, Table 5.2.
User System Redundant System

In the user system the rigid nodes are identified by zero's.
Degrees of freedom 1, 2, 7 and 8 in the redundant system are identified as
being rigidly constrained by including them in a redundant list,
degree of freedom 5 is also included in this list since it is equivalent f
to degree of freedam 3. The redundant gystem has two main advantages.
Firstly, it is not neces‘sa.ry to store the degres of freedom numbers in
arrays since they can be calculated directly far any given node and
coordinate direction using the formula

DOF number = a + (b-1)¢ ¢ d

where a is the coordinate direction (in the example x = 1l, and y (rot)
=2), 0 48 the node number and ¢ is thé naximum number of degrees of
freedan per node. The secand advantage concerns the automatic
gselection of parameter coordinat.es. The simple pisce of programme

s

code shabm overleaf selects the c?ordinates in pa.:lrs '

P i
to ‘ i
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% CYCLE I = 1,1,C
% CICLE J = 1,1, NODE
Z CICLEK = J,1, NODE
R=TI+ (J-1)}*C -
S=14+ (R-1)* C
% REPEAT
% REFEAT
£ REPEAT _
where R and S are the selecteﬁ coordinates, NODE is the number of nodes
in the structure and C is defined above. The coordinate pairs afe
checked against the 1list of redundant coordinates » and any pair containing
a redundant degree of freedom is rejected. The successful paira are trans-
formed to the user system where they are checked for element association
and also for mechanical coupling with the examination point. This

Physical coupling is an obvicus necessity otherwise the variation éF . that

- particular parameter would be meaningless. The test for coupling

 between two points, i and j, is if the element G | of the receptance mat;‘ix

iJ
1s non-zero.

Damping and the Calculation of the Receptance Mat.rices.r

In simple mass, spring, dashpot gystems, damping i3 specified
directly in the form of a matrix; in reality, however, damping is

8 eldom encountered in this form. Where complex structures are modelled

‘ using finite element techniques, | then damping may be included in the model

1n t.he form of & percentage of crit.ical damping in each normal mode. - The

magzitude of the demping factors can either e
| o . .

' i

% 18 the icomputer symbol for mulihiplication.‘ o I
i, ‘ :

|
.
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5.22, (Continued) 5

be estimated or measured experimentally. In order to introduce
damping into the aystem, the equations of motion are transfomed into
generalised coordinates using the generalised ‘transformation matrix R
which is obtained directly from the éigenvectorg of the system. It
is known (24} that the transformation matrix R will uncouple the undamped
equations of motion of an N degree of freedom system in the following way.
If the equations of motion of the mdamped system are given by
Mx-l-Kxﬂ 0 E _ ‘(5.1)
- Then, gubstituting for X in equatim 5.1. using the generalised trans-
formation
(5.2)
where § are the generalised coordinates of the system; and pre-

iHI

=R

l»ﬁl

multiplying by B' (the trenspose of matrix R) gives | L

R'MRY +R' EB3=0 - 6.3)
in which

R HR=Mr=I
and \

RER= Bt A

where M an E* are the generalised mass and stiffness matricés
respec‘biveily and A is the (¥ x N) diagmal matrix of eigenvalues A‘i
Now, if the damped equations of motion of the system are to
be uncoupled by transfoming to generaiised coordinates, then ‘léhe
generalised damping matrix Ex will be of the forn
| | B =dteg (2§, @] (5.h)

‘whore ¥, i3 the damping factar 1n the 1™ nornal mode andw, 1s the
ota
i natural frequency of the system. The forced generalised equations -

l
’
‘ "
. H
!
l
i
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5.22. (Continued) o |
of motion of the system msy be written .
g*§+§»é+5*q-§*eh’b ~ (5.5)

wheére Fit = gT F

The steady state golution for the response g is given by

g=qet
where :
‘g = gwps - | (5.6)
and _ ‘
o, 1
G = diag | P\i -~w )+ 2ificuiw] (5.7)

which is the generalised complex receptance matrix for the system.
Equation 5.7. may be written in the more general form

ge'= [4+ 1p] (5.8)
- where A is the (N x N) diagonal matrix of terms (Ai -w."’.) and B is
the (N x N) diagonal matrix of ten;ls (¥ f.)iw).' If the real and

imaginary components of G# are C# and D* respectively, then from
equation 5.8.

}

[cr+pe] [a+1B]-1 (5.9)
Equating the real and imaginary parts of equation 5.9. gives
0 ora-peper (5.10)
and
DrA+CxB=0 (5.11)

Equations iS.lO. and 5.11. may be solved simultaneously to give C* and Dit
. i - -
as functions of A and B as folloys

' lex=(aepalpd | o
. _ |
and i ;

. Dee-gxpat
4 |
| .
i
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5.22, (Continued)

Matrix A 1s chosen for Inversion since the inversion of matfix B
which contains small terms associlated with the damping of the system
might lead to numerical errors. The real and :imaéinary parts of
the generallsed complex receptance matrix gu-.ma,y thus be calculé.ted
from the eigenvalues of +the system and the damping factors in each
normal mode. Equation 5.6. may now be transformed back to the
ariginal‘ coordinate systen_l to give the response vector x as follows

x- GF=poeR'E |
If the real and imaginery parts of G are § and D respectively, then
they may be given in terns of the real end imsginary parts of G* as
fcnll'Lorwsi 3 '

C-RO*R
and
D=RDxR

It 1s the elements of matrices ¢ and D that are used in Appendix A

to calculate the constants involved in the equation for the receptance
as a fwmction of variable stiffness.

~ If the damping matrix E had been specified explicitly then
the matrices A and B would have been caloulated as follows -
A=(E-ued]

é . ! . T
and ; )
4

The real and Amaginary components of the receptance matrix G are now

b}

given by | | -
' . ' : . -1 = ‘
{ + & =[a+B4A B]
and |
!
| p=-cpat



5.22, (Continued)

It will be noted that the inversion of matrices when working in
generalised coordinates‘is sﬁnple, gince the matrices involved are
all.diagona'l. Also with reference to Section 5.21. Optiom (V), it
is matrix B = Ex@which is held constant in order that the damping
of the system remains unchanged when the elgenvalues of t.he ‘same
system asre altered.

5.3 | . Conclusims.

A brief description of some of thé capabilities of the
Structural Manipulation Programme has been given. The programme
which Ihas been developed and improved over a two and a half year
period is ab present in & well trled and tested state. Tt has been
shoim to be a useful tool in the practical application of structural
manlipulation and | its development is not limiied Jjust to consideration
of ways of achieving minimm responé.e at specified points in a structure. |
Research i1s at present being carried out into the possibility of
adgpting the Structural Manipulation the.ory\ developed here to tackle
the problem of flutter in aireraft lifting surfaces.. The aim would
be to manipulate ths relevant substructure varisbles in order to
achieve a gpecified nqrmal mode configuration. There should be
'relatively; litile difficulty in at;.lapting the programme to produce results
rolating t:‘o the effectiveness of l_l)aramétars in changing a normal mode
shape. | : |

. Under normal operating conditions when the programme is being
rm m-line, a restriction of two minutes CPUs tims is imposed, and ‘
mes C‘.en'(;rall.l Processor Uait.] |
i

T - ;

. ~106-



5.3. (Continued)

this tends to limit the size of gystems that can be comsldered, and

also the scale of methematical operations that can be perfomed. In
order to save time, wherever possible iterative procedures are avoided and
matrix snalyses are performed using diagonal matrices. A great deal of
emphasis has also been placed on the production of concise results

which present information in a qualitative rather than quantitative
form. The programme is intended to give a rapid analysis of a

slmple siructural model with the broad aim of producing results

" which will indicate, in the nmost géneral_ sense, those areas of that
structure which are most suitable for modification for the purpose of
reducing vibration levels. ' |



CHAPTER 6

EXPERIMENTAL ANALYSTS

6.1. Introduction.

The aim of the experimental analysis was to examine the dynamic
respense at a point in a structure and to verify that the locus of
that response vector traces out a circle when the stiffness of a simple
spring element in the structure is varied. It was not considered
necessary to examine the more complicated situations involving two or
more-pa.ra.metera » for it was evident that the resulis pertaining to
these eaeea could be arrived at equally well by allowing each parameter
to vary individually 1n turn. Thus, if the form of the response
can be verified for a single variable parameter, then those results
1nvolving more than one parameter may also be assumed to be true.
This 18 by virtue of the fact that the response circle forms the
constituent part in higher order cases. |

As well as verifying the form of the response, the accuracy
of the valuss 1s compared with those obtained theoretically. The
latter must obviously depend very much on the degree of accuracy to
which the experimental structure can be modelled mathematically. 1In

order to determine tihe accuracy, the natural frequencies of the

experiment.al structure were meesﬁred and used as the basis for comparison
‘ between experiment and theory. |

To achieve the objectives- outlined above, a test structure was
built and 4 continuouely variable stiffneaa element was designed to
operate in conjunction with this. . The atructm-e was to be realistic,
yot not unduly complicated 'by too many unnecessary degreaa of freedom,_

i

i
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6.1. (Continued )

and consideration was to be given in its design to the ease with which
it could be modelled mathematically. A programme controlled transfer
function snalyser was used to measure the response of the gtructure.
The experimenﬁ was divideld into two stages; the measurement of

structural response as a function of variable stiffness, and the

. determination of the natural frequencies, mode shapes and damping

of the structure. The remaining sections in this chapter describe
the construction of the experimental equipment, the techniques involved
:lh the analysis and the measurement of the results.

6.2, The Design and Development of a Variable Stiffness Flement.

6.21. | General Specification.

Tdeally, the variable stiffness element should have linear
characteristics and be continuously variable in a manner causing the
least possible disturbance to the experimental system. 1In the
preliminary design stages, f.ou:r ideas were considered; | an electro-
mechanical spring, interchangesble spring elements, an air spring and
a varisble length cantilever spring. The first two ideas were rejected
on the grouncia that they were unsuitable. Two prototypes of the air
spring vere built. but the idea mas abandoned owing to technical .
difficulties. Finally, a variable length cantilever spring was deaigxed

~ and incorporated in the strw:ture. This had the desired characteristics

and was used successfully to vary stiffness within the struc*bure A
brief desc;ription of each of the four ideas 1s given below.
4

6.22.. THe Electro-machaxiical Spring.

Figura 6.1. shows the schematic representation of an electro-
mechanical spring, consisting of & solenoid mounted between two points
in a atrnqtureo A linear potentiometer is attached between the same

P =109~
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6.22. (CQntl.ﬂued 2

two points and produces a signal which is directly proportional. to

their relative displacements. - This signal is used as the input to a
variable gain amélifier whose output is then fed directly to the solenoid.
The system is adjusted so that the solenoid applies zero farce when the

gtructure is in equilibrium.

structure structure

7777777773
/ solenoid

/7777774 |

‘\lineqr potertiometer

| amplifier

l‘ FiEE e 6-1'0 e
Sc"hematiic Representation of an Electro-mechanical Spring-
}
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6.22. (Continued)

| The stiffness of the solenoid can be varied, without
disturbing the structure, by altering the gain of the amplifier.
The inadequacies of ‘thia system are concerned with the solenoid.
Firstly, it is difficult to arrange for the solencid to operate
efficienﬁly in both the push and pull modes; and secondly, the
maximum farce output and hence the maximum stiffness of solenolds of
- a sultable size is not large enough to be compatibie with the envisaged
stiffness of the experimental structure.
6.23. Interchangesble Spring Elements.

An adequate, though not altogether satisfactary method of
achieving varisble stiffness in a structure 1s to use a set of
linear spring eléments each with a different stiffness constant.

' However, the disadvantages of this arrangement include the limited
range of gtiffness ror'a glven spring size and the'considerable

disturbance that would be caused in the structure when changing the
elements., This idea was only to be considered as a last resort.
6.24. The Air Spring. |

The si.nglei acting air spring consisting of a column of air
trapped between a cylinder and a movable piston is used in a wide
variety of appliéations mainly connected with suspension systems. In-
" most cases the highly non-linear nature of the air epring is either
usedlﬁto aoma‘specitic advantage or is considered to be of no great
mpozé'tance.} If the air spring is considered to be double acting as |
shown in Figure 6.2., then for amall displacements the stiffness of the
spring my\' be conaideu.red to be approximately constant. T

N
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6.2,  (Continued)

L L

A

7 ‘
Y/ /77700 / Y/ /A
p

p

Q : O

Figure 6.2.
Double Acting Air Spring

By varying the initial pressure Po in the cylinder, the
stiffness of the spring may be altered and a wide range of values
may be ach:‘&eved without any undesirable increase in weight.

Theoretically, the air spring offers reasonable scépe for
development, and in the initial stages of the experimental investi-

gation a considerable amount of time md effort was spent on its

design and construction. The project, however, never reached a
satisfactory conclusion and was abandoned. The design of the air
spring is wmfortwately marred by the technical difficulties

- assoclated with its construction. These are severe enough to make '

the time iscale for the project qt!ﬁ.te unreasonable. The theory
of the‘l a.ir? spring and the state of progress achieved during its
developmen;; are discussed briefly?here. o
'Ih;'a system depicted in Figure 6.2. consists of a eylinder
of length 2 fil and cross sectional ‘area A; A double shafted piston
1s positicned centrally within the cylinder and held there in equilibrium
P ‘ .

' b
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6.24. (Continuved)
by equal pressures Po on either side. The gas within the cylinder.
may be considered to obey the adiabatic law. |
PVY = constant | (6.1)
where P is the pressure, V the volums ,amdris the ratio of speéific
heat for that particular gas. For the sake of simplicity, the latter
is considered to be wnity in the remaining analjrsis. - If the plston
is displaced from the equilibrium position by a distance x, then the
new pressures to the right end left of the pistan are Pl and P.

2
respectively. From equation 6.1. these are related by

- = - . . 6.2
PV =PV, =P @ - x)A | _ (6.2)

Pov6 - P2V2 - P2 @ + x)A

The rasultaﬁt force on the piston is then
(Py - Py)a = 2P Alx : (6.3)
g2-x°
1 1% xg then this may be approximated by
(Pl-P2 A = 2P°Ax

o (6.1)
]

which provides a linear relationship between force and displacement.
The discrepancy in using this approximation may be estimated from the ~

graphs given in Append:bé E which show the relationship between

tPZI. N PZIA a.nd x for both equations 6.3. and 6.k

24P . &

l ;
The error in the apmroximation can be geen to be small for values

| .
of ¥ w to; 0.3 where it is 1% -

Having obtained a configuration with linear characteristics, it
is now required to examine the parameters affecting ths stiffness of the

=-113= .



6.24. (Continued)
spring. The latter may be obtainsd from equation 6.h. end is given
by .
k= 2P (6.5)

2
Once the physical dimensionsof the spring have been decided upon,
varying the initial pressure Po is the only means whereby the stiffness
of the épring can be altered. The length and area of the cylinder have
a dﬁﬁite effeqt on the spring's sensitivity to small displacements.
High sensitivities can be achieved using either large values of A or
' small values of §.  But as f becames small, 4t will tend to viclate
the necessary condition that 12 > %% for linearity in equation 6.3.
Considering a spring with a maximm worldng displacement of O. 26" and a
2,08 cylinder (L = 17), then the error in using the apmroximation in
equation 6.2. is less than 2¢. Thus, although not critical, decreasing
the size of & still further is not a desirable way of :increa_sing the |
gensitivity of the spring. However, incréasing the piston area A, which
depends on the square of iis diameter, is an effective way of increasing -
sensitivity without introducing any undesirable characteristics.

The theory shows the air spring to be a visble concept; = the

practical implementation of this however involves & considerable esmount
of technical difficulty‘. The problems fall into two main categories.
The first of these involves the provision of dynamio, yet gas-tight
seals, whilst the second jnvolves the minimisation of the friction farces .
between mqving parts. Two air springs were built in en effort to
- provide aétisfactory golutions to these problems. The axperienégf
gainad in eanh case provided useful inf qrmation, but neither versim

succeeded 1in possessing the desired characterist.ics. Both versions of
.]‘ '
i
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6.24.  (Continued) 3 |
the air spfing are described here, and a discussion of the mexrits and
wndesirsble qualitiqs of each is given. A
Version I.

The first version of the air spring is shown in Figure 6.3.
and consists of a closed cylinder containing a single shafted plston.
0 rings inset on the shaft and the pistoﬁ serve both as bearings and
as gas-tight seals. Both sides of the piston were pressurised through
the needle valves at either end of the cylinder.. The gas used through;
out the initial étages of the investigatiocn was compressed air bei.pg

generaﬁed from a portable campressor. The maximum available pressure

| .was 110 p.s.i.

The air spring was tested in the ﬁorizontal position using‘ ‘
. an initial pressure of 50 p.s.i. snd with a 2 1b. mass attached to
the piston.With the cylinder clemped, the piston was excited by an
electromagnetic vibrator over a range of frequencies. The gystem
exhibited no farm of magnified response.. Learge friction forces were
found to exist between the O rings and cylinder, slthough these were
. considersbly reduced once the piston had been set in motion. The
mbalanced effect caused by having only one shaft on the piston was
sufficient enough to cause it to creep down the cylinder. It was g
found that even when subjected to the maximum available pressure of
110 p.s.i.i, the small displacement encountered ( ~ .050") was in~ '
auﬁ‘ioienti to cause any si@ificm?,t resultant force on the plstm, i.e.‘
there was ;no effective spring action. | |
Version IT. | | | T

In the light of the obsemjrat.ions made from the first alr .
spring, Ve!lraion II was desipgned ii}corporating the following medificationas

1 ) -

i
?
}
i
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VYersion II (Continued) ‘

(i) A double shafted piston mowunted in linear
bearings to eliminate any radial loads o
the 0- rings.

(11) The use of maximum tolerances to reduce

~ friction.
(411) Increased piston area and reduced cylinder

’ length to increase aensifivity to small
displacements.

(iv) A flexible diaphragm between the piston

and cylinder instead of an O ring.

' (¢v) Greater accuracy in the manufacture of all

parts.

(vi) The use of €O, instead of air (maximum

pressure 750 p.s.i.).

Apart from incorporating several improvements to reduce friction,
Version II of the air spring was designed in order to achileve increased
sensitivity and alsc to assess the effectiveness of using a diaphragm
as a flexible seal between the piston and cylinder rather then an 0
ring. It was hoped that whilst satill retaining an effective gas-
tight seal, this arrangefnent would allow sufficient freedom of movement

yet not possess any of the undesireble frictional qualities of its pre-

‘decessor. Figure 6.4.(a) shows the layout of the spring. The

length of the cylinder has been reduced to ome inch (L = 0.5"), which
with the maximun expected displacement of 0.1" causes the departure from

the nnearilah to be only L%.

Te#ts were carried out initially to determine the ideal material

- | -117-
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Air Spring Versgion II

Figure 6.h.
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6.24. Version II {Continued)

and optimun size for the diaphragnm. ‘F:Lrstly, gseveral thicknesses '
of rubber sheet were tried, ranging from 0.015" (surgeons gloves) to
0.1"™ thick. In each case these proved to be too flexible anci were
eapily deformed by the éupatgnp;al pressure differences within the
cylinder (see Figure 6.4.(c)). Next, steel shim varying in thickness
from 0.002" to 0.01" was used in an attempt to obtain flexibility
yet eliminate a.ny stretching of the diaphragm. Besides changing the
thickness of the steel, the ratio of the area of the diaphragm to that
of the piston was also varied (see Figure 6.L.(b). However, when
sufficient latitude of movement had been achieved the diaphragm soon
crackeddue to fatigue. Considerable difficulty was also experienced
in obtalning a gas-tight seal between the two halves of the cylinder. -
This was most probsbly the ctmuletive effect of uging a gasket rather
then an O ring to provide a seal, and the increased forces accompanying
the higher gas pressures. No frequency response characteristics were
obtained for Version IX. |

6.25. The Varlable Length Cantilever Spring.

Originally, it was intended that the variable stiffness element
should be capable of being attached between any two compatible points I]
in the structure. By restricting the generality of this statement and
considering only the simplest fotrm of parameter variation, namely a
linear spring with one end attached to the structure and the ot.her end
to ground it 1s possible to construct the equivalent system shown in
Figure 6. 5(1] This consists of a cantilever beam clamped at the lower
end and attached to the structure at the other via a rigid connect:lng
rod.: Rotational releases at either end of the connecting rod ensure

l
that oaly horizontal forces are transmitted to the structure. The -

| _ | ';
l ' ‘
i_
i : :
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6.25. (Continued) |

cantilever applies an external force to the gtructure which is
proportional to displacement and is given by

F=3EIx ~ (6.6)
i3 '

where E is Io%mg ts modulus for the material and I and i are the sscond
noment of erea and length respectively. The stiffness at the end of
the cantilever can be varied by altering its length; this is achievéd
using an adjustable clamp, detsils of which are gi?an in Appendix F.
‘The arrangement is simple to operate and is capable of producing a wide
range of stiffnesses. | .

|
i

structure

¥ co 1.

\ , o ‘ . llcantilever

/
, 4
” :
: [ 74 -
rotational / -
releases A
: A
“
. Z ,
Lo adjustable Z |
- clamp Yp
4
- P ; !
Foo : 7 4
! \ Figure 6.5(1) 2 e
! ‘ s
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Variable Length Cantilever
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6.3. The Test Structure.

The test structure which is made up of steel blocks inter-
connectedby spring steel strips is shosm in Figure 6.5.(a). The
dimensions of the struwsture were initially determined in order that the
highest natural frequency of the system éhould not exceed 159 Hz .

This restriction comes as a result of the limited resolution of
frequency in the oscillator that is used to drive the exciters. For
frequencies up to 159 Hz , the resclutim is 0.1 Hz, after which it
increases to 1.0 Hz. The disadvantages of the latter are obvious.
Through a process of trial and error the 6" x L" rectangular arrangement
shown in the figure was found to have natural frequencies in the range
0-159 Hz.

The test structure consists of eight 1.75" square steel
blocks inter-comnected by 1.0M x 0.063" spring steel strips to form
a 6" x 4" rectangular grid. The structure is considered to possess
ten degrees of freedom; two translations and eight rotations.‘ For

reasons that will become apparent later, this was reduced to eight by

| constraining degrees of freedom 9 and 10 (Block 8 rigid). This
arrangement increases the stiffness of the structure and causes the
two highest natural frequencies to exceed the desired limit of 159 Hz.
This undesirable characteristic was considered wnavoidsble at the time
the modification was made. The modiiied gtructure is the one raferred
to throughout the rest of this section.

The blocks , each representing a structural node, consist of four
0.875" x 0;:875" x 1.75" slotted sections and are joined together as

shown in the exploded diagrem in Figure 6.5.(b). The blocks are

-

deliberately made large in arder that their mass should be very much

!

greater than that of any attached instrumentation. & hole drilled
! !
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6.3. (Continued)
centrally through the block allows for the attachment of accelercmetears
to measure the horizontal and rotational acceleration at that point.
A representation of the latter is achlieved by mountlng an accelercmeter
off the centre line of the block with its least sensitive axis in the
horizontal direction. |

The structure is excited externally in either of two ways,
horizontally at block 1 or in the form of a torque at block 2. Both
these forms of excitation are necessary in order to properly exclite the
" normal modes of the structure. 'fhe harizontal excitation force is

transmitted to the structure via the coupling arrangement shown in Figure
6.6, !

retaining springs

N .
exciter —vVVV\VNANANV/\N\NAANA—
—ef{ I K] structure

1

i
1
|

\ | - —

Figure 6.6.

i
i
1
i
1
!
§
1
{

Cox:_mpliggLMechanism fran thg Exciter to the Structure
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6.3. (Continued)

The coupling consists of two pointed spigots attached to the
vibrator and structure; a plece of 0.25" aluninium dowel camplstes
the connection and 1is located in position by dimples  at either end.
The retaining springs are tensioned sufficiently to prevent the
connecting bar from falling out when the coupling is in tension. The
system only transmits horizontal forces to the structure and allows
for a certain degree of misalipnment between the two spigots, thus
minimising any lg.teral forces on the exciter.

The application of a pure torque to the structure was originally
achieved using the arrangement shown in Figure 6.7. (see also photo-
graph (B) in Figure 6.8.). The torque was generated at the fixed end
of the coupling by means of asn offset vibrator as shown in the figure.
This was then transmitted to the structure via a torque tube and a set
of two expandable bellows. The bellows were included to allow any
horizontal motion of the structure relative to the exciter. 'Iﬁis
gyatem resulted in some undesirablle non-linear effects and was later

replaced by the rigid bar shown in photograph (C) in figure 6.8. 1In

- practice the structure exhibits very little horizontal motion when

excited in the rotational mode and consequently the increased flexibllity

introduced by the more rigid connection does not significantly affect

. the measur%ement of the higher modeis of the system. The cantilever

- apring desfc.ribed in Section 6.25. :is attached to the structure at block

L, thereby allowing the stiffness to be varied in the horizontal direction

oo )
at that point. A general :lmpression of the test structure may be

-

\
obta:lnsd from the photographs in Figure 6.8.
|

!
|
i
{
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(4)

The Test Structure.
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(B)

Applied Torque Using Bellows Couplings., Figure 6.8.
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(c)

Applied Torgue Using a Rigid Coupling.
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(D)
Horizonal Exciter., Figure 6.8.
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Accelerometer Stations.
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Variable Stiffness Cantilever Spring.
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6.3, kContinued)
At the beginning of this section, it was ﬁeqtioned that the

afiginal test structure was modified in order to rigidly constrain

deérees of freedom 9 and 10 at block 8. 'This modification was made

after cagq%Qe;}pg fhe results of an ;nitialrinvestigation into the

way in which structural response varies as g'function of ;tiffness.

It became apparent that the reSpbnse locus éhs not circular as had

been predicted, but appeared in the form shovm in Figure 6.9,

AIma(k)

o
Reak

t
i
T
i
i

Figure 6.9.
|

Response as & Function of Stiffness in the Original Test

i | Structure
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The locus shown here is characteristic of the one produced

when two stiffness parameters, one very much more effective then the

other, are varied simultanecusly and in a related manner {see Chapter L,

Section L.k.).

Thus, it would sppear that the stiffness element

connected at block L4 was somshow affecting the stiffness at that point in

more than one direction.

The most likely cause of this would seem to

be the non-symmetric nature of the structure at the point of attschment

of the varlable stiffness element.

By making node 8 rigid, the symmetry

of the structure was regtored; that is with respect to block L. A mare

comprehensive explanation of this phencmena cannot be given, but the

fact that an almost perfect circular locus was obtained when the afore-

mentioned modifications had been included would tend to indicate that the

previous assumptions were correct.

The results presented in the latter

part of this chapter refer to the modified structure.

6.1‘..

Experimental. Equipment.

The experimental equipment was intended for the purpose of

. measuring the response at a point in a structure. Figure 6.10. shows
. & block diagram of the system which consists of a Program Controlled

Transfer Function Analyser (PCTFA) with associated peripheral equipment,

and the test structure itself.

The PCTFA was used to control the -

experimental variables and to take response readings. The .system

comprises 8 sclartron JML600A Transfer Function Analyser (TF4A), with a

high freque:ncy extengion wnit, these being controlled through an

interface by a PDP8 mini-camputer.
capabilitiess “-
!

|
+

.’1.)I

11);
111)

i

The PCTFA provides the following

T -

Automatic frequency jresponse measurement .,

Multi-point analysis, (up to 30 channels).

Display of response readings ¢n an XY plotter or -

~130-
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6.k (Continued )
111)  Cathode ray tube.
iv)  (n line programme development and i)rocessing
of measured data. _
The parameters under software  gontrol ares
i) The magnitude and frequency of the driving
| signal.
ii)  Input sensitivity.
114)  The number of cycles of integration in the
cox;x'elation process.
iv) ' Input channel selection.
¥v)  An enalogue output to plotter or Bcopa.
vi)  Provision for the additionsl input or
output of information in the form of a
Binary Coded Decimal Number (BCD), providing
an alternative control chennel to the tele-
type.

The software package incorporated in the system is & modified
‘veraion of DEC FOCAL 8 called Dynamic FOCAL. This includes the
necessary commands for controlling the transfer function analyser.

Details of the operation may best be obtained by describing a i
typical sequence of operations leading up to the taking of a response
reading. The frequency and magnitude (0—10v') of the driver signal are
set up using the oscillator contained within the TFA. This signal is
then fed through 4 power amplifier to a vibrator which excites the
system undar.i- test. Signals from the acceleromesters attached to the
structure are then fed back to the PG'J:FA via suitable charge amplifiers.
On the presant system only ten of the thirty channels are operativo. For

~1327%



6.he (Continued ) :

any chogen channel the input signal is connected to the digita:ll. correlator

whose input sensitivity 1s set to "auto range" to find the rig}-it input

level automa.tical]y; At this stege the correlator picks .out dnly the

fundamental sine wave com;:onent in the signal and rejects the noise

content and all other harmonics. This is achieved by multiplying the

waveform by sine and cosine reference signals derived from the f@ctim .

generator. Digital integrators in both the sine Aand cogine channels

average their respective multiplier outputs for a period equal to a

 finite number of . cycles of the excitation frequency. The carrelation

process has the effect of rejecting all harmonics other than the

fundamental. Noise rejection, however, increases with the mmber of

cycles of integration, which may be set to 1G 100 or 1,000 cycles of the

fundamental frequency. The outputs from the sine and cosine integrators

are directly proportional to the "In phase" and "Quadrature" | '

components respectively of the wavefarm being measured. These may L

be displayed as cartesian, polar or log polar coordinates. |
The major proportion of the available 8K of storage space in |

the PDP3 coﬁ:put.er iz taken up by Dynamic Focal, which leaves only

enough space to store 75 pairs of response coordinates. Although

somewhat restriétive, this is nomally adequate for most purposes and”

allows sufficient scope to perfom simple mathematical operations,

such_ as sorting and scaling, on the stored data. The facility for

disp;lawingi the data on an oscilloscope allows instantaneous viewing'

of exﬁerim;ental results, of which particular importance is attached to

-

frequency gz-esponae plots.
Thle apparatus thus constitutes a fully integrated system

capabls ofi the automatic control ami measurement of the c_iynamic response
v ) .
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6.1, (G:ontinued ) ‘
of a structure. The photographs given in Figures 6.11. and 6.12.
give a general impression of the equipment.
6.5+ Experimental Procedure.

The experimental procedure may be divided into two gections.
The first of these is concerned with the measurement of structural

response as a function of variable stiffness; the second refers to the

A measurement of the natural frequencies and normal mode shapes of the

structure. Both of these involve the measurement of response ; the
former being a.t‘ constant frequency, whilst the latter require;.: that
a sot of response res.dings be taken over a specified range of frequencies.
Each response read:lng has associated with it a phase angle which
is defined with respect to the reference gignal generated by the TFA's
internal oscillator. It is cémmon practice to take this same signsl as
being representative of the sinusoldal force input to the structure from
the exciter, in reality, hoﬁaver, this signal is not a strictly true
representatio. The force applied by the exciter is proportimmal

to the current passing through the coil (wheh staticnary) and is also

' dependent on the impedance of the structure to which it is attached.

In both cases considered above, the impedance of the structure doss
change and thus the input voltage to the exciter cannot be taken a&s
being truly representative of either 'bpe magnitude or the phase of the
force outp:ut.

Tl:a magnitude and phase of the force input to the structure can
be determined by means of a force gauge inserted between the exciter end-
structure. The phase relationship between the response and the true
force input can be calculated frm?l the separate phase angles bt:atwean
each of 1-.h!ese and the original reli?e:rence signal. If the magnitude of

‘ , | ;

1
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(a)
The Test Structure and Associated Equipment.
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XY Plotter. Figure 6.12.




6.5.  (Continued)

the true force input changes then t.ﬁe size of the response vector

can be compensated for accardingly. Figure 6.13. shows the response
vector in both the true force coordinate system and in the ooofdimte

gystem referring to the reference signal.

Am
| )
\
\
\ a
\ o beememeiao Response vector
\ !
\ I
\ l
\ b True force
\ | " _ f~7coordinate
force |_ " system
‘\ | __/c_vector __ 4~
id | Re
+ - - . P
Reference system
i
L f
; Figure 6.13. |

: !
Force Reference Coordinste Systems
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6.5. (Continued)
If the magnitude of the forcing vector obtained on the first
reading in any givexi set is taken as a reference and all subsequent values
are adjusted accordingly, ther‘z the coordinates of the response' vectar in
the true force reference system may be calculated as follows. Let the
cartesian coordinates (in the reference system) of the force and
response vectors be (a,b) and (c,d) respectively, and the magnitude
of the farcing vector on the first reading be e. Then the coordinates
of the response vectoar in the true force reference system are (x::,y)
. where '
x = efac + bd)
f a2 N bz
and ¥y = e(ad - be)
32 . b2
All subsequent readings can be adjusted in this manner, thus effectively
compensating far any changes in the magnitude and phase of the true

force input to the structure.

6.51. The Measurement of Structural Respons\e as a Function of

Varlable Stiffness.

The aim of the first part of the experimental analysis was

!
to be able:to reproduce the circular locus for varying stiffness
!

predicted in-the theary. Idea ;, the point at which the response is
examined waa chosen to be particularly sengitive to any variation in the

L l

stiffness parameter. This sensitivity was maximised by choosing an

“excitation .frequency close to, but greater than, one of the natural

)
frequencies of the system, and by attaching the stiffness element at a
point in the structure which possessed a large amplitude of vibration

in the norm}al mode associated with this frequency. Also the stiffness
}
!

=13 T
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6.5. (Continued )
element was varied over a sufficiently wide range of values so ss to
produce as 19.rg6 an arc of the response circle: as possible. The exact
frequency at which the experiment was carried out was determiﬁed by a
process of trial and error based an the quality of the results
obtained. Having chosen the values of the various experimental
parameters, control was passe‘d to the PCTFA. Here, a small programme
was written to control the experiment and required as initlial input
data, the magnitude and frequency of the excitation signal and the
number of cycles of integration to be used in the correla.’ci;on process.
The computer was now set up to take response readings and store them.
The measuring cycle was started by remote control using the external
input facility of the PCTFA.  This eliminated the need to use the
teletype as an input device and also meant that the entire experimental
analysis could be performed in the proximity of the test structure, the
latter being situated some distance away from the PCTFA.
A typical measuring cycle involved the following steps:
i) The varisble stiffness element was set to
maximun stiffness.
i1) The programme was started and the necessary
parameters read in.
111) ° The structure was excited at the required
; magnitude and frequency and allowed to settle.

iv? The measuring cycle was initiated by remote
" 2

a—r

| control and a respopse reading taken.

reduced by a small Eammmt end another reading talen.
‘ l

o
v) The stiffness of thie variable element was
|

~T38-
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6.51. (Continued)

Mtering the stiffness of the cantilever entalled loosening
a retaining bolt and lowering the clamp by means of the screw thread
arrangement shown in Appendix F. The clamp was uniformly tightened
after each change using a torque wrench. The measuring process was |
repeated until sufficient data had been collected, at which time the
gequance was terminated. The regsponse readings were sorted, scaled
and displayed on the screen of a gtorage oscilloscope. The informationm
wag presented as a series of points in the complex plane. If the datg
was satisfactory, then a hard copy was obtained on an XY plotter and
in gddition the coardinates of each point were punched out on paper tape.
The following information was also noted:

The magnitude (1b £) and frequency (Hz) of the =

excitation force. |

The calibrated output of the accelerometer (V/g).

Any scaling factors iavolved in the measured data.

The examination and foreing points end the

position of the stiffness element.

" 6.52. The Measurement of Natural Frequencies, Normal Mode Shapes

and Associated Damping.

Although not the most impértant part of the e:q)eri.mentél
programma, the measurement of natural ifrequencies and normal mode shapes
is nscessary since they form the basis for comparison between the
expe;-imentﬁl and theoretical models. The results are obtained using '
simple techn:l.quas rather than some of the more comprehensive met.hods

1, 12

developed 111 the recent past [20, The time taken to develop

working ve;'sions of thesa techniques is disproportionate with their
deair‘aliilify within this enslysis.

\ !
)

i
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6.52.  (Continued)

The method initially involves identifying the natural frequencies
of the structure from a frequency sweep performed by hand. . The
reéponse gignal from the accelercmeter under consideration is displgyed
on the y axis of an oscilloscope in conjuncticn with the signal
representing the force input on the x axis. The resulting trace is
a lissajoux figure. This method of examining the response shows the
change in P@asa as well as magnitude when passing through a natural
frequency, and hence is a more satisfactory method of identificaticn
than the peak amplitude method. Also noted at this stapge 1s the degree
of freedom with the largest amplitude of vibration at each natural
frequency.

These initial estimates are now used as the basis for an
accurate frequency sweep in the neighbourhood of the natural’frequencies.
This time, the PCTFA is programmed to vary the frequency, select the
input channel and take the response readings. The resulting vector
response loci are then analysed to produce a revised calculation of the
natural frequencies; this being based on the point at which maximum
spacing occurs between successive response points taken at equal inter-

vals of frequency. Figure 6.14. shows a typical vector response plLt.
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6.52. (Continued)

Almaciw)

Rex(w)

Figure 6.1k.

Typical Response Locus A

. A circle is fitted to the experimental data in the reglon of the

natural frequency. If Fn is the natursal frequency and Fl and F2

are frequencies at points 90° displaced to each side of this, then
from a graphical analysis of the vector plot the damping constant §
for that pa‘irticular mode can be calculated using the equation [}2]
f . ?” F,-F

1 t
- F
\ n

1

If the circle does not coinclde with the experimental data for as much

as 180°, th'en the demping may be caleulated using the alternative

expreasion
1
! - ) ) i
|
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. 5= g(FBQFh)(tmoil - tan(X_z)Fn
2 2

where Fqs F),&, and«, are as defined in Figure 6.1L.

To measure .the norr;ml modes of the structure, the system is
excited at each of the natural frequencies in turn. An . initial estimate
is obtained from the magnitude of the response gignals from each
accelerameter. An attempt is made to identify nodes in the normal
"mode using a sgtroboscope to highlight the movement of the structure.

7 Besides this visual approach, the structure is examined physically -
by touch to sense the vibration. This additional information proves
useful when enalysing the experimentally calculated normal mode vectora.
After this preliminary examination, the PCTFA iz programmed to excite
the structure at the required frequencies end to obtain the response
readings for each of the eight degrees of freedom making up the normsl

mode. The accelercmetem attached to the structure have individual

" - variable gain amplifiers and prior to taking normal mode readings.

- the smplifiers are adjusted such that they all give the same magnitude
of signal when 1".heir respective accelercmeters are being subjected to 1g
acceleration. This matching of the accelerameters is necessary for the
norm.tlal modg glata to be meaningful. Having obtained a set of response —
readings for each normal mode, the data is analysed to give the
. magnitude of each vector and slso its resl end imaginary componeats in the
complex plazne. - The magnitudes of the vectors in each mode are sorted
and normalised such that the highest value is wnity. ‘

'ﬂze! method outlined in this section may be relied upon to give’
' reascnably iaocurate estimates of the matural frequencies o.f the struc ture.

;

o i
-142-



6.52.  (Continued)

' However, those frequency response plots obtained in the frequency
range above 159 Hz do not possess a sufficient degree of resolution
to allow any meaninéful graphical analysis. The natural frecjuencies
in this range are obtained using the peak amplitude method, whilst
the corresponding damping coefficients are estimated by interpolating
data from the sparsely populated vector respanse plots.

The experimental techniques used to produce the normal mode
vectarsof the system includes certain approximations which may provide
grounds for casfing doubt upon the accuracy of the results. The
first approximation involves the instrumentation used.in the measure-
ment of rotational response. Figure 6.15. shows the position in which
the accelerameter is mownted in order to pick up the rotational

responge of the block. 2
]
i
|
|
|
N 1
B ,.r‘m'L
S — . 5
~. |
x-— — —b G_...... ;_A— e | — e —y ¢ —— -'cx
. - |
o : accelerometer
i .
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i
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: |
| s
i
; \Z
L Figure 6.15. ‘ e
!‘ .
The Measurement of Rotatlonal Response
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6.52. (Continued)

a iny given rotation © of the block results in a displacement
in the 2z direction_which coincides with the most sensitive axis
of the accelercmeter. However, any coincident motion in ther xx
direction will also Vbe picked up by the acceleromster and will tend
to distort the 6rig:l.nally desired signal. It is fortunate that
the accelerometer is only 10¥ as sensitive in the xx directinn ag
it is in thezz plane, which helps minimise the effect of this wn-
wanted signal. The second, and probably the most important factor
influencing the ﬁormal modes concerns the degree to which it is
posslble to excite a pure normal mode. 1In theory, the structure
should be excited at at least as many points as there are degrees
of freedom in order to produce a pure narmal mode (undamped ). In
practice -:Lt is ususlly possible to excite a reasonably pure mode using |
- only ‘one vibrator, however, the exciter must be positioned favourably
within the structure to achieve the maximum effect. 1In the investi-
gation under consider#tion the exciters were positioned on the basis
of the theoretically produced modes and remained in the cﬁosen
. position throughout the ‘analysis.

| Thus, the experimental normal mode data may £irstly be
distorted b:y unwanted signals and, secondly, it may not be representa-'/
tive of thei pure normal modes of the structura.
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. 6.6, The Mathematical Model of the Test Structure.

The importance of a mathematical model as a link between
experimént and theory should not be understated. Mareover, just
as the accuracy with which experimentsal results can be obtaineﬁ sheds
?igﬁ*_b on their vail.idity, so does the relevance and accuracy of the
mathematical model.  However, before experimental or theoretical
data can be used in confidence for the purpose of comparison, there
must be reaso;.mhle Justification for thinking that the mathematical
model is a good répreaent.ation of the real physical system. This
eggentially involves laying down a set of criteria for comparison,
in this instance the natural frequencies of the two systems have been
chosen.i Since the experimental results are considered to be fixed
. then the mathematical model must be manipulated to achieve the best
possible fit with reality.  This in itself is a difficult wnder-
taking.

The mathematical model shown schematically in Figure 6.16.
consists of 12 nodes, five of which are considered to be rigidly
congtrained. The nodes are interconnected \by 1L plane bending
| elements which are considered to be inextensible. With the maximum
number of ?.egrees of freedom being two, there are 16 redundants leaviing
8 active d;grees of freedom. '.f;!he numbering of the eléﬁxent.s, nodesland '
degrees of;freedom is also shown i;n Figure 6.16,  The mass and
inertia of the system are conside:red concentrated at the nodes,
whilist the; stiffness matrix is assembled using finite element
techleiques? .1 In the first in.étance, the mass, inertia and stiffness
data are téken as the measured values from the test structure.

Damping 1s:incluled in the model as a percentage of critical
demping injeach normal mode. |

|
i | . i
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. 6 . 6- (Continued 2

One major difference between the mathematical model and the
test structure concerns the modelling of the structural nodes. In
practice, these have finite dimensions and the stiffness elements are
not connected at a point. The element stiffness matrices used in
the mathematical model provide a relationship between the forces and
displacements at the ends of each element. But on the test structure
the equivalent parameters are measured at the centre of each block
which is rigidly connected to but displaced fram the end of the
beam. In accardance with this, the element stiffness matrices nay
be transformed into a new coordinate system which coincides with the
centres of adjacent blocks. Details of this transformation are
given in Appendix H. The presence of the variable stiffness element
was accounted for in the mathematical model by add:l.ng‘ the appropriate
stiffness value directly into the stiffness matrix (see Appendix J).

The natural frequencies and nomal mode shapes of the structure
were calculated and compared with those fomd'exparimgntally. ' The
aim of the exercise was to match the two sets of natural frequencies as
. closely as possible; no attempt was made to match the normal modes.
The %manipulation of the mathematical model was achieved by varying
any of the ifollowing paramsters. ’

Aﬂ;'ec'bing the mass matrix

i 1) The mass and/or inertia at each end

-5 ) of the 'nodes.

" Affecting the stiffness matrix

R

,l 11) Young's Modulus.

1i1) The second moment of area of individual

elemants.
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iv) ‘The elements of the stiffness
matrix (directly).

The effects these parameter changes had on the natm‘ai
frequencies of the system may be sumarised as follows:

I) Varying the mass and inertia terms was used to
change individual natural frequencies. The
degree of freedom with the maximum amplitude
in the relevant normal mode indicated the most
sensitive point at which to effect the change.
'P'roblems arose when the chosen point was also
effective in another normal mode. In that
gituation a compromise was ;-eached.

II) Increasing or decreasing Young's Modulus was
used to effect changes on all ths natural

" frequencleg.

III) It was never found necessary to alter second
moments of area or the element;of the stiffneas"
matrix, and consequently the effects of these
changes are not known. ‘

The process of matching the mathemticai model to the ieat -
structure was an iterative one. In each new cycle the éltell:'ations
were based on the experience of past changes and, to some extent, on l
insight anld intuitim. There came a time in the iterative process when
the time sipeqt trying to improve on the previous guess became dis_—__

proportiod’ate‘with the magnitude of the improvement itself; it was

| at this point that the final version of the mathematical modsl was

\ decided upfon. In practice it was only found necessary to alter the

\

\
\
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6.6. (Continued)
mass and i;ertia data of the model in arder to match up the natural
frequencies satisfactorily.

Full details of the data used in the calculation of the
mathematical model are given in Appendix J, these include the
experimental evaluation of Young's Modulus and also the experi-
‘mentally determined stiffness at a point in the structure which was
used to provide a check with the theoretically determined valus.

6.7. - Regults.

The ex:peﬁmental results are divided into two sections. The
first presents a comparison beiween the experimental and theoretical’
frequencies and normal mode shapes and is intended to indicate the
degree of accuracy with which the test structure has been modelled
mathematically. The second deals with the experimental evaluation of
response as a function of variable stiffness. = The results are

canpared with those predicted theoretically.

6.TL. Natural Frequencies, Normal Mode Shapes and Associated

Damping.
The results in this section are presented both graphically

and in tabular form, and are primarily intended for the purpose of
comparison. The natural frequencies of the experimental and
theoretical models have been chosen as the basis for comparison between
the two sy'jstems. No attempt has been made to match up the normal mode
shapes in Iithe same manner. Three sets of experimental data are
preseﬁted,ff:equancy response plots, tabulated natural frequencies 7
and a tabuiated and schematic representation of the normal mode sixapes. |
Fi$ures 6.17. - 6.20. contain the frequency response p;.ots

used for the evaluation of the natural frequencies and associated
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6.71. (Continued)

damping constants. Table 6.1. presents a comparison between the

natural frequenciles of the two sysﬁems and consists of four colums.

The - data listed in each coluwm 1is as follows:

Colum (1 The theoretical natural frequenciles
obtained using the experimentally
measured data. This is prior to any
manipulation of the mathematical model.

Colum (i1) The matched natural frequencies achieved

| by manipulsting the mathematical model.

Column (111) The experimentally determined natural
frequencies. |

Colum iv.) The damping coefficients in each normal
mode .

The changes in the mathematical model as a result o.f the

manipulation process are listed in Tsble 6.2., these consist solely

of changes to the initial mass and inertia data. Table 6.3. lists

the normal mode shapes corresponding to the three sets of natural

' frequencies given in Table 6.1. Included with each mode shape is a

plot of the exparimentally determined mode vectors. The phase

relationsh:(l.ps for the experimental modes were cbtained using these piota.

It will beinoted that there 1s no experimental data for the response

correspond:itng to degree of freedom 1 in all but the first normal mode

(signified by #esx in colum 3). The reason for this was that when

exciting the rotational modes of the structure the response signal from

the accelercmeter corresponding to degree of freedom 1 was so small that
it was identified &s zero by the PCTFA. This zero reading caused
programm:lngi faults in the PDP3 and it was consequently decided that
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the reading should be amitted. Finally, Figures 6.21. - 6.23. show

schematically the normal mode shapes for experiment and theary.

]
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Table 6.1.

Experimental and Theoretical Natural Frequencies

Initial Estimate "Best Fit" Nat.| Experimental Damping
Nat. Frequencies Frequencies Nat.Frequencies | Coefficients
Hz Hz Hz
31.6 29.58 29.57 012
98.h 86.86 86.7 .007
124.3 112.0 112.2;5 .005
1h9.5 132.4 132.83 .00k
160.5 143.6 143.5 .005
1664 149.3 149.35 -00l
185.6 165.4 165.L .007
202.6 191.3 191.7 .008

Table 6.2. Changes to Mass and Inertia Data for "Best Fit" Model

Degree of Nodes Méss/Inertia Initisl "Bagt Fit"

Freedom | Tnits Value Value
1 ;,3,&, Tom 1.8 x 1072 | ;2.06 x 1072
2 2 boin? | 2.5 x 107 * 3.15 x 107
3 3 bein? | 208 x1073 | 2,43 x 107
l l wein? | 202 2103 | 3.40 x 1073
5‘»; 5 1bwmin.? | 2.2 22073 | 3.8 x 1073
§ 6 bmin.? | 2.50x 1073 |  3.29 x 1072
7 \ -7 oein.? | 2.2 x 1073 3.17 x 107
g 8 bein.® | 242 x1073 | 2.7 x 1073

|
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Table 6.3. Mode Shapes for Modes 1, 2, 3 and k.

Initial "Beat Fit" Experimental Normal Mode Vector Plot
Estimate : :
1.00 1.00 1.00 nf = 29.57 Hz
0.06 0.06 0.19
| 0.008 0.008 0.16
0.03 0.03 0.17 No vector plot - data
-0,005 -0.005 -0.10 wsatisfactory. ‘
-0.21 -0.21 -0.12
-0.08 -0,08 -0.10
=0.14 -0.14 -0.09
0.03 0.03 W nf = 86,7 Hz ,
~0.53 -0.51 0.08 :
0.32° 0.27 -0.36
-0.18 -0.13 _ 0.63 3
0,03 0.03 N -0.7
1.00 1.00 1.00
-0.60 -0.57 -0.98 N 2
0.27 0.23 0.45 ‘8-
6
-0.006 -0.01 P nf = 112.25 Hz
0.32 0,31 0.3 -
0.32 0.35 -0.6L
-0.56 -0.66 0.05
0.19 0.25 0.7
-0.62 " 20,61 ~0.52
-0.59 ~0.74 -0.45
1.00 1.00  1.00

~157-
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Table 6.3. (Continued)

Initial "Begt Fit" Experimental Narmal Mode Vector Flot
Estimate -

0.0L 0.003 e nf = 132.83 Hz.
-0.21 ~0.26 1.00

-0.49 -0.26 -0.146

-0.49 -0.68 -0.10

0.45 - 0.69 -0.31

0.35 0.26 0.25

1.00 ' 1.00 0.53 3
0.68 0.36

0.47
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Normal Mode Vectors for Modes 5,6,7 and 8.

0.US .

\

Table 6.li.
Initial : ' '
Estimate "Best Fit® Experimental Normal Mode Vector FPlot
~0.0} -0.01 O nf = 143.5 Hz )
-0.19% 0.03 '=0.51
0.31 0.16 ~0.11 ' >
A 3
-0.21 0.07 0.42 \
1.00 1.00 - =077
-0.16 -0.08 0.26 6
-0.05 go.'31 1.00 sl
-0.48 -0.63 0.67
, —
0,002 0.01 e nf = 149.35 Hz.
1.00 1.00 «0.49 4
-0.47 -0.38 -0.13
0.12 0.07 1.00 :
0.42 0.11 -0.91
0.52 0.52 -0.90 ki
~0.50 ~0..04 ~0.018 A
-0, 04 0.12 ~0.37
-0.004 0.009 P
~0.6] ~0.29 -0.75
1-0.83 =0.47 -0.98
1.00 1.00 0.15 "
0.49 0.42 1.00,
-0.34 -0.12 0.75
~0.46 -0.05 0.51
‘ . 0.8L ~0.32

.-.159..
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Table 6.l. (Continued )

Initial |'"Best Fit" | Experimental Normal Mode Vector Flot
Estinate

0.01 0.006 bRt
0.32 0.21 0.2}
0.99 1.00 0.66
1.00 0.28 1.00 -
0.26 0.05 0.63
0.17 0.08 0.39
0.53 0.32 0.71
0.50 | 0.18 0.40
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6.72. Response as & Function of Variable Stiffness.

N

. The response vector corresponding to degree of freedom 1
was examined for the variation of stiffness in the same direction at -
frequencies of 35 Hz and 4O Hz. The vector response plots at each
of these frequencies are shown in Figure 6.24.  Circles have been
fitted to the data and the caleculation -o.t‘ the digmeters of these in
terms of receptance is given below.

Experimental Data at 35 Hz.

In the experimental analysis, the structure was axcited
_ at block 1 in the horizontal direction, and the response was examined In
the same direction at block 3.
| Frequencys ’ 35 Hz.

Magnitude of force inputs 0.5 l_b.f peak

Accelercmeter calibrations 0.357 V/g peak

Maximum respanse signals ° © 0.85 ¥V r.m.s.

Stiffness varied in the | |

ranges | 17-6624 1bjfins.
Maximm accelerstion = 0.85‘ x 1.0k x 32.2 x 12
0.357
‘ - 1300.88 in/sec2 _
| Maximum displacement = Max. Accn. = 1300.88 |
o ' w? (35 x 2-7)?
| = © 2,689 x 10-2 in.

2

Maximum receptance vector = 2.689 x 10 ° = 5,379 x 10-2' in/1b £
i

‘ 0.5
P
Redius of Response Circle = 2.689 x 1072 1ry1b £

'

!
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6.72. . (Continued }

Theoretically Determined Circle Data.

In the thecretical enalysis, the examination point,_forcing ‘

point and position of the varisble stiffness parameter were the same as

for the experimental analysis.

Frequencys

Radius of Response Circle:

Centre of Circle:

‘Coordinates at k = O3

Coordinates at k =

Minimum receptance:

Value of k for minimum

receptance:

35 Hz.

2. x 1072 in/b £

(2.21 x 1077, - 2.1 x 10°%)
(-3.08 x 1072, -2.15 x 107%)
(-5.48 x 1072°, ~5.12 x 10729)
2.2 x 1077 o/ £

10 14f/in

Correlation between experimental and theoreticsl circle radil 1s 90.7%

Exparimental data at L0 Hz.

Frequencys

Magnitude of force inmput:
Accelerometer calibrations

Maximum response signals

- -ranget

Maximum accelerationt

\ .
Maximum displacements

gtiffness varied 4in the

~165-

4O Hz.

0.43 1b £  peak.
0.357 V/g peak
0.732 V r.m.s.

17 - 6624 1bf/in.

0.732 x 1.)Jah =x 32,2 ?c 12
0.357

= 1120.28 in/sec?

-

1120.28 = 1.773 x 10”2

Lo x 21 )



6.72. (Continued)

Maximum receptance vectors

Radius of Response Circles

Theoretically determined Cirele Data.
Frequencys .
Radius of respense circles
Centre of circles
Coordinates at k - 0
Coordinates at k =
Minimum receptances

Value of k for minimum
receptancet

1.773 x 1072 = L.12) in/1b £
0.3

2,062 x 1072 in/1b £ .

LO Hz.

2,13 x 1072

in/lb £

(5.4 x 10720, - 2.13 x 10°2)
(-1.67 x 10‘3, =6.55 x 107 )
(227 x 107, -3.38 x 107,

0.0

1035 1b¥4n

Correlation between experimental and theoretical oircle radii is

96.8%

-
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6.8, Conclusions.

6.61., The Mathematical Model of the Test Structure.

The accuracy of the mathematical model may be assessed by
considering the fallowing structural characteristicss stiffness , mMass
and inertia data, and the natural freqﬁencies. of the system. Appendix
J 1ists the stiffness matrix for the manipulated mathematical model
and &also gives the experimentally determined stifi‘neqs of the structure
in the horizontal direction at block 1. The theoretically caléulated
stiffness at this point was 721 1b/in., which compared very favourably
with the experimental value of 728 1b/in. The stiffness data, which
included Young's Modulus and the second moment of area of the spring
steel s{'.rips , was thus considered to be a good representation of the
_ real structure.

The initial estimates for the mae-ss and inertia data were
calculated from the dimensions of the blocks in the test siructure. Tt
was not possible, havever, to determine these values -experimentally a8
was the case with stiffness. Wherever f)ossible s the asdded mass and
inertia of couplings, faslteninga and accelercmeters was accounted for.

" The emount by which the initisl data had to be changed in the process
of matching the mathematical médel varied from 1% to 30%, but on
average this worked out to be 20% for inertia and 13% for mass. In .
glmost all cases, the final data were higher than the predicted values.

| che natural frequencies calculated using the initial estimate
m6d31 were{all larger than the experimental values by approximately 10%.
Howeve;r s 1% was fouhd ‘that the natural frequencies of the manipulated
model could be made to match almost exactly the required valuss. The
manipulatec} model was thus ccmside_red to be a good representatiqn of the
test aﬁuct:m. o |
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6.82. Response as a Function of Variasble Stiffness.

The main aim of this analysis was to determine experimentally
the way in which the response at a point in a structure varied with changes
in a simple stiffness aiement. It can be seen from Figure 6.2&. that the for:
of the respunse circle predicted theoretically can be reproduced experi-
mentally to a high degree of accuracy. The response vector traces out
a circle in the complex plane and the position and radius of the circle
correlate extremsly well with the predicted values. |

The aims of the experimental analysis have been fulfilled
© in as much as the theoretically predicted phencmena pertaining to

structural manipulation can be reproduced in practicsl situations.
. l . -
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i | CHAPTER 7

CONCLUSIONS

A new approach to the problem of vibration reduction in
dynamical étructures has been developed. The dynamic response of a
gtructure has been considered directly as a function of structural
parameters. It has beén shown that the response of a single degree of
freedon system for variations in mass, stiffness or damping traces out
a circle in the complex plane., TFor multi-degree of freedom systems
the variation of a single mass or ‘stiffness parameter has also been shown
to produce a circular locus, the variation of damping not being considered
in such systems. Where two or more parameters, either two mass, two
stiffness or a mass and a stiffness parameter, were varied simultaneously,
then a feasible response reglon was farmed in the canplex plans.
Within this region it was found that either of two pairs of parameter
values could be used ‘ﬁo give a desired response, whilst only one pair
of values was defined on the boundaries. A general equation for any
response of the system as a function of m parametérs has been developed
in terms - of the receptance matrices, however, where mare than two
paramsters were considered then the reductiom of the matrix e.quatioﬁ:
was found to be complex. The tem "Structural Manipulation® has been
used to describe this type of analysis where structural response is considere
as a fmction of structural modifications. The method Qoes not involve
either optimisation or lterative techniques and relies purely on the
properties of linear cbrnamic syatems.

I.n, the afarementioned analyses, the properties of response
circles anil feasible respmse méions have been used to develop criteria

i .
! : . . i
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for the purpose of assessing the.; effect or sensitivity of parameters
in changing structural response. These criteria are used in two
Vmain areas, namely,
{a) To assess the ability of a parameter in
achieving any given response.
(b) To assess the aﬁility of a parqmeter in
achieving zero response.
In (a) the criterion used 1s the diameter of the response circle
produced by a single variable parameter; those parameters with the
largest diemeter circles are considered to be the most effective.
Where zero response is required, then two criteria are used, namely,
the minimum response obtainable using a single parameter (derived from
the response circle) and the feasibility of achieving zero response”using
two parameters. In the practical application of the theory to a
helicopter fuselage, the criteria have been shown to give mutually
cmaistent results; this applies for both mass and stiffness parameters.
The criteria have been shown to be successful in highlighting sensitive
areas of - the structure, these iaeing inter\preted as the most suitable
areas for structural modifications for the purpose of reducing vi‘%ration
in another part of the structure. The bias diameter criterion i '
described in Chapter L, Section L.3. was the only criterion that gave
results that were not consistent with the others. In general, this
criterion failed to show up any sensitive area within the structure.
Surp?isixilgly, according to this eriterion, all the parameters' in some '_
casesg hac;i approximately the sémel effectiveness value. No logical
explanatilon can be given for th;is s other than the fact that .t.he bias
d.i.qme_ter -eriterion was not suitasle for this particular application.
The Structural Manipulation Program deseribed in Chapter 5 has

L -



been shown to be an indispensable tool for the purpose of testing
theoretical results, and also in the practical application of the
techniques to realistic problems. As a research tool the program has
s1so proved invaluable.
An prgrimentﬁl analysis was performed in order to verify the

- form of the circular response locus predicted theoretically as a result
of tﬁe variation of a simple stiffness parameter. A continuously variable
linear stiffness element was designed for this purpose. Some
difficulties were encountered in the mathematical modelling of the

teat structure, but even go 1t was found that the circular locus could

be reproduced to a high degree of accuracy. These experimental

results provide an extra element of confidencg in the choice of any
atructural modifications that are indicated by a theoretical analysis.
| Al though the 1dealised stiffness parameters used throughout the
analysis are unlikely to be encountered in practical situations, it

has been shown that it is possible to model real structural -elemen{hﬁ.

by means of an equivalent linear spring system. It has also been |

éh own that a varlation in a real structural parameter, such as bea:ﬁ
inertia, web depth or skin thickness, results‘ in the variation of two {
linear at]i.ffneas parameters which are constrained to vary in a p
related m;a_nner. It has been shown that two parsmeters varyirig in this
way no 1onger produce a feasible responge region in the complex plane,
but that l the response is restricted to following a closed curve known
as a Cassinian Oval. |

Proposals for Future Development. | _ _— | :

| The techniques described here have been used to analyse
aimpl:!.fiet_l models of complex structures. The purpose of the analysis
was to highlight sensitive aress within the structure sultsble for the

1
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purpose of structural modification. The results produced were of a
qualitative nature end were not intended to be of any practical use in
determining quantitatively the size of the real structural parameter
chahges that would be necessary to produce a desired response. It
is hoped that once the ,seps}tive areas of a structure have been identified
ona coa.rse‘z model of th.e system, then further analyses would be performed
on more representative models of the semsitive substructures. This
time it should be possible to identify effective elements within the

gubgtructure. It is envisaged that at this stage a formal optimisation

~ of the whole structure would take place, using as variables the

effective parameters indicated by the previous analyses.

| The process by which a substructure could be examined is best
i1lustrated by an example. Consider the case of a large detailed
model of a structure too largs for the Structural Manipulation Program
to handle. It is assumed that the sensitive substructures have been
identified using a simplified model which possesses fewer degrees of
freedom than in the original system. The model could be in a form
such as the ILynx helicopter stick model ciescribed in Chapter L, or 1t
could be produced by reducing the number of degrees of freedom of
the full scale model by a process such as a Guyan reciuction [28]whict_x;
involves redistributing the mass of the system at a reduced number of
node poini;.s. in the Btructure.' It i1s now required to perform a
sensi‘biviiic.y analysis on a given substructure , the .degrees of freedam
that are of interest are the examination and forcing points xq and xpl |
and the cilegrees of freedom of the substructure X5+ The analysis
requires t}mly the direct and cross receptances for these points. The
latter nm'l' be obtained from the receptances of the full scale system
by l?a.rtiti!.onixfg the appropriate matrices. If X_. and Fob are the
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displacements and forces of interest, then the corresponding receptances
are given in the relationship
Xsub -~ Ssub Zoub

Providing that the order of Goup 18 gmall enough then the receptance

ub
matrix could be fed directly into the Structural Manipulation Program
where the relevant analyses 'would be performed. The one disadvantage
in this method is that the receptances could not be altered within the
Structural Manipulation Program, thus limiting the analysis to those
techniques requiring constant frequency data; this is, however, not. an
- wnrealistic limitation. It is envisaged that further developments
in the analysis would be needed in the area of modelling of réal
structural parameters; there i1s also the need for procedures to take
into asccount any constraints that might be 1mposed on the values that
any given paraxﬂneter could take. | |
The techniques involved in Structural Manipulation have been
shown to be wuseful in the dynamic analysis of complex- structures
~and in particular in the connection with vib\ration reductign. The
procedures described in the preceding chapters have been developed
successfully and are in a reasonalgly advanced state of refinement.
Thers is ,iof course, considerable scope for future improvements to .

be nade in the analysis which would be best concentrated on its
practical !aﬁplica'lgion.
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APPENDIX A

The Constants in the Equation givine Receptance as a Function

of & Single Paramster.

The equation for the complex receptance of a system at a point
q due ‘to a force at point p as a function of a single variable stiff-

ness paremeter is as follows:

X =G +%k(G -G G -G
a9 @ (Cep = Orp) Ogr as’ (a1)
Fp 1+ I':((‘}rr * Ggg = Opg - Gsr) :

where r and 8 are the spring coordinates and Gi 3

receptances of the system. Equation Al may bé writien in the more

are the complex

general form:

X, - (o + if)l+ k(a + ib)

32 (a2)
F, 1 + k(c + 1d) SN

where the constants a, b, ¢, d, ¢ and f are &ll real. The complex

receptances Gi 3 may be split into real and imaginary components wheres

G

1;)'0 + 1ip

i) 1]

' The constanta a, b, ¢, d, e and £ may be expressed as fwnctions of".

thewe and 'a.re as follows:

a= (0= Cug)C, =0 )= ® ~D ), D )"

i

| | D
b= (C =-¢C D - + - - ‘

| Car = Cqq)Pap = D) + Pz = D) gy - Cy)

i ‘

i ' c\s Crp * Cgg = Cop = Cra .

']d- Do * Dyg = Dy ~ Dy

(o= G )

“ qJp

f - D
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APPENDIX B

The Constants Involved in the Equation for the Complex Receptance

as a Function of Two Variable Stiffness Parameters.

x
The equation for the complex receptance &= 'FA as a function
| P
of two variable stiffness parameters kl and k2 is given generally by:

= G+ Icl¢1(k2) + P, ()

' (1)

where gq-and p refer to the examination and foreing points respectively,
and paremeter k1 is  connected between points r and s and parameter

& between points ¢ and v. The functions ¢ i(kz) are given by:

@100 =2y by (1 kp0pp) + 8yD0 1Ky + Kp(aghycyy + 8)Dy0)5)

$,(k,) = a,b)k,

P30 = )9 (U + Kpepy) = eppeq ok,

$),05) = 1+ kyep,

: : 3 i
where a_; bi and cij are the complex elements of matrices 4, B and C
t i
regpectively and are defined 4iniChapter 3, Section 3.4. The elements
arel ftmcﬁions of the camplex Aree%ptances Gi 5 and are given by:
i :--alanr_Gqs
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The Relationship between Parameoters k1 and k2 on _the Boundaries

of a Feasible Response Rezion.

X
q
The equation for the complex receptance o= Fp as a functim

of two stlffness parameters kl and k2 may be writien:

o = qu+k1¢1(k2)+ ¢2(Ic2) ' (015
where ¢i(k2) are defined in Appendix B. Equation C1 may be split
:Lnto its real and imaginary components to gives
@m0+ (20 + 2@k, + 20k, ] + 1 [2W)g + 2 (5)k, + 2(6)k K]
[1+ 2 (7)) *+3 (8)k, + =z (9)k1kzl + iz (10) +2 (1)K, + z(12)k1k)

(c2)
where the constants 2 (I) are resl functions of the real and imaginary
camponents of the receptances @G, ,, and.are glven at the end of the
Appendix. \

' The relationship betweén kl and k2 an the bowmdaries of the

feasible response regibn is given by:

In [dx . &&F| =o (c3)
o &, |
where O is the complex conjugaté - of AKX
k - 3%
' Differentiating equation G1 partia;uy with respect to k.l. gives:
2 o
3;!1- (Ak2+Bk +c) * 1(pk, +Ek2+F) (ch)
]
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APPENDIX C (CONTINUED)

where , ‘
A =2(3)2(8) -2(6) 2(11) - 2(2) z(9) +z(5) z(12)
B =2(1) 2(8) +2(3)+ 44) 2(11) - 2(2) z(7) + z(10) Z(5)
C = 3z (1)
D =2(6)z(8) +2(3) z2(11) ~ 5(5) 2(9) - 2(12) 5 (2)
E =z(l) 2(8)+ 2(6)+3()s(h) -2(5) a(1) - 3(10) z(2)
F = 2(2.)
The product of two terms, say, z(3) and z(8), is written as z(3) z (8)
for convenience. The camplex conjugate . of the partial differentisl
of equation C2 with respect to k, is given bys

A& = (GK° + +J) + 1(TK° + + N) (c5)
- 0w e 01 g ,

where

G= 2(3)2(7) -3(6)2(20) - 2(1)2(9) +z (12) z (l)

B= 2@)2(7)+2(3)-2(5) 2(20) - 2(1)2(8) + z(4) =(1)

SRR )

L= -2(3)3(0)~2(6)2(7) +2(9)z(k) +32(12)3(1)

M1 - 2Q0)2(2) -2()2(7) -3(6) +3 (k) 2(8) + % (1) (1)

N= - z(5). | .
It will be noted that the denominators in equation Ch and C5 [have been
omitted. This haa been done for the sake of simplicity. The
denominators are in fact the complex conjugates of each other, and
cons?qusntly when equations Cli and C5 are substituted into C3 then. the
product of the denominators is a real non-zero number and may be

cancelled.

Given a value of k) and letting equation C5 be of the forms
:

=17 G
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D& = X + 4y (c6)

. then the values of X and Y may be calculated, and when these are
substituted for %g- in equation €3, then the x_'esulting equation
is a quadratic in kzza.nd is of the form:
k,” (AY + DX) + k,(BY + EX) + (T + FX) = 0 ©7)
The roots of this equa.ti:an yield two values of k2 s one for each
boundary of the feasible region. The two.pairs of values (kl, k2 )1
and (Kl,k2)2 may now be substituted into equation C2 to give the
coardinates of the corresponding points on the boundaries. If a
sufficient number of values of kl are chosen in the range -abl to
+® , then a good representation of the boundaries may be plotted in
the complex plane. | |
The real constants Q(I) can be given as functions of the real

and imaginary components of the receptances (.':i and Di 3 respectively

J

a3 follows:

Y

led .
T A B L Y
AB =-i (cqr - cqa)(n‘_'rp - ntp) '+ (nqr - nqs)(c:vp - ctp) | -
ac =i (c_ - Cp) €y = C) = Oy = D)@ = D) ‘
= - )0, - Do) * Ogy =D )Gy = C0)
 AE = Cgp = Cgy A A
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APPENDIX C (CONTINUED)

and . K(1) = (cqr - cqs)(csp - crp) - (qu - nqs)(ngp- ’-Drp)

K@) = (©y = Co Iy = Cpp) = gy = Dy )= D)

qv
K(3) = AE x (AA + AC) - AF x (4B + AD)

K(k) = Css +‘ Crr = Cpg = Cgp
K(5) = AE® - AF®

K(6) = Coo * Cpp = Cop = Cup

L) = (6 = Cp) By, = D) ¢ (O, = D )(C,

qQv’ " vp

- L{2) = (c -C¢ ) -~ ntp) + (nqt - qu_)(cvp_ -C

'L(3) = AE x' (AB + AD) + AF x (AA + AC)
L) = Dgg * Dpp = Dpg = Dy |
L(5)=2 x AEx AF

L(6)=1n_  +D., - Dy = Dot

Z2(1) = K(1)
Z2(2) = £(2)

crp)

tp)

©2(3) = K@K - LAL(E) + K@X®E) - L)L) - K(3)

Z(L) = 1(1)
-ZG)-L@)

B
!
'

2(6) = KQIL(6) + I-(l)K(é) * K()LM) + L(2)KW) - I-(B)

2(7) = k()
z(8) = k(6)
© 2(9) = K(XK() - LUIL(S) - k(5)
2(10)' = 5.(b)
z(il) = L{6)
zan-xmnm)+umum-xs>
'i
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L0
Mass values
m, * L | m, 3
m2 10

11 =30 - My 1 20
0.5 : :
o rhz .

All units are
compatible

B

e

m,

m3

The Masg,Spring,Dashpot System Used in the Calculation

Of feasible Response Region Boubdaries,
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ATPENDIX F

 raising and lowering screw

({0

rigid
mounting

clamping bolt |

passes through
slidng clamp to
locate in the
retaining block

sliding clamp

retdining
block !
{Inserts into main

clamp .above)
1 : ;

Details of the Clamped Cantilever Spring;
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APPENDIX G

Output from the Structural Manipulation Program,

*kkSYSTEM € 400 yk#*x

**x*MODEL OF EXPERIMENTAL SYSTEM USING BLOCK 30/5/75%%%%
*xxDATA FROM LAST RUN#*%

FREQUENCY  : 2.000@ 2 HZ

EXAM,FORCING: 2 6

CHOICE:CIRCLE

-

*¥*RESPONSE CIRCLE FOR VARIABLE STIFFNESS*x*

EXAM /FORC ING
SPRING COORDS A

2 6
2 3

FORCING FREYUU : 2.000008 2 HZ

RADIUS ! 9.58097@ -6

MIN RECEPT MOD : 1.0263%0@. -4

CENTRE OF CIRC :-l1.122158 -4 , 3.881730@ -7
COORDS AT K=0 t-1.1044438 -4 , -9.027738 -6
COORDS AT KsINF:-1.12774@ -4 , =9.176468 -6
K AT MIN RECEPT: 4.239108 2 |

COORDINATES t-1.026348 -4 , 3.550318 -7

CHOICE: ‘ ‘ .

Jata Concerning the Respop_se Circle for a Single Variable

" . Parameter.

i ' .
I - -
! \ - — R
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APPENDIX ¢ (Continued)

; CHDICE:ASSESS
}
|

22 SELECTED PARAMETERS

FREJUENCY : 2.0008 2 HZ
EXAM,FORCING: 2 6

**¥3TIFFNESS PARAMETERS *x*

"*¥ELEMENT ANALYSIS BASED ON ASS0C IATED PARAMETERS #*%

LOG SCALE
MINIMUM CIRCLE BIAS
ELEM RESPONSE ELEM DIAMETER ELEM CIRC ARC
1) 1 1.08 0 “ t+00 0 1 1.08 O
2) 8 3.00 -] 1 360 =1 & 1.0 O
3) 2 2.58 -] 2 3.08 -2 2 Be78 ~1
4) 9 2.58 =] 9 2.4 -2 9 7.98 -1
‘ 57 3 2.40 -1 13 2.3@ -2 3 6.19 -1
6> 10 2.38 -} 6 2.18 -2 6 Sed4@ =1
7) 4 2.38 -1 12 2.08 -2 13 530 -1
8) 11 2.38 -1 3 l.78 -2 10 4.38 -1
9). 6 2.8@ -2 10 1.20 -2 11 3.1@ -1 -~
L 10) 13 2.58 -2 4 9.28 -3 4 341@ =1
nﬂ 1 T 9.40 -3 11 9.28 -3 7 2.60 -1
f 0 12) 14 7.28 -3 7 5.98 -3 14 2.00 -1
: : 13) 5 1.0@ -3 14  4.3@ -3 12 3.69 -2
' _ 14) 12 0.08-99 5 0.08-99 5 0.00-99
r . -, PRINTOUT?:N
\ 7 \ e
CHOICE:

Efféctiveness Critéria for a Bingle Variable Stiffness Parameter.,

- : —186-
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APPENDIX G (Continued)

CHOICE:ASSESSALL

PARAMETER SELECTIONS ALREADY MADE

*%*ZERO RESPONSE USING TW0 STIFFNESS PARAMETERS k%%

22 3

ELECTED PARAMETERS

253 POSSIBLE PAIRED COMBINATIONS

43 P

AIRS GIVE ZERO RESPONSE

ELEM LIST?:Y"

FREQUENCY : 2
EXAM/FORCING:

!

OCCURRENCE QF

+000@ 2 HZ
2 6

-

PARAMETER BREAKDOAN

ELEMENTS BASED ON SUCCESSFUL PARAMETERS:-

ELEM NORM TOT, X Y Z T1 T2 T3
1) 1 1.00 24 3 0 0 0 21 0
2) 2 0.52 13 3 g 0 0 10 0
3) 6 0.35 9 0 0 "0 0 9 0
4) 8 0.26 7 3 0 0 0 4 0
5) 9 0.22 & 3 0 0 0 3 0
6) 3 0.13 4 3 0 0 0 1 0
7) 4 0413 4 3 0 0 Q 1 0
8) 5 0«13 4 0 0 0 0 4 0
9) 10 0.13 4 3 0 0 Q 1 0
10) 11 Q.13 4 3 0 0 0 1 o
11 12 0.13 4 0 0O 0 0 4 0
12) 7 0.00 1 0 0 0 0 1 0
13> 13 0.00 1 0 0 o o 1 o} -
14) 14 0.00 1 0 0 O 0 1 o}
PRINTDUT?:Y
HOW, MANY:2 [
.. ! DR DS © DT. bV COORDINATES
| 2‘»l G ' . . 2 6 B '
' 1.0000000000@ 35 1.1221374573@-14 -2.7118-20 -8.4700-22
9.5432030276@ 18 5.0636564634a8 2 3.3880-21 0.0008-99
\ :
-2 6 3: 4
4:9916118147@ 18 5.71546325768 2 <1.7628-19

~1.3351891932@8. 19 1.9144089463@8-13 IST NG

ANY MORE?:N

" Assessing for Zero Response USlng Tvo Parameters.

-18%7-
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APPENDIX H

The Transformation Matrizx used in the Mathematical Model

to Account for the Finite Size of Structural Nodes.

1
z2 21 i’r 2 _

1 A

Y, % %. %

C x2 A §1 ? x11 P §<12
I- -i ] I

0.875 0.87%
Figure H1

Finite Element AB and Rigid Extensions CA_and BD

Figura Hl represents a simple finite element beam AB with |
rigid extensions GA and BD of length 0.875", Ccnsidering the left ~
hand end of the beam, the transformation between the coordinate systens |
at points A and ¢ is: ‘ o

e - -
{ ) 1 0 0 0 0 0 x,
] 0 1l 0 0 0 0.875 ¥y
Zlje o 1 0 -0.875 © z, -
oél 70 0 0 1 0 0 . o«
9} 0 0 0 0 1 0 €,
1A L
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APPENDIX H (Continued)

or in matrix neotation:
o= A LS . §:9)
The relationship between the forces in the two coordinate system
| is given by:
B Xy Ra (2)
‘where &'f_ is the transpose of Ag. '

For the right hend end of the beam:

i -1 — - — ]
1 [~ 1
x 1 0 0 (0] 0 0 X,
1l 1
¥y 0 1 0 0 0 70.875 Y5
1 1
2, 0 0 1 0 0.875 © %
-
1 N 1
[» 4 ~ ‘
1 0 0 0] 1l 0] 0 0(2
1 _ B | ‘ 1
91 0 0 0 0 1l 0 62
¢ 1 0 o o o © o 1 ¢ 1
1 ] 2
s e N . -JL e el
or, in matrix notaticn K
#*
L= N L | (13)

The relatimship between the forces in the two coordinate system is |

* T ’
L L AE | (a4)

The relationship between the forces and displacements for the .element is:
i .

. E= KI
whero ‘
v ] . ‘ )
.I , ‘\ F'_ K1 K2 xL X -
: Fr K2 _ K3 xr

Substituting !for § , Fs Xp and I from equations Hl, H2, H3 and HY gives -

]
' -E’*ns* -x-*

i
.

-189-
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where 3
Fp* Xy
E* - F -x-* = x +*
r T
and — -
)a_ KlAL )?LKZAr
Z{z -
X ™A, X K37,
L —

which provides a relationship between the forces and displécemnts»-
at points C and D on the bean.
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APPENDIX I

The Constants Involved in Calculating the Feasibility of a

Desired Response.

For a single stiffness parameter kX the response at a point .

in the structure 1s given by:

X= e+ if + k(a + ib) | : (Ij) |

1+k (c+id)
where, a, b, ¢, d, e and £ are real constants and are defined in

Appendix A. The real and imaginary components of ¢¢ ares

f u = e + k(a + k{ac + bd) (I2) -

1+ 2k + k° (024- dz)

vef+kld +k(be - ad)) (13)

1 + 2ck + k° (c2 +d2)

respectively. Now |o¢|2 may be writtens

lo-’lz"“kz“Bk*c' o (1k)

sz + Qk +-R

where ' A= (a° + b°) + (e° + £2)(c°+ d?) + 2e(ac + bd) + 2£(bc -ad)
Ba 2c(s® ¢ £2) + 2(fo + ea) "

Q= ea+f2

 P= c2+d2-
.Q-Zc

CR=1 . | | - ‘
|- | _ e
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APPENDIX I (Continued) .

The first derivative of I(X |2 with respect to k is

2

4 ju|? =@~ PB) + 2k(ma - P0) + BB~ Q)

dk (Pk2+Qk+ ‘R)2

and the secand derivative of |x |2 with respect to k is

2 2

4 ] g,() - op(k) ,
2

dk 0y (k)

where

orl(k) = 2(1=k2 + Qk + R)z(k(QA - PB) + (RA - BC))

0, (k) = 262 (QA - PB) + 2k(RA - B6) + (BB - Q0)) (P’ + Qk + R)(2Fk + Q)

oy) = (B + G+ )

=192="
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APPENDIX J

Data Used in the Preparation of the Mathematical Model.

Refer to Figure 6.16.

Stiffness Elements.

‘Second Moment of Area.

0.063"

1Y

. P —————— R
- . 1&‘ :_T

I = yf =1 x (0.063)> = 2.083 x 10°°. in. Y
LAY 17

Element lengths
Elements 5,6,7,12,13 and 1} = é»
Elements 1,2,3,4,8,9 and 10 = )»

- Young's Modulus. _
' Yomng's Modulus was determined experimentally by measuring

the tip daflectim of one of the spring steel beams comprising ;the,'bgst

structure, |

For a beam, length 5", the tip deflection under a load
of 1.2 1bs. was .0905",

From a'implej beam theory

" E = fp «1285x1.2x 100 = 2,652 x 107 1b/4n.’
3Ix 3 x 2,083 x 0.0905
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The added stlffness of the varisble stiffness elemant.

The varlable stiffness eiement. is a simple cantilever of
maximm length 4.6, (This remained constent during the measurement
of natural frequencies and mode shapes). | The stiffness at the tip
of this element is given by:

k= 3EI
U
Thus k-3x265x107 x 2.083 x 105‘ = 17.0 1b/in

(L.67) |

"‘This value was added to element k(),1) in the structure stiffness matrix.
. The stiffness matrix of the mathematical model of the test

structure is as follows: (units 1b/4in.)

Bk o 0. o0 0 2971.5 2975 297.5)]
2839.h 368.5 0 0 TwE o 0
3091.9  368.5 o 0 717.5 0

| | 30919 368.5 O 0 Tr.s
sM - 2539.h . © o 0

1545.9  368.5 0
2098.4  368.5
2098._15 -

In orde_r to determine the accuracy of this data, the stiffness

of the test structure in the horizontal direction at node § was
determined experimentally. A horizontal load of 10.2 1b. was applled at

this point, and the corresponding deflection was found to be 0.01Ln,

Thus ,lthe stiffness at that point was: 7

10.2 = 728 1b/4n.
0.01Y
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APPENDIX J (CONTINUED)

To obtain the equivalent . term from the theoretical stiffness matrix,

consider the matrix in the partitioned form

m ] - ol T

. 9 kp 6,

31 | .
- s {(J1)
e k 5|

(B [ 4) | 2

where F1 1s the force in the x direction of nods 5 and 61 the
eorresponding deflection.
Fp» ky and 0, are of the order (7 x 1)

k18 1 x 7)
kyis (7 = 7) | |
' We require to kmow the deflectien 61 for Fy "= 1 1b. and Fo =0 -
Now, if equation J1 is expanded, then - » e
L6+ k9, (32)
and B, =0=k 06, +K 0,
Therefore,

S, m -5 VK 6
which may be substituted into equation (J2) to give
P O - Ik k) 6y
Thus, the‘required stiffness term is
! - Ik k)
When thege tems are calculated from the stiffness matrix given above §
then the following value 13 obtained:
[8Ly.9 - 123] = 721.9 lb/in. ,
This correaponds favourably with the value of 728 1b/in. .obtained
‘ erperimentallyo
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"Mass and Inertis Data.

- The mass of the structure in the direction corresponding to
degree of freedom 1 comprises the total mass of four blocks, three
beams and associated acceleromsters and couplings. This value was
measured experimentally and found to be

1.8 x 1072 1bf 1i’sec>

Figure J +1. showg one of the structural node blocks

q—

/

Structural ' Node Block -
The moment of lnertia of the block in thezz directlon is given
by the eqm;afion -
“ Mr = 2 ?

. ! 12

] .= :
Now, the weight of each block was found to be 1.8 1bf and €= 1:75m,

therefore -
: i

|
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APPENDIX J (CONTINUED)

ML -2x18x 1.75¥% = 2.377x 10> 1b§ in.sec
12 x 32.2 x 12

The moment of inertia of an sccelerometer mounted as shown in
Figure 6.15. about the 2z axls is
0.036 x 10™> 1bfin,S€C”
Thus, the total inertia of the block plus accelerameter is .
2.426 x 107> 1 in.sec”
This value was adjusted according to the amount of additional
ingtrumentation on any given block. The following were the initial
‘est‘imaﬁea for the inertia data.

Block Inertia 1b§in.sec”

-

1 | “a.sxi0?
2,15 x 1072
2.12 x 1072 .
2.2 x 1073
2.5 x 1072
2.2 x 1073

-] O Wl W N

2.2 x 10~>

The inertias of individual blocks were not determined experimentally.

. -

L —
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APPENDIX K

The Stiffness Matrix for a Linearly Tapering T Beam.

|

T4

taper ratio r

f |

Figure K.1.
The stiffness matrix for the beam shown in Figure X.1. may be

obtained using standard techniques []5], end is given overleaf.
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.kl *+ k, '(Qz-xa kz(ﬂ-x) k, (¢ - x2 )-'k1

k2 kzx
iy + dex’
-K--EIO SIM
 when |
1 e 1 (e + > % 1002 + be + 1)
"4t (2r° + r + 2)
k2-£(2r2+r+'2) |
50
and ox= L Qirrér+ ‘7)'

12 (2r + ¢+ 2)
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The response of a structure excited by an external oscillatory force is examined for
variations in certain structural parameters of the system. This is done with a view to
manipulating the structure in order to achieve a desired response. The variation of the
response with one structural parameter is seen to be simple, and the effect of changing in
addition the forcing frequency is illustrated. When two structural parameters are con-
sidered, it is seen that a desired response may or may not be attainable, as defined by a
“feasible response regign™, The application to practical cases is discussed briefly.

1. INTRODUCTION

Linear structural analysis is now a relatively straightforward task, and has been greatly
aided in the recent past by the advent of digital computers. However, the results of an analysis
can be so large in quantity and extent that in the case of a vibration problem producing
unacceptable results the answer to the question “How does one alter the structure to produce
the originally desired dynamic characteristics 7’ is very far from evident. Small perturbation
analysis exists [1, 2] which goes some way towards providing an answer and, of course, it is
possible to make use of one of the many computer based formal optimization routines.
Neither of these is entirely satisfactory; in the former case it may be that gross rather than
small changes in the structure are needed to achieve the desired results, whilst in the latter,
although it is possible to effect a gross change by a succession of many small ones, the dis-
advantage of the process being heavily computer orientated remains.

The reason why a heavy reliance on the computer is not altogether satisfactory in the present
problem is because of the lack of freedom of action to change parameters following the
assessment of some subsidiary analysis: that is, to change the parameters in a non-
predetermined manner. In a formalized optimization the parameters are changed in a pre-
determined way dependent on the mathematical method, the constraints and the objective
function chosen. The knowledge that is a necessary prerequisite in allowing the above-
mentioned freedom of action is really the same thing as “feel” or “insight”.

It is not only in dealing with the mathematical model of a structure that insight is valuable.
When the vibration performance of a newly assembled structure is not up to expectation or
specification then the integrity of the mathematical model used for the design is rendered
uncertain, and the model itself may not be used as a means of finding suitable modifications.
In such a situation in practical engineering any modification suggested by a dynamicist (who
at this stage would be under considerable pressure to produce a satisfactory solution) is
likely to be the result of fairly simple calculations, which provide some insight, and past
experience. More insight at an earlier stage would have placed the dynamicist in a better
position to be able to suggest modifications; he might, for instance, have known in advance
which parts of the structure are most effective in controlling unwanted vibration.
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The above preamble provides the justification for the present work which arises from the
desire to know what are the effects on the dynamic properties of a structure resulting from a
gross change or changes in one or more structural parameters. The particular aspect examined
was stimulated by the necessity in helicopters to keep the rotor induced vibration levels in the
passenger and pilot area of the fuselage down to a minimum. The helicopter problem has been
used as a basis for the simplified model employed in this work. In this model, a linear structure
is subjected to a single oscillatory force and the effect of changing one or more structural para-
meters on the response at some point on the structure is examined. The structural parameter
itself is idealized by using a simple spring, and the examples used in calculations are simple
mass, dash pot and spring systems. The theory for this model follows on the lines of that
established by Vincent [3].

2. RESPONSE AS A FUNCTION OF ONE STRUCTURAL PARAMETER

2.1. SINGLE DEGREE OF FREEDOM SYSTFM

Although it is of little importance practically, an initial appreciation of the behaviour of a
simple one degree of freedom case is helpful in examining more complicated systems.

The equation of motion of a single degree of freedom system subject to harmonic excitation
at circular frequency w may be written as

h
mi + — % + kx = Fe', )
w

where m is the mass, &k the stiffness and F the magnitude of the excitation. The damping,
represented by the coefficient A, is considered to be hysteretic for reasons of simplicity in the

. following analysis. The steady-state solution for the response is

x = G(w) Fe'™,
where
. i
) = G 7 @

and is the complex receptance of the system. It is well known that the locus of the end of the
vector G(w) on the complex plane as @ varies is a circle of diameter 1/ passing through the
origin and with its centre on the negative imaginary axis [4]. Figure 1 shows the response
circle appearing as a projection from the three-dimensional locus of G{w) produced by
including @ as one of the co-ordinates. Part of the circle is not physically realizable as it
corresponds to w? < 0 (shown dashed in the figure).

The circular locus arises by virtue of the variation of the real part of the denominator
{k — m?) in the right-hand side of equation (2). Thus, a variation of k or m, or indeed k, m
and ? in proportional amounts, leads to the same locus. By considering the signs of k, m
and «? in the term (k — mo?) it is seen that the end of the receptance vector G(k) as k increases,
m and @? being held constant, traces out a circle in the opposite direction (i.e., anti-clockwise)
as that for increasing @? and m. The effect of varying the damping coeflicient £ is illustrated
in reference [4], in which G{#) is seen to produce a circle whose centre lies on the line of the
real axis.

If the circles representing G(k) are plotted in three dimensions as in Figure 2 for all values
of , then a circular cylindrical envelope is developed. Those parts of the loci corresponding
to negative k are shown by dashed curves. On the envelope, curves of constant & can be plotted
as indicated, these being of the same type as that in Figure 1.
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Im Glw)

Re &{w)

Increasing w

Figure 1. Respdnse as a function of frequency.

Thus it may be seen in the simple case of a one degree of freedom hysteretic system there
is a straightforward relationship between the complex response as mass or stiffness varies
and the more familiar response as frequency varies.

2.2. MULTI-DEGREE OF FREEDOM SYSTEM

Asinthe single degree of freedom case it is convenient to express the responses of the system
by means of receptances. These follow from consideration of the equations of motion which

e

. Increasing &

Figure 2. Response as a function of stifiness and frequency (one degree of freedom).
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may be written as -
MX + Ck + KX =Fe't, (3)

where M, C and K are the mass, damping and stiffness matrices, respectively. F is a vector of
force amplitudes and % is a vector of time-varying structural displacements. The system is
considered subject to harmonic excitation at circular frequency w and since no particular

advantage is now to be gained by using hysteretic dampmg, the damping is assumed 10 be
viscous. The steady-state solution for the response is X = xe'®* where

x=GF @
and ' 4
= [K — Ma? + iwC]~. )

The system to which these equations apply is shown schematically in Figure 3. It represents
a structure having many degrees of freedom for which it is required to examine the response
at the material point g due to a single forced excitation at point p.

k

Figure 3. Structure and variable stiffness spring.

A simple structural modification is made by inserting a linear spring of stiffness k between
two points r and s that have mutually compatible degrees of freedom. The spring is adjusted
so as to exert zero force when the system is in equilibrium. When the original structure is
considered as a free body, the forces exerted on it at points r and s by the spring are £, and F,
respectively, which have the relationship

F= k(xs - xr) = _'Fs' (6)
The forcing vector F in equation (4) contains three non-zero elements, F,, F, and F,, whereas

the elements of immediate interest in the response vector x are x,, x, and x,. Partitioning and
expanding equation (4) yiclds

X, =G Fp+ G, F, + G F, (8)
xs=Gspr+Gerr+Gs§Fs: (9)‘

in which G;; is the complex receptance providing the displacement at point i due to a force
at point j.
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The forces F, and F, may be expressed in terms of x, and x, by using equation (6) and subse-
quent elimination of x, and x, gives .

Xq k(Gsp - Gr.p)(qu - Gqs)

- = . 10
Fp qu+1+k(Grr+Gss_Grs_Gsr) ( )

This is now the modified complex receptance between points ¢ and p in terms of k and the
original complex receptances G;,. In turn, it may be rewritten in more general terms: i.e.,

¢ =‘€ +in
k(a + ib)

=C+N+ T

(11)
where { = x,/F, and a, b, ¢, d, e and fare all real.

It can be shown that as k varies from —o to +c0 the locus of the tip of the complex receptance
vector, {, traces out a circle in the complex plane (see Appendix A), the equation of the
circle being :

b \[? a\|? @+b?
2

It is worth noting here that the co-ordinates of two important points on the circle, namely
k=0and k = w, are

k=0:[e.f], _

X N (ac + bd) (bc — ad)
=w:|e R
‘ & +d? e+ d?

These points bound the arc of the circle containing negative values of k. Strictly, if & is
associated with a real spring then this part of the circle is not physically realizable. However,

.k.'.!..n_.___l

4

——

Figure 4. Response as a function of stiffness and frequency (several degrees of freedom).
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it is possible to consider negative k as subtracting from existing structural stiffness and in this
case the situation is physically attainable whilst the overall stiffness matrix remains positive
definite: i.e., whilst static stability is maintained. Of the two possible arcs, that which is
associated with negative k may be determined from the direction of the locus with increasing
k. This can be shown to be anti-clockwise for the negative values of the constant 4in equation
(11) which invariably have been found to occur in practical cases. As with the single degree of
freedom case it is possible, by introducing forcing frequency as a co-ordinate, to construct a
surface corresponding to a given stiffness parameter upon which the three-dimensional
response curve can be drawn for various values of that parameter. Figure 4 shows the pictorial
* representation of a typical surface, the response for the curve corresponding to & = ( being
projected below on to the complex plane (the latter is often referred to as a Kennedy-Pancu

plot). Information concerning the system from which this surface was generated is given in
Appendix B,

3. RESPONSE AS A FUNCTION OF TWO STRUCTURAL PARAMETERS
3.1. FEASIBLE RESPONSE REGIONS

Asin section 2.2 the response at a point g on the structure due to a force at point p is sought.
Two variable spring elements of stiffnesses &, and k, are connected between points r, s and
t,v, respectively, where

Fr=k1(xs_xr)=_FS$ F:=kz(xv_xr)=—Fu- (13)

Equation (4) again can be utilized to give the relevant equations:

x=2 Gy F, (14)°
P

J=p.q.rs v

i=q,rs5tv ]

Substituting for F,, F,, F,, and F, in equations (14) and eliminating x,, x,, x, and x, gives the
following equation:

Xq ky §y(k) + palks)
-G 15
F, 7 - ki k2 + dalkz) ’ 19

where the ¢,(k,) are complex linear functions of &, and are given in Appendix C. It may be
seen that the form of this equation when k,, say, is held constant whilst k, is allowed to vary

Im Gik) F

Re Gi4)

Figure 5. Response circles for two structural parameters.
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is similar to that of equation (11). Thus, in this case a circular response locus is produced.
When &, assumes another value, another circular response locus is obtained as k, varies.
If the k, circle is ““started” at the same value of k, each time, then these starting points lie on
the response locus of the system when &, alone is varied (see Figure 5). By covering all possible
combinations of k; and k, a region in the complex plane is formed inside which the response
at point g due to an oscillatory force at p must lie. This is referred to as a ‘““feasible response
region”. Figure 6 shows an example. As in the single varying parameter case, some parts of

Im Gl4)

kg varying

Figure 6. Feasible response region from response circles. Details of system given in Appendix B. Dashed
line indicates negative stiffness.

the region violate the physical requirement that the overall stiffness matrix must remain
positive definite. Details of the system used in the examples are given in Appendix B.

An alternative formulation of the problem, which relies on the use of matrices, is given in
Appendix D. Any number of structural parameters can be considered, but so far no attempt
has been made to apply the theory to a practical example.

3.2. THE BOUNDARIES OF THE FEASIBLE RESPONSE REGIONS

The boundaries of the feasible response region are given when the J. acobian, (&, n}fo(k,, k2)
is zero [5]: i.e.,

o¢jok, ©O[ok,

onjok, onfok, |= O (1)
or, alternatively,
8¢ ol
Iml 2225\ 17
m(ak. akz) 0 a

where 3(/0k, is the complex conjugate of 3¢/dk, and { = & +in = X,/ F,.
Equation (17) is found to be of the second order in k, and k, and the possibility of two
boundaries exists. At any point on these boundaries the values of k, and k&, are uniquely
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T [m(f’f,') {b)

r Imik;)

Re (k)

T Imik,) {d)

1 Im{4)

Re(/r,-)

Re (k) T—

Retk,)

Figure 7. Typical feasible response regions.

defined, whereas within the region it may be observed from Figure 6 that there are two sets
of values (ky,k,) corresponding to each response point. Figure 7 gives some examples of
typical feasible regions obtained by direct solution of equation (17) following the appropriate
differentiations in equation (15). The systems concerned again are defined in Appendix B.

4. DISCUSSION

The mathematical models considered in the present work are idealized and, although there
is presumably a certain intrinsic academic interest in the results, it remains to be seen how
useful the theory would be in a practical case. In most practical cases of manipulating a
structure to produce a desired vibratory response the aim would be to minimize the response
over all or part of the structure. (An exception to this would be changing a normal mode
shape on an aircraft wing, say, for the purpose of changing the aerodynamic generalized
forces and thence the flutter characteristics.) In the present formulation, with not more than
two spring variables, the minimum response (if zero is not a feasible response} could be
obtained uniquely by using the equation of the outward normal to the boundary with no
recourse to search techniques. When zero response is feasible, i.e., when the feasible region
surrounds the origin, there is a choice between two uniquely defined sets of variables.

In practical applications one of the problems is to choose the regions of the structure in
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which a change of structural parameter or parameters is most effective. In such applications
of the present formulation it is proposed, initially anyway, to use the relative magnitude of the
response circle for a single parameter as a measure of effectiveness. In this connection, it
should be noted that the systems discussed in this paper are not meaningful in any numerical
sense, but have been used only to illustrate in the most general way the variation of the
response. As the main purpose of this paper is to draw attention to some of the more interest-
ing phenomena, the discussion here is confined to outlining some of the difficulties expected
in practical applications. _

Another problem is to obtain a transformation between the ideal springs considered as
structural parameters and the geometric parameters, (which would affect mass as well as
stiffness), such as skin thickness, tube wall thickness, beam web depth, etc., that would be
used in practice. This also is a difficult area when one is using the more conventional optimiza-
tion methods because the mathematical equations of motion of vibration systems are usually
expressed in terms of variables other than the geometric parameters: e.g., generalized co-
ordinates,

The direct application of the present work to simple and more practical examples of
structures is in progress, and will be reported on in due course.
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APPENDIX A
It is required to find the nature of the complex equation

k(a + ib)

C=(e+if)+]+k(Tid) (Al)
as k is varied between — and ec.
Let { =& +in. Then
] a+ib ‘
(f—e)+1(ﬂ—f)=m (A2)
giving _
W+ e g @FDE i1 A3

E—-e+@—-fr
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The imaginary part of equation {A3) gives
C =+ —f)=(&—ebld—(n—1)ajd, (A9
which can be rearranged to give the equation

a+ b
442

[E—(e+ 82D + [n — (f — af2d)]* = (AS)Y

which is that of a circle. )

Equation (Al), in fact, can be regarded as providing a mapping from the k-plane (in which
k is assumed in general to be complex)-into the {-plane. Tt may be seen to be an example of
the bilinear class of mappings for which it is known [6] that circles and straight lines map into
circles and straight lines. In the present case, k is real and thus provides a straight line in the
k-plane and maps into a circle or a straight line in the {-plane. It may be useful to note that
if damping is incorporated into the stiffness by introducing an imaginary component on the
real stiffness, the response on the {-plane is still a circle or straight line.

APPENDIX B

All the systems used in the computations corresponding to Figures 4, 6 and 7 consist of
simple combinations of masses, springs and dashpots. The number of degrees of freedom in
each case was four, and the maximum number of interconnections between adjacent masses
was two for Figures 4 and 7(a), the number being three in all the other cases. As an example,
the system used to generate the region illustrated in Figure 6 is shown in Figure Bl. The

Figure B1. Sketch of system used for feasible response region illustrated in Figur.e 6. Stiffness: k; =40,
k2=30, ky =30, k4= 30, ks=10; mass: m, = 3, my =10, m; =20, my=>5; damping: ¢, =05, ¢c2 = 0-6,
¢3 = 0-8. Al units are compatible.

maximum number of interconnections on this system is three on mass m,. The point at which
excitation is applied is on mass m, and that at which the response is examined is on mass m,.
The variable parameters are k, and k. The nurnbers used in this and other examples have no
particular significance.

T This version of the proof is due to Professor A. R. Collar.
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APPENDIX C

The equation for the complex respon'ses {=x,/F, as a function of two variable spring
parameters k, and k, is given generally by

ki dilky) + dalks)

=G,p i , (Cl
Ao PGt ) + k) )

where ¢ and p refer to examination and forcing co-ordinates, respectively. The functions

¢i(k,) are

@1lkz) = a3 b,(1 4 kz €32) + a2 bacpa ky — k@ by 2y + a1 b2 €12),
Plks) = az by ks,

Palks) = el + kyc23) — €21 42 K2y

Palkz) =1+ ks ¢z,

where a;, b, and ¢;; are the complex elements of matrices A, B and C in Appendix D. These
elements are functions of the complex receptances G,; and are given by

a = qu - Gqss a; = Gq! - Gq}r’
bl = Gsp - Grps bz = Gup - ths

= Grr + Gss - Grs - Gsrs Cp = Gsu - Gst - Grv + Gna
€ = Gv: - Gur - Gts + Gtra €2 = Gn‘ + Guu - th - Gwa

where k; is connected between co-ordinates r and s and k, between co-ordinates 7 and ».

APPENDIX D

The setting up and reduction of equations (14) to give the single expression for the complex
receptance as shown in equation (15) rapidly becomes more complex as the number of
variable parameters considered increases. As a consequence of this it is convenient to have a
general matrix expression for the complex receptance xi/F in terms of m variable stiffness
parameters,

The response at the examination point, g, may be written in terms of the external force,
internal spring forces and the corresponding receptances:

xﬂ' = le Fn + kl 51(691 - qu) + kz 52(Gq3 - qu-) .- km 5m(Gq. 2m—-1 " GG-ZM)’ (Dl)

where k, is the ith variable stiffness parameter and 3, = x,, — x,,_, is the extension of the ith
spring {x;, and x;,_, being the actual axxal displacements at each end). Equation (D1)
alternatively may be expressed as

X, =G, F,+ AKS (D2)
where A is a (I x m) row vector of the terms

{(qu - GqZ): (Gq3 - qu-)v caa (Gq. 2m-1 " Gq. Zm)}’

K is an (m x m) diagonal matrix of the stiffness parameters &, and & is an (m x 1) column
vector of extensions.
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The values &, themselves may be expressed in the same way as x, in equation (D1): i.e.,

01 = Fo(Gap = Gip) = k1 01[(Ga2 — G2y} ~ (G2~ Gui)l — k2 52[(624_ = G23) = (Giy—G3)l.. .,
{Sz = F (G4, — .G3p) — k1 6,[(Gaz — Gar) — (G32 — Gag]- -, '

_6m = Fp(Glm', p sz—l, p) e ST _km 5m[(ﬁ?. 2Zm — Gg& Zm—l) - (Gj:_.}m - gﬂ;bn—])]s (D3)

which can be written in matrix notation as
8=F,B—CK?d (D4)
where B is an (m x 1) column vector of terms
{(GZP - Glp): (G4p - GSp)’ LR ] (GZm. r sz—l, p)}
and C is an (m x m) matrix of complex constants in_which C;; = (Ga, 25 — Gat.25-1) —
(Gai—1, 25— Gai_y, 2;-1). An expression for d can be found from equation (D4) and substituted

into equation (D2) to give

X,
F“ =G, +AK'+C]'B, (D5)
At F] R

which provides the complex receptance, x,/F,, as a general function of m stiffness parameters.

e



