Transcriptional regulation of neurodevelopmental and metabolic pathways by the psychiatric illness candidate gene NPAS3

Li Sha

Doctor of Philosophy
University of Edinburgh
2010
Transcriptional regulation of neurodevelopmental and metabolic pathways by the psychiatric illness candidate gene NPAS3 i
Declaration vi
Abstract vii
Acknowledgements ix
Publications from this thesis x
LIST OF FIGURES xi
LIST OF TABLES xiii
ABBREVIATIONS xiv
CHAPTER ONE 18
Introduction 19
1.1 Psychiatric illnesses 19
1.1.1 Schizophrenia 19
1.1.2 Bipolar disorders 28
1.2 Molecular approaches to the study of psychiatric disorders 33
1.2.1 Linkage studies 34
1.2.2 Association studies 35
1.2.3 Genome-wide association studies (GWAS) 36
1.2.4 Copy-number variations 37
1.2.5 Gene expression Microarray analysis-High-throughput approaches to study gene expression 38
1.2.6 Candidate genes and chromosome regions associated with schizophrenia identified by these approaches. 39
1.2.7 Candidate genes and chromosome regions associated with bipolar disorders identified by these approaches 42
1.2.8 Overlapping findings associated with both schizophrenia and bipolar disorders 44
1.3 Adult neurogenesis and psychiatric illnesses. 45
1.3.1 The relation of neurogenesis and psychiatric disorders 45
1.3.2 Adult Neurogenesis 46
1.3.3 A number of candidate genes for susceptibility to psychiatric disorders are involved in neuronal development. 47
1.4 NPAS3 is a strong candidate gene for psychiatric illness 49
1.4.1 The structure and function of NPAS3 50
1.4.2 The biology of the psychiatric disorder candidate gene-NPAS3 51
1.4.3 The basis bHLH domain transcription factors 52
1.4.4 The functions of bHLH superfamily 53
1.4.5 The structure and function PAS domain 54
1.4.6 Npas3 deficient animal model 55
1.5 Summary and hypothesis 56
1.5.1 What is the expression pattern of NPAS3 in adult hippocampus? 56
1.5.2 What is the regulatory profile of NPAS3? 56
1.5.3 How does the regulation profile of NPAS3 compare with SOX transcription factors? 57
1.5.4 How does circadian rhythm affect NPAS3? 57
CHAPTER TWO 59
2 Materials and Methods 60
2.1 Materials 60
2.1.1 Suppliers 60
2.1.2 Solutions, buffers and gel loading dyes 64
2.1.3 Primers 69
2.1.4 Cell lines 71
2.2 General methods 72
2.2.1 Miniprep preparation of Bacterial DNA 72
2.2.2 Sequencing 73
2.2.3 Cloning PCR products 75
2.2.4 Reverse-transcriptase PCR 77
2.3 Immunofluorescence 79
2.3.1 Fixation of Brain Tissue 79
2.3.2 Sectioning of frozen brain tissue 79
2.3.3 Fluorescent endpoint 80
2.4 Luciferase Reporter Assay 81
2.4.1 An overview of the technique 81
2.4.2 Construction of VGF promoter-Luciferase Reporter Vectors 81
2.4.3 Quantification of reporter vectors by Fluorimetry 85
2.4.4 Transfection of the vectors into human cells. 85
2.4.5 Measurement of the luciferase activity 88
2.5 Illumina microarray analysis 90
2.5.1 90
2.6 Bioinformatics 100
CHAPTER THREE 101
3 Transcriptional regulation by a psychiatric candidate gene-NPAS3 102
3.1 Introduction 102
3.2 Results 103
3.2.1 Npas3 expression in mouse brain supports a direct role in neurogenesis 103
3.2.2 NPAS3 target genes in standard culture conditions 105
3.2.3 Genes regulated by FLNPAS3 in standard conditions 107
3.2.4 Comparison of FLNPAS3 and \triangle NPAS3 regulation 112
3.2.5 Confirmation of our FLNPAS3/ \triangle NPAS3 microarray findings. 114
3.2.6 The relevant functions of up-regulated genes 116
3.2.7 The function analysis of down-regulated genes 117
3.2.8 Histone and zinc finger genes and chromosomal domain regulation by NPAS3 123
3.3 Discussion 125
CHAPTER FOUR 128
4 Comparison of NPAS3 with SOX transcription factors 129
4.1 Introduction 129
4.1.1 Sox family genes 129
4.2 Aims of this study 136
4.3 Result 137
4.3.1 Genes regulated by SOX5 in HEK293 cells 137
4.3.2 Genes regulated by SOX6 in HEK293 cells 140
4.3.3 Gene regulated by SOX9 in HEK293 cells 143
4.3.4 Gene regulated by SOX10 in HEK293 cells 148
4.3.5 Shared targets of NPAS3 and SOX factors 151
4.3.6 Testing transcriptional control at the VGF promoter 155
4.4 Discussion 157
4.4.1 Genes with overlapping regulatory functions 157
4.4.2 Evidence that SOX genes are involved in neurogenesis 159
4.4.3 Npas3 down-regulates SOX11, why do these genes both act as down- regulators of several genes? 159
CHAPTER FIVE 160
5 An interaction between NPAS3 and the circadian rhythm 161
5.1 Introduction 161
5.2 Aims of this study 162
5.3 Results 163
5.3.1 Confirmation of in vitro circadian induction by serum shock approach 163
5.3.2 NPAS3-specific changes in gene expression in HEK293 cells after circadian induction 165
5.3.3 The regulatory activities of FL/ N NPAS3 have been changed by circadian environment 167
5.3.4 Many standard culture down-regulated genes were also down-regulated in the circadian experiments: a link to hypoxia signalling 168
5.3.5 \triangle NPAS3 and FLNPAS3 differences exposed by circadian stimulation 170
5.3.6 An interaction between NPAS3 activity and the circadian rhythm 172
5.4 Discussion 180
CHAPTER SIX 183
6 SOX11 target genes: implications for neurogenesis and neuropsychiatric illness 184
6.1 Introduction 184
6.2 Aims of this study 186
6.3 Result 187
6.3.1 Transient overexpression of SOX11 in HEK293 cells results in specific gene expression changes as assessed by microarray 187
6.3.2 Identification and validation of SOX11 regulated genes 189
6.3.3 Confirmation of SOX11 microarray findings at the transcriptional and protein levels and in a second cell line 192
6.3.4 Kinetics of SOX11 activity: time-course Q-PCR 194
6.3.5 IPA analysis of SOX11 microarray data 196
6.3.6 Several neurogenesis and psychiatric illness candidate genes are regulated by SOX11 198
6.3.7 Histone and zinc finger genes and chromosomal domain regulation by SOX11 201
6.3.8 The expression patterns of SOX11 regulated genes in dentate gyrus of the hippocampus 204
6.4 Discussion 206
CHAPTER SEVEN 209
7 Discussion 210
7.1 Why a HEK293 cell line was used in my microarray studies 211
7.2 Why not use a stem cell model to look at the neurodevelopmental role of NPAS3? 212
7.3 NPAS3 interacts with several SOX members 213
7.4 Altered metabolite levels in brain tissue from Npas3 knockout mice 215
7.5 Comparing my NPAS3 findings with newly published data 220
7.6 A link between metabolism and circadian rhythms. 223
7.7 Limitations of my work and Future directions worthy of study 226
7.8 Relating our observations to the known biology of psychiatric disorders 227
Reference: 229
APPENDICES 258

Declaration

I hereby declare this thesis has been composed by myself, and the work presented within is my own and has not been accepted for any previous application for a degree. Information obtained from sources other than this study is acknowledged in the text or included in the references.

Li Sha

November 2010

Abstract

The basic helix-loop-helix PAS domain transcription factor gene NPAS3 is a risk factor for psychiatric disorders. A knockout mouse model also exhibits behavioural and adult neurogenesis deficits consistent with human illness. To define the location and mechanism of NPAS3 aetiopathology immunofluorescent and transcriptomic approaches were used.

Npas3 was co-localised with Dcx, but not other neurogenesis markers, in the hippocampal subgranular zone - the site of adult neurogenesis. This implied that NPAS3 might be involved in maturing, rather than proliferating, neuronal precursor cells. Microarray analysis revealed that the transcriptional activities of NPAS3 and its truncated form (C-terminal deletion) in the HEK293 cell line are sensitive to circadian rhythm context. The most highly up-regulated NPAS3 target gene, $V G F$, encodes secretory peptides with established roles in neurogenesis, depression and schizophrenia. VGF was one of many NPAS3 target genes also shown to be regulated by the SOX family of transcription factors, suggesting an overlap in neurodevelopmental pathways. The transcriptional repression of multiple glycolytic genes indicated that NPAS3 has a second role in metabolic regulation. This finding was also confirmed by collaboration with a metabolomics research group at the University of Strathclyde.

SOX11, a transcription factor known to play a role in neuronal and glial cell differentiation, was shown to be down-regulated by NPAS3. The set of genes targeted by SOX11 and their ontologies were deduced by a microarray analysis in a

SOX11 overexpressing HEK293 cell line. Regulated genes include a previously established SOX11 target, known markers of neurogenesis as well as genes implicated in neuropsychiatric disorders. Multiple histone and zinc finger genes are regulated by SOX11, many of which were located in two clusters on chromosomes 6 and 19. The chromosome 6 cluster lies within a region of the genome showing the strongest genetic association with schizophrenia. SOX11 may alter localised expression competence and its targets induce a complex programme of chromatin remodelling and downstream gene expression changes to achieve the mature neuronal phenotype.

This thesis details how transcription factors are involved in biological processes linked to psychiatric illness. The dual neurodevelopmental and metabolic aspects of NPAS3 activity described here increase our understanding of aspects of neurogenesis relevant to mental illness and may explain the innate and medication-induced susceptibility to diabetes reported in psychiatric patients.

Acknowledgements

I would like to acknowledge the enormous support I have received from my three supervisors, Ben Pickard, Douglas Blackwood and Walter Muir. My supervisors have not only guided me through my studies but also have become close friends. I would like to express my sincere thanks to Dr. Ben Pickard, for his guidance and encouragement throughout the duration of this project. Whithout his numerous advices and careful review of the manuscript, the completion of this thesis would not have been possible. Many thanks to Prof. Douglas for his advice, support and proofreading of my manuscript. My warm thanks also go to Alan Maclean and Pat Malloy for their words of encouragement and laughter during the last four years.

I would like thank Prof. Antony Harmar and Dr. Varrie Ogilvie for their advices and support as my PhD committee. I would also like to thank Mr. Robert Kitchen for the stastical analysis for SOX11 microarray data using Limma. Thanks Ms Lynsey MacIntyre and Dr. David Watson for the metabolic anaysis of Npas3 (-/-) mouse brains using Mass Spectrometry.

In addition, I am grateful to the head of the Medical Genetics Section, David Porteous, many members of the section, past and present, and individuals at Edinburgh University and other institutions for discussing research, kindly sharing materials, and providing advice on molecular techniques and computational programs

My thanks also extend to Dr. Nick Brandon and Dr. Steve Clapcote who kindly gave the Npas3 (-/-) mice. Thanks to Chuanju Liu and Fabien Murisier/Friedrich Beerman who kindly gave SOX expression constructs. Thanks Prof. Robert van't Hof for his advice and practical assistance on the duel luciferase assay.

Finaly, thanks to my parents for their whole hearted love and support in all ways.

This work was founded by CMVM scholarship of Edinburgh Universtiy, CSC (Chinese scholarship council) and also Royal College of Physicians, Edinburgh SIM Fellowship award to Ben Pickard with additional funds for PhD student,

Publications from this thesis

Papers

SOX11 target genes: implications for neurogenesis and neuropsychiatric illness. Li Sha, Rob Kitchen, David Porteous, Douglas Blackwood, Walter Muir, Ben Pickard. (Submitted)

Transcriptional regulation of neurodevelopmental and metabolic pathways by the psychiatric illness candidate gene NPAS3. Sha, L., MacIntyre, L., Machell, J.A., Kelly, M.P., Porteous, D.J., Brandon, N.J., Muir. W.J., Blackwood, D.H., Watson, D.G., Clapcote, S.J. and Pickard B.S.(submitted)

Conference presentations:

'NPAS3 and SOX family genes: Transcriptional control of neuronal proliferation and differentiation and its relation to psychiatric illness' Posted on 2009 World Congress of Psychiatric Genetics, 2009, San Diego, USA
'Adult Hippocampal neurogenesis Relevant Genes Regulated by SOX11: Implication for Psychiatric Illness' Posted on MMC Symposium Day 2009, Edinburgh, UK
'Evidence for metabolic regulation by the NPAS3 transcription factor in psychiatric illness.' 2010, Western general hospital, the university of Edinburgh, UK

Award

2009.11.04-10 ' $N P A S 3$ and SOX family genes: Transcriptional control of neuronal proliferation and differentiation and its relation to psychiatric illness' 2009, San Diego, USA, 2009 the XVII World Congress of Psychiatric Genetics Travel Award

LIST OF FIGURES

Number Page
FIGURE 1.1 Adult neurogenesis in dentate gyrus 43
FIGURE 1.2 The structure of NPAS3. 47
FIGURE 1.3 basic helix-loop-helix DNA binding domain 49
FIGURE 2.1 The procedure of duel luciferase assay 84
FIGURE 2.2 The induction of circadian rhythm in cultured cells by serum shock method 94
FIGURE 3.1 Co-immunofluorescence of Npas3 and neurogenesis stage markers in the dentate 102 gyrus of mouse hippocampus
FIGURE 3.2 Hierarchical clustering dendrogram illustrating relationships between FLNPAS3, 104 4 NPAS3 and control HEK293 cell microarray data
FIGURE 3.3 FLNPAS3 and \triangle NPAS3 shared target gene regulation is highly correlated under 109 standard cell culture conditions indicating minimal effect of truncation
FIGURE 3.4 QPCR verification of microarray findings 111
FIGURE 3.5 Three SOX family genes, SOX4, SOX3 and SOX11, were down-regulated in 114 FLNPAS3 over-expressing HEK293 cells
FIGURE 3.6 Most glycolytic enzyme genes are down-regulated in the presence of NPAS3 119
FIGURE 3.7 NPAS3 regulates the expression of a cluster of histone genes located on 121chromosome
FIGURE 3.8 Dcx is a neurogenetic marker during the process of converting progenitors into 122immature granule cell
FIGURE 4.1 SOX memebers are involved in the process of neurogenesis 130
FIGURE 4.2 The structure of Sox 5 and Sox6 proteins 131
FIGURE 4.3 Venn diagrams illustrating the overlap between up- and down-regulated targets of 146NPAS3 and the target genes regulated by the SOX family of transcription factors.
FIGURE 4.4 The structure of human VGF promoter fragment148
FIGURE 4.5 Luciferase expression in the NPAS3 / \triangle NPAS3/control vector over-expressed 148
cellsFIGURE 5.1 A serum shock induces circadian gene expression in HEK293 cells.158
FIGURE 5.2 Relationships between target gene profiles of standard and circadian microarray 163experiments.FIGURE 5.3 Normalised and log-transformed expression data for over 24,000 probes165
FIGURE 5.4 Ternary plot illustrates the relative effects of FLNPAS3 over-expression $167-$
FIGURE 6.1 Dendrogram of SOX11 transfected and control HEK293 cell samples 182
FIGURE 6.2 QPCR and Western blotting verify microarray findings 187
FIGURE 6.3 Timecourse QPCR of SOX11 transiently transfected HEK293 cells 189
FIGURE 6.4 Clustering of SOX11-regulated genes 195
FIGURE 6.5 Sox11 and Gpc2 expression patterns in the dentate gyrus region of mouse 198 hippocampus
FIGURE 7.1 Three metabolic pathways with coincident findings from the transcriptomic and 212 metabonomic analyses
FIGURE 7.2 Comparison of my NPAS3 findings with Andrew Pieper's recent result 197
FIGURE 7.3 Model for electrical activity-induced change in neuronal redox status 217

LIST OF TABLES

Number Page
TABLE 2.1 PCR primers used in validation of SOX11 microarray and timecourse QPCR 69 assay
TABLE 2.2 PCR primers used in validation QPCR for NPAS3 microarray, circadian gene 70
TABLE 3.1 The 51 genes most up-regulated by FLNPAS3 in standard cell culture conditions 107-
TABLE 3.2 The 50 genes most down-regulated by FLNPAS3 in standard cell culture 109-
conditions. 110
TABLE 3.3 Ingenuity pathway analysis (IPA) identifies canonical pathway and networks 119 regulated by over-expression of NPAS3
TABLE 3.4 Top molecular and cellular functions (IPA) 119
TABLE 3.5 Physiological System Development and Functions 119
TABLE 3.6 Disease and disorders 120
TABLE 3.7 Canonical pathways 120
TABLE 4.1 Sox proteins and their locations in human brain 130
TABLE 4.2 SOX5 top up-/down-regulated genes 136-
TABLE 4.3 SOX6 top up-/down-regulated genes 139
141
TABLE 4.4 SOX9 top up-/down-regulated genes 143-
TABLE 4.5 SOX10 top up-/down-regulated genes146
149
TABLE \quad 6.1 SOX11 upregulated genes with fold-change more than 2 189-TABLE 6.2 Functions and Diseases190
196
TABLE 6.3 Significantly (SAM) regulated genes, shown in order, that are found within 202 clusters on chromosomes 6 and 19.
Appendix Circadian (control samples) +12 hrs to +24 hrs top differentially expressed genes. 256-
table S1 257
Appendix \quad FLNPAS3 vs. \triangle NPAS3 +12 hrs top differentially regulated genes. 258-
table S2 260
FLNPAS3 vs. Control + 12 hrs top up-/down-regulated genes Appendix 261-
table S3 263
FLNPAS3 vs. Control +24 hrs top up-/down-regulated genes Appendix 264-
table S4 267
genes significant by SAM - Significance analysis of Microarray Appendix 268-
table S5 285
Appendix Results of high-resolution mass spectrometric-based metabonomic analysis of 286-
table S6-a-d, Npas3 wild-type and knockout brain tissue 289

ABBREVIATIONS

α	Alpha
aa	Amino acid
ATP	Adenosine triphosphate
BAC	Bacterial artificial chromosome
BDNF	Brain derived neurotrophic factor
BLAST	Basic local alignment search tool
bp	Base pair
BP	Bipolar disorder
BSA	Bovine serum albumin
${ }^{\circ} \mathrm{C}$	Degrees centigrade
cDNA	Complementary DNA
CACNA1C	Calcium channel, voltage-dependent, L type
CACNG2	Voltage-dependent calcium channel gamma-2
CAD	Coronary artery disease
cAMP	Cyclic adenosine monophosphate
cM	centiMorgans
CNS	Central Nervous System
CNTNAP2	Contactin-associated protein-like 2 precursor
CNV	Copy Number Variant
CT	Computed tomography
DAB	Diaminobenzidine
DAPI	4',6-diamidino-2-phenylindole
DA	Dopamine
DAAO	D-amino acid oxidase
DAG	Diacylglycerol
D_{2}	Dopamine type-2 receptors
Δ	Delta
Del	Deletion
DG	Dentate gyrus
DGKH	Diacyl glycerol kinase
$\mathrm{dH}_{2} \mathrm{O}$	Distilled water
DISC1	Disrupted-In-Schizophrenia-1
DMD	Duchenne Muscular Dystrophy
DZ	Dizygotic
DNA	Deoxyribonucleic acid
DNase	A deoxyribonuclease
dNTP	Deoxyribonucleotide triphosphate
DSM	Diagnostic and Statistical Manual of Mental Disorders
DTNBP1	Dysbindin
DYNC1I1	Dynein, cytoplasmic 1, intermediate chain 1
E-Coli	Escherichia coli
EDTA	Ethylenediaminetetraacetic acid
EEG	Electroencephalographic
EFAs	Essential fatty acids

EGFR	Epidermal growth factor receptor isoform b
EPSCs	Excitatory postsynaptic currents
EPSC	Excitatory postsynaptic currents kainate receptor
ER	Endoplasmic Reticulum
fMRI	Functional Magnetic Resonance Imaging
g	Grams
GABA	Gamma-aminobutyric acid
GAD	Glutamate decarboxylase
GAPDH	Glyceraldehyde 3-phosphate dehydrogenase
GFAP	Glial fibrillary acidic protein
GFP	Green fluorescent protein
G6PD	Glucose-6-phosphate dehydrogenase
GPR24	G protein-coupled receptor 24
GRIA1	Glutamate ionotrophic receptor, AMPA 1
GRIA3	Glutamate ionotrophic receptor, AMPA 3
GRID2	Ionotropic glutamate receptor, delta subunit 2
GRIK4	Ionotropic glutamate receptor, kainate 4 (protein KA1)
GRIN1	NMDA receptor 1
GRIN2B	NMDA receptor subunit 2B
GWAS	Genome-Wide Association Study
HD	Huntington's disease
HGU	Human Genetics Unit
HPA	Hypothalamic-pituitary-adrenal axis
5-HT	5-hydroxytryptamine /serotonin
IHC	Immunohistochemistry
IP3	Inositol-1, 4,5-triphosphate
IPSC	Inhibitory post synaptic currents
IPTG	Isopropyl β-D-thiogalactopyranoside
kb	Kilobase
KCNB1	Potassium voltage-gated channel, subfamily G
KCND3	Potassium voltage-gated channel, Shal-related
KCNF1	Potassium voltage-gated channel, subfamily F
kDA	Kilo Daltons
KO	Knock out
LSD	Lysergic acid diethylamide
$\boldsymbol{\mu g}$	Micrograms
$\boldsymbol{\mu l}$	Microlitre
$\boldsymbol{\mu M}$	Microns
m	Stratum lucunosum moleculare
M	Molar
Mb	Megabase
MDD	Major Depressive Disorder
MeOH	Methanol
mg	Milligrams
MgCl	Magnesium chloride
mGluR	Metobotropic glutamate receptor
min	Minutes

mI	Millilitres
mM	Millimolar
MR	Mental retardation
MRC	Medical Research Council
mRNA	Messenger RNA
MYO5B	Myosin VB
MZ	Monozygotic
nACh	Nicotinic acetylcholine
NaC1	Sodium chloride
NAD	Non affected with psychiatric illness
NaOH	Sodium hydroxide
NBD	Nucleotide binding domain
NCBI	National Center for Biotechnology Information
ng	Nanograms
NMDA	N-methyl-D-aspartic acid
NMR	Nuclear magnetic resonance
NPL	Non parametric linkage analysis
NPAS3	Neuronal PAS domain-containing protein 3
NRG1	Neuregulin
OD	Optical density
Oml	Outer molecular layer
OR	Odds ratio
PBS	Phosphate buffered saline
PCM1	Pericentriolar material 1 protein
PCP	Phencyclidine
PCR	Polymerase chain reaction
PDE4D	Phosphodiesterase 4d
PDE4	Phosphodiesterase 4
PET	Positron emission tomography
pH	Power of Hydrogen
PI	Phosphoinositide
PIP	Phosphatidylinositol 4,5-bisphosphate
qS	quantum sufficiat /quantity sufficient
QTL	Quantitative trait loci
r	Stratum radiatum
RGS4	Regulator of G-protein signaling 4
RIN	RNA Integrity Number
RNA	Ribonucleic acid
RNaseA	Ribonuclease A
rpm	Revolutions per minute of rotor
RTA	Road traffic accident
RT-PCR	Reverse transcription - PCR
s	Subiculum
SADS-L	Schedule for Affective Disorders and Schizophrenia-Lifetime
SCZ	Schizophrenia
SDS	Sodium dodecyl sulphate
SDSC	San Diego Super Computer
SDS-PAGE	SDS-polyacrylamide gel electrophoresis

SEM	Standard error of the mean
SEMA3A	Semaphorin 3E
SGZ	Subgranular zone
SHANK3	Proline-rich synapse-associated protein 2
SLC26A4	Pendrin
SLC26A5	Prestin isoform d
SLC6A4	Solute carrier family 6 member 4 / serotonin transporter gene
SORCS2	Sortilin-related VPS10 domain containing receptor 2
SNHL	Sensori-neural hearing loss
SNP	Single nucleotide polymorphism
SOX2	Sry-related HMG box transcription factor
SSC	Standard saline citrate
SSRI	Specific serotonin re-uptake inhibitor
STAR*D	Sequenced Treatment Alternatives to Relieve Depression
STGD	Stargardt disease
TAC1	Tachykinin 1 isoform
Taq	thermus aquaticus
TBE	Tris-Borate-EDTA
TBlast	Translated sequence database
TD	Tangier disease
TE	Tris-EDTA
THEX1	Three prime histone mRNA exonuclease 1
TMDs	Transmembrane cluster domains
TPH ${ }_{2}$	Tryptophan hydroxylase 2
TRIOBP	TRIO and F -actin binding protein
TSPAN8	Transmembrane 4 superfamily member 3
Tween 20	Poly(oxyethylene) sorbitan monolaurate
TX-100	Triton-X-100
U	Units
UCSC	University of California Santa Cruz
UPD	Uniparental disomy
USS	Upstream sequence
dUTP	2'-Deoxyuridine 5'-Triphosphate
UTR	Untranslated region
3'UTR	3 prime untranslated region
5'UTR	5 prime untranslated region
UV	Ultraviolet
VGCNL1	Voltage gated channel like 1
VEGF	Vascular endothelial growth factor
WFS1	Wolfram syndrome
WGH	Western General Hospital, Edinburgh
WHO	World Health Organization
WS	Wolfram syndrome
WTCCC	Welcome Trust Case Control Consortium
WT-CRF	Welcome Trust Clinical Research Facility
xg	Measure of relative centrifugal force
YAC	Yeast artificial chromosome

CHAPTER ONE

Introduction

1.1 Psychiatric illnesses

1.1.1 Schizophrenia

Schizophrenia, which affects about 4-6 in a thousand individuals (Bhugra, 2005; Goldner et al., 2002), is a neuropsychiatric disorder characterised by abnormalities in a person's thinking, mood, movement, and perceptions. Schizophrenia is described in terms of positive and negative symptoms. In the acute phases of illness, a person often presents with positive symptoms. Typically a person may become very distressed and agitated, express delusional beliefs and may experience hallucinations in the form of voices, smells or experience of touch and usually require treatment in hospital. Anti-psychotic medication is very effective at controlling these positive symptoms. To prevent relapse, long-term medication may be required and patients rarely return to their previous level of function. Negative symptoms include apathy, poverty of speech, inability to experience pleasure, lack of desire to form relationships and psychological deficits in executive function and episodic memory. A person with negative symptoms is often withdrawn without drive, ambition and goal-directed behaviour. They may appear and sound emotionally 'flat'. Speech may be slowed and show evidence of unusual words and grammar. Repetitive body movements are common. These symptoms do not respond well to medication. Thus a person with chronic schizophrenia has many difficulties affecting all aspects of life.

The cognitive deficits in schizophrenia include excessive attention to potential threats, jumping to conclusions, impaired reasoning about social situation and mental states etc. (Broome et al., 2005; Brune et al., 2007; Lewis, 2004; Sitskoorn et al.,
2004). Some neurocognitive deficits are related to issues in memory, attention, problem-solving, executive function and social cognition (Kurtz, 2005).

The peak years for the onset of symptoms are typically late adolescence and early adulthood in males and females (the mean age of onset is 20-28 years for males and 26-32 years for females). Increased physical health problems and higher selfharming and suicide rate are the main reasons which reduce the life expectancy of schizophrenia patients by 10-12 years compared to the healthy population (Brown et al., 2000; Palmer et al., 2005). It incurs high public health cost and results in a poor quality of life and has a devastating impact on societies across the whole world.

1.1.1.1 Factors which can contribute to schizophrenia

It is clear that a full explanation of schizophrenia must take account of both genetic and environmental influences. (Corcoran et al., 2003; Harrison and Owen, 2003). It is very difficult to separate the effects of genetic and environmental factors in the heritability of schizophrenia, although twin and adoption studies have suggested a high level of heritability.

The environmental factors which contribute the disease include: hypoxia at birth, migration, living in a city, season of birth (winter has a higher risk for schizophrenia), cannabis, starvation etc. Fetal Hypoxia has been supported as an important external factor that influences the susceptibility of schizophrenia (Handford, 1975). In numerous studies, fetal hypoxia has been correlated with neuronal dysfunction and subtle damage (Rosso et al., 2000; Van Erp et al., 2002). Normal embryonic and fetal hypoxia or pathological hypoxia may affect neurodevelopment by regulating several genes. Schmidt-Kastner et al. reviewed that more than 50% of the schizophrenia candidate genes met criteria for ischemia-hypoxia regulation (Schmidt-Kastner et al., 2006). Cannon et al. found that obstetric complications involving hypoxia were associated with neurodevelopmental impairments in childhood and with the later development of schizophreniform disorders through a longitudinal study (Cannon et al., 2002). A study of Japanese monozygotic twins discordant for schizophrenia (one has the diagnosis while the other does not) suggests that hypoxic brain damage maybe a differentiation factor for the abnormalities in psychosocial development and subsequent schizophrenia (Kunugi et al., 2003). Although hypoxic impairment does not account for all schizophrenia cases, it is very possibly that prenatal and perinatal
hypoxia play an important role in the neurodevelopment and subsequent development of schizophrenia, which suggests that some forms of schizophrenia may be preventable (Marin et al., 1991).

Schizophrenia is a condition of complex inheritance with many different major or minor genes increasing risk. Adoption studies showed increased risk in those raised in normal environment but with schizophrenic biological parents. These studies suggest that schizophrenic phenotype is genetically influenced. Individual twin studies and meta-analyses of twin studies estimate that schizophrenia is a heterogeneous syndrome with a heritability score of approximately 0.8 (Huntley et al., 2003). (This refers to the proportion of variation between individuals in a population that is influenced by genetic factors, not the degree of genetic determination of individual risk). Concordance rates of schizophrenia are about 50\% in monozygotic twins and 17% between dizygotic twins. There is still limitation in the methodology of the twin studies. Although the concordance of schizophrenia in monozygotic twins has traditionally been used to estimate a genetic component, the result could be skewed due to the environmental factors (including shared placenta etc.) (Davis et al., 1995).

1.1.1.2 Traditional hypotheses based on neuropharmacology

1.1.1.2.1 Dopamine hypothesis of schizophrenia

Much evidence supports the hypothesis that a malfunction in the dopamine pathway is involved in the pathology of schizophrenia.

Post-mortem studies have revealed elevated D2 receptors are present in untreated schizophrenia patients (Abi-Dargham et al., 2000; Abi-Dargham et al., 2009; Seeman and Kapur, 2000; Wong et al., 1986). After large and prolonged use of amphetamine and cocaine, which increase levels of dopamine in the brain, these drugs can produce symptoms indistinguishable from those present in psychosis. The majority of schizophrenia patients (up to 75%) also have increased symptoms after treatment with moderate doses of methylphenidate or amphetamine or other dopamine-like compounds, while healthy controls do not have any psychologically disturbing effects (Curran et al., 2004; Lieberman et al., 1987). Several studies also show that schizophrenia patients have greater levels of dopamine release than normal individuals after amphetamine treatment.

Another important piece of evidence is the observation that several antipsychotic drugs, including chlorpromazine and haloperidol, can antagonize dopamine binding to the D_{2} dopamine receptors and thus reduce positive symptoms (Creese et al., 1976; Seeman et al., 1976). There is also genetic evidence which supports the dopamine hypothesis of schizophrenia. Several genes or specific variants of genes, which relate to dopamine function, are more prevalent in schizophrenia patients than normal
population. These include COMT, DRD4 and AKT1 (Arguello and Gogos, 2008). However, the dopamine hypothesis can not be posited as a complete explanation for schizophrenia.

1.1.1.2.2 Glutamate hypothesis of schizophrenia

This hypothesis has also been supported by several lines of evidence. The first one is that abnormally low levels of NMDA glutamate receptors are found in post-mortem brains of schizophrenia patients (Halene et al., 2009; Konradi and Heckers, 2003). Additional evidence is that some mind-altering drugs such as phencyclidine and ketamine, which are glutamate blocking drugs, can produce the symptoms and cognitive problems similar to the condition of schizophrenia (Lahti et al., 2001). Finally, glutamatergic drugs, which can coagonistically act at the NMDA or nonNMDA receptors, can reduce some of the positive symptoms of schizophrenia (Tuominen et al., 2005). NMDA receptor Grin1 (-/-) mice have a disinhibition in sensory processing and reduced behavioral inhibition and impaired social interactions. Impaired NMDAR function is possibly relevant to the negative symptoms in schizophrenia (Boulay et al., 2010; Halene et al., 2009; Ramsey, 2009). This hypothesis does not negate the dopamine hypothesis. These two hypotheses possibly function together by circuit-based models (Lisman et al., 2008).

1.1.1.2.3 Serotonin and schizophrenia

Serotonin, also called 5-Hydroxytryptamine (5-HT), is a monoamine neurotransmitter, which is active in the gastrointestinal tract, platelets, and central nervous system (CNS) of humans and animals. The serotonin synthesized in serotonergic neurons in the CNS can regulate various types of processes, including mood, appetite, sleep, muscle contraction, and has cognitive functions, including memory and learning. Individuals with depression usually have lower levels of dopamine and serotonin in the brain (Meltzer and Sumiyoshi, 2008; Slowik, 1967). Several types of antidepressant medicines act through modulation of serotonin at synapses (Marino and Caballero, 2010; Wong et al., 2010). For instance, selective serotonin reuptake inhibitors (SSRIs) are typical antidepressants to treat depression, anxiety disorders and some personality disorders. SSRIs could inhibit the reuptake of serotonin into the presynaptic cell, increasing the extracellular level of serotonin. SSRI was reported to increase the level of brain derived neurotrophic factor (BDNF) through cAMP signal pathways on the postpsynaptic neuronal cell. Therefore, the growth and survival of cortical neurons and synapses are enhanced (Rumajogee et al., 2004)

1.1.1.3 Abnormal brain structure in schizophrenia patients

Brain imaging technologies and neuropsychological tests (including CT, MRI and PET) have produced a lot of extensive and precise findings on the deviation of brain function and structure in schizophrenia patients. Magnetic resonance imaging (MRI) can measure the volumes of anatomical structure and distinguish gray and white matter abnormalities. It was identified that functional differences in brain activity are usually occur in the frontal lobes, hippocampus and temporal lobes (Kircher and Thienel, 2005), which are linked to the neurocognitive deficits in schizophrenia (Green, 2006).

The size and structure of certain brain areas in schizophrenia patients are also found different from healthy individuals, including lateral ventricular enlargement, gray and white matter reduction (Colter et al., 1987), loss of normal asymmetries, frontal, volume reduction in temporal total and superior temporal gyrus etc (Schlaepfer et al., 1994). The reduced whole brain and hippocampal volume and increased ventricular volume in patients with a first psychotic episode have been found in a meta-analysis of MRI studies (Steen et al., 2006).

It is possible that the brain volume change is due to weight gain and changes in the physiological balance and general hydration of an individual (Wenz et al., 1994). But it can not be ruled out that some of the brain volume changes, particularly in the early stage of illness, may be epiphenomena.

1.1.1.4 Medication treatment for Schizophrenia

Medication treatment is used to control acute psychotic symptoms and to prevent relapse in the longer-term. Antipsychotic drugs are popularly used in the treatment of schizophrenia and bipolar disorders.

There are older (typical) and newer (atypical) antipsychotics. Typical antipsychotics, including chlorpromazine, thioridazine, fluphenazine, haloperidol, flupenthioxl and pimozide are classified according to their different chemical structures and were designed to work by blocking dopamine at synapses in the brain. The typical antipsychotics tend to be associated with many unwanted side-effects such as trembling, rigidity, abnormal face and body movements, restlessness and abnormal insulin absorption. Many of these side-effects are dose related. Newer (atypical) psychotics tend to act in a different way (affecting different chemical messengers, such as serotonin) and are less likely to cause side-effects and can help negative symptoms.

1.1.2 Bipolar disorders

Bipolar disorder or manic-depression is one of the most highly heritable psychiatric diagnoses and describes a category of mood disorders with abnormally elevated (manic and hypomanic) and abnormally depressed states or mixed episodes for a period of time. Bipolar disorder is sometimes accompanied by hallucinations, delusions and cognitive changes.

Bipolar disorder is equally prevalent in males and females, and across all cultures and ethnic groups (Jamison, 1990). It is often difficult to diagnose as not everyone's symptoms are the same and no blood test can confirm this disorder. In some cases, bipolar disorder is a devasting and long-lasting illness, especially during depressive episodes, as its episodes of abnormality are associated with distress and disruption and a higher risk of suicide than normal population (Goldberg and Harrow, 2004; Kessler et al., 2006a). Because relapse of bipolar disorder is very common, and this disorder can be profoundly disabling, the personal and societal cost of bipolar disorder are enormous (Kessler et al., 2006b). The onset of bipolar disorder generally occurs in late adolescence or early adulthood.

1.1.2.1 The genetics of Bipolar disorder

The overall heritability of the bipolar spectrum is estimated at 0.71 (Edvardsen et al., 2008). It was reported that the risk of bipolar disorder in first-degree relatives of bipolar disorder patients is approximately 9%, nearly 10 times that of the general population. The genetic causes are complex and multifactorial, due to many genes with individually small effect (Serretti and Mandelli, 2008). Twin studies have indicated that both genetic and environmental factors influence bipolar disorders. For bipolar I, the concordance rates are around 40% in monozygotic twins compared to 4.5% to 5.6% in dizygotic twins (Kieseppa et al., 2004). The concordance rates of combination of bipolar I, II and cyclothymia is 42% in monozygotic twins, while 11% in dizygotic twins. Since the concordance in monozygotic twins is not 100%, genetic factors are very important but can not be sufficient for bipolar disorder.

A large number of candidate genes have been evaluated by gene-finding research, especially association studies. Until recently, efforts to identify specific susceptibility variants have been restricted to studies of biological and positional candidate genes.

1.1.2.2 Medication treatment for Bipolar disorders

For bipolar disorders, Lithium carbonate, sodium valproate or lamotrigine are widely used mood stabilizer medications (Bauer and Mitchner, 2004; Geddes et al., 2004). Lithium is the only known mood stabilizer which can reduce suicide in bipolar patients. Lamotrigine is shown to be of benefit to prevent depression (Calabrese et al., 1999). Carbamazepine is also widely used to treat rapid cycling bipolar disorder. However, the mode of action is not well understood.

1.1.2.3 Abnormal brain structure in bipolar disorder patients

Anatomical differences in amygdala, prefrontal cortex and hippocampus are found in the brains of bipolar and other mood disorders patients. A meta-analysis based on 98 MRI or CT imaging studies found that the lateral ventricles in bipolar disorder patients were on average 17% larger than healthy controls, and the ratios of having deep white matter hyperintensities were 2.5 times of controls.

1.1.2.4 Circadian rhythm and bipolar disorder

The human circadian rhythm is a roughly 24 -hour endogenous cycle in biochemical, physiological or behavioural processes. The primary circadian clock in human is found in the suprachiasmatic nucleus (SCN) in the hypothalamus. SCN receives daylight information through the eyes and passes it on to the pineal gland. This process results in the hormone melatonin secretion. Dysfunction of SCN will result in an irregular wake-sleep rhythm. Other organs and cells, such as lungs, liver, pancreas, spleen, thymus and skin, also have circadian rhythms (Zanello et al., 2000).

Disruption of circadian rhythm in humans is usually associated with a number of disorders such as bipolar disorder and sleep disorder (Harvey, 2008; McClung, 2007). It was reported that sleep deprivation can alleviate depression and regulate mood in bipolar disorders (Fahndrich, 1981; Larsen et al., 1976; Wehr et al., 1982). Circadian rhythm disturbances of bipolar disorder patients can be positively affected by lithium through an effect on clock genes (Martino et al., 2008). Lithium and valproate, which are effective medicine for bipolar disorders, also alter circadian rhythm in human and other species (Dokucu et al., 2005; Hafen and Wollnik, 1994; Johnsson et al., 1983). Dopaminergic (Ashby et al., 1999; Barbano and Cador, 2007; Lima et al., 2008; Yuferov et al., 2005) and serotonergic pathways (Adrien, 2002; Brummett et al., 2007; Sprouse et al., 2006; Yuan et al., 2005) are critical in the link between circadian rhythm and emotion. But, unfortunately, there is little research on the integration of the circadian rhythm and neurotransmitter systems to psychiatric disorders. Several bipolar disorder candidate genes are involved in circadian rhythms, including the CLOCK and BMAL1 genes (Benedetti et al., 2003; Mansour et al., 2006;

Nievergelt et al., 2006; Serretti et al., 2003; Shi et al., 2008). Decreased levels of CRY2 were found in bipolar patients in a depressive state (Sjoholm et al., 2010). CRY2 participates in the core clock to regulate circadian rhythm and responds to total sleep deprivation (Takahashi et al., 2008). Taken together, circadian rhythm regulation may be an important process in stabilizing mood.

1.2 Molecular approaches to the study of psychiatric disorders

As schizophrenia and bipolar disorder are highly heritable diseases, identification of the genetic factors which affect the risk of psychiatric disorders are very significant and necessary. These genetic factors have been partially revealed by new technological developments. These technological changes include linkage studies, association methodologies, genome-wide approaches (a form of association), copy number variation studies, and gene expression microarray studies. The knowledge derived from each of these approaches is summarized here.

1.2.1 Linkage studies

Linkage studies are suitable for detecting markers spread across the genome of family members who are affected and unaffected with the disorder. The linkage studies can be applied to determine the chromosomal regions where susceptibility genes are located by examining a few hundred or thousand markers spread across the genome through detecting which markers (or regions) appear to be coinherited with disease within the family (Badner and Gershon 2002; Segurado, Detera-Wadleigh et al. 2003; McQueen, Devlin et al. 2005) Linkage studies are performed with single large families, collections of many smaller families and with two or more affected members. Many linkage studies were done with large numbers of affected sibling pairs. An advantage of linkage is that it can detect rare and common alleles. A disadvantage is that the region of linkage is large covering several mega bases and containing many genes. It does not allow the detection of individual candidate genes. The success of linkage studies in psychiatric disorders has been limited as linkage studies only work well in determining the single-gene Mendelian disorders (such as Huntington disease and Cystic fibrosis) or disorders in which genetic risk is conferred by a relatively small number of genes. These further support the hypotheses that psychiatric disorders are genetically complex diseases which are determined by a large number of genes, each of the susceptibility genes has a relatively small effect on disease risk. The linkage study works well on a large family with a major effect gene, but when comparing linkage data between families, it is not accurate due to heterogeneity.

1.2.2 Association studies

Association studies typically examine susceptibility variants that are relatively common in the population. The specific variants can include a number of different types of variation, including single nucleotide polymorphisms (SNPs) and repeat polymorphisms. Over the past 10 years, genetic association studies have found many specific alleles which are more common in affected individuals than in matched controls (case-control studies) and specific variants which are transmitted from parents to affected individuals more often than expected by chance (family-based studies). The markers are selected based on positional evidence from linkage studies and/or from hypotheses about the underlying neurobiology of the disorder.

1.2.3 Genome-wide association studies (GWAS)

Common genetic variation across the entire genome can be surveyed using microarray chips that simultaneously assay more than 1 million SNPs which match the complement of common variants. Thus, GWAS is a new and better approach to identify susceptibility genes without any prior hypothesis. This approach has been successfully used in the research of a broad range of complex disorders, including diabetes, breast cancer, cardiovascular disease, inflammatory bowel disease etc. A few groups carried out smaller GWAS studies, but in 2009, in order to fully take advantage of the technique, the psychiatric GWAS Consortium, a collaborative consortium, was been formed to look at many samples over many disorders (including bipolar disorder).

GWAS is suited to a particular type of genetic effect, which is modest in size but with a risk allele frequency that is relatively common in the general population (Newton-Cheh and Hirschhorn, 2005). GWAS can also detect copy number variants, duplications and deletions, which have been reported for psychiatric disorders. The exceptional success of GWAS for complex disease has produced numerous associations with a P-value $<5 \times 10^{-8}$ (a recognised threshold for genome-wide significance).

1.2.4 Copy-number variations

A copy-number variant (CNV) is a DNA segment, usually 1 kilobase to several megabases, with different copy numbers in comparison the normal diploid state of the genome. In humans, CNVs are a widespread and common phenomenon which can be caused by genomic rearrangements such as deletions, duplications, inversions and translocations. For example, for normal DNA sequence (parental copies), the copy number is 2 , but recently it was found that a proportion of our DNA was 1 (deletion) or 3 (duplication). This seems to be another form of genetic variation alongside SNPs. Although much copy number variation is common, the rare ones that alter gene dosage seem to be linked with illness. CNVs may be inherited or due to de novo mutation. Several techniques have been used to discover CNVs, including fluorescent in situ hybridization, array comparative genomic hybridization and GWAS data.

1.2.5 Gene expression Microarray analysis-High-throughput approaches to study gene expression

Numerous susceptibility genes for psychiatric disorders have been discovered by the approaches discussed above, including novel genes for which a contribution to disease was unknown previously. Microarray analysis is very good at discovering the roles and regulatory profiles of a gene defect or a condition. A microarray contains tens of thousands of gene probes and can measure their expression simultaneously. As advances in gene annotations progress, standardization of microarray platforms and data analysis have been introduced. Microarrays are now an ideal approach to determine the changes in transcription of the genome in response to disease status (e.g., schizophrenia brain vs. healthy control brain), specific drug treatments, or as a consequence of mutations of psychiatric illnesses candidate genes in cell or animal models. These approaches can discover relevant target genes, canonical pathways and further generate new hypotheses. It is very necessary to confirm the key data by independent technologies, such as real-time quantitative PCR, in situ hybridization, immunoblots and other appropriate methods. It must be remembered that microarrays detect changes in the mRNA level which might not necessarily be translated into changes at the protein level.

1.2.6 Candidate genes and chromosome regions associated with schizophrenia identified by these approaches

Several detailed mapping studies based on positive linkage findings have identified several putative susceptibility genes for schizophrenia, such as genes encoding dysbindin (DTNBP1) (Schwab et al., 2003; Straub et al., 2002; van den Oord et al., 2003; Williams et al., 2004), neuregulin 1 (NRG1) (Corvin et al., 2004; Stefansson et al., 2003; Yang et al., 2003), D-aminao-acide oxidase (DAO), D-amino-acid oxidase activator (DAOA or G72) and regulator of G-protein signalling 4 (RGS4) (Kirov et al., 2004). The U2AF homology motif (UHM) kinase 1 (UHMK1) on the chromosome 1q23.3 was previous reported as a schizophrenia susceptibility gene (16978587) and the genetic association between this gene and schizophrenia has been further confirmed in a fine-mapping study (Puri et al., 2008).

Many hundreds of genes have been identified by association analysis. These genes include disrupted in schizophrenia (DISC1), the dopamine receptor (SLC6A3), brainderived neurotrophic factor ($B D N F$), the NMDA glutamate receptor submit 2B (GRIN2B), d-amino-acid oxidase activator (DAOA), peroxisome proliferatorsactivated receptor delta (PPARD), neurogulin 1 (NRG1), the 5-HT transporter (SLC6A4), tryptophan hygroxylase-2 (TPH2), pericentriolar material 1 (PCM1) and catechol-o-methyl transferase (COMT) (Cardno and McGuffin, 2006; Craddock and Forty, 2006; De Luca et al., 2005; Fallin et al., 2005; Fan and Sklar, 2008); (Bass et al., 2009); (Datta et al., 2010; Gurling et al., 2006)

A susceptibility locus in an intron of ZNF804A (zinc finer protein 804A) is with a genome-wide significance $\left(\mathrm{p}=9.96 \times 10^{-9}\right)$ (O'Donovan et al., 2009; Williams et al., 2010). This gene encodes a transcription factor, which is associated with the activities of hippocampus and dorso-lateral prefrontal cortex (Esslinger et al., 2009). Shifman and colleagues found a strong evidence for a female-specific association between reelin and schizophrenia (Birkhofer et al., 2007; Shifman et al., 2008). Reelin has been reported having a reduced expression in the brain of schizophrenia patients (Knable et al., 2001) and being involved in corticogenesis and implicated in an autosomal recessive form of lissencephaly (Hong et al., 2000).

Like other type of genetic variations, CNVs have been associated with autism, schizophrenia and idiopathic learning disability. 22q11DEL is reported to be associated with a 25 -fold increase in the risk of schizophrenia (Bassett et al., 2008; Murphy et al., 1999). Deletions mapping to 1 q21.1 and 15q13.3, which are associated with schizophrenia, were discovered in two CNV studies: the ISC one (ISC, 2008) and the one lead by decode genetics (Stefansson et al., 2008). Deletions at 1q21 not only increase risk of schizophrenia but were also associated with mental retardation, autism and ADHD (Mefford et al., 2008). Deletions at 15 q 13.3 are also involved in Idiopathic Generalized Epilepsy (Helbig et al., 2009). There are other CNV loci that are with strong statistical evidence for association such as 2 p16.3 (Del), 15q11.2 (Del), 16p13.1 (Dup), 16p11.2 (Dup)(McCarthy et al., 2009) and 17 p12 (del) etc. Although it cannot be denied that CNV are involved in schizophrenia, the individual genes relevant to disease pathophysiology are still uncertain, as the implicated CNVs span multiple genes.

There are numerous findings in schizophrenia using gene expression microarray technology. Genes involved in the regulation of presynaptic function are found decreased in the prefrontal cortex of schizophrenia patients (Mirnics et al., 2000), which can explain the brain imaging observation that reduced activation of the prefrontal cortex during tasks engage working memory (Carter et al., 1998; Heckers et al., 1999; Petronis, 2003). Reduction in gene expression involved in metabolic pathways and ubiquitin degradation are found in prefrontal cortex in schizophrenia (Middleton et al., 2002; Vawter et al., 2002). Decreased ionotropic glutamate receptor (AMPA) (Vawter et al., 2002), oligodendrocyte specific transcripts (Hakak et al., 2001; Tkachev et al., 2003) and ubiquitin conjugating enzyme E2N were also found in schizophrenia using expression microarrays. Increased transcripts of the apolipoprotein L family genes, which are located close to a genetic highsusceptibility locus for schizophrenia and velocardiofacial syndrome (an illness with schizophrenia-like features) on chromosome 22 , were found in the brains of schizophrenia patients (Coon et al., 1994; Karayiorgou et al., 1995; Mimmack et al., 2002; Pulver et al., 1994).

1.2.7 Candidate genes and chromosome regions associated with bipolar disorders identified by these approaches

McQueen et al. combined 11 of the largest linkage studies for bipolar disorder and found that chromosome 6 q and 8 q met statistical criteria for genome-wide significance (McQueen et al., 2005). TRPM2 and C21ORF29 (TSPEAR) on chromosome 21q22.3 were found associated with bipolar and unipolar affective disorder by a fine mapping study (McQuillin et al., 2006; Xu et al., 2009; Xu et al., 2006).

There have been several independent published GWAS of bipolar disorder based on individual genotyping or DNA pooling. A significant locus in DGKH (diacylglycerol kinase eta) was detected in a sample of 1,233 cases and 1,439 controls (Baum et al., 2008). Diacylglycerol kinases are very important in a series of signalling pathways including a phosphatidyl insositol pathway, which is sensitive to lithium. A genome wide significant association $\left(P=6.3 \times 10^{-8}\right)$ for a locus on chromosome 16 p 2 was obtained in a GWAS based on 1,868 cases and 2,938 control (WTCCC 2007). This region spans several genes including PALB2 (partner and localizer of the breast cancer gene, BRCA2), NDUFAB1 (NADH dehydrogenase (ubiquinone) 1, alpha/beta) and DCTN5 (dynactin 5). The strongest finding $\left(P=1.7 \times 10^{-7}\right)$ in MYO5B (myosin 5B) was observed in another GWAS study, known as STEP-UCL, based on 1,461 cases and 2,008 controls, although it did not pass the threshold of the genome wide significance (Sklar et al., 2008). A meta-analysis comprising the WTCCC, STEPUCL GWAS datasets and a supplemental GWAS data identified two associations with genome-wide significance: ANK3 $\left(P=9.1 \times 10^{-9}\right.$) and CACNAIC (calcium
channel, voltage-dependent, L type, alpha 1 C subunit) $\left(P=7.0 \times 10^{-8}\right)$ (Ferreira et al., 2008). ANK3 links integral membrane proteins to the underlying spectrin-actin cytoskeleton and is involved in cell motility, activation, proliferation, contact, and modulation of the activity of neuronal sodium channels. CACNA1C is a subunit of brain L-type voltage gated calcium channels and is responsive to synaptic activity (Vacher et al., 2008).

For bipolar disorders, gene expression microarray studies found that reduced oligodendrocytes in the cortex (Tkachev et al., 2003) and reduced expression of the mitochondrial respiratory chain, which suggests abnormal energy regulation in the brain of bipolar patients (Kato and Kato, 2000; Kato et al., 1992). Down-regulation of proteasomal subunits in the hippocampus was also identified in bipolar disorder using gene expression microarray studies (Konradi et al., 2004). McQuillin and colleagues performed a microarray study the mRNA change in the mice brain after treated by lithium, a widely used mood stabilizer for bipolar. They found that period gene 2 (Per2), metabotropic glutamate receptor (Grm3) and secretogranin II (Scg2) as well as several myelin-related genes and protein phosphatases show significant change in expression (McQuillin et al., 2007).

1.2.8 Overlapping findings associated with both schizophrenia and bipolar disorders

Although bipolar disorder and schizophrenia were assumed to be separate disease entities, genetic linkage studies have identified some chromosome overlapping regions associated with both disorders. These include regions in 13q, 22q, $6 p, 4 p$ and chromosome 18 (Badner and Gershon, 2002; Berrettini, 2003). These findings are also enhanced by association studies, CNVs studies and epidemiological studies (Christoforou et al., 2007).

Many susceptibility genes are also associated both disorders. These include NPAS3, DISC1, ZNF804A, BRD1, PDE4B, SLC6A4 and G72/G30(DAOA) etc (Gomez et al., 2009; Kahler et al., 2010; Nyegaard et al., 2010; Schosser et al., 2010).

1.3 Adult neurogenesis and psychiatric illnesses

1.3.1 The relation of neurogenesis and psychiatric disorders

Adult neurogenesis, the process of generation of new neurons from adult neural stem cells, is sustained throughout adulthood in the mammalian brain (Gage, 2000). Adult neurogenesis might be involved in hippocampal aspects of neurodegenerative disorders or psychiatric disorders (Kempermann et al., 2008). Adult neurogenesis in SGZ can be activated by several physical and chronic antidepressant treatments (Warner-Schmidt and Duman, 2006). Cell proliferation is deregulated in several neurodegenerative diseases, such as Alzheimer's disease (Verret et al., 2007), Parkinson's disease (Nuber et al., 2008) and Huntington's patients (Kohl et al., 2007).

Although schizophrenia is not specifically a hippocampal disorder, failing adult neurogenesis may reflect the latest stages of a subtle misregulation of brain development and result in a particular set of hippocampal symptoms. Reif et al. (Reif et al., 2006) found a reduction in putative precursor cell proliferation in adult dentate gyrus by 63% in schizophrenia by investigating the brains of 15 patients with depression, schizophrenia or bipolar disease and controls with immunohistochemistry.

1.3.2 Adult Neurogenesis

Two main locations of adult neurogenesis in the mammalian brain have been demonstrated under normal conditions: the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus (Zhao, 2008). Adult hippocampal neurogenesis can be regulated by genetic background at levels of cell proliferation, differentiation, and survival (Kempermann, 2002).

(Kempermann 2002)

Figure 1.1 Adult neurogenesis in dentate gyrus
Neurogenesis involves cellular processes at several levels, including the proliferation of adult neural stem cells (NSCs) or progenitors, differentiation and fate determination of progenitor cells, and the survival, maturation, and integration of newborn neurons (Grote and Hannan, 2007).

1.3.3 A number of candidate genes for susceptibility to psychiatric disorders are involved in neuronal development.

Reduced expression of reelin in the cortex and the hippocampus in schizophrenia patients (Toro and Deakin, 2007) may result in disturbed adult neurogenesis (Forster et al., 2002; Heinrich et al., 2006) by a disturbance of neuronal migration and glial scaffolding (Won et al., 2006; Zhao et al., 2007).

Disrupted in schizophrenia 1 (DISC1) is a schizophrenia susceptibility gene (Blackwood and Muir, 2004; Millar et al., 2000). It is expressed in the hippocampus and has diverse functions in neuronal migration, differentiation, neurite outgrowth and synaptic plasticity (Ross et al., 2006). A study on mutant mice for Discl shows that DISC1 and its co-operator, NDEL1, can regulate adult neurogenesis (Dranovsky and Hen, 2007; Duan et al., 2007). DISC1 is highly expressed in the embryonic ventricular/subventricular zones of the cortex, where neural progenitor cells reside, and plays important roles in the growth of the embryonic and postnatal brain (Mao et al., 2009). When DISC1 RNAi was introduced into neural progenitors in the developing neocortex of mouse brains, the proliferation of progenitor cells was significantly reduced and the premature neuronal differentiation and cell cycle exit were increased. The same group also found that knockdown of DISC1 resulted in a decrease in the proliferation of adult progenitor cells in the dentate gyrus.

Neuronal basic helix-loop-helix (bHLH) PAS domain transcription factor 3 (NPAS3) is a member of basic bHLH PAS domain transcription factors, which is enriched in the inter-neurons in brain. NPAS3 is mutated in a family affected by schizophrenia
(Kamnasaran et al., 2003; Pickard et al., 2008; Pickard et al., 2005). Also Pickard et al. showed that interactions between variants across the NPAS3 gene might contribute to susceptibility to schizophrenia and bipolar disorders (Pickard et al., 2008). A very significant reduction in hippocampal neurogenesis was found in Npas3 knock-out mice (Pieper et al., 2005). These mice exhibited abnormal performance, such as reduced memory function, disturbed social behaviour and had reduced paired pulse inhibition (Erbel-Sieler et al., 2004).

1.4 NPAS3 is a strong candidate gene for psychiatric illness.

Disruption of the NPAS3 (Neuronal basic helix-loop-helix (bHLH) PAS domain transcription factor 3) gene as a result of a chromosomal abnormality $[t(9 ; 14)(q 34 ; q 13)]$ carried by a mother and daughter diagnosed with schizophrenia and mild learning disability provided the first indication of a role for this gene in psychiatric illness (Kamnasaran et al., 2003; Pickard et al., 2005; Pickard et al., 2006). This disruption lies within the intron 3 of NPAS3 gene. It results in the bHLH and PAS domains are being seperated from the transactivation domain, therefore, the functions of DNA binding and dimerisation may have been destroyed (Kamnasaran et al., 2003). Subsequent gene-specific and genome-wide case-control association studies have linked single nucleotide polymorphisms in the NPAS3 gene with increased risk of schizophrenia (Pickard et al., 2009) major depression disorder and bipolar disorder (Ferreira et al., 2008; Huang et al., 2010; Pickard et al., 2009). A recent report detailed the association of three common NPAS3 exonic variants with increased risk of schizophrenia (Macintyre et al., 2010). Additionally, genetic variation at the NPAS3 locus has been provisionally associated with risk of multiple sclerosis (Comabella et al., 2008), response to interferon beta treatment of multiple sclerosis (Byun et al., 2008), predisposition to addiction (Liu et al., 2006) and response to treatment with the antipsychotic drug, iloperidone (Lavedan et al., 2009).

1.4.1 The structure and function of NPAS3

NPAS3 is expressed in 13 adult brain tissues including the hippocampus, thalamus, and cortex, especially in developing centre nervous system (Brunskill et al., 1999). NPAS3 encodes a member of the basic helix-loop-helix PAS domain transcription factor family that typically integrate environmental signals and heterodimeric binding partner availability to generate a transcriptional response (Brunskill et al., 1999; Gilles-Gonzalez and Gonzalez, 2004; Zhou et al., 1997). In humans, the NPAS3 gene has 11 exons spanning 791 kb of 14q12-q13.

Figure 1.2. The structure of NPAS3. NPAS3 protein is composed a bHLH domain at the amino terminus, followed by two PAS domains. The carboxyl-terminal end contains transactivation domain.

1.4.2 The biology of the psychiatric disorder candidate gene-NPAS3

NPAS3 is a brain-enriched transcription factor containing basic-helix-loop-helix motif and PAS domain. The bHLH-PAS superfamily has diverse functions in development or physiological events, including circadian rhythms, neurogenesis, toxin metabolism, response to hypoxia and tracheal development.

The structures of bHLH-PAS proteins are highly conserved. The bHLH domain is located the amino terminus. Then it is followed by the PAS domain. The carboxylterminal end contains transcriptional activation domains (Franks and Crews, 1994; Jain et al., 1994) or repression domains (Moffett et al., 1997).

1.4.3 The basis bHLH domain transcription factors

A basic helix-loop-helix domain is composed of 2α-helices connected by a loop. Generally, the smaller helix can bind to another protein by folding and packing against another helix. The larger helix, which contains the DNA binding region, typically binds to a consensus DNA sequence (E-box, CANNTG) (Chaudhary and Skinner, 1999). Some bHLH transcription factors can also bind to non-palindromic sequence.

Figure 1.3. basic helix-loop-helix DNA binding domain (Massari and Murre, 2000). Two alpha-helices (blue) are connected by a short loop (red)

The bHLH-PAS proteins share a number of similarities with other members of bHLH proteins (Littlewood and Evan, 1995). For example, bHLH proteins are important in regulation of cell lineage (Isaac and Andrew, 1996; Thomas et al., 1988) as well as other bHLH proteins (Jan and Jan, 1993; Weintraub et al., 1991).

1.4.4 The functions of bHLH superfamily

There are many transcription factors containing a bHLH domain, such as:

- AhR
- Beta2/ NeuroD1
- BMAL-1-CLOCK
- C-Myc, N-Myc
- MyoD
- Pho4
- HIF
- NPAS3, NPAS1, NPAS2, MOP5
- Scl
- Neurogenins
- BHLHB2, BHLHB3, BHLHB4, BHLHB5, BHLHB8

Usually, transcription factors with this domain exert their function with another subunit through heterodimerization, including BMAL1-NPAS3 complex and BMAL1-CLOCK complex. The activity of the heterodimeric complex is often determined by the dimerization of the subunits. The level or availability of one subunit is restricted, whereas the other subunit is broadly expressed. The combinatorial properties of bHLH members explain the possibility that bHLH proteins play important roles in a variety of complex biological events. For example, BMAL1-CLOCK is a very important complex in regulating circadian rhythm, and cMyc and HIF-1 are linked to cancer through their effect on cell growth and metabolism.

1.4.5 The structure and function PAS domain

The PAS domain is a signal sensor in many signalling proteins (Dunham et al., 2003; Hefti et al., 2004; Ponting and Aravind, 1997). This domain was named after three proteins which contain it:

- Per- period circadian protein
- Arnt- Ary hydrococarbon receptor nuclear translocator protein
- Sim- single-minded protein

The PAS domain includes two degenerate direct repeats (around 50 amino acids) (Crews, 1998). The PAS domain in bHLH-PAS proteins is about 260-310 amino acids. It includes two conserved regions (PAS-A and PAS-B) linked by a spacer (Crews et al., 1988). Many PAS-domain proteins exert their function by dimerization between PAS proteins (Huang et al., 1993), interaction with non-PAS proteins (Dolwick et al., 1993; Gekakis et al., 1995) and binding small moleculars, such as the heme ligand (Gilles-Gonzalez and Gonzalez, 2004)

1.4.6 Npas3 deficient animal model

A mouse Npas 3 knockout displays a range of behavioural phenotypes consistent with it being a representative model of human psychiatric disorders, including increased locomotor activity, stereotypic darting behaviour at weaning, subtle gait defects, impairment of prepulse inhibition of acoustic startle, deficit in recognition memory and altered anxiety-related responses. (Brunskill et al., 2005; Erbel-Sieler et al., 2004). It also displays an additional deficit in adult hippocampal neurogenesis (Pieper et al., 2005).

Both Npas1 and Npas3 knockout mouse strains also show developmental lung phenotypes impacting neonatal survival rates but how this pathology relates to central nervous system observations is currently unknown (Levesque et al., 2007; Zhou et al., 2009).

1.5 Summary and hypothesis

Schizophrenia and bipolar disorder are common, lifelong psychiatric illnesses affecting mood, perception and cognition. Family and epidemiological studies have indicated that these conditions are strongly influenced by genetic facors. Therefore, the functional study of candidate genes will aid the description of underlying pathologies and guide the search for new therapeutic approaches. NPAS3 is a strong risk factor for schizophrenia and bipolar disorder. Npas3 knockout mice also exhibit behavioural and adult neurogenesis deficits consistent with human illness. A set of questions about NPAS3 were addressed in my PhD project.

1.5.1 What is the expression pattern of NPAS3 in adult hippocampus?

It was reported that Npas3 (-/-) mice are associated with hippocampal neurogenesis deficit. This result suggested NPAS3 might directly regulate the developmental pathway associated with new neuron production. Investigation of the expression pattern of NPAS3 in adult mice hippocampus will be necessary to reveal its role during adult neurogenesis.

1.5.2 What is the regulatory profile of NPAS3?

As a transcription factor, the investigation of NPAS3's transcriptional regulatory profile is particularly significant because observed expression changes are likely to represent direct activity rather than secondary or homeostatic reactions. Full-length (FLNPAS3) and artificially truncated (\triangle NPAS3) forms of NPAS3 were overexpressed in the human embryonic kidney cell line, HEK293, followed by microarray analysis to identify target genes.

1.5.3 How does the regulation profile of NPAS3 compare with SOX transcription factors?

Many SOX members are known neurodevelopmental regulators and SOXD/E members are particularly important during the process of converting neural progenitors into immature neurons. Sox11 was found strictly colocalized with Dcx expressing precursors and immature neurons, but not with Sox2-expressiong noncommitted precursors and immature cells (Haslinger et al., 2009). Npas3 was found only colocalized with Dcx in adult mouse hippocampus in our study, furthermore. There are also association evidence supporting roles for SOX5 in metabolic sideeffects of antipsychotic treatment and SOX10 in increased risk of psychiatric illness (Maeno et al., 2007). We were really interested to investigate whether SOX members and NPAS3, as transcription factors might have some interaction. The target genes of NPAS3 were compared with the SOX family of transcription factors (Azim et al., 2009; Bergsland et al., 2006; Cheung and Briscoe, 2003; Hamada-Kanazawa et al., 2004; Haslinger et al., 2009; Kim et al., 2003; Kwan et al., 2008; Lefebvre, 2009; Prior and Walter, 1996).

1.5.4 How does circadian rhythm affect NPAS3?

NPAS2 is one of the components of the circadian clock oscillator. The other components include the CRY proteins, CLOCK, BMAL1, BMAL2, CSNK1D, CSNK1E, TIMELESS and the PER proteins. BMAL1 is able to heterodimerise with NPAS3 to regulate transcription of genes. As NPAS3 closely interacts with circadian regulators, we wished to know whether NPAS3 activity was sensitive to circadian context or if, indeed, it could directly regulate it. An additional microarray study was
carried out in which cells over-expressing NPAS3 were stimulated to commence synchronous circadian cycling.

In order to answer these questions, several projects were carried out. The detail will be introduced in the later chapters

CHAPTER TWO

2 Materials and Methods

2.1 Materials

2.1.1 Suppliers

Sigma-Aldrich Limited, Poole, Dorset, UK
Sigma-Genosys, Ltd, London Road, Pampisford, Cambridge, UK
Invitrogen Ltd, Paisley, UK
Promega, Ltd, Southhampton, UK
Qiagen, Ltd, West Sussex, UK
GRI, Essex, UK
New England Biolab (UK) Ltd, Hitchin, Hertfordshire, UK
Stratagene, Amsterdam, Netherlands
Cambrex BioScience Rockland Inc, Rckland, USA
Roche Diagnostics Ltd, Lewes, East Sussex, UK
Hybaid, Teddington, UK
ABgene, Surrey, UK
Anachem Ltd, Bedfordshire, UK
Sarstedt, Leicester, UK
Corning Ltd, Buckinghamshire, UK
Cheshire Scientific Ltd, South Wirral, UK
Fisher Scientific Ltd, Leicestershire, UK
Sciquip Ltd, Shropshire, UK
Applied Biosystems, CA, USA
USB Corporation, Cleveland Ohio, USA
Amersham Pharmacia Biotech UK Ltd, Buckinghamshire, UK

2.1.1.1 General Plastic ware

Micro tubes $0.5 \mathrm{ml}, 1.5 \mathrm{ml}$, and 2 ml	Sarstedt
Tissue culture plasticware	Corning
0.2 ml Flat and Domed cap tub	Abgene
Thermo-Fast 96, skirted Plate	Abgene
Flat cap strip	Abgene
Culture Loops	Cheshire
Microbiological spreader	Cheshire

2.1.1.2 Apparatus

Horizontal electrophoresis tank Hybaid
MJ Research Thermocycler GRI
Balance Fisherbrand PS-200 Fisher
Microcentrifuge eppendorf 5415D Fisher
IKA Minishaker MS $2 \quad$ Fisher
Syngene Bio Imaging system Fisher
Sigma Laboratory centrifuge 4-15, 4K15
Micro Pipette $(2 \mu \mathrm{l}, 10 \mu \mathrm{l}, 20 \mu \mathrm{l}, 200 \mu \mathrm{l}, 1000 \mu \mathrm{l})$
Fisher
Gilson

2.1.1.3 Chemicals

Isopropyl alcohol	Sigma-Aldrich
Ethanol	Sigma-Aldrich
Formamide	Sigma-Aldrich

2.1.1.4 Media and Media Components

Alpha MEM	Invitrogen
PBS	Invitrogen
Glutamine	Invitrogen
Penicillin	Invitrogen
Trypsin/EDTA	Invitrogen
Yeast extract	Invitrogen

2.1.1.5 Molecular Biology products

Dual Luciferase Reagent	Promega
pGL-3 Luciferase vector (control\& basic)	Promega
pRL-TK vector	Promega
Taq PCR core kit	Qiagen
PRISM BigDye Terminator cycle sequencing kit	Applied Biosystems
NuPAGE® Novex® Tris-Acetate gels	Invitrogen
SYBR Green ${ }^{\text {TM }}$ qPCR SuperMix Universal	Invitrogen
ECL $^{\text {TM }}$ Western Blotting Detection Reagents	Amersham ${ }^{\text {TM }}$
QIAquick gel extraction kit	Qiagen
Qiagen PCR purification kit	Qiagen
Qiagen plasmid mini kit	Qiagen
Subcloning Efficiency TM DH5a competent cells	Invitrogen
T4 DNA Ligase and buffer	Roche
Shrimp Alkaline Phosphatase	USB Corporation
PCR primers and oligos	Sigma-Genenosys
Orange G loading dye	Sigma-Aldrich
Ethidium Bromide	Sigma-Aldrich
Restriction endonucleases and buffer	New England Biolabs
T4 DNA polymerase, buffer and EDTA	NEB
Agarose Powder	Bio-Rad
0.1M DTT	Invitrogen
DNase I	Invitrogen
dNTPs	Invitrogen
Bovine serum albumin	New England Biolabs
1 kb DNA Ladder	Abgenega
Hinc II DNA ladder	Abse

2.1.2 Solutions, buffers and gel loading dyes

Ampicillin stock solution (10mg/ml)
Ampicillin sodium salt 5 g
Qs (Quantity sufficient) 50 ml dsH2O
Filter-sterilized and store at -20°
Blocking buffer (western blot)
Marvel Skimmed milk powder 2.5 g
PBS 50 ml
TWEEN $100 \mu 1$
Blocking buffer (immunofluorescence)
donkey serum $100 \mu \mathrm{l}$
PBS/1\% TWEEN 20 10 ml
1M DDT
Dithiothreitol 0.7 g
Qs 5 ml dsH2O
EDTA solution $\mathbf{0 . 5 M} \mathbf{~ p H 8 . 0}$
Disodium ethylenediaminetetra acetate 1.861 g
dsH2O 800 ml
pH8.0

30\% Ethanol
30 ml ethanol ($99.7-100 \% \mathrm{v} / \mathrm{v}$) to every 100 ml dsH2O

70\% Ethanol
70 ml ethanol (99.7-100\% v/v) to every 100 ml dsH2O

90\% Ethanol
90 ml ethanol $(99.7-100 \% \mathrm{v} / \mathrm{v})$ to every 100 ml dsH2O

50\% Formamide Solution

Formamide (99\%)	500 ml
$2 \times$ SSC	100 ml
dsH2O	400 ml

Luria-Bertani broth (LB)

1\% (w/v) Bacto-Tryptone (Difco)
0.5% (w/v) Bacto-Yeast extracts (Difco)
0.1% (w/v) NaCl
pH 7.0 autoclave

LB-agar

LB broth with 15 g Bacto-Agar (Difco) per litre
Autoclave

Orange G loading buffer

Glycerol	30 ml
dsH2O	70 ml
Orange G	1 g
$\mathbf{1 \times P B S}$	
$\mathrm{KH}_{2} \mathrm{PO}_{4}$	1.157 g
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	6.971 g
NaCl	43.83 g
Qs 500 ml dsH	

PBS/1\%TX100

PBS
495 ml
TX100
5 ml

Primer mix

Glycerol 6 ml
TE 7 ml
DMSO 1 ml

Running Buffer (for Tris-acetate gels)
20x Nupage Tris-acetate SDS running buffer 25 ml
$\mathrm{dsH}_{2} \mathrm{O} \quad 475 \mathrm{ml}$

RIPA buffer

Tris (hydroxymethyl)-methylamine (pH7.5)	0.61 g
$\mathrm{NaCl}(150 \mathrm{mM})$	0.9 g
$\mathrm{dsH}_{2} \mathrm{O}$	80 ml
1% Triton X-100	1 ml
Sodium deoxycholate (10\% solution)	2.5 ml
Sodium deoxycholate (20\% solution)	$250 \mu 1$
1 mM EGTA (100mM solution)	1 ml

Add $100 \mu \mathrm{l}$ protease inhibitors to 5 ml RIPA lysis buffer before use

20x TBE

Tris

Qs 1L dsH2 O autoclave

TE pH 8.0
10mM Tris Cl pH 7.4
1mM EDTA pH 8.0

Transfer Buffer

20x NuPage Transfer buffer 25 ml
Methanol 100 ml
dsH20
375 ml

0.05 Tris-HCL pH 6.7

Trizma hydrochloride $\quad 7.88 \mathrm{~g}$
Qs $\mathrm{dsH}_{2} \mathrm{O} \quad 1 \mathrm{~L}$
pH 6.7
Wash Buffer (western blot)
10x PBS 100 ml
dsH2O 900 ml
Tween 2 ml

2.1.3 Primers

Genomic sequence information for genes was obtained from NCBI. Ologonucleotide primers were designed using PRIMER3 [http://workbench.sdsc.edu] (Rozen and Skaletsky, 2000). Specificity of all primers was checked by Blast and BLAT analysis http://www.ncbi.nlm.nih.gov/Blast.cgi, http://genome.ucsc.edu/cgi-bin/hgBlat. Primer sequences are listed in (table 2.1 and 2.2) PCR Primers were re-suspended at a concentration of $100 \mu \mathrm{~g} / \mu \mathrm{l}$ in primer mix and stored at $-20^{\circ} \mathrm{C}$.

Table 2.1 PCR primers used in validation of SOX11 microarray and timecourse QPCR assay.

Primer Name
SOX11 QPCR forward
SOX11 QPCR reverse
SEMA3B QPCR forward
SEMA3B QPCR reverse
NEDD9 QPR forward
NEDD9 QPCR reverse
GSTA2 QPCR forward
GSTA2 QPCR reverse
GPC2 QPCR forward
GPC2 QPCR reverse
BAG1 QPCR forward
BAG1 QPCR reverse
HISTIH2BE QPCR forward
HIST1H2BE QPCR reverse
HIST1H2AE QPCR forward
HIST1H2AE QPCR reverse
SCG2 QPCR forward
SCG2 QPCR reverse
CD24 QPCR forward
CD24 QPCR reverse
FILIP1 QPCR forward
FILIP1 QPCR reverse
TUBB3 QPCR forward
TUBB3 QPCR reverse
CYP39A1QPCR forward
CYP39A1 QPCR reverse
NDP QPCR forward
NDP QPCR reverse
GAPDH QPCR forward
GAPDH QPCR reverse
SOX11 attb forward primer

SOX11 attb reverse primer

Sequence
GACTTCCCCGACTACTGCAC
TAGGTG AACACCAGGTCGGA GACCTCATGGGACGAGACTT ACCTTGACAAACTTGGGCTC ACACCATCTACCAAGTGCCA ATGCTTCTCTGCACTGATGG AACCTGAGGAACAAGATGCC AAGGTAGTCTTGTCCGTGGC GCTCCTTTCTGGTTCACACA CGTAGGAGTGGGAGAAGAGC ACAGCAATGAGAAGCACGAC CTGTGGAACCCCTATGACCT ACACCGGCATCTCCTCTAAA GTCGAGCGCTTGTTGTAATG CTAAAACGCGTTCTTCCAGG TCGTTCGGACTAGTTGCCTT GAAGCGAGTTCCTGGTCAAG TCCTGAGAGCTGCCTTGATT TAGCTGGGATTACAGGCACC gTCAGGAGTTCGAAACCAGC TCAGTTTAAACGGTCCCCTG TTCGGCTGTCACGTTTACTG AGGCCTGAAGAGATGTCCAA AACGAGGCCTCTTCTCACAA CGAAGGAGAGCTGCAAAAGT CTTGCTTCTTTTCTGTGGGC TGTCGTTCAGCACTGTCGCG CTTCAGCTTGGAAGTCTGGG
ACAGTCAGCCCGCATCTTCTT
ACGACCAAATCCGTTGACTC
GGGGACAAGTTTGTACAAAAAAGCAGGCTGATCACGGTT CAACACACGGAAC
GGGGACAAGTTTGTACAAAAAAGCAGGCTACCGCTTCCC GAGCCGTTTAGAG

Table 2.2 PCR primers used in validation QPCR for NPAS3 microarray, circadian gene detection and VGF promoter assay.

Primer name
SOX11 QPCR FORWARD SOX11 QPCR REVERSE SOX3 QPCR FORWARD SOX3 QPCR REVERSE SOX4 QPCR FORWARD SOX4 QPCR REVERSE HK2 QPCR FORWARD HK2 QPCR REVERSE ENO2 QPCR FORWARD ENO2 QPCR REVERSE NPAS3 QPCR FORWARD NPAS3 QPCR REVERSE $V G F$ QPCR FORWARD VGF QPCR REVERSE 18s RNA QPCR FORWARD 18s RNA QPCR REVERSE VGF PROMOTER FORWARD VGF PROMOTER REVERSE M13 FORWAR SEQUENCING PRIMER
M13 REVERSE SEQUENCING PRIMER
VGF PROMOTER SEQUENCING
PRIMER FORWARD 787
VGF PROMOTER SEQUENCING
PRIMER FORWARD 1325
VGF PROMOTER SEQUENCING
PRIMER REVERSE 806
VGF PROMOTER SEQUENCING
PRIMER REVERSE 1344
VGF PROMOTER SEQUENCING
PRIMER REVERSE 1945
PERI FORWARD
PER1 REVERSE
PER2 FORWARD
PER2 REVERSE
PER3 FORWARD
PER3 REVERSE

Sequence
GACTTCCCCCACTACTGCAC
TAGGTGAACACACCAGGTCGGA
ATGAACGGCTGGACTAATGG
GGAGCTCTGCTGGTTGTAGG
GTGAGCGAGATGATCTCGGG
CAGGTTGGAGATGCTGGACTC
ATACGGTTGCTTCACCTTGG
TCAGGCTCACATCTCAGTG
TGTCTCATCCTCCTGGAACC
TCAATCAGGGAAGTTCTGGG
TCGGCATTTTCGTTTAGACC
AAGAAAGAGGGGGTGGAATG
GAGCATAAAGAGCCGGT
GAAAAGCTCTCCCTCGTCCT
GGGAGGTAGTGACGAAAAATAACAAT
TTGCCCTCCAATGGATCCT
GGCCCTCGAGGGAGGTTAGAAGGAGGGTCAGT
GGCCCCATGGCTACCGGCTCTTTATGCTCAGA GTAAAACGACGGCCAG
CAGGAAACAGCTATGAC
GGTGGAGAGAGCTGGAGTTG
ACGCTGGGACTACCCTTTTT
CAACTCCAGCTCTCTCTCCACC
AAAAAGGGTAGTCCCAGCGT
GAGAGGTGGAGAGGAGGGTC
AGGTACCTGGAGAGCTGCAA
TTCTTGGTCCCCACAGAGAC
AAATGGATCCCCCTTGAATC
AGCACCACCTGGTGTACCTC
TCCTGGCGTCTTCTCACTTT
TCATACCGTGCAGCTCTTTG

2.1.4 Cell lines

In-house cell lines HEK293 (human embryonic kidney), SH-SY5Y (human neuroblastoma derived) and U373 were cultured using standard laboratory practice.

2.2 General methods

Molecular biology techniques were developed from (Sambrook et al., 1989), unless otherwise stated.

2.2.1 Miniprep preparation of Bacterial DNA

A single bacterial colony was used to inoculate 5 ml of LB-Broth with the appropriate antibiotic added. The cultures was grown overnight at $37^{\circ} \mathrm{C}$ in a shaker incubator. 2 ml of bacterial culture was centrifuged for 5 minutes at 3000 rpm . DNA was isolated from the pellets using the Qiagen plasmid mini kit. In brief, the pellet was resuspended in 0.3 ml of P 1 solution before adding 0.3 ml P 2 and incubated for 5 minutes at room temperature. Next, 0.3 ml of P 3 was added and the lysate incubated for 10 minutes on ice before centrifugation at 13000 rpm for 10 minutes.

The supernatant was transferred to a new micro-tube, 0.8 ml of isopropanol added and left on ice for 15 minutes followed by centrifugation at 13000 rpm for 15 minutes. The supernatant was subsequently removed and 0.5 ml of 70% alcohol added to wash the pellets before centrifugation at 13000 rpm for 5 minutes. The supernatant was again removed and the pellets air dried at room temperature. Once the DNA pellets had become translucent they were re-suspended in $40 \mu \mathrm{I}$ TE (pH 8.0) and left to sit for one hour at room temperature before storage at $-20^{\circ} \mathrm{C}$. The quality of the DNA was determined by agarose gel electrophoresis.

2.2.2 Sequencing

2.2.2.1 Polymerase Chain Reaction

Standard PCR amplification reactions were performed using Invitrogen reagents. However, when amplifying long sequences, or if the sequence had a high GC content, the Expand long-range PCR kit (Roche) was used. Using Invitrogen reagents, PCR was performed with a final volume of 25 ul comprised of:

$25-50 \mathrm{ng}$	template DNA
2.5 ul of 2 mM	dNTPs
$5 \mu \mathrm{~mol}$	primer
$2.5 \mu \mathrm{l}$	10 xPCR Invitrogen amplification Buffer;
$7 \mu \mathrm{l}$	$\mathrm{dsH}_{2} \mathrm{O} ;$
0.25 U	Taq DNA polymerase (Invitrogen)
$10 \mu \mathrm{l}$	1 x enhancer solution.

The PCR reactions were carried out on a Gene Engine thermocycler (MJ Research Inc, USA).

2.2.2.2 Agarose gel electrophoresis

DNA/RNA integrity and PCR reaction efficacy were determined by Agarose gel electrophoresis. In general, agarose gels of 2% and 0.8% were used for resolution of small ($\sim 0.2 \mathrm{~kb}-1 \mathrm{~kb}$) and large ($>1 \mathrm{~kb}$) fragments respectively. Agarose gels were prepared by heating agarose in 1xTBE buffer. After dissolution of the agarose, SYBR Safe ${ }^{\mathrm{TM}}$ was added to the gel at a final concentration of $1 \mu \mathrm{l} / 100 \mathrm{ml}$. Sample and 1 kb DNA ladder were loaded using orange G loading buffer. Electrophoresis was performed using Hybaid Electro-4 gel tanks. The gel was submerged in 1xTBE buffer and a current of $80-100 \mathrm{~V}$ was passed through the buffer to allow migration of the DNA through the gel. Fragments were visualized using by UV transillumination (Thistle Scientific) and images captured using a digital imager, Uvidoc (Uvitec).

2.2.3 Cloning PCR products

The cloning of PCR products was used to create a SOX11 expression plasmid contruction. Following purification, PCR products were cloned using the Qiagen PCR cloning kit (Qiagen). In brief, $1 \mu \mathrm{l}$ of pDrive cloning vector and $5 \mu \mathrm{l}$ ligation master mix was added to $4 \mu \mathrm{l}$ of purified PCR DNA gently mixed and incubated at $16^{\circ} \mathrm{C}$ overnight.

Transformation of PCR DNA was executed using a heat shock method as follows. $2 \mu \mathrm{l}$ of ligation reaction mix was added to $25 \mu \mathrm{l}$ of E-coli competent cells, incubated for 30 minutes, heat shocked at $42^{\circ} \mathrm{C}$ for 30 seconds and left on ice for one minute. Subsequently the ligation reaction/competent cell mix was added to $250 \mu \mathrm{l}$ of L-broth growth media already warmed to $37^{\circ} \mathrm{C}$ and left on a shaker to incubate for one hour.

The L-broth medium mix was plated on agar plates treated with chromogenic substrates IPTG and X-Gal to determine the efficacy of transformation - a technique termed 'blue/white screening'. Agar plates were made by heating agar to $50^{\circ} \mathrm{C}$, adding appropriate antibiotics $(1 \mu \mathrm{l} / \mathrm{ml}$ of ampicillin $[100 \mathrm{mg} / \mathrm{ml}$ stock]), poured into Petri dishes and briefly dried in an oven. $40 \mu \mathrm{l}$ of IPTG (100 mM) and X/Gal (40 $\mathrm{mg} / \mathrm{ml}$) was spread over each plate before the L-broth medium transformation mix was plated and left to incubate in an inverted position at $37^{\circ} \mathrm{C}$ overnight. As approximately half of the cloned PCR product colonies should contain the mutant allele, DNA from 10 colonies of each variant was purified. The white colonies which indicated no production of the enzyme β-galactosidase and hence successful incorporation of plasmid DNA were subsequently cultured in L-broth, pelleted and

DNA isolated using the GenElute ${ }^{\mathrm{TM}}$ Plasmid Purification kit (Sigma-Aldrich) according to manufacturer's instructions.

The cloned PCR product DNA was directly sequenced using the Qiagen PCR cloning kit T7 promoter primer. The sequencing reaction was performed using the BigDye ${ }^{\circledR}$ Terminator Ready Reaction Mix v3.1 with a final volume of 10 ul comprising of $1 \mu \mathrm{l}$ BDv3.1, $1 \mu \mathrm{l}$ primer $3.2 \mu \mathrm{M}, 2 \mu \mathrm{l}$ cloned DNA and $6 \mu \mathrm{l} \mathrm{dsH}_{2} \mathrm{O}$. Primer details are presented in table2.2. Sequencing reactions were performed on a MJ Research Peltier Thermal Cycler using following cycling conditions: $96^{\circ} \mathrm{C}-1 \mathrm{~min}$, $96^{\circ} \mathrm{C}-10 \mathrm{~s}, 50^{\circ} \mathrm{C}-5 \mathrm{~s} 60^{\circ} \mathrm{C}-4 \mathrm{~min}$ times 25 cycles; $4^{\circ} \mathrm{C}-10 \mathrm{~min}$. Following the sequencing reaction, products were precipitated in an Ethanol/EDTA solution and run on an Applied Biosystems 3730 DNA analyser.

2.2.4 Reverse-transcriptase PCR

2.2.4.1 RNA preparation

RNA was extracted using RNeasy Mini Kit (Qiagen) as per manufacturer's instructions. In brief, cell samples were thawed before adding 600μ l RLT buffer (containing guanidine-thiocyanate to inactivate RNases hence ensuring purification of intact RNA) and homogenized in a QIA shredder spin column (Qiagen) spun for 2 minutes at 13000 rpm . An equal amount of $70 \% \mathrm{EtOH}$ was added to the lysate, mixed well and applied to an RNeasy mini spin column spun at 10000 rpm for 15 seconds. The sample was then washed in $350 \mu \mathrm{LW} 1$ buffer, spun at 10000 rpm for 15 seconds before 80μ l of DNase1 incubation mix was dispensed directly onto the spin column membrane and left at room temperature for 15 minutes. The column was then again washed in RW1 buffer and $500 \mu \mathrm{RPE}$ buffer added, spun for two minutes at 10000 rpm . RNA was then eluted in $30 \mu \mathrm{l}$ RNase-free water and stored at $-70^{\circ} \mathrm{C}$.
$5 \mu \mathrm{l}$ of the solution was lorded onto a standard (non-denaturing) 1.5% agarose gel with $0.5 x$ TBE buffer to check the amount and integrity of the RNA. Ethidium bromide (EtBr) is added to the gel to avoid the additional (potentially RNAse-prone) step of gel staining. Load a known amount of DNA in a neighboring lane to use as standard for determining the RNA concentration. Intact RNA should exhibit sharp band(s) of ribosomal RNA.

2.2.4.2 cDNA synthesis

RNA was reverse transcribed to cDNA with First Strand cDNA Kit (Roche) using oligo- $\mathrm{p}(\mathrm{dT})_{15}$ primer. This technique produces single stranded RNA using AMV reverse transcriptase. The synthesis reactions were performed with a final volume of $20 \mu 1$ master mix comprised of:

$2 \mu \mathrm{l}$	10 x reaction buffer
$4 \mu \mathrm{l}$	$25 \mathrm{mM} \mathrm{mgCl}_{2}$
$2 \mu \mathrm{l}$	10 mM dNTPs
$2 \mu \mathrm{l}$	oligo-p $(\mathrm{dT})_{15}$ primer
$1 \mu \mathrm{l}$	RNase inhibitor
$0.8 \mu \mathrm{l}$	AMV reverse transcriptase $^{8.2 \mu \mathrm{l}}$

The reactions were cycled on a thermal cycler (Pelter PTC-225) as follows: $25^{\circ} \mathrm{C}-$ $10 \mathrm{~min}, 42^{\circ} \mathrm{C}-10 \mathrm{~min}, 99^{\circ} \mathrm{C}-5 \mathrm{~min}, 4^{\circ} \mathrm{C}-5 \mathrm{~min} . \mathrm{cDNA}$ was stored at $-20^{\circ} \mathrm{C}$.

2.3 Immunofluorescence

2.3.1 Fixation of Brain Tissue

Adult mouse brains were submerged in a solution of 4% paraformaldehyde in $1 \times$ PBS for 8-16 hours at $4^{\circ} \mathrm{C}$ on a rocking platform. The brains were then washed with $1 \times$ PBS and placed in a 30% sucrose:PBS solution for cryoprotection and left overnight at $4^{\circ} \mathrm{C}$ with agitation until the brains sank. Brains were placed in OCT (Lamb), positioned in the horizontal, coronal or sagittal plane, frozen on dry ice and then stored at $-80^{\circ} \mathrm{C}$.

2.3.2 Sectioning of frozen brain tissue

Brains for cryostat sectioning were removed from storage at $-80^{\circ} \mathrm{C}$ and equilibriated at $-20^{\circ} \mathrm{C}$ to $-26^{\circ} \mathrm{C}$ for one hour in the cryostat. 10μ m-thick sections were cut on the cryostat and collected onto Superfrost Plus (BDH) slides. All sections were air-dried prior to storage at $-80^{\circ} \mathrm{C}$ with a dessicant until use. Prior to immunofluorescence, slides were taken straight into ice cold actone for 7 minutes fixation.

2.3.3 Fluorescent endpoint

The sections were fixed in ice cold acetone for 5 minutes and air dried for 30 minutes, then washed in 0.1% Triton in phosphate-buffered saline (pH 7.4). Unless stated otherwise, all steps were carried out at room temperature. The sections were first incubated for 1 h in 2% donkey serum to reduce background staining. The sections were then placed in single/double antibody solutions in 2% donkey serum, and incubated in these solutions for overnight at $4{ }^{\circ} \mathrm{C}$. The following antibody solutions and dilutions were used: $1 / 500$ Sox11 rabbit anti mouse, $1 / 400$ Npas3 goat anti mouse, $1 / 400$ Dcx rabbit anti mouse, $1 / 400$ Gfap rabbit anti mouse, $1 / 500$ Nestin rabbit anti mouse, 1/400 Gpc2 goat anti mouse (Santa Cruz Biotechnology). Following several washes over the period of 1 h , the sections were incubated for 1 h in appropriate combinations of 1:400 donkey anti-goat or -rabbit IgG secondary antibodiest, conjugated to Alexa Fluor 594 for red fluorescence, or to Alexa Fluor 488 or FITC for green fluorescence (the Alexa Fluor secondary antibodies were purchased from Invitrogen Life Technologies, Paisley, UK). Finally, after several washes, the sections were mounted on slides with Prolong antifade reagent with 4'6-diamidino-2-phenylindole (DAPI) (Invitrogen) and the coverslips were then sealed in nail varnish.

2.4 Luciferase Reporter Assay

2.4.1 An overview of the technique

Luciferase reporter assay systems are currently one of the best non-toxic, rapid and sensitive methods to measure gene expression. The assay is based on the detection of luciferase activity driven by a promoter/enhancer cloned upstream of the luciferase gene. Luciferase activity correlates with the transcription regulated by the cloned DNA regulatory elements as well as response to extracellular and intracellular signals. In the quantification of gene expression using firefly luciferase (pGL3control/Basic vector), a second Rennila luciferase vector (pRL-TK vector) is commonly used as internal control co-transfected into mammalian cells. The DualLuciferase ${ }^{\circledR}$ Reporter (DLR) Assay system integrates the assays of both Firefly and Renilla luciferase from the same sample by the sequential measurement of their cognate substrate luciferins respectively.

2.4.2 Construction of VGF promoter-Luciferase Reporter Vectors

2.4.2.1 Generating 5' VGF promoter fragment by Long-PCR

To create the reporter vector, PCR was carried out to amplify 2029kb 5' human VGF sequence containing promoter, exon1, intron1 and part of exon 2 with the following primers. HindIII forward: GGCCCTCGAGGGAGGTTAGAAGGAGGGTCAGT and XhoI reverse: GGCCCCATGGCTACCGGCTCTtTATGCTCAGA. Using the Expand long-range PCR kit (Roche), a total volume of 16 ul comprised; 25 ng template DNA; 25 mM of
each dNTP; $5 \mu \mathrm{~mol}$ primer; $1.7 \mu \mathrm{l}$ expand long-range Buffers $2 \& 3 ; 13.3 \mu \mathrm{dsH} \mathrm{d}_{2} \mathrm{O}$ and, 0.25U Invitrogen Taq DNA polymerase.

The cycling conditions for this PCR reaction consisted of an initial incubation for 5 mins at $94^{\circ} \mathrm{C}$, followed by 9 cycles of 15 sec at $94^{\circ} \mathrm{C}, 1 \mathrm{~min}$ at $56^{\circ} \mathrm{C}$ and 4 min at $68^{\circ} \mathrm{C}$ followed by 20 cycles of $94^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 56$ for 1 min and $68^{\circ} \mathrm{C}$ for 4 min with 10 sec increase per cycle. The PCR product was then digested by HindIII and XhoI restriction enzymes and purified with Qiagen PCR purification Kit. $1 \mu l$ of the purified digested product was then loaded on 1% agarose gel along with 1 Kb DNA ladder (NEB, UK) for an approximate quantification.

2.4.2.2 Generating VGF-luciferase Reporter Vector

The pGL3-basic vector was kindly provided by Professor Rob van t' Hoff. $3 \mu \mathrm{~g}$ of the modified pGL-3 basic vector was digested by 30 units of HindIII and 30 units of XhoI restriction enzymes (NEB, UK) with $3 \mu 110 \times$ NEbufferB, $1.5 \mu \mathrm{l} 20 \times$ BSA and deionized water up to $30 \mu 1$ at $37^{\circ} \mathrm{C}$ for 2 hours. The digestion mix was purified with Qiagen PCR purification kit and then dephosphorylated with shrimp Alkaline Phosphatase (SAP, USB Corporation, UK)

The SAP treatment was set up as following:
$3 \mu \mathrm{l} \quad$ Shrimp Alkaline Phosphatase (1U/ $\mu \mathrm{l}$)
$4 \mu \mathrm{l} \quad 10 \times$ Shrimp Alkaline Phosphatase reaction buffer
$30 \mu \mathrm{l}$ purified digested DNA $(<3 \mu \mathrm{~g})$
$3 \mu \mathrm{ddH} 2 \mathrm{O}$

The reaction was incubated at $37^{\circ} \mathrm{C}$ for 30 minutes and inactive at $65^{\circ} \mathrm{C}$ for 15 minutes. The DNA from the SAP treatment was used directly as vector in the ligation reaction. The following formula was used to calculate the amount of insert and vector in the ligation reaction:
[\{ Amount of vector(ng)* length of insert (kb) \}/length of vector(kb)]* A
The molecular ratio of vector DNA to insert (' A ' in the formula) is $1: 3$ for sticky ends when insert DNA and vector were approximately similar in length, otherwise ratio 1:1 or 1:2 was used.

In this study, the molar ratio of insert to vector was 1:2. Therefore, the reaction mix contained 100 ng of 4.8 kb vector, 300 ng 2.0 kb insert, $1 \mu \mathrm{l}$ to T4 DNA ligase $(1 \mathrm{U} / \mu \mathrm{l}$,

Roche, UK), $1 \mu 1$ of $10 \times$ ligation buffer and water up to $10 \mu 1$. The ligation mix was incubated at $16^{\circ} \mathrm{C}$ for 16 hours. $2 \mu \mathrm{l}$ of the ligation mix was added to $50 \mu \mathrm{l}$ of Subcloning Efficiency TM DH5 α competent cells (Invitrogen, UK). The transformation and the incubation of the agar plate were carried out as described above. Five clones were picked out to incubate in 5 mls LB broth at $37^{\circ} \mathrm{C}$ overnight with constant shaking at 225 rpm . After the same procedures for miniprep and quantification, the correct integration of promoter insert into plasmid DNA was confirmed by HindIII and XhoI double digestion. The plasmid with correct digestion products was sequenced with primers listed in table 2.2. The sequence reactions with these primers covered all the 4 kb insertion and 100 bp of luciferase gene.

2.4.3 Quantification of reporter vectors by Fluorimetry

DNA concentration was measured using Quant-iTTM PicoGreen® dsDNA Assay Kit on a Bio-TEK Synergy HT multiwell plate reader. First a standard curve was constructed using double-stranded λ DNA at known concentrations. DNA samples were analyzed in duplicate and their average concentrations calculated from the standard curve regression equation. Pico green assays ($100 \mu 1$ at $20 \mu \mathrm{~g} / \mathrm{ml}$) was added to each well of a black 96 well microtitre plate with clear bottom along $100 \mu \mathrm{l}$ of either DNA samples or DNA standards of known concentrations. The plate was read after incubation at room temperature for 5 minutes. The fluorimeter measured the relative absorption ratio of each sample at 360 nm excitation and 460 emission wavelength to create a concentration value. Each well was read twice and a mean value caculated.

2.4.4 Transfection of the vectors into human cells.

All transient transfection experiments were carried out using the human HEK293 and SHSY-5Y cell lines. Cells were cultured in $75 \mathrm{~cm}^{2}$ tissue culture flasks in alpha MEM medium (Invitrogen) supplemented with 10% fetal calf serum (FCS, Invitrogen), $50 \mathrm{IU} / \mathrm{ml}$ penicillin (Invitrogen) and 2 mM glutamine (Invitrogen). Medium was renewed every 3 days. Cells were incubated at $37^{\circ} \mathrm{C}$ in a humidified atmosphere of $5 \% \mathrm{CO}_{2}$.

Twenty-four hours prior to the transfection, cells were cultured in 24-well plates with the density of 4×10^{4}. On the day of transfection, cells with less than 50% confluence
were transfected using lipofectamine 2000 (invitrogen) with these sets of plasmids respectively:

1) VGF luciferase reporter vector, pRL-TK and pDEST40-FLNPAS3
2) VGF luciferase reporter vector, pRL-TK and pDEST40- \triangle NPAS3
3) VGF luciferase reporter vector, pRL-TK and pDEST40-SOX5
4) VGF luciferase reporter vector, pRL-TK and pDEST40-SOX6
5) VGF luciferase reporter vector, pRL-TK and pDEST40-SOX5+SOX6
6) VGF luciferase reporter vector, pRL-TK and pDEST40-SOX9
7) VGF luciferase reporter vector, pRL-TK and pDEST40-SOX10
8) VGF luciferase reporter vector, pRL-TK and pDEST40-SOX9+10
9) VGF luciferase reporter vector, pRL-TK and pDEST40.

Figure 2.1 The procedure of a dual luciferase assay

2.4.5 Measurement of the luciferase activity

Twenty-four hours after transfection, cells were checked to be no more than 95% confluent. The growth medium was removed from the cultured cells and 2 ml of phosphate buffered saline (PBS) was added to wash the surface of 24-well plate. The plate was swirled briefly to remove detached cells and residual growth medium. The rinse solution was completely removed before applying passive lysis buffer (PLB, Promega, UK). $80 \mu \mathrm{l}$ of $1 \times$ PLB was added into each well in the 24 -well plate to completely cover the cell monolayer. The plate was wrapped with foil paper and stored at $-80^{\circ} \mathrm{C}$ for at least 24 hours prior to performing the DLRTM Assay.

Luciferase assay regeant II (LAR II, Promega, UK) was prepared by resuspending the provided lyophilized Luciferase Assay Substrate in the 10 ml of the supplied Luciferase Assay buffer II. Once the substrate and buffer had been mixed, LAR II was aliquoted and stored at $-80^{\circ} \mathrm{C}$. Frozen aliquot ($80 \mu 1 /$ sample, 2.5 ml) of LAR II were thawed at room temperature before use. Stop \& Glo ${ }^{\circledR}$ reagent was prepared by adding 1 volume of $50 \times$ Stop $\& \mathrm{Glo}^{\circledR}$ substrate (Promega, UK) to 50 volumes of Stop \& Glo ${ }^{\circledR}$ buffer. For each measurement $(80 \mu 1 /$ sample $) 50 \mu \mathrm{l}$ of $50 \times$ Stop \& Glo ${ }^{\circledR}$ substrate was added to $2450 \mu \mathrm{l}$ of Stop \& Glo^{\circledR} buffer just before use. $40 \mu \mathrm{l}$ of cell lysate from each sample was carefully transferred into 96 -well clear bottom Castor plate without producing bubbles. $40 \mu 1$ of LAR II and Stop \& Glo ${ }^{\circledR}$ reagents were added sequentially into the same sample and the each luciferase acitivity was read by BIO-TEK Synergy HT multiwell plate reader.

To confirm the expression of NPAS3, \triangle NPAS3, SOX5, SOX6, SOX9 and SOX10, total RNA of the cells were extracted and reverse transcripted into cDNA. QPCR
was carried out as decribed above. 18sRNA was used for the reference gene in the QPCR.

2.5 Illumina microarray analysis

2.5.1 SOX11 cloning

The SOX11 gene was cloned using the Invitrogen Gateway system. The human SOX11 open reading frame was amplified from SH-SY5Y cell lines using SOX11 primers (table 2.1) containing attB sites and then cloned into the intermediate vector pDONR and then, subsequently, into the pDEST40 mammalian expression vector. Sequence verification of the clone was performed using a BigDye Terminator Cycle Sequencing Kit.

2.5.2 Transient transfection of SOX11 gene into HEK293 cells

HEK293 cells were cultured in DMEM (Invitrogen, Carsbad, CA) supplemented with 10% fetal bovine serum (Lab Tech Int.) at $37{ }^{\circ} \mathrm{C}$ in an atmosphere of $5 \% \mathrm{CO}_{2}$ in humidified air. The culture medium was replaced by OPTI-MEM (OMEM) and then the HEK293 cells were transiently transfected by pDEST40-SOX11 or control plasmid (pDEST40) using lipofectamine ${ }^{\mathrm{TM}} 2000$ transfection kit (Invitrogen) according to the manufacturer's instructions. After 4-6 hours, the transfection medium was replaced with standard culture medium. Cells were removed using trypsin/versene at 24 hours post-transfection, washed in cold PBS and then frozen at $-80^{\circ} \mathrm{C}$.

SH-SY5Y cells were also cultured and transiently transfected in the same manner for the western blot experiments.

2.5.3 Transient tranfection SOXD/E into HEK293 cells

SOXD/E expression constructs were generously gifted by Chuanju Liu (SOX5/SOX6/SOX9) and Fabien Murisier/Friedrich Beerman (SOX10). All SOXD/E microarray experiments were carried out as transient transfections of HEK293 cells using Optimem/Lipofectamine 2000/plasmid DNA (Invitrogen) incubation for 6 hours followed by 24 hours in standard culture conditions. HEK293 cells were maintained in DMEM supplemented with 10% Foetal Bovine Serum.

2.5.4 Preparation of stable FLNPAS3/DNPAS3 overexpression sample

The full-length NPAS3 open reading frame (acc. NM_001164749) cloned into the pCDNA expression plasmid was a gift from Dr. Nicholas Brandon, Merck, Sharpe and Dohme, now at Wyeth. This was transferred into a similar TET-inducible expression plasmid (pT-REx-DEST30, Invitrogen, UK) using a restriction digest, Gateway (Invitrogen) cloning linker ligation and the $\mathrm{BP} / \mathrm{LR}$ reactions (Invitrogen). The truncated form, \triangle NPAS3, was generated by cleavage and removal of sequence between internal and multiple cloning site XhoI sites thus deleting the second PAS domain and the putative transactivation domain. After linearisation and transfection of FLNPAS3 and \triangle NPAS3 plasmids into HEK293 [T-REx-293] cells (Invitrogen), selection for stable integration was achieved with Geneticin and Blasticidin; the latter to maintain the activity of the TET repressor-expressing pcDNA-6/TR plasmid already present within the cell line.

2.5.5 In vitro circadian induction by serum shock method

For circadian induction, cells were washed in DMEM alone and then maintained in the same for 36 hours. In order to confirm the success of circadian rhythm induction, at zero hour time-point, HEK293 cells were shifted into a DMEM with 50% horse serum for 2 hours incubation. At +2 hours, HEK293 cells were washed with serum free DMEM and cultured with the same medium for the remaining experiment. Cell samples were collected every 4 hours. Gene expression levels of several circadian genes were determined by RT-PCR and Agarose gel electrophoresis. DNA binds were scaned by BIO-TEK Synergy HT soft ware.

For microarray analysis, at the zero hour time-point, the cell medium was replaced with DMEM supplemented with 50% horse serum plus tetracycline in order to induce circadian cycling and NPAS3 over-expression (Balsalobre et al., 1998; Huang et al., 2009). At +2 hours, cells were washed with DMEM and then incubated with the same plus tetracycline for the remaining period of the experiment. Cells were collected at either +12 or +24 hours and frozen as above. In order

Figure 2.2 The induction of circadian rhythm in cultured cells by serum shock method.

All experimental cells were removed from flasks by incubation with trypsin/versene, washed in cold phosphate buffered saline and then immediately frozen at $-80^{\circ} \mathrm{C}$.

2.5.6 Total RNA extraction

Extraction of total RNA from transfected and control cells was performed with the mini RNeasy Kit (Qiagen, Valencia, CA) according to the manufacturer's instructions. The purity and integrity of each total RNA sample was monitored using the Agilent 2100 bioanalyzer (Agilent Technologies, Palo Alto, CA). The ratio of A_{260} to A_{280} values of each sample, an effective measure of RNA purity, fell in the range of 1.8-2.1 indicating high purity. The RNA integrity number (RIN) of each
sample was also evaluated using the Agilent 2100 bioanalyzer. Only RNA samples which demonstrated RIN values above 9.5 were used for probe synthesis purposes.

2.5.7 cRNA probe preparation

Biotinylated cRNA was prepared using the Illumina total Prep RNA application Kits (Ambion. Inc., Austin, TX) according to the manufacturer's direction starting with 100ng total RNA. The size of cRNA was evaluated using Agilent 2100 bioanalyzer. The cRNA profile of each sample was distributed from 250-5500 bp with most of the cRNA at 1000-1500 bp. All cRNA samples passed the quality filter and met our criteria for inclusion into further Illumina Beadarray analysis.

2.5.8 Illumina microarray

For NPAS3 experiments parental HEK293 [T-REx-293] cells were used as negative controls because stably integrated FLNPAS3/DNPAS3 cell lines showed a low level of leaky transcription in the absence of tetracycline. In the SOX microarray studies, Quadruplicate transient transfections of pDEST40 plasmid were used as controls were used as shared negative controls compared to triplicate transfections with each of the SOX expression constructs. For all standard cell culture experiments with FLNPAS3/ $\mathrm{ANPAS3}$ /parental negative control cell lines, duplicate biological samples were assessed.

An Illumina Beadstation platform was used in conjunction with Sentrix ${ }^{\circledR}$ HumanRef-8 v1 and v2 chips (Illumina, Inc., San Diego, CA) capable of examining expression of over 24,500 gene transcripts. Hybridization, washing and scanning were performed according to the Illumina BeadStation 500* manual (revision C) by experienced staff located within the Genetics Core of the Wellcome Trust Clinical Research Facility at the Western General Hospital, Edinburgh. Three control replicates and 3 SOX11 transient transfection replicates were carried out on one Illumina BeadChip.

2.5.9 Analysis of microarray data

For the investigation of the SOX11 regulatory profile, expression differences between the cell lines were assessed using two Bioconductor (Gentleman et al., 2004) algorithms implemented in the statistical programming language, R. Genes differentially expressed between cell-line samples were identified using limma (this part of work was performed by Robert Kitchen) and SAM (Signifacance analysis of Microarray) (Tusher et al., 2001). The latter was implemented as part of the BRBArrayTools (3.70) freeware developed by the Biometric Research branch of the US National Cancer Institute (http://linus.nci.nih.gov/BRB-Arraytools.html). In both analyses, the Illumina probe profile expression data were log-transformed and normalised using quantile normalisation. For the analysis using the limma package, genes were defined as being differentially expressed after satisfying a minimum foldchange of ± 1.5 and a maximum, Benjamini-Hochberg adjusted, p-value of 0.01 . For the $S A M$ analysis, the differentially expressed genes were selected at a maximum predicted false discovery rate of 0.01 .

For NPAS3 and SOXD/E microarray analysis, microarray data analysis was carried out using BRB-ArrayTools 3.8.0 freeware and included normalisation and log transformation of raw data followed by hierarchical clustering of samples, identification of statistically significantly up- or down-regulated genes through Statistical Analysis of Microarrays (SAM).

Regulated genes were further categorised by bioinformatics tools such as Ingenuity Pathway Analysis (Ingenuity systems
https://analysis.ingenuity.com/pa/login/applet.jsp) and GeneCodis2 for particular gene ontologies, biological processes, and associated canonical pathways.

2.5.10 Confirmation by Q-RTPCR

Quantitative reverse transcriptase PCR (QPCR) was used to validate mircroarray results using the same set of RNA and also measure time-dependent changes in gene expression levels due to Sox11 over-expression at 0h, 3h, 6h, 12h and 24 h and 48 h of transient transfection. Briefly, the total RNA of HEK293 cells were purified with RNeasy columns (Qiagen). This RNA served as template for oligo-dT-primed cDNA synthesis with reverse Transcriptase (Roche). QPCR was performed with SYBR green QPCR Master Mix (Invitrogen) and a Real-Time QPCR machine (BIO-RAD). For relative quantification of mRNA expression, geometric means were calculated using the comparative double delta method described previously (Dracheva et al, 2005). Primers used in QPCR were designed using Primer3 Software and sequences are included in table 2,1. The gene expression levels of housekeeping gene (GAPDH) in SOX11 overexpressing cells and control cells are similar, so this gene was selected as the endogenous references in this QPCR study. Sample concentrations were normalized to GAPDH according to the respective ratios of GAPDH levels per HEK293 cell sample, with 3 replicates per time point. Student's T-test was used to determine significant at each time point and changes of $\mathrm{P}<0.05$ were considered significant.

In the FL/DNPAS3 microarray studies, as GAPDH was found upregulated by FL/ N NPAS3 when comparing its expression in control cells, it could not be used as a reference gene. The expression levels of 18sRNA, one housekeeping gene, are similar in FL/ \triangle NPAS3 overexpressing and control cells, so it was selected as the endogenous references in the confirmation of genes targeted by FL/ \triangle NPAS3 by QPCR assay. Sample concentrations were normalized. Three experimental replicates were used. Student's T-test was used to determine significant at each time point and changes of $\mathrm{P}<0.05$ were considered significant.

2.5.11 Confirmation by Western

Samples prepared from HEK293 cells and SH-SY5Y cells were subjected to SDSPAGE gel electrophoresis (NuPAGE® Novex ${ }^{\circledR}$ Tris-Acetate gels). Protein was transferred to $0.2 \mu \mathrm{~m}$ Polyvinylidene Difluoride (PVDF) membrane (Invitrogen), blocked in 5% dried milk powder in 50 mM Tris-HCl, pH 7.5, $15 \mathrm{mM} \mathrm{NaCl}, 0.5 \%$ Tween-20 (TBST), washed briefly in TBST several times for 1 hour and incubated in primary antibody solutions in 2% donkey serum, and incubated in these solutions for overnight at $4{ }^{\circ} \mathrm{C}$. The following antibody solutions and dilutions were used: $1 / 1000$ SOX11 rabbit anti human, 1/1000 YWHAZ rabbit anti human, 1/800 SCG2 goat anti human (Santa Cruz Biotechnology) and 1/800 TUBB3 rabbit anti human (Abcam®) Blots were then washed 3 times in TBST, incubated for 1 hour in anti-rabbit horse radish peroxidase-conjugated secondary antibody (1:1000 in TBST), washed 3 times in TBST and incubated in ECL plus Western blotting detection reagent for 1-5 minutes based on the manufacturer's instructions (GE Healthcare, Buckinghamshire, UK).

2.6 Bioinformatics

Blast: http://ncbi,nlm.nih.gov/BLAST/
BLAT: http://genome.ucsc.edu/cgi-bin/hgBlat
ClustalX: http://www.clustal.org/
Decipher: https://decipher.sanger.ac.uk/
Ensemble: http://www.ensembl.org/index.html
FinchTV : http://www.geospiza.com
Gen Bank: http://www.ncbi.nlm.nih.gov
GraphPad: http://www.graphpad.com/quickcalcs/contingency
НарМар: http://www.hapmap.org
Haploview: http://www.broad.mit.edu/mpg/haploview/
HWE calculator: http://www.changbioscience.com/genetics/hardy.html
Image J: http://rsb.info.nih.gov/ij/
PubMed: http://www.ncbi.nlm.nih.gov/Literature/
Illumina: http://www.illumina.com/.
Plink: http://pnug.mgh.harvard.edu/~purcell/plink
Repeat Masker: http://repeatmasker.genome.washington.edu/
OR calculator: http://www.hutchon.net/ConfidOR.htm
SDSC Biology workbench: http://workbench.sdsc.edu/
Splice Site Predication http://www.fruitfly.org/seq tools/splice.html
SwissProt: http://www.expasy.ch/sprot/
UCSC: http://genome.ucsc.edu/
SigmaPlot: http://www.sigmaplot.com/

CHAPTER THREE

3 Transcriptional regulation by a psychiatric candidate geneNPAS3

3.1 Introduction

In this chapter, I will use immunofluorescence and gene microarrays to explore the function of NPAS3. As the Npas3 deficient animal model shows a deficit in neurogenesis, NPAS3 was suggested to be involved in the regulation of new neuron production. In order to determine the spatio-temporal contribution of NPAS3 to adult neurogenesis, co-staining with several known neurogenesis markers in the adult mouse hippocampus was carried out using immunofluorescence.

Based on the role of NPAS3 in adult hippocampus neurogenesis and its contribution to schizophrenia, bipolar disorder and major depression, we supposed that the regulatory profile of NPAS3 might provide valuable clues to better understand the underlying pathological mechanisms of psychiatric illness.

The regulatory profiles of full-length (FLNPAS3) and artificially truncated (\triangle NPAS3) forms of NPAS3, were indentified by Illumina microarray analysis in an in vitro system, the human embryonic kidney cell line (HEK293). \triangle NPAS3 was generated by cleavage at an XhoI site which removes the second PAS domain and the putative transactivation domain. Thus, the properties of the bHLH domain and transactivation domain can be identified by comparing of the regulatory profiles of FLNPAS3 and \triangle NPAS3. Biostatistical software (BRB), QPCR validation and gene ontological analysis (IPA and GeneCodis2) were carried out in this project.

3.2 Results

3.2.1 Npas3 expression in mouse brain supports a direct role in neurogenesis

The expression pattern of Npas3 in the adult mouse hippocampus was investigated using immunofluorescence microscopy. The sections from frozen mouse brain were cut using a Thermo cryostat. The following antibody solutions and dilutions were used: 1/400 Npas3 goat anti mouse, 1/400 Dcx rabbit anti mouse, 1/400 Gfap rabbit anti mouse, $1 / 500$ Nestin rabbit anti mouse, (Santa Cruz Biotechnology). Npas3 is strongly expressed in the sub-granular zone of the dentate gyrus with processes radiating into the granule cell layer proper (Figure 3.1). Npas3 has a lower expression level in other brain regions, including ependymal cells and axo-dendritic regions adjacent to the cell soma in many cortical neurons (data are not shown).

To define the specific stage at which Npas3 exerts its function during neurogenesis, several neurogenesis markers, including Dcx, Gfap and Nestin, were co-stained with Npas3 in the hippocampus in the adult mouse brain. Npas3 was found to colocalise with Dcx, but not other markers of neurogenesis in the adult mouse hippocampus. This suggests that NPAS3 might exert its function at the same stage in development as Dcx, which has a role in converting progenitors into mature granule cells. This finding may suggest a possible site of action for NPAS3 in psychiatric illness.

Figure 3.1 Co-immunofluorescence of Npas3 and neurogenesis stage markers in the dentate gyrus of mouse hippocampus Npas3, Gfap, Nestin and Dcx protein expression was examined using immunofluorescence of frozen mouse brain sections. Anti-Npas3 was labeled with a FITCconjugated secondary antibody (green). Npas3 (a, d and g) expression was mainly localized to the inner face/subgranular zone of the dentate gyrus. Compared to other sites of Npas3 expression (e.g., cortical neurons and ependymal cells), Npas3 shows no nuclear localisation in the subgranular zone but was distributed within projections that permeate through the granule cell layer. Anti-Gfap, -Nestin and -Dcx/Doublecortin antibodies labeled with a Texas-red conjugated secondary antibody (b,e,h) were used in co-immunofluorescence studies (c,f,i). No overlap was identified between Npas3 and Gfap/Nestin whereas Dcx colocalised with Npas3 in the subgranular zone (yellow, i), scale bar $=80 \mu \mathrm{~m}$.

3.2.2 NPAS3 target genes in standard culture conditions

Illumina microarray analysis was carried out to investigate the gene expression changes in HEK293 cells after over-expressing FLNPAS3 and \triangle NPAS3. The fragments of FLNPAS3 and \triangle NPAS3 were transferred into a similar TET-inducible expression plasmid and transfected into HEK293 [T-REx-293] cells (Invitrogen). Selection for stable integration was achieved with Geneticin and Blasticidin. Parental HEK293 [T-REx-293] cells were used as negative controls because stably integrated FLNPAS3/ANPAS3 cell lines showed a low level of leaky transcription in the absence of tetracycline. Duplicate biological samples were assessed for all standard cell culture experiments with FLNPAS3, \triangle NPAS3 or parental negative control cell lines. Microarray probes synthesised from RNA extraction products were quantified using an Agilent Bioanalyzer to ensure high quality probes of equal quantity between experiments. Sentrix ${ }^{\circledR}$ HumanRef-8 v2 chips (capable of examining expression of over 24,500 gene transcripts) were used to detect gene expression profiles.

BRB analysis software was used to statistically analyse gene expression among the 22,177 well annotated RefSeq transcripts present in each array. Unsupervised hierarchical clustering of microarray gene expression profiles using centred correlation and average linkage revealed related transcriptional profiles for FLNPAS3 and \triangle NPAS3 over-expression samples but distinct from control samples (Figure 3.2)

Figure 3.2 Hierarchical clustering dendrogram illustrating relationships between FLNPAS3, Δ NPAS3 and control HEK293 cell microarray data. Using centered correlation and average linkage, two distinct clusters corresponding to FL/DNPAS3 over-expressed and control cells were revealed. Thus FL/ \triangle NPAS3 over-expression induces a reproducible and global change in gene expression. Control1-2:AVG, HEK293 parental cell line treated with tetracycline; NPAS3a/b:AVG, Tetracycline-induced FLNPAS3 over-expression in a HEK293 cell line, $\Delta N P A S 3 a / b: A V G$, Tetracycline-induced $\triangle N P A S 3$ over-expression in a HEK293 cell line.

3.2.3 Genes regulated by FLNPAS3 in standard conditions

Microarray data was filtered using the SAM algorithm (Significance Analysis of Microarrays) with a 0.01 target proportion of false discoveries and 100 permutations. 3476 genes were found to discriminate between FLNPAS3 and control. In a univariate comparison test (applying a random variance model) between control and FLNPAS3 microarray experiments, 282 genes showed $>=1.5$-fold up-regulation by FLNPAS3 and 359 genes were similarly down-regulated.

As the oligonucleotide probe for NPAS3 is complementary to 3 'sequence, which is deleted in \triangle NPAS3, NPAS3 was only found in the FLNPAS3 data list with the top up-regulated gene (69-fold) (Table 3.1). This result further confirms the overexpression of NPAS3 in the transfected cell samples.
Table 3.1 The 51 genes most up-regulated by FLNPAS3 (NPAS3 overexpression is shown for comparison) in standard cell culture conditions Enrichment for glycolysis and hypoxia gene targets is evident in the latter group. Description
Foldiff Glycolysis Hypoxia Circadian Foldiff
62.49 2.92
2.58
2.40
2.36
2.33
2.31
2.23
2.20

2.15
2.12
2.08
2.07
2.07
2.05
2.01 1.92 1.92
1.92 1.92 $\stackrel{\infty}{\infty} \underset{-}{\infty}$
$\stackrel{\circ}{\infty}$
$\stackrel{\infty}{\sim}$
$\stackrel{\leftrightarrow}{\infty}$

$$
\begin{array}{lllll}
\text { ILMN_1669113 } & \text { NM_012068.3 } & \text { ATF5 } & \text { activating transcription factor 5 } & 1.83 \\
\text { ILMN_1769931 } & \text { NM_005066.1 } & \text { SFPQ } & \text { splicing factor proline/glutamine-rich } & 1.82 \\
\text { ILMN_1710544 } & \text { NM_002589.2 } & \text { PCDH7 } & \text { protocadherin 7 } & 1.80 \\
\text { ILMN_1786024 } & \text { NM_001018052.1 } & \text { POLR3H } & \begin{array}{l}
\text { polymerase (RNA) III (DNA directed) polypeptide }
\end{array} & 1.80 \\
& & \begin{array}{l}
\text { H (22.9kD) } \\
\text { growth arrest and DNA-damage-inducible, beta }
\end{array} & 1.80 \\
\text { ILMN_1718977 } & \text { NM_015675.2 } & \text { GADD45B } & \begin{array}{l}
\text { chloride channel 7 }
\end{array} & 1.79 \\
\text { ILMN_1694731 } & \text { NM_001287.3 } & \text { CLCN7 } & \text { elastin microfibril interfacer 2 } & 1.79 \\
\text { ILMN_1697268 } & \text { NM_032048.2 } & \text { EMILIN2 } & \text { ela } \\
\text { ILMN_1757406 } & \text { NM_005319.3 } & \text { HIST1H1C } & \text { histone cluster 1, H1c } & 1.77 \\
\text { ILMN_1725510 } & \text { NM_014762.3 } & \text { DHCR24 } & \text { 24-dehydrocholesterol reductase } & 1.75 \\
\text { ILMN_1807719 } & \text { NM_004937.2 } & \text { CTNS } & \text { cystinosis, nephropathic } & 1.74 \\
\text { ILMN_1784037 } & \text { NM_001083621.1 } & \text { ZBTB40 } & \text { zinc finger and BTB domain containing 40 } & 1.74 \\
\text { ILMN_1761411 } & \text { NM_024834.2 } & \text { C10orf119 } & \text { chromosome 10 open reading frame 119 } & 1.73 \\
\text { ILMN_1795671 } & \text { NM_018269.1 } & \text { ADI1 } & \text { acireductone dioxygenase 1 } & 1.72 \\
\text { ILMN_1787826 } & \text { NM_078483.2 } & \text { SLC36A1 } & \text { solute carrier family 36 (proton/amino acid } & 1.72 \\
& & \text { symporter), member 1 } & 1.72 \\
\text { ILMN_1760650 } & \text { NM_001384.4 } & \text { DPH2 } & \text { DPH2 homolog (S. cerevisiae) } & 1.71 \\
\text { ILMN_1722059 } & \text { NM_002967.2 } & \text { SAFB } & \text { scaffold attachment factor B } & 1.70 \\
\text { ILMN_1689959 } & \text { NM_020170.3 } & \text { NCLN } & \text { nicalin homolog (zebrafish) } & 1.70 \\
\text { ILMN_1733847 } & \text { NM_003857.2 } & \text { GALR2 } & \text { galanin receptor 2 } & 1.70 \\
\text { ILMN_1762037 } & \text { NM_144582.2 } & \text { TEX261 } & \text { testis expressed 261 } & 1.69 \\
\text { ILMN_1665212 } & \text { NM_014329.3 } & \text { EDC4 } & \text { enhancer of mRNA decapping 4 } & 1.69 \\
\text { ILMN_1754643 } & \text { NM_022719.2 } & \text { DGCR14 } & \text { DiGeorge syndrome critical region gene 14 } & 1.69 \\
\text { ILMN_1797903 } & \text { NM_014480.1 } & \text { ZNF544 } & \text { zinc finger protein 544 } & 1.69 \\
\text { ILMN_1743397 } & \text { NM_178517.3 } & \text { PIGW } & \text { phosphatidylinositol glycan anchor biosynthesis, } & 1.67 \\
\text { ILMN_1737298 } & \text { NM_005911.4 } & \text { MAT2A } & \text { class W } & \text { methionine adenosyltransferase II, alpha }
\end{array}
$$

Table 3.2 The 50 genes most down-regulated by FLNPAS3 in standard cell culture conditions. The enrichment for glycolysis and hypoxia genes is evident in the latter group. Illumina id Accession
ILMN_1756417 NM_181726.2 ILMN_1758164 NM_003155.2 ILMN_1661599 NM_019058.2 ILMN_1695880 NM_002317.3 ILMN_1659990 NM_013332.3 ILMN_1755974 NM_005165.2 ILMN_1728057 NM_145267.2 ILMN_1748124 NM_198057.2 ILMN_1785703 NM_198271.2 ILMN_1809931 NM_006096.2 ILMN_1759092 NM_178124.3 ILMN_1697448 NM_006472.2 ILMN 1658289 NM 032118.2 ILMN_1715324 NM_014234.3

NM_194431.1 NM_004563.2 XR 015982.1 XR_015982.1 NM_001632.3 NM_145111.2 NM 032549.2 ع゙ $\left\llcorner 66000^{-}\right.$WN

Symbol

ANKRD37
STC1 DDIT4
LOX HIG2 ALDOC C6orf57 TSC22D3 LMOD3 NDRG1 CXorf40A TXNIP WDR54 HSD17B8 BNIP3 RNASE4
PCK2
LOC731786
ALPP
HK2
C7orf38
IMMP2L RPL37
SFXN3 hexokinase 2 hromosome X open reading fr
hioredoxin interacting protein
WD repeat domain 54 2.55
-2.48
-2.44 $\stackrel{O}{i}$ $\underset{\sim}{\sim}$
-2.33
-2.32

ILMN_1696183	NM_005331.3	HBQ1	hemoglobin, theta 1	-2.31			
ILMN_1651610	XM_001126202.1	LOC730525	hypothetical protein LOC730525	-2.30			
ILMN_1780825	NM_006270.3	RRAS	related RAS viral (r-ras) oncogene homolog	-2.30			
ILMN_1693334	NM_000917.2	P4HA1	proline 4-hydroxylase, alpha polypeptide I	-2.29		yes	yes
ILMN_1798581	NM_032485.4	MCM8	minichromosome maintenance complex component 8	-2.29			
ILMN_1671661	NM_016371.2	HSD17B7	hydroxysteroid (17-beta) dehydrogenase 7	-2.28			
ILMN_1753342	NM_002970.1	SAT1	spermidine/spermine N1-acetyltransferase 1	-2.27			
ILMN_1708778	NM_000050.4	ASS1	argininosuccinate synthetase 1	-2.25	urea		
ILMN_1679093	NM_016535.3	ZNF581	zinc finger protein 581	-2.24			
ILMN_1726460	NM_001034996.1	RPL14	ribosomal protein L14	-2.23			
ILMN_1692145	NM_021030.2	ZNF14	zinc finger protein 14	-2.23			
ILMN_1797668	NM_002196.2	INSM1	insulinoma-associated 1	-2.22			
ILMN_1787885	NM_024815.3	NUDT18	nudix (nucleoside diphosphate linked moiety X)type motif 18	-2.22			
ILMN_1772492	NM_033412.1	MCART1	mitochondrial carrier triple repeat 1	-2.21			
ILMN_1809750	NM_198795.1	TDRD1	tudor domain containing 1	-2.20			
ILMN_1801584	NM_003467.2	CXCR4	chemokine (C-X-C motif) receptor 4	-2.17		yes	
ILMN_1781388	NM_021965.3	PGM5	phosphoglucomutase 5	-2.16	glycolysis		
ILMN_1760727	NM_001097577.1	ANG	angiogenin, ribonuclease, RNase A family, 5	-2.16			
ILMN_1765796	NM_001975.2	ENO2	enolase 2 (gamma, neuronal)	-2.15	glycolysis	yes	
ILMN_1671766	NM_000505.3	F12	coagulation factor XII (Hageman factor)	-2.12			
ILMN_1809291	NM_004615.2	TSPAN7	tetraspanin 7	-2.12			
ILMN_1755075	NM_004508.2	IDI1	isopentenyl-diphosphate delta isomerase 1	-2.12			yes
ILMN_1680279	NM_018561.3	USP49	ubiquitin specific peptidase 49	-2.10			
ILMN_1770922	NM_018004.1	TMEM45A	transmembrane protein 45A	-2.10		yes	
ILMN_1733559	NR_003287.1	$\begin{aligned} & \text { LOC100008 } \\ & 589 \end{aligned}$	28S ribosomal RNA	-2.10			
ILMN_1782743	NM_015416.3	LETMD1	LETM1 domain containing 1	-2.10			

3.2.4 Comparison of FLNPAS3 and Δ NPAS3 regulation

In order to compare the regulatory activities of FLNPAS3 and \triangle NPAS3, the fold change of genes regulated by both FLNPAS3 and \triangle NPAS3 were plotted against each other in Excel. There was substantial correlation of target gene fold-change between FLNPAS3 and \triangle NPAS3 cells in standard culture conditions, with linear regression r^{2} values of 0.59 (up-regulated genes) and 0.78 (down-regulated genes). These results suggest that FLNPAS3 and \triangle NPAS3 have the same transcription activity in the standard conditions. This result is very surprising because the Δ NPAS3 does not retain the PASB and transcriptional activation/ depression domain.

A

B

Figure 3.3 FLNPAS3 and \triangle NPAS3 shared target gene regulation is highly correlated under standard cell culture conditions indicating minimal effect of truncation. A) up-regulated genes. B) down-regulated genes. All expression data is log transformed and normalised as part of the microarray analysis.

3.2.5 Confirmation of our FLNPAS3/ Δ NPAS3 microarray findings

In order to validate our microarray findings, QPCR analysis was carried out on several selected genes using the same RNA used in our microarray experiment. The QPCR reactions were performed in triplicate and Double delta method was used to calculate the gene expression level. $V G F, H K 2, E N O 2$, and $S O X 11$ showed similar fold changes in QPCR and microarray assays (Figure 3.4). These target genes were chosen because: a) they are in the top list of regulated genes, (VGF, HK2 and ENO2); b) they are relevant to the function of glycolysis and hypoxia (ENO2, HK2); c) they are associated with neurogenesis or psychiatric illness (VGF and SOX11).

QPCR VALIDATION

Figure 3.4 QPCR verification of microarray findings.
Expression of VGF, HK2, ENO2 and SOX11 was determined by triplicated QPCR analysis of the RNA used in the microarray assays. Gene 18sRNA was used to normalise data from FLNPAS3 and \triangle NPAS3 (dNPAS3) over-expression samples and values are expressed as fold-change in gene expression in comparison to the control samples (Parental HEK293 [T-REx-293] cells were used as negative controls).

3.2.6 The relevant functions of up-regulated genes

The up-regulated set of genes were examined using the online tool GeneCodis2 (Nogales-Cadenas et al., 2009) to investigate relevant biological processes. Thirtysix of the 282 up-regulated genes (corrected hypergeometric p-value $=2.07 \times 10^{-8}$) were categorised by the gene ontology term 'transcription' (GO:0006350) being either transcription factors or DNA-binding proteins with regulatory function. An interacting network of transcription factors is a common feature of developmental biological programmes including neurogenesis.

3.2.7 The function analysis of down-regulated genes

3.2.7.1 Several SOX family genes are negatively regulated by NPAS3

In our microarray data list, three members of the SOX family of transcription factors, SOX3, SOX11 and SOX12, were down-regulated by NPAS3. The expression levels of these genes were further analysed using QPCR on FLNPAS3 over-expressed and control HEK293 cells. Triplicated reaction and double delta method were performed (Figure 3.5). SOX3 is a marker of neural progenitor proliferation (Axell et al., 2009) and SOX11 is a master-regulator of neuronal differentiation (Azuma et al., 1999; Bergsland et al., 2006; Dy et al., 2008; Hargrave et al., 1997; Haslinger et al., 2009). Both the microarray and QPCR results provide evidence for a direct interaction of NPAS3 with SOX transcriptional networks.

Figure 3.5 Three SOX family genes, SOX4, SOX3 and SOX11, were down-regulated in FLNPAS3 over-expressing HEK293 cells. Expression of these genes was verified by triplicated QPCR analysis of the same RNA used in the microarray assays.

3.2.7.2 Functional analysis of down-regulated genes by IPA and Genecodis2

In order to assess the principal biological functions or gene classes over-represented in the down-regulated genes, Ingenuity Pathway Analysis (IPA) and Genecodis2 were selected to run the microarray data.

The networks illustrate functional relationships between gene products based on published interactions in the literature. The scores for the networks were calculated based on the number of network eligible genes and the size of the network. This provides an estimate of the relevance of any particular network was to the total list of eligible genes. IPA identified five significant pathways (Table.3.7): glycolysis/gluconeogenesis (16 genes, $\mathrm{p}=6.14 \times 10^{-6}$), ERK/MAPK signalling (16 genes, $\mathrm{p}=8.67 \times 10^{-3}$), Neuregulin signalling (9 genes, $\mathrm{p}=2.35 \times 10^{-2}$), Notch signalling (6 genes, $\mathrm{p}=2.37 \times 10^{-2}$), and Circadian rhythm signalling (4 genes, $\mathrm{p}=4.16 \times 10^{-2}$). Full IPA analysis is presented in the Tables 3.3-3.7.

Using GeneCodis2, 8 genes of the glycolysis pathway (GO:0006096) were of greatest significance (corrected hypergeometric p-value $=5.21 \mathrm{X} 10^{-7}$) Figure 3.6 Additionally, 21 genes participating in the 'oxidation:reduction' biological process (GO:0055114) were also significantly down-regulated $\left(\mathrm{p}=6.30 \times 10^{-7}\right.$). Together, these findings strongly suggest that NPAS3 is involved in the regulation of anaerobic catabolism of glucose into pyruvate and, more generally, enzymatic redox processes.
Table 3.3 Ingenuity pathway analysis (IPA) identifies canonical pathway and networks regulated by over-expression of NPAS3.

$$
\begin{aligned}
& \text { Associated network functions } \\
& \text { Carbohydrate Metabolism, Amino Acid Metabolism, Post-translational Modification } \\
& \text { Protein Synthesis, Carbohydrate Metabolism, Small Molecular Biochemistry } \\
& \text { Cellular Development, Nervous System Development and Function, Embryonic Development } \\
& \text { Amino Acid metabolism, Small Molecular Biochemistry, Cellular Function and Maintaenance } \\
& \text { Developmental Disorder, Organ Morphology, Reproductive System disease }
\end{aligned}
$$

Table 3.4 Top molecular and cellular functions (IPA)

Molecules
 168 103 194 49 44

Name	p-value	Molecules
Nervous system development and function	$7.36 \mathrm{E}-05-3.76 \mathrm{E}-02$	77
Hair and skin development and function	$7.21 \mathrm{E}-04-2.04 \mathrm{E}-02$	17
Lymphoid tissure structure and development	$9.20 \mathrm{E}-04-3.99 \mathrm{E}-02$	91
Reproductive system development and function	$9.20 \mathrm{E}-04-4.03 \mathrm{E}-02$	25
Tissue Morphology	$9.90 \mathrm{E}-04-3.76 \mathrm{E}-02$	25

Table 3.6 Disease and disorders (IPA)

Name	p-value	Molecules
Genetics disorders	$7.50 \mathrm{E}-06-4.03 \mathrm{E}-02$	105
Neurological disease	$7.50 \mathrm{E}-06-3.16 \mathrm{E}-02$	226
Skeletal and muscular disorders	$7.50 \mathrm{E}-06-4.03 \mathrm{E}-02$	200
Cancer	$4.90 \mathrm{E}-05-4.03 \mathrm{E}-02$	235
Respiratory disease	$1.53 \mathrm{E}-04-2.13 \mathrm{E}-02$	51

Table3.7 Canonical pathways

Canonical pathway	Relevant genes	p-value	ratio
Glycolysis /Gluconeogenesis	ACYP1, AKR1A1, ALDH2, ALDOA, ALDOC, ENO2, GALK1,GAPDH, HK2, LDHA, PFKP, PGK1, PGM1, PGM5, PTGR1	$6.14 \mathrm{E}-06$	$16 / 144$
ERK/MAPK Signaling	ATF4, BAD, CREB5, EIF4EBP1, FOS, HSPB1, MAPK12, MYC, PLA2G4C, PPP1R14A, PPP1R3C, PPP2R3B, PRKCB, RAC3, RAPGEF1, RRAS	$8.67 \mathrm{E}-03$	$16 / 192$
Neuregulin Signaling	BAD, EGFR, ERBB3, MAPK12, MATK, MYC, NRG4, PRKCB, RRAS	$2.35 \mathrm{E}-02$	$9 / 100$
Noth Signaling	DLL3, HES1, HES7, NOTCH1, RBPJ, RFNG	$2.37 \mathrm{E}-02$	$6 / 43$
Circadian Rhythm Signaling	ATF, BHLHB2, CREB5, GRIN2C	$4.16 \mathrm{E}-02$	$4 / 32$

Glycolysis

Figure 3.6 Most glycolytic enzyme genes are down-regulated in the presence of NPAS3. Fold change in expression is shown in green next to each gene. The up-regulation of Lactate Dehydrogenase (LDH) by NPAS2 is included for comparison.

3.2.8 Histone and zinc finger genes and chromosomal domain

 regulation by NPAS3In order to detect whether some NPAS3 regulated genes lie in clusters on chromosomes, the microarray data were plotted according to chromosome order. Strikingly, seven histone genes were down-regulated by overexpression of NPAS3: HIST2H2BF, HIST2H4A, HIST2H3C, HIST2H2AA3, HIST2H2BE, HIST2H2AC, and HIST2H2AB. Closer inspection showed that many were present within a cluster on chromosome 1. This suggests that the transcriptional effects of NPAS3 might be indirect in some circumstances: mediated through the alteration of regional chromatin state rather than by direct promoter effects.

Figure 3.7 NPAS3 regulates the expression of a cluster of histone genes located on chromosome 1. A sliding window analysis of average expression change of genes ordered along each chromosome (Chromosome 1 to the extreme left, X then Y to the right. Red lines represent chromosome boundaries). Expression is displayed as a positive fold-change here but represents down-regulation of the genes in reality. The peak on chromosome 1 corresponds to a cluster of histone genes. This region is expanded above where fold-change down-regulation of individual genes is plotted. The down-regulated cluster consists of: HIST2H2BF, LOC653604, HIST2H4A, HIST2H3C, HIST2H2AA3, HIST2H2BE, HIST2H2AC, and HIST2H2AB.

3.3 Discussion

Previously, Erbel-Sieler and colleagues had reported that Npas3 was expressed in brain inhibitory interneurons (Erbel-Sieler et al., 2004). In our results, Npas3 was expressed in the inner site of dentate gyrus, where neurogenesis takes place. Strikingly, Npas3 is co-expressed with Doublecortin (Dcx) (not other neurogeneis markers) in the dentate gyrus (Figure 3.1 and 3.8), which supports an intermediate/maturation role in the neurogenic process (Kerjan et al., 2009). This finding identifies the specific stages of adult neurogenesis where Npas3 may exert its function.

Figure 3.8 Dcx is a neurogenetic marker during the process of converting progenitors into immature granule cell. (Adapted from Halbach, 2007)

The regulatory profiles of FLNPAS3 and \triangle NPAS3 are highly similar. Only one gene, OST-alpha, encoding an organic solute transporter, displayed down-regulation specific to FLNPAS3. These observations match those from a study of the related
bHLH transcription factor, ARNT, which indicated that dimerisation and transcriptional regulation functions were largely preserved in a C-terminal deletion form analogous to \triangle NPAS3 - lacking the second PAS and transactivation domains (Reisz-Porszasz et al., 1994).

Glycolysis is the metabolic pathway that converts glucose into pyruvate thus releasing energy to form ATP and NADH. Glucose is the primary source of energy for the brain. Hence, glucose metabolism, or glycolysis, influences biological process in the brain. Dysfunction of glysolysis results in an inability for the cell to respire and therefore cause the apoptosis of the cell at an early stage. Glycolysis is deranged in a variety of disorders of the nervous system, including Huntington's disease (Oliveira, 2010), Alzheimer's disease (Brinton, 2008; Gibson et al., 1998) and depression (Talisman and Marzabadi, 2008). Our microarray findings show that many genes in the glycolysis pathway are negatively regulated by NPAS3. This may provide the underlying mechanism for the abnormalities in brain structure and adult neurogenesis found in psychiatric illness.

The microarray data also revealed another role for NPAS3 in the regulation of hypoxic response. Brain hypoxia has been proposed as a risk factor for the development of schizophrenia (Handford, 1975; Prabakaran et al., 2004; Van Erp et al., 2002). Under hypoxia conditions, energy metabolism is changed (Webster, 2003). In our microarray data, NPAS3 was shown to be involved in the reduced expression of many hypoxia responsive genes (Table 3.2). I hypothese that although the concentration of oxygen in the brain may remain normal, the expression of hypoxia
responsive genes can still be increased in the brain of individuals with schizophrenia, who have a deletion of NPAS3 gene.

More details about the role of NPAS3 in glycolysis, circadian rhythm and hypoxia will be further discussed in discussion chapter (Chapter 7).

CHAPTER FOUR

4 Comparison of NPAS3 with SOX transcription factors

4.1 Introduction

The molecular processes regulating the proliferation of progenitor cells followed by their differentiation into functional neurons has been the subject of much study particularly in relation to adult neurogenesis. As discussed in the chapter 3, NPAS3 colocalised with Dcx (doublecortin) in the dentate gyrus of adult mouse brain. This supports the hypothesis that NPAS3 might exert its function during the later stages of neurogeneis. If this is true then the original interpretation of the knockout model that Npas3 deletion causes a failure in proliferation is incorrect, instead it is possible that NPAS3 deletion causes a loss of neurogenesis (through apoptosis) during the differentiation phase. The aim of this section is to identify the genes regulated by NPAS3 for clues about its role in neurogenesis. To place NPAS3 in the context of known regulators of neuronal differentiation, the regulatory profiles of NPAS3 and the SOX family of transcription factors were compared.

4.1.1 Sox family genes

4.1.1.1 The structure of Sox family gene

Sry box-containing (Sox) family of transcription factors bind sequence-specifically to the minor groove in DNA by means of a conserved high-mobility group (HMG) domain. Sox genes are defined as containing the HMG box of a gene, Sry. Sry (Sexdetermining Region Y) is a sex determining gene containing HMG-box on the Y chromosome in the placental mammals and marsupials (Wallis et al., 2008). The HMG box domain contains three alpha helices separated by loops (Thomas, 2001).

Proteins containing HMG domain are involved in the regulation of DNA-dependent processes, including transcription, replication and DNA repair through changing the conformation of chromatin (Thomas, 2001).

4.1.1.2 The classification of the Sox genes

Based on phylogenetic analysis of this HMG domain, Sox factors can be separated into several subgroups; A-H subgroup are represented in mouse and human (Bowles et al., 2000). Members of the Sox family of genes have diverse functions during the development and differentiation of multiple organ systems (Pevny and Placzek, 2005).

- SoxA: SRY
- SoxB1: SOX1, SOX2, SOX3
- SoxB2: SOX14, SOX21
- SoxC: SOX4, SOX11, SOX12
- SoxD: SOX5, SOX6, SOX13
- SoxE: SOX8, SOX9, SOX10
- SoxF: SOX7, SOX17, SOX18
- SoxG: SOX15
- SoxH: SOX30

4.1.1.3 The location of Sox genes

Several Sox genes are expressed in adult human brain (Table 4.1) and appear to regulate differentiation and cell fate in a cell type specific manner (Cahoy et al., 2008). Sox proteins are found to form stable transcription complexes with a wide range of transcription factor proteins, either to activate or repress transcription (Wilson and Koopman, 2002).

Table 4.1 Sox proteins and their locations in human brain

Sox proteins	Locations in brain	Partners
Sox2	Developing neurons, oligodendrocytes, astrocytes and high in adult astrocytes	
Sox5	Very high in developing oligodendrocytes and high in adult astrocytes	Sox6
Sox6	Very high in developing oligodendrocytes and high in adult astrocytes	CtBP1
Sox7	Adult neurons	SF1, HSP70
Sox9	High in astrocytes	Pax3, EGR2, Krox-20
Sox10	High in oligodendrocytes	Brn-1
Sox11	Developing neurons/oligodendrocytes/astrocytes	
Sox17	Adult neurons	Developing neurons/oligodendrocytes/astrocytes and high in adult astrocytes
Sox21		

4.1.1.4 The functions of different Sox groups.

SRY (A-group Sox factor) initiates male sex determination. Mutations in this gene cause XY female (Swyer syndrome) (Shahid et al., 2008), while translocation of this gene to the X chromosome results in XX male syndrome (Wallis et al., 2008). SRY proteins are reported to link to dopamine-related diseases, including schizophrenia and Parkinson's disease through control of the concentrations of dopamine (Dewing et al., 2006).

B-group Sox factors play an important role in the processing of progenitors in neurogenesis (Figure 4.1). Sox B1 members, Sox1, Sox2 and Sox3 are expressed in most neuronal progenitors to maintain the pluripotent identity of progenitor cells and thus prevent cells from entering a differentiated state (Bylund et al., 2003). Sox21, a member of SoxB2 family, inhibits the function of SoxB1 members and initiates a programme of differentiation in cells (Sandberg et al., 2005).

Sox C members, including Sox4, Sox11 and Sox12, possibly play a key role during the regulation of later aspects of neurogenesis (Figure 4.1). They are mainly expressed in neuronal cells which have been committed to neuronal differentiation (Cheung et al., 2000). Sox4 and Sox11 regulate the establishment of pan-neuronal protein expression by inducing precocious expression of neuronal markers in selfrenewing precursors (Bergsland et al., 2006).

SoxD and SoxE proteins regulate multiple stages of oligodendrocyte specification and differentiation (Stolt et al., 2006). Members of group E (Sox9 and Sox10) are required during specification and terminal differentiation in the oligodendrocyte precursors (Finzsch et al., 2008). Whereas, two D-group genes (Sox 5 and Sox6) negatively regulate $\operatorname{Sox} \mathrm{E}$ genes, and so maintain the pluripotent identity of oligodendrocyte progenitors (Stolt et al., 2006) (Figure 4.1).

Figure 4.1 SOX memebers are involved in the process of neurogenesis Modified from Kiefer (2007).

4.1.1.5 The SOXD and SOXE memebers

The SOXD group is composed of 3 members, SOX5, SOX6 and SOX13. They contain two highly conserved functional domains: the HMG box in the C-terminal and a group-specific coiled-coil in the N-terminal ends, which mediates the dimerization of the SOXD proteins with other (Lefebvre et al., 1998). Both SOX5 and SOX6 are highly expressed in spermatids, neurons, oligodendrocytes and chondrocyte (Connor et al., 1995; Denny et al., 1992; Lefebvre et al., 1998; Stolt et al., 2006). SOX5 and SOX6 are co-express with SOXE proteins in chondrocytes, oligodendrocytes and melanocytes. The SOXD proteins have no known transactivation or transrepression domain, but they are involved in transcriptional regulation. The human $S O X 5$ is expressed as long transcripts (6 kb) in the tissues except testis. SOX5 and SOX6 not only can facilitate SOX9 in activating many genes' expression (Han and Lefebvre, 2008), but also can block the transactivation ablility of SOX9 and SOX10 by competing with these proteins for binding to the promoters of different markers (Stolt et al., 2006).

Figure 4.2 The structure of Sox 5 and Sox 6 proteins

Mutations in SOX9 and SOX10 genes result in the neural defects and neurological symptoms of Campomelic Dysplasis, Waardenburg-Hirschsprung and PCWH syndromes. In schizophrenia patients, increased DNA methylation of SOX10 was linked to oligodendrocyte dysfunction (Schlierf et al., 2006). It was also reported that association evidence provisionally supports roles for SOX5 in metabolic sideeffects of antipsychotic treatment (Adkins et al., ; Adkins et al., 2010) and SOX10 in increased risk of psychiatric illness (Maeno et al., 2007).

SOXD and SOXE proteins regulate multiple stages of oligodendrocyte specification and differentiatiom. Members of group E (Sox9 and Sox10) are required during specification and terminal differentiation in the oligodendrocyte precursors. Whereas, two D-group genes (Sox 5 and Sox6) negatively regulate Sox E genes, and so maintain the pluripotent identity of oligodendrocyte progenitors. (Azim et al., 2009; Bergsland et al., 2006; Cheung and Briscoe, 2003; Hamada-Kanazawa et al., 2004; Haslinger et al., 2009; Kim et al., 2003; Kwan et al., 2008; Lefebvre, 2009; Prior and Walter, 1996). It was also reported that SOX5 is involved in the metabolic sideeffects of antipsychiotic treatment (Adkins et al., ; Adkins et al., 2010) and SOX10 is associated with the increased risk of psychiatric illness (Maeno et al., 2007). All of these evidences support the possibility that NPAS3 might be relevant to the network composed by SOXD, SOXE and SOX11.

4.2 Aims of this study

We investigated the regulatory profile of SOX5 and SOX6 (SOX D group), SOX9 and SOX10 (SOX E group), and SOX11 by Illumina microarray. SOX factors were inserted into pDEST40 plasmids and transiently transfected into triplicate HEK293 cells using Optimem/Lipofectamine 2000. After 24 hours, (6 hour incubation with transfection mix followed 24 hrs in standard culture condition), the cells were collected and used for the probe synthesis. Quadruplicate transient transfections of pDEST40 plasmid were used as controls. Sentrix ${ }^{\circledR}$ HumanRef-8 v2 chips (capable of examining expression of over 24,500 gene transcripts) were used to detect gene expression profiles.

4.3 Result

4.3.1 Genes regulated by SOX5 in HEK293 cells

Illumina microarray analysis was carried out to investigate the consequences of SOX5 overexpression in HEK293 cells. BRB analysis software was used to analyse the expression of the 22,177 well annotated RefSeq transcripts present in each array. Microarray data was also filtered using the SAM algorithm (Significance Analysis of Microarrays). 688 genes were found to discriminate between cells overexpressing SOX5 and controls. The estimated false discovery rate among the 688 genes was 0.09. In a univariate comparison test (applying a random variance model) between control and SOX5 microarray experiments, 44 genes showed $>=1.5$-fold upregulation by SOX5 and 359 genes were similarly down-regulated (Table 4.2)
Table 4.2: SOX5 top up-/down-regulated genes
 Gene symbol
VGF GADD45B
CHGA
RASD1
NEFH
ARC
IRX4
TUBB3
KISS1R
GALR2
CRABP2
ZFP36
CGA TNFRSF12A

TNFRSF14

 INHBE MYBPHLMGC61598 CDKN1C C19orf4 OLFM1 SQSTM1 LGALS1 PRSS8
SNRP70 $\begin{array}{ll}\text { Clone } & \text { GB acc } \\ 1940528 & \text { NM 003378 }\end{array}$ 1940528 NM_003378 5290215 NM_014365 2810270 NM_015675 4060209 NM_001275 6180692 NM_016084 6650520 NM_021076 5810687 NM_015193 7510195 NM_016358 2850156 NM_006086 3400767 NM_032551 NM_003857 NM 001878 NM 003407 NM 000735 6E9910 ${ }^{-}$WN

 \circ
5
8
8
\vdots 0
$\stackrel{3}{3}$
0
2
\vdots
 NM_003900
 NM_002773 \circ
0
0
8
0
8
8
i
 ILMN_3329 ILMN_7067 ILMN_3304 ILMN_26323 ILMN_20689 ILMN_2040 $\stackrel{\text { ̇ }}{\substack{\text { N }}}$ ILMN_22135
 ILMN_14210
ILMN_22033

phospholipase A2, group IVC (cytosolic, calcium-independent) (PLA2G4C),
mRNA.
cerebellin 1 precursor (CBLN1), mRNA. glucagon receptor (GCGR), mRNA
CD68 antigen (CD68), mRNA.
SRY (sex determining region Y)-box 8 (SOX8), mRNA.
G protein-coupled receptor 56 (GPR56), transcript variant 3, mRNA. heart and neural crest derivatives expressed 1 (HAND1), mRNA. Hypothetical protein MGC10334 (MGC10334), mRNA. apolipoprotein E (APOE), mRNA.
Hypothetical protein MGC14376 (MGC14376), transcript variant 1, mRNA. CCCTC-binding factor (zinc finger protein)-like (CTCFL), mRNA. dynein, axonemal, heavy polypeptide 17 (DNAH17), mRNA. tubulin, alpha 1 (testis specific) (TUBA1), mRNA.
BET1 homolog (S. cerevisiae) (BET1), mRNA.
PLA2G4C
CBLN1
GCGR
CD68
SOX8
GPR56
HAND1
MGC10334
APOE
IL1RN
HBA1
MGC14376
CTCFL
DNAH17
TUBA1
LAMA4
SALL2
BET1

 ILMN_29328 ILMN_28176 188 ILMN_30180 ILMN_23858 ILMN_29799 ILMN_4647 ILMN-3867 ILMN - 2789
 ILMN_18321 ILMN_16763 ILMN_20363
ILMN_4021 $\stackrel{\infty}{\circ}$

4.3.2 Genes regulated by SOX6 in HEK293 cells

The gene expression of SOX6 overexpressed and control HEK293 cells were identified by Illumina microarray and further used BRB analysis software to statistically analyse gene expression among the 22,177 well annotated RefSeq transcripts present in each array. 2085 genes were identified using SAM, the estimated false discovery rate among the 2085 genes was 0.01 . 46 genes regulated by SOX6 with a fold change $>= \pm 1.5$ are listed here. (Table 4.3)
Table 4.3: SOX6 top up-/down-regulated genes
Description
VGF nerve growth factor inducible (VGF), mRNA.
growth arrest and DNA-damage-inducible, beta (GADD45B), mRNA.
heat shock 22kDa protein 8 (HSPB8), mRNA.
RAS, dexamethasone-induced 1 (RASD1), mRNA.
similar to ankyrin-repeat protein Nrarp (MGC61598), mRNA.
activity-regulated cytoskeleton-associated protein (ARC), mRNA.
neurofilament, heavy polypeptide 200kDa (NEFH), mRNA.
iroquois homeobox protein 4 (IRX4), mRNA.
olfactomedin 1 (OLFM1), transcript variant 1, mRNA.
tumor necrosis factor receptor superfamily, member 14 (herpesvirus entry mediator)
(TNFRSF14), mRNA.
interleukin 11 (IL11), mRNA.
apolipoprotein E (APOE), mRNA.
G protein-coupled receptor 56 (GPR56), transcript variant 3, mRNA.
Glycoprotein hormones, alpha polypeptide (CGA), mRNA.
cellular retinoic acid binding protein 2 (CRABP2), mRNA.
integrin beta 1 binding protein 3 (ITGB1BP3), transcript variant 1, mRNA.
Homo sapiens cytokine receptor-like factor 1 (CRLF1), mRNA.
Homo sapiens v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS),
mRNA.
Homo sapiens myosin binding protein H-like (MYBPHL), mRNA.
kallikrein 4 (prostase, enamel matrix, prostate) (KLK4), mRNA.
KISS1 receptor (KISS1R), mRNA.
chromosome 19 open reading frame 4 (C19orf4), mRNA.
tubulin, beta 3 (TUBB3), mRNA.
chromogranin A (parathyroid secretory protein 1) (CHGA), mRNA.
SRY (sex determining region Y)-box 8 (SOX8), mRNA.
tumor necrosis factor receptor superfamily, member 12A (TNFRSF12A), mRNA.
colony stimulating factor 1 receptor，formerly McDonough feline sarcoma viral（v－ fms ）oncogene homolog（CSF1R），mRNA． CD68 antigen（CD68），mRNA glucagon receptor（GCGR），mRNA． Galanin receptor 2 （GALR2），mRNA． collectin sub－family member 11 （COLEC11），transcript variant 1，mRNA． FBJ murine osteosarcoma viral oncogene homolog B（FOSB），mRNA． lectin，galactoside－binding，soluble， 1 （galectin 1）（LGALS1），mRNA．
 cyclin－depence
zinc finger protein 36，C3H type，homolog（mouse）（ZFP36），mRNA． pim－3 oncogene（PIM3），mRNA．
chromosome 19 open reading frame 6 （C19orf6），transcript variant 1，mRNA． sal－like 2 （Drosophila）（SALL2），mRNA．
transaldolase 1 （TALDO1），mRNA．
solute carrier family 6 （neurotransmitter transporter，glycine），member 9 （SLC6A9）， transcript variant 1，mRNA． Rap guanine nucleotide exchange factor（GEF） 3 （RAPGEF3），mRNA． cell division cycle 2－like 2 （PITSLRE proteins）（CDC2L2），transcript variant 3，

[^0]CSF1R CSF1R
CD68
GCGR COLEC11 FOSB LGALS1 HBAI CDKNIC CLIC3 $\stackrel{\infty}{n}$
 C19orf6 SALL2 TALDO1 dVYGA〇I SLC6A9 RAPGEF3 CDC2L2
NKRF $\begin{array}{lrl}\text { ILMN＿24980 } & 5050088 & \text { NM＿005211 } \\ \text { ILMN＿5188 } & 5090044 & \text { NM＿001251 } \\ \text { ILMN＿17452 } & 6860041 & \text { NM＿000160 } \\ \text { ILMN＿4188 } & 160739 & \text { NM＿003857 } \\ \text { ILMN＿6548 } & 6060431 & \text { NM＿024027 } \\ \text { ILMN＿13603 } & 6040086 & \text { NM＿006732 } \\ \text { ILMN＿138248 } & 160377 & \text { NM＿002305 } \\ \text { ILMN＿2789 } & 360554 & \text { NM＿000558 } \\ \text { ILMN＿20689 } & 3610601 & \text { NM＿000076 } \\ \text { ILMN＿20406 } & 6510202 & \text { NM＿004669 } \\ \text { ILMN＿1557 } & 6900204 & \text { NM＿003407 } \\ \text { ILMN＿19535 } & 4250735 & \text { NM＿001001852 } \\ \text { ILMN＿12941 } & 2900128 & \text { NM＿001033026 } \\ \text { ILMN＿13166 } & 1850132 & \text { NM＿005407 } \\ \text { ILMN＿29428 } & 4590242 & \text { NM＿006755 }\end{array}$ NM＿006755 NM 004257 NM＿006934 NM＿006105 NM＿033528
NM＿017544
 7380059
5550735 8 8セ66て－NWTI

ILMN＿30176

ILMN＿8399

 ILMN＿24486 ILMN＿21258 ILMN 20013
4.3.3 Gene regulated by SOX9 in HEK293 cells

To investigate the gene expression of SOX10 overexpressed and control HEK293 cells, Illumina microarray analysis was carried out. BRB analysis software was used to analyse the expression of the 22,177 well annotated RefSeq transcripts present in each array. Microarray data was also filtered using the SAM algorithm (Significance Analysis of Microarrays). 311 genes were identified using the software SAM, the estimated false discovery rate among the 311 genes was 0.001 . 89 genes regulated by SOX9 with a fold change $>= \pm 1.5$ are listed here.
Table 4.4: SOX9 top up-/down-regulated genes
 Description
keratin associated protein 19-5 (KRTAP 19-5), mRNA.
secretogranin II (chromogranin C) (SCG2), mRNA.
chromosome 1 open reading frame 162 (Clorf1 62), mRNA.
oviductal glycoprotein 1, 120kDa (mucin 9, oviductin) (OVGP1), mRNA.
ectonucleotide pyrophosphatase/phosphodiesterase 2 (autotaxin) (ENPP2),
mRNA.
small nuclear ribonucleoprotein 70kDa polypeptide (RNP antigen)
(SNRP70), transcript variant 2, mRNA.
CDC-like kinase 1 (CLK1), transcript variant 1, mRNA.
suprabasin (SBSN), mRNA.
phospholipase A2, group IVC (cytosolic, calcium-independent)
(PLA2G4C), mRNA.
interleukin 17F (IL17F), mRNA.
WD repeat domain 78 (WDR78), transcript variant 2, mRNA.
zinc finger protein 326 (ZNF326), transcript variant 3, mRNA.
histone 1, H4h (HIST1H4H), mRNA.
cadherin, EGF LAG seven-pass G-type receptor 3 (flamingo homolog,
Drosophila) (CELSR3), mRNA.
galanin receptor 2 (GALR2), mRNA.
ADP-ribosylation factor-like 9 (ARL9), mRNA.
solute carrier family 7 (cationic amino acid transporter, y+ system),
member 9 (SLC7A9), mRNA.
thymocyte nuclear protein 1 (THYN1), transcript variant 1, mRNA.
histone 1, H2bd (HIST1H2BD), transcript variant 2, mRNA.
dynein, light chain, roadblock-type 2 (DYNLRB2), mRNA.
Ropporin, rhophilin associated protein 1 (ROPN), mRNA.
hypothetical protein DKFZp666G057 (DKFZp666G057), mRNA.
synaptotagmin IV (SYT4), mRNA.
ADP-ribosylation factor-like 4 (ARL4), transcript variant 1, mRNA.

CDC-like kinase 1 (CLK1), transcript variant 2, mRNA. transferrin (TF), mRNA. Ras association (RalGDS/AF-6) domain family 1 (RASSF1), transcript variant C, mRNA. Tripartite motif-containing 51 (TRIM51), mRNA. PLAC8-like 1 (PLAC8L1), mRNA. ras homolog gene family, member B (RHOB), mRNA. biogenesis of lysosome-related organelles complex-1, subunit 2 (BLOC1S2), transcript variant 2, mRNA. keratin associated protein 19-4 (KRTAP19-4), mRNA. cytochrome P450, family 27, subfamily B, polypeptide 1 (CYP27B1), nuclear gene encoding mitochondrial protein, mRNA. KIPV467 (UNQ467), mRNA. zinc finger protein 34 (KOX 32) (ZNF34), mRNA. galactose-3-O-sulfotransferase 1 (GAL3ST1), mRNA. chromosome 10 open reading frame 79 (C10orf79), mRNA. zinc finger protein 425 (ZNF425), mRNA. chromogranin B (secretogranin 1) (CHGB), mRNA. RNA binding motif protein 4 (RBM4), mRNA. secretogranin III (SCG3), mRNA. Ras association (RalGDS/AF-6) domain family 1 (RASSF1), transcript variant $\mathrm{A}, \mathrm{mRNA}$. heterogeneous nuclear ribonucleoprotein M (HNRPM), transcript variant mRNA. interferon stimulated exonuclease gene 20 kDa (ISG20), mRNA. tetratricopeptide repeat domain 25 (TTC25), mRNA. hypothetical protein FLJ39575 (FLJ39575), mRNA. SERTA domain containing 1 (SERTAD1), mRNA. mitochondrial ribosomal protein S12 (MRPS12), nuclear gene encoding mitochondrial protein, transcript variant 1, mRNA.	

transmembrane protein 31 (TMEM31), mRNA.
DEAD (Asp-Glu-Ala-Asp) box polypeptide 39 (DDX39), transcript variant
2, mRNA.
caspase recruitment domain family, member 9 (CARD9), mRNA. Cadherin 10, type 2 (T2-cadherin) (CDH10), mRNA.
hypothetical protein LOC129530 (LOC129530), mRNA. chaperonin containing TCP1, subunit 6B (zeta 2) (CCT6B), chromosome 22 open reading frame 23 (C22orf23), mRNA. chemokine (C-X-C motif) receptor 4 (CXCR4), transcript variant 2, mRNA.
chromosome 14 open reading frame 45 (C14orf45), mRNA. non-metastatic cells 1, protein (NM23A) expressed in (NME1), transcript variant $1, \mathrm{mRNA}$.
enolase 3 (beta, muscle) (ENO3), transcript variant 1, mRNA.
G protein-coupled receptor 64 (GPR64), mRNA.
solute carrier organic anion transporter family, member 2A1 (SLCO2A1), mRNA.
CCAAT/enhancer binding protein (C/EBP), beta (CEBPB), mRNA. interferon induced transmembrane protein 1 (9-27) (IFITM1), mRNA. UL16 binding protein 1 (ULBP1), mRNA.
Cadherin 3, type 1, P-cadherin (placental) (CDH3), mRNA. hepatoma-derived growth factor-related protein 2 (HDGF2), transcript variant $1, \mathrm{mRNA}$.
v-myc myelocytomatosis viral oncogene homolog (avian) (MYC), mRNA. BTB (POZ) domain containing 11 (BTBD11), transcript variant 1, mRNA. leucine zipper, putative tumor suppressor 1 (LZTS1), mRNA.
methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase (MTHFD2), nuclear gene encoding mitochondrial protein, mRNA. neurofilament, light polypeptide 68 kDa (NEFL), mRNA. Amylase, alpha 1B; salivary (AMY1B), mRNA. GDNF family receptor alpha 2 (GFRA2), mRNA.

ILMN_18732	2640497	NM_182541	TMEM31
ILMN_23076	1110437	NM_138998	DDX39
ILMN_22365	5870093	NM_052813	CARD9
ILMN__16021	1770538	NM_006727	CDH10
ILMN_-13703	5360520	NM_174898	LOC129530
ILMN_1	2680161	NM_006584	CCT6B
ILMN_11269	130441	NM_032561	C22orf23
ILMN_9700			
ILMN_26085	6650142	NM_003467	CXCR4
ILM__24020	6370307	NM_025057	C14orf45
ILMN_2			
ILMN_22180	360114	NM_198175	NME1
ILMN_16651	2030746	NM_001976	ENO3
ILMN_26937	7650433	NM_005756	GPR64
ILMN_14229	540128	NM_005630	SLCO2A1
ILMN_4674	3190400	NM_005194	CEBPB
ILMN_24466	6220692	NM_003641	IFITM1
ILMN_1673	3290195	NM_025218	ULBP1
ILMN_12740	670189	NM_001793	CDH3
ILMN_8472	4180195	NM_001001520	HDGF2
ILMN_5029	5810164	NM_000071	CBS
ILMN_28130	7320056	NM_002467	MYC
ILMN_506	3450280	NM_152322	BTBD11
ILMN_3351	1500110	NM_021020	LZTS1
ILMN_23782	6770095	NM_006636	MTHFD2
ILMN_22054	4830551	NM_006158	NEFL
ILMN_29852	6940725	NM_001008218	AMY1B
ILMN_24176	4390500	NM_001495	GFRA2

stanniocalcin 1 (STC1), mRNA.
insulin-like growth factor binding protein 5 (IGFBP5), mRNA.
Sidekick homolog 2 (chicken) (SDK2), mRNA.
phosphatase and actin regulator 1 (PHACTR1), mRNA.
argininosuccinate synthetase (ASS), transcript variant 1, mRNA.
integrin, alpha 8 (ITGA8), mRNA.
basic helix-loop-helix domain containing, class B, 2 (BHLHB2), mRNA.
DNA-damage-inducible transcript 4 (DDIT4), mRNA.
sal-like 2 (Drosophila) (SALL2), mRNA.
solute carrier family 6 (neurotransmitter transporter, glycine), member 9
(SLC6A9), transcript variant 1, mRNA.
ChaC, cation transport regulator-like 1 (E. coli) (CHAC1), mRNA.
TSC22 domain family, member 3 (TSC22D3), transcript variant 2, mRNA.
STC1
IGFBP5
SDK2
PHACTR1
ASS
ITGA8
BHLHB2
DDIT4
SALL2

SLC6A9
CHAC1
TSC22D3

ILMN_16225	2230215	NM_003155
ILMN_3066	1050070	NM_000599
ILMN_26428	5340685	NM_019064
ILMN_17425	3800095	NM_030948
ILMN_18789	5260026	NM_000050
ILMN_19523	5360075	NM_003638
ILMN_24095	5810392	NM_003670
ILMN_13176	1190193	NM_019058
ILMN_13166	1850132	NM_005407
ILMN_8399	1450703	NM_006934
ILMN_2489	650446	NM_024111
ILMN 9893	1300743	NM_004089

4.3.4 Gene regulated by SOX10 in HEK293 cells

Illumina microarray analysis and BRB analysis software were used to investigate the gene expression of SOX10 overexpressed and control HEK293 cells. Microarray data was also filtered using the SAM algorithm (Significance Analysis of Microarrays). There are 111 genes significant by SAM, the estimated false discovery rate among the 111 genes is 0.01 . 37 SOX10 regulated genes with a fold change $>= \pm 1.5$ are listed here.
Table 4.5: SOX10 top up-/down-regulated genes品
方
픙
In
Description
keratin associated protein 19-5 (KRTAP19-5), mRNA.
ectonucleotide pyrophosphatase/phosphodiesterase 2 (autotaxin) (ENPP2), mRNA.
keratin associated protein 19-4 (KRTAP19-4), mRNA.
chromosome 1 open reading frame 162 (C1orf162), mRNA.
CDC-like kinase 1 (CLK1), transcript variant 1, mRNA.
ropporin, rhophilin associated protein 1 (ROPN1), mRNA.
myelin-associated oligodendrocyte basic protein (MOBP), transcript variant 2,
mRNA.
chemokine (C-X-C motif) receptor 4 (CXCR4), transcript variant 2, mRNA.
oviductal glycoprotein 1, 120kDa (mucin 9, oviductin) (OVGP1), mRNA.
Secretogranin II (chromogranin C) (SCG2), mRNA.
suprabasin (SBSN), mRNA.
thymocyte nuclear protein 1 (THYN1), transcript variant 1, mRNA.
Transferring (TF), mRNA.
hypothetical protein DKFZp666G057 (DKFZp666G057), mRNA.
urotensin 2 (UTS2), transcript variant 2, mRNA.
phospholipase A2, group IVC (cytosolic, calcium-independent) (PLA2G4C),
mRNA.
interleukin 17F (IL17F), mRNA.
caspase recruitment domain family, member 9 (CARD9), mRNA.
G protein-coupled receptor 64 (GPR64), mRNA.
synuclein, alpha interacting protein (synphilin) (SNCAIP), mRNA.
leucine rich repeat (in FLII) interacting protein 1 (LRRFIP1), mRNA.
DNA-damage-inducible transcript 4 (DDIT4), mRNA.
sestrin 2 (SESN2), mRNA.
family with sequence similarity 63, member A (FAM63A), mRNA.
PCTAIRE protein kinase 3 (PCTK3), transcript variant 1, mRNA.
insulin induced gene 1 (INSIG1), transcript variant 2, mRNA.

CBS
ITGA8
ASS
VAMP8
ZNF223
LMOD3
IGFBP5
PCK2
SLC6A9
CHAC1
TSC22D3

ILMN_5029	5810164	NM_000071
ILMN_19523	5360075	NM_003638
ILMN_18789	5260026	NM_000050
ILMN_26790	5270433	NM_003761
ILMN_9587	4760767	NM_013361
ILMN_3851	4250609	NM_198271
ILMN_3066	1050070	NM_000599
ILMN_2603	5700110	NM_004563
ILMN_8399	1450703	NM_006934
ILMN_2489	650446	NM_024111
ILMN_9893	1300743	NM_004089

4.3.5 Shared targets of NPAS3 and SOX factors

In order to identify the overlap of transcriptional targets between the NPAS3 and SOX factors, the up-regulated genes of NPAS3 were compared with those from SOX5, SOX6, SOX9 and SOX10. Two observations were made from these data. Firstly, the related pairs of SOX genes showed a greater overlap with each other than with NPAS3, confirming functional conservation and established redundancy. Secondly, SOX5 and SOX6 have a greater numerical overlap with NPAS3 than SOX9/SOX10 but a similar proportion. Genes regulated by SOX5/6 and by NPAS3 included VGF, NEFH, MGC14376, C19orf30, DNAH17, CHGA, HIST1H4H, GADD45B, DPH2, and GALR2. Genes regulated by SOX9/10 and by NPAS3 included PLA2G4C, Clorf162, GALR2, CARD9, OVGP1, SBSN, CELSR3, and CLK1.

The most significantly up-regulated gene by NPAS3, SOX5 and SOX6 was $V G F$ encoding a precursor for a number of processed and secreted signalling peptides such as TLQP-21. Vgf studies in the mouse have produced compelling evidence that it mediates the connection between physical activity, increased adult neurogenesis and attenuation of depression-like phenotypes. VGF peptides have also been associated with the regulation of metabolic rate matching the metabolic aspect of NPAS3's function. VGF and other neuropeptides such as secretogranin II and NPY are regulated in the hippocampus when voluntary exercise was employed as a mood stimulator. It was also reported that VGF peptide can produce a robust antidepressant response in a dose dependent manner in FST and tail suspension tests (Hunsberger et al., 2007). VGF was reported as an important factor in the central nervous system in
a peptidomic analysis on normal cerebrospinal fluid (CSF) (Yuan and Desiderio, 2005).

The highly conserved VGF gene encodes a 617 amino acids precursor polypeptide, which is then processed into more than 10 different mature peptides by neuroendocrine-specific prohormone convertases PC1/3 and PC2 (Possenti et al., 1999; Trani et al., 2002). The most prominent mature VGF peptides are 20 (NAPP129) and 10 kDa (TLQP-62). VGF is expressed exclusively in neurons of several areas, such as the olfactory system, cerebral cortex, hypothalamus, hippocampus, the adrenal medulla and motor neurons of the spinal cord. $V G F$ is a highly relevant target gene as it shares a number of key features with NPAS3; regulation by circadian rhythm (Cirelli and Tononi, 2000), involvement in metabolic control (Altshuler and Hirschhorn, 1999; Bartolomucci et al., 2006; Bartolomucci et al., 2007; Jethwa and Ebling, 2008; Jethwa et al., 2007; Salton et al., 2000), contribution to activity-related adult neurogenesis (Thakker-Varia et al., 2007), and association with neurological diseases (Altar et al., 2009; Pasinetti et al., 2006; Ruetschi et al., 2005; Selle et al., 2005) including depression (Hunsberger et al., 2007; Malberg and Monteggia, 2008; Thakker-Varia and Alder, 2009; Thakker-Varia et al., 2007) and psychosis (Huang et al., 2006).

We also observed a substantial overlap in target genes down-regulated both by NPAS3 and SOX11 (data is also included on SOX11. the background to SOX11 is presented in Chapter 6). The most significant down-regulation with NPAS3 and SOx11 was ANKRD37, STC1, and DDIT4 (Figure 4.3).

Figure 4.3 Venn diagrams illustrating the overlap between up- (red) and down- (green) regulated targets of NPAS3 and the target genes regulated by the SOX family of transcription factors. The accompanying gene lists detail selected shared targets of the SOX factors and NPAS3. No substantial overlap between SOX11 up-regulated genes and NPAS3 up-regulated genes was observed.

4.3.6 Testing transcriptional control at the VGF promoter

The $V G F$ gene promoter contains several specific regions which are thought to be critical for the neuronal expression of VGF. These include a CREB binding site (Bonni et al., 1995), which is critical for BDNF-induced VGF expression, a CCAAT box, a $G(S) G$ element and an E-box near the transcription start sites (D'Arcangelo et al., 1996). As it is known that basic helix-loop-helix domain transcription factors (such as NPAS3) bind specifically to E-box and VGF is a top upregulated gene of NPAS3 in our microarray data set, we can hypothesise that NPAS3 might activate the promoter of VGF.

A human VGF promoter fragment, containing promoter, exon1, intron1 and part of exon2, was cloned into a pGL3 basic vector (Figure 4.4). The activity of the VGF promoter was analysed using a dual luciferase assay in FLNPAS3/DNPAS3 overexpression and control cells. The values of VGF promoter (Firefly luciferase) in each sample represent the percentage of the relative activity of the empty pRL-TK vector (Renilla luciferase). Data were analysed by one way ANOVA. In HEK293 cells, the luciferase activities of VGF promoter are significantly different from each other in the NPAS3/DNPAS3 over-expressed cells and control vector HEK293 cells (Figure 4.5 A). While, in SHSY-5Y cells, luciferase expression in the FLNPAS3 over-expressed cells was significantly higher than \triangle NPAS3 and control vector SH SY5Y cells (Figure 4.5 B).

5' Human VGF promoter sequence

Figure 4.4 The structure of human VGF promoter fragment.
This fragment is a 2029bp sequence and includes 5' untranslated part, exon1, intron1 and part of exon2. E-box, which is specially recognised by NPAS3, is within the 5^{\prime} untranslated region. The translational start of $V G F$ gene is localised in exon2.

Figure 4.5 Luciferase expressions in the NPAS3 / $\triangle \mathrm{NPAS3}$ /control vector over-expressed cells. A: Luciferase expression in the NPAS3 / $\triangle \mathrm{NPAS3}$ /control vector over-expressed HEK293 cells.
B: Luciferase expression in the NPAS3 / $\mathrm{N} P A S 3 /$ control vector over-expressed SH-SY5Y cells. The values represent the percentage of the relative activities to the pRL-TK vector (mean \pm SEM).
Asterisks mean significantly different VGF promoter activities at $\mathrm{P}<0.05$ (*) or $\mathrm{P}<0.01$ (**) (Analysed by RM-ANOVA).

4.4 Discussion

This study strongly suggests that NPAS3 participates in a neurodevelopmental regulatory network overlapping and interacting with the SOX transcription factor family. We propose that the overlap between NPAS3 and SOX target genes may reflect the intermediate position of NPAS3 in the neurogenic transcriptional programme dictating progression from neural progenitor, through fate-committed cell, to differentiated neuron.

4.4.1 Genes with overlapping regulatory functions

SCG2 protein is strongly up-regulated in our studies by SOX9, SOX10 and SOX11. SCG2 (Secretogranin II/Chromogranin-C) is a cell surface sialoglycoprotein. Among many functions it has been shown that SCG2 promotes the differentiation of neuroblastoma cells into neurons (Li et al., 2008). Similarly, secretoneurin II, a brain peptide derived from endoproteolytic processing of SCG2, can promote the outgrowth of immature cerebellar granule cells (Shyu et al., 2008). It has been reported that Schizophrenia in humans is associated with upregulation of human SCG2 mRNA in dorsolateral prefrontal cortex (Hakak et al., 2001).

Importantly, in a published proteomic study of cerebrospinal fluid, VGF and the related SCG2 protein were identified as the two biomarkers most able to discriminate between depression and healthy control samples, whereas VGF alone was critical in distinguishing schizophrenia from control samples (Huang et al., 2006). Their regulation by the NPAS3/SOX developmental cascade suggests a unifying
hypothesis: these two secreted biomarkers report a neurogenic pathology associated with psychiatric disorders.
$G A D D 45 B$, another highly up-regulated target by NPAS3, SOX5 and SOX6, plays a similar role in adult activity-dependent neurogenesis by stimulating BDNF/FGF signalling and promoter demethylation (Ma et al., 2009b). GALR2, encoding a galanin receptor, was the only gene to be up-regulated by all 5 transcription factors. Galanin and its receptors have established roles in neurogenesis, mood, depression and anxiety (Karlsson and Holmes, 2006; Kuteeva et al., 2008; Lu et al., 2008).

The neurofilament heavy polypeptide (NEFH) is one of the major components of neuronal cytoskeleton neurofilaments (Lee and Cleveland, 1996). NEFH was found to mediate the interaction between neurofilaments and brain mitochondria (Wagner et al., 2003). Absent or diminished NEFH expression has been reported in human automic neuronal tumours or central neurocytomas, human prostate cancer, clear-cell epithelioid tumor and small lung carcinoma. (Bobos et al., 2006; Mena et al., 2001; Schleicher et al., 1997; Segal et al., 1994; You et al., 2005). Variants of NEFH are associated with the development of amyotrophic lateral sclerosis, which is a neurodegenerative disorder primarily affecting motor neurons (Figlewicz et al., 1994).

4.4.2 Evidence that SOX genes are involved in neurogenesis

Sox11 was found prominently expressed in the neurogenic area of adult brain where it is strictly expressed with Dcx -expressing precursors and immature neurons, but not with Sox2-expressing non-committed precursors and immature cells (Haslinger et al., 2009). As Npas3 is also found colocalised with Dcx in the adult mouse hippocampus and they are both transcriptional regulators, we hypothesise that NPAS3 and SOX11 are both involved in the regulation of specific genes at the stage of the immature neuron. In particular, it will be important to further characterise the roles of NPAS3 and SOX target genes in embryonic and adult neurogenesisprocesses that seem to correlate with the risk of depression and psychosis (Kempermann et al., 2008).

4.4.3 Npas3 down-regulates SOX11, why do these genes both act as down-regulators of several genes?

A surprising observation was that many genes were down-regulated both by NPAS3 and by SOX11. This is puzzling because SOX11 is down-regulated by NPAS3 (Figure 3.4 and Figure 3.5). Although SOX11 and NPAS3 are very powerful transcription factors, the number of genes directly regulated by them is very limited. It is very possible that a small change in the activity of particular genes causes a similar change nearby, which then causes another similar change and so on in liner sequence. Thus, these genes may not be directly regulated by NPAS3 and SOX11, but may show altered expression due to the interactions with other genes in the pathway.

There is also another possibility that SOX11 is not directly regulated by NPAS3, but is regulated by downstream genes.

CHAPTER FIVE

5 An interaction between NPAS3 and the circadian rhythm

5.1 Introduction

NPAS2 (Neuronal PAS domain protein 2) is another member of the bHLH-PAS superfamily of transcription factors, which is highly expressed in the CNS. NPAS2 contains a basic-helix-loop-helix structure motif and PAS domain, like NPAS3. It is one of the components of the circadian clock oscillator. The other components include the CRY proteins, CLOCK, BMAL1, BMAL2, CSNK1D, CSNK1E, TIMELESS and the PER proteins. NPAS2 polypeptides are highly similar in primary amino acid sequence to CLOCK and have been shown to behave similarly in biochemical and cell based experiments (Hogenesch et al., 1998; McNamara et al., 2001; Reick et al., 2001; Rutter et al., 2001). In mammals, a heterodimer composed of CLOCK and BMAL1 is the positive transcription factor in the negative feedback cycle of the regulation of circadian rhythm. This regulation is inhibited in a feedback loop by CRY and PER. NPAS2 has also been implicated in the redox-sensitive control of gene transcription (Rutter et al., 2002; Rutter et al., 2001). In particular, NPAS2 was shown to up-regulate the expression of one unit of lactate dehydrogenase (LDH), an enzyme that inter-converts lactate and pyruvate generated by glycolysis (Rutter et al., 2001). NPAS2 was shown to be associated with seasonal affective disorder (SAD), which describes depression made worse by the absence of sunlight during winter months (Partonen et al., 2007).

NPAS3 has similar function domains to NPAS2, and we can speculate that NPAS3 might also participate in circadian signalling. Furthermore, NPAS3 (like all basic
helix-loop-helix transcription factors) functions as a heterodimer with partners such as the BMAL (ARNTL) proteins. BMAL1 is also involved in circadian time-keeping. Additionally, altered circadian rhythmicity, producing symptoms of sleep disturbance or metabolic dysfunction, is found in individuals diagnosed with depression and other mood disorders, although it is probably unrelated to the speed of 'cycling' between the manic and depressed states (Kato, 2007; Lamont et al., 2007). Based on this background information, the question was addressed whether constitutive NPAS3 overexpression actively alters circadian rhythm in these cells or is, alternatively, passively influenced by it.

5.2 Aims of this study

To test the hypothesis that NPAS3 is involved in the circadian rhythm, Illumina microarray analysis was carried out to investigate the gene expression changes in circadian induced HEK293 cells after over-expressing FLNPAS3 or \triangle NPAS3.

5.3 Results

5.3.1 Confirmation of in vitro circadian induction by serum shock approach

In order to induce the circadian rhythmicity in an in vitro system, HEK293 cells were treated using a serum shock approach. HEK293 cells were cultured close to confluence and at the zero hour time-point, the cells were shifted into a serum-rich medium to induce circadian cycling (Balsalobre et al., 1998; Huang et al., 2009). At +2 hours, cells were washed with DMEM and then incubated with the same for the remaining period of the experiment. Cells were collected at different time points (0 hr , $4 \mathrm{hr}, 8 \mathrm{hr}, 12 \mathrm{hr}, 16 \mathrm{hr}, 20 \mathrm{hr}, 24 \mathrm{hr} . \ldots . . .72 \mathrm{hr}$). Expression of period (PER) regulator genes was analysed at different time points over 72 hrs using RT-PCR and agarose gel electrophoresis (Fig 5.1). DNA bands were scaned and intensity values were normalised to control genes. PER1, PER2 and PER3 show expression changes with a 18-28 h cycle. Per1 and Per2 are out of phase with each other as previously described. This confirms the success of my methodology for circadian induction in the HEK293 cells.

Figure 5.1 RT-PCR analysis of a serum shock induces circadian gene expression in HEK293 cells.
HEK293 cells were grown close to confluence and shifted to a serum-rich medium, as described in the methods. The levels of the cDNA indicated at the left side of the figures were determined at different at different times (top of the figure) after serum shock. 18sRNA was used as a reference gene which indicated the total cDNA of different samples.

5.3.2 NPAS3-specific changes in gene expression in HEK293 cells after

 circadian inductionThe purpose of this experiment was to see the effect of NPAS3 on gene expression at +12 and +24 hours after circadian induction in HEK293 cells using Illumina microarray. (Appendix Table S3-4) The fragments of FLNPAS3 and \triangle NPAS3 open reading frames were transferred into a similar TET-inducible expression plasmid and transfected into HEK293 [T-REx-293] cells (Invitrogen). At the zero hour time-point, cells were shifted into a serum-rich medium plus tetracycline in order to induce both circadian cycling and NPAS3 overexpression (Balsalobre et al., 1998; Huang et al., 2009). Parental HEK293 [T-REx-293] cells without NPAS3 constructs were treated in the same way to act as negative controls. Ideally, unactivated (tetracycline) FLNPAS3/DNPAS3 cells would have bee used as controls but these cell lines showed a low level of leaky transcription in the absence of tetracycline. At +2 hours, cells were washed with DMEM and then incubated with the same plus tetracycline for the remaining period of the experiment. Cell samples from the three experimental groups were collected at +12 hrs and +24 hrs respectively. For all circadian cell culture experiments with FLNPAS3/DNPAS3/parental negative control cell lines, duplicate biological samples were assessed. Microarray probes synthesised from RNA extraction products were quantified using an Agilent Bioanalyzer to ensure high quality probes of equal quantity between experiments. Sentrix ${ }^{\circledR}$ HumanRef- 8 v2 chips (capable of examining expression of over 24,500 gene transcripts) were used to detect gene expression profiles.

As a first test of the data, changes in gene expression in control cells were studied (Appendix table S1). Many genes were showed higher expression at +24 hrs compared to +12 hrs, including FOS, FOSB, EGR1, EGR2, EGR3 and PER2, all involved in transducing light entrainment during the dark phase of the circadian rhythm. A search for significant gene functions in the top 100 circadian genes with lower expression at +24 hrs compared to +12 hrs identified a group of 10 genes involved in the regulation of cell cycle progression (GO:0007049, $\mathrm{p}=1.31546 \times 10^{-6}$). These were FBXO5, SPC25, CDKN1B, RAD21, CKAP2, MAD2L1, GAS1, ZWILCH, $C D C 2$ and $R B B P 4$. Cell cycle genes were also reported to be deregulated in a cell model of NPAS2 dysfunction (Hoffman et al., 2008).

5.3.3 The regulatory activities of FL/ Δ NPAS3 have been changed by circadian environment

In this culture system FL/DNPAS3 activity was strongly modified by circadian cycling in two principal ways. Firstly, NPAS3 activity on target gene expression was almost universally inhibitory at +12 hours. Secondly, NPAS3 down-regulated target genes differed considerably between +12 hours and +24 hours (Appendix table S3-4). The detail of modification by circadian cycling on FL/ N NPAS3 activity will be further investigated in the later part of this chapter.

5.3.4 Many standard culture down-regulated genes were also downregulated in the circadian experiments: a link to hypoxia signalling

Only seven genes up-regulated in the standard culture conditions NPAS3 overexpression study were also up-regulated in the circadian experiment: CDKN1A, CENPF, GALR2, HIST1H1C, HIST1H2BD, PCDH7, and SPHK2. By contrast, a larger overlap existed between standard and circadian down-regulated genes. While the majority of the overlapping genes were specific to +12 hours, 21 were downregulated by FLNPAS3 at both time-points. The over-represented ontologies were identified by a GeneCodis2 search. 4 genes (PLOD2, ALDOC, BNIP3, DDIT4) were found to be associated with a response to hypoxia (GO:0001666) with a significant corrected hypergeometric p-value of 4.86×10^{-6}. Further manual annotation showed that all of the 20 genes, except $H O X A 13$ have published evidence for up-regulation in conditions of hypoxia or nutrient stress.

Figure 5.2 Relationships between target gene profiles of standard and circadian microarray experiments. Down-regulated but not up-regulated target genes show overlap between standard and circadian conditions (left). Only a proportion of down-regulate genes are shared between the circadian +12 hr and +24 hr time-points indicating that NPAS3 target gene regulation is circadian time-point sensitive.

5.3.5 \triangle NPAS3 and FLNPAS3 differences exposed by circadian stimulation

In order to compare the difference of FLNPAS3 and \triangle NPAS3 in the circadian environment, the gene regulation of these two factors was analysed by scatter plots (Figure 5.3). In contrast to standard culturing conditions, the circadian microarray exposed significant functional differences between \triangle NPAS3 and FLNPAS3 at +12 hours after induction of circadian rhythm (Appendix table S2). This was generally evident as reduced \triangle NPAS3 potency specifically at +12 hours.

Figure 5.3 Normalised and log-transformed expression data for over 24,000 probes $(18,000$ genes). The diagonal represents equal expression in both conditions. Genes (shown in red) outside of the two parallel diagonal lines show at least 1.5 -fold difference between the two conditions. Regulatory differences between FLNPAS3 and \triangle NPAS3 at the +12 (a) and +24 hour (b) time-points after circadian induction indicate that \triangle NPAS3 acts differentially only at +12 hrs .

5.3.6 An interaction between NPAS3 activity and the circadian rhythm

To further explore the relationship between circadian time-point, FL/DNPAS3 activity on target gene regulation, we visualised microarray data using ternary plots. Briefly, a set of functional related genes were chosen for different comparision. Then, the expression values of these genes were looked up in different cell samples in our circadian microarray data file. Finally, the gene expression values were input into ProSim, to generate the ternary plot results. Ternary plots indicate the relative influence of each of the three experimental conditions - FLNPAS3, \triangle NPAS3 and control - on gene expression. Any deviation from the centre of the plot indicates that either one or two conditions is/are disproportionally influencing expression. Gene expression at +12 hr is indicated by green and +24 hr is indicated by red.

As a first test, we input 109 randomly selected genes into ternary plots to look for biases in the data (Figure 5.4 a). The randomly selected genes show no deviation from the centre (Figure 5.4 a) discounting systemic microarray biases, and give an example of a group of genes which are not affected by the overexpression of FLNPAS3/ANPAS3.

FLNPAS3

Figure 5.4 a Ternary plot illustrates the relative effects of FLNPAS3 overexpression, \triangle NPAS3 over-expression and control conditions on target gene expression. The relative expression levels of 109 randomly selected genes in the three conditions are plotted for +12 hrs (green) and +24 hrs (red) time-points. The absence of substantial deviation from the centre indicates the overall similarity between the conditions.

The next set of genes analysed were two sets of control cell line (circadian induced HEK293 cells without overexpression of FLNPAS3/DNPAS3) genes (200 genes) appearing to show circadian regulation: 100 up-regulated genes between +12 and +24 hrs (circles) and 100 down-regulated genes between +12 and +24 hrs (squares). These were plotted to test the influence of FLNPAS3 or \triangle NPAS3 over-expression on circadian processes. (Figure 5.4 b). This result suggests that at +24 hr time point (red squares and circles), FL/ Δ NPAS3 effects on gene expression are small and equivalent (along the vertical 'control' axis distribution), whereas a pronounced effect was seen at +12 hours (green squares and circles). The substantially deviating group (green squares) indicates that \triangle NPAS3 strongly inhibits (movement away from the \triangle NPAS3 triangle vertex) the expression of the group of genes at +12 hrs that will be further down-regulated by +24 hrs .

Control

b

FLNPAS3

Figure 5.4 b Ternary plots illustrate the relative effects of FLNPAS3 overexpression, \triangle NPAS3 over-expression and control conditions on target gene expression. Two sets of control cell line genes appearing to show circadian regulation: 100 up-regulated genes between +12 and +24 hrs (circles) and 100 downregulated genes between +12 and +24 hrs (squares). Again, +12 hr expression is indicated by green and +24 hr by red. The substantially deviating group (green squares) indicates that \triangle NPAS3 strongly inhibits (movement away from the \triangle NPAS3 triangle vertex) the expression of the group of genes at +12 hrs that will be further down-regulated by +24 hrs. Both FLNPAS3 and \triangle NPAS3 alter the expression of a minority of circadian genes at +24 hrs (red squares and circles).

The third set of genes studied were a panel of 139 published genes known to be upregulated in response to hypoxia-stimulated HIF1A (Benita et al., 2009; Chi et al., 2006; Greijer et al., 2005; Mense et al., 2006) (Figure 5.4 c), Many hypoxia pathway genes were inhibited equally by \triangle NPAS3 and FLNPAS3, particularly at +12 hrs (Figure 5.4c).

Control

Figure 5.4 c Ternary plots illustrate the relative effects of FLNPAS3 over-expression, \triangle NPAS3 over-expression and control conditions on target gene expression. Both FLNPAS3 and \triangle NPAS3 inhibit the expression of many hypoxia genes at +12 (green) and +24 hrs (red)

Fourthly, 15 microarray probes corresponding to 14 NPAS3-regulated glycolysis genes were also analysed by ternary plots, these genes include PFKFB4, PCK2, PKM2, ALDOA, ALDOC, ENO2, PKM2, GAPDH, PFKP, HK2, PFKFB3, PGK1, PKM2, and PGM1. (Figure 5.4 d). The set of glycolysis genes showed deviations from the centre consistent with both NPAS3 forms inhibiting expression at +24 hrs , but with a stronger FLNPAS3 inhibitory effect at +12hrs (Figure 5.4 d).

Figure 5.4 d Ternary plots illustrate the relative effects of FLNPAS3 overexpression, \triangle NPAS3 over-expression and control conditions on target gene expression. 15 glycolysis genes are inhibited by FLNPAS3 and \triangle NPAS3 although FLNPAS3 activity is much stronger than \triangle NPAS3 at +12 hrs (green) and PCK2 is up-regulated by both at +24 hrs (red).

Microarray data arranged by chromosomal gene position revealed NPAS3 regulation of clustered histone target genes (chapter3). In the fifth ternary plot histone genes on chromosome 6 regulated by SOX11 (circles) and on chromosome 1 regulated by NPAS3 (squares) were assessed .This result shows a striking inhibition of chromosome 1 histone expression by FLNPAS3 and \triangle NPAS3 at +12 hrs only (Figure 5.4 e). Furthermore, the inhibition capabilities of FLNPAS3 and \triangle NPAS3 are equal.

Control

Figure 5.4 e Ternary plots illustrate the relative effects of FLNPAS3 over-expression, \triangle NPAS3 over-expression and control conditions on target gene expression. Chromosome 1 histones (squares) are substantially inhibited by both FLNPAS3 and Δ NPAS3 at +12 hrs (green) in comparison to +24 hrs (red) and chromosome 6 histones (circles)

Finally, there were a large number of small (RPS) and large (RPL) ribosomal protein genes regulated in the microarray datasets. Ribosomal proteins (small subunits: squares, large subunits: circles) were input into ternary plot. This result provides evidence for FL/ \triangle NPAS3 inhibitory activity at +12 hrs and some stimulatory activity at +24 hrs (Figure 5.4 f)

Control

Figure 5.4 f Ternary plots illustrate the relative effects of FLNPAS3 over-expression, \triangle NPAS3 over-expression and control conditions on target gene expression. Ribosomal proteins (small subunits: squares, large subunits: circles) show upregulation at +12 hrs (green) and down-regulation at +24 hrs (red).

5.4 Discussion

Although not presented here, a previous RT-PCR experiment did not show circadian changes in the expression of the $N P A S 3$ gene itself suggesting that the gene is not a central part of the circadian control pathway. But the microarray results show that the regulatory activity of FLNPAS3 was strongly modified by circadian cycling. These might be due to the fact that many co-functioning partners of NPAS3 (such as BMAL) are bHLH family member and controlled by circadian rhythms.

Although the second PAS domain and the putative transactivation domain are absent in \triangle NPAS3 the microarray data show that the regulatory actions of FLNPAS3 and \triangle NPAS3, as in the standard culture conditions, are largely similar at 24 hrs time point (Figure 5.3 b and Figure 5.4 b-e red). As \triangle NPAS3 has a bHLH domain, it still keeps the ability to form heterodimerized complex.

In our microarray results, the regulatory profiles of these two proteins are different at 12 hrs . At 12 hr , the dominant function of NPAS3 is due to the transactivation/transdepression domain, and the actions of bHLH domain and PAS-A are limited, therefore, the transcriptional regulatory activities of FLNPAS3 and \triangle NPAS3 are significantly different. While at 24 hrs , it is possible that the bHLH domain, which has the property to form a heterodimerized complex, has the dominant role in the transcriptional regulatory of NPAS3. Because both \triangle NPAS3 and NPAS3 keep the bHLH domain, there is no big difference between NPAS3 and the truncated form, \triangle NPAS3.

This hypothesis also explains why NPAS3 activity is sensitive to circadian timepoint. FL/DNPAS3 activity was strongly modified by circadian cycling in two main ways. This possibly due to the expression levels of several potential NPAS3 partners are affected by circadian rhythm.

Based on the ternary plot results, there are several interesting findings:
Firstly, the circadian microarray result revealed a direct modulatory interaction between NPAS3 activity and circadian rhythmicity. This interaction includes: 1), \triangle NPAS3, but not FLNPAS3, inhibited the expression levels of a set of potential circadian genes which showed a decrease between +12 and +24 hours in the control group (Figure 5.3.b). 2), both FLNPAS3 and \triangle NPAS3 inhibited the expression of multiple target gene groups such as glycolysis (Figure 5.3.d), hypoxia response genes (Figure 5.3.c) and chromosome 1 histone cluster (Figure 5.3.e).

Secondly, in both instances these effects were either exclusive to, or amplified at the +12 hour time-point. It is intrinsically difficult to separate cause from effect from the limited time-points studied here. However, only the +12 hr UNPAS3 effect suggests a direct modulation of circadian master regulator gene activity resulting in circadian phase (wavelength shift). \triangle NPAS3 is generated by cleavage at an XhoI site which removes the second PAS domain and the putative transactivation domain. So it only has the properties to heterodimerize with other partners and bind to specific DNA sequence. Therefore, one hypothesis to explain this observation could be that the truncation of NPAS3 overcomes restrictions on the normal range of transcriptional binding partners- permitting abnormal interaction with circadian bHLH transcription
factors active at +12 hrs. It can be appreciated that gene mutations with similar effects to the truncation might also upset circadian rhythms.

Thirdly, our ternary plot analysis on hypoxia genes revealed that both FLNPAS3 and Δ NPAS3 can inhibit many hypoxia genes at +12 hr and +24 hr (Figure 5.4.c). The underlying mechanism of this phenomenon might due to 'binding partner choice'. In fact, after NPAS1, SIM1 and SIM2, HIF1A possesses the most homologous bHLH domain to NPAS3. Because the inhibitory capabilities of FLNPAS3 and \triangle NPAS3 are different at +12 hrs and +24 hrs in our cell models, I further propose that this NPAS3/hypoxia pathway functions is sensitive to circadian state. Reports that hypoxia can affect the amplitude of the circadian output also strengthen the argument that HIF1A participates in cross-talk with circadian pacemaker factors (Bosco et al., 2003; Ghorbel et al., 2003; Mortola, 2007; Vargas et al., 2001). As NPAS3 did not show a circadian expression pattern in our cell models (both in the normal PCR result and in the microarray result), I do not hypothesise that NPAS3 has the capacity to sense its environment directly, although it is highly related to transcription factors such as NPAS2 and HIF1A.

CHAPTER SIX

6 SOX11 target genes: implications for neurogenesis and neuropsychiatric illness

6.1 Introduction

The proliferation of progenitor cells and their differentiation into functional neurons are critical processes during developmental and adult neurogenesis. As growing evidence suggests that neurogenesis deficits play a role in neurological and psychiatric disorders, such as schizophrenia and bipolar disorder (more information is available in 1.3.1), it is important to understand the underlying molecular mechanisms. SOX family members play an important role in adult neurogenesis and SOX11 is one of the negatively regulated genes of NPAS3. This chapter describes experiments to define the regulatory profile of SOX11.

Sox C members, including Sox4, Sox11 and Sox12, possibly play a key role during the regulation of later aspects of neurogenesis. They are mainly expressed in neuronal cells which have been committed to neuronal differentiation (Cheung et al., 2000). Sox4 and Sox11 regulate the establishment of pan-neuronal protein expression by inducing precocious expression of neuronal markers in self-renewing precursors. SOX11 is the most powerful transcription factor among these three factors (Bergsland et al., 2006). SOX11 is critical during the later stages of neurogenesis. However, the regulatory targets and downstream pathways at the molecular level are yet to be fully demonstrated.

Soxll null mice die during the neonatal period due to malformations of heart and internal organs including dysgenesis of the anterior eye segment, hypoplastic lungs, undermineralized bones and lack of a spleen (Bergsland et al., 2006). SoxC tripledeleted mouse embryos die at midgestation and are tiny. Although the patterning and lineage specification are normal, there is massive apoptotic loss of neural and mesenchymal progenitor cells (Bhattaram et al., 2010).

The 'neurodevelopmental' hypothesis of neuropsychiatric disorders such as schizophrenia, bipolar disorder and autism suggests that deficits in the proliferation, differentiation and connectivity of neurons during the formation of the brain might contribute towards increased risk of illness. Supporting a role for SOX11 in this context is a case report recently describing a 7 -year-old patient with autism, moderate mental retardation, secondary microcephaly, agenesis of right opti nerve, and dysmorphic features who carried a deletion of the SOX11 gene (Lo-Castro et al, 2009).

6.2 Aims of this study

Here we describe the over-expression of SOX11 in the HEK293 cell line followed by microarray analysis to deduce the set of target genes and their ontologies. Briefly, HEK293 cells were transiently transfected by pDEST40-SOX11 or control plasmid (pDEST40) using lipofectamine ${ }^{\mathrm{TM}} 2000$ transfection kit (Invitrogen). After 4-6 hours, the transfection medium was replaced with the standard culture medium for 24 hours. Microarray probes synthesised from RNA extraction products was quantified using an Agilent Bioanalyzer to ensure high quality probes of equal quantity between experiments. Sentrix ${ }^{\circledR}$ HumanRef- 8 v2 chips (capable of examining expression of over 24,500 gene transcripts) were used to detect gene expression profiles.

In addition, to investigate the distribution of SOX11 in the adult mouse hippocampus, immunofluorescence was used to localise SOX11 and several of its targets within the dentate gyrus of the hippocampus.

6.3 Result

6.3.1 Transient overexpression of SOX11 in HEK293 cells results in specific gene expression changes as assessed by microarray

Illumina microarray analysis was carried out to investigate the gene expression changes in HEK293 cells after over-expressing SOX11. For all standard cell culture experiments with SOX11/ parental negative control cell lines, triplicate biological samples were assessed. BRB analysis software was used to analyse the expression of the 22,177 well annotated RefSeq transcripts present in each array. Unsupervised hierarchical clustering of gene expression profiles using centred correlation and average linkage revealed that human SOX11 and control transfection samples have distinct profiles (Figure 6.1). This was an indication of both the consistency of the experimental samples used and also the quality of the array hybridization and detection procedures.

Figure 6.1 Dendrogram of SOX11 transfected and control HEK293 cell samples.
Hierarchical clustering based on microarray data from each sample reveals two distinct clusters corresponding to SOX11 transfected (H1-3AVG) and control cells (L1-3AVG), using centered correlation and average linkage. Thus SOX11 transfection induces a reproducible and global change in gene expression.

6.3.2 Identification and validation of SOX11 regulated genes

This section of the thesis was a collaboration with Rob Kitchen, a PhD student working in the bioinformatics department of University of Edinburgh.

Limma (designed by Rob Kitchen) and BRB-Array Tools approaches used in the microarray data analysis generated highly similar results at the levels of rank, foldchange and P-value. 932 genes were significant by SAM analysis. The estimated false discovery rate among the 932 significant genes was set at 0.01 . Supervised analyses were next performed to identify gene expression differences between human SOX11 transfected and untransfected HEK293 cells, at a significance level of $\mathrm{P}<0.01$. 251 genes with expression levels altered by at least 1.5 -fold were selected for further analysis. 63 of these genes changed by at least 2-fold are shown in Table 6.1.
$\stackrel{1}{2}$

 i $\stackrel{\substack{c \\ i \\ ~}}{ }$ مٌ $\stackrel{\circ}{n}$ in $\stackrel{\text { n }}{\substack{4 \\ i}}$ लิ $\underset{N}{n}$ $\stackrel{N}{i}$

Table 6. 1 SOX11 upregulated genes with fold-change more than 2
Description
filamin A interacting protein 1 (FILIP1), mRNA. histone 1, H4h (HIST1H4H), mRNA. glypican 2 (cerebroglycan) (GPC2), mRNA. Norrie disease (pseudoglioma) (NDP), mRNA.
Norrie disease (pseudoglioma) (NDP), mRNA.
CD24 antigen (small cell lung carcinoma cluster CD24 antigen (small cell lung carcinoma cluster 4 antigen) (CD24), mRNA.
histone 1, H2bd (HIST1H2BD), transcript variant 2 , mRNA. KIAA1913 (KIAA1913), mRNA.
purinergic receptor P2Y, G-protein coupled, 5 (P2RY5), mRNA.
histone 2, H4 (HIST2H4), mRNA.
cytochrome P450, family 39, subfamily A, polypeptide 1 (CYP39
purinergic receptor P2Y, G-protein coupled, 5 (P2RY5), mRNA.
histone 2, H4 (HIST2H4), mRNA.
cytochrome P450, family 39, subfamily A, polypeptide 1 (CYP39 cytochrome P450, family 39 , subfamily A, polypeptide 1 (CYP39A1), mRNA.
Hypothetical gene supported by AK128660 (LOC400566), mRNA.
leucine rich repeat containing 17 (LRRC17), transcript variant 1, mRNA. low density lipoprotein receptor-related protein 5-like (LRP5L), mRNA. tubulin, beta 3 (TUBB3), mRNA
downregulated in ovarian cancer 1 (DOC1), transcript variant 1, mRNA. downregulated in ovarian cancer 1 (DOC1), transcript variant 2 , mRNA. Chromosome 1 open reading frame 162 (C1orf162), mRNA. histone 1, H4e (HIST1H4E), mRNA.
CDC-like kinase 1 (CLK1), transcript variant 1, mRNA. zinc finger protein 435 (ZNF435), mRNA.

filamin A interacting protein 1 (FILIP1), mRNA.
histone 1, H4h (HIST1H4H), mRNA.
glypican 2 (cerebroglycan) (GPC2), mRNA.
Norrie disease (pseudoglioma) (NDP), mRNA.
CD24 antigen (small cell lung carcinoma cluster 4 antigen) (CD24), mRNA.
histone 1, H2bd (HIST1H2BD), transcript variant 2, mRNA.
KIAA1913 (KIAA1913), mRNA.
purinergic receptor P2Y, G-protein coupled, 5 (P2RY5), mRNA.
histone 2, H4 (HIST2H4), mRNA.
cytochrome P450, family 39, subfamily A, polypeptide 1 (CYP39A1), mRNA.
Hypothetical gene supported by AK128660 (LOC400566), mRNA.
leucine rich repeat containing 17 (LRRC17), transcript variant 1, mRNA.
low density lipoprotein receptor-related protein 5-like (LRP5L), mRNA.
tubulin, beta 3 (TUBB3), mRNA.
downregulated in ovarian cancer 1 (DOC1), transcript variant 1, mRNA.
downregulated in ovarian cancer 1 (DOC1), transcript variant 2, mRNA.
Chromosome 1 open reading frame 162 (C1orf162), mRNA.
histone 1, H4e (HIST1H4E), mRNA.
CDC-like kinase 1 (CLK1), transcript variant 1, mRNA.
zinc finger protein 435 (ZNF435), mRNA.
FYVE, RhoGEF and PH domain containing 6 (FGD6), mRNA.
Hypothetical gene supported by AK128660 (LOC400566), mRNA.
UDP-GaNAc:betaGllNAc beta 1,3-galactosaminyltransferase, polype
(B3GALNT2), mRNA.
zinc finger protein 193 (ZNF193), mRNA.
fibrinogen silencer binding protein (FSBP), mRNA.
Chromosome 10 open reading frame 82 (C10orf82), mRNA.
histone 1, H1c (HIST1H1C), mRNA. histone 1, H1c (HIST1H1C), mRNA.
 RNA binding motif protein 4 (RBM4), mRNA.
suppression of tumorigenicity 7 (ST7), transcript variant b, mRNA.
GA binding protein transcription factor, beta subunit 2 (GABPB2), transcript variant
gamma-3, mRNA.
histone 1, H2bg (HIST1H2BG), mRNA.
zinc finger protein 184 (Kruppel-like) (ZNF184), mRNA.
sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3B
(SEMA3B), transcript variant 2, mRNA.
interferon-induced protein 44 (IFI44), mRNA.
arrestin domain containing 3 (ARRDC3), mRNA.
ubiquitin-activating enzyme E1-domain containing 1 (UBE1DC1), transcript variant 2,
mRNA.
Hypothetical protein FLJ39575 (FLJ39575), mRNA.
anthrax toxin receptor 1 (ANTXR1), transcript variant 3, mRNA.
WD repeat domain 47 (WDR47), mRNA.
solute carrier family 6 , member 16 (SLC6A16), mRNA.
protein tyrosine phosphatase, receptor type, R (PTPRR), transcript variant 1, mRNA.
F-box and leucine-rich repeat protein 20 (FBXL20), mRNA.
secretogranin II (chromogranin C) (SCG2), mRNA.
Cas-Br-M (murine) ecotropic retroviral transforming sequence b (CBLB), mRNA.
egulatory factor X, 3 (influences HLA class II expression) (RFX3), transcript variant 2,
mRNA.
serpin peptidase inhibitor, clade I (neuroserpin), member 1 (SERPINI1), mRNA.
eukaryotic translation initiation factor 2C, 3 (EIF2C3), transcript variant 2, mRNA.
Transcription factor Dp-2 (E2F dimerization partner 2) (TFDP2), mRNA.
regulatory factor X, 3 (influences HLA class II expression) (RFX3), transcript variant 2,
mRNA.
tetratricopeptide repeat domain 25 (TTC25), mRNA.
Homo sapiens oviductal glycoprotein 1, 120kDa (mucin 9, oviductin) (OVGP1), mRNA.
glutathione S-transferase A2 (GSTA2), mRNA.
zinc finger protein 548 (ZNF548), mRNA.
ADP-ribosylation factor-like 9 (ARL9), mRNA.

6.3.3 Confirmation of SOX11 microarray findings at the transcriptional and protein levels and in a second cell line

In order to validate our microarray findings, QPCR analysis was carried out on several selected genes using the same RNA used in our microarray experiment. The QPCR reactions were performed in triplicate and the double delta method was used to calculate the gene expression level.

A panel of eight representative genes (NDP, NEDD9, HIST1H2BE, HIST1H2AE, SEMA3, BAG1, TUBB3, FILIP1, CYP39A, SCG2, CD24) with a robust fold change in microarray data (Figure 6.2 A) were chosen for validation using QPCR on the same RNA as used in the microarray experiment. Gene 18sRNA was used to normalise data from SOX11 over-expression and control samples and values are expressed as fold-change in gene expression in comparison to the control samples (HEK293 cells tansiently transfected with pDEST40 plasmid). Results of this analysis are shown in (Figure 6.2B).

To determine if SOX11 regulates similar targets in an alternative cell line, SH-SY5Y cells were transiently transfected with the SOX11-expressing construct. Western blot analysis was carried out on two proteins, SCG2 and TUBB3, which displayed upregulation in the microarray analysis. Both showed clear up-regulation of expression in comparison to 'empty vector' or 'no DNA' control transfections when normalised to YWHAZ protein loading control (Figure 6.2C).

Figure 6.2. QPCR and Western blotting verify microarray findings.
Expression of CD24, CYP39A1, FILIP1, HIST14E, HIST1H2BD, NDP, SCG2, SEMA3B and TUBB3 determined by microarray (A) and QPCR (B). (A) Microarray signal intensities are expressed as an average of cDNA triplicates from HEK293 cells treated lipofactemine (as control) and cDNA triplicates from SOX11-overexpressed HEK293 cells. (B) fold-change values in the QPCR figure were calculated from triplicated analysis of the same RNA used in the microarray assays. (C) SH-SY5Y cells were transiently transfected with plasmids pDEST40-SOX11 or empty pDEST40, or a Lipofectamine alone control and cultured for 48h. YWHAZ was used as a reference protein. The protein levels of TUBB3 and SCG2 were significantly upregulated in the cell that over-expressed SOX11 protein.

6.3.4 Kinetics of SOX11 activity: time-course Q-PCR

To assess the kinetics of up-regulation of selected genes from the microarray, a timecourse QPCR experiment was carried out. This would provide information on how quickly SOX11 acts on target gene promoters (or perhaps if some of the targets were indirectly/secondarily regulated). Transient transfection of SOX11 was followed by harvesting of RNA at $0 \mathrm{~h}, 3 \mathrm{~h}, 6 \mathrm{~h}, 12 \mathrm{~h}, 24 \mathrm{~h}$ and 48 h (the time-point at which microarray analysis was performed). We compared the temporal changes in expression of several upregulated genes FILIP1, CYP39A1, SEMA3B, SCG2, GSTA2, $T U B B 3$, relative to control genes (Figure 6.3). These genes were chosen based on the following criteria: 1) these genes were identified as candidate molecules participating in the process of early neuron development, and 2) these genes can show fairly robust changes in our microarray list (fold change more than 2).

Comparing the fold changes of these genes revealed a dynamic set of expression profiles that fell into 3 sequentially and transiently upregulated groups: 1) CYP39A1 and TUBB3 were increased at 6 h , reached their peaks by $24 \mathrm{~h}, 2$) GSTA2, SCG2 and SEMA3B were up-regulated by $12 \mathrm{~h}, 3$) FILIP1 was up-regulated and reached its peak at 24 h . This result suggests that regulation mechanisms by SOX11 on these genes might be different. The detail of the possible mechanisms will be discussed in the discussion section.

Figure 6.3 Timecourse QPCR of SOX11 transiently transfected HEK293 cells. RNA obtained at different time point (from 0h-48h) after HEK293 cells were transiently transfected with SOX11. Each time point represents fold change (mean $+/-$ s.d. of assay triplicates) in comparison to gene expression in HEK293 cells transfected by control plasmid (pDEST40).

6.3.5 IPA analysis of SOX11 microarray data

Ingenuity Pathway Analysis (IPA) was used to identify canonical networks and biological functions/ gene ontology over-represented within the list of 251 SOX11 up-regulated genes with a fold change more than 1.5. IPA functional analysis produces three primary categories of output: molecular and cellular functions; physiological system development and functions; diseases and disorders. Several neurogenesis relevant functions and neurological diseases were over-represented in the dataset (Table 6.2) including cell cycle, cell death, cell signalling, cell-to-cell signalling and interaction, cell growth and proliferation, gene expression (regulation), and lipid metabolism. 18 SOX11 up-regulated genes were also shown to be involved in nervous system development and function with roles in chemotaxis, growth cone collapse, and familial encephalopathy with neuroserpin inclusion bodies, transformation, senescence, cell death, and leakage.
Table 6.2 Functions and Diseases

RELEVANT FUNCTIONS \& DISEASES	RELEVANT GENE SYMBOL	MOLECULES
Cell Cycle	CDKN2B, CDKN2C, COMMD5, HOXA10, IL8, IL1A, ING4, POLB, PPM1D, PPP1R15A (includes EG:23645), PPP2R2A, SKIL, TFDP2, CXCL12,IVNS1ABP	16
Cell Death	CXCL12, IL8, IL1A, MCL1, TUBB3, CDKN2C, ANTXR1, POLB	9
Cell Signaling	CBLB, IL8	2
Cell-To-Cell Signaling and Interaction	AKT2, CBLB, CD24, CXCL12, IL8, IL1A, NME1, PPP1R15A 9includes EG:23645), PLXNB1, NEDD9, GJC2, SEMA3B	12
Cellular Growth and Proliferation	CXCL12, IL8, PBX1, MSI2, CBLB,	6
Developmental Disorder	PHF6, PBX1, HOXA10, TGIF1,	5
Gene Expression	AKT2, IHPK2, IL8, IL1A, SOCS4, GABRB2, EIF5, HOXA10, NME1,	10
Lipid Metabolism	CYP39A1, PROX1, AKR1C3, PLA2G4C (includes EG:8605), IL1A, CXCL12, ETNK1, IL8	8
Nervous System Development and Function	CD24, CXCL12, DPF1, DPYSL4, MAP2, NDP, PCDHB12 (includes EG:56124), POLB, ST8SIA4, TNRC4, GJC2, CHN1(includes EG:1123), PLXNB1, SEMA3B, DLG2	18
Neurological Disease	CXCL12, IL8, SERPINII, HOXA10, CDKN2B,	5
Visual System Development and Function	CXCL12	2

6.3.6 Several neurogenesis and psychiatric illness candidate genes are regulated by SOX11

SOX11 is enriched in developing neurons, oligodendrocytes and astrocytes in human brain (Cahoy et al., 2008). Our hypothesis is that it is involved in the processes involved in CNS development and disease was supported by the microarray data as they revealed several genes with known involvement in adult and developmental neurogenesis as well as genes with established links to neuropsychiatric illness. These genes include:

1) Glypican-2, a heparan sulphate proteoglycan. It is significantly up-regulated by SOX11 in our microarray list (Fold change:4.225). It was reported associated with developing nervous system in axons growth cones (Kurosawa et al., 2001). In our study, Gpc 2 is found expressed in the inner side of subgranular zone of adult mouse hippocampus, with very low expression in other parts of the brain. This expression pattern is quite similar to those markers for early axon growth from new neurons. These findings suggest that SOX11 maybe involved in the process of axon growth through its transcriptional activity on other genes.
2) $\operatorname{Scg} 2$ (Secretogranin II/Chromogranin-C) is a cell surface sialoglycoprotein. Among many functions it has been shown that SCG2 promotes the differentiation of neuoblastoma cells into neurons. It was reported that Schizophrenia in humans is associated with upregulation of human SCG2 mRNA in dorsolateral prefrontal cortex (Hakak et al., 2001). And also Secretoneurin II, a peptide derived by endoproteolytic processing from SCG2 in brain, can promote the outgrowth of
immature cerebellar granule cells (Shyu et al., 2008). Also SCG2 is a marker for schizophrenia in cerebrospinal fluid (Bartolomucci et al., 2010).
3) Our microarray results show that FILIP1 is the top unregulated gene by SOX11. It interacts with Filamin A and plays a regulatory role in neocortical cell migration from ventricular zone (Nagano et al., 2002).
4) NDP is another SOX11 up-regulated gene with robust expression change. NDP is a secreted protein with a cystein-knot motif that activates the Wnt/beta-catenin pathway. It forms disulfide-linked oligomers in the extracellular matrix. $N D P$ was isolated as a candidate gene for the Norrie Disease gene which is associated with congenital blindness sometimes associated with mental retardation and hearing loss (Chen et al., 1993). The characterization of deletions of this gene in Norrie disease and function analysis was carried out by Chen et al (Chen et al., 1993). NDP protein acts as an alternative to wnt ligand on the FZD4 receptor and has been implicated in angiogenesis.
5) TUBB3 is on the list of significantly up-regulated genes and also shows significant upregulation in SOX11-overexpressed SHSY5Y cells (Figure 6.2, western result). TUBB3 is abundant in the brain and widely regarded as a marker for differentiating neurons (Katsetos et al., 2003). Tubb3 has three potential binding sites for Sox4 and Sox11, which are located upstream of the Tubb3 transcriptional start site and has therefore been previously suggested as a target gene (Bergsland et al., 2006; van Beest et al., 2000). A recent paper highlights the role of TUBB3 in axon
guidance in a human CNS syndrome with behavioural phenotypes (Tischfield et al., ; Tischfield and Engle, 2010).
6) CD24 is in the top 10 of the genes up-regulated by SOX11. It is a small, glycosylphosphatidylinositol-anchored membrane protein, plays a role in B-cell development and neurogenesis (Calaora et al., 1996; Poncet et al., 1996). In adult mouse CNS, the expression of Cd24 is restricted to differentiating neurons in the subventricular zone and dentate gyrus and is a frequently used biomarker for neurogenesis in the brain (Belvindrah et al., 2002; Nieoullon et al., 2005).
7) ST7, also known as RAY1 or FAM4A1, is disrupted by a translocation breakpoint in a patient diagnosed with autism (Vincent et al., 2000; Vincent et al., 2002)

6.3.7 Histone and zinc finger genes and chromosomal domain regulation by SOX11

Thirteen histone genes were up-regulated by overexpression of SOX11. Closer inspection showed that many were present within a cluster on chromosome 6. We therefore reassessed the microarray fold-change data in relation to gene chromosomal coordinates and observed apparent clustering of up-regulated genes in several areas, with chromosomes 6 p 22.2 and 19 q 13.43 showing the most robust findings (Figure $6.4 \mathrm{a}, \mathrm{b}$ and c). This suggested that the transcriptional effects of SOX11 might be indirect in some circumstances: mediated through the alteration of regional chromatin state rather than by direct promoter effects. Some circumstantial evidence for this is provided by the bell-shaped distribution of SOX11 histone gene up-regulation in the chromosome 6 cluster suggesting a spreading and attenuating influence from a central regulatory point. The subsets of genes that are present within these two clusters are listed in Table 6.3. Most of them are members of the histone or zinc finger families. The chromosome 6 region is the site of a very promising genetic finding relating to increased risk of schizophrenia. A genome-wide association study found multiple single nucleotide polymorphism (SNP) associations. Four of the most significant markers, SNPs rs6913660, rs13219354, rs6932590, and rs13211507, are found within our SOX11-regulated cluster (Purcell et al., 2009; Stefansson et al., 2009). This association has been previously interpreted to indicate a role for the nearby HLA genes in disease risk (Figure 6.4b). However, we now suggest that SOX11 exerts its transcriptional control by altering chromatin conformation

Figure 6.4 Clustering of SOX11-regulated genes.
Average fold-changes in a sliding window of 30 genes along the length of all chromosomes were calculated and plotted (top). Strong peaks indicating clustered up-regulation of genes were observed on chromosomes 6 and 19 (below). In the lower figures, red bars indicate statistically significant gene up-regulation (predominantly histone/zinc finger genes) as determined in the SAM analysis. The horizontal black bar indicates the approximate location of the HLA gene cluster

Table 6.3 Significantly (SAM) regulated genes, shown in order, that are found within clusters on chromosomes 6 and 19. The two genes highlighted in bold show downregulation, the rest are up-regulated. Histones and zinc finger proteins comprise the majority of the list.

Cluster Chr. 6	Gene symbol MAK	Acc. No. NM 005906	Fold-change 1.73
Chr. 6	NEDD9	NM_182966	1.82
Chr. 6	HIST1H4B	NM_003544	1.41
Chr. 6	HIST1HIC	NM_005319	2.27
Chr. 6	HIST1H2AC	NM_003512	1.84
Chr. 6	HIST1H2BD	NM_138720	3.69
Chr. 6	HIST1H2BE	NM_003523	1.28
Chr. 6	HIST1H4E	NM_003545	2.53
Chr. 6	HIST1H2BG	NM_003518	2.21
Chr. 6	HIST1H2AE	NM_021052	1.75
Chr. 6	HIST1H3F	NM_021018	1.25
Chr. 6	HIST1H4H	NM_003543	5.21
Chr. 6	BTN2A2	NM_181531	1.53
Chr. 6	BTN3A1	NM_007048	1.16
Chr. 6	ZNF184	NM_007149	2.23
Chr. 6	HIST1H3H	NM_003536	1.36
Chr. 6	HIST1H4K	NM_003541	1.54
Chr. 6	HIST1H2BN	NM_003520	1.60
Chr. 6	HIST1H2AM	NM_003514	1.48
Chr. 6	ZNF435	NM_025231	2.47
Chr. 6	ZNF193	NM_006299	2.32
Chr. 6	ZNF187	NM_001023560	1.62
Chr. 6	ZNF323	NM_030899	1.53
Chr. 6	ZNF96	NM_014724	1.27
Chr. 6	UBD	NM_006398	1.28
Chr. 19	ZNF71	NM_021216	1.39
Chr. 19	ZNF548	NM_152909	2.05
Chr. 19	ZNF17	NM_006959	1.60
Chr. 19	MGC4728	NM_198542	1.36
Chr. 19	ZIK1	NM_001010879	1.99
Chr. 19	ZNF211	NM_006385	1.76
Chr. 19	ZNF671	NM_024833	1.65
Chr. 19	ZNF256	NM_005773	1.66
Chr. 19	C19orf18	NM_152474	1.58
Chr. 19	ZNF606	NM_025027	1.41
Chr. 6	SIRT5	NM_012241	0.72
Chr. 6	PRSS16	NM_005865	0.67

6.3.8 The expression patterns of SOX11 regulated genes in dentate gyrus of the hippocampus

The expression pattern of Sox11 in the adult mouse hippocampus, the site of neurogenesis that continues into adulthood, was investigated using immunofluorescence microscopy. Sections from frozen mouse brain were cut using a thermo cryostat. The following antibody solutions and dilutions were used: 1/500 Sox11 rabbit anti mouse, 1/400 Gpc2 goat anti mouse (Santa Cruz Biotechnology). The sections were mounted on slides with Prolong anti-fade reagent with 4'6-diamidino-2-phenylindole (DAPI). Sox11 was found to be expressed in many brain regions including the whole dentate gyrus, in accordance with the literature. The distribution of several Sox11-regulated genes was examined. Gpc2, a gene upregulated by SOX11 upregulated gene was localised to the inner sub-granular zone of dentate gyrus, where neurogenesis occurs, and had much lower expression in other regions of dentate gyrus (Figure 6.5).

As SOX11 is down regulated by NPAS3 in the microarray data set, colocalization between these two proteins in hippocampus were looked for. However, no overlap of expression was found in these experiments. (NPAS3 expression pattern in mouse hippocampus result is shown Figure 3.1)

Figure 6.5 Sox11 and Gpc2 expression patterns in the dentate gyrus region of mouse hippocampus
Sox11 and Gpc2 protein expression was examined using immunofluorescence on frozen mouse brain sections. Sox 11 shows a nuclear
distribution in all dentate gyrus granule cells. Gpc2 expression is highly enriched in the subgranular zone where neurogenesis occurs
Localization is often seen in short axonal projections towards the CA3 region. Scale bar: $80 \mu \mathrm{~m}$

6.4 Discussion

A cell line-based over-expression study coupled with microarray analysis was carried out to characterise the set of genes regulated by SOX11. Evidence suggests that a number of SOX11 targets may play a role in the maturation and differentiation of neurons as predicted by previous studies.

Sox11 is expressed in the subventricular zone of lateral ventricles and the subgranular zone of the dentate gyrus, But Sox11 is strictly localized in Dcxexpressing neuronal precursors and immature neurons, but not Sox2-expressing cells. (Haslinger et al., 2009), Doublecortin ($D c x$) is a neurogenesis marker which is expressed in newly formed neurons between the timing of their birth and final maturation (Brown et al., 2003). This suggests that Sox11 is involved in the transcriptional regulation of the specific stage of converting immature neurons into final maturation in adult neurogenesis. Although Sox11 does not show colocalization with Npas3 in the adult mouse hippocampus, they are both expressed in Dcx-positive cells. This suggests that they might have the same temporal and spatial roles in the process of adult neurogenesis.

In the analysis of relative fold change in gene expression for different time points, several genes responsible for adult and developmental neurogenesis and psychiatric disease are differentially expressed by more than 2 fold after over-expression of SOX11. The fold changes of several genes, like CYP39A1, TUBB3, and FILIP, are increased before 24 h , but significantly decrease after 48 h . These results are consistent with the possibility that SOX11 might be a part of a special transcriptional
regulatory network. Other factors, which depress gene expression, may also be activated by the overexpression of SOX1 and together with SOX11 might function as a network to control the expression of pivotal genes in different stage of neurogenesis.

SOX11 may be regulated by several different mechanisms. These include binding to the promoter region directly or through the alteration of local chromatin states (Pevny and Lovell-Badge, 1997). These hypotheses are consistent with the finding that clusters of genes are regulated by SOX11. At least two clusters of SOX11 targets exist, located on chromosomes 6 and 19. And it might be the case that gene duplication events in these clusters have produced multiple SOX11-regulated genes. This could explain the activation of that SOX11 target genes at different time points.

The presence of non-histone/zinc finger genes in Table 6.3 suggests that SOX11 exerts its control over the region through indirect means. It has been previously suggested that SOX genes can act by altering chromatin conformation (Wilson and Koopman, 2002). This may be compatible with a regulatory model whereby all genes within a given 'loop' of chromosomal DNA are affected by the local chromatin state and its control. The zinc finger genes are often transcription factors themselves while the histone genes regulate chromatin state; together these targets may be responsible for a co-ordinated programme of genome regulation promoting neuronal fate commitment and neuronal gene expression.

Recent genome-wide association studies in schizophrenia have identified the strongest susceptibility signal over the chromosome 6 cluster (Purcell et al., 2009; Shi et al., 2009; Stefansson et al., 2009). The genes on chromosome 6 involved in schizophrenia are not yet identified and it is a possibility that the association signal is due to the involvement of SOX11.

CHAPTER SEVEN

7 Discussion

In this thesis I have described experiments designed to study the biological functions of NPAS3 and other transcription factors in the hope that the results would help our understanding of its role in mental illness.

In order to pinpoint the location of NPAS3 activity in the brain and identify the biological processes NPAS3 regulates relevant to mental illness, I carried out Immunofluorescence on mouse brain sections and microarrays of NPAS3 overexpressing cell lines.

Strong Npas3 expression was seen in the hippocampal subgranular zone - the site of adult neurogenesis. It is found to be colocalised with Dcx, not other neurogenesis makers, in the dentate gyrus. NPAS3 and the SOX family of transcription factors shared many target genes suggesting overlapping neuro-developmental roles. Glycolytic and hypoxia-response genes were significantly enriched in the set of NPAS3 down-regulated genes. Additionally, in the circadian condition, NPAS3 activity was shown to be sensitive to circadian time-point and protein truncation.

Here, in the discussion chapter, I want to talk about the methods used, the implication of the findings and limitation of this work and future plan.

7.1 Why a HEK293 cell line was used in my microarray studies

The use of an over-expression model in the human epithelial kidney HEK293 cell line may not fully represent a transcription factor's role in a neuronal context but I believe that, in addition to the convergence of transcriptional and metabolic findings discussed below, three observations suggest the data are biologically relevant. Firstly, there is a consistency of target gene sets between different transcription factors, which suggests technical quality and biological relevance. Our microarray data matched the evolutionary distance between the SOX genes. For example, closely related SOX D members (SOX5 and SOX6) showed more internal overlap that with SOX E members (SOX9 and SOX10). If the data in HEK293 cells were just artefacts, these would not be expected. Secondly, the neuronal-exclusivity, or enrichment in comparison to kidney, of many up-regulated NPAS3/SOX targets such as $V G F$, NEFH, CHGA, GALR2, GADD45B, and VASN suggests that the HEK293 cellular phenotype does not preclude the expression of CNS genes. Indeed, there is some speculation (http://www.fda.gov/ohrms/dockets/ac/01/transcripts/3750t1_01.pdf) from the laboratory that originally derived the cell line in 1973 that HEK293 cells might actually be of neuronal origin because of the expression of many neuronal markers (including NEFH mentioned above) and because neuronal cells are readily transformed by the adenovirus 5 used. Thirdly, as our experiments involve transfecting a gene of interest and then analyzing the expression profile, the behaviour of the cell itself is not of interest. It is well known that HEK293 cell is a particularly good model for this kind of experiment (Malagon et al., 2009; Tominaga, 2010).

7.2 Why not use a stem cell model to look at the neurodevelopmental role of NPAS3?

Human adult neuronal stem cells originated from hippocampus might be a good cell model to clarify the change in adult hippocampal neurogenesis in response to NPAS3 or SOX11. However, the progeny of stem cell division that normally undergo a strictly limited number of replication cycles in vitro and the efficiency of neurosphere transfection are very low (Doetsch et al., 2002). The small number of cells makes the synthesis of microarray probe very difficult. Therefore, it is very difficult to obtain a set of labelled cRNA with high RIN value from neural stem cell.

Furthermore, the gene expression environment provided by human neuronal stem cells is still quite different from in vivo, as neural stem cells change properties in culture. The neurosphere-derived cells do not behave as stem cells when transplanted back into the brain (Marshall et al., 2006). Based on all these reasons, HEK293 cells were chosen to be used in our studies. The approach offers a simple, high-throughput and reproducible analysis of transcriptional activity

7.3 NPAS3 interacts with several SOX members

Doublecortin (Dcx) is a neurogenesis marker which is expressed in newly formed neurons between the timing of their birth and final maturation (Brown et al., 2003). Sox11 is strictly expressed in Dcx-expressing, non-committed precursors and immature cells in the neurogenic area of adult brain, but not with Sox2-expressiong cells (Haslinger et al., 2009). In this study, Npas3 was also found to be colocalised with Dcx in cells with a differentiating morphology in the adult mouse hippocampus. Expression patterns of NPAS3 and SOX11 in the Dcx-expressing cells suggest that these two factors may exert their function during the same stage of neurogenesis.

SOX D and SOX E members are involved in the regulation of the later stage of adult neuogenesis. SOX5 is involved in the regulation of neurogenesis by controlling cell cycle progression in neural progenitors (Martinez-Morales et al., 2010). Another SOX gene studied, SOX9, has been shown to be important for differentiation of SVZ stem cell into neurons through miR-124 mediation (Cheng et al., 2009). In addition, mRNA of SOX10, a highly similar transcriptional factor to SOX9, was reduced in the hippocampus and anterior cingulated cortex of schizophrenia patients (Dracheva et al., 2006).

Based on this information, I hypothesise that SOXD, SOXE, SOX11 and NPAS3 exert their functions at similar timing of neurogenesis, probably after the birth of newly formed neurons and during their final maturation. As transcriptional regulators, whether there are any interactions between these genes. Thus, microarray studies were carried out to investigate the overlaps of the regulatory profile of these
transcription factors. We demonstrated that NPAS3 participates in a neurodevelopmental regulatory network overlapping and directly interacting with the SOX transcription factor family. The identification of multiple targets of these transcription factors should clarify their regulatory roles in embryonic and adult neurogenesis - processes that seem to correlate with the risk of depression and psychosis (Kempermann et al., 2008). We propose that the overlap between NPAS3 and SOX5/6 target genes may reflect their activities downstream of the proliferative transcriptional stage, perhaps at the differentiation and maturation stages.

7.4 Altered metabolite levels in brain tissue from Npas3 knockout mice

We collaborated with Lynsey MacIntyre and Dr. David Watson at Strathclyde University and Dr. Steven Clapcote at Leeds University to investigate metabolic changes in the brain of Npas3 (-/-) mice using high-resolution mass spectrometrybased metabonomic analysis. This work is not directly part of my thesis - it is included in a collaborative paper submitted for publication on which I am joint first author (Sha, submitted) - but produced data that are highly relevant to my microarray analysis which I will discuss now.

Four half-brains from homozygote knockout (KO) and four half-brains from wildtype littermates were homogenised and extracted using solvents and then separated and identified using a Finnigan LTQ-Orbitrap fitted with a Surveyor HPLC pump. Many cellular metabolites showed changed levels in the knockout brain tissue. Decreased levels of dihydroxyacetone phosphate/glycerone phosphate and octulose-1,8-bisphosphate in the KO (6% and 5% of wild-type levels, respectively) and increased levels of NAD^{+}, cystathione and dTDP-glucose/galactose (12.4-, 3.7- and 3.4-fold increases, respectively) were found in this study (Appendix table S6 a-d).

It is very interesting that there is a large (over 12-fold) increase in the oxidised form of the coenzyme nicotinamide adenine dinucleotide $\left(\mathrm{NAD}^{+}\right)$. This may indicate a slow-down in glycolysis rate (which produces the reduced form, NADH) or abnormally oxidative conditions in the cell. UDP-glucose/galactose, were increased
in knockout brain (TDP-glucose/-galactose level changes might be similarly explained), which indicates that ineffective glycolysis is possibly resulting in glucose build-up and storage as glycogen. In the same way, the altered concentrations of Sedoheptulose and Octulose-1,8-bisphosphate may indicate that ineffective glycolysis is impacting on the pentose phosphate pathway which commences with Glucose-6-phosphate. The decreases in Fructose 1,6-bisphosphate and Dihydroxyacetone Phosphate (DHAP) directly suggest glycolysis abnormalities. Further speculation indicated that there may be a direct link between DHAP decrease and the observed increase in another metabolite, Glycerol-3-Phosphate (G-3-P). To recycle NADH to NAD^{+}while simultaneously transferring the reducing power to the oxidative phosphorylation process within the interior of the mitochondrion, the glycerol-3-phosphate shuttle is employed at the outer mitochondrial membrane. This converts DHAP and NADH into G-3-P and NAD ${ }^{+}$, catalysed by cytosolic G-3-P Dehydrogenase (GPD1); with the reverse process catalysed by mitochondrial GPD2 generating reduced FADH within the mitochondrial matrix for subsequent energy production. A decrease in the efficiency of the reverse reaction (perhaps due to mitochondrial dysfunction) might contribute to shuttle failure and the altered levels of DHAP, G3P and NAD^{+}observed in knockout brain. Also correlated with low DHAP were reduced levels of lactoyl glutathione which can be formed from DHAP via methylglyoxal.

The transcriptional inhibition of argininosuccinate synthase (ASS1) expression by NPAS3 over-expression was mirrored by significant changes in its substrates Lcitrulline (increased) and aspartate (decreased) in Npas3 knockout mice. ASS1
deficiency causes classic citrullinemia (MIM \#215700) which can present with manic episodes and psychosis in adult patients (Ikeda et al., 2001).

There is a high consistency between the metabolic findings in the NPAS3 overexpression cells (microarray analysis) and knockout mouse brain (mass spectrometry analysis). Genes in the glycolysis pathway have been switched off in the NPAS3 overexpressed cells. This implicates that in the Npas3 (-/-) mice brain; the glycolysis pathway might be switched on (activated). In the Npas3 (-/-) mice brain, concentrations of upstream compounds of glucose-6-p are higher than normal condition. But as the genes which control the downstream of glucose-6-p in the glycolysis pathway are activated due the loss of Npas3, the downstream compounds, fructose-1,6-bisP and dihydroxyacetone-p, in the glycolysis pathway are metabolized much more quickly than normal condition.

Pyruvate produced by glycolysis is transported across the inner mitochondrial membrane into the matrix and formed CO_{2} and acetyl-CoA and NADH (Voet, 2006). The acetyl-CoA is the substrate for the TCA cycle (also called Krebs cycle). The enzymes of the TCA cycle are located in the mitochondrial matrix, except the succinate dehydrogenase, which is a part of ComplexII of the inner mitochondria membrane (King et al., 2006). In the Npas3 (-/-) mice brain, concentrations of α Ketoglutarate and Succinate, both are the compounds of TCA cycle, are higher. This implies that the TCA cycle in the mitochondria of brain might be accelerated due to the loss of Npas3. Whether the abnormal energy production from the TCA could affect other aspects of mitochondrial function is not yet determined. Is the abnormal
energy metabolism in the mitochondria is associated with the lack of neurogenesis in the Npas3 (-/-) mice?

However, the metabolic study by the mass spectrometry analysis is based on the whole brain (not just subgranular zone). In a whole organism, the effects of loss of Npas3 might be modified by homeostasis, energy control by other factors etc. Thus, study in the NPAS3 effects in a simple model (autonomous cells) is very necessary.

Figure 7.1 Three metabolic pathways with coincident findings from the transcriptomic and metabonomic analyses.
These were glycolysis, the tricarboxylic acid (Citric acid/Krebb's) cycle and the urea cycle. In each case the enzyme or regulatory protein is listed in italics with transcript fold down-regulation upon NPAS3 over-expression shown in brackets. Heavy black arrows indicate the direction by which metabolite abundance is changed in the knock-out mouse brain. The Glycerol-3-phosphate shuttle uses the interconversion of DHAP and G-3-P to transfer reducing power from cytosolic NADH to mitochondrial FADH_{2}. One interpretation of the metabolic changes in knockout brain invokes a reduction in mitochondrial GPD2 function resulting in reducled shuttle efficiency and the observed directional concentration changes of DHAP, G-3-P and NAD ${ }^{+}$. Emboldened -P indicates Phosphate.

7.5 Comparing my NPAS3 findings with newly published data.

Recently Pieper et al. (Pieper et al., 2010) identified P7C3, an aminopropyl carbazole, which has proneurogenic activity by protecting newborn neurons from apoptosis. Their results are summarised in Figure 7.4 A. Prolonged administration of P7C3 increased Dcx+ neurons in mouse hippocampus. In collaboration with Wang et al., they showed that P7C3 protected mitochondrial membrane integrity, thus preventing apoptosis. An intrinsic pathway leading to apoptosis emanates from mitochondria (Liu et al., 1996; Yang et al., 1997). NPAS3 (-/-) mice were reported with devoid of hippocampal neurogenesis and display malformation and electrophysiological dysfunction of the dentate gyrus (Erbel-Sieler et al., 2004; Pieper et al., 2005) (Figure 7.2 A). Prolonged administration of P7C3 to Npas3 (-/-) mice corrected these deficits by normalising levels of apoptosis of newborn hippocampal neurons (Pieper et al., 2010)

In this PhD project, Thirty-six of the 282 up-regulated genes (corrected hypergeometric p -value $=2.07 \times 10^{-8}$) were either transcription factors or DNAbinding proteins with regulatory function (Figure 7.2 B). Combined with Pieper's finding and our finding of the colocalization with Dcx in the dentate gyrus, we hypothesis that NPAS3 is involved in the regulation of neurogenesis at the stage of maturation and survival.

Glycolysis pathways were disturbed by altering NPAS3 activity. The increased levels of 2-Oxoglutarate/ α-Ketoglutaric acid and Succinate in Kreb's cycle (TCA cycle), which is within mitochondria, were found in Npas (-/-) mouse brains. Linking with
the finding of Pieper et al. that P7C3 acts on deficient mitochondrial function and corrects the lack of hippocampus neurogenesis in Npas (-/-) mouse, I suppose that in the Npas3 (-/-) mice, there might be some connection between neurogenesis and intervention in metabolic pathways, including glycolysis and TCA (Figure 7.2 B).

Figure 7.2 Comparison of my NPAS3 findings with Andrew Pieper's recent result. A: P7C3 increase neurogenesis by protecting new born neurons from apoptosis. P7C3 also can correct the malformation and electrophysiological dysfunction of the dentate gyrus in Npas3 (-/-) mice. B: Several transcription factors and genes involved in neurogenesis were upregulated in NPAS3 overexpression cells. Many genes in glycolysis pathways were also down regulated in NPAS3 overexpressing cells. Compounds involved in glycolysis, TCA cycle (within mitochondria), 'G-3-P shuttle' and Urea cycle are increased in the brain of Npas3 (-/-) mice.

7.6 A link between metabolism and circadian rhythms.

I think it is important to investigate the linkage of metabolic aspect of NPAS3 and effect of circadian rhythms on the regulatory prolife of NPAS3. There is ample experimental evidence suggesting that the circadian clock controls metabolic activity and metabolism feeds back to impinge upon the rhythm (Roenneberg and Merrow, 1999). There is much evidence for a functional link between metabolism and circadian rhythms in the brain. First, certain genes encoding metabolic enzymes and transport systems for energy metabolites are under circadian control, including glycogen phosphorylase (Harley and Rusak, 1993; Harley et al., 2001), cytochrome oxidase, lactate dehydrogenase (Rutter et al., 2001) and the monocarboxylate transporter 2 (MCT2). Secondly, glucose uptake in the SCN and other brain areas fluctuates in a circadian rhythm (Newman and Hospod, 1986; Schwartz and Gainer, 1977; Shibata and Moore, 1988). Finally, the concentration of ATP exhibits marked circadian fluctuation (Yamazaki et al., 1994).

Astrocytes can regulate the balance between neuronal activity and energy substrate uptake and utilization at the cellular level (Bergles and Jahr, 1998). Magistretti and Pellerin developed a model to explain how neural activity induces glucose uptake and glycolysis in astrocytes (Figure 7.3). Glutamate, which is from neuronal activity, can be absorbed by astrocytes via glutamate transporters and with concomitant $\mathrm{Na}+$ transmission. Increased $\mathrm{Na}+$ concentrations in the cell activates the astrocytic $\mathrm{Na}+/ \mathrm{K}+-$ ATPase, which can further activate glucose uptake and glycolysis (Pellerin and Magistretti, 1994; Pellerin and Magistretti, 1997). Lactate, the glycolysis product, is shuttled into neurons through two monocarboxylate transporters MCT1
and MCT2 to provide energy for these active neurons (Pellerin et al., 1998). Strikingly, it was reported that the expression of a fly MCT-like gene is in a circadian rhythm in the brain (Claridge-Chang et al., 2001)

Figure 7.3 Model for electrical activity-induced change in neuronal redox status. An increase in synaptic glutamate stimulates glycolytic flux and lactate export in astrocytes. The monocarboxylate transporter, MCT2, facilitates neuronal uptake of lactate, which increases the NADH:NAD ratio via the lactate dehydrogenase (LDH) reaction. Adapted from (Magistretti and Pellerin, 1999).

The energy metabolites induced by neuronal activity possibly feed back on to the circadian rhythm. This was supported by two observations: first, Rats injected with 2-DG (2-deoxyglucose), which inhibits glucose utilization, have a blocked lightinduced phase shift (Challet et al., 2000; Challet et al., 1999). Second, caloric restriction can entrain the rhythm of peripheral oscillators (Challet et al., 2000; Damiola et al., 2000; Stokkan et al., 2001).

This is related to what we see in our microarray results that genes involved in glycolysis were negatively regulated in cells over-expressing NPAS3. Also disrupted metabolic control, including glycolysis, was discovered in the brains of Npas3 (-/-) mice by mass spectrometry (Sha et al. submitted). The ternary plot results (Figure 5.4 b) also show that FLNPAS3 mainly exerts an inhibitory regulation on the circadian genes at +12 hours after circadian rhythm induction but not after +24 hours. Based on the model developed by Magistretti and Pellerin (Pellerin and Magistretti, 2004), we support the hypothesis that NPAS3 might inhibit the utilization of glucose which then blocks the normal circadian rhythm in the cell. There might be another possibility behind the phenomenon of the altered circadian in the HEK293 cells. Many genes controlling the circadian rhythm are members of the bHLH transcription family and they might have the properties of binding to NPAS3 or NPAS3's partner (such as BMAL)(Nievergelt et al., 2006). Therefore, there is an opportunity for these factors to interact with each other or to sequester common binding partners. These findings not only link psychiatric illness into the cycle composed of neuronal activity, energy metabolism and circadian rhythm, but also suggest the underlying mechanism at the molecular level.

7.7 Limitations of my work and Future directions worthy of study

This study of disease gene function in cell and animal models provides valuable clues to the understanding of the pathology of psychiatric illness. However, confirmation of these findings in patients will be necessary. NPAS3-mediated changes in metabolic activity may have a direct impact on brain imaging techniques such as functional magnetic resonance imaging or positron emission tomography that are sensitive to glucose and oxygen consumption. In the context of psychiatric patient studies, such imaging data may be a reflection of primary metabolic failures rather than the intended indirect measurement of regional neuronal activity. In my PhD project, this kind of experiments can not be carried out due to the limited time and funding.

Our study suggests that many NPAS3 regulated genes are involved in adult neurogenesis. Disturbance in the metabolic pathways can also affect the cell growth. Investigation of the roles of NPAS3 and SOX members in adult neural stem cells is an indispensable stage to understand and characterise how these genes contribute adult neurogenesis. Although we tried to isolate primary mouse hippocampus progenitor cells and purchased human hippocampus stem cell from European Collection of Cell Cultures (ECACC), functional studies on these models were not successful due to limited time.

7.8 Relating our observations to the known biology of psychiatric disorders

Although metabolic disturbance, including weight gain, insulin sensitivity and increased risk of diabetes (Obesity, 2004), is often found in psychiatric patients, this metabolic syndrome has often been attributed to side effects of the medical treatments (such as typical and atypical antipsychotic drugs) rather than inherent deficits. Several genes involved in glycolysis do appear to be involved in the response to drug therapies for psychiatric disorders. A gene expression study of lithium-regulated transcriptional changes on mice brain reveals that ALDOC was one of the top up-regulated genes (McQuillin et al., 2007). Olanzapine, one of the antipsychotic drugs, has been shown to increase ALDOA, ENO1, ENO2, PGAM1 and GAPDH protein expression (Ma et al., 2009a).

However, inherent vulnerability also contributes to metabolic disturbance in psychiatric diagnosis (van Winkel et al., 2008). Accumulating evidence suggests that glycolytic dysfunction (Martins-de-Souza et al.), mitochondrial failure, and oxidative stress (Do et al., 2009) contribute to disturbed metabolism in schizophrenia and bipolar disorder. Significant changes in multiple glycolytic enzyme levels were identified in peripheral blood monocytes of schizophrenia patients who were receiving no treatment in a recent proteomic analysis (Herberth et al., ; Herberth et al., 2010). My results show that metabolic pathways, including glycolysis, are disturbed by NPAS3. These NPAS3-mediated metabolic changes support the view that inherent deficits may also contribute to metabolic dysregulation.

It is still not clear whether risk of psychiatric illness contributed by NPAS3 is through deficits in the process of neurogenesis or metabolic regulation, or both are required for full expression of illness. We suggest that NPAS3 metabolism defects might have a particularly detrimental effect on labile new neurons produced in the fluctuating perfusion conditions present in the vascularised neurogenic niche (Nikolova et al., 2007; Palmer et al., 2000; Pereira et al., 2007). Hence, the therapeutic control of metabolism in mental illness may be a promising route for future exploration.

Reference:

Abi-Dargham, A., J. Rodenhiser, D. Printz, Y. Zea-Ponce, R. Gil, L.S. Kegeles, R. Weiss, T.B. Cooper, J.J. Mann, R.L. Van Heertum, J.M. Gorman, and M. Laruelle. 2000. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci U S A. 97: 8104-8109.
Abi-Dargham, A., E. van de Giessen, M. Slifstein, L.S. Kegeles, and M. Laruelle. 2009. Baseline and amphetamine-stimulated dopamine activity are related in drug-naive schizophrenic subjects. Biol Psychiatry. 65: 10911093.

Adkins, D.E., K. Aberg, J.L. McClay, J. Bukszar, Z. Zhao, P. Jia, T.S. Stroup, D. Perkins, J.P. McEvoy, J.A. Lieberman, P.F. Sullivan, and E.J. van den Oord. Genomewide pharmacogenomic study of metabolic side effects to antipsychotic drugs. Mol Psychiatry.
Adkins, D.E., K. Aberg, J.L. McClay, J. Bukszar, Z. Zhao, P. Jia, T.S. Stroup, D. Perkins, J.P. McEvoy, J.A. Lieberman, P.F. Sullivan, and E.J. van den Oord. 2010. Genomewide pharmacogenomic study of metabolic side effects to antipsychotic drugs. Mol Psychiatry.
Adrien, J. 2002. Neurobiological bases for the relation between sleep and depression. Sleep Med Rev. 6: 341-351.
Altar, C.A., M.P. Vawter, and S.D. Ginsberg. 2009. Target identification for CNS diseases by transcriptional profiling. Neuropsychopharmacology. 34: 18-54.
Altshuler, D.and J.N. Hirschhorn. 1999. Upsetting the balance: VGF and the regulation of body weight. Neuron. 23: 415-417.
Arguello, P.A.and J.A. Gogos. 2008. A signaling pathway AKTing up in schizophrenia. J Clin Invest. 118: 2018-2021.
Ashby, F.G., A.M. Isen, and A.U. Turken. 1999. A neuropsychological theory of positive affect and its influence on cognition. Psychol Rev. 106: 529-550.
Axell, M.Z., S. Zlateva, and M. Curtis. 2009. "A method for rapid derivation and propagation of neural progenitors from human embryonic stem cells". J Neurosci Methods.
Azim, E., D. Jabaudon, R.M. Fame, and J.D. Macklis. 2009. SOX6 controls dorsal progenitor identity and interneuron diversity during neocortical development. Nat Neurosci.
Azuma, T., S. Ao, Y. Saito, K. Yano, N. Seki, H. Wakao, Y. Masuho, and M. Muramatsu. 1999. Human SOX11, an upregulated gene during the neural differentiation, has a long 3^{\prime} untranslated region. DNA Res. 6: 357-360.
Badner, J.A.and E.S. Gershon. 2002. Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry. 7: 405-411.
Balsalobre, A., F. Damiola, and U. Schibler. 1998. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 93: 929-937.
Barbano, M.F.and M. Cador. 2007. Opioids for hedonic experience and dopamine to get ready for it. Psychopharmacology (Berl). 191: 497-506.

Bartolomucci, A., G. La Corte, R. Possenti, V. Locatelli, A.E. Rigamonti, A. Torsello, E. Bresciani, I. Bulgarelli, R. Rizzi, F. Pavone, F.R. D'Amato, C. Severini, G. Mignogna, A. Giorgi, M.E. Schinina, G. Elia, C. Brancia, G.L. Ferri, R. Conti, B. Ciani, T. Pascucci, G. Dell'Omo, E.E. Muller, A. Levi, and A. Moles. 2006. TLQP-21, a VGF-derived peptide, increases energy expenditure and prevents the early phase of diet-induced obesity. Proc Natl Acad Sci U S A. 103: 14584-14589.
Bartolomucci, A., G.M. Pasinetti, and S.R. Salton. 2010. Granins as diseasebiomarkers: translational potential for psychiatric and neurological disorders. Neuroscience. 170: 289-297.
Bartolomucci, A., R. Possenti, A. Levi, F. Pavone, and A. Moles. 2007. The role of the vgf gene and VGF-derived peptides in nutrition and metabolism. Genes Nutr. 2: 169-180.
Bass, N.J., S.R. Datta, A. McQuillin, V. Puri, K. Choudhury, S. Thirumalai, J. Lawrence, D. Quested, J. Pimm, D. Curtis, and H.M. Gurling. 2009. Evidence for the association of the DAOA (G72) gene with schizophrenia and bipolar disorder but not for the association of the DAO gene with schizophrenia. Behav Brain Funct. 5: 28.
Bassett, A.S., C.R. Marshall, A.C. Lionel, E.W. Chow, and S.W. Scherer. 2008. Copy number variations and risk for schizophrenia in 22q11.2 deletion syndrome. Hum Mol Genet. 17: 4045-4053.
Bauer, M.S.and L. Mitchner. 2004. What is a "mood stabilizer"? An evidencebased response. Am J Psychiatry. 161: 3-18.
Baum, A.E., N. Akula, M. Cabanero, I. Cardona, W. Corona, B. Klemens, T.G. Schulze, S. Cichon, M. Rietschel, M.M. Nothen, A. Georgi, J. Schumacher, M. Schwarz, R. Abou Jamra, S. Hofels, P. Propping, J. Satagopan, S.D. Detera-Wadleigh, J. Hardy, and F.J. McMahon. 2008. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry. 13: 197-207.
Belvindrah, R., G. Rougon, and G. Chazal. 2002. Increased neurogenesis in adult mCD24-deficient mice. J Neurosci. 22: 3594-3607.
Benedetti, F., A. Serretti, C. Colombo, B. Barbini, C. Lorenzi, E. Campori, and E. Smeraldi. 2003. Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet B Neuropsychiatr Genet. 123B: 23-26.
Benita, Y., H. Kikuchi, A.D. Smith, M.Q. Zhang, D.C. Chung, and R.J. Xavier. 2009. An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res. 37: 4587-4602.
Bergles, D.E.and C.E. Jahr. 1998. Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J Neurosci. 18: 7709-7716.
Bergsland, M., M. Werme, M. Malewicz, T. Perlmann, and J. Muhr. 2006. The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes Dev. 20: 3475-3486.
Berrettini, W. 2003. Evidence for shared susceptibility in bipolar disorder and schizophrenia. Am J Med Genet C Semin Med Genet. 123C: 59-64.

Bhattaram, P., A. Penzo-Mendez, E. Sock, C. Colmenares, K.J. Kaneko, A. Vassilev, M.L. Depamphilis, M. Wegner, and V. Lefebvre. 2010. Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors. Nat Commun. 1: 9.
Bhugra, D. 2005. The global prevalence of schizophrenia. PLoS Med. 2: e151; quiz e175.
Birkhofer, A., P. Alger, G. Schmid, and H. Forstl. 2007. [The cardiovascular risk of schizophrenic patients]. Neuropsychiatr. 21: 261-266.
Blackwood, D.H.and W.J. Muir. 2004. Clinical phenotypes associated with DISC1, a candidate gene for schizophrenia. Neurotox Res. 6: 35-41.
Bobos, M., P. Hytiroglou, I. Kostopoulos, G. Karkavelas, and C.S. Papadimitriou. 2006. Immunohistochemical distinction between merkel cell carcinoma and small cell carcinoma of the lung. Am J Dermatopathol. 28: 99-104.
Bonni, A., D.D. Ginty, H. Dudek, and M.E. Greenberg. 1995. Serine 133phosphorylated CREB induces transcription via a cooperative mechanism that may confer specificity to neurotrophin signals. Mol Cell Neurosci. 6: 168-183.
Bosco, G., A. Ionadi, S. Panico, F. Faralli, R. Gagliardi, P. Data, and J.P. Mortola. 2003. Effects of hypoxia on the circadian patterns in men. High Alt Med Biol. 4: 305-318.
Boulay, D., O. Bergis, P. Avenet, and G. Griebel. 2010. The glycine transporter1 inhibitor SSR103800 displays a selective and specific antipsychotic-like profile in normal and transgenic mice. Neuropsychopharmacology. 35: 416-427.
Bowles, J., G. Schepers, and P. Koopman. 2000. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol. 227: 239-255.
Brinton, R.D. 2008. Estrogen regulation of glucose metabolism and mitochondrial function: therapeutic implications for prevention of Alzheimer's disease. Adv Drug Deliv Rev. 60: 1504-1511.
Broome, M.R., J.B. Woolley, P. Tabraham, L.C. Johns, E. Bramon, G.K. Murray, C. Pariante, P.K. McGuire, and R.M. Murray. 2005. What causes the onset of psychosis? Schizophr Res. 79: 23-34.
Brown, J.P., S. Couillard-Despres, C.M. Cooper-Kuhn, J. Winkler, L. Aigner, and H.G. Kuhn. 2003. Transient expression of doublecortin during adult neurogenesis. J Comp Neurol. 467: 1-10.
Brown, S., H. Inskip, and B. Barraclough. 2000. Causes of the excess mortality of schizophrenia. Br J Psychiatry. 177: 212-217.
Brummett, B.H., A.D. Krystal, A. Ashley-Koch, C.M. Kuhn, S. Zuchner, I.C. Siegler, J.C. Barefoot, E.L. Ballard, L.P. Gwyther, and R.B. Williams. 2007. Sleep quality varies as a function of 5 -HTTLPR genotype and stress. Psychosom Med. 69: 621-624.
Brune, M., M. Abdel-Hamid, C. Lehmkamper, and C. Sonntag. 2007. Mental state attribution, neurocognitive functioning, and psychopathology: what predicts poor social competence in schizophrenia best? Schizophr Res. 92: 151-159.

Brunskill, E.W., L.A. Ehrman, M.T. Williams, J. Klanke, D. Hammer, T.L. Schaefer, R. Sah, G.W. Dorn, 2nd, S.S. Potter, and C.V. Vorhees. 2005. Abnormal neurodevelopment, neurosignaling and behaviour in Npas3deficient mice. Eur J Neurosci. 22: 1265-1276.
Brunskill, E.W., D.P. Witte, A.B. Shreiner, and S.S. Potter. 1999. Characterization of npas3, a novel basic helix-loop-helix PAS gene expressed in the developing mouse nervous system. Mech Dev. 88: 237241.

Bylund, M., E. Andersson, B.G. Novitch, and J. Muhr. 2003. Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat Neurosci. 6: 11621168.

Byun, E., S.J. Caillier, X. Montalban, P. Villoslada, O. Fernandez, D. Brassat, M. Comabella, J. Wang, L.F. Barcellos, S.E. Baranzini, and J.R. Oksenberg. 2008. Genome-wide pharmacogenomic analysis of the response to interferon beta therapy in multiple sclerosis. Arch Neurol. 65: 337-344.
Cahoy, J.D., B. Emery, A. Kaushal, L.C. Foo, J.L. Zamanian, K.S. Christopherson, Y. Xing, J.L. Lubischer, P.A. Krieg, S.A. Krupenko, W.J. Thompson, and B.A. Barres. 2008. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 28: 264-278.
Calabrese, J.R., C.L. Bowden, G.S. Sachs, J.A. Ascher, E. Monaghan, and G.D. Rudd. 1999. A double-blind placebo-controlled study of lamotrigine monotherapy in outpatients with bipolar I depression. Lamictal 602 Study Group. J Clin Psychiatry. 60: 79-88.
Calaora, V., G. Chazal, P.J. Nielsen, G. Rougon, and H. Moreau. 1996. mCD24 expression in the developing mouse brain and in zones of secondary neurogenesis in the adult. Neuroscience. 73: 581-594.
Cannon, M., A. Caspi, T.E. Moffitt, H. Harrington, A. Taylor, R.M. Murray, and R. Poulton. 2002. Evidence for early-childhood, pan-developmental impairment specific to schizophreniform disorder: results from a longitudinal birth cohort. Arch Gen Psychiatry. 59: 449-456.
Cardno, A.G.and P. McGuffin. 2006. Genetics and delusional disorder. Behav Sci Law. 24: 257-276.
Carter, C.S., W. Perlstein, R. Ganguli, J. Brar, M. Mintun, and J.D. Cohen. 1998. Functional hypofrontality and working memory dysfunction in schizophrenia. Am J Psychiatry. 155: 1285-1287.
Challet, E., D.E. Kolker, and F.W. Turek. 2000. Metabolic influences on circadian rhythmicity in Siberian and Syrian hamsters exposed to long photoperiods. J Neuroendocrinol. 12: 69-78.
Challet, E., S. Losee-Olson, and F.W. Turek. 1999. Reduced glucose availability attenuates circadian responses to light in mice. Am J Physiol. 276: R1063-1070.
Chaudhary, J.and M.K. Skinner. 1999. Basic helix-loop-helix proteins can act at the E-box within the serum response element of the c-fos promoter to influence hormone-induced promoter activation in Sertoli cells. Mol Endocrinol. 13: 774-786.

Chen, Z.Y., E.M. Battinelli, R.W. Hendriks, J.F. Powell, H. Middleton-Price, K.B. Sims, X.O. Breakefield, and I.W. Craig. 1993. Norrie disease gene: characterization of deletions and possible function. Genomics. 16: 533535.

Cheng, L.C., E. Pastrana, M. Tavazoie, and F. Doetsch. 2009. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci. 12: 399-408.
Cheung, M., M. Abu-Elmagd, H. Clevers, and P.J. Scotting. 2000. Roles of Sox4 in central nervous system development. Brain Res Mol Brain Res. 79: 180-191.
Cheung, M.and J. Briscoe. 2003. Neural crest development is regulated by the transcription factor Sox9. Development. 130: 5681-5693.
Chi, J.T., Z. Wang, D.S. Nuyten, E.H. Rodriguez, M.E. Schaner, A. Salim, Y. Wang, G.B. Kristensen, A. Helland, A.L. Borresen-Dale, A. Giaccia, M.T. Longaker, T. Hastie, G.P. Yang, M.J. van de Vijver, and P.O. Brown. 2006. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med. 3: e47.
Christoforou, A., S. Le Hellard, P.A. Thomson, S.W. Morris, A. Tenesa, B.S. Pickard, N.R. Wray, W.J. Muir, D.H. Blackwood, D.J. Porteous, and K.L. Evans. 2007. Association analysis of the chromosome 4p15-p16 candidate region for bipolar disorder and schizophrenia. Mol Psychiatry. 12: 1011-1025.
Cirelli, C.and G. Tononi. 2000. Gene expression in the brain across the sleepwaking cycle. Brain Res. 885: 303-321.
Claridge-Chang, A., H. Wijnen, F. Naef, C. Boothroyd, N. Rajewsky, and M.W. Young. 2001. Circadian regulation of gene expression systems in the Drosophila head. Neuron. 32: 657-671.
Colter, N., S. Battal, T.J. Crow, E.C. Johnstone, R. Brown, and C. Bruton. 1987. White matter reduction in the parahippocampal gyrus of patients with schizophrenia. Arch Gen Psychiatry. 44: 1023.
Comabella, M., D.W. Craig, M. Camina-Tato, C. Morcillo, C. Lopez, A. Navarro, J. Rio, X. Montalban, and R. Martin. 2008. Identification of a novel risk locus for multiple sclerosis at $13 q 31.3$ by a pooled genomewide scan of $\mathbf{5 0 0 , 0 0 0}$ single nucleotide polymorphisms. PLoS One. 3: e3490.
Connor, F., E. Wright, P. Denny, P. Koopman, and A. Ashworth. 1995. The Sryrelated HMG box-containing gene Sox6 is expressed in the adult testis and developing nervous system of the mouse. Nucleic Acids Res. 23: 3365-3372.
Coon, H., S. Jensen, J. Holik, M. Hoff, M. Myles-Worsley, F. Reimherr, P. Wender, M. Waldo, R. Freedman, M. Leppert, and et al. 1994. Genomic scan for genes predisposing to schizophrenia. Am J Med Genet. 54: 59-71.
Corcoran, C., E. Walker, R. Huot, V. Mittal, K. Tessner, L. Kestler, and D. Malaspina. 2003. The stress cascade and schizophrenia: etiology and onset. Schizophr Bull. 29: 671-692.
Corvin, A.P., D.W. Morris, K. McGhee, S. Schwaiger, P. Scully, J. Quinn, D. Meagher, D.S. Clair, J.L. Waddington, and M. Gill. 2004. Confirmation
and refinement of an 'at-risk' haplotype for schizophrenia suggests the EST cluster, Hs.97362, as a potential susceptibility gene at the Neuregulin-1 locus. Mol Psychiatry. 9: 208-213.
Craddock, N.and L. Forty. 2006. Genetics of affective (mood) disorders. Eur J Hum Genet. 14: 660-668.
Creese, I., D.R. Burt, and S.H. Snyder. 1976. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science. 192: 481-483.
Crews, S.T. 1998. Control of cell lineage-specific development and transcription by bHLH-PAS proteins. Genes Dev. 12: 607-620.
Crews, S.T., J.B. Thomas, and C.S. Goodman. 1988. The Drosophila singleminded gene encodes a nuclear protein with sequence similarity to the per gene product. Cell. 52: 143-151.
Curran, C., N. Byrappa, and A. McBride. 2004. Stimulant psychosis: systematic review. Br J Psychiatry. 185: 196-204.
D'Arcangelo, G., R. Habas, S. Wang, S. Halegoua, and S.R. Salton. 1996. Activation of codependent transcription factors is required for transcriptional induction of the vgf gene by nerve growth factor and Ras. Mol Cell Biol. 16: 4621-4631.
Damiola, F., N. Le Minh, N. Preitner, B. Kornmann, F. Fleury-Olela, and U. Schibler. 2000. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14: 2950-2961.
Datta, S.R., A. McQuillin, M. Rizig, E. Blaveri, S. Thirumalai, G. Kalsi, J. Lawrence, N.J. Bass, V. Puri, K. Choudhury, J. Pimm, C. Crombie, G. Fraser, N. Walker, D. Curtis, M. Zvelebil, A. Pereira, R. Kandaswamy, D. St Clair, and H.M. Gurling. 2010. A threonine to isoleucine missense mutation in the pericentriolar material 1 gene is strongly associated with schizophrenia. Mol Psychiatry. 15: 615-628.
Davis, J.O., J.A. Phelps, and H.S. Bracha. 1995. Prenatal development of monozygotic twins and concordance for schizophrenia. Schizophr Bull. 21: 357-366.
De Luca, V., O. Likhodi, H.H. Van Tol, J.L. Kennedy, and A.H. Wong. 2005. Tryptophan hydroxylase 2 gene expression and promoter polymorphisms in bipolar disorder and schizophrenia. Psychopharmacology (Berl). 183: 378-382.
Denny, P., S. Swift, F. Connor, and A. Ashworth. 1992. An SRY-related gene expressed during spermatogenesis in the mouse encodes a sequencespecific DNA-binding protein. Embo J. 11: 3705-3712.
Dewing, P., C.W. Chiang, K. Sinchak, H. Sim, P.O. Fernagut, S. Kelly, M.F. Chesselet, P.E. Micevych, K.H. Albrecht, V.R. Harley, and E. Vilain. 2006. Direct regulation of adult brain function by the male-specific factor SRY. Curr Biol. 16: 415-420.
Do, K.Q., J.H. Cabungcal, A. Frank, P. Steullet, and M. Cuenod. 2009. Redox dysregulation, neurodevelopment, and schizophrenia. Curr Opin Neurobiol. 19: 220-230.

Doetsch, F., L. Petreanu, I. Caille, J.M. Garcia-Verdugo, and A. Alvarez-Buylla. 2002. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron. 36: 1021-1034.
Dokucu, M.E., L. Yu, and P.H. Taghert. 2005. Lithium- and valproate-induced alterations in circadian locomotor behavior in Drosophila. Neuropsychopharmacology. 30: 2216-2224.
Dolwick, K.M., H.I. Swanson, and C.A. Bradfield. 1993. In vitro analysis of Ah receptor domains involved in ligand-activated DNA recognition. Proc Natl Acad Sci U S A. 90: 8566-8570.
Dracheva, S., K.L. Davis, B. Chin, D.A. Woo, J. Schmeidler, and V. Haroutunian. 2006. Myelin-associated mRNA and protein expression deficits in the anterior cingulate cortex and hippocampus in elderly schizophrenia patients. Neurobiol Dis. 21: 531-540.
Dranovsky, A.and R. Hen. 2007. DISC1 puts the brakes on neurogenesis. Cell. 130: 981-983.
Duan, X., J.H. Chang, S. Ge, R.L. Faulkner, J.Y. Kim, Y. Kitabatake, X.B. Liu, C.H. Yang, J.D. Jordan, D.K. Ma, C.Y. Liu, S. Ganesan, H.J. Cheng, G.L. Ming, B. Lu, and H. Song. 2007. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell. 130: 1146-1158.
Dunham, C.M., E.M. Dioum, J.R. Tuckerman, G. Gonzalez, W.G. Scott, and M.A. Gilles-Gonzalez. 2003. A distal arginine in oxygen-sensing hemePAS domains is essential to ligand binding, signal transduction, and structure. Biochemistry. 42: 7701-7708.
Dy, P., A. Penzo-Mendez, H. Wang, C.E. Pedraza, W.B. Macklin, and V. Lefebvre. 2008. The three SoxC proteins--Sox4, Sox11 and Sox12-exhibit overlapping expression patterns and molecular properties. Nucleic Acids Res. 36: 3101-3117.
Edvardsen, J., S. Torgersen, E. Roysamb, S. Lygren, I. Skre, S. Onstad, and P.A. Oien. 2008. Heritability of bipolar spectrum disorders. Unity or heterogeneity? J Affect Disord. 106: 229-240.
Erbel-Sieler, C., C. Dudley, Y. Zhou, X. Wu, S.J. Estill, T. Han, R. DiazArrastia, E.W. Brunskill, S.S. Potter, and S.L. McKnight. 2004. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors. Proc Natl Acad Sci U S A. 101: 1364813653.

Esslinger, C., H. Walter, P. Kirsch, S. Erk, K. Schnell, C. Arnold, L. Haddad, D. Mier, C. Opitz von Boberfeld, K. Raab, S.H. Witt, M. Rietschel, S. Cichon, and A. Meyer-Lindenberg. 2009. Neural mechanisms of a genome-wide supported psychosis variant. Science. 324: 605.
Fahndrich, E. 1981. Effects of sleep deprivation on depressed patients of different nosological groups. Psychiatry Res. 5: 277-285.
Fallin, M.D., V.K. Lasseter, D. Avramopoulos, K.K. Nicodemus, P.S. Wolyniec, J.A. McGrath, G. Steel, G. Nestadt, K.Y. Liang, R.L. Huganir, D. Valle, and A.E. Pulver. 2005. Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am J Hum Genet. 77: 918-936.

Fan, J.and P. Sklar. 2008. Genetics of bipolar disorder: focus on BDNF Val66Met polymorphism. Novartis Found Symp. 289: 60-72; discussion 72-63, 87-93.
Ferreira, M.A., M.C. O'Donovan, Y.A. Meng, I.R. Jones, D.M. Ruderfer, L. Jones, J. Fan, G. Kirov, R.H. Perlis, E.K. Green, J.W. Smoller, D. Grozeva, J. Stone, I. Nikolov, K. Chambert, M.L. Hamshere, V.L. Nimgaonkar, V. Moskvina, M.E. Thase, S. Caesar, G.S. Sachs, J. Franklin, K. Gordon-Smith, K.G. Ardlie, S.B. Gabriel, C. Fraser, B. Blumenstiel, M. Defelice, G. Breen, M. Gill, D.W. Morris, A. Elkin, W.J. Muir, K.A. McGhee, R. Williamson, D.J. MacIntyre, A.W. MacLean, C.D. St, M. Robinson, M. Van Beck, A.C. Pereira, R. Kandaswamy, A. McQuillin, D.A. Collier, N.J. Bass, A.H. Young, J. Lawrence, I.N. Ferrier, A. Anjorin, A. Farmer, D. Curtis, E.M. Scolnick, P. McGuffin, M.J. Daly, A.P. Corvin, P.A. Holmans, D.H. Blackwood, H.M. Gurling, M.J. Owen, S.M. Purcell, P. Sklar, and N. Craddock. 2008. Collaborative genomewide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet. 40: 1056-1058.
Figlewicz, D.A., A. Krizus, M.G. Martinoli, V. Meininger, M. Dib, G.A. Rouleau, and J.P. Julien. 1994. Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum Mol Genet. 3: 1757-1761.
Finzsch, M., C.C. Stolt, P. Lommes, and M. Wegner. 2008. Sox9 and Sox10 influence survival and migration of oligodendrocyte precursors in the spinal cord by regulating PDGF receptor alpha expression. Development. 135: 637-646.
Forster, E., A. Tielsch, B. Saum, K.H. Weiss, C. Johanssen, D. Graus-Porta, U. Muller, and M. Frotscher. 2002. Reelin, Disabled 1, and beta 1 integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc Natl Acad Sci U S A. 99: 13178-13183.
Franks, R.G.and S.T. Crews. 1994. Transcriptional activation domains of the single-minded bHLH protein are required for CNS midline cell development. Mech Dev. 45: 269-277.
Gage, F.H. 2000. Mammalian neural stem cells. Science. 287: 1433-1438.
Geddes, J.R., S. Burgess, K. Hawton, K. Jamison, and G.M. Goodwin. 2004. Long-term lithium therapy for bipolar disorder: systematic review and meta-analysis of randomized controlled trials. Am J Psychiatry. 161: 217-222.
Gekakis, N., L. Saez, A.M. Delahaye-Brown, M.P. Myers, A. Sehgal, M.W. Young, and C.J. Weitz. 1995. Isolation of timeless by PER protein interaction: defective interaction between timeless protein and longperiod mutant PERL. Science. 270: 811-815.
Gentleman, R.C., V.J. Carey, D.M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry, F. Leisch, C. Li, M. Maechler, A.J. Rossini, G. Sawitzki, C. Smith, G. Smyth, L. Tierney, J.Y. Yang, and J. Zhang. 2004. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5: R80.

Ghorbel, M.T., J.M. Coulson, and D. Murphy. 2003. Cross-talk between hypoxic and circadian pathways: cooperative roles for hypoxia-inducible factor 1alpha and CLOCK in transcriptional activation of the vasopressin gene. Mol Cell Neurosci. 22: 396-404.
Gibson, G.E., K.F. Sheu, and J.P. Blass. 1998. Abnormalities of mitochondrial enzymes in Alzheimer disease. J Neural Transm. 105: 855-870.
Gilles-Gonzalez, M.A.and G. Gonzalez. 2004. Signal transduction by hemecontaining PAS-domain proteins. J Appl Physiol. 96: 774-783.
Goldberg, J.F.and M. Harrow. 2004. Consistency of remission and outcome in bipolar and unipolar mood disorders: a 10-year prospective follow-up. J Affect Disord. 81: 123-131.
Goldner, E.M., L. Hsu, P. Waraich, and J.M. Somers. 2002. Prevalence and incidence studies of schizophrenic disorders: a systematic review of the literature. Can J Psychiatry. 47: 833-843.
Gomez, L., K. Wigg, Y. Feng, E. Kiss, K. Kapornai, Z. Tamas, L. Mayer, I. Baji, G. Daroczi, I. Benak, V.O. Kothenene, E. Dombovari, E. Kaczvinszk, M. Besnyo, J. Gadoros, N. King, J. Szekely, M. Kovacs, A. Vetro, J.L. Kennedy, and C.L. Barr. 2009. G72/G30 (DAOA) and juvenile-onset mood disorders. Am J Med Genet B Neuropsychiatr Genet. 150B: 10071012.

Green, M.F. 2006. Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. J Clin Psychiatry. 67 Suppl 9: 3-8; discussion 36-42.
Greijer, A.E., P. van der Groep, D. Kemming, A. Shvarts, G.L. Semenza, G.A. Meijer, M.A. van de Wiel, J.A. Belien, P.J. van Diest, and E. van der Wall. 2005. Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J Pathol. 206: 291304.

Grote, H.E.and A.J. Hannan. 2007. Regulators of adult neurogenesis in the healthy and diseased brain. Clin Exp Pharmacol Physiol. 34: 533-545.
Gurling, H.M., H. Critchley, S.R. Datta, A. McQuillin, E. Blaveri, S. Thirumalai, J. Pimm, R. Krasucki, G. Kalsi, D. Quested, J. Lawrence, N. Bass, K. Choudhury, V. Puri, O. O'Daly, D. Curtis, D. Blackwood, W. Muir, A.K. Malhotra, R.W. Buchanan, C.D. Good, R.S. Frackowiak, and R.J. Dolan. 2006. Genetic association and brain morphology studies and the chromosome 8 p 22 pericentriolar material 1 (PCM1) gene in susceptibility to schizophrenia. Arch Gen Psychiatry. 63: 844-854.
Hafen, T.and F. Wollnik. 1994. Effect of lithium carbonate on activity level and circadian period in different strains of rats. Pharmacol Biochem Behav. 49: 975-983.
Hakak, Y., J.R. Walker, C. Li, W.H. Wong, K.L. Davis, J.D. Buxbaum, V. Haroutunian, and A.A. Fienberg. 2001. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A. 98: 4746-4751.
Halene, T.B., R.S. Ehrlichman, Y. Liang, E.P. Christian, G.J. Jonak, T.L. Gur, J.A. Blendy, H.C. Dow, E.S. Brodkin, F. Schneider, R.C. Gur, and S.J. Siegel. 2009. Assessment of NMDA receptor NR1 subunit hypofunction in mice as a model for schizophrenia. Genes Brain Behav. 8: 661-675.

Hamada-Kanazawa, M., K. Ishikawa, K. Nomoto, T. Uozumi, Y. Kawai, M. Narahara, and M. Miyake. 2004. Sox6 overexpression causes cellular aggregation and the neuronal differentiation of P19 embryonic carcinoma cells in the absence of retinoic acid. FEBS Lett. 560: 192-198.
Han, Y.and V. Lefebvre. 2008. L-Sox 5 and Sox 6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstream enhancer. Mol Cell Biol. 28: 4999-5013.
Handford, H.A. 1975. Brain hypoxia, minimal brain dysfunction, and schizophrenia. Am J Psychiatry. 132: 192-194.
Hargrave, M., E. Wright, J. Kun, J. Emery, L. Cooper, and P. Koopman. 1997. Expression of the Sox11 gene in mouse embryos suggests roles in neuronal maturation and epithelio-mesenchymal induction. Dev Dyn. 210: 79-86.
Harley, C.and B. Rusak. 1993. Daily variation in active glycogen phosphorylase patches in the molecular layer of rat dentate gyrus. Brain Res. 626: 310317.

Harley, C.W., R.C. Farrell, and B. Rusak. 2001. Daily variation in the distribution of glycogen phosphorylase in the suprachiasmatic nucleus of Syrian hamsters. J Comp Neurol. 435: 249-258.
Harrison, P.J.and M.J. Owen. 2003. Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet. 361: 417-419.
Harvey, A.G. 2008. Sleep and circadian rhythms in bipolar disorder: seeking synchrony, harmony, and regulation. Am J Psychiatry. 165: 820-829.
Haslinger, A., T.J. Schwarz, M. Covic, and D. Chichung Lie. 2009. Expression of Sox11 in adult neurogenic niches suggests a stage-specific role in adult neurogenesis. Eur J Neurosci. 29: 2103-2114.
Heckers, S., D. Goff, D.L. Schacter, C.R. Savage, A.J. Fischman, N.M. Alpert, and S.L. Rauch. 1999. Functional imaging of memory retrieval in deficit vs nondeficit schizophrenia. Arch Gen Psychiatry. 56: 1117-1123.
Hefti, M.H., K.J. Francoijs, S.C. de Vries, R. Dixon, and J. Vervoort. 2004. The PAS fold. A redefinition of the PAS domain based upon structural prediction. Eur J Biochem. 271: 1198-1208.
Heinrich, C., N. Nitta, A. Flubacher, M. Muller, A. Fahrner, M. Kirsch, T. Freiman, F. Suzuki, A. Depaulis, M. Frotscher, and C.A. Haas. 2006. Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J Neurosci. 26: 4701-4713.
Helbig, I., H.C. Mefford, A.J. Sharp, M. Guipponi, M. Fichera, A. Franke, H. Muhle, C. de Kovel, C. Baker, S. von Spiczak, K.L. Kron, I. Steinich, A.A. Kleefuss-Lie, C. Leu, V. Gaus, B. Schmitz, K.M. Klein, P.S. Reif, F. Rosenow, Y. Weber, H. Lerche, F. Zimprich, L. Urak, K. Fuchs, M. Feucht, P. Genton, P. Thomas, F. Visscher, G.J. de Haan, R.S. Moller, H. Hjalgrim, D. Luciano, M. Wittig, M. Nothnagel, C.E. Elger, P. Nurnberg, C. Romano, A. Malafosse, B.P. Koeleman, D. Lindhout, U. Stephani, S. Schreiber, E.E. Eichler, and T. Sander. 2009. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet. 41: 160-162.
Herberth, M., D. Koethe, T.M. Cheng, N.D. Krzyszton, S. Schoeffmann, P.C. Guest, H. Rahmoune, L.W. Harris, L. Kranaster, F.M. Leweke, and S.

Bahn. Impaired glycolytic response in peripheral blood mononuclear cells of first-onset antipsychotic-naive schizophrenia patients. Mol Psychiatry.
Herberth, M., D. Koethe, T.M. Cheng, N.D. Krzyszton, S. Schoeffmann, P.C. Guest, H. Rahmoune, L.W. Harris, L. Kranaster, F.M. Leweke, and S. Bahn. 2010. Impaired glycolytic response in peripheral blood mononuclear cells of first-onset antipsychotic-naive schizophrenia patients. Mol Psychiatry.
Hoffman, A.E., T. Zheng, Y. Ba, and Y. Zhu. 2008. The circadian gene NPAS2, a putative tumor suppressor, is involved in DNA damage response. Mol Cancer Res. 6: 1461-1468.
Hogenesch, J.B., Y.Z. Gu, S. Jain, and C.A. Bradfield. 1998. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci U S A. 95: 54745479.

Hong, S.E., Y.Y. Shugart, D.T. Huang, S.A. Shahwan, P.E. Grant, J.O. Hourihane, N.D. Martin, and C.A. Walsh. 2000. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet. 26: 93-96.
Huang, J., R.H. Perlis, P.H. Lee, A.J. Rush, M. Fava, G.S. Sachs, J. Lieberman, S.P. Hamilton, P. Sullivan, P. Sklar, S. Purcell, and J.W. Smoller. 2010. Cross-disorder genomewide analysis of schizophrenia, bipolar disorder, and depression. Am J Psychiatry. 167: 1254-1263.
Huang, J.T., F.M. Leweke, D. Oxley, L. Wang, N. Harris, D. Koethe, C.W. Gerth, B.M. Nolden, S. Gross, D. Schreiber, B. Reed, and S. Bahn. 2006. Disease biomarkers in cerebrospinal fluid of patients with first-onset psychosis. PLoS Med. 3: e428.
Huang, T.S., G. Grodeland, L. Sleire, M.Y. Wang, G. Kvalheim, and O.D. Laerum. 2009. Induction of circadian rhythm in cultured human mesenchymal stem cells by serum shock and cAMP analogs in vitro. Chronobiol Int. 26: 242-257.
Huang, Z.J., I. Edery, and M. Rosbash. 1993. PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature. 364: 259-262.
Hunsberger, J.G., S.S. Newton, A.H. Bennett, C.H. Duman, D.S. Russell, S.R. Salton, and R.S. Duman. 2007. Antidepressant actions of the exerciseregulated gene VGF. Nat Med. 13: 1476-1482.
Huntley, D., H. Hummerich, D. Smedley, S. Kittivoravitkul, M. McCarthy, P. Little, and M. Sergot. 2003. GANESH: software for customized annotation of genome regions. Genome Res. 13: 2195-2202.
Ikeda, S., M. Yazaki, Y. Takei, T. Ikegami, Y. Hashikura, S. Kawasaki, M. Iwai, K. Kobayashi, and T. Saheki. 2001. Type II (adult onset) citrullinaemia: clinical pictures and the therapeutic effect of liver transplantation. J Neurol Neurosurg Psychiatry. 71: 663-670.
Isaac, D.D.and D.J. Andrew. 1996. Tubulogenesis in Drosophila: a requirement for the trachealess gene product. Genes Dev. 10: 103-117.
ISC. 2008. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature. 455: 237-241.

Jain, S., K.M. Dolwick, J.V. Schmidt, and C.A. Bradfield. 1994. Potent transactivation domains of the Ah receptor and the Ah receptor nuclear translocator map to their carboxyl termini. J Biol Chem. 269: 3151831524.

Jamison, F.K.G.a.K.R. 1990. Manic-Depressive IIIness Vol. "Epidemiology"., Oxford University Press

Jan, Y.N.and L.Y. Jan. 1993. HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell. 75: 827-830.
Jethwa, P.H.and F.J. Ebling. 2008. Role of VGF-derived peptides in the control of food intake, body weight and reproduction. Neuroendocrinology. 88: 80-87.
Jethwa, P.H., A. Warner, K.N. Nilaweera, J.M. Brameld, J.W. Keyte, W.G. Carter, N. Bolton, M. Bruggraber, P.J. Morgan, P. Barrett, and F.J. Ebling. 2007. VGF-derived peptide, TLQP-21, regulates food intake and body weight in Siberian hamsters. Endocrinology. 148: 4044-4055.
Johnsson, A., W. Engelmann, B. Pflug, and W. Klemke. 1983. Period lengthening of human circadian rhythms by lithium carbonate, a prophylactic for depressive disorders. Int J Chronobiol. 8: 129-147.
Kahler, A.K., M.K. Otnaess, K.V. Wirgenes, T. Hansen, E.G. Jonsson, I. Agartz, H. Hall, T. Werge, G. Morken, O. Mors, E. Mellerup, H. Dam, P. Koefod, I. Melle, V.M. Steen, O.A. Andreassen, and S. Djurovic. 2010. Association study of PDE4B gene variants in Scandinavian schizophrenia and bipolar disorder multicenter case-control samples. Am J Med Genet B Neuropsychiatr Genet. 153B: 86-96.
Kamnasaran, D., W.J. Muir, M.A. Ferguson-Smith, and D.W. Cox. 2003. Disruption of the neuronal PAS3 gene in a family affected with schizophrenia. J Med Genet. 40: 325-332.
Karayiorgou, M., M.A. Morris, B. Morrow, R.J. Shprintzen, R. Goldberg, J. Borrow, A. Gos, G. Nestadt, P.S. Wolyniec, V.K. Lasseter, and et al. 1995. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci U S A. 92: 7612-7616.
Karlsson, R.M.and A. Holmes. 2006. Galanin as a modulator of anxiety and depression and a therapeutic target for affective disease. Amino Acids. 31: 231-239.
Kato, T. 2007. Molecular genetics of bipolar disorder and depression. Psychiatry Clin Neurosci. 61: 3-19.
Kato, T.and N. Kato. 2000. Mitochondrial dysfunction in bipolar disorder. Bipolar Disord. 2: 180-190.
Kato, T., S. Takahashi, T. Shioiri, and T. Inubushi. 1992. Brain phosphorous metabolism in depressive disorders detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord. 26: 223-230.
Katsetos, C.D., A. Legido, E. Perentes, and S.J. Mork. 2003. Class III betatubulin isotype: a key cytoskeletal protein at the crossroads of developmental neurobiology and tumor neuropathology. J Child Neurol. 18: 851-866; discussion 867.
Kempermann, G. 2002. Genetic influence on phenotypic differentiation in adult hippocampal neurogenesis. Brain Res Dev Brain Res. 134: 1-12.

Kempermann, G., J. Krebs, and K. Fabel. 2008. The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Curr Opin Psychiatry. 21: 290-295.
Kerjan, G., H. Koizumi, E.B. Han, C.M. Dube, S.N. Djakovic, G.N. Patrick, T.Z. Baram, S.F. Heinemann, and J.G. Gleeson. 2009. Mice lacking doublecortin and doublecortin-like kinase 2 display altered hippocampal neuronal maturation and spontaneous seizures. Proc Natl Acad Sci U S A. 106: 6766-6771.

Kessler, R.C., H.S. Akiskal, M. Ames, H. Birnbaum, P. Greenberg, R.M. Hirschfeld, R. Jin, K.R. Merikangas, G.E. Simon, and P.S. Wang. 2006a. Prevalence and effects of mood disorders on work performance in a nationally representative sample of U.S. workers. Am J Psychiatry. 163: 1561-1568.
Kessler, R.C., H.S. Akiskal, J. Angst, M. Guyer, R.M. Hirschfeld, K.R. Merikangas, and P.E. Stang. 2006b. Validity of the assessment of bipolar spectrum disorders in the WHO CIDI 3.0. J Affect Disord. 96: 259-269.
Kieseppa, T., T. Partonen, J. Haukka, J. Kaprio, and J. Lonnqvist. 2004. High concordance of bipolar I disorder in a nationwide sample of twins. Am J Psychiatry. 161: 1814-1821.
Kim, J., L. Lo, E. Dormand, and D.J. Anderson. 2003. SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron. 38: 17-31.
King, A., M.A. Selak, and E. Gottlieb. 2006. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene. 25: 4675-4682.
Kircher, T.T.and R. Thienel. 2005. Functional brain imaging of symptoms and cognition in schizophrenia. Prog Brain Res. 150: 299-308.
Kirov, G., D. Ivanov, N.M. Williams, A. Preece, I. Nikolov, R. Milev, S. Koleva, A. Dimitrova, D. Toncheva, M.C. O'Donovan, and M.J. Owen. 2004. Strong evidence for association between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia in 488 parent-offspring trios from Bulgaria. Biol Psychiatry. 55: 971-975.
Knable, M.B., E.F. Torrey, M.J. Webster, and J.J. Bartko. 2001. Multivariate analysis of prefrontal cortical data from the Stanley Foundation Neuropathology Consortium. Brain Res Bull. 55: 651-659.
Kohl, Z., M. Kandasamy, B. Winner, R. Aigner, C. Gross, S. Couillard-Despres, U. Bogdahn, L. Aigner, and J. Winkler. 2007. Physical activity fails to rescue hippocampal neurogenesis deficits in the $R 6 / 2$ mouse model of Huntington's disease. Brain Res. 1155: 24-33.
Konradi, C., M. Eaton, M.L. MacDonald, J. Walsh, F.M. Benes, and S. Heckers. 2004. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry. 61: 300-308.
Konradi, C.and S. Heckers. 2003. Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther. 97: 153-179.
Kunugi, H., T. Urushibara, R.M. Murray, S. Nanko, and T. Hirose. 2003. Prenatal underdevelopment and schizophrenia: a case report of monozygotic twins. Psychiatry Clin Neurosci. 57: 271-274.

Kurosawa, N., G.Y. Chen, K. Kadomatsu, S. Ikematsu, S. Sakuma, and T. Muramatsu. 2001. Glypican-2 binds to midkine: the role of glypican-2 in neuronal cell adhesion and neurite outgrowth. Glycoconj J. 18: 499-507.
Kurtz, M.M. 2005. Neurocognitive impairment across the lifespan in schizophrenia: an update. Schizophr Res. 74: 15-26.
Kuteeva, E., T. Hokfelt, T. Wardi, and S.O. Ogren. 2008. Galanin, galanin receptor subtypes and depression-like behaviour. Cell Mol Life Sci. 65: 1854-1863.
Kwan, K.Y., M.M. Lam, Z. Krsnik, Y.I. Kawasawa, V. Lefebvre, and N. Sestan. 2008. SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons. Proc Natl Acad Sci U S A. 105: 16021-16026.
Lahti, A.C., M.A. Weiler, B.A. Tamara Michaelidis, A. Parwani, and C.A. Tamminga. 2001. Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology. 25: 455-467.
Lamont, E.W., D. Legault-Coutu, N. Cermakian, and D.B. Boivin. 2007. The role of circadian clock genes in mental disorders. Dialogues Clin Neurosci. 9: 333-342.
Larsen, J.K., M.L. Lindberg, and B. Skovgaard. 1976. Sleep deprivation as treatment for endogenous depression. Acta Psychiatr Scand. 54: 167-173.
Lavedan, C., L. Licamele, S. Volpi, J. Hamilton, C. Heaton, K. Mack, R. Lannan, A. Thompson, C.D. Wolfgang, and M.H. Polymeropoulos. 2009. Association of the NPAS3 gene and five other loci with response to the antipsychotic iloperidone identified in a whole genome association study. Mol Psychiatry. 14: 804-819.
Lee, M.K.and D.W. Cleveland. 1996. Neuronal intermediate filaments. Annu Rev Neurosci. 19: 187-217.
Lefebvre, V. 2009. The SoxD transcription factors - Sox5, Sox6, and Sox13 - are key cell fate modulators. Int J Biochem Cell Biol.
Lefebvre, V., P. Li, and B. de Crombrugghe. 1998. A new long form of Sox5 (LSox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. Embo J. 17: 5718-5733.
Levesque, B.M., S. Zhou, L. Shan, P. Johnston, Y. Kong, S. Degan, and M.E. Sunday. 2007. NPAS1 regulates branching morphogenesis in embryonic lung. Am J Respir Cell Mol Biol. 36: 427-434.
Lewis, R. 2004. Should cognitive deficit be a diagnostic criterion for schizophrenia? J Psychiatry Neurosci. 29: 102-113.
Li, L., A.C. Hung, and A.G. Porter. 2008. Secretogranin II: a key AP-1regulated protein that mediates neuronal differentiation and protection from nitric oxide-induced apoptosis of neuroblastoma cells. Cell Death Differ. 15: 879-888.
Lieberman, J.A., J.M. Kane, and J. Alvir. 1987. Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology (Berl). 91: 415-433.
Lima, M.M., M.L. Andersen, A.B. Reksidler, A. Silva, A. Zager, S.M. Zanata, M.A. Vital, and S. Tufik. 2008. Blockage of dopaminergic $D(2)$ receptors produces decrease of REM but not of slow wave sleep in rats after REM sleep deprivation. Behav Brain Res. 188: 406-411.

Lisman, J.E., J.T. Coyle, R.W. Green, D.C. Javitt, F.M. Benes, S. Heckers, and A.A. Grace. 2008. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 31: 234-242.
Littlewood, T.D.and G.I. Evan. 1995. Transcription factors 2: helix-loop-helix. Protein Profile. 2: 621-702.
Liu, Q.R., T. Drgon, C. Johnson, D. Walther, J. Hess, and G.R. Uhl. 2006. Addiction molecular genetics: 639,401 SNP whole genome association identifies many "cell adhesion" genes. Am J Med Genet B Neuropsychiatr Genet. 141B: 918-925.
Liu, X., C.N. Kim, J. Yang, R. Jemmerson, and X. Wang. 1996. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 86: 147-157.
Lu, X., B. Ross, M. Sanchez-Alavez, E.P. Zorrilla, and T. Bartfai. 2008. Phenotypic analysis of GalR2 knockout mice in anxiety- and depressionrelated behavioral tests. Neuropeptides. 42: 387-397.
Ma, D., M.K. Chan, H.E. Lockstone, S.R. Pietsch, D.N. Jones, J. Cilia, M.D. Hill, M.J. Robbins, I.M. Benzel, Y. Umrania, P.C. Guest, Y. Levin, P.R. Maycox, and S. Bahn. 2009a. Antipsychotic treatment alters protein expression associated with presynaptic function and nervous system development in rat frontal cortex. J Proteome Res. 8: 3284-3297.
Ma, D.K., M.H. Jang, J.U. Guo, Y. Kitabatake, M.L. Chang, N. Pow-Anpongkul, R.A. Flavell, B. Lu, G.L. Ming, and H. Song. 2009b. Neuronal activityinduced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science. 323: 1074-1077.
Macintyre, G., T. Alford, L. Xiong, G.A. Rouleau, P.G. Tibbo, and D.W. Cox. 2010. Association of NPAS3 exonic variation with schizophrenia. Schizophr Res. 120: 143-149.
Maeno, N., N. Takahashi, S. Saito, X. Ji, R. Ishihara, N. Aoyama, A. Branko, H. Miura, M. Ikeda, T. Suzuki, T. Kitajima, Y. Yamanouchi, Y. Kinoshita, N. Iwata, T. Inada, and N. Ozaki. 2007. Association of SOX10 with schizophrenia in the Japanese population. Psychiatr Genet. 17: 227-231.
Magistretti, P.J.and L. Pellerin. 1999. Astrocytes Couple Synaptic Activity to Glucose Utilization in the Brain. News Physiol Sci. 14: 177-182.
Malagon, M.M., D. Cruz-Garcia, A. Diaz-Ruiz, J.R. Peinado, M.R. Pulido, J. Araujo, S. Garcia-Navarro, F. Gracia-Navarro, J.P. Castano, and R. Vazquez-Martinez. 2009. Identification of novel genes involved in the plasticity of pituitary melanotropes in amphibians. Ann N Y Acad Sci. 1163: 233-240.
Malberg, J.E.and L.M. Monteggia. 2008. VGF, a new player in antidepressant action? Sci Signal. 1: pe19.
Mansour, H.A., J. Wood, T. Logue, K.V. Chowdari, M. Dayal, D.J. Kupfer, T.H. Monk, B. Devlin, and V.L. Nimgaonkar. 2006. Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav. 5: 150-157.
Mao, Y., X. Ge, C.L. Frank, J.M. Madison, A.N. Koehler, M.K. Doud, C. Tassa, E.M. Berry, T. Soda, K.K. Singh, T. Biechele, T.L. Petryshen, R.T. Moon, S.J. Haggarty, and L.H. Tsai. 2009. Disrupted in schizophrenia 1
regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell. 136: 1017-1031.
Marin, O., A. Donella-Deana, A.M. Brunati, S. Fischer, and L.A. Pinna. 1991. Peptides reproducing the phosphoacceptor sites of pp60c-sre as substrates for TPK-IIB, a splenic tyrosine kinase devoid of autophosphorylation activity. J Biol Chem. 266: 17798-17803.
Marino, J.and J. Caballero. 2010. Iloperidone for the treatment of schizophrenia. Ann Pharmacother. 44: 863-870.
Marshall, G.P., 2nd, E.D. Laywell, T. Zheng, D.A. Steindler, and E.W. Scott. 2006. In vitro-derived "neural stem cells" function as neural progenitors without the capacity for self-renewal. Stem Cells. 24: 731-738.
Martinez-Morales, P.L., A.C. Quiroga, J.A. Barbas, and A.V. Morales. 2010. SOX5 controls cell cycle progression in neural progenitors by interfering with the WNT-beta-catenin pathway. EMBO Rep. 11: 466-472.
Martino, T.A., G.Y. Oudit, A.M. Herzenberg, N. Tata, M.M. Koletar, G.M. Kabir, D.D. Belsham, P.H. Backx, M.R. Ralph, and M.J. Sole. 2008. Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. Am J Physiol Regul Integr Comp Physiol. 294: R1675-1683.
Martins-de-Souza, D., G. Maccarrone, T. Wobrock, I. Zerr, P. Gormanns, S. Reckow, P. Falkai, A. Schmitt, and C.W. Turck. Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia. J Psychiatr Res.
Massari, M.E.and C. Murre. 2000. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol. 20: 429-440.
McCarthy, S.E., V. Makarov, G. Kirov, A.M. Addington, J. McClellan, S. Yoon, D.O. Perkins, D.E. Dickel, M. Kusenda, O. Krastoshevsky, V. Krause, R.A. Kumar, D. Grozeva, D. Malhotra, T. Walsh, E.H. Zackai, P. Kaplan, J. Ganesh, I.D. Krantz, N.B. Spinner, P. Roccanova, A. Bhandari, K. Pavon, B. Lakshmi, A. Leotta, J. Kendall, Y.H. Lee, V. Vacic, S. Gary, L.M. Iakoucheva, T.J. Crow, S.L. Christian, J.A. Lieberman, T.S. Stroup, T. Lehtimaki, K. Puura, C. Haldeman-Englert, J. Pearl, M. Goodell, V.L. Willour, P. Derosse, J. Steele, L. Kassem, J. Wolff, N. Chitkara, F.J. McMahon, A.K. Malhotra, J.B. Potash, T.G. Schulze, M.M. Nothen, S. Cichon, M. Rietschel, E. Leibenluft, V. Kustanovich, C.M. Lajonchere, J.S. Sutcliffe, D. Skuse, M. Gill, L. Gallagher, N.R. Mendell, N. Craddock, M.J. Owen, M.C. O'Donovan, T.H. Shaikh, E. Susser, L.E. Delisi, P.F. Sullivan, C.K. Deutsch, J. Rapoport, D.L. Levy, M.C. King, and J. Sebat. 2009. Microduplications of 16 p 11.2 are associated with schizophrenia. Nat Genet. 41: 1223-1227.
McClung, C.A. 2007. Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther. 114: 222-232.
McNamara, P., S.B. Seo, R.D. Rudic, A. Sehgal, D. Chakravarti, and G.A. FitzGerald. 2001. Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell. 105: 877-889.
McQueen, M.B., B. Devlin, S.V. Faraone, V.L. Nimgaonkar, P. Sklar, J.W. Smoller, R. Abou Jamra, M. Albus, S.A. Bacanu, M. Baron, T.B. Barrett,
W. Berrettini, D. Blacker, W. Byerley, S. Cichon, W. Coryell, N. Craddock, M.J. Daly, J.R. Depaulo, H.J. Edenberg, T. Foroud, M. Gill, T.C. Gilliam, M. Hamshere, I. Jones, L. Jones, S.H. Juo, J.R. Kelsoe, D. Lambert, C. Lange, B. Lerer, J. Liu, W. Maier, J.D. Mackinnon, M.G. McInnis, F.J. McMahon, D.L. Murphy, M.M. Nothen, J.I. Nurnberger, C.N. Pato, M.T. Pato, J.B. Potash, P. Propping, A.E. Pulver, J.P. Rice, M. Rietschel, W. Scheftner, J. Schumacher, R. Segurado, K. Van Steen, W. Xie, P.P. Zandi, and N.M. Laird. 2005. Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q. Am J Hum Genet. 77: 582595.

McQuillin, A., N.J. Bass, G. Kalsi, J. Lawrence, V. Puri, K. Choudhury, S.D. Detera-Wadleigh, D. Curtis, and H.M. Gurling. 2006. Fine mapping of a susceptibility locus for bipolar and genetically related unipolar affective disorders, to a region containing the C21ORF29 and TRPM2 genes on chromosome 21q22.3. Mol Psychiatry. 11: 134-142.
McQuillin, A., M. Rizig, and H.M. Gurling. 2007. A microarray gene expression study of the molecular pharmacology of lithium carbonate on mouse brain mRNA to understand the neurobiology of mood stabilization and treatment of bipolar affective disorder. Pharmacogenet Genomics. 17: 605-617.
Mefford, H.C., A.J. Sharp, C. Baker, A. Itsara, Z. Jiang, K. Buysse, S. Huang, V.K. Maloney, J.A. Crolla, D. Baralle, A. Collins, C. Mercer, K. Norga, T. de Ravel, K. Devriendt, E.M. Bongers, N. de Leeuw, W. Reardon, S. Gimelli, F. Bena, R.C. Hennekam, A. Male, L. Gaunt, J. Clayton-Smith, I. Simonic, S.M. Park, S.G. Mehta, S. Nik-Zainal, C.G. Woods, H.V. Firth, G. Parkin, M. Fichera, S. Reitano, M. Lo Giudice, K.E. Li, I. Casuga, A. Broomer, B. Conrad, M. Schwerzmann, L. Raber, S. Gallati, P. Striano, A. Coppola, J.L. Tolmie, E.S. Tobias, C. Lilley, L. Armengol, Y. Spysschaert, P. Verloo, A. De Coene, L. Goossens, G. Mortier, F. Speleman, E. van Binsbergen, M.R. Nelen, R. Hochstenbach, M. Poot, L. Gallagher, M. Gill, J. McClellan, M.C. King, R. Regan, C. Skinner, R.E. Stevenson, S.E. Antonarakis, C. Chen, X. Estivill, B. Menten, G. Gimelli, S. Gribble, S. Schwartz, J.S. Sutcliffe, T. Walsh, S.J. Knight, J. Sebat, C. Romano, C.E. Schwartz, J.A. Veltman, B.B. de Vries, J.R. Vermeesch, J.C. Barber, L. Willatt, M. Tassabehji, and E.E. Eichler. 2008. Recurrent rearrangements of chromosome $1 q 21.1$ and variable pediatric phenotypes. N Engl J Med. 359: 1685-1699.
Meltzer, H.Y.and T. Sumiyoshi. 2008. Does stimulation of 5-HT(1A) receptors improve cognition in schizophrenia? Behav Brain Res. 195: 98-102.
Mena, H., A.L. Morrison, R.V. Jones, and K.A. Gyure. 2001. Central neurocytomas express photoreceptor differentiation. Cancer. 91: 136-143.
Mense, S.M., A. Sengupta, M. Zhou, C. Lan, G. Bentsman, D.J. Volsky, and L. Zhang. 2006. Gene expression profiling reveals the profound upregulation of hypoxia-responsive genes in primary human astrocytes. Physiol Genomics. 25: 435-449.

Middleton, F.A., K. Mirnics, J.N. Pierri, D.A. Lewis, and P. Levitt. 2002. Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci. 22: 2718-2729.
Millar, J.K., J.C. Wilson-Annan, S. Anderson, S. Christie, M.S. Taylor, C.A. Semple, R.S. Devon, D.M. Clair, W.J. Muir, D.H. Blackwood, and D.J. Porteous. 2000. Disruption of two novel genes by a translocation cosegregating with schizophrenia. Hum Mol Genet. 9: 1415-1423.
Mimmack, M.L., M. Ryan, H. Baba, J. Navarro-Ruiz, S. Iritani, R.L. Faull, P.J. McKenna, P.B. Jones, H. Arai, M. Starkey, P.C. Emson, and S. Bahn. 2002. Gene expression analysis in schizophrenia: reproducible upregulation of several members of the apolipoprotein L family located in a high-susceptibility locus for schizophrenia on chromosome 22. Proc Natl Acad Sci U S A. 99: 4680-4685.
Mirnics, K., F.A. Middleton, A. Marquez, D.A. Lewis, and P. Levitt. 2000. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron. 28: 53-67.
Moffett, P., M. Reece, and J. Pelletier. 1997. The murine Sim-2 gene product inhibits transcription by active repression and functional interference. Mol Cell Biol. 17: 4933-4947.
Mortola, J.P. 2007. Hypoxia and circadian patterns. Respir Physiol Neurobiol. 158: 274-279.
Murphy, K.C., L.A. Jones, and M.J. Owen. 1999. High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry. 56: 940945.

Nagano, T., T. Yoneda, Y. Hatanaka, C. Kubota, F. Murakami, and M. Sato. 2002. Filamin A-interacting protein (FILIP) regulates cortical cell migration out of the ventricular zone. Nat Cell Biol. 4: 495-501.
Newman, G.C.and F.E. Hospod. 1986. Rhythm of suprachiasmatic nucleus 2deoxyglucose uptake in vitro. Brain Res. 381: 345-350.
Newton-Cheh, C.and J.N. Hirschhorn. 2005. Genetic association studies of complex traits: design and analysis issues. Mutat Res. 573: 54-69.
Nieoullon, V., R. Belvindrah, G. Rougon, and G. Chazal. 2005. mCD24 regulates proliferation of neuronal committed precursors in the subventricular zone. Mol Cell Neurosci. 28: 462-474.
Nievergelt, C.M., D.F. Kripke, T.B. Barrett, E. Burg, R.A. Remick, A.D. Sadovnick, S.L. McElroy, P.E. Keck, Jr., N.J. Schork, and J.R. Kelsoe. 2006. Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 141B: 234-241.
Nikolova, G., B. Strilic, and E. Lammert. 2007. The vascular niche and its basement membrane. Trends Cell Biol. 17: 19-25.
Nogales-Cadenas, R., P. Carmona-Saez, M. Vazquez, C. Vicente, X. Yang, F. Tirado, J.M. Carazo, and A. Pascual-Montano. 2009. GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic Acids Res. 37: W317-322.
Nuber, S., E. Petrasch-Parwez, B. Winner, J. Winkler, S. von Horsten, T. Schmidt, J. Boy, M. Kuhn, H.P. Nguyen, P. Teismann, J.B. Schulz, M. Neumann, B.J. Pichler, G. Reischl, C. Holzmann, I. Schmitt, A.

Bornemann, W. Kuhn, F. Zimmermann, A. Servadio, and O. Riess. 2008. Neurodegeneration and motor dysfunction in a conditional model of Parkinson's disease. J Neurosci. 28: 2471-2484.
Nyegaard, M., J.E. Severinsen, T.D. Als, A. Hedemand, S. Straarup, M. Nordentoft, A. McQuillin, N. Bass, J. Lawrence, S. Thirumalai, A.C. Pereira, R. Kandaswamy, G.J. Lydall, P. Sklar, E. Scolnick, S. Purcell, D. Curtis, H.M. Gurling, P.B. Mortensen, O. Mors, and A.D. Borglum. 2010. Support of association between BRD1 and both schizophrenia and bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet. 153B: 582-591.
O'Donovan, M.C., N.J. Craddock, and M.J. Owen. 2009. Genetics of psychosis; insights from views across the genome. Hum Genet. 126: 3-12.
Obesity, A.D.A.A.P.A.A.A.o.C.E.N.A.A.f.t.S.o. 2004. Consensus development conference on antipsychotic drugs and obesity and diabetes. Diabetes Care. 27: 596-601.
Oliveira, J.M. 2010. Nature and cause of mitochondrial dysfunction in Huntington's disease: focusing on huntingtin and the striatum. J Neurochem. 114: 1-12.
Palmer, B.A., V.S. Pankratz, and J.M. Bostwick. 2005. The lifetime risk of suicide in schizophrenia: a reexamination. Arch Gen Psychiatry. 62: 247253.

Palmer, T.D., A.R. Willhoite, and F.H. Gage. 2000. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. 425: 479-494.
Partonen, T., J. Treutlein, A. Alpman, J. Frank, C. Johansson, M. Depner, L. Aron, M. Rietschel, S. Wellek, P. Soronen, T. Paunio, A. Koch, P. Chen, M. Lathrop, R. Adolfsson, M.L. Persson, S. Kasper, M. Schalling, L. Peltonen, and G. Schumann. 2007. Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann Med. 39: 229-238.
Pasinetti, G.M., L.H. Ungar, D.J. Lange, S. Yemul, H. Deng, X. Yuan, R.H. Brown, M.E. Cudkowicz, K. Newhall, E. Peskind, S. Marcus, and L. Ho. 2006. Identification of potential CSF biomarkers in ALS. Neurology. 66: 1218-1222.
Pellerin, L.and P.J. Magistretti. 1994. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A. 91: 10625-10629.
Pellerin, L.and P.J. Magistretti. 1997. Glutamate uptake stimulates Na+,K+ATPase activity in astrocytes via activation of a distinct subunit highly sensitive to ouabain. J Neurochem. 69: 2132-2137.
Pellerin, L.and P.J. Magistretti. 2004. Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist. 10: 53-62.
Pellerin, L., G. Pellegri, P.G. Bittar, Y. Charnay, C. Bouras, J.L. Martin, N. Stella, and P.J. Magistretti. 1998. Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci. 20: 291-299.
Pereira, A.C., D.E. Huddleston, A.M. Brickman, A.A. Sosunov, R. Hen, G.M. McKhann, R. Sloan, F.H. Gage, T.R. Brown, and S.A. Small. 2007. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci U S A. 104: 5638-5643.

Petronis, A. 2003. Epigenetics and bipolar disorder: new opportunities and challenges. Am J Med Genet C Semin Med Genet. 123C: 65-75.
Pevny, L.and M. Placzek. 2005. SOX genes and neural progenitor identity. Curr Opin Neurobiol. 15: 7-13.
Pevny, L.H.and R. Lovell-Badge. 1997. Sox genes find their feet. Curr Opin Genet Dev. 7: 338-344.
Pickard, B.S., A. Christoforou, P.A. Thomson, A. Fawkes, K.L. Evans, S.W. Morris, D.J. Porteous, D.H. Blackwood, and W.J. Muir. 2008. Interacting haplotypes at the NPAS3 locus alter risk of schizophrenia and bipolar disorder. Mol Psychiatry.
Pickard, B.S., A. Christoforou, P.A. Thomson, A. Fawkes, K.L. Evans, S.W. Morris, D.J. Porteous, D.H. Blackwood, and W.J. Muir. 2009. Interacting haplotypes at the NPAS3 locus alter risk of schizophrenia and bipolar disorder. Mol Psychiatry. 14: 874-884.
Pickard, B.S., M.P. Malloy, D.J. Porteous, D.H. Blackwood, and W.J. Muir. 2005. Disruption of a brain transcription factor, NPAS3, is associated with schizophrenia and learning disability. Am J Med Genet B Neuropsychiatr Genet. 136: 26-32.
Pickard, B.S., A.A. Pieper, D.J. Porteous, D.H. Blackwood, and W.J. Muir. 2006. The NPAS3 gene--emerging evidence for a role in psychiatric illness. Ann Med. 38: 439-448.
Pieper, A.A., X. Wu, T.W. Han, S.J. Estill, Q. Dang, L.C. Wu, S. ReeceFincanon, C.A. Dudley, J.A. Richardson, D.J. Brat, and S.L. McKnight. 2005. The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice. Proc Natl Acad Sci U S A. 102: 14052-14057.
Pieper, A.A., S. Xie, E. Capota, S.J. Estill, J. Zhong, J.M. Long, G.L. Becker, P. Huntington, S.E. Goldman, C.H. Shen, M. Capota, J.K. Britt, T. Kotti, K. Ure, D.J. Brat, N.S. Williams, K.S. MacMillan, J. Naidoo, L. Melito, J. Hsieh, J. De Brabander, J.M. Ready, and S.L. McKnight. 2010. Discovery of a proneurogenic, neuroprotective chemical. Cell. 142: 39-51.
Poncet, C., V. Frances, R. Gristina, C. Scheiner, J.F. Pellissier, and D. FigarellaBranger. 1996. CD24, a glycosylphosphatidylinositol-anchored molecules is transiently expressed during the development of human central nervous system and is a marker of human neural cell lineage tumors. Acta Neuropathol. 91: 400-408.
Ponting, C.P.and L. Aravind. 1997. PAS: a multifunctional domain family comes to light. Curr Biol. 7: R674-677.
Possenti, R., A.M. Rinaldi, G.L. Ferri, P. Borboni, E. Trani, and A. Levi. 1999. Expression, processing, and secretion of the neuroendocrine VGF peptides by INS-1 cells. Endocrinology. 140: 3727-3735.
Prabakaran, S., J.E. Swatton, M.M. Ryan, S.J. Huffaker, J.T. Huang, J.L. Griffin, M. Wayland, T. Freeman, F. Dudbridge, K.S. Lilley, N.A. Karp, S. Hester, D. Tkachev, M.L. Mimmack, R.H. Yolken, M.J. Webster, E.F. Torrey, and S. Bahn. 2004. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry. 9: 684-697, 643.

Prior, H.M.and M.A. Walter. 1996. SOX genes: architects of development. Mol Med. 2: 405-412.
Pulver, A.E., G. Nestadt, R. Goldberg, R.J. Shprintzen, M. Lamacz, P.S. Wolyniec, B. Morrow, M. Karayiorgou, S.E. Antonarakis, D. Housman, and et al. 1994. Psychotic illness in patients diagnosed with velo-cardiofacial syndrome and their relatives. J Nerv Ment Dis. 182: 476-478.
Purcell, S.M., N.R. Wray, J.L. Stone, P.M. Visscher, M.C. O'Donovan, P.F. Sullivan, and P. Sklar. 2009. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 460: 748-752.
Puri, V., A. McQuillin, S. Datta, K. Choudhury, J. Pimm, S. Thirumalai, R. Krasucki, J. Lawrence, D. Quested, N. Bass, C. Crombie, G. Fraser, N. Walker, H. Moorey, M.K. Ray, A. Sule, D. Curtis, D. St Clair, and H. Gurling. 2008. Confirmation of the genetic association between the U2AF homology motif (UHM) kinase 1 (UHMK1) gene and schizophrenia on chromosome 1q23.3. Eur J Hum Genet. 16: 1275-1282.
Ramsey, A.J. 2009. NR1 knockdown mice as a representative model of the glutamate hypothesis of schizophrenia. Prog Brain Res. 179: 51-58.
Reick, M., J.A. Garcia, C. Dudley, and S.L. McKnight. 2001. NPAS2: an analog of clock operative in the mammalian forebrain. Science. 293: 506-509.
Reif, A., S. Fritzen, M. Finger, A. Strobel, M. Lauer, A. Schmitt, and K.P. Lesch. 2006. Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry.
Reisz-Porszasz, S., M.R. Probst, B.N. Fukunaga, and O. Hankinson. 1994. Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT). Mol Cell Biol. 14: 6075-6086.
Roenneberg, T.and M. Merrow. 1999. Circadian systems and metabolism. J Biol Rhythms. 14: 449-459.
Ross, C.A., R.L. Margolis, S.A. Reading, M. Pletnikov, and J.T. Coyle. 2006. Neurobiology of schizophrenia. Neuron. 52: 139-153.
Rosso, I.M., C.E. Bearden, J.M. Hollister, T.L. Gasperoni, L.E. Sanchez, T. Hadley, and T.D. Cannon. 2000. Childhood neuromotor dysfunction in schizophrenia patients and their unaffected siblings: a prospective cohort study. Schizophr Bull. 26: 367-378.
Rozen, S.and H. Skaletsky. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 132: 365-386.
Ruetschi, U., H. Zetterberg, V.N. Podust, J. Gottfries, S. Li, A. Hviid Simonsen, J. McGuire, M. Karlsson, L. Rymo, H. Davies, L. Minthon, and K. Blennow. 2005. Identification of CSF biomarkers for frontotemporal dementia using SELDI-TOF. Exp Neurol. 196: 273-281.
Rumajogee, P., D. Verge, N. Hanoun, M.J. Brisorgueil, R. Hen, K.P. Lesch, M. Hamon, and M.C. Miquel. 2004. Adaption of the serotoninergic neuronal phenotype in the absence of 5-HT autoreceptors or the 5-HT transporter: involvement of BDNF and cAMP. Eur J Neurosci. 19: 937-944.
Rutter, J., M. Reick, and S.L. McKnight. 2002. Metabolism and the control of circadian rhythms. Annu Rev Biochem. 71: 307-331.
Rutter, J., M. Reick, L.C. Wu, and S.L. McKnight. 2001. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science. 293: 510-514.

Salton, S.R., G.L. Ferri, S. Hahm, S.E. Snyder, A.J. Wilson, R. Possenti, and A. Levi. 2000. VGF: a novel role for this neuronal and neuroendocrine polypeptide in the regulation of energy balance. Front Neuroendocrinol. 21: 199-219.
Sandberg, M., M. Kallstrom, and J. Muhr. 2005. Sox21 promotes the progression of vertebrate neurogenesis. Nat Neurosci. 8: 995-1001.
Schlaepfer, T.E., G.J. Harris, A.Y. Tien, L.W. Peng, S. Lee, E.B. Federman, G.A. Chase, P.E. Barta, and G.D. Pearlson. 1994. Decreased regional cortical gray matter volume in schizophrenia. Am J Psychiatry. 151: 842-848.
Schleicher, R.L., S.B. Hunter, M. Zhang, M. Zheng, W. Tan, C.I. Bandea, M.T. Fallon, D.G. Bostwick, and V.A. Varma. 1997. Neurofilament heavy chain-like messenger RNA and protein are present in benign prostate and down-regulated in prostatic carcinoma. Cancer Res. 57: 3532-3536.
Schlierf, B., T. Werner, G. Glaser, and M. Wegner. 2006. Expression of connexin47 in oligodendrocytes is regulated by the Sox10 transcription factor. J Mol Biol. 361: 11-21.
Schmidt-Kastner, R., J. van Os, W.M.S. H, and C. Schmitz. 2006. Gene regulation by hypoxia and the neurodevelopmental origin of schizophrenia. Schizophr Res. 84: 253-271.
Schosser, A., D. Gaysina, S. Cohen-Woods, P.C. Chow, L. Martucci, N. Craddock, A. Farmer, A. Korszun, C. Gunasinghe, J. Gray, L. Jones, F. Tozzi, J. Perry, P. Muglia, M.J. Owen, I.W. Craig, and P. McGuffin. 2010. Association of DISC1 and TSNAX genes and affective disorders in the depression case-control (DeCC) and bipolar affective case-control (BACCS) studies. Mol Psychiatry. 15: 844-849.
Schwab, S.G., M. Knapp, S. Mondabon, J. Hallmayer, M. BorrmannHassenbach, M. Albus, B. Lerer, M. Rietschel, M. Trixler, W. Maier, and D.B. Wildenauer. 2003. Support for association of schizophrenia with genetic variation in the 6 p 22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet. 72: 185-190.
Schwartz, W.J.and H. Gainer. 1977. Suprachiasmatic nucleus: use of 14Clabeled deoxyglucose uptake as a functional marker. Science. 197: 10891091.

Seeman, P.and S. Kapur. 2000. Schizophrenia: more dopamine, more D2 receptors. Proc Natl Acad Sci U S A. 97: 7673-7675.
Seeman, P., T. Lee, M. Chau-Wong, and K. Wong. 1976. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature. 261: 717-719.
Segal, A., S. Carello, P. Caterina, J.M. Papadimitriou, and D.V. Spagnolo. 1994. Gastrointestinal autonomic nerve tumors: a clinicopathological, immunohistochemical and ultrastructural study of 10 cases. Pathology. 26: 439-447.
Selle, H., J. Lamerz, K. Buerger, A. Dessauer, K. Hager, H. Hampel, J. Karl, M. Kellmann, L. Lannfelt, J. Louhija, M. Riepe, W. Rollinger, H. Tumani, M. Schrader, and H.D. Zucht. 2005. Identification of novel biomarker candidates by differential peptidomics analysis of cerebrospinal fluid in Alzheimer's disease. Comb Chem High Throughput Screen. 8: 801-806.

Serretti, A., F. Benedetti, L. Mandelli, C. Lorenzi, A. Pirovano, C. Colombo, and E. Smeraldi. 2003. Genetic dissection of psychopathological symptoms: insomnia in mood disorders and CLOCK gene polymorphism. Am J Med Genet B Neuropsychiatr Genet. 121B: 35-38.
Serretti, A.and L. Mandelli. 2008. The genetics of bipolar disorder: genome 'hot regions,' genes, new potential candidates and future directions. Mol Psychiatry. 13: 742-771.
Sha, L., MacIntyre, L., Machell, J.A., Kelly, M.P., Porteous, D.J., Brandon, N.J., Muir. W.J., Blackwood, D.H., Watson, D.G., Clapcote, S.J. and Pickard B.S. submitted. Transcriptional regulation of neurodevelopmental and metabolic pathways by the psychiatric illness candidate gene NPAS3. .
Shahid, M., V.S. Dhillon, Z. Hussain, J.F. Masa, M. Aslam, M. Raish, A. Ahmad, N.J. Khan, S. Prasad, S. Batra, S.T. Pasha, and S.A. Husain. 2008. Analysis of the SRY gene in two sex-reversed XY sisters identifies two new novel point mutations in the high mobility group box domain. Fertil Steril. 90: 1199 e1191-1198.
Shi, J., D.F. Levinson, J. Duan, A.R. Sanders, Y. Zheng, I. Pe'er, F. Dudbridge, P.A. Holmans, A.S. Whittemore, B.J. Mowry, A. Olincy, F. Amin, C.R. Cloninger, J.M. Silverman, N.G. Buccola, W.F. Byerley, D.W. Black, R.R. Crowe, J.R. Oksenberg, D.B. Mirel, K.S. Kendler, R. Freedman, and P.V. Gejman. 2009. Common variants on chromosome 6 p22.1 are associated with schizophrenia. Nature. 460: 753-757.
Shi, J., J.K. Wittke-Thompson, J.A. Badner, E. Hattori, J.B. Potash, V.L. Willour, F.J. McMahon, E.S. Gershon, and C. Liu. 2008. Clock genes may influence bipolar disorder susceptibility and dysfunctional circadian rhythm. Am J Med Genet B Neuropsychiatr Genet. 147B: 1047-1055.
Shibata, S.and R.Y. Moore. 1988. Development of a fetal circadian rhythm after disruption of the maternal circadian system. Brain Res. 469: 313-317.
Shifman, S., M. Johannesson, M. Bronstein, S.X. Chen, D.A. Collier, N.J. Craddock, K.S. Kendler, T. Li, M. O'Donovan, F.A. O'Neill, M.J. Owen, D. Walsh, D.R. Weinberger, C. Sun, J. Flint, and A. Darvasi. 2008. Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. PLoS Genet. 4: e28.
Shyu, W.C., S.Z. Lin, M.F. Chiang, D.C. Chen, C.Y. Su, H.J. Wang, R.S. Liu, C.H. Tsai, and H. Li. 2008. Secretoneurin promotes neuroprotection and neuronal plasticity via the Jak2/Stat3 pathway in murine models of stroke. J Clin Invest. 118: 133-148.
Sitskoorn, M.M., A. Aleman, S.J. Ebisch, M.C. Appels, and R.S. Kahn. 2004. Cognitive deficits in relatives of patients with schizophrenia: a metaanalysis. Schizophr Res. 71: 285-295.
Sjoholm, L.K., L. Backlund, E.H. Cheteh, I.R. Ek, L. Frisen, M. Schalling, U. Osby, C. Lavebratt, and P. Nikamo. 2010. CRY2 is associated with rapid cycling in bipolar disorder patients. PLoS One. 5: e12632.
Sklar, P., J.W. Smoller, J. Fan, M.A. Ferreira, R.H. Perlis, K. Chambert, V.L. Nimgaonkar, M.B. McQueen, S.V. Faraone, A. Kirby, P.I. de Bakker, M.N. Ogdie, M.E. Thase, G.S. Sachs, K. Todd-Brown, S.B. Gabriel, C. Sougnez, C. Gates, B. Blumenstiel, M. Defelice, K.G. Ardlie, J. Franklin,
W.J. Muir, K.A. McGhee, D.J. MacIntyre, A. McLean, M. VanBeck, A. McQuillin, N.J. Bass, M. Robinson, J. Lawrence, A. Anjorin, D. Curtis, E.M. Scolnick, M.J. Daly, D.H. Blackwood, H.M. Gurling, and S.M. Purcell. 2008. Whole-genome association study of bipolar disorder. Mol Psychiatry. 13: 558-569.
Slowik, S. 1967. [Role of serotonin in the pathogenesis of schizophrenia]. Psychiatr Pol. 1: 95-102.
Sprouse, J., J. Braselton, and L. Reynolds. 2006. Fluoxetine modulates the circadian biological clock via phase advances of suprachiasmatic nucleus neuronal firing. Biol Psychiatry. 60: 896-899.
Steen, R.G., C. Mull, R. McClure, R.M. Hamer, and J.A. Lieberman. 2006. Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br J Psychiatry. 188: 510-518.
Stefansson, H., R.A. Ophoff, S. Steinberg, O.A. Andreassen, S. Cichon, D. Rujescu, T. Werge, O.P. Pietilainen, O. Mors, P.B. Mortensen, E. Sigurdsson, O. Gustafsson, M. Nyegaard, A. Tuulio-Henriksson, A. Ingason, T. Hansen, J. Suvisaari, J. Lonnqvist, T. Paunio, A.D. Borglum, A. Hartmann, A. Fink-Jensen, M. Nordentoft, D. Hougaard, B. Norgaard-Pedersen, Y. Bottcher, J. Olesen, R. Breuer, H.J. Moller, I. Giegling, H.B. Rasmussen, S. Timm, M. Mattheisen, I. Bitter, J.M. Rethelyi, B.B. Magnusdottir, T. Sigmundsson, P. Olason, G. Masson, J.R. Gulcher, M. Haraldsson, R. Fossdal, T.E. Thorgeirsson, U. Thorsteinsdottir, M. Ruggeri, S. Tosato, B. Franke, E. Strengman, L.A. Kiemeney, I. Melle, S. Djurovic, L. Abramova, V. Kaleda, J. Sanjuan, R. de Frutos, E. Bramon, E. Vassos, G. Fraser, U. Ettinger, M. Picchioni, N. Walker, T. Toulopoulou, A.C. Need, D. Ge, J.L. Yoon, K.V. Shianna, N.B. Freimer, R.M. Cantor, R. Murray, A. Kong, V. Golimbet, A. Carracedo, C. Arango, J. Costas, E.G. Jonsson, L. Terenius, I. Agartz, H. Petursson, M.M. Nothen, M. Rietschel, P.M. Matthews, P. Muglia, L. Peltonen, D. St Clair, D.B. Goldstein, K. Stefansson, and D.A. Collier. 2009. Common variants conferring risk of schizophrenia. Nature. 460: 744-747.
Stefansson, H., D. Rujescu, S. Cichon, O.P. Pietilainen, A. Ingason, S. Steinberg, R. Fossdal, E. Sigurdsson, T. Sigmundsson, J.E. Buizer-Voskamp, T. Hansen, K.D. Jakobsen, P. Muglia, C. Francks, P.M. Matthews, A. Gylfason, B.V. Halldorsson, D. Gudbjartsson, T.E. Thorgeirsson, A. Sigurdsson, A. Jonasdottir, A. Jonasdottir, A. Bjornsson, S. Mattiasdottir, T. Blondal, M. Haraldsson, B.B. Magnusdottir, I. Giegling, H.J. Moller, A. Hartmann, K.V. Shianna, D. Ge, A.C. Need, C. Crombie, G. Fraser, N. Walker, J. Lonnqvist, J. Suvisaari, A. Tuulio-Henriksson, T. Paunio, T. Toulopoulou, E. Bramon, M. Di Forti, R. Murray, M. Ruggeri, E. Vassos, S. Tosato, M. Walshe, T. Li, C. Vasilescu, T.W. Muhleisen, A.G. Wang, H. Ullum, S. Djurovic, I. Melle, J. Olesen, L.A. Kiemeney, B. Franke, C. Sabatti, N.B. Freimer, J.R. Gulcher, U. Thorsteinsdottir, A. Kong, O.A. Andreassen, R.A. Ophoff, A. Georgi, M. Rietschel, T. Werge, H. Petursson, D.B. Goldstein, M.M. Nothen, L. Peltonen, D.A. Collier, D. St Clair, and K. Stefansson. 2008. Large
recurrent microdeletions associated with schizophrenia. Nature. 455: 232-236.
Stefansson, H., J. Sarginson, A. Kong, P. Yates, V. Steinthorsdottir, E. Gudfinnsson, S. Gunnarsdottir, N. Walker, H. Petursson, C. Crombie, A. Ingason, J.R. Gulcher, K. Stefansson, and D. St Clair. 2003. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet. 72: 83-87.
Stokkan, K.A., S. Yamazaki, H. Tei, Y. Sakaki, and M. Menaker. 2001. Entrainment of the circadian clock in the liver by feeding. Science. 291: 490-493.
Stolt, C.C., A. Schlierf, P. Lommes, S. Hillgartner, T. Werner, T. Kosian, E. Sock, N. Kessaris, W.D. Richardson, V. Lefebvre, and M. Wegner. 2006. SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. Dev Cell. 11: 697-709.
Straub, R.E., Y. Jiang, C.J. MacLean, Y. Ma, B.T. Webb, M.V. Myakishev, C. Harris-Kerr, B. Wormley, H. Sadek, B. Kadambi, A.J. Cesare, A. Gibberman, X. Wang, F.A. O'Neill, D. Walsh, and K.S. Kendler. 2002. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet. 71: 337-348.
Takahashi, J.S., H.K. Hong, C.H. Ko, and E.L. McDearmon. 2008. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet. 9: 764-775.
Talisman, I.J.and C.H. Marzabadi. 2008. Carbohydrate-based drugs in the treatment of epilepsy, depression and other affective disorders. Curr Top Med Chem. 8: 159-170.
Thakker-Varia, S.and J. Alder. 2009. Neuropeptides in depression: role of VGF. Behav Brain Res. 197: 262-278.
Thakker-Varia, S., J.J. Krol, J. Nettleton, P.M. Bilimoria, D.A. Bangasser, T.J. Shors, I.B. Black, and J. Alder. 2007. The neuropeptide VGF produces antidepressant-like behavioral effects and enhances proliferation in the hippocampus. J Neurosci. 27: 12156-12167.
Thomas, J.B., S.T. Crews, and C.S. Goodman. 1988. Molecular genetics of the single-minded locus: a gene involved in the development of the Drosophila nervous system. Cell. 52: 133-141.
Thomas, J.O. 2001. HMG1 and 2: architectural DNA-binding proteins. Biochem Soc Trans. 29: 395-401.
Tischfield, M.A., H.N. Baris, C. Wu, G. Rudolph, L. Van Maldergem, W. He, W.M. Chan, C. Andrews, J.L. Demer, R.L. Robertson, D.A. Mackey, J.B. Ruddle, T.D. Bird, I. Gottlob, C. Pieh, E.I. Traboulsi, S.L. Pomeroy, D.G. Hunter, J.S. Soul, A. Newlin, L.J. Sabol, E.J. Doherty, C.E. de Uzcategui, N. de Uzcategui, M.L. Collins, E.C. Sener, B. Wabbels, H. Hellebrand, T. Meitinger, T. de Berardinis, A. Magli, C. Schiavi, M. Pastore-Trossello, F. Koc, A.M. Wong, A.V. Levin, M.T. Geraghty, M. Descartes, M. Flaherty, R.V. Jamieson, H.U. Moller, I. Meuthen, D.F. Callen, J. Kerwin, S. Lindsay, A. MeindI, M.L. Gupta, Jr., D. Pellman, and E.C. Engle. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell. 140: 74-87.

Tischfield, M.A.and E.C. Engle. 2010. Distinct alpha- and beta-tubulin isotypes are required for the positioning, differentiation and survival of neurons: new support for the 'multi-tubulin' hypothesis. Biosci Rep. 30: 319-330.
Tkachev, D., M.L. Mimmack, M.M. Ryan, M. Wayland, T. Freeman, P.B. Jones, M. Starkey, M.J. Webster, R.H. Yolken, and S. Bahn. 2003. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet. 362: 798-805.
Tominaga, M. 2010. [Activation and regulation of nociceptive transient receptor potential (TRP) channels, TRPV1 and TRPA1]. Yakugaku Zasshi. 130: 289-294.
Toro, C.T.and J.F. Deakin. 2007. Adult neurogenesis and schizophrenia: a window on abnormal early brain development? Schizophr Res. 90: 1-14.
Trani, E., A. Giorgi, N. Canu, G. Amadoro, A.M. Rinaldi, P.A. Halban, G.L. Ferri, R. Possenti, M.E. Schinina, and A. Levi. 2002. Isolation and characterization of VGF peptides in rat brain. Role of PC1/3 and PC2 in the maturation of VGF precursor. J Neurochem. 81: 565-574.
Tuominen, H.J., J. Tiihonen, and K. Wahlbeck. 2005. Glutamatergic drugs for schizophrenia: a systematic review and meta-analysis. Schizophr Res. 72: 225-234.
Tusher, V.G., R. Tibshirani, and G. Chu. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 98: 5116-5121.
Vacher, H., D.P. Mohapatra, and J.S. Trimmer. 2008. Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev. 88: 1407-1447.
van Beest, M., D. Dooijes, M. van De Wetering, S. Kjaerulff, A. Bonvin, O. Nielsen, and H. Clevers. 2000. Sequence-specific high mobility group box factors recognize 10-12-base pair minor groove motifs. J Biol Chem. 275: 27266-27273.
van den Oord, E.J., P.F. Sullivan, Y. Jiang, D. Walsh, F.A. O'Neill, K.S. Kendler, and B.P. Riley. 2003. Identification of a high-risk haplotype for the dystrobrevin binding protein 1 (DTNBP1) gene in the Irish study of high-density schizophrenia families. Mol Psychiatry. 8: 499-510.
Van Erp, T.G., P.A. Saleh, I.M. Rosso, M. Huttunen, J. Lonnqvist, T. Pirkola, O. Salonen, L. Valanne, V.P. Poutanen, C.G. Standertskjold-Nordenstam, and T.D. Cannon. 2002. Contributions of genetic risk and fetal hypoxia to hippocampal volume in patients with schizophrenia or schizoaffective disorder, their unaffected siblings, and healthy unrelated volunteers. Am J Psychiatry. 159: 1514-1520.
van Winkel, R., J. van Os, I. Celic, D. Van Eyck, M. Wampers, A. Scheen, J. Peuskens, and M. De Hert. 2008. Psychiatric diagnosis as an independent risk factor for metabolic disturbances: results from a comprehensive, naturalistic screening program. J Clin Psychiatry. 69: 1319-1327.
Vargas, M., D. Jimenez, F. Leon-Velarde, J. Osorio, and J.P. Mortola. 2001. Circadian patterns in men acclimatized to intermittent hypoxia. Respir Physiol. 126: 233-243.
Vawter, M.P., J.M. Crook, T.M. Hyde, J.E. Kleinman, D.R. Weinberger, K.G. Becker, and W.J. Freed. 2002. Microarray analysis of gene expression in
the prefrontal cortex in schizophrenia: a preliminary study. Schizophr Res. 58: 11-20.
Verret, L., J.L. Jankowsky, G.M. Xu, D.R. Borchelt, and C. Rampon. 2007. Alzheimer's-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. J Neurosci. 27: 6771-6780.
Vincent, J.B., J.A. Herbrick, H.M. Gurling, P.F. Bolton, W. Roberts, and S.W. Scherer. 2000. Identification of a novel gene on chromosome 7q31 that is interrupted by a translocation breakpoint in an autistic individual. Am J Hum Genet. 67: 510-514.
Vincent, J.B., E. Petek, S. Thevarkunnel, D. Kolozsvari, J. Cheung, M. Patel, and S.W. Scherer. 2002. The RAY1/ST7 tumor-suppressor locus on chromosome $7 \mathbf{q 3 1}$ represents a complex multi-transcript system. Genomics. 80: 283-294.
Voet, D.J.G.V., Charlotte W. Pratt 2006. Fundamentals of Biochemistry, John Wiley and Sons, Inc.
Wagner, O.I., J. Lifshitz, P.A. Janmey, M. Linden, T.K. McIntosh, and J.F. Leterrier. 2003. Mechanisms of mitochondria-neurofilament interactions. J Neurosci. 23: 9046-9058.
Wallis, M.C., P.D. Waters, and J.A. Graves. 2008. Sex determination in mammals--before and after the evolution of SRY. Cell Mol Life Sci. 65: 3182-3195.
Warner-Schmidt, J.L.and R.S. Duman. 2006. Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus. 16: 239-249.
Webster, K.A. 2003. Evolution of the coordinate regulation of glycolytic enzyme genes by hypoxia. J Exp Biol. 206: 2911-2922.
Wehr, T.A., F.K. Goodwin, A. Wirz-Justice, J. Breitmaier, and C. Craig. 1982. 48-hour sleep-wake cycles in manic-depressive illness: naturalistic observations and sleep deprivation experiments. Arch Gen Psychiatry. 39: 559-565.
Weintraub, H., R. Davis, S. Tapscott, M. Thayer, M. Krause, R. Benezra, T.K. Blackwell, D. Turner, R. Rupp, S. Hollenberg, and et al. 1991. The myoD gene family: nodal point during specification of the muscle cell lineage. Science. 251: 761-766.
Wenz, F., L.R. Schad, M.V. Knopp, K.T. Baudendistel, F. Flomer, J. Schroder, and G. van Kaick. 1994. Functional magnetic resonance imaging at 1.5 T : activation pattern in schizophrenic patients receiving neuroleptic medication. Magn Reson Imaging. 12: 975-982.
Williams, H.J., N. Norton, S. Dwyer, V. Moskvina, I. Nikolov, L. Carroll, L. Georgieva, N.M. Williams, D.W. Morris, E.M. Quinn, I. Giegling, M. Ikeda, J. Wood, T. Lencz, C. Hultman, P. Lichtenstein, D. Thiselton, B.S. Maher, A.K. Malhotra, B. Riley, K.S. Kendler, M. Gill, P. Sullivan, P. Sklar, S. Purcell, V.L. Nimgaonkar, G. Kirov, P. Holmans, A. Corvin, D. Rujescu, N. Craddock, M.J. Owen, and M.C. O'Donovan. 2010. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry.

Williams, N.M., A. Preece, D.W. Morris, G. Spurlock, N.J. Bray, M. Stephens, N. Norton, H. Williams, M. Clement, S. Dwyer, C. Curran, J. Wilkinson, V. Moskvina, J.L. Waddington, M. Gill, A.P. Corvin, S. Zammit, G. Kirov, M.J. Owen, and M.C. O'Donovan. 2004. Identification in 2 independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). Arch Gen Psychiatry. 61: 336-344.
Wilson, M.and P. Koopman. 2002. Matching SOX: partner proteins and cofactors of the SOX family of transcriptional regulators. Curr Opin Genet Dev. 12: 441-446.
Won, S.J., S.H. Kim, L. Xie, Y. Wang, X.O. Mao, K. Jin, and D.A. Greenberg. 2006. Reelin-deficient mice show impaired neurogenesis and increased stroke size. Exp Neurol. 198: 250-259.
Wong, D.F., H.N. Wagner, Jr., L.E. Tune, R.F. Dannals, G.D. Pearlson, J.M. Links, C.A. Tamminga, E.P. Broussolle, H.T. Ravert, A.A. Wilson, J.K. Toung, J. Malat, J.A. Williams, L.A. O'Tuama, S.H. Snyder, M.J. Kuhar, and A. Gjedde. 1986. Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science. 234: 15581563.

Wong, E.H., F.I. Tarazi, and M. Shahid. 2010. The effectiveness of multi-target agents in schizophrenia and mood disorders: Relevance of receptor signature to clinical action. Pharmacol Ther. 126: 173-185.
Xu, C., P.P. Li, R.G. Cooke, S.V. Parikh, K. Wang, J.L. Kennedy, and J.J. Warsh. 2009. TRPM2 variants and bipolar disorder risk: confirmation in a family-based association study. Bipolar Disord. 11: 1-10.
Xu, C., F. Macciardi, P.P. Li, I.S. Yoon, R.G. Cooke, B. Hughes, S.V. Parikh, R.S. McIntyre, J.L. Kennedy, and J.J. Warsh. 2006. Association of the putative susceptibility gene, transient receptor potential protein melastatin type 2, with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 141B: 36-43.
Yamazaki, S., Y. Ishida, and S. Inouye. 1994. Circadian rhythms of adenosine triphosphate contents in the suprachiasmatic nucleus, anterior hypothalamic area and caudate putamen of the rat--negative correlation with electrical activity. Brain Res. 664: 237-240.
Yang, J., X. Liu, K. Bhalla, C.N. Kim, A.M. Ibrado, J. Cai, T.I. Peng, D.P. Jones, and X. Wang. 1997. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 275: 1129-1132.
Yang, J.Z., T.M. Si, Y. Ruan, Y.S. Ling, Y.H. Han, X.L. Wang, M. Zhou, H.Y. Zhang, Q.M. Kong, C. Liu, D.R. Zhang, Y.Q. Yu, S.Z. Liu, G.Z. Ju, L. Shu, D.L. Ma, and D. Zhang. 2003. Association study of neuregulin 1 gene with schizophrenia. Mol Psychiatry. 8: 706-709.
You, H., Y.I. Kim, S.Y. Im, H. Suh-Kim, S.H. Paek, S.H. Park, D.G. Kim, and H.W. Jung. 2005. Immunohistochemical study of central neurocytoma, subependymoma, and subependymal giant cell astrocytoma. J Neurooncol. 74: 1-8.
Yuan, Q., F. Lin, X. Zheng, and A. Sehgal. 2005. Serotonin modulates circadian entrainment in Drosophila. Neuron. 47: 115-127.

Yuan, X.and D.M. Desiderio. 2005. Human cerebrospinal fluid peptidomics. J Mass Spectrom. 40: 176-181.
Yuferov, V., E.R. Butelman, and M.J. Kreek. 2005. Biological clock: biological clocks may modulate drug addiction. Eur J Hum Genet. 13: 1101-1103.
Zanello, S.B., D.M. Jackson, and M.F. Holick. 2000. Expression of the circadian clock genes clock and period1 in human skin. J Invest Dermatol. 115: 757-760.
Zhao, C. 2008. Mechanisms and functional implications of adult neurogenesis. Cell. 132: 645-660.
Zhao, S., X. Chai, and M. Frotscher. 2007. Balance between neurogenesis and gliogenesis in the adult hippocampus: role for reelin. Dev Neurosci. 29: 84-90.
Zhou, S., S. Degan, E.N. Potts, W.M. Foster, and M.E. Sunday. 2009. NPAS3 is a trachealess homolog critical for lung development and homeostasis. Proc Natl Acad Sci U S A. 106: 11691-11696.
Zhou, Y.D., M. Barnard, H. Tian, X. Li, H.Z. Ring, U. Francke, J. Shelton, J. Richardson, D.W. Russell, and S.L. McKnight. 1997. Molecular characterization of two mammalian bHLH-PAS domain proteins selectively expressed in the central nervous system. Proc Natl Acad Sci U S A. 94: 713-718.

Gene symbol	FoldDiff
FOSB	4.61
EGR1	4.27
EGR2	3.44
FOS	2.52
RAB26	2.21
CORO6	2.20
NDRG1	2.14
QPRT	2.03
ALDOC	2.01
EIF3M	-2.67
C6orf66	-2.67
VPS26	-2.68
PERP	-2.68
	-2.68
TAF9	-2.68
YY1	-2.69
U2AF1	-2.70
FBXO5	-2.71
SPC25	-2.71
NACAP1	-2.72
KPNA2	-2.74
TMEM167	-2.74
HIF1A	-2.75
CLK1	-2.75
BOLA2	

APPENDICES
Appendix table S1: Circadian (control samples) +12hrs to +24hrs top differentially expressed genes.

GCUD2
RBBP4
RAD21
CGA
C7orf11
MRPL47
HNRPC
CDC2
LSM5
CDKN1B
TAF9
CROP
ACTR3
GGH
SBDS
SUMO2
PTGES3
FAIM
MCTS1
HMGB2
ANXA2P1
LOC649946
DDX17
PTMA
SFRS11
HSPA1A
HSPE1
KPNA2
G3BP1
ILMN 1719870 gastric cancer up-regulated-2 (GCUD2), mRNA. retinoblastoma binding protein 4 (RBBP4), mRNA.
RAD21 homolog (S. pombe) (RAD21), mRNA.
glycoprotein hormones, alpha polypeptide (CGA), mRNA.
chromosome 7 open reading frame 11 (C7orf11), mRNA.
mitochondrial ribosomal protein L47 (MRPL47), nuclear gene encoding mitochondrial protein, transcript variant 1, mRNA.
heterogeneous nuclear ribonucleoprotein $\mathrm{C}(\mathrm{C} 1 / \mathrm{C} 2)$ (HNRPC), transcript variant 1, mRNA.
cell division cycle 2 , G1 to S and G 2 to M (CDC2), transcript variant 1 , mRNA.
LSM5 homolog, U6 small nuclear RNA associated (S. cerevisiae) (LSM5), mRNA.
TAF9 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 32 kDa (TAF9), transcript
variant 3 , mRNA.
cisplatin resistance-associated overexpressed protein (CROP), transcript variant 2, mRNA.
ARP3 actin-related protein 3 homolog (yeast) (ACTR3), mRNA.
gamma-glutamyl hydrolase (conjugase, folylpolygammaglutamyl hydrolase) (GGH), mRNA.
Shwachman-Bodian-Diamond syndrome (SBDS), mRNA.
SMT3 suppressor of mif two 3 homolog 2 (S. cerevisiae) (SUMO2), transcript variant 2, mRNA.
prostaglandin E synthase 3 (cytosolic) (PTGES3), mRNA.
malignant T cell amplified sequence 1 (MCTS1), mRNA.
high-mobility group box 2 (HMGB2), mRNA.
annexin A2 pseudogene 1 (ANXA2P1) on chromosome 4.
ribosomal protein L23a pseudogene (LOC649946) on chromosome 11.
DEAD (Asp-Glu-Ala-Asp) box polypeptide 17 (DDX17), transcript variant 2, mRNA.
prothymosin, alpha (PTMA), transcript variant $1, \mathrm{mRNA}$.
splicing factor, arginine/serine-rich 11 (SFRS11), mRNA.
heat shock 70 kDa protein 1 A (HSPA1A), mRNA.
heat shock 001133265
 ILMN - 2062524 ILMN_2221006
 ILMN_1687036 ILMN_1695588 LMN_1710428 LMN_2116556 ILMN_1778617 ILMN_2299072 ILMN_1657153 ILMN_2195914 LMN_1679045 ILMN_1738150 LMN_1719749 LMN_2351548 LMN_1751816 LMN 2219712 ILMN_2041101 ILMN_2181241 ILMN_2371590 ILMN_1759954 ILMN_1657790 ILMN_1789074 ILMN_2092536
ILMN_1708160
ILMN_2344455
Appendix table S2: FLNPAS3 vs. UNPAS3 +12hrs top differentially regulated genes. Those genes showing increased (positive) or reduced (negative) expression changes in FLNPAS3 over-expressing cells compared to \triangle NPAS3 over-expressing cells at the +12 hr time-point after circadian induction. Exogenous FLNPAS3 is the apparent top gene as exogenous \triangle NPAS3 is not detectable on the microarray.
FoldDiff
46.32
3.53
3.13
2.97
2.92
2.87

2.72
2.72
2.69
2.56
2.55

2.53
2.46
2.41
2.41
2.39
2.37
2.37
2.37
2.36
2.35
2.34
2.32
2.31
2.29
2.28

ILMN_1768582	PPP2CB	protein phosphatase 2 (formerly 2A), catalytic subunit, beta isoform (PPP2CB), transcript variant 1 , mRNA.
ILMN_1679045	SBDS	Shwachman-Bodian-Diamond syndrome (SBDS), mRNA.
ILMN_2351548	FAIM	Fas apoptotic inhibitory molecule (FAIM), transcript variant 3, mRNA.
ILMN_2181241	LOC649946	ribosomal protein L23a pseudogene (LOC649946) on chromosome 11.
ILMN_1719749	PTGES3	prostaglandin E synthase 3 (cytosolic) (PTGES3), mRNA.
ILMN_1664294	LEPRE1	leucine proline-enriched proteoglycan (leprecan) 1 (LEPRE1), mRNA.
ILMN_1723978	LGALS1	lectin, galactoside-binding, soluble, 1 (galectin 1) (LGALS1), mRNA.
ILMN_1693014	CEBPB	CCAAT/enhancer binding protein (C/EBP), beta (CEBPB), mRNA.
ILMN_1729208	NGFRAP1	nerve growth factor receptor (TNFRSF16) associated protein 1 (NGFRAP1), transcript variant 1, mRNA.
ILMN_1779182	TMEM98	transmembrane protein 98 (TMEM98), transcript variant 2, mRNA.
ILMN_1738347	RNPEP	arginyl aminopeptidase (aminopeptidase B) (RNPEP), mRNA.
ILMN_1694504	C1 orf164	chromosome 1 open reading frame 164 (C1orf164), mRNA.
ILMN_1812031	PALM	paralemmin (PALM), transcript variant 1, mRNA.
ILMN_1701413	PIGQ	phosphatidylinositol glycan anchor biosynthesis, class Q (PIGQ), transcript variant 2, mRNA.
ILMN_1673305	RHOC	ras homolog gene family, member C (RHOC), transcript variant 2, mRNA.
ILMN_2049303	DCI	dodecenoyl-Coenzyme A delta isomerase (3,2 trans-enoyl-Coenzyme A isomerase) (DCI), nuclear gene encoding mitochondrial protein, mRNA.
ILMN_2186061	PFKFB3	6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), mRNA.
ILMN_1660793	PAQR4	progestin and adipoQ receptor family member IV (PAQR4), mRNA.
ILMN_1700541	FBLN1	fibulin 1 (FBLN1), transcript variant C, mRNA.
ILMN_1726981	VEGFB	vascular endothelial growth factor B (VEGFB), mRNA.
ILMN_1696046	SIVA	CD27-binding (Siva) protein (SIVA), transcript variant 2, mRNA.
ILMN_1739241	CHAC1	ChaC, cation transport regulator homolog 1 (E. coli) (CHAC1), mRNA.
ILMN_1737157	GRAMD1A	GRAM domain containing 1A (GRAMD1A), mRNA.
ILMN_1706521	CSNK1G2	casein kinase 1, gamma 2 (CSNK1G2), mRNA.
ILMN_1733110	RASSF7	Ras association (RalGDS/AF-6) domain family (N-terminal) member 7 (RASSF7), mRNA.
ILMN_2209671	DCDC5	doublecortin domain containing 5 (DCDC5), mRNA.
ILMN_1720373	SLC7A5	solute carrier family 7 (cationic amino acid transporter, $\mathrm{y}+$ system), member 5 (SLC7A5), mRNA.
ILMN_1677200	CYFIP2	cytoplasmic FMR1 interacting protein 2 (CYFIP2), transcript variant 3, mRNA.
ILMN_1679809	GSTP1	glutathione S-transferase pi (GSTP1), mRNA.
ILMN_1711566	TIMP1	TIMP metallopeptidase inhibitor 1 (TIMP1), mRNA.
ILMN_1702933	ADM2	adrenomedullin 2 (ADM2), mRNA.

WD repeat domain 54 (WDR54), mRNA.
BCL2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3), nuclear gene encoding mitochondrial protein,
mRNA.
nudix (nucleoside diphosphate linked moiety X)-type motif 18 (NUDT18), mRNA. DNA-damage-inducible transcript 4 (DDIT4), mRNA.
guanidinoacetate N -methyltransferase (GAMT), transcript variant 1, mRNA.
solute carrier family 2 (facilitated glucose transporter), member 1 (SLC2A1), mRNA
N-myc downstream regulated gene 1 (NDRG1), mRNA.
aldolase C, fructose-bisphosphate (ALDOC), mRNA.
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4), mRNA.

岕
ILMN_1658289
ILMN_1724658
ILMN_1651237
ILMN_1787885
ILMN_1661599
ILMN_1756469
ILMN_1756417
ILMN_1659027
ILMN_1809931
ILMN_1755974
ILMN_1653292
Appendix table S3: FLNPAS3 vs. Control +12hrs top up-/down-regulated genes. The majority of genes showing altered expression in the presence of FLNPAS3 at +12 hrs were down-regulated.

histone cluster 2, H4a (HIST2H4A), mRNA.
Kruppel-like factor 6 (KLF6), transcript variant 2, mRNA.
cyclin B1 interacting protein 1 (CCNB1IP1), transcript variant 3, mRNA.
stanniocalcin 2 (STC2), mRNA.
Kruppel-like factor 6 (KLF6), transcript variant 1, mRNA.
ribosomal protein S29 (RPS29), transcript variant 2, mRNA.
ras homolog gene family, member B (RHOB), mRNA.
immediate early response 3 (IER3), mRNA.
procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide I (P4HA1),
transcript variant 1, mRNA.
histone cluster 1, H1c (HIST1H1C), mRNA.
jun oncogene (JUN), mRNA.
histone cluster 3, H2bb (HIST3H2BB), mRNA.
PHD finger protein 17 (PHF17), transcript variant S, mRNA.
Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2 (CITED2), mRNA.
chromosome X open reading frame 40A (CXorf40A), mRNA.
TSC22 domain family, member 3 (TSC22D3), transcript variant 2, mRNA.
RNA, 7SK small nuclear (RN7SK) on chromosome 6.
nudix (nucleoside diphosphate linked moiety X)-type motif 18 (NUDT18), mRNA.
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4), mRNA.
CCR4 carbon catabolite repression 4-like (S. cerevisiae) (CCRN4L), mRNA.
BCL2/adenovirus E1B 19kDa interacting protein 3 (BNIP3), nuclear gene encoding mitochondrial protein,
mRNA.
N-myc downstream regulated gene 1 (NDRG1), mRNA.
28S ribosomal RNA (LOC100008589).
adrenomedullin (ADM), mRNA.
homeobox A13 (HOXA13), mRNA.
aldolase C, fructose-bisphosphate (ALDOC), mRNA.
neuritin 1 (NRN1), mRNA.
activating transcription factor 3 (ATF3), transcript variant 4, mRNA.
stanniocalcin 1 (STC1), mRNA.
PREDICTED: Homo sapiens similar to H3 histone, family 2 isoform 2 (LOC653604), mRNA.

ILMN_2115340	HIST2H4A
ILMN_1735014	KLF6
ILMN_2347349	CCNB1IP1
ILMN_1691884	STC2
ILMN_1737406	KLF6
ILMN_2298818	RPS29
ILMN_1802205	RHOB
ILMN_1682717	IER3
ILMN_1693334	P4HA1
ILMN_1757406	HIST1H1C
ILMN_1806023	JUN
ILMN_1764986	HIST3H2BB
ILMN_1736015	PHF17
ILMN_1663092	CITED2
ILMN_2064655	CXorf40A
ILMN_2276952	TSC22D3
ILMN_2074860	RN7SK
ILMN_1787885	NUDT18
ILMN_1653292	PFKFB4
ILMN_1689378	CCRN4L
ILMN_1724658	BNIP3
ILMN_1809931	NDRG1
ILMN_1733559	LOC100008589
ILMN_1708934	ADM
ILMN_1731349	HOXA13
ILMN_1755974	ALDOC
ILMN_2150112	NRN1
ILMN_2374865	ATF3
ILMN_1758164	STC1
ILMN_1664706	LOC653604

PFKFB3
BHLHB2
NOG
CXCR4
TSC22D3
TSC22D3
SLC2A1
CXCR4
AXUD1
SLC2A3
HK2
LOX
PPP1R3C
HIST2H2AC
FOS
ANKRD37
DDIT4
HIST3H2A
DUSP1
HIG2
HIST2H2AA3
HIST2H2BE
ILMN_2186061
ILMN_1768534
ILMN_1652287
ILMN_2320888
ILMN_1748124
ILMN_2376403
ILMN_1659027
ILMN_1801584
ILMN_1703123
ILMN_1775708
ILMN_2156172
ILMN_1695880
ILMN_1736670
ILMN_1768973
ILMN_1669523
ILMN_1756417
ILMN_1661599
ILMN_1779648
ILMN_1781285
ILMN_1659990
ILMN_2144426
ILMN_1732071
Appendix table S4: FLNPAS3 vs. Control +24hrs top up-/down-regulated genes

Description
neuronal PAS domain protein 3 (NPAS3), transcript variant 1, mRNA. inhibitor of DNA binding 3, dominant negative helix-loop-helix protein (ID3), mRNA. inhibitor of DNA binding 3, dominant negative helix-loop-helix protein (ID3), mRNA.
BCL2-associated X protein (BAX), transcript variant sigma, mRNA.
RPB11b2 protein (POLR2J3), mRNA. cystathionase (cystathionine gamma-lyase) (CTH), transcript variant 2, mRNA.
galanin receptor 2 (GALR2), mRNA. inhibitor of DNA binding 2, dominant negative helix-loop-helix protein (ID2), mRNA. cystathionase (cystathionine gamma-lyase) (CTH), transcript variant 1 , mRNA. sphingosine kinase 2 (SPHK2), mRNA. ubiquitin C (UBC), mRNA.
bone marrow stromal cell antigen 2 (BST2), mRNA. chromosome 3 open reading frame 14 (C3orf14), mRNA. chromosome 21 open reading frame 51 (C21orf51), transcript variant 2, mRNA. FLJ45909 protein (FLJ45909), mRNA. ribosomal protein L29 (RPL29), mRNA. member 9 (SLC6A9), transcript variant 3, mRNA. synaptotagmin XI (SYT11), mRNA.
apolipoprotein E (APOE), mRNA. interferon, alpha-inducible protein 6 (IFI6), transcript variant 3, mRNA. solute carrier family 39 (zinc transporter), member 3 (SLC39A3), transcript variant 1, mRNA. transmembrane protein 79 (TMEM79), mRNA.
solute carrier family 41 , member 3 (SLC41A3), transcript variant 1 , mRNA. vesicle-associated membrane protein 5 (myobrevin) (VAMP5), mRNA.
ribosomal protein L36a (RPL36A), mRNA.
phosphatidic acid phosphatase type 2C (PPAP2C), transcript variant 2, mRNA.
phosphoenolpyruvate carboxykinase 2 (mitochondrial) (PCK2), nuclear gene encoding mitochondrial protein, transcript variant 2, mRNA.
ubiquitin-fold modifier conjugating enzyme 1 (UFC1), mRNA. sodium channel modifier 1 (SCNM1), mRNA.

Unique id Gene symbol
Unique id ILMN_1752550
ILMN_1732296

ILMN_1732296
ILMN_2321064
ILMN_1661516 ILMN_2305112 ILMN_-1733847 ILMN_2086095 ILMN_1777060 ILMN_-1729281 ILMN_2252160 ILMN 1723480 ILMN - 2224486 s00992Z-NWTI ILMN_1790962 ILMN_1771051 ILMN_1714445 ILMN_1717934 ILMN_1740938 ILMN_1687384 ILMN_1710543 ILMN_2090802 ILMN_-1739885

 ILMN_1710170

ILMN_1760649 ILMN_2110281

CD24 molecule (CD24), mRNA. CD24 molecule (CD24), mRNA.
cyclin-dependent kinase inhibitor 1A (p21, Cip1) (CDKN1A), transcript variant 1, mRNA.
cysteine conjugate-beta lyase, cytoplasmic (CCBL1), transcript variant 1 , mRNA. cysteine conjugate-beta lyase, cytoplasmic (CCBL1), transcript variant 1 , mRNA.
HtrA serine peptidase 2 (HTRA2), nuclear gene encoding mitochondrial protein, tr HtrA serine peptidase 2 (HTRA2), nuclear gene encoding mitochondrial protein, transcript variant 1,
mRNA. FLJ35767 protein (FLJ35767), mRNA. tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide (YWHAZ), transcript variant 1 , mRNA.
asparagine synthetase (ASNS), transcript variant $1, \mathrm{mRNA}$. asparagine synthetase (ASNS), transcript variant 1, mRNA.
neuronal PAS domain protein 1 (NPAS1), mRNA. neuronal PAS domain protein 1 (NPAS1), mRNA.
adrenomedullin 2 (ADM2), mRNA. phosphoserine aminotransferase 1 (PSAT1), transcript variant 2, mRNA. chromosome 10 open reading frame 35 (C10orf35), mRNA. phosphoenolpyruvate carboxykinase 2 (mitochondrial) (PCK2), nuclear gene encoding mitochondrial protein, transcript variant 1 , mRNA

inhibitor of DNA binding 1, dominant negative helix-loop-helix protein (ID1), transcript variant 2, mRNA. mannose-6-phosphate receptor binding protein 1 (M6PRBP1), mRNA. cell division cycle 42 (GTP binding protein, 25 kDa) (CDC42), transcript variant 3, mRNA. milk fat globule-EGF factor 8 protein (MFGE8), mRNA. endothelin converting enzyme 2 (ECE2), transcript variant 1 , mRNA. asparagine-linked glycosylation 14 homolog (S. cerevisiae) (ALG14), mRNA.
L22 (MRPL 22), nuclear synaptophysin (SYP), mRNA.
mitochondrial ribosomal protei variant 1 mRNA.
variant $1, \mathrm{mRNA}$. cyclin-dependent kinase-like 3 (CDKL3), mRNA. major facilitator superfamily domain containing 5 (MFSD5), mRNA.
Homo sapiens cadherin, EGF LAG seven-pass G-type receptor 2 (flamingo homolog, Drosophila) (CELSR2), mRNA.
Homo sapiens procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2), transcript variant 2, mRNA. KDEL (Lys-Asp-Glu-Leu) containing 2 (KDELC2), mRNA.

ILMN_2060413	CD24
ILMN_1784602	CDKN1A
ILMN_1764096	CCBL1
ILMN_1747204	HTRA2
ILMN_1730351	FLJ35767
ILMN_1669286	YWHAZ
ILMN_1796417	ASNS
ILMN_1747067	NPAS1
ILMN_1702933	ADM2
ILMN_1692938	PSAT1
ILMN_1662470	C10orf35
ILMN_1671791	PCK2
ILMN_2234970	SLC39A3
ILMN_1791726	TUBB3
ILMN_1664861	ID1
ILMN_1660021	M6PRBP1
ILMN_1675156	CDC42
ILMN_1756071	MFGE8
ILMN_2275248	ECE2
ILMN_2191822	ALG14
ILMN_1701483	SYP
ILMN_1663220	MRPL22
ILMN_1796245	DNASE2
ILMN_2217630	CDKL3
ILMN_1702065	MFSD5
ILMN_1711208	CELSR2
ILMN_2410924	PLOD2
ILMN_1651557	KDELC2

BCL6 co-repressor (BCOR), transcript variant $1, m R N A$.
dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1B (DYRK1B), transcript variant c , mRNA. procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2), transcript variant 2, mRNA. pyruvate kinase, muscle (PKM2), transcript variant 3, mRNA. zinc finger protein 395 (ZNF395), mRNA.
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4 like 2 (
mRNA.
early growth response 1 (EGR1), mRNA.
metalothionein 2A (MT2A), mRNA.
zinc finger protein 22 (KOX 15) (ZNF22), mRNA.
homeobox A13 (HOXA13), mRNA.
chromodomain helicase DNA binding protein 4 (CHD4), mRNA.
kelch domain containing 9 (KLHDC9), transcript variant 3, mRNA.
PREDICTED: Homo sapiens neurexophilin 4 (NXPH4), mRNA.
nuclear pore complex interacting protein pseudogene (LOC613037) on chromosome 16. E1A binding protein p300 (EP300), mRNA.
laminin, alpha 1 (LAMA1), mRNA.
phosphoglycerate kinase 1 (PGK1), mRNA.
chromosome 15 open reading frame 42 (C15orf42), mRNA.
jumonji domain containing 1A (JMJD1A), mRNA.
TBC1 domain family, member 9B (with GRAM domain) (TBC1D9B), transcript variant 2, mRNA. protein phosphatase 1, regulatory (inhibitor) subunit 3C (PPP1R3C), mRNA. basic helix-loop-helix domain containing, class B, 2 (BHLHB2), mRNA. polymerase (RNA) II (DNA directed) polypeptide A, 220 kDa (POLR2A), mRNA. HLA-B associated transcript 2 (BAT2), mRNA.
pyruvate kinase, muscle (PKM2), transcript variant 1, mRNA. stanniocalcin 1 (STC1), mRNA.
transferrin receptor (p90, CD71) (TFRC), mRNA.
pyruvate kinase, muscle (PKM2), transcript variant 2, mRNA.
helicase with zinc finger (HELZ), mRNA.
procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide I (P 4 HA 1),
BCOR
DYRK1B
PLOD2
PKM2
ZNF395
NDUFA4L2

BNIP3
EGR1
MT2A
ZNF22
HOXA13
CHD4
KLHDC9
NXPH4
LOC613037
EP300
LAMA1
PGK1
C15orf42
JMJD1A
TBC1D9B
PPP1R3C
BHLHB2
POLR2A
BAT2
PKM2
STC1
TFRC
PKM2
HELZ
P4HA1
ILMN 1773117 ILMN - 1696991 ILMN_-1771599 ILMN_2366634 ILMN_1772876 ILMN_1756573 ILMN_1724658 ILMN_1762899 ILMN_1686664 ILMN_2117904 $\stackrel{\stackrel{\rightharpoonup}{m}}{\stackrel{2}{n}}$ ILMN 1658411 ILMN_1701918
 ILMN_-2070052 ILMN_1744665 ILMN_1696434 ILMN_2216852 ILMN_1674662 ILMN_1722532 ILMN_1789909 ILMN_1736670 ILMN_1768534 ILMN_1782385 ILMN_1760563 ILMN_1672650
ILMN 1758164 LLMN - 1674243 ILMN - 1775327 ILMN_1762835 ILMN_1693334

ILMN_2095840
ILMN_1756417
ILMN_2186061
ILMN_1659990
ILMN_1775708
ILMN_1669523
ILMN_1775170
ILMN_1695880
Appendix table S5: genes significant by SAM - Significance analysis of Microarray.
The estimated false discovery rate among the 932 significant genes is 0.00931 . The delta value used to identify the significant genes is 1.79503 . The fudge factor for standard deviation is computed as 0.03882 .

$$
\begin{aligned}
& \text { Fold- } \\
& \text { 范 }
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\stackrel{\rightharpoonup}{7}}{\underset{7}{2}} \\
& +\underset{\sim}{r}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
n \\
i \stackrel{n}{n} \\
\underset{i}{n}
\end{array} \\
& \stackrel{\sim}{n} \stackrel{n}{n} \stackrel{n}{i} \\
& \mathfrak{n} \underset{\sim}{i} \underset{\sim}{\sim} \underset{\sim}{n} \underset{\sim}{n}
\end{aligned}
$$

2			(B3GALNT2), mRNA.
ZNF193	NM_006299	ILMN_10151	Homo sapiens zinc finger protein 193 (ZNF193), mRNA.
FSBP	NM_006550	ILMN_588	Homo sapiens fibrinogen silencer binding protein (FSBP), mRNA.
C10orf82	NM_144661	ILMN_24579	Homo sapiens chromosome 10 open reading frame 82 (C10orf82), mRNA.
HIST1H1C	NM_005319	ILMN_18282	Homo sapiens histone 1, H1c (HIST1H1C), mRNA.
RBM4	NM_002896	ILMN_11057	Homo sapiens RNA binding motif protein 4 (RBM4), mRNA.
ST7	NM_021908	ILMN_15870	Homo sapiens suppression of tumorigenicity 7 (ST7), transcript variant b, mRNA.
GABPB2	NM_181427	ILMN_17949	Homo sapiens GA binding protein transcription factor, beta subunit 2 (GABPB2), transcript variant gamma-3, mRNA.
$\begin{aligned} & \text { HIST1H2B } \\ & \mathrm{G} \end{aligned}$	NM_003518	ILMN_21089	Homo sapiens histone 1, H2bg (HIST1H2BG), mRNA.
ZNF184	NM_007149	ILMN_22535	Homo sapiens zinc finger protein 184 (Kruppel-like) (ZNF184), mRNA.
SEMA3B	NM_001005914	ILMN_25666	Homo sapiens sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3B (SEMA3B), transcript variant 2, mRNA.
IFI44	NM_006417	ILMN_28905	Homo sapiens interferon-induced protein 44 (IFI44), mRNA.
ARRDC3	NM_020801	ILMN_22538	Homo sapiens arrestin domain containing 3 (ARRDC3), mRNA.
UBE1DC1	NM_198329	ILMN_19687	Homo sapiens ubiquitin-activating enzyme E1-domain containing 1 (UBE1DC1), transcript variant 2 , mRNA.
FLJ39575	NM_182597	ILMN_11266	Homo sapiens hypothetical protein FLJ39575 (FLJ39575), mRNA.
ANTXR1	NM_018153	ILMN_16129	Homo sapiens anthrax toxin receptor 1 (ANTXR1), transcript variant 3, mRNA.
WDR47	NM_014969	ILMN_25145	Homo sapiens WD repeat domain 47 (WDR47), mRNA.
SLC6A16	NM_014037	ILMN_10688	Homo sapiens solute carrier family 6, member 16 (SLC6A16), mRNA.
PTPRR	NM_002849	ILMN_1395	Homo sapiens protein tyrosine phosphatase, receptor type, R (PTPRR), transcript variant 1, mRNA.
FBXL20	NM_032875	ILMN_11563	Homo sapiens F-box and leucine-rich repeat protein 20 (FBXL20), mRNA.
SCG2	NM_003469	ILMN_17827	Homo sapiens secretogranin II (chromogranin C) (SCG2), mRNA.
CBLB	NM_170662	ILMN_18286	Homo sapiens Cas-Br-M (murine) ecotropic retroviral transforming sequence b (CBLB), mRNA.
RFX3	NM_134428	ILMN_21620	Homo sapiens regulatory factor X, 3 (influences HLA class II expression) (RFX3), transcript variant 2, mRNA.
SERPINI1	NM_005025	ILMN_7089	Homo sapiens serpin peptidase inhibitor, clade I (neuroserpin), member 1 (SERPINI1), mRNA.
EIF2C3	NM_177422	ILMN_8765	Homo sapiens eukaryotic translation initiation factor 2C, 3 (EIF2C3), transcript variant 2, mRNA.

ILMN_29976	Homo sapiens transcription factor Dp-2 (E2F dimerization partner 2) (TFDP2), mRNA.
ILMN_21620	Homo sapiens regulatory factor X, 3 (influences HLA class II expression) (RFX3), transcript variant 2, mRNA.
ILMN_14828	Homo sapiens tetratricopeptide repeat domain 25 (TTC25), mRNA.
ILMN_7829	Homo sapiens oviductal glycoprotein 1, 120kDa (mucin 9, oviductin) (OVGP1), mRNA.
ILMN_15139	Homo sapiens glutathione S-transferase A2 (GSTA2), mRNA.
ILMN_16141	Homo sapiens zinc finger protein 548 (ZNF548), mRNA.
ILMN_25508	Homo sapiens ADP-ribosylation factor-like 9 (ARL9), mRNA.
ILMN_21425	Homo sapiens kelch-like 7 (Drosophila) (KLHL7), transcript variant 2, mRNA.
ILMN_2878	Homo sapiens mitochondrial ribosomal protein L21 (MRPL21), nuclear gene encoding mitochondrial protein, transcript variant 2, mRNA. ILMN_746
Homo sapiens WD repeat domain 78 (WDR78), transcript variant 2, mRNA.	
ILMN_30031	Homo sapiens glutathione S-transferase A1 (GSTA1), mRNA.
ILMN_6252	Homo sapiens chimerin (chimaerin) 1 (CHN1), transcript variant 1, mRNA.
ILMN_29328	Homo sapiens phospholipase A2, group IVC (cytosolic, calcium-independent) (PLA2G4C),
mRNA.	
ILMN_14455	Homo sapiens poly(A) binding protein interacting protein 2 (PAIP2), transcript variant 1, mRNA. ILMN_27286
Homo sapiens CDC-like kinase 1 (CLK1), transcript variant 2, mRNA.	
ILMN_137064	Homo sapiens zinc finger protein interacting with K protein 1 (ZIK1), mRNA.
ILMN_4459	Homo sapiens FK506 binding protein 7 (FKBP7), transcript variant 1, mRNA.
ILMN_137325	Homo sapiens microtubule-associated protein 2 (MAP2), transcript variant 2, mRNA.
ILMN_4988	Homo sapiens hypothetical protein LOC132321 (LOC132321), mRNA.
ILMN_28123	Homo sapiens interferon-induced protein with tetratricopeptide repeats 2 (IFIT2), mRNA.
ILMN_21389	Homo sapiens forkhead box P1 (FOXP1), transcript variant 2, mRNA.
ILMN_22180	Homo sapiens non-metastatic cells 1, protein (NM23A) expressed in (NME1), transcript
ILMN_22628	variant 1, mRNA.
Homo sapiens plexin B1 (PLXNB1), mRNA.	
ILMN_137281	Homo sapiens ADP-ribosylation factor-like 4 (ARL4), transcript variant 1, mRNA.
ILMN_23874	Homo sapiens retinitis pigmentosa 9 (autosomal dominant) (RP9), mRNA.
ILMN_29424	Homo sapiens uveal autoantigen with coiled-coil domains and ankyrin repeats (UACA),
transcript variant 2, mRNA.	

TFDP2	NM_006286
RFX3	NM_134428
TTC25	NM_031421
OVGP1	NM_002557
GSTA2	NM_000846
ZNF548	NM_152909
ARL9	NM_206919
KLHL7	NM_018846
MRPL21	NM_181512
WDR78	NM_207014
GSTA1	NM_145740
CHN1	NM_001822
PLA2G4C	NM_003706
PAIP2	NM_001033112
CLK1	NM_001024646
ZIK1	NM_001010879
FKBP7	NM_016105
MAP2	NM_031845
LOC132321	NM_173487
IFIT2	NM_001547
FOXP1	NM_001012505
NME1	NM_198175
PLXNB1	NM_002673
ARL4	NM_005738
RP9	NM_203288
UACA	NM_001008224
ZMYM5	NM_014242

\bigcirc

Homo sapiens aldo-keto reductase family 1, member C3 (3-alpha hydroxysteroid
dehydrogenase, type II) (AKR1C3), mRNA.
Homo sapiens TIA1 cytotoxic granule-associated RNA binding protein (TIA1), transcript
variant 2, mRNA.
Homo sapiens RWD domain containing 1 (RWDD1), transcript variant 2, mRNA.
Homo sapiens influenza virus NS1A binding protein (IVNS1ABP), transcript variant 2,
mRNA.
Homo sapiens hypothetical protein FLJ21062 (FLJ21062), mRNA.
Homo sapiens zinc finger protein 610 (ZNF610), mRNA.
Homo sapiens interleukin 8 (IL8), mRNA.
Homo sapiens polypyrimidine tract binding protein 2 (PTBP2), mRNA.
Homo sapiens discs, large homolog 3 (neuroendocrine-dlg, Drosophila) (DLG3), mRNA.
Homo sapiens zinc finger and SCAN domain containing 2 (ZSCAN2), transcript variant 1,
mRNA.
Homo sapiens dynein, axonemal, heavy polypeptide 17 (DNAH17), mRNA.
Homo sapiens zinc finger protein 93 (HTF34) (ZNF93), transcript variant 1, mRNA.
Homo sapiens protein phosphatase 1, regulatory (inhibitor) subunit 15A (PPP1R15A), mRNA.
Homo sapiens histone 1, H2ac (HIST1H2AC), mRNA.
Homo sapiens sperm associated antigen 9 (SPAG9), transcript variant 2, mRNA.
Homo sapiens ring finger and KH domain containing 3 (RKHD3), mRNA.
Homo sapiens family with sequence similarity 80, member B (FAM80B), mRNA.
Homo sapiens chromosome 1 open reading frame 50 (C1orf50), mRNA.
Homo sapiens neural precursor cell expressed, developmentally down-regulated 9 (NEDD9),
transcript variant 2, mRNA.
Homo sapiens FLJ41603 protein (FLJ41603), mRNA.
Homo sapiens zinc finger and BTB domain containing 40 (ZBTB40), mRNA.
Homo sapiens torsin A interacting protein 2 (TOR1AIP2), mRNA.
Homo sapiens musashi homolog 2 (Drosophila) (MSI2), transcript variant 2, mRNA.
Homo sapiens chromosome 13 open reading frame 24 (C13orf24), mRNA.
Homo sapiens TGFB-induced factor (TALE family homeobox) (TGIF), transcript variant 1,
mRNA.
Homo sapiens KIAA0409 (KIAA0409), mRNA.
ILMN_11871
ILMN_29910
ILMN_29174
ILMN_26908
ILMN_21254
ILMN_8884
ILMN_2247
ILMN_556
ILMN_8485
ILMN_10070
ILMN_16763
ILMN_24222
ILMN_1024
ILMN_26493
ILMN_21524
ILMN_29516
ILMN_19439
ILMN_12960
ILMN_137978
ILMN_139156
ILMN_6671
ILMN_12227
ILMN_25750
ILMN_23420
ILMN_2941
ILMN_1461

AKR1C3	NM_003739
TIA1	NM_022173
RWDD1	NM_016104
IVNS1ABP	NM_016389
FLJ21062	NM_024788
ZNF610	NM_173530
IL8	NM_000584
PTBP2	NM_021190
DLG3	NM_021120
ZSCAN2	NM_181877
DNAH17	NM_003727
ZNF93	NM_031218
PPP1R15A	NM_014330
HIST1H2A	NM_003512
C	
SPAG9	NM_172345
RKHD3	NM_032246
FAM80B	NM_020734
C1orf50	NM_024097
NEDD9	NM_182966
FLJ41603	NM_001001669
ZBTB40	NM_014870
TOR1AIP2	NM_145034
MSI2	NM_170721
C13orf24	NM_006346
TGIF	NM_170695
KIAA0409	NM_015324

ILMN_11771	Homo sapiens pellino homolog 1 (Drosophila) (PELI1), mRNA.
ILMN_15315	Homo sapiens zinc finger protein 35 (clone HF.10) (ZNF35), mRNA.
ILMN_16575	Homo sapiens suppression of tumorigenicity 7 (ST7), transcript variant a, mRNA.
ILMN_23401	Homo sapiens ubiquitin-conjugating enzyme E2H (UBC8 homolog, yeast) (UBE2H), transcript variant 1, mRNA.
ILMN_7611	Homo sapiens protocadherin beta 12 (PCDHB12), mRNA.
ILMN_10416	Homo sapiens DMRT-like family A1 (DMRTA1), mRNA.
ILMN_138017	Homo sapiens chromosome 6 open reading frame 188 (C6orf188), mRNA.
ILMN_16924	Homo sapiens eukaryotic translation initiation factor 5 (EIF5), transcript variant 1, mRNA.
ILMN_6690	Homo sapiens testis expressed sequence 9 (TEX9), mRNA.
ILMN_17093	Homo sapiens Fad1, flavin adenine dinucleotide synthetase, homolog (yeast) (FLAD1), transcript variant 2, mRNA.
ILMN_8691	Homo sapiens biogenesis of lysosome-related organelles complex-1, subunit 2 (BLOC1S2), transcript variant 2, mRNA.
ILMN_15558	Homo sapiens chromosome 21 open reading frame 66 (C21orf66), transcript variant 2, mRNA.
ILMN_1498	Homo sapiens suprabasin (SBSN), mRNA.
ILMN_138785	Homo sapiens cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4) (CDKN2C), transcript variant 2, mRNA.
ILMN_1822	Homo sapiens histone 1, H2ae (HIST1H2AE), mRNA.
ILMN_20485	Homo sapiens coiled-coil domain containing 66 (CCDC66), mRNA.
ILMN_11817	Homo sapiens zinc finger protein 570 (ZNF570), mRNA.
ILMN_8413	Homo sapiens zinc finger protein 211 (ZNF211), transcript variant 1, mRNA.
ILMN_17793	Homo sapiens similar to splicing factor, arginine/serine-rich 4 (FLJ11021), transcript variant
1, mRNA.	

PELI1	NM_020651
ZNF35	NM_003420
ST7	NM_018412
UBE2H	NM_003344
PCDHB12	NM_018932
DMRTA1	NM_022160
C6orf188	NM_153711
EIF5	NM_001969
TEX9	NM_198524
FLAD1	NM_201398
BLOC1S2	NM_001001342
C21orf66	NM_013329
SBSN	NM_198538
CDKN2C	NM_078626
HIST1H2A	NM_021052
E	
CCDC66	NM_001012506
ZNF570	NM_144694
ZNF211	NM_006385
FLJ11021	NM_023012
MGC11335	NM_030819
LOC221955	NM_139179
PAMCI	NM_005447
C14orf45	NM_025057
MAK	NM_005906
RUFY3	NM_014961

1.72
1.72
1.72
1.72
1.72

1.72
1.72
1.72
1.72
1.72
1.72
1.72
1.72

1.72
1.72
1.69
1.69
1.69
1.69
1.69
1.69
1.69
1.69
1.69
1.69
1.69
1.69
1.69
Homo sapiens chromosome 10 open reading frame 78 (C10orf78), transcript variant 2,
mRNA.
Homo sapiens cyclin J (CCNJ), mRNA.
Homo sapiens inhibitor of growth family, member 4 (ING4), transcript variant 2, mRNA.
Homo sapiens SEC22 vesicle trafficking protein-like 3 (S. cerevisiae) (SEC22L3), transcript
variant 1, mRNA.
Homo sapiens chromosome 6 open reading frame 141 (C6orf141), mRNA.
Homo sapiens TGF-beta induced apotosis protein 2 (TAIP-2), mRNA.
Homo sapiens methionine adenosyltransferase II, beta (MAT2B), transcript variant 2, mRNA.
Homo sapiens NOL1/NOP2/Sun domain family, member 6 (NSUN6), mRNA.
Homo sapiens zinc finger protein 3 (A8-51) (ZNF3), transcript variant 2, mRNA.
Homo sapiens zinc finger protein 34 (KOX 32) (ZNF34), mRNA.
Homo sapiens suppression of tumorigenicity 7 (ST7), transcript variant a, mRNA.
Homo sapiens amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 4
(ALS2CR4), mRNA.
Homo sapiens forty-two-three domain containing 1 (FYTTD1), transcript variant 2, mRNA.
Homo sapiens galanin receptor 2 (GALR2), mRNA.
Homo sapiens trinucleotide repeat containing 4 (TNRC4), mRNA.
Homo sapiens TP53 activated protein 1 (TP53AP1), mRNA.
Homo sapiens ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4 (ST8SIA4),
transcript variant 2, mRNA.
Homo sapiens caspase recruitment domain family, member 9 (CARD9), mRNA.
Homo sapiens pleckstrin homology domain containing, family O member 1 (PLEKHO1),
mRNA.
Homo sapiens tRNA isopentenyltransferase 1 (TRIT1), mRNA.
Homo sapiens DnaJ (Hsp40) homolog, subfamily A, member 1 (DNAJA1), mRNA.
Homo sapiens methyltransferase like 2A (METTL2A), mRNA.
Homo sapiens trafficking protein particle complex 2 (TRAPPC2), transcript variant 1, mRNA.
Homo sapiens PHD finger protein 21B (PHF21B), mRNA.
Homo sapiens ring finger and KH domain containing 1 (RKHD1), mRNA.
Homo sapiens A kinase (PRKA) anchor protein 8-like (AKAP8L), mRNA.
Homo sapiens myeloid cell leukemia sequence 1 (BCL2-related) (MCL1), transcript variant 1,
mRNA.
ILMN_1251
ILMN_3931
ILMN_3900
ILMN_28430
ILMN_3806
ILMN_20070
ILMN_19777
ILMN_30073
ILMN_25682
ILMN_7366
ILMN_16575
ILMN_23219
ILMN_5513
ILMN_4188
ILMN_8091
ILMN_684
ILMN_7432
ILMN_22365
ILMN_23081
ILMN_7478
ILMN_5819
ILMN_7564
ILMN_19285
ILMN_22331
ILMN_27274
ILMN_12359
ILMN_18397

C10orf78	NM_145247
CCNJ	NM_019084
ING4	NM_198287
SEC22L3	NM_032970
C6orf141	NM_153344
TAIP-2	NM_024969
MAT2B	NM_182796
NSUN6	NM_182543
ZNF3	NM_032924
ZNF34	NM_030580
ST7	NM_018412
ALS2CR4	NM_152388
FYTTD1	NM_001011537
GALR2	NM_003857
TNRC4	NM_007185
TP53AP1	NM_007233
ST8SIA4	NM_175052
CARD9	NM_052813
PLEKHO1	NM_016274
TRIT1	NM_017646
DNAJA1	NM_001539
METTL2A	NM_001005372
TRAPPC2	NM_001011658
PHF21B	NM_138415
RKHD1	NM_203304
AKAP8L	NM_014371
MCL1	NM_021960

ILMN_27191	Homo sapiens golgi autoantigen, golgin subfamily a-like (FLJ40113), mRNA.
ILMN_25320	Homo sapiens interleukin 1, alpha (IL1A), mRNA.
ILMN_138971	Homo sapiens ubiquitin fusion degradation 1-like (UFD1L), mRNA.
ILMN_26995	Homo sapiens GEM interacting protein (GMIP), mRNA.
ILMN_4242	Homo sapiens leucine rich repeat transmembrane neuronal 2 (LRRTM2), mRNA.
ILMN_7312	Homo sapiens dynein, cytoplasmic 1, intermediate chain 1 (DYNC1I1), mRNA.
ILMN_26733	Homo sapiens histone 2, H2aa (HIST2H2AA), mRNA.
ILMN_29477	Homo sapiens zinc finger protein 256 (ZNF256), mRNA.
ILMN_27491	Homo sapiens LUC7-like (S. cerevisiae) (LUC7L), transcript variant 1, mRNA.
ILMN_23438	Homo sapiens zinc finger protein 79 (pT7) (ZNF79), mRNA.
ILMN_7405	Homo sapiens mitogen-activated protein kinase 10 (MAPK10), transcript variant 3, mRNA.
ILMN_25554	Homo sapiens leupaxin (LPXN), mRNA.
ILMN_15026	Homo sapiens HGFL gene (MGC17330), mRNA.
ILMN_9420	Homo sapiens BCL2-associated athanogene 3 (BAG3), mRNA.
ILMN_24381	Homo sapiens zinc finger protein 671 (ZNF671), mRNA.
ILMN_6087	Homo sapiens CG016 (LOC88523), mRNA.
ILMN_19168	Homo sapiens zinc finger protein 585B (ZNF585B), mRNA.
ILMN_2733	Homo sapiens chromosome 14 open reading frame 104 (C14orf104), mRNA.
ILMN_15160	Homo sapiens hypothetical protein LOC125893 (LOC125893), mRNA.
ILMN_21425	Homo sapiens kelch-like 7 (Drosophila) (KLHL7), transcript variant 2, mRNA.
ILMN_2444	Homo sapiens KIAA1370 (KIAA1370), mRNA.
ILMN_11104	Homo sapiens discs, large (Drosophila) homolog-associated protein 4 (DLGAP4), transcript
ILMN_4576	variant 1, mRNA.
Homo sapiens mitochondrial ribosome recycling factor (MRRF), nuclear gene encoding	
mitochondrial protein, transcript variant 3, mRNA.	
ILMN_8523	Homo sapiens secretogranin III (SCG3), mRNA.
ILMN_27335	Homo sapiens histone 1, H2bn (HIST1H2BN), mRNA.
ILMN_21948	Homo sapiens PHD finger protein 6 (PHF6), transcript variant 3, mRNA.
ILMN_19153	Homo sapiens sperm associated antigen 9 (SPAG9), transcript variant 1, mRNA.
ILMN_13017	Homo sapiens PDZ domain containing 6 (PDZD6), mRNA.
ILMN_3787	Homo sapiens TBP-like 1 (TBPL1), mRNA.

FLJ40113	NM_198079
IL1A	NM 000575
UFD1L	NM_005659
GMIP	NM_016573
LRRTM2	NM_015564
DYNC1I1	NM_004411
HIST2H2A	NM_003516
A	
ZNF256	NM_005773
LUC7L	NM_018032
ZNF79	NM_007135
MAPK10	NM_138980
LPXN	NM_004811
MGC17330	NM_052880
BAG3	NM_004281
ZNF671	NM_024833
LOC88523	NM_033111
ZNF585B	NM_152279
C14orf104	NM_018139
LOC125893	NM_001031665
KLHL7	NM_018846
KIAA1370	NM_019600
DLGAP4	NM_014902
MRRF	NM_199176
SCG3	NM_013243
HIST1H2B	NM_003520
N	
PHF6	NM_032335
SPAG9	NM_003971
PDZD6	NM_015693
TBPL1	NM_004865

ILMN_17622	Homo sapiens histone 1, H2bd (HIST1H2BD), transcript variant 2, mRNA.
ILMN_27588	Homo sapiens pre-B-cell leukemia transcription factor 1 (PBX1), mRNA.
ILMN_13979	Homo sapiens chromosome 8 open reading frame 70 (C8orf70), mRNA.
ILMN_4390	Homo sapiens zinc finger protein 187 (ZNF187), transcript variant 2, mRNA.
ILMN_22033	Homo sapiens small nuclear ribonucleoprotein 70kDa polypeptide (RNP antigen) (SNRP70), transcript variant 2, mRNA.
ILMN_25841	Homo sapiens SCY1-like 2 (S. cerevisiae) (SCYL2), mRNA.
ILMN_1978	Homo sapiens collaborates/cooperates with ARF (alternate reading frame) protein (CARF),
	mRNA.
ILMN_29914	Homo sapiens SFRS protein kinase 2 (SRPK2), transcript variant 2, mRNA.
ILMN_15145	Homo sapiens SKI-like (SKIL), mRNA.
ILMN_13392	Homo sapiens RNA binding motif protein 9 (RBM9), transcript variant 2, mRNA.
ILMN_12021	Homo sapiens cadherin, EGF LAG seven-pass G-type receptor 3 (flamingo homolog,
ILMN_13523	Drosophila) (CELSR3), mRNA.
Homo sapiens ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4 (ST8SIA4),	
transcript variant 1, mRNA.	
ILMN_22894	Homo sapiens hypothetical protein LOC55565 (LOC55565), mRNA.
ILMN_22150	Homo sapiens heat shock 70kDa protein 4-like (HSPA4L), mRNA.
ILMN_11977	Homo sapiens chromosome 19 open reading frame 18 (C19orf18), mRNA.
Homo sapiens cytoplasmic polyadenylation element binding protein 3 (CPEB3), mRNA.	
ILMN_22013	Homo sapiens PR domain containing 8 (PRDM8), mRNA.
ILMN_1044	Homo sapiens CDC-like kinase 3 (CLK3), transcript variant phclk3, mRNA.
ILMN_13772	Homo sapiens zinc finger protein 17 (HPF3, KOX 10) (ZNF17), mRNA.
ILMN_10601	Homo sapiens transposon-derived Buster3 transposase-like (LOC63920), mRNA.
ILMN_19791	Homo sapiens CTTNBP2 N-terminal like (CTTNBP2NL), mRNA.
ILMN_137282	Homo sapiens ethanolamine kinase 1 (ETNK1), mRNA.
ILMN_17555	Homo sapiens zona pellucida glycoprotein 3 (sperm receptor) (ZP3), mRNA.
ILMN_24001	Homo sapiens anthrax toxin receptor 1 (ANTXR1), transcript variant 2, mRNA.
ILMN_27585	Homo sapiens peroxisome biogenesis factor 13 (PEX13), mRNA.
ILMN_525	Homo sapiens musashi homolog 2 (Drosophila) (MSI2), transcript variant 1, mRNA.
ILMN_23872	Homo sapiens ubiquitin specific peptidase 36 (USP36), mRNA.

HIST1H2B	NM_138720
D	
PBX1	NM_002585
C8orf70	NM_016010
ZNF187	NM_001023560
SNRP70	NM_001009820
SCYL2	NM_017988
CARF	NM_017632
SRPK2	NM_182691
SKIL	NM_005414
RBM9	NM_014309
CELSR3	NM_001407
ST8SIA4	NM_005668
LOC55565	NM_017530
HSPA4L	NM_014278
C19orf18	NM_152474
CPEB3	NM_014912
PRDM8	NM_020226
CLK3	NM_003992
ZNF17	NM_006959
LOC63920	NM_022090
CTTNBP2	NM_018704
NL	
ETNK1	NM_018638
ZP3	NM_007155
ANTXR1	NM_053034
PEX13	NM_002618
MSI2	NM_138962
USP36	NM_025090

$\left.\begin{array}{llll}\text { HNRPDL } & \text { NM_005463 } & \text { ILMN_29342 } & \begin{array}{l}\text { Homo sapiens heterogeneous nuclear ribonucleoprotein D-like (HNRPDL), transcript variant } \\ \text { 1, mRNA. } \\ \text { Homo sapiens COX11 homolog, cytochrome c oxidase assembly protein (yeast) (COX11), }\end{array} \\ \text { COX11 } & \text { NM_004375 } & \text { ILMN_24495 } & \\ \text { nuclear gene encoding mitochondrial protein, mRNA. }\end{array}\right] 1.56$
ILMN_454
ILMN_4442
ILMN_28352
ILMN_2521
ILMN_10192
ILMN_8608
ILMN_14294
ILMN_24841
ILMN_13569
ILMN_24644
ILMN_12699
ILMN_21875
ILMN_5118
ILMN_20121
ILMN_6658
ILMN_15940
ILMN_15198
ILMN_1888
ILMN_139293
ILMN_1979
ILMN_2173
ILMN_20374
ILMN_24487
ILMN_6835
ILMN_8534
ILMN_2816

FLJ10260	NM_018042
MMP10	NM_002425
MRPS12	NM_021107
MUM1L1	NM_152423
ZSCAN2	NM_017894
RIT1	NM_006912
FLJ37266	NM_175892
PPP2R2A	NM_002717
BTN2A2	NM_181531
C6orf113	NM_145062
LOC285989	NM_213603
SYT4	NM_020783
PARP6	NM_020213
CDKN2B	NM_078487
PTRH2	NM_001015509
MGC33839	NM_152353
GALNT12	NM_024642
OR51E2	NM_030774
CD151	NM_004357
C9orf123	NM_033428
ZNF277	NM_021994
C15orf15	NM_016304
DOCK1	NM_001380
LAMA3	NM_198129
MGST3	NM_004528
HLCS	NM_000411

$$
\begin{aligned}
& \text { Homo sapiens likely ortholog of mouse schlafen } 3 \text { (FLJ10260), mRNA. } \\
& \text { Homo sapiens matrix metallopeptidase } 10 \text { (stromelysin 2) (MMP10), mRNA. } \\
& \text { Homo sapiens mitochondrial ribosomal protein S12 (MRPS12), nuclear gene encoding } \\
& \text { mitochondrial protein, transcript variant 1, mRNA. } \\
& \text { Homo sapiens melanoma associated antigen (mutated) 1-like } 1 \text { (MUM1L1), mRNA. } \\
& \text { Homo sapiens zinc finger and SCAN domain containing } 2 \text { (ZSCAN2), transcript variant 2, } \\
& \text { mRNA. } \\
& \text { Homo sapiens Ras-like without CAAX } 1 \text { (RIT1), mRNA. } \\
& \text { Homo sapiens hypothetical protein LOC283225 (FLJ37266), mRNA. } \\
& \text { Homo sapiens protein phosphatase } 2 \text { (formerly 2A), regulatory subunit B (PR 52), alpha } \\
& \text { isoform (PPP2R2A), mRNA. } \\
& \text { Homo sapiens butyrophilin, subfamily 2, member A2 (BTN2A2), transcript variant 2, mRNA. } \\
& \text { Homo sapiens chromosome } 6 \text { open reading frame } 113 \text { (C6orf113), mRNA. } \\
& \text { Homo sapiens hypothetical protein LOC285989 (LOC285989), transcript variant 1, mRNA. } \\
& \text { Homo sapiens synaptotagmin IV (SYT4), mRNA. } \\
& \text { Homo sapiens poly (ADP-ribose) polymerase family, member } 6 \text { (PARP6), transcript variant 1, } \\
& \text { mRNA. } \\
& \text { Homo sapiens cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) (CDKN2B), } \\
& \text { transcript variant 2, mRNA. } \\
& \text { Homo sapiens peptidyl-tRNA hydrolase } 2 \text { (PTRH2), nuclear gene encoding mitochondrial } \\
& \text { protein, transcript variant 1, mRNA. } \\
& \text { Homo sapiens hypothetical protein MGC33839 (MGC33839), mRNA. } \\
& \text { Homo sapiens UDP-N-acetyl-alpha-D-galactosamine:polypeptide N- } \\
& \text { acetylgalactosaminyltransferase 12 (GalNAc-T12) (GALNT12), mRNA. } \\
& \text { Homo sapiens olfactory receptor, family } 51, \text { subfamily E, member 2 (OR51E2), mRNA. } \\
& \text { Homo sapiens CD151 antigen (CD151), transcript variant 4, mRNA. } \\
& \text { Homo sapiens chromosome } 9 \text { open reading frame 123 (C9orf123), mRNA. } \\
& \text { Homo sapiens zinc finger protein 277 (ZNF277), mRNA. } \\
& \text { Homo sapiens chromosome } 15 \text { open reading frame } 15 \text { (C15orf15), mRNA. } \\
& \text { Homo sapiens dedicator of cytokinesis } 1 \text { (DOCK1), mRNA. } \\
& \text { Homo sapiens laminin, alpha } 3 \text { (LAMA3), transcript variant 1, mRNA. } \\
& \text { Homo sapiens microsomal glutathione S-transferase } 3 \text { (MGST3), mRNA. } \\
& \text { Homo sapiens holocarboxylase synthetase (biotin-(proprionyl-Coenzyme A-carboxylase }
\end{aligned}
$$

PFKL	NM_002626
AUH	NM_001698
LIPA	NM_000235
DHPS	NM_001930
MPP1	NM_002436
CTNNBIP1	NM_001012329
COQ10A	NM_144576
C6orf108	NM_199184
C2orf30	NM_015701
LOC57228	NM_001031628
C16orf9	NM_032039
METTL4	NM_022840
LAMA4	NM_002290
F8A1	NM_012151
RPL22	NM_000983
PPIAL4	NM_178230
MOSPD2	NM_152581
MORC4	NM_024657
SYTL1	NM_032872
GBL	NM_022372
ZNF291	NM_020843
GPNMB	NM_001005340
PTPN13	NM_080685
DKFZP686	NM_014988
A01247	NM_002037
FYN	GM_000156
GAMT	NM

$$
\begin{array}{ll}
\text { ILMN_25945 } & \begin{array}{l}
\text { (ATP-hydrolysing)) ligase) (HLCS), mRNA. } \\
\text { Homo sapiens phosphofructokinase, liver (PFKL), transcript variant 2, mRNA. } \\
\text { Homo sapiens AU RNA binding protein/enoyl-Coenzyme A hydratase (AUH), nuclear gene } \\
\text { encoding mitochondrial protein, mRNA. }
\end{array} \\
\text { ILMN_16053 } & \begin{array}{l}
\text { Homo sapiens lipase A, lysosomal acid, cholesterol esterase (Wolman disease) (LIPA), } \\
\text { mRNA. }
\end{array} \\
\text { ILMN_17379 } & \text { Homo sapiens deoxyhypusine synthase (DHPS), transcript variant 1, mRNA. } \\
\text { ILMN_3527 } & \begin{array}{l}
\text { Homo sapiens membrane protein, palmitoylated 1, 55kDa (MPP1), mRNA. } \\
\text { ILMN_19796 }
\end{array} \\
\text { ILMN_22311 } & \text { Homo sapiens catenin, beta interacting protein 1 (CTNNBIP1), transcript variant 2, mRNA. } \\
\text { ILMN_29873 } & \text { Homo sapiens coenzyme Q10 homolog A (yeast) (COQ10A), mRNA. } \\
\text { ILMN_5240 } & \begin{array}{l}
\text { Homo sapiens chromosome 6 open reading frame 108 (C6orf108), transcript variant 2, } \\
\text { mRNA. }
\end{array} \\
\text { ILMN_22881 } & \text { Homo sapiens chromosome 2 open reading frame 30 (C2orf30), mRNA. } \\
\text { ILMN_22527 } & \text { Homo sapiens small trans-membrane and glycosylated protein (LOC57228), transcript variant } \\
\text { 1LMN_12959 mRNA. } & \text { Homo sapiens chromosome 16 open reading frame 9 (C16orf9), mRNA. } \\
\text { ILMN_16027 } & \text { Homo sapiens methyltransferase like 4 (METTL4), mRNA. } \\
\text { ILMN_4021 } & \text { Homo sapiens laminin, alpha 4 (LAMA4), mRNA. } \\
\text { ILMN_23293 } & \text { Homo sapiens coagulation factor VIII-associated (intronic transcript) 1 (F8A1), mRNA. } \\
\text { ILMN_10289 } & \text { Homo sapiens ribosomal protein L22 (RPL22), mRNA. } \\
\text { ILMN_1203 } & \text { Homo sapiens peptidylprolyl isomerase A (cyclophilin A)-like 4 (PPIAL4), mRNA. } \\
\text { ILMN_28307 } & \text { Homo sapiens motile sperm domain containing 2 (MOSPD2), mRNA. } \\
\text { ILMN_5233 } & \text { Homo sapiens MORC family CW-type zinc finger 4 (MORC4), mRNA. } \\
\text { ILMN_7184 } & \text { Homo sapiens synaptotagmin-like 1 (SYTL1), mRNA. } \\
\text { ILMN_137375 } & \text { Homo sapiens G protein beta subunit-like (GBL), mRNA. } \\
\text { ILMN_22657 } & \text { Homo sapiens zinc finger protein 291 (ZNF291), mRNA. } \\
\text { ILMN_20483 } & \text { Homo sapiens glycoprotein (transmembrane) nmb (GPNMB), transcript variant 1, mRNA. } \\
\text { ILMN_9656 } & \text { Homo sapiens protein tyrosine phosphatase, non-receptor type 13 (APO-1/CD95 (Fas)- } \\
\text { associated phosphatase) (PTPN13), transcript variant 4, mRNA. } \\
\text { ILMN_3090 } & \text { Homo sapiens hypothetical protein (DKFZP686A01247), mRNA. } \\
\text { ILMN_5919 } & \text { Homo sapiens FYN oncogene related to SRC, FGR, YES (FYN), transcript variant 1, mRNA. } \\
\text { ILMN_20028 } & \text { Homo sapiens guanidinoacetate N-methyltransferase (GAMT), transcript variant 1, mRNA. }
\end{array}
$$

ILMN_10360	Homo sapiens protease, serine, 16 (thymus) (PRSS16), mRNA.
ILMN_19233	Homo sapiens immunoglobulin superfamily, member 4 (IGSF4), mRNA.
ILMN_23605	Homo sapiens chromosome 6 open reading frame 57 (C6orf57), mRNA.
ILMN_8708	Homo sapiens KIAA0141 (KIAA0141), mRNA.
ILMN_12633	Homo sapiens mannosidase, alpha, class 1C, member 1 (MAN1C1), mRNA.
ILMN_14337	Homo sapiens apolipoprotein C-I (APOC1), mRNA.
ILMN_6575	Homo sapiens hypothetical protein FLJ14503 (FLJ14503), mRNA.
ILMN_6718	Homo sapiens MRE11 meiotic recombination 11 homolog A (S. cerevisiae) (MRE11A), transcript variant 2 , mRNA.
ILMN_3868	Homo sapiens B-cell CLL/lymphoma 2 (BCL2), nuclear gene encoding mitochondrial protein, transcript variant alpha, mRNA.
ILMN_28046	Homo sapiens exostoses (multiple)-like 2 (EXTL2), transcript variant 1, mRNA.
ILMN_11645	Homo sapiens cellular repressor of E1A-stimulated genes 1 (CREG1), mRNA.
ILMN_26079	Homo sapiens hypothetical protein MGC3265 (MGC3265), mRNA.
ILMN_12916	Homo sapiens programmed cell death 4 (neoplastic transformation inhibitor) (PDCD4), transcript variant 2 , mRNA.
ILMN_6709	Homo sapiens ras homolog gene family, member T1 (RHOT1), transcript variant 3, mRNA.
ILMN_1755	Homo sapiens limb region 1 homolog (mouse) (LMBR1), mRNA.
ILMN_1434	Homo sapiens actin related protein $2 / 3$ complex, subunit $2,34 \mathrm{kDa}$ (ARPC2), transcript variant 2, mRNA.
ILMN_12245	Homo sapiens inositol 1,4,5-triphosphate receptor, type 1 (ITPR1), mRNA.
ILMN_17925	Homo sapiens yippee-like 3 (Drosophila) (YPEL3), mRNA.
ILMN_3871	Homo sapiens BCL2/adenovirus E1B 19kDa interacting protein 3 (BNIP3), nuclear gene encoding mitochondrial protein, mRNA.
ILMN_18787	Homo sapiens phosphoenolpyruvate carboxykinase 2 (mitochondrial) (PCK2), nuclear gene encoding mitochondrial protein, transcript variant 2 , mRNA.
ILMN_24753	Homo sapiens ring finger protein 170 (RNF170), mRNA.
ILMN_5047	Homo sapiens hypothetical protein MGC24665 (MGC24665), mRNA.
ILMN_2265	Homo sapiens ras homolog gene family, member Q (RHOQ), mRNA.
ILMN_10085	Homo sapiens DEAD (Asp-Glu-Ala-Asp) box polypeptide 59 (DDX59), transcript variant 1, mRNA.
ILMN_12719	Homo sapiens unc-84 homolog A (C. elegans) (UNC84A), mRNA.
LMN_16484	Homo sapiens leucine rich repeat containing 8 family, member D (LRRC8D), mRN

PRSS16	NM_005865
IGSF4	NM_014333
C6orf57	NM_145267
KIAA0141	NM_014773
MAN1C1	NM_020379
APOC1	NM_001645
FLJ14503	NM_152780
MRE11A	NM_005590
BCL2	NM_000633
EXTL2	NM_001439
CREG1	NM_003851
MGC3265	NM_024028
PDCD4	NM_145341
RHOT1	NM_018307
LMBR1	NM_022458
ARPC2	NM_005731
ITPR1	NM_002222
YPEL3	NM_031477
BNIP3	NM_004052
PCK2	NM_001018073
RNF170	NM_030954
MGC24665	NM_152308
RHOQ	NM_012249
DDX59	NM_001031725
UNC84A	NM_025154
LRRC8D	NM_018103

$$
\begin{aligned}
& \begin{array}{l}
\text { Homo sapiens cell division cycle associated 7-like (CDCA7L), mRNA. } \\
\text { Homo sapiens EPH receptor A4 (EPHA4), mRNA. } \\
\text { Homo sapiens metallothionein 1F (functional) (MT1F), mRNA. } \\
\text { Homo sapiens heme binding protein } 1 \text { (HEBP1), mRNA. } \\
\text { Homo sapiens zinc finger protein } 533 \text { (ZNF533), mRNA. } \\
\text { Homo sapiens UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide } 1 \\
\text { (B4GALT1), mRNA. } \\
\text { Homo sapiens collagen, type IV, alpha } 6 \text { (COL4A6), transcript variant A, mRNA. } \\
\text { Homo sapiens methionine-tRNA synthetase (MARS), mRNA. } \\
\text { Homo sapiens neuropeptide Y (NPY), mRNA. } \\
\text { Homo sapiens hydroxysteroid dehydrogenase like } 2 \text { (HSDL2), mRNA. } \\
\text { Homo sapiens solute carrier family } 25 \text { (mitochondrial carrier; citrate transporter), member } 1 \\
\text { (SLC25A1), mRNA. } \\
\text { Homo sapiens DEAD (Asp-Glu-Ala-Asp) box polypeptide 59 (DDX59), transcript variant 1, } \\
\text { mRNA. } \\
\text { Homo sapiens serine hydroxymethyltransferase } 2 \text { (mitochondrial) (SHMT2), mRNA. } \\
\text { Homo sapiens chromosome } 9 \text { open reading frame 91 (C9orf91), mRNA. } \\
\text { Homo sapiens vaccinia related kinase } 3 \text { (VRK3), transcript variant 2, mRNA. } \\
\text { Homo sapiens enolase superfamily member } 1 \text { (ENOSF1), mRNA. } \\
\text { Homo sapiens epidermal growth factor receptor pathway substrate 15 (EPS15), mRNA. } \\
\text { Homo sapiens phosphatidylinositol glycan, class V (PIGV), mRNA. } \\
\text { Homo sapiens sterol regulatory element binding transcription factor } 1 \text { (SREBF1), transcript } \\
\text { variant 2, mRNA. } \\
\text { Homo sapiens metallothionein 1A (functional) (MT1A), mRNA. } \\
\text { Homo sapiens procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), } \\
\text { alpha polypeptide II (P4HA2), transcript variant 3, mRNA. } \\
\text { Homo sapiens metallothionein 1X (MT1X), mRNA. } \\
\text { Homo sapiens G protein-coupled receptor 37 (endothelin receptor type B-like) (GPR37), } \\
\text { mRNA. } \\
\text { Homo sapiens plasminogen activator, tissue (PLAT), transcript variant 1, mRNA. } \\
\text { Homo sapiens cell cycle progression } 1 \text { (CCPG1), transcript variant 1, mRNA. } \\
\text { Homo sapiens molybdenum cofactor sulfurase (MOCOS), mRNA. } \\
\text { Homo sapiens tetraspanin } 7 \text { (TSPAN7), mRNA. }
\end{array}
\end{aligned}
$$

ILMN＿22300 ILMN＿22360 ILMN＿3066 ILMN＿24855 ILMN＿29002 ILMN＿25582 ILMN＿26705 ILMN＿2952 ILMN＿8453 ILMN＿17963 ILMN＿－15248 ILMN 20988

ILMN＿20703 ILMN＿10981 ILMN＿24329 ILMN＿9757 ILMN＿24376 ILMN＿5536 ILMN＿8647 ILMN＿11789 ILMN＿22046 ILMN＿6530 ILMN＿17578 ILMN＿11014 ILMN＿3945

ILMN＿11696 ILMN＿21054 ILMN＿24093 ILMN＿10875 ILMN＿15031

NM 001024666
NM ${ }^{-} 144658$ NM＿000599 NM＿021101
 NM＿017779 NM＿006307 NM＿006371 NM＿018273 NM＿007224 NM＿014841

 n
N
O
B

Z帯 NM＿015411 | ∞ |
| :---: |
| |
| |
| |尔 NM＿052966

 NM＿152729
 to6e00－WN $\stackrel{\circ}{\infty}$

NM＿001448 NM＿001627 NM＿004484
 SH3KBP1
DOCK11
IGFBP5
CLDN1
PDCD6IP
DEPDC1
SRPX
CRTAP
FLJ10922
NXPH4
SNAP91
MTHFD1L CBX4绿 SUMF2 DEPDC6 GPR126析 NT5DC1范 SELENBP1 ARRDC4 GPC4
ALCAM
GPC3
TMEM80
RPS29

Homo sapiens GDNF family receptor alpha 2 （GFRA2），mRNA．
Homo sapiens CCAAT／enhancer binding protein（C／EBP），gamma（CEBPG），mRNA． Homo sapiens SAM domain containing 1 （LOC389432），mRNA． Homo sapiens regulator of G－protein signalling 16 （RGS16），mRNA． Homo sapiens hypothetical protein FLJ21657（FLJ21657），mRNA．
Homo sapiens transmembrane protein 18 （TMEM18），mRNA．
Homo sapiens insulin－like growth factor binding protein 7 （IGFBP7），mRNA． Homo sapiens hydroxysteroid（17－beta）dehydrogenase 8 （HSD17B8），mRNA． Homo sapiens adenomatosis polyposis coli down－regulated 1 （APCDD1），mRNA． Homo sapiens KIAA0367（KIAA0367），mRNA． Homo sapiens KDEL（Lys－Asp－Glu－Leu）containing 2 （KDELC2），mRNA． Homo sapiens keratin associated protein 19－1（KRTAP19－1），mRNA． Homo sapiens GAJ protein（GAJ），mRNA．
Homo sapiens protein phosphatase 1M（PP2C domain containing）（PPM1M），mRNA．
Homo sapiens chromosome 18 open reading frame 56 （C18orf56），mRNA．
Homo sapiens paraneoplastic antigen MA2（PNMA2），mRNA． Homo sapiens kelch／ankyrin repeat containing cyclin A1 interacting protein（KARCA1）， transcript variant 1 ，mRNA．
Homo sapiens family with sequence similarity 43 ，member A（FAM43A），mRNA． Homo sapiens PC4 and SFRS1 interacting protein 1 （PSIP1），transcript variant 2，mRNA． Homo sapiens Kruppel－like factor 9 （KLF9），mRNA． Homo sapiens phosphoserine phosphatase（PSPH），mRNA．
Homo sapiens MAX dimerization protein 3 （MXD3），mRNA． Homo sapiens frizzled homolog 4 （Drosophila）（FZD4），mRNA．
Homo sapiens solute carrier family 1 （glutamate／neutral amino acid transporter），member 4 （SLC1A4），mRNA．
Homo sapiens protocadherin 20 （PCDH20），mRNA．
Homo sapiens deoxyribonuclease II，lysosomal（DNASE2），mRNA．
Homo sapiens stanniocalcin 1 （STC1），mRNA．
Homo sapiens ribosomal protein S6 kinase，90kDa，polypeptide 2 （RPS6KA2），transcript
荡
ILMN＿24176
\circ
$\substack{\circ \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots}$
$\stackrel{\infty}{\infty}$
ILMN＿16445 ILMN＿5037 ILMN＿8053 ILMN＿894 ILMN＿9238 ILMN＿21788 ILMN＿23214 ILMN＿23677 ILMN＿24171
ILMN＿28552
ILMN＿4690 ILMN＿21911 ILMN＿10930

N
N
N
\sum_{B}^{2}
:---
$\stackrel{\rightharpoonup}{6}$

ILMN＿4787 $\stackrel{\otimes}{\infty}$
 ILMN ${ }^{-1} 1318$ ILMN＿5130 NM＿001495 NM 001806 NM＿－001030060 NM＿002928 NM＿022483 NM＿152834 NM＿001553 NM＿014234 NM＿153000 NM＿015225 NM＿153705

 NM＿032117 | 4 |
| :--- |
| Σ^{\prime} |

 NM＿007257 NM＿152366 NM＿153690 NM＿033222 NM＿001206 NM＿004577 NM＿031300 NM＿012193 NM＿003038 NM＿022843 NM＿001375 NM＿003155 NM 021135

DDR2	NM_006182
SLC7A1	NM_003045
EIF4EBP1	NM_004095
ASNS	NM_133436
SLC38A2	NM_018976
BHLHB2	NM_003670
PLCXD1	NM_018390
EGR1	NM_001964
SLCO2A1	NM_005630
DDIT4	NM_019058
ADM2	NM_024866
PSAT1	NM_021154
RAPGEF3	NM_006105
SLC7A5	NM_003486
FOS	NM_005252
WNT5A	NM_003392
ASS	NM_000050
ULBP1	NM_025218
CBS	NM_000071
HERPUD1	NM_001010990
MTHFD2	NM_006636
SESN2	NM_031459
TSC22D3	NM_004089
PCK2	NM_001018073

$$
\begin{aligned}
& \text { ILMN_20698 } \\
& \text { ILMN_22619 } \\
& \text { ILMN_6626 } \\
& \text { ILMN_14195 } \\
& \text { ILMN_10001 } \\
& \text { ILMN_24095 } \\
& \text { ILMN_8273 } \\
& \text { ILMN_20932 } \\
& \text { ILMN_14229 } \\
& \text { ILMN_13176 } \\
& \text { ILMN_19761 } \\
& \text { ILMN_17460 } \\
& \text { ILMN_24486 } \\
& \text { ILMN_25446 } \\
& \text { ILMN_27030 } \\
& \text { ILMN_14624 } \\
& \text { ILMN_18789 } \\
& \text { ILMN_1673 } \\
& \text { ILMN_5029 } \\
& \text { ILMN_19884 } \\
& \text { ILMN_23782 } \\
& \text { ILMN_7290 } \\
& \text { ILMN_9893 } \\
& \text { ILMN_18787 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Homo sapiens discoidin domain receptor family, member } 2 \text { (DDR2), transcript variant } 2 \text {, } \\
& \text { mRNA. } \\
& \text { Homo sapiens solute carrier family } 7 \text { (cationic amino acid transporter, y+ system), member } 1 \\
& \text { (SLC7A1), mRNA. } \\
& \text { Homo sapiens eukaryotic translation initiation factor 4E binding protein } 1 \text { (EIF4EBP1), } \\
& \text { mRNA. } \\
& \text { Homo sapiens asparagine synthetase (ASNS), transcript variant 1, mRNA. } \\
& \text { Homo sapiens solute carrier family 38, member } 2 \text { (SLC38A2), mRNA. } \\
& \text { Homo sapiens basic helix-loop-helix domain containing, class B, } 2 \text { (BHLHB2), mRNA. } \\
& \text { Homo sapiens phosphatidylinositol-specific phospholipase C, X domain containing } 1 \\
& \text { (PLCXD1), mRNA. } \\
& \text { Homo sapiens early growth response } 1 \text { (EGR1), mRNA. } \\
& \text { Homo sapiens solute carrier organic anion transporter family, member 2A1 (SLCO2A1), } \\
& \text { mRNA. } \\
& \text { Homo sapiens DNA-damage-inducible transcript } 4 \text { (DDIT4), mRNA. } \\
& \text { Homo sapiens adrenomedullin } 2 \text { (ADM2), mRNA. } \\
& \text { Homo sapiens phosphoserine aminotransferase } 1 \text { (PSAT1), transcript variant 2, mRNA. } \\
& \text { Homo sapiens Rap guanine nucleotide exchange factor (GEF) } 3 \text { (RAPGEF3), mRNA. } \\
& \text { Homo sapiens solute carrier family } 7 \text { (cationic amino acid transporter, y+ system), member } 5 \\
& \text { (SLC7A5), mRNA. } \\
& \text { Homo sapiens v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS), mRNA. } \\
& \text { Homo sapiens wingless-type MMTV integration site family, member 5A (WNT5A), mRNA. } \\
& \text { Homo sapiens argininosuccinate synthetase (ASS), transcript variant 1, mRNA. } \\
& \text { Homo sapiens UL16 binding protein } 1 \text { (ULBP1), mRNA. } \\
& \text { Homo sapiens cystathionine-beta-synthase (CBS), mRNA. } \\
& \text { Homo sapiens homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like } \\
& \text { domain member } 1 \text { (HERPUD1), transcript variant 3, mRNA. } \\
& \text { Homo sapiens methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, } \\
& \text { methenyltetrahydrofolate cyclohydrolase (MTHFD2), nuclear gene encoding mitochondrial } \\
& \text { protein, mRNA. } \\
& \text { Homo sapiens sestrin } 2 \text { (SESN2), mRNA. } \\
& \text { Homo sapiens TSC22 domain family, member } 3 \text { (TSC22D3), transcript variant 2, mRNA. } \\
& \text { Homo sapiens phosphoenolpyruvate carboxykinase } 2 \text { (mitochondrial) (PCK2), nuclear gene } \\
& \text { encoding mitochondrial protein, transcript variant 2, mRNA. }
\end{aligned}
$$

$$
\underset{\sim}{\text { N}}
$$

$$
\begin{aligned}
& \text { NM_021158 } \\
& \text { NM_003714 } \\
& \text { NM_005194 } \\
& \text { NM_006934 } \\
& \text { NM_004563 } \\
& \text { NM_024111 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ILMN_21257 } \\
& \text { ILMN_28725 } \\
& \text { ILMN_4674 } \\
& \text { ILMN } 8399
\end{aligned}
$$

ILMN_2603
ILMN_2489

$$
\begin{aligned}
& \text { Homo sapiens phosphoenolpyruvate carboxykinase } 2 \text { (mitoch } \\
& \text { encoding mitochondrial protein, transcript variant } 1 \text {, mRNA. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (SLC6A9), transcript variant 1, mRNA. } \\
& \text { Homo sapiens phosphoenolpyruvate carboxykinase } 2 \text { (mitochondrial) (PCK2), nuclear gene }
\end{aligned}
$$

$$
\text { Homo sapiens ChaC, cation transport regulator-like } 1 \text { (E. coli) (CHAC1), mRNA. }
$$

Appendix table S6:Results of high-resolution mass spectrometric-based metabonomic analysis of Npas3 wild-type and knockout brain tissue showing molecular formula of metabolites, tentative assignment of metabolites, KEGG pathways, m / z ratios \& retention times. Sieve was used to identify metabolites altered in the KO animals by calculating a p-value and ratio based on the average intensities of individual peaks corresponding to different metabolites. A significant difference in the level of each metabolite between genotypes was set at p -value $<0.05 \mathrm{and} /$ or ratio less than 0.5 for down-regulated metabolites and greater than 2 for up-regulated metabolites. For metabolite identification, masses were searched against the exact masses of 6,000 biomolecules using an in-house developed macro which also contained the retention times of metabolites obtained from analysis of standards (Excel, Microsoft.). Decreased (a, c) and increased (b, d) metabolites are shown from positive (a,b) and negative (c,d) ionisation modes. Asterisked compounds in (d) highlight ambiguous identities.

Formula	Compounds	Pathway(s)	M/Z	Time	P-Value	Ratio
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{6} \mathrm{P}$	Glycerone phosphate (DHAP)	Nicotinamide_Glyco_Fructo_Galacto_GPL_IP_Lipid_Pentphosph_Pyruv	171.0053	13.7	2.62×10^{-5}	0.061
$\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}$	(R)-S-Lactoylglutathione	Pyruv	380.1124	12.5	1.77×10^{-5}	0.259
$\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$	N(6)-Methyllysine	None	161.1284	32.5	2.28×10^{-4}	0.328
$\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{2}$	Propionyl Acetylcholine	None	160.1332	12.8	3.49×10^{-4}	0.36
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{4}$	(R)-Pantoate	Panto_CoA	149.0808	15.3	6.17×10^{-4}	0.515
$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$	5,6-Dihydrothymine	Pyrimidine	129.0658	14.4	8.07×10^{-4}	0.555
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$	Glutamine	Glu_Purine_Pyrimidine	147.0765	15.3	1.06×10^{-3}	0.596
$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$	Guanidino butyric acid	Urea	146.0925	13.0	4.60×10^{-5}	0.605
$\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6}$	Gamma glutamyl glutamine	None	276.119	15.0	4.25×10^{-4}	0.633
$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2} \mathrm{~S}$	Thiomorpholine 3carboxylate	None	148.0427	10.577	7.96×10^{-3}	0.641
$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$	Homo-carnosine	Urea	241.1296	26.3	1.33×10^{-2}	0.688
$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{3}$	Pyrroline-4-hydroxy-2carboxylate	Arg/Pro	130.0498	15.3	1.28×10^{-3}	0.722
$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$	L-Histidine	His_btAla	156.0769	26.3	3.39×10^{-2}	0.761
$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{4}$	L-Aspartate	His_Arg/Pro_Urea_Ser/Gly/Thr_Nicotinamide_Lys_Ala/Asp_Pantt	134.0448	15.0	1.03×10^{-3}	0.766
$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{NO}_{3}$	Maleamate	Nicotinamide	116.0342	15.0	1.08×10^{-3}	0.766
$\mathrm{CH}_{5} \mathrm{O}_{4} \mathrm{P}$	Hydroxymethylphosphonate	AminoPhos	112.9998	13.3	2.20×10^{-2}	0.786
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$	Nicotinamide	Nicotinamide	123.0553	8.2	2.97×10^{-3}	0.824
$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NO}_{4}$	O-Acetyl-L-homoserine	Met_Sul	162.0761	11.8	4.34×10^{-2}	0.824

Formula	Compounds	Pathway(s)	M/Z	Time	P-Value	Ratio
$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{7} \mathrm{O}_{14} \mathrm{P}_{2}{ }^{+}$	NAD^{+}	Nicotinamide_Glu_OxidPhos	664.1162	16.9	2.69×10^{-8}	12.36
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$	L-Cystathionine	Ser/Gly/Thr_Met_Sul	223.0748	19.2	8.05×10^{-6}	3.741
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}$	Phospho-creatine	Arg/Pro	212.0431	13.682	1.39×10^{-5}	2.042
$\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$	$\begin{aligned} & \text { L-leucyl-L- } \\ & \text { proline } \end{aligned}$	None	229.155	13.0	1.63×10^{-5}	1.859
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$	L-Lysine	Lys(Syn)_Lys(Deg)_Biot	147.1129	24.5	4.24×10^{-11}	1.845
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$	Aminoacetone	Ser/Gly/Thr	74.06009	14.82	1.82×10^{-10}	1.704
$\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	Ergothioneine	None	230.0959	15.8	5.76×10^{-5}	1.688
$\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{O}_{6} \mathrm{P}$	Glycerol 3phosphate	Ala_GPL_Lipid	173.021	13.8	7.66×10^{-6}	1.635
$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$	Slaframine	Bio-alkaloid	241.1548	12.745	4.31×10^{-5}	1.414
$\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{4}$	Propionyl carnitine	None	218.139	10.7	5.37×10^{-3}	1.402
$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}$	Xanthine	Purine	153.0408	8.2	1.97×10^{-4}	1.389
$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$	L-Citrulline	Arg/Pro_Urea	176.103	15.821	2.62×10^{-4}	1.372
$\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{4}$	O-Acetylcarnitine	Ala/Asp	204.123	11.7	5.39×10^{-4}	1.361
$\mathrm{C}_{5} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{P}$	Phosphorylcholine	GPL	184.0734	19.3	1.78×10^{-4}	1.314
$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{5}$	Cytidine	Pyrimidine	244.0929	16.4	1.12×10^{-3}	1.247
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$	L-Arginine	Arg/Pro_Urea	175.1189	24.1	7.27×10^{-5}	1.244
$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2}$	L-Proline	Arg/Pro	116.0707	13.6	4.15×10^{-4}	1.234
$\mathrm{H}_{3} \mathrm{PO}_{4}$	Phosphoric acid	Oxidphos_Photo_Peptiglyc_ABC_Parki	98.98418	14.9	1.39×10^{-5}	1.223
$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}$	Cytosine	Pyrimidine	112.0506	16.4	2.04×10^{-3}	1.197
$\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{NO}_{3} \mathrm{~S}$	Taurine	Taurine	126.0219	14.3	5.63×10^{-6}	1.184

c

Formula	Compounds	Pathway(s)	M/Z	Time	P VALUE	RATIO
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{14} \mathrm{P}_{2}$	Octulose-1,8- bisphosphate	Pent-phosph	399.01035	13.7	1.99×10^{-3}	0.052
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{5}$	Naringenin	None	271.06073	14.5	2.76×10^{-2}	0.431
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{12} \mathrm{P}_{2}$	Fructose 1,6- bisphosphate	Pent-phosph, Glyco, Fructo	338.98907	19.3	5.61×10^{-2}	0.443

Formula	Compounds	Pathway(s)	M/Z	Time	P VALUE	RATIO
$\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{16} \mathrm{P}_{2}$	*dTDP-glucose, dTDPgalactose,	Galacto- Nucleo	563.06958	16.6	2.73×10^{-5}	3.446
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{7}$	Sedoheptulose	Pent-phosph	209.06688	10.6	${ }_{5}^{4.59 \times 10^{-}}$	2.653
$\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}_{2}$	Aspartylmethionylmethionine	None	394.11221	15.1	$4.41 \underset{6}{\text { X } 10^{-}}$	2.566
$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$	Succinate	Glu_Tyr/Phe_Ala/Asp_Benzt_Butan_CO2fix_Glyoxy_Propn	117.01945	5.9	${ }^{1.28} \underset{4}{ } \times 10^{-}$	2.05
$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{17} \mathrm{P}_{2}$	*UDP-D-galactose; UDP- glucose	Galacto_Nucleo	565.04822	16.8	$\underset{4}{3.49} \times 10^{-}$	1.968
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{5} \mathrm{P}$	Propanoyl phosphate	Propn	152.996	12.5	${ }_{1} 1.88 \times 10^{-}$	1.943
$\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{P}$	CMP-N-acetyl-neuraminate	AmnoSug	613.14081	15.1	$\mathrm{7}^{7.91 \mathrm{X}} 100^{-}$	1.939
$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{5}$	α-ketoglutaric acid	Glu_His_Lys(syn)_Ala/Asp_VB6_Ascob_Butan_CO2fix_Glyoxy	145.0144	8.4	$\underset{4}{6.07 \times 10^{-}}$	1.793
$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{4}$	*Hydroxypyruvate; Malonate; 2-Hydroxy-3oxopropanoate	Ser/Gly/Thr ; Pyrimidine	103.00379	7.9	$2.74 \underset{3}{\times 1} \times 10^{-}$	1.595
$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{3}$	Uric Acid (Urate)	Purine	167.02121	10.6	${ }^{1.30 \times}{ }_{2} \times 10^{-}$	1.506
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{8}$	Glucoheptonic acid	None	225.06163	15.1	$1.67{ }_{2} \times 10^{-}$	1.481
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{4} \mathrm{~S}$	2-Hydroxyethanesulfonate	Taurine	124.99155	10.4	$1.71 \underset{2}{ }{ }^{\text {X }} 10^{-}$	1.469
$\mathrm{C}_{5} \mathrm{H}_{13} \mathrm{O}_{7} \mathrm{P}$	2-C-Methyl-D-erythritol 4phosphate	Sterd	215.033	15.1	$2.91 \underset{2}{\mathrm{X}} 10^{-}$	1.4
$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$	Ascorbate	GSH_Ascob	175.02481	10.3	$4.11 \underset{2}{\text { X }} 10^{-}$	1.369

[^0]: mRNA．

 NF－kappaB repressing factor（NKRF），mRNA．

