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Abstract
Which features of a computer game contribute to the player’s enjoyment of it? How can

we automatically generate interesting and satisfying playing experiences for a given

game? These are the two key questions addressed in this dissertation.

Player satisfaction in computer games depends on a variety of factors; here the focus is

on the contribution of the behaviour and strategy of game opponents in predator/prey

games. A quantitative metric of the ‘interestingness’ of opponent behaviours is de-

fined based on qualitative considerations of what is enjoyable in such games, and a

mathematical formulation grounded in observable data is derived. Using this met-

ric, neural-network opponent controllers are evolved for dynamic game environments

where limited inter-agent communication is used to drive spatial coordination of op-

ponent teams.

Given the complexity of the predator task, cooperative team behaviours are investi-

gated. Initial candidates are generated using off-line learning procedures operating on

minimal neural controllers with the aim of maximising opponent performance. These

example controllers are then adapted using on-line (i.e. during play) learning tech-

niques to yield opponents that provide games of high interest. The on-line learning

methodology is evaluated using two dissimilar predator/prey games with a number

of different computer player strategies. It exhibits generality across the two game

test-beds and robustness to changes of player, initial opponent controller selected, and

complexity of the game field.

The interest metric is also evaluated by comparison with human judgement of game

satisfaction in an experimental survey. A statistically significant number of players

were asked to rank game experiences with a test-bed game using perceived interest-

ingness and their ranking was compared with that of the proposed interest metric. The

results show that the interest metric is consistent with human judgement of game sat-

isfaction.

Finally, the generality, limitations and potential of the proposed methodology and tech-

niques are discussed, and other factors affecting the player’s satisfaction, such as the

player’s own strategy, are briefly considered. Future directions building on the work

described herein are presented and discussed.
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Chapter 1

Introduction

Computer games constitute a major branch of the entertainment industry nowadays.

The financial and research potential of making games more appealing (or else more

interesting) is more than impressive. Artificial intelligence (AI) (Russell and Norvig,

1995) is one of the fields that will benefit from humans’ constant demand for more

intelligent and interesting games. Furthermore, the continuous increase of computing

power can bring expensive, until recently, AI techniques back to life in a computer

game application. Machine learning techniques are able to produce characters with in-

telligent capabilities. On that basis, interactive and cooperative characters can generate

more realism to games and satisfaction to the player.

1.1 Motivation

The computer game industry has grown rapidly over the last decade. In 2004, sales of

computer games in the U.S. reached a total of 7.6 billion U.S. dollars, while in 1996

the respective amount was 3.0 billion U.S. dollars according to the latest reports of the

Entertainment Software Association (2004). Currently computer games is the biggest

sector of the entertainment industry in the U.S. and among the wealthiest industry

sectors in the U.K. Computer games’ advantage in contrast with other forms of enter-

tainment is their interactivity in combination with their relatively low price. Note also

that the constant broadening of the age and social target groups has also contributed to

their popularity.

Computer games are based on various concepts which determine their core and classify

1
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them in genres. This form of digital entertainment is embedded in a virtual simulated

world that the player interacts with. Such virtual worlds have seen major audiovi-

sual improvements over the last twenty years; from abstract two-dimensional surfaces

to complex realistic worlds. This graphical realism has been the key focus of game

developers and has contributed to the increasing popularity of games. Consequently,

realistic game worlds have reached a point nowadays where there can only be slow and

minor further enhancements in that direction (Champandard, 2004).

While game development has been concentrated primarily on the graphical represen-

tation of the game worlds, minor focus has been given on the non-player characters’

(NPCs’) behavior. Simple scripted rules and finite-state or fuzzy-state machines are

still used to control NPCs in the majority of games (Woodcock, 2001). The increasing

number of multi-player online games (among others) is an indication that humans seek

more intelligent opponents and richer interactivity. Advanced artificial intelligence

techniques are able to improve gaming experience by generating intelligent interac-

tive characters and furthermore cover this human demand (Funge, 2004). Moreover,

computational power may bring expensive innovative AI techniques such as machine

learning to meet a game application in the near future.

Intelligent interactive opponents can provide more enjoyment to a vast gaming commu-

nity of constant demand for more realistic, challenging and meaningful entertainment

(Fogel et al., 2004). However, given the current state-of-the-art in AI in games, it is un-

clear which features of any game contribute to the satisfaction of its players, and thus it

is also uncertain how to develop enjoyable games. Because of this lack of knowledge,

most commercial and academic research in this area is fundamentally incomplete.

The challenges we consider in this dissertation are to provide qualitative and quantita-

tive means for distinguishing a game’s enjoyment value and to develop efficient tools

to automatically generate entertainment for the player. In that sense, investigation of

the factors/criteria that map to real-time enjoyment for the player as well as the mech-

anisms that are capable of generating highly entertaining games constitute our primary

aims. To achieve our goals, we consider specific prerequisites (presented in the fol-

lowing section) that determine our milestones towards enhancing this form of digital

entertainment.
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1.2 Questions and Objectives

Given the research motivations discussed in the previous section, there are specific

issues that need to be addressed towards our objectives. The research questions that

will be answered in this thesis are as follows.

1. Which are the features/criteria that collectively determine enjoyment in com-

puter games.

2. How to quantitatively measure the player’s satisfaction (i.e. interest) in real-time.

3. How to increase a game’s low interest and/or how to maintain a highly interesting

game.

4. How the player may affect his/her entertainment while playing.

The two primary objectives of this thesis as well as the sub-goals that the aforemen-

tioned questions generate are as follows.

• Establish an efficient interest metric for computer games and demonstrate its

generality. In this dissertation we will experiment with predator/prey games as a

test bed.

• Enhance entertainment of computer players based on this metric. This is achieved

through evolutionary learning of neural-controlled opponents in real-time (while

playing).

Our hypothesis is that opponents with minimal controllers that demonstrate emergent

cooperative behaviors are able to enhance entertainment in a computer game. More-

over, if their intra-communication is based on indirect (implicit), non-global (i.e. par-

tial) and ‘passive’ information (i.e. information that does not alter the state of the game

world itself), opponents are able to demonstrate a more robust behavior and general-

ity over the complexity of the game environment in contrary to opponents with global

sensing of their environment. Minimal knowledge of the game world, that is able to

generate desired behaviors, is one of the features of the opponents used in this thesis.

Therefore, we investigate off-line learning procedures able to generate cooperative ac-

tion in such game environments and furthermore, explore techniques to minimize the

opponents’ neural-controllers for optimal real-time performance. Given the coopera-

tive action and the minimal controller structure of the opponents, we have designed
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a successful evolutionary learning procedure applied in games in real-time (see Sec-

tion 1.4 for the challenges of learning in real-time).

1.3 Game Properties

Cooperative behaviors within systems (environments, artificial game worlds) of mul-

tiple agents is a prominent area of research. Designing agents for such systems could

be a repetitive and tedious procedure. This task becomes even more difficult when the

multi-agent environment investigated is highly dynamic and non-deterministic. Ad-

ditional complication is present when agents’ communication is implicit and partial.

Thus, when designing controllers for autonomous simulated agents for such environ-

ments, there is little guidance on how complex the controller must be for the agents to

achieve good performance in particular tasks. Furthermore, when such a performance

is to emerge via a learning mechanism, there is little knowledge about the mechanism’s

design and complexity.

The test-bed game environments used for our experiments are designed according to

the following features:

1. Two dimensional.

2. Multi-agent (i.e. multiple opponents) for studying emergent cooperation.

3. Agent communication is based on implicit, partial and passive information. We

make this choice by following principles of the animat approach (Meyer and

Guillot, 1994) which provides the ground for realistic NPC behaviors in com-

puter games (Champandard, 2004).

4. Agents’ tasks investigated are limited to spatial coordination.

Our first objective in developing such (game) worlds is to investigate the potential

emergence of cooperative complex opponent behaviors amongst the agents given their

type of communication and specific tasks they have to achieve. Subsequently, we

investigate how these behaviors may impact the player’s perceived entertainment.

A set of games that collectively embodies all the above-mentioned environment fea-

tures is the predator/prey genre. We choose predator/prey games as the initial genre

of our game research since, given our aims, they provide us with unique properties.
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In such games we can deliberately abstract the environment and concentrate on the

characters’ behavior. The examined behavior is cooperative since cooperation is a pre-

requisite for effective hunting behaviors. Furthermore, we are able to easily control

a learning process through on-line interaction. In other words, predator/prey games

offer a well-suited arena for initial steps in studying cooperative behaviors generated

by interactive on-line learning mechanisms. Other genres of game (e.g. first person

shooters) offer similar properties; however predator/prey games are chosen for their

simplicity as far as their development and design are concerned.

Note also that our experiments are held in a personal computer rather than an online

server. Thus, both the game real-time graphical presentation and all computational

processes that run on its background are hosted in a single CPU. This selection bounds

the available computational power and generates challenges for the fast adaptation of

any on-line learning opponents. However, it is a realistic choice since the majority of

computer games released run on a single CPU and this should be the framework of the

application of any advanced AI mechanism (Woodcock, 2001).

1.4 Learning in Real-Time Challenges

We can distinguish the challenges we will come across in this dissertation into the ones

generated by the game design per se and the ones generated by learning (off-line or

on-line) in computer games. The former challenges will be extensively presented after

each game’s description, off-line learning challenges will be discussed in Chapter 4,

whereas the on-line learning challenges are introduced in this section. We make this

distinction here since the difficulties arising from learning in real-time will be faced

globally throughout the thesis.

The drawbacks we have to overcome when designing a learning (neuro-evolution)

mechanism for real-time opponent adaptation are as follows:

• Real-time performance. An on-line learning approach should perform fast in

real-time since only a single CPU is available for the majority of computer games

(Woodcock, 2001). Note also, that most commercial computer games use over

90% of the CPU for their graphics engines only.

• Realism. On-line neuro-evolution provides the potential for adaptive opponents

but it may also generate unrealistic opponent behaviors. In most computer games
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the player interacts with a very small number of opponents in the majority of

gameplay instances. Unrealistic behaviors are, therefore, easily noticeable and

may lead to low entertainment for the player.

• Fast adaptation. A successful on-line learning approach should adapt quickly

to changes in the player’s strategy. Otherwise, the game becomes boring. This

constitutes a big challenge for the design of the on-line learning mechanism

given the computational power resources, the realistic behavior condition pre-

sented before and the small number of opponents that normally interact with the

player in computer games.

The predator/prey games used in this dissertation face all aforementioned challenges

of on-line learning design since experiments are held in a single 1GHz CPU and the

number of opponents is less than or equal to five.

1.5 Summary

Mainly motivated by the current lack of a qualitative and quantitative entertainment

formulation of computer games and the procedures to generate it, this dissertation cov-

ers the following issues: It presents the features — extracted primarily from the oppo-

nent behavior — that make a predator/prey game appealing; provides the qualitative

and quantitative means for measuring player entertainment in real-time and introduces

a successful methodology for obtaining games of high satisfaction. This methodology

is based on on-line (during play) learning opponents who embed minimal controllers

and demonstrate cooperative action.

1.6 Summary of Thesis

The thesis is organized into chapters as follows.

Chapter 2 introduces the criteria that make predator/prey games interesting and quan-

tifies them in a formula. The assumptions over which this metric is formulated and

furthermore the metric’s potential generality are also discussed.

Chapter 3 provides an outline of the computer games’ state of industry and the state-

of-the-art of AI in games. Extensive literature review of the tools and the methodology
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used are also presented in this chapter.

Chapter 4 describes the methodological approaches followed in this thesis. In par-

ticular this includes: emergence of cooperative opponent behaviors through off-line

learning mechanisms; minimization of opponents’ controllers and game’s interest en-

hancement through on-line learning procedures. This chapter also introduces a proto-

type test-bed for the study of emergent cooperation in simulated virtual environments.

Chapter 5 introduces the predator/prey game called ‘Dead End’ and demonstrates

experiments of our approach in this test-bed.

Chapter 6 demonstrates the generality of the method over the predator/prey genre by

introducing experiments on a modified version of the well-known Pac-Man game.

Chapter 7 presents a survey based on human subjects, which attempts to draw the

correlation between human notion of interestingness and the interest metric proposed

and to test the on-line evolutionary learning mechanism under real gaming conditions.

Chapter 8 investigates the player’s impact on the real-time interest of the game. Ex-

periments with player modeling techniques provide some first insights for this form

of game-player interaction. In addition, future research steps beyond the limits of this

dissertation are discussed.

Chapter 9 summarizes the thesis’ main achievements and contributions and discusses

the proposed methodology’s current limitations. Moreover, potential solutions that

might embrace these drawbacks are presented.





Chapter 2

Interest

According to the thesis’ objectives described in Chapter 1, the first step towards gen-

erating enjoyable computer games is to empirically discuss the criteria or features of

games that collectively define enjoyment (or else interest) in computer games. Our

application area is the genre of predator/prey games because of the distinctive features

and advantages they offer (see Chapter 1).

In this chapter we discuss entertainment metrics in computer games, previous research

endeavors in the area as well as their importance regarding the area of AI in games.

Subsequently, we introduce a mathematical presentation of interest in predator/prey

games based on criteria that define entertainment in such games. Finally, we outline the

essential parameter configurations for the proposed metric and present the assumptions

on which this metric is built.

2.1 Entertainment Metrics

Research in the AI in computer games field is based on several empirical assumptions

about human cognition and human-machine interaction. The primary hypothesis is

that by generating human-like opponents (Freed et al., 2000), computer games become

more appealing and enjoyable. While there are indications to support such a hypothesis

(e.g. the vast number of multi-player on-line games played daily on the web) and

recent research endeavors to investigate the correlation between believability of NPCs

and satisfaction of the player (Taatgen et al., 2003), there has been no evidence that a

specific opponent behavior generates more or less interesting games.

9
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Iida’s work on measures of entertainment in board games was the first attempt in this

area. He introduced a general metric of entertainment for variants of chess games de-

pending on average game length and possible moves (Iida et al., 2003). On that basis,

some endeavors towards the criteria that collectively make simple online games ap-

pealing are discussed in (Crispini, 2003). The human survey-based outcome of that

work presents challenge, diversity and unpredictability as primary criteria for enjoy-

able opponent behaviors.

2.2 Interest in Predator/Prey Computer Games

As noted in Chapter 1, predator/prey games will be our test-bed genre for the investiga-

tion of enjoyable games. More specifically, in the games studied, the prey is controlled

by the player and the predators are the computer-controlled opponents. In order to

find an objective measure of interest in such games we first need to empirically define

the criteria that make such a game interesting. Then, second, we need to quantify and

combine all these criteria in a mathematical formula1. Subsequently, a test-bed game

should be tested by human players to have this formulation of interest cross-validated

against the interest the game produces in real conditions (see Chapter 7).

To simplify this procedure we will ignore the graphics’ and the sound effects’ contribu-

tions to the interest of the game and we will concentrate on the opponents’ behaviors.

That is because, we believe, the computer-guided opponent character contributes the

vast majority of features that make a computer game interesting. The player, however,

may contribute to its entertainment through its interaction with the opponents of the

game and, therefore, it is implicitly included in the interest formulation presented here

— see also Chapter 8 for studies on the player’s impact on his/her entertainment.

2.2.1 Criteria

By observing the opponents’ behavior of various predator/prey games we attempted to

empirically extract the features that may generate entertainment for the player. These

features were experimentally cross-validated against various opponents of different

strategies and redefined when appropriate. Hence, by being as objective and generic

1Parts of this chapter’s material have been published in (Yannakakis and Hallam, 2004a; 2004b;
2005d)
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as possible, we believe that the criteria that collectively define interest on any preda-

tor/prey game are as follows.

1. When the game is neither too hard nor too easy. In other words, the game is in-

teresting when predators (opponents) manage to kill the prey (player) sometimes

but not always. In that sense, given a specific game structure and a player, highly

effective opponent behaviors are not interesting behaviors and vice versa.

2. When there is diversity in opponents’ behavior over the games. That is, when

the NPCs are able to find dissimilar ways of hunting and killing the player in

each game so that their strategy is less predictable.

3. When opponents’ behavior is aggressive rather than static. That is, predators

that move constantly all over the game world and cover it uniformly. This be-

havior gives the player the impression of an intelligent strategic opponents’ plan

which increases the game interest.

2.2.2 Metrics

In order to estimate and quantify each of the three aforementioned interest criteria, we

let a group of game opponents — the number of opponents depends on the specific

game under examination — play the game N times (each game for a sufficiently large

evaluation period of tmax simulation steps) and we record the simulation steps tk taken

to kill the player as well as the total number of the opponents’ visits vik at each cell i of

the grid game field for each game k. In the case where the game’s motion is continuous,

a discretization of the field’s plane up to the character’s size can serve this purpose.

Given these, the quantifications of the three interest criteria proposed above can be

presented as follows.

1. Appropriate Level of Challenge. According to the first criterion, an estimate of

how interesting the behavior is, is given by T in (2.1).

T = [1− (E{tk}/max{tk})]p1 (2.1)

where E{tk} is the average number of simulation steps taken to kill the prey-

player over the N games; max{tk} is the maximum tk over the N games —

max{tk} ≤ tmax; p1 is a weighting parameter.
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The T estimate of interest demonstrates that the greater the difference between

the average and the maximum number of steps taken to kill the player, the higher

the interest of the game. Given (2.1), both easy-killing (‘too easy’) and near-

optimal (‘too hard’) behaviors get low interest estimate values (i.e. E{tk} '
max{tk}). This metric is also called ‘challenge’.

2. Behavior Diversity. The interest estimate for the second criterion is given by S in

(2.2).

S = (σtk/σmax)
p2 (2.2)

where

σmax =
1
2

√
N

(N−1)
(tmax− tmin) (2.3)

and σtk is the standard deviation of tk over the N games; σmax is an estimate of the

maximum value of σtk ; tmin is the minimum number of simulation steps required

for predators to kill the prey obtained by playing against some ‘well’ behaved

fixed strategy near-optimal predators (tmin ≤ tk); p2 is a weighting parameter.

The S estimate of interest demonstrates that the greater the standard deviation

of the steps taken to kill the player over N games, the higher the interest of

the behavior. Therefore, by using (2.2) we promote predators that produce high

diversity in the time taken to kill the prey.

3. Spatial Diversity. A good measure for quantifying the third interest criterion is

through entropy of the predators’ cell visits in a game, which quantifies the com-

pleteness and uniformity with which the opponents cover the stage. Hence, for

each game, the cell visit entropy is calculated and normalized into [0,1] via (2.4).

Hn =

[
− 1

logVn
∑

i

vin

Vn
log

(
vin

Vn

)]p3

(2.4)

where Vn is the total number of visits of all visited cells (i.e. Vn = ∑i vin) and p3

is a weighting parameter.

Given the normalized entropy values Hn for all N games, the interest estimate

for the third criterion can be represented by their average value E{Hn} over

the N games. This implies that the higher the average entropy value, the more

interesting the game becomes.
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All three criteria metrics are combined linearly (2.5)

I =
γT +δS + εE{Hn}

γ+δ+ ε
(2.5)

where I is the interest value of the predator/prey game; γ,δ and ε are criterion weight

parameters.

To obtain the I value’s confidence intervals we follow the bootstrapping procedure

presented in Appendix A. The I value proposed here is a reliable estimate of player

entertainment in real-time since it is approved by humans (see Chapter 7).

This thesis presents an innovative and efficient approach to model and quantify en-

tertainment; however, without claiming of this approach being unique. We believe

that other successful quantitative metrics for the appropriate level of challenge, the

opponents’ diversity and the opponents’ spatial diversity may be designed and more

qualitative criteria may be inserted in the interest formula. For example other metrics

for measuring the appropriate level of challenge metric could be used: one could come

up with a T metric assuming that the appropriate level of challenge follows a Gaussian

distribution over E{tk} and that the interest value of a given game varies depending on

how long it is — very short (E{tk} ≈ tmin) games tend to be frustrating and long games

(E{tk} ≈ max{tk}) tend to be boring. However, very short games are not frequent in

the experiments presented in this thesis and, therefore, by varying the weight parame-

ter p1 in the proposed T metric (see (2.1)) we are able to obtain an adequate level of

variation in challenge.

2.3 Metric’s Generality

The interest metric introduced in (2.5) can be applied effectively to any predator/prey

computer game because it is based on generic features of this category of games. These

features include the time required to kill the prey and the predators’ entropy throughout

the game field. We therefore believe that (2.5) — or a similar measure of the same

concepts — constitutes a generic interest approximation of predator/prey computer

games. Moreover, given the two first interest criteria previously defined, the approach’s

generality is expandable to all computer games. Indeed, no player likes any computer

game that is too hard or too easy to play and, furthermore, any player would enjoy

diversity throughout the play of any game. The third interest criterion is applicable
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to games where spatial diversity is important which, apart from predator/prey games,

may also include action, strategy and team sports games according to the computer

game genre classification of Laird and van Lent (2000).

Evidence demonstrating the interest metric’s generality appears in Chapter 5 and Chap-

ter 6 through experiments on dissimilar predator/prey games. Moreover, this metric’s

potential extensibility beyond the predator/prey genre is discussed in Chapter 9.

2.4 Weighting Parameters

There are six weighting parameters that affect the interest value and are classified in

two categories:

• power parameters: p1, p2 and p3 and

• criterion parameters: γ, δ and ε.

In order to obtain values for the weighting parameters p1, p2 and p3 we select empirical

values based on each interest criterion.

• For the first interest metric presented in (2.1), p1 is adjusted so as to give T a

greater impact or else a boost when even a slight difference between the max-

imum and the average life time of the player (i.e. challenge) is noted. In that

sense, by selecting values of p1 < 1 we reward quite challenging opponents

more than near-optimal killers.

• For the second interest metric presented in (2.2), p2 is set so as σtk has a linear

effect on S.

• For the third interest metric presented in (2.4), p3 is adjusted in order to press

for very high Hn values and furthermore to provide a clearer distinction between

high and low normalized entropy values. Appropriate p3 parameter values which

serve this purpose are those greater than one.

By taking the above into consideration, we come up with p1 = 0.5, p2 = 1 and p3 = 4.

These power parameter values will be fixed and independent of the game test-beds

used throughout this thesis.

As far as the weighting parameters γ, δ and ε are concerned, they constitute game

parameters (see Section 2.5) which means that they are empirically adjusted according
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to each predator/prey game’s features.

2.4.1 Sensitivity of the I Value

Sensitivity analysis of the I value in respect to the six weighting parameters is con-

ducted prior to any test-bed game application. This procedure allows for power pa-

rameter (p1, p2 and p3) values to be tested and criterion parameter (γ, δ and ε) values

to be properly adjusted. Chapter 5 and Chapter 6 present comprehensive sensitivity

analysis of the I value when applied in two predator/prey computer games.

2.5 Game Parameters

The parameters that need to be adjusted for the successful application of the interest

metric (2.5) in a potential predator/prey game are as follows:

• N is the number of games required for I to be estimated. This number is 50

(except when otherwise noted) throughout the thesis and it depends on the game

application and the available computational power. As expected, the larger the

number N of games, the better the interest value approximation.

• tmin is an estimate of the minimum number of simulation steps required for

predators to kill the prey and is normally obtained through several trials of hand-

coded near-optimal predators against various player types (hand-coded or hu-

man).

• tmax is an estimate of the maximum duration of each of the N games and it is also

obtained through experimentation. This parameter determines a game period in

which the player’s (prey’s) tasks regarding the specific game are accomplished.

Normally, well-behaved handcrafted preys are used to adjust this time period by

playing against different types of predators. Expert-skilled human players could

be used when the handcrafted design of a well-behaved prey’s controller fails

due to high complexity of the gameplay.

• γ, δ and ε are the criterion weighting parameters presented in (2.5). As men-

tioned in Section 2.4 these parameter values are empirically adjusted according

to each predator/prey game’s features. In particular, these values are set in re-
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spect to the emphasis that each game gives to each interest criterion. For in-

stance, the interest of some predator/prey games might be conceptually more

dependent on the spatial activity of the opponents than challenge or the diversity

of the opponents’ behavior and vice versa.

Various baseline opponent strategies are used to confirm the I value grounded in

the selected parameters by comparing their observed behaviors. Examples of γ,

δ and ε parameter value selection appear in Chapter 5 and Chapter 6.

2.6 Assumptions

The proposed interest metric is based on specific assumptions that are covered in this

section. The assumptions drawn at this stage will be followed throughout the thesis

and are as follows.

• The interest metric is an estimate of the opponents’ overall contribution to the

game’s interest. The methodology followed is based on a number of games N

that the player has to play in order for the interest value to be calculated. The

assumption of N games is consistent with human cognition since it appears that

human players require a significant number of games (or else playing time) to

classify a specific computer game according to their perceived satisfaction.

• The interest value is built on the assumption that players of the game have

average-playing skills. By ‘average-playing’ we only exclude the two follow-

ing extreme player types:

1. Players that have never played a specific game before and furthermore do

not know the rules and how to play it. These players lose constantly against

almost any type of opponent.

2. Players that have an excellent knowledge of a specific game, can easily

predict the opponent behavior and have mastered the game controls. These

players can beat even the most efficient opponents designed for this game.

In both cases, the interest value might not be very well estimated since the chal-

lenge criterion T approximates a zero value regardless of the opponent. Thus,

both player types produce low interest values due to the low challenge criterion

(T ≈ 0). This appears to be consistent with human notion of interestingness
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since we believe that neither extreme player type is conceptually interested in

the game.

Even though the player types mentioned above are rare, they constitute a limita-

tion of the methodology that is further discussed in Chapter 9.

• The interest value is dependent primarily on the opponents’ behavior and im-

plicitly on the player’s behavior through the interaction of the two. Any game

feature apart from the ‘intelligence’ of the game characters is not considered to

affect the I value. More specifically, features such as graphics, sound effects,

game concept etc. are not included in formula (2.5) and are not covered in this

thesis. Our assumption here is that the core of the qualitative characteristics of

interestingness can be found in the game characters’ behavior. Any other game

feature is considered peripheral as far as this thesis is concerned. See a com-

prehensive discussion of this assumption in Chapter 8 where the interest value

dependence on the player is investigated through experiments in a test-bed game.

• A factor that may contribute to enjoyable games is the real-time speed of the

game and the reaction time scale of the player. The gradual decrease of the

required real-time reaction time is a standard and inexpensive technique used by

a set of games (i.e Pac-Man) in order to achieve higher challenge for the player

as the game proceeds. However, as game speed is grounded in the game design

per se and does not alter the quality of the opponent behavior (as it does for the

human player behavior), it is not examined in this dissertation. Note that in the

extreme case, an unintelligent opponent may be performing effectively because

of the unrealistically fast reaction time required by humans.

2.7 Summary

In this chapter we introduced an efficient method for obtaining a quantitative notion

of entertainment of the player in predator/prey games. The methodology was based

on qualitative considerations and empirical assumptions of what is enjoyable in such

games and our focus was directed to the contribution of the behavior and strategy of

game opponents in generating interesting games. A mathematical formula that deter-

mines an estimate of the real-time interest value of any predator/prey game was derived

as the outcome of this method.
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Herein we also discussed the generality of the interest metric proposed, which will be

demonstrated experimentally in the following chapters. Moreover, some concerns and

thoughts about the assumptions underlying the metric are raised here. Further analysis

is presented in the discussion chapter of this dissertation (see Chapter 9). In the next

chapter we provide background knowledge of the field (AI in games), the tools and

methodology used in this dissertation.



Chapter 3

Background

3.1 Games

According to Wikipedia web-encyclopedia (2005), a game is a recreational activity

involving one or more players, defined by a) a goal that the players try to reach, and b)

some set of rules that determines what the players can do. Games are played primarily

for entertainment or enjoyment, but may also serve an educational or simulative role.

Accordingly, a computer game is a concept inspired by the real world and composed of

a computer-controlled virtual universe that players interact with in order to achieve a

defined goal or set of goals. In that sense, board or card games, conceptually designed

to be played in the real world, that are played by digital means are excluded from the

investigations of this dissertation. Additional features of the test-bed computer games

investigated are: 1) they are played off-line (no web access) 2) they are played in a

personal computer; a single CPU is all the processing power available.

3.2 AI and Games

One of the primary goals of AI is to produce intelligent physical agents, i.e. robots.

Brooks (1990) suggested that the path towards this goal starts from experiments on

the low-level research of the real-world and continues with high-level decision making

research on simulation. However, as noted in (Etzioni, 1993), these two directions can

be followed in parallel. Computer games offer an ideal arena that combines AI research

19
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in complex simulated worlds with an application of high commercial potential (Funge,

2004).

Over the last 25 years there have been major steps forward in computer games’ graph-

ics technology: from abstract 2D designs to complex realistic virtual worlds (Ter-

zopoulos et al., 1994) combined with advanced physics engines (Bourg, 2001); from

crude character representations to advanced human-like characters. Meanwhile, so-

phisticated AI techniques (e.g. machine learning) in computer games are nowadays

still in their very early stages, since computer games continue to use simple rule-based

finite and fuzzy state machines for nearly all their AI needs (Cass, 2002). All these

are well supported by game developers’ statements that we still meet newly released

games with the same 20-year old concept in brand new graphics engines (Woodcock,

2001).

In the mid-nineties, game developers began to argue for more AI in their games.

The state of computer games at that time was stagnating – the games were very of-

ten derivative clones of one another as well as becoming ever more market-driven

and expensive to develop. As Crawford would claim, “the graphics, animations and

sound are better; the games have more internal detail, larger worlds, more complex-

ity, but the basic designs have not changed over the last ten years” (Crawford, 1994;

1996).

From another viewpoint, the explosion of multi-player on-line gaming over the last

few years it might indicate the increasing human need for more intelligent opponents.

This also reveals that interactive opponents can generate interesting games, or else

increase the perceived satisfaction of the player. Moreover, machine learning tech-

niques are able to produce characters with intelligent capabilities useful to any game’s

context (Champandard, 2004). Therefore, conceptually, the absolute necessity of arti-

ficial intelligence techniques and particularly machine learning and on-line interaction

in game development stems from the human need for playing against intelligent op-

ponents. Game players seek continually for more enjoyable games as they spend 3.7

days per week playing an average of 2.01 hours per day (Rep, 2002), as stressed in (Fo-

gel et al., 2004), and this interest should somehow be maintained. Michael van Lent

and John Laird (1999) state that an AI engine would be essential for reactive, context

specific, flexible, realistic and easy to develop game characters. Nareyek (2002) also

stresses the need for more intelligence in computer games.
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It is only very recently that game industry has begun to realize the great (financial) im-

portance of stronger AI in their products. Boon (2002) stresses that the most common

complaint that gamers have is that the game is too short. However, as Boon claims,

rather than making games longer game developers should focus on making games more

interesting and appealing to both hard-core and soft-core gamers.

Unfortunately, instead of designing intelligent opponents to play against, game devel-

opers mainly concentrate on and invest in the graphical presentation of the game. We

believe that players’ demand for more interesting games and the increasing compu-

tational power will press towards an ‘AI revolution’ in computer games in the years

to come. Some first signs of adaptive player modeling appear through the recently

released God genre game ‘Black & White’ (Electronic-Arts, 2003) by Lionhead Stu-

dios (Molynoeux, 2001). In this game, the player controls a creature that learns, re-

members and makes connections through Artificial Life techniques — the fundamental

concept of ‘Black & White’ originates from the Creatures game developed in the late

nineties (Cliff and Grand, 1999). Advanced machine learning techniques is the subse-

quent step to take. These techniques will be able to create the illusion of intelligence

up to the level that is required by humans (Woodcock, 2001; Champandard, 2004;

Funge, 2004).

3.3 Learning in Games

The majority of research on learning in games is built on board or card games. In

the last decade many researchers have been involved in the development of intelligent

opponents in those categories of games. Some of the attempts include evolutionary

learning approaches applied from tic-tac-toe (Fogel, 1993) to checkers ((Fogel, 2002)

among others), Go (Rosin and Belew, 1995; Richards et al., 1998) and Monopoly

(Frayn, 2005). In (Tesauro, 2002), a Temporal Difference Learning mechanism gen-

erates computer opponents capable of beating even expert humans in backgammon.

These games are board games simulated in computers and therefore sometimes people

refer to them as ‘computer games’. However, when we refer to computer games we re-

fer to the category of commercial games played by humans and non-player characters

in virtual worlds.

Based on the success of the above-mentioned research on board games, the increasing
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computing power and the commercial possibilities of computer games, very recently,

researchers have attempted to introduce AI into computer games and have discussed

the theoretical perspective of learning in different categories of games. Laird (2002)

surveys the state of research in using AI techniques in interactive computer games. He

also provides a taxonomy of games and the importance of computer games as experi-

mental environments for strong AI application. Furthermore, Isla and Blumberg (2002)

suggest potential research directions in AI game development, emphasizing to the emo-

tional state and the perceived information of the character. Taylor (2000) attempts to

bridge the gap between game development and modern AI by proposing artificial life

techniques for generating physically modelled characters.

Game AI researchers, in their majority, focus on the genre of first-person shooter

(FPS) games, primarily because of their popularity and secondarily because of their

open source game engines. The most common FPS test-bed games are Counter-Strike,

Quake and Unreal Tournament. Alex J. Champandard (2004) uses an FPS game to

propose and apply a plethora of forms of AI techniques (varying from simple scripting

to adaptive learning) for specific tasks like movement, shooting and weapon selection.

His objective is to develop an open source AI game (so called FEAR project). Khoo

(2002) developed an inexpensive AI technique based on the well known Eliza program

(Weizenbaum, 1966) so that users get the impression of playing against humans instead

of bots. In (Cole et al., 2004), the parameters of the Counter-Strike built-in weapon

selection rules are tuned by using artificial evolution. Furthermore, there have been at-

tempts to mimic human behavior off-line, from samples of human playing, in a specific

virtual environment. In (Bauckhage et al., 2003) and (Thurau et al., 2004), human-like

opponent behaviors emerge through supervised learning techniques in Quake.

Other examples of learning in games primarily include reinforcement learning ap-

proaches in fight games (Graepel et al., 2004); on-line learning for mobile phone

games (Bjorsson et al., 2004); learning through on-line interaction with synthetic char-

acters (e.g. dogs) (Blumberg et al., 2002; Dinerstein et al., 2004); learning applied to

low-level control (Manslow, 2002b). Alternatively, dynamic scripting and evolution-

ary learning has been used in a real-time strategy (RTS) game (Ponsen and Spronck,

2004).

There is a long debate on which form of learning is the most appropriate and feasible

for a computer game application. On-line learning can be slow and lead to undesired

and unrealistic behavior but it can demonstrate adaptive behaviors. Off-line learn-
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ing is more reliable but it generally generates predictable behaviors (Manslow, 2002a;

Champandard, 2004). However, researchers have shown that on-line learning in com-

puter games is feasible through careful design and effective learning methodologies

(Demasi and de O. Cruz, 2002; Johnson, 2004; Ponsen and Spronck, 2004; Stanley et

al., 2005).

Learning in non-game virtual worlds is a broad and active area of research that may

very well interact with the research endeavors on AI in games. Researchers in that field

are primarily focused on the behavior of simulated animals or artificial creatures. In

(Grzeszczuk et al., 1998) and (Terzopoulos et al., 1996), studies on learning locomo-

tion for dolphins and fishes are respectively presented. Sims (1994), on the same basis,

uses evolutionary computation to configure the shape of virtual creatures that are able

to walk.

3.3.1 Evolutionary Learning in Computer Games

Apart from the aforementioned evolutionary approaches in board or card games, evo-

lutionary computation is not very well studied and explored in the area of computer

games. In particular, the primary reason against its use for learning while playing (on-

line) is its slow convergence and the fact that undesired/unpredictable behaviors may

emerge. However, real-time adaptation which exhibits intelligent opponents is the

main feature that motivates research on on-line evolutionary learning. Very recently,

successful on-line neuro-evolution applications (Stanley et al., 2005; Yannakakis and

Hallam, 2005b) demonstrate the feasibility of the method through more efficient learn-

ing procedures and careful representation design.

Some few examples of evolutionary learning appear in (Champandard, 2004) where a

genetic algorithm is used off-line to yield successful dodging-fire and rocket-jumping

behaviors of NPCs of a FPS game. In addition, Ponsen and Spronck (2004) have

used genetic algorithms off-line to design tactics for a RTS game. Moreover, co-

evolutionary off-line and on-line approaches have been analyzed within an action game

platform (Demasi and de O. Cruz, 2003). Blair and Sklar (1999) explore evolutionary

learning techniques in a simulated single-agent Ice-Hockey environment. The Tron

game is used by Funes and Pollack as a test-bed for applying co-evolution techniques

against human players through the internet (1998; 2000). Their target is the emer-

gence of human-like agent behaviors. Similarly, Fogel et al. have recently suggested a
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game platform for testing on-line evolutionary methods for generating adaptive human-

like realistic characters (2004). Other examples of evolutionary learning over various

genres of game include the work of Togelius and Lucas (2005) for the emergence of

foraging-related behaviors in the game named ‘Cellz’.

Evolutionary learning of neural controlled NPCs is the core of the work of Yannakakis

et al. (2004a; 2004; 2004b; 2005b). Among their contributions, a robust and highly

adaptive on-line evolutionary learning mechanism is presented. The predator/prey

genre of games is this approach’s test-bed. In the same research direction, Stanley

et al. (2005) are applying neuro-evolution techniques for the emergence of adaptive

behaviors (e.g. capture-the-flag and wall-avoidance) in the ‘NERO’ training game in

real-time. For this game, the NeuroEvolution Augmenting Topologies (NEAT) method

(Stanley and Miikkulainen, 2002) has been used to evolve large populations of NPCs

through an on-line replacement mechanism of the worst-fit NPCs (see also (Yannakakis

et al., 2004) for the introduction of the replacement methodology). In NERO, both the

game genre (training) and the number of fifty NPCs contribute to the efficiency and

the convergence time of the mechanism. Both leave space for unpredictable and/or

unwanted emergent opponent behaviors to be accepted and/or ignored by the player.

On the other hand, in (Yannakakis and Hallam, 2005b), on-line evolutionary learning

is successfully applied in a computer game of four opponents where no credit is given

by the player for such unrealistic behaviors.

3.3.1.1 Learning in Predator/Prey Games

Predator/prey games is a very popular category of computer games and among its best

representatives is the classical Pac-Man released by Namco (Japan) in 1980. Even

though Pac-Man’s basic concept — the player’s (PacMan’s) goal is to eat all the pel-

lets appearing in a maze-shaped stage while avoiding being killed by four opponent

characters named ‘Ghosts’— and graphics are very simple, the game still keeps play-

ers interested after so many years, and its basic ideas are still found in many newly

released games.

Kaiser et al. (1998) attempted to analyze emotional episodes, facial expressions and

feelings — according to the Facial Coding Action System (Eckman, 1979) — of hu-

mans playing a predator/prey computer game similar to Pac-Man (Kaiser and Wehrle,

1996). Other examples in the Pac-Man domain literature include researchers attempt-



3.4. Entertainment Metrics 25

ing to teach a controller to drive PacMan in order to acquire as many pellets as possible

and to avoid being eaten by Ghosts. Koza (1992) considers the problem of controlling

an agent in a dynamic non-deterministic environment and, therefore, sees Pac-Man as

an interesting multi-agent environment for applying off-line learning techniques based

on genetic programming. Other approaches, such as incremental learning (Gallagher

and Ryan, 2003), and neuro-evolution (Lucas, 2005) have also been applied for pro-

ducing effective Pac-Man playing strategies. The same Pac-Man application domain

has been used for analyzing size and generality issues in genetic programming (Rosca,

1996).

On the other hand, there are many researchers who use predator/prey domains in order

to obtain efficient emergent teamwork of either homogeneous or heterogeneous groups

of predators. Luke and Spector (1996) have designed an environment similar to the

Pac-Man game (the Serengeti world) in order to examine different breeding strategies

and coordination mechanisms for the predators. Finally, there are examples of work

in which both the predators’ and the prey’s strategies are co-evolved in continuous or

grid-based environments (Miller and Cliff, 1994; Haynes and Sen, 1995).

3.3.2 Cooperation in Predator/Prey Worlds

Emerging cooperation in prey and predator artificial worlds is a field of reference for

this work. One popular example of such work is the evolving neural network proce-

dure used in Werner’s BioLand (1993) simulated world to generate both herding and

effective prey behaviors. Miller’s and Cliff’s work (1994) in co-evolution techniques

of pursuit-evasion tactics and Koza’s (1992) genetic programming work in a wide ar-

ray of pursuit-evasion simulated scenarios also constitute characteristic pieces of work

in the field.

3.4 Entertainment Metrics

As previously noted in Chapter 2, even though complex opponent behaviors emerge

through machine learning techniques, there is no further analysis of whether these

behaviors contribute to the satisfaction of the player. In other words, researchers hy-

pothesize — by observing the vast number of multi-player on-line games played daily
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on the web — that by generating human-like opponents (Freed et al., 2000) they enable

the player to gain more satisfaction from the game. According to Taatgen et al. (2003)

believability of computer game opponents is strongly correlated with enjoyable games

which are produced through cognitive models. These hypotheses might be true up to

a point; however, since a notion of interest has not been explicitly defined, there is no

evidence that a specific opponent behavior generates enjoyable games. This statement

is the core of Iida’s work on entertainment metrics for variants of chess games (Iida et

al., 2003).

Inspired by Iida’s metric of entertainment, Yannakakis and Hallam (2004a) introduced

a generic metric of entertainment for computer games (see also Chapter 2). This metric

has been used for variants of predator/prey games and has been successfully cross-

validated with human notions of entertainment (Yannakakis and Hallam, 2005d).

3.5 Tools

In this section we present the primary tools we used for the successful completion of

the thesis’ objectives presented in Chapter 1.

3.5.1 Evolutionary Computation

There are several approaches of evolutionary computation such as genetic algorithms

(Holland, 1975), genetic programming (Koza, 1992), evolutionary strategies (Bäck and

Schwefel, 1993) and evolutionary programming (Fogel et al., 1966). All of them are

population-based stochastic search algorithms that gain inspiration and principles from

the Darwinian theory on natural evolution.

Evolutionary approaches are:

• Very good at dealing with large, complex search spaces which contain many

local optima.

• Independent of gradient information.

• Able to deal with non-exact objective function problems.
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All the aforementioned advantages make them very popular in multi-agent environ-

ment research and therefore, many researchers have tackled with evolutionary ap-

proaches in the control and management of agents.

3.5.1.1 Genetic Algorithms

An evolutionary approach called genetic algorithms (GAs) has been very popular

among engineers and researchers since its first successful application (Goldberg, 1983).

Holland (1975) was the first to show that a genetic algorithm can play the role of an

adaptive system through artificial reproduction and evolution. Among their known ad-

vantages, GAs are very good in overcoming local optima towards the global optimum

in multimodal complex search spaces.

The GAs’ theoretical foundations as an optimization technique are based on the schema

theorem (Holland, 1975). The schema theorem indicates exponential growth for con-

sistently above-average-fitness schemas (a schema is a set of chromosomes that share

specific values). Despite the vast variation of GAs used in the literature, there are some

common basic algorithmic steps which are described as follows.

The GA maintains a population of chromosomes (or members of the population or

solutions) which is randomly initialized. Then, at each generation, if a termination

condition is not achieved (e.g. high fitness), do the following:

1. Evaluate each chromosome of the population by calculating its fitness as a solu-

tion to the problem under consideration.

2. Select parents based on their fitness.

3. Apply genetic search operators (mutation and crossover) to the selected parents

and produce offspring which will form the next generation. Go back to step 1.

Genetic algorithms constitute the main genetic search method applied in this disserta-

tion. Both generational and steady-state GAs (Goldberg, 1989) as well as advanced

genetic operators like uniform crossover (Syswerda, 1989) and the Montana & Davis

neural network (1989) crossover operator have been used in this work.
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3.5.1.2 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) is a new and prominent area of evolu-

tionary computation (Larrañaga and Lozano, 2001). The algorithm used for the ex-

periments presented in this thesis is based on the Univariate Marginal Distribution

(Muehlenbein and Paass, 1996) for Continuous Domains (UMDAc) (González et al.,

2002). This algorithm is used as an alternative evolutionary learning mechanism to the

genetic algorithm approach.

Among the few existing literature UMDAc applications we can distinguish the simple

linear, and quadratic function approximations that appear in (González et al., 2002).

In addition, Bengoetxea et al. (2001) present a comparison between a UMDAc and a

steady state GA for image recognition. In this comparative case study UMDAc appears

much more efficient and faster than the GA approach.

The UMDAc algorithm with tournament selection (NT is the tournament size) works

as follows. At each generation t, a population NU of n−dimensional random variables

Wt = (wt
1, . . . ,w

t
n) is maintained. It is assumed that the joint probability distribution of

Wt follows an n−dimensional normal distribution which is factorized as a product of

n independent and unidimensional normal densities. Thus, each component of Wt is

unidimensional, normal distributed, that is wt
i ; N(µt

i,σ
t
i), where

fN(µt
i ,σ

t
i)
(wt

i) =
1√

2πσt
i
e−(wt

i−µt
i)

2/2(σt
i)

2
(3.1)

with i = 1, . . . ,n is the probability density function of a normal distribution with mean

µt
i and standard deviation σt

i in point wi. Table 3.1 presents the pseudocode for this

algorithm. UMDAc is used for evolving neuro-controllers (see Section 4.1.1.2) where

the n−dimensional random variable Wt represents the connection weights of the arti-

ficial neural network (see Section 3.5.2).

3.5.2 Artificial Neural Networks

Artificial neural networks (ANNs) constitute universal approximation methods and

therefore, given a big enough number of processing elements (neurons), they are ca-

pable of approximating any function (with a finite number of discontinuities) with

arbitrary accuracy (Kurkova, 1991). This property is derived from, the much quoted
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Table 3.1: Pseudocode for UMDAc with tournament selection

while no convergence do

begin

for ( j = 1; j ≤ NU; j ++)

begin

Draw Wt to obtain NT individuals:

wt
1, j = (w1,t

1, j, . . . ,w
n,t
1, j)

wt
2, j = (w1,t

2, j, . . . ,w
n,t
2, j)

...

wt
NT , j = (w1,t

NT , j, . . . ,w
n,t
NT , j)

Evaluate wt
1, j,w

t
2, j, . . . ,w

t
NT , j

Select the best one:

wt
(1:2:...:NT ), j = max

{
f (wt

1, j), f (wt
2, j), . . . , f (wt

NT , j)
}

end

for (i = 1;i≤ n;i++)

begin

Estimate the parameters of the new probability density functions

µt+1
i =

∑
NU
j=1 wi,t

(1:2:...:NT ), j
NU

σt+1
i =

√
∑

NU
j=1(w

i,t
(1:2:...:NT ), j−µt+1

i )2

NU

end

end
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Figure 3.1: The artificial neuron.

and discussed in the neural network literature, Kolmogorov’s (1957) superposition the-

orem.

The reader is advised to refer to (Hertz et al., 1991; Haykin, 1998; Rumelhart et al.,

1986) for fundamentals on ANNs as well as state-of-the-art results in the field of con-

nectionism, in which ANNs belong. In this section, we will go through a brief intro-

duction on ANNs.

An ANN consists of a set of connected functional elements — also called neurons (see

Figure 3.1) — and it is structured in a graph in which each node (i.e. neuron) i employs

a transfer function f T
i of the form

yi = f T
i

(
∑

j
wi jx j +θi

)
(3.2)

where yi is the ith neuron’s output; x j is the jth input to the neuron; wi j is the connection

weight between neuron i and neuron j; and θi is the threshold (bias) of the neuron.

According to their connectivity, neural networks are divided into feedforward and re-

current. Regarding the recurrent connectivity we mention the Locally Recurrent Glob-

ally Feedforward (LRGF) networks as described in (Tsoi and Back, 1994) and the El-

man networks (Elman, 1990) as being the most popular. Learning in neural networks

is achieved by adjusting the connections’ weights so that trained neural networks can
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perform certain tasks. There are roughly three different types of learning. These are:

• Supervised: A subset of all possible input-output pairs is provided to the neural

network, that is a ‘training set’. A training cycle consists of the following steps.

An input vector is presented at the inputs together with a set of desired responses,

one for each neuron, at the output layer. As soon as the neural processes are

complete, the errors or discrepancies between the desired and actual response

for each node in the output layer are found. These are then used to determine

weight changes in the net according to the prevailing learning rule.

• Reinforcement: Reinforcement learning (RL) is a type of supervised learning

in the sense that some feedback from the environment is given. This feedback

signal is only evaluative and not instructive and it is used to guide the neural

network towards connection weight values that maximize rewards obtained. Re-

inforcement learning is often called ‘learning with a critic’ or ‘learning with a

teacher’. Among the various reinforcement learning approaches the most popu-

lar is Q-learning (Sutton and Barto, 1998).

• Unsupervised: No training set is available and no reinforcement is provided.

In this type of learning the ANN is provided with an input pattern and it self-

organizes in order to find the natural structure inherent in the input data. There

are a number of unsupervised learning schemes, including competitive learning,

adaptive resonance theory and self-organising maps (SOM). A popular type of

SOMs is the Kohonen network (Kohonen, 1997).

There are various types of learning rules that may be applied to adjust the ANN’s

connection weights. The most commonly used are:

• Hebbian rule: This rule is based on Hebb’s (1949) observation from neurobio-

logical experiments: if neurons on both sides of a synapse (i.e. connection in a

ANN) are activated synchronously, then the strength (i.e. connection weight in

a ANN) of this synapse is increased.

• Delta rule: This learning rule adjusts the connection weight vector in the most

efficient way as far as single-layer feedforward ANN are concerned. It performs

a gradient descent towards the minimization of the error between the desired and

the ANN output.

• Backpropagation (BP): A learning algorithm for multi-layer neural networks
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was first introduced by Rumelhart, Hinton and Williams and named as ‘back-

propagation training algorithm’ — also referred to as the generalized delta rule

(Rumelhart et al., 1988). At the output layer, the output vector is compared to

the expected output. Subsequently, the error is calculated from the delta rule and

is propagated back through the network. The idea which is based on the delta

rule, is to adjust the weights to minimize the difference between the real output

and the expected output. Such networks can learn arbitrary associations by using

differentiable activation functions.

Since our aim is to emerge complex and adaptive behaviors within multi-agent en-

vironments, neural networks are considered to be a very efficient tool to control the

agent’s behaviors (Ackley and Littman, 1992).

3.5.3 Evolving Artificial Neural Networks

Learning by means of evolutionary computation (i.e. evolutionary learning) has been

widely used type for automatically generating efficient ANN. Designing adaptive ANN

controllers for agents in an unpredictable and continuously changing multi-agent envi-

ronment such as a computer game can be a challenging task. As stressed in (Yao, 1995;

Yao and Liu, 1996; Yao, 1999) Evolving Artificial Neural Networks (EANNs) is a

learning mechanism that can successfully adapt to such an environment as well as to

changes in it. Various case studies of the aforementioned work have show that one of

EANNs’ distinct features is their adaptability to dynamic environments. Thus, if in

a sense, EANNs can be regarded as a general framework for adaptive systems, they

consist of a strongly recommended tool for our computer games applications.

EANNs involve evolution of:

• Neural network architectures (Frean, 1990).

• Learning rules (Hinton and Nowlan, 1987).

• Connection weights (Whitley et al., 1990; Belew et al., 1992).

EANNs are used to evolve both the architectures and the connection weights of our

game character ANN controllers. As far as the training of ANN weights is concerned,

EANNs manage to overcome known drawbacks regarding the use of gradient descent.

BP techniques are often trapped in local optima when dealing with large, complex and
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multimodal search spaces. Moreover, supervised learning of ANN requires an appro-

priate set of training data which is sometimes either not available or very difficult to

obtain (see Chapter 4 for such a case study). Because of the evolutionary approaches’

effectiveness in such spaces, research on ANN training by means of artificial evolu-

tion (neuro-evolution) has been very active (see (Yao, 1999) for an extensive literature

review).

3.6 Methodology

3.6.1 Emerging Cooperation

According to Funge (2004), computer games provide a perfect environment for re-

search on emerging cooperation because they are based on simulation of highly com-

plex and fully-dynamic multi-agent worlds. In contrast with the real world (i.e. realis-

tic robotic environment), experiments can be easily observed and access to the world

state is fully controllable.

Considerable research has been conducted towards the emergence of global coopera-

tive behaviors from local communication in multi-agent environments. As far as the

task of pursuit in worlds of multiple predators is concerned it determines a case study

of a spatial coordination problem. Artificial life approaches include Reynolds’ work

on Boids (1987), which is based on the use of local partial communication, towards the

generation of global successful flocking strategies. Spatial coordination (flocking) in

artificial multi-agent worlds grounded in behavior-based (Balch and Arkin, 1998) and

artificial potential field (Khatib, 1986) approaches are reported in (Flacher and Sigaud,

2004) and (Flacher and Sigaud, 2002) respectively. Inspired by Reynold’s work, the

Icosystem Game (2002), designed by Eric Bonabeau, is a simple agent-based simula-

tion that demonstrates emergent collective behaviors which are based on local inter-

actions. Agents in this game are assigned an aggressor and a defender agent and they

move to keep their defender between them and their aggressor. In (Parker, 1993), the

proper levels of balance between global and local knowledge of a multi-agent simu-

lated world are investigated. Cooperative flocking (or else “keep formation”) behaviors

emerge through local rules.

With artificial evolution present, Reynolds (1993) used genetic programming tech-
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niques for the emergence of herding behaviors of Critters against predators. He evolved

a motion controller gathering information about its neighbors and predators in a ho-

mogeneous environment. On the other hand, there have been difficult tasks, such as

schooling behaviors in simulated fish, that did not manage to emerge (Zaera et al.,

1996). Parunak and Brueckner (2000) introduce a pheromone based approach to yield

collective behavior in a decentralized fashion.

Similar work can be found in the Serengeti world of Luke and Spector (1996). They

attempted to examine the correlation between breeding strategies, coordination mech-

anisms and performance of teamwork hunting behaviors. One of their conclusions

is that homogeneous agents perform well as a cooperative group when they perceive

information relatively to them (e.g. relative coordinates).

Previous work on evolutionary approaches in neural controlled agents includes the

simulated world of Ackley and Littman (1992). Their evolutionary reinforcement

learning model consists of adaptive artificial creatures that move randomly on a two-

dimensional environment, encountering food, predators and other types of tasks. The

set of their actions is controlled by two feedforward neural networks: (1) an evalua-

tion network representing how good the agent’s state is and (2) an action network that

outputs the agent’s action in each time step. Ackley and Littman showed that neural

networks can easily exploit various form of learning and therefore, help and speed up

the evolutionary process. Thus, in the question: ”What to evolve?” the answer is neu-

ral networks because they appear to be the most promising way of emerging complex

behaviors in environments such as a multi-agent game.

Seeing our work from the point of view of emerging complex behaviors in multi-agent

simulated worlds, Creatures (Cliff and Grand, 1999) and PolyWorld (Yaeger, 1993)

constitute related examples. Both simulated worlds involve multiple neural-controlled

creatures that learn to achieve specific tasks on-line.

Artificial organisms and attempts towards the emergence of cooperative foraging be-

haviors amongst them is a field closely related to our work. A representative example

of that field of research is AntFarm (Collins and Jefferson, 1992) which is a world

used for investigation of cooperative neural network controlled artificial ants through

evolution. Such approaches, however, are based on active (chemical) communication

via pheromone trails which contrasts our game worlds’ properties. For an extended

overview of similar swarm intelligence techniques see (Bonabeau et al., 1999) and
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(Dorigo et al., 1999).

3.6.2 Learning

The main features of the learning mechanisms used in the game environments can

be demonstrated as two axes of research that this thesis attempts to cover. The basic

axis (horizontal in Fig. 3.2) determines the type of learning and the mechanisms are

distinguished between those that attempt to mimic a good behavior (or else ‘learning

by samples’ — see Section 4.1.2) and those that reward good features of a behavior

(or else ‘learning by rewards’ — see Section 4.1.1). Both types include evolutionary

algorithms while learning by samples also include gradient search algorithms. The

secondary axis (vertical in Fig. 3.2) determines the environment in which agents learn.

This feature distinguishes mechanisms where agents learn individually and mecha-

nisms where agents learn within a homogeneous group of their clones.

For this dissertation, when learning by rewards acts upon a heterogeneous environ-

ment, we call this ‘learning by survival’ since we explore heterogeneity through on-line

processes. This is the type of learning (by the use of evolutionary computation) applied

for the enhancement of the game’s entertainment value (see Section 4.3). All afore-

mentioned machine learning mechanisms are comprehensively presented in Chapter 4

and the homogeneous approaches are evaluated in a test-bed simulated world.

3.6.3 Human-Centered Experiments for Games

The human aspect of computer games has been very well investigated through various

fields of research. A popular technique for the evaluation, testing and/or validation of

any applied methodology interacting with humans is through surveys of statistically

significant numbers of subjects (human players).

Livingstone and McGlinchey (2004) have introduced the so called ‘believability tests’

to measure whether an obtained AI opponent is believable by humans or not. Such

surveys with human players attempt to bring the Turing machine (1950) principle to

computer games by creating behaviors that appear intelligent (Rabin, 2002). On that

basis, a human-centered approach to evaluate human characteristics in game charac-

ters is proposed by Norlig and Sonenberg (2002). In addition, a comparison between



36 Chapter 3. Background

Figure 3.2: The two axes that determine our research focus and classify the learning

mechanisms used.

heuristics regarding the ‘playability’ of computer games and human judgement of var-

ious game features is reported in (Desurvire et al., 2004). Humans are used as samples

for studying the emotional flow through real-time facial expressions and on-line ques-

tionnaires in (Kaiser et al., 1998).

According to a study reported in (Sweetser et al., 2003), a questionnaire administered

to a group of university students was directed towards ascertaining the importance of

different aspects of player behavior in computer games. It was found that people who

prefer playing computer games with other humans tend to value intelligent behavior

and social interaction more than people who prefer computer players. Accordingly,

people who prefer computer players do so for convenience, practice and a preference

for games that can only be played individually.
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3.7 Complementary Review

Computer games is a highly interdisciplinary field of research. Apart from computer

science and AI, areas such as psychology, sociology, education, graphics’ design and

arts are inspired and motivated by computer games. However, since we envisage a dig-

ital entertainment with richer and more ‘meaningful’ interaction, we will outline the

research on the complementary fields of emotional psychology, sociology and educa-

tion that constitute the humanitarian aspect of games.

There is a major direction in emotional psychology that focuses on the impact of com-

puter games in learning. It addresses the element of entertainment as a powerful mo-

tivation tool (Hartmann and Rollett, 1994). See also (Burg and Cleland, 2001) for

research on the benefits of computer games for a computer-enhanced education. As

recent studies show, computer games could become part of a computer-enhanced edu-

cation since there are indications that they can help students learn faster and more effi-

ciently (Beal et al., 2002; BBC, 2002b). Researchers in the U.K. looked into games like

Championship Manager and SimCity and recognized their positive impact on teaching

children how to think clearly and make decisions (BBC, 2002a). The social impli-

cations of computer games is also a hot topic of discussion ((Rabasca, 2000) among

others) still dividing sociologists between those that are for and those against the use

of computer games.

3.8 Summary

In this chapter the state-of-the-art of AI in computer games and the state of the com-

puter games’ industry was presented. Subsequently, the current research on machine

learning applied in computer games was discussed and its potential was revealed. In

addition, the literature review on the AI techniques; the basic steps of the methodology

that this thesis covers; and some peripheral fields of interest were presented.

The following chapter illustrates comprehensively the learning methodologies used

and introduces the first step towards applying the proposed techniques for obtaining

off-line trained homogeneous teams of cooperative agents. Such teams of opponents

will be used as starting points towards the on-line generation of games of higher enter-

tainment in the subsequent chapters.





Chapter 4

Methodology

This chapter 1presents the methodology followed for the successful completion of the

thesis’ aims. These include primarily the effective emergence of highly interesting

computer games which partially derives from emergent cooperative behaviors built on

minimal controller structures. On that basis, the learning procedures used to meet these

objectives are described comprehensively and tested in a prototype two-dimensional,

multi-agent, computer games-inspired simulated world.

4.1 Learning Cooperation in Multi-Opponent Games

As previously mentioned in Chapter 1, our first objective considering two-dimensional

computer game worlds is to generate cooperative behaviors among the multiple oppo-

nents that appear. Cooperation is a feature that augments intelligence of the opponents

and consequently improves the player’s enjoyment. From that perspective, teamwork

is a desired gaming opponent behavior.

The learning mechanisms used to generate cooperative behaviors are classified into

supervised (or else ‘learning by samples’) and unsupervised (or else ‘learning by re-

wards’) according to whether there is a desired near-optimal spatial coordination be-

havior available to learn from or not (see also Section 3.6.2).

1Parts of this chapter have been published in (Yannakakis et al., 2003; 2005a) and (Yannakakis et
al., 2005b)

39
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4.1.1 Learning by Rewards

In this subsection we present the two different evolutionary computation off-line learn-

ing mechanisms used for the experiments in this thesis. Their common feature is the

emergence of the desired behavior by rewarding homogeneous agents that achieve

overall good performance on their given tasks. More comprehensively, a generational

genetic algorithm (Holland, 1975) and a modified Univariate Marginal Distribution for

Continuous Domains (UMDAc) (González et al., 2002) are the evolutionary learning

variants of this type of learning.

4.1.1.1 Generational Genetic Algorithm (GGA)

A generational genetic algorithm is implemented, which uses an “endogenous” evalu-

ation function that derives from the agents’ actions in the environment and promotes

and/or penalizes behaviors according to the agents’ tasks. Agents that learn to behave

in this fashion are fit enough to be considered as good solutions of the problem.

The neural networks that determine the behavior of the agents are themselves evolved.

In the algorithm presented here, the evolving process is limited to the connection

weights of the neural network. Evolving both connection weights and topologies si-

multaneously is a more advanced algorithm described in Section 4.2.

The evolutionary procedure used can be described as follows. Each agent has a genome

that encodes the connection weights of its neural network. A population of Np (we

keep this number low because of the computational cost) neural networks is initialized

randomly. Initial real values that lie within [-5, 5] for their connection weights are

picked randomly from a uniform distribution. Then, at each generation:

Step 1 Every agent in the population is cloned N times (N being the number of agents

in the game environment). These N clones are placed in the game and tested for

an evaluation period ep. The outcome of this test is to ascertain real-time data

which will be used to assess the fitness of each agent (see Figure 4.1).

Step 2 Each agent i is evaluated via a group fitness function fi. By this evaluation, we

mainly promote N clones of the same solution capable of cooperating in order

to successfully achieve a desired behavior. Due to this, efficient cooperative

behaviors emerge within a homogeneous environment.
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Figure 4.1: GGA: clonal evaluation of agents.

Step 3 A pure elitism selection method is used where the fittest Ns percent of the solu-

tions is able to breed and, therefore, determine the members of the intermediate

population.

Step 4 Each of the parents clones an equal number of offspring so that the total popu-

lation reaches Np members. Alternatively, uniform (Syswerda, 1989) and Mon-

tana and Davis (1989) crossover operators have been used at this step but proved

unsuccessful. The explanation is the disruptive feature of crossover operators

when dealing with distributed knowledge representation (i.e. neural network).

That is, crossover among parts of different successful neural networks is very

likely to lead into unsuccessful offspring (Yao, 1999).

Step 5 Mutation occurs in each gene (connection weight) of each offspring’s genome

with a small probability pm. A uniform random distribution is used again to

define the mutated value of the connection weight.

The algorithm is terminated when either a best fit agent is found or a large number

of generations T is completed. We mainly use small simulation periods ep to evaluate

agents via fi to limit the computational effort. Thus, this evaluation function constitutes

an approximation of the overall performance of the examined agents in large simulation
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periods. The higher the number of ep simulation steps, the better the approximation

of the agents’ performance. Keeping an appropriate balance between computational

effort and performance approximation is one of the key features of the GGA approach1.

4.1.1.2 Univariate Marginal Distribution for Continuous Domains

Estimation of Distribution Algorithms have been previously introduced in Section

3.5.1.2. The EDA used for the game test-beds in this work is a modified Univariate

Marginal Distribution for Continuous Domains (UMDAc). This algorithm is used as

an alternative evolutionary learning mechanism to the generational genetic algorithm

approach presented in Section 4.1.1.1.

This algorithm, at each generation t, maintains an n−dimensional random variable Wt ,

that represents the connection weights of the neural controller. We obtain a number of

individuals NT that defines the tournament size by drawing instances of the aforemen-

tioned n−dimensional random variable (i.e. connection weights). By using the GGA

evaluation process (see Section 4.1.1.1), the fitness of these individuals is estimated

and the best one is selected. By repeating this process NU times we obtain a popula-

tion of best fit selected individuals. This population is used to estimate the means and

standard deviations of the random variable Wt+1. These parameters are estimated by

using their corresponding maximum likelihood estimators. Table 3.1 in Section 3.5.1.2

presents the pseudocode for this algorithm.

The UMDAc algorithm is terminated as soon as either a best fit set of connection

weights Wt is found or a large number of generations T is completed.

4.1.2 Learning by Samples

In this subsection we present three supervised learning mechanisms used for our ex-

periments. All of them attempt to yield desired agent behaviors by mimicking a

fixed near optimal strategy. Thus, such mechanisms are only applied off-line and

only when a near optimal spatial coordination strategy is available. Gradient-search

back-propagation (BP); steady state GA (Syswerda, 1991) and real-time Teacher (i.e.

1The GGA approach can be seen as a (NpNs + Np(1−Ns)) Evolutionary Strategy (ES); however,
the GGA name is kept since the crossover operator has been used in its initial version.
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optimal strategy) GA are the supervised learning mechanisms that are explored in this

thesis.

4.1.2.1 Back-Propagation

The use of this supervised learning approach is based on an evaluation which pro-

motes any behavior that mimics a hand-coded near-optimal agents’ strategy. The data

set used for the supervised BP training of the neural controllers consists of inputs (per-

ceptions) and actions of that near-optimal strategy and it is partitioned into training

and validation portions for estimation of the generalization mse error. Early stopping

methodology is used for avoiding overfitting.

For each BP case study, many different training and validation data sets have been

used in order to determine a data set that produces the smallest generalization error

and furthermore, the best performance achieved from the mechanism. We believe that

a learning mechanism’s efficiency and reliability are based on the overall effort made

for achieving desired solutions. As far as the ‘learning by samples’ mechanisms are

concerned, this effort includes the experimental selection of the most appropriate data

set.

The Levenberg-Marquardt algorithm (Hagan and Menhaj, 1994) was used to train

the neural controllers. This algorithm appears to be the fastest method for training

moderate-sized feedforward neural networks and has given the highest performance

training results among many other training algorithms employed.

The algorithm is terminated either when it converges to a good training mean square

error (mse) value (e.g. this mse value depends on the topology of the network) or when

the mse on the validation data set increases (i.e early stopping) or once a predefined

large number of epochs is completed.

4.1.2.2 Steady state GA

The use of a steady state GA (Syswerda, 1991) supervised learning approach is based

on an evaluation that promotes any behavior that mimics the near optimal strategy.

Thus, exactly as in the BP approach, the data set (samples) used consists of inputs and

actions of the desired near-optimal strategy. Steady state GA (SSGA) constitutes an
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alternative supervised genetic search algorithm to the gradient search BP algorithm.

The SSGA evolutionary procedure used can be described as follows.

A population of Np agents is randomly initialized. Then, at each generation:

Step 1 Each agent is evaluated via a fitness function f ′i that corresponds to the mean

square difference between the agent’s and the near-optimal strategy’s path (spa-

tial coordination).

Step 2 Parents are selected for the next generation. A pure elitism method is used

where only the fittest Ns percent of the population is able to breed. As in GGA,

the choice of this selection method is made due to its distinct ability to accelerate

the evolutionary procedure towards its convergence.

Step 3 Each parent either clones an offspring or mates with another randomly selected

parent to reproduce two offspring by crossover. Crossover operators that have

been used for the SSGA are: 1) Uniform Crossover (Syswerda, 1989) and 2)

Montana and Davis (1989) crossover method as presented by Mitchell (1996).

Step 4 Mutation occurs in each gene (connection weight) of each offspring’s genome

with a small probability pm. A uniform random distribution is used again to

define the mutated value of the connection weight.

Step 5 Offspring are evaluated via f ′.

Step 6 Offspring replace only less fit existing members of the population. Therefore,

if an offspring is the least fit candidate member of the population, it is not in-

cluded in the next generation.

The algorithm is terminated when either a good fit agent is found or a large number of

generations T is completed.

4.1.2.3 Teacher-based GA

The Teacher-based GA (TGA) is a supervised learning evolutionary algorithm which

attempts to generate well-behaved agents by rewarding the ones that follow the near-

optimal strategy’s (i.e. the Teacher’s) good paradigm of behavior. Hence, every agent

that is placed into the game environment is rewarded or penalized for its actions by

its own Teacher. More comprehensively, at each simulation step: the embedded near-

optimal controller (i.e. Teacher) generates an action, and the agent (i.e. trainee) con-
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troller does too. The difference between them determines the evaluation of the trainee.

The trainee controller’s action is then applied.

The TGA learning approach is built upon the GGA approach (presented in Section

4.1.1.1). Both the GGA and the TGA follow the same algorithmic steps apart from

Step 2 which is:

Step 2 Each agent is evaluated by the mean square difference between their clones’

and their respective Teachers’ paths.

In contrast with the BP and the SSGA algorithms, the TGA approach has the advan-

tage of retrieving real-time simulation data from the whole group of agents instead of

using a predefined data set. This way, the problem’s designer spends minimal effort in

obtaining appropriate training data sets. There is apparently a risk of retrieving insuf-

ficient or inappropriate real-time data; however, it can be decreased by repeating the

learning attempt. Another crucial difference between TGA and the other supervised

learning mechanisms is the learning environment. Agents in BP and SSGA are off-

line self-trained outside any simulated world whereas, in TGA agents are cloned and

trained as a group in the game simulator.

4.2 Controller Minimization

Minimization of motion controllers offers several advantages. The smaller the con-

troller, the better (easier) the understanding of its functioning by direct inspection.

Additionally, the controller gets computationally more efficient and less expensive. Fi-

nally, the size and the structure of the minimized controller may provide an estimate

of the task’s complexity (Ganon et al., 2003).

We have developed a new evolutionary algorithm, called ECWAS for designing arti-

ficial neural networks automatically, inspired by the EPNet system developed by Yao

and Liu (1996). ECWAS is a modified constructive algorithm that starts with a minimal

neural network (i.e. 1 hidden layer, 1 hidden neuron) and during the evolving process it

adds new layers and neurons. Because pure constructive algorithms are susceptible to

stick at structural local minima (Angeline et al., 1994), the ECWAS algorithm allows

deletion of layers and neurons as well.

The ECWAS (Evolving Connection Weights and Architectures Simultaneously) algo-
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Figure 4.2: The structure of the ECWAS mutation operator.

rithm is built upon GGA presented in Section 4.1.1.1. The only difference between the

two approaches is in the mutation operator used. As previously mentioned, the algo-

rithm starts with a population of minimal neural networks having 1 hidden layer which

contains 1 neuron. The modified mutation process (i.e. Step 5 of the GGA) contains

three operators which occur in the sequence (see Figure 4.2):

Step 5a Connection weight mutation occurs as described in Section 4.1.1.1. The mu-

tated offspring is evaluated via f and compared to its parent. If the offspring is

fitter, then the mutation process is terminated, else go to Step 5b.

Step 5b A fully-connected hidden neuron (i.e. a neuron that is connected to all neu-

rons or inputs of both its preceding and its following layer) is added to the net-

work’s current architecture. Both the neuron’s connection weights and hidden

layer are randomly selected from a uniform distribution. Once more, the mu-

tated offspring is evaluated and compared to its parent. If the offspring is fitter,

then the mutation process is terminated, else go to Step 5c.

Step 5c A randomly selected neuron as well as its connections are deleted. At this step

there is no evaluation of the offspring as it is selected by default. This way, we

try to bias the search toward minimal neural network architectures. The mutation
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process is terminated at this step.

There is no upper bound for the number of hidden neurons in a hidden layer. On

the other hand, the algorithm is constrained to design neural network architectures of

the maximum number of three hidden layers. This constraint fulfils the well-known

Kolmogorov superposition theorem (Kolmogorov, 1957) which states that there never

needs to be more than three layers (i.e two hidden and the output layer) in a neural

network to approximate any function.

ECWAS learning mechanism is used to automatically draw a priori near-optimal neu-

ral network architectures. As experiments showed, this algorithm constitutes an effi-

cient pre-processing methodology for obtaining robust neural controllers of minimal

size for the games used.

4.3 Interest Enhancement through On-Line Learning

We use an evolutionary machine learning mechanism for the games studied which is

based on the idea of heterogeneous opponents that learn while they are playing against

the player (i.e. on-line). The mechanism is initialized with some well-behaved oppo-

nents trained off-line and its purpose is to improve the entertainment perceived by the

player. While ‘learning by samples’ and ‘learning by rewards’ mechanisms are devised

to explore the emergence of cooperative opponents, this mechanism’s purpose is to ex-

ploit the emergent cooperative features and further increase the player’s entertainment

through on-line interaction and adaptation.

The on-line learning mechanism is comprehensively described in the respective chap-

ters of its game applications (see Chapter 5 and Chapter 6). However, its basic steps,

which follow the GGA procedure, are presented briefly here as follows. At each gen-

eration of the algorithm:

Step 1: Each agent is evaluated every ep simulation steps via an individual reward

function, while the game is played.

Step 2: A pure elitism selection method is used where only a small percentage of the

fittest solutions is able to breed. The fittest parents clone offspring.

Step 3: Mutation occurs in each gene (connection weight) of each offspring’s genome

with a small probability pm.
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Step 4: The mutated offspring is evaluated briefly in off-line mode, that is, by replac-

ing the least-fit member of the population and playing a short off-line game of ep

simulation steps against a selected computer-programmed opponent. The fitness

values of the mutated offspring and the least-fit member are compared and the

better one is kept for the next generation.

The algorithm is terminated when a predetermined number of generations has elapsed.

4.4 Case Study

To study the emergence of cooperative behaviors within two-dimensional multi-agent

game environments, we have developed a prototype simulated world called “Flat-

Land”. FlatLand’s main properties collectively correspond to the game environment

features defined in Chapter 1.

Our first objective in developing this world is to investigate the potential generation

of cooperative complex behaviors amongst the agents given their type of communi-

cation and specific tasks they have to achieve. Subsequently, FlatLand is used to as-

sess and compare the performance, robustness and effort cost of the off-line learning

mechanisms described in this chapter. The two tasks that the agents are tested in are

the antagonistic strategies of obstacle-avoidance and target-achievement. Overall, re-

sults show that cooperative behavior amongst the agents is necessary for the successful

completion of their tasks. This behavior is built on implicit and partial communication.

Moreover, the advantages of ‘learning by rewards’ methodology against ‘learning by

samples’ in such game worlds are revealed.

The rest of this chapter is organized as follows. In Section 4.5, we present a detailed

description of FlatLand as well as the agents’ controllers employed. In Section 4.6, we

discuss the difficulties and points of importance of this simulated world. The fitness

functions used by the genetic-search learning algorithms are analytically described in

Section 4.7. Results obtained in the 20-agent FlatLand world as well as comparison of

performance, robustness and effort cost between the different learning approaches are

presented in Section 4.8. Furthermore, experiments in more, and also less, complex

environments are presented in the same section. The most important conclusions of

the FlatLand research are summarized in Section 4.9.
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Figure 4.3: FlatLand world interface (the plane’s dimensions are 80 cm× 80 cm for the

experiments presented here).

4.5 The FlatLand Simulated World

The name “FlatLand” is inspired by the title of E. Abbott’s book (1984) and its fun-

damental concept is based on previous research by Yannakakis (2001). Previous work

on FlatLand is presented in (Yannakakis et al., 2003). The main purpose of this sim-

ulated world is to be used as a test-bed environment for investigating evolutionary

(Blair and Sklar, 1999) and gradient-based (to a lesser degree) learning techniques and

furthermore, their ability to generate cooperative and complex obstacle-avoidance and

target-achievement behaviors. In this section, we present a detailed description of this

simulated world.

FlatLand is a square two-dimensional multi-agent environment. The world’s dimen-

sions are predefined (e.g. 80 cm × 80 cm) so that actions take place in a closed fric-

tionless plane. There are two simple figures visualized in FlatLand (as illustrated in

Figure 4.3): 1) white circles (radius of 5 mm) that represent the agents — artificial

creatures; and 2) dashed straight lines connecting the agent’s current position to its

target point on the surface.

The population used consists of a number of 2D circular agent-creatures, called “Hu-

mans”. The original case study of FlatLand institutes an environment of 20 agents

(Yannakakis et al., 2003) where each agent’s motion is controlled by a neural network.
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It is worth mentioning that one of Humans’ properties is their permeability in case

of a possible collision with each other. Therefore, their motion is not affected when

they collide as they pass through each other. However, ‘collisions’ are penalized when

assessing fitness.

Each Human is assigned a target point on the environment’s surface. This point keeps

changing during its life, hence as soon as a Human achieves its current target (i.e.

manages to reach a circle of 5 mm around the target point), then a new target point

is selected. The new target point is picked from a uniform random distribution at

a specified distance of 30 cm from the agent’s center. The simulation procedure of

FlatLand can be described as follows. Humans are placed randomly in FlatLand via a

uniform distribution. Then, the following occur at each simulation step:

1. Each Human gathers information from its environment (see Section 6.1.3.1).

2. It takes a movement decision (see Section 6.1.3.2).

3. Total number of collisions and target-achievements as well as the average speed

and turn angle (see Section 6.1.3.2) of the Humans are recorded.

4. New randomly picked target points are given to those Humans that have achieved

their target points.

FlatLand concentrates on the creation of emergent efficient and robust obstacle-avoid-

ance and target-achievement behavior. Consequently, the design of the simulated

agents used in this environment is deliberately kept abstract. Finally, there is no wall

avoidance strategy implemented.

4.5.1 Neural Controller

Neural networks are a suitable host for emergent adaptive behaviors in complex multi-

agent environments, as stressed by Ackley and Littman (1992); Yaeger (1993); and

Cliff and Grand (1999). A feedforward neural controller is employed to manage the

agents’ motion and is described in this subsection. Apart from the neural controller,

an Artificial Potential Field employed for controlling the agents’ movement is also

introduced in Section 4.5.2.
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Figure 4.4: Human’s input data in polar coordinates (z = 2).

4.5.1.1 Input

Using its sensors, each Human inspects the environment from its own point of view

and decides about its next action. Sensors implemented are omni-directional with in-

finite range. Both the input information and the neural controller’s architecture are

analytically presented in this subsection.

The neural controller’s input data and format can be described as follows. Each Hu-

man receives information from its environment expressed in the neural network’s input

array of dimension D:

D = 2z+1 (4.1)

where z defines the number of the closest Humans that each Human perceives via its

sensors. Thus, the input array consists of: (a) the polar coordinates (αi, ri) — based

on the axis determined by the current position of the Human and its target point (see

Figure 4.4) — of the z (z = 1, . . . ,(N−1)) closest Humans sorted by distance (e.g. the

polar coordinates of the closest’s Human are inserted first in the input vector) and (b)

an additional input that defines the distance between the Human’s current position and

its target point (dT). Figure 4.4 illustrates the Human’s sensor information as described

above.

All input values are linearly normalized into [0, 1] before they are entered into the

neural controller. The input format in polar coordinates is based on Reynolds’ work

on artificial critters (Reynolds, 1994). For the experiments presented in this case study

z = 2, which was found to be the minimal amount of information for a Human to
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Figure 4.5: Multi-layer feedforward neural network controller.

successfully achieve the desired behavior (for z = 1 neural controllers are not able to

generate satisfactory obstacle-avoidance strategies).

4.5.1.2 Architecture

Our target when we first developed FlatLand was to find the simplest neural controller

capable of generating the desired behavior. Since it is a quite challenging task to

define and quantify simplicity of a neural network, we aim for the minimization of

successful fully connected architectures (i.e. number of neurons and hidden layers).

To this end, moderate size (i.e fewer than 2 hidden-layers and fewer than 30 hidden

neurons in each layer) multi-layered fully connected feedforward neural networks (see

Figure 4.5) have been used for the experiments presented here. The sigmoid function

is employed at each neuron. In the attempt to minimize the controller’s size, it is found

(see Section 4.8.2.1) that single hidden-layered — containing fewer than 13 hidden

neurons — neural network architectures are capable of generating efficient and robust

solutions.

The connection weights take values from -5 to 5 while the neural network’s output

is a two-dimensional vector [o1,o2] with respective values from 0 to 1. This vector
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represents the Human’s step motion and is converted into polar coordinates according

to (4.2) and (4.3).

rNN = o1M (4.2)

αNN = (2o2−1)π (4.3)

where rNN is the Human’s step motion (in cm/simulation step); αNN is the Human’s

turn angle from the axis determined by the Human’s current position and its target

point (in degrees); M is the Human’s maximum speed — in experiments presented

here, M = 1 cm/(simulation step).

4.5.2 Artificial Potential Field Strategy

Using the same environment, we explored an additional “species” of agents. These

agents are called “Animals” and their only difference from Humans is in the control

of their locomotion. Instead of a neural network, an Artificial Potential Field (APF),

specially designed for this environment, controls the Animals’ motion. The essence

of the APF is that points along the Animal’s path to its target point are considered to

be attractive while obstacles (other agents) in the environment are repulsive (Khatib,

1986). The overall APF causes a net force to act on the Animal, which guides it along a

collision-free, target-achievement path. For illustration, consider the Animal as a small

sphere (of radius R = 5 mm) that slides down the surface plotted in Figure 4.6. This

surface is plotted by each Animal at every simulation step and represents the function:

F(x,y) =
M
2

√
(x− xT)2 +(y− yT)2 (4.4)

+κ
z

∑
i=1

e
−

[(
∆xi
4R

)2
+

(
∆yi
4R

)2
]

(4.5)

where

∆xi = x− xi (4.6)

∆yi = y− yi (4.7)

F(x,y) is the potential field value for the Animal’s cartesian coordinates x,y; [xT,yT]

are the coordinates of Animal’s target point; [xi,yi] are the coordinates of the Animal’s
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Figure 4.6: APF - Situation of two obstacles - closest Animals (z = 2).

i closest obstacle’s (other Animal’s) center; κ is a parameter that defines the height of

the exponential “mountain-like” function presented in (4.5).

It is obvious that the surface plotted by each Animal alters at every simulation step as

a result of FlatLand’s dynamics (moving obstacles — other Animals — and chang-

ing neighbors). The Animals’ motion, thence, consists of a fixed non-linear strategy

that does not evolve and is determined by the two-dimensional discontinuously time-

varying potential field represented by (4.4). While, in theory, the APF solution may

be prone to getting stuck in local minima, in practice, in the dynamic FlatLand world,

the probability for such instances to occur is significantly low and, therefore, can be

ignored.

Any motion strategy that guides an agent to quickly achieve its target, avoiding any

possible collisions and keeping the straightest and fastest possible trajectory to its tar-

get, is definitely a “good” strategy in terms of FlatLand world. Hence, Animals present

a “good” (near optimum) behavior in our simulated world and furthermore a reference

case to compare to any Humans’ behavior. This is the major reason for the use of this

species of agent, along with the fact that data from the Animals’ motion strategy can

be used to train the Humans’ neural network controller (see Section 4.1.2).
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4.6 Hardness of the Problem

In this section we provide evidence of the problem’s complexity and learning difficulty

as well as its importance in the multi-agent systems area and this thesis in particular.

In fact, FlatLand is a hard environment for an agent to learn to perform in because of

its following distinct features:

• Fully dynamical multi-agent. Agents move continuously. Each agent faces

a number of moving obstacles (i.e. potentially 19 other agents) in a specific

squared environment and it has no a priori knowledge about their motion.

• Partial information. The fact that each agent in the FlatLand environment is

able to capture the position of only z — in all experiments presented here z = 2

— other agents adds the difficulty of partial information of the environment.

• Implicit information. An additional difficulty is that agents communicate just

by “seeing” each other (see Figure 4.4). This kind of communication regard-

ing the specific tasks (i.e. obstacle-avoidance and target-achievement) is very

common in the animal world (e.g. predator-prey behaviors) as well as in human

beings (e.g. crowded streets).

• Discontinuous time-varying information. The agent’s input information suf-

fers from discontinuity because of frequent alterations of the z closest neighbors

that it takes into account via its sensors. Hence, the values of the polar coordi-

nates αi, ri (i = 1, . . . ,z) alter in a discontinuous fashion.

• Supervised training. If we try to train Humans under the near-optimum APF

(Animals) strategy, we face problems of missing information for many instances.

These are situations that Animals would never get into (e.g. the instance of

ri ≤ 2R) but trained Humans do. Overall, the task of choosing the most appro-

priate training set is something of an art in itself that requires a lot of trial and

error experiments. Unfortunately, the exact features for an efficient set of data

cannot be explicitly defined. Such features include the tradeoff between size and

computational effort, the right proportion of antagonistic behavior examples (i.e.

target-achieving contra collision-avoidance examples) and the specific required

examples for each trained behavior.

• Very few collision examples. One of the difficulties of the FlatLand world is

the small number of collisions per simulation step in relation to the environ-
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Figure 4.7: Worst collision-avoidance behaviors: average individual collisions per sim-

ulation step ratio over the number of simulated agents (solid line) and the logarithm of

the number of simulated agents (dashed line).

ments’ complexity. In the worst obstacle-avoidance behaviors we experienced,

in the most complex environment of 80 agents, each agent collides 375 times

in 104 simulation steps on average (i.e. 3.75% of its lifetime on average). For

the simplest environment used (i.e. 10-agent) this percentage is approximately

0.5%. Therefore, it is both hard and computationally expensive for an obstacle-

avoidance strategy to emerge from rewarding good examples of this strategy.

Furthermore, when increasing the population of simulated agents, the average

individual collisions per simulation step ratio appears to increase logarithmically

(see dashed line in Figure 4.7).

FlatLand’s basic concept and features make the proposed test-bed interesting for the

multi-agent artificial life research area. The generality of this world extends into the

area of computer games as successful applications have already shown (Yannakakis

and Hallam, 2004a; Yannakakis et al., 2004).

• Emerging cooperation. FlatLand is a simulated world in which we expect

cooperative behaviors to emerge without any information exchange apart from

spatial coordination (see above). Hence, emergent cooperation derives from 1)

the way Humans move and 2) the way they interact with their environment (see
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Section 4.8).

• Strong creature-environment interaction. There is a strong interaction and

relation between the simulated creatures and their environment. In other words,

any creature in FlatLand faces an environment of a two-dimensional space that

includes a number of other creatures. Creatures in FlatLand are part of their

own environment. Furthermore, FlatLand’s main feature, as an environment,

is its own creatures. This feature defines an important point in the research of

two-dimensional multi-agent dynamic simulated worlds. Computer games and

artificial life offer a great arena of such worlds and a plethora of applications —

see (Reynolds, 1987; Icosystem, 2002; Yannakakis and Hallam, 2004a; 2004b)

among many.

4.7 Fitness Functions

As mentioned in Section 4.4, the FlatLand test-bed is utilized for investigation of

evolutionary and gradient-based learning techniques and furthermore, their ability to

emerge cooperative obstacle-avoidance and target-achievement behaviors. In this sec-

tion we present the fitness measurements, that correspond to the FlatLand world and

the above tasks, of all evolutionary learning mechanisms presented in Section 4.1.

GGA:

fi =
max

{
1− Ci

Cu
,0

}
+min

{
Ti
Tu

,1
}

2
(4.8)

where fi is the evaluation function of Human i; Ci is the total number of collisions

of Human i’s N clones; Cu is the total number of collisions’ upper bound which

is determined by the total number of collisions of N “Target Achievers” (TAs)

(i.e. agents that move directly towards their target points with constant speed

— αNN = 0o, rNN = 0.5 cm/simulation step) in ep simulation steps (for N=20

and ep = 300, Cu = 60); Ti is the total number of target achievements of Human

i’s N clones; Tu is the total number of target achievements’ upper bound which

is determined by the total number of target achievements of N Animals in ep

simulation steps (for N=20 and ep = 300, Tu = 96).

By using (4.8), we reward Humans (their N clones) that do not crash and achieve

a determined number of targets (Tu) during an evaluation period. By this evalu-
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ation, we mainly promote clones capable of cooperating in order to successfully

achieve the aforementioned desired behavior.

SSGA:

f ′i =
∑St

ts=1

{(
ots

1,i− rts
A

)2
+

(
ots

2,i−αts
A

)2
}

St
(4.9)

where f ′i is the evaluation function of Human i; [ots
1,i,o

ts
2,i] is the neural network’s

output of Human i at step ts; [rts
A,αts

A] are the normalized polar coordinates (i.e.

distance and angle into [0,1]) of the Animal’s center at step ts (Animal path);

and St is the size of the training data set — for the experiments presented here

St = 666.

This function represents the mean square difference between an Animal and a

Human path (i.e. the same mse function that the BP attempts to minimize). In

other words, it penalizes Humans that do not follow the near-optimal path (data

set) of the Animals’ (APF) strategy.

TGA:

f ′′i =
∑N

j=1 f ′ji
N

(4.10)

where f ′′i is the evaluation function of Human i; f ′ji is the mean square difference

between the Teacher’s (Animal’s) and clone j’s path (see (4.9)); and N is the

number of clones placed into the FlatLand world — for the TGA experiments

N = 80.

4.8 Experiments

In this section we present and compare results obtained from all learning mechanisms

applied in FlatLand as presented in Section 4.1. In particular, in Section 4.8.1 we

present a way of evaluating the performance of any experiment, in Section 4.8.2 we

introduce a methodology to optimize the neural controller architecture and based on

this we compare the performance, robustness and effort cost of the mechanisms in

the 20-agent FlatLand environment. We expand our experiments in decreasing and

growing complexity environments (Section 4.8.3).
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4.8.1 Performance Measurement

We introduce an efficient method for testing and comparing the learning mechanisms’

ability to obtain successful controllers. For each learning mechanism used, we pick

up the best (in terms of the optimization function used) neural controller (Human).

Then, we record the total number of both collisions C and target achievements T of a

population of N (e.g. N = 20) copies of this agent in a specific number of simulation

steps (e.g. 104 simulation steps which take approximately 10 sec on a CPU of 1GHz)

by placing these agents in FlatLand and running the simulation.

Since the initialization phase picks random numbers for initial positions and target

points of the agents, it constitutes an important factor for any result. Therefore, we

repeat the same procedure for ten simulation (i.e. evaluation) runs (we believe that this

number of evaluation runs is adequate to illustrate a clear picture of the behavior) of

different initial conditions and we compute the numbers of total collisions Ci and target

achievements Ti for each run i. In addition, the agents’ mean speed E {V} and mean

absolute turn angle E {a} in degrees are calculated. Subsequently, the performance Pi

of a team of agents in a single trial i is obtained as follows. We used 104 simulation

steps for measuring and evaluating any behavior (collisions, target achievements) since

we believe it is a sufficient period for evaluating a behavior of a population of agents

in an efficient way. Subsequently, the performance Pi of a team of agents in a single

trial i is given by (4.11)

Pi =
max

{
1− Ci

CTA
,0

}
+min

{
Ti
TA

,1
}

2
(4.11)

where CTA is the total number of collisions of N TAs in 104 simulation steps (for

N = 20, CTA = 2000 — see Table 4.3); TA is the total number of target achievements

of N Animals in 104 simulation steps (for N = 20, TA = 3200 — see Table 4.3). The

average performance over the ten trials is denoted by P.

The maximum value of (4.11) is 1.0 and it is obtained only when the agents do not

collide at all and achieve as many target points as the Animals do (TA) or more. Ad-

ditionally, the upper bound for the total number of collisions is the number that the

Target Achievers (TAs) produce (CTA) because they just move directly towards their

target points and therefore, present the worst collision-avoidance behavior from our

viewpoint — even though randomly generated agents may produce more collisions
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(see Table 4.3). Hence, (4.11) produces a clear picture of how far the performance of

each learning mechanism is from the near-optimal performance of Animals (P = 1.0).

4.8.2 20-Agent FlatLand Environment

Experiments presented in this subsection are tested in the 20-Agent FlatLand environ-

ment (i.e. N = 20). This environment constitutes the fundamental test-bed for every

investigation in FlatLand.

4.8.2.1 Optimal 1-Hidden Layer Neural Architecture

In order to efficiently compare every learning mechanism employed in FlatLand there

first is a need for optimally designing the architecture of the neural controller. As

previously mentioned in Section 4.4, one of our objectives in the FlatLand world re-

search is the minimalization of the neural controller. Working towards this direction

we use a modified version of the ECWAS algorithm which constrains the search to

1-hidden layer. Even though this modification decreases the search space, it does not

significantly affect the overall performance of the produced behavior. This statement

is based on experimental conclusions that even 1-hidden layer neural architectures can

produce behaviors of high performance (see Section 4.8.2.2). By using this algorithm

we attempt to find minimal neural topologies for solving the FlatLand problem as well

as to avoid overfitting problems of the supervised learning mechanisms employed.

We experiment in the 20-agent FlatLand environment by applying the following pro-

cedure: a) repeat the modified ECWAS learning attempt (run) forty times (each time,

a different random initialization of the connection weights’ values is given); b) mea-

sure the performance of each run (see Section 4.8.1); c) for each neural architecture

produced by the modified ECWAS algorithm calculate the number of runs that present

higher performance than specific performance threshold values (i.e. P > Pth). This

number determines the successes of the neural architecture for this performance thresh-

old. The higher the performance threshold value, the more demanding the procedure.

Figure 4.8 illustrates the outcome of the aforementioned procedure. It presents the fre-

quency of high performance (i.e. for 3 thresholds of performance: P > 0.8, P > 0.85

and P > 0.9) 1-hidden layer architectures found by the modified ECWAS algorithm.

ECWAS results presented in Figure 4.8 show that the modified algorithm tends to
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Figure 4.8: Occurrences of 1-hidden layer architectures found by the ECWAS algorithm.

find several different moderate size neural network architectures (i.e. fewer than 14

hidden neurons) capable of generating high-performance behaviors (P > 0.9). In or-

der to choose the optimal among these successful neural controllers we sort them in

frequency order and calculate their occurrences’ mean performance and variance (pre-

sented in Table 4.1). We empirically select the architecture with 5 hidden neurons

based on frequency, performance and robustness criteria. This architecture gets the

highest mean performance and the lowest variance between its occurrences (i.e. most

robust architecture). Even though, the neural architecture with 4 hidden neurons is the

most frequent, it does not produce high-performance results (P > 0.9, see Figure 4.8),

hence it is not selected.

To ensure that the selected architecture defines the optimal neural structure for gradient

based algorithms as well, we introduce the following procedure. For every moderate

sized (i.e. fewer than 15 hidden neurons) 1-hidden neural architecture a) repeat the BP

run ten times; b) measure the performance of each run (see Section 4.8.1); c) calculate

the mean performance and the variance over the ten runs. Results obtained from this

procedure show that the most efficient and robust neural network architecture is again

the one containing 5-hidden neurons. That is because this neural network architecture

achieves the highest mean performance (E {P}= 0.6403) of any 1-hidden layer archi-

tecture examined (see Figure B.1 and Table B.1 in Appendix B). Smaller networks are
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Occurrences Hidden Neurons E {P} σ2
(·10−4

)

7 4 0.8520 22.7

6 5 0.8862 3.5

5 9 0.8782 29.9

4 7 0.8286 72.1

4 13 0.6418 916.2

Table 4.1: Mean performance E {P} and variance σ2 of the five most frequent 1-hidden

layer neural architectures found by ECWAS. Only the occurrences whose performance

is higher than 0.8 appear in Figure 4.8.

not able to fit the data and therefore, produce low performance behaviors. On the other

hand, larger networks tend to overfit the data set and produce bad generalizations. Note

that, the aforementioned procedure can be applied only for moderate sized 1-hidden

layer neural networks. For neural networks of two or more hidden layers it is compu-

tationally expensive to investigate all possible architectures. Therefore, the ECWAS

algorithm is the preferred method for selecting near-optimal neural architectures of

that size because of its ability to automatically design successful neural controllers.

The fully connected neural network with 5 hidden neurons in 1 hidden layer is the

architecture used for the experiments presented in FlatLand. This controller proves to

be the most efficient 1-hidden neural network architecture produced from both genetic

(ECWAS) and gradient search (BP) algorithms.

4.8.2.2 Best Performance Comparison

Table 4.3 illustrates the best (in terms of performance) obtained results from all differ-

ent learning mechanisms applied in the 20-agent FlatLand environment. The neural

controller employed is a 5-hidden neuron feedforward neural network. Apart from

the evidence presented in Section 4.8.2.1, this controller exhibits the best behavior (in

terms of performance), among all 1-hidden layer feedforward neural controllers, for

all learning mechanisms applied.

In Table 4.3 we introduce the best obtained performance of a species of agents called

“Random” (P = 0.0010). These agents are randomly initialized Humans and the vari-

ance of their performance over the 10 evaluation runs σ2 equals 12.03 · 10−7. The
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Learning Mechanism Parameters

BP St = 666 (Animal path data)

SSGA St = 666, pc = 0.4 (uniform crossover),

Np = 2000, Ns = 50%, pm = 0.01, T = 2000

TGA ep = 8, N = 80, pm = 0.01

GGA Np = 20, N = 20, Ns = 10%, ep = 300, pm = 0.01,

T = 2000

UMDAc ep = 300, NU = 20, NT = 8, T = 2000

Table 4.2: Experiment parameters for the 20-agent environment.

Learning Agents Collisions Target Achievements Speed Turn Angle Performance

No Random 198620 7 0.46 174o 0.0010

TAs 2000 3348 0.50 0o 0.5000

Animals 0 3200 0.5 3.2o 1.0000

By Samples BP 663 3121 0.51 7.8o 0.8219

SSGA 1159 3098 0.50 9.8o 0.6943

TGA 1513 2890 0.51 3.8o 0.5733

By Rewards GGA 261 3376 0.9 44.5o 0.9347

UMDAc 335 3350 0.9 42.3o 0.9162

Table 4.3: Best performance comparison table — average values are obtained from ten

evaluation runs (104 simulation steps each) of a 20-agent environment.
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Random agents along with the Target Achievers and the Animals are presented in Ta-

ble 4.3 for comparison to any emergent Humans’ behavior.

It is obvious that the GGA approach (P = 0.9347, σ2 = 12.5 ·10−5) gets much closer

to the desired behavior (i.e. Animals) than any other learning mechanism or any other

“species” of agents. In general, both approaches based on learning by rewards manage

to produce very high performance behaviors (P > 0.9). On the other hand, the best su-

pervised learning performance, which is achieved by the BP approach, equals 0.8219.

This large performance difference between the two ways of learning derives from the

evidence that all ‘learning by rewards’ approaches — in contrast with the supervised

learning approaches that attempt to mimic the Animal’s behavior — generate Humans

that manage to keep a big distance from each other in order to avoid collisions (see Fig-

ure 4.9). Furthermore, they move with an almost maximum speed (i.e. E {V} = 0.9)

to achieve as many target points as possible.

On the other hand, by observing simulations of supervised mechanisms’ emerged Hu-

mans we get some interesting conclusions as well. The emerged Humans in their

attempt to mimic Animals behave as a TA-Animal hybrid. Low performance values,

small turn angle (i.e. E {a} < 10o) and speed that approximates 0.5 cm/(simulation

step) illustrate the supervised trained behavior.

These results lead to the important conclusion that simple evolutionary learning mech-

anisms can produce much better behaviors than those produced by exhausting super-

vised learning approaches in FlatLand. Such successful solutions manage to exploit

cooperative behaviors built on the partial and implicit spatial communication amongst

Humans.

4.8.2.3 Robustness Comparison

We are interested in obtaining a successful and robust learning mechanism with min-

imum efforts in our experiments. We can obviously experiment with parameter value

adjustment of each method and therefore, be able to find more effective neural con-

trollers (Humans) for the desired behavior. However, if a successful controller is deter-

mined with the lowest computing cost, the applied methodology can be recommended.

To determine the effort that each learning mechanism has required to obtain a de-

sirable robust neural controller, we assume that a single independent experiment is
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Figure 4.9: 20-Agent environment: Minimum distances’ occurrences of an Animal and a

Human emerged from GGA in 104 simulation steps. The dark gray color (not appearing

in the legend), which indicates overlapping data, is produced due to the transparency

of the colors used.

repeatedly run until a successful neural controller is found. A better mechanism will

have a smaller number of runs to find a successful neural controller (Po Lee, 1998;

Kim, 2002). To test the robustness of the solutions given and to calculate the effort

cost of each approach, we apply the following procedure. For each approach a) repeat

the learning attempt ten times; b) measure the performance of each run; c) calculate

the successes of the approach for a specific performance threshold (i.e. number of runs

that present higher performance than the threshold value). Figure 4.10 illustrates the

number of successes of all learning mechanisms applied for ten values of Pth. The

approaches’ parameters are the same as the experiment parameters presented in Sec-

tion 4.8.2.2.

The generational GA is the most efficient and robust approach for every performance

function threshold (see Figure 4.10). Both GGA and UMDAc even generate controllers

(3 success) with P≥ 0.9 whereas the supervised learning approach’s best performance

(BP) is below 0.85. ‘Learning by rewards’ approaches (GGA, UMDAc) seem to be

far more robust than any learning approach based on samples of good behavior (BP,

SSGA, TGA).

UMDAc is a population based evolutionary algorithm that emerges as a generalization
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Figure 4.10: Number of successes out of 10 runs for specific performance values.

of the GGA approach for the purpose of overcoming poor performance in the specific

problem. Instead of a genetic search by mutation, UMDAc approach searches through

the solution’s estimation of probability distribution in the search space. Despite its

similarities to the GGA approach and its promise, it cannot compete with the robust-

ness that the GGA demonstrates2 (see Figure 4.10). Hence, it seems that the most

appropriate evolutionary process for the FlatLand problem is based on pure genetic

search.

It is worth mentioning that for Pth = 0.7, GGA is 100% successful (i.e. 10 out of 10

times), UMDAc succeeds 6 times while BP, SSGA and TGA succeed only 5, 1 and 0

times respectively. Thus, for 0.75 ≤ Pth ≤ 0.8, the effort costs of GGA and UMDAc

can only be compared with that of BP because SSGA and TGA fail completely (0

successes). Finally, for Pth ≥ 0.85 there can be an effort cost comparison only between

the GGA and UMDAc methods because they are the only two approaches capable of

producing behaviors of that high performance.

2See also (Yannakakis et al., 2005a) for an extensive comparative study between GGA and UMDAc.
3in seconds
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Pth Approach α β Confidence Interval Effort Cost Interval3 Mean Effort Cost3

0.7 BP 5 5 [1.3051,4.2772] [122.14,400.26] 205.87

SSGA 1 9 [2.4225,43.8596] [7883.10,142724.40] 35795.32

GGA 10 0 [1.0023,1.3984] [797.96,1113.30] 875.73

UMDAc 6 4 [1.2012,3.2478] [1353.99,3660.93] 2066.53

0.75 BP 2 8 [1.9311,16.6113] [180.73,1554.49] 514.69

GGA 10 0 [1.0023,1.3984] [797.96,1113.30] 875.73

UMDAc 6 4 [1.2012,3.2478] [1353.99,3660.93] 2066.53

0.8 BP 1 9 [2.4225,43.8596] [226.70,4104.39] 1029.38

GGA 10 0 [1.0023,1.3984] [797.96,1113.30] 875.73

UMDAc 6 4 [1.2012,3.2478] [1353.99,3660.93] 2066.53

0.85 GGA 8 2 [1.0641,2.0738] [847.12,1651.02] 1094.66

UMDAc 6 4 [1.2012,3.2478] [1353.99,3660.93] 2066.53

0.9 GGA 3 7 [1.6402,9.1491] [1305.76,7283.81] 2919.10

UMDAc 3 7 [1.6402,9.1491] [1848.78,10312.90] 4133.06

Table 4.4: Effort cost comparison table (ε = 0.05) QBP = 93.58sec, QSSGA =

3254.12sec, QGGA = 796.12sec, QUMDAc = 1127.02sec.

4.8.2.4 Effort Cost Comparison

Since ‘learning by rewards’ approaches (GGA, UMDAc) are demonstrated to be more

robust than any supervised learning approach used, the next step is to compare these

mechanisms via their effort cost interval and mean effort cost. Hence, we pick decent

high values of Pth (i.e. Pth ≥ 0.7) and proceed with a beta-distribution approximation

(see Appendix B) of the effort cost interval and the mean effort cost (Kim, 2002) for

all approaches. Learning mechanisms that experience zero successes out of ten runs

are not considered in further analysis.

Results from the effort cost comparison via the beta-distribution statistical method for

five values of Pth are presented in Table 4.4. More comprehensively, for each Pth value

the number of successes (α) and failures (β) of each approach is presented (as illus-

trated in Figure 4.10). By use of (A.2) the lower and upper bound probability χl,χu

for each method is found; then the 95% confidence interval [1/χu,1/χl] is calculated.

This interval represents the 95% confidence bounds on the expected number of runs

required to achieve the first successful outcome. Table 4.4 also shows the effort cost

interval [QA/χu,QA/χl] for each approach, where QA corresponds to the unit comput-

ing cost per run of the approach A. For the experiments presented here QA equals to
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the average CPU time of the ten runs (every experiment presented here ran in the same

1GHz processor). Finally, the mean effort cost is calculated with α+β+1
α QA.

The important conclusion that arises from Table 4.4 is that the BP approach is com-

putationally preferred for low performance values (i.e. Pth ≤ 0.75) from any other

approach. In other words, if there is need for a fast, relevantly low performance so-

lution (i.e. Pth ≤ 0.75), the BP approach seems to be the most appropriate method.

On the other hand, for Pth = 0.8 the learning mechanism’s effort cost interval and

mean effort cost show a computational preference for the GGA approach against the

other two competing approaches (BP, UMDAc). As previously stressed, only the GGA

and UMDAc approaches are capable of producing high performance behaviors (see

Figure 4.10). For such demanding solutions (i.e. Pth ≥ 0.85), the GGA approach is

proven to consume much less computational effort than the UMDAc approach does.

4.8.3 Growing FlatLand — Increasing Complexity

The effort cost analysis described in Section 4.8.2.4 presents a clear distinction of

the BP and GGA approaches against the rest of learning mechanisms applied in the

20-agent FlatLand environment. In this environment the BP approach is preferred for

efficiently generating relatively low performance solutions whereas the GGA approach

is preferred for demanding high performance solutions.

However, in order to draw the overall picture of the aforementioned approaches’ be-

havior in the FlatLand problem we need experimental results from less or more com-

plex test-bed environments. Since the FlatLand problem becomes harder and more

complex as the number of simulated agents increases, we pick the successful, in the

20-agent environment, BP and GGA approaches and test them in additional FlatLand

environments of 10, 40 and 80 agents. Experiment parameters, performance and effort

cost analysis for these environments are presented in Appendix B.

The conclusion that arises from Figure B.2 is the absolute supremacy of the GGA over

the BP learning mechanism for every environment tested. GGA manages to get high

performance behaviors (Pth ≥ 0.85) even in the 80-agent environment whereas in the

same environment BP generates behaviors of very poor performances (even though it is

trained on animal data of this crowded environment). By observing the BP approach’s

behavior it gets obvious that the more complex the problem it gets, the harder the
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neural network generalization becomes. There is definitely a significant difference

among the two approaches’ performance and successful runs in both the 10 and the

40-agent environment.

Given the obtained results and analysis, GGA seems to be the most robust learning

mechanism applied in FlatLand. This mechanism’s overall performance remains at

very high levels even in very complex problems such as the 80-agent FlatLand envi-

ronment (see Figure B.2(a)). Additionally, its required computational cost makes it

preferable for high performance emergent solutions for every FlatLand environment

(see Table B.3).

The major advantage of the GGA approach (against any supervised learning method) is

that it always manages to produce a simple but highly effective emergent behavior. As

previously seen in experiments from the 20-agent environment (Section 4.8.2), GGA

generates Humans capable of staying far away from each other and moving at almost

maximum speed. This cooperative behavior emerges in the other 3 environments ex-

amined in this section, as well. Cooperation emerges due to the fact that Humans are

trained to behave as a group of homogeneous agents and is built on implicit and partial

communication.

4.9 Conclusions

We introduced both a hard and interesting problem for the multi-agent dynamic sim-

ulated world research area. FlatLand shares common features of known artificial life

and game worlds used for studying the emergence of cooperative global behaviors

which are based on local interactions. In addition, agents are explicitly given individ-

ual tasks and their communication is limited to ‘seeing’ neighbor agents.

We saw that simple mutation-based evolutionary algorithms can generate robust and

cooperative behaviors of high-performance as far as the complication of the FlatLand

world is concerned. These algorithms’ learning ability is based on rewarding the

overall behavior of a group of clone agents (homogeneous team). More specifically,

the GGA approach proved to be the most robust and less computationally expensive

method for every FlatLand environment tested. On the other hand, supervised learning

mechanisms failed to compete with the ‘learning by rewards’ approaches. Evidence

supporting the obtained results are provided in the following section.
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4.9.1 Why Reinforcement?

In this last section we discuss the appropriateness of machine learning mechanisms

towards the emergence of cooperative behaviors in worlds that share properties with

FlatLand.

Suppose that agents learn to behave within a group that consists of copies of them-

selves. This results in the emergence of an interesting form of abstract cooperation

between the agent and its clones, which increases the global efficiency (performance).

This is exactly what is demonstrated by all unsupervised learning approaches applied.

On the contrary, in supervised learning an agent is initially self-trained (e.g. BP, SSGA)

and then it clones itself to form a group. This procedure apparently does not leave any

space for emergence of self-clone cooperation .

The question that arises here is: ‘Is it the mechanism itself (unsupervised, supervised)

or the learning environment (clonal, individual) that allows cooperation to appear and,

therefore, produce such a big difference in performance, robustness and effort cost?’

The answer is supported through the evidence that supervised learning even within

homogeneous teams (i.e TGA approach) did not manage to compete with the ‘learning

by rewards’ methods. Thus, it appears that reinforcing good solutions is the key factor

that affects cooperation rather than the learning environment used. A point that further

supports the aforementioned statement is that ‘learning by rewards’ approaches involve

a minimal amount of data that the agents have to learn (e.g. the desired numbers of

collisions and target achievements within an evaluation period).

On the other hand, no attempt to choose the most appropriate set of data (i.e. percep-

tion and action of Animals) for agents to learn from, proved able to outperform unsu-

pervised learning. The complex dynamics of the environment and the strong training

data set dependence constitute major obstacles towards a well performing solution.

We saw that all mechanisms attempting to mimic the Animals’ behavior managed to

output sub-optimal (i.e. Target Achiever-Animal hybrid) behaviors. This is explained

through the valid hypothesis that even slight differences from the near-optimal hand-

coded strategy can cause collisions and therefore decrease the performance of a team

of agents.

To summarize, suppose that a) we deal with fully dynamic multi-agent environments

where the communication of agents is passive and based on partial and implicit in-

formation; b) we want the agents’ controllers to learn to behave cooperatively for the
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successful achievement of specific tasks; c) there is a near-optimal (good) hand-crafted

behavior available; d) we have to make a choice between a supervised learning mech-

anism that attempts to mimic the good behavior and a mechanism that rewards the

overall behavior of a group of agents and e) in both types of mechanisms the per-

formance evaluation is based on the behavior of a homogeneous group of generated

solutions (agents). Given these, a ‘learning by rewards’ approach tends to perform

better by producing cooperative features within the emergent solutions. In addition,

these solutions tend to be more robust and computationally preferable than solutions

generated by mimicking.

4.10 Summary

Obtained conclusions from FlatLand constitute major input for the generation of col-

laborative opponents in games that share features with this abstract world. Given the

shared features, the use of a moderate sized controller and the application of a GGA-

based approach, it is shown that cooperation among opponents is plausible even when

based on limited and implicit communication. The next chapter introduces the first

experiments on a computer game by following the aforementioned guidelines in order

to produce well-behaved cooperative computer opponents. These opponents are used

as a starting point for the generation of enjoyable games.
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Dead End

In this chapter1 we introduce the first stage of experiments on neuro-evolution mecha-

nisms applied to predator/prey multi-character computer games. Our test-bed is a com-

puter game where the prey (i.e. player) has to avoid its predators by escaping through

an exit without getting killed. By viewing the game from the predators’ (i.e. oppo-

nents’) perspective, we attempt off-line to evolve neural-controlled opponents, whose

communication is based on partial implicit information, capable of playing effectively

against computer-guided fixed strategy players. However, emergent near-optimal be-

haviors make the game less interesting to play. We therefore introduce an entertain-

ment measure for this specific game. Given this measure, we present an evolutionary

mechanism for opponents that keep learning from a player while playing against it

(i.e. on-line) and we demonstrate its efficiency and robustness in increasing and main-

taining the game’s interest. Computer game opponents following this on-line learning

approach show high adaptability to changing player strategies which provides evidence

for the approach’s effectiveness against human players.

This chapter is organized as follows. In Section 5.1, we present a detailed description

of the Dead End game (Park, 2003) as well as its characters’ controllers. In Section 5.2,

we discuss the difficulties of the problem as well as some issues of interest of our ap-

proach for the multi-agent computer games field. Then in Section 5.3, a methodology

for adjusting interest measure parameters for the examined game is presented. Sub-

sequently, Section 5.4 introduces a method for measuring performance in Dead End.

The off-line and on-line machine learning mechanisms used are analytically described

1Parts of this chapter have been published in (Yannakakis et al., 2004; Yannakakis and Hallam,
2005c) and (Yannakakis and Hallam, 2005a)
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in Section 5.5 and Section 5.6 respectively. The game features of number of opponents

and sensory information are discussed in Section 5.7. Off-line and on-line learning

experiments are presented in Section 5.8 and Section 5.9. Finally, the most important

conclusions of the Dead End research are summarized in Section 5.10.

5.1 The Dead End Game

In this section, we present a detailed description of the Dead End game and its two main

characters, Dogs and the Cat. As previously mentioned, this game is investigated from

the viewpoint of Dogs and more specifically how Dogs’ emergent adaptive behaviors

can be effective against skilled players as well as contribute to the interest of the game.

The Dead End game field (i.e. stage) is a two-dimensional square world that contains

a white rectangular area named “Exit” (see Figure 5.1) at the top. For the experiments

presented in this thesis we use a 16× 16 cm stage (see Figure 5.1). The characters

visualized in the Dead End game (as illustrated in Figure 5.1) are a dark grey circle

of radius 0.75 cm representing the player, named ‘Cat’, and a number of light grey

square (of dimension 1.5 cm) characters representing the opponents, named ‘Dogs’.

The aim of the Cat, starting from a randomly chosen position at the bottom of the

stage, is to reach the Exit by avoiding the Dogs or to survive for a predetermined

large period of time, i.e. 50 simulation steps. On the other hand, Dogs are aiming to

defend the Exit and/or catch the Cat within that period of time. The name ‘Dead End’

is devised to demonstrate the situation in which the Cat finds itself at the beginning

of each game. The game’s fundamental concepts are inspired by previous work of

Yannakakis et al. (2003) while the first use of the game as a test-bed for experiments

on emergent cooperative opponent behaviors is introduced in (Park, 2003).

Since, conceptually, there are several Dogs on the game field, they are designed to be

slower than the Cat so that the game is fairer to play. The Cat moves at four thirds the

Dogs’ maximum speed and since there are no dead ends, it is impossible for a single

Dog to complete the task of killing it. Given that the Cat is faster than a Dog, the only

effective way to kill the Cat is for a group of Dogs to hunt cooperatively. It is worth

mentioning that one of the Dogs’ properties is permeability: two or more Dogs can

simultaneously occupy the same position on the game field.

Cat and Dogs are initially placed in the game field so that there is a suitably large
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Figure 5.1: A snapshot of the Dead End game.

distance between them. Then, the following occur at each simulation step of the game:

1. Both Cat and Dogs gather information from their environment and take a move-

ment decision, up, down, left or right.

2. If the game is over (i.e. Cat escapes through the Exit, Cat is killed, or the

simulation step is greater than 50), then a new game starts from the same initial

positions for the Dogs but from a different, randomly chosen position, at the

bottom of the stage for the Cat.

5.1.1 Cat

The difficulty of the Dead End game is directly affected by the intelligence of the

Cat. Its nature is significant because Dogs’ emergent behavior is strongly related to

their competitive relationship against it. To develop more diverse agents’ behaviors,

different playing strategies are required. We therefore chose three fixed Dog-avoidance
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and/or Exit-achieving strategies for the Cat, differing in complexity and effectiveness.

Each strategy is based on decision making applying a cost or probability approximation

to the Cat’s four directions.

As previously mentioned, the Cat starts a game at a random position at the bottom

of the game field and its aim is to reach the game’s Exit by avoiding the Dogs. The

non-deterministic initial position is devised to provide Dogs with diverse examples of

playing behaviors to learn from.

5.1.1.1 Randomly-Moving (RM) Cat

The RM Cat takes a movement decision by selecting a uniformly distributed random

picked available (no wall) direction at each simulation step of the game. The proba-

bility of selecting the direction towards the Exit linearly increases over the simulation

steps by 0.2% per step.

5.1.1.2 Exit-Achieving (EA) Cat

The EA Cat moves directly towards the Exit. Its strategy is based on moving so as to

reduce the greatest of its relative coordinates from the Exit.

5.1.1.3 Potential Field-Based (PFB) Cat

This constitutes the most efficient Dog-avoiding and Exit-achieving strategy of the

three different fixed-strategy Cat types. A discrete Artificial Potential Field (APF)

(Khatib, 1986), specially designed for the Dead End game, controls the PFB Cat’s

motion (see also Section 4.5.2 for details on the Animals’ APF in the FlatLand world).

The essence of the APF for the Dead End game is that points along the Cat’s path to

the Exit are considered to be attractive (i.e. low moving cost points), while obstacles

(i.e. Dogs) in the environment are repulsive (i.e. high moving cost points). The overall

APF causes a net force to act on the Cat, which guides it along a Dog-avoidance, Exit-

achievement path. For illustration, consider the PFB Cat as a small cube that slides

down the surface illustrated in Figure 5.2.

This surface is plotted by the PFB Cat at every simulation step and represents the

function C(x,y):



5.1. The Dead End Game 77

Figure 5.2: APF of the PFB Cat ; situation of three obstacles — Dogs (N = 3).

C(x,y) = ∆E(x,y)+D(x,y) (5.1)

∆E(x,y) =
√

(xe− x)2 +(ye− y)2 (5.2)

D(x,y) =
N

∑
i=1

ρ
|xd,i− x|+ |yd,i− y| (5.3)

where C(x,y) is the cost of the grid square (x,y); N is the total number of Dogs in

the game field; (xe, ye) are the cartesian coordinates of the Exit’s center; (xd,i,yd,i) are

the current cartesian coordinates of the ith Dog’s center; ρ is a parameter that defines

the height of the Dog’s cost ‘hill’ function presented in (5.3) — for the experiments

presented in this thesis ρ = 1000 (note that the PFB Cat can ‘see’ all the Dogs while a

Dog can only ‘see’ a selected number of its nearest neighbors — see Section 6.1.3.1).

A PFB Cat, at each simulation step, calculates the moving cost (see (5.1)) of each grid

square in a circle of radius 2 cm within the game field, centered at its current position.

Then, the PFB Cat moves 2 cm to the grid square of minimal cost on the perimeter

of the circle by following the grid-based trajectory of minimal average cost. While,

in theory, APFs may be prone to local minima, in practice, in the dynamic Dead End
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game, the probability for such cases to occur is significantly low and, therefore, can be

ignored.

Any motion strategy that guides a Cat to arrive quickly at the Exit, avoiding any Dogs

and keeping to the straightest and fastest possible trajectory, is definitely a “good”

strategy in terms of the Dead End game. Hence, the PFB Cat presents a “good” be-

havior in our computer game and furthermore a reference case to compare to human

playing behavior.

5.1.2 Neural Controlled Dogs

A feedforward neural controller is employed to manage the Dogs’ motion and is de-

scribed here.

5.1.2.1 Input

Using their sensors, Dogs inspect the environment from their own point of view and

decide their next action. Each Dog receives input information from its environment

expressed in the neural network’s input array of dimension (2z+4) — see Figure 5.3.

The input array consists of the relative coordinates of (a) the Cat in x (∆x,P = xd − xp)

and y (∆y,P = yd − yp) axis, (b) the z closest Dogs in x (∆x,C = xd − xc) and y (∆y,C =

yd − yc) axis and (c) the Exit in x (∆x,E = xd − xe) and y (∆y,E = yd − ye) axis; where

(xd,yd), (xp,yp), (xe,ye) and (xc,yc) are the cartesian coordinates of the current Dog’s,

the Cat’s, the Exit’s and the closest Dogs’ current positions respectively.

All input values are linearly normalized into [-1, 1] via ∆i,J/Li where i ∈ {x,y}, J ∈
{P,C,E} and Lx,Ly are the width and height of the stage respectively.

5.1.2.2 Architecture

As previously mentioned, a multi-layered fully connected feedforward neural network

has been used for the experiments presented here (see Figure 5.4). The hyperbolic

tangent sigmoid function is employed at each neuron.
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Figure 5.3: Dog’s environment perception — Case of one closest neighbor (z = 1).

5.1.2.3 Output

The neural network’s output is a two-dimensional vector [o1,o2] with respective values

from -1 to 1. This vector represents the Dog’s chosen motion and is converted into

cartesian coordinates according to (5.4) and (5.5).

xk+1
d =

{
xk

d, if |o1| ≥ |o2| (5.4a)

xk
d +o2s, if |o1|< |o2| (5.4b)

yk+1
d =

{
yk

d +o1s, if |o1| ≥ |o2| (5.5a)

yk
d, if |o1|< |o2| (5.5b)

where (xk
d,y

k
d) are the cartesian coordinates of the Dog’s center at simulation step k; s is

the Dog’s maximum speed — for the experiments presented here s = 1.5 cm/simulation

step (this being 3/4 of the Cat’s speed).
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Figure 5.4: Multi-layered fully connected feedforward neural network controller for the

Dog— Case of one closest neighbor (z = 1).

5.1.3 Fixed Strategy Dogs

Apart from the neural controlled Dogs, an additional fixed non-evolving strategy has

been tested for controlling the Dogs’ motion. Dogs of this strategy are called ‘Follow-

ers’ and they are designed to follow the Cat constantly by moving at their maximum

speed (i.e. 1.5 cm/simulation step). Their strategy is based on moving so as to reduce

the greatest of their relative coordinates (∆x,P,∆y,P) from the Cat. This strategy is used

as a baseline behavior for comparison with any emergent neural controller behavior.

5.2 Challenges

Dead End is a hard environment for an agent to achieve behaviors of high performance

because of the following distinct features (see also challenges for FlatLand’s Humans

in Section 4.6):

• It is a fully dynamic multi-agent environment, in which each Dog moves contin-

uously in the game field while interacting with a number of other Dogs and the

Cat.

• In the experiments presented here, no agent has full information: Dogs can ‘see’
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the Cat and at most z other Dogs while the advanced PFB Cat can see all the

Dogs’ positions but not their future movements.

• Communication between the Dogs is limited to each being able to ‘see’ the po-

sition of z nearest neighbor Dogs — cooperative action must be built on this

implicit and partial communication.

• A Dog’s input is discontinuous because its nearest neighbor(s) alter; hence the

values of the relative coordinates (∆x,C,∆y,C) also change, in a discontinuous

fashion.

The basic concept and features of Dead End make it interesting to the multi-agent

predator/prey computer games field. Its key features are that cooperative behavior

amongst the Dogs is necessary and is supported only by implicit partial communication

and the on-line learning mechanism that we propose (see Section 5.6) allows the Dogs

constantly to adapt their collective strategies as they interact with the Cat, contributing

to the interest of the game.

5.3 Interest Parameter Values

In this section we present the procedures followed to obtain the appropriate parameter

values of the interest estimate (2.5) for the Dead End game.

5.3.1 Minimum Playing Time — tmin

For the experiments presented here, tmin, which is an estimate for the minimum playing

time, is 3 simulation steps. This is obtained as the minimum simulation time recorded

that any Cat type survives when playing against any opponent Dogs.

5.3.2 Maximum Playing Time — tmax

As previously defined, tmax is the maximum evaluation period of play, or else the max-

imum lifetime of the player. In the game of Dead End tmax is determined by the max-

imum game length recorded against any opponent Dogs and it is 50 simulation steps

for the RM and PFB Cat and 10 simulation steps for the EA Cat.
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5.3.3 Weighting Parameters

In order to obtain values for the interest criteria weighting parameters γ,δ and ε we

select empirical values based on the specific game. For Dead End, diversity in game

play is of the greatest interest. We believe that generating diverse behaviors within this

game should be weighted more than the challenge (T ) and the spatial diversity (E{Hn})

criteria since the game period is small, that is, the game is short on average. Given the

above-mentioned statements and by adjusting these three parameters so that the interest

value escalates as the opponent behavior changes from Random to Follower, we come

up with γ = 1,δ = 2 and ε = 1.

Since the interest value changes monotonically with respect to each of the three crite-

rion values T , S, E{Hn}, sensitivity analysis is conducted on all interest metric param-

eters aiming to portray the relation between these parameters as well as their weighting

degree in the interest formula. We therefore proceed by seeking opponent behaviors

that generate ten different T,S and E{Hn} values, equally spread in the [0,1] interval.

Given these thirty values as input, p1, p2, p3 (p1 = 0.5, p2 = 1 and p3 = 4 — see

Chapter 2), γ, δ and ε parameters are systematically changed one at a time so that their

percentage difference lies in the interval [−50%, 50%]. We believe that fifty is a large

enough percentage difference to demonstrate potential significant impact on the ob-

served value. Each time a parameter change occurs, the absolute percentage difference

of the game’s interest is computed. The function between the absolute percentage dif-

ferences of the interest value and the percentage differences of the interest weighting

parameters is illustrated in Figure 5.5(a) and Figure 5.5(b).

The first conclusion that arises from Figure 5.5(a) is that changes on the p1 and p2

parameters seem to affect the I value more than their respective criterion weights γ,

δ. The observed difference in interest sensitivity is reasonable since the first two pa-

rameters represent powers while the latter three correspond to product weights. More

specifically, p1 and p2 reveal significant differences (i.e. greater than 5%) in I respec-

tively when decreased by 38% (i.e. p1 = 0.31) and 18% (i.e. p2 = 0.82) or when p2 is

increased by 20% (i.e. p2 = 1.2). For p3 significant change in I is observed only when

decreased by up to 49% (i.e. p3 = 2.04). Accordingly, both δ and ε demonstrate signif-

icant differences in I when decreased by 40% and 30% respectively. The ε parameter

does also significantly change the I value when it is increased by 35%. Finally, for γ
no significant change in I is observed even when changed by up to 50%.
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Figure 5.5: Average and standard deviation of absolute percentage differences of I over

ten runs for each weighting parameter.

Regardless of the sensitivity of the I value, mainly as far as the p1 and p2 parame-

ters are concerned, we believe that the selected values project a rather robust I value
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considering the fact that they constitute power parameters in the interest formula.

5.4 Performance Measurement

We introduce an efficient method for testing and comparing different learning attempts’

ability to emerge successful controllers. We record the total number of kills (Cat is

killed) K of the examined team of Dogs, against a specific Cat, by placing these agents

in Dead End and letting them play 100 games, since we believe it is a long enough

period for testing a playing-behavior of a team of Dogs in an efficient way. This eval-

uation is called a trial. The performance P of this group of Dogs equals to the number

of Cat-kills K (i.e. P = K).

5.5 Off-Line Learning

We use an off-line evolutionary learning approach in order to produce some ‘good’

(i.e. high performing) and diverse initial behaviors for the on-line learning mechanism.

The ANNs that determine the behavior of the Dogs are evolved (evolutionary process

is limited to the connection weights of the ANN).

The evolutionary procedure we follow is based on the GGA algorithm presented in

Section 4.1.1.1, being the most robust and effective off-line learning approach in the

prototype FlatLand world. Each Dog has a genome that encodes the connection

weights of its ANN. A population of 40 ANNs (Dogs) is initialized randomly with

initial uniformly distributed random connection weights that lie within [-5, 5]. Then,

the off-line learning algorithm follows the GGA approach with specific adjustments

for the Dead End game only in its first two basic steps:

Step 1: Each Dog’s clones are placed in the Dead End game field and play the game

against a selected Cat type for an evaluation period ep (e.g. 125 simulation

steps). The outcome of this game is to ascertain the total number of kills (K) and

wins (W ) in the number of finished games G within the ep period (G = W +K).

Step 2: Each Dog is evaluated via (5.6)

f = rKK− rWW (5.6)
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where rK is the reward rate of a kill; rW is the penalty rate of a win. By using

(5.6), we promote Dogs (their N clones) that are able to kill the Cat as many

times as possible as well as to defend the Exit successfully during an evaluation

period. We expect that by adjusting rK and rW , Dogs of different behaviors will

emerge.

For the experiments presented here Ns = 20% and pm = 0.02. The algorithm is ter-

minated when a predetermined number of generations T is achieved (e.g. T = 300)

and the best-fit Dog’s connection weights are saved. Opponents trained through this

procedure are said to be off-line trained (OLT).

Dogs play for a small period (i.e. ep = 125 simulation steps) when evaluated by the

off-line learning mechanism. This evaluation procedure constitutes an approximation

of the examined Dogs’ overall performance in larger evaluation periods and keeps the

computational cost low.

5.6 On-Line Learning (OLL)

This learning approach is based on the idea of opponents that learn while they are play-

ing against the Cat. In other words, Dogs that are reactive to any Cat’s behavior and

learn from its strategy instead of being predictable and, therefore, uninteresting char-

acters for game-playing. Furthermore, this approach’s additional objective is to keep

the game’s interest at high levels as long as it is being played. The OLL mechanism is

built upon the algorithm presented in Section 4.3.

Beginning from any initial group of homogeneous off-line trained Dogs, the OLL

mechanism transforms them into a group of heterogeneous characters that are concep-

tually more interesting to play against. In OLL, an OLT opponent is cloned a number

of times, that equals to the number of opponents playing the game, and its clones are

placed in the game field to play against a selected fixed player type. Then, the OLL ap-

proach follows the algorithm presented in Section 4.3 with adjustments for the specific

game only in the following steps.

Step 1 Each Dog is evaluated every ep simulation steps via (5.7), while the game is

played — ep is 25 simulation steps.

fOLL =
ep

∑
i=1

{
DP,i−D′

P,i
}

(5.7)
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where

DP,i = |xi+1
d − xi

p|+ |yi+1
d − yi

p| (5.8)

D′
P,i = |xi

d− xi
p|+ |yi

d− yi
p| (5.9)

and (xi
d,y

i
d), (xi

p,y
i
p) are respectively the cartesian coordinates of the Dog and

the Cat at the ith simulation step. This fitness function promotes opponents that

move towards the player within an evaluation period of ep simulation steps.

Step 2 A pure elitism selection method is used where only the fittest solution is able to

breed. The fittest parent clones an offspring with a probability pc that is inversely

proportional to the normalized Dogs cell visit entropy (i.e. pc = 1−Hn). If there

is no cloning, then go back to Step 1, else continue to Step 3.

Step 3 Mutation occurs in each gene (connection weight) of each offspring’s genome

with a probability pm (e.g. 0.02). A uniform random distribution is used to define

the mutated value of the connection weight. The mutated offspring replaces the

least-fit member of the population and takes its position in the game field —

this is also called ‘replacement method’ throughout the dissertation. Note that,

for the Dead End game, the mutated offspring is not evaluated briefly in off-line

mode as described in Section 4.3 (Step 4 of the algorithm). See Chapter 6 for

further discussion on this omission.

The algorithm is terminated when a predetermined number of generations has been

achieved or a game of high interest is found. Figure 5.6 illustrates the main steps of

the on-line learning algorithm.

We mainly use small simulation periods (i.e. ep = 25) to evaluate Dogs in on-line

learning. The aim of this high frequency of evaluations is to accelerate the on-line

evolutionary process without significantly affecting the real-time performance of the

game.
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Figure 5.6: The OLL mechanism with the replacement method.

5.7 Game Features

5.7.1 Number of Dogs

Since the game’s complexity is directly affected by the number of opponents, a study

needs to be carried out in order to determine the boundaries between which the game

is neither too hard nor too easy to play. The playing strategy of the Followers is an

effective way to measure the difficulty of the game given the fixed-strategy hand-

programmed Cats. On that basis, we let a number of Followers, varying from 8 to

1, play 100 games against each of the fixed-strategy Cat types and we calculate their

interest (through the bootstrapping procedure presented in Appendix A— N = 50) and

performance values which appear in Figure 5.7(a) and Figure 5.7(b) respectively.

Figure 5.7(b) suggests that the game becomes too challenging for a potential human

player when there are more than 5 Dogs on the stage. Likewise, the game becomes

relatively easy when there are less than 3 opponents in the game. We reach this conclu-

sion primarily by observing the Followers’ performance values against all Cat types,

which as a game scenario simulates various indicative average-skilled human playing

behaviors against some well-behaved and effective opponents. In addition, the afore-

mentioned number of Followers seems to generate the highest interest values among

all environments tested. Consequently, for the experiments presented in this chapter,

we will explore Dead End environments consisting of 3, 4 and 5 Dogs (except where

otherwise noted).
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Figure 5.7: Followers’ interest and performance values over the number of Dogs in

Dead End .

5.7.2 Sensory Information

One of the primary aims of this work is to focus on the minimal sensing informa-

tion capable of generating collaborative opponent behaviors. In order to determine
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Figure 5.8: Dogs’ performance average and interval values over 10 off-line learning

attempts against the PFB Cat.

the appropriate amount of sensory information (given the above-mentioned goal) the

following experiment is devised. We train Dogs off-line (see Section 5.5) against the

PFB Cat, being the most advanced of the three Cat types. In this experiment we select

rK = rW = 1 in fitness function (5.6) — providing equal opportunities for promoting

both Cat-hunting and Exit-defensive behaviors. For each of the 2, 3, 4 and 5 Dog

game environments we explore all possible sensing scenarios; starting from the mini-

mal sensing scenario (z = 0) to global positioning perception, that is each Dog ‘sees’

the positions of all the other Dogs appearing in the environment. We repeat the learn-

ing attempt (run) 10 times with different initial conditions. The experiments’ obtained

performance and its confidence intervals are displayed in Figure 5.8.

The primary deduction that arises from Figure 5.8 is that information about neighbor

agents helps towards cooperative behaviors which yield high performance values. In

particular, Dogs are able to cooperate when even the position of only one closest neigh-

bor Dog is perceived. This suggest that one neighbor Dog constitutes the minimal

information for emerging cooperative behaviors. Because we are interested specif-

ically in the minimal sensing scenario (for computational effort purposes), we will

deliberately exclude from consideration any global sensing, e.g. information about the

dispersion of the Dogs as a whole. Experiments conducted in Dead End are built on

this scenario (i.e. z = 1).
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5.7.3 Controller Size

The modified 1-hidden layer ECWAS algorithm was used and the experiment pre-

sented in Section 4.8.2.1 was conducted for obtaining a neural-controller of minimal

size for the Dogs. As in the FlatLand prototype, the 5-hidden neuron architecture ap-

peared to be the most frequent highly efficient structure designed by ECWAS for the

Dead End game. Experiments were held on the 3-opponent game against the PFB Cat

and the 5-hidden neuron ANN was automatically designed in 8 out of 40 ECWAS trials

with an average performance of 61.13. This controller will be used for all Dead End

experiments.

5.8 Off-Line Learning Experiments

The experiment presented here is focused on producing well-behaved Dogs in terms of

the performance measure previously described in Section 5.4. We train Dogs against all

three fixed-strategy Cat types through the off-line learning mechanism (rK = rW = 1).

The off-line learning experiment is described as follows.

For each of the 3, 4 and 5 Dogs game environments: (a) apply the off-line learning

mechanism by playing against each Cat type separately. Repeat the learning attempt

(run) 10 times with different initial conditions. (b) Evaluate each of the 10 teams of

OLT Dogs against all three Cat types. Their performance and interest measurements

are given by the average values obtained over the 10 trials. (c) Evaluate non-evolving

randomly generated (i.e. untrained) Dogs and Followers against every Cat type (run

10 trials and calculate their average performance and interest). The outcome of this

experiment is presented in Table 5.1 and Table 5.2.

According to Table 5.1, in most cases, OLT Dogs against a specific Cat seem to achieve

lower average performance values when rivaling a Cat other than the one they have

been trained against off-line. This is the case in OLT Dogs against the RM Cat (noted

as OLT/RM in Table 5.1) which produces bad generalizations against the other two

playing strategies. OLT Dogs against the EA Cat manage to perform well when playing

against the RM Cat; however, they perform poorly when playing against the PFB Cat.

On the other hand, Dogs trained off-line against the PFB Cat show good overall perfor-

mance against all Cat types. Even though OLT/PFB Dogs do not achieve high average
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Playing against

RM EA PFB Mean

Dogs E{P} σ2 E{P} σ2 E{P} σ2 E{P}
5 94.5 0.22 44.3 3.63 38.1 18.12

OLT/RM 4 94.2 3.40 34.9 7.54 26.2 36.21 52.84

3 92.8 4.82 28.5 13.76 19.8 48.45

5 62.6 9.33 96.1 1.15 49.3 15.93

OLT/EA 4 70.9 8.27 73.6 4.59 43.8 23.05 64.56

3 81.1 2.61 69.4 6.67 34.3 28.23

5 95.1 2.22 52.5 17.48 84.0 5.10

OLT/PFB 4 90.4 14.31 45.8 31.71 57.5 11.35 67.82

3 87.0 21.89 40.1 21.08 58.0 18.56

5 99.8 0.13 74.5 0.65 76.7 5.70

Followers 4 96.2 0.65 68.7 5.99 81.5 7.78

3 94.2 3.54 48.4 21.77 76.5 5.09

5 75.6 163.98 62.5 214.58 17.8 288.03

Untrained 4 40.2 198.25 15.7 318.35 0.00 0.0

3 31.2 195.15 11.8 379.45 0.00 0.0

Mean of E{P} 80.38 51.12 44.23

Table 5.1: The effect of off-line training on the Dogs’ average performance (E{P})
values over 10 learning attempts.

performance values when playing against the EA Cat they achieve the highest mean of

the average performance values against all players (i.e. the mean of the E{P} values

on each OLT behavior row of Table 5.1). Therefore, among the three fixed-strategy

players, the PFB Cat provides the best off-line training for the opponent agents. This

suggests that when Dogs learn from more complex and effective types of players, they

tend to generalize better.

Performance results obtained from off-line learning experiments also demonstrate the

difference in effectiveness of the fixed playing strategies used. It is obvious that the RM

Cat (mean performance over all off-line training attempts equals to 80.38; presented in

the bottom row of Table 5.1) is the least effective and ‘easiest to kill’ player, whereas,

the EA (51.12) is harder to kill and the PFB (44.23) proves to be the most effective

playing strategy of all three.
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Playing against

RM EA PFB Mean

Dogs E{I} σ E{I} σ E{I} σ E{I}
5 0.696 0.0450 0.754 0.0107 0.518 0.0068

OLT/RM 4 0.708 0.0104 0.724 0.0086 0.619 0.0084 0.501

3 0.702 0.0227 0.683 0.0168 0.606 0.0317

5 0.555 0.0172 0.661 0.0242 0.486 0.0068

OLT/EA 4 0.488 0.0094 0.582 0.0075 0.424 0.0161 0.404

3 0.549 0.0117 0.584 0.0038 0.519 0.0037

5 0.625 0.0274 0.716 0.0129 0.493 0.0174

OLT/PFB 4 0.627 0.0270 0.648 0.0281 0.615 0.0158 0.467

3 0.656 0.0116 0.624 0.0337 0.599 0.0573

5 0.607 0.0804 0.778 0.0256 0.783 0.0211

Followers 4 0.684 0.0588 0.791 0.0226 0.768 0.0281

3 0.624 0.0314 0.797 0.0105 0.772 0.0259

5 0.491 0.0190 0.498 0.0572 0.425 0.0058

Untrained 4 0.614 0.0316 0.436 0.0496 0.056 0.0120

3 0.561 0.0255 0.312 0.0140 0.236 0.0022

Mean of E{I} 0.612 0.638 0.527

Table 5.2: The effect of off-line training on the Dogs’ average interest (E{I}) values

over 10 learning attempts.

An increased interest value when Dogs are trained off-line is also noticeable in the

majority of cases (compared to the interest generated by the untrained Dogs — see Ta-

ble 5.2). However, these emergent behaviors fail to compete with the interest generated

by the Followers (mainly against the EA and PFB Cat).

Table 5.2 also demonstrates that the Cat type may have an impact on the generated

interest. It appears that the EA Cat is the most interesting Cat to play against followed

by the RM Cat and the PFB Cat. This observation is consistent with the assumption

about the quality of the player which is discussed in Chapter 2. According to this

assumption, extreme-behaved players may not generate good estimates of the game’s

interest value. Both EA and (in a lesser degree) RM types of Cat belong to this category

of game-playing by following a trivial strategy of low-quality. Further discussion on

the limitations that arise from this assumption is presented in Chapter 9.
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On the whole, the off-line learning mechanism generates Dogs that defend the Exit

and/or hunt the Cat in a cooperative fashion. As noted before, opponents in this game

have to learn to cooperate in order achieve a high performance value against any play-

ing strategy. OLT-obtained behaviors are classified into the following two categories:

• Defensive (D): These are OLT Dogs that tend to flock close and around the Exit

and wait for the Cat to approach in order to kill it. Their average normalized cell

visit entropy value E{Hn} is less than 0.7.

• Aggressive (A): These are OLT Dogs that tend to follow the Cat all over the

stage in order to kill it (E{Hn} ≥ 0.7).

Defending the Exit, as an emergent behavior, is much easier than hunting coopera-

tively and more effective when playing against the EA Cat. Thus, when off-line train-

ing occurs against the EA Cat, aggressive Dog behavior does not emerge because it

constitutes a sub-optimal behavior.

5.9 On-Line Learning Experiments

Some well-behaved Dogs are required initially to seed the OLL mechanism in its at-

tempt to generate interesting Dead End games. Off-line trained emergent solutions

serve this purpose. The OLL experiment for the Dead End game is described as fol-

lows. a) Pick five different emergent Dogs’ behaviors produced from off-line learning

experiments — Defensive (D) against each of the three Cat types and Aggressive (A)

against the RM and the PFB Cat — for each of the three game environments — con-

taining five, four and three Dogs; b) starting from each OLT behavior, apply the OLL

mechanism by playing against each Cat type separately and in the same stage where

off-line training occurred. This makes a total of fifteen different OLL attempts for each

game environment. c) calculate the interest (by following the bootstrapping procedure

presented in Appendix A — N = 50) of the game every 100 generations during each

OLL attempt.

Given that there are three game environments explored, the total number of different

OLL experiments is 45, which illustrate a complete picture of the mechanism’s effec-

tiveness over the three dimensions of the game: the game’s complexity, the Cat type

and the initial behavior (see Figure 5.9). The evolution of interest over the OLL gen-
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Figure 5.9: (a), (b), (c): best interest values achieved from OLL in the three Dead End

environments; Experiment Parameters: ep = 25 simulation steps, pm = 0.02, 5-hidden

neurons controller.

erations in the 5 Dog game environment are presented in detail in Figure 5.10 — see

Appendix C for illustrations of the rest of the experiments.

As seen from Figure 5.9, OLL is successful at augmenting the interest of the game

regardless of the stage complexity, the Cat type and the initial behavior. On that ba-

sis, in the majority of the experiments, OLL is capable of producing games of higher

than the initial interest and/or maintaining that high interest for a long period. More

comprehensively, in 42 out of 45 OLL scenarios the interest of the game is increased

in less than 500 generations while in 37 cases this increase is statistically significant.

Also, in 23 cases the best interest value achieved against a Cat type is greater than the

respective interest value generated by the Followers (see Table 5.2). Given the calcu-

lated confidence intervals of the interest value (see Table C.1 in Appendix C), in 17 of

such cases this difference is significant.

The reader might notice that the fewer the opponents are in the game, the more erratic
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Figure 5.10: Game interest over the number of OLL generations in the 5 Dog environ-

ment. Sub-figure captions denote the initial Dogs’ behavior.
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Figure 5.11: Scatter plot of I and P value instances for all three Dead End environments.

the behavior of the interest value is over the on-line learning games. This defines one of

the challenges of learning in real-time, since the entertainment value (and performance

value) contribution of a single Dog is inversely proportional to the size of the group of

Dogs. Thus, bad or good opponent replacements in smaller groups are noticed easier

by the player and may lead to the noisy behavior of the I value. However, as seen from

Figure 5.10, Figure C.1 and Figure C.2, such erratic phenomena are unlikely to happen

when the interest of the game is high (e.g. RM Cat in Figure 5.10(a)).

As already seen from both off-line and on-line learning experiments, behaviors of high

performance ought to be sacrificed for the sake of highly entertaining games. Con-

sequently, there has to be a compromise between P and I values as previously noted

in Chapter 2. However, as seen from Figure 5.11, teamwork features within the Dogs

behavior are maintained when interesting games emerge through the on-line learn-

ing mechanism. It appears that the most interesting games require a performance

(50 < P < 70 approximately) which is not achievable without cooperation (see Fig-

ure 5.8). Thus, teamwork is present during on-line learning and it furthermore con-
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tributes to the emergence of highly interesting games.

5.9.1 How Does OLL Work?

The fitness function (5.7) rewards ‘aggressiveness’ (movement toward the Cat); how-

ever, the OLL generated opponents become eventually more interesting. Herein, we

will attempt to explain theoretically the correlation between aggression and interest

that initially appears to be rather unexpected.

The OLL algorithm promotes mutation when groups of opponents exhibit low spatial

diversity and, subsequently, the most aggressive Dog of the group has the opportunity

to reproduce. This combination rewards both aggression explicitly and spatial diversity

implicitly. Since estimating the interest value in real-time is an expensive procedure,

aggression (via (5.7)) determines the interest value estimate that guides the on-line

search towards more interesting opponents.

The primary reason why OLL is successful is because it is based conceptually on

an active player-opponent interaction (see also the assumptions on the interest metric

in Section 2.6). Hence, the more aggressive the opponents become through (5.7), the

more challenging the game is for the player. Since, the player actively attempts to avoid

them, it increases the spatial diversity of the opponents that are trying to follow him/her

by uniformly covering the game environment. These behaviors collectively lead to the

satisfaction of the challenge and the spatial diversity criteria in (2.5). Ultimately, the

game reaches its highest interest when the player discovers new ways of playing that

the opponents can cope with (increase of behavior diversity).

According to the interest metric assumptions presented in Section 2.6, a player that

does not interact with his/her game opponents generates poor approximations of the

entertainment value. Contrary to the PFB Cat, the EA and RM types of Cat do not

interact with their opponents which may very well explain the significant differences

on their generated I values. Even though humans (on average) are not expected to play

blindly, such playing strategies reveal a limitation of the interest value estimation that

is further discussed in Chapter 9.
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5.10 Summary

The Dead End predator/prey computer game (Yannakakis et al., 2004) is devised as

an interesting test-bed for studying the emergence of multi-agent cooperative behav-

iors supported by partial and implicit communication through evolutionary learning

mechanisms. We introduced an off-line learning mechanism, from which effective

cooperative predator behaviors have rapidly emerged.

Predator strategies in predator/prey computer games are still nowadays based on sim-

ple rules, which even though they can generate highly complex opponent behaviors

they make the game somewhat uninteresting — by the time the player gains more ex-

perience and playing skills. A computer game becomes interesting primarily when

there is an on-line interaction between the player and his opponents who demonstrate

adaptive behaviors.

Given some objective criteria for defining interest in predator/prey games we applied

the method presented in Chapter 2 for explicitly measuring interest in the Dead End

game. We saw that by using the proposed on-line learning mechanism (see also (Yan-

nakakis and Hallam, 2004b)), maximization of the individual simple distance measure

(see (5.7)) coincides with maximization of the game’s interest. Apart from being ro-

bust, the proposed mechanism demonstrates fast adaptability to new types of player

(i.e. playing strategies). Moreover, the OLL’s ability to generate interest was tested

over the game’s complexity which corresponds to five, four and three Dogs environ-

ments for Dead End. Results obtained from these experiments demonstrate the ap-

proach’s generality since interesting games emerge independently of game complexity,

initial opponent behavior and Cat type. Finally, it appears that high interest is emerged

through the player’s interaction with cooperative opponents, since teamwork features

of the OLT behaviors are maintained during OLL. For all the above-mentioned rea-

sons, we believe that such a mechanism will be able to produce interesting interactive

opponents (i.e. games) against even the most complex human playing strategy.

For subsequent steps, the methods used here need to be tested on other dissimilar

predator/prey games in order to provide more evidence for their generality, and the

interest measure proposed needs to be cross-validated against human players. The two

following chapters cover these issues respectively.





Chapter 6

Pac-Man

“I felt it would be too stressful for a human being like Pac-Man to be con-
tinually surrounded and hunted down. So I created the monsters’ invasions
to come in waves. They would attack and then they would retreat. As time
went by they would regroup, attack, and disperse again. It seemed more
natural than having constant attack.”

Toru Iwatani, creator of Pac-Man.

In the preceding chapter we saw the successful application of the OLL approach in

generating interesting Dead End games. Additional experiments in a dissimilar preda-

tor/prey game would display the effectiveness of the proposed methodology over dif-

ferent games of the same genre and expand the applicability of the method. In this

chapter, by using one of the most representative test-beds of this computer game genre,

that is Pac-Man, and by focusing on the non-player characters’ behavior, we display the

on-line learning mechanism’s ability to increase the game’s interest as well as maintain

that interest at high levels while the game is being played. OLL demonstrates high ro-

bustness and adaptability to changing hand-crafted player strategies in a set of playing

stages differing in complexity and topology.

More specifically, we test the proposed on-line learning mechanism’s ability to gener-

ate interesting games over a number of computer game axes. These axes include (a)

the (high-level) concept of the game; (b) the environment of the game and particularly

the complexity of the game world (i.e. stage) and its topological features; (c) the oppo-

nents’ behavior when the game starts and (d) the player’s gaming skills. Experiments

presented here demonstrate the generality of the methodology over the aforementioned

101
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axes and verify our hypothesis that the proposed on-line learning mechanism consti-

tutes a generic tool for obtaining predator/prey games of high entertainment indepen-

dently of game type, game complexity and topology, initial opponent behavior and

player.

The structure of the chapter is as follows. The Pac-Man test-bed used is described

in Section 6.1 and the challenges for opponent behaviors of high performance in this

game are mentioned in Section 6.2. The quantification process of the interest metric

for this game is presented in Section 6.3. In addition, a way to measure performance is

presented in Section 6.4. The off-line and on-line learning mechanisms are presented

in the following two sections (Section 6.5 and Section 6.6) while results obtained from

off-line and on-line learning experiments are presented in Section 6.7 and Section 6.8

respectively. Section 6.9 presents the experiment for further testing the on-line learning

mechanism’s ability to adapt against unknown playing strategies in this game. Finally,

Section 6.10 outlines the Pac-Man experiments and Section 6.11 concludes the chapter

through a comparison of the results obtained from both Pac-Man and Dead End.

6.1 The Pac-Man Game

The computer game test-bed studied in this chapter is a modified version of the original

Pac-Man computer game released by Namco. The player’s (PacMan’s) goal is to eat

all the pellets appearing in a maze-shaped stage while avoiding being killed by four

Ghosts. The game is over when either all pellets in the stage are eaten by PacMan or

Ghosts manage to kill PacMan. In that case, the game restarts from the same initial

positions for all five characters.

Compared to commercial versions of the game a number of features (e.g. power-

pills) are omitted for simplicity; these features do not qualitatively alter the nature

of ‘interesting’ in games of low interest. Cross-validation of this statement appears

through the judgement and the beliefs of human players of both the original and this

version of the game (see Chapter 7).

As stressed before, the Pac-Man game is investigated from the viewpoint of Ghosts

and more specifically how Ghosts’ emergent behaviors can contribute to the interest of

the game.

Pac-Man — as a computer game domain for emerging interesting behaviors — is a
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two-dimensional, multi-agent, grid-motion, predator/prey game. The game field (i.e.

stage) consists of corridors and walls. Both the stage’s dimensions and its maze struc-

ture are predefined. For the experiments presented here we use a 19× 29 grid maze-

stage where corridors are 1 grid-cell wide (see Figure 6.1(a) for an example stage).

The characters visualized in the Pac-Man game (as illustrated in Figure 6.1(a)) are

a white circle that represents PacMan and 4 ghost-like characters representing the

Ghosts. Additionally, there are black squares that represent the pellets and dark grey

blocks of walls.

PacMan moves at double the Ghosts’ speed and since there are no dead ends, it is

impossible for a single Ghost to complete the task of killing it. Since PacMan moves

faster than a Ghost, the only effective way to kill PacMan is for a group of Ghosts to

hunt cooperatively. It is worth mentioning that one of Ghosts’ properties is permeabil-

ity. In other words, two or more Ghosts can simultaneously occupy the same cell of

the game grid.

The simulation procedure of the Pac-Man game is as follows. PacMan and Ghosts are

initially placed in the game field so that there is a suitably large distance between them.

Then, the following occur at each simulation step:

1. Both PacMan and Ghosts gather information from their environment.

2. PacMan and Ghosts take a movement decision every simulation step and every

second simulation step respectively; that is how PacMan achieves double the

Ghost’s speed.

3. If the game is over (i.e. all pellets are eaten, PacMan is killed, or the simulation

step is greater than a predetermined large number), then a new game starts from

the same initial positions.

4. Statistical data such as number of pellets eaten, simulation steps to kill PacMan

as well as the total Ghosts’ visits to each cell of the game grid are recorded.

6.1.1 Stages

Similarly to the Dead End game (see Chapter 5), in this chapter we will attempt to test

the on-line learning mechanism’s ability to generate interesting Pac-Man games over
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stages of different complexity and, furthermore, over stages of dissimilar topology1.

6.1.1.1 Complexity

In order to distinguish between stages of different complexity, we require an appropri-

ate measure to quantify this feature of the stage. This measure is

C =
1

E{L} (6.1)

where C is the complexity measure and E{L} is the average corridor length of the

stage. A “corridor” is defined by a path between two junctions on the stage.

According to (6.1), complexity is inversely proportional to the average corridor length

of the stage. That is, the longer the average corridor length, the easier for the Ghosts

to block PacMan and, therefore, the less complex the stage.

Figure 6.1 illustrates the four different stages used for the experiments presented here.

Complexity measure values for the Easy A, Easy B, Normal and Hard stages are 0.16,

0.16, 0.22 and 0.98 respectively. Furthermore, given the Pac-Man game’s conceptual

features:

• blocks of walls should be included,

• corridors should be 1 grid-square wide,

• dead ends should be absent,

and the chosen size constraints of 19× 29 cells, Hard stage is the most complex Pac-

Man stage for the Ghosts to play.

6.1.1.2 Topology

Stages of the same complexity, measured by (6.1), can differ in topology (i.e. layout of

blocks on the stage). Thus, in the case of Easy A and Easy B (see Figure 6.1), stages

have the same complexity value but are topologically different.

Overall, the choice of these four stages is made so as to examine the on-line learning

approach’s ability to emerge interesting opponents in stages of different complexity or

1This material was previously published in (Yannakakis and Hallam, 2004a; 2005b; 2005d)
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(a) Easy A (b) Easy B

(c) Normal (d) Hard

Figure 6.1: The four different stages of the Pac-Man game.
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equally complex stages of different topology. Results presented in Section 6.8 show

that the mechanism’s effectiveness is independent of both the stage complexity and

stage topology and, furthermore, illustrate the approach’s generality for the game.

6.1.2 PacMan

Both the difficulty and, to a lesser degree, the interest of the game are directly affected

by the intelligence of the PacMan player. We chose three fixed Ghost-avoidance and

pellet-eating strategies for the PacMan player, differing in complexity and effective-

ness. Each strategy is based on decision making applying a cost or probability approx-

imation to the player’s 4 neighbor cells (i.e. up, down, left and right). Even though the

initial positions are constant, the non-deterministic motion of PacMan provides lots of

diversity within games.

• Cost-Based (CB) PacMan: The CB PacMan moves towards its neighbor cell

of minimal cost. Cell costs are assigned as follows: a cell with a pellet (pellet

cell) costs 0; an empty cell costs 10; a cell occupied by a Ghost (Ghost cell) costs

100; a Ghost’s 4 neighbor cells cost 50 each. Wall cells are not assigned any cost

and are ignored by PacMan. In case of equal minimal neighbor cell costs (e.g.

two neighbor cells with pellets), the CB PacMan makes a random decision with

equal probabilities among these cells. In other words, the CB PacMan moves

towards a cost minimization path that produces effective Ghost-avoidance and

(to a lesser degree) pellet-eating behaviors but only in the local neighborhood.

• Rule-Based (RB) PacMan: The RB PacMan is a CB PacMan plus an additional

rule for more effective and global pellet-eating behavior. This rule can be de-

scribed as follows. If all PacMan’s neighbor cells are empty (cost 10), then the

probability of moving towards each one of the available directions (i.e. not to-

wards wall cells) is inversely proportional to the distance (measured in grid-cells)

to the closest pellet on that direction.

• Advanced (ADV) PacMan: The ADV PacMan checks in every non-occluded

direction for Ghosts. If there is at least one Ghost in sight, then the probability

of moving towards each one of the available directions is directly proportional

to the distance to a Ghost in that direction. If there is no Ghost in sight, then the

ADV PacMan behaves like RB PacMan. The ADV moving strategy is expected
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to produce better global Ghost-avoidance behavior built upon the RB PacMan’s

good pellet-eating strategy.

6.1.3 Neural Controlled Ghosts

The arcade version of Pac-Man uses a handful of very simple rules and scripted se-

quences of actions combined with some random decision-making to make the Ghosts’

behavior less predictable. The game’s interest decreases at the point where Ghosts are

too fast to beat (Rabin, 2002). In our Pac-Man version, we require Ghosts to keep

learning and constantly adapting to the player’s strategy instead of being opponents

with fixed strategies.

A feedforward neural controller is employed to manage the Ghosts’ motion and is

described in this section. Apart from the neural controller, three fixed (non-evolving)

ways of controlling the Ghosts are presented in Section 6.1.4.

6.1.3.1 Input

Using their sensors, Ghosts inspect the environment from their own point of view and

decide their next action. Each Ghost receives input information from its environment

expressed in the neural network’s input array of dimension 4 (see Figure 6.2). The

input array consists of the relative coordinates from (a) PacMan in x (∆x,P = xg −
xp) and y (∆y,P = yg− yp) axis and (b) the closest Ghost in x (∆x,C = xg− xc) and y

(∆y,C = yg− yc) axis; where (xg,yg), (xp,yp) and (xc,yc) are the cartesian coordinates

of the current Ghost’s, PacMan’s and closest Ghost’s current position respectively.

Ghost’s input includes information for only one neighbor Ghost as this constitutes the

minimal information for emerging cooperative behaviors. As in the Dead End game,

we deliberately exclude from consideration any global sensing, e.g. information about

the dispersion of the Ghosts as a whole, because we are interested specifically in the

minimal sensing scenario.

All input values are linearly normalized into [0, 1] via 0.5[(∆i,J/Li) + 1] where i ∈
{x,y}, J ∈ {P,C} and Lx,Ly are the width and height of the stage respectively.
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Figure 6.2: Ghost’s environment perception.

6.1.3.2 Architecture

As stated before, a multi-layered fully connected feedforward neural network has been

used for the experiments presented here (as shown in Figure 6.3). The sigmoid function

is employed at each neuron.

The connection weights take values from -5 to 5 while the neural network’s output is

a four-dimensional vector (ou,od,ol,or) with respective values from 0 to 1 that repre-

sents the Ghost’s four movement options (up, down, left and right respectively). Each

Ghost moves towards the available — unobstructed by walls — direction represented

by the highest output value. Available movements include the Ghost’s previous cell

position.

6.1.4 Fixed Strategy Ghosts

Apart from the neural controlled Ghosts, three additional non-evolving strategies have

been tested for controlling the Ghost’s motion. These strategies are used as baseline

behaviors for comparison with any neural controller emerged behavior.

• Random (R): Ghosts that randomly decide their next available movement. Avail-

able movements have equal probabilities of being picked.

• Followers (F): Ghosts designed to follow PacMan constantly. Their strategy

is based on moving so as to reduce the greatest of their relative coordinates
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Figure 6.3: Multi-layer feedforward neural network controller of the Ghosts.

(∆x,P,∆y,P) from PacMan.

• Near-Optimal (O): A Ghost strategy designed to produce attractive forces be-

tween Ghosts and PacMan as well as repulsive forces among the Ghosts. For

each Ghost X and Y values are calculated as follows.

X = sign[∆x,P]h(∆x,P,Lx,0.25)

− sign[∆x,C]h(∆x,C−1,Lx,10) (6.2)

Y = sign[∆y,P]h(∆y,P,Ly,0.25)

− sign[∆y,C]h(∆y,C−1,Ly,10) (6.3)

where sign[τ]=τ/|τ| and h(τ,τm, p) = [1− (|τ|/τm)]p. X and Y values represent

the axis on which the near-optimal Ghost will move. Hence, the axis is picked

from the maximum of |X | and |Y |while, the direction is decided from this value’s

sign. That is, if |X |> |Y |, then go right if sign[X ] > 0 or go left if sign[X ] < 0; if

|Y |> |X |, then go up if sign[Y ] > 0 or go down if sign[Y ] < 0.
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6.2 Challenges

The challenges for a Ghost to achieve behaviors of high performance in Pac-Man are

consistent with the respective challenges of a Dog in Dead End (see Section 5.2) and a

Human in FlatLand (see Section 4.6). These challenges are briefly as follows:

• Pac-Man is a fully dynamic multi-agent game environment.

• Ghosts’ communication is partial and implicit while their perceived information

is discontinuous time-varying.

• Cooperative action must be built on this kind of communication.

6.3 Interest Parameter Values

In this section we present the procedures followed to obtain the appropriate parameter

values of the interest estimate (2.5) for the Pac-Man game.

6.3.1 Minimum Playing Time — tmin

For the experiments presented here, tmin is 32 for the Easy stage, 35 for the Normal

stage and 63 for the Hard stage, which is obtained as the minimum simulation time

that PacMan survives when playing against the best-performing Near-Optimal Ghosts

in each stage.

6.3.2 Maximum Playing Time — tmax

As previously defined in Chapter 2, tmax is the maximum evaluation period of play, or

else the maximum lifetime of the player. For Pac-Man this number corresponds to the

minimum simulation period required by the RB PacMan (best pellet-eater) to clear the

stage of pellets. In the experiments presented here tmax is 300 for the Easy stage. Given

that the Easy stage contains 187 pellets, 113 steps (i.e. 37.6% of the playing period)

correspond to backtrack movement decisions of the PacMan. The difference between

the estimated (i.e. evaluation period) and the real (i.e. pellets of the stage plus number

of backtrack moves) evaluation period is illustrated in Figure D.1 in Appendix D when
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a RB PacMan plays in a stage without Ghosts. The minimum number of pellets left by

the RB PacMan is also displayed in the same figure.

Thus, given the evaluation period’s percentage of backtrack movements in the Easy

stage (BE = 37.6%), the backtracking period (Bi) for each stage is computed via (6.4)

E{L1}
E{L2} =

B1

B2
(6.4)

since it should be linearly proportional to the average corridor length of the stage.

Consequently, we come up with tmax values of 320 for the Normal stage (227 pellets

on the stage) and 466 for the Hard stage (425 pellets).

6.3.3 Weighting Parameters

In order to obtain values for the interest formula weighting parameters γ, δ and ε we

select empirical values based on the specific game. In Pac-Man, spatial diversion of

the opponents is of the greatest interest. The game no longer engages the player when

Ghosts stick in a corner instead of wandering around the stage. Thus, diversity in

gameplay (S) and challenge (T ) should come next in the importance list of interest cri-

teria. Given the above-mentioned statements and by adjusting these three parameters

so that the interest value escalates as the opponent behavior changes from Random to

Near-Optimal and then to Follower, we come up with γ = 1,δ = 2 and ε = 3.

By following the sensitivity analysis procedure described in Section 5.3.3 for the Dead

End game, we obtain the function between the absolute percentage differences of the

interest value and the percentage differences of the interest weighting parameters for

the Pac-Man game (see Figure 6.4).

Similarly to the Dead End game, changes on the p1, p2 and p3 parameters seem to

affect the I value more than γ, δ and ε. More specifically, p2 and p3 reveal significant

differences (i.e. greater than 5%) in I when decreased by 15% (i.e. p2 = 0.85) and

9% (i.e. p3 = 3.64) or increased by 20% (i.e. p2 = 1.2) and 10% (i.e. p3 = 4.4)

respectively. For p1 significant change in I is observed only when decreased by up

to 35% (i.e. p1 = 0.325). Accordingly, both ε and δ parameters reveal significant

differences in I only when decreased by 40% and 45% respectively. Finally, for γ no

significant change in I is observed even when changed by up to 50%.
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Figure 6.4: Average and standard deviation of absolute percentage differences of I over

ten runs for each weighting parameter.

As in the Dead End game and as far as mainly p2 and p3 are concerned, their selected

values project a rather robust I value considering that they constitute power parameters

in (2.5).
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6.4 Performance Measurement

When a predator/prey game is investigated from the predator’s viewpoint, optimality

can be measured in the predators’ ability to kill the prey. Thus, a predator’s behavior

that always manages to kill the prey in such games is obviously a desired behavior in

terms of optimality.

Prey-killing ability is the primary factor that determines how good a behavior is (i.e.

its performance) in the Pac-Man game as well. Furthermore, the behavior of prevent-

ing PacMan from eating pellets constitutes an additional factor of the desired optimal

behavior. This behavior also implies a fast-killing behavior, which is also desired from

optimal predators. Given these, a measure designed to give an approximation of a

group of Ghosts’ performance over a specific number Np of games played, is

P =
ζ K

Np
+ηmin

{
1+

(
emin−E{e}
emax−emin

)
,1

}

ζ+η
(6.5)

where P is the performance of a Ghost group behavior taking values from 0 to 1; K is

the number of PacMan kills within Np games; E{e} is the average number of pellets

eaten by PacMan over the Np games; ζ,η are weight parameters (for the experiments

in the Pac-Man game ζ = η = 1); emin,emax are the lower and upper bound estimates

of the eaten pellets e respectively.

The lower bound of the eaten pellets corresponds to the minimum number of pellets

eaten by any PacMan type when playing against the Near-Optimal Ghosts. Thus emin =

70 for the Easy stage; emin = 80 for the Normal stage and emin = 100 for the Hard stage.

Likewise, emax corresponds to the maximum number of pellets that may be eaten, that

is the number of pellets that each stage contains by design — emax = 187, emax = 227

and emax = 425 for the Easy, Normal and Hard stages respectively.

6.5 Off-Line Learning

We use an off-line evolutionary learning approach in order to produce some ‘good’ (i.e.

well-performing) initial behaviors. An additional aim of the proposed algorithm is to

generate dissimilar behaviors of high fitness — varying from blocking to aggressive

(see Section 6.7) — offering diverse seeds for the on-line learning mechanism in its

attempt to generate emergent Ghost behaviors that make the game interesting.
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According to the mechanism, each Ghost has a genome that encodes the connec-

tion weights of its neural network. The evolving process is limited to the connection

weights. A population of 80 neural networks (Ghosts) is initially generated with uni-

formly distributed random connection weights that lie within [-5, 5]. Then, based on

the GGA approach (see Section 4.1.1.1) — with specific adjustments for the Pac-Man

game only in the GGA’s first two basic steps (evaluation steps) — the off-line learning

algorithm is as follows:

Step 1: Every Ghost in the population is cloned 4 times. These 4 clones are placed in

the Pac-Man game field and play Nt games (in the experiments presented here

Nt = 10 games), each one for an evaluation period of ep simulation steps. The

outcome of these games is to ascertain the time taken to kill PacMan tk for each

game.

Step 2: Each Ghost is evaluated via (6.6) for each game and its fitness value is given

by E{ f} over the Nt games.

f = [1− (tk/ep)]
1
4 (6.6)

By the use of the f fitness function, that takes values from 0 to 1, we promote

PacMan-killing behaviors capable of achieving high performance values P.

The algorithm is terminated when a predetermined number of generations T is achieved

(e.g. T = 1000) and the fittest Ghost’s connection weights are saved. Ghosts play few

games (i.e. Nt = 10) when evaluated by the off-line learning method. Even though this

evaluation procedure constitutes an approximation of the examined Ghost’s overall

performance in a greater number of games, it keeps the computational cost low.

6.6 On-Line Learning

As previously noted, games which can learn and adapt to new playing strategies offer a

richer interaction to entertain the player. For that purpose we use an evolutionary ma-

chine learning mechanism for the Pac-Man game which is based on the idea of Ghosts

that learn while they are playing against PacMan. Or else, Ghosts that are reactive to

any player’s behavior and learn from its strategy instead of being the predictable and

somewhat uninteresting characters that exist in all versions of this game today. Fur-

thermore, this approach’s additional objectives are to keep the game’s interest at high
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levels as long as it is being played and to be able to achieve good real-time performance

(i.e. low computational effort during gameplay). This approach, which is built upon

the algorithm presented in Section 4.3, is first applied in Chapter 5 for the Dead-End

game and its modified version for the Pac-Man game is presented here.

Beginning from any initial group of OLT Ghosts, the OLL mechanism transforms them

into a group of heterogeneous opponents that are conceptually more interesting to play

against. An OLT Ghost is cloned four times and its clones are placed in the game

field to play against a selected fixed PacMan type in a selected stage. Then, the OLL

approach follows the basic steps of the algorithm presented in Section 4.3 with adjust-

ments for the Pac-Man game:

Step 1: Each Ghost is evaluated every ep simulation steps via (6.7), while the game is

played — ep is 25 simulation steps.

f ′ =
ep

∑
i=1

{
dP,2i−dP,(2i−1)

}
(6.7)

where dP,i is the distance between the Ghost and PacMan at the i simulation

step. This fitness function promotes Ghosts that move towards PacMan within an

evaluation period of ep simulation steps. In other words, this function represents

the intention to kill PacMan.

Step 2: A pure elitism selection method is used where only the fittest solution is able

to breed. The fittest parent clones an offspring with a probability pc that is

inversely proportional to the normalized cell visit entropy (i.e. pc = 1−Hn)

given by (2.4). In other words, the higher the cell visit entropy of the Ghosts, the

lower the probability of breeding new solutions. If there is no cloning, then go

back to Step 1, else continue to Step 3.

Step 3: Mutation occurs in each gene (connection weight) of the offspring’s genome

with a small probability pm (e.g. 0.02). A gaussian random distribution is used to

define the mutated value of the connection weight. The mutated value is obtained

from (6.8).

wm = N (w,1−Hn) (6.8)

where wm is the mutated connection weight value and w is the connection weight

value to be mutated. The gaussian mutation, presented in (6.8), suggests that the

higher the normalized entropy of a group of Ghosts, the smaller the variance of
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the gaussian distribution and therefore, the less disruptive the mutation process

as well as the finer the precision of the GA.

Step 4: The mutated offspring is evaluated briefly via (6.7) in off-line mode, that is,

by replacing the least-fit member of the population and playing an off-line (i.e.

no visualization of the actions) short game of ep simulation steps. If there is a

human playing Pac-Man, then the PacMan’s motion trail of the last ep simulation

steps is recorded and opponents are evaluated against it in off-line mode. The

fitness values of the mutated offspring and the least-fit Ghost are compared and

the better one is kept for the next generation. This pre-evaluation procedure for

the mutated offspring attempts to minimize the probability of group behavior

disruption by low-performance mutants. The fact that each mutant’s behavior

is not tested in a single-agent environment but within a group of heterogeneous

Ghosts helps more towards this direction. If the least-fit Ghost is replaced, then

the mutated offspring takes its position in the game field as well (i.e. replacement

method).

The algorithm is terminated when a predetermined number of games has been played

or a game of high interest (e.g. I ≥ 0.7) is found.

We mainly use short simulation periods (ep = 25) in order to evaluate Ghosts in OLL

aiming to the acceleration of the on-line evolutionary process. The same period is used

for the evaluation of mutated offspring; this is based on two primary objectives: 1)

to apply a fair comparison between the mutated offspring and the least-fit Ghost (i.e.

same evaluation period) and 2) to avoid undesired high computational effort in on-line

mode (i.e. while playing).

6.7 Off-Line Learning Experiments

The experiment presented in this section is focused on producing well-behaved Ghosts

in terms of the performance measure described in Section 6.4. For each of the four

stages examined, we train Ghosts against all three types of PacMan player through

the off-line learning mechanism presented in Section 6.5. As in the Dead End game,

the neuro-controller used here is the 5-hidden neuron ANN. For obtaining minimal

Ghost controllers capable of achieving high performances, forty trials of the modified

1-hidden layer ECWAS (see Section 4.8.2.1) were held in the Normal stage against the
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Trained off-line by playing against

CB RB ADV

P I P I P I

R 0.456 0.586 0.420 0.505 0.381 0.520

F 0.809 0.784 0.734 0.775 0.617 0.775

O 0.977 0.683 0.917 0.719 0.989 0.678

B 0.984 0.458 0.743 0.554 0.904 0.476

A 0.699 0.646 0.662 0.613 0.764 0.512

H 0.549 0.297 0.504 0.478 0.464 0.356

E{} 0.746 0.576 0.663 0.607 0.686 0.553

Table 6.1: Easy A stage: Performance (P) and Interest (I) values (average values of 10

samples of 50 games each) of fixed strategy (R, F, O) and OLT Ghosts (B, A, H) playing

against all three PacMan types (CB, RB, ADV). Average P and I values (E{}) of all

six strategies appear in the bottom row. Experiment Parameters: Np = 50, population

size is 80, g = 1000, ep = 300 simulation steps, Nt = 10 games, pm = 0.02, 5-hidden

neurons controller.

Trained off-line by playing against

CB RB ADV

P I P I P I

R 0.491 0.583 0.384 0.560 0.357 0.460

F 0.519 0.707 0.506 0.695 0.441 0.682

O 0.938 0.649 0.904 0.591 1.000 0.525

B 0.893 0.498 0.897 0.559 0.990 0.502

A 0.787 0.624 0.694 0.561 0.653 0.552

H 0.504 0.324 0.521 0.441 0.417 0.381

E{} 0.689 0.564 0.625 0.567 0.622 0.512

Table 6.2: Easy B stage: Performance and Interest values. See the caption of Table 6.1

for the experiment parameters.

ADV PacMan. ECWAS automatically designed the 5-hidden neuron ANN more times

than any other architecture (i.e. 8 out of 40 trials) with the highest average performance

(0.682).
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Trained off-line by playing against

CB RB ADV

P I P I P I

R 0.423 0.547 0.363 0.586 0.356 0.523

F 0.754 0.771 0.701 0.772 0.621 0.771

O 0.891 0.729 0.897 0.749 0.964 0.686

B 0.734 0.576 0.689 0.412 0.869 0.442

A 0.661 0.654 0.606 0.652 0.662 0.555

H 0.348 0.190 0.310 0.250 0.467 0.423

E{} 0.635 0.578 0.592 0.570 0.656 0.566

Table 6.3: Normal stage: Performance and Interest values. See the caption of Table 6.1

for the experiment parameters.

Trained off-line by playing against

CB RB ADV

P I P I P I

R 0.364 0.390 0.210 0.390 0.304 0.388

F 0.573 0.772 0.531 0.754 0.650 0.762

O 0.812 0.692 0.788 0.711 0.696 0.492

B 0.822 0.508 0.707 0.636 0.577 0.524

A 0.654 0.612 0.694 0.687 0.545 0.650

H 0.496 0.434 0.466 0.539 0.488 0.595

E{} 0.620 0.568 0.571 0.625 0.543 0.568

Table 6.4: Hard stage: Performance and Interest values. See the caption of Table 6.1

for the experiment parameters.

The off-line training experiment is described as follows.

• Apply the off-line learning mechanism playing against each type of PacMan

player separately.

• Ghosts trained against a specific type of PacMan player are evaluated by playing

100 non-evolution games against the same PacMan type.

• Apply the bootstrapping procedure presented in Appendix A (N = 50) to deter-
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mine the interest and performance values’ confidence intervals.

In each of Table 6.1, Table 6.2, Table 6.3 and Table 6.4 the off-line learning experi-

ment’s outcome is displayed for Easy A, Easy B, Normal and Hard stages respectively.

More comprehensively, in each of the aforementioned tables both the performance and

the interest values of six different Ghosts’ behaviors against all three different PacMan

types as well as their average values E{} are presented for comparison. In the first

three rows of each table, the fixed strategy Ghosts’ (i.e. R: Random, F: Followers,

O: Near-Optimal) performance and interest values are presented against each type of

PacMan player. Furthermore, in the three subsequent rows, P and I values of three

different types of emergent behaviors playing against each PacMan type are displayed.

More specifically, there are three different OLT Ghosts generated by playing against

each PacMan type separately which produce nine different behaviors in total. These

behaviors, which initially were distinguished empirically through visual inspection,

are classified by their performance and interest values and described as follows.

• Blocking (B): These are the OLT Ghosts that achieve the best performance

against each PacMan type. Their behavior is characterized as ‘Blocking’ be-

cause they tend to wait for PacMan to enter a specific area that is easy for them

to block and then kill. Their average normalized cell visit entropy value E{Hn}
lies between 0.55 and 0.65.

• Aggressive (A): These are OLT Ghosts that achieve lower performance in com-

parison to the blockers. Their behavior is characterized as ‘Aggressive’ because

they tend to follow PacMan all over the stage in order to kill it. This motion

feature generates the highest I value (E{Hn} ≥ 0.65) among the interest values

generated by the three different emergent behaviors.

• Hybrid (H): These are suboptimal OLT Ghosts that achieve the lowest perfor-

mance (P ≤ 0.55) and low interest value in comparison to the aforementioned

B and A Ghosts (E{Hn} < 0.55). Their behavior is characterized as ‘Hybrid’

because they tend to behave as a Blocking-Aggressive hybrid which proves to

be ineffective at killing PacMan.

As far as the interest value generated by the above-mentioned behaviors is concerned,

confidence intervals (±0.0647 maximum,±0.0313 on average — see Table D.1 in Ap-

pendix D) obtained by the bootstrapping procedure presented in Appendix A indicate

that B, A and H are significantly different.
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According to the above-mentioned tables, Near-optimal and Blocking behavior Ghosts

achieve high-performance values against all three PacMan types, whereas their inter-

est value is not as high as their performance value. This illustrates the compromise

between optimality and interest that has to be made because, in a predator/prey com-

puter game, optimal killing behaviors are almost never interesting behaviors. On the

other hand, Followers are likely to produce the most interesting behaviors (among the

behaviors examined) for this game.

Viewing results from the PacMan type perspective (i.e. the average values in the bot-

tom row of each table), no safe conclusion can be made for the effectiveness of the three

PacMan types since it appears that Ghosts’ performance against each type depends on

the stage’s complexity and/or topology. However, concerning the three PacMan types’

generated interest, it seems that the RB type is the most interesting PacMan for the

Ghosts to play against.

6.8 On-Line Learning Experiments

As previously mentioned, the off-line learning procedure is a mechanism that pro-

duces near-optimal solutions to the problem of killing PacMan and minimizing the

pellets eaten in a game. These solutions are the OLL mechanisms’ initial points in the

search for more interesting games. In the following parts of this section comprehensive

experiments on each of the four stages are presented.

6.8.1 Easy A Stage

The OLL experiment conducted in the Easy A stage is described as follows.

• Pick the nine different emerged Ghosts’ behaviors produced from the off-line

learning experiments presented in Section 6.7 (i.e. B, A and H behaviors emerged

by playing against each PacMan type).

• Starting from each OLT behavior, apply the OLL mechanism by playing against

each type of PacMan player separately. This makes a total of 27 different OLL

attempts.
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• Calculate the interest (bootstrapping procedure with N = 50 — see Appendix A)

of the game every 100 games during each OLL attempt.

The outcome of this experiment is presented in Table 6.5 and Figure 6.5.

Figure 6.5 illustrates the overall picture of the OLL experiments for the Easy A stage.

The evolution of interest over the OLL games of each one of the nine different OLT

behaviors is presented in a sub-figure of Figure 6.5. For each sub-figure, three lines

are illustrated, representing the interest values of the OLL attempt playing against the

three different PacMan types (a total of 27 different OLL attempts).

As seen from Figure 6.5, the OLL mechanism manages to find ways of increasing

the interest of the game regardless of the initial OLT behavior or the PacMan player

Ghosts play against. In all experiments presented here the learning mechanism is ca-

pable of producing games of higher than the initial interest as well as keeping that high

interest for a long period. Such a fact demonstrates both the mechanism’s robustness

over a set of different initial behaviors and its adaptability against all PacMan types.

There is obviously a slight probability of disruptive mutations (the higher the game’s

interest, through the cell visit entropy value, the less the probability of mutation) that

can cause undesired drops in the game’s interest. However, as seen from Figure 6.5,

the learning mechanism is robust enough to recover from such disruptive phenomena.

When the initial Ghost behavior is interesting (see Figures 6.5(b) and 6.5(e)) then the

mechanism is likely to keep the game at these high, or ever higher, levels of inter-

est. Given an interesting initial behavior (e.g. Aggressive behavior, I > 0.6) or even

a suboptimal H behavior in some cases (see Figures 6.5(f)), it takes some hundreds

of games (around 500 games in most cases) for the learning mechanism to produce

games of high interest. On the other hand, it takes some thousand games to transform

an uninteresting near-optimal blocking behavior (see Figure 6.5(a), Figure 6.5(d) and

Figure 6.5(g)) into an interesting one. That is because the OLL process requires an

initial long period to disrupt the features of an uninteresting blocking behavior in order

to be able to increase the interest of the game. This long period of disruption appears

when the initial on-line Ghosts’ behavior (B, A, or H) is emerged by playing against

ADV PacMan as well (see Figures 6.5(g), 6.5(h) and 6.5(i)). This appears to be likely

because off-line training against ADV PacMan seems to produce the least interesting

games (see Table 6.1).
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(f) H OLT against RBPacMan

Table 6.5 presents the best average interest values obtained from the OLL mechanism.

It is clear that the OLL approach constitutes a robust mechanism that, starting from
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(h) A OLT against ADV PacMan
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(i) H OLT against ADV PacMan

Figure 6.5: Easy A stage: Game interest (average and confidence interval values) over

the number of OLL games. For reasons of computational effort, the OLL procedure

continues for a number of games, large enough to illustrate the mechanism’s behavior,

after a game of high interest (I ≥ 0.7) is found. Initial Ghost behaviors appear in sub-

figure captions. Experiment Parameters: ep = 25 simulation steps, pm = 0.02, 5-hidden

neurons controller.

near-optimal or suboptimal Ghosts, manages to emerge interesting games (i.e. inter-

esting Ghosts) in the majority of cases (i.e. in 19 out of 27 cases I > 0.7). It is worth

mentioning that in 15 out of 27 different OLL attempts the best interest value is sig-

nificantly greater of statistically equal to the respective Follower’s value (i.e. 0.784

against CB, 0.775 against RB and 0.775 against ADV).
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OLL - Playing against

CB RB ADV

B 0.8195 0.7605 0.7682

A 0.7967 0.7644 0.8144CB

H 0.7622 0.4678 0.6910

B 0.7933 0.7713 0.7570

A 0.7657 0.7184 0.7609RB

H 0.7224 0.8228 0.7634

B 0.7532 0.6244 0.5667

A 0.7554 0.6693 0.7630

In
iti

al
O

LT
be

ha
vi

or
s

ADV

H 0.8133 0.6448 0.7374

Table 6.5: Easy A stage: Best interest values achieved from on-line learning.

6.8.2 Easy B Stage

Even though Easy A and Easy B stages have the same complexity values, they are

topologically dissimilar as already noted in Section 6.1.1.2. In principle, by design

of the complexity measure, when two game environments are equally complex this

corresponds to statistically equal average performance values obtained by the same

opponents when playing in both stages (this is demonstrated experimentally in Ta-

ble D.3 in Appendix D). Therefore, for the Easy B stage we choose to apply the OLL

with initial OLT behaviors emerged from the Easy A stage. This experiment intends to

demonstrate the effect of the topology of a stage in the interest of the game.

The OLL experiment follows the steps described for the Easy A stage in Section 6.8.1.

However for this stage, starting from each OLT behavior, we apply the OLL mech-

anism by only playing against the same type of PacMan as was used off-line. This

makes a total of 9, instead of 27, different OLL attempts. The complete set of 27 OLL

attempts in the Easy A stage was primarily designed to demonstrate the mechanism’s

adaptability to new playing strategies. Since Easy B stage is devised to primarily

demonstrate the effectiveness and robustness of the mechanism over stages of differ-

ent topology, we believe that the set of OLL attempts for this stage is adequate to serve

this purpose.

The evolution of interest over the OLL games of each one of the three different OLT
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(d) Aggregate experiment picture

Figure 6.6: Easy B stage: Game interest over the number of OLL games. For reasons of

computational effort, the OLL procedure continues for a number of games large enough

to illustrate its behavior, after a game of high interest (I ≥ 0.7) is found. Initial Ghost

behaviors appear in (a), (b) and (c) sub-figure captions whereas (d) illustrates the overall

picture of the experiment. Experiment Parameters: ep = 25 simulation steps, pm =

0.02, 5-hidden neurons controller.

behaviors is presented in a sub-figure of Figure 6.6. For each of the three sub-figures,

three lines are illustrated, representing the interest values and their respective confi-

dence intervals of the OLL attempt playing against the three different PacMan types.

Figure 6.6(d) illustrates the overall picture of the OLL experiments by comparing the

initial interest of the game against the best average interest value achieved from OLL.
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It is apparent that the OLL approach constitutes a robust mechanism that, starting from

suboptimal Ghosts, manages to emerge interesting games in the vast majority of cases

(i.e. in 8 out of 9 cases I > 0.7). It is worth mentioning that in 8 out of 9 different OLL

attempts the best interest value is significantly greater than or statistically equal to the

respective Follower’s value (i.e. 0.707 against CB, 0.695 against RB and 0.682 against

ADV).

On-line learning enhances the interest of the game independently of the initial OLT

behavior or the PacMan player they play against. In all experiments presented here the

learning mechanism is capable of producing games of higher than the initial interest as

well as keeping that high interest for a long period. As in Easy A stage experiments,

there appears a probability of disruptive mutations that can cause undesired drops in

the game’s interest. However, as seen from Figure 6.6, OLL is robust enough to recover

from such disruptive phenomena.

Finally, given an Aggressive or a Hybrid initial behavior it takes some few thousands

of games for the learning mechanism to produce games of high interest. On the other

hand, it takes some several thousand games to transform an uninteresting near-optimal

blocking or behavior (see Figure 6.6(a)) into an interesting one. This follows our ob-

servations in the Easy A stage, where an uninteresting blocking (and hybrid in some

cases) behavior required a long period to be transformed into an interesting one. How-

ever, differences in the time required by the OLL mechanism to produce highly inter-

esting games can be found between the two Easy stages. In comparison to the Easy

A stage, there is a noticeable delay of the mechanism when starting from an A OLT

and playing against the CB and RB PacMan types in the Easy B stage. That could be

explained through the lower initial interest values that these types of player generate in

the particular stage.

6.8.3 Normal Stage

Through the Normal stage we will explore the mechanism’s effectiveness with respect

to the complexity of the stage. We therefore follow the OLL experimental steps pre-

sented in Section 6.8.2 for the Easy B stage.

The experiment’s outcome for the Normal Stage is illustrated in Figure 6.7 where the

evolution of interest over the OLL games of each one of the three different OLT behav-
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Figure 6.7: Normal stage: Game interest over the number of OLL games. For rea-

sons of computational effort, the OLL procedure continues for a number of games large

enough to illustrate its behavior, after a game of high interest (I ≥ 0.7) is found. Initial

Ghost behaviors appear in (a), (b) and (c) sub-figure captions whereas (d) illustrates

the overall picture of the experiment. Experiment Parameters: ep = 25 simulation steps,

pm = 0.02, 5-hidden neurons controller.

iors is presented in each of its sub-figures. Figure 6.7(d) illustrates the overall picture

of the OLL experiments by comparing the initial interest of the game against the best

average interest value achieved from OLL.

As in the the Easy stage, the OLL approach demonstrates features of high robustness

since it emerges interesting games in the vast majority of cases (i.e. in 8 out of 9 cases
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I > 0.7). In particular, in 5 out of 9 different OLL attempts the best interest value is

significantly greater than or statistically equal to the respective Follower’s value (i.e.

0.771 against CB, 0.772 against RB and 0.771 against ADV). It also appears that OLL

is able to recover sudden disruptive mutations that cause undesired drops in the game’s

interest.

As previously noted also in the Easy stage OLL experiments, given an interesting initial

behavior (see Figure 6.7(b)) it takes some few thousands of games for the learning

mechanism to produce games of high interest. However, it takes some several thousand

games to transform an uninteresting near-optimal blocking behavior (see Figure 6.7(a)

and Figure 6.7(c)) into an interesting one.

If the time required for the OLL to generate interesting games in the Normal stage is

compared to the respective time in the Easy stage, there are observable differences in

some learning attempts. In particular, significant time differences can be found when

the initial OLT behavior is (according to the notation used in Figure 6.7(d)) B (ADV),

A (ADV), H (CB) and H (RB). Since in all these learning attempts the initial interest

value in the Normal stage is lower than the respective value in the Easy stage, we can

assume the dependence of the convergence (in terms of interest) time on the initial

interest value (which maps to a specific opponent behavior).

6.8.4 Hard Stage

The most complex stage of this version of Pac-Man, that is the Hard stage, is devised as

the extreme complexity scenario to further test the OLL mechanism’ ability to generate

interesting opponents to play against. The OLL experiment presented here follows the

steps described previously for the Easy B and Normal stages in Section 6.8.2 and

Section 6.8.3 respectively.

The experiment’s outcome for the Hard Stage is illustrated in Figure 6.8 where the evo-

lution of interest over the OLL games of each one of the three different OLT behaviors

is presented in each of its sub-figures. Figure 6.8(d) illustrates the overall picture of the

OLL experiments by comparing the initial interest of the game against the best average

interest value achieved from OLL.

As seen from Figure 6.8, the highly robust OLL approach generates interesting games

in all nine OLL attempts (i.e. I > 0.7). More comprehensively, the best interest value is
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Figure 6.8: Hard stage: Game interest over the number of OLL games. For reasons of

computational effort, the OLL procedure continues for a number of games large enough

to illustrate its behavior, after a game of high interest (I ≥ 0.7) is found. Initial Ghost

behaviors appear in (a), (b) and (c) sub-figure captions whereas (d) illustrates the overall

picture of the experiment. Experiment Parameters: ep = 25 simulation steps, pm =

0.02, 5-hidden neurons controller.

significantly greater or statistically equal to the respective Follower’s value (i.e. 0.772

against CB, 0.754 against RB and 0.762 against ADV) in three out of nine different

OLL attempts.

It appears that given an interesting initial behavior (see Figure 6.8(b)) it only takes

some few hundreds of games for the learning mechanism to produce games of high
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interest, which proves to be much faster than all stages previously examined. How-

ever, it takes some several thousand games to transform an uninteresting near-optimal

blocking behavior (see Figure 6.8(a) and Figure 6.8(c)) into an interesting one.

In comparison to the other stages used, some learning attempts in the Hard stage

achieve relatively faster convergence times (towards the generation of highly inter-

esting games) even though they are applied in the most complex stage. As also noticed

in the Normal stage, the initial interest value of such OLL attempts in the Hard stage

appears to be relatively higher than the respective values of the Normal and the Easy

stage. Such an observed effect reinforces the evidence that convergence time is depen-

dent on the initial opponent behavior (see Figure D.2 in Appendix D for a scatter plot

of the initial I values over the convergence time).

6.8.5 How Does OLL Work in Pac-Man?

In Section 5.9.1 we discussed potential reasons for the success of the OLL approach

in Dead End. The OLL conceptual features that generate highly interesting games are

identical for the Pac-Man game and will therefore not be discussed further. However,

in this section we will attempt to experimentally investigate our hypotheses.

Figure 6.9 illustrates the dependencies between the T , S, E{Hn} and I values over

on-line learning games. In the specific experiment, we let a group of B Ghosts to

play against the ADV PacMan in the Normal stage and we record the aforementioned

values every 100 games. As seen from Figure 6.9, OLL initially increases the Ghosts’

spatial diversity (E{Hn}) which furthermore produces more appropriate challenge for

the player (T ) through the player-opponent interaction. As in Dead End, the game

reaches its highest interest when the player discovers new ways of playing that the

opponents can counter (increase of behavior diversity — S).

Additional evidence of the OLL approach’s behavior is presented in Figure 6.10 where

the correlation coefficients (rc) between T , S and E{Hn} values over the I value in-

tervals are illustrated (see also Figure D.3 in Appendix D). A number of instances of

these values (128) is obtained from three OLL experiments (B, A and H initial Ghosts)

against the ADV PacMan in the Normal stage. According to Figure 6.10, when I < 0.6,

T and S are highly correlated and E{Hn} is highly anticorrelated with both T and S.

When 0.6 ≤ I < 0.7, T and S are slightly anticorrelated (rc = −0.0974) and E{Hn}
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Figure 6.9: Comparison figure of T , S, E{Hn} and I. Initial opponent behavior: Block-

ing.

is highly correlated and anticorrelated with T (rc = 0.5247) and S (rc = −0.7296)

respectively. Finally, when I ≥ 0.7, all three interest criteria are highly correlated.

These correlation coefficients denote that high spatial diversity is likely to produce

higher challenge (when I ≥ 0.6) and furthermore higher Ghosts’ behavior diversity

when I ≥ 0.7.

6.8.6 Summary

There is already much evidence that the OLL mechanism is able to find ways of in-

creasing the interest of the game regardless of the stage complexity, topology, initial

OLT Ghost behavior and PacMan type. The robustness of the mechanism is demon-

strated through the fact that, starting from suboptimal OLT Ghosts, against any Pac-

Man type in any stage it manages to emerge interesting games in the vast majority of

OLL attempts. Moreover, in nearly all cases, the interest measure is kept at the same

level independently of stage complexity, stage topology, player type and initial behav-

ior. Given the confidence intervals (±0.0537 maximum, ±0.0238 on average — see

Table D.2 in Appendix D) of the best interest values, it is revealed that the emergent
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Figure 6.10: Correlation coefficients of OLL generated T , S and E{Hn} values over I

value intervals.

interest is not significantly different from stage to stage and player to player — see

also Figure 6.11.

However, the evolution of the interest value over the on-line learning games appears

quite erratic in most of the learning attempts. Even though the OLL mechanism in-

cludes a pre-evaluation method (see Step 4 of the algorithm presented in Section 6.6)

to prevent undesired mutations, poor evaluation of the mutated Ghost’s behavior might

lead to sudden drops of the I value. Likewise, a well-behaved mutant may boost the

interest’s value. The primary explanation for this noisy behavior is the number of op-

ponents in the game. Being only four, each Ghost’s contribution in the interest value

of the game becomes highly significant. However, as seen from the obtained results,

such erratic phenomena are unlikely to happen when the interest of the game is high.

It is obvious that a number in the scale of 103 constitutes an unrealistic number of

games for a human player to play. On that basis, it is very unlikely for a human to play

so many games in order to notice the game’s interest increasing. The reasons for the

OLL process being that slow is its time dependence on the initial OLT behavior (see

Figure D.2 in Appendix D) and a matter of keeping an appropriate balance between
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Figure 6.11: On-line learning effect on the interest of the game. Best interest values

achieved from on-line learning on Ghosts trained off-line (B, A, H). Experiment Param-

eters: ep = 25 simulation steps, pm = 0.02, 5-hidden neurons controller.

the process’ speed and its ‘smoothness’ (by ‘smoothness’ we define the interest’s mag-

nitude of change over the games). A solution to this problem is to consider the initial

long period of disruption as an off-line learning procedure and start playing as soon

as the game’s interest is increased. How effective will this mechanism be in a poten-

tial change from a fixed strategy to a human PacMan player? Section 6.9 provides

evidence in order to support the answer.

6.9 Adaptability Experiments

When OLL was tested in the Easy A stage in Section 6.8.1 it turned out that the mecha-

nism was able to adapt to new — unknown during off-line training — playing strategies

and enhance the player’s entertainment. Additional experiments are held here in order

to further support the hypothesis of the mechanism’s adaptability.

In order to test the OLL approach’s ability to adapt to a changing environment (i.e.

change of PacMan strategy), the following experiment is proposed. Beginning from
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Figure 6.12: Scatter plot of I and P value instances for all four Pac-Man stages.

an initial behavior of high interest value Iinit we apply the OLL mechanism against a

specific PacMan type. During the on-line process we keep changing the type of player

as soon as interesting games (i.e. I ≥ Iinit) are produced. The process stops when all

three types of players have played the game. Results presented here are obtained from

experiments in the Easy A, Normal and Hard stage.

Since we have three types of players, the total number of different such experiments

is 6 (all different player type sequences) for each stage. These experiments illustrate

the overall picture of the approach’s behavior against any sequence of PacMan types.

As seen in Figure 6.13, Figure 6.14 and Figure 6.15, OLL is able to quickly recover a

sudden change in the player’s strategy and boost the game’s interest at high levels after

sufficient games have been played. The mechanism demonstrates a similar adaptive

behavior for all 6 different sequences of PacMan players which illustrates its indepen-

dence of the sequence of the changing PacMan type. Moreover, OLL adapts to new

playing strategies independently of the game stage.
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(d) ADV-RB-CB
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Figure 6.13: Easy A stage: On-line learning Ghosts playing against changing types of

PacMan. Sub-figure captions indicate the playing PacMan sequence.
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(b) CB-ADV-RB
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(c) ADV-CB-RB
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(d) ADV-RB-CB
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(e) RB-CB-ADV
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Figure 6.14: Normal stage: On-line learning Ghosts playing against changing types of

PacMan. Sub-figure captions indicate the playing PacMan sequence.
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(a) CB-RB-ADV (b) CB-ADV-RB

(c) ADV-CB-RB (d) ADV-RB-CB

(e) RB-CB-ADV (f) RB-ADV-CB

Figure 6.15: Hard stage: On-line learning Ghosts playing against changing types of

PacMan. Sub-figure captions indicate the playing PacMan sequence.
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Experiments presented here are consistent with our previous observations that conver-

gence time is dependent on the initial interest of the game (see Figure D.2). Thus, it

appears that OLL adapts to a new player faster in the Normal stage (i.e. 100 to 500

games) than in the Hard (i.e. 100 to 1500 games) and the Easy A (i.e. 200 to 1000

games) stages, since in the majority of the OLL scenarios the selected initial opponents

generate a greater I value.

Results obtained from this experiment provide evidence for the approach’s ability to

adapt to new types of players as well as its efficiency in producing interesting games

against human players. Further evidence for this hypothesis may be found in Chapter 7.

6.10 Conclusions

Given some criteria for defining interest in predator/prey games presented in Chapter 2

we introduced a generic method for measuring interest in the Pac-Man game. As in

the Dead End game (see Section 5.9.1), the OLL mechanism maximizes the game’s

interest by rewarding aggressiveness individually (6.7). Apart from being fairly ro-

bust, the proposed approach demonstrates high and fast adaptability to changing types

of player (i.e. playing strategies). Results obtained against fixed strategy PacMan

players showed that such a mechanism could be able to produce interesting interactive

opponents (i.e. games) against human playing strategies.

This chapter concludes with a discussion on the proposed methodology for obtain-

ing predator/prey games of high interest by outlining a summary of its demonstrated

generality over various dimensions of such games.

6.11 Pac-Man versus Dead End

On-line learning procedures have been successful in both games applied. In this section

we further discuss, analyze and compare the games, the OLL variants, the players and

the initial behaviors used.
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6.11.1 Game Variants

We used two predator/prey games differing in the characters’ motion type, stage en-

vironment and player objectives. Interest was able to reach high values and the OLL

mechanism demonstrated robustness and adaptability when applied to both Pac-Man

and Dead End games. However, no effective comparison between the two games’ gen-

erated interest values can be derived and therefore no answer can be given to which

game is more interesting by design. Based on the games’ main features, we believe

that these two test-beds cover a large portion of the properties met in the predator/prey

computer game genre.

Conceptually, the primary dissimilarities between Pac-Man and Dead End are found

in:

• The player’s objectives: In Dead End the Cat has to avoid the Dogs in order to

escape through the Exit whereas in Pac-Man the player has to avoid the Ghosts

while eating pellets appearing on the stage.

• The type of opponent motion: In both games the movement directions are

limited to up, down, left or right but while the Ghosts’ magnitude of motion is

discrete (measured in grid cells) the Dead End opponents’ magnitude of motion

is continuous. Moreover, the ratio of the player’s over the opponents’ maximum

speed is 4/3 and 2 for the games of Dead End and Pac-Man respectively.

• Walls: The absence of objects (walls) in Dead End versus the existence of cor-

ridors in Pac-Man.

6.11.2 OLL Variants

Regarding the OLL approach variants used for the two games, experiments project

a smooth but rather slow change of the interest value in Pac-Man whereas in Dead

End a quite noisy (unstable) but relatively fast change is noticed. Besides, the more

complex the Dead End game environment (i.e fewer Dogs) is, the more distinctive this

instability becomes. The aforementioned dissimilarity in the interest value evolution

is fully determined by (a) the pre-evaluation procedure and (b) the gaussian mutation

operator that exist in the Pac-Man version of the OLL mechanism. According to the

former, the probability of disruptive phenomena caused by unsuccessful mutations is
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minimized and, therefore, evolution is decelerated for the sake of smooth changes in

emergent behaviors (see also Chapter 9 for a discussion on this issue). According to the

latter, the variance of the gaussian mutation is inversely proportional to the entropy of

a group of Ghosts. Hence, the higher the Ghosts’ cell visit entropy, the less disruptive

the mutation process.

If we attempt to compare the two mechanisms used, the Pac-Man OLL variant ap-

pears as a more sophisticated algorithm that is designed to skip undesired opponent

behaviors and erratic changes of the I value with the cost of convergence time (see

also Section 9.2.1.1). On the contrary, the Dead End OLL variant is a hill-climber that

generates interesting games faster with the cost of instability.

In the Dead End game, generations instead of games (as in Pac-Man) are picked as the

algorithm’s simulation time unit because of the large difference on the average game

length between the EA Cat (i.e. tmax = 10) and the RM and PFB Cat (i.e. tmax = 50).

For comparison purposes to the OLL experiments in the Pac-Man game, the expected

value of the generations g per games G ratio E{g/G} is calculated. This equals 0.943

for the RM and PFB Cat and 3.846 for the EA Cat.

6.11.3 Game Complexity

The OLL’s ability to generate interest was tested over the game’s complexity which

corresponds to the Easy, Normal and Hard stages for Pac-Man and to five, four and

three Dogs environments for Dead End. Results obtained from these experiments

demonstrate the approach’s generality since interesting games emerge independently

of game complexity.

6.11.3.1 Stage Topology

In addition to stages of different complexity, topologically different Pac-Man stages

of equal complexity (Easy A and Easy B) were used as test-beds for the approach.

Obtained interest values showed that the topology of the stage does not seem to hinder

the OLL’s adaptive features surfacing.
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6.11.4 Players

As far as the playing strategy is concerned, three hand-crafted players have been de-

signed for each game. Independently of playing strategy, the mechanism adapted to

their playing style in order to boost the game’s interest. More specifically, in the Pac-

Man game, the best OLL generated interest values were not significantly different

regardless of the player type.

According to the overall observed behavior of the I value it appears that, in addition to

the opponent, the player may also play a significant role for its own entertainment. The

player may determine the game’s plot to a degree and this occurs due to its interaction

with the opponents. In that sense, the interest value is affected by the player more

in extreme scenarios such as unacceptably low (i.e. unable to control the player and

sense the features of the game environment) or expert (i.e. unbeatable) gaming skills

(see Section 2.6). The entertainment perceived by such a player is rather low which

accordingly confirms the first interest criterion of challenge in computer games (see

Chapter 2).

For instance, both EA and RM (in a lesser degree) types of Cat belong to this category

of game-playing by following a trivial low-quality game strategy. Contrary to the PFB

Cat and all PacMan types used, the aforementioned player types do not interact with

their opponents, which furthermore, leads to a poor estimation of the game’s I value.

Even though such playing strategies are rare among humans they constitute a limitation

of the interest value estimation that is further discussed in Chapter 9.

6.11.5 Initial Opponents

Five different behaviors emerged from off-line training procedures were selected as

initial points in the search for more interesting games. For the Pac-Man game we

categorized OLT emerged behaviors into blocking, aggressive and hybrid whereas for

the Dead End game the OLT behaviors obtained were characterized as either aggressive

or defensive. Given these diverse initial behaviors, the OLL mechanism exhibited high

robustness and fast adaptability in increasing the game’s interest. Moreover, results

showed that convergence time of highly interesting games is dependent on the initial

interest value.

In the next chapter, we present experiments with human Pac-Man players. Given the
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above-mentioned observations of the convergence time and initial opponent depen-

dence, some quite interesting Ghosts are the initial opponents seeded in the on-line

learning experiment against humans.
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Human Survey

“I understand the behavior of the ghosts and I am able to manipulate the
ghosts into any corner of the board I choose. This allows me to clear the
screen with no patterns. I chose to do it this way because I wanted to
demonstrate the depths of my abilities. I wanted to raise the bar higher —
to a level that no one else could match.”

Billy Mitchell, Pac-Man world champion.

Experiments against computer-programmed fixed playing strategies portrayed the OLL

mechanism’s ability to generate interesting predator/prey games independently of game

concept, complexity, opponent and player behavior. Apart from being fairly robust,

the proposed mechanism demonstrated high and fast adaptability to changing types of

player (i.e. playing strategies) in both games tested. The subsequent obvious step to

take is to let humans judge whether generated games are realistically interesting or not

and whether OLL indeed enhances the level of entertainment during play. For this, we

conducted a survey, with human subjects as PacMan players, that primarily aims to

obtain answers to the following questions:

1. Does the interest value computed for a game correlate with human judgement of

interest?

2. Does the on-line learning mechanism cause perceived interest to change? Do

perceived changes match computed ones?

The experiment is comprehensively described in Section 7.1. In Section 7.2 and Sec-

tion 7.3 the statistical method used and the analysis of obtained results are presented

143
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respectively.

7.1 Experiment Description

Answers to the key questions previously presented are based on statistical analysis

of data acquired from a questionnaire (see Appendix E for the questionnaire used)

applied for the Pac-Man game. The main prerequisite for a subject to participate in

this experiment is to have played the original version (Namco) of the Pac-Man game

at least once. For this experiment, the Normal (see Figure 6.1(c)) stage is used, being

the one that covers the greatest range of Pac-Man playing skills among the stages used.

Hard stage is too difficult for beginners whereas Easy is too simple for highly-skilled

players. The number of subjects used was thirty and their age covered a range between

17 and 51 years, where both sexes were almost equally represented (43% females,

56% males). In addition, all subjects speak English as a foreign language since their

nationality was either Danish (90%) or Greek (10%). The questionnaire is divided into

3 parts (A, B and C) and the steps that the subjects went through for each part are

presented as follows.

7.1.1 Part A: Personal Data

A.1 Subjects are asked to define their interest in computer games in general. The

categorization is as follows: a) I love computer games; b) I like them, but I’m

not that enthusiastic about them; c) I don’t like computer games.

A.2 Subjects are asked to define their interest in the Pac-Man game before they play

it. There are five different answer-options to choose from, which categorize

participants into three different types of Pac-Man player. The options are:

1. I’m a fanatic Pac-Man player.

2. I like Pac-Man.

3. I like Pac-Man, but I am not that enthusiastic about it.

4. I used to like Pac-Man, but not any more.

5. I don’t like Pac-Man.
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Subjects choosing 1–2, 3 and 4–5 are assigned to the first (represented as “Like”),

second (represented as “Neutral”) and third (represented as “Don’t like”) type of

player respectively.

A.3 Subjects are asked to list the factors they consider make a better Pac-Man game.

Data from this answer are used for correlation with answers to question C.2 (see

Section 7.1.3).

A.4 Subjects familiarize themselves with the game by playing 50 games against spe-

cific OLT opponents (i.e. opponent 4 presented in Table 7.1). On-line learning

is used during this testing period, which is not noticeable to the player. At the

end of the testing period, each subject’s opponents trained on-line are saved.

7.1.2 Part B: 1st Objective

We pick opponents differing in the interest value generated when playing against the

ADV player (as the most advanced computer-guided PacMan player). We select five

opponents whose computed interest values uniformly cover the [0,1] space. The se-

lected opponent’s numbers, which are used as id-codes, and their respective interest

values, are presented in Table 7.1.

By experimental design, each subject plays against three of the selected opponents in

all permutations of pairs. In addition, we require equal participation of all three player

types. For this experiment, we use thirty subjects divided into three equal subsets

for each of the three player types (Like, Neutral, Don’t Like), since C5
3 = 10 — all

combinations of 3 out of 5 opponents — subjects are required for each player type.

Moreover, observed effects show that thirty subjects constitute a statistically significant

sample (see section 7.3).

B.1 As previously mentioned, each subject plays sets of games (five games in each

set) against three of the selected opponents in all permutations of pairs and each

time a pair of sets is completed, the player is asked whether the first set was more

interesting than the second set of games.

The total number of different sets of games that is played by each subject is twelve

(all permutations of three pairs — e.g. if 1, 2 and 3 are selected then the subject plays

the following six pairs of sets: [1,2], [2,1], [1,3], [3,1], [2,3], [3,2]). The sequence
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Opponent Iu I Il

1 0.2043 0.1793 0.1494

2 0.3673 0.3158 0.2670

3 0.5501 0.4943 0.4420

4 0.6706 0.6484 0.6267

5 0.8180 0.8023 0.7858

Table 7.1: The selected opponents and their respective interest — I and 95% confi-

dence interval (Iu, Il) values.

of the six pairs of sets that each subject plays is defined a priori given the following

conditions (see Table E.3 in Appendix E):

(1) Each pair [A–B] is played in a different place of the six pair sequence each time it

is played and

(2) No [A–B] pair is adjacent to [B–A] pair. This way we minimize the effect of the

pairs’ playing order.

Given thirty subjects, there are nine observed incidents for each pair of sets.

7.1.3 Part C: 2nd Objective

C.1 Each subject plays 25 games against the initial training phase opponents (i.e. op-

ponent 4 — OP4) and 25 games against the on-line trained opponents that were

saved (i.e. two sets of games). We let each subject play another two sets against

these opponents in different order. Half of the subjects play these four sets of

games in the sequence OLL-OP4, OP4-OLL, whereas the other half play them

in the sequence OP4-OLL, OLL-OP4 since we require minimization of any po-

tential ordering effect. Each time a pair of sets (two pairs here) is finished, the

player is asked whether the first set was more interesting than the second set of

games.

In order to calculate the interest value for each of the 2 sets, we record the e (pellets

eaten), K (PacMan kills), tk (time to kill PacMan) and vik (total number of the oppo-

nents’ cell visits) values while subjects play, obtaining data of 50 games against each

opponent in total (see Section 7.3.4).
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C.2 Subjects are asked to list the criteria they used for their assessment of which set

of games was more interesting. This last question is added to cross-check (along

with question A.3 before the testing period) if subjects’ factors of a good Pac-

Man game before playing correlate with the criteria of assessment of an interest-

ing Pac-Man game after playing.

7.2 Method

Hypothesis testing is the use of statistics to determine the probability that a given

hypothesis is true or false. The usual process of hypothesis testing consists of four

steps.

1. Formulate the null hypotheses (see Section 7.2.1).

2. Identify a test statistic that can be used to assess the truth of each null hypothesis

(see Section 7.2.2).

3. Compute the probability that each test statistic would assume a value greater

than or equal to the observed value strictly by chance, called the p-value (see

Section 7.2.3).

4. Compare the obtained p-values to an acceptable significance value (see Sec-

tion 7.2.4).

7.2.1 Hypotheses

For this experiment there are three null hypotheses formed:

H0: The correlation between observed human judgement of interest and the computed

interest value, as far as the different opponents are concerned, is a result of randomness.

H1: Observed human judgement of interest does not correlate with the computed in-

terest value, as far as the different opponents are concerned.

H2: Observed human judgement of interest does not correlate with performance during

play.



148 Chapter 7. Human Survey

7.2.2 Test Statistic

Given the interest metric (2.5) and two sets of games A and B, it can be determined that

“game A is more (or less) interesting than game B”. In answer to the same question,

a human subject can indicate that either IA > IB or IA < IB. In order to measure the

degree of agreement between the human judgement of interest and the interest value

given by (2.5), we calculate the correlation coefficients

c(−→z ) =
N

∑
i=1

zi

N
(7.1)

where N is the number of incidents to correlate and

−→z =

{
1, if subject agrees with (2.5);

−1, if subject disagrees with (2.5).
(7.2)

The test statistic (7.1) is used to assess the truth of all three null hypotheses. However,

for the null hypothesis H2, the correlation coefficients c(
−→
z′ ) are computed where z′

values are obtained from (7.3).

−→
z′ =

{
1, if subject chooses according to performance;

−1, if subject does not choose according to performance.
(7.3)

7.2.3 P-values

The p-value for this experiment is the probability P(C ≥ c) that a correlation coeffi-

cient C at least as significant as the one observed c, would be obtained assuming that

the null hypothesis was true. Thus, the smaller this probability, the stronger the evi-

dence against the null hypothesis. The distribution used for obtaining the correlation

coefficient probabilities is the Binomial (7.4).

P(n) =
N!

n!(N−n)!
pn(1− p)(N−n) (7.4)

where p = 1/2 and n = [N(c+1)]/2. For N→ ∞ the Binomial distributed correlation

coefficient can be approximated by the Normal distribution (7.5).

c ; N (Np,
√

Np(1− p)) (7.5)
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For the experiments presented here we use the Normal distribution approximation for

N > 90.

7.2.4 Significance

Generally if the p-value of an experiment is less than or equal to a significance value

ε (P(C ≥ c)≤ ε) the observed effect is statistically significant and the null hypothesis

is ruled out. For the experiments presented here, if P(C ≥ c) ≤ 1% then the observed

effect is “highly significant”, if 1% < P(C ≥ c)≤ 5% then the observed effect is “sig-

nificant” and if P(C ≥ c) > 5% then the observed effect is “not significant”.

7.3 Statistical Analysis

As noted in Chapter 2, this work concentrates on the characters’ behavioral aspect

of interesting games. More specifically, it focuses on the opponent’s rather than the

graphics’ or the sound’s impact on the player’s entertainment. Apart from the oppo-

nent, there are two additional factors that may affect the interest of a computer game,

that are examined in this section. These are the player-subject type (degree of a priori

game liking) and the order of play.

7.3.1 Opponent

Each entity in Table 7.2 represents a subject’s answer to the question B.1, equivalent

to “Is Ii > I j?”, where i, j the row and column number respectively. Given the inter-

est values of the five opponents (see Table 7.1), ‘O’ and ‘X’ stand respectively for

the subject’s agreement and disagreement with this ranking (in other words, O and

X characters are selected for visual purposes to symbolize the respective z values —

see (7.2)). As stressed before, given thirty subjects, there are nine incidents for each

pair of opponents which are represented in a 3×3 matrix. Rows within this matrix de-

note the type of the subject that answered the specific question. In particular, traversing

from the top to the bottom row of the matrix, the liking alters from ‘Like’ to ‘Neutral’

and finally to ‘Don’t Like’.
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Is IRow > IColumn?

1 2 3 4 5

O O X O O X O O X O O O

1 O O X O O O O O X O O X

O O O O O O O O O O X X

X X X O O O O O X O O O

2 X X X O O X O O O O O X

O X X O O O O O X O O X

O X X O O O O X X O O X

3 O O X O O X O X X O O O

O X X O O X O O X O O X

O O X O O O X X X O O X

4 O O X O O X X X X O O X

O X X O O X O X X O O O

O O X O O O O O O O O O

5 O O O O O X O O X O O O

O O O O O O O O X O O O

Table 7.2: Agreement between the subject’s judgement of interest and the interest met-

ric — O: z = 1, X: z =−1.

Table 7.3 presents the correlation coefficients and their respective P(C ≥ c) values for

each one of the ten combinations of opponent pairs (N = 18) and in total (N = 180).

There is an obvious disagreement between the interest metric and the human’s notion

of interest in opponent pairs 1–2 and 3–4. Even though humans seem to agree with the

interest metric in the pairs 1–3 and 1–4, the obtained p-values reveal statistically in-

significant results. For the rest of the pairs we experience statistically highly significant

(i.e. 2–3, 2–5, 4–5) and significant (i.e. 1–5, 2–4, 3–5) matching to observed human

judgement. Finally, the total agreement correlation coefficient (c = 0.3888) as well

as its p-value (P(C ≥ c) = 1.31 · 10−7) demonstrate a statistically highly significant

effect that rules out the null hypothesis H1. Thus, it appears that the observed human

judgement of interest correlates with the computed interest value, as far as the differ-

ent opponents are concerned. Moreover, the obtained p-values presented in Table 7.3

illustrate that the sample size of thirty subjects is adequate to produce statistically sig-

nificant observed effects.
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Pair c P(C ≥ c)

1–2 −0.1111 0.7596

1–3 0.3333 0.1189

1–4 0.3333 0.1189

1–5 0.5555 0.0154

2–3 0.6666 0.0037

2–4 0.5555 0.0154

2–5 0.7777 0.0006

3–4 −0.4444 0.9845

3–5 0.5555 0.0154

4–5 0.6666 0.0037

Total 0.3888 1.31 ·10−7

Table 7.3: Interest metric - Subject judgement correlation coefficients c and P(C ≥ c)

values for all pairs of opponents and in total.

Opponent PacMan Type Iu I Il

CB 0.3307 0.3026 0.2447

1 RB 0.4397 0.4147 0.3931

ADV 0.2043 0.1793 0.1494

2 ADV 0.3673 0.3158 0.2670

Table 7.4: Generated interest of opponent 1 against all PacMan types — I and 95%

confidence interval (Iu, Il) values.

7.3.1.1 Opponent 1

Further investigation of the interest value generated by opponent 1 showed high de-

pendence on the player type. More specifically, when opponent 1 plays against the

CB PacMan and the RB PacMan, it generates interest which is respectively statisti-

cally not different and significantly higher than the interest generated by opponent 2

(see Table 7.4). Opponent 1 constitutes a particular case since no such change in the

opponent ranking (i.e. ranked by interest) occurs for any other of the four remaining

opponents.

Given the ranking instability of opponent 1, we recalculate the z values as if 1) I1 > I2
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Pair c P(C ≥ c)

(1,2)–3 0.5000 0.0019

(1,2)–4 0.4444 0.0056

(1,2)–5 0.6667 3.5 ·10−5

3–4 −0.4444 0.9845

3–5 0.5555 0.0154

4–5 0.6666 0.0037

Total 0.4444 1.17 ·10−8

Table 7.5: Interest metric - Subject judgement correlation coefficients c and P(C ≥ c)

values when I1 = I2 is assumed.

and 2) I1 = I2 and proceed as above. In the first case, the z values of the [1–2] pair

swap their sign and the obtained p-values for this pair and in total are 0.4072 and 2.57 ·
10−8 respectively. For the latter case, the z values of the [1–2] pair are not taken into

consideration and the two first (triplets of) rows and columns of Table 7.2 are merged

into one by adding up their z values. The obtained p-values for the remaining six pairs

and in total are presented in Table 7.5. For both cases, changes in the opponent 1

ranking increase the significance of the observed effects.

7.3.2 Subject Type

In this section we present how the subject’s type, which corresponds to the subject’s

“liking of the Pac-Man game”, correlates with the subject’s judgement of interest. To

this end we compute the correlation coefficients c and their respective probabilities

P(C ≥ c) for each subject type (60 incidents for each type).

As seen from Table 7.6, all three types of subject’s observed judgement of interest

collectively demonstrate a highly significant agreement (P < 1%) with the interest

metric. However, it appears that there is no significant difference between the three

different types and, therefore, no secure conclusions about the subject’s type effect on

its notion of interest can be arisen.
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Subject Type c σ2
c P(C ≥ c)

Like 0.4000 0.0691 0.0013

Neutral 0.3333 0.1234 0.0067

Don’t like 0.4333 0.1493 0.0005

Total 0.3888 0.1079 1.31 ·10−7

Table 7.6: Interest metric - Subject judgement correlation coefficients c, P(C≥ c) values

of the three different types of subject and correlation variance (σ2
c) over the 10 subjects

of each type.

I1 > I2 I1 = I2

Subject Type c P(C ≥ c) c P(C ≥ c)

Like 0.4666 0.0001 0.4814 0.0002

Neutral 0.4000 0.0013 0.4074 0.0019

Don’t like 0.3666 0.0031 0.4444 0.0007

Total 0.4111 2.57 ·10−8 0.4444 1.17 ·10−8

Table 7.7: Interest metric - Subject judgement correlation coefficients c and P(C ≥ c)

values of the three different types of subject when I1 > I2 and I1 = I2.

7.3.2.1 Opponent 1

By following the procedure described in section 7.3.1.1 for the particular case of oppo-

nent 1 we also come up with highly significant values for all three subject types and no

significant difference between them for both cases of I1 > I2 and I1 = I2 (see Table 7.7).

7.3.3 Order of Play

In order to check whether the order of playing Pac-Man games affects the human

judgement of interest, we hypothesize that there is no order effect and proceed as

follows. For each pair of opponents, that a subject played in both orders, we count a)

the times K that the subject agrees with the interest value only in the first pair played

and b) the times J that the subject agrees with the interest value only in the latter pair

played. In the case where the subject agrees or disagrees with the interest value in both

pairs played, we take no action. To this end, we compute the z′′ value (7.6) for each
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Pair z′′ P(Z ≥ |z′′|)
1–2 0.2222 0.2403

1–3 0.3333 0.1189

1–4 −0.2222 0.2403

1–5 −0.1111 0.4072

2–3 0.1111 0.4072

2–4 0.1111 0.4072

2–5 0.0000 0.5927

3–4 −0.1111 0.4072

3–5 −0.3333 0.1189

4–5 0.2222 0.2403

Total 0.0222 0.4818

Table 7.8: Order of play test statistic z′′ and P(Z≥ |z′′|) values for all pairs of opponents.

pair of opponents (N = 9) and in total (N = 90).

z′′(K,J) = (K− J)/N (7.6)

The greater the absolute value of z′′(K,J) the more the order of play tends to affect the

subjects’ judgement of interest. This value defines the test statistic used to assess the

truth of the hypothesis that there is no order effect. The obtained z′′ value is Trinomial

distributed according to (7.7).

P(K,J) =
N!

K!J!(N− J−K)!
pKqJ(1− p−q)(N−J−K) (7.7)

where p = q = 0.25, giving equal probabilities to the K (agree only in the first pair

played) and J (disagree only in the first pair played) events and a probability of (1−
p− q) = 0.5 to the event of agreeing or disagreeing in both pairs played. P-values

P(Z ≥ |z′′|) for each pair and in total are obtained by using (7.7) and presented, along

with their respective z′′ values, in Table 7.8.

As seen from Table 7.8 there are no statistically significant effects in any pair of op-

ponents or in total. Therefore, the null hypothesis is not rejected and it seems that the

order of play does not affect the human judgement of interest.
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Pair z′′ P(Z ≥ |z′′|)
(1,2)–3 0.2222 0.1214

(1,2)–4 −0.0555 0.4339

(1,2)–5 −0.0555 0.4339

3–4 −0.1111 0.4072

3–5 −0.3333 0.1189

4–5 0.2222 0.2403

Total 0.0 0.5312

Table 7.9: Order of play test statistic z′′ and P(Z ≥ |z′′|) values for all pairs of opponents

when I1 = I2 is assumed — N = 36 for the pairs (1,2)–3, (1,2)–4 and (1,2)–5.

7.3.3.1 Opponent 1

Order of play is not affected by the particular behavior of opponent 1 either. That is, if

I1 > I2 there is no difference in the obtained P(Z ≥ |z′′|) values and if I1 = I2 we also

come up with no statistically significant effects in any pair of opponents or in total (i.e.

P(Z ≥ |z′′|) = 0.5312, N = 81). For a detailed reference, see Table 7.9.

7.3.4 On-Line Learning

In this section we analyze the observed effects from the on-line learning experiment

(Part C) presented in Section 7.1.3. In Part C, subjects play 2 sets of 50 games in

total. The bootstrapping procedure presented in Appendix A, with N = 25, is used

to determine the Ghosts’ average interest values against each human subject as well

as its 95% confidence interval. Interest values calculated and presented in Table 7.10

show that in 18 out of 30 cases the human player managed to produce more interesting

games by the use of the on-line learning procedure. However, it is not clear whether

OLL used against humans cause the interest value to proliferate. Thus, it seems that

50 OLL games (testing period in Part A) are not adequate for the OLL mechanism to

cause a significant difference in the interest value.

Choosing an on-line learning period (or else testing period) of 50 games is an empirical

way of balancing efficiency and experimental time. The duration of the testing period

lasted 20 minutes on average whereas the whole experiment exceeded 65 minutes in
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OLL No OLL

Subject Iu Il I Iu Il I

1 0.721 0.575 0.671 0.745 0.393 0.630

2 0.753 0.588 0.669 0.767 0.593 0.703

3 0.733 0.614 0.669 0.755 0.607 0.694

4 0.805 0.672 0.735 0.792 0.520 0.677

5 0.802 0.644 0.711 0.720 0.582 0.665

6 0.763 0.598 0.676 0.733 0.531 0.647

7 0.725 0.638 0.689 0.698 0.559 0.644

8 0.751 0.566 0.673 0.804 0.603 0.720

9 0.746 0.568 0.681 0.751 0.630 0.698

10 0.780 0.531 0.670 0.780 0.616 0.715

11 0.692 0.469 0.619 0.750 0.576 0.695

12 0.802 0.678 0.748 0.865 0.700 0.778

13 0.806 0.530 0.662 0.716 0.532 0.638

14 0.799 0.589 0.715 0.805 0.678 0.738

15 0.776 0.636 0.707 0.782 0.656 0.706

16 0.812 0.658 0.749 0.806 0.689 0.745

17 0.784 0.601 0.706 0.743 0.609 0.679

18 0.796 0.595 0.708 0.740 0.567 0.655

19 0.780 0.612 0.702 0.718 0.626 0.670

20 0.749 0.666 0.717 0.759 0.646 0.716

21 0.753 0.625 0.684 0.757 0.659 0.706

22 0.790 0.660 0.728 0.831 0.625 0.733

23 0.774 0.640 0.709 0.762 0.663 0.700

24 0.752 0.599 0.668 0.754 0.612 0.681

25 0.741 0.635 0.696 0.705 0.589 0.660

26 0.825 0.697 0.770 0.781 0.681 0.728

27 0.799 0.622 0.732 0.782 0.640 0.724

28 0.786 0.630 0.719 0.755 0.570 0.693

29 0.745 0.607 0.690 0.748 0.606 0.705

30 0.793 0.673 0.738 0.782 0.591 0.678

E{} 0.771 0.614 0.700 0.763 0.605 0.694

Table 7.10: Interest I and 95% confidence interval (Iu, Il) values against all 30 human

players ranked by subject type. I.e. 1–10: Like, 11–20: Neutral, 21–30: Don’t Like.

many cases, which is a great amount of time for a human to be constantly concentrated.

Fixed strategy PacMan player results (see Chapter 6) showed that more on-line learn-

ing games are required for the interest value to change significantly, which apparently
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Liking c P(C ≥ c) z′′ P(Z ≥ |z′′|)
Like 0.2 0.2517 0.0 0.5881

Neutral 0.4 0.0577 0.0 0.5881

Don’t like −0.1 0.7483 0.3 0.1315

Total 0.1666 0.1225 0.1 0.2594

Table 7.11: On-line learning against humans: interest metric agreement c and order of

play z′′ test statistics and their respective p-values sorted by subject type.

seems to be the case for human players as well.

By calculating the correlation coefficient (7.1) between the computed interest values

(presented in Table 7.10) and the human judgment of interest obtained by question C.1,

we get a value of c = 0.1666 with corresponding probability of P(C ≥ c) = 0.1225 for

N = 60. This does not constitute a statistically significant effect and suggests that

humans were not able to tell the difference between opponent 4 and the opponents

trained on-line at the end of the testing period.

Moreover, in order to check how the subject’s type affects its judgement when on-line

learning runs in the background, we compute the correlation coefficients (see (7.1)) and

their corresponding p-values for each of the three types of subject (N = 20). Results

presented in Table 7.11 do not display a statistically significant effect from any of the

three subject types.

Finally, in order to examine whether the order of playing Pac-Man, with and without

on-line learning, affects the human judgement of interest we hypothesize that there is

no order effect and proceed as in Section 7.3.3. Thus, we compute the z′′ value (7.6)

for each pair of opponents for all subjects (N = 30). P-values P(Z ≥ |z′′|) are obtained

by using (7.7) and presented, along with their respective z′′ values, in Table 7.11. As

in Section 7.3.3, results do not show any statistically significant effect and therefore it

seems that the order of play, where on-line learning is switched on and off sequentially,

does not affect human’s judgement of interest.
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Figure 7.1: Scatter plot of c(z) and c(z′) values for each subject and their statistical

correlation’s line. The circular marker’s radius is increased in respect to the number of

occurrences (i.e. 1, 2 or 3).

7.3.5 Performance Factor

As noted before, each subject plays eight pairs of sets of games in total during this

experiment (six in Part B and two in Part C), and each set is assigned a score that

corresponds to the performance of the subject. More specifically, the score is directly

proportional to the number of pellets eaten by the player (see Table E.4 in Appendix E).

Given the subjects’ scores and the observed interest judgement obtained from questions

B.1 and C.1, the z′ values are computed as follows. If the subject chooses the set of

games with the higher score obtained as being more interesting then the z′ value is 1.

Accordingly, the z′ value is -1 if the subject chooses the set of games with the lower

score obtained as being more interesting. By computing (7.1) for all thirty subjects

(N = 8 · 30 = 240) we get c(
−→
z′ ) = −0.05 and P(C ≥ −0.05) = 0.7994 which con-

stitutes the effect as statistically not significant. Therefore, the null hypothesis H2 is

not rejected and it seems that observed human judgement of interest does not correlate

with performance during play.

However, before abandoning the hypothesis of the performance impact on human

judgement totally, we attempt to draw the relation between the two from another per-

spective. Figure 7.1 illustrates a scatter plot of the correlation coefficients between the



7.3. Statistical Analysis 159

performance and the subject’s judgement of interest against the correlation coefficients

between the interest metric and the subject’s judgement of interest (see Section 7.3.1)

for each subject. In addition, the line f (x) = −0.5864x (see (7.8)) of the statistical

correlation between the two samples of data is plotted, where

f (x) = cor(c(−→z ),c(
−→
z′ )) · x (7.8)

and

cor(c(−→z ),c(
−→
z′ )) =

cov(c(−→z ),c(
−→
z′ ))

(σc(−→z )σc(
−→
z′ )

)
(7.9)

If we examine Figure 7.1 in detail as well as answers in question C.2 (see Table E.2 in

Appendix E), there seems to be a classification of the subjects into three groups. These

are

• Subjects that judge interest according to their performance (c(z′) ≥ 0.5), size:

6 out of 30 subjects. As far as their agreement with the interest metric is con-

cerned, it is not clear and their observed judgement portrays a rather random

behavior (0.0≤ c(z)≤ 0.25). Answers obtained from question C.2 are very ex-

plicit. Scoring performance and randomness are the major criteria in selecting

the most interesting set between two. Subjects of this category are denoted by

the numbers 5, 9, 10, 13, 14 and 22 in Table E.2.

• Subjects that do not judge interest according to their performance (c(z′) ≤ 0.0)

and whose interest judgement correlates with the interest metric (c(z) ≥ 0.5),

size: 12 out of 30 subjects. This group’s answers to C.2 are mainly focused on

the opponent’s contribution to the player’s satisfaction. Subjects of this category

are denoted by the numbers 2, 4, 7, 8, 11, 16, 18 and 26–30 in Table E.2.

• Subjects that do not judge interest according to their performance (−0.5 < c(z′)<

0.5) and whose interest judgement does not correlate with the interest metric

(c(z) < 0.5), size: 12 out of 30 subjects. Subjects of this group seem to con-

centrate on the opponent behavior as well as on a variety of Pac-Man aspects

different or implicity syngeneic to the Ghosts’ behavior, as acquired from an-

swers on the C.2 question. These aspects include performance, game control

ability, graphics, difficulty and duration of game. Subjects of this category are

denoted by the numbers 1, 3, 6, 12, 15, 17, 19–21 and 23–25 in Table E.2.
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The computed statistical correlation value and Figure 7.1 provide evidence that hu-

man judgement of interest, that agrees with the interest metric, is not correlated with

the human judgement of interest based on performance. In other words, it seems that

subjects agreeing with the interest metric do not judge interest by their performance.

Or else, subjects disagreeing with the interest metric seem to judge interest by their

score and/or other criteria such as game controls and graphics. Finally, as seen from

Table E.2 subjects appear to agree on the conceptual definition of the three interest

criteria for predator/prey games which are namely challenge, diversity in Ghosts’ be-

havior and spatial diversity. Moreover, the majority of the subjects also identifies these

as crucial factors for a good Pac-Man game before playing it — see Table E.1 in Ap-

pendix E.

7.3.5.1 Opponent 1

For the performance factor we also examine the case of I1 > I2. The case of I1 = I2 is

not investigated since the 1–2 pair is not taken into consideration and z′ values cannot

be computed for subjects that played that particular pair of sets. Thus, following the

same procedure as in section 7.3.5 and assuming that I1 > I2, we get c(
−→
z′ ) =−0.0667

and P(C ≥−0.0667) = 0.8639 which constitute performance as a non significant fac-

tor for the human judgement of interest. In addition, experiments on this assumption

reveal a slightly higher statistical correlation value cor(c(−→z ),c(
−→
z′ )) = −0.5341, but

conceptually the same effects and subject classification groups as the above-mentioned.

7.4 Conclusions

In this chapter we managed to confirm our hypothesis that the interest value computed

by (2.5) is consistent with the judgement of human players by testing the game against

human subjects. In fact, human player’s notion of interest of the Pac-Man game seems

to correlate highly with the captured interest value. In addition, it is revealed that

both the subject type (i.e. experience with the game) and the order of playing the

game do not affect their judgement. Moreover, given each subject’s game score, it was

demonstrated that humans agreeing with the interest metric do not judge interest by

their performance; humans disagreeing with the interest metric judge interest by their

score or based on other personal criteria like game control and graphics.
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As far as on-line learning against human players is concerned, results show that more

on-line learning games are required for the interest value to change significantly and

for humans to notice some sort of change in the interest of the game. More com-

puting power, through on-line gaming servers, may prove an efficient solution to this

problem. This way, thousands of mutants could be evaluated in parallel over longer

periods — which would provide better behavior estimates — and moreover the fre-

quency of evolutionary iterations could be increased. Using this approach we accel-

erate the learning where appropriate and minimize the probability of unwanted, un-

realistic, non-intelligent generated behaviors due to mutation. It is a fact that a single

unrealistic emerged AI behavior is sufficient to impair the ‘intelligent’ image any adap-

tive approach is attempting to present and furthermore to diminish the satisfaction of

the player (Champandard, 2004; Funge, 2004).

The main assumption about the Pac-Man game when the interest metric was formu-

lated is that players overall have a basic level of gaming skills for the particular game.

In that sense, the computer-guided players used are models of some well behaved, av-

erage skill players based on similar motion patterns that do not leave much space for

significant differences in their performance and the OLL experiment best generated

interest values. Humans players that tested this game cross-validate this assumption

since their generated interest values against the same opponent were not significantly

different from each other.

The next chapter presents a more sophisticated on-line learning mechanism developed

for overcoming the long convergence time of OLL. This mechanism embeds a player

modeling technique for faster adaptation while learning in real-time.





Chapter 8

The Player

“I don’t have any problem with any of the ghosts. Remember, I’m perfect.”

Billy Mitchell, Pac-Man world champion.

The work presented in this thesis is mainly concentrated on the opponents’ contribution

to generating entertaining predator/prey computer games. However, the player through

his/her playing skills and the real-time interaction with the opponent may also play an

important role in obtaining more enjoyable games. For instance, we saw how diverse

playing styles may cause big variations in entertainment in the Dead End game. Thus,

beyond the opponent, the first additional entertainment factor to explore is the player

per se.

The first step in the player aspect of entertainment is presented comprehensively in this

chapter, where in Section 8.1 the player’s impact on his/her entertainment is investi-

gated through a model of his/her real-time actions1. In particular, players are classified

according to their playing style and a form of linkage between the player type and the

on-line learning mechanism is activated. We show that such a linkage leads to gener-

ation of more entertaining games for the player in less time. Moreover, the proposed

approach demonstrates high adaptability into dynamical playing strategies as well as

reliability and justifiability to the game user.

We believe that this human-game interaction should be expanded through innovative

means so that it can cover important features of human players. Future steps on the

1This work was published in collaboration with Dr. Maragoudakis (Yannakakis and Maragoudakis,
2005). His contributions include the methodology and practice of the Bayesian Network training.
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player aspect which include his/her emotional and cognitive perspective are presented

in Section 8.2. Given that game graphics and sound systems have reached their limi-

tations and nowadays slow steps are made towards their improvement (Champandard,

2004) — which can have an impact on player’s entertainment — the exploitation of

a potential relation between the player’s style, emotional state and the game’s gener-

ated entertainment will give further insights for the development of more advanced and

enjoyable computer games.

8.1 Player Modeling

In the work presented in this section, we attempt to study the player’s contribution to

the emergence of entertaining games. We do that by investigating a Player Modeling

(PM) mechanism’s impact on the game’s interest when it is combined with the pro-

posed on-line learning procedure. More specifically, we use Bayesian Networks (BN),

trained on computer-guided player data, as a tool for inferring appropriate parameter

values for the chosen on-line learning mechanism. On-line learning is based on the

idea of opponents that learn while they are playing against the player which, as already

seen, leads to games of high interest. However, the parameters ev and pm strongly in-

fluence the performance of the on-line learning mechanism. Naive selection of these

values may result in disruptive phenomena on the opponents’ behavior through the

mutation operator. Section 8.1.4 presents a Bayesian Network based mechanism de-

signed to lead to more careful OLL parameter value selection and furthermore to an

increasingly interesting game. It also stresses the correlation of the player’s actions

with the ev and pm value selection.

For the experiments presented here the Pac-Man game is used as a test-bed. In partic-

ular, all methods are tested in the Normal stage (see Figure 6.1(c)) as being the stage

of medium complexity among the stages used. That is because, at this point in the

thesis, we are primarily interested on player modeling’s impact rather than the game’s

complexity (for experiments on the OLL method’s effectiveness versus the Pac-Man

game’s complexity, see Chapter 6)

Results obtained show that PM positively affects the OLL mechanism to generate more

entertaining games for the player. In addition, this PM-OLL combination, in compari-

son to OLL alone, demonstrates faster adaptation to challenging scenarios of frequent
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changing playing strategies.

8.1.1 Player Modeling in Computer Games

Player modeling in computer games and its beneficial outcomes have recently attracted

the interest of a small but growing community of researchers and game developers.

Houlette’s (2004) and Charles’ and Black’s (2004) work on dynamic player modeling

and its adaptive abilities in video games constitute representative examples of the field.

According to Houlette (2004), the primary reason why player modeling is necessary in

computer games is in order to recognize the type of player and allow the game to adapt

to the needs of the player. Many researchers have recently applied such probabilistic

network techniques for player modeling on card (Korb et al., 1999) or board games

((Vomlel, 2004) among others) in order to obtain adaptive opponent behaviors — see

also (Hy et al., 2004) for a bayesian programming application for more efficient first-

person shooter (FPS) characters.

8.1.2 Bayesian Networks

A BN consists of a qualitative and quantitative portion, namely its structure and its con-

ditional probability distributions respectively. Given a set of attributes A = {A1, . . . ,Ak},

where each variable Ai could take values from a finite set, a Bayesian Network de-

scribes the probability distribution over this set of variables. We use capital letters as

X ,Y to denote variables and lower case as x,y to denote values taken by these vari-

ables. Formally, a BN is an annotated Directed Acyclic Graph (DAG) that encodes a

joint probability distribution. We denote a network B as a pair B =< S,P > (Pearl,

1988) where S is a DAG whose nodes correspond to the attributes of A. P refers

to the set of probability distributions that quantifies the network. S embeds the fol-

lowing conditional independence assumption: Each variable Ai is independent of its

non-descendants given its parent nodes. P includes information about the probability

distribution of a value ai of variable Ai, given the values of its immediate predecessors

in the graph, which are also called “parents”. This probability distribution is stored in a

table, called the conditional probability table. The unique joint probability distribution

over A that a network B describes can be computed using 8.1.
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pB(A1, . . . ,Ak) =
k

∏
i=1

p(Ai|parents(Ai)) (8.1)

8.1.2.1 BN for Classification

Classification is a fundamental concept in the fields of data mining and pattern recog-

nition that requires the construction of a function that assigns a target or class label to

a given example, described by a set of attributes. This function is referred to as a “clas-

sifier”. Given a set of pre-classified instances, numerous machine learning algorithms

such as neural networks, decision trees, rules and graphical models, attempt to induce

a classifier, able to generalize over the training data.

While Bayesian graphical models were known for being a powerful mechanism for

knowledge representation and reasoning under conditions of uncertainty, it was only

after the introduction of the so-called Naı̈ve Bayesian classifier (Duda and Hart, 1973)

that they were regarded as classifiers, with a prediction performance similar to state-

of-the-art classifiers. The Naı̈ve Bayesian classifier performs inference by applying

Bayes rule to compute the posterior probability of a class C, given a particular vector of

input variables Ai. It then outputs the class whose posterior probability is the highest.

Regarding its computational cost, inference in Naı̈ve Bayes is feasible, due to two

assumptions, yet often unrealistic for real world applications:

• All the attributes Ai are conditionally independent of each other, given the clas-

sification variable.

• All other attributes are directly dependent on the class variable.

Despite the fact that Naı̈ve Bayes performs well, it is obviously counterintuitive to

ignore the correlation of the variables in some domains.

8.1.2.2 Learning General Bayesian Networks from Data

There are two practices for determining the structure of a Bayesian Network: Either

manually, by a human domain expert who should provide the interconnection of the

variables, or having the structure determined automatically by learning from a set of

training examples. Regarding the learning of the conditional probability table of a net-

work, the same principle applies. The parameters of the table could either be provided
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manually by an expert or automatically through a learning procedure. The task of

manually supplying the parameters is a laborious one. Besides, in some applications

it is simply infeasible for a human expert to know a priori both the structure and the

conditional probability distributions.

8.1.3 Bayesian Networks for Player Modeling

Bayesian Networks (Pearl, 1988) provide a comprehensive means for effective repre-

sentation of independent assumptions. Moreover, they can provide a mechanism for

effective inference under conditions of uncertainty. More specifically, they have been

extensively used in a variety of fields such as pattern recognition (Mitchell, 1997), nat-

ural language processing (Maragoudakis et al., 2004), decision support (Horvitz and

Barry, 1995), etc. In the field of player modeling, BN can cope with the significant

issue of uncertainty on the model of the player, allowing for inference on the class

variable given a subset of the input features, rather than a complete representation of

them. Such a feature is significant in domains where modeling of a human is required.

The ability of BN to adapt to new domain characteristics is also beneficial for PM

applications since the belief in a characteristic is prone to change from time to time,

depending on the condition of the game.

For PM in our test-bed we used the Bayesian Network Augmented Naı̈ve Bayes (BAN),

by Cheng and Greiner (2001). In a BAN (see Figure 8.1), all attribute nodes are chil-

dren of the class node (C) and they form a general BN. This approach combines the

ability of general BN to encode the interdependencies of the input variables with the

classification bias posed by the BAN structure, a factor that ensures enhanced perfor-

mance on predicting the class variable over the general BN approach. Section 8.1.4

presents the application of PM combined with the OLL mechanism.

8.1.4 PM-OLL Mechanism

As previously mentioned, the primary goal of this work is to investigate whether player

modeling can contribute to the satisfaction of the player. Towards this aim we combine

PM, by the use of BN, with the OLL algorithm to form the PM-OLL mechanism

presented here. The two mechanisms’ interaction flows through the OLL parameters

which are set by inferences from the PM mechanism (see Figure 8.2).
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Figure 8.1: The BAN structure.

For the present work, in order to construct a model of the player, we have considered

the following features obtained from an on-line learning play of 10 games:

1. Score (i.e. total number of pellets eaten).

2. Time played in simulation steps.

3. Grid-cell visits entropy of the player — this metric corresponds to the player’s

spatial diversity.

4. Initial interest of the game.

5. Relative interest difference after 10 games are played.

6. Evaluation period ep in simulation steps.

7. Probability of mutation pm.

Our objective, given that we desire maximum interest augmentation in the game, is

to find the optimal values for the features pm and ep, given the player input variables

(i.e. score, time played, entropy, initial interest). In other words, by using PM-OLL we

attempt to investigate the correlation between a player’s actions and appropriate values

for the OLL parameters able to increase the interest of the game.

The previously described BN (see Section 8.1.3), which embodies the PM mechanism,

is trained off-line on feature instances. The total number of training data is 2200, ob-
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Figure 8.2: The PM-OLL mechanism.

tained by multiple on-line learning simulation runs of variant opponents against all

three different hand-crafted PacMan types (see Chapter 6 for more details) within a

fixed set of ev and pm values. These sets are empirically selected to be pm ∈ {0.005,

0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.5, 1.0} and ep ∈ {2, 5, 10, 25, 50} since we believe

that these correspond to representative and reasonable values of the two OLL parame-

ters’ intervals.

In a more mathematical manner, the aim is to maximize the probabilities

P(ep|Score = value1, . . . ,VARN−1 = valueN, Interest Change = max) (8.2)

and

P(pm|Score = value1, . . . ,VARN−1 = valueN, Interest Change = max) (8.3)

8.1.5 Results

8.1.5.1 BN Training

The problem of finding the most probable network structure from data is known to be

NP-hard (Mitchell, 1997) meaning that there are 2
n(n−1)

2 possible networks that could

describe n different attributes. For that reason, we have utilized the Bayesian scoring
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function (Heckerman et al., 1995) which provides a metric of relation among two can-

didate networks. Regarding the search among the plethora of candidate networks, we

used the following approach in order to achieve a computationally effective strategy:

Initially, the most probable forest-structured network is constructed. A greedy search

is performed by adding, deleting or reversing the arcs randomly. If a change results

in a more probable network it is accepted, otherwise cancelled. Throughout this pro-

cess, a repository of networks with high probability is maintained. When the search

reaches a local maximum, a network is randomly selected from the repository and the

search process is activated again. The network complexity is controlled during the

search, so that a limited number of arcs is allowed in the beginning and, as the process

progresses, more and more arcs are approved. Upon completion of the BN structure

learning mechanism (see Figure 8.3), the Expectation-Maximization (EM) algorithm

(Dempster et al., 1977) is used in order to estimate the parameters of the conditional

probability table.

8.1.5.2 Adaptability Tests

As already presented in Chapter 6, in order to effectively test a learning mechanism’s

ability to adapt to a changing environment (i.e. change of player strategy), the follow-

ing experiment is proposed. Beginning from the five initial behaviors of significantly

different interest values we used in Chapter 7 (see Table 7.1) we apply the exam-

ined mechanism against a specific PacMan type. During the on-line process we keep

changing the type of player every 20 games played. The process stops after 60 games

when all three types of player have played the game. Since there are three types of

fixed strategy players, the total number of different such experiments is 30 (6 different

player type sequences times 5 different initial behaviors).

An alternative fashion of investigating adaptability is to let each group of Ghosts play

against randomly chosen opponents for a single longer period (e.g. 200 games). The

random selection, which occurs every 20 games, is made via a uniform distribution

that assigns equal probabilities to each PacMan type. Both random and fixed PacMan

selection adaptability tests (scenarios) illustrate the overall picture of the mechanism’s

behavior respectively against a random and any fixed sequence of the computer-guided

PacMan types.
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(a) pm

(b) ep

Figure 8.3: The BAN trained structures for pm and ep.

8.1.5.3 OLL Parameter Selection

In Chapter 6 and Chapter 7, we empirically chose the OLL parameters to be pm = 0.02

and ep = 25. Experiments with these parameter values demonstrated high robustness
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Figure 8.4: Interest values of all different pairs of (pm,ep) parameters. The dark gray

bar indicates the (0.02,25) pair of values.

and adaptability of the OLL mechanism. In the work presented here we will attempt

to conduct a sensitivity analysis on these parameters to test our parameter selection.

By picking all pairs (pm,ep) from the fixed sets of parameter values and applying

the adaptability test of a single fixed PacMan selection scenario (see Section 8.1.5.2)

for the OLL, for each one of the parameter pairs, we obtain a significant number of

parameter value pairs (i.e. 45) to study. For each pair of parameter values, the average

interest and confidence interval values achieved over the 60 games played in total are

presented in Figure 8.4.

As seen from Figure 8.4, the empirically selected combination demonstrates the high-

est interest value (I = 0.7168) amongst all 45 tested. In addition, it presents the lowest

variance (2 ·10−4) of interest among the other 10 parameter pair values that generated

non-significantly different interest values during the 60 game period of testing. Given

these statistics, it appears that the (0.02,25) values constitute the most appropriate

pair of fixed OLL parameters and, therefore, are selected for all experiments presented

here.
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Figure 8.5: Adaptability tests with fixed PacMan selection: Average interest values and

interest intervals generated by OLL and PM-OLL for all 30 different game scenarios.

8.1.5.4 Comparative Study

To test the PM impact on the OLL mechanism’s ability to generate games of high inter-

est we first apply the adaptability test of fixed PacMan selection (see Section 8.1.5.2)

for the OLL alone (fixed parameter values — pm = 0.02,ep = 25) and for the PM-OLL

approach. For the latter, player modeling occurs for every 10 games played inferring

values for pm and ep.

Results obtained (see Figure 8.5) demonstrate that the PM-OLL mechanism is able

to generate more interesting games than the OLL mechanism in 23 out of 30 playing

scenarios examined; in 12 of these cases the difference is statistically significant. Given

this comparative study, it appears that the player modeling impact on the generation of

interesting games is positive and that the PM-OLL mechanism is independent of the

sequence of the changing PacMan type and the initial opponent.

Alternatively, the adaptability test with random PacMan selection is applied for 200

games beginning each of the five different Ghost behaviors. We believe that 200
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(a) Opponent 1

(b) Opponent 2
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(c) Opponent 3

(d) Opponent 4
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(e) Opponent 5

Figure 8.6: Adaptability tests with random PacMan selection.

games are adequate to display the non-deterministic effect of the PacMan selection in

the mechanisms examined, since when fixed PacMan selection occurs on-line learning

adaptive behaviors are revealed within 60 games. Figure 8.6 illustrates the evolution

of interest throughout the games for both OLL and PM-OLL mechanisms. Table 8.1

shows the average interest value generated from these mechanisms during the experi-

ments. As in the experiments with fixed PacMan selection, the PM-OLL mechanism

demonstrates an adaptive behavior which generates interesting games faster and more

efficiently than OLL alone. In two scenarios (i.e. initial opponent 2 and 3) the gener-

ated average interest value of PM-OLL is significantly higher than the respective OLL

value. For the other three scenarios the difference in insignificant (Table 8.1). Overall,

the comparative study results provide evidence for the PM-OLL mechanism’s ability

to quickly adapt to new playing strategies as well as its efficiency in producing games

of high interest against human players, faster than OLL.
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PM-OLL OLL

Initial Opponent E{Iu} E{I} E{Il} E{Iu} E{I} E{Il}
1 0.491 0.473 0.414 0.454 0.436 0.378

2 0.531 0.512 0.442 0.385 0.367 0.301

3 0.721 0.712 0.681 0.639 0.625 0.578

4 0.691 0.682 0.652 0.697 0.689 0.662

5 0.782 0.776 0.756 0.783 0.776 0.752

Table 8.1: Adaptability tests with random PacMan selection: Average interest E{I} and

confidence interval (E{Iu},E{Il}) values.

8.1.5.5 Randomness Testing

In this section we will test the hypothesis that random selection of the set of pm and

ep values, instead of Bayesian Network produced values, has a better impact on the

generated interest value of the game. In order to assess the truth of this hypothesis we

apply the adaptability test for PM-OLL where pm and ep values are picked randomly

and not through the BN. The test is conducted for all thirty adaptability test scenar-

ios with fixed PacMan sequence selection (see Section 8.1.5.4). The outcome of this

experiment is illustrated in Figure 8.7 where scenarios are ranked by their generated

average interest value when random parameter selection is made.

It turns out that our hypothesis is not valid since, in 27 out of 30 cases examined,

the random fashion of selecting values for pm and ep generates lower average interest

value than the interest value generated by PM-OLL. More specifically, in 16 cases this

interest value difference is statistically significant (see Figure 8.7). These results imply

that appropriate selection of OLL parameter values correlates to the improvement of

the player’s satisfaction, and moreover, the proposed BN approach of selecting OLL

parameter values does indeed have a positive impact on the game’s emergent interest

value.

8.1.6 Conclusions

Successful applications of the on-line learning approach (see Chapter 5 and Chapter 6)

have already shown the mechanisms’ robustness in generating predator/prey computer

games of high interest and fast adaptability to changing playing strategy situations.

As seen in Chapter 7 the suggested interest metric for a predator/prey game correlates
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Figure 8.7: Randomness hypothesis testing: Randomly selected parameter values

(RM-OLL) against parameter values proposed by the BN (PM-OLL).

with human judgement of interest, that is, human players’ notions of interest of the

Pac-Man game seem highly correlated with the proposed measure of interest.

In this chapter the player’s, in addition to the opponent’s, impact on the game’s inter-

estingness was investigated. In particular, we demonstrated a PM mechanism’s posi-

tive impact on the generation of more interesting games by using the Pac-Man Normal

stage (see Figure 6.1(c)) test-bed. Moreover, the proposed PM-OLL mechanism shows

game reliability since it demonstrates adaptive behaviors in the scale of tens of games

played and it is computationally inexpensive (1–3 seconds of CPU time for the BN

to infer OLL parameter values; few milliseconds for the OLL to evaluate the Ghost

population on-line).
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8.2 The Road Ahead

Given the current state-of-the-art in AI in games, it is unclear which features of any

game contribute to the enjoyment of its players, and thus it is also doubtful how to

generate enjoyable games. Research endeavors aiming to do this without clear under-

standing of what factors yield enjoyable gaming experience will inevitably be unsuc-

cessful or will succeed at best by accident. Unfortunately, most commercial and some

academic research in this area is deficient in this area — as demonstrated by its lack of

success in providing the more interesting games humans evidently seek.

In order to bridge the current gap between human designation of entertainment and in-

terest generated by computer games and to find efficient and robust paths in obtaining

appealing games, there is a need for an intensive and interdisciplinary research within

the areas of AI, human-computer interaction and emotional and cognitive psychol-

ogy. The proposed future research aims at exploring the novel directions opened by

this thesis on introducing entertainment measurements and adaptive learning tools for

generating interesting computer games. The long-term target of this work is to reveal

the direct correlation between the player’s perceived entertainment (I), his/her playing

strategy (style) (U) and his/her emotional state (E) — see Figure 8.8. Such a per-

spective will give insights into how a game should adapt to and interact with humans,

given their emotional state and playing skills, in order to generate high entertainment.

Towards this purpose, an innovative computer game will be developed, based on an

interactive system that will allow one to study the ongoing processes of situated game

state, the user’s playing style and emotional flow. Such a system will embed automatic

questionnaires and dialogues as well as video and sound recording of the user.

As an outline, the objectives arising towards the future work’s key target are as follows

(see Figure 8.8):

• Test existing state-of-the-art methodology, primarily based on the ideas in this

thesis, in more complex cooperative games. Popularity, open source platform

and on-line gaming potential are the basic game selection criteria, which leave

space for FPS and/or real-time strategy (RTS) massively multi-player on-line

games (MMOG).

• Construct an on-line web server that will host all AI processes (e.g. on-line adap-

tive learning) for computational effort reasons. The server will monitor game
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Figure 8.8: The future work scheme.

features (e.g. player’s actions), reinforce the AI with its real-time generated in-

terest I and adjust the opponent behavior back to the game.

• Record players’ actions real-time in order to dynamically model the player and

classify him/her into a player type U , which will determine features of the AI

adaptive processes (e.g. on-line learning mechanism).

• Record players’ behavior real-time by audiovisual means in order to model their

dynamical emotional flow E through facial coding procedures. The player’s

emotional state will also determine features of the adaptive on-line learning

mechanism. For modeling the player’s emotions in real-time, we gain inspi-

ration primarily from the work of Kaiser et al. (1998). They attempted to extract

basic emotions in real-time — according to the Facial Coding Action System

(Eckman, 1979) — by recording facial expressions of humans playing a preda-

tor/prey computer game similar to Pac-Man (Kaiser and Wehrle, 1996).

The potential of this future work lies in its innovative endeavor to bring emotional

psychology, human-machine interaction and AI advanced techniques to meet upon a
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computer game platform. As soon as experiments with statistically significant numbers

of human subjects are held, this work’s outcome will provide important insights to spot

the features of computer games — that map to specific emotions — that make them

appealing to most humans. Moreover, the playing strategy and emotional features that

generate entertainment in games will be exposed which will open new horizons for the

game AI research community.

8.3 Summary

This chapter, unlike the preceding technical chapters of this thesis, was devoted in

exploring the player’s contribution to its entertainment. Initial steps towards this di-

rection reveal that by modeling the user’s actions which reinforce the on-line learning

procedures, one might come up with more interesting games. Furthermore, this enter-

tainment enhancement takes place much faster than when OLL is used alone even if

the player’s strategy changes randomly and frequently (i.e. every 20 games).

The subsequent steps of this work lie in exploiting the current knowledge on how to

generate interesting games by adjusting opponent behavior on-line to further examine

the player’s perspective on computer games. In particular, the proposed future research

is framed by the player’s both recorded real-time actions and emotional state which

may determine features of the on-line adaptive learning mechanism.

In the following and last chapter of this thesis we will summarize the thesis’ main

achievements and contributions and discuss the proposed methods’ current limitations.

Moreover, potential solutions that might embrace these drawbacks are presented.
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Conclusions

This thesis is primarily based on two research questions: how to measure entertainment

for the player in computer games and which are the AI mechanisms that can effectively

generate it. The predator/prey game genre was used as the initial step towards answer-

ing both questions. In particular, two dissimilar predator/prey games were devised as

test-beds for our investigations.

Given our observations and empirical studies on this genre of games, we defined cri-

teria that contribute to the satisfaction for the player which map to characteristics of

the opponent behavior. According to our hypothesis, the player-opponent interaction

— rather than the audiovisual features, the context or the genre of the game — is the

property that primarily contributes the majority of the quality features of entertainment

in a computer game. Based on this fundamental assumption, we introduced a metric

for measuring the real-time entertainment value of predator/prey games. This value is

extracted from three entertainment criteria: appropriate level of challenge, opponents’

behavior diversity and opponents’ spatial diversity.

According to our second hypothesis, enhanced entertainment is present when oppo-

nents demonstrate cooperative behaviors. By following principles of the animat ap-

proach (Meyer and Guillot, 1994) for realistic implicit and partial sensing in simulated

worlds, we exhibited cooperative effective behaviors through off-line learning proce-

dures in the FlatLand prototype simulated world. The conclusions derived from this

world are that cooperation is plausible given a limited sensing scenario and that un-

supervised mutation-based learning algorithms are more robust and computationally

preferred than supervised learning techniques. In addition, the ECWAS algorithm was

183
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used in order to automatically generate successful controllers of minimal size for the

same test-bed.

Our third hypothesis is that entertainment is generated when adaptive learning proce-

dures occur in real-time. That allows for opponents to learn while playing against the

player and adapt with regards to his/her strategy. When such a mechanism is built upon

cooperative opponents of minimal-sized controllers, it is more likely that the game’s

interest value improves drastically. Hence, we introduced a neuro-evolution on-line

learning mechanism in Chapter 4. This approach embeds a replacement method of the

worst-fit individuals while playing the game. The mechanism demonstrated robustness

in enhancing the game’s interest and adaptability against unknown playing strategies

for both test-bed games used (see Section 6.11.1 and Section 6.11.2 for a discussion

on the dissimilarities of the games and the OLL variants used respectively).

As soon as there was reasonable evidence for the OLL mechanism’s generality over

predator/prey game variants, initial opponent behavior, player type and stage com-

plexity and topology, we introduced a human survey (see Chapter 7) aiming at cross-

validating the interest metric proposed. Results have shown that our interest metric

hypothesis is valid since humans appear to agree with this notion of entertainment.

In addition it was found that neither the order of play, nor the subject type affect the

judgement of humans as far as their entertainment is concerned. Moreover, given each

subject’s score, it was demonstrated that humans disagreeing with the interest metric

judge interest by their performance or based on other individual criteria like game con-

trol, speed and graphics. Likewise, subjects agreeing with the I value have based their

judgement on game features such as challenge, intelligent opponents, opponents’ be-

havior diversity and spatial diversity. As far as the on-line learning experiment against

human players is concerned, observations showed that fifty games are not adequate for

the interest value to change significantly and for humans to notice a change in their

perceived entertainment.

Since the use of PC games provides limited computational power, more sophisticated

learning procedures were designed in order to accelerate learning in real-time. Hence,

in Chapter 8 the player’s contribution to the generation of entertainment was investi-

gated. It was found that an enhanced OLL mechanism that embeds a successful player

modeling tool appears to be more efficient and faster in generating the entertaining

games that the player evidently seeks. In this chapter we also presented a scheme for

obtaining computer games of richer interactivity and higher entertainment by focusing
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on the real-time adjustment of the opponent’s controller. The potential of the proposed

scheme lies in its innovative endeavor to bring emotional psychology, human-machine

interaction and advanced AI techniques to meet upon computer game platforms.

Given the experiments presented in this dissertation, the three aforementioned hypothe-

ses are likely to be true: For the first hypothesis, human players confirmed that features

of the opponent behavior constitute the main factors for distinguishing among games of

different entertainment values and furthermore agreed on the interest metric proposed.

For the second hypothesis, results demonstrated that cooperative action is present and

maintained when the entertainment value of the game is high. For the third hypothe-

sis, the robustness of the OLL mechanism in augmenting the game’s interest and its

adaptive features demonstrate that learning in real-time can enhance the entertainment

value of a computer game.

9.1 Contributions

This section summarizes this thesis’ main achievements and contributions to advance

the state-of-the-art of AI in computer games and cooperative multi-agent systems. To a

lesser degree, results of this thesis can be of use to the fields of emotional psychology,

human-computer interaction and computer-enhanced education. More specifically, this

dissertation has contributed the following:

• We introduced and established, through human player experiments, a generic

measure for entertainment in predator/prey games.

• Based on our assumptions, we introduced and verified a generic methodology

that increases the entertainment value of variants of predator/prey computer

games. According to this, entertainment is enhanced when learning, which is

built on cooperative multiple opponents of limited sensing and minimal con-

trollers, acts in real-time. This methodology’s features make it applicable to all

multi-opponent games; careful design may guarantee its success in other genres

of games (see Section 9.3).

• We introduced the ECWAS algorithm for automatically designing neural net-

work controllers. ECWAS can be utilized in order to provide opponents with

controllers of minimal size capable of achieving high performance in their tasks.
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• The FlatLand world case study revealed that well-behaved cooperative oppo-

nents can emerge faster and more efficiently through unsupervised learning ap-

proaches rather than supervised learning techniques. These opponents can be

used as initial good points for the generation of more entertainment games.

• The replacement and pre-evaluation methods in neuro-evolution on-line learning

were successfully introduced in computer games through this thesis.

• Results demonstrated that cooperation is maintained among heterogeneous op-

ponents during learning in real-time. This could explain the interesting games

obtained through OLL: Cooperative opponents make games more appealing to

the player.

• We introduced a method that uses player modeling techniques to adjust OLL

parameters in real-time. This combination proved able to increase the opponent’s

adaptability and furthermore enhance the game’s interest faster.

9.2 Limitations

The limitations of the proposed methodology, as appeared throughout the experiments

of this thesis, are summarized in this section. They are classified into limitations con-

sidering learning in real-time in computer games and limitation concerning the interest

metric proposed. Ideas for overcoming such drawbacks are discussed and provide the

ground for future investigations.

9.2.1 Learning in Real-Time

The drawbacks that occur through the OLL application are outlined here. These follow

the challenges that generally appear when designing learning mechanisms in real-time

for computer games as presented in Chapter 1. As the reader will notice, the three

limitations presented here are strongly correlated.

9.2.1.1 Computational Power

On-line learning suffers from convergence time. The mechanism would be able to

adapt faster if more CPUs through a server were available. Against human play-



9.2. Limitations 187

ers, OLL is not able to demonstrate more interesting opponents in 50 on-line learn-

ing games, since the maximum number of worst-fit replacements is only 600 for the

Pac-Man game. We assume that by the use of more computational power the replace-

ment frequency would increase and adaptability of OLL would be faster. In addition,

several hundreds or thousands of mutants would be pre-evaluated off-line for longer

periods of games contributing to the avoidance of poor behavior estimations (see also

Section 9.2.1.2).

Appropriate OLL parameter adjustment via a probabilistic network pressed the learn-

ing procedure for a much faster adaptation and showed that player modeling might

be an effective solution for the time convergence problem. The PM-OLL mechanism

adapts even in environments of randomly generated playing strategies that change con-

tinuously (every 20 games).

9.2.1.2 Few Opponents

The interest value evolution over on-line learning games appears to be noisy and depen-

dent on the number of opponents of the game. As seen from both games investigated,

the I value is sensitive to opponent replacements since five is the maximum number

of opponents in our experiments. Therefore, both highly interesting and boring oppo-

nent replacements may lead to drastic change of the entertainment value. Although the

mechanism is designed (i.e. pre-evaluation mechanism, gaussian mutation, probability

for the mutation operator) to prevent such occurrences for the changes to be smooth

(see Section 9.2.1.3), undesired behaviors may still emerge.

This limitation defines one of the major challenges of learning on-line in computer

games (see Chapter 1). Researchers and game developers have to build their learning

mechanism on the assumption that the majority of games include a tiny number of

opponents that the player can interact with in real-time. Additional challenge is gen-

erated since an on-line learning mechanism cannot act fast upon few player-opponent

interactions. Case-injection algorithms (Miles and Louis, 2005) may be used to speed

up the process. Cases of interesting NPCs may be kept in a ‘hall-of-fame’ list and

injected the current opponent population as interesting opponents, when appropriate.
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9.2.1.3 Time Versus Smoothness

The appropriate balance between computational time and smoothness of the oppo-

nent behavior is also a key question for the on-line learning procedure. No signifi-

cant changes, unwanted or extremely unpredictable behaviors are desired in a game

context because they are easily observable (given the few number of opponents) by

the player. As previously mentioned, a single unintelligent opponent can destroy

the ‘intelligent’ image of the game that OLL attempts to build (Champandard, 2004;

Funge, 2004). For this issue a pre-evaluation method and a gaussian mutation operator

were introduced in OLL for the game of Pac-Man. Even though smoothness of the

interest value is achieved (see Section 9.2.1.2), the algorithm’s convergence time is

significantly increased given a single CPU (see Section 9.2.1.1).

9.2.2 Interest Metric

The I value proposed in Chapter 2 is a reliable estimate of player entertainment in

real-time since it was approved by humans (see Chapter 7). This dissertation pre-

sented an innovative and efficient approach to model and quantify entertainment; how-

ever, without claiming of this approach being unique. We believe that other successful

quantitative metrics for the appropriate level of challenge, the opponents’ diversity and

the opponents’ spatial diversity may be designed and more qualitative criteria may be

inserted in the interest formula.

The following interest metric limitations arise from the assumptions discussed in Chap-

ter 2 and the I value’s observed behavior.

9.2.2.1 Real-time Interest Estimation

As noted in Chapter 2, we require a number N of played games in order to effectively

estimate the real-time interest value of the game. Even though this appears to follow

human cognition in defining interestingness of a game, it constitutes a limitation of

the method. A further investigation of the relationship between the I value and the

N played games might reveal that fewer games are needed for an estimate that is still

consistent with human notion of perceived entertainment.
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9.2.2.2 Player Types

As far as the playing strategy is concerned, thirty human players have played Pac-

Man and three hand-crafted players have been designed for each game. For the latter,

independently of the playing strategy, the mechanism adapted to their playing style in

order to boost the game’s interest. More specifically, in the Pac-Man game, the best

OLL generated interest values were not significantly different regardless of the player

type. Likewise, the interest values generated by humans in this game against the same

opponent, were not significantly different from each other. However, such a conclusion

is not derived from Dead End, since the EA Cat tends to generate significantly more

interesting games than the RM Cat and the PFB Cat.

Differences among the fixed strategy players used in Dead End are more clear varying

from ‘blind’, as far as the opponents are concerned, random behaving players (i.e. RM

Cat) to players that concentrate only to the Exit (i.e. EA Cat). These players break our

assumption of average playing skills and therefore produce significant differences in

their generated interest values. However, we did not face such poor playing strategies

in our human players sample. Note that, some of the subjects have played Pac-Man

only once or twice before the experiment.

9.3 Extensibility

Experiments over variants of predator/prey games of different complexity and their

features have demonstrated the methodology’s robustness throughout this dissertation.

Here, we discuss the potential of the methodology in other genres of multi-opponent

games where the complication of the opponents’ tasks may differ. More specifically,

we analyze the extensibility of the interest metric proposed, the on-line evolutionary

learning mechanism and the neuro-controller used.

9.3.1 Interest Metric

As already mentioned in Chapter 2, the criteria of challenge and behavior’s diver-

sity may be effectively applied for measuring the real-time entertainment value of any

genre of games. Spatial diversity may in a sense also contribute to the interest value

of specific genres (e.g. team-sport, RTS and FPS games). As long as game developers
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can determine and extract the features of the opponent behavior that generate excite-

ment for the player, a mathematical formula can be designed in order to collectively

represent them. Finally, the human players’ experiment presented in Chapter 7 can be

replicated to cross-validate and test variants of the proposed entertainment values.

9.3.2 Learning Methodology

The proposed on-line evolutionary learning method may also be successfully applied

to any game during active real-time player-opponent interactions. Extracted features of

this interaction may be used in order to estimate the fitness of the involved opponents

according to their tasks. The replacement of the worst-fit opponent(s) method may be

applied in frequent game periods to enhance the group’s fitness. See also Stanley et al.

(2005) for a successful application of this method in the NERO game. Moreover, on

top of motion controllers additional game features could be also encoded in the evo-

lutionary procedure and evolved on-line for optimizing entertainment. These features

could include, in predator/prey games for instance, the speed of the opponents or the

time in which the Ghosts are edible in a version of Pac-Man that includes power-pills.

Artificial evolution can explore complex search/state spaces efficiently and when com-

bined with NNs it can demonstrate fast adaptability to dynamic and changing environ-

ments. Therefore neuro-evolution is recommended for learning in real-time. However,

convergence time and unpredictability of the emergent behaviors constitute the disad-

vantages of the methodology which can be dealt with by careful design of the learning

mechanism. Player modeling techniques are able to decrease convergence time down

to realistic periods of time (i.e. tens of games) and furthermore proliferate the effi-

ciency and justifiability of learning in real-time. Moreover, other efficient learning

mechanisms such as temporal-difference learning (Tesauro, 2002) could also be ap-

plied to adjust neuro-controllers either for the motion or other levels of NPCs’ control.

9.3.3 Controller

Artificial neural networks serve successfully the adaptability requirements for preda-

tor/prey reactive games in real-time. The ECWAS neuro-evolution approach is also

able off-line to provide minimal ANN structures capable of achieving high perfor-

mance behaviors. However, as the complexity of the opponents’ tasks increases there
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might be a need for more sophisticated structures of distributed representation. Mem-

ory of previous behaviors learned through the player-opponent interaction may very

well be essential when a combination of various tasks is required. Recurrent NNs or

augmented NN topologies with hidden states (Stanley and Miikkulainen, 2002) may be

more appropriate when the opponents’ tasks proliferate. Moreover, a hierarchy design

of neuro-controllers that serve different opponent tasks could also provide the on-line

learning mechanism with more flexibility and faster adaptability.

9.4 Summary

This dissertation has presented an efficient method for measuring player entertainment

in predator/prey games. Moreover, it has provided a generic methodology for gen-

erating high entertainment values for such games. This methodology is grounded in

adaptive evolutionary learning in real-time which is built on cooperative opponents of

minimal controllers. Both the interest metric and the methodology proposed exhibit

features of extensibility in other genres of games.





Appendix A

Bootstrapping

A.1 Interest Confidence Intervals

In order to minimize the non-deterministic effect of the player’s strategy (whether that

is hand-programmed or human) on the game’s generated interest value as well as to

draw a clear picture of this value’s distribution, we apply the following bootstrapping

procedure. Using a uniform random distribution we pick 10 different N-tuples out

of 2N games. These 10 samples of data from N games are used to determine the

game’s interest value which is obtained from the average I value over the 10 samples.

Moreover, the interest value’s 95% confidence intervals [Il, Iu] are determined by the

minimum and maximum of the 10 I values (Efron and Tibshirani, 1993).

A.2 Opponents’ Performance

The bootstrapping procedure described in Section A.1 is also used to determine the

95% confidence intervals of the performance value P of a team of game opponents.
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Appendix B

FlatLand: Tools and Experiments

B.1 Beta Distribution

When it is assumed that α + β independent experiments of an approach A experience

α successes and β failures, the distribution of success rate p can be approximated with

a Beta distribution. The Beta probability density function is given by:

f (α,β, p) =
1

B(α+1,β+1)
pα(1− p)β (A.1)

where B(α+1,β+1)=
R 1

0 pα(1− p)βd p = α!β!
(α+β+1)! . Assume that a random variable X

with a beta-distribution has the upper bound χu and the lower bound χl for confidence

limits such that P(χl < X < χu) = 1−ε and P(X ≤ χl) = ε/2 where ε is the confidence

coefficient (in all results presented here ε = 0.05). Then, we can assert that [χl,χu] is

a (1− ε) · 100 percent confidence interval. If a probability p is beta distributed the

confidence limits χl,χu can be obtained by solving the equations:

ε
2

=
Z χl

0

pα(1− p)β

B(α+1,β+1)
d p (A.2)

ε
2

=
Z 1

χu

pα(1− p)β

B(α+1,β+1)
d p (A.3)

From the lower and upper bound probability χl,χu, the 95% confidence effort cost can

be estimated with
[

1
χu

QA, 1
χl

QA

]
, where QA is the unit computing cost per run of the

approach A (i.e. in our experiments QA equals to CPU time). Finally, the mean effort

cost can be obtained from α+β+1
α QA.
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B.2 Controller Size Experiment: BP
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Figure B.1: Average performance (over 10 trials) of BP training in the 20-agent FlatLand

environment.

Hidden Neurons 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ2 (·10−2) 0.1 0.3 2.0 12.3 1.6 20.3 9.3 10.1 4.2 8.5 2.3 6.1 9.3 15.9 13.2

Table B.1: Variance (over 10 trials) of BP training in the 20-agent FlatLand environment.
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B.3 Growing FlatLand
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(a) Mean, best and worst performance of

BP and GGA.
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(b) 10-Agent FlatLand Environment.
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(c) 40-Agent FlatLand Environment.
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(d) 80-Agent FlatLand Environment.

Figure B.2: Increasing FlatLand complexity. (a): performance of BP and GGA over the

FlatLand increasing population; (b), (c) and (d): number of successes out of 10 runs for

specific performance values for both mechanisms.

1in seconds
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Learning Mechanism Parameters

BP St = 666 (Animal path data)

GGA Np = 20, Ns = 10%, pm = 0.01 ep = 1000 (N = 10),

ep = 200 (N = 40), ep = 150 (N = 80), T = 2000

Table B.2: Experiment parameters for the 10, 40 and 80-agent environments.

Environment Pthreshold Approach α β Confidence Interval Effort Cost Interval1 Mean Effort Cost1

10-Agent 0.7 BP 3 7 [1.6401,9.149] [153.48,856.17] 343.1267

GGA 10 0 [1.0023,1.3984] [458.33,639.46] 503.0080

0.75 BP 1 9 [2.4225,43.8596] [226.70,4104.39] 1029.3800

GGA 10 0 [1.0023,1.3984] [458.33,639.46] 503.0080

40-Agent 0.7 BP 1 9 [2.4225,43.8596] [226.70,4104.39] 1029.3800

GGA 10 0 [1.0023,1.3984] [765.59,1068.14] 840.2130

Table B.3: Effort cost comparison table (ε = 0.05) QBP = 93.58sec, QGGA = 457.28sec

for the 10-agent environment; QGGA = 763.83sec for the 40-agent environment.
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Dead End Experiments

Playing Against

RM EA PFB

Initial

Behavior Stage I Iu− I I− Il I Iu− I I− Il I Iu− I I− Il

5 0.692 0.027 0.022 0.830 0.008 0.015 0.846 0.014 0.025

A 4 0.715 0.040 0.031 0.821 0.008 0.009 0.813 0.010 0.011

3 0.749 0.012 0.016 0.771 0.009 0.015 0.831 0.005 0.007

5 0.759 0.011 0.021 0.763 0.024 0.021 0.720 0.015 0.031

D 4 0.761 0.021 0.026 0.776 0.015 0.028 0.700 0.035 0.053

RM

3 0.772 0.022 0.022 0.719 0.026 0.042 0.636 0.034 0.027

5 0.707 0.014 0.031 0.701 0.010 0.016 0.617 0.042 0.062

EA D 4 0.655 0.017 0.029 0.770 0.007 0.004 0.583 0.023 0.028

3 0.733 0.029 0.030 0.750 0.016 0.010 0.795 0.032 0.045

5 0.691 0.014 0.011 0.751 0.012 0.018 0.722 0.069 0.118

A 4 0.712 0.030 0.021 0.795 0.010 0.012 0.727 0.021 0.036

3 0.784 0.014 0.072 0.766 0.008 0.017 0.696 0.037 0.042

5 0.685 0.028 0.023 0.744 0.007 0.006 0.635 0.030 0.020

D 4 0.723 0.008 0.012 0.766 0.011 0.017 0.696 0.008 0.008

PFB

3 0.722 0.012 0.012 0.737 0.005 0.017 0.658 0.035 0.037

Average 0.0225 0.0140 0.0321

Max 0.0720 0.0417 0.1183

Min 0.0077 0.0038 0.0055

Table C.1: Confidence intervals of the interest values generated by on-line learning.
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(a) RM Aggressive
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(b) RM Defensive
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(c) EA Defensive
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(d) PFB Aggressive
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Figure C.1: Game interest over the number of OLL generations in the 4 Dog environ-

ment. Sub-figure captions denote the initial Dogs’ behavior. Experiment Parameters:

ep = 25 simulation steps, pm = 0.02, 5-hidden neurons controller.
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(b) RM Defensive
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(c) EA Defensive
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(d) PFB Aggressive
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Figure C.2: Game interest over the number of OLL generations in the 3 Dog environ-

ment. Sub-figure captions denote the initial Dogs’ behavior. Experiment Parameters:

ep = 25 simulation steps, pm = 0.02, 5-hidden neurons controller.
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Pac-Man Experiments

Playing Against

CB RB ADV

Initial

Behavior Stage I Iu− I I− Il I Iu− I I− Il I Iu− I I− Il

Easy A 0.458 0.019 0.017 0.555 0.012 0.015 0.476 0.032 0.028

Easy B 0.498 0.032 0.041 0.559 0.012 0.030 0.503 0.026 0.018

Normal 0.576 0.033 0.031 0.412 0.035 0.030 0.442 0.027 0.022
B

Hard 0.509 0.014 0.022 0.636 0.029 0.020 0.524 0.027 0.059

Easy A 0.646 0.053 0.035 0.614 0.022 0.045 0.513 0.027 0.022

Easy B 0.624 0.065 0.051 0.562 0.019 0.033 0.552 0.036 0.050

Normal 0.655 0.031 0.039 0.652 0.035 0.040 0.555 0.025 0.017
A

Hard 0.613 0.042 0.037 0.688 0.022 0.028 0.650 0.030 0.045

Easy A 0.297 0.021 0.036 0.476 0.048 0.046 0.357 0.049 0.022

Easy B 0.215 0.034 0.029 0.470 0.024 0.017 0.401 0.047 0.038

Normal 0.190 0.021 0.019 0.250 0.026 0.048 0.423 0.042 0.055
H

Hard 0.434 0.030 0.036 0.540 0.030 0.024 0.595 0.018 0.018

Average 0.0327 0.0287 0.0326

Max 0.0647 0.0476 0.0586

Min 0.0142 0.0119 0.0171

Table D.1: Confidence intervals of the interest values generated by off-line training.
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Playing Against

CB RB ADV

Initial

Behavior Stage I Iu− I I− Il I Iu− I I− Il I Iu− I I− Il

Easy A 0.819 0.021 0.020 0.771 0.028 0.032 0.566 0.017 0.049

Easy B 0.763 0.026 0.016 0.747 0.023 0.023 0.661 0.010 0.012

Normal 0.780 0.035 0.025 0.769 0.025 0.014 0.685 0.030 0.036
B

Hard 0.739 0.011 0.010 0.756 0.014 0.017 0.746 0.041 0.052

Easy A 0.796 0.018 0.022 0.718 0.021 0.016 0.763 0.018 0.018

Easy B 0.768 0.025 0.030 0.736 0.015 0.053 0.743 0.027 0.034

Normal 0.753 0.014 0.011 0.741 0.014 0.019 0.802 0.015 0.016
A

Hard 0.724 0.033 0.033 0.717 0.014 0.011 0.737 0.031 0.020

Easy A 0.762 0.022 0.031 0.822 0.011 0.019 0.737 0.046 0.053

Easy B 0.772 0.009 0.016 0.771 0.023 0.027 0.709 0.021 0.021

Normal 0.748 0.035 0.042 0.726 0.010 0.039 0.730 0.012 0.022
H

Hard 0.742 0.019 0.016 0.762 0.018 0.018 0.788 0.011 0.023

Average 0.2290 0.0216 0.0270

Max 0.0422 0.0537 0.0535

Min 0.0097 0.0108 0.0103

Table D.2: Confidence intervals of the best interest values generated by on-line learn-

ing.
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Playing In

PacMan Type Behavior Easy A Easy B

B 0.9846 0.8854

CB A 0.6999 0.6848

H 0.5490 0.4940

B 0.7433 0.7382

RB A 0.6623 0.7174

H 0.5039 0.4916

B 0.9040 0.8936

ADV A 0.7639 0.6187

O
LT

in
E

as
y

A

H 0.4638 0.5471

B 0.8512 0.8934

CB A 0.7353 0.7873

H 0.5012 0.5048

B 0.6947 0.7487

RB A 0.6811 0.6945

H 0.6152 0.5217

B 0.8187 0.8764

ADV A 0.6389 0.6535

O
LT

in
E

as
y

B

H 0.2743 0.4179

Average 0.6714 0.6761

Variance 0.0295 0.0240

Table D.3: Easy A versus Easy B; performance comparison table.
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Minimum number of pellets left

Figure D.1: Backtracking plot: the RB PacMan plays in the Easy stage without Ghosts.

The average (over 100 games) difference between the estimated and real backtrack-

ing is obtained through the formula: Evaluation Period - (number of pellets eaten +

backtrack movements).
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Figure D.2: Scatter plot of the initial I values over the games that OLL generated the

highest interest value. Different shapes of data points indicate the initial OLT behaviors

(B, A, H).
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(a) S over T

(b) E{Hn} over T
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(c) E{Hn} over S

Figure D.3: Scatter plots of the T , S and E{Hn} values obtained during OLL in the

Normal stage against the ADV PacMan. Three experiments are held with B, A and H

initial Ghost behavior. The size of the data points is proportional to the generated I

value.





Appendix E

Human Survey

GENERAL GUIDELINES (Please Read Carefully)

The computer game presented here is a modified version of the well-known Pac-Man

arcade game released by Namco (Japan). Your objective as a player (appearing as yel-

low circle) is to get the highest score possible by eating pellets (small black squares)

in a a maze-shaped stage while avoiding being killed by 4 opponent characters named

‘Ghosts’ (see Figure E.1 on next page). Ghosts attempt to kill you by touching you.

The game is over when either all pellets in the stage are eaten by you (Pac-Man) or

Ghosts manage to kill you or you are able to survive for a long period without eating

all pellets from the stage. In that case, the game restarts from the same initial positions

for you and the Ghosts. In this version of the game the stage’s layout doesn’t change

even if the player manages to clear all the pellets from the stage.

The game is played by using the 4 arrow keys (up, down, left, right) to control the

Pac-Man’s motion on the stage. There are 2 functional buttons and a slider bar on the

game:

Play!: Click this button every time you want to start playing a game. CAUTION:
VERY IMPORTANT!: After clicking the Play! button you must double-click any-

where on the Pac-Man stage in order for you to start controlling Pac-Man (see Fig-

ure E.1).

211
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Load Next Game: When a game is over the screen freezes. In order to continue play-

ing, you have to click the Load Next Game button for the next game to be loaded. This

button also pops-up useful instruction messages in between games (see Figure E.1).

Speed Bar: You can change the speed of the game by adjusting the vertical slider

bar appearing at the left of the stage. In order to increase the speed of the game, drag

the indicator down. If you want to decrease the speed of the game, drag the indicator

up (see Figure E.1).

Figure E.1: Snapshot of the Pac-Man game. The 2 functional buttons and the slider are

circled.
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Subject Code:

FULL NAME:

e-mail:

Questionnaire

Please take the time to complete the following tasks, which will take you approxi-

mately 30 minutes to complete.

PART A

1. Do you like playing computer games?

Yes, I love them!

Yes, but I’m not that enthusiastic about them.

No, I don’t.

2. Do you like playing Pac-Man?

Yes, I am a fanatic player!

Yes, I like it.

Yes, but I’m not that enthusiastic about it.

Yes, I used to like it, but not any more.

No, I don’t particularly like it.

3. What factors do you consider make a good Pac-Man game? Please list them.

4. Now it’s time for you to start playing Pac-Man! Take some time to familiarize

yourself with it. In order to do that, click the Play! button and play for a testing
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period (suggestion: this is a good chance for you to familiarize yourself with the

speed of the game since it will be default for the games to follow in Part B once

the testing period is over). The screen will freeze when the predefined testing

period is over. When this occurs, proceed to the next page (Part B).
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PART B

In this part you will play 12 short Pac-Man games in pairs (6 pairs). After completing

each pair of games, a message on screen will ask you to complete a question (B.1-B.6)

about this pair. Proceed to Part B by executing the following command:

Click the Load Next Game button and follow the instructions on screen. (Each time a

game is over the screen will be freezed. In order to start a new game, you will have to

click the Load Next Game button)

QUESTIONS (Please circle either YES or NO)

B.1 Was game no. 1 more interesting than game no. 2? YES NO

B.2 Was game no. 3 more interesting than game no. 4? YES NO

B.3 Was game no. 5 more interesting than game no. 6? YES NO

B.4 Was game no. 7 more interesting than game no. 8? YES NO

B.5 Was game no. 9 more interesting than game no. 10? YES NO

B.6 Was game no. 11 more interesting than game no. 12? YES NO

Please have a short break before going to the final part (Part C) of the questionnaire.

Let Georgios know that you are having this break.
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PART C

In this part you will play 2 pairs of Pac-Man games. These games will be a bit longer

than the games played in Part B. After completing each pair of games, a message on

screen will ask you to complete a question about this pair (please have a look at ques-

tions C.1 and C.2 before playing). Click Play! to start playing the first game and when

the game is over (freezed screen) execute the following command:

Click the Load Next Game button and follow the instructions on screen. (Each time a

game is over the screen will be freezed. In order to start a new game, you will have to

click the Load Next Game button)

QUESTIONS (Please circle either YES or NO)

C.1 Was game no. 1 more interesting than game no. 2? YES NO

C.2 Was game no. 3 more interesting than game no. 4? YES NO

List the criteria you used for your assessment of which game is the more interest-

ing:

Thanks for your cooperation! Enjoy your beer!
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E.1 Experiment Tables

Subject No. Factors of a good Pac-Man game1

1 Intelligent Ghosts Challenge

2 Ghosts’ Behavior

3 Nice Graphics/Stages Topology/Sound

4 Ghosts’ Behavior

5 Intelligent Ghosts Nice Graphics/Stages Topology/Sound Win 3/4 times

6 Intelligent Ghosts Speed

7 Nice Graphics/Stages Topology/Sound Diverse Ghosts’ behavior

8 Challenge

9 Nice Graphics/Stages Topology/Sound Challenge

10 Nice Graphics/Stages Topology/Sound Challenge Intelligent Ghosts

11 Nice Graphics/Stages Topology/Sound Speed

12 Unpredictable Ghosts Challenge Adaptability

13 Challenge

14 Nice Graphics/Stages Topology/Sound

15 Nice Graphics/Stages Topology/Sound Challenge Game Controls

16 Nice Graphics/Stages Topology/Sound

17 Intelligent Ghosts Challenge

18 I don’t know

19 My Moods

20 Nice Graphics/Stages Topology/Sound Game Controls

21 Be different from the Original Version

22 Nice Graphics/Stages Topology/Sound

23 Nice Graphics/Stages Topology/Sound

24 Nice Graphics/Stages Topology/Sound Challenge Speed

25 Nice Graphics/Stages Topology/Sound Game Controls

26 Nice Graphics/Stages Topology/Sound Power Pills

27 Intelligent Ghosts Speed Game Controls

28 Nice Graphics/Stages Topology/Sound Cooperative Ghosts Diverse Ghosts’ behavior

29 Nice Graphics/Stages Topology/Sound Adaptability Interface

30 I don’t know

Table E.1: Answers on A.3.

1Answers in this table are either presented as written by the subjects or alternatively they are coded
to match specific categories of factors. The categories are: Intelligent Ghosts, Unpredictable Ghosts,
Ghosts’ behavior, Adaptability, Challenge, Diverse Ghosts’ behavior, Nice Graphics/Stages Topol-
ogy/Sound, Game Controls and Speed.

2Answers in this table are either presented as written by the subjects or alternatively they are coded
to match specific categories of criteria. The categories are: 1) Opponent Oriented: Intelligent Ghosts,
Unpredictable Ghosts, Ghosts’ behavior, Challenge, Diverse Ghosts’ behavior, Spatial Diversity and
2) Non-Opponent Oriented: Performance, I don’t know/Randomness, Nice Graphics/Stages Topol-
ogy/Sound, Game Controls, Speed.
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Subject No. Interest Criteria2

1 Intelligent Ghosts

2 Ghosts’ Behavior

3 Ghosts’ Behavior Spatial Diversity Challenge

4 Ghosts’ Behavior

5 Performance Challenge

6 Game Controls Challenge

7 Ghosts’ Behavior Spatial Diversity Challenge

8 Ghosts’ Behavior Spatial Diversity Challenge

9 Performance Challenge

10 Performance

11 Unpredictable Ghosts

12 Performance Challenge

13 I don’t know/Randomness

14 Game Controls

15 Challenge

16 Speed

17 Challenge

18 Intelligent Ghosts

19 Game Controls Performance

20 Ghosts’ Behavior Spatial Diversity Challenge

21 Challenge

22 I don’t know/Randomness

23 Nice Graphics/Stages Topology/Sound

24 Challenge

25 Game Controls

26 Challenge

27 I don’t know/Randomness Game Controls

28 Ghosts’ Behavior

29 Challenge Diverse Ghosts’ behavior I don’t know/Randomness

30 I don’t know/Randomness

Table E.2: Answers on C.2.
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Opponent

Subject No. Part B Part C

1 1 2 3 1 3 2 2 1 2 3 1 3 OLL1 4 4 OLL2

2 4 2 1 4 1 2 2 4 2 1 4 1 OLL1 4 4 OLL2

3 2 1 5 1 5 2 1 5 2 5 1 2 OLL1 4 4 OLL2

4 1 3 4 3 3 1 4 1 3 4 1 4 OLL1 4 4 OLL2

5 5 3 1 5 1 3 3 5 3 1 5 1 OLL1 4 4 OLL2

6 4 1 4 5 1 4 5 1 5 4 1 5 4 OLL1 OLL2 4

7 3 2 2 4 2 3 3 4 4 2 4 3 4 OLL1 OLL2 4

8 2 3 3 5 2 5 5 3 3 2 5 2 4 OLL1 OLL2 4

9 5 2 2 5 4 2 4 5 2 4 5 4 4 OLL1 OLL2 4

10 3 4 5 4 5 3 4 3 3 5 4 5 4 OLL1 OLL2 4

Table E.3: Set of games’ sequence assigned for subjects of each type.
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O
pponent

SubjectN
o.

PartB
PartC

M
ean

1
3870

4380
4220

4310
3950

5020
4290

3200
4000

3680
3310

3970
29570

31730
34170

31930
192145.8

2
3490

4380
4190

2710
3990

4340
3950

3430
3960

3600
2010

1350
27600

18880
22770

23600

3
5490

5430
3450

3800
4990

5270
5520

4780
5060

4150
5690

5650
28840

30970
32010

34480

4
4746

3348
3654

1368
3156

4764
4086

4818
3408

2952
4794

4674
22420

29990
26220

27980

5
4850

4630
4270

3890
3990

4120
2950

3810
3440

4060
4970

4090
27560

27220
29500

25910

6
1510

2920
2420

2810
2240

2310
2610

2600
2490

2530
1780

1790
25130

23160
23130

24340

7
3520

4210
4260

3810
4840

3070
2790

2830
2950

4330
4140

3420
29630

28780
24370

27690

8
4420

3480
1270

2780
3850

3600
4440

4350
3600

4540
3480

4700
20450

20790
22170

25220

9
4330

4180
4440

3130
3500

3240
2770

2400
4540

2050
3280

3110
26630

29660
33340

32290

10
2420

30
2520

1580
3200

2040
590

3070
2850

2380
30

1470
21560

18060
17210

15720

11
3490

2540
2290

3440
2910

3530
2700

4040
4210

2070
4040

2010
31610

20730
25190

31610
170088

12
390

3740
3960

2360
3260

4140
2210

2010
4280

4250
2720

2460
19700

23810
26150

19760

13
2940

3530
3450

2970
4050

2770
3560

2450
4100

2540
4550

3530
32340

37240
31430

33040

14
3640

4230
2390

4800
1050

4080
4030

4400
2550

2580
2730

3480
21810

25220
23280

25930

15
4460

3090
3300

2430
4200

4160
3700

4510
2600

3420
3300

4080
24290

25920
25870

22810

16
1560

2970
2970

2670
3480

2180
1850

3720
3630

2180
3550

2880
18110

19320
18780

20180

17
1730

3790
4280

2250
3930

2980
2230

3370
2640

3140
3150

3830
29530

28520
24870

26680

18
2620

2370
1670

1530
2850

3140
2650

1220
3030

2550
3180

1760
20390

18480
19540

23390

19
2020

3440
2380

2400
3510

2140
2560

1970
3390

2700
2650

2040
23810

20430
21330

26390

20
1840

3150
870

970
2310

2480
2370

3280
3590

2420
3570

3180
25540

25180
28280

31540
157551

21
3530

3390
1980

2780
4100

1570
2730

2440
4250

3070
2710

3150
24020

28030
24730

26850

22
1800

3120
3090

3260
1700

3090
2400

650
3650

3180
2130

2420
19970

18300
22530

24150

23
3740

4680
3480

5560
2570

3580
3550

3300
4460

3570
4540

3870
22970

27730
26640

25760

24
3370

2580
2410

2250
3480

3610
1940

2860
3580

1910
3650

3110
24580

26100
23260

27010

25
1520

1850
1230

820
2420

1670
2880

2240
3230

1910
1610

2110
20690

21190
21480

21970

26
960

1770
3080

1590
680

2310
1720

2510
2830

1270
2390

2370
21930

20910
20260

19730

27
1770

2380
1210

820
2410

1600
2000

1930
1560

1670
3090

1240
21440

17620
17990

12800

28
2170

2480
1360

1870
4320

1160
4170

2010
3700

3720
2540

3590
19850

20260
20820

25770

29
4100

4680
4880

2880
3880

5360
3220

4360
5200

2550
4900

3720
29160

31180
27030

27950

30
1730

1550
1930

1980
970

2290
1410

1500
2900

1850
1700

890
15830

14420
17920

18860

Table
E

.4:
S

ubjects’scores
ranked

by
subjecttype;i.e.

1–10:
Like,11–20:

N
eutral,21–30:

D
on’tLike.
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