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SYNOPSIS 

The response of both single and multi-degree of freedom systems 

is examined as a function of structural parameters. 	These parameters 

are either the variation of mass at a structural node ox the variation 

of stiffness between two points in the structure (as represented by a 

linear spring). In both single and multi-degree of freedom systems 

the variation of either a mass or a stiffness parameter is seen to 

produce a circular response locus in the complex plane at some other 

point in the structure • The form of the circular response locus is 

verified experimentally by varying a single stiffness parameter in a 

simple test structure • Where two or more parameters are varied 

simultaneously then an area of feasible responSe is formed in the 

complex plane, for any given values of the parameters the response must 

lie within the bounds of this region. 

The properties of the response circle and feasible response 

regions, are investigated and' are used to develop criteria which enable the 

relative effectiveness of parameters in achieving a desired response to 

be determined. 	These effectiveness criteria are used in the analysis 

of a simplified model of a helicopter fuselage and are shown to be 

successful in highlighting sensitive areas of the fuselage for the 

purpose of structural modification. 	An interactive computer programme 

which is used to perform the above mentioned analyses on structural 

models is also described. 

VI 



CHAPTER 1 

INTRODUCTION 

- 1.1. 	Research Motivation. 

The motivation for the research presented in this thesis came 

from the helicopter industry. The problem, which is a common one, concerns 

the undesirable rotor induced vibration levels that often exist in a 

helicopter fuselage. The design specifications for modem helicopters include 

the maximum permissible vibratory acceleration levels that are allowed to 

exist in certain parts of the fuselage structure; of particular importance 

are the passenger and crew areas where considerable discomfort can be 

experienced as a result of high levels of vibration. If this particular 

specification is not achieved then modifications must be made to the structure 

in order to reduce the vibratory response to an acceptable level. 

The vibratory forces and moments that are inherent in the operation 

of a helicopter rotor are . produced at the rotor head. These are the 

resultant of loads generated on an individual' rotor blade at frequencies 

which are multiples of the rotor speed. Depending on the number of rotor 

blades used certain frequency components reinforce each other and others 

cancel out. The most important of these non-cancelling components is 

the fundamental one which occurs at a frequency which is equal to the 

• . 	product of the number of blades and the rotor speed. The loads that are 

generated at the rotor head are vertical, longitudinal, and lateral shear 

forces and rolling and pitching moments • It is the response of the 

airframe to these loadings that constitutes the vibratory problem of 

the helicopter. 

During the design process there are several aspects of the helicopter 
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1.1. 	(Continued) 

design that are considered in order to ensure that vibration levels are 

kept to a minimum. There are three main methods by which this may be 

achieved, namely, 

By reducing the vibratory force input to the fuselage.• 

By the use of force cancellation devices such as dynamic 

vibration absorbers. 

By means of structural modifications. 

In the case of the Westland Lynx helicopter method (a) was used indirectly 

in an attempt to dynamically isolate the engine and main rotor gearbox 

from the fuselage using flexible mountings 1211 	The geometry and dynamic 

characteristicsof the engine and gearbox couplings and supports were varied 

in order to find the configuration that gave the smallest response at the 

gearbox mounting points. In method (b) the use of vibration absorbers 

is avoided wherever possible at the design stage since these often impose 

a considerable weight penalty on the structure • Another method that is 

commonly used, which involves structural modification, is to estimate the 

natural frequencies of the structure and to determine whether any of these 

are close to the major excitation frequency. Where this is the case then 

structural modification is employed to move the offending frequency away from 

that of the excitation forces. There are however, difficulties in this 

type of approach for it is not always obvious which areas of the airframe 

are most suitable for structural modification. 	Thus there is the real 

need to be able to predict accurately the effect of structural modifications 

on the response at points in the airframe. 

Even though efforts are made during the design stage of the helicopter 

to reduce vibration levels it is often found when the helicopter is first 

flight tested that these are still unacceptable and there is usually 
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1.1. 	(Continued) 

considerable pressure on the dynamicists involved to come up with a 

satisfactory solution to the problem. At this stage tha'e are two main 

methods of reducing undesirable vibration levels, namely, by using 

vibration absorbers and by structural modification. 

In the first instance structural modification is often used to 

help solve the problem. A series of potentially useful modifications is 

drawn up and each modification is tried in turn, under flight conditions, 

in order to determine how effective it is in reducing the required 

vibration levels. Where a particular modification is found to be 

successful then it is incorporated into the existing structure. Most 

modifications involve stiffening up the structure in some way and are 

chosen largely on the basis of experience and intuition. The choices are 

sometimes influenced by results from an analysis of a simplified model 

of the helicopter; the model used in the case of the Lynx helicopter is 

described in Chapter Ii. 

Having modified the structure to the beat effect by incorporating 

certain modifications the vibratory response may be further reduced by 

means of dynamic vibration absorbers.. These may be used to suppress 

vibration globally with respect to the fuselage itself or locally at 

specified points in the structure. The simplest vibration absorber consists 

of a man, spring, dashpot system which is timed to resonate at the 

excitation frequency of the structure • This type of absorber is usually 

mounted close to the point at which the vibration level is to be reduced 

and is intended to suppress vibration only on a local basis. In 

practice the mass in such a device is usually an existing piece of heavy 

equipment such as a battery; an example of a battery absorber is shown in 

figure 1.1. (a). Other types of absorber, which suppress vibration globally, 

—3- 
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1.1. 	(continued) 

are norm" situated close to the source of excitation. Typical 

examples of these include the bifilar pendulum absorber,DAVI absorbers 

and the Bell "Nodanagic" system. 

The bif liar pendulum absorber was first used to reduce torsional 

vibration in an engine crankshaft. [221 Where the helicopter is 

concerned, a set of bifilar absorbers is fitted in the plane of the 

rotor head as sham in figure 1.1. (i,) and is effective In reducing 

forces in that plane. 	The absorber consists of a large mass which 

acts as the pendulum bob, and is mounted at the end of a very small 

radius arm. 	Unlike some types of absorber,'.once the pendula have 

been tuned to a given frequency then they remain in tune even if 

the frequency changes. 	This is due to the fact that the dynamic 

stiffness of the pendulum, as provided by the centrifugal force, increases 

or decreases with a similar change in the rotor frequency.. The bifilar 

absorber has been successfully applied in practice to production 

helicopters by the Sikorsky Aircraft Company [231, 

The Dynamic Anti-Resonant Vibration Isolation System (DAVI) was 

patented by the Karman Aircraft Corporation 	and consists of the 

mass, spring arrangement shown schematically in figure 1.2.  (a). 	The 

system is tuned to the excitation frequency such that the mass A resonates 

on the end of the rigid bar. 	In any practical application the engine 

and main rotor gearbox would most likely be mounted on a set oZ absorbers 

in an attempt to isolate this substructure from the rest of the fuselage. 

• DAVI absorbers are at Present still in an experimental form and have 

not 	been applied in a practical situation. 

A similar arrangement to the DAVI absorber is the Bell 5Nodamagio" 

system shown in figure 1.2. (b). 	The main rotor gearbox is mounted 
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1.1. 	(Continued) 

on a beam supported by elastomeric bearings. The beam and carried mass 

are tuned to resonate in the first "free-free normal mode of the beam 

at the external excitation frequency. The beam supports are positioned 

to coincide with the nodes of the normal mode in an attempt to minimise 

any forces transmitted to the airframe. 

• N 	 Dynamic absorbers are essentially force cancellation devices and 

are often very effective in reducing vibratory responses. Their main 

disadvantage, however, is that they often impose a considerable weight 

penalty on the structure, e.g.  the bifilar can add as much as 14 to the 

total weight of the helicopter. Battery absorbers and other similar 

devices, with the exception of the bifilar, also have to be tuned to a 

given frequency in order to operate in an optimum manner. The rotor 

speed, which is governed, can vary in certain circumstances by a small 

amount and if this does happen then the excitation frequency changes and 

the absorber becomes detuned and is consequently not so effective. 

It is evident that whenever a structural modification has to be 

made, tether it is at the design stage of the helicopter or during the 

flight test trials, then there is always the problem of identifying those 

areas of the structure that have the greatest potential in either affecting 

or reducing the desired vibratory responses. Thus although the primary 

aim of any investigation using structural modification would be to reduce 

to a minimum the vibration levels in selected areas of the helicopter 

fuselage, there are two secondary aims of a more general nature. Firstly, 

there is the need to develop techniques which will give a better understanding 

• • of the way in which the dynamic response of a complex structure varies as 

a function of its structural parameters, and secondly, criteria must be 
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1.1. 	(Continued) 

developed which will highlight areas within the structure which are 

potentially effective in reducing the desired vibration levels. 

1.2. 	Existing Techniques Related to the Problem of Minimising Structural 

Response. 

1.21. Structural Optimisation. 

Computer bases formal optimisation routines are ccmun-orty used 

in the Aerospace industry in a wide variety of applications. A general 

optimisation procedure contains an objective function,variables and 

a set of constraints which may be ap plied to the parameters themselves 

or which may be of an independent nature such as stiffness or frequency 

requirements. Typically, an optimisation procedure can. be  apj,lied to a 

finite element model of a complex structure in order to achieve a 

minimum weight configuration. The structure would normally be subjected 

to a set of excitation foi'ces and the variables in the problem would be 

the sizes of the elements. The constraints could include any of the 

following: stress constraints, constraints on the displacements and also 

on the sizes of the elements. An example of a procedure such as this 

is given by Venlcayya 1251 

Dynamic constraints can be considered in the optimisation process, 

e.g. it might be required that one or more of the natural frequencies - 

of the structure should assume given values or alternatively that there 

should be a given interval between io natural frequencies.. Turner 26 

develops a procedure which proportions the members of an elastic structure 

so that- one or more of its natural frequencies assumes a given value 

and the total mass of the strucure is a minimum. 	Constraints of this 

form are normally considered in order to satisfy the flutter requirements 

!\ of fixed wing aircraft. 
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1.21. (Continued) 

A particularly practical method has been developed by Taig and 

Kerr (29) at the British Aircraft Corporation where automated optimisation 

methods are routinely used in the design of all new aircraft. The 

method is capable of producing a minimum weight structure whilst considering 

strength, stiffness and frequency requirements simultaneously. The 

approach is based on the strain energy- density of individual structural 

elements and all the above mentioned requirements are developed in terms 

of these. The variables considered in the process are real structural 

painters and there is consequently no need to perform a subsequent design 

operation in order to convert idealised structure dimensions to feasible I 

detail sizes. 

The problem of minimising structural response can be tackled using 

formal optimisation techniques. 	The method requires a mathematicsl 

model of the structure in order to calculate the dynamic response of the 

system due to a given set of excitation forces • The response at one 

or more points in the structure is minimised as a function of a given set 

of structural parameters. Constraints can be imposed on the sizes of 

the parameters as in the previous problems. Ellis (27)  of Westland 

BelicoptersLtd., describes a process by which a very much simplified model 

of the upper decking structure, main gear box and engine of a helicopter 

was optimised in order that theforce inputs to the fuselage were a 

nixthnum. The problem contained only a few variable parameters representing 

the geometry and stiffness of the substructure • A Simplex procedure was 

used in the optimisation routine and the results obtained were used in 

order to obtain a feel for the vibration problem of the helicopter. An 

attempt was subsequently made to optimise a simple model of the whole 

helicopter containing 20 nodes and 25 linearly tapered beam elements. 
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1.21. 	(Continued) 

In this particular case it was required to minimise the response in 

the area of the pilot's seat subject to variations in the flexibility 

of elements in the engine-gearbox area. It was found that the 

procedure required approximately 1126 hours of C .P .0 • time for one 

computer run and the idea was consequently abandoned. 

The results of the latter application demonstrate quite clearly 

one of the main disadvantages of formal optimisation procedures. It 

is apparent that in large structures there are often many thousands 

of parameters and to consider each of these as variab)Ds in an 

optimisaticn process would be beyond the scope of even the largest and 

most efficient of modern day computers. A reduced selection of the 

most likely parameters would therefore have to be chosen as the variables 

in the problem. However, this approach is not entirely satisfactory 

for there is no way of knowing whether the minimum solution achieved 

is a global, minimum or just a local me, i.e. could a better solution 

have been achieved using a different set of parameters? The results from 

an optimisation process also give no indication as to the relative 

effectiveness of given parameters for the purpose of achieving a minimum 

solution, and by virtue of the predetermined way in which the search 

for this minimum is carried out the process effectively lacks the freedom 

which enables any sort of feel or insight into the problem to be obtained. 

1.22. Small Perturbation Analysis as a Method of Determining the 

Sensitivity of Eigenvalues to Parameter Changes in Dynamical 

Systems. 

The three methods outlined in this section can be used in an 

indirect manner to assess the effect of structural modifications on the 

dynamic response of a system. The methods attempt in one way or another 

to determine the sensitivity of eigenvalues to changes in certain 
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1.22. 	(Continued) 

parameters of the system. It is assumed that if any close natural 

frequencies of the system can be moved away from the excitation frequency 

then this will result in a reduction of the totsl dynamic response of 

the system due to the contributions of the associated 

normal modes • Of the three methods examined only those of Sciarra are 

aimed directly at the reduction of structural response • The methods of 

Newman and Simpson are of a more academic nature and are aimed more 

specifically at the problem of flutter in aircraft lifting surfaces. 

The Methods of Sciarra. [16,17,18] 

Sciarra considers the problem of reducing the dynamic response 

of a helicopter fuselage directly. Two distinct approaches are used, 

namely, dynamic vibration absorption and structural modification. 

Vibration Absorbers. 

A technique is developed that will predict the effect on 

structural response of introducing dynamic vibration absorbers into 

the s,,rstem. The amount by which the vibration levels can be reduced at 

specified points in the structure is calculated and is used as a measure 

of the effectiveness of the absorber. Where more than one absorber is 

used then Sciarra, shows that it is sometimes necessary to detime one 	or 

more of them in 	order to achieve the optimum reduction 	in vibratory 

response. Because of the weight penalty incurred by using vibration 

absorbers this approach is usually only used after an attempt has been 

made at structural modification. 

Structural Modification. 

In the second approach it is assumed that if the natural 

frequencies of the structure are moved away from the excitation 

frequency then this will result in a general lowering of the dynamic 



1.22. 	(Continued) 

response of the system. The problem thus rethees to one of assessing 

the effect of changes in structural parameters on particular natural 

frequencies of the system. The effectiveness of parameters is based 

on the strain energy of indivIdual structural elements. In the first 

instance a finite element analysis is performed to yield the eigenvalues 

and eigenvectors of the system, then the modal strain energy distribution 

throughout the structure is found for the mode shape whose natural 

frequency is to be modified. The strain energies of each structural 

element are calculated and listed in descending order, those elements 

with the highest values are considered the best candidates for 

modification of the natural frequency. An alternative method of 

calculating the strain energies using the damped forced response in 

place of the mode shape is also mentioned. Sciarra points out that 

the procedure can be made more optimal from the point of view of 

minimising weight by considering strain energy densities rather than strain 

energy alone. 
U 

This technique is useful in that it indicates the potentially 

effective elements for the purpose of structural modification. The use 

of strain energy as an effectiveness criterion is seen to be relevant 

in as much that vibration levels were reduced using the suggested 

nodificationsj. the method, however, doesrnt give any direct Indication 

• as to the magnitude of the parameter changes that would be required. 

• One way of resizing structural elements [301is given as 
• 	

t . (X (strain energy density of the element) 

(max strain energy density of any element). 

where At is the change in the parameter (area, thickness, moment of inrtia) 

and Of is an arbitrary constant which represents the mnrlmmn allowable weight 
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1.22. 	(Continued) 

penalty. It is not however, obvious whether the magnitude of the 

parameter change chosenin this way will produce the optimum reduction 

in vibration levels. The process by which real s'uctural parameters 

are used to reduce the dynamic response is involved and contains 

several assumptions; the flow diagram shown in figure 1.3. represents 

this process. 

The Bouts by which Structural 'Response is Affected by Changes in a 

Structural Parameter. 

Figure 1.3. 

The Method of Newman 

This method is aimed specifically at the problem of flutter of 

aircraft lifting surfaces, although the analysis could be applied to the 

equations of motion of any linear dynamical system. The technique 

involves the reduction of the general equations of motion of an N 

degree of freedom system to a set of first order differential equations of 

the form 
9 

.* 	* 
a  

Where i = 

and 

—13-. 



1.22. 	(Continued) 

Si. being the generalised coordinates of the system and N is a (2n x 2n) 

matrix whose elements are functions of the system matrices such as mass, 

stiffness and damping. If X are the eignevalues of N then the 

method sets out to determine the rate of change of A i with the 

individual elements of M. i.e. to find d1 	This derivative is — 	
dmJkth 

ref ered. to as the condition number for the jk element of H with respect 

to the ith eigenvalue. Those elements with the largest condition 

numbers are considered to be the ones to which the eigenvalue is most 

sensitive. 

The method can thus be used to identify the potentially effective 

elements for the purpose of altering a given eigenvalue. However, 

any change in a real structural parameter usually affects more than 

one element of matrix N which may result in an undesirable effect on 

the eigenvalue under consideration. For the same reasons the reverse 

process of relating an element m ij  to any given parameter is 

complex, and consequently it is most likely that considerable difficulties 

would be experienced should this method be applied to a practical 

problem. 

A method similar to that of Newman is given by Woodcock L". 

The method is used to calculate the eigenvalue sensitivities, only this 

time they are obtained without having to reduce the equations of motion 

• 

	

	of the system to a set of first order differentials. 

The Method of Simpson 2 

• 	 In this method the sensitivities of eigenvalues to changes in 

structural parameters are determined using techniques suggested by 

Kron 1201 for the iOlutioñ' of large scale eigenvaluO problems. Krcn 'a 

method;' eAn 15ealied to the Sólut.lbn of eigenvIiid Problems which 

• 	\ an tod large for a given comj,utei'to handle. 'hid chiuhi.equires 

	

• 	 Ii 
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1.22. 	(continued) 

that the composite system be split into N subsystems, for each of 

which the eigenvalixas. may be extracted easily. The equations of 

motion of the composite system are derived by recourse to the concept 

of a constrained primitive Lagrangian followed by an application of 

Hamilton's principle. An "Intersection Lambda " matrix is derived 

• whose order is small compared with that of the composite system. The 

eigenvalues of this matrix are identical to those of the composition 

system and can be extracted quite easily. 

• Simpson considers a change in a structural parameter S in 

one of the subsystems and develops an expression for the eigenvalua 

sensitivitydA; an expression for the eigenvectornsitivities is 

also developed. The method provides useful information concerning 

the sensitivities of eigenvaluesdirectly in terms of real structural 

parameters, and unlike the methods of Newman and Woodcock the procedure 

is not further complicated if a structural parameter affects more than 

one element of the mass or stiffness matrices. 

• 	 The methods of Newman, Simpson and Woodàock are very much of an 

academic nature and would probably contain serious limitations when 

applied to a truely practical problem. The method of Sciarrayon the 

other hand, has been developed from a practical view point and has been 

proved successful in its application. 

• 	1.3. 	Vibration control Using Structural Manipulation. 

The theory develped in this thesis is based on a little known 
1 	 131 property of linear structures that was first noticed by Vincent 

of Westland HelicoptersLtd. If a structure is excited by a single 

• 	• sinusiodal force whilst either mass at a point or the stiffness 

between two points (as represented by a linear spring ) is 

—15- 



1.3. 	(Continued) 

continuously varied then the response in the complex plane at some other 

point is seen to trace out a circular 1oct12 • This simple yet elegant 

result forms the basis for all the subsequent analysis that is developed. 

By way of an 	introduction to this approach the response of 

a single degree of freedom system is determined as a function of mass, 

stiffness and damping. The variation of all three of these parameters 

is seen to produce a circular locus. 	Throughout the analysis 

structural response is given in terms of receptances, i.e.  response 

per unit force • The theory is extended to cover the case of 

parameter variations in multi-degree of freedom systems. 	For the variation 

of a single mass or stiffness parameter the simple circular locus is 

shown to exist, However, where two parameters are varied simultaneously 

an area of "feasible response" is found in the complex plane and for any 

given values of the two chosen parameters the resultant response must 

lie within the bounds of the feasible region. It will be shown that 

it is possible to determine whether a desired response is feasible or 

not for any given combination of parameters. A general matrix equation 

for the response as a function of K variable parameters is also 

developed. 

With reference to the practical application of this theory, - 

criteria are developed for the purpose of assessing the effectiveness 

or sensitivity of parameters; several of the properties of response 

circles and feasible response regions are incorporated in these • The 

criteria' can be used to determine areas of a structure which are 

potentially effective in reducing vibration levels. The practical 

application of the theory is demonstrated using a simplified model of 

a helicopter fuselage. The analysis is undertaken in order to 



1.3. 	(Continued) 

highlight sensitive areas of the fuselage for structural modification 

in order to reduce vibration levels in the passenger and crew areas. 

The results are compared with those obtained from a practical analysis. 

An experimental analysis is undertaken to verify the form of the 

circular response locus as a function of variable stiffness • 	The 

analysis is performed on a simple test structure in which the stiffness 

of a linear spring element is varied. The results obtained are 

compared with those predicted theoretically.. 

An interactive computer program is developed for the purpose of 

testing the theory. The program is used as an aid to the research 

process and also as a means of performing practical analyses on 

structures containing up to 60 degrees of freedom. 

The methods outlined in the following chapters form the basis 

for a completely new approach to the problem of vibration reduction 

by means of structural modification. The method is intended to give a 

better understanding and also a "feel" for the problem, both of which 

are lacking in existing techniques. 

p.- 
 
- 
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CHAPTER 2 

THE EFFECT OF PARAMETER  CHANGES ON TI RESPONSE OF 

A SINGLE DEGREE OF FREEDOM SYSTEM 

2.1. 	Equations of Motion. 

Although possibly of little practical importance, a brief 

study of the various parameter changes in a simple one degree of 

freedom system is helpful in understanding similar changes in more 

complicated cases. It is intended to show how the response of the 

system varies with frequency, mass, stiffness and damping. 

The equations of notion of a single degree of freedom system 

subject to harmonic excitation at circular frequency may be written 

jj+ 	+kx" Fet  

where m is the mass, Ic the stiffness and F the magnitude of the 

excitation. The daiüping, represented by constant h, is considered 

to be hysteretic in the analysis that foflows. The steady state' 

solution for the response is given by 

1 - G(Q)Fe t 

where 

0(1.4 - 	1 

(k -  mc)) + iii 	 (2.3) 

and is the complex receptance of the pystem. Since the receptance 

is the response per unit magnitude of excitation, it is this quantity 

that is considered in the ensuing analysis rather than the response 

itself. 
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The Response of a Single Degree of Freedom System 

as a Function of frequency 
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Figure 2.1. 
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2.2. 	The Variation of Frequen cy. 

The results of varying frequency are well known and so need 

only be considered briefly. It can be shown that the locus of the 

tip 01 the receptance vector G(Lo) in the complex plane, astavaries, 

is a circle diameter 1/h passing through the origin and centre on the 

negative imaginary axis 	. Figure 2.1. shows the circle as a 

projection of the three dimensional locus produced by including c.s 

as the vertical coordinate. The complete circle can only be realised 

by considering imaginary values ofwi.e. w 2 c 0 (shown dotted in the 

figure). Various points of interest, including the direction in 

which the circle is traced out for increasing values of a, are also 

shown. 

2.3. 	The Variation of Mass and Stiffness. 

The circular locus described in section 2.2. arises by virtue 

of the variation in the real part of the denominator (k - mL3 2 ) in 

equation 2.3. Thus, it may be seen that a variation in m or k 

produces the same locus. For increasing values of Ic the direction in 
II 

which the locus is traced out (anti-clockwise) is opposite to that for 

• 	increasing values of in and ,,2. Arcs corresponding to negative values 

of in and k exist in a manner similar to that for w2< 0. Listed 

below are the coordinates in the complex plane corresponding to some 

of the more important values of in, Ic and w. 

to, 01 

1 k1 (0 +h2 ),_W(k2 +h2 )1 
k - o 	 [-mu 2/(iAJ' + h2 ), -h/(ntF+ h2 )] 

If the circles for G(k) are plotted in three dimensions for all values 

of o, a circular cylindrical envelope is developed. Figure 2.2. 

Shows a pictorial representation of this. 
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Figure. 2.2. 
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2.3. 	(Continued) 

Those parts of the loci corresponding to negative values of 

It are shown as dotted lines. In addition it is possible to plot, on 

the envelope, curves of constant k; these are of the same type as 

those shown in Figure 2.1. 

	

2.4. 	The Variation of Damping. 

Varying the damping coefficient h in equation 2.3. produces a 

circular locus diameter k/(k - m(42 ) with its centre on the real axis 

and passing through the origin .ltere &O/iE the circle lies on the 
'In 

positive real axis (forocfiZ  on the negative real axis) and the locus 
'in 

is traced out in an anti-clockwise direction for increasing values 

of h (for wcJi? the direction is clockwise). 

In practice inherent damping in a structure is a difficult 

quantity to model precisely and it is not envisaged that parameter 

changes of this form would be used to alter the structural charact-

eristics. Consequently, the effects of changes in structural damping 

are not considered further in this analysis. 

	

2.5. 	Conclusions. 

It has been demonstrated that the independent variation of ax 

of the parameters in a single degree of freedom system produces a simple 

circular locus in the complex plane. When an increase or decrease in 

stiffness is accompanied by a similar change in the mass, as is often 

the case In practice, a variation in one parameter tends to cancel 

out the effect of a change in the other; but clearly combinations of 

parazieter changes do not further complicate the analysis. 

It will be shown in Chapter 3 that the simple form of the 

circular locus carries over to systems with many degrees of freedom, 
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for varying mass and stiffness, but not for varying frequency. 
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CHAPTER 3 
N 

PARAMETER CHANGES IN MULTI-DEGREE OF FREEDG1 SYSTEMS 

3.1. 	Introduction. 

The general case of an N degree of freedom system subjected 

to a single point excitation is considered. The response at any  

point in the structure is examined and the main properties are 

developed for the case of varying stiffness. At the end at the 

section varying mass is considered, and is seen to produce a response 

locus of the same type as that obtained for varying stiffness. The 

complete development of the theory for variable mass is shown to be un-

necessary since, by implication, the properties and observations for 

this are similar to those appertaining to variable stiffness. A simple 

analogy is made between variable mass as a parameter and a special 

case of variable stiffness. 	In this way it is possible to use just 

one set of equations to describe the response at a point in a structure 

as a function of mass, stiffness or mixed parameters. 

The effect on the response is examined for the variation of 

o, two and H stiffness parameters. Having developed the theory, 

certain facts and observations are made within the analysis; some - 

information is given only on the grounds that it is interesting, whilst 

a fuller treatment and discussion of the application of the theory is 

given In Chapter U. 

3.2.. 	Response as a Function of a Single Variable Stiffness 

Parameter. 

i.e in the single degree of freedom case, the response of the 

system is expressed in terms of receptances. The latter follow from 
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3.2. 	(Continued) 

consideration of the equations of motion of an N degree of 

freedom system which may be written 
.. 	 lot 	 - 
fl+C+KiFe 	 (3.1) 

where N, C and K are the mass, damping and stiffness matrices 

respectively. The system is considered to be subject to harmonic 

excitation at circular frequencyto and, since no further advantage. 

may be gained from using hysteretic damping, the damping is considered 

to be viscous. The steady state solution for the response is given 

by 

- 	iL.t -. 	 x 	xe 

where 

x
, 
 = GF 	 (3.3) 

and 	G =[K-Mt. 	+ aCt.] 	 3. 

which is the receptance matrix for the system. Figure 3.1. shows 

schematically the system to which the equations apply. It represents 

a structure having many degrees of freedom, for which it is required to 

examine the response at a material point q due to a single forced 

excitation at point p. The structure is modified by inserting a 

linear spring of stiffness It between points r and a having mutually 

compatible degrees of freedom. The spring is adjusted so as to exert 

zero force when the system is iii equilibrium. 

-25-. 
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Figure 3.1. 

Schematic Representation of the Structure and Variable Stiffness Element 

Considering the original structure as a free body, the 

introduced spring exerts forces Fr  and F9  at points r and a respect- .  

ively., where 

!r.  k(x3 _Xr) - -F3 	 (3.5) 

This gives a relationship between the parameter Ic and the, structural 

variables of force and diaplacemnt. Equation 3.5 thus provides a 

rigorous definition of the form of the parameter change where stiffness 

is concerned. The forcing vector F in equation 3.3 now contains three 

non-zero elements F1 Fr  and F5 , the latter two being dependent on the 

structnrai. displacements x  and x 0 9 tlst the elements of immediate 
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3.2. 	(Continued) 

interest in the displacement vector A are x  x  and x5 . 	By 

partitioning and expending the relevant parts of equation 3.3. we can 

write 

q 	qpp 	qr F  r 	qas 

x -G F +G F +0 F r 	rpp 	rrr 	rae 

x = G F +0? +G F s 	app 	err 	ass 

(3.6) 

Where G is the complex receptance giving the displacement at point iii 
unit 

due to akforce  at point J. The forcing terms Fr  and F may be 

substituted from equation 3.5. and subsequent elimination of Zr  SM 

in equation 3.6. gives 

xq  - 0qp  + Ic (0 Si, 
- a 

I'p )(Gqr - cas 	 (3.7.) 

F 
P 	 rr l+k(G +0as 	ra 	sr -G -G ) 

This is now the modified complex receptance between points p and q in 

terms of the variable parameter Ic and the original receptances 

Equation 3.7. may be written in the more general form 

oCu+iv 

- (e+ if) +Ic(a+ib) 	 (3.8) 

l+Ic(c+id) 

where DC- 	and a, b, c, d, e and f are all real constants. 

Now from equation 3.8. 

(u-e)+L(v-f)- a+ib 

+ C + Id 

• and r arranging this gives 

E]J+c+id-(a+ib):[(u-e)-1i(v-r)I 

(uJe)2 +(v - f)2  
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3.2. 	(Continued) 

then equating the imaginary parts and thus eliminating k leads 

to the equation 

dj(u-e)2 +(v-f)2 1 	b(u-e)-a(vf) 

which on simplifying gives 

[u- (e+b/2d)] 2  + 

2 	2 -a +b 

[v - (f - a/2d)j 3.. 

which is the equation of a circle radius I a2  + d2  
and centre Is + b/2d, £ - a/2d1 

Thus, ask varies between - oo and +oo the locus of the tip of the 

receptance vector CC traces out a circle in the complex plane. It is 

interesting to note that equation 3.8. may be regarded as providing a 

mapping from the k plane, which is in general complex, to the *4 plane. 

This may be seen to be an example of the bilinear class of mappings 

• 	represented by the general equation 

walc+b 

ck+d 

where a,b, c and d are complex constants and for which it is knwn 

that circles and straight lines ( a circle with infinite radius) in the 

• 	k plane map into circles or straight lines in the '.) plane. In 

this case we consider only real values of k, providing a straight line in 

the k plane, which maps into a circle in the plane. If damping were 

incorporated into the stiffness by introducing an imaginary component 

into the parameter k, then, provided that both real and imaginary parts 

can be plotted on a straight lire, the mapping on to the K plane is 

still a circle. 

The geometric propertis of the response circle in the PC plane 
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3.2. 	(Continued) 

depend on the constants a, b, c, d, e and £ which in turn depend 

indirectly on the exaninaticn and forcing points and on the position 

of the introduced spring. 	Appendix A contains a table relating 

these constants to the ccmplex receptances G. 

Equation 3.7. has been derived for the case where pqrgo. 

However, it is possible to consider conditions other than these, and 

listed below are the results for the combinations of p, q, r and a 

encountered in practice. 

porqrors. It can be shown that 

equation 3.7 still applies with the relevant 

subscripts interchanged. 

p - q - rors. The subscripts may be 

interchanged as in case (1). 

ror a - o. This can be interpreted as 

indicating that the introduced spring has 

one of its ends anchored to a ground 	- 

reference point as shown below. 

- 

I k Er  
0 	'structure 
Xr  
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3.2. 	(Continued) 

In this ease 

F-kx1. 

and expanding equation 3.3. as before we obtain 

x 	- 0 +Jc(-Q 	) q 	03)
+ 

3) 	rp 
0  qr 	 (3,9) 

F 	 l+kG 
1'l' 

This result may be obtained directly from equation 3.7. by considering 

the subscript a to be zero, with the condition that 	0 where i 

or j - 0. Thus, a zero subscript may be taken as referring to a 

rigid point for which the cross receptance between this and any other 

point is zero. It can now be seen that one equation, namely equation 3.7. 

• can be used for all possible values and combinations of p, q, r and a. 

In the latter half of this section some of the more important 

• properties of response circles are examined with a view to obtaining a 

	

• 	better understanding of how a particular parameter change affects the 

	

• 	response of the system. 

• 	 In equation 3.8. the complex receptace t&- 	may be 

split into its real and imaginary components which are 

'u- e + k [a + k(ac + 	
: 	(3.10) 

1+2cic'+k2 (c2 +d2 ) 	 - 

v -f+k [(b+rc(bc- ad) ] 	 (3.11) 

1+2ck+k2 (c2 +d2 ) 

These equations lead to, the coordinates of two important 

points on the response circle, namely those at which It - 0 and Ic -00
; 

substituting these values in equations 3.10. and 3.3.1. gives 

[e,fJ 

H 



3.2. 	(continued) 

k_OQ .....Ie+ac+bd, f+bc - ad 

L 
It is these two points which bound the are of the circle 

corresponding to negative values of k. There are, however, two arcs 

to choose from, and it is necessary to determine the direction in which 

the locus is traced out for increasing values of Ic before azy- decision 

can be made. 

m cc (k) 

I 	Lt. 
-S 

 

Re (k) 

----negative k 

S 

I 	Figure 3.2. 

Response Circle for Varying Stiffness 
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3.2. 	(Continued) 

Figure 3.2. represents a typical response circle and 1 e defines 

the angle between its horizontal diameter and any other point cones-

potiding to a given value of Ic. From equation 3.10. and equation 3.11. 

G can be obtained as a function of Ic and may be written 

a T/2 + Tan-  5 d-] ' _ 2 Tai [PZ-o,] 
	

(3.12) 

The constant d in the second term in the above equation is not cancelled 

since its sign plays a significant part in determining the quadrant 

in which the angle & lies. In order to determine whether G is an 

increasing or decreasing function of k, it is necessary to calculate 

dG from equation 3.12. Thus, by differentiating with respect to Ic, 
dk 

we obtain 

dG 
	 -2d 
	

(3.13) 

M. 
	 (1 + ck)2  + d2k2  

from which it can be seen that the locus travels in an anti-clockwise 

direction for the negative values of the constant d that invariably 

occur in practice. In addition to this, it is interesting to note 

that the point at which L is a maximum, i.e. dk 

k 	-c 

2 	2 
C 

is displaced by 900  round the circle from the point at which dG  

is a minimum (in fact zero, occuring at Ic a a)). The rate of change of 

9- with Ic is a useful quantity in that it bears a direct relationship 

to the ability of any given parameter to change the response of the 

system. This property can be seen from equation 3.13. to depend 

only on the position of the introduced swing and not on the examination 

and forcing points q and p. Equation 3.12. can be rearranged to 

-32-' 	 Ii 
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3.2. 	(Continued) 

give k as a function of S i.e. 

Ic 	tan  
d - a tan p 

where 

P 	
[ 	- . 9 

2 	 2 

This is an extremely useful equation, particularly in the computationsl 

side of the analysis where it is often necessary to calculate the 

stiffness value corresponding to a given response. 

At the begining of this section, it was assumed that the 

stiffness parameter Ic was real. However, the implication of this on 

the bounded nature of the response is not immediately obvious • In 

order to clarify this point, consider equation 3.10. with the constant 

e omitted for convenience 

	

• 	 U. -. 	k[a+k (so +bd)] 	 (3.14) 

	

• 	 1 + 2ck + k2  (c2  + d2 ) 

This gives the real coordinate of the response as a function of Ic. 

Equation 3.11. may now be rearranged to give a quadratic in Ic which is 
k 	[u(c2 +ct2 )- (so +bd)J +Ic (2cu.- a)+u (3.13) 

no 	 - 

Solving this equation for Ic yields two roots for any given value of 

w., and if these roots are to be real, as is the requirement in 

practice, I then the following condition must be satisfied 

4 u 2d2 -4 ubd-a2 <0 	 (3.16) 

By considering the limiting case where equation 3.16. is zero and 

solving for u , then 



3.2. 	(Continued) 

- b; 	v'a2+b2 

2d 

which corresponds to the real coordinate for the centre of the 

response circle plus or minus its radius. The imaginary component 

for the response given by equation 3.11. may be analysed in exactly 

the same manner, and is found to yield the result that 

-a %/a2+b2 

2d 

for the condition that k is real. When these two observations are 

taken together, the implication is that there are finite limits imposed 

on the maximum and minimum size of the receptance vector owing to the 

real nature of the parameter Xc. 

As with the single degree of freedom case (see Figure 2.2.) 

it is possible, by introducing the forcing frequency to as a coordinate, 

to construct a surface corresponding to a given stiffness parameter 

upon which three dimensional response curves can be drawn for various 

values of that parameter. 	Figure 3.3. shows a pictorial representation 

of a typical surface, the response curve corresponding to k - 0 (shown 

dotted) is projected below on to the complex plane. The latter is 

often referred to as the Kennedy-Pancu plot for the system. 	
- I 

In the last half of this section, consideration has been 

given to some of the properties of response circles in the complex plane. 

In Chapter b these will be expanded and discussed in more detail, 

• 

	

	and a description will be given of hat these principles can be applied 

to practical examples 
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3.3. 	Response as a Function of Two Parameters. 

As in Section 3.2., the response at point q, on the 

structure, due to a force at point p, is sought. This time the 

variable stiffness elements k, and k are connected between points 

r, a and t, v respectively. The forces r'  F9 , 7 and F,, are given 

by 

F - ICl (x s  - x r ) 	a 

	

- F 	 (3.17) 

Fta Ic2  (x,,- :xt) 	F V 

Equations 3.3. can again be used to give the relevant equations 

- 	G1 F J 	i q, r, s, t, v 	(3.16) 

jp,q,r,s,t,v 

substituting for Fr 	't and F, in equations 3.16. and eliminating 

Zrs xs I  x and x  gives 

-Gqp + 	k1 Ø 1  (Ic2 ) + Ø 2 (k2 ) 	(3.19) 

F 	 Ic,1 03 (k2 ) + 

where 0 i T 2  are complex linear functions of k   and are given in 

fun in Appendix B. In order to understand how the locus of 

in equation 3.19. appears on the complex plane as Ic,1  and Ic2  vary 

simultaneous)yit is necessary to examine how the function behaves 

when one parameter varies and the other is held constant. If, for 

instance, Ic1  is held constant whilst Ic1  is allowed to vary then it can 

be seen that equation 3.19 provides a mapping of the same type. as that 

given in equation 3.7., i.e. it results in a circular locus. If Ic 1  

assumes a different value then another circular locus is produced as 

varies. If all possible values of ICc  are considered then the 

correspcziding k..2  loci lie on the circular locus for the system when IC1. 
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33. 	(Continued) 

alone In varying. This is illustrated in Figure 3.14. 

AIm(kk) 
1 	12 

Re 	I 

- 	- 	
Figure 3.14. 

Response Circles for Two 'Structural Parameters 
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33. 	(continued) 

By considering all possible combinations of k, and k 2 , a 

region in the complex plane is formed, inside which the response at point 

q due to an oscillatory force at point p must lie. This is referred to 

as a "Feasible 'Response Region". Figure 3.5. shows an example produced 

In the same manner as indicated In Figure 3.4. 

/ 

- 



T -_- -- tIfl. 

Feasible Response Region made up of Response Circles. 

Figure 3.5. 
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3.3. 	(Continued) 

On examination the region appears to have two boundaries 

and is doubly covered, i.e. a given response may be achieved using 

either of two pairs of values of Ic1 and k 2 . The bouud&'ies, however, 

do not exhibit this property, for it may be deduced from the graphfral 

construction that on av boundary the circles for Ic1  and Ic2  intersect 

at a tangent. Thus, there can only exist one pair of values Of kls  

1c2 for each point on the boundary. These facts may now be obtained 

in a more rigorous fashion. Mathematically the boundaries are given 

when the Jacobia 

6 (u,v)/b(1c1,k2 ) 

is zero [6] i.e. 

b  
SIc1 	 k2 

-O 

Ax 

or, alternatively - 

In Dkl

_ 	oc] 	-O 	 (3.20). 

 èk2 J 

where 	 is the complex conjugate of . 	and 
5k2  

cC- u +iv=5 	 - 

F. 

Equation 3.20 is of second order in Ic1  and Ic2 , thus confirming the 

possible existence of two boundaries. By virtue of the fact that the 

values of kj and Ic2  on these boundaries are uniquely defined it is 

possible to calculate their coordinates directly. Substituting a 
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3.3. 	(Continued) 	 I  

range of values for Ic1  into equation 3.20. (see Appendix C for expanded 

version of this equation) the two corresponding values of k 2  (one for 

each boundary) and hence the coordinates of that point may be calculated. 

By choosing enough values of Ic1  the boundaries may be plotted direotlyk 

Figure 3.6. shows some examples of typical Feasible Regions. The 

system for which these were calculated is described in Appendix B. 
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The Boundaries of Some Typical Feasible Response Regions. 

• - 	
• 

 

Figure 3.6. 
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3.1. 	Response as a General Function of H Variable parameters. 

In Section 3.3. the setting up and reduction of equations 

3.6. to give a single expression for the complex receptance in 

equation 3.7. becomes rapidly more complex as the number of variables 

considered increases. As a consequence of this a general matrix 

expression for the complex receptance, in terms of H variable parameters, 

is developed. 

The response at the examination point q may be written in 

terms of the external, force, internal, spring force and the corresponding 

receptances Gij 

x 
q -Q  qp

p 
 p 	6 1  q1 - q2 + 1c2rS2 (Qq  - Gq ) ;  

,.,q. k5 (Gq 2m-1 - Gqi 	) 	 (3.21) 

where k is the ivariable stiffness parameter and 

X 	- 
i 	2± 	X2i_1 

is the extension of the ith  spring ( x2i  and X2j1  being the actual 

displacement at each end). Equation 3.21. may be alternatively. 

expressed 

xq 	qp p U F +AK.6 	 (3.22) 
- 

where sisa(lxm)row vector ofterms 

[(Gql - Gq2)I (G q3 -  Gq) ......q,2m1 - %, 2m 

is the d Km. diagonal matrix of stiffness parameters Ic 1,, and S 

is a Cm x 1) column vector of extensions. 

The values of , may thpmselves be expressed in the same way 

as A   in equation 3.22. 

- °l -Si ' I(G22- U21) - 	- an )] -  (G12 

S 2 	24 - 23) - (G117 U13 )] 
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3.4. 	(Continued) 

6 2 - F (% - G3P 	81  - 	k. 	KG42 -t G) - (032 - 033)] 

in 
- F, (02m,p - 2m-1,p 	.. -k m  S m  [(o ,  - o ,  

- 

	

(G 2m-1, 2m - 02m-1, 	 (3.23) 

This may also be written in matrix form - F? - CK& which 

gives S - 11+ cic] -1  FB 	 (3.24) 

Where B is the (in x 1) column vector of terms. 

[(G2p - 	- a) .... 	- 

and C is the (in x in) matrix of complex constants whose elements are 

given by 

C ii - 21, 2j 
T 
 21., 2j-3) - 2i-1, 2j - 02i.1 2  23-) 

The expression for 6 in equation 3.24. may be substituted into equation 
3.22. to give 

:a 	0qp + a[f1 	QI 	A 	 (3.25) 

which provides the complex receptance p as a general function of I 

variable stiffness parameters. Although any number of parameters may 

be considered, the reduction of equation 3$. to give a single expression 

is still complicated by the inversion, of the terms in the brackets.: 

• 	3.5. 	Variable Mass. 

In order to understand what effect a variation of mass has 

• 	on the response of a system, it is necessary to consider what forces 
• 	

an additional mass exerts on a point in an accelerating structure. 
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3.5. 	(Continued) 

Consider a point r1, with acceleration i r  at which an additional 

mass in is attached. The inertia force exerted on that point is 

given by 

F 	 (3.26) 

using the solution tori given in equation 3.2. Fr.  may be obtained 

directly in terms of the displacement Zr  i.e. 

Fr mC32 x. 	 (3.27) 

As in Sections 3.2. and 3.3. equation 3.3. may be expanded to give 

G F + G F q qpp qrr 

r=G F + G F r 	rpp 	rrr 

(3.23) 

Substituting for F, from equation 3.27. and eliminating Zr  between 

equations3.28 gives the following expression for the receptance as a 

function of the variable parameter in 

+ lTttJ 2GG 

	

gr  .p• 	 (3.29) 
F 	l-m&3G 
P 	 rr 

This is of the same form as equation 3.7. and thus results in a 

circular locus on the complex plane as in varies between - b and + CC) 

The direction in which the locus Ltravels can again be shown to depend 

on the sin of the constant das defined in Section 3.2. The negative 

values or:dfound in practice combined with the negative sign in the 

denominator of equation 3.29 cause the locus to travel in a clockwise 

	

direction for increasing values of in; 	this agrees with the results 

obtained for the single degree of freedom case. 

Having shown that varying mass produces circular locus 

in the complex plane, it can be firther demonstrated that the equations 

and propeitiet of response circleS derived for varying stiffness also 

IL; 



3.5.  

apply for varying mass. To do this an analog must be drawn between 

mass and stiffness as variable parameters. Consider a grounded stiffness 

parameter attached at a point x in the stricture. The farce the 

spring exerts on that point is given by 

F-Ta r 	r (3.30) 

Now the force exerted by an additional mass, m, at the same point Xr 

is given by 

F m * x r 	r 
(3.31) 

where m - MW 
2.  Equation 3.31. is identical to equation 3.30 apart 

fran the change in sign of the parameter. Thus, the general equation 

for the response which is given by 

x Me G 	+k (G - o )(G - G ) q 	qp 	sp 	r'p qr 	gs 	 (3.32) 
F p 	 rr l+k(G +Gss -Grs 	sr -G ) 

may be used for varying mass if those constants multiplied by the 

parameter k are modified by changing their signs • Nor, for the mass 

parameter defined in equation 3.31* the response equation 3.32. 

becomes 

x -G 	+k(G G ) q. qp 	rpqr 

F 	1-kG rr 

(3.33.) 

where afl the Gij  with a subscript s are set to zero and the sips of 

those remaining constants whic are multiplied by k are changed. 

Since equation 3.33. refers to variable  mass, then 
- 	* 	2 

and 	x -o +mLa2 (G C ) qP 	rpqr 

1-mb 2  
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3.5. 	(Continued) 

which is identical to equation 3.29. The simplicity of this approach 

can also be used in, the equation describing the response as a function 

of two variable parameters. Thus, it is possible to use just me set 

of universal equations which apply for mass, stiffness and mixed 

combinations of parameters. It should be remembered that in using 

this method the mass parameter refers to m*  and should be divided by 

02 to obtain the true value of the parameter in. 

N 
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CHAPTER 14 

THE ASSESSMENT AND s'nT OF PARAMETER CHANGES 

	

14.1. 	Introduction. 

The theory governing parameter changes in both single and 

multi-degree of freedom systems has been developed in the two previous 

chapters. In Chapter 14 the techniques involved in the practical 

application of this theory are discussed. Particular emphasis is 

placed on the ability of any given parameter or parameters to change 

the response at a specified point in a structure; this ability is 

interpreted as being representative of the effectiveness of those 

parameters. Several, criteria are developed which enable the effective-

ness of the parameters to be measured. 

Other aspects considered here include the feasibility of 

achieving a desired response, minimum responses and the relationship 

between idealised parameters and those encountered in real structures. 

In the last section, sane interesting, but less well developed, 

techniques are discussed, including the case where multiple responses 

are examined as functions of structural parameters, 

	

14.2. 	The Feasibility of Achieving a Desired Response Using 

one or Two Parameters. 

14.21. A Single Variable Parametel-, 

In the most general case it is required to know whether or 

not a specified response is feasible using just one variable parameter. 

The desired response is given in terms of its real and imaginary - 

components in the complex plane. These components may be obtained as 

functions of the chosen stifftess parameter Ic and are given by 



1.21. 	(Continued) 

u - a + k(a + k(ac+bd)) 	 (1.1) 

and 	 1+2ck+1c2(02+d2) 

y - f + k(b +k(bc-ad)) 	 (14.2) 

1 + 2ck + k2(c2+ d2) 

If the required response is feasible, then it should be possible to 

choose a value of Ic which when substituted into equations 14.1. and 14.2. 

yields the desired coordinates. The condition for feasibility may be 

determined mathematically by re-arranging equations 14.1. and 14.2. into 

• 	quadratics in Ic. These are respectively 

k2 ((u-e)(c2+d2 ) - (ac+bd)) + k(2c(u-e)-a) + (u-e) - 0 (14.3) 

and 	2 	22 Ic ((v-f)(o +d ) - (be-ad)) + k(2b(v-f)-b) + (v-f) 0 (14.14) 

By substituting the desired coordinates (u,v) into the Son equations, 

and then solving for Ic in each, it is possible to determine whether 

or not the response is feasible. The condition is simple; if any  

of the four roots of the equations are imaginary, then the response is 

not feasible. Where all loin- roots are real, then the one coincident 

root in each pair is the value of Ic that will provide the desired 

response. 

Although this general approach does cover all possible response 

requirements., it is found that in most practical cases of manipulating 

a structure to produce a desired tibratory response, the aim would be to 

minimise the response over all or' part of the structure. (An  exception 

to this wduld be in order to change a nonnal mode shape). Thus, in 

the case iere zero or a minimum Msponse is sought, then a slightly 

different approach to the solution of the problem is needed. 

.4 . 	
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14.21. 	(Continued) 

U 

Re(k) 

Figure 14.1. 

Calculating the Minimum Response for a Given Parameter 

Figure 14.1 ;. shows a typical respor3se circle. The value of k corresponding 

to the minimum response vector is given by the intersection of the 

circle and the straight line joining the centre of the circle to the 

origin. The minimum response may alternatively be calculated by 

cons ,  idering the square of the magnitude of the response vector 	- (u + v 

The value àfk corresponding to the mjnlmujnof 1a1 2  is the same asthat 
for [at. 	Substituting for it and v from equations 14.1. and 1.2. gins 

kl 2 asa function ofk 	I  

jr12- (2+k+c) 	 (14.5) 

	

(Pk 2 + 	+fl) 

- 	 -50- 



14.21. 	(Continued) 

where A, B, C, I', Q and B are real constants and are defined in 

Appendix I • The ri4nintn value of o I2  is obtained by differentiating 
equation 14.5. with respect to k and equating the result to zero. 

This leads to the following quadratic in it 

k2 (AQ-BP) + 2k(AR-CQ) + (_p) - 0 
	

(4.6) 

The roots 	of this equation are the values of it corresponding to the 

maximum and minimumvalues of ir2 . Which of the two values of it 

corresponds to the minimum value of Iéma-  be determined in the usual 

way by substituting each value in turn into the second derivative of 

Q1 2  with respect to k and examining the sit of the resultant. The 

first and second derivatives of II2  with respect to it are given in Appendix 

r. 

14.22. Two Variable Parameters. 

Determining the feasibility or minimum of a response using only 

one variable parameter poses few problems mathematically. However, 

the solution to the same problems becomes somewhat more complicated 

when considering two or more parameters. The advantages of using two 

• 	parameters as opposed to one are consi.der&1e, for if a desired response 

• 	is to be attainable, then it must lie within the corresponding feasible 

response $gion as defined in Chaiter 3, Section 3.3. The chances of 

achieving desired response are us greatly increased using two 

• 	parameters; and so indeed is thepcssibility of achieving zero response. 

The direct calculation of the minimum of a response as a function 

of two parmeters is complex mathematically and is not considered here. 

Far more important is the possibility of achieving zero response, i.e. does 

the relevaztt feasible region encompass the origin ? Consider first the 

general case of the feasibility of any response Z- U + iv. The response 

I 	 -51- 	
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14.22. 	(Continued) 

vector may be written as a function of the two stiffness parameters 

kl and  k2 

G-A+jB+91+iG2 	
(4.7) 

93  + i 

where A and B are real constants ande are linear functions of - 

Ic and Ic2  as defined in Appendix C. The desired response coordinates 

(u,v) may be substituted into equation 4.7. and, re-arranged, this 

gives 

(B-v)04  - (A-u) 937i((A-ü) 44  + (B-v) 9 3 ) =6  +iO2 (4.8) 

Equating the real and imaginary parts of equation 4.8. in turn 

gives 

	

- (B-v)44  - (A-u) 0 3 
	 (4.9) 

	

62 = (A-u)44  - (B-V) 93 	 (4.10) 

• 	Equation 1.9. may be re-arranged to give Ic1  as a function of 1c2 

which is then substituted into equation 4.10. to give a quadratic in. k2 . 

If the roots of this quadratic are real, then the desired response is 

feasible thid the corresponding values of Ic1  can be determined by 

substitutig the calculated valu1 of k   into equation 4.9. and solving for 

k1. Eithwof the two pairs of4aluesoflc1  and lc may be used to achieve 

the desired response. The feasibility of zero response is just a 

Special case of this analysis and needs no further explanation 

Although the ability to determine the feasibility of a response 

is usefulin itself, it does not give any indication as to the - 

effectiveness of the parameter ox parameters being used to achieve that 

response. However, it could be argued that if a given response is 

feasible tIen the parameter that *cduces that response must be totally 

effective for the purpose for which it was intended. Thus, it is 
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4.22. 	(Continued) 

possible to use feasibility as an effective criterion. The exact. 

definition of this will be given in Section 4.14. 

4.3. 	The Criteria Governing the Effectiveness of Parameter Changes. 

Prior to the development of any criteria for the purpose of 

judging the effectiveness of parameters, it is necessary to define 

just what it is that the parameters are required to be effective in 

doing. 	The objectives of any given parameter change may be categorised 

into one of three groups, namely, 

to achieve any general response;. 

to achieve a minimum response; 

to achieve zero response. 

Having defined and chosen a suitable objective, attention may 

now be focused on the parameters themselves in an attempt to determine 

which of the available selections is most effective in achieving the 

desired goal. In the cases of (i) and (iii), if the objective is 

achieved, then it is not possible to judge one parameter as being more 

effective than another. Where a minimum response is required, the 

effectiveness criterion is the size of the minimum response obtained for 

each parameter; the smaller the value the more effective the parameter 

is. 	Minimum response is not so much a measure of sensitivity, but I 

simple st4ement of the ability of a parameter to achieve zero response. 

In this instance and those that f oflow, effectiveness is not considered 

to be an absolute quantity but is intended to refer to the relative 

merits-of parameters. 

In practical applications cf structural manipulation, it 

is advantageous to be able to recognise regions in a structure which are 

more effective than others in producing changes in a. specified response. 

V 
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Figure 4.2. 

Response Circles 
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14.3. 	(Continued) 

The existence of such regions can be identified by the presence of 

an abundance of effective parameters within them. These parameters, 

however, are not required to be effective in producing a specific 

response, but should possess the ability to affect changes in the 

response over as wide a range as possible. In this instance, the 

diameter of the response circle is chosen as the effectiveness 

criterion, and is considered to be representative of the ability of 

that parameter to change the response under consideration. By 

calculating the circle diameters for all the available parameters, 

their relative effectiveness may be determined. 

Where the aim of the process of manipulation is to reduce the 

response at a point in the structure to a mtxbuun, than the latter 

criterion may be modified slightly to take this into account. Con-

sider the two response circles shown in Figure 4.2. correspondong to 

parameter k, and parameter Ic 2 . On the basis of circle diameter parameter 

II 
Ic1  would be considered to be mare effective in changing the response than 

.parameterjrc2 . 

11m 



4.3. 	(Continued) 

However, where it is required to minimise the response parameter Ic,1  

is ineffective, while Ic 2  is by comparison far more effective. Thus, 

with the bias towards ninjinisation, a new effectiveness criterion may 

be defined as the portion of the response circle for which the response 

may be reduced over its present value. The  amount by which the 

response may be reduced can be represented by the line AD shown in 

Figure it.). 	This, however, does not take into account the size of 

the circle, and hence a more representative measure would be the length 

of the are CD. Thiais referred  toas the bias di00f the 

circle. 

The criteria that have been developed in this section have be 

formulated in order to highlight certain qualities of structural 

parameters. The best criteria for achieving desired response character-

istics can only emerge as a result at the experience gained in, using them. 

Rect(k) 
Figure 

The Portion of the Circle Effective in Decreasing the Magnitude 

of the Response 
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14.14. 	The Practical Application of Effectiveness Criteria to 

a Helicopter Fuselage. 

This chapter. deals with the practical application of structural 

manipulation and would not be complete without an example to illustrate 

the use of the techniques developed. 	In addition, the example 

helps to define and explain more clearly the bases upon which the 

effectiveness criteria lie. 	 4. 

The example chosen is representative of the practical problem 

which provided the incentive for this research. 	Under consideration 

is the very much simplified two-dimensional model of a helicopter 

fuselage. 	The structure contains 20 nodes Interconnected by 25 

linearly tapering beam elements. Each node possesses three degrees 

of freedom, two translation and one rotation, making a total, of 60 

degrees of freedom. 	The layout of the model along with the element 

and node numbering is shown in Figures 14.14. and 14.5. respectively. 

Mass and stiffness data for the model was obtained from Westland 

Helicopters Limited, whilst damping was included in the form of a percent-

age of critical damping in each normaJ, mode. The analysis was 

performed using the structural maipulation programme described. in 

Chapter 5, the aim being to deternlne which parts of the fuselage 	- 

structure *ere most sensitive in reducing the rotor induced vi%ation 

levels In the region of the pilot!'s seat (Node-18 in Figure 14.5.) The 

* 	structure was excited by a sinusoidal torque, of frequency 21.7 Hz at 

node :8. 	Both the vertical and horizontal responses at node 18 were 

• 	examined, 4though only the results for the latter have been included 

here. Only stiffness parameters connected between adjacent nodes were 

considered. In this way parameter changes could be directly related to 

existing struottwal elements. By Imposing this restriction the 

'. 	
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14.14. 	(Continued) 

total number of parameters being associated with each element was 

three • These are, defined in Figure 14.6 • The totsl number of 

stiffness parameters associated with the structure was 75. 

1 	element 
	

4 

Parameter coordinates [1,41 
[2,51 
[3,61 

Figure 14.6. 

Stiffness Parameters Associated with an Element 

Four criteria were used in order to determine those parts of the 

structure which were most effective in reducing the vibration levels. 

Firstly, by considering just one parameter at a tine, the following were 

calculated for each of the 75 parameters:- 

I 	Circle diameter. 

Bias Diameter. 	 , 

Minimum Response., 

The values loorresponding to (i) and (ii) have been sorted In 

descending order and are normalise4 such that they lie in the range 

0-1. The jralue one is assigned 10 the most effective parameter, and 

zero to tS least effective parameter. It should be remembered that 

these oritei,ia are used to determine relative quantities and are not 

indicative of absolute effectiveness. Where mln4mtnn  response is 

59 



(Continued) 

concerned the values encountered are usually spread over a wide range 

making them unsuitable for normalisation in the manner just described. 

Consequently, the logarithms of the inverse of the minimum responses 

have been calculated, sorted and normalised in the range 0-1. 

Each parameter has associated with it three sensitivity values; 

these are used in two ways to produce an equivalent figure for the 

elements of the structure. Every element has associated with it 

three parameters, the first value assigned to the element is that of 

the most sensitive parameter. 	This is intended to show that if an 

element has an effective parameter associated with it, then that element 

is effective regardless of the effectiveness of the other two related 

parameters. The second measure is the average sensitivity for the three 

parameters. 

The results are presented in the form of line graphs where the 

ordinates refer to the various effectiveness criteria and the horizontal 

axis represents the various elements of the structure • For each 

element, the shaded ordinate refers to the best parameter value, whilst 

the unshaded ordinate shows the average of the three parameter values. 

The fouith criterion involves parameters combined in pairs. - 

Each pair was assessed to see if it could produce zero response at 

the pilot'4 seat. In the case of,. stiffliess, there were 75 parameters 

and 2,775t possible paired conibinations, many of which satisfied the 

required cflterion. The nwaber o tithes an element occurred in a 

successful 'pair was noted and the results were tabulated in descending 

order, having been normalised in the range 0-1 as before. 	This 

measure . can be interpreted as providing the relative effectiveness of a 

I 	 -60- 



14.14. 	(Continued) 

given element to actually produce zero response in conjunction with 

another undefined element. The results for element occurrence are 

also presented as line graphs. 

The four criteria outlined above were recalculated, only 

this time the variable parameters were changes in point mass at each 

of the nodes. The total number of parameters in this case was 60. 

• 

	

	The results for variable mass are plotted as line graphs in exactly 

the sane way as for the stiffness parameters. This time the numbers 

• 	on the x axis refer to the structure nodes and have been arranged 

in groups representing well defined areas of the structure. 	The 

results for both variable mass and stiffness are given in Figures 14.7. - 

14.14. 	It will be noted that in Figure 14.114. the ordinate referring 
• 	

to the best parameter value has been omitted. The values that 

should have been presented here were an unity or very close to unity, 

and their presence tended to obscure the remaining ordinates, 
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14.141. 	Discussion of Results. 

It is already known that, for this particular helicopter, 

• the gear box and tail boon are suitable areas for modification in 

order to alleviate vibration in the area of the Pilot's seat. This 

knowledge was gained over a period of time through a oeosa of triM]. 

• and error, helped by a limited anount of theoretical analysis. As a 

result of this, the gear box mountings were considerably stiffened and 

so was the tail boon between nodes 22 and 23. 

The results for variable stiffness shown in Figures 4.7. - 

1.10. are mutually consistent in that they show the same three sensitive 

areas in the fuselage, namely, the gear box, tail boon and fuselage 

sides • This agrees broadly with what is known about the helicopter. 

What is interesting is that the same message canes across regardless of 

the criterion chosen, which tends to indicate the relevancy of the 

• chosen criteria. In considering these three main arec, the importance 

of the gear box and fuselage sides is intuitively obvious. The former 

since it is close to the source of excitation, and the latter because 

of its ability to transmit forces, mainly in shear, to the front sub-

structure • The importance of the tail boom is not so intuitively 

obvious an it is encouraging that the analysis has highlighted this area. 

The results for variable mass shown in Figures 4.3.1. . 

are reasonably consistent for all but the bias diameter criterion. 	The 

gear box and fuselage sides are again highlighted as sensitive areas, 

with nodes 6 and 19 being shown to be particularly effective by the circle 

diameter criterion. The minimum response criterion shows nodes 8 and 

18 to be sensitive in the reduction of vibration levels; this is 

intuitively obvious since these nodes represent the forcing and examination 



1.21. 	(Continued) 

points respectively. An Infinite Increase in mass at either of these 

points would effectively reduce the response to zero. It is 

interesting to note how the sensitivity to changes in mass varies along 

the tail born. The circle diameter, minimum response and node 

occurrence criteria all indicate that relative effectiveness decreases 

towards the end of the tail born. Where stiffness parameters are 

concerned, with the possible exception of element 23, the circle 

diameter and minimum response criteria indicate the reverse trend, i.e. 

effectiveness increases along the tail boom. For both mass and stiff-

ness parameters the engine is indicated as a relatively insensitive area. 

Of the four criteria used In the analysis of the helicopter 

fuselage, only the bias diameter results have proved in any way in-

conclusive. For stiffness parameters the results are less well defined 

but still indicate the same sensitive areas as the other criteria. 

For mass parameters, however, the results sew to show no trends what-

soever; this seems strange when it is considered that the bias diameter 

criterion contains  elements of the circle diameter and minimum response 

criteria, which both indicate clearly the sensitive areas in the structure. 

The conclusions drawn here are tentative ones based on a 	- 

limited aaltt?unt of experience in this particular field of interpretation. 

The exercise was primarily intended to demonstrate the use of the 

various crIteria developed In this section. 	However, although there is 

still a wte'at deal of work to be done on the development of this 

practical form of analysis, there is strong evidence to indicate-its 



4.5. 	parameter changes in Bee]. Structures. 

This section is complementary to the previous one In that it 

deals with some aspects of the practical implementation of structural 

manipulation. 	The emphasis here is placed on the relationship between 

the simple parameters used throughout this analysis and those encountered 

in real structures. 	The simplicity- of the aforementioned analysis cones 

as a direct result of the form of the parameter changes chosen. 

It would, however, be unrealistic to expect similar changes to be either en-

countered or useful In any practical. sense. What is required is a 

direct relationship between the practical Structural parameters such as 

beam dimension, web depth and skin thickness and the idealised linear 

spring parameters. 	Progress can be made in this direction by 

constructing an equivalent spring model of a simple finite element. 

Consider the simple beam element shown in Figure li.lS(a). 	The 

uniform bean, which is inextensible, possesses four degrees of freedom 

r1, r2 , 1'3  and ru  as shown, second moment of area I and Young!s Modulus 

S. The stiffn sea matrix for the beam is well known and is given 

in Figure 11.1(b). 

By considering the equilibrium of the bean, the following 

relationshij,s may be obtained 	 - 

F2  -F 	 (U.n) 

F3  I F1 - F4 	F1 + F2Q.i 	 (4.12) 

Thepe two relationships hn]y an Interdependency between sane 

of the elemnts of the stiffness matrix K. In fact, if elemeüts k ll p 

Ic12  and Ic22 3 are known, then the values of all the other elements1  can be 

determined using equation 4.3-1., 4.12. and symmetry. These t1ree texts 

form the elements of the stiffness' matrix of the cantilever beam shown 
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in Figure 14.16(a). 

C 

[A] 

*j2 El 
12 
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k+kx2  -kx 

	

12 	2 

II 

	 El 

FBI 
Figure 14.16. 	 - 

Cantilever Beam and Equivalent Spring System 

The equivalent spring system showi?  in Figure 14.16(b) consists of two 

rigid beams, total length t, hinted at a distance x from the free end. 

A rotatiohal spring of stiffness It1  connects the beams at the hinge, 

whilst a linear spring of stiffneès It2  is situated in the constraint 

	

arrangement at the free end of the bean. 	For the two systems to be 

equivalent, the elements of their respective stiffness matrices must be 

the same. Hence, equating the relevant terms leads to the following 
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I.  

14.5. 	(C6ntinu4) 

values of 1c13 k2  and x 

k1 1/L 

Ic2  = l24 

x - t/2 

(14.13) 

Using these values, the beam in Figure 14.35(a) may be represented 

by the equivalent spring system shown in Figure 14.15(c). 

The theory can be extended to cover the general case of a 

linearly tapering beam with second moment of area 10 at one  end 

and a taper ratio r. The analysis proceeds along the same lines as 

for the uniform beam, but requires that the stiffness matrix for a 

Tapered 	beam be determined. This is given in Appendix K and refers 

to a beam of I cross section. The stiffness matrix could, however, 

have been calculated for a beam of any cross section. Equating the 

elements of the two stiffness matrices as before gives the following values 

of k1,k2  and x 

	

kj-32 	(2r2 +r+2) 

SO 

k21 	(r4+4r3+lOr2+  ljr+l) 	(14.11) 

	

U. 	(2r2 + r+2) 	 - 

x-Ø.(l7r2 +6r+7) 

	

12 	r2 + r  

It will bet noted that These value's degenerate to those given in 

equatipii 14013. when the taper ratio is unity. 

It has been shown that a finite element beam can be modelled 

in terms of the simple parameters used in the structural manipulation 

theory.. These parameters are directly related to the real structural 

variablr, E and I.  However., the parameters Ic,1  and k2  cannot be 



14.5. 	(Continued) 

varied independently since they are directly related. This situation 

leads to the consideration of a special case of parameter variation, 

namely, two stiffness parameters varying simultaneously but in a. 

related manlier. 

Consider the simplest case where the two parameters kA and 

have the following linear relationship. 

Ic1 flk2 	 (14.15) 

where/3 is a real constant. The response at a point in the structure 

maybe given asa function of 
'i  and k2 and is 

eaIe1 +bk +ck1k2 	 (14.16) 

1 + dJc1  + ek2  + 

where the constants a, b, c, d, e and £ are complex and are defined 

In Appendix C. 	The constant G has been omitted from equation 1.16. for qp 
the sake of simplicity-. Substituting for Ic 2  from equation 14.15. gives 

or k 2cfl+kja + bp) 	 (14.17) 

k12fp+k1 (d+ ep)+i 

Equation 14.17. may be considered as providing a mapping from the 

plane to the aplane. 	Any complex mapping such as this may be made up 

of a series of simpler mappings. In this case, there are two mappings 

which take the form 	 H 
(4.18) 

Ck,+D 

and 	 Ctl.Z2+E 	 (14.19) 

where the constants A, B, C, D and S are all complex. 	Equation 14.18. 

is an example of a Bilinear Class of mapping and maps straight lines in the 
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144. 	(Continued) 

Ic1  plane into circles in the z plane. Equation 14.19. maps the 

circles in thez plane into Cassini Ovals in the c plane 	A 

Cassini Oval or Cassinian is a higher plane curve of the sane type as 

Cartesian Ovals, liinacons and carciloids (see Figure 14.17.). A 

Cassinian is defined as the locus of a point which moves so that the 

product of its distance from two fixed points ( 0, 	a) is a constant 

Ic2 . The equation of this curve in cartesian coordinates is 

(x +7 +0) - Isax -k 

22 where c - Ic + a • If Ic < a, there are two separate ovals each 

enclosing a focus and the curve is said to be bipartite. If Ic> a 

the two ovals merge into one • When k a, the curve is a lemniscate. 

The boundaries of the feasible response regions are examples of this 

type of curve. 	Thus, when two stifibess parameters are varied in 

a related manner, the response no longer lies within a feasible region 

but ona  closed curve whose form is determined by the nature of the 

relations4p between the two parameters. 	The analysis of these curves 

is known to be complex, but therej is sufficient justification for a 

closer iniestigation into their mathematical properties. 

A iiirect  relationship bettieen real structural parainetei1s and 

linear sprung elements has been sIawn to exist. The practical application 

of the theLry developed around this work has not been attempted,, 

but it is clear that real parameter changes can only be represented 

by combinations of idealised parameters. The variation of these 

parameters in a related manner imposes tighter restrictions on the --

response at a point in the structure than if they had been allowed to 

vary inaePtndentty. 
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-N 4.6. 	Oher Techniques for Assimilating the Effectiveness of 

Parameter Changes. 

This last section contains some of the more interesting 

aspects of the main analysis which have not been fully developed, 

but which may have potential usefulness. 	A single response 	is 

examined as a function of frequency and stiffness and the case of 

multiple responses as functions of structural parameters is also 

considered. 

4.61. Response as a Function of Frequency and Stiffness. 

In Chapter 3, an example was given of a three dimensional 

response plot, for which the response was considered as a function of 

frequency and stiffness. The plot consists of a set of response 

circles representing a single variable parameter and calculated over 

a range of frequency. If an infinite number of circles were plotted 

In the given range, then a cylindrical envelope would be developed 

upon which the response must lie for a given value of stiffness and 

frequency, 	Figures !i.lS and 4.19. show two examples of these 

plots, both were calculated using the mathematical model of the 

experimental structure described in Chapter 6. These plots can be 

used to givh sane indication of the effectiveness of single parameters 

as a functin of frequency. The size of the response circle, which has 

already been used as an effectiveijess criteria, can be plotted 

against frequency and the resulting graph represents the relative 

effeciveness of that parameter in a given frequency range. In order 

to pr&iuce this graph, the frequency range of interest is chosen and the 

circle diam4ter for the given parameter is calculated at a specified 

number of points within that range. 	A curve is then fitted through 
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15.61. 	(Cintinued) 

these points and the resulting graph is shown in Figures 15.20. and 

15.21. 	These are the circle diameter against frequency plots 

referring to the same systems that were used to produce Figures 1.18. 

and 4.19 	they do, however, include the graphs for several other 

parameters as well. The peaks in these plots may be interpreted as 

being representative of frequency ranges in which the associated pan-

meters are potentially effective. The curves were produced using the 

structural manipulation programme. The process by which they are 

obtained can be time-consuming, for it involves calculating new 

receptance matrices for each value of frequency. 

15.62. Multiple Responses as a Function of Structural Parameters. 

Consideration so far in this analysis has been given exclusively 

to examining the behaviour of a single response as a function of one 

or more structural parameters. However, it is often desirable to be 

able to consider a set of responses collectively. In this section 

a set of n responses are considered as a function of a single stiff-

ness parameter k. The sin being to calculate the value of k for which 

the sum of ithe  response vectors is a minimum. 	It will be shown that, 

once form4ated, the problem cannot be tackled analytically but must - 

be solved using an iterative procedure. 	The case in which the 

responses are considered as a function of more than one parameter is 

not considered. 

In its simplest form the problem involves calculating the minimum 

of a single response as a function of one stiffness parameter. This 

case was dealt with in Section I.21., and was found to have an analytical 

solution. 

Consider a set of n responses ai  and a single variable stiffness 
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4.62. 	(Continued) 

parameter k; it is required to find the value of k for which 	1 

is a minimum. If p is the point of excitation and the parameter Ic 

isattached to the structure at points r and a s  the response CC  is 

giyen by 

- 	+ k((G5  - G,)(G - G15 )) 	(4.20)
ir  

i+k(G +G -G -G ) rr 	as 	ra 	or 

which may be written more generally 

	

OCj 	u+ivi_ei+ffj+k(ai+ibi) 	(4.21) 

1 + k(c1+id1 ) 

K 

The real and imaginary components of 	are 

ui - ei k(a + k(a1c1  + bd1 )) 

1 + 2ck + k2 (o12+d12 ) 

and 

vi 	fi + k(bi + k(bicj - aidj)) 

1+201k+k2 (c12 td12 ) 

Nbw 2 
I 

ku - u1  + 

2 	 a 
- (L1k +B1kC1) 2  

(P11c2  +Q1k + B1 )1  
where A' i' ?i' P,$ S  and R i j are defined in Appendix I. 

The minisnin of the function 	1&,Iis given when 
• 	 n 	ni  

d r kijE  t 4_ lot li 	- o • 	1 £-1 	1 dk. 
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1.62. 	(Continued) 

The first derivation of IC(.I with respect to k is 

+ B1k + af1  (k + Bi)_(2Pik + Qj)(aik2+Bik + a1 )4  

21 

dk 	2(P1k2  + Qlc + a1 ) 2 	 2(P1k2  + Q?+ 	
3/2 

(1.25) 

It will be noted from equation 4.20.  that ?, Q1  and R are functions 

of the position of the parameter it aily and therefore are the same 

for an i. 	Thus 

	

- (Pk 	cit + R1) -) - 2 
	

((sit2 + Eic + aø (2A13c + B1 )) 

dk 	 2  

I- (2Pik + Qi)(Pit2  + 	+ a1)"2 	 + B?+ C1 )4  

	

2 	 (11.26) 

Equating equation 14.26. to zero gives 

"I (A 1yc2 + B1k+C1)2  
3.  

	

(2P1k + 
	

451 (2A11c + B1 )(A1k2+B1k + 

(14.27) 

• which cannot be readily solved analytically. Consequently, the 

root of equation 14.26. corresponding to the minimum value of 	k ij 
is obtained using an iterative search procedure. (Nottingham 

Algorithms; Group Library Subroutine EOGBAF 1131 ), The routine 

• requires tSe gradient of the function and a good initial estimate of 

the required root. 	The latter is obtained by calculating the 
n 

	

• mininwn oftS function 	 which is assumed to be a good 

approxtma4on of the required minimum and can be determined analytically.The ( 

sum t the squares of the moduli ,-vE the response vectors is given by 

• Lt 1 2. (r1it2 + y+ n111  I (A/ + B1k + a1) (4.23) 



N 
4.62. 	(Qontinued) 

If the first derivative, with respect to It, of equation 4.28. is 

calculated and equated to zero then the following quadratic in It 

is obtained 

i2 (AQ1  - gp1 ) + 2k(ZR1 -  q1 ) t 	- 	- 0 	(4.29) 

where 

X= 	f-1  Ai  

fl 	1L- B1 

.= 	In1 C1 

Equation 14.29. can be solved and the root corresponding to the minimum 

veins of 110C 1 1 2  is found in the usual way. from the second derivative 

of The function. 	In practice the iterative procedure converges 

rapidly using this initial estimate. 

Using the structural manipulation progranne, the minimum of the 

sum 	of a 	set of response vectors is calculated for all the available 

stiffness xfiarameters in a given system. The results are sorted in 

• ascending drder of minimum response and tabulated to give the sum of 

the response vectors and the corresponding value of the stiffness 
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CEAnERS 

COMPUTATIONAL ANALYSIS 

5.1. 	Introduction. 

The mathematical analysis outlined in the previous chapters 

includes a certain anoint of matrix algebra, in particular the solution 

of sigenvalue problems and the inversion of matrices. Where the order 

of the matrices involved is greater than three, then the solution of 

these problems becomes too complex to be performed by hand and it is 

necessary to resort to the computer to perform these tasks. Initially, 

programmes were written to perform specific operations in order to test 

the theory being developed; however, it became increasingly obvious that 

the canputer was going to become an indispensable tool playing a major 

role in the development of the analysis. The programmes that had 

already been developed were being expanded to provide ever more 

detailed and diversified forms of information, and it soon becane 

apparent that the process as a whole was becoming too slow and cauplicated 

to be able to produce the required results in an efficient manner. What 

was needed was a more general interactive programme capable of fast data 

handling and with the facilities to perform any or all of the calculations 

previously handled by separate pziogrammes. A Structural Manipulation 

Programme was consequently written to rim on-line on the ICL 47 

computer operated by the Edinburgh Regional Computing Centre. The 

programme was intended as a research tool which could be expanded without 

impairing !its performance and width could be run as a truly interactive 

process by either speeding up or eliminating the time-consuming procedures 

normally associated with matrix operations. 



5.1. 	(bontinued) 

In the sections that follow, it is not intended to give 

a detailed description of the internal operation of the progranne, 

instead the underlying concepts behind the programing techniques 

and the general capabilities of the programme are discussed. 

5.2 • 	The Structural. Manipulation Programme. 

5.21. General Description. 

The Structural Manipulation Programme, which contains 

approximately 5,000 statements, is designed to run on-line using the 

Edinburgh Multi-Access System. The input and output of data to and 

from the process is achieved using a teletype, although there is the 

capability of using other devices. The programme consists of a main 

driver section and a set of 27 external routines. The driver section 

contains procedures which allow the external routines to be selected 

order to perform specific mathematical operations. The external 

routines are designed as self-contained units which are independent 

of the rest of the process in a manner which allows them to be added 

to or deleted from the system without affecting the existing procedures. 

Although the programme is large, the sections of it that are .ised in any 

one given operation are by compar4son relatively small and can be 

executed 'with the maximum of speed and efficiency. 	Thus, by virtue'
. 
 of 

the way i4 which the programme is put together, it is integrated 
yet capabe of continuous development and expansion without impairing 

the efficiency of the existing sections. 

- T48 Structural Manipulation Programme is designed to perform 

analyses on the mathematical modeits of real. structures. 	This usually 

takes the form of mathematical op' pratiais which use data from the 

receptance matrices of the relevant systems. 	The calculation of these 

H 	 V 



5.21. 	(continued) 

matrices is time consuming, but they need only be calculated once for 

a given value of frequency. In very broth terms the programme performs 

operations in three main areas, namely, reading in system data, calculating 

the receptance matrices for the system and performing mathematical analyses ,  

using the receptance data. 	The system data takes the form of mass 

stiffliess and damping matrices, M. IC and C respectively. Where damping 

is not given explicitly in the form of a matrix, then it may be 

included as a percentage of critical damping in each normal mode. 	This 

involves the calculation of eigenvalues of the system and also the 

generalised transformation matrix formed from the associated elgenvectors. 

The damping matrix in the generalised coordinate system can be 

calculated from these values and then transformed back into the original 

coordinate system, (details of this along with the calculatiofl of the real. 

• and imaginary parts of the receptance matrix are given in Section 5.22). 

A simplified flow diagram of the programme is given in Figure 5.1. 

• 

	

	 Once the system data has been read in and the receptwice matrices 

calculated, then the main driver 1  section of the programme is entered 

• and the jser is then asked to select any one of the 44 options available 

in the programme. Some of the more important options are described - 

• 	below. 	 I 

(t) 	The real and imag.naryarts of the receptance 

matrix are calculated for a constant value of 

frequency, option (1) allows this value to be 

- 	
changed and the new receptance matrices 

• 	 'calculated. 	H 

• 	 The natural, frequencies and normal mode shapes 

of the system can be listed. 

-90-; 



start 
	 new 

Inpu t 
data 

Dumping 
matrix 	N 
given? 

es 

Calculate 
receptor-ice 
matrix Q 

t n t e r 
main 
driver 

sec tion 

Teletype 

• 	Store mapping 
file  

Data file-  

Punch cards 

Calculate the 
generalised 
recepta nce 
matrix Q from 
damping coeffs 
+ eigenvuLues. 

Transform back 
to original 
coord' system 

lect
all

[OSe

ption 

'(I______ 

Exit ? 

_fYe s 

I STOP 

E x t e mat 

Routines 

I 	I 

I 	I 
I 	I 

PROGRAM FLOW DIAGRAM 

Figure 5.1. 

-91- 



5.21. 	(cntinued) 

	

(in) 	Both mass and stiffness parameters can be 

considered in the programue; a stiffness 	- 

parameter is defined as the change in stiffness 

between two mutually compatible points in the 

structure which are referred to as the spring 

coordinates • A mass parameter is defined as the 

change In mass at one of the structural nodes, 

this point being referred to as the mass coordinate. 

There are no restrictions imposed on the points 

at which mass may be varied in the structure. 

Where stiffness is concerned, then any of the 

foflowing restrictions may be applied to the 

parameters:- 

No restrictions, i.e. stiffness may be 

varied between any two spring coordinates. 

Parameters may be restricted to being 

associated with existing structural elements. 

Grounded parameters, i.e. a spring connected 

between any point in the structure and gro4, 

may not be allowed. 

Option (in) may be used to impose any of these restrictoGs 

on the selected parameters. 

	

(ly) 	Structural Manipulation theory may be used to 

determine what th& response at a point in the 

structure will be for a given value of a para-

meter. This parameter change may be incorporfled 

I, 	into the system by Inserting the parameter vat into 



5.21. 	(Continued) 

(Continued) 

the structure stiffness matrix. If the 

parameter value is Ic and the spring coordinates 

are r and s, then the following elements of the 

stiffness matrix are modified: 

k(r,r)—* k(r,r)+k 

k(s,$) -9 k(s,$) + Ic 

k(r,$) —t k(r,$) - Ic 

Ic(s,r) —3 k(sr) -k 

• 	 Option (Iv) is used to insert both mass and stiffness 

parameter values into their respective matrices. 

• 	 Checks are made to ensure that the matrices 

remain positive definite. 

It will be noted in option (Iv) that the predicted 

response should be achieved where that particular 

parameter value is inserted into the stiffness 

• . 	matrix, and the new receptance matrices for the 

system are calculated. Where the damping in the 

system was originally specified in matrix font, 

then the response is achieved. However, where 

the damping is specified as a percentage of critical 

damping in each normal mode, then a change in the 

mass or stiffness data results in a change of damping 

since the latter depends on the eigenvalues of the. 

system. 	Option tv) may be used to ensure that the 

generalised damping matrix remains constant when the 

modified receptance matrices are calculated. See 

 



5.21. 	(Continued) 

(v). 	(Continued) 

Section 5.22. (Damping) 

(vi) 	For a given parameter, forcing point and response 

examination point, the data concerning the response 

circle produced by that parameter change can be 

listed. 	The foflawing data is given: 

The diameter and position of the centre of the 

circle, the response coordinates of the points 

at which the parameter is zero and infinity and the 

value of the minimum response. 

(VII) 	Given the restrictions imposed by option (In) there 

are procedures within the programme which will select 

automatically all the possible parameter changes 

within the structure. 	Option (VII) is used tb 
• 	

calculate the circle diameter, bias diameter and 

minimum response for all the chosen parameters. 

These three values are taken as being representative 

of the relative effectiveness of the parameters. The 

• I 	exact definition of these criteria is given in Chapter 

Li, Section 14.3. The effectiveness criteria are 

sorted, normalised in the range 0-1 and listed in 

descending order. Where an the parameters are 

• 	associated with elements , then a further analysis 

is performed giving the relative effectiveness 

structural elements based on the effectiveness of 

the parameters associated with them. 
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5.21. 	(Continued) 

(viii) 	Option (viii) uses the sane list of parameters 

as is given in option (vii), on]y this time the 

parameters are combined in pairs and each pair 

is assessed to see it it can produce zero response. 

The totsl number of parameters, the number of 

possible paired combinations and the number of 

pairs achieving zero response are listed. An 

• 	element analysis smiler to that in option (vu) 

is performed where the number of times a given 

element occurs in a successful pair of parameters 

• 	is tabulated in descending order, the values having 

been normalised in the range 0-1 (See Chapter U, 

Section 40.). When a given pair is successful 

in achieving zero response, then the values of those 

parameters can also be listed. 

• 	(IX) 	The Structural Manipulation programme may be used 

to plot out the following graphical infonnaticns- 

Three-dimensional, response plots as 

functions of frequency and stiffness. 

-See Figure 4.18. and 4.19. 

Graphs of circle diameter against frequency. 

See Figure 4.20. and 4.21. 

(a) 	The boundaries of the feasible response 

regions. See Figure 3.6. 

(d) 	The construction of feasible response 

regions from response circles. 	See 

Figure 3.4. 

 



5.21. 	(Continued) 

	

(x) 	Option (x) is used to consider a set of responses 

as a function of a single variable stiffness parameter. 

The sum of the magnitudes of the response vectors is 

minimised as a function of the stiffness parameter. 

The procedure may be used to select all the possible 

stiffness parameters as in option (VII) and to 

calculate the minimum vector sum for each parameter. 

The vector sums are listed in ascending order, with the 

values of the parameters used to produce then. 

	

(XI) 	The programme contains its own finite element 

capabilities which can be used to generate structure 

stiffness matrices. Option (n) allows any system 

data associated with the elements and nodes of the 

structure to be altered on an individual, basis without 

having to resubmit 	all the other associated 

data. This may take the form of changes to mass or 

inertia data, Young's Modulus, second moment of area of 

beam elements, the position of structure nodes and the 

connectivity of elements. 	 - 

	

(xii) 	Thei'e are procedures for listing the foflowing system 

data:- Receptance matrices; the constants inyólved 

in both single and aouble parameter response equations 

(see Appendices A aid B),  all the system data sch as 

mass, stiffness and damping matrices, node coordinates and 

• 	 element connectivity. 



5.21. 	(continued) 

(1t1 t) 	The programme possesses the ability to retain 

various forms of useful system data from one rim 

to the next. This eliminates the need to re-

calculate data each time the programme is run, 

thus saving time; in addition, the maximum amount 

of information on the system is always available. 

The following list gives an indication of the type 

of data retained:- 

Mass, stiffness and damping matrices. 

Eigenvalues, eigenvectors and trans- 

formation matrices. 

The receptance matrices (calculated 

for the last specified value of frequency). 

All element and node data. 

A complete record of all the systems ever 

used and a description of the graphical 

output from the programme. 

A record of any alterations that have 

been madej to individual systems. 

Most of the optima not mentioned here perform only 

trivia], tasks whièh are not directly associated with 

structural manipulation. An example of the output 

from the programme for some of the aforementioned 

options is given in Appendix 3. 
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5.22. Programming Techniques. 

File Mapping. 

The Last data handling capabilities of the Structural 

Manipulation Programme are achieved using the file mapping facilities 

available on the ICL hiS computer. 	Normally, a programme allocates 

storage space for the arrays and variables that are declared within 

it and before any analysis can take place data must be read in aid 

assigned to the relevant variables. This procedure must take 

plac every time the programme is run even if the input data is the 

same on each occasion. 	When the arrays are large, then the time 

taken to read in the data can be quite considerable, and this is not. 

desirable in an essentially interactive process. However, if file 

mapping techniques are used, then once the input data has been read in 

there is no need to repeat this operation on subsequent occasions. 

Pile mapping involves the mapping of programme variables on to 

a file. 	(A file is an area of computer storage space which is 

assigned to a specified user process). 	The allocation of storage 

space for programme variables is arranged to coincide exactly with the 

space assigned to a stare mapping file • Thus, once values have been 

assigned to these variables, then the data is stored from run to run 

on the store map file, and when the programme is re-rim the sane storage 

space is allocated for the variables and they automatically have the same 

values assigned to them as on the, previous run. If the values of the 

variables are changed whilst runn ing the programme, then these changes 

are automatically echoed in the store map file. The maximum size 0±' 

array the programme is capable at handling in this manner is about 60 a 
60. For a system of this size the amount of storage space the programme 

) 



5.22. 	(Continued) 

needs is approximately 294 K bytes, which is far in excess of what would 

normally be allowed using conventional techniques. The maximum use 

of the store map file is made by storing useful programme generated 

data such as naturel frequencies and normal mode shapes In the saw 

manner. Thus, file 'napping techniques not only save valuable running 

tine, but also allow for larger anoints of computer storage space to 

be used than would normally be possible. 

Coordinate Systems. 

One of the more important features of any mathematical model 

is the coordinate system in which it is defined. Afl the information 

concerning the model is given at points whose positions are defined 

in this coordinate system. The information that is of interest here 

concerns the node and element numbering and the numbering of the 

degrees of freedom of the model. 	Two systems are used in the 

programme, the user system and the redundant system. The node and 

element numbering of the structure is the same in both systems, and 

is arbitrarily defined by the user. The two systems differ in the 

numbering of the degrees of freedom of the structure. 	If the 

structure possesses n active degrees of freedom, m nodes and the 	- 

maximum number of degrees of freedom for any node is L, then the 

number of redundant degrees of freedom is given by 

(txm)-n 

Only the active degrees of froedo!n are numbered in the user system 

whereas the redundant system inclxdes the inactive ones as well. 	In 

both systems the numbers are assigned such that they increase sequentially 

with the node numbers, This is best illustrated by an example. 

Consider the simple structure shown in Figure 5.2. It consists of 
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5.22. 	(Continued) 

Coordinate Sy-stems (Continued). 

three inextensible beans rigidly connected at nodes 2 and 3. The 

maximum number of degrees of freedom at any node is two and the number 

of redundant degrees of freedom is five. 

® node number 

2 degree of freedom 
numbS 

Figure 5.2. 

Degree of Freedom Numbering in a Simple Structure 	- 

The numbering of the degrees of freedom in the two systems is given 

in TableE 5.1. and 5.2. 



5.22. 	(Continued) 

Node x y (rot) 

1 0 0 

2 1 2 

3 1 .3 

'S 0 0 

Table 5.1. 

User System 

Node x y (rot) 

1 1 2 

3 14 

3 5 6 

14 7 8 

Table 5.2. 

Redundant System 

In the user system the rigid nodes are identified by zero's. 

Degrees of freedom 1, 2, 7 and 8 In the redundant system are identified as 

being rigidly constrained by including them in a redundant list, 

degree of freedom 5 is also included in this' list since it is equivalent 

to degree of freedom 3. The redundant system has two main advantages. 

Firstly, it is not necessary to store the degree of freedom numbers in 

arrays since they can be calculated directly for any given node and 

coordinate direction using the formula 

DOF number a a + (b-l)* c 	 - 

where a is the coordinate direction (in the example x a 1, and y (rot) 

a 2), b is the node number and c is the maximum number of degrees of 

freedom per node. The second advantage concerns the automatic 

selection of. parameter coordinates. The simple piece of progiamme 

code shown overleaf selects the cordinates in pairs 
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% CYCLE I 1 21 9 C 

% CYCLE 3 = 1,1, NODE 

% CYCLE K = 3 21 2  NODE 

= i + (j-l)* a 

3-1+ (K-])*c 

%REPZLT 

%EEPEAT 

S REPEAT 

where B and S are the selected coordinates, NODE is the number of nodes 

in the structure and C is defined above. The coordinate pairs are 

checked against the list of redundant coordinates, and any pair containing 

a redundant degree of freedom is rejected. The successful pairs are trans-

formed to the user system where they are checked for element association 

and also for mechanical coupling with the examination point. This 

physical coupling is an obvious necessity ât1erwise the variation of that 

particular parameter would be meaningless. 	The test for coupling 

between two points, i and j, is if the element G 	the receptance matrix 

is non-zero. 

Damping and the Calculation of the Receptance Matrices. 

In simple mass, spring, dashpot systems, damping is specified 

directly in the form of a matrix; in reality, however, damping is 

seldom encountered in this form. Where complex structures are modelled 

using finite element techniques, j then damping may be included in the model 

in the I oim of a percentage of cr 1itical damping in each normal mode. The 

lflawlitude of the damping factors can either 

* is the computer symbol for multiplication. 
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5.22. 	(Continued) 

be estimated or measured expertnentafly. In order to introduce 

damping into the system, the equations of motion are transformed into 

generalised coordinates using the generalised transformation matrix It 

which is obtained directly from the aigenvectors of the system. It 

is known 	that the transformation matrix It will uncouple the undamped 

equations of motion of an N degree of freedom system in the foll owing way. 

If the equations of motion of the undamped system are given by 

+jn Q 
	

(5.1) 

Then, substituting for A in equation 5.1. using the generalised trans-

formation 

(5.2) 

where are the generalised coordinates of thesystem; and we- 

multiplying by itT  (the transpose of matrix B) gives 

flTMR 	+RTKR0 	 (5.3) 
In Which 

RTMR_M*= I 

and 

where Mn. ¶d lt* are the generafled mass and stiffness matrices 

respectively and ek is the (N x N) diagcnal matrix of eigenvaluss X. 

Now, if the damped equations of motion of the system are to 

be u$coupled by transfonning to generalised coordinates, then the 

generalised damping matrix E* will be of the form 

Idiag(21w.1 	 (SJt) 

where 7 ± is the damping factor in the ith normal mode and 	is the 
natural freqncy of the system. The forced generalised equations 
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5.22. 	(Continued) 

of motion of the system may be written 

H*4+E3e4+jc*a p 0  XL/b 	 (55) 
whereF* - 

The stea4y state solution for the response is given by 

sale wt 

where 

G*F* 	 (5.6) 
and 

(3* 	diag C 	- w2 ) + 217 .w.wJ
-1 
	 (5.7) 

which is the generalized complex receptance matrix for the system. 

Equation 5.7. may be 'written in the more general form 

*= !A+i!r'  
where Aisthe (WxN) diagonal matrix 0f terms 

the (N x if) diagonal matrix of terms (27p.w). If the real and 

imaginary components of 0* are 0* and fl* respectively, then from 

equation 5.8. 
II 

f+iej [A+iB]i 	 (5.9) 

Equating the real and imaginary parts of equation 5.9. gives 

0* A - The 3 a 	 (Sa;o) 1 1  
:11 

(5.11) 

Equations 5.10. and 5.11. may be solved simultaneou sly to give 0* and 
• 	as functions of LandBasfouoys 

and 

-104- 



5.22. 	(Continued) 

Matrix A is chosen for inversion since the inversion of matrix B 

which contains small terms associated with the damping of the system 

might lead to numerical errors. The real and imaginary parts of 

the generalised complex receptance matrix (1* may thus be calculated 

from the eigenvalues of the system and the damping factors in each 

normal mode. 	Equation 5.6. may now be transformed back to the 

original coordinate system to give the response vector x as follows 

x- GFaRO*.RTF 

If the real and iaaginary parts of G are £ and 1) respectively, then 

they maybe given in terms of The real and imaginary parts of 0* as 

foflows 

C - It Cit ItT 

$ 	D - RThtRT  

It is the elements of matrices C and D that are used in Appendix A 

to calculate the constants involved in the equation for the receptance 

as a function of variable stiffness. 

If the damping matrix E had been specified explicitly then 

the matrices A and B would have been calculated as follows 	 -. 

H all-lieu] H 
and 

BECJ 

The real and imaginary components of the receptance matrix C are now 

given by 
-1 

£ - [A+B 1 B] 

and 

a--nc 3-  
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5.22. 	(continued) 

It will be noted that the inversion of matrices when working In 

generalised coordinates is simple, since the matrices involved are 

all diagonal. Also with reference to Section 5.21. Option Cv), it 

is matrix B a Z*Wi4iich is held constant in order that the damping 

of the system remains unchanged when the eigenvaluss of the same 

system are altered. 

5.3. 	Conclusions. 

A. brief description of some of the capabilities of the 

Structural Manipulation Programme has been given. The pro granrw 

which has been developed and improved over a two and a half year 

period is at present in a well tried and tested state. It has been 

shown to be a useful tool in the practical application of structural 

manipulation and its development is not limited just to consideration 

of ways of achieving minimum response at specified points In a structure. 

Research is at present being carried out into the possibility of 

adting the Structural Manipulation theory, developed here to tackle 

the problem of flutter in aircraft lifting surfaces.. The aim would 

be to manipulate the relevant substructure variables In order to 

achieve a specified normal mode configuration. There should be 

relatively,  little difficulty In adapting the programme to produce results 

relating to the effectiveness of parameters in changing a normal mode 

shape. 

• 	- Under normal operating conditions when the progranme is being 

run 	a restriction of two minutes CPU* time is imposed, and 

• L* Central Processor Unit.] 
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5.3. 	(Continued) 

this tends to limit the size of systems that can be considered, and 

also the scale of mathematical operations that can be performed. In 

order to save time, wherever possible iterative procedures are avoided and 

matrix analyses are performed using diagonal matrices. 	A great 4eal of 

emphasis has also been placed on the production of concise results 

which present Information in a qualitative rather than quantitative 

form. The programme is intended to give a rapid analysis of a 

simple structural model with the broad aim of producing results 

which will Indicate, in the most general sense, those areas of that 

structure which are most suitable for modification for the purpose of 

reducing vibration levels. 

ii 



II 

CHAPTER 6 

EXPERIMENTAL ANALYSIS 

6.1 
	

Introduction. 

The aim of the experimental analysis was to examine the dynamic 

II 

response at a point in a structure and to verify that the locus of 

that response vector traces out a circle when the stiffness of a simple 

spring element in the structure is varied. It was not considered 

necessary to examine the more complicated situations involving two or 

more parameters, for it was evident that the results pertaining to 

these cases could be arrived at equally well by allowing each parameter 

to vary individually in turn. Thus, if the form of the response 

can be verified for a single variable parameter, then those results 

involving more than one parameter may also be assumed to be true. 

This is by virtue of the fact that the response circle forms the 

constituent part in higher order cases. 

As well as verifying the form of the response, the accuracy 

of the values is compared with those obtained theoretically. The 

latter must obviously depend very much on the degree of accuracy to 

which the experimental structure can be modejued mathematically. In 

order to determine the accuracy, the natural frequencies of the 

experimental structure were measured and used as the basis for comparison 

between experiment and theory. 

To achieve the objectives, outlined above, a test structure was 

built and a continuously variable stiffness element was designed to 

opezate in conjunction with this.- The structure was to be realistic, 

yet not unduly complicated by too many unnecessary degrees of freedom, 



6.1. 	(Continued) 

and consideration was to be given in its design to the ease with which 

it could be modelled mathematically. A programme controlled transfer 

function analyser was used to measure the response of the structure. 

The experiment was divided into two stages; the measurement of 

structural response as a function of variable stiffness, and the 

determination of the natural frequencies, node shapes 	and damping 

of the structure. The remaining sections in this chapter describe 

the construction of the experimental equipment, the techniques involved 

in the analysis and the measurement of the results. 

6.2. 	The Design and Development of a Variable StiffnessElement. 

6.21. General Specification. 

Ideally, the variable stiffness element should have linear 

characteristics and be continuously variable in a manner causing the 

least possible disturbance to the experimental system. In the 

preliminary design stages, four ideas were considered; an electro-

mechanical spring, interchangeable spring elements, an air spring and 

a variable length cantilever spring. The first two ideas were rejected 

on the grounds that they were unsuitable • Two prototypes of the air 

spring were built, but the idea ws abandoned owing to technical. 

difficulties. Finally, a variable length cantilever spring was designed 

and incorporated in the structure.. This had the desired characteristics 

and was used successfully to vary stiffness within the structure. A 

briOf desriptia of each of the four ideas is given below, 

6.22. The Electro-mechanical Spring. 

Figure 6.1. shows the schematic representation of an electS-

mechanical spring, consisting of a solenoid mounted between two points 

in a structure. A linear potentiometer is attached-between the same 
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6.22. 	(Continued) 

two points and produces a signal which is directly proportional to 

their relative displacements. This signal is used as the input to a 

variable gain amplifier whose output is then fed directly to the solenoid. 

The system is adjusted so that the solenoid applies zero toroe when the 

structure is In equilibrium. 

4 

p 

Figure 6.1. 

Sãhexnatic Representation of an Electro-mechanical Spring 
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6.22. 	(Continued) 

The stiffness of the solenoid can be varied, without 

disturbing the structure, by altering the gain of the amplifier. 

The inadequacies of this system are concerned with the solenoid. 

Firstly, it is difficult to arrange for the solenoid to operate 

efficiently in both the push and pull modes; and secondly, the 

maximum force output and hence the maximum stiffness of solenoids of 

a suitable size is not large enough to be compatible with the envisaged 

stiffness of the experimental structure. 

6.23. Interchangeable Spring Elements. 

An adequate, though not altogether satisfactory method of 

achieving variable stiffness in a structure is to use a set of 

linear spring elements each with a different stffness constant. 

However, the disadvantages of this arrangement include the limited 

range of stiffness for a given spring size and the considerable 

disturbance that would be caused in the structure when changing the 

elements. 	This idea was only to be considered as a last resort. 

6.24. The Air Spring. 

The single acting air spring consisting of a column of air 

trapped between a cylinder and a movable piston is used in a wide 

variety of applications mainly connected with suspension systems. In-

most oases the highly non-linear nature of the air spring is either 

used to some specific advantage or is considered to be of no great 

importance., If the air spring is considered to be double acting as 

shown in Figure 6.2., then for snail displacements the stiffness of the 

spring may bs considered to be approximately constant, 
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6.24. 	(Continued) 

1.. 

Figure 6.2. 

Double Acting Air Spring 

By varying the initial pressure P0  in the cylinder, the 

stiffness of the spring may be altered and a wide range of values 

may be achieved without any undesirable increase in weight. 	 I  

Theoretically, the air spring offers reasonable scope for 

development, and in the initial stages of the experimental investi-

gation a considerable amount of time aid effort was spent on its 

design and construction. The project, however, never reached a 

satisfactory conclusion and was abandoned. The design of the air - 

spring is unfortunately marred by the technical difficulties 

associated with its construction. These are severe enough to make 

the time scale for the project qite unreasonable. The theory 

of the air, spring and the state of progress achieved during its 

development are discussed briefly here. 

The system depicted in Figure 6.2. consists of a cylinder 

of length 2 Q. and cross sectional area A.. A double shafted piston 

is positioed centrally within the cylinder and held there in equilibrium 

H 
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6.214. 	(Continued) 

by equal pressures P 0  on either side. 	The gas within the cylinder: 

may be considered to obey the adiabatic law. 

1w1 	constant 	 (6.1) 

where P is the pressure, V the volume and Tis  the ratio of specific 

heat for that particular gas. For the sake of simplicity, the latter 

is considered to be miity in the remaining analysis. 	If the piston 

is displaced from the equilibrium position by a distance x, then the 

new pressures to the right and left of the piston are P1  and 

respectively. From equation 6.1. these are related by 

PV - P1V1  P1  L - x)A 	 (6.2) 

P0VP2V2 P2  (I+x)A 

• The resultant force on the piston is then 

(P1 - P)A - 2PALx 	 : 	 (6.3) 

t2-ic2  

If  1
2>> x then this may be approximated by 

(P1-P2 )A - 2PAx 	
(6.14) 

t 

which provides a linear relationship between force and displacement. 

The discrepancy in using this approximation may be estimated from the '  

graphs given in Appendix E which show the relationship between 
- 	and x for both equations 6.3. and 6.14. 
2AP0  

The en-or in the app' adnation can be seen to be small for values 

Of up to: 0.3 where it is 11%. 

Rating obtained a configuration with linear characteristics, it 

is n required to examine the parameters affecting the stiffness of the 
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6.21. 	(Continued) 

spring. The latter may be obtained from equation 6.14. and is given 

rA 
k2PA 

0 	 (6.5) 

& 

Once the physical dimensions of the spring have been decided upon, 

varying the initial pressure p0  is the only means whereby the stiffness 

of the spring can be altered. The length and area of the cylinder have 

+ 

	

	a definite effect on the spring's sensitivity to small displacements. 

High sensitivities can be achieved using either large values of A or 

small values of 2,. 	But as t- becomes small, it will tend to violate 

the necessary condition that 93>> x2  far linearity in equation 6.3. 

Considering a spring with a maximum working displacement of 0.25" and a 

2.0" cylinder (1. - 1"), then the error in using the approximation in 

equation 6.2. is less than 2%. Thus, although not critical, decreasing 

the size of t, still further is not a desirable way of increasing the 

sensitivity of the spring. However, increasing the piston area A t  which 

depends on the square of its diameter, is an effective way of increasing 

sensitivity without introducing any undesirable characteristics. 

The theory shows the air spring to be a viable concept; the 

practical implementation of this however involves a considerable amount 

of technical difficulty. The problems fall into two main categories. 

The first of these involves the provision of dynamic, yet gas-tight 

seals, whilst the second involves the minimisation of the friction forces 

between moving parts. Two air springs were built in an effort to 

provide satisfactory solutions to these problems. The experience 

gained in each case provided useful information, but neither version 

succeeded tin possessing the desired characteristics. Both versions of 
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6.214. 	(22ntinued) 

the air spring are described here, and a discussion of the merits and 

undesirable qualities of each is given. 

Version I. 

- 	The first version of the air spring is shown in Figure 6.3. 

and consists of a closed cylinder containing a single shafted piston. 

o rings inset on the shaft and the piston serve both as bearings and 

as gas-tight seals. Both sides of the piston were pressurised throughj 

the needle valves at either end of the cylinder. The gas used through-

out the initial stages of the investigation was compressed air being 

generated from a portable compressor. The maximum available pressure 

_was flØ;  p.s.i. 

The air spring was tested in the horizontal position using 

an initial pressure of 50 p.s.i. and with a 2 lb. mass attached to 

the piston.With the cylinder clamped, the piston was excited by an 

electromagnetic vibrator over a range of frequencies. The system 

exhibited no form of magnified response. Large friction forces were 

found to exist between the 0 rings and cylinder, although these were 

considerably reduced once the piston had been set in motion. The 

unbalanced effect caused by having only one shaft on the piston was 

sufficient enough to cause it to creep down the cylinder. It was 

found that even when subjected to the maximum available pressure of 

nO p • s .i ., the small displacement encountered ( 	.050") was in- 

sufficient to cause any significant resultant force on the piston, i.e. 

there was no effective spring action. 

Version II.. 

In the light of the obseryations made from the first air 

spring,. Version fl was desigied incorporating the following modifications; 
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Version II 	(Continued) 

A double shafted piston mounted in linear 	
p 

bearings 	to eliminate any radial loads on 

the 0 rings. 

The use of maximum tolerances to reduce 

friction. 

Increased piston area and reduced cylinder 

length to increase sensitivity to s7nall 

displacements. 

A flexible diaphragm between the piston 

and cylinder instead of an 0 ring. 

Greater accuracy in the manufacture of all 

parts. 

The use of CO  instead of air (maximum 

pressure 750 P.M.). 

Apart from incorporating several improvements to reduce friction, 

Version II of the air spring was designed in order to achieve increased 

seüsitivity and also to assess the effectiveness of using a diaphragm 

as a flexible seal between the piston and cylinder rather than an 0 

ring. It was hoped that whilst still retaining an effective gas-

tight seal this arrangement would allow sufficient freedom of movement 

• 

	

	yet not possess any of the undesirable frictional qualities of its pre- 

decessor. Figure 6.4.(a) shows the layout of the spring. The 

• 	length of the cylinder has been reduced to one inch CL 0.5"), which 

• with the maximum expected displacement of 0.1" causes the departure from 

the linear law to be only US. 
Te4ts were carried out initially to determine the ideal material 
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Air Spring Version II 

Figure 6.4. 
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6.24. version II (Continued) 

and optimum size for the diaphragm. 	Firstly, several thicknesses 

of rubber sheet were tried, ranging from 0.015" (surgeons gloves) to 

0.1" thick. In each case these proved to be too flexible and were 

epfly 4efonne4 y the sugtant4al pressi!P 	ferSices 4thin the 

cylinder (see Figure 6.4-W). Next, steel shim varying in thickness 

from 0.002" to 0.01" was used in an attempt to obtain flexibility 

yet eliminate any stretching of the diaphragm. Besides changing the 

thickness of the steel, the ratio of the area of the diaphragm to that 

of the piston was also varied (see Figure 6.4-M. However, when 

sufficient latitude of movement had been achieved the diaphragm soon 

cracked due to fatigue. Considerable difficulty was also experienced 

in obtaining a gas-tight seal between the two halves of the cylinder. 

This was most probably the cumulative effect of using a gasket rather 

than an 0 ring to provide a seal, and the increased forces accompanying 

the higher gas pressures. No frequency response characteristics were 

obtained for Version fl. 

6.25. The Variable Length Cantilever Sprin 

Originally, it was intended that the variable stiffness element 

should be capable of being attached between any two compatible points 

in the structure. By restricting the generality of this statement and 

considering only the simplest form of parameter variation, namely a 

linear spring with one end attached to the structure and the other end 

to ground, it is possible to construct the equivalent system shown in 

Figur 6.5i }; This consists of a cantilever beam clamped at the lower 

end and attached to the structure at the other via a rigid connecting 

rod. Rotational releases at either end of the connecting rod ensure  

that &dy iorizontal forces are transmitted to the structure. The 
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6.25. 	(Continued) 

cantilever applies an external force to the structure which is 

proportional to displacement and is given by 

F3EIx 	 (6.6) 

13 

where E is Young's modulus for the material and I and U. are the second 

moment of area and length respectively. The stiffness at the end of 

the cantilever can be varied by altering its length; this is achieved 

using an adjustable clamp, details of which are given in Appendix F. 

The arrangement is simple to operate and is capable of producing a wide 

range of stiffnesses. 

structure 

cantilever 

rotational 	- 	 - 
releases 

	

- 	 adjustable 
clamp  

I 	 Figure  6.5(1) 

- 

Variable Length Cantilever 
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6.3. 	The Test Structure. 

The test structure which is made up of steel blocks inter-

connectemy spring steel strips is shown in Figure 6.5.(a). The 

dimensions of the structure were initially determined in order that the 

highest natural frequency of the system should not exceed 159 Hz 

This restriction comes as a result of thO limited resolution of 

frequency in the oscillator that is used to drive the exciters • For 

frequencies up to 159 Hz , the resolution is 0.1 Hz, after which it 

Increases to 1.0 Hz. The disadvantages of the latter are obvious. 

Through a process of trial and error the 6" x 4 rectangular arrangement 

shown in the figure was found to have natural frequencies in the range 

0-159 Hz. 

The test structure consists of eight 1.75" square steel 

blocks Inter-connected by 1.0" x 0.063" spring steel strips to form 

a 6" x 14" rectangular grid. The structure is considered to possess 

ten degrees of freedom, two translations and eight rotations. For 

reasons that will become apparent later, this was reduced to eight by 

constraining degrees of freedom 9 and 10 (Block 8 rigid). This 

arrangement increases the stiffness of the structure and causes the 

two highest natural frequencies to exceed the desired limit of 159 Hz. 

This undesirable characteristic was considered unavoidable at the time 

the modification was made. The modified structure is the one referred 

to throughout the rest of this section. 

Tho blocks, each representing a structural node, consist of four 

0.875" x 0.875" x 1.75" slotted sections and are joined together as 

shown In the exploded diagram in Figure 6-5- M. The blocks are 

• 	deliberatey made large in order that their mass should be very much 

• 	greater than that of any attached instrumentation. A hole drilled 
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6.3. 	(Continued) 

centrally through the block allows for the attachment of accelerometers 

to measure the horizontal and rotational acceleration at that point. 

A representation of the latter is achieved by mounting an accelerometer 

off the centre line of the block with its least sensitive axis in the 

horizontal direction. 

The structure is excited externally in either of two ways, 

horizontally at block 1 or in the form of a torque at block 2. Both 

these forms of excitation are necessary in order to properly excite the 

normal modes of the structure. The horizontal excitation force is 

transmitted to the structure via the coupling arrangement shown in Figure 

	

6.6. 	1 -  

retaining springs 

exciter 
structure 

gauge 

Figure 6.6. 

Coupling Mechanism from the Exciter to the Structure 
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6.3. 	(Continued) 

The coupling consists of two pointed spigots attached to the 

vibrator and structure; a piece of 0.25" aluminium dowel completes 

the connection and is located in position by dimples 	at either end. 

The retaining springs are tensioned sufficiently to prevent the 

connecting bar from falling out when the coupling is in tension. The 

system only transmits horizontal forces to the structure and allows 

for a certain degree of misalignment between the two spigots, thus 

minimising any lateral forces on the exciter. 

The application of a pure torque to the structure was originally 

achieved using the arrangement shown in Figure 6.7.. (see also photo-

graph (8) in Figure 6.8.). The torque was generated at the fixed end 

of the coupling by means of an offset vibrator as shown in the figure. 

This was then transmitted to the structure via a torque tube and a set 

of two expandable bellows • The bellows were included to allow any 

horizontal motion of the structure relative to the exciter • This 

system resulted in sane undesirable non-linear effects and was later 

replaced by the rigid bar shown in photograph (Q in figure 6.8. In 

practice the structure exhibits very little horizontal motion when 

excited in the rotational mode and consequently the increased flexibility 

introduced by the more rigid connection does not significantly affect - 

the measurement of the higher nods of the system. The cantilever 

spring described in Section 6.25. is attached to the structure at block 

U, thereby allowing the stiffness to be varied in the horizontal direction 

at that point. A general impression of the test structure may be 

obtained from the photographs in Figure 6.8. 
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6.3. 	(Continued) 

At the beginning of this section, it was mentioned that the 

original test structure was modified in order to rigidly constrain 

degrees of freedom 9 and 10 at block 8. This modification was made 

after csep.g he réauls of an initial investigation into the 

way in which structural response varies as a function of stiffness. 

It became apparent that the response locus was not circular as had 

been predicted, but appeared in the form shown in Figure 6.9. 

Figure 6.9. 

Response as a Function of Stiffness in the Origins]. Test 
1 	 Structure 
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6.3. 	(Continued) 

The locus shown here is characteristic of the one produced 

when two stiffness parameters, one very much more effective than the 

other, are varied simultaneously and in a related manner (see Chapter U, 

Section U.k.). Thus, it would appear that the stiffness element 

connected at block U was somehow affecting the stiffness at that point in 

more than one direction • The most likely cause of this would seem to 

be the non-symmetric nature of the structure at the point of attachment 

of the variable stiffness element. By making node 8 rigid, the symmetry 

of the structure was restored; that is with respect to block U. 	A more 

-- - 	comprehensive explanation of this phenomena cannot be given, but the 

fact that an almost perfect circular locus was obtained when the afore-

mentioned modifications had been included would tend to indicate that the 

Previous assumptions were correct. The results presented in the latter 

• part of this chapter refer to the modified structure. 

6.4. 	&perimental. Equipment. 

The experimental, equipment was intended for the purpose of 

measuring the response at a point in a structure. Figure 6.10. shows 

a block diagram of the system which consists of a Program Controlled 

Transfer Function Analyser (PCTFA) with associated peripheral equipment,, 

and the test structure itself. The PCTFA was used to control the - 

experimental variables and to take response readings. The system 

comprises a solartron .JN1600A Transfer Function Analyser (Tm), with a 

high frequency extension wtLt, these being controlled through an 

• interface ly PDP8 mini-canputer. 	The PCTFA provides the following 

capabiljtiess\ 

Automatic frequency response measurement. 

Multi-point analysis (up to 30 channels). 

iii), Display of response readings on an Ir plotter or 
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(Continued) 

Cathode ray tube. 

On line programme development and processing 

of measured data. 

The parameters under software 	control are* 

	

i) 	The magnitude and frequency of the driving 

sigma].. 	 I 

Input sensitivity. 

The number of cycles of integration in the 

correlation process. 

	

iv) 	Input channel selection. 

• 	v) 	An analogue output to plotter or scope. 

	

vi) 	Provision for the additional input or 

• 	 output of information in the form of a 

• 	 Binazy Coded Decimal Number (BCD), providing 

an alternative control channel to the tele- 

type. 

The software package incorporated in the system is a modified 

• version of DEC FOCAL 8 called Dynamic FOCAL. This includes the 

necessary commands for controlling the transfer function analyser. 

Details of the operation may best be obtained by describing a 

typical sequence of operations leading up to the taking of a response 

reading. The frequency and magnitude (0-17) of the driver sigma]. are 

set up using the oscillator contained within the Tfl. This sigmal is 

then fed through a power amplifier to a vibrator which excites the -. 

system under test. Signals from the accelerometers attached to the 

I'  structure are then fed back to the PCTFA. via suitable charge amplifiers. 

On the presnt system cn2y ten of the thirty channels are operative. For 
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6.4. 	(Continued) 

any chosen channel the input signal is connected to the digital correlator 

whose input, sensitivity is set to "auto range" to find the right input 

level automatically. At this stage the correlator picks out only the 

fundamental sine wave component in the signal and rejects the noise 

content and all Other harmonics. This is achieved by multiplying the 

waveform by sine and cosine reference signa3s derived from the fimotical 

generator. Digital integrators in both the sine and cosine channels 

average their respective multiplier outputs for a period equal to a 

finite number of cycles of the excitation frequency. The correlation 

process has the effect of rejecting all harmonics other than the 

fundamental. 	Noise rejection, however, increases with the number of 

cycles of integration, which may be set to l( 100 or 1,000 cycles of the 

fundamental frequency. The outputs from the sine and cosine integrators 

are directly proportional to the "In phase" and "Quadrature" 

components respectively of the waveform being measured. 	These may 

be displayed as cartesian, polar or log polar coordinates. 

The major proportion of the available 8K of storage space in 

the PDP8 computer is taken up by Dynamic Focal, which leaves only 

enough space to store 75 pairs of response coordinates. Although 

somewhat restrictive, this is normally adequate for most purposes and 

allows sufficient scope to perform simple mathematical operations, 

such as sorting and scaling, on the stored data. The facility for 

displaying the data on an oscilloscope allows instantaneous viewing 

of experimental results, of which particular importance is attached to 

frequency response plots. 

The apparatus thus constitutes a fully integrated system 

capable of. the automatic control and measurement of the dynamic respnse 



6.4. 	(Continued) 

of a structure. The photographs given in Figures 6.11. and 6.12. 

give a general impression of the equipment. 

6.5. 	Experimental Procedure. 

The experimental procedure may be divided into two sections. 

The first of these is concerned with the measurement of structural 

response as a function of variable stiffness; the second refers to the 

measurement of the natural frequencies and normal, mode shapes of the 

structure. Both of these involve the measurement of response, the 

former being at constant frequency, whilst the latter require  that 

a set of response readings be taken over a specified range of frequencies. 

Each response reading has associated with it a phase angle which 

is defined with respect to the reference signal generated by the TFA '5 

interns], oscillator. It is common practice to take this same signal as 

being representative of the sinusoids]l, force input to the structure from 

the exciter, in reality, however, this signal is not a strictly true 

representation. 	The force applied by the exciter is proportional 

to the current passing through the coil (when stationary) and is also 

dependent on the impedance of the structure to which it is attached. 

In both cases considered above, the impedance of the structure does 

change and thus the input voltage to the exciter cannot be taken as 

• being truly representative of either the magnitude or the phase of the 

force output. 

The magnitude and phase of the force input to the structure can 

be determined by means of a force gauge inserted between the exciter and 

structure. The phase relationship between the response and the true 

force input can be calculated from the separate phase angles between 

each of these and the original reference signal. If the magnitude of 
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6.5. 	(Continued) 

the true force input changes then the size of the response vector 

can be compensated for accordingly. Figure 6.13. shows the response 

vector in both the true force coordinate system and in the coordinate 

system referring to the reference signal. 

ti 

'I 

- - - - - - _;esonse vector 

F 	 True forte 

for e 	 system 

- 
id 	 Re 

Reference system 

• 	 Figt'e 6.13. 

Force Reference Coordinate Systems 
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6.5. 	(Continued) 	 I  

If the magnitude of the forcing vector obtained on the first 

reading in any given set is taken as a reference and all subsequent values 

are adjusted accordingly, then the coordinates of the response vector in 

the true force reference system may be calculated as follows. Let the 

cartesian coordinates (in the reference system) of the force and 

response vectors be (a,b) and (c,d) respectively, and the magnitude 

of the forcing vector on the first reading be e • Then the coordinates 

of the response vector in the true force reference system are (z: "y) 

where 

xe (ac +bd) 

2 a 2  +b 

and 	y - e(ad - be) 

2 	2 a +b 

All subsequent readings can be adjusted in this manner, thus effectively 

compensating for any changes in the magnitude and phase of the true 

force input to the structure. 

6.51. The Measurement of Structural Response as a Function of 

Variable Stiffness. 

The aim of the first part of the experimental analysis was 

to be able to reproduce the circ4ar locus for varying stiffness 

predicted in the theory. Ideally',, the point at which the response is 

examined was chosen to be particularly sensitive to any variation in the 

stiffness parameter. 	This sensitivity was maximised by choosing an 

excitation frequency close to, but greater than, one of the natural 

frequencies of the system, and by attaching the stiffness element at a 

point in the structure which possessed a large amplitude of vibration 

in the normal mode associated with this frequency. Also the stiffness 
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6.5. 	(Continued) 

element was varied over a sufficiently wide range of values so as to 

produce as large an arc of the response circle as p08 sible • The exact 

frequency at which the experiment was carried out was determined by a 

process of trial and error based at the quality of the results 

obtained. Having chosen the values of the various experimental 

parameters, control was passed to the PCTFA. Here, a small progranmte 

was written to control the experiment and required as initial input 

data, the magnitude and frequency of the excitation signal and the 

number of cycles of integration to be used in the correlation process. 

The computer was now set up to take response readings and store them. 

The measuring cycle was started by remote control using the external 

input facility of the POTFA. 	This eliminated the need to use the 

teletype as an input device and also meant that the entire experimental 

analysis could be performed in the proximity of the test structure, the 

latter being situated some distance away from the POTFA. 

A typical measuring cycle involved the following steps z 
II 

i) 

	

	The variable stiffness element was set to 

maximum stiffness. 

The programme was started and the necessary 

• parameters read In. 

The structure was excited at the required 

magnitude and frequency and allowed to settle. 

The measuring cycle was initiated by remote 

control and a respcçse reading taken. 
• 	

v) 	The stiffness of the variable element was 

• reduced by a small Smount and another reading taken. 
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6.51. 	(Continued) 

Altering the stiffness of the cantilever entailed loosening 

a retaining bolt and lowering the clamp by means of the screw thread 

arrangement shown in Appendix F. 	The clamp was uniformly tightened 

after each change using a torque wrench. 	The measuring process was 

repeated until sufficient data had been collected, at which time the 

sequence was terminated. The response readings were sorted, scaled 

and displayed on the screen of a storage oscilloscope. The information 

was presented as a series of points in the complex plane. If the data 

was satisfactory, then a hard copy was obtained on an XI plotter and 

in addition the coordinates of each point were punched out on paper tape. 

The following information was also noted: 

The magnitude (lb f) and frequency (Hz) of the 

excitation force. 

The calibrated output of the accelerometer (V/g). 

Any scaling factors involved in the measured data. 

The examination and forcing points and the 

position of the stiffness element. 

6.52. The Measurement of Natural Frequencies, Normal Mode Shapes 

and Associated Damping. 

Although not the most important part of the experimental 

programme, the measurement of natural frequencies and normal mode shapes 

is ncessary since they form the basis for comparison between the 

experimental and theoretical models • The results are obtained using 

simple techniques rather than some of the more comprehensive methods 

developed in the recent past [io, fl, 12] 	The time taken to develop 

working versions of these techniques is disproportionate with their 

desirthuitY within this analysis. 
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6.52. 	(Continued) 

The method initially involves identifying the nature], frequencies 

of the structure from a frequency sweep performed by - hand. 	The 

response signal from the accelerometer under consideration is dispived 

on the y axis of an oscilloscope in conjunction with the signal 

representing the force input on the x axis. The resulting trace is 

a lissajoux figure. 	This nthoi of examining the response shows the 

change in phase as well as magnitude when passing through a natural 

frequency, and hence is a more satisfactory method of identification 

than the peak amplitude method. Also noted at this stage is the degree 

of freedom with the largest amplitude of vibration at each natural 

frequency. 

These initial estimates are now used as the basis for an 

accurate frequency sweep in the neighbourhood of the natural frequencies. 

This time, the POTFA is programmed to vary the frequency, select the 

input channel and take the response readings. The resulting vector 

response bci are then analysed to produce \a revised calculation of the 

natural, frequencies; this being based on the point at which maaum 

spacing occurs between successive response points taken at equal inter-

vals of frequency. Figure 6.14. shows a typical vector response plt. 

- 



6.52. 	(Continued) 

0C (0j) 

- 

6 	 - 

(w) 

Figure 6.14. 

Typical Response Locus 

A circle is fitted to the experimental data in the region of the 

nature], frequency. If F is the nature], frequency and F1  and F2  

are frequezcies at points 900 displaced to each side of this, then 

from a graphical analysis of the vector plot the damping constant 7 
for that particular mode can be calculated using the equation I 

2] 

- 	
F 

If the circle does not coincide with the experimental, data for as much 

as 1800, thbn the damping may be calculated using the alternative 

expression 
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6.52. 	(th,ntinued) 

f 	2(I?3 - Fu) (tan  i - tanc2)Fn 
2 	2 

where F3 , F1111  and(X 2  are as defined in Figure 6.14. 

TO measure the normal modes of the structure, the system is 

excited at each of the natural frequencies in turn. An initial estimate 

is obtained from the magnitude of the response signals from each 

accelerometer. An attempt is made to identify nodes in the normal 

mode using a stroboscope to highlight the movement of the structure. 

-. 
- 	Besides this visual approach, the structure is examined physically 

by touch to sense the vibration. This additional information proves 

useful when analysing the experimentally calculated normal mode vectors. 

Alter this preliminary examination, the POTFA is programmed to excite 

the structure at the required frequencies and to obtain the response 

readings for each of the eight degrees of freedom making up the normal 

mode. The accelerometers attached to the structure have lMividnal 

variable gain amplifiers and prior to taking normal mode readings: 

the amplifiers are adjusted such that they all give the same magnitude 

of signal when their respective accelerometers are being subjected to lg 

acceleration. This matching of the accelerometers is necessary for the 

normal mode data to be meaningful. Having obtained a set of response 

readings for each normal mode, the data is analysed to give the 

magnitude Of each vector and also its real and imaginary components in the 

complex plane. The magnitudes of the vectors in each node are sorted 

and normalijed such that the highest value is unity. 

The! method outlined in this section may be relied upon to give' 

reasonably accurate estimates of the natural frequencies of the structure. 

• 	.1 	 H 
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6.52. 	(Continued) 

However, those frequency response plots obtained in the frequency 

range above 159 Hz do not possess a sufficient degree of resolution 

to allow any meaningful graphical analysis. The natural frequencies 

in this range are obtained using the peak amplitude method, whilst 

the corresponding damping coefficients are estimated by interpolating 

data from the sparsely populated vector response plots. 

The experimental techniques used to produce the norms], mode 

vectors of the system includes certain approximations which may provide 

grounds for casting doubt upon the accuracy of the results. The 

first approximation involves the instrumentation used in the measure-. 

ment of rotational response. Figure 6.15. shows the position in which 

the accelerometer is mounted in order to pick up the rotational 

response of the block. 

-. -Ox 

accelerometer - 

I 

Figure 6.15. 

The Measurement of Rotational, Response 
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6.52. 	(Continued) 

Any given rotation ft of the block results in a displacement 

in the zz direction which coincides with the most sensitive axis 

of the accelerometer. 	However, any coincident motion in the n 

direction will also be picked up by the accelerometer and will tend 

to distort the originally desired signal. It is fortunate that 

the accelerometer is only 10% as sensitive in the n direction 	as 

it is in thezz plane, which helps minimise the effect of this un- 

wanted signal. The second, and probably the most important factor 

influencing the normal, modes concerns the degree to which it is 

possible to excite a pure normal mode. In theory, the structure 

should be excited at at least as many points as there are degrees 

of freedom in order to produce a pure norma]. mode (undsnped). 	In 

practice it is usually possible to excite a reasonably pure mode using 

only one vibrator; however, the exciter must be positioned favourably 

within the structure to achieve the maximum effect. In the investi- 

gation under consideration the exciters were positioned on the basis 

of the theoretically produced modes and remained in the chosen 

Position throughout the analysis. 

Thup, the experimental normal mode data may firstly be 

distorted * unwanted signals aid, secondly, it mq not be represents-
tin of the 1  pure normal modes of the structure. 

fl 	.. 
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6.6. 	The Mathematics]. Model of the Teat Structure. 

The importance of a mathematical model as a link between 

experiment and theory should not be understated. 	Moreover, just 

as the accuracy with which experimental results can be obtained sheds 

light on their validity, so does the relevance and accuracy of the 

mathematical model. 	However, before experimental or theoretical 

data can be used in confidence for the purpose of comparison, there 

must be reasonable justification for thinking that the mathematical 

model is a good representation of the real physical system. This 

essentially involves laying down a set of criteria for comparison, 

in this instance the natural frequencies of the two systems have been 

chosen. 	Since the experimental results are considered to be fixed 

than the mathematical model must be manipulated to achieve the best 

possible fit with reality. 	This in itself is a difficult under- 

taking. 

The mathematical, model shown schematically in Figure 6.16. 

consists of 12 nodes, five of which are considered to be rigidly 

constrained. 	The nodes are interconnected by 14 plane bending 

elements which are considered to be inextensible. With the maximum 

number of egrees of freedom being two, there are 16 redundants leaving 

B active degrees of freedom. 	The numbering of the elements, nodes and 

degrees at freedom is also shown in Figure 6.16. 	The mass and 

inertia of  the system are considered concentrated at the nodes, 

whilst the stiffness matrix is assembled using finite element 

tecthiques. 	In the first instance, the mass, inertia and stiffness 

data are taken as the measured values from the test structure. 

Damping is included in the model as a percentage of critical 

damping ineach normal mods. 	I  
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• 6.6. 	(Continued) 

One major difference between the mathematical model and the 

teat structure concerns the modelling of the structural nodes. In 

practice, these have finite dimensions and the stiffness elements are 

not connected at a point. The element stiffness matrices used in 

the mathematical model provide a relationship between the forces and 

displacements at the ends of each element. But on the test structure 

the equivalent parameters are measured at the centre of each block 

which is rigidly connected to but displaced from the end of the 

• 

	

	bean. In accordance with this, the element stiffness matrices may 

be transformed into a new coordinate system which coincides with the 

centres of adjacent blocks. Details of this transformation are 

given in Appendix H. 	The presence of the variable stiffness element 

was accounted for in the mathematical model by adding the appropriate 

• stiffness value directly into the stiffness matrix (see Appendix J). 

The natural frequencies and normal mode shapes of the structure 

were calculated and compared with those found experimentally. The 

sin of the exercise was to match the two sets of natural frequencies as 

closely as possible; no attempt was made to match the normal modes. 

The manipulation of the mathematical model was achieved by varying 

any of  the following parameters. 

Affecting the mass matrix 

• 	 i) The mass and/or inertia at each end 

of the Enodes. 
• 	

Affecting the stiffness matrix 

Young's Modulus. 

The second moment of area of individual 

elements, 
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6.6. 	(Continued) 

iv) The elements of the stiffness 

matrix (directly). 

The effects these parameter changes had on the naturel 

frequencies of the system may be summarised as follows: 

Varying the mass and inertia terms was used to 

change individual natural frequencies. The 

degree of freedom with the maximum amplitude 

in the relevant normal mode indicated the most 

	

• 	sensitive point at which to effect the change. 

• Problems arose when the chosen point was also 

effective in another normal mode. 	In that 

• 	 situation a compromise was reached. 

Increasing or decreasing Young's Modulus was 

used to effect changes on all the natural 

frequencies. 

• 	III) 	It was never found necessary to alter second 

• 

	

	 moments of area or the elements of the stiffness 

matrix, and consequently the effects of these 

	

• 	changes are not known. 

• 	 Tle process of matching the matheniatical model to the test - 

structure was an iterative one • 	In. each new cycle the alterations 

• 

	

	were based on the experience of past changes and, to some extent, on 

insight and intuition. There came a time in the iterative process when 

the time spent  trying to improve on the previous guess became dis-

proportiodate with the magnitude of the improvement itself; it was 

at this point that the final version of the mathematical model was 

decided uymon. In practice it was only found necessary to alter the 
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6.6. 	(Continued) 

mass and inertia data of jhe model in order to match up the natural 

frequencies satisfactorily. 

Full details of the data used in the calculation of the 

mathematical model are given in Appendix i s  these include the 

experimental evaluation of Young's Modulus ad also the experi-

mentally determined stiffness at a point in the structure which was 

used to provide a check with the theoretically determined value. 

6.7. 	Results. 

The experimental results are divided into two sections • The 

first presents a comparison between the experimental and theoretical 

frequencies and normal mode shapes and is intended to indicate the 

degree of accuracy with which the test structure has been modelled 

mathematically. The second deals with the experimental evaluation of 

response as a function of variable stiffness. The results are 

compared with those predicted theoretically. 

6.71. Natural Frequencies, Norma]. Mode Shapes and Associated 

Damping. 

The results in this section are presented both graphically 

and in tabular font, and are primarily intended for the purpose of 

comparison. 	The natural frequencies of the experimental and 

theoretical models have been chosen as the basis for comparison between 

the two sytems. No attempt has been made to match up the normal mode 

shapes in the sane manner. Three sets of experimental data are 

presented, frequency response plots, tabulated natural frequencies 

and a tabulated and schematic representation of the normal mode shapes. 

Figures 6.17, - 6.20. contain the frequency response plots 

used for the evaluation of the natural frequencies and associated 

El 
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6.71. 	(Continued) 

damping consta&ts. Table 6.1. presents a comparison between the 

natural frequencies of the two systems and consists of four columns. 

The data listed in each column is as follows: 

Column (i) 	The theoretical natural frequencies 

obtained using the experimentally 

measured data. This is prior to any 

manipulation of the mathematical model. 

Column (ii) 	The matched natural frequencies achieved 

by manipulating the mathematical model. 

Column (iii) 	The experimentally determined natural 

frequencies. 

Column (iv) 	The damping coefficients in each normal 

mode. 

The changes in the mathematical model as a result of the 

manipulation process are listed in Table 6.2., these consist solely 

of changes to the initial mass and inertia data. Table 6.3. lists 

the normal mode shapes corresponding to the three sets of natural 

frequencies given in Table 6.1. 	Included with each mode shape is a 

plot of the experimentally determined mode vectors • The phase 

relationships for the experimental modes were obtained using these plots. 

It will be noted that there is no experimental, data for the response 

corresponding to degree of freedom 1 In all but the first normal mode 

(signified by *** in column 3). The reason for this was that when 

exciting the rotational modes of the structure the response signal from 

the accelerometer corresponding to degree of freedom 1 was so small that 

it was ide4tif led as zero by the POTFA. 	This zero reading caused 

prOgramminj faults In the PDP8 and it was consequently decided that 
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6.71. 	(Continued) 

the reading should be adted. l½nafly, Figures 6.21. - 6.23. show 

schematically the 'normal mode shapes for experiment and theory. 
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Frequency Response Plots for Modes 1 and 2. 

Figure 6.17. 
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Frequency Response Plots for Modes 3 aid 14. 

Figure 6.18. —153- 
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Frequency Response Plots for Modes 7 &1&J 
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Table 6.1. 	per1nenta1 and Theoretical Natural Frequencies 

Initial Estimate 

Nat. Frequencies 
Hz 

"Best Fit" Nat. 

frequencies 
Hz 

Experimental 

Nat.Frequencies 
Hz 

Damping 

Coefficients 

31.6 29.58 29.57 .012 

98.14 06.86 86.7 .007 

1214.3 112.0 112.25 .005 

1149.5 132.4 132.83 .0014 

160.5 1143.6 143.5 .005 

166.14 1149.3 1149.35 .0014 

185.6 165.14 165.14 .007 

202.6 191.3 191.7 .008 

Table 6.2. Changes to Mass and Inertia Data for "Best Fit" Model 

Degree of 

Freedom 

Nodes 

I 

Mass/Inertia 

Units 

Initial 

Value 

"Best Fit" 

Value 

1 20,14, lbn 1.8 x io2, 2.06 ± 102 

2 2 '1bpin.2  2.5 x 107,3 3.15 x l0 

3 3 1bs4.in. 2  2.45x 1073 2.43 x'10 3-  

14 14 lbpcjn. 2  2j2x10 3  3.140x10 3  

S S lbpdn. 2  2.42 x 1073 3.15 x l0 

6 6 lbgdn. 2  2.50 x 1073 3.29 x 1073  

7: 	'\ 7 1bs.1n. 2  2.142 x 1073 3.17x 1073  

if 8 lbr.in . 2  2.12 x:l0 3  2.71 x 10 
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Initial "Best Fit! &perlmental Normal Mode 	Vector Plot 
Estimate 

1.00 1.00 1.00 Er 	- 29.57 Hz 
q.o6 0.06 0.19 
0.008 0.008 0.16 
0.03 0.03 0.17 No vector plot - data 

-.0.005 -0.005 -0.10 unsatisfactory. 
-0.21 -0.21 -0.12 
-0.08 -0.08 -0.10 
-0.114 -0.114 -0.09 

0.03 0.03 - Er 	86.7 Hz 
-0.53 	r  0.08 	

. 
'7 

0.32 0.27 -0.36 
/ 

-0.15 -0.13 0.63 
0.03 0.03 -0.714 
too 1.00 1.00 
-0.60 -0.57 -0.98 
0.27 0.23 0.145 

-0.006 -0.01 Er - 112.25 liz 
0.32 0.31 0.314. B 

0.32 0.35 -0.614 5 

-0.56 -0.66 0.05 
0.19 0.25 0.147 4  

-0.62 -0.61 -0.52 
-0.59 -0.714 -0.145 71 1.00 1.00 1.00 

Table 6.3. 	Mode Shapes for Moles 1, 2, 3 and 14. 

I 	
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Table 6.3. (Continued) 

Initial "Best Fit" 
Estimate  

Experimental Manna]. Mode Vector floj 

0.04 0.003 nf - 132.83 Hz- 

-0.21 -0.26 1.00 

-0.49 -0.26 -o.46 

/6 -0.49 -0.68 -0-40 

0.45 0.69 -0.31 

0.35 0.26 0.25 5 	8 
1.00 1.00 0.53 3 

0.68 0.47 0.36 

'. : 



Table 6.14. 	Normal Mode Vectors for Modes 5,6,7 and 8. 

Initial 
Estimate "Best 	Fit" Experimental Normal Mode Vector Plot 

-0.01 nf.143.5 Hz 
2 

-0.19 0.03 -0.91 

0.31 0.16 -0.141 /3 
-0.21 0.07 0.42 
1.00 1.00 -0.77 

-0.16 -0.08 0.26 

-0.05 -0.31 1.00 
/ -0.48 -0.63 0.67 

I- 
7 

0.002 0.01 nf 	1149.35 Hz. 

1.00 1.00 -0.149 
-0.47 -0.38 -0.18 

/4 

0.12 0.07 1.00 

0.42 0.111 -0.91 
0.52 0.52 -0.90 /7 

-0.30 -0.04 -0.015 
-0.04 0.12 -0.37 

-0.004 0.009 nf - 165.4 Hz. 
-0.64 -0.29 -0.75 
-0.83 -0.47 -0.98 
1.00 1.00 0.15 

• 	0 .49 0.42 1.00 

-0.34 -0.11 0.75 
-0.146 -0.05 0.51 
0.45 ,  0.84 -0.32 

8 

Continued/...... 
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Table 6.4. 	(Continued) 	 I  

Initial 
Estimate 

"Best Fit" Experimental Normal Mode Vector 	Plot 

0.01 0.006 nf 	191.7 Hz 

0.32 0.21 0.214 

0.99 1.00 0.66 4 	3 

1.00 0.28 1.00 

0.26 0.05 0.63 

0.17 0.08 0.39 N2 0.53 0.32 0:71 

0.50 	1 0.18 0.140 - 

( 

•1 
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Experimental 
-----Theoretical 

Schematic Representation of Normal Modes 

Fiure 6.21. 
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E x per i men t a 
------Theoretical 

Schematic Representation of Normal Modes 

Figire 6.22. 
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Experimental 
----Theoretical 

Schematic Representation of Normal Modes 

/ 

 

Figure 6.23. 
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6.72. 	Response as a Function of Variable Stiffness. 

The response vector corresponding to degree of freedom 1 

was examined for the variation of stiffness in the an direction at 

frequencies of 35 Hz and 40 Hz • 	The vector response plots at each 

of these frequencies are shown in Figw'u 6.24. Circles have been 

fitted to the data and the calculation of the diameters of these in 

terms of receptance is given below. 

Experimental Data at 35 Hz. 

In the experimental ana2,ysis, the structure was excited 

at block 1 in the horizontal direction, and the response was examined in 

the same direction at block 3. 

Frequency: 	 35 Hz. 

Magnitude of force input: 	0.5 lb.f peak 

• Accelerometer calibration: 	0.357 V/g peak 

Madama response signals 	0.85 V r.m.s. 

Stiffness varied in the 

range: 

Maximum acceleration a 

- 

Maximum displacement a 

a 

Maximum receptance vector a 

Radius of Response Circle - 

17-6624 lbWins. 

0.85 x 1.414 x 32.2 x 12 
0.357 

1300.88 in/sec2  

Max. Accn. - 1300.88 

(35 x 21T)2  

2.689 x 10 2  in. 

2.689 x io 2  - 5.379 x 102 in/lb f 
0.5 

2.689 x 102 s4'1 i 

K, 
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6.72. 	(Continued) 

Theoretically Determined Circle Data. 

In the theoretical, analysis, the examination point, forcing 

point and position of the variable stiffness parameter were the same as 

for t4o experimental analysis. 

Frequency: 	 35 Hz. 

Radius of Response Circles 	2.44x 162 in/lb f 

Centre of Circle: 	 (2.21 x lO_', - 2.144 x 1072) 

Coordinates at Ic - .0, 	(-3.15 x 107. -2.45 x io) 

Coordinates at Ic 	: 	(-5.45 x io", -5.12 x 107') 

- Minimum receptance: 	 2.12 x lO' in/lb f 

Value of k for minimum 

• 	 receptancé: 	 103511$'in 

Correlation between experiments], and theoretical circle radii is 90.7% 

Experimental data at ho Hz. 

frequency: 	 hO Hz. 

Magnitude of force inputs 	0J1j lb 1' peak. 

Accelerometer calibrations 	0.357 v'Jg peak 

Maximum response signal: 	0.732 V r.m.s. 

Stiffness varied in the 

range: 	 17 - 6624 lbin. 

Maximum accelerations 	0.732 x lJiJJL x 12.2 r 12 

0.357 

- 3-120.28 in/sec2  

Maximum displacement: 	3.120.23 	- 1.773 x 10" in 

(ho x 21t)2  
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6.72. 	(Continued) 

Haximtn receptance vector: 1.773 x 1072 4.1214 	in/lb f 
0.143 

Radius of Response Circle: 2.062 x 16r2  in/lb £ 

Theoretically 	determined Circle Data. 

Frequency: 140 Hz. 

Radius of response circle: 2.13 	x 
10 2 in/lb 

£ 

Centre of circle: (5.14 x 10-20, - 2.13 x 1072 ) 

Coordinates at k - .0 (-1.67 x 10, -6.55 x 1075 ) 

Coordinates at It - (-2.17 x 10719., -3.38 x 101) 

Minimum receptance: 0.0 

Value of It for minimum 
receptance: 	 , 1035 1b7in 

Correlation between experimental and theoretical circle radii, is 

96.8% 

- 

.1 
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Vector Response as a Function of a Single Variable 

Stiffness Parameter 

Figure 6.214. 	
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6.8. 	Conclusions. 	 - 

6.31. 	The Mathematical. Model of the Test Structure. 

The accuracy of the mathematical model may be assessed by 

considering the following structural characteristics: stiffness, mass 

and inertia data, and the natural frequencies of the system. Appendix 

J lists the stiffness matrix for the manipulated mathematical model 

and also gives the experimentally determined stiffness of the structure 

in the horizontal direction at block 1. 	The theoretically calculated 

stiffness at this point was 721 lb/in., which compared very ,  favourably 

with the experimental, value of 728 lb/in. The stiffness data, which 

included Young's Modulus and the second moment of area of the spring 

steel strips, was thus considered:  to be a good representation of the 

real. structure. 

The initial estimates for the mass and inertia data were 

calculated from the dimensions of the blocks in the test structure. It 

was not possible, however, to determine these values experimentally as 

was the case with stiffness. Wherever possible, the added mass and 

inertia of couplings, fastenings and accelerometers was accounted for. 

The amount by which the initial data had to be changed in the process 

1 of matching the mathematical model varied from 1% to 30%, but on 

average this worked out to be 20% for inertia and 13% for mass. In 

almost all cases, the final data were higher than the predicted values. 

The natural frequencies calculated using the initial, estimate 

model were an larger than the experimental values by approximately 10%. 

However, i was found that the natural frequencies of the manipulated 

model could be made to match almost exactly the required values. The 

manipulated model was thus considered to be a good representation of the 

test structure. 	
I 
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6.82. Response as a Function of Variable Stiffness. 

The main aim of this analysis was to determine experimentally 

the way in which the response at a point in a structure varied with changes 

ina simple stiffness element. It can be seen from Figure 6.24. that the fort 

of the response circle predicted theoretically can be reproduced experi-

mentally to a high degree of accuracy. 	The response vector traces out 

a circle in the complex plane and the position and radius of the circle 

correlate extremely well with the predicted values. 

The aims of the experimental analysis have been fulfilled 

in as much as the theoretically predicted phenomena pertaining to 

structural manipulation pan be reproduced in practical. situations. 

N 

• 	
H  H 

II 
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CHAPTER  

CONCLUSIONS 

• 	 A new approach to the problem of vibration reduction in 

dynaxidcal structures has been developed. 	The dynamic response of a 

structure has been considered directly as a function of structural 

parameters. It has been shown that the response of a single degree of 

freedom system for variations in mass, stiffness or damping traces out 

a circle in the complex plane. For multi-degree of freedom systems 

the variation of a single mass or stiffness parameter has also been shown 

to produce a circular locus, the variation of damping not being considered 

in such systems • Where two or more parameters, either two mass, two 

stiffness or a mass and a stiffness parameter, were varied simultaneously, 

then a feasible response region was fanned In the canpiex plane. 

Within this region it was found that either of two pairs of parameter 

values could be used to give a desired response, whilst only one pair 

of values was defined on the boundaries. A general equation for any 

response of the system as a function of ia parameters has been developed 

in terms of the receptance matrices, however, where more than two 

parameters were considered then the reduction of the matrix equation 

was found to be complex. The term "Structural Manipulation" has been 

used to describe this type  of analysis where structural response is considere 

as a function of structural modifications. The method does not involve 

either optthnisation or iterative techniques and relies purely on the 

properties of linear • dynamic systems. 

In the aforementioned analyses, the properties of response 

circles ant feasible response regions have been used to. develop criteria 
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for the purpose of assessing the effect or sensitivity of parameters 

in changing structural response • 	These criteria are used in two 

main areas, namely, 

To assess the ability of a parameter in 

achieving any given response. 

To assess the ability of a parameter in 

achieving zero response. 

In (a) the criterion used is the diameter of the response circle 

produced by a single variable parameter; those parameters with the 

largest diameter circles are considered to be the most effective. 

Where zero response is required, then two criteria are used, namely, 

the minimum response obtainable using a single parameter (derived from 

the response circle) and the feasibility of achieving zero response using 

two parameters. 	In the practical application of the theory to a 

helicopter fuselage, the criteria have been shown to give mutually 

consistent results; this applies for both mass and stiffness parameters. 

The criteria have been shown to be successful in highlighting sensitive 

areas of the structure, these being interpreted as the most suitable 

areas for structural modifications for the purpose of reducing vibration 

in another part of the structure. 	The bias diameter criterion - 

described in Chapter ii, Section 14.3. was the only criterion that gave 

results that were not consistent with the others. 	In general, this 

criterion failed to show up any sensitive area within the structure. 

Surprisingly, according to this criterion, an the parameters in some 

cases had approximately the same effectiveness value. 	No logical 

explanation can be given for this, other than the fact that the bias 

diameter criterion was not suitable for this particular application. 

	

• 	The Structural Manipulation Program described in Chapter S 	has 
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been shown to be an indispensable tool for the purpose of testing 

theoretical, results, and also in the practical application of the 

techniques to realistic problems. As a research tool the program has 

also proved invaluable. 

An e..vlinent4 an4qfla was periozwe4 in order to verify the 

form of the circular response locus predicted theoretically as a result 

of the variation of a simple stiffness parameter. A continuously variable 

linear stiffness element was designed for this purpose • 	Some 

difficulties were encountered in the mathematical modelling of the 

test structure, but even so it was found that the circular locus could 

be reproduced to a high degree of accuracy. These experimental 

results provide an extra element, of confidence in the choice of any 

structural, modifications that are indicated by a theoretical analysis. 

Although the idealised stiffness parameters used throughout the 

analysis are unlikely to be encountered in practical situations, it 

has been shown that it is possible to model real structural elements. 

by means of an equivalent linear spring system. It has also been 

di own that a variation in a real structural parameter, such as beam 

inertia, web depth or skin thickness, results in the variation of two 

linear stiffness parameters which are constrained to vary in a 	- 

related manner. It has been shown that two parameters varying in this 

way no longer produce a feasible response region in the complex plane, 

but that Ithe response is restricted to following a close curve known 

as a Cassinian Oval. 

Proposals for Future Development. 	 '-- 

The techniques described here have been used to analyse 

simplified models of complex structurese The purpose of the analysis 

was to highlight sensitive areas within the structure suitable for the 
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purpose of structural modification. The results produced were of a 

qualitative nature and were not intended to be of any practical use in 

determining quantitatively the size of the real structural parameter 

changes that would be necessary to produce a desired response. 	It 

is hoped that once the sensitive areas of a structure have been identified 

on a coarse model of the system, then further analyses would be performed 

on more representative models of the sensitive substructures • 	This 

time it should be possible to identify effective elements within the 

substructure. It is envisaged that at this stage a formal optimisation 

of the whole structure would take place, using as variables the 

effective parameters indicated by the previous analyses. 

The process by which a substructure could be examined is best 

illustrated by an example. Consider the case of a large detailed 

model of a structure too large for the Structural Manipulation Program 

to handle. It is assumed that the sensitive substructures have been 

identified using a simplified model which possesses fewer degrees of 

freedom than in the original system. 	The model could be in a form 

such as the Lynx helicopter stick model described in Chapter U, or it 

could be produced by reducing the number of degrees of freedom of 

the fun scale model by a process such as a Guyan reduction [28]which 

involves redistributing the mass of the system at a reduced number of 

node poinj.s in the structure. 	It is now required to perform a 

sensitivity analysis on a given substructure, the degrees of freedom 

that are of interest are the examination and forcing points x and x q 

and the degrees of freedom of the substructure Xs . The analysis 

requires ónly the direct and cros receptances for these points. The 

latter may be obtained from the rceptances of the full scale system 

by partitioning the appropriate matrices. If X 	and F 	are the 
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displacements and forces of interest, then the corresponding receptances 

are given in the relationship 

X 	=G F —sub —sub —sub 

Providing that the order of 0 	 is small enough then the receptance
sub  

matrix could be fed directly into the Structural Manipulation Program 

where the releyant analyses would be performed. The one disadvantage 

in this method is that the receptances could not be altered within the 

Structural Manipulation Program, thus Uniting the analysis to those 

techniques requiring constant frequency data; this is, however, not an 

unrealistic Imitation. It is envisaged that further developments 

in the analysis would be needed in the area of modelling of real 

structural parameters; there is also the need for procedures to take 

into account any constraints that might be imposed on the values that 

any given parameter could take. 

The techniques involved in Structural Manipulation have been 

shown to be useful in the dynamic analysis of complex-structures 

and in particular in the connection with vibration reduction. 	The 

procedures described in the preceding chapters have been developed 

successfully and are in a reasonably advanced state of refinement. 

There is, 1  of course, considerable $ cope for future improvements to 

be made in the analysis which would be best concentrated on its. 

practical application. 



r1 4 ii1ie! 

The Constants in the Equation giving Receptance as a Function 

of a Single Parameter. 

The equation for the complex receptwice of a system at a point 

q due to a force at point p as a function of a single variable stiff- 

ness parameter is as follows: 

X 
q 

	

-G 	+k(G 
- 

	-0 	)(o 

	

o 	sp 	rp 	qr -G 	) 

	

qs 	 (Al) 

F - - 	
p 

l+k 	+0  (G rr 	so ra 	or 

• 	 where r. and s are the spring 	coordinates and G 	are the complex 

• 	receptances of the system. 	Equation Al mq be written in the more 

• 	genera]. form: 

xq 
• 	

- (a + it) + k(a + ib) (A2) 
F 1 	+Ic(o+id) 

where the constants a, b, c, 4, e 	and f are 	all real. 	The complex 

receptanoes Gij  may be split into real and imaginary components where: 

°ij 
a C 	+ 	iDij  

The constants a, b, c, 4, e and f may be expressed as functions of - 

• 	these and are as follows: 

a 
- (Cqr - Cq5 )(C5p  - c) - (Dqr  - Dqg )(D5p 	D) 

b= (c 	-c 	)(D 	-D 	)+(D qr 	sprp qs -D 	)(c 	-c 	) op 	rp qr 	qs 

•cC +c 	-c-c rr - 	as 	sr 	rs 

--4- D 	+D 	-D 	-D rr 	58 	rs 	sr 

a  
• qp 

f-D 
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APPENDIX B 

The Constants Involved in the Equation for the Complex Receptance 

as a Function of Two Variable Stiffness Parameters. 

x 
The equation for the complex receptance (X -' as a function 

Fp  

of two variable stiffness parameters k,1  and k2  is given generally by: 

'- G+k,1Ø1(k2)+Ø2(k2) 	
(Bl) 

id 	 + 

where q. and p refer to the examination and forcing points respectively, 

and parameter Ic1  is connected between points r and s and parameter 

between points t and v. The functions 0(Ic2)  are given by: 

911(k2) - a b1  (1 + k2c22 ) + a2b2ck2  + k2 (41c21  + a,1b2c12 ) 

02 (1c2 ) a2b2k2  

- c11 (]. + k2c22 ) - 021c121c2  

where a, bi  and c1  are the complex elements of matrices A, B am 

respectiely and are defined ml Chapter 3, Section 3.4. The elements 

are functions of the complex rec1ptances 
Gij 

 and are given by: 	- 

a2 	G qt  G  qv 

- 	:1 	S1 	"P 

i 	c -G +Q 	-G -G 3.1 	ZT 
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APPENDIX B(Continued 

o •-G -0-0+0 12 	sv 	at 	rv 	rt 

a 	 tO -G -G -G 21 	vs 	yr 	ta 	tr,  

022 - Ott + a - 0vt - 0tv 

N 

II 
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APPENDIX 

The Relationship between Parameters ki  and k2  on the Boundaries 

of a Feasible Response Region. 

Xq  

The equation for the complex receptance 	 as a function 

of two stiffness parameters Ic1  and k2  may be written: 

G+k11 (Ic2 )+ Ø2(k2) 	
(ci) 

k1 03  (k2 ) +  

where 95, (k2 )  are defined in Appendix B. Equation Cl may be split 

Into its real and imaginary components to give: 

- a + 1z(1)Ici + z(2)k + Z(3)1c1k I + i Lz(4)Ic, + z(S)1c2  + z(6)k1k2 1qp  
11+ z(7)1c1  +z(3 )1c2 + z(9)k1k) + i[z(io)t1  + z(U)k2  + z(12)k1k) 

(02) 

where the constants z (I) are real functions of the real and imaginary 

canponents of the receptances Gij .,  and are given at the and at the 

Appendix. 

The relationship between Ic1  and Ic2  on the boundaries of the 

feasible response region is given by: 

In ?w .~i?1.o 	 (03) 	- 

kl  W7 

where ror is the complex cnjugatS of CX 

• Differentiatin g  equation Cl partially with respect to Ic1  gives: 

(CU) 

1 	 —178— 



II 

&ppmn C (CONTINUED) 

where 

A 	z(3) z(8) - z(6) z(fl) - z(2) z(9) + z(5) zl2) 

B - z(l) z(8) + z(3) + (4) fl) - z(2) z(7) + z(.0) i(s) 
C 	z(l) 

D - z(6) z(8) + z(3) z(fl) - z(S) z(9) - z(12) z(2) 
S a z(4) z(8) + z(6) + z(1) z(4) - z(5) z(7) - z(lO) z(2) 

F -z(2) 

The product of two terms, say, z (3) and z (8), is written as z (3) z (8) 

for convenience. The complex conjugate.:. of the partial differential 

of equation C2 with respect to Ic2  is given by: 

- (Grc+Iirc+J)+i(r4+)it +N) 	(CS) 

where 

G 	z(3)z(y)..z(6)z(o)_ z(l)z(9)+z(12)z(4) 

fla Z(2)z(7)+z(3)...z(5) z(lQ)_ z(l)z(3)+z(4) z(fl) 

J- z(4) 

L -  

Mar -  Z(10)z(2)_z(5)z(7) -z(6)+z(4)z(3)+ z(fl)z( 

N -r -  

It will be noted that the denominators in equation Gb and CS have been 

omitted. This has been done for the sake of simplicity. The  

denominators are in fact the complex conjugates of each other, and 

consquant]y when equations Gb and CS are substituted into C3 then. the 

product of the denominators is a real non-zero number and may be 

cancelled.'  

Given a value of Ic1  and letting equation CS be of the forms  

- 	 p 
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APPENDIX C (Continued) 

cz 	x+jy 	 (c6) 

then the values of X and Y may be calculated, and when these are 

substituted f or in equation C3, then the resulting equation sç 
is a quadratic in k and is of the form: 

Ic22  (A! + 	+ k2 (BY + El) + COY + 	0 	 (ci) 

The roots of this equation yield two values of k2 , one for each 

	

boundary of the feasible region. 	The two pairs of values (1c1 , ic2 )1  

and (iç,ic2 )2  may now be substituted into equation 02 to give the 

coordinates of the corresponding points on the boundaries. If a 

sufficient number of values of Ic1  are chosen in the range - to 

9W, then a good representation of the boundaries may be plotted in 

the complex plane. 

The real constants z (I) can be given as functions of the real 

and imaginary components of the receptances C and 
Dii  respectivelyij 

as follows: 

let 

AA (C 
qr 

-c qs )(o vp -C 	)-(D tp -D 	)(D vp qs -D 	) tp qr 

AB 
• 

(C qr -C qs )(i vp -D 	)+(D tp qr -D 	)(c vp qs -c 	) 	 - tp 

AC - (c - Crp)(Cqt - Cqv) - qt - Dqy)(D5p - Drp ) 

op.-  rp qt qv op rp 	qt qV 

,AEC 
5v 

-c at -C rV +0 rt 

l AFs  DOT  _D_D+D 

- 	
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APPENDIX C (CONTINUED) 

and.K(i)a(C - C 
 

	

)(Cap 	)-(D -D )(D:-D ) qr 	qs sp 	rp 	qrqs ap rp 

x(2)= (a -a )(c -a )- CD -D )(D -D ) qt 	q7 Yp 	tp 	qt 	q 	yp tp 

K(3)=AEx (AL + AG) -AFX (AB +AD) 

K(b)CBS +Crr -Ci's - Car  

- 2 - 
 AE 

K(6)=C+Ctt- C,- 

L(1)-(C -c )(D 	D) 	CD -D )(c - a) qr 	qa Sp 	rp 	qr•qs sp 	rp 

L(2) - (a - a )(D 	D) + (D - Dqv)(Cyp  - qt qv vp 	t 	qt  

rL(3)afi.Ex. (AB  + AD) +APx (AL +AC) 

LCIiflD38+Drr_ Drs _Dsr 

L(5)-2 xAEx'AF 

vv. 	tt 
Then 

a K(1) 

= K(2) 

- K(1)K(6) - • L(1)L(6) + x(2)x(4) - L(2 )L(4) -. 	C3) 

Z(U) - L(l) 

• Z(5) - L(2) • 

z(6) - K(1)L(6) + L(])K(6) + K(2)L(4) + L(2)x(4) - LC) 

z(7)-x(li) 

Z (8) 	K (6) 

z(9) = IC(4)K(6) - L(4)L(6) - 

z(iO)-L(U) • 

Z (n) - L(6) 

- x(4)L(6) + L(4)K(6) - L(S) 

• 	H -'a'- 



Muss values 

3 

m2  10 
m3 20 

5 

All units are 
compatible 

0.5 

0€ 

APPENDIX D 

The Nass,Spring.Dpphpot System Used in the Calculation 

Of feasible Response Region Botñdaries. 
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APPENDIX E 

The G1aph ofF Against X for an Air Spring 
AP0 	1 
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APPENDIX F 

raising and lowering screw •1 
rigid 
mounting 
wall 

fffR:;P)a*t;,,  
S US 

passes through 
sliding clamp to 
locate in the 
retaining block 

bea 
	 sliding clamp 

retaining 
block 

;~ (Inserts into main 

Details of the Clamped C antilever Spring. 
- 	
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• 	 APPENDIX 0 

Output from the Structural Manipulation Program. 

***SYSTEM ( 400)*** 

• ****MODEL OF EXPERIMENTAL SYSTEM USING BLOCK 30/5/75**** 

***DATA FROM LAST RUN*** 
FREQUENCY 	: 2.000@ 2 HZ 
EXAM,FORCING: 2 6 

CHOICE:CIRCLE 

DR:2 
05:3 

**RESPONSE CIRCLE FOR VARIABLE STIFFNESS** 

EXAM/FORCING 	: 	2 	6 
SPRING COORDS : 	2 	3 

FORCING FREUU 	2.00000@ 2 HZ 
RADIUS 	 : 9.58097@ -6 
MIN RECEPT MOD : 1.02635@ -4 
CENTRE OF CIRC :-1.12215@ -4 , 	3.88173LS -7 
C[1ORDS AT K=O :-l.10444@ -4 , -9.02773@ -6 
COORDS AT K=INF:-1.12774@ -4 p -9-17646@'-6 
K AT MIN RECEPT: 4.23910@ 2 
COORDINATES 	:-1.02634@ -4 , 3.55031@ -7 

CHOICE: 	 - 

Data Concerning the Response Circle for a Single Variable 
- • 
	 • 	Parameter. 
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APfl2iDIX C (continued) 

CHOICE :ASSESS 

22 SELECTED PARAMETERS 

FREQUENCY 	2.0004 2 HZ 
EXAMj.FORCING: 2 6 

**STIFFNESS PARAMETERS** 

** EL EM EN T ANALYSIS BASED ON ASS OC IATED PARAMETERS** 

LOG SCALE 

	

MINIMUM 	 CIRCLE 
	

B IAS 
EL EM RESPONSE ELEM DIAMETER ELEM CIC ARC 

	

I) 	I 
	

1.0@ 	0 	8 	1.0@ 	0 
	

I.0@ 	0 
8 
	

3.0 	-1 	1 	3.6@ -I 
	

8 	1.00 	0 
2 2.5@ -I 	2 	3.0@ -2 
	

2 	8.7t -1 
9 2.54 -i 	9 	2.44 -2 
	

9 	7.9w -t 
3 2.4@ -1 	13 	2.3@ -2 
	

3 	6.14 -1 
10 2.30 -I 	6 	2.I® -2 
	

6 	5.4w -1 
4 2.3 	-1 	12 	2.0 	-2 
	

13 	5.34 -1 
II 
	

2.3@ -1 	3 	I.7@ -2 
	

10 	4.3@ -1 

	

9). 	6 2.8@ -2 	10 	I.2@ -2 
	

11 	3.14 -1 - 

	

10) 	13 2.5@ -2 	4 	9.2@ -3 
	

4 	3.14 -1 

	

II) 	7 
	

9.4@ -3 	11 	9.2@ -3 
	

7 	2.64 -I 
14 7.2@ -3 	7 	5.9@ -3 
	

14 	2.04 -I 
5 1.0@ -3 	14 	4.3@ -3 
	

12 	3.64 -2 
12 0.0@-99 	S 	0.0@-99 
	

S 	0.04-99 

PR INTOUT?: N 

CHOICE: 

I  Effectiveness Criteria for a Single Variable Stiffness Parameter. 
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APPENDIX d (Continued) 

CHOICE :ASSESSALL 

PARAMETER SELECTIONS ALREADY MADE 

***ZERO RESPONSE USING TWO STIFFNESS PARAMETERS*** 

22 SELECTED PARAMETERS 
253 POSSIBLE PAIRED COMBINATIONS 
43 PAIRS GIVE ZERO RESPONSE 

ELEM LISTflY 

FREQUENCY 	2.000@ 2 HZ 
EXAM/FORCING: 2 6 	- 

OCCURRENCE OF ELEMENTS BASED ON SUCCESSFUL PARAMETERS:- 

PARAMETER BREAKDON 

	

• 	ELEM NORM TOT, X 	Y 	1 TI T2 T3 

	

1) 	11.00 24 	3 	0 	0 	0 21 	0 

	

• 	2)20.52 	133 	00 	0 	10 	0 
60.35 	9 	0 	0_U 	0 	9 	0, 
80.26 	1 	3 	0 	0 	0 	4 	0 
90.22 	6 	3 	0 	0 	0 	3 	0 
30.13 	4 	3 	0 	0 	0 	1 	0 
40.13 	4 	3 	b 	•o 	cx 	i 	a 
50.13 	4 	0 	0 	0 	0 	4 	0 
100.13 	4 	3 	0 	0 	0 	I 	0' 
110.13 	4 	3 	0 	0 	0 	I 	0 

	

ii) 120.13 	4 	0 	0 	0 	4 	0 

	

• 	12) 	7 0.00 	1 	0 	0 	0 	0 	1 	A) 

	

13)130.00 	1 	0 	0 	0 	0 	I 	0 

	

14) 	140.00 	1 	0 	0 	0 	0 	1 	0 

PRINTOUT?: Y 
HOW,MANY:2 

DR DS 	 UT, Dv 	 COORDINATES 
2'G 	'. 	26 

I.0000000000@ 35 1.1221374573@-14 -2.111'-20 -8.470-22 
9.5432030276@ 18 5.06365646344 2 	3.3884-21 0.0004-99 

- 2 	G 	 3 , 4 
4.99161151474 18 5.11546325164 2 -1.1624-19 	1.0864-19 

- 1.3351891932419 1.91440694634-13 	1ST NG 

ANY MORE?:N 

Assessing for Zero ReSDonse Using Two Parameters. 
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The Transformation Matrix used in the Mathematical Model 

to Account for the Finite Size of Structural Nodes. 

Z 
	

t 

4 

87 

N 

Figure Hi 

Finite Element AB and Rigid Extensions CA and BD 

Figure lii represents a simple finite element beam A3 with 

rigid extensions CA and RD of length 0.575". Considering the left 

hand end of the bean, the transfrnation between the coordinate àystea a 

at points A. and c is: 

1 	0 

- 	 0 	0.975 	Y2  

0 	0 	1 	0 	-0.8750 	Z 2  

• 	00 	0 

0 	0 	0 	0 	1 	0 

0 	0 	0 	0 	0 	1 	*2 
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APPENDIX fl (Continued) 

or in matrix notation: 

! 	 (a) 
ma relationship between the forces in the two coordinate system 
is given by: 

* T 
(112), 

where AT is the transpose of 

For the right hand end of the beam: 

10 0 0 0 0 

71 0 1 	0 0 0 -0.875 721  

0 0 	1 0 0.8750 

0.o 0 .  1 0 0• 

01 0 0 	0 0 1 0 6.21  

01  0 0 	0. 0 0 1 021  

or, in matrix notation 

laX -r -r -r R3 

The relaticiship between the forces in the two coordinate system is - 

F * CAT F  
-r -r -r (Hh 

The relationship between the forces and displacements for the 	element is: 

FaKX 

where 

FL 1 

- 

[Fr J 
1Ix- [K2T I 

LXr 
K3J 

Substituting for F, F, It and I from equations 111, 112, 113 	and u1 gives 

• -180- - 



APPENDIX H (CCt4TDnJED) 

where. 

	rFrL 
	 LrJ 

and 	 - 
$j2Xr  

?K3AJ 
which provides a relaticnship between the forces and displacements 

at points C and D on the beam. 



The Constants Involved in Calculating the Feasibility of a 

Desired Response. 

For a single stiffness parameter Ic the response at a point 

in the structure is given by: 

e+if+ k(a+ib) 	 (ii) 

1+k (c+id) 

where, a, b, c, d, e and £ are real constants and are defined in 

Appendix A. The real and imaginary components of a area 

u 	e+k(a+k(ac+bd) 	 (12). 

1 + 2ck + k2(o2+ 42) 

• 	 v - f +Ic(b +k(bc - ad)) 	 (13) 

1 + 2ck + k2  (C 2 + d2 ) 

respectively. Now ja 1 may be written: 

Bk 	 (iJ) 

P1c2 +Qk+.R 

where 	A 	(a2  + b 2 ) + (e2 + f2)(c2+ 42) + 2e(ac + bd) + 2f(bc -d 

• 	 • 	B 	2c(e2 +f2 )+2(fb +ea) 

• 	 •C 	e2 +f2 	 - 

• 	 P- c2 +d2 . 

Q 	2 

Ha-i • 

• 	•.. 	• 	
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APPENDIX x (Continued) 

The first derivative of 	k 1 2  with respect to Ic is 

.- 	kl 2 _k2 (_)+ 2k (RA PC) +(RB 	QC) 	(IS) 

dIr 	 (pk2 +Qk+ B)2  

and the second derivative of k 2  with respect to Ic is 

d2  1I 2  - 	g1 (k)- a2  (k) 

a3 (Ic) 

where 

a1 (k) - 2(Pk2  + a + R)2 (k(QA - PB) + (RA - BC)) 

- 2(k2(QA - p) + 2k (RA - p0) + (u - QC)) P1c2 + a + B)(2Pk + q) 

o(k)- (pj2 + a 
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APPENDIX J 

Data Used in the Preparation of the Mathematical Model. 

efer to Figure 6.16. 

Stiffness Elements. 

Second Moment of Area. 

	

Y— 	 lvll 

	

I 	bcI3 - l x (0.063) a 2.083 x YY if 
	1075 in.4 

12 

Element lengths 

Elements 5,6,7 212 313 and 14 = 6" 

Elements 1,2094,8,9 and 10 4" 

Young's Modulus. 

Young's Modulus was determined experimentally by measuring 

the tip deflection of one of the a'ing steel beams comprising the test 

structure. 

For a beam, length 5", the  tip deflection wider a loth 

of 1.2 lbs. was .0905". 

From simple beam theory 

125x1.2x 10 	- 2.6524x107  lb/In.2  
31x 	3 x 2.083 x 0.0905 

H 
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APPENDIX J (CONTINUED) 

The added stiffness of the variable stiffness element. 

The variable stiffness element is a simple cantilever of 

maximum length 4.6". (This remained constant during the measurement 

of natural frequencies and mode shapes). The stiffness at the tip 

of this element is given by: 

k- 3E1 
V 

Thus 	Ic = 3 x 2.65 x 10 x 2.083 x 10 	17.0 lb/in 

(b.6) 

This value was added to element k(1,1) In the structure stiffness matrix. 

The stiffness matrix of the mathematical model of the  test 

structure is as follows: (units lb/in.) 

81,4.9 	0 	0 	0 	0 	297.5 297.5 297.5 

2539.4 368.5 	0 	0 	7174 	0 	0 

3091.9 368.5 	0 	0 	717.5 	0 

3091.9 368.5 	0 	0 	717.5 

SIX 	 2539.14 \ 0 	0 	0 

	

1545.9 368.5 	0 

2098.1, 365.5 

	

2098.0 	- 

In order to determine the accuracy of this data, the stiffness 

of the test stra,ture in the horizontal 'direction at node 5 was 

determined experimentally. A horizontal load of 10.2 lb. was applied at 

this pqint, and the corresponding deflection was found to be 0.011,". 

Thus, the stiffness at that point was: 

10.2 	728 Win. 

0-014 
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APflNDIX j (CONTINUED) 

To obtain the equivalent term from the theoretical stiffness matrix, 

consider the matrix in the partitioned form 

[?j 	

[k]. k21 	61 

I-I 	 (.ii) 

L4J• 	 L2 
where F1 is the force 1n the x direction of node s and çthe 
corresponding deflection. 

• 	!2 , 3  and  2 are of the order (lxi) 

is (1 x7) 

• 	kbis(7 x7) 

We require to know the deflection 6 for F - lib. and F - 0 - 

	

1 	1 
Now., if if equation Ji is expanded, then 

• 	 F1 - k161+ 
k22 	 (J2) 	-• 

• 	Therefore, 

á2 	l4-1  k3 61  

which ml- be substituted into equation (J2) to give 

F1 - 	- 

Thus, the required stiffness term is 

-1 • 	Ic_ 	2Ij 	-.3 

When these terms are calculated from the stiffness matrix given above , 

then the following valvB is obtained: 

	

184409 - 1231 	721.9 lb/in. 

This corresponds favourably with the value of 728 lb/in. .obtaithd 

	

experimentau,y. 	 - 	• 	 . 	-• 

-• 	 i 	• 	• 	 -195- 



APPENDIX J (CONTINUED) 

Mass and Inertia Data. 

The mass of the structure in the direction corresponding to 

degree of freedom 1 canprises the total mass •  of four blocks, three 

beams and associated accelerometers and couplings. This value was 

measured experimentally and found to be 

1.8 x 1072 lbt in'seC' 

Figure Ji • shows one of the structural node blocks 

a- .  

z.- .  

a- 

Figure J.1 J.1. 

Structural Node Block 

The moment of inertia of the block in then direction is given 

W the equation 

ff 
zz 

	

I 	 12 

Now the We5.at of each block was found to be 1.8 lbf and La. 145", 

	

therefore 	 & 

- 	 —196- 



APPENDIX J (CONTINUED) 

2 x 1.8 x (1.75)2 	- 2.377 x 10 	lbç in.Se& 
zz 

12 x 32.2 x 12 

The moment of inertia of an accelerometer mounted as shown in 

Figure 6.15. about the zz axis Is 

0.056 x 10 lbci.SeC 

Thus, the total inertia of the block plus accelerometer Is 

2.426 x lO 	lbFin.SEC 

This value was adjusted according to the amount of additional 

instrumentation on any given block. The following were the initial 

estimates for the :inertia data. 

Block 	Inertia lbçln.SeC'  

1 	 2.5x10 3  

2 	 2.145 x 10 

3 	2.12xl0 3  

4 	2.42x1073  

5 	 2.5z].0 3  

6 	 2.42 x.10-3  

7 	2.142x1073  

The inertias of inditdual blocks were not determined experi31entafl,y. 



—Y 

t 1 • . 

APPENDIX K 

The Stiffness Matrix for a Linearly Tapering I Beam. 

I 

di fl1%rd  
tuper ruitu i 

b 

• H 	 1=1= btd ° yy 	2 

Figure Li. 

The stiffness matrix for the beam shown in Figure Li • may be 

obtained using standard techniques 	and is given overleaf. 

• 	 -198- 
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APPINDIX K (CONTINUED) 

+ 1c2 (ê-x2 ) k2 (L-x) k2  (€x 	Ic - x2)_, -k2 (L- x) 

Ic2 	k2   

Ic1  + k2x2 	-k2x 

Ic2  

when 

k1 1 (r+1w*1Or2 +hr+1) 

(2r2 +r+2) 

k2 12 (2r2 +r+2) 

St 2  

and 	z 	Q. (17r+6r+ 7) 

12 (2r2 +r+2) 

I 
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THE RESPONSE OF A VIBRATING STRUCTURE AS A 

FUNCTION OF STRUCTURAL PARAMETERS 

0. T. S. DONE AND A. D. HUGHES 
Department of Mechanical Engineering, 

University of Edinburgh, Edinburgh EH9 3.JL, Scotland 

(Received 14 May 1974, and in revised form 13 August 1974) 

The response of a structure excited by an external oscillatory force is examined for 
variations in certain structural parameters of the system. This is done with a view to 
manipulating the structure in order to achieve a desired response. The variation of the 
response with one structural parameter is seen to be simple, and the effect of changing in 
addition the forcing frequency is illustrated. When two structural parameters are con-
sidered, it is seen that a desired response may or may not be attainable, as defined by a 
"feasible response region". The application to practical cases is discussed briefly. 

1. INTRODUCTION 

Linear structural analysis is now a relatively straightforward task, and has been greatly 
aided in the recent past by the advent of digital computers. However, the results of an analysis 
can be so large in quantity and extent that in the case of a vibration problem producing 
unacceptable results the answer to the question "How does one alter the structure to produce 
the originally desired dynamic characteristics?" is very far from evident. Small perturbation 
analysis exists [1,2] which goes some way towards providing an answer and, of course, it is 
possible to make use of one of the many computer based formal optimization routines. 
Neither of these is entirely satisfactory; in the former case it may be that gross rather than 
small changes in the structure are needed to achieve the desired results, whilst in the latter, 
although it is possible to effect a gross change by a succession of many small ones, the dis-
advantage of the process being heavily computer orientated remains. 

The reason why a heavy reliance on the computer is not altogether satisfactory in the present 
problem is because of the lack of freedom of action to change parameters following the 
assessment of some subsidiary analysis: that is, to change the parameters in a non-
predetermined manner. In a formalized optimization the parameters are changed in a pre-
determined way dependent on the mathematical method, the constraints and the objective 
function chosen. The knowledge that is a necessary prerequisite in allowing the above-
mentioned freedom of action is really the same thing as "feel" or "insight". 

It is not only in dealing with the mathematical model of a structure that insight is valuable. 
When the vibration performance of a newly assembled structure is not up to expectation or 
specification then the integrity of the mathematical model used for the design is rendered 
uncertain, and the model itself may not be used as a means of finding suitable modifications. 
In such a situation in practical engineering any modification suggested by a dynamicist (who 
at this stage would be under considerable pressure to produce a satisfactory solution) is 
likely to be the result of fairly simple calculations, which provide some insight, and past 
experience. More insight at an earlier stage would have placed the dynamicist in a better 
position to be able to suggest modifications; he might, for instance, have known in advance 
which parts of the structure are most effective in controlling unwanted vibration. 

255 



256 	 G. T. S. DONE AND A. D. HUGHES 

The above preamble provides the justification for the present work which arises from the 
desire to know what are the effects on the dynamic properties of a structure resulting from a 
gross change or changes in one or more structural parameters. The particular aspect examined 
was stimulated by the necessity in helicopters to keep the rotor induced vibration levels in the 
passenger and pilot area of the fuselage down to a minimum. The helicopter problem has been 
used as a basis for the simplified model employed in this work. In this model, a linear structure 
is subjected to a single oscillatory force and the effect of changing one or more structural para-
meters on the response at some point on the structure is examined. The structural parameter 
itself is idealized by using a simple spring, and the examples used in calculations are simple 
mass, dash pot and spring systems. The theory for this model follows on the lines of that 
established by Vincent [3]. 

2. RESPONSE AS A FUNCTION OF ONE STRUCTURAL PARAMETER 

2.1. SINGLE DEGREE OF FREEDOM SYSTEM 
Although it is of little importance practically, an initial appreciation of the behaviour of a 

simple one degree of freedom case is helpful in examining more complicated systems. 
The equation of motion of a single degree of freedom system subject to harmonic excitation 

at circular frequency co may be written as 

mi+L±+kx =Febot, 	 (1) 
(1) 

where m is the mass, k the stiffness and F the magnitude of the excitation. The damping, 
represented by the coefficient h, is considered to be hysteretic for reasons of simplicity in the 
following analysis. The steady-state solution for the response is 

x = G((o) Fe", 

where 

17 
(2) 

(k - mw') + ih 

and is the complex receptance of the system. It is well known that the locus of the end of the 
vector G(w) on the complex plane as o varies is a circle of diameter 11h passing through the 
origin and with its centre on the negative imaginary axis [4]. Figure 1 shows the response 
circle appearing as a projection from the three-dimensional locus of 6((0) produced by 
including w as one of the co-ordinates. Part of the circle is not physically realizable as it 
corresponds to 0)2  <0 (shown dashed in the figure). 

The circular locus arises by virtue of the variation of the real part of the denominator 
(k—mw 2) in the right-hand side of equation (2). Thus, a variation of k or m, or indeed k, m 
and w2  in proportional amounts, leads to the same locus. By considering the signs of k, in 
and 02  in the term (k - ma?) it is seen that the end of the receptance vector 6(k) ask increases, 
m and w2  being held constant, traces out a circle in the opposite direction (i.e., anti-clockwise) 
as that for increasing 0)2  and m. The effect of varying the damping coefficient his illustrated 
in reference [4], in which 6(h) is seen to produce a circle whose centre lies on the line of the 
real axis. 

If the circles representing G(k) are plotted in three dimensions as in Figure 2 for all values 
of w, then a circular cylindrical envelope is developed. Those parts of the loci corresponding 
to negative k are shown by dashed curves. On the envelope, curves of constant k can be plotted 
as indicated, these being of the same type as that in Figure 1. 
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6(w) 

Increasing 

Figure 1 Response as a function of frequency. 

Thus it may be seen in the simple case of a one degree of freedom hysteretic system there 
is a straightforward relationship between the complex response as mass or stiffness varies 
and the more familiar response as frequency varies. 

2.2. MULTI-DEGREE OF FREEDOM SYSTEM 

As in the single degree of freedom case it is convenient to express the responses of the system 
by means of receptances. These follow from consideration of the equations of motion which 

Gtk) 

Increasing 4 

Figure 2. Response as a function of stiffness and frequency (one degree of freedom). 
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may be written as 

M+C+Ki=Fe', 	 (3) 

where M, C and K are the mass, damping and stiffness matrices, respectively. F is a vector of 
force amplitudes and K is a vector of time-varying structural displacements. The system is 
considered subject to harmonic excitation at circular frequency CO and since no particular 
advantage is now to be gained by using hysteretic damping, the damping is assumed to be 
viscous. The steady-state solution for the response is R = xe iwt where 

= GF 
	

(4) 

and 
G=[K—Mco2 +iwC]'. 	 (5) 

The system to which these equations apply is shown schematically in Figure 3. It represents 
a structure having many degrees of freedom for which it is required to examine the response 
at the material point q due to a single forced excitation at point p. 

Figure 3. Structure and variable stiffness spring. 

A simple structural modification is made by inserting a linear spring of stiffness k between 
two points r and s that have mutually compatible degrees of freedom. The spring is adjusted 
so as to exert zero force when the system is in equilibrium. When the original structure is 
considered as a free body, the forces exerted on it at points r and s by the spring are F, and F,, 
respectively, which have the relationship 

F,=k(x,—xj=—F,. 	 (6) 

The forcing vector F in equation (4) contains three non-zero elements, F,, F, and F,,, whereas 
the elements of immediate interest in the response vector x are Xq, X, and x,. Partitioning and 
expanding equation (4) yields 

xq =Gqp Fp +Gq,F;+G45 Fs, 	 (7) 

 

 

in which G,3  is the complex receptance providing the displacement at point i due to a force 
at pointj. 
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The forces Fr  and F may be expressed in terms of X and x, by using equation (6) and subse-
quent elimination of x, and x, gives 

	

xq 	 k(G3 - Gr,)(Gqr - 	Gq,) 	
(10) 

F, 
- = Gqp 

 + 1 + k(Grr  + G. - G, - G) 

This is now the modified complex receptance between points q and p in terms of k and the 
original complex receptances G,. In turn, it may be rewritten in more general terms: i.e., 

C = + in 

k(a + ib) 

	

=(e+ if) +k(d) 	 (11) 

where C xe/F,, and a, b, c, d, e and fare all real. 
It can be shown that ask varies from - to +w the locus of the tip of the complex receptance 

vector, C , traces out a circle in the complex plane (see Appendix A), the equation of the 
circle being 

	

b ]'+[, _ (f_   \12 	2 

	

 an 	a-I- b2  

)i __4d­2_' 
 (12) 

It is worth noting here that the co-ordinates of two important points on the circle, namely 
k = 0 and k = co, are 

k=O: [e,f], 

(ac +bd)(bc— ad) ] 
k = : [e + c2+d2 f+.c2+d2 f 

These points bound the arc of the circle containing negative values of k. Strictly, if k is 
associated with a real spring then this part of the circle is not physically realizable. However, 

Figure 4. Response as a function of stiffness and frequency (several degrees of freedom). 
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it is possible to consider negative k as subtracting from existing structural stiffness and in this 
case the Situation is physically attainable whilst the overall stiffness matrix remains positive 
definite: i.e., whilst static stability is maintained. Of the two possible arcs, that which is 
associated with negative k may be determined from the direction of the locus with increasing 
k. This can be shown to be anti-clockwise for the negative values of the constant din equation 
(11) which invariably have been found to occur in practical cases. As with the single degree of 
freedom case it is possible, by introducing forcing frequency as a co-ordinate, to construct a 
surface corresponding to a given stiffness parameter upon which the three-dimensional 
response curve can be drawn for various values of that parameter. Figure 4 shows the pictorial 
representation of a typical surface, the response for the curve corresponding to k = 0 being 
projected below on to the complex plane (the latter is often referred to as a Kennedy—Pancu 
plot). Information concerning the system from which this surface was generated is given in 
Appendix B. 

3. RESPONSE AS A FUNCTION OF TWO STRUCTURAL PARAMETERS 

3.1. FEASIBLE RESPONSE REGIONS 

As in section 2.2 the response at a point q on the structure due to a force at pointp is sought. 
Two variablespring elements of stiffnesses k 1  and k2  are connected between points r,s and 
t, v, respectively, where 

F, = k1 (x, - x,) = —F,, 	F k2(x, - x,) = — F,. 	 (13) 

Equation (4) again can be utilized to give the relevant equations: 

Ii=q,r,s,t,v 
xg =Gjj Fjj 	 I. 	 (14) 

J 	 j=p,q,r,s,t,vJ 

Substituting for F,, F,, F, and F in equations (14) and eliminating x,, x,, x and x gives the 
following equation: 

XQ  Gqp  + k
1  4' 1 (k,) + 02(k 2) 

-= 	 (15) 
k 1  (k 2) + 04(k 2) 

where the (k,) are complex linear functions of k 2  and are given in Appendix C. It may be 
seen that the form of this equation when k2 , say, is held constant whilst k 1  is allowed to vary 

In, 

Figure 5. Response circles for two structural parameters. 
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is similar to that of equation (11). Thus, in this case a circular response locus is produced. 
When k2  assumes another value, another circular response locus is obtained as k 1  varies. 
If the k 1  circle is "started" at the same value of k 1  each time, then these starting points lie on 
the response locus of the system when k 2  alone is varied (see Figure 5). By covering all possible 
combinations of k 1  and k2  a region in the complex plane is formed inside which the response 
at point q due to an oscillatory force at p must lie. This is referred to as a "feasible response 
region". Figure 6 shows an example. As in the single varying parameter case, some parts of 

Figure 6. Feasible response region from response circles. Details of system given in Appendix B. Dashed 
line indicates negative stiffness. 

the region violate the physical requirement that the overall stiffness matrix must remain 
positive definite. Details of the system used in the examples are given in Appendix B. 

An alternative formulation of the problem, which relies on the use of matrices, is given in 
Appendix D. Any number of structural parameters can be considered, but so far no attempt 
has been made to apply the theory to a practical example. 

3.2. THE BOUNDARIES OF THE FEASIBLE RESPONSE REGIONS 

The boundaries of the feasible response region are given when the Jacobian, a(, )1a(k 1 , k 2) 

is zero [5] i.e., 

ac/ak, 	/dkI 
a1/ak, a1/akj°' 	 (16) 

or, alternatively, 

Im 
ac 	 (17) ( 	\ 

=0  

where dQak2  is the complex conjugate of ac/ak2  and C= + iq x/F. 
Equation (17) is found to be of the second order in k 1  and k 2  and the possibility of two 

boundaries exists. At any point on these boundaries the values of k 1  and k2  are uniquely 



(n 
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Figure 7. Typical feasible response regions. 

defined, whereas within the region it may be observed from Figure 6 that there are two sets 
of values (k 1 ,k2) corresponding to each response point. Figure 7 gives some examples of 
typical feasible regions obtained by direct solution of equation (17) following the appropriate 
differentiations in equation (15). The systems concerned again are defined in Appendix B. 

4. DISCUSSION 

The mathematical models considered in the present work are idealized and, although there 
is presumably a certain intrinsic academic interest in the results, it remains to be seen how 
useful the theozy would be in a practical case. In most practical cases of manipulating a 
structure to produce a desired vibratory response the aim would be to minimize the response 
over all or part of the structure. (An exception to this would be changing a normal mode 
shape on an aircraft wing, say, for the purpose of changing the aerodynamic generalized 
forces and thence the flutter characteristics.) In the present formulation, with not more than 
two spring variables, the minimum response (if zero is not a feasible response) could be 
obtained uniquely by using the equation of the outward normal to the boundary with no 
recourse to search techniques. When zero response is feasible, i.e., when the feasible region 
surrounds the origin, there is a choice between two uniquely defined sets of variables. 

In practical applications one of the problems is to choose the regions of the structure in 
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which a change of structural parameter or parameters is most effective. In such applications 
of the present formulation it is proposed, initially anyway, to use the relative magnitude of the 
response circle for a single parameter as a measure of effectiveness. In this connection, it 
should be noted that the systems discussed in this paper are not meaningful in any numerical 
sense, but have been used only to illustrate in the most general way the variation of the 
response. As the main purpose of this paper is to draw attention to some of the more interest- 
ing phenomena, the discussion here is confined to outlining some of the difficulties expected 
in practical applications. 

Another problem is to obtain a transformation between the ideal springs considered as 
structural parameters and the geometric parameters, (which would affect mass as well as 
stiffness), such as skin thickness, tube wall thickness, beam web depth, etc., that would be 
used in practice. This also is a difficult area when one is using the more conventional optimiza-
tion methods because the mathematical equations of motion of vibration systems are usually 
expressed in terms of variables other than the geometric parameters: e.g., generalized co- 
ordinates. 

The direct application of the present work to simple and more practical examples of 
structures is in progress, and will be reported on in due course. 
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APPENDIX A 

It is required to find the nature of the complex equation 

k(a + ib) 
(=(e+ if) + +

k(c+ id) 	
(Al) 

as k is varied between -w and w. 
Let C = + i,1. Then 

a + ib 
(-e)+i(,j-f)= 	 (A2) 

(1/k) + c + id 

giving 

(l/k)+c+id= (a+ib)(( 
-e)-i(j-f)) 	

(A3) 
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The imaginary part of equation (A3) gives 

	

( - e) + (q -f) 2  = - e)b/d—( —f)a/d, 	 (A4) 

which can be rearranged to give the equation 

[—(e+b/2d)]2 + [q—(f—a/2d)] 2  

	

= 4d2 

a2  + b2' 
	 (A5)t 

which is that of a circle. 
Equation (Al), in fact, can be regarded as providing a mapping from the k-plane (in which 

k is assumed in general to be complex)into the (-plane. It may be seen to be an example of 
the bilinear class of mappings for which it is known [6] that circles and straight lines map into 
circles and straight lines. In the present case, k is real and thus provides a straight line in the 
k-plane and maps into a circle or a straight line in the c-plane. It may be useful to note that 
if damping is incorporated into the stiffness by introducing an imaginary component on the 
real stiffness, the response on the (-plane is still a circle or straight line. 

APPENDIX B 

All the systems used in the computations corresponding to Figures 4, 6 and 7 consist of 
simple combinations of masses, springs and dashpots. The number of degrees of freedom in 
each case was four, and the maximum number of interconnections between adjacent masses 
was two for Figures 4 and 7(a), the number being three in all the other cases. As an example, 
the system used to generate the region illustrated in Figure 6 is shown in Figure Bl. The 

fri 

C1 	k2 

C2 3;; 

Figure El. Sketch of system used for feasible response region illustrated in Figure 6. Stiffness: 	40, 
k2=30,k3 =30, k4 =30, k5 =10; mass: m 1 =3, in2 = 10, "13 =20, "14=5; damping: c 1 =05, c2 =06, 

= 08. All units are compatible. 

maximum number of interconnections on this system is three on mass in3 . The point at which 
excitation is applied is on mass in4  and that at which the response is examined is on mass m 1 . 

The variable parameters are k 3  and k5 . The numbers used in this and other examples have no 
particular significance. 

t This version of the proof is due to Professor A. R. Collar. 
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APPENDIX C 

	

The equation for the complex responses 	x0/F, as a function of two variable spring 
parameters k 1  and k2  is given generally by 

k 1  0 1 (k 2) + 4 2(k 2) 
C_Gqp+ (Cl) 

k 1  4;(k2) + 

where q and p refer to examination and forcing co-ordinates, respectively. The functions 
4,(k 2) are 

4 1 (k 2) = a1  b1 (l + k 2  c22) + a2 b2  c11 k 2  - k 2(a2  b 1  c21  + a1  b2 c12), 
02(k 2) = a2 b2  k 2 , 

= c0 +k2c22) - C21 q2  k2, 

4 4(k 2) 1 + k2  c22 1  

where a,, b, and Cu  are the complex elements of matrices A, B and C in Appendix D. These 
elements are functions of the complex receptances Gjj  and are given by 

a1  = Gqr  - Gqs , 	 a2  = G, - GqT 
b i  = G, - Grp, 	 b2  = GE,p - 

	

= C,, + C5. - C,. - C,,., 	c12  = G, - 	- Grv  + G,, 

= G, - 	- G + Gtr , 	c22 = C, + Gvu  - 	- Gtv  

where k 1  is connected between co-ordinates r and s and k 2  between co-ordinates t and v. 

APPENDIX D 

The setting up and reduction of equations (14) to give the single expression for the complex 
receptance as shown in equation (15) rapidly becomes more complex as the number of 
variable parameters considered increases. As a consequence of this it is convenient to have a 
general matrix expression for the complex receptance in terms of in variable stiffness 
parameters. 	 - 

The response at the examination point, q, may be written in terms of the external force, 
internal spring forces and the corresponding receptances: 

Xq  = Cqp  F + k1  5 1 (G 1  - G.2)+ k2  62 (Gq3  - Gq4)... k m  5(Gq 2m-1 - Gq 2,,i), (DI) 

where k 1  is the ith variable stiffness parameter and 5 1  = x21 - x21 _ 1  is the extension of the ith 
spring (x2 , and x21_ 1  being the actual axial displacements at each end). Equation (Dl) 
alternatively may be expressed as 

X q =Gqp Fp + AKÔ 	 (D2) 

where A is a (1 x in) row vector of the terms 

- G 2), (G13  - Gq4) 1  . . . 
(Gq 2m-1 - Gq 2m)}, 

K is an (m x in) diagonal matrix of the stiffness parameters k, and 5 is an (m x 1) column 
vector of extensions. 
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The values 61 themselves may be expressed in the same way as x q  in equation (DO:  i.e., 

61 =F(G2 ,, - G1 ,,) - k 1  b 1 [(G22  - G21 ) - (G 12  - 	- k 2 t5 2 [(G24  - G23) - (G 14 — a 13)]. 
-52 = F,,(G4 ,, - Ga,,) - k 1  3 1 [(G42  - G41 ) - (G32  - 

6. = Fv(G2m;p - 2m-1, )" 	 km  6.1(G4, 2. - 	 - (Gs , 2. - Gs 2m-I)], 	(D3) 

which can be written in matrix notation as 

5= F,, B - CKS 
	

(D4) 

Where B is an (m x 1) column vector of terms 

- G1 ,,), (a4, - a3,,). ... . (G2m . p - G2.- 1, ,)} 

and C is an (in x in) matrix of complex constants in which C, j  = (021,2J - G21.2j_l) - 

2j - G2 ,- 1• 	). An expression for '5 can be found from equation (D4) and substituted 
into equation (132) to give 

Xq 
=Gqp +A[K- 1 +C]-IB, 	 (D5) 

which provides the complex receptance, xe/F,, as a general function of in stiffness parameters. 


