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Abstract

Members of the subfamily Gammaherpesvirinae commonly establish latency within

lymphoid cells and are associated with lymphoproliferative disease.

Gammaherpesviruses include the human pathogens Epstein-Barr virus and Kaposi's
sarcoma-associated herpes virus. Due to the narrow host range of infection exhibited

by these viruses and their limited productive growth in vitro, the events occurring

during lytic replication and the establishment of latency are not well characterised.
Murine gammaherpesvirus 68 (MHV-68) is able to undergo productive replication in
a number of cell types in vitro and infects laboratory mice; consequently it provides
an excellent model for study of gammaherpesvirus infection. MHV-68 encodes eight
viral tRNA-like molecules (vtRNAl-8), which resemble cellular tRNAs in that they
have a predicted cloverleaf-like secondary structure and are transcribed by RNA

polymerase III. However unlike cellular tRNAs they are not amino-acylated and
therefore do not function directly during protein synthesis. They are known to be

expressed to high levels during both latency and lytic replication. However their role
within infection is not known.

The aim of this project was to characterise the vtRNAs. The presence of the vtRNAs
within purified, RNase treated viral stocks indicated their packaging within the
MHV-68 virion. Although both viral and cellular mRNAs were also present, it

appeared that the major RNA species packaged by MHV-68 were small RNA

molecules, such as the vtRNAs. Incorporation of RNA molecules into the virion is
not unique to MHV-68 as other herpesviruses have been found to package RNA,

although the vtRNAs represent the only packaged small viral non-coding RNA
molecules discovered so far. In addition, this is the first study to demonstrate the

preferential incorporation of small RNA molecules by a herpesvirus. The mechanism

by which the vtRNAs assemble into the virion is not clear. In situ hybridization
demonstrated that within infected cells the vtRNAs localized to globular areas within
the nucleus and were also found at high levels within the cytoplasm. Electrophoretic

mobility shift assays performed using vtRNAl and vtRNA4 indicated binding to

protein complexes present within both the nucleus and cytoplasm of infected cells.
Inhibition of vtRNA-protein binding by an anti-MHV-68 antibody indicated direct
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interaction of the vtRNAs with viral protein(s). Hence it is likely that their

incorporation is mediated through binding to viral protein(s) during virion assembly
in either the nucleus or cytoplasm.

MHV-76 is a deletion mutant ofMHV-68, which lacks all eight vtRNAs along with
four other genes (M1-M4). The contribution of the vtRNAs to viral pathogenesis has
been investigated by construction of recombinant MHV-76, which expressed
vtRNAsl-5 under their natural promoters. The insertion of the vtRNAs into MHV-76
had no effect on the ability of the virus to replicate in vitro. In addition, the
recombinant viruses displayed identical characteristics to MHV-76 following
intranasal infection of BALB/c mice, demonstrated by the levels of lytic virus

present within the lung and the levels of latent virus within the spleen. Therefore the
role of the vtRNAs within infection remains to be determined and the recombinant

viruses produced in this project will provide excellent tools to investigate their
function further through both in vitro and in vivo analysis.

v



Contents

Page
Title i

Declaration ii

Acknowledgments iii

Abstract iv

Contents vi

List of Figures xiii

List of Tables xv

Abbreviations xvi

Chapter One: Introduction 1
1.1. Herpesviruses 2
1.1.1. Classification 4

1.1.1. Alphaherpesviruses 4

1.1.2. Betaherpesviruses 4
1.1.3 Gammaherpesviruses 5

1.1.2. Herpesvirus structure 5

1.1.3. Herpesvirus genome 7

1.1.4. Herpesvirus life cycle 10
1.2. Gammaherpesviruses 14
1.2.1. Epstein-Barr virus 14

1.2.1.1. EBV latent infection 15

1.2.1.2. Disease associations 17

1.2.2. Kaposi's sarcoma-associated herpesvirus 21
1.2.2.1. KSHV molecular biology 22
1.2.2.2. KSHV disease associations 24

1.2.3. Herpesvirus saimiri 28

1.2.4. Gammaherpesviruses of veterinary importance 30
1.2.5. Animal models of gammaherpesvirus infection 31

vi



1.3. Murine gammaherpesvirus-68 34
1.3.1. MHV-68 genome 35

1.3.2. MHV-68 virion composition 35
1.3.3. MHV-68 replication in vitro 38
1.3.4. MHV-68 primary infection in vivo 39
1.3.5. MHV-68 latency in vivo 41
1.3.6. MHV-76 and the left-hand end ofMHV-68 44

1.4 Transfer RNA molecules 49

1.4.1. tRNA structure 50

1.4.2. tRNA expression 52
1.4.3. tRNA function during viral infection 52

1.4.3.1. Plant virus tRNA-like structure 52

1.4.3.2. Cellular tRNA functions during retrovirus infection 54

1.5. Viral non-coding RNA molecules 56
1.5.1. Alphaherpesvirus non-coding RNA molecules 56
1.5.2. Gammaherpesviruses non-coding RNA molecules 59
1.5.3. Adenovirus non-coding RNA molecules 63
1.5.4. Virally encoded miRNA 64
1.6. Project outline 65

Chapter Two: Materials and methods 68
2.1 Molecular cloning 69
2.1.1. DNA digestion with restriction endonucleases 69
2.1.2. DNA Dephosphorylation 69
2.1.3. Ligation ofDNA fragments 69
2.1.4. Transformation of One Shot TOP 10 Chemically competent bacteria

69

2.1.5. Preparation of glycerol stocks of transformants 70
2.1.6. Agarose gel electrophoresis 70
2.1.7. Isolation ofDNA fragments from agarose gel using a Q1A Gel
Extraction Kit (Qiagen) 70

vii



2.2 DNA extraction 71

2.2.1. Small scale extraction of plasmid DNA (miniprep) 71
2.2.2. Large scale preparation of plasmid DNA (midi and maxiprep) 71
2.2.3. Extraction of high-molecular weight viral DNA 72
2.2.4. Extraction ofDNA from splenocytes 73
2.3 Southern analysis 74
2.3.1. Digestion of high molecular weight DNA 74
2.3.2. Electrophoresis and transfer 74
2.3.3. Staining ofmolecular weight standards 75
2.3.4. Radiolabelling ofDNA probes 75
2.3.5. Pre-hybridization and hybridization 76
2.3.6. Removal of radiolabeled probes from Southern blot membranes 76
2.4. Polymerase chain reaction 77
2.4.1. Components of standard PCR reactions 77
2.4.2. PCR from crude lysates 77

2.4.3. Real-time PCR analysis 77
2.5. RNA extraction and manipulation 78
2.5.1. RNA isolation using RNAwiz 78
2.5.2. Standard DNase treatment ofRNA 79

2.5.3. DNAse treatment of pure viral RNA 79
2.5.4. Reverse transcription ofRNA 80
2.5.5. RNA agarose gel electrophoresis 80
2.5.6. RNA electrophoresis using TBE-Urea gels 81
2.5.7. Radiolabelling ofRNA using T4 RNA ligase 81
2.5.8. In Vitro Transcription of vtRNAs 82
2.6. Northern analysis 82
2.6.1. Electrophoresis and blotting 83
2.6.2. Prehybridisation and hybridisation 83
2.6.3. Removal of radiolabeled probes from northern blot membranes 84
2.6.4. RNA dot-blotting 84

viii



2.7 RNA in situ hybridization 85
2.7.1. Generation of labelled RNA probe 85
2.7.2. Alkaline hydrolysis of labeled probe 86
2.7.3. Quantification of labeled RNA probe 86
2.7.4. Preparation of cytospins for RNA in situ hybridization 87
2.7.5. RNA in situ prehybridisation and hybridisation on cytospins 87
2.7.6. RNA in situ prehybridisation and hybridisation on tissue sections 87
2.7.7. Visualisation of probe using alkaline phosphatase 88
2.7.8. Visualisation of probe using Alexafluor488 88
2.8. Tissue culture techniques 89
2.8.1. Maintenance of cell lines 89

2.8.2. Harvesting and counting cells 89
2.8.3. Preparation of cellular fractions 90
2.8.4. Transfection of cells by electroporation 90
2.8.5. Transfection of cells by Effectene 91
2.8.6. Generation of stably transfected cell lines 91
2.9 Virological methods 92
2.9.1. Isolation of Single Plaques following Transfection 92
2.9.2. Purification of recombinant virus 93

2.9.3. Preparation ofworking viral stocks 93
2.9.4. Isolation of extracellular virus 94

2.9.5. Purification of virus by ultracentrifugation 94
2.9.6. RNase treatment ofpurified virus 95
2.9.7. Transmission electron microscopy 95
2.9.8. Treatment of cells with inhibitors of protein synthesis and viral
DNA replication 96
2.9.9. Virus titration 96

2.9.10. One step/multistep growth curves 97
2.9.11. Infective centre assay 97
2.10. Protein techniques 98
2.10.1. Electrophoretic-mobility shift assay (EMSA) 98
2.10.2. UV-crosslinking RNA-protein complexes 98

ix



2.10.3. Isolation of protein from polyacrylamide gel 99
2.10.4. SDS-Page 99

2.10.5. Coomassie staining 99
2.10.6. Silver staining 100

2.10.7. Western Blotting 100

2.10.8. In-gel protein digestion for mass spectrometry 100
2.11. Statistical analysis 101

Appendix 1 Cloning vectors used in this study 102

Appendix 2 Oligonucleotides used in this study 105

Appendix 3 Synthetic oligonucleotides used for in vitro transcription 108

Appendix 4 Stock solutions used in this study 109

Appendix 5 Commercial Suppliers 110

Chapter Three: The encapsidation of the vtRNAs 112
3.1. Aims 113

3.2. The timing of expression of the vtRNAs during lytic infection

by RT-PCR 113

3.3. RNA detection within purified virus preparations 115
3.3.1. Intracellular virus purification and RNA detection 115

3.3.1.1. Purification of intracellular virus 115

3.3.1.2. Detection of the RNAs present by RT-PCR 116

3.3.2. Extracellular virus purification and RNA detection 119

3.3.2.1. Purification of extracellular virus 119

3.3.2.2. Nature of the RNA species present 122
3.3.2.3. Detection of the RNAs present by RT-PCR 127

3.4. Discussion 129

Chapter Four: Characterizing the sub-cellular localization
of the vtRNAs and potential interacting proteins 134
4.1. Aims 135

x



4.2. The localization of the vtRNAs during lytic and latent infection 136
4.2.1. Dot-blot analysis on cellular extracts 136
4.2.2. In situ hybridisation 139
4.3. Potential vtRNAl interacting proteins 140

4.3.1. Electrophoretic mobility shift assays 140
4.3.2. Identification of protein complexes 144

4.4. Potential vtRNA4 interacting proteins 148
4.4.1. Electrophoretic mobility shift assays 148
4.4.2. Identification of protein complexes 150
4.5. Discussion 153

Chapter 5: Investigating the function of the vtRNAs

during in vitro and in vivo infection 158

5.1. Aims 159

5.2. Construction of intRNAl-5 virus 159

5.3. Construction of MHV-76intRNAl-5 revertant virus 160

5.4. Southern analysis of the intRNA and intRNARev viruses 164
5.5. Construction ofWTTintRNA 169

5.5.1. Cloning strategy 169
5.5.2. Purification of recombinant viruses 169

5.6. Construction of intRNA5 viruses 170

5.7. Characterisation of MHV-76 insertion viruses in vitro 170

5.7.1. vtRNA expression 170
5.7.2. Growth characteristics 174

5.8. Characterisation of MHV-76 insertion viruses in vivo 178

5.8.1. Lytic replication in the lung 178
5.8.2. Acute latency within the spleen 178
5.8.3. Long term infection 187

5.9. Construction of a vtRNA expressing cell line 190
5.10. Discussion 190

XI



Chapter six: Conclusion 198

References 206

xii



List of figures

Page
1.1 Herpesvirus virion 5
1.2 Herpesvirus genomic arrangements 8

1.3 KSHV, HVS and MHV-68 genomes 36
1.4 MHV-68 vtRNAs 48

1.5 tRNA secondary structure 51

1.6HSV-1 latency associated transcripts 56
1.7 Viral non-coding RNA molecules 60

1.8 Structure and processing ofmiRNAs 66
3.1 vtRNAl expression 114
3.2 MHV-68 purification strategy 117
3.3 Transmission EMs of sucrose gradient purified MHV-68 118
3.4 Sucrose cushion purified MHV-68 RT-PCR 120

3.5 Sucrose gradient purified MHV-68 RT-PCR 121

3.6 Transmission EM of extra-cellular MHV-68 123

3.7 RNA species within extra-cellular virus stocks 125
3.8 Northern blot on RNA from extra-cellular virus stocks 126

4.1 vtRNA subcellular localization 138

4.2 vtRNA in situ hybridization on cytospins 141
4.3 vtRNAl EMSA 143

4.4 vtRNAl EMSA in the presence of anti-MHV-68 antibody
and late protein binding 145

4.5 Identification of vtRNA-protein complexes 147
4.6 vtRNA4 EMSA 151

4.7 Silver stain on vtRNA4-protein complex 152
5.1 intRNA construction 161

5.2 Plaque purification of intRNA(2) 162
5.3 intRNA(9) and intRNA(9)Rev Southern analysis 167

5.4 intRNA(9), intRNA(2) and intRNA(9)Rev Southern analysis 167
5.5 intRNA5 plaque purification 171
5.6 intRNA(9), intRNA(2) and intRNA(9)Rev RT-PCR 172

xiii



5.7 intRNA(9), intRNA(2) and intRNA(9)Rev northern analysis 173
5.8 intRNA(9), intRNA(2) and intRNA(9)Rev single-step growth
curve in BHK-21 cells 175

5.9 intRNA(9), intRNA(2) and intRNA(9)Rev multi-step growth curve 176
5.10 intRNA(9), intRNA(2) and intRNA(9)Rev single-step growth
curve in L929 cells 177

5.11 intRNA(9), intRNA(2) and intRNA(9)Rev lung titres 179
5.12 intRNA(9), intRNA(2) and intRNA(9)Rev infective centre assay 181
5.13 intRNA(9), intRNA(2) and intRNA(9)Rev dl4 splenic viral load 182
5.14 In situ hybridization on intRNA(9) and intRNA(2) infected spleens 184
5.15 intRNA(9) and intRNA(2) vtRNA PCR 185
5.16 intRNA(9), intRNA(2) and intRNA(9)Rev whole spleen weights 186
5.17 Long term experiment 1: whole spleen weights d77 188
5.18 Long term experiment 1: infective centre assay d77 188
5.19 Long term experiment 2: whole spleen weights d70 and dl20 189
5.20 vtRNA expression within stably transfected cell lines 191

xiv



List of tables

Page
1.1 Human herpesvirus disease associations 3
1.2 EBV latent gene expression 16

1.3 MHV-68 virion proteins 37

3.1 Virus titres following sucrose gradient purification 117
3.2 RT-PCR on extracellular virus stock 128

4.1 MALDI-TOF analysis on proteins within vtRNAl -protein complex 149
5.1 Expected MHV-76, intRNA and intRNARev Southern blot

hybridization patterns 166

xv



Abbreviations

AIDS Acquired immunedeficiency syndrome
A1HV Alcelaphine herpesvirus
AP Alkaline phosphatase
ATP Adenosine triphosphate
BAC Bacterial artificial chromosome

BART BamHl rightward transcripts

bp Base pair
Bcl-2 B-cell lymphoma/leukaemia 2
BHK Baby hamster kidney
BHV Bovine herpesvirus
BL Burkitt's lymphoma
BMV Brome mosaic virus

BSA Bovine serum albumin

CDK Cyclin-dependent kinase
cDNA Complementary DNA
CHX Cyclohexamide
CNS Central nervous system

CPE Cytopathic effect
CTL Cytotoxic T lymphocyte
CTP Cytidine triphosphate
DMEM Dulbecco's modified Eagle's medium
DNA Deoxyribonucleic acid
ds Double stranded

DTT Dithiothreitol

E Early
EBER Epstein Barr virus-encoded small RNA
EBNA Epstein Barr nuclear antigen
E. coli Escherichia coli

EBV Epstein Barr virus
EDTA Ethylenediaminetetraacetic acid
EGTA Ethyleneglycol-bis(P-aminoethyl)-N,N,N,N'tetraacetic acid

XVI



EHV Equine herpesvirus
elF Eukaryotic initiation factor
EMSA Electrophoretic mobility shift assay
FADD Fas associated death domain

FCS Foetal calf serum

FLICE FADD-like interleukin 1 P-converting enzyme

FLIP FLICE inhibitory protein
GAPDH Glyceraldehyde-3 -phosphate dehydrogenase
GFP Green fluorescent protein

gP Glycoprotein
GTP Guanine triphosphate
GPCR G protein coupled receptor

HC1 Hydrochloric acid
HCMV Human cytomegalovirus
HEPES N'-[2-hydroxyethyl]piperazine-N'-[2-ethanesulphonic acid]
HHV Human herpesvirus
HIV Human immunodeficiency virus
HLA Human leukocyte antigen
HSUR Herpesvirus saimiri unique RNAs
HSV Herpes simplex virus
HVS Herpesvirus saimiri
ICAM Intracellular adhesion molecule

ICP Infected cell protein

Ig Immunoglobulin
IE Immediate early
IFN Interferon

IL Interleukin

IM Infectious mononucleosis

IR Inverted repeat

IRF Interferon regulatory factor
IRES Internal ribosome entry site
Kb Kilobase

xvii



KS Kaposi's sarcoma

KSHV Kaposi's sarcoma associated herpesvirus
L Late

LANA Latency associated nuclear antigen
LAT Latency associated transcript
LB Luria-Bertani

LCV Lymphocryptovirus
LHE Left hand end

LMP Latent membrane protein
MCD Multicentric castleman's disease

MDV Marek's disease virus

miRNA Micro RNA

mRNA Messenger RNA
MHC Major histocompatibility complex
MHV Murine herpesvirus
MOI Multiplicity of infection
ND Nuclear domain

NPC Nasopharyngeal carcinoma
dNTP deoxy nucleotide triphosphate
ORF Open reading frame
OvHV Ovine herpesvirus
PAA Phosphonoacetic acid
PAGE Polyacrylamide gel electrophoresis
PBS Phosphate buffered saline
PCR Polymerase chain reaction
PEL Primary effusion lymphoma
PFU Plaque forming units
P.I. Post infection

PKR Protein kinase R

PTLD Post transplantation lymphoproliferative disease

pRB Retinoblastoma protein
RDV Rhadinovirus

xviii



RNA Ribonucleic acid

RNAi RNA interference

RPMI Roswell park memorial institute
RPV Rabbitpox virus
RT Reverse transcriptase
RTA Replication and transcription activator
SAP SLAM associated protein

s.a.p Shrimp alkaline phosphatase
SD Standard deviation

SDS Sodium dodecyl sulphate
siRNA Small interfering RNA
SIV Simian immunodeficiency virus
SLAM Signalling lymphocyte activation marker
snRNP Small nuclear riboprotein
ss Single stranded
S/N Supernatant
SPBS Sterile phosphate buffered saline
SSC Saline sodium citrate

STP Simian transforming protein
TAE Tris acetate EDTA

Taq Thermus aquaticus

TBE Tris borate EDTA

TE Tris EDTA

IF Transcription factor
TIP Tyrosine kinase interacting protein
TLS tRNA-like structure

TK Thymidine kinase
TNF Tumour necrosis factor

tRNA Transfer RNA

TYMV Turnip yellow mosaic virus
URNA Unique RNA
UTP Uracil triphosphate

xix



UTR Untranslated region
UV Ultraviolet

V Viral prefix
vtRNA Viral tRNA-like molecule

v/v Volumer per volume
VZV Varicella zoster virus

w/v Weight per volume
XLP X-linked lymphoproliferative syndrome

XX



Chapter One Introduction

Chapter 1: Introduction

1.1 Herpesviruses
1.2 Gammaherpesviruses
1.3 Murine gammaherpesvirus-68
1.4 Transfer RNA molecules

1.5 Viral non-coding RNA molecules
1.6 Project outline

l



Chapter One Introduction

1.1 Herpesviruses

Herpesviruses constitute a large family of at least 130 species of viruses, isolated
from a variety of animal species as diverse as humans and oysters. They can be
described as an evolutionarily old family of viruses that are well adapted for survival
within their host species, so much so that many herpesviruses are only able to infect
their natural host. Their apparent evolutionary success can be attributed to their

ability to persist for the life-time of the host, rarely causing overt disease in

immunocompetent individuals. However, in certain circumstances, such as infection
of immunocompromised individuals or an alternative host species, serious illness can

result. Most animal species can be infected by two or more distinct herpesviruses, for

example there have been eight herpesviruses found to be associated with humans to

date (Table 1).

Members of the Herpesviridae all share four significant properties:
1. They encode a large array of enzymes involved in nucleic acid metabolism

(e.g. thymidine kinase), DNA synthesis (e.g. DNA polymerase) and protein

processing (e.g. protein kinase).
2. The synthesis of viral DNA and capsid assembly occurs in the nucleus.
3. Production of infectious progeny invariably results in destruction of the host

cell.

4. They have the capacity to maintain a latent infection within their natural

hosts, expressing only a limited number of viral genes from a circularized

genome. The exact cell type responsible for maintaining the latent infection
varies between the different herpesviruses (Roizman and Pellet, 2001).

The ability to maintain a latent infection allows herpesviruses to persist for the life¬
time of the host. During latency the viral DNA circularizes to form an extra-

chromosomal episome and gene expression becomes limited, to some extent

facilitating the escape from the host immune response. Infectious progeny are

produced through reactivation of the latent genomes, allowing transmission of the
virus to a new host.
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Chapter One Introduction

Subfamily Genus Virus Disease associations

A Iphaherpesvirinae Simplexvirus HSV-1

HSV-2

Cold sore, keratitis,
ocular disease, encephalitis

Genital lesions, encephalitis

Varicellovirus VZV Chicken Pox, shingles
Post herpetic neuralgia

Betaherpesvirinae Cytomegalovirus HCMV Mononucleosis, congenital
deformities, ocular disease

Roseolovirus HHV6

HHV7

Liver dysfunction,
Exanthema subitum (ES)

ES

Gammaherpesvirinae Lymphocryptovirus EBV Infectious mononucleosis
Burkitt's lymphoma,
Hodgkin's disease,

nasopharyngeal carcinoma,
post-transplant

lymphoproliferative disease

Rhadinovirus KSHV Kaposi's sarcoma, primary
effusion lymphoma,

multicentric Castleman's
disease

Table 1.1
Table of the known human herpesviruses and their clinical manifestations.
Adapted from Fields Virology 4th edition (ed. Knipe and Howley)
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Chapter One Introduction

1.1.1 Classification

Herpesviruses can be divided into three subfamilies: the Alphaherpesvirinae, the

Betaherpesvirinae, and the Gammaherpesvirinae. Initial classification was based

upon biological properties, including the host range of the viruses, the length of

replication cycle, the ability of the virus to exhibit cell to cell spread in culture and
the sites of latent infection. More recently however classification has been based on

DNA sequence homology, similarities in genome sequence arrangement, and
relatedness of viral proteins demonstrable by immunologic methods.

1.1.1.1 Alphaherpesviruses
The Alphaherpesvirinae contains the genera Simplexvirus [e.g. herpes simplex virus

types 1 and 2, (HSV-1 and HSV-2)], Varicellovirus [e.g. varicella zoster virus

(VZV)] and Mardivirus [e.g. Marek's disease virus (MDV)]. They represent a

subfamily of herpesviruses with a capacity to establish latent infections mainly
within sensory ganglia, with the exception of members of the Mardivirus genus

which form a latent infection within T lymphocytes. They exhibit a variable host

range and have a relatively short replication cycle with a rapid spread in culture,

accompanied by efficient destruction of the host cell.

1.1.1.2 Betaherpesviruses
Members of the Betaherpesvirinae have restricted host range, and were initially
characterized as exhibiting a long replication cycle and slow spread in culture, based

upon the time taken for the virus to produce cytopathic effects. However,

quantification of viral DNA load in vivo has shown a much more rapid replication

cycle, with a doubling time of less than two days (Emery et al, 1999). Infected cells

characteristically become enlarged, a process known as cytomegalia. Persistent
infection occurs mainly within mononuclear cells (Mocarski and Courcelle, 2001), in
addition to cells of the central nervous system, salivary glands and kidneys. The

subfamily contains the genera Cytomegalovirus and Roseolovirus. Members of the

Cytomegalovirus genus include human cytomegalovirus (HCMV) and its related
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Chapter One Introduction

mouse counterpart, mouse cytomegalovirus (MCMV), and those of the Roseolovirus

genus include human herpesviruses 6 and 7 (HHV-6 and HHV-7).

1.1.1.3 Gammaherpesviruses
The Gammaherpesvirinae constitute a sub-family with a very narrow host-range, in
both the cell type and host species they are able to infect, with infection often being
restricted to the family or order to which the natural host belongs. They show a

varied ability to replicate in vitro, with only a small number of gammaherpesvirus

species being able to undergo lytic replication in certain cell lines. Latent infection is
maintained primarily but not exclusively within T- and B-lymphocytes. The

subfamily contains the genera Lymphocryptovirus (e.g. EBV) and Rhadinovirus [e.g.

Kaposi's sarcoma associated herpesvirus (KSHV), herpesvirus saimiri, (HVS) and
murine gammaherpesvirus-68 (MHV-68)].

1.1.2 Herpesvirus Structure
The herpesvirus virion contains genetic information in the form of linear dsDNA
found within an icosadeltahedral capsid approximately 100 to 110 nm in diameter

composed of 162 capsomeres (Roizman and Pellet, 2001). The outer layer of the
virion is composed of an envelope derived from patches of cellular membrane

containing about a dozen viral proteins and glycoproteins (figure 1.1). The structure

between the capsid and the envelope is known as the tegument, a complex,

amorphous layer containing viral proteins; in the case of HSV-1, more than 15

tegument proteins have been identified (Mettenleiter, 2002). The tegument links the

nucleocapsids to the envelope and maintains the integrity of the virion. The
innermost layer of the tegument that is located adjacent to the nucleocapsid of HSV
has been shown to exhibit icosahedral symmetry (Zhou et al, 1999), however recent
evidence indicates that the innermost tegument of gammaherpesviruses is not

icosahedral in structure but spherical (Dai et al, 2005). Herpesviruses range in size
from 120 to nearly 300 nm in diameter, with the differences in size usually being due
to variations within the size of the tegument.
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Chapter One Introduction

Envelope Layer

Tegument Layer

Genomic dna

Capsid Layer

Cut-Away Layer

© Physicians' Research Network, Inc. All rights reserved.
Published In The PRN Notebook,Volume 7, Number l.March 2002 and The PRN Notebook Online at iv/«v/.prn.org

Three-dimensional model of KSHV created by Louis E. Henderson, Ph.D., Frederick Cancer Research Center

Figure 1.1
Schematic representation of a typical herpesvirus.
Taken from PRN Notebook; www.prn.org
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Chapter One Introduction

1.1.3 Herpesvirus genome
The herpesvirus gemones range in size from approximately 120 to 250 Kbp and can

be divided into six groups based on the presence and localization of repeat regions

[figure 1.2 (Roizman and Pellet, 2001)]. They have been found to possess between
70 and 200 open reading frames (ORFs), however this is likely to be an under¬
estimation as the true complexity of the genomes becomes apparent. For example,

alternatively spliced exons and translation frame-shifting result in the expression of
different gene products from the same DNA sequence. ORFs can also be expressed
which are entirely anti-sense to each other [e.g. HSV-1 yi34.5 and ORFs P and O

(Lagunoff and Roizman, 1994)]. Gene overlaps in the same orientation are also

common, resulting from promoter-regulatory sequences from 3' genes being located
within the coding sequences of 5' ORFs. In addition, many herpesviruses express

non-coding RNA molecules, such as the EBV encoded RNAs (EBERs), the latent
associated transcripts (LATs) of E1SV and the viral transfer RNA-like molecules

(vtRNAs) of MHV-68. Furthermore, the recent discoveries of a number of

microRNAs encoded by herpesviruses has resulted in an increase in the number of
known herpesvirus non-coding RNA (Pfeffer et al, 2005a; Pfeffer et al, 2004), and it
is possible that this number could increase further as the methods used for the
detection of small RNA molecules become more sophisticated.

The majority of herpesvirus genes consist of a single ORF flanked by 5' and 3'
nontranslated sequences of 30 to 300 bp and 10 to 30 bp respectively, a promoter

sequence spanning 50-200 bp upstream of a TATA box and a 3' polyadenylation

sequence. Transcription initiates from a site 20 to 25 bp downstream of the TATA
box (Roizman and Pellet, 2001). For the majority of herpesvirus genes transcription
is carried out by the host RNA polymerase II, with a few, such as the EBERs of

EBV, transcribed by RNA polymerase III. A variety of viral genes have been found
to be involved in both the up- and down-regulation of viral gene expression, for
instance ICP4 of HSV-1 up-regulates the expression of an array of viral genes while
also down-regulating its own expression (Roizman and Knipe, 2001). Most

herpesvirus genes are not spliced, although every herpesvirus encodes a small
number of spliced genes.
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Figure 1.2
A schematic diagrammatic representation of the genome organisations
for the different classes of herpesviruses. Members of group A (e.g.
channel catfish herpesvirus) possess genomes containing left and right
long terminal repeats (LTRs), where as group B herpesviruses have
reiterated terminal repeat sequences (e.g. herpesvirus saimiri). Group C
herpesviruses, such as EBV, have four internal repeat sequences within
the unique region of the genome (IR1-IR4), in addition to reiterated
terminal repeat sequences (TRs). In group D viruses (e.g. VZV), the
single LTR is repeated in the reverse orientation within the unique
region of the genome. Group E genomes contain one terminus with n
copies of repeat sequences (a) next to a long repeat region (b). The
opposite end of the genome has a single copy of a next to a repeat
section (c). For group E herpesviruses (e.g. HSV and HCMV) the terminal
ab and ca sequences are also found inverted within the unique region of
the genome in the form of b'-a'n-c', thus dividing the genome into
unique long and unique short regions (UL and Us respectively), which are
able to invert giving rise to four genomic isomers. No obvious repeat
regions have been identified within group F genomes (e.g. tupaia
herpesvirus).
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Generally speaking, herpesviruses express two classes of protein; non-structural

proteins necessary for viral DNA replication, and structural proteins that make up the
virion framework. However, more than half of HSV-1 genes have been found to be
nonessential for growth in culture, although they may not be dispensable for viral
infection in vivo (Roizman and Pellet, 2001). Such genes have a variety of functions

including creating a suitable environment for the replication and expression of viral

DNA, evasion of the host immune response and establishment of the latent state.

There are 26 core genes which are conserved between the three families of

herpesviruses, found within core gene blocks containing between 2 and 12 genes, in
which the gene order and polarity is conserved in all herpesviruses (Roizman and

Pellet, 2001). These include some of the virion structural proteins, along with

proteins involved in gene regulation, nucleotide metabolism and DNA replication.

Sequence similarities also exist at the sub-family level; for example the

alphaherpesviruses encode proteins with homologies to VP 16 and ICP4, which are

not found in other herpesviruses (Roizman and Pellet, 2001). All herpesviruses
encode genes homologous to cellular genes, with the gammaherpesviruses

possessing the largest array of captured host genes; KSHV encodes 12 genes

predicted to be of host origin (Choi et al, 2001).

Many herpesviruses genes have two or more distinct functions. The latency
associated nuclear antigen (LANA-1) of KSHV has a variety of functions which
allow the persistence of the virus within latently infected cells. By tethering the viral

episome to cellular chromosomes it ensures equal segregation of virus into daughter
cells during cell division (Ballestas et al, 1999). It also contributes to immortalization
of the infected cell by targeting and inactivating the cellular proteins pRB and p53,

(Friborg et al, 1999; Radkov et al, 2000) along with up-regulating the expression of
the enzymatic subunit of telomerase (Knight et al, 2001). In order to down-regulate

lytic-cycle gene expression LANA-1 is able to both decrease the expression of the

lytic transactivator, Rta and antagonize its function (Lan et al, 2004), while also up-

regulating the expression of the latency-associated genes (Renne et al, 2001). By
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exhibiting a variety of functions it ensures persistence of the viral DNA within an

immortalized cell and maintenance of the latent pattern of gene expression.

1.1.4 Herpesvirus Life cycle

Herpesvirus productive replication involves four key steps; 1) entry into the host cell,

2) viral gene expression, 3) viral DNA synthesis and 4) assembly and egress of the

progeny virions. The replication cycle of HSV-1 is perhaps the best characterized of
the herpesviruses, thus a description of herpesvirus replication is described as it
occurs for HSV-1, although examples for other herpesviruses are also given.

Entry of herpesviruses into host cells can be broken down into three steps; an initial
reversible attachment step, followed by irreversible co-receptor binding which in turn
mediates fusion of the viral envelope with the plasma membrane. A number of
cellular receptors are involved in this process, which in part explains the differences
in cell and tissue tropism among the different herpesviruses. Initial attachment for the

majority of herpesviruses occurs via binding to glycosaminoglycans (GAGs), for

example the receptor for HSV attachment is known to be heparan sulphate which
binds the viral gB and/or gC ligand (Roizman and Knipe, 2001). A notable exception
is EBV, which instead binds complement receptor 2 (CR2, also known as CD21) on
B lymphocytes via gp350 (Spear and Longnecker, 2003). Given that HSV is still able
to infect cells devoid of GAGs, albeit with a diminished infectivity, the initial
attachment most likely functions to concentrate virions at the cell surface but is not

an absolute requirement for virus entry (Banfield et al, 1995).

In contrast, the interaction of HSV gD with several co-receptors is essential for
cellular entry (reviewed in Spear, 2004), perhaps indicating that this step triggers the

changes required for membrane fusion. gD is capable of binding to a number of cell
surface receptors, which exhibit differential tissue distributions. These include

herpesvirus entry mediator (HVEM, also known as HveA) (Montgomery et al,

1996), a member of the tumour necrosis factor receptor family, which is expressed in
a variety of cell types included lymphocytes, epithelial cells and fibroblasts but not
neurons. gD also interacts with members of the immunoglobulin superfamily,
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namely nectin-1 and nectin-2 (Geraghty et al, 1998), which are expressed on cells of

epithelial, fibroblastic, neuronal and haematopoietic origin. Within polarized

epithelial cells they localize primarily to adherens junctions and may therefore be
more important in cell to cell spread of the virus (Sakisaka et al, 2001), in addition to

mediating infection of neurons (Simpson et al, 2005). Specific sites generated in

heparin sulphate by 3-0-sulphotransferases, which are broadly distributed on a

number of cell types, are capable of being bound by gD, although a role within
infection of human cells has yet to be demonstrated (Shukla et al, 1999). In addition
to allowing viruses to enter a variety of cell types, the differential expression of co-

receptors may play a role in allowing viruses to exhibit different cellular tropisms

during different stages of infection. This is perhaps best exemplified by work
conducted on EBV, which is able to infect both epithelial and B cells. During B cell

entry gp42 carries out a role analogous to HSV gD through binding HLA class II

(Spear and Longnecker, 2003). The cellular receptor responsible for entry in

epithelial cells has yet to be identified. Viruses lacking gp42 are unable to enter B
cells but are still able to infect epithelial cells with equal efficiency (Wang et al,

1998). In B cells, gp42 is sequestered by HLA II, resulting in virions that are

depleted in gp42 and are able to enter epithelial cells more efficiently than B-cells

(Borza and Hutt-Fletcher, 2002).

Following co-receptor binding, viral entry then occurs by fusion of the virion

envelope with the plasma membrane, a process which is unclear at the molecular

level, although several virally encoded glycoproteins play a role; namely gB, and the

gH-gL heterodimer, which are conserved in all three sub-families of Herpesviruses

(Spear and Longnecker, 2003). It has been hypothesized that co-receptor binding by

gD induces a rearrangement or conformational change in the viral proteins

facilitating envelope fusion with the cellular membrane (Roizman and Knipe, 2001).

Following fusion with the cellular membrane, at least part of the tegument

dissociates from the nucleocapsid. A number of tegument proteins, such as virus host
shut-off protein (vhs), which modulate the cellular environment, remain in the

cytoplasm, while others such as VP 16, a protein involved in the regulation of viral
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gene expression, are transported to the nucleus (Roizman and Knipe, 2001). The

nucleocapsid is transported along microtubules to the nucleus, which it enters

through the nuclear pores. Within the nucleus, viral DNA is released, circularizes and
localizes in close proximity to nuclear domain-10 (ND-10) structures (Ishov and

Maul, 1996).

HSV-1 infection facilitates the switch from cellular to viral gene expression by
inhibition of host transcription, RNA splicing and transport, and protein synthesis.
Viral gene expression takes place in a cascade fashion for all herpesviruses (Honess
and Roizman, 1974), initiating with the immediate early (IE) or a-genes, which are

classified as being expressed in the absence of de novo viral protein synthesis. In the
case of HSV-1, the tegument protein VP 16 plays an important role in enhancing the

expression of the a-genes (Batterson and Roizman, 1983), which encode six proteins

(ICPO, 4, 22, 27, 47 and Us1.5). The products of a-genes typically function to

regulate later gene expression as well as modification of the host cell. The second
class of genes, the early (E) or [3-genes, are classified based upon their dependence
on viral protein synthesis but not DNA replication for their expression (Honess and
Roizman, 1974). This can be attributed to their reliance on functional ICP4 for their

expression (Roizman and Knipe, 2001). The p-genes encode proteins involved in
DNA replication (e.g. ICP8) and nucleotide metabolism (e.g. thymidine kinase). The
late (L) or y-genes are expressed only in the presence of protein expression and viral
DNA synthesis (Honess and Roizman, 1974). They can be further sub-divided into

yl- and y2-genes (Roizman and Knipe, 2001). The yl-, or leaky-late, genes are

expressed relatively early following infection and are stimulated a few fold by viral
DNA synthesis. The y2- or true-late genes are not expressed in the absence of DNA

replication. The y-genes encode mainly structural components of the virion,

including capsid proteins, which are translated in the cytoplasm and then imported
into the nucleus where capsid assembly takes place.

Replication of viral DNA occurs following the expression of the P-genes. Several of
the P proteins localise in prereplicative sites near ND-10 structures, where viral DNA

synthesis initiates on the circular molecule (Maul et al, 1996), carried out by the viral
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DNA polymerase and its accessory protein, a ssDNA binding protein (ICP8), a

helicase primase complex of proteins and the origin binding protein. Initial

replication proceeds in the theta replicative form, however this switches early in the

replication cycle to a rolling-circle mechanism giving rise to concatemeric molecules

(Roizman and Knipe, 2001). As DNA synthesis progresses, the progeny DNA
molecules and replication complexes accumulate in the nucleus in globular structures
known as replication compartments (Quinlan et al, 1984). It is within the replication

compartments that the concatemeric DNA is cleaved and loaded into empty

nucleocapsids.

The nucleocapsids exit the nucleus by budding through the inner nuclear membrane,
from which they acquire a primary envelope distinct from that found on mature

virions (Mettenleiter, 2002). Theories as to how final envelopment and budding of
the virions from the host cell takes place have been widely disputed. One model

suggests that virions retain their integrity, and traffic from the inner nuclear space to

the Golgi in vesicles or within the lumen of the endoplasmic reticulum and viral

proteins are subsequently modified during final maturation through the secretory

pathway. However, the now widely accepted model involves fusion with the outer

nuclear membrane or endoplasmic reticulum, resulting in loss of the primary

envelope and translocation of the free nucleocapsids to the cytoplasm. The evidence

supporting this model includes electron micrograms which demonstrate fusion of the

primary envelope with the outer nuclear membrane (Granzow et al, 2001). In

addition the composition of the envelope glycoproteins changes between primary

envelopement within the nucleus and final release of the virus, for example the UL31
and UL34 are found within the primary envelope but not within extracellular

enveloped virions (Skepper et al, 2001). Furthermore, tegumentation has been found
to occur within the cytoplasm and not the nucleus, through an intricate network of

protein-protein interactions resulting in the formation of both the inner and outer

tegument (Mettenleiter, 2002). Following final envelopement mature virions are

secreted from the cell via the vesicular route.
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1.2 Gammaherpesviruses
1.2.1 Epstein-Barr virus

Epstein-Barr virus was initially discovered over 40 years ago within cells taken from
Burkitt's lymphoma (BL), a childhood tumour common in sub-Saharan Africa with a

geographical distribution suggestive of an infectious origin (Epstein et al, 1964).

Thus, EBV represented the first candidate human tumour virus and has since been
found to be associated with a number of malignancies. In addition to its presence

within 96% of BL tumours, it is also associated with both lymphoid and epithelial

tumours, such as Hodgkin's lymphoma and nasopharyngeal carcinoma. It represents
an extremely promiscuous human virus, with over 90% of adults being seropositive

(Magrath, 1990), reaching close to 100% in the developing world, wherein the

majority of infections are acquired within the first three years of life. In contrast, in
the developed world, 50% of individuals are sero-negative by the first decade

consequently delaying primary infection until adolescence (Steven, 1996). This can

result in a self limiting lymphoproliferative disease known as infectious
mononucleosis. EBV has a very restricted host range, being able to persistently infect

only humans, and is maintained as a latent infection within circulating B-

lymphocytes. In vitro it is able to infect and transform resting B-lymphocytes,

resulting in the formation of lymphoblastoid cell lines (Kieff and Rickinson, 2001).

EBV was the first herpesvirus to be cloned into Escherichia coli, enabling a

comprehensive study of the viral genome (Arrand et al, 1981). It is classified as a

group C herpesvirus, based upon the presence and localization of repeat sequences.
The genome consists of 172kbp of unique DNA flanked by reiterated 0.5kbp
terminal repeat sequences (Kieff and Rickinson, 2001). The unique region is divided

by four reiterated 3kbp internal repeat sequences. Two EBV subtypes have been

isolated, EBV-1 and EBV-2 (Kieff and Rickinson, 2001), which share extensive

homology but differ in their regions encoding the EBNA antigens (EBNA LP, 2, 3A,

3B, 3C). The two subtypes exhibit differing geographical distributions and ability to

immortalize lymphocytes, with EBV-1 having a greater ability to transform

lymphocytes than EBV-2. However, no differences in disease association have been
found.
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1.2.1.1 EBV latent infection

EBV is capable of infecting primary human B-cells derived from peripheral blood,
tonsils or foetal cord blood, leading to the formation of lymphoblastoid cells lines. B-

lymphocytes at earlier stages of development, such as those derived from adult or
foetal bone marrow can also be infected, albeit with a lesser efficiency (Kieff and

Rickinson, 2001). Latent infection results in a restricted sub-set of viral gene

expression which contributes to the maintenance of the viral episome and B-

lymphocyte immortalisation. Various patterns of gene expression have been
observed (table 1.2). During latent infection in vitro six viral nuclear antigens

(EBNA-1, -2, -3A, -3B, -3C and -LP) as well as three membrane proteins (LMP-1, -

2A and 2B), two EBV encoded RNAs (EBERs) and numerous spliced transcripts

arising from the BamHI fragment (BARTs) family of transcripts are expressed, under
the control of EBNA-2 (Ling et al, 1994). This pattern of gene expression is known
as the latency III or growth program. Expression is initiated from one of two

promoters, Cp and Wp, which function in a mutually exclusive fashion. Wp is
utilized exclusively during initial infection, followed by a switch to Cp usage (Kieff
and Rickinson, 2001).

The latency III expression program results in an activated phenotype, resembling that
caused by antigenic stimulation, as demonstrated by the up-regulation of cell surface

markers, such as CD23 and ICAM1 (Young and Rickinson, 2004). It can be

hypothesised this functions to ensure growth transformation of the host cells and
therefore amplify the numbers of latently infected B-lymphocytes. Consistent with

this, the latency III phenotype can also be seen following the initial infection of naive

B-lymphocytes within the tonsils (Tierney et al, 1994) and during infectious
mononucleosis (IM). However, during long-term infection the virus persists within

long-lived memory B-lymphocytes within the peripheral blood. The exact

mechanism by which the B-lymphocyte enters the memory population is still a

subject of much debate. One hypothesis is that EBV directly infects pre-existing

memory cells (Young and Rickinson, 2004). However, this still does not explain the
need for EBV to drive proliferation and activation of nai've B-lymphocytes. A second

hypothesis is that the EBV infected cells enter follicles where differentiation into
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Latency
program

Genes

expressed
EBNA-1
Promoter

Example

Latency 1/
Latency

EBNA-1
EBERs
BARTs

Qp Burkitt's

lymphoma

Latency 11/
Default

LMP1, LMP2,
EBERs, BARTs

Qp Hodgkin's
disease

Latency III/
Growth

EBNA-1, 2,
LP, 3A-C
LMP1, LMP2,
EBERs, BARTs

Cp/Wp PTLD,
Lymphoblastoid
cell line

Table 1.2. EBV gene expression pattern during the different latency
program including the promoter used to drive the expression of EBNA-
1. Examples of disease states which exhibit the various gene expression
patterns are shown, along with the latently infected lymphoblastoid cell
line. Adapted from Kieff and Rickinson, 2001.
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resting memory cells occurs through the process of the germinal centre reaction but
with viral genes instead of antigen providing the signals required to drive
differentiation (Babcock et al, 2000).

The differentiation of latently infected B-lymphocytes is accompanied by a change in
the pattern of gene expression, initially to the latency II (or default) phenotype, as

EBV-positive germinal centre tonsillar B-cells have been demonstrated to exhibit
this pattern of gene expression (Babcock et al, 2000). In addition, EBV infected cells
within Hodgkin's lymphoma resemble germinal centre B lymphocytes and also

display the latency II pattern of gene expression (Staudt, 2000). At the molecular
level, this occurs due to a switch in promoter usage from the Cp/Wp promoters to the

Qp promoter, probably through host-cell mediated methylation of the Cp/Wp

promoters (Schaefer et al, 1997). The pattern of gene expression during long term

persistence of the virus following exit of the latently infected B lymphocytes from
the tonsils and into the peripheral circulation is still a matter of debate. The latency I

(or latency) phenotype was initially characterised in vitro within EBV-positive
Burkitt's lymphoma B lymphocytes as expressing EBNA-1, the EBERs and the
BARTS (Gregory et al, 1990). By exhibiting such a limited pattern of gene

expression, the virus is able to escape cytotoxic T-cell (CTL) mediated attack as the

only viral protein expressed, ENBA-1, contains internal alanine-glycine repeats

which was identified as interfering with antigen processing (Mukherjee et al, 1998),

although recent evidence suggests that EBNA-1 is accessible to the ME1C class I

pathway (Lee et al, 2004; Tellam et al, 2004). Within the long-lived circulating

memory B-cell population in vivo, a variable pattern of gene expression has been
detected with the majority of cells expressing only the EBERs and the BARTs, with
occasional LMP2A expression and EBNA-1 expression during cell-division

(Thorley-Lawson and Gross, 2004). Nonetheless, whatever the pattern of gene

expression, it is clear that the virus is able to persist in a benign state within the

memory B-cell population for the life-time of the host.
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1.2.1.2 Disease Associations

Infectious virus can be found within the saliva of carriers, indicating a site of

productive infection within the oral cavity. However, the actual cell type remains

controversial, with one hypothesis being that infectious virus is released from B-

lymphocytes (Niedobitek and Young, 1994), whereas an alternative hypothesis is
that EBV undergoes a cycle of lytic replication within squamous epithelial cells

(Sixbey et al, 1984). Transmission of the virus occurs through close oral contact

(Yao et al, 1985) and primary infection is largely asymptomatic, however in certain
instances it can result in infectious mononucleosis (IM). The nature of the

predisposing factors for IM is not clear, however the age of acquisition is a

determining feature, as there has been found to be a 30-50% risk factor for the

development of IM when EBV is acquired during adolescence (Crawford, 2001). The
reason for the age related disease association is not known, however it has been

postulated to be related to the individual immune status or an increased viral dose. In

addition, it is possible that there is a sexual route of infection, but it is unclear
whether this is a contributing factor in the development of IM (Crawford, 2001). IM
is thought to result from the direct infection of an inappropriate cell type, namely

memory B-cells, resulting in the clonal expansion of this cell population (Thorley-

Lawson, 2001). The resulting symptoms include fever, sore throat, enlarged and

painful lymph glands, along with an accompanying severe and debilitating fatigue.
The symptoms of IM have an immunopathogical basis, largely due to an increased
number of circulating CD8 T-cells, dominated by the VP4 subtype.

In healthy individuals, the EBV infection is ultimately controlled by humoral and cell
mediated responses, with CD8 T-cells playing an essential role. This is demonstrated

by the fact that boys with a rare genetic abnormality known as X-linked

lymphoproliferative (XLPS) disease are unable to control primary EBV infection,

resulting in an often fatal hyper-acute IM-like syndrome. The mutated gene in XLPS,
SAP (SLAM associated protein) is expressed on activated T-cells and NK cells,
where it regulates signalling through the signalling lymphocyte activation molecule

(SLAM) (Coffey et al, 1998). The mutated form seen in XLPS results in T cells

18



Chapter One Introduction

defective in lytic activity, resulting in a decreased ability to kill EBV-positive B

lymphocytes (Dupre et al, 2005).

EBV is also associated with malignancies in the immunocompromised host, in

particular those lacking a functional T-cell response. As a result of

immunosuppressive therapy between 5 and 30% of transplant recipients develop

post-transplantation lymphoproliferative disorder (PTLD) (Thompson and Kurzrock,

2004), a heterogeneous collection of disorders resulting from an expanded population
of B-lymphocytes, which usually carry EBV. The known risk factors for PTLD
include the degree of T-cell suppression and the EBV status of the recipient, with
those undergoing primary infection at the time of immunosuppression being

particularly susceptible (Crawford, 2001). In AIDS patients EBV is associated with
a diverse spectrum of B-cell lymphomas (Rickinson and Kieff, 2001), along with

being the causative agent of oral hairy leukoplasia (OHL), a benign lesion resulting
from lytic replication of EBV in the superficial layers of the tongue epithelium

(Greenspan et al, 1985).

EBV was initially isolated from endemic Burkitt's lymphoma, a neoplasm common

in equatorial Africa and Papua New Guinea. (Epstein et al, 1964) Approximately
96% of cases are associated with EBV and the role of the virus in the BL has been

demonstrated by studying the BL derived cell line, Akata; sub-clones which have lost
EBV show decreased cell growth and will not induce tumours in mice (Shimizu et al,

1994). Given the geographical distribution of BL, it has been postulated that malaria
acts as a cofactor. Various hypotheses have been put forward as to the role of malaria
in BL; one being that continuous re-infection with malaria causing B-cell stimulation

may contribute to an expanded number of EBV-infected, proliferating B cells

(Thompson and Kurzrock, 2004). A second theory is that the immunosuppressive
effects of malaria lead to decreased levels of EBV specific CTLs (Crawford, 2001).
A hallmark of BL is a chromosomal translocation resulting in c-myc proto-oncogene

translocation into the vicinity of the immunoglobulin loci leading to deregulated c-

myc expression, resulting in continuous proliferation and inhibition of differentiation

(Zech et al, 1976). The contribution EBV plays to BL is not clear, especially given
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that the only viral genes expressed within BL derived cell lines in vitro are EBNA-1,
the EBERs and BARTs. However, given that the EBV genome is maintained within
BL cells it is clear that is does offer a growth advantage, perhaps by inhibiting

apoptosis as both EBNA1 and the EBERs have been shown to be involved in the

prevention of apoptosis (Kennedy et al, 2003; Komano et al, 1999).

Hodgkin's lymphoma (HL) accounts for 20% of all lymphomas in the Western
World. EBV was first theorized to play a role in HL following the observation that
IM is a risk factor (Thorley-Lawson and Gross, 2004). HL is typified by the large
multinuclear Reed-Sternberg cells (RSC) along with Hodgkin's cells (known

collectively as HRS). EBV can be detected within HRS cells in 50% of HL cases in

developed countries, reaching almost 100% of cases in the developing world

(Crawford, 2001). Despite comprising the malignant element of HL, HRS cells are

vastly out numbered by mononuclear cells, which form the bulk of the tumour mass.

As HRS cells contain hypermutated immunoglobulin genes it is believed they are

formed from centrocytes which have traversed the germinal centre (Staudt, 2000). B-

lymphocytes at this stage of differentiation are usually resting cells prone to

apoptosis, however, expression of EBV gene products may provide the growth and
survival signals promoting the transformation of these cells; LMP1 constitutively
activates the CD40 signaling cascade leading to cellular proliferation (Lam and

Sugden, 2003), whereas LMP2A mimics B-cell receptor signaling to maintain
survival of the cells (Young and Rickinson, 2004). It can therefore be speculated
that HL occurs following a mutation in a germinal centre B-cell during IM

preventing its differentiation, thus resulting in the constitutive expression of LMP1
and LMP2A, which then provide the signals for enhanced tumour growth.

EBV has also been associated with malignancies of epithelial origin. Nasopharyngeal
carcinoma (NPC) is a tumour of squamous epithelium of the post-nasal space,

particular common in areas of South-East Asia and China, where it accounts for the
commonest malignancy in men and second most common in women (Crawford,

2001). It can be divided into different forms based upon the differentiation status of
the epithelial cells, with a clear link between EBV and the undifferentiated form.
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Monoclonal EBV genomes can be found within the malignant epithelial cells, which
show a restricted pattern of gene expression, comprising EBNA-1, LMP-1, LMP-2A
and LMP-2B, along with the EBER and BART transcripts (Brooks et al, 1992). In

addition, EBV is associated with approximately 10% of typical gastric
adenocarcinomas (Thompson and Kurzrock, 2004). The mechanism by which EBV
infects and transforms epithelial cells is not clear, although LMP-1 is believed to

contribute to the malignant phenotype due to its ability to inhibit the differentiation
of squamous epithelium in vitro and induction of a tumorigenic phenotype in animal
models (Dawson et al, 1990; Nicholson et al, 1997).

It is evident that EBV infection and the role it plays in cellular transformation is

extremely complex, especially given its varied pattern of gene expression in different
B-cell populations. Despite being heavily studied, relatively little is known about
initial events following infection, the establishment of latency and the switch to lytic

infection, along with how it is able to contribute to malignant phenotypes. This is
demonstrated by the continuing debate over the mechanism driving viral persistence,
the contribution of EBV to cellular transformation and the role of squamous

epithelium during both primary infection and virus transmission.

1.2.2 Kaposi's sarcoma-associated herpesvirus
Kaposi's sarcoma (KS) was initially described in 1872 by the Austrian-EIungarian

dermatologist, Moritz Kaposi, as a rare idiopathic pigmentation of the skin (Kaposi,

1872). Following the outbreak of the AIDS epidemic there was increased interest in
KS as it composed the major malignancy amongst AIDS patients, occurring in

approximately 20% ofmale patients (Neipel and Fleckenstein, 1999). A virus similar
to human herpesviruses was identified using representational difference analysis
from an AIDS-KS skin lesion in 1993 (Chang et al, 1994). The new virus, named

Kaposi's sarcoma-associated herpesvirus (KSHV, also known as HE1V-8) was

subsequently classified as the only human Rhadinovirus identified to date,

genetically related to herpesvirus saimiri. It has since been linked to further

malignancies, such as primary effusion lymphoma and Castleman's disease (Boshoff
and Chang, 2001).
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The distribution of KSHV infection is dependent upon geographical and behavioral
risk factors. In the US it can be found in 0-10% of blood donors, whereas in Africa it

has a sero-prevalence of over 50% (Chang and Moore, 2001). The mode of
transmission of KSHV is not known. It can be found within both semen and saliva,

and as homosexual men have a particular high infection rate (approaching 40% in
some studies) it was hypothesized to have a sexual mode of transmission. In Africa,
where sero- prevalence rates are higher, KSHV has an unknown non-sexual route of

transmission, resulting in infection during childhood and adolescence (Chang and

Moore, 2001).

1.2.2.1 KSHV Molecular Biology
The KSHV genome consists of a single long unique region of 145Kbp, flanked by a

variable number of 801 bp terminal repeat sequences. In common with other
Rhadinoviruses the KSHV genome contains conserved gene blocks of structural and
metabolic proteins common to all herpesviruses interspersed with non-conserved
clusters of genes related to latency and host cell regulation (Chang and Moore,

2001). Like other Rhadinoviruses, KSHV encodes an array of cellular homologues,
involved in sustaining and propagating the viral infection. These include cell cycle

regulatory proteins (e.g. vCyclin), anti-apoptotic proteins (e.g. vBcl and vFLIP) and
modulators of the host immune response [e.g. vIRFl (Choi et al, 2001)]. Although

many of these genes are unique to KSHV, they affect the same signaling pathways
modulated by other herpesvirus proteins, in particular those from EBV (Moore and

Chang, 1998).

Studying the gene expression pattern in KSHV infection is hampered by the lack of a
cell line permissive for lytic replication. Latent virus can be propagated within

primary effusion lymphoma (PEL) derived cell lines and subsequently reactivated

using chemical treatment, such as phorbol esters. This allows the classification of

genes into three classes (Sarid et al, 1998). The class I genes are not induced by
chemical treatment and are therefore truly latent. They are composed of a cluster of
three genes found at the right-hand end of the genome, translated from two

transcripts; LT1 and LT2. LT1 encodes LANA-1, vCyclin and vFLIP, whereas in

22



Chapter One Introduction

LT2, the LANA-1 gene is spliced out resulting in a bicistronic transcript with
translation of vFlip initiating from an internal ribosome entry site (Bieleski and

Talbot, 2001; Talbot et al, 1999). LANA-1 is expressed in all latently infected cells
and has a variety of functions (see section 1.1.3), including tethering the viral

episome to cellular chromosomes. vCyclin and vFlip function to drive cell cycle

progression and inhibit apoptosis (Choi et al, 2001). A further class I gene lying
outside of this right-hand cluster is a B-cell specific latency gene, known as LANA-

2, which is not expressed within KS lesions (Rivas et al, 2001). Class II transcripts
are expressed at low levels in un-stimulated cells but are phorbol-inducible and are

thus expressed during both lytic and latent infection (e.g. ORF K2). Class III

transcripts are detectable only after phorbol treatment, and represent truly lytic genes.

These include the most conserved herpesvirus genes involved in DNA replication
and capsid assembly, along with a number of genes unique to KSHV (e.g. the

polyadenylated nuclear RNA or PAN) (Chang and Moore, 2001).

Although PEL derived cell lines have proved useful for the study of KSHV gene

expression, they do not entirely represent gene expression patterns in vivo. This is
because the expression of certain genes, such as vCyclin and vFlip, are cell cycle

dependent. Also, the activation of viral promoters using chemical treatment may
result in the expression of genes not usually active during lytic replication (Chang
and Moore, 2001). Furthermore, many KSHV genes exhibit tissue specific

expression patterns, for example, although LANA-2 is classified as a class I gene, it
is not found within latently infected spindle cells in KS lesions (Rivas et al, 2001),

suggesting different patterns of latency similar to that exhibited by EBV. Latently
infected cells within KS lesions, display a very limited gene expression pattern, with

only LANA-1, vCyclin, vFlip and Kaposin expressed, whereas a substantial fraction
of latently infected B-cells in Castleman's disease express a variety of proteins

including LANA-1, vFLIP, vIRF-1, vIL-6, PF-8 SCIP, K8-1, K10, and Kll proteins.
However it is not clear whether these represent an expanded pattern of latent gene

expression or cells undergoing full lytic virus replication (Chang and Moore, 2001)
and it has therefore not been unambiguously defined whether latently infected KSHV
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cells display different patterns of gene expression akin to those exhibited within

EBV-positive cells.

1.2.2.2 KSHV disease associations

Primary KSHV infection of immunocompetent individuals is usually asymptomatic,

although in children primary infection may be associated with a febrile

maculopapular skin rash (Plancoulaine et al, 2000), while a transient angiolymphoid

hyperplasia was found to occur as part of a KSHV-seroconversion syndrome in an

HIV-infected adult (Luppi et al, 2000). Asymptomatic carriers harbour the virus

primarily in CD19+ B-lymphocytes, although natural infection of endothelium, B

cells, and possibly CD68+ monocyte-macrophage cells, prostate epithelia, and dorsal
root sensory ganglion cells has been reported (Chang and Moore, 2001).

Kaposi's sarcoma is a tumour commonly found in the dermis but also occurring
within internal organs, which presents as a brownish-purple lesion. Various

independent findings have linked KSHV to the aetiological pathogenesis of KS

(Boshoff and Weiss, 2001). KS can be divided into four epidemiological forms;
classic KS, endemic KS, post-transplant or iatrogenic KS and HIV-associated KS,
which are all associated with KSHV infection. Classic KS affects mainly elderly men
of Mediterranean, eastern European, or Jewish heritage and generally presents as

nodules on the lower extremities. Classic KS rarely metastasizes and patients survive
for an average of 10-15 years before dying of an unrelated cause (Hengge et al,

2002). Endemic KS is found in sub-Sahara Africa, typically within

immunocompetent individuals. It presents as a variety of different clinical

manifestations, ranging from a benign nodular disease resembling classic KS to a

more aggressive form which disseminates to the visceral organs and lymph nodes,
and is found particularly in young children (Hengge et al, 2002). Post-transplant or

iatrogenic KS occurs in patients following solid organ transplantation and in patients

receiving immunosuppressive therapy, either as a result of primary KSHV infection
or reactivation of latent virus. Although the course of disease may be rapidly

progressive, withdrawal of immunosuppressive therapy usually results in

spontaneous remission. HIV-associated KS is particularly aggressive, often arising
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quickly over a period of a few days, initially forming macules and frequently

evolving to papules and tumours. In the early days of the AIDS epidemic, 15% of all

reported AIDS cases had KS as the primary AIDS defining illness. The overall risk
of KS in AIDS patients was estimated to be more than 20,000-times greater than the

general population and 300-times more than for other immunosuppressed patients

(Beral et al, 1990). However, the introduction of HAART (highly active anti-
retroviral therapy) in developed countries has resulted in HIV-associated KS

occurring only sporadically, while in the developing world it remains a common

disease.

Histologically, KS is a vascular tumour composed of a variety of cell types. It is
characterised by the presence of proliferating spindle cells, which form irregular
vascular channels, and are associated with an inflammatory infiltrate. It is the spindle
cells that harbour KSHV in all forms of KS (Boshoff et al, 1995). The origin of

spindle cells is not clear, as they possess endothelial markers (e.g. CD31) in addition
to markers typical of macrophages and dendritic cells (e.g. factor XHIa, CD 14, and
vascular cell adhesion molecule 1) (Huang et al, 1993; Nickoloff and Griffiths, 1989)

Recently, spindle cells have been demonstrated to express vascular endothelial

growth factor receptor (VEGFR)-3, usually expressed on lymphatic endothelium and

neoangiogenic vessels, but not mature vascular endothelial cells, indicating that they
are perhaps derived from endothelial precursor cells differentiated towards a

lymphatic phenotype (Jussila et al, 1998). A matter of controversy is whether KS

represents a polyclonal hyperplasia or monoclonal neoplasia. Spindle cells have been
found that are both monoclonal and polyclonal in origin and despite constituting the

major proliferating component of the tumour, they rarely exhibit a transformed

phenotype (Salahuddin et al, 1988). Given the dependence upon cytokines for the

growth of spindle cells in vitro (Ensoli et al, 1992), local cytokine production is
believed to play a major role in the development of KS. Indeed, inflammatory cells

present within KS, such as CD8 T-cells, monocytes-macrophages and dendritic cells,

along with activated endothelium produce large amount of cytokines, angiogenic and
chemotactic factors, such as IFN-y, vascular endothelial growth factor (VEGF) and
IL-8 (reviewed in Ensoli et al, 2000). These factors play a major role by triggering a
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cascade of events resulting in the formation of a KS lesion, for example the
differentiation and polyclonal proliferation of spindle cells, the recruitment of

inflammatory cells and neoangiogenesis.

The role KSHV plays during KS tumorigensis is not fully understood. However, its

importance within disease progression is highlighted by its presence within 90% of

spindle cells in the advanced stages of all forms of KS (Boshoff and Weiss, 2001).
The current model is that KSHV reactivates from latently infected B-cells following

immunosuppression or as a result of local cytokine production. This leads to

infection of endothelial precursor cells, perhaps arising as a consequence of neo¬

angiogenesis and neo-lymphangiogenesis also resulting from local cytokine release.
KSHV infection of endothelial cells in vitro has been demonstrated to induce their

differentiation to lymphatic endothelial cells and hence may influence the
differentiation of spindle cells in vivo (Carroll et al, 2004). However local cytokine

production also plays a key role in spindle cell differentiation given that only a few

spindle cells harbour KSHV within early KS lesions. Nonetheless the presence of
KSHV within the majority of spindle cells in more advanced lesions clearly indicates
that latent infection offers a growth advantage (Boshoff and Weiss, 2001), perhaps

resulting from the presence of latent gene products, such as LANA-1, vCyclin and

vFlip. Spindle cells found within advanced cases of KS are often monoclonal and
exhibit a transformed phenotype, most likely resulting from the long term expression
of latency genes along with the deregulated expression of oncogenes (e.g. Bcl-2) and
tumour suppressor genes (e.g. p53) (reviewed in Ensoli et al, 2001). Hence advanced
KS can develop into a true clonal malignancy resulting from both latent infection
with KSHV and local cytokine production.

KSHV is associated with a further malignancy seen predominantly in severely

immuno-suppressed AIDS patients, known as body cavity-based primary effusion

lymphoma (PEL). PEL presents as a malignant tumour confined to body-cavities,
which lacks detectible mass or peripheral lymphadenopathy. Most PELs are thought
to originate from post-germinal centre B-cells due to the presence of hypermutated

immunoglobulin genes and markers of late stage B-cell differentiation, and are
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considered to be clonal due to the presence of clonal immunoglobulin gene

rearrangement and monoclonal KSHV terminal repeats (Verma and Robertson,

2003). PELs lack molecular defects usually associated with tumours of mature B-

cells, such as activation of the proto-oncogenes c-myc, bcl-2, bcl-6, n-ras and k-ras,

along with mutants in p53. PEL cells harbor KSHV genomes at very high copy

numbers and are also regularly co-infected with EBV (Boshoff and Weiss, 2001). As
described in section 1.2.2.1, KSHV genes expressed in PEL cells, namely vFLIP and

vCyclin perhaps play a role in tumourigenesis by inhibiting apoptosis and driving
cell cycle progression. In support of this a recent study identified vFLIP as being
essential for the survival of PEL cells in vitro as down-regulation of vFLIP

expression resulted in an increase in spontaneous apoptosis (Guasparri et al, 2004).

Multicentric Castleman's disease (MCD) is a lymphoproliferative disorder associated
with KSHV. In MCD, the latently infected cell type, known as a plasmablast,

belongs to the B-cell lineage (Du et al, 2001). Plasmablasts have an unusual

phenotype as they exhibit a centroblastic morphology and yet do not harbour somatic
mutations in their immunoglobulin genes. It is therefore thought that KSHV infects
nai've B-cells and drives them to differentiate into plasmablasts without undergoing
the germinal centre reaction. The IL-6 receptor is strongly expressed in the majority
of KSHV-positive cells and a proportion of them also express a viral IL-6 homolog

(vIL-6) (Oksenhendler et al, 2000). It is theorized that vIL-6 acts to drive both the

differentiation of plasmablasts and development of lymphoproliferative lesions.
MCD affects both HIV-positive and negative individuals. KHSV can be found in

nearly 100% ofHIV-associated cases (Cesarman et al, 1995) and unlike KS, MCD in

HIV-positive patients does not often resolve in response to HAART and can progress

to fatal lymphoma. KSHV is associated with MCD in 40-50% of HIV-negative

patients, who have a worse prognosis than those who are KSHV-negative.

Although a large amount of knowledge has been amassed since the initial discovery
of KSHV, little is known about the pathogenesis of KSHV in vivo. In particular the
events occurring during primary infection, the sites of latency and the contribution of
viral genes to the pathogenesis of disease are poorly understood.
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1.2.3 Herpesvirus Saimiri

Herpesvirus saimiri (HVS) is the prototype Rhadinovirus, which is apathogenic
within its natural host, the squirrel monkey (,Saimiri sciureus); a South American

dwelling New-World primate (Melendez et al, 1968). However, it results in T-cell

lymphoma formation upon transmission to other new world primates, such as

tamarins (Sagius spp), common marmosets (Callithrix jacchus) and spider monkeys

(Ateles geoffroyii) (Fickenscher and Fleckenstein, 2001). In vitro HVS is able to

transform both human and nonhuman cell T-cells to continuous growth in the
absence of antigenic or mutagenic stimulation (reviewed in Tsygankov, 2005).
Based upon pathogenic properties and sequence variability, HVS can be classified
into three subgroups, A B and C (Medveczky et al, 1984). All subtypes cause

lymphomas within tamarins; however subgroup C viruses exhibit the greatest

oncogenicity within a variety ofNew World primates. Furthermore, they are the only

subgroup capable of transforming human and rabbit T-lymphocytes in vitro, and

inducing lymphoproliferative disease in Old World primates (Biesinger et al, 1992;
Fickenscher and Fleckenstein, 2001). Subgroup B has the lowest oncogenic potential
as demonstrated by their inability to cause T-cell lymphomas within the common

marmoset.

The genome of HVS is composed of approximately 113 Kbp of unique DNA,
flanked by a variable number of 1444bp terminal repeat fragments (Albrecht et al,

1992). It encodes 75 open reading frames, along with seven nontranslated small
nuclear RNAs, known as herpesvirus saimiri U RNAs (HSURs). Its genome

arrangement can be closely aligned with that of other Rhadinoviruses such as KSHV
and the murine gammaherpesvirus, MHV-68. In common with other Rhadinoviruses,
it contains numerous genes which show significant homology to cellular genes, such
as a vFlip and vCyclin, the majority of which are dispensable for growth in vitro and
tumour formation, indicating that they most likely play a role during persistence in
their natural host (Fickenscher and Fleckenstein, 2001). All Rhadinovirus genomes

contain unique left-hand regions and the oncogenic properties of HVS have been
attributed to this region (Desrosiers et al, 1985). In agreement with this, the different

transforming abilities of the three subgroups are related to sequence divergence
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within the left hand region. In subgroups A and B, there is only one open reading
frame within this region, known as simian transformation-associated protein (stp) A
and B respectively, which possess limited sequence homology (Choi et al, 2000;

Murthy et al, 1989). Two open reading frames can be found within the homologous

region of subgroup C, known as stp C and tip (tyrosine kinase interacting protein),
which are expressed as a bicistronic transcript. StpA and StpC are both oncoproteins
that will transform fibroblasts in vitro, whereas StpB does not demonstrate

transforming ability. Consistent with these results, StpA and StpC induce tumours in
nude mice (Jung et al, 1991). The most convincing findings regarding the

transforming properties of the Stp proteins ascribe their function to the association
with tumor necrosis factor receptor-associated factors (TRAFs) and the subsequent
activation of NF-kB (reviewed in Tsygankov, 2005). Although both StpC and Tip
have been found to be required for cellular transformation by HVS subgroup C

(Duboise et al, 1998), the exact function of Tip has not been elucidated, although it

may be related to its ability to bind and become phosphorylated by Lck, a protein

tyrosine kinase that is crucial to T-lymphocyte signaling and activation (Biesinger et

al, 1995; Tsygankov, 2005).

Unlike EBV and KSHV, HVS has the ability to undergo lytic replication in vitro,

facilitating both the study of productive replication and the generation of
recombinant viruses. Given the tropism for T-cells and induction of T-cell

lymphomas, it is not an ideal model for KSHV and EBV associated disease,

however, it has proved useful for the study of oncogenesis in vivo. In addition, its

ability to transform primary human T-lymphocytes in vitro, while maintaining many

of their essential functions, facilitates the study of T-lymphocyte function

(Mittrucker et al, 1993). Furthermore, HVS is able to infect a variety of human cells
and persist at a high copy number in the form of non-integrated episomal DNA,

allowing segregation to daughter cells during cell division. Due to its ability to

provide sustained transgene expression over a long period of time, within both

dividing and non-dividing cells (Frolova-Jones et al, 2000; Stevenson et al, 2000),
HVS provides an excellent candidate as a gene therapy vector.
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1.2.4 Gammaherpesvirus of Veterinary Importance
Malignant catarrhal fever (MCF) is a generally fatal lymphoproliferative disease of
domestic cattle, deer and other farm animal species. It occurs as two different forms

exhibiting differing geographical distributions; sheep-associated MCF, caused by
ovine herpesvirus-2 (OvHV-2) which shows a world-wide distribution and
wildebeest-associated MCF, caused by alcelaphine herpesvirus-1 (A1HV-1), which
occurs only in Africa. Both OvHV-2 and A1HV-1 are non-pathogenic within their
natural host species of sheep and wildebeest respectively, but cause disease

following infection of an alternative host species. The manifestations of MCF
include hyperplasia of the lymphoid organs and accumulation of T-lymphocytes
within many tissues, accompanied by little or no viral replication. A1HV-1 can be

grown in tissue culture, which has enabled its molecular characterization as a

Rhadinovirus(Bridgen et al, 1989). OvHV-2 however can only be propagated within
LCLs generated from animals affected by MCF, in a similar manner to EBV and
therefore relative little is known about the genomic structure ofOvHV-2. Cloning of
the OvHV-2 genome as a cosmid library and subsequent sequencing reveals that

although closely related to A1HV-1, it can be classified as a separate viral species

(Rosbottom, 2003). However, little is known about the role of the viruses in disease

pathogenesis.

Equine herpesvirus-2 and -5 have both been classified as gammaherpesviruses based
on sequence analysis (Telford et al, 1993). The significance of EHV-2 as a pathogen
of horses is not clear, although it has infection rates approaching 80% and has
associations with a variety of clinical manifestations including respiratory disease
and keratoconjunctivitis (Ruszczyk et al, 2004). No clear disease associations have
been found for EHV-5. but as its prevalence within the UK approaches 25% in the
adult horse population and therefore its possible role as an aetiological agent should
not be neglected (Nordengrahn et al, 2002). A further virus with no known disease
association is bovine herpesvirus-4 (BHV-4), classified as a gammaherpesvirus by

partial sequence analysis, although it has been isolated from cattle with a variety of
disease states (Lomonte et al, 1996). Recently, three porcine gammaherpesviruses
have been identified, which are all lymphotropic. At least one of these viruses,
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porcine lymphotropic herpesvirus 1, was found to be associated with PTLD in an

immunosuppressed pig, which is of particular concern as pigs are potential
candidates as donors for xenotransplantation to humans.

1.2.5 Animal models of gammaherpesvirus infection
The majority of the data regarding gammaherpesviruses infection have been amassed

by studying viral-host interactions during long-term persistence and symptomatic

disease, such as within PTLD and KS. However, this only allows information to be
collected following the onset of disease and tells little about the factors preceding
disease development. Studies of initial EBV infection have been limited to the study
of infectious mononucleosis. However piimaiy infection with gaiumaherpesviruses is

largely asymptomatic. The narrow host range of the gammaherpesviruses has

impeded studies into the early events following infection and the transmission to the
diseased state. In order to try to understand these processes a suitable animal model
of gammaherpesvirus infection is required, so as to understand not only the
contribution of both viral and host factors to disease progression but also to

investigate possible therapies and vaccination strategies.

Initial attempts were made to study gammaherpesvirus pathogenesis by inoculation
of nonhuman primates with both EBV and KSHV. In the case of EBV, there is little
evidence for infection following inoculation of old world primates, perhaps due to

the presence of cross-reactive immunity from endogenous lymphocryptoviruses

(LCV) or, as recent evidence suggests, as a result of species specific restriction for
LCV-induced B-cell immortalization (Frank et al, 1976; Moghaddam et al, 1998).
Various manifestations of EBV-related disease can be induced following infection of
new world primates such as the cotton-top tamarin (Sagunius oedipus) and the
common marmoset (Callithrix jacchus). EBV infection of the common marmoset,

causes an infectious mononucleosis-like syndrome (Wedderburn et al, 1984),

however, the extensive B-cell involvement seen within IM is not present in this
model (Emini et al, 1986). Within the cotton-top tamarin, EBV causes an acute

polyclonal proliferation of B-lymphocytes within all infected animals. However,
animals that do not die from lymphoproliferative disease do not become persistently
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or latently infected with EBV (Shope et al, 1973). Due to the resemblance to PTLD,
in both the nature of the lymphoma and the EBV gene expression program (Young et

al, 1989), EBV infection of the cotton-top tamarin has not only been used as a model
for disease progression but also to study candidate vaccines (Epstein et al, 1985).

However, numerous problems with this model make it an inaccurate analogy to EBV
infection within its natural host; firstly the much more rapid disease progression,
with tumour formation initiating at 14 to 21 days following infection; secondly the
lack of persistent infection following disease recovery; and finally, the ability of
EBV to cause lymphoproliferative disease in 100% of infected animals. In the case

of KSHV, infection within both SIV positive and negative rhesus macaques has been

investigated. However, inoculation resulted in a low level of infection in which no

viral transcripts and accompanying pathologies were detected (Renne et al, 2004).

Consequently this system is not a useful animal model for the study of human
disease.

Therefore primate models using infection of simians with endogenous

gammaherpesviruses have been explored. LCVs isolated from old world primates
share a number of common features with EBV; they can immortalize B-cells from
their natural host, they possess genomes that can be arranged collinearly and with a

large degree of homogeneity (Wang et al, 2001). Although there appears to be a

greater degree of heterogeneity between the latent proteins, the functional
mechanisms of the majority of these genes are conserved. Hence, oral inoculation of
rhesus macaques with an endogenous LCV results in a number of features analogous
to EBV infection, such as lymphadenopathy, latent infection in the peripheral blood
and virus persistence in oropharyngeal secretions (Moghaddam et al, 1997). The
rhesus model can also be used to investigate the development of EBV related

lymphomas within AIDS patients, as exemplified by the development of B-cell
tumours containing latent LCV infection upon co-infection with SIV (Pingel et al,

1997).

A number of simian homologues of KSHV have been detected within old world

primates, including rhesus macaques [e.g. rhesus rhadinovirus (RV2)], chimpanzees
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[e.g. Pan troglodytes rhadinovirus-1 (PtRVl)] and baboons [Papio anubis
rhadinovirus 2 (PanRV2)] (Desrosiers et al, 1997; Greensill et al, 2000; Whitby et al,

2003). Numerous studies have been undertaken to examine an association between

these viruses and disease, often in the context of co-infection with HIV homologues.
One model which shows some similarities to KSHV induced disease was achieved

following co-infection of rhesus macaques with SIV and RV2, which occasionally
resulted in a lymphoproliferative disease resembling MCD and an arteriopathy
similar to vascular endothelial lesions seen in patients with KS (Mansfield et al,

1999). However, a reproducible system for the induction ofKS or B-cell lymphomas
in the rhesus macaque has not been achieved (Mansfield et al, 1999). Also, despite
the large amount of sequence homology between the two genomes, RV2 lacks a

number of genes unique to KSHV, namely K3, K5, K7 and K12 (Damania and

Desrosiers, 2001).

Although nonhuman primate models show great promise for the study of

gammaherpesvirus infections, they do have a number of drawbacks, such as a high

expense, the requirement of high security measures and adherence to strict

government regulations. Furthermore, the understanding of primate biology,

including the immune response is not as advanced as in other animal species, and the

development of transgenic animals is much more cumbersome. Therefore a murine
model for gammaherpesvirus infections would be advantageous, especially given the

availability of inbred colonies and numerous transgenic animals to allow

investigations into the contribution of host factors to disease. Infection of severe
combined immunodeficient (scid) mice has been used for the study of both KSHV
and EBV infection. In the case of KSHV, inoculation into human foetal thymus and
liver grafts in scid mice leads to the infection of CD19+ B-lymphoctyes, mimicking
KSHV infection of humans, although the lack of evident disease limits its use as an

animal model for pathogenesis. (Dittmer et al, 1999). Scid mice have proved a useful
model of EBV related post transplantation lymphoproliferative disease, by
inoculation with peripheral blood mononuclear cells from EBV-seropositive

individuals, facilitating the study of the mechanism of disease and potential therapies

(Johannessen and Crawford, 1999). However, no reliable small animal model has
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been developed for other EBV disease phenotypes. Murine gammaherpesvirus-68

(MHV-68) is able to cause both productive and latent infection within laboratory
mice analogous to EBV infection (Sunil-Chandra et al, 1992a; Sunil-Chandra et al,

1992b). In addition, recombinant MHV-68 viruses can be easily produced in vitro,

enabling the contribution of viral factors to infection to be examined. Such

investigations have been carried out by both deletion of endogenous genes and
insertion of foreign genes, such as those from KSHV (Douglas et al, 2004; Song et

al, 2005). Hence, MHV-68 infection within laboratory mice can be used to

investigate both the interactions between a gammaherpesvirus and its natural host,
and for the study of gene function from alternative gammaherpesviruses, such as

KSHV and EBV.

1.3 Murine Gammaherpesvirus-68
Murine gammaherpesvirus-68 (MHV-68, also known as murid herpesvirus 4) was

initially isolated from the bank vole (Clethrionomys glareolus) in 1980 (Blaskovic et

al, 1980). Ultrastructural examination of infected cells revealed typical herpesvirus

morphological features, analogous to those of HSV-1 (Ciampor et al, 1981). In

addition, passage in the brains of laboratory mice and growth characteristics in vitro

suggested that it was an alphaherpesvirus (Svobodova et al, 1982a). However,
certain characteristics in vivo were not consistent with those of alphaherpesviruses,
such as the presence ofMHV-68 within lung epithelium of new-borne mice, and its

ability to cause severe pneumonia with widespread haematogenous viral spread

(Blaskovic et al, 1984; Rajcani et al, 1985). Not surprisingly therefore, MHV-68 was

officially classified as a gammaherpesvirus of the genus Rhadinovirus, based on

sequence analysis (Efstathiou et al, 1990) and its ability to establish latent infection
within B lymphocytes, macrophages, dendritic cells and epithelial cells further

supports this classification (Flano et al, 2000; Sunil-Chandra et al, 1992b; Week et

al, 1999). Although initially isolated from the bank vole, MHV-68 has since been
found to be endemic within the wood mouse population in the UK (Blasdell et al,

2003), and this is now believed to be the natural host species. Importantly MHV-68
is able to give rise to both lytic and latent infection within laboratory mice and is
therefore an excellent small animal model in which to study the relationship between
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a gammaherpesvirus and its host. MHV-68 also has the added advantage in that,
unlike many gammaherpesviruses, it can lytically infect a variety of cell types in

vitro, facilitating the study of the viral productive cycle in addition to the generation
of recombinant viruses. This has been further simplified by the insertion of a

bacterial artificial chromosome (BAC) sequence into the MHV-68 genome, allowing
the manipulation of viral DNA within E. coli cells (Adler et al, 2000).

1.3.1 MHV-68 genome

The genome of MHV-68 is composed of a single unique region of 118kbp of DNA
flanked by a variable number of 1.23Kbp terminal repeat region. The genome has
been sequenced and the unique region has been found to have an approximate G+C
content of 46%, whereas the terminal repeats are composed of 77.6% G+C, a similar
content to KSHV and HVS, but significantly lower than EBV (Virgin et al, 1997). It
encodes 73 open reading frames, along with eight viral tRNA-like molecules and
nine predicted microRNAs (Bowden et al, 1997; Pfeffer et al, 2005b; Virgin et al,

1997). The genome consists of a number of conserved herpesvirus gene blocks and
can be closely aligned with other Rhadinoviruses, such as KSHV and HVS (figure

1.3). In common with other Rhadinoviruses, MHV-68 possesses a number of genes
that are homologous to cellular genes (Virgin et al, 1997), such as a vBcl-2, vCyclin-
D and viral G-protein coupled receptor (vGPCR), which all appear to be dispensable
for lytic growth in vitro, but play a variety of roles during in vivo replication and

persistence (Gangappa et al, 2002; Song et al, 2005; van Dyk et al, 2000; Wakeling
et al, 2001).

1.3.2 MHV-68 virion composition
The virion structure of MHV-68 is morphologically similar to other herpesviruses

(Ciampor et al, 1981; Svobodova et al, 1982b) and predictably, the genome encodes

genes homologous to capsid, tegument and glycoprotein genes from other

herpesviruses (Virgin et al, 1997). Its ability to grow to high titre in vitro, unlike the
human gammaherpesviruses, has enabled the identification of proteins associated
with the MHV-68 virion (Bortz et al, 2003). These include homologues of capsid,

tegument and envelope proteins encoded in other gammaherpesvirus genomes,
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Figure 1.3 Diagrammatic representation of the MHV-68 genome aligned with the
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Predicted
location

Gene
Product

Predicted function Predicted
Mass (kDa)

Reference

Capsid ORF25 Major capsid protein 153.2 (Bortz et al, 2003)

Capsid ORF62 Assembly/DNA
maturation/Triplex-1

42.7 (Bortz et al, 2003)

Capsid ORF26 Triplex-2 33.4 (Bortz et al, 2003)

Capsid ORF65/M9 Small capsid protein 19.9 (Bortz et al, 2003)

Capsid ORF29 DNA packaging 73.9 (Bortz et al, 2003)

Tegument ORF75c Tegument protein 145.7 (Bortz et al, 2003)

Tegument ORF45 IRF7-binding homolog 22.4 (Bortz et al, 2003)

Tegument ORF11 Unknown 48 (Boname et al, 2005)

Envelope

Envelope

ORF8

ORF22

gB/membrane fusion

gH/membrane fusion

96.6

82.9

(Bortz et al, 2003;
Lopes et al, 2004)
(Bortz et al, 2003)

Envelope

Envelope

M7

ORF27

gpl50/cell free spread

gp48/cell-to-cell spread

150

48

(Stewart et al, 1996)
(de Lima et al, 2004)
(May et al, 2005b)

Envelope ORF28 Unknown 8.5 (May et al, 2005a)

Unknown ORF20 Fusion protein 28.3 (Bortz et al, 2003)

Unknown ORF24 Unknown 82.9 (Bortz et al, 2003)

Unknown ORF48 Unknown 37.9 (Bortz et al, 2003)

Unknown ORF52 Unknown 14.8 (Bortz et al, 2003)

Table 1.3 Proteins associated with the MHV-68 virion. The predicted location of
proteins within the virion and possible functions are shown.
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present at levels comparable to other herpesviruses, along with a number of unique

proteins. The virion associated proteins along with their predicted functions are listed
in table 1.3. In addition, a number of cellular proteins are associated with the virion,
such as annexin I and II, along with a cytoplasmic P-actin homolog. However a role
for these proteins within the virion remains to be established.

1.3.3 MHV-68 replication in vitro
MHV-68 is able to replicate in a number of cell lines in vitro, including both

epithelial and fibroblast cell lines. Recent advances in the generation of mutant
viruses by the insertion of BAC sequence into the MHV-68 genome (Adler et al,

2000) have enabled the construction of replication deficient viruses for the study of

genes essential for viral replication. In particular, two recent studies using signature-

tagged transposon mutagenesis have identified a number of candidate genes involved
in virus replication. The first study by Moorman et al, identified 16 ORFs essential
for viral replication and a further six that when disrupted lead to decreased

replication (Moorman et al, 2004). In a further study over 1150 MHV-68 mutants

were generated, resulting in the identification of 41 candidate genes essential for

growth in vitro, along with a further six that are required for efficient replication

(Song et al, 2005). Both studies identified candidate genes essential for replication
that are conserved between all families, such as those involved in viral entry (e.g.

gH), DNA replication (e.g. ORF6) and tegument proteins (e.g. ORF65). In addition,

genes found in other gammaherpesviruses (e.g. ORF 45, an IRF7 binding protein

homologue/tegument protein) (Bortz et al, 2003; Jia et al, 2005b; Song et al, 2005)

along with genes that are unique to MHV-68 (e.g. M8) have also been found to be
essential for viral replication (Song et al, 2005).

The mechanism by which MHV-68 enters cells, including the cellular receptors used
and corresponding viral ligands, is not fully understood and it appears to be a

complex process involving a variety ofmolecules. Genes homologous to gB, gH and

gL of HSV-1, which encode proteins involved in membrane fusion, are expressed by
MHV-68. Although both gB and gH are essential for MHV-68 replication (Song et

al, 2005), no functional role for these proteins has been established. Following viral
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entry, the DNA translocates to the nucleus and like all herpesviruses, gene

expression initiates in a cascade fashion (Ebrahimi et al, 2003) and viral gene

expression can be detected as early as three hours following infection (Ahn et al,

2002). The lytic transactivator encoded by the orf50 gene, Rta, is essential for the

expression of viral genes, DNA replication and production of infectious virions (Wu
et al, 2001), however, the mechanism responsible for Rta expression is not known,

especially given that no homolog of HSV-1 VP 16 has been identified in MHV-68. In
addition to the expression of genes that are necessary for viral replication, a number
of additional genes are expressed, such as vBcl-2, M3 and K3. Following DNA

replication and virion assembly, MHV-68 either exits the cell to be released into the
extra-cellular space, or directly infects adjacent cells. The exact mechanisms behind
these two processes are not fully understood, although the viral glycoprotein gp48 is

required for efficient cell-to-cell spread but not for the release of free virus, (May et

al, 2005b), whereas the converse is true of gpl50 (de Lima et al, 2004; Stewart et al,

2004). Intercellular spread is thought to be important within in vivo infection to

facilitate escape from the host immune response, whereas the production of cell free
virus is necessary for viral host-to-host transmission.

1.3.4 MHV-68 primary infection in vivo
Infection of laboratory mice with MHV-68 is usually carried out via the intranasal or

intraperitoneal route, although gastric instillation has been shown to result in viral

replication within intestinal epithelia and the establishment of latency within splenic

B-lymphocytes (Peacock and Bost, 2000). Given that within the wood mouse MHV-
68 is more often found within the respiratory tract than the spleen (Blasdell et al,

2003), the intranasal route is thought to more accurately mimic natural infection, and
therefore a comprehensive review of viral infection via this route of inoculation will
follow: Subsequent to intranasal infection, primary MHV-68 replication occurs

predominantly within alveolar epithelial cells, although virus can also be detected
within mononuclear cells during this phase (Sunil-Chandra et al, 1992a). Viral titres
reach a peak at around five days following infection, which is typically accompanied

by bronchiolitis and interstitial pneumonia. The large inflammatory infiltrate consists

primarily of T-lymphocytes, monocytes and macrophages, (Sarawar et al, 2002),
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with CD8 T-cells forming the major T-lymphocyte population. Hence, not

surprisingly cytotoxic T-lymphocytes represent the major effector cell responsible
for virus clearance from the lungs (Ehtisham et al, 1993), with neither y-IFN,

antibody nor CD4 lymphocytes playing a major role (Ehtisham et al, 1993; Sarawar
et al, 1997; Usherwood et al, 1996b). Although virus cannot be detected by
conventional plaque assay any later than ten days post-infection, the inflammatory
infdtrate remains until the second week post-infection and focal accumulations of
mononuclear cells can be seen as late as day 30 (Sunil-Chandra et al, 1992a).

The gene expression pattern within the lungs resembles that of lytic replication in
vitro. (Martinez-Guzman et al, 2003). In addition to the expression of proteins

required for viral replication, a number of proteins are expressed that are not

necessary for lytic replication in vitro. These include a broad spectrum chemokine

binding protein (M3), vBcl-2 and vGPCR. Interestingly, despite the large number of

genes expressed, only four that are not required for lytic replication have been found
to play a significant role during primary infection in the lung (Coleman et al, 2003;

Song et al, 2005). Two of these genes are involved in nucleotide metabolism;

thymidine kinase and dUTPase, which are required for the synthesis of dTMP and
dUMP respectively. dTMP and dUMP are subsequently converted into dTTP, which
is essential for DNA replication. Cellular thymidine kinase and dUTPase are only

expressed within cycling cells and consequently herpesviruses encode viral

homologues of these proteins in order to replicate their DNA within non-dividing
cells. Therefore, the requirement of these enzymes during primary infection within
the lung most likely reflects infection of fully differentiated epithelial cells that have
exited the cell cycle. The roles of the two further proteins, ORF73 and ORF75a are

not clear. ORF73 encodes a protein with 24.2% homology to KSHV LANA-1

(Virgin et al, 1997), which plays a variety of functions in during both lytic and latent

replication (see section 1.1.3). At low levels of infection (lOOOpfu) a virus lacking
ORF73 exhibited delayed replication kinetics (Moorman et al, 2003). However, at

higher doses, the absence ofORF73 appears to have no effect on primary infection in
the lung (Fowler et al, 2003; Moorman et al, 2003). The reason for an attenuated

phenotype during lytic replication in vivo compared to in vitro for a virus with a
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mutated ORF75a gene is not clear, particularly given that this encodes a tegument

protein with unknown function (Song et al, 2005). In addition, a related virus,

MHV-76, which lacks a portion of the left-hand sequence encompassing the M1-M4

genes along with eight viral tRNA-like molecules, is attenuated during primary
infection within the lung (Macrae et al, 2001). However, no single gene has been
found to be directly responsible for this phenotype (see section 1.3.6).

1.3.5 MHV-68 latency in vivo
From the lungs, MHV-68 enters the draining mediastinal lymph node (MLN), the
site in which the initial infection of B-lymphocytes is believed to occur. A

lymphadenopathy ensues resulting from a transient increase in the numbers of

latently infected B-lymphocytes (Nash et al, 2001). At this stage, MHV-68 can also
be detected within dendritic cells and macrophages, and it is the dendritic cell

population that has been postulated to be responsible for carrying the virus from the

lungs into the MLN (Nash et al, 2001). From the MLN, the virus traffics to the

spleen and other lymphoid organs. In the absence of B-lymphocytes, MHV-68 can

still be detected within the MLN; however there is little spread to other lymphoid

organs, suggesting that B-cells play a major role in trafficking the virus from the
MLN (Usherwood et al, 1996b). During the establishment of latency within the

spleen, MHV-68 can be detected within germinal centre B-cells, macrophages and
dendritic cells (Flano et al, 2000). The spleen undergoes splenomegaly between the
second and third weeks due to a rapid expansion of latently infected germinal centre
B cells. Following the peak of latency at day 14 post infection, the numbers of

latently infected cells decline to levels at the limit of detection (Sunil-Chandra et al,

1992a), and long-term latency is preferentially maintained in both germinal centre B
cells and memory B cells (Flano et al, 2002; Wilier and Speck, 2003).

The mechanism by which MHV-68 gains access to the memory B-cell population is
not clear, in particular, whether MHV-68 is able to drive the differentiation of B-cells
into the memory phenotype, or if there is a bias for memory B-cell infection at later
time points. During the establishment of latency, the rapid expansion of germinal
centre B-cells is dependent on CD4+ T-cells, as demonstrated by the lack of
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splenomegaly following depletion of this cell type (Ehtisham et al, 1993; Usherwood
et al, 1996a). In addition, not only do the numbers of germinal centre B-cells

increase, but so does the T-lymphocyte population, indicating that natural B- and T-
cell interactions mediate the response (Usherwood et al, 1996a). Furthermore, the
maintenance of MHV-68 latency is dependent on the development of memory B-

cells, as demonstrated by the loss of latency in CD40"/" B-cells (Kim et al, 2003). It
therefore appears likely that latency within memory B-cells results from the
differentiation of latently infected germinal centre B-cells. However, the viral factors

responsible for driving this differentiation are not known, especially given that
MHV-68 does not encode homologs of LMP1 and LMP2A of EBV. Nevertheless it
is clear that viral factors are required to drive B- and T-cell proliferation as a deletion
mutant of MHV-68 lacking the unique left-hand end fails to cause splenomegaly

(Macrae et al, 2001). Perhaps surprisingly, a further deletion mutant of MHV-68,

lacking the M2 gene, was defective in its ability to cause an increase in the numbers
of latently infected cells during the acute stage of latency but the overall increase in

splenocytes numbers was unaffected (Macrae et al, 2003). This indicates that

separate viral factors may contribute to the proliferation of latently infected B-

lymphocytes and uninfected T-lymphocytes. In addition to the proliferation of B-

lymphocytes and CD4+ T-cells, there is an increase in the number of circulating T-

cells, dominated by the V(34+CD8+ subtype, resembling the rapid expansion of
CD8+ cells seen in infectious mononucleosis (Tripp et al, 1997). Such a rapid

expansion of CD8+ T-cells is suggestive of super-antigen driven proliferation,

although cytokine production from CD4 T-cells clearly plays a role (Tripp et al,

1997). However, the viral factors responsible for the IM-like phenotype have not

been characterized.

In addition to the lymphoid organs, latent MHV-68 infection can also be detected at

other sites, including the blood, brain, kidney, liver and lung (Flano et al, 2003). In
the natural host, the wood mouse, the lung represents the major site of latency

(Blasdell et al, 2003). The establishment of latency within the lung of laboratory
mice is not dependent upon re-seeding of virus via B-cells from the spleen, as

demonstrated by viral persistence in both the presence and absence of B-cells
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(Usherwood et al, 1996b). The cell type harboring the latent infection within the lung
in wild-type mice is a matter of dispute; one study detects virus within epithelial cells

using a co-staining in situ/immunocytochemistry approach (Stewart et al, 1998).

However, a separate study using FACS sorting of lung cells reveals that during the
initiation of latency, both epithelial and B-cells are latently infected, but during long-
term latency MHV-68 is preferentially maintained within the B-cell population

(Flano et al, 2003).

The mechanism responsible for switching from the lytic to the latent cycle of gene

expression is not clear, although it appears that both viral factors, such as the shut-off
of lytic cycle gene expression (May et al, 2004) and cellular factors, including
increased NF-kB activity (Brown et al, 2003) are required. In common with all

herpesviruses, MHV-68 exhibits a restricted pattern of gene expression during

latency. Within the spleen, the transcripts expressed during the acute phase of latency
include M1-M4, M8, ORF65, vBcl-2, K3, ORF73 and ORF74, along with vtRNAsl-
8 (Bowden et al, 1997; Marques et al, 2003). However, the expression pattern

appears to be cell type dependent, as M2 and ORF73 can not be detected in

macrophages. In addition, dendritic cells have a much less restricted pattern of gene

expression (Marques et al, 2003), although expression of lytic cycle transcripts, such
as ORF50 and ORF6 within the non B-cell populations indicates that they may not

represent true latently infected cells. In addition, a different pattern of gene

expression appears to result following intraperitoneal infection, with M2, vBcl-2,
ORF73 and ORF74 expressed within latently infected peritoneal cells and M2, M3
and ORF65 present within splenocytes at approximately 45 days post-infection,

although the change in gene expression patterns over time has not been investigated
in this model (Virgin et al, 1999). Whether MHV-68 exhibits differing gene

expression patterns akin to EBV latency programs has not been addressed. However,
it is possible given that numerous genes expressed during the early stages of latency
are not present during long term infection, including vBcl-2, M2, M4 and ORF74

(Husain et al, 1999; Townsley et al, 2004; Wakeling et al, 2001). In addition,

transcripts absent during long term persistence in the spleen, such as ORF74 and
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vBcl-2, have been found at the same time points within the lung (Wakeling et al,

2001).

In common with other gammaherpesviruses, the latency associated genes of MHV-
68 play a role in ensuring the maintenance of the viral episome within a long lived
cell population. Although the precise roles of the latent genes have not been

characterized, many have been found to be required for the efficient establishment of

latency. These include a vBcl-2 (Mil) with anti-apoptotic function (de Lima et al,

2005; Wakeling et al, 2001) and two genes which show homology to KSHV genes;

the LANA-1 homolog; ORF73 (Fowler et al, 2003) and K3, which down regulates

major histocompatibility complex (MHC) class I expression (Stevenson et al, 2002).
The unique left-hand end ofMHV-68, encompassing the Ml to M4 genes and eight
vtRNAs is also required for the efficient establishment and reactivation from latency

(see section 1.3.6).

1.3.6 MHV-76 and the left-hand end of MHV-68

MHV-76 was isolated at the same time as MHV-68, although from a different host

species, the wood mouse (Apodemus flavicollis) and therefore proposed to represent

a novel murid herpesvirus which perhaps possessed unique biological characteristics.

However, fragment analysis of the entire genome, along with sequence analysis of
the left-hand end, revealed that the genome ofMHV-76 is essentially identical to that
of MHV-68, except for a 9,538bp deletion within the left-hand end, encompassing
the M1-M4 genes and all of the vtRNAs (Macrae et al, 2001; Virgin et al, 1997).

Hence, it is apparent that MHV-76 represents either a naturally occurring or in vitro
derived deletion mutant of MHV-68. In support of this, an independent in vitro

deletion mutant was spontaneously generated which also lacked the same region of
the genome (Clambey et al, 2002). During in vitro replication within a fibroblast cell

line, MHV-76 exhibits identical replication kinetics to MHV-68. However, MHV-76
is attenuated during in vivo infection, as it exhibits a more rapid clearance from the

lungs than MHV-68, with an accompanying increased inflammatory response. In

addition, the expansion in latently infected B-cells within the spleen does not occur

following MHV-76 infection, and the proliferation of uninfected CD4+ and CD8+ T-
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cells is absent. However the exact function of the individual genes is not clear,

although various studies using recombinant viruses have highlighted their potential
roles within infection:

Ml: The Ml ORF exhibits sequence homology to the rabbitpox virus (RPV) serine

protease inhibitor (serpin) SPI-1, along with the M3 protein ofMHV-68 (Bowden et

al, 1997; Virgin et al, 1997). In RPV, SPI-1 determines host range and in addition,
has been implicated in the regulation of apoptosis. However, although Ml and SPI-1
are homologous, it is unlikely that Ml exhibits a similar function given that it lacks
the highly conserved hinge domain and reactive site loop present in SPI-1 and other

inhibitory serpins (Clambey et al, 2000). The expression of Ml can be detected

during lytic replication both in vitro and in vivo (Simas et al, 1999), and in

macrophages, dendritic cells and B-cells in the spleen (Marques et al, 2003).
Deletion ofMl from MHV-68 appears to have no effect during lytic infection within
the lung, or in the capacity of the virus to establish latency, although the ability to

reactivate from latency is increased, suggesting that Ml is able to suppress viral
reactivation (Clambey et al, 2000). However, a conflicting study reported that
deletion ofMl along with vtRNAsl-4 resulted in no difference in the ability of the
virus to establish or reactivate from latency (Simas et al, 1998).

M2: M2 is unique to MHV-68, exhibiting no homology to known cellular or viral

proteins (Virgin et al, 1997). It is highly expressed during lytic replication within the

lung and the establishment of latency in the spleen (Husain et al, 1999). M2 contains
an actively recognized CD8 T-cell epitope, constituting an important target for

controlling the establishment of latency (Husain et al, 1999). A variety of studies

using deletion mutants of MHV-68 have implicated M2 in either the establishment
and/or reactivation from acute latency (Herskowitz et al, 2005; Jacoby et al, 2002;
Macrae et al, 2003; Simas et al, 2004). However, this was not accompanied by a

decrease in splenomegaly, suggesting that M2 has no effect on the proliferation of
uninfected T-lymphocytes (Macrae et al, 2003). In particular, it has been suggested
that M2 plays a role in facilitating the differentiation of latently infected B-cells into
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the memory phenotype (Simas et al, 2004). However, the mechanism by which M2
functions has not been characterized.

M3: The M3 ORF encodes a secreted, broad spectrum chemokine binding protein,
with no sequence similarity to known chemokine receptors (Parry et al, 2000; van
Berkel et al, 1999). It possesses the capacity to bind all families of chemokines; C,

CC, CXC and CX(3)C in vitro, resulting in a block in chemokine signaling (Parry et

al, 2000; van Berkel et al, 2000). M3 is abundantly expressed during both productive
and latent infection, with macrophages and dendritic cells constituting the most

abundant source ofM3 within the spleen (Marques et al, 2003). However, despite its
abundant expression and ability to block chemokine activity both in vitro and in vivo,

no clear effect ofM3 upon the pathogenesis of MHV-68 has been established. In one

study, deletion of the M3 ORF from MHV-68 had little effect on viral pathogenesis
within either the lung or spleen, although it did have an effect on the modulation of
the immune response following inter-cerebral inoculation (van Berkel et al, 2002). A

conflicting study reported that deletion of M3 resulted in a decreased latent load in
the spleen. In addition, this was found to be the result of CD8 T-cell mediated
clearance of the virus from the spleen as depletion of CD8 T-cells reversed the

phenotype (Bridgeman et al, 2001). However, the recombinant virus used in this

study contained a LacZ gene expressed under the control of a CMV immediate early

promoter. The insertion of this cassette into the left-hand end of the genome may

have disrupted latency levels, perhaps resulting either from CD8 T-cell mediated
immune response directed against LacZ, or alteration of the latency gene expression

pattern due to a cis-mediated effect of the CMV promoter. Nevertheless, it seems

unlikely that M3 plays no role in viral pathogenesis, and recent evidence suggests

that the lack of M3 during infection of wood mice results in an increased

inflammatory infiltrate within the lung composed largely of macrophages and T cells

(D. Hughes, personal communication).

M4: M4 expression can be detected during lytic replication within the lung and the

acute-phase of latency within the spleen, but not during long term persistence

(Marques et al, 2003; Townsley et al, 2004). Insertion of M4 into the left-hand
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region of MHV-76 results in elevated viral titers at early time points during

productive infection in the lungs, demonstrating that M4 may subvert aspects of the
innate immune response (Townsley et al, 2004). In addition, the insertion virus

displayed an increased viral load in the spleen during the acute-phase of latency.

However, akin to the M2 protein, insertion of the M4 gene into MHV-76 did not

result in an increase in splenomegaly, once again demonstrating that independent
factors contribute to the increase in latent load and lymphocyte proliferation. In

keeping with its expression pattern, the insertion ofM4 into MHV-76 did not affect
the viral load during long-term persistence.

vtRNAs: MHV-68 encodes 8 vtRNAs, which appear to be unique to the virus.
Based on sequence analysis, the vtRNAs are capable of forming a cloverleaf

secondary structure (figure 1.4) (Bowden et al, 1997), in which the majority of
invariant and semi-invariant bases typical of tRNAs are conserved (see section

1.4.1). However, they possess atypical anti-codon arms, which diverge in size and

sequence from recorded tRNAs, hampering the assignment of amino acid specificity.
In addition, each vtRNA shows little sequence similarity with known tRNAs sharing
the same anti-codon, and importantly, the discriminator bases (nt73), which are

known to be important for the recognition of aminoacyl-tRNA synthetase, are not

conserved. It is therefore not surprising that at least four of the vtRNAs are not

aminoacylated by cellular aminoacyl-tRNA synthetases. The vtRNAs each contain
RNA polymerase III promoter elements and are transcribed monocistronically,

although it appears that they may be processed from longer 3'-extended precursors

(Pfeffer et al, 2005b). It is apparent that they are recognized and processed as tRNAs
to some extent by the host cell, with the addition of 3' CCA termini (Bowden et al,

1997).

In vivo, the vtRNAs have been found to be expressed at high levels within the lung

during both productive and latent infection. In addition, their expression can be
detected during the acute-phase of latency and in long-term persistence within the

spleen (Bowden et al, 1997). It is therefore likely that they play a role during both

stages of infection, although their function has yet to be characterized. Deletion of
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Figure 1.4 The vtRNAs of MHV-68. A) The location of the vtRNAs within the
left-hand region of the genome, adapted from Bowden et a/, 1997. B)
Schematic representation of vtRNA5, taken from Bowden eta/, 1997.

48



Chapter One Introduction

vtRNAsl-4, along with Ml, did not affect the ability of the virus to replicate in vitro
or to establish and reactivate from latency in vivo (Simas et al, 1998). However, as

the virus still retained vtRNAs 5-8, it is likely that their function was not completely

abolished, and given the similarity in structure it is likely that there is some

redundancy in function between the vtRNAs. The role of the vtRNAs within primary
infection in the lung has not yet been investigated.

miRNAs: Recently, nine predicted micro-RNAs (miRNAs) have been discovered
within the left-hand region of the MHV-68 genome, two of which have been shown
to be expressed during latent infection in vitro (Pfeffer et al, 2005b). The miRNAs
are expressed from the vtRNA primary transcripts, which appear to be processed

giving rise to both the vtRNAs and the miRNAs. The miRNAs of MHV-68 differ
from cellular miRNAs; firstly due to their unusual expression by RNA polymerase

III, and secondly due to the difference in hairpin length of the pre-miRNA molecules,
which is much shorter than cellular pre-miRNAs. It is therefore probable that

processing of the MHV-68 pre-miRNAs occurs via a different maturation pathway
from that for cellular pre-miRNAs. The potential mRNA targets and hence the
functional role of the viral miRNAs within infection is not known.

1.4 Transfer RNA molecules

Transfer RNA molecules (tRNA) are small RNA molecules, typically of 73-93
nucleotides in length, which possess a large amount of secondary structure. The

majority of tRNAs have an amino acid attached to their 3' end, the identity of which
is dependent upon the sequence of three nucleotides found within tRNA, known as

the anticodon. tRNAs play a central role during protein synthesis; by recognition of
the codon sequence found in mRNA molecules through complementary base-pairing
with the anticodon, they allow amino acids to line up according to sequence of
nucleotides in the mRNA. The functional role of tRNAs during protein synthesis is
well known, and therefore will not be discussed in detail. However, tRNAs do

exhibit additional functions during viral infections, and therefore a discussion of

these, along with the basic structure and expression of tRNA will follow:
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1.4.1 tRNA Structure

The nucleotide sequences of tRNA molecules form a predicted canonical cloverleaf

secondary structure based upon intramolecular base-pairing. The classical model for
tRNA structure is based upon three stems and loop regions, known as the D loop,
anticodon loop and T loop, along with a variable region and acceptor stem (Holley et

al, 1965). The acceptor stem contains a 3' C-C-A-OH sequence, added post-

transcriptionally, which is the point of amino acid attachment (figure 1.5). Typically,
the acceptor stem is composed of seven nucleotides, the T and anticodon stem of

five, and the D stem of three or four. There is a greater variability in the size of the

loops in comparison to the stems, with the T and anti-codon loops usually being

composed of 7 nucleotides and the D loop containing a variable number of
nucleotides (Dirheimer et al, 1995). However, as its name suggests, the greatest

variation can be seen in the length of the variable region and tRNA molecules can be
divided into two groups based upon the number of nucleotides within this region;
class I tRNAs having short variable regions of 4 to 5 nucleotides in length and class
II tRNAs having variable regions containing between 10 and 12 nucleotides

(Dirheimer et al, 1995). However, caution must be applied when inferring tRNA

secondary structure from DNA sequence analysis and in certain circumstances it is
not possible to propose a secondary structure without isolation and structural
determination of the tRNA molecules itself [e.g. Bovine mitochondrial tRNA(Ser)

(UCN) (Yokogawa et al, 1991)]

Determination of the tertiary structure of tRNAs is extremely problematic as suitable

crystals of tRNAs are required. Despite this, the three-dimensional structure of a
number of tRNA molecules has been determined, largely using high resolution X-ray

crystallography and nuclear magnetic resonance (Dirheimer et al, 1995). These
studies have shown that despite a large variation in the primary sequence and

secondary structure, tRNAs exhibit highly conserved three dimensional structures.
Conserved nucleotides, known as the invariant and semi-invariant bases, form

intramolecular interactions and facilitate folding into an L-shaped molecule, in which
the anticodon is located at one end and the amino acid at the opposite end (Hou,

1993). This allows recognition by aminoacyl-tRNA synthetases, which add the
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Figure 1.5. Typical two-dimensional cloverleaf structure of a tRNA
molecule, showing the location of the D (blue), anticodon (yellow) and
T (red) step and loops. The variable region (green) and discriminator
nucleotide (pale blue) are also shown, along with the 3' CCA sequence.
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correct amino acid onto the tRNA, via interactions with the anti-codon, the D-loop
and the discriminator nucleotide, located at position 73 (Meinnel et al, 1995).

1.4.2 tRNA Expression
Unlike mRNAs, which are transcribed by RNA polymerase II, tRNAs are

synthesized by RNA polymerase III. Transcription of tRNA initiates from

transcription factor binding to two sequence stretches within the tRNA gene; box A

(nucleotides 8-19) and box B (nucleotides 52-62), to which the transcription factors

(TF) IIIB and IIIC bind respectively (Sprague, 1995). TF binding then allows RNA

polymerase III to bind and transcription to take place. However, additional factors
are involved in tRNA expression, many of which are shared with RNA polymerase II
transcribed genes, including common transcription factors and promoter elements. In

particular, the TATA-binding protein is essential for tRNA expression (Sprague,

1995). Both 5' and 3' flanking sequences are involved in the regulation of tRNA

transcription. For example, individual members of the human tRNAval genes have
been found to exhibit tissue specific expression patterns, resulting from sequence

differences within the -51 and -17 boundary (Arnold and Gross, 1987). Furthermore,
a number of viruses including HSV-1, adenovirus type 5 (Ad5) and hepatitis B virus

up-regulate RNA polymerase III expressed genes (Berger and Folk, 1985; Gaynor et

al, 1985; Wang et al, 1995). In the case of Ad5 the Ela gene increases the amount

and activity of TFIIIC, resulting in the increased expression of both cellular tRNAs
and a viral non-coding RNA molecule; VA1 (see section 1.5.5) (Berger and Folk,

1985). It can be postulated that viral up-regulation of tRNA expression results in an

increased tRNA pool required for viral protein synthesis.

1.4.3 tRNA function during viral infection
1.4.3.1 Plant virus tRNA-like structures

A number of plant viruses possess tRNA-like domains within the 3' untranslated

regions of their genomic RNA, including bromoviruses, tymoviruses and furo-like
viruses. They exhibit varying aminoacylation abilities, which appear to be related to

their degree of tRNA mimicry. They have been postulated to have a number of
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functions, including the initiation of minus strand synthesis, regulation of protein

translation, the provision of the viral telomere during replication and packaging of
the genome into the virion (reviewed in (Florentz and Giege, 1995; Giege et al,

1998). The tRNA-like structure (TLS) found within the 3' region of the turnip yellow
mosaic tymovirus (TYMV) and brome mosaic virus (BMV) have been the most

intensively studied and therefore examples from research performed on these viruses
will be given.

The TLS of TYMV closely resembles cellular tRNAs, in that it possesses a D, T and
anticodon loop, exhibits the expected L-shaped architecture and is valylated by host

aminoacyl-tRNA synthetase. However, in contrast to cellular tRNAs, the amino-acid

acceptor stem contains a pseudoknot structure (Rietveld et al, 1983). In addition to

recognition by cellular aminoacyl-tRNA synthetase, the TLS is also processed by
CCA nucleotidyltransferase, resulting in the 3' addition of a CCA sequence, and has
a high affinity for the translation initiation factor, eEFlA*GTP (Dreher, 1999). It is

through the interaction with eEFlA*GTP that the TLS serves as a translational
enhancer during protein synthesis, a function that is dependent upon aminoacylation

(Matsuda and Dreher, 2004). In addition, the TLS acts as an amino acid donor during

protein synthesis, with the incorporation of valine into the viral polyprotein, a

function that is both cap- and Met-tRNAiMeI-independent, suggesting a novel
mechanism for internal initiation ofmRNA translation (Barends et al, 2003).

In addition to acting as mRNAs, the genomes of positive strand RNA viruses also
serve as templates for genome amplification, and the TLS of TYMV been found to

function in a manner so as to direct the genomic RNA towards protein synthesis

early in infection, and later to serve as a template for minus strand RNA synthesis.
EF1A*GTP binding during protein synthesis has been found to prevent negative
strand synthesis (Matsuda et al, 2004). It has therefore been hypothesised to be one

mechanism by which the TLS delays RNA replication until late within infection
when sufficient virally encoded RNA-dependent RNA-polymerase has been

produced to compete with eEFlA*GTP for binding to the viral RNA. The TLS was

initially believed to act as promoter directing minus strand synthesis, however
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disruptions within the anti-codon, D- and T-loops had no effect upon minus strand

synthesis (Singh and Dreher, 1998), indicating that the TLS does not serve as the

origin of replication. This function has been mapped to the CCA sequence at the 3'

terminus, although the TLS has been hypothesized to play a role in presenting the 3'-
CCA sequence in an accessible conformation (Dreher, 1999).

The BMV genome is composed of three positive strand RNA molecules, which all

possess 3' TLS sequences similar to those of TYMV. However, although the TLS of
BMV is aminoacylated with the addition of tyrosine, it shows strong divergence from
the canonical tRNA structure, and hence the location of the tyrosine identity
elements is difficult to ascertain. In common with TYMV, the TLS of BMV appears

to function to present the 3'-CCA in the necessary conformation required for minus
strand synthesis, in addition to functioning as a translational enhancer (Barends et al,

2004). Furthermore, the TLS is thought to carry out a role analogous to that of the
telomeres of chromosomal DNA (Rao et al, 1989), presumably by recruiting host
CCA nucleotidyltransferase to maintain the intact termini. The TLS of BMV is also

required for virion assembly, as demonstrated by the finding that in the absence of
the TLS mature virions fail to form (Choi et al, 2002). However, mature virions can

be assembled in the presence of either cellular tRNAs or the TLS in trans. In

addition, host tRNAs can mediate the assembly of the virions both in vitro and within

yeast cells (Cuillel et al, 1979; Krol et al, 1999), and hence both the tRNAs and TLS
have been hypothesized to act as nucleating agents during capsid assembly, with the
cellular tRNAs performing this function early in infection when the levels of viral

components are low.

1.4.3.2 Cellular tRNA functions during retroviral infection
The retroviral life cycle involves conversion of single-stranded RNA genomes into
double-stranded DNA for integration into the host genome. Retroviral DNA

transcription is carried out by reverse transcriptase (RT); a multifunctional viral

enzyme which acts as both an RNA-dependent DNA-polymerase and a ribonuclease
H (RNaseH) to digest the RNA template following transcription (Baltimore, 1970;

Goff, 2001). In order to provide the 3'-OH group required for RT-mediated DNA
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polymerization, all retroviruses utilize host tRNAs to act as a primer (Marquet et al,

1995). The exact tRNAs used varies between the different retroviruses, with human-

immunodeficiency virus type 1 (HIV-1) employing tRNALys3 (Wakefield et al,

1995). The primer binding site on the viral genome is located approximately 200
nucleotides downstream from the 5'-end of the full-length RNA, and is

complementary to the 18 nucleotide 3'-terminal of tRNALys3 (reviewed by Gotte el al,

1999). The primer tRNA is annealed to the viral RNA upon infection of a new cell,
so that cDNA synthesis takes place immediately following infection (Jiang et al,

1993). In order to achieve this, the tRNA is selectively packed into the virion, so that
there is a higher percentage of the primer tRNA within the virion than in the

cytoplasm. Given that the cognate aminoacyl-tRNA synthetase is also packaged via
interactions with the virion protein Gag, it could be hypothesised that this allows

incorporation of the correct tRNA (Cen et al, 2001). A further virion protein, Gag-

Pol, interacts directly with the tRNA to stabilise the RNA/protein complex (Mak et

al, 1994). In addition to functioning as primers for DNA minus strand synthesis, it
has also been hypothesised that the tRNA, or additional small cellular RNA

molecules, form a structural component of the virion, by acting as a scaffold during
the assembly ofGag complexes (Muriaux et al, 2001; Wang and Aldovini, 2002).

1.5 Viral non-coding RNA molecules
1.5.1 Alphaherpesvirus non-coding RNA molecules
The latency associated transcripts (LATs) of HSV-1 are the only viral transcript
detected within latently infected sensory ganglia (Spivack and Fraser, 1988; Wagner
et al, 1988). The major LAT species is in the form of nonpolyadenylated stable 2kb
intron (Farrell et al, 1991), spliced from a primary 8.3kb transcript, which can be
further spliced to give rise to smaller 1,5kb and 1,4kb RNA molecules (Spivack et al,

1991). In addition to their presence during latent infection, the LATs are also

expressed late during the lytic cycle, although the smaller 1.4kb and 1.5kb transcripts
can not be detected at this stage of infection (Krause et al, 1990), indicating that the

splicing pattern of the LATs is either tissue or life cycle specific. The sub-cellular
localization pattern of the LATs also exhibits a tissue specific pattern; during latent
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Figure 1.6 The localization of primary LAT transcript, along with
the 2Kb and 1.45Kb introns within the HSV-1 genome. In addition,
genes which are both anti-sense and co-linear to the LAT transcripts
are shown. Adapted from Garber et at, 1997
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infection they accumulate to high levels within the nuclei, but within lytically
infected cells they localize predominantly within the cytoplasm (Nicosia et al, 1994).
The location of the LATs within the genome of HSV-1 is shown in figure 1.6. The
last 750bp of the 2kb intron is anti-sense to the lytic transactivator ICPO. In addition,
the full length 8.3kb transcript is antisense to ICP4 and yi34.5 (Chou et al, 1990),
and co-linear to ORF P (Lagunoff and Roizman, 1994), L/STs (Yeh and Schaffer,

1993) and aX and (3X (Bohenzky et al, 1995). Therefore in order to the study the role
of the LATs in infection, the introduction of mutations must not directly effect the

expression of these overlapping ORFs. Despite this difficulty, a large number of
LAT null viruses have been created by either deletion of sections of the LAT gene

(Block et al, 1990; Leib et al, 1989; Thompson and Sawtell, 1997), deletion of

promoter elements and transcription start site (Garber et al, 1997; Thompson and

Sawtell, 1997) or disrupting LAT splicing (Kang et al, 2003). Characterisations of
the various mutant viruses have revealed that the LATs function during the
establishment of latency to increase the number of latently infected neurons (Kang et

al, 2003; Thompson and Sawtell, 1997), but they appear to have no effect upon the
viral DNA load within individual neurons (Leib et al, 1989; Thompson and Sawtell,

1997). In addition they have been found to be involved in facilitating the efficient
reactivation from latency (Block et al, 1990; Drolet et al, 1999; Leib et al, 1989).

The exact mechanisms by which the LATs carry out their function are not clear. A
LAT deletion virus showed increased productive-cycle gene expression within
murine trigeminal ganglion neurons (Garber et al, 1997). In addition, expression of
the 2kb LATs within a neuronal cell line resulted in down-regulation of ICPO gene

expression (Mador et al, 1998). This was initially postulated to be due to anti-sense

repression of ICPO expression; however this is unlikely to be the case as the 2kb
LAT was later found to be unable to result in the anti-sense mediated repression of
the ICPO transcript (Burton et al, 2003). An alternative hypothesis is that the LATs
somehow induce epigenetic changes resulting in the repression of productive cycle

gene expression. Indeed, during latency, the promoters of lytic genes, such as DNA

polymerase and TK, are associated with inactive or heterochromatin (Kubat et al,

2004). Flowever, following infection with a LAT deletion mutant, lytic promoters
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were more often associated with active or euchromatin, indicating that the LATs may

promote the assembly of heterochromatin on productive cycle promoters (Wang, Q,

Coen, D.M. and Knipe, D.M. in press). The LATs have also been found to block

apoptosis both in the context of viral infection within latently infected neurons and in
isolation following transfection into cells (Perng et al, 2000). The exact mechanism

by which they do this is not clear; although it appears that they are able to block

apoptosis induced by both the death receptor and mitochondrial apoptotic pathways

(Henderson et al, 2002). By promoting neuronal survival during latency

establishment, maintenance and reactivation the LATs would increase the numbers

of latently infected cells in addition to preventing the premature death of neurons

prior to the release of infectious virus.

As previously mentioned, the LATs are also present during productive infection
where, in addition to the nucleus, they can also be detected within the cytoplasm. In
the cytoplasm they associate with ribosomal proteins (Ahmed and Fraser, 2001),

indicating that they carry out an additional function during lytic replication and
therefore represent multifunctional non-coding RNA molecules.

The alphaherpesvirus of chickens, Marek's disease virus (MDV), expresses a number
of LATs during latent infection of lymphocytes, which are encoded within the same

region of the genome and are anti-sense to the MDV ICP4 gene. The LATs include
two small, spliced RNAs of 0.9kb and 0.75kb, known as Marek's virus small RNAs

(MSRs) as well as SARs and S RNAs (Cantello et al, 1994). The other RNAs include
three highly spliced 3 co-terminal polyadenylated RNAs (McKie et al, 1995), a 2.7kb

highly spliced polyadenylated RNA (Li et al, 1998) along with a lOkb unspliced
RNA transcript that spans the entire region. The LATs can be detected within various

lymphoblastoid cell lines and MDV lymphoma tissue. Although they can be detected

during productive infection, it appears that their expression is down regulated during
switch from latent to lytic infection (Cantello et al, 1997). During all stages of
infection they localize predominantly within the nucleus, although no potential

interacting proteins have been identified. The function of the MDV LATs during
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infection is not clear, although one study suggests that they play a role in MDV-
mediated tumour formation (Morgan et al, 2001).

1.5.2 Gammaherpesvirus non-coding RNA molecules
The best characterized non-coding RNA molecules of the Gammaherpesviruses are

the EBV encoded small RNA molecules [EBERs (Lerner et al, 1981)]. In common

with the vtRNAs of ME1V-68, they are small, non-polyadenylated, un-capped RNA

molecules, transcribed by the RNA polymerase III system. There are two EBER

transcripts known as EBER I and EBER II of 162 and 172bp in length respectively,
which both possess a stable secondary structure due to extensive intramolecular base-

paring forming a number of short stem-loops (figure 1.7) (Glickman et al, 1988)
Both EBERs can be detected at high levels during all latency programs, often

reaching 107 copies per cell (Lerner et al, 1981) but they are absent from oral hairy

leukoplakia, a mucocutaneous lesion that develops in patients infected with HIV that
is composed of EBV lytically infected cells (Gilligan et al, 1990). In addition, EBER

expression appears to be down-regulated following the initiation of lytic replication
in vitro (Greifenegger et al, 1998), indicating that they are predominantly latently

expressed. The EBERs reside mainly within the cell nucleus during mitosis, where

they appear to become localized around chromosomes. However, during interphase

they show a predominantly cytoplasmic pattern of staining, exhibiting a uniform
distribution near to the nuclear membrane, although they do also exhibit a globular

pattern of nuclear staining at this stage (Schwemmle et al, 1992).

The EBERs have been found to interact with a number of cellular proteins; within
the nucleus they interact with La antigen, a protein that associates with the 3' ends of
RNA polymerase III transcripts and protects them from exonuclease digestion

(Wolin and Cedervall, 2002). Along with La protein, EBER-1 has been found to

interact with an interferon (IFN) inducible, double stranded RNA dependent protein
kinase [PKR (Clarke et al, 1991; Sharp et al, 1993)]. PKR is autophosphorylated in
the presence of virus, a process mediated by double-stranded RNA, allowing it to

phosphorylate and inactivate a protein synthesis initiation factor, eIF-2a and block
translation. EBER-1 has been found to block both the autophosphorylation ofPKR
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Figure 1.7 Diagrammatic representation of the predicted secondary structures of
viral non-coding RNA molecules. (A) EBER-1 of EBV (taken from Glickman et al,
1988), (B) HSUR1 of HSV (taken from Lee and Steitz, 1990), (C) VAI of
adenovirus (taken from Monstein and Philipson, 1981).
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and the subsequent inactivation of eIF-2a. However, although EBER molecules are

able prevent to the decrease in protein synthesis in response to dsRNA, they can also
do so in a PKR independent manner (Laing et al, 2002), indicating that the EBERs

possess addition mechanisms to regulate protein synthesis. The EBERs also associate
with polyribosomes within the cytoplasm and have been found to interact with an

abundant ribosomal protein, L22 (Toczyski and Steitz, 1991). The function of L22 is
not clear, although it is involved in the 3;21 chromosomal translocation seen in some

forms of acute myeloid leukaemia. In addition, L22 appears to interfere with the
EBER-mediated regulation of protein synthesis resulting from both PKR-dependent
and independent modes of action (Elia et al, 2004). It is therefore possible that L22
functions to sequester the EBERs and attenuate their effects upon the regulation of

protein synthesis.

EBERs have also been found to confer clonability in soft agarose, resistance to

apoptotic inducers and tumourigenicity in mice when expressed within an EBV

negative Burkitt's lymphoma derived cell line (Komano et al, 1999). The exact

mechanism by which EBERs are able to bring about this oncogenic phenotype is not
known although it may be related to their ability to prevent PKR phosphorylation.

They have also been found to induce interleukin-10 (IL-10) expression in a Burkitt's

lymphoma derived cell-line (Kitagawa et al, 2000), which may act as an autocrine

growth factor for the lymphoma, and in vivo may also be involved in suppressing a

Thl response. However, although they have also been found to greatly increase the

frequency of colony formation when transfected into fibroblasts, they were not found
to be tumorigenic in this context, and their oncogenic role within EBV infection
therefore remains unresolved (Laing et al, 2002).

HVS genome contains seven viral U RNAs, known as HSURs, so called because
their predicted secondary structure resembles that of cellular U RNAs (figure 1.7),
which range in size from 75 to 143 nucleotides in length (Lee et al, 1988; Murthy et

al, 1986). The HSURs are found within the unique left-hand region of the genome,

which is essential for the transforming and oncogenic abilities of the virus but not
viral replication. They are the most abundant gene produced within latently infected,
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transformed T-cells, but despite this they are not required for transformation of
cultured marmoset T cells by HVS (Ensser et al, 1999). Cellular U RNAs assemble
into small nuclear ribonucleoproteins (snRNPs) and perform roles during mRNA
maturation such as splicing and polyadenylation. HSURs share a number of common
features with cellular U RNAs, in that they are transcribed by RNA polymerase II
and acquire a trimethyl-guanosine cap (Lee et al, 1988). In addition they also
associate with snRNPs, of the class Sm, the assembly of which is mediated by a

cellular protein known as survival of motor neurons [SMN (Golembe et al, 2005)].
The HSURs have a higher affinity for SMN and can out-compete host U RNAs for

assembly, although the functional significance of this during infection is not known.

The 5'-terminal sequences of HSUR1, HSUR2 and HSUR5 are highly conserved and

possess AUUUA motifs occurring repeatedly. Similar AUUUA motifs, known as

AU-rich elements (AREs), can be found with the 3'-untranslated regions of early

response genes such as cytokines, lymphokines and proto-oncogenes and confer
mRNAs instability. Given that the HSURs have been found to bind proteins involved
in ARE mediated degradation (Myer et al, 1992), they have therefore been

hypothesised to compete with cellular RNAs for factors involved in mRNA

degradation and hence contribute to viral oncogenesis resulting from the altered

expression of cytokines and proto-oncogenes. Indeed, cultured T cells transformed
with HVS show altered expression of cytokines and other ARE-containing genes (De
Carli et al, 1993; Medveczky and Medveczky, 1989). However, HSUR1 and HSUR2

appear to have little effect upon the levels of ARE-containing genes as measured by

micro-array analysis within T cells in vitro (Cook et al, 2004). Nonetheless, HSUR1
and HSUR2 have been found to up-regulate the expression of genes associated with
T-cell activation, such as the T-cell receptor (3 and y chains (Cook et al, 2005),
however the mechanism by which the HSURs achieve this is not clear.

KSHV expresses a polyadenylated nuclear RNA (PAN RNAs), an abundantly

expressed RNA molecule, which is unlikely to encode protein (Sun et al, 1996). In

addition, it does not associate with mature ribosomes or polysomes and is therefore
believed to function as a non-coding RNA molecule. The PAN RNA differs from
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other Herpesvirus non-coding RNAs in that it is expressed predominantly during
viral lytic infection and not within latency, in addition to being polyadenylated. It
shows a number of characteristics of some U RNAs in that it exhibits sequence

homology to a stem-loop of U1 RNA and is composed of 33% uridine, a

characteristic of some U RNAs. In addition, it co-localizes with Sm antigens in the
nucleus. Although the PAN RNA has been hypothesized to play a role in gene

silencing and splicing, its function within infection is not known.

1.5.3 Adenovirus non-coding RNA molecules
Various subtypes of Adenoviruses express one or two non-coding RNA molecules of

approximately 160nt in length, known as VAI and VAII (figure 1.7) (Reich et al,
1966; Soderlund et al, 1976). They are transcribed by RNA polymerase III early
within the infectious cycle, with the synthesis of VAI increasing rapidly during the
late stage of infection to become the most abundant RNA within the cytoplasm

(Soderlund et al, 1976). In common with the herpesvirus non-coding RNA

molecules, they have a stable secondary structure (Ma and Mathews, 1993). Deletion
of VAI from the viral genome results in a decreased growth rate due to inefficient
translation of viral mRNAs at late times within infection (Thimmappaya et al, 1982).
The mechanism by which VAI enhances protein synthesis was later found to be

dependent upon PKR activity (Clemens et al, 1994; Laing et al, 2002; Sharp et al,

1993). Adenoviruses produce large amounts of double-stranded RNA during their

replication, and therefore have the potential to activate PKR, resulting in the

subsequent phosphorylation of the translation initiation factor eIF2a leading to the
inhibition of protein synthesis. In order to overcome this response, VAI is able to

block PKR activity thereby preventing the phosphorylation of eIF-2a and allowing

protein synthesis to proceed. Given that VAII has a limited ability to block PKR and
mutant viruses that lack VAII grow as well as wild type in culture (Ma and Mathews,

1993; Thimmappaya et al, 1982), it is not thought to function in the same way as

VAI. It has been found to bind dsRNA binding proteins, such as RNA helicase A,

which is involved in transcriptional regulation, and NF90 (Liao et al, 1998). NF90 is
a target for PKR phosphorylation and is able to both up and down-regulate regulate
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protein synthesis (Reichman et al, 2002). However the significance of VAII-NF90

binding is not known.

In addition to its ability to stimulate protein synthesis in a PKR dependent manner,
VA1 also has the potential to prevent the down-regulation in protein synthesis

occurring as a result ofRNA interference (RNAi). RNAi is a process resulting in the

post-transcriptional gene silencing that relies upon short RNAs of approximately
21nt to target either the degradation or translational repression of specific mRNA

(Storz, 2002). The short 21nt fragments are generated by the Dicer enzyme from two

types of RNAs; small interfering RNAs (siRNAs), that can be processed from
dsRNA or short-hairpin RNAs (shRNA), and microRNAs (miRNAs, see section

1.5.4). VA1 has been found to inhibit RNAi by interacting with two proteins known
to bind RNA molecules during the RNAi response; Exportin 5 nuclear export factor
and Dicer (Lu and Cullen, 2004). In this way VA1 is able to prevent both the nuclear

export of shRNAs and pre-miRNAs in addition to preventing the generation of the

target 21nt RNA fragment.

1.5.4 Virally encoded miRNA
MicroRNAs (miRNAs) were initially characterised as playing a role during the

temporal control of larval development in Caenorhabditis elegans (Lee et al, 1993;

Wightman et al, 1993). They have since been found to have a variety of functions
within all metazoan eukaryotes, for instance within the fruit-fly they are involved in
the regulation of cell proliferation, cell death and fat metabolism. They consist of a
22 nt duplex processed from a 60-70 nt stem-loop pre-miRNA (figure 1.8), which is

initially processed from longer transcripts within the nucleus by the Drosha RNase
III endonuclease (Bartel, 2004). The pre-miRNA is then transported to the

cytoplasm, where it is further processed by Dicer into the mature miRNA. The
miRNA can then associate with the RNA-induced silencing complex (RISC)

resulting in the down regulation of gene expression, via one of two mechanisms;
RNA cleavage or translational repression, with the latter occurring when there is an

imperfect match between the miRNA and target mRNA (reviewed in Bartel, 2004).
miRNAs are commonly expressed by RNA polymerase II, and can be encoded
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within the 3' untranslated regions and introns of genes, in addition to specific
chromosomal regions composed of tandem clusters ofmiRNA sequences.

Since the initial discovery of virally encoded miRNA within EBV (Pfeffer et al,

2004), they have been discovered in a number of other viral species, including other

Gammaherpesviruses (KSHV and MHV-68) and Betaherpesviruses [HCMV

(Pfeffer et al, 2005a)] in addition to simian virus 40 [SV40 (Sullivan et al, 2005)]
and HIV-1 (Bennasser et al, 2004)]. In gammaherpesviruses, the miRNAs can be
found within regions of the genome actively transcribed within latent infection and
hence can be detected within latently infected cells. In contrast, the miRNAs of
HCMV are spread across the viral genome and show a lytic cycle expression pattern.

Potential targets for the viral miRNAs included cellular mRNAs, some of which are

known to be down regulated during infection, for instance those ofKSHV have been

predicted to target B-cell specific genes that are known to be down-regulated at the
mRNA level during KSHV latency (Cai et al, 2005). In addition, a number of viral
miRNAs have been demonstrated which potentially target viral mRNAs, perhaps

repressing viral replication, as is the case for miR-BART2 of EBV, which is capable
of targeting the viral DNA polymerase mRNA for degradation (Pfeffer et al, 2004),

along with miR-N367 of HIV-1, which can efficiently down-regulate viral

transcription (Omoto and Fujii, 2005). In addition, the miRNA of SV40 specifically
reduces the expression of viral T antigen resulting in decreased sensitivity to CD8+
T-cell killing (Sullivan et al, 2005). Hence, viral evolution has taken advantage of
the miRNA pathway to regulate the expression of both viral and cellular genes

during infection.

1.5 Project outline
The role of the vtRNAs within infection has not been extensively characterised and
therefore it is currently unclear what biological function they fulfil. The aim of this

study was to investigate the role of the vtRNAs within MHV-68 infection, firstly by

examining their expression pattern and sub-cellular localization during in vitro

infection. The second aim was to characterise the ability of the vtRNAs to bind

proteins present within both infected and uninfected cells, given that it is likely that
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Figure 1.8. Structure and processing of miRNA molecules. A) Diagrammatic
representation of a typical cellular miRNA (lin-4 RNA) showing the typical
stem-loop structure (taken from Bartel, 2004). B) Schematic depiction of
the processing and nuclear export of miRNAs. The long pri-miRNA
transcripts are cleaved within the nucleus by the Drosha RNase III
endonuclease, resulting in pre-miRNAs of approximately 60-70nt in length.
The pre-miRNA is then exported into the cytoplasm via exportin 5 (EXP 5)
prior to cleavage by Dicer into mature miRNAs (taken from Cullen, 2004).
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their function is mediated via protein interactions. The final objective was to explore
the contribution made by the vtRNAs to viral pathogenesis. This was achieved by
insertion of the vtRNAs1-5 into the left-hand region of the MHV-76 genome. The
behaviour of the recombinant virus was investigated during both in vitro and in vivo

infection. By characterising the role of the vtRNAs within infection, it was

hypothesised that this would give insight into the functions of other viral non-coding
RNAs.
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2.1 Molecular cloning
2.1.1 DNA digestion with restriction endonucleases
Restriction enzymes were purchased from either New England Biolabs or Invitrogen
and used with the appropriate manufacturer's buffer. The reaction was set up in a

total volume of 20-100pl, containing 10 units of enzyme per 1-1 Opg of DNA,

ensuring that the concentration of restriction enzyme did not exceed 10% of the total
reaction volume and incubated at a temperature recommended by the manufacturer

(usually 37°C).

2.1.2 DNA Dephosphorylation

Dephosphorylation of the 5' phosphate groups of linearised DNA was carried out

using Shrimp Alkaline Phosphatase (SAP, Invitrogen). Typically, 1 unit of SAP per

lpg DNA was added and incubated for 15 minutes at 37°C. Inactivation of SAP was

carried out by heating to 65°C for 15 minutes.

2.1.3 Ligation of DNA fragments
For the ligation of cohesive ends, the insert DNA was incubated with digested

plasmid DNA (at a ratio of 2:1), 1 Weiss unit of T4 DNA ligase (Invitrogen) and
reaction buffer [25mM Tris pH7.6, 5mM mgCU, 5mM dithiothreitol, 25% (w/v)

polyehthylene glycol 800 (Invitrogen)] for 5 minutes at room temperature. Aliquots
of the reaction mixture were used to transform chemically competent cells by heat-
shock.

2.1.4 Transformation of One Shot TOP 10 Chemically competent

bacteria

Ligated DNA fragments (approximately 0.1-50pg) and 25pl of TOP 10 chemically

competent bacterial (Invitrogen) were incubated on ice for 30 minutes.
Transformation was carried out by heat-shocking at 42°C for 90 seconds followed by
immediate transfer of the cells to ice. 250pl of SOC medium (Invitrogen) was then

added, and the cells incubated at 37°C for 1 hour with horizontal shaking at 200rpm
in an orbital shaker (Forma Scientific). Up to 200pl of cells were spread onto LB-
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agar plates containing the appropriate selective antibiotic and incubated overnight at
37°C for colony formation. The plates were stored at 4°C for up to 6 weeks.

2.1.5 Preparation of glycerol stocks of transformants
For the preparation of glycerol stocks of transformed bacteria, 60% glycerol was
added to 1.5mL of a log-phase bacterial culture. The culture was vortexed to allow
uniform distribution of the glycerol prior to rapid freezing on dry ice. The culture
was then transferred to -70°C for long-term storage. In order to recover the stored

culture, the surface of the culture was scraped using a sterile pipette tip, streaked
onto a LB-agar plate containing the appropriate selective antibiotic and incubated

overnight at 37°C to allow colony formation.

2.1.6 Agarose gel electrophoresis

Electrophoresis of DNA was carried out in horizontal agarose (SeaKem®, Flowgen,
UK) gels prepared in TAE buffer. The concentration of agarose (0.8-3.0%) was

dependent on the size of DNA fragments to be separated. 0.5pg/ml (w/v) ethidium
bromide was added to the gel whilst molten to allow visualisation of the DNA

fragments. The appropriate volume of 10 x loading buffer [0.25% (w/v) orange G,
0.15% (w/v) Ficoll] was added to the DNA samples, which were loaded into the set

gel. Samples were then electrophoresed at 60-90V in TAE buffer and visualised

using UV a transilluminator (UVP).

2.1.7 Isolation of DNA fragments from agarose gel using a Q1A Gel
Extraction Kit (Qiagen)
DNA fragments were excised from agarose gels using a clean, sharp scalpel blade
under short-wave UV-light. Extraction of DNA was carried out using QIA Gel
Extraction Kit (Qiagen) according to the manufacturer's instructions. 3 volumes of
buffer QG was added to 1 volume of gel, assuming that lmg of gel is equivalent to

lp.1. The samples were incubated at 55°C for lOminutes with frequent vortexing to

ensure complete melting of the gel. 1 volume of isopropanol was then added and

thoroughly mixed by inversion. The entire mixture was then loaded onto a QIAquick
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spin column and spun at > 15000 x g for 1 minute to bind the DNA, and then washed
with 750pl of Buffer PE. To elute the DNA, either 50pl of elution buffer (lOmM

Tris-HCl, pH8.5) at 37°C or LEO was added and the column centrifuged at > 15000
x g for one minute.

2.2 DNA extraction

2.2.1 Small scale extraction of plasmid DNA (miniprep)
Bacterial cultures were grown up from single isolated bacterial colonies picked from
an LB-agar plate containing the appropriate selective antibiotic. The bacteria were

incubated in lOmL LB-broth overnight at 37°C in an orbital shaker. The cultures
were pelleted by centrifugation at 3000 x g for 5 minutes and the DNA extracted by
alkaline lysis using QIAprep Miniprep (Qiagen) according the manufacturer's
instructions. The bacterial pellet was resuspended in 250jil Buffer PI, to which 250pl
Buffer P2 was then added and gently inverted ensure thorough mixing and lysis of
the bacteria. 350pl Buffer N3 was added and the mixture immediately inverted

repeatedly to avoid local precipitation of the DNA. The mixture was spun at

approximately 17 900 x g for 10 minutes, and the entire supernatant loaded into a

QIAprep Spin Column. The DNA was bound by centrifugation at >15 000 x g for 1
minute and subsequently washed with 750pl Buffer PE. To elute the DNA, either

50pl of elution buffer (lOmM Tirs-HCl, pH8.5) at 55°C or EEO was added and the
column centrifuged at > 15000 x g for one minute.

2.2.2 Large scale preparation of plasmid DNA (midi and maxiprep)

Large scale preparation of plasmid DNA was carried out using an Endofree Plasmid
Maxi Prep (QIAGEN) according to the manufacturer's instructions. Single colonies
of transformed bacteria were picked from LB-plates containing the appropriate
selective antibiotic, transferred to 10ml LB medium containing antibiotic and grown

at 37°C for 8 hours in an orbital shaker to yield a starter culture. The starter culture
was subsequently transferred to 100ml LB-medium containing the appropriate
selective antibiotic and incubated overnight at 37°C in an orbital shaker. The
bacterial cells were harvested by centrifugation at 6000 x g for 15 minutes at 4°C and
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the pellet resuspended in 10ml Buffer PI. In order to lyse the bacterial cells, 10ml of
Buffer P2 was then added and mixed by inverting prior to incubation for 5 minutes at

room temperature. Succeeding this 10ml of chilled Buffer P3 was added to the lysed

cells, which were subsequently mixed by inverting. The lysate was transferred to a

QIAfilter Maxi Cartridge and incubated at room temperature for 10 minutes. To
remove genomic DNA, proteins, cell debris and SDS, the lysate was filtered through
the column. 2.5ml of Endotoxin removal buffer (Buffer ER) was then added and the
mixture incubated on ice for 30 minutes. Equilibration of an anion-change column
was achieved by addition of 10ml QBT buffer prior to addition of the filtered lysate.
The column was washed successively with two 30ml aliquots of Buffer QC before
elution of the bound DNA in 15 ml Buffer QN. The DNA was subsequently

precipitated by the addition of 0.7 volumes isopropanol. Following thorough mixing,
the DNA was pelleted by centrifugation at >15 000 x g for 30 minutes at 4°C,
washed in 5ml of 70% ethanol and resuspended in 200pl TE buffer.

2.2.3 Extraction of high-molecular weight viral DNA

Initially 9 x 106 Baby Hamster Kidney cells BHK-21 cells were infected with virus at

a multiplicity of 0.01 pfu/cell, as in section 2.9.3. The cells were incubated at

37°C/5% CO2 until complete CPE was observed. The cells were subsequently
harvested using a cell scraper (Nunc) and pooled into a 250ml polypropylene conical

centrifuge flask. The cells were pelleted by centrifugation at 450 x g for 20 minutes
and resuspended in 4ml ice-cold sterile PBS. Succeeding this, the cells were

homogenised by 25 strokes of a dounce homogeniser on ice. The cell homogenate
was transferred to a sterile plastic tube and spun at 2000 x g for 20 minutes at 4°C.
The resulting virion containing supernatant was transferred to a fresh plastic tube and

kept on ice. The pellet was resuspended in 1ml sterile PBS and re-homogenised and

centrifuged as before. The supernatants were combined and layered onto a 20% (w/v)
D-sorbitol cushion and pelleted by centrifugation at 141 000 x g for 1 hour and 20
minutes at 4°C (SW28 rotor, Beckman). The viral pellet was resuspended in 500pl
50mM Tris (pH8) followed by the addition of 5ml high molecular weight DNA
extraction buffer (0.1M EDTA [pH 8], 0.5% [w/v] SDS, 0.2M Tris [pH 8] and

lOOpg/ml proteinase K) and incubated overnight at 53°C. The lysate was
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subsequently transferred to a sterile 15ml polypropylene tube (Nunc). From this

stage onwards only wide-bore pipette tips were utilized to prevent sheering of the

high molecular weight DNA. An equal volume of phenol:chloroform:isoamyl
alcohol (25:24:1) was added to the suspension and mixed for 30 minutes on a rotator.

The resulting mixture was centrifuged at 450 x g for 5 minutes and the aqueous

phase transferred to a fresh 15ml tube and the phenol:chloroform:isoamyl alcohol
extraction repeated a further three times. To remove contaminating phenol, the

sample was subject to two rounds of chloroform extraction. Following the final
chloroform extraction the DNA was precipitated by addition of 0.3 volumes of 7.5M
sodium acetate and 3 volumes 96% (v/v) ethanol. The DNA was subsequently

pelleted by centrifugation at 8000 x g for 30 minutes at 4°C, washed twice with 70%

(v/v) ethanol and resuspended in 500pl TE buffer. All viral DNA was stored at 4°C.

2.2.4 Extraction of DNA from splenocytes
DNA extraction from splenocytes was carried out using the DNeasy Tissue kit

• 7
(QIAGEN, UK) according to the manufacturer's instructions. Approximately 1x10

splenocytes were pelleted by centrifugation at 300 x g for 5 minutes and resuspended
in 180pl Buffer ATL. To this cell suspension 20pl Proteinase K (600mAU/ml) was
added and the sample incubated overnight at 55°C with gentle agitation. Following

complete digestion, 200pl Buffer AL was added and the suspension vortexed prior to
incubation at 70°C for 10 minutes. 200pl ethanol was then added and the sample
mixed thoroughly by vortexing before being loaded into a DNeasy Mini Spin
Column. The DNA was bound to the column by centrifugation at >6000 x g for 1

minute, then washed with 500pl Buffer AW1 (6000 x g, 1 minute) and subsequently

500pl Buffer AW2 (20000 x g, 3 minutes). The DNA was eluted by addition of

200pi Buffer AE and incubated at room temperature for 1 minute prior to

centrifugation at >6000 x g. The elution step was repeated and the DNA stored at

4°C.
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2.3 Southern analysis
2.3.1 Digestion of high molecular weight DNA

Digestion of high molecular viral DNA differed from that of small DNA fragments,
with respect to the reaction volume and incubation time. Reactions were set up in a

final volume of 50pl, with 3pg DNA, ddFEO and restriction endonuclease buffer and

initially incubated for 1 hour at 4°C before the addition of enzyme. Once restriction

enzyme was added (15 units), the reaction was gently stirred for 1-2 minutes on ice
before incubation at the appropriate temperature (usually 37°C) for 30 minutes.

Following this, a further 15 units of restriction enzyme was added to each reaction
and gently stirred before incubation for 12 hours at the appropriate temperature.

2.3.2 Electrophoresis and transfer

Digested DNA samples (3pg) were run on a 0.8% agarose-TAE gel containing

0.5ug/ml ethidium bromide. The samples were dry-loaded onto the gel and initially
run at 80V for 10 minutes in enough 1 x TAE buffer to touch the ends of the gel
without complete immersion. The gel was then totally immersed in 1 x TAE buffer
and electrophoresis continued at 60V for 6 hours. Once electrophoresis was

complete, the gel was viewed under short wave UV light and photographed. The gel
was then briefly rinsed in ddH20 and immersed in 0.25N hydrochloric acid for 10
minutes. Succeeding this the gel was washed in excess denaturation solution

(0.5MNaOH, 1M NaCl, 2 x 20 minutes) with constant agitation, then briefly washed
with ddEEO before immersion in neutralization buffer (0.5M Tris-HCl (pH7.5), 1.5M

NaCl, 2 x 20 minutes) with gentle agitation. Transfer apparatus consisted of a large

electrophoresis tank (Biorad, UK), partially filled with 10 x SSC. Two long strips of
3mm chromatography paper were trimmed the width of the gel and soaked in
lOxSSC before being laid on the raised portion of the electrophoresis apparatus, with
the ends of the chromatography paper submerged in 10 x SSC. The gel was placed
face-down on the chromatography paper and all air bubbles removed. One sheet of

uncharged nylon transfer membrane (Hybond N+, Amersham Biosciences, UK), was
cut so that it measured 1mm less than the gel in both directions, and briefly soaked in
ddH20 prior to immersion in lOxSSC for 5 minutes to ensure uniform wetness before
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assembly of the blot. The nylon membrane was placed onto the gel, followed by
three sheets of chromatography paper (soaked in 4xSSC), cut to the size of the gel.

Lastly a stack of paper towels were placed on top of the chromatography paper. A

glass plate, with a weight positioned on top, was placed on top of the paper towels to

provide uniform pressure, ensuring even transfer of the DNA to the nylon membrane.
Parafilm (American National Can, Chicago, USA) was placed round the edges of the

gel to prevent direct transfer of lOxSSC to the stack of paper towels. Blotting was

allowed to proceed for a maximum of 24 hours at room temperature. Following

transfer, the nylon membrane was removed from the apparatus and the DNA cross-

linked to the membrane with a Stratalinker 2400 (Stratagene, UK). The membrane
was wrapped in saran wrap and stored at -70°C until hybridization.

2.3.3 Staining of molecular weight standards

Following transfer and UV-crosslinkage, the lane containing the molecular weight
standards was excised from the membrane and immersed in 1M acetic acid for 10

minutes at room temperature. The acetic acid solution was then decanted and

replaced with a methylene blue stain [0.2% (w/v) methylene blue, 0.4M acetic acid,
0.4M sodium acetate]. After 10 minutes incubation in staining solution, the nylon

strip was rinsed, with agitation, in dELO until the DNA standards were visible.

2.3.4 Radiolabelling of DNA probes
Southern blots were probed with radiolabeled dsDNA probes specific for either the
vtRNAs 1-4, derived from an EcoRl and Hindlll digest of pEH1.4 (Bowden et al,

1997), or the HindlllG fragment of MHV-76, corresponding to nucleotides 11099-

16237. In order to produce radiolabeled dsDNA probes, the Ready-to-go™ DNA

labelling kit was used (Amersham Biosciences, UK). Initially, 50ng of DNA was

denatured by heating to 100°C for 2 minutes and made up to a total of 45 pi with TE
buffer. The denatured DNA was added to the Ready-to-go DNA labelling beads; to
which 50pCi of 32P-dCTP was subsequently added once the bead had fully dissolved.
The labelling reaction was then allowed to proceed for 25 minutes at 37°C.

Unincorporated nucleotides were removed by Micro-Bio-Spin Chromatography
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(BioRad, UK) columns. Briefly, the columns were initially spun at 1000 x g to

remove the packing buffer (lOmM Tris, pH7.4). Subsequently the labelled probe was

added to the column and spun at 1000 x g for 4 minutes. The flow through from this
elution (containing the radiolabeled DNA probe) was retained. The purified
radiolabeled probe was denatured by incubation at 100°C for 2 minutes.

2.3.5 Pre-hybridization and hybridization

Pre-hybridization and hybridization of the membrane was carried out using

ULTRAhyb™ Ultrasensitive Hybridization Buffer (Ambion, UK). The

ULTRAhyb™ was initially warmed to 68°C to remove any precipitated material. A
volume of 6-10ml was used depending on the size of the membrane, and

prehybridization carried out for 30 minutes at 42°C with constant rotation. The same

aliquot of Ultrahyb was used for hybridization, to which half of the total volume

(usually 20pl) of radiolabeled DNA probe was added. Hybridization was allowed to

proceed at 42°C overnight with constant rotation. Membranes were initially washed
twice with 2 x SSC, 0.1% SDS (w/v) for 5 minutes at 42°C, followed by two washes
with 0.1 x SSC, 0.1% (w/v) SDS for 15 minutes at 55°C. For detection of the
radiolabeled probe, the membrane was wrapped in saran wrap and placed in a

cassette and exposed to Hyperfilm ECL (Amersham, UK) for up to 24 hours.

2.3.6 Removal of radiolabeled probes from Southern blot
membranes

Bound radiolabelled dsDNA probes were stripped from the nylon membrane by
immersion of the membrane in boiling 0.1% (w/v) SDS until the solution cooled to

room temperature. The membrane was subsequently washed with 2 x SSC for 15
minutes. Stripped membranes were exposed to X-ray film for 24 hours to assess for

complete removal of the probe.
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2.4 Polymerase chain reaction
2.4.1 Components of standard PCR reactions
PCR reactions were carried out using Taq polymerase (Invitrogen, UK). The
concentration of MgCU varied from 1.5-5mM depending on the primers used. A

typical reaction mix also consisted of lOOng of template DNA, PCR reaction buffer

(20mM Tris [pH 8.4], 50mM KC1, Invitrogen, UK), lOOpM of each dATP, dCTP,
dGTP and dTTP, 50pmol of each primer (MWG-Biotech, Germany) and 5U of Taq
DNA polymerase. All PCR primers were purchased from MWG-Biotech, and are

shown in Appendix 2 along with their optimum annealing temperatures. PCR
reactions were carried out in an Omnigene thermal cycler (Thermohybaid). A
modified hot-start method was routinely used to increase the specificity of the

amplification. Briefly, the reaction mix was overlaid with mineral oil (Sigma, UK)
and heated to 94°C for 3 minutes. Reactions were then held at 80°C before the

addition of Taq DNA polymerase. A typical PCR reaction program consisted of an
initial denaturing step (94°C, 45 seconds), an annealing step of variable temperature

dependent upon the primers in use, and an elongation step (72°C, 1 minute).

Following 35-40 cycles, reactions were incubated at 72°C for 7 minutes before

cooling to room temperature.

2.4.2 PCR from crude lysates
A modified PCR method was occasionally used for amplification of viral DNA from
crude cellular lysates. In this instance, reactions were set up in a similar manner as

the standard PCR protocol, except proteinase K (Sigma, UK) was added to the
reaction mixture, to a final concentration of 0.4pg/pl Reactions were overlaid with
mineral oil (Sigma, UK) and incubated at 65°C for 15 minutes, followed by 95°C for
5 minutes to inactivate the proteinase K. The modified hot-start method was then

employed as described for the standard PCR protocol.

2.4.3 Real-time PCR analysis
Real-time PCR analysis to quantify the viral genome load was performed on a

Rotorgene (Corbett Research, UK). Following DNA extraction a portion of the
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ORF50 gene was amplified and the levels of dsDNA product determined using the

intercalating dye SYBR green. In addition, a portion of the cellular (3-actin gene was

also amplified in order to normalise the levels of DNA present within the individual

samples. Reactions contained lOOng DNA, PCR reaction buffer [50mM Tris-HCl,
lOmM KC1, 5mM (NFLOiSCh, 20mM MgCh, pH8.8), 50pmol of each primer

(MWG-Biotech, Germany), 40pM each of dATP, dCTP, dGTP and dTTP, 0.7pl
SYBR green and 0.15U FastStart™ Taq DNA polymerase (Roche), in a total
reaction volume of 20pl. In all reactions, an initial denaturation step was carried out

by incubation at 95°C for 10 minutes. 40 cycles of amplification were carried out,

which consisted of denaturation at 95°C for 15 seconds, annealing at 62°C for 20
seconds and extension at 72°C for 20 seconds. The amplification efficiencies of the

samples were compared to a standard curve, generated from the serial dilution of
either cloned template (ORF50) or a PCR amplified fragment of the gene (P-actin)
and amplified in parallel. In the case of OFR50 amplification, standards were spiked
with lOng mouse tail tip DNA. The genome copy number was calculated from the

cycle number at which the SYBR green signal crossed a set threshold on the standard

curve, known as the Ct value. All products were evaluated by melting analysis to

determine the specificity of individual reactions.

2.5 RNA extraction and manipulation
2.5.1 RNA isolation using RNAwiz
Total RNA was isolated from both cells and virus using RNAwiz™ (Ambion). The
material from which RNA was to be isolated was initially resuspended in an

appropriate volume of RNAwiz™; in the case of in vitro infection of cells, 2 x 106
CI27 cells were used and the RNA extracted in 1ml of RNAwiz, for purified virus
lml of RNAwiz was used per 250pl of RNase treated virus. For adherent cells, the
cells were initially washed with 5 ml sterile PBS and the cells harvested directly in
RNAwiz. On occasion, the cells were not adherent and were thus pelleted by

centrifugation at 300 x g, washed in sterile PBS prior to addition of RNAwiz. The

samples were homogenized by vigorous pipetting and at this point were stored at

-80°C until the RNA extracted. Once the samples had completely defrosted, they

78



Chapter 2 Materials and methods

were incubated at room temperature for 5 minutes to ensure complete dissociation of
the nucleoproteins from nucleic acids. 0.2 starting volumes of chloroform was

subsequently added and the homogenate mixed by vortexing for 20 seconds prior to
incubation at room temperature for 10 minutes. The samples were centrifuged at 10
000 x g at 4°C for 15 minutes and the aqueous phase transferred to a fresh 2ml

eppendorf tube (Axygene, UK). 0.5 starting volumes of TbO and 1 starting volume
of isopropanol were then added, mixed well and incubated at room temperature for
10 minutes. The RNA was recovered by centrifugation at 10 000 x g for 15 minutes
at 4°C. The resulting supernatant was discarded and the pellet washed in 1 starting
volume of chilled 75% ethanol by vortexing. The RNA was subsequently pelleted by

centrifugation at 10 000 x g for 5 minutes. The supernatant was then discarded, the
RNA pellet air dried for 10 minutes and resuspended in 30pl RNAse free ddlUO.
RNA was stored at -70°C.

2.5.2 Standard DNase treatment of RNA

Contaminating DNA was removed from RNA samples by recombinant DNase I

using DNA-/ree™ (Ambion, UK). 5ug ofRNA was treated with 4 units DNase I in a

total reaction volume of 13pl containing DNase I buffer (lOmMTris-HCl pH7.5,
25mM MgCb, 5mM CaCU, Ambion, UK). The reaction was allowed to proceed at

37°C for 30 minutes before the addition of 1.3pl of DNase inactivation reagent

(Ambion, UK) and the samples incubated at room temperature for 2 minutes. The
inactivation reagent was pelleted by brief centrifugation. An aliquot of 5pi RNA was

removed for RT-PCR analysis.

2.5.3 DNAse treatment of pure viral RNA
In order to DNase treat RNA isolated directly from virions, a modified protocol was

employed. 5pi of RNA was initially DNase treated as for the standard method.

However, following inactivation of the DNAse, the RNA was transferred into a fresh
0.5ml microfuge tube and the RNA incubated at 95°C for 3 minutes, prior to the
addition of DNase I buffer and 4 units DNase I. The reaction was allowed to proceed
for 1 hour at 37°C before the addition of 1.3pl of DNase inactivation reagent

(Ambion, UK) and the samples incubated at room temperature for 2 minutes. The
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inactivation reagent was pelleted by brief centrifugation. An aliquot of 5pl RNA was

removed for RT-PCR analysis.

2.5.4 Reverse transcription of RNA
The generation of cDNA from DNased RNA was carried out using Superscript™ II

(Invitrogen). Initially, approximately 2pg of RNA was incubated with lOOpM of
each dATP, dTTP, dCTP and dGTP, and 200ng of random primers (Amersham) in a

total volume of 12pl and incubated at 65°C for 5 minutes. The mixture was

subsequently chilled on ice and spun down briefly. To this, 4pl first strand buffer

(250mM Tris-HCl [pH8.3], 375mM KC1, 15mM MgCl2, Invitrogen), 2pl 0.1M
dithiothreitol and 40U RNaseOUT (Invitrogen) were added and gently mixed prior to
incubation at room temperature for 10 minutes, followed by incubation at 42°C for 2
minutes. 200U Superscript™ II was added to the mixture and incubated at 42°C 50
minutes before terminating the reaction by heating to 70°C for 15 minutes. For RT-
PCR 2pi of cDNA was then used per PCR reaction.

2.5.5 RNA agarose gel electrophoresis
RNA samples were run on a denaturing agarose gel. In most instances, lOpg of total
RNA was used per lane and was initially diluted to a 20pl final volume with RNAse-

free ddEliO. 5pl of loading buffer (per 10ml: 16pl saturated aqueous bromophenol

blue, 80pl 0.5M EDTA [pH 8], 720pi 37% (w/v) formaldehyde, 2ml 100% glycerol,

3.084ml formamide, 4ml lOx MOPS buffer [200mM MOPS, 50mM sodium acetate,

lOmM EDTA, NaOH to pH 7], lOOpl dH20) was added to each sample and

incubated at 65°C for 5 minutes. Following this, the RNA samples were immediately
chilled on ice. Molten agarose [(200ml, 1.2% (w/v)] was cooled to 65°C before the

addition of 3.6ml of 37% formaldehyde and 2pl lOmg/pl ethidium bromide (Sigma,

UK). The gel was subsequently set and run at 30V for 30 minutes with re-circulating

running buffer [per litre: 100ml lOx MOPS buffer, 20ml 37% (w/v) formaldehyde,

880ml RNAse-free dEEO] prior to sample loading. Samples were then loaded into
the gel, and electrophoresed at 20V for 8-12 hours. 5pg of an RNA molecular weight
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marker (0.24-9.5kb RNA ladder, Invitrogen, UK) was loaded alongside RNA

samples as a reference.

2.5.6 RNA electrophoresis using TBE-Urea gels
In order to resolve labelled RNA molecules between 10 and 150 nucleotides in

length, RNA was run on NOVEX™ TBE-urea 10% polyacrylamide gel (Invitrogen).
NOVEX™ RNA sample buffer was added and the samples denatured by heating to

95°C for 3 minutes. Decade Markers™ (Ambion) were also labelled and run
• ^9

alongside RNA samples as a reference. The markers were radiolabeled with [y- P]
ATP by incubation with lOpCi [y-32P] ATP for 1 hour at 37°C. They were

subsequently cleaved by addition of 2pi cleavage reagent and 8pi RNAse-free

ddH20, and incubation at room temperature for 5 minutes. An aliquot of 4pl was
loaded onto the gel. RNA samples were run in 0.5 x TBE for 1 hour at 180V.

2.5.7 Radiolabelling of RNA using T4 RNA ligase
• ^9

RNA isolated from virions was radiolabeled with [ "P] cytidine 3', 5'-bisphosphate

(pCp) using T4 RNA ligase (New England Biolabs). lOpl of RNA was incubated
with T4 reaction buffer (50mM Tris-HCl, lOmM MgCl2, ImM ATP, lOmM DTT,

pH7.8), 10% (v/v) DMSO, 20U SUPERase-In™ RNase inhibitor (Ambion, UK),

250pCi [j2P] pCp and 20 units T4 RNA ligase for 30 minutes at 37°C.

Unincorporated nucleotides were removed with Micro-Bio-Spin Chromatography
columns. Briefly, the columns were initially spun at 1000 x g to remove the packing
buffer (lOmM Tris, pH7.4). Subsequently the labelled probe was added to the
column and spun at 1000 x g for 4 minutes. The flow through from this elution

(containing the radiolabeled RNA probe) was retained. The samples were run on

either a 1% (w/v) agarose gel containing 6.7% (v/v) formaldehyde made up in 1 x
MOPS buffer or a pre-poured NOVEX™ TBE-urea 10% polyacrylamide gel. In the
case of RNA resolved by electrophoresis on an agarose gel, 5pg of an RNA

molecular weight marker (0.24-9.5kb RNA ladder, Invitrogen, UK) was also
radiolabeled as above and loaded alongside RNA samples as a reference. All gels
were fixed in 10% acetic acid/20%methanol for 20 minutes, and agarose gels dried
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for 2 hours at 80°C. For detection of the radiolabeled RNA, the gels were wrapped in
saran wrap and placed in a cassette and exposed to Hyperfilm ECL (Amersham) for

up to 6 days.

2.5.8 In Vitro Transcription of vtRNAs
vtRNAs were transcribed in vitro using T7-MEGAshortscript™ (Ambion). The
DNA templates consisted of annealed synthetic oligonucleotides encoding a T7

promoter and the vtRNA containing a 5'CCA sequence (see Appendix 3). In the case

of vtRNA 1 a partially single stranded template was utilized, which contained double
stranded sequences only within the T7 promoter, whereas the entire vtRNA4

template was double-stranded. The DNA template was incubated with 2pi 10 x

transcription buffer, 0.5pl of each ATP, GTP and UTP, lOpmole DNA template, 2pl
T7 MEGAshortscript™ enzyme mix and either 0.5pl CTP or 40pCi 32P-CTP. In vitro
transcription was allowed to proceed for 2 hours at 37°C prior to digestion of the
DNA template by addition of 2U DNase I (Ambion) and incubation at 37°C for 10
minutes. Micro-Bio-Spin Chromatography (BioRad, UK) columns were used to

remove unincorporated nucleotides. Briefly, the columns were initially spun at 1000
x g to remove the packing buffer (lOmM Tris-HCl, pH7.4), which was then replace
with lOmM Tris-HCl, pH8 by adding 500pl buffer to the column, spinning at 1000 x

g for 1 minute and disposing of the flow through. This was repeated a further three
times. Subsequently the vtRNA was added to the column and spun at 1000 x g for 4
minutes. The flow through from this elution (containing the vtRNA) was retained.
The vtRNAs were then folded by heating to 80°C for 90 seconds, followed by

cooling to room temperate. MgCfi was added to a final concentration of 20mM and
the vtRNA placed on ice.

2.6 Northern analysis
2.6.1 Electrophoresis and blotting

10pg of total RNA was run on a denaturing agarose gel (1%) at 20V for 12 hours.
The gel was then briefly visualised under short-wave UV light, prior to rinsing with

ddH20. The gel was subsequently washed in 5 gel volumes of 0.0IN NaOH/3M
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NaCl for 20 minutes and the RNA immediately blotted onto a nylon membrane

(Hybond N+, Amersham Biosciences, UK). Transfer was carried as for Southern

blotting with the following modifications; transfer occurred in the presence of 20 x

SSC and the filter paper was pre-wetted in 10 x SSC. Following transfer, the
membrane was soaked in 6 x SSC for 5 minutes with gentle agitation. The RNA was

cross-linked to the membrane with a Stratalinker 1200 (Stratagene UK) and stored at

-80°C until hybridization.

An alternative approach was taken in order to transfer RNA that had been run on

NOVEX™ TBE-urea 10% polyacrylamide gel (section 2.5.6). Following

electrophoresis, RNA was immediately electrophoretically transferred to a

Zetaprobe™ membrane (Biorad) at 200mA for 1 hour in 0.25 x TBE, using a

semidry blotter (Amcos). The RNA RNA was cross-linked to the membrane with a

Stratalinker 1200 (Stratagene UK) and stored at -80°C until hybridization.

2.6.2 Prehybridisation and hybridisation
Northern blots were hybridised with dsDNA probes, generated as described for
Southern hybridisation. Pre-hybridisation and hybridisation was performed at 42°C
with Ultrahyb (Ambion, UK). For Northern analysis, half the total volume of the
radiolabeled probe (usually 20pl) was used for overnight hybridisation. Membranes
were washed at 42°C twice for 5 minutes in 2 x SSC, 0.1% (w/v) SDS followed by

two washes for 15 minutes each in a 0.1 x SSC, 0.1% (w/v) SDS at 65°C. The

membrane was exposed to X-ray film as described above.

An alternative approach was also taken to detect small RNAs of less than 150
nucleotides in length. Labelled RNA probes were produced by incorporation of P

CTP using the mirVana™ miRNA probe construction kit (Ambion). Briefly, 2pi

oligonucleotides (lOOpM) encoding the T7 promoter and the appropriate probe

containing an 8 base sequence complementary to the 3' end of the T7 promoter

sequence (see appendix 3), were mixed with 6pl of DNA hybridization buffer and

subsequently annealed by heating to 70°C for 5 minutes followed by incubating at
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room temperature for 5 minutes. A double stranded template was then generated by
addition of 2pl 10 x Klenow reaction buffer, 2pi dNTP mixture and 2pl Exo-Klenow,
and made up to a total volume of 20pl The mixture was incubated at 37°C for 30
minutes. In vitro transcription was then carried out by taking lpl of the dsDNA

template and adding 2pl of 10 x transcription buffer, 0.5nM ATP, GTP and UTP,

25pCi 32P CTP and 2pl T7 RNA polymerase. The mixture was incubated at 37°C for
30 minutes, following which the DNA template was removed by incubating with lpl
DNase I for 10 minutes at 37°C. Unincorporated nucleotides were removed as

described in section 2.3.4 and lOpl used for overnight hybridisation as described for
dsDNA probes.

2.6.3 Removal of radiolabeled probes from Northern blot
membranes

Double-stranded DNA probes were removed from Northern blots as described for the
removal of radiolabeled probes from Southern blots.

2.6.4 RNA Dot-Blotting
Cellular extracts were prepared from CI27 cells infected with MHV-68 and SI 1 cells

(section 2.9.3). The volume of cell extract was normalised to the volume of the
extract of nuclear pellet so that an equivalent volume of cell extract was dotted onto

the membrane. lOpl of the extract of nuclear pellet and equivalent volumes of

nucleoplasm and nuclear membrane fractions, and volume of cytoplamsic fraction

equivalent to 5pi of the extract of nuclear pellet were DNase treated by incubation
with 2 units DNase I (Ambion, UK) and 2.5pl DNase I buffer (lOmMTris-HCl

pH7.5, 25mM MgCh, 5mM CaCh, Ambion, UK) in a total volume of 25pl, and
incubated at 37°C for 1 hour. 1.3pl of inactivation reagent was subsequently added
and the mixture incubated for 2 minutes at room temperature. The DNase treated

samples were then dotted onto a nylon membrane (Hybond N+, Amersham
Biosciences, UK) and air dried before cross-linking onto the membrane using the
auto-crosslink programme on a Stratalinker 1200 (Stratagene UK). Hybridization as
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described for Northern blotting. Quantification of the dots was carried out using
Labworks 4TM (Ultra-Violet Products).

2.7 RNA In Situ Hybridization
2.7.1 Generation of labelled RNA probe
In situ hybridization was carried out using digoxygenin labeled anti-sense probes
derived from pEH1.4, a plasmid consisting of nucleotides 106 to 1517 encompassing

vtRNAl-4, cloned into pBlue Script (a gift from Dr. S. Efstathiou). The plasmid was

initially digested with HintIIII. Following digestion an equal volume of

phenol:chloroform was added and the mixture thoroughly vortexed followed by

centrifugation at 10 000 x g for 10 minutes. The aqueous phase was transferred to a

fresh 1.5ml microfuge tube and contaminating phenol was removed by addition of 1
volume chloroform. The mixture was again thoroughly vortexed and spun at 10 000
x g for 10 minutes and the aqueous phase transferred to a fresh 1.5ml microfuge tube.
The DNA was subsequently precipitated by addition of 2.5 volumes 99.5% (v/v)
ethanol (VWR, UK) and 0.1 volumes 3M NaOAc (pE15.5). The DNA was

resuspended in 30ul TE buffer and a 1 pi sample run on a 0.8% agarose gel to ensure

complete cleavage of the plasmid.

The digoxygenin labeled riboprobe was in vitro transcribed by T7 RNA polymerase

using the DIG RNA labelling kit (Roche). Transcription was carried out in a total
reaction volume of 20pl containing lpg template DNA, 2pl 10 x T7 transcription
buffer (400mM Tris-HCl pH 8, 60mM MgCh, lOOmM dithioltreitol, 20mM

spermidine), ImM of each ATP, CTP and GTP, 0.65mM UTP, 0.35mM Biotin-16-
UTP (Roche) and 40 units T7 RNA polymerase. The reaction was incubated at 37°C
for 2 hours before termination by the addition of 2pl 0.2M EDTA (pH8). The RNA
was subsequently precipitated by the addition of lpl yeast tRNA (lmg/ml), 2.5
volumes of cold 99.5% ethanol and 0.1 volumes of 3M NaOAc (pH5.5) and
incubated on dry ice for 1 hour. The RNA was pelleted by spinning at 10 000 x g for
30 minutes at 4°C and the supernatant removed before washing the pellet in 70%
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ethanol. The RNA pellet was air dried and resuspended in 45pi RNase free H2O

(Sigma, UK).

2.7.2 Alkaline hydrolysis of labeled probe
In order to digest the digoxygenin labeled RNA probe to a length of approximately
170 nucleotides, alkaline hydrolysis was carried. The optimum time for hydrolysis
was calculated using the following equation; t - Lo-Lf / (K x Lo x Lf), in which

t=time, Lo=initial fragment length, Lf=final fragment length and K=0.11. Therefore,
the optimum hydrolysis time required to digest the probe generated by in vitro

transcription of EH1.4 was 47 minutes. Alkaline hydrolysis was carried out by
addition of 5pl 0.4M NaHCCb, 0.6M Na2C03, pH 6.2 to the labeled probe. The
reaction incubated at 60°C for the required length of time, before being neutralized

by the addition of 5pl 3M NaOAc pH4.6. The digested probe was ethanol

precipitated and resuspended into 50pl RNase free H2O (Sigma, UK).

2.7.3 Quantification of labeled RNA probe

Digoxygenin labelled RNA probe was serially diluted in RNase free ddH20 (Sigma,

UK) from 1/10 to 1/100000. 5pl diluted probe was dotted onto 0.22pm nitrocellulose
membrane (Micron Separations, USA), and air dried before cross-linking using the
auto-crosslink function on a Stratalinker 1200 (Stratagene UK). The membrane was

subsequently washed in buffer I (0.1M maleic acid, 0.15M NaCl, pH7.5, 3x5 mins)

prior to blocking with buffer II (buffer I containing 0.1% normal sheep serum), for
30 minutes with constant agitation. After removal of buffer II the membrane was

incubated for 1 hour with anti-digoxygenin-alkaline phosphatase antibody (Roche,

Germany), diluted 1/5000 in buffer II. The membrane was subsequently washed with
buffer I containing 0.3% (v/v) tween-20 (3 x 15 minutes), followed by buffer III

(0.1M Tris-HCl, 0.1M NaCl, 50mM MgCl2, pH9.5, 1 x 5 minutes). Detection of
alkaline phosphatase was then carried out by incubation with 5-bromo-4-chloro-3-

indolyl phosphate/nitroblue tetrazolium (BCIP/NBT, Sigma, UK). The colour

intensity was compared to that of a dilution series of control DIG-labeled neo anti-
sense RNA (Roche, Germany), ranging from lOpg/ml to O.lng/ml.
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2.7.4 Preparation of cytospins for RNA in situ hybridization
CI27 cells were infected with MHV-68 or MHV-76 at a multiplicity of infection of 5

pfu/cell, for various time points ranging from one to 24 hours. The cells were

subsequently trypsinized, fixed in 10ml of PLP [2% (w/v) paraformaldehyde, lysine,

periodate fixative) for lOmins and resuspended in PBS to a concentration of 1x10s.
200pl of cell suspension was pelleted onto Superfrost Plus slides (VWR) at lOOOrpm
for 5mins. The slides were post-fixed in PLP for 15mins and rinsed in PBS for 5
minutes and immediately processed for in situ hybridization.

2.7.5 RNA in situ prehybridisation and hybridisation on cytospins
The slides were initially washed three times in PBS for 10 minutes, followed by

permeabilisation in 0.5% triton x-100 in PBS for 10 minutes at 4°C. Subsequently
the slides were rinsed in PBS (3 x 10 minutes) followed by 2 x SSC (5 minutes).

200ng/ml of labeled probe was diluted in hybridisation buffer [50% (v/v) formamide,
5 x salts (0.05M EDTA, 0.05M PIPES, 0.6M NaCl, pH6.8 ) 0.1 x SDS, 5 x

Denhardts, 0.25mg/ml salmon sperm DNA (sigma), 0.25mg/ml yeast tRNA (sigma),
20U/ml heparin and 5mg/ml dextran sulphate] and heated to 95°C for 2 minutes.
DTT was added to lOmM and 60pl of solution added to each slide. Slides were

covered in parafilm to prevent evaporation of the hybridization buffer and incubated
at 55°C overnight. Slides were subsequently immersed in 4 x SCC and the parafilm
removed. Unbound probe was removed by washing with 2 x SSC (2x15 minutes,

37°C), followed by 1 x SSC (2x15 minutes, 37°C) and finally 0.2 x SSC (2x15

minutes, 55°C).

2.7.6 RNA in situ prehybridisation and hybridisation on tissue
sections

RNA in situ hybridization was also carried out on formalin fixed, paraffin embedded
tissue sections, of 5-7pl thickness. In order to remove the paraffin wax, the sections
were incubated in xylene, twice for 5 minutes, following which they were rehydrated

through descending concentrations of ethanol and finally distilled water. The sections
were then equilibrated in PBS for 5 minutes and then treated with 0.1% (w/v)
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protease IV (Sigma) for five minutes at room temperature. The sections were

subsequently washed in PBS and dehydrated by incubation (2x5 minutes) in 100%
ethanol containing 0.03M ammonium acetate. The sections were then air-dried prior
to addition of lOOpl prehybridization buffer [50% (v/v) formamide, 5 x Denharts, 5 x
salts (0.05M EDTA, 0.05M PIPES, 0.6M NaCl, pH6.8), 0.25mg/ml salmon sperm

DNA (sigma), 0.25mg/ml yeast tRNA (sigma), 20U/ml heparin and 0.01% SDS].
The salmon sperm DNA was denatured by heating to 100°C for 2 minutes before

being added to the prehybridization buffer. The sections were then incubated at 55°C
for at least an hour, following which the prehybridization buffer was removed and

hybridization carried out using labelled probe as described in section 2.7.7.

2.7.7 Visualisation of probe using alkaline phosphatase
Detection of the digoxygenin labelled probes was carried out using an anti-

digoxygenin alkaline phosphatase conjugated antibody (Roche, Germany). Sections
were initially blocked in 2% normal sheep serum in PBS for 2 hours at room

temperature, and excess liquid removed. Anti-digoxygenin (0.5U/ml) in 2% normal

sheep serum/PBS was subsequently added to the sections and incubated overnight at

room-temperature. Excess antibody was removed by washing three times in PBS for
15 minutes. Alkaline phosphatase was detected using 5-bromo-4-chloro-3-indolyl

phosphate/nitroblue tetrazolium (BCIP/NBT) and the sections counterstained with
Nuclear Fast Red (Vector Laboratories, UK), prior to processing in 100% ethanol (2
x 5 minutes) and xylene (2x3 minutes). The slides were mounted in Vectamount

permanent mounting media (VectorLabs, UK).

2.7.8 Visualisation of probe using Alexafluor488
Fluorescence detection of the digoxygenin labelled probe was carried out using a

primary anti-digoxygenin antibody made in sheep (Roche, Germany), followed by a

secondary biotinylated anti-sheep antibody, made in rabbit (Vector Labs, UK), and

streptavidin-alexafluor 488 (Molecular Probes, USA). Briefly, the slides were

blocked in 2% normal rabbit serum (NRS) in Tris-buffered saline (TBS) for 1 hour at
room temperature. The primary antibody was used at a concentration of 0.4ng/pl in
2% NRS/TBS and incubated at room temperature for 1 hour 30 minutes, followed by
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three 15 minutes washes in TBS. The secondary antibody was subsequently added at

a concentration of lOng/pl in 2% NRS/TBS for 1 hour 30 minutes and washed as

above in TBS followed by incubation for 1 hour with streptavidin/alexafluor 488 in
2% NRS/TBS. Following three washes in TBS, the slides were processed in 100%
ethanol (2x5 minutes) and xylene (2x3 minutes). The slides were mounted in
VECTASHIELD™ mounting media for fluorescence with propidium iodide (Vector

Labs, UK).

2.8 Tissue culture techniques
2.8.1 Maintenance of cell lines

All cell lines were cultured in sterile plastic-ware (Nunc, UK) and incubated at 37°C
with humidified 5% CCE. Baby Elamster Kidney fibroblast cells (BHK-21) were

cultured in Glasgow's Modified Eagles Medium, supplemented with 10% (v/v)

tryptose phosphate broth (Invitrogen, UK), 10% (v/v) new-born calf serum (NBCS,

Invitrogen, UK), 2mM L-glutamine (VWR, UK) lOOU/ml penicillin (VWR, UK) and
lOOU/ml streptomycin (VWR, UK). Murine CI27 cells, of epithelial fibroblastic

origin, were maintained in Dulbecco's Modified Eagles Medium supplemented with
10% (v/v) foetal calf serum (Invitrogen, UK), 2mM L-glutamine (VWR BDH),
lOOU/ml penicillin (Merck BDH) and lOOU/ml streptomycin (Merck BDH). Sll
cells cultured in Roswell Park Memorial Institute (RPMI, Invitrogen, UK) medium

supplemented with 10% (v/v) foetal calf serum (Invitroegn, UK), 2mM L-glutamine

(Invitrogen, UK), lOOU/ml penicillin (Invitrogen, UK), lOOU/ml streptomycin

(Invitrogen, UK) and 50pM 2-mercaptoethanol.

2.8.2 Harvesting and counting cells
Adherent cell lines were maintained in sub-confluent growth, and were removed
from tissue-culture flasks by trypsinisation. Growth medium was decanted before
briefwashing of the cell monolayer in 0.02% (w/v) versene. The monolayer was then
incubated with 0.25% (w/v) trypsin (Invitrogen, UK) until the cells detached by
moderate agitation. Trypsin was inactivated by the addition of an equal volume of

fresh growth medium prior to centrifugation at 450 x g for 5 minutes at room
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temperature. The resulting cell pellet was re-suspended in the desired volume of
fresh growth medium. An aliquot was then diluted 1:1 with 0.1% trypan blue (w/v).
The number of unstained cells was determined to calculate the viable cell count,

before re-seeding of the cells in fresh cell culture flasks.

2.8.3 Preparation of cellular fractions
Cellular fractions were prepared from both MHV-68 and mock infected CI27 cells,

along with Sll cells. Cells were infected as described in section 2.8.3 and

resuspended into 1ml sterile PBS prior to cooling on ice for 5 minutes and spun at

150 x g for 5 minutes. The cells were subsequently resuspended in ice-cold EBKL
buffer [25 mM HEPES, pH 7.6, 5 mM MgCl2, 1.5 mM KC1, 2 mM DTT, 0.1% NP-
40 9 (v/v) and 0.5mM mammalian protease inhibitors (Sigma, UK), which were

added immediately prior to use] and lysed on ice by 20 strokes in a dounce

homogenizer. The cytoplasmic and nuclear extracts were separated by centrifugation
at 600 x g for 5 minutes at 4°C and the supernatant containing the cytoplasmic
fraction transferred to a fresh microfuge tube. The nuclei were then washed in 1ml
EBMK buffer [25 mM HEPES, pH 7.6, 5 mM MgCl2, 1.5 mM KC1, 75 mM NaCl,
175 mM sucrose, 2 mM DTT and 0.5mM mammalian protease inhibitors (Sigma,

UK), which were added immediately prior to use], spun at 150 x g and then washed
in EBMK buffer containing 0.5% (v/v) NP-40. Following centrifugation, the

supernatant containing the outer nuclear membrane was removed and the nuclei
incubated in EBKL buffer for 10 minutes and subsequently gently lysed by the drop-
wise addition of KC1 to a final concentration of 0.2M. The lysed nuclei were spun at

10 000 x g for 10 minutes at 4°C, and the supernatant containing the nucleoplasm
removed. The pellet containing chromatin, nuclear membranes and nucleoli was

sonicated in EBMK buffer for 15 minutes in a bath sonicator, and then the debris was

pelleted by centrifugation at 10 000 x g for 10 minutes at 4°C. All fractions were

stored at -80°C.
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2.8.4 Transfection of cells by electroporation
BHK-21 cells were grown to 60-70% confluency before trypsinisation and re-

suspension to a final concentration of 2.5 x 106 cells/ml in supplemented Glasgow's
medium. 800pl of this cell suspension was added to an electroporation cuvette

(Equibio, UK), prior to the addition of 1 Opg vector DNA and 5pg viral DNA. The
mixture was gently pipetted before the cells were electroporated with an Easyject

electroporator (Equibio, UK). A double pulse was used and the conditions were as

follows: 1st pulse, 600V, 25pF, 99mQ; 0.1 second delay; 2nd pulse, 250V, 1050pF,

99mQ. Following electroporation, the cell suspension was mixed briefly with a

Pasteur pipette before transfer to 10ml of pre-warmed supplemented Glasgow's
medium. The cuvette was subsequently washed with an aliquot ofmedium to remove

any remaining transfected cells. The transfected cells were then seeded into 96-well
microtiter plates, or 6-well plates, depending on the application.

2.8.5 Transfection of cells by Effectene
BHK cells were transfected with plasmid DNA using Effectene Transfection reagent

(Qiagen). Cells were seeded (typically 4x103 cells/well in a 6 well plate) the day
before transfection to reach approximately 70% confluence, lpg DNA per well was

made up to 150pl total volume with buffer EC (DNA condensation buffer).

Following addition of 8pl Enhancer, the mixture was vortexed briefly and incubated

at room temperature for 5 minutes. 25pl of Effectene reagent were then added to the
DNA mix and vortexed for 10 seconds. The samples were incubated at room

temperature for 10 minutes. During incubation the cells to be transfected were

washed in SPBS and 4ml fresh medium was added. 1ml medium was added to the

Effectene-DNA complexes, mixed by pipetting and added to the cells drop-wise.
Cells were then incubated at 37°C, in the presence of 5% CO2.

2.8.6 Generation of stably transfected cell lines
C127 cells were transfected with the expression vector pLXSN encoding the
vtRNAsl-5 or empty plasmid. Following transfection, the cells were incubated at

37°C for 3 days, before being exposed to the selection agent (G418 sulphate,

91



Chapter 2 Materials and methods

500pg/ml, Gibco). The concentration required to select cells carrying the neomycin
resistance gene was previously derived. The cells were passaged for one week,

following which they were harvested by trypsinization and counted. Approximately 5
cells were added to a well of a 96 well microtiter plate and the volume of medium

was adjusted to 200pl by addition of a 1:1 ratio mixture of fresh medium and

preconditioned medium produced by culturing CI27 cells for 24 hours. A serial two¬
fold dilution series was then generated in adjacent wells. The cells were then
incubated at 37°C for eight hours and the wells examined for the presence of single
cells. Those containing single cells were grown to confluency and then subjected to

two further rounds of limiting dilution subcloning.

2.9 Virological methods
2.9.1 Isolation of Single Plaques following Transfection
For isolating single plaques following transfection the transfected cells were seeded
at different dilutions into 96-well microtiter plates. Assuming a 50% survival rate,
the transfected cells were added to varying concentrations of untransfected BHK-21

cells, such that transfected cells were diluted 1:2, 1:5, 1:10 and 1:20 in a background

of untransfected BHK-21 cells with a total of 1 x 104 cells added per well. This

permitted efficient isolation of single plaques within a single well of a microtiter

plate. Wells containing single plaques were scraped with a Gilson pipette to detach
adherent cells from the microtiter plate. The resulting cell suspension was thoroughly
mixed by pipetting, before transfer of half the suspension to a cryovial for storage at

-80°C. The remaining cell suspension was pelleted by centrifugation at 2000 x g for
7 minutes and the resulting supernatant decanted. The cell pellet was washed with

500pl 20mM Tris (pH 8), ImM EDTA before a further centrifugation step at 2000 x

g for 7 minutes. The supernatant was discarded and the cell pellet re-suspended in

50pl 20mM Tris (pH 8), ImM EDTA. The cell suspension was then subject to one

freeze thaw cycle to disrupt cell membranes before overnight incubation at 56°C in

the presence of 0.4pg/pl proteinase K (Sigma, UK). Proteinase K was inactivated by

incubation of the sample at 90°C for 15 minutes. 1 Op.1 of this crude DNA preparation
was used per PCR reaction.
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2.9.2 Purification of recombinant virus

Two approaches were taken to purify the recombinant viruses. Firstly using a

limiting dilution assay as follows: an aliquot of frozen plaque pick was added to a

sub-confluent BHK-21 cell monolayer within one well of a 96-well microtiter plate.
The volume of medium was adjusted to 200p.l, and mixed by pipetting. A serial two¬
fold dilution series was then generated in adjacent wells, with each well in the
dilution series also containing a sub-confluent BHK-21 cell monolayer. The plates
were then incubated at 37°C with 5% CO2 for five days. Following this incubation,
wells were examined for the presence of viral plaques. Any wells containing single

plaques were harvested and processed for PCR analysis as described in section 2.9.1.
An alternative method involved seeding 6-well plates with BKH-21 cells, which
were infected with various dilutions of frozen plaque picks (from 1/1000 to

1/1,000,000), in a final volume of 5ml. The 6-well plates were then incubated

overnight at 37°C with 5% CCb. After 24 hours, the medium was removed with a

Pasteur pipette and the adherent cells were over-layed with 1% agarose. The agarose

was produced by addition of 10ml supplemented Glasgow's medium to 10ml of 2%

PBS-agarose (Seaplaque, Flowgen, UK). After 3 days incubation at 37°C with 5%

CO2, plaques were viewed microscopically, and the plaque (and overlaying agar

plug) removed with a pasteur pipette containing a small volume of medium. The

resulting plaque picks were immediately subjected to three freeze-thaw cycles prior
to a further round of purification using the limiting dilution approach described
above. Wells containing single viral plaques were harvested and subjected to DNA
extraction and PCR analysis as above.

2.9.3 Preparation of working viral stocks
Viral stocks were produced in BHK-21 cells. BHK-21 cells were harvested and
counted as described. Cells were subsequently re-suspended in growth medium at a

concentration of 1 x 107 cells/ml, and infected with virus at an MOI of 0.001. The

cells were incubated at 37°C for 1.5 hours with shaking to enhance infection. The

resulting cell suspension was transferred to Tel75 flasks at a seeding density of 3 x

106 cells per flask. Infected monolayers were generally incubated for 5-6 days, or
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until they reached 100% CPE. Once complete CPE was observed, the cells were

removed from the flasks with a cell scraper (Nunc) and the cell suspension

centrifuged at 2000 x g for 20 minutes. The cell pellet was re-suspended in a

minimal volume of sterile PBS before homogenisation with 40 strokes of a chilled
Dounce homogeniser. The homogenate was then transferred to a glass universal tube
and sonicated in a sonicating water-bath for 15 minutes at 4°C. Following

centrifugation (2000 x g for 20 minutes at 4°C), the supernatant was transferred to a

fresh sterile universal tube and held on ice. The cell pellet was re-suspended in 1ml
of sterile PBS, re-homogenised, and centrifuged at 2000 x g for 20 minutes at 4°C.
The supernatants were pooled and stored in aliquots at -70°C.

2.9.4 Isolation of extracellular virus

In order to isolate extracellular MHV-68 and MHV-76, virus was grown in murine

embryonic fibroblasts (MEFs) derived from a type I IFN_/~ mouse. The cell line was

immortalised by stable transfection with the SV40 T antigen, and designated aP SV1
MEFs. Cells were infected at an MOI of 0.001 pfu/cell as in section 2.9.3 incubated
for 5-6 days, or until complete CPE was evident. Once complete CPE was observed,
the cells were removed from the flasks with a cell scraper (Nunc) and the cell

suspension centrifuged at 2000 x g for 20 minutes. The resulting supernatant was

centrifuged at 20,000 x g for 2 hours at 4°C in order to pellet the virus. Extracellular
virus was further purified by ultracentrifugation at 141 000 x g for 1 hour and 20
minutes at 4°C (SW28 rotor, Beckman) through a 20% (w/v) D-sorbitol cushion and
the pellet resuspended in the appropriate buffer depending on the application.

2.9.5 Purification of virus by ultracentrifugation
Cell associated MHV-68 and MHV-76 was purified by ultracentrifugation. Virus was

produced from BHK-21 cells and extracted as in section 2.8.3. The crude viral stock
was layered onto a 20% (w/v) sucrose cushion and spun at 141,000 x g for 1 hour
and 20 minutes at 4°C (SW28 rotor, Beckmann). The pellet was resuspended in 1ml
RNase ONE buffer (lOOmM NaCl, 50mM Tris-HCl, lOmM MgCl2, ImM

dithiothreitol, pH7.9) for treatment with RNase ONE, or 5ml of sterile PBS if
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ultracentrifugation through a sucrose gradient was undertaken. The viral stock was

further purified by banding on a discontinuous sucrose gradient consisting of 55%,
30% and 10% sucrose layered in descending order. The viral stock was layered onto

the top of the gradient and banded by ultracentrifugation at 141,000 x g for 18 hours
at 4°C, following which a viral band was clearly visible. The band was removed and
sterile PBS added to a total volume of 20ml, and the purified virus was concentrated

by ultracentrifugation at 141,000 x g for 1 hour and 20 minutes, and resuspended in
lml RNase ONE buffer. Purified virus was stored at -80°C.

2.9.6 RNase treatment of purified virus

Contaminating RNA within pure viral stocks was digested using RNase ONE (New

England BioLabs and Ambion). 750pl purified virus in RNase ONE buffer (lOOmM

NaCl, 50mM Tris-HCl, lOmM MgCh, ImM dithiothreitol, pH7.9) was treated with
700units ofRNase ONE for 5 hours at 37°C.

2.9.7 Transmission electron microscopy

Processing for transmission electron microscopy was carried out by the University of

Edinburgh, college of medicine and veterinary medicine electron microscope unit.

Briefly viruses were centrifuged and fixed in 3% (w/v) glutaraldehyde in 0.1M
sodium cacodylate buffer for 2 hours. The virus pellets were then washed in 3x10
minute changes of 0.1M sodium cacodylate buffer to remove residual

glutaraldehyde. They were then post-fixed in 1% (w/v) Osmium tetroxide in 0.1M
Sodium cacodylate buffer for 45 minutes followed by 3x10 minute washes in 0.1M
Sodium cacodylate to remove residual osmium tetroxide. The virus pellets were

subsequently dehydrated in 50%, 70%, 90%, 100% acetone changes for 10 minutes

each, prior to embedding in Araldite resin. Ultrathin sections, 60nm thick were

taken, stained in uranyl acetate and Lead Citrate then viewed in a Philips CM 12
transmission electron microscope (FEI UK Ltd, Cambridge, England). Areas of
interest were photographed on Kodak 4489 electron image film.
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2.9.8 Treatment of cells with inhibitors of protein synthesis and
viral DNA replication
In order to produce cellular extracts of MHV-68 infected cells were treated with an

inhibitor of protein synthesis cycloheximide (CHX) or a herpesviral DNA

polymerase inhibitor, phosphonoacetic acid (PAA). Cells were treated with

100pg/ml of either CHX or PAA for 1 hour prior to viral infection. For viral

infection, 1 x 107 cells were infected at an MOI of 5 with shaking for 1.5 hours in the

presence of the appropriate inhibitor. Following this, the cells were seeded into
Tel75 tissue culture flasks (Nunc) and fresh medium containing either CHX or PAA

was added. The cells were then incubated at 37°C for 8 hours before trypsinisation
and subsequent extraction of cellular extracts.

2.9.9 Virus titration

For the titration of infectious virus within tissues, tissues were homogenised in a

minimal volume of medium (1.8ml) before subjection to one freeze-thaw cycle (-

80°C) to disrupt cellular membranes. The frozen homogenate was thawed on ice
before centrifugation at 2000 x g for 5 minutes at 4°C to clarify the homogenate.

Subsequently, 440pl of supernatant was transferred into 3.96ml of fresh growth
medium and mixed thoroughly to produce a 1:10 dilution. This process was repeated
to generate a serial ten-fold dilution series. To each dilution, 2 x 106 BHK-21 cells

were added (in 0.2ml of medium) and shaken at 250rpm for 1 hour at 37°C. 2ml of
each dilution was added to a 60mm Petri dish, to which 3ml of growth medium had
been dispensed. Each dilution was plated in duplicate. For each experiment, mock-
infected BHK-21 cells were plated out as negative controls. The plates were

incubated for four days at 37°C in the presence of 5% CO2. Following incubation,

plates were fixed with 10% (w/v) neutral-buffered formaldehyde before staining with
0.1% (w/v) toluidine blue. Plaques were scored microscopically, and the titre
determined by the following calculation: viral titre = (plaque count x dilution)/2. For

determining the titre of viral stocks, a similar procedure was undertaken, except that

a 44jal aliquot of viral stock was added to 4ml of medium, from which a serial ten¬
fold dilution series was created.
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2.9.10 One step/multistep growth curves

Single-step and multi-step growth in vitro was analysed by infecting either BHK-21
cells or L929 cells in suspension for 90 minutes at a multiplicity of infection (MOI)
of 5 (single-step growth) or 0.05 (multi-step growth). Cells were pelleted by

centrifugation at 450 x g for 5 minutes and re-suspended in fresh complete

Glasgow's medium four times to remove unbound virus before the seeding of 1 x 106
cells (multi-step) or 2 x 106 cells (one-step) into each well of a 24-well plate. At

specific times post-infection, the plates were removed from the incubator and stored
at -70°C, prior to harvesting. The cells were harvested by repeated pipetting with a

Gilson pipette, subject to three freeze-thaw cycles, and infectious virus was

determined by plaque assay as described. All infections were performed in duplicate,
with each infection titrated in duplicate.

2.9.11 Infective centre assay

The infective centre assay was used to determine the frequency of ex vivo
reactivation from latently infected splenocytes. Upon organ harvesting, spleens were

stored in 5ml of RPMI medium supplemented with 10% foetal calf serum, 2mM L-

glutamine, lOOU/ml penicillin, lOOU/ml streptomycin and 50pM 2-mercaptoethanol.

Spleen cells were isolated from the spleen casing with a scalpel blade, producing a

single-cell suspension in 5ml ofRPMI. The cell suspension was transferred to a pre-

rinsed 20ml universal tube and was centrifuged at 450 x g for 5 minutes at 4°C. The

supernatant was decanted and the pellet was re-suspended in the remaining liquid.

Erythrocytes were lysed by the addition of 1ml of sterile ddHfO to the cell

suspension, and equilibrium was restored by the addition of 9ml of sterile PBS.

Following thorough mixing, cell debris was allowed to settle before transfer of the

splenocyte suspension to a fresh pre-rinsed universal tube. The sample was then

ceintrifuged at 450 x g for 5 minutes at 4°C. The supernatant was discarded and the

cell pellet re-suspended in 5ml of supplemented RPMI. The viable cell count of the

suspension was determined, and 10-fold dilutions of splenocytes were added with 1 x

106 BHK cells (in 5ml RPMI medium) to 60mm Petri dishes (Nunc). Each dilution
was plated in duplicate. The contents of the plates were thoroughly mixed before

97



Chapter 2 Materials and methods

incubation at 37°C with 5% COi for 5 days. Plates were fixed and counted as

described for the titration of infectious virus.

2.10 Protein techniques
2.10.1 Electrophoretic-mobility shift assay (EMSA)

Electrophoretic mobility shift assays were carried out using radiolabeled vtRNAs

prepared as described in section 2.5.8. They were incubated with cellular extracts as

follows: 25,000cpm RNA were incubated with ~5pg cellular extracts and 0.05pg

poly(dl-dT) in a total volume of 20pl binding buffer (20mM HEPES/KOH pH 7.5;
50mM KC1; lOmM MgCE, 0.1% (v/v) NP40; 5% (v/v) glycerol). For competition

reactions, between 2.5ng and lOng of the appropriate unlabelled vtRNA, yeast tRNA
or 18S ribosomal RNA was added to the reaction. Following 20 minutes incubation
at room temperature the samples were loaded onto a 5% (w/v) polyacrylamide gel

containing 0.5x TBE. The gel was run in 0.5x TBE for 1 hour at 30mA and
transferred to a cassette for exposure to Flyperfilm ECL (Amersham) at -80°C.

2.10.2 UV-crosslinking RNA-protein complexes
The polyacrylamide fragment containing the RNA-protein complex was excised and

placed on a glass slide on ice. RNA-protein complexes were crosslinked by
incubation under UV light of 254nm, held at a distance of 4mm away from the

samples for 17 minutes. The gel sections were then transferred to a 1.5ml microfuge
tube and immersed in 2.5mg/ml of RNase A in native gel buffer (50 mM Tris
50 mM Glycine) and incubated at 37°C for 30 minutes in order to digest
uncrosslinked RNA. Excess buffer was then removed and incubation continued at

room temperature for a further 30 minutes. 50pl of 2 x loading buffer was

subsequently added and the samples mixed overnight at room temperature. The

samples were heated to 100°C for 5 minutes prior to SDS polyacrylamide

electrophoresis as described in section 2.10.4. The gel was subsequently dried at

80°C for 2 hours placed in a cassette and exposed to Hyperfilm ECL (Amersham) at
-80°C for up to 6 days.
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2.10.3 Isolation of protein from polyacrylamide gel
EMSAs were carried out using unlabelled vtRNAs in order to isolate the RNA-

protein complexes. The binding reaction was carried out as described in section
2.10.1 but on a larger scale, i.e. 1ml total volume. A radiolabeled reaction was used
as a marker. Unlabelled complexes were excised at positions indicated by the labeled

complexes. Proteins were eluted from the gel by overnight incubation in 4mL protein
elution buffer [50mM Tris pH 7.9; 0.1mM EDTA, 5mM DTT; 150mM NaCl; 0.1%

(v/v) SDS] at 4°C on a rotator. Proteins were subsequently concentrated using
VIVASPIN 10,000 columns (Vivascience) by centrifugation at 5,000 x g at 4°C for
30 minutes. Concentrated samples were stored at -20°C.

2.10.4 SDS-Page
Proteins were separated by SDS-PAGE following UV crosslinking to labeled RNA,
or prior to direct staining or Western blotting. Protein samples were made up to a

total volume of 20pl with 5x loading buffer (20% (v/v) glycerol; 2% (v/v) SDS;

0.125mM Tris pH 6.8; 0.4% (w/v) bromophenol blue; 5% (3-mercaptoethanol).

Samples were boiled for 5 minutes before loading onto the gel (resolving gel: 10%

acrylamide/bisacrylamide; 0.375M Tris pH 8.8; 0.1% (v/v) SDS; 0.1% (w/v)
ammonium persulphate (APS); 0.01% (v/v) TEMED. Stacking gel: 3.4% (w/v)

acrylamide/bisacrylamide; 140mM Tris pH 6.8; 0.1% (w/v) SDS; 0.05% (w/v) APS;
0.01% (v/v) TEMED). Gels were run at 200mA each in running buffer (25mM Tris;
192mM glycine; 0.1% (v/v) SDS).

2.10.5 Coomassie staining
Gels were incubated in Coomassie stain (0.25% (w/v) Coomassie Blue R250; 40%

(v/v) methanol; 7% (v/v) acetic acid) with shaking for at least 1 hour. After a brief
rinse with de-stain (50% (v/v) methanol; 10% (v/v) acetic acid) gels were incubated
in de-stain until bands were clear.
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2.10.6 Silver staining
Gels were fixed in 45% (v/v) ethanol, 35% (v/v) glacial acetic acid for 20 minutes
followed by a 10 minute wash in 10% (v/v) ethanol, and subsequently washed three
times in ddH20, prior to incubation in Farmers reagent reducer [0.3% (w/v) sodium

thiosulphate; 0.15% (w/v) potassium ferricyanide; 0.05% (w/v) sodium carbonate)
for 1 minute. Following three further washes in ddFFO, gels were incubated in 0.1%

(w/v) AgNC>3 for 30 minutes and then briefly rinsed in ddFFO. Gels were developed
in 2.5% (w/v) Na2C03, 0.05% (v/v) formaldehyde until bands were of the desired

intensity and fixed in 30% (v/v) methanol, 10% (v/v) prior to drying for 2 hours at

80°C.

2.10.7 Western Blotting
Proteins were transferred to nitrocellulose membrane using a semidry blotter

9 9 •

(Amcos), at 0.8mA/cnr (i.e. typically at 60mA for a 48cm gel) in transfer buffer

(25mM Tris-HCl, 150mM glycine, 10% (v/v) methanol, pH 8.3) ) for 1 hour. The
membrane was then washed twice in distilled water and incubated in blocking buffer

[3% (w/v) nonfat dry milk (Marvell™) in TBS] for 1 hour with constant agitation.
The primary antibody anti-MHV-68 antibody was diluted 1/200 in blocking buffer
and incubated with the membrane for 2 hours at room temperate with constant

agitation. Following two washes in distilled water, incubation was carried out with
alkaline phosphatase conjugated secondary antibody diluted 1/2000 in blocking

buffer, for 20 minutes at room temperature with constant agitation. The membrane
was subsequently washed for 10 minutes in TBS and then 10 minutes in TBS-0.05%
Tween 20. A NBT/BCIP tablet (Sigma) was dissolved into lOmL water and poured
onto the membrane. Once the bands had reached the desired intensity the membrane
was rinsed with distilled water and allowed to dry.

2.10.8 In-gel protein digestion for mass spectrometry
Protein extracts were run on 12% SDS-PAGE gels and incubated overnight in 5-10

gel volumes SYPRO ruby (Molecular Probes). The gel was then washed in four

changes of ddH20 over a two hour time period and visualized using a UV
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transilluminator (UVP). Protein bands were excised and transferred to a clean

Eppendorf tube. Tryptic digestion was carried out by the Edinburgh Protein
Interaction Centre (EPIC). Briefly, gel slices were incubated in for 2x30mins in
200mM NH4HCO3 (ABC) in 50% acetonitrile (ACN) at 30°C to remove SDS. The

proteins were subsequently reduced by incubation in20mM DTT, 200mM ABC, 50%
CAN for lh at 30°C, followed by three washes in 200mM ABC, 50% ACN. The gel
slices were then incubated in 50mM iodoacetamide (IAA), 200mM ABC, 50% ACN

at room temperate in the dark for 20min, prior to three washes in 20mM ABC, 50%
ACN. The gel slices were subsequently cut into 2mm x 1mm pieces and centrifuged
at 10 000 x g for 2mins. They were then immersed in ACN until the bands turned

white, following which the ACN was decanted and the gel sliced dried. Tryptic

digestion was carried by addition of 12.5 ng/pl trypsin in ABC and initially
incubated at 4°C until the gel swelled, following by incubated at 32°C for 16-24
hours. MALDI-TOF mass spectrometry then was carried out using a Voyager DE
STR MALDI-TOF mass spectrometer (Applied Biosystems) and the masses

submitted to the MS-fit search engine in order to identify the proteins present.

2.11 Statistical analysis
All statistical analysis was carried out using SPSS (SPSS Inc, USA). Viral titre, real¬
time PCR and dot-blot analysis data were assessed for statistical significance using
the non-parametric Mann-Whitney test.
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Appendix 1. Cloning vectors used in this study

fco0109l 2674

AatW 261

SSf}\ 2501

Pdrrft 2294

3Cj?l 2215
Seal 2177.

Ss/AR 179
f

j.Nde I 183
Ehe\ 235

Gsul 1784
6'frlOI 1?79/^

EC031I 1766/ /

fia//]1105l 1694/

_Sap\ 683

./»»l,flspLL11l 806

\Catl 1217

13

399
Mr/idM PJC I ■SrHI

tfoK II
&VI
Jtofl BanWX

Or*
tcokVX AccG&l

Kpil
Ed I36H
ECC2AI
Sort

fccR i 455
X.yj\

cAA GCT TGC ATGCCT GCA GGT CGA CTC TAG AGG ATC CCC GGG TAG CGA GCT CGA ATT CCT

gTT CGA ACG TAC GGAOGT CCA GCT GAG ATC TCC TAG GGG CCC ATG GCT CGA GCT TAA Gca
Leu Sor Ala His Arg Cys Thr Scr Glu Lou Pro Asp Gly Pro Val Sor Ser Sor Asn Tfir

Vector pUC18. Vector pUC18 (A) and its polylinker region (B) are shown.
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A

B
4Sl 1477 l.m '.Ml

GAATTCG TTAAC TCGA 3GAT CC
te*\ Hfj I xtoi BtnM I

Vector pLXSN Vector pLXSN (A) and its polylinker region (B) are shown
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Appendix 2. Oligonucleotides used in this study

Sense(S) Primer Pair Anneal Amplified
Antisense (A) Temp region
vtRNAl-S 5'- TAGAGCAACAGGTCACCG MHV-68

ATC-3' 56°C vtRNAl
vtRNAl-A 5'- TAGAGCAACAGGTCAC

C GATC-3'
Nt146-215

70bp product
vtRNA2-S 5'- GGTAGAGCAGCGGTTCCT-3'

56°C
MHV-68
vtRNA2

vtRNA2-A 5'- ACTCCCCCTCTCAACCA-3' Nt 505-573

69pb product
vtRNA3-S 5'-TGGCAGGCCAACATA-3'

55°C
MHV-68
vtRNA3

vtRNA3-A 5'-CGTGCTCCTCGATGGTCA-3' Nt918-980

63pb product
vtRNA4-S 5' -GCGGCAGGCTCATC-3'

56°C
MHV-68
vtRNA4

vtRNA4-A 5' -ATCTCAACTCTGCGTCGG-3' Nt 1205-
1266

62bp product
vtRNA5-S 5' -TAGAGCATCAGGCTAGTA-3'

51°C
MHV-68
vtRNA4

vtRNA5-A 5' -CTCCACCTTTAACCAG-3' Nt1607-
1669

63bp product
vtRNA6-S 5' -GCGTAGCTCAATTGT-3'

53°C
MHV-68
vtRNA6

vtRNA6-A 5' -GGCCACTCAACAGAC-3' Nt 3608-
3771

92bp fragment
vtRNA7-S 5'-GAGCGGCAGACACCA-3'

58°C
MHV-68
vtRNA7

vtRNA7-A 5' -TAGCTGGCCAGGACT-3' Nt 4967-
5034

68bp fragment
vtRNA8-S 5' -CCCATCCTGTTGGTT-3'

51°C
MHV-68
vtRNA8

vtRNA8-A 5'-CGCGGGTAGCTAGTC-3' Nt 5418-
5471

54bp fragment
EH14E-S 5'-CTCTAAAGCTCTCTTATG MHV-68

ACG-3' 55°C Nt1255-1605
EH14F-A 5'-GGGTACATAAGCGGCTGT

GC-3'
351 bp fragment
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Sense(S)
Antisense (A)

Primer Pair Anneal

Temp
Amplified
region

tRNAforBam-S

tRNARev-A

BamWl
5' -GCGGA rCCGCTTTTTGT
GCTGGTGC-3'

5' -GCGGATCCATGCATCAGTA
ATCTTAGG7HCCG-3'

BamWl

53°C
MHV-68
vtRNAsl-5
Nt 112-1695

1583bp fragment

tRNAfor2-S

tRNARev-A

SalI
5 '-ACGCGTCGACGCAGCGCAC
CGCTTATG-3'

5' -GCGGATCCATGCATCAGTA
ATCTTAGGTACCG-3'

BamHI

55°C
MHV-68
vtRNA5
Nt1477-1695

218bp fragment

M3-S

M3-A

5'-TAACAGGCAGATTGCCATT
CCC-3'

5' -TGGCACTCAAACTTGGTTG
TGG-3'

55°C
MHV-68 M3
Nt 6560-6946

386bp fragment

ORF65-S

ORF65-A

5'-CAGGGAGCATCAAGTGTC
CC-3'

5' -GTCAGACATAGACCCTGG
ATCAG-3'

55°C MHV-68 ORF65
Nt 94068-94240

172bp fragment

Mll-S

Mll-A

5' -TTAGAAGGCACTATGACA
GC-3'

5' -TGTGTCATGCAATCGTCC
A-3'

57°C
MHV-68 Mil
Nt103560-
103779

219bp product
DNApol-S

DNApol-A

5' -GTCAATTCAAGGGGAAG
CG -3'

5' -CAGGGAAAACAACAGC
TTGGAG -3'

55°C
MHV-68
DNA Pol
Nt19743-20220

477bp product
ORF50-S

ORF50-A

5' -GGCACATTTGCTGCAGAAC
CCAG-3'

5'-GAACGGCGCCTGTGTACTC
AAAGG-3'

62°C
MHV-68 RTA
Nt 68486-68841

355bp fragment

TR-S

M4B-A

5' -GTTTTGGCCCTCAGCAGG
GTC-3'

5'-CGCGGAATTCGGTTCTAG
AAAGTCATAAATCTC-3'

56°C
MHV-76
Left-end
Nt119382-9786

315bp product
Act-S

Act-A

5' -TTGTATGGTGGGAATGGGG
TCA-3'

5' -TTTGATGTCACGCACGATT
TC-3'

57°C Murine P-actin
514bp product
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Sense(S)
Antisense (A)

Primer Pair Anneal

Temp
Amplified
region

ActlN-S

ActlN-A

5'-CGTTGACATCCGTAAAGA
CC-3'

5' -CTGGAAGGTGGACAGT
GA-3'

62°C Murine P-actin
202bp product

ActOUT-S

ActOUT-A

5'-GTACTCCTGTTGCTGAT
CC-3'

5'-GTACTCCTGCTTGCTGAT
CC-3'

62°C Murine P-actin
272bp product

GAPDH-S

GAPDH-A

5' -TGGATATTGTTGCCATCAAT
GACC-3'

5' -GATGGCATGGACTGTGGT
CATG-3'

58°C Murine GAPDH

380bp product
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Appendix 3. Synthetic oligonucleotides used for in vitro
transcription

T7 Promoter

5 '-AATTTAATACGACTCACTATA-3'

tRNAl reverse

5 '-TGGGACCAGAGCTCGGACTTGAACCGAGAACCAGGATCGGTGACCTG
TTGCTCTACCAATTGAGCTACTCTGGCCCTATATAGTGAGTCGTATTAAA
TT-3'

tRNA4 forward

5'-GATCCTAATACGACTCACTATAGGGTCGGGGTAGCTCAATTGGTAGCG
CGGCAGGCTCATCCCCTGCAGGTTCTCGGTTCACCGGGTCCCGACGCCA-
3'

tRNA4 reverse

5'-TGGCTCGGGACCCGGGATTGAACCGAGAACCTGCAGGGGATGAGCC
TGCCGCTCTACCAATTGAGCTACCCCGACCCTATAGGTCGTATTA-3'

tRNAl Northern probe

5 '-GCCAGAGTAGCTCAATTGGTCCTGTCT-3'

For all oligonucleotides, the T7 promoter is shown in red and the 3' CCA coding
sequence in blue.
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Appendix 4. Stock solutions used in this study

TE buffer

TAE buffer

TBE buffer

Luria-Bertani (LB) medium

LB agar

SOC media

Phosphate-buffered saline (PBS)

20 x SSC

50 x Denhardt's buffer

lOmM Tris-HCl (pH8.0)
ImM EDTA

0.04M Tris-acetate
ImM EDTA

0.44M Tris-borate
0.44M Boric acid
12mM EDTA

1% (w/v) tryptone
0.5% (w/v) yeast extract
1% (w/v) NaCl

1 x LB broth, 1.5% (w/v) bacto-agar

1 x LB broth, 20mM glucose
20mM MgCl2

150mM, 2.5mM KC1
lOmM Na2HP04, lmMKH2P04 (pH7.4)

3M NaCl, 300mM sodium citrate (pH7)

1% (w/v) Ficoll 400
1% (w/v) Polyvinylpyrrolidone
1% (w/v) Bovine serum albumin fraction V
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Appendix 5. Commercial Suppliers

Ambion Inc., Ambion (Europe) Ltd., Ermine Business Park, Spitfire Close,
Huntingdon, Cambridgeshire, PE29 6XY, UK. www.ambion.com

Amersham Biosciences UK Ltd., Amersham Place, Little Chalfont,
Buckinghamshire, HP7 9NA, UK. www.amershambiosciences.com

Bio-Rad Laboratories Ltd., Bio-Rad House, Maylands Avenue, Hemel Hempstead,
Hertfordshire, HP2 7TD, UK. www.bio-rad.com

Corbett Research, Unit 296 Cambridge Science Park, Milton Road, Cambridge,
CB4 OWD, UK www.corbettresearch.com

Equibio, Action Court, Ashford Road, Middlesex, TW15 1XB, UK.
www.equibio.com

Flowgen, Findel House, Excelsior Road, Ashby Park, Ashby de la Zouch,
Leicestershire, LE65 1NG, UK. www.flowgen.co.uk

Invitrogen Ltd., 3 Fountain Drive, Inchinnan Business Park, Paisley, PA4 9RF, UK.
www.invitrogen.com

Millipore, 80 Ashby Road, Bedford, Massachusetts, USA. www.millipore.com

MWG Biotech (UK) Ltd., Mill Court, Featherstone Road, Wolverton Mill
South,Milton Keynes, MK12 5RD, UK. www.mwgbiotech.com

Nalgenunc International, 75 Panorama Creek Drive, Rochester, NY, 14625, USA.
www.nalgenunc.com

New England Biolabs (UK) Ltd., 73 Knowl Piece, Wilbury Way, Hitchin,
Hertfordshire, SG4 OTY, UK. www.neb.com

Promega UK Ltd., Delta House, Chilworth Research Centre, Southampton, SO 16
7NS, UK. www.promega.com

Roche Diagnostics Ltd., Bell Lane, Lewes, East Sussex, BN7 1LG, UK.
www.roche.com

QIAGEN Ltd., Boundary Court, Gatwick Road, Crawley, West Sussex, RH10 9AX,
UK. www.qiagen.com

Sigma-Aldrich Company Ltd., Dorset, UK. www.sigmaaldrich.com
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Stratagene Europe, Gebouw California, Hogehilweg 15, 1101 CB Amsterdam,
Zuidoost, The Netherlands, www.stratagene.com

Thermohybaid, Action Court, Ashford Road, Ashford, Middlesex, TW15 1XB, UK.
www.thermohvbaid.com

UVP Ultraviolet Products Ltd., Unit 1, Trinity Hall Farm Estate, Nuffield Road,
Cambridge CB4 1TG. www.uvp.com

Vector Laboratories,, Accent Park, Bakewell Road, Orton Southgate,
Peterborough, PE2 6XS, www.vectorlabs.com

Vivascience AG Feodor-Lynen-Strafie 21, 30625 Hannover, Germany,
www.vivascience.com

VWR International Ltd. Merck House Poole BH15 1TD, www.vwr.com
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Chapter 3: The encapsidation of the vtRNAs

3.1 Aims

3.2 The timing of expression of the vtRNAs during
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3.1 Aims

Herpesviruses gene expression takes place in a cascade fashion, which is related to

the function of the gene products (see section 1.1.4). Expression of the vtRNAs has
been previously classified as immediate early based upon their expression in the

presence of cyclohexamide and phosphoacetic acid (PAA), yet their exact timing of

expression has not previously been fully investigated. The initial objective of this

study was therefore to characterise the expression pattern of the vtRNAs during lytic
infection. However, a preliminary investigation indicated that the vtRNAs were

present within the viral stock used for the experiment and hence either contaminated
the stock or formed part of the virus particle. Consequently purified virus stocks
were produced using different preparation methods to determine firstly whether the
vtRNAs are packaged within the virion and secondly whether additional RNA

species are packaged.

3.2 The timing of expression of the vtRNAs during lytic infection by
RT-PCR

Determination of the exact timing of expression of the vtRNAs was carried out

following in vitro infection of the mouse epithelial CI27 cell line. Cells were

infected with MHV-68 produced by growing the virus within BHK-21 cells. In
BHK-21 cells, MHV-68 virions remain cell associated and hence, in order to release

the virus, the infected cells were lysed by dounce homogenization and the nuclei
removed by centrifugation. The resulting virus stock was titrated on BHK-21 cells.
C127 cells were then infected with MHV-68 at an MOI of 5 pfu/cell for various

times, from 30 minutes to 24 hours post-infection, following which the RNA was

extracted from the cells. The integrity of the RNA was checked by electrophoresis on

a 1% agarose gel (data not shown) and its concentration was quantified by

spectrophometry. The RNA was then DNase treated to remove any contaminating
DNA and RT-PCR was carried out, using primers specific for vtRNAl (Ebrahimi et

al, 2003). Electrophoresis of the PCR products was carried out on a 3% agarose gel.
As figure 3.1 shows, vtRNAl was present at all time points following infection, from
30 minutes to 24 hours post-infection. No PCR product was present when the reverse
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Figure 3.1 The expression of vtRNAl within C127 cells infected with either
MHV-68 (A and C) or MHV-76 (B) prepared from the cytoplasmic fraction of
infected BHK-21 cells. C127 cells were infected at a MOI of 5 PFU/cell for
various time points, as indicated, and the RNA extracted for RT-PCR analysis
(A). In addition, RNA was isolated from the MHV-68 viral stock used in the
experiment and immediately following infection of C127 cells (C). The PCR
was carried out using vtRNAl specific primers and the products run on a 3%
TAE-agarose gel. The size of molecular weight markers in bp are shown.
Abbreviations; RT reverse transcription; C, positive control; PCR C, PCR
positive control.
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transcriptase step was not included in the reaction, indicating that no contaminating
vtRNA DNA was present. No PCR product was detected following infection with
MHV-76 or mock infected cells.

Previous characterisation of the transcriptome profile ofMHV-68 within C127 cells
failed to detect immediate early gene expression by micro-array analysis prior to 8
hours post-infection (Ebrahimi et al, 2003). Therefore the presence of the vtRNAs as

early as 30 minutes following infection is surprising, especially given that in this
time period the virus needs to bind to and enter the cells and the DNA be transported
to the nucleus in order for transcription to take place. Although it is possible that

expression could have taken place by this time, it is perhaps more likely that the
vtRNAs were already present within the viral stock used for the infection. In order
to investigate whether this was the case, CI27 cells were infected with MHV-68 and
RNA extracted immediately. In addition RNA was extracted from the viral stock.
Once again, the RNA was DNase treated and RT-PCR carried out for vtRNA1. A
PCR product of the correct size was present immediately following infection and in
the virus stock. No product was visible in the absence of the reverse transcriptase,
thus indicating that all DNA had been digested prior to the reverse transcription step.

The presence of vtRNA 1 within both the virus stock and immediately following
infection indicates that it is either a contaminant of the virus stock or encapsidated
within the virus particle. Given that the virus stock used for the infections was

produced from a crude cellular lysate of infected BHK-21 cell, it is possible that the
vtRNAs could contaminate the stock, especially given the high levels of vtRNAs

present within the cytoplasm (see section 4.2).

3.3 RNA detection within purified virus preparations
3.3.1 Intracellular virus purification and RNA detection
3.3.1.1 Purification of intracellular virus

In order to investigate whether the vtRNAs either contaminated the virus stock used
in section 3.2 or if they are present within the virus particle, the virus stock was

purified to remove any contaminating cytoplasmic RNA. MHV-68 was grown in
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BHK-21 cells until a cytopathic effect (CPE) could be seen, after which the cells
were lysed and the nuclei removed by centrifugation. The resulting virus preparation
was purified by ultracentrifugation on a 20% sucrose cushion (figure 3.2) and treated
with RNase ONE to remove any contaminating RNA. The resulting virus stock was

titrated on BHK-21, and found to have a titre of 3x109 pfu/ml.

To further purify the virus stock, the sucrose cushion virus preparation was then

ultracentrifuged through a 5-55% sucrose gradient, following which an obvious,

opaque virus band was present (designated the virus band) which was removed. In
addition the band immediately above the virus band (the upper band) and the lower

band, which also included the pellet, were also removed. The bands were then
concentrated by ultracentrifugation and treated with RNase ONE to remove any

contaminating RNA. It is clear that banding of the virus on a sucrose gradient results
in a loss of 99% of the virus titre (table 3.1), most likely due to the osmotic stress

created as the virions enter higher sucrose concentrations. Transmission electron

micrographs taken of negatively stained sucrose gradient purified virions revealed
the presence of both fully formed, enveloped virions, in addition what appeared to be

empty nucleocapsids. Despite purification through a sucrose gradient, contaminating

debris, most likely as a result of homogenization of the infected cells or osmotic lysis
of the virus, appeared to co-purify with the virus particles (figure 3.3).

3.3.1.2 Detection of the RNAs present by RT-PCR
To determine whether the vtRNAs were present within the virus particles, the virions
were treated with RNaseONE to digest any remaining RNA exterior to the particles,
then lysed by addition of RNAwiz (Ambion), which also inactivated the RNaseONE,

and the RNA subsequently extracted. This was initially carried out on the sucrose

cushion purified viral stocks. The RNA was then treated with either RNaseONE or

mock treated and re-precipitated, followed by DNase treatment. In order to remove

all contaminating viral DNA, the RNA was DNase treated twice, with a denaturation

step (95°C for 3 minutes) prior to the second treatment. RT-PCR was carried out for
vtRNAl and the PCR product run on a 3% agarose gel (figure 3.4). vtRNAl

appeared to be present by RT-PCR analysis within this purified virus stock.
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Cells lysed to
release virus

Ultracentrifugation
through a 20% sucrose
cushion
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Concentrate
virus

Band on a 5-55%
sucrose gradient
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Figure 3.2 Purification strategy for MHV-68 grown within BHK-21 cells. Virus
was initially isolated from the cytoplasm of BHK-21 cells. The cytoplasmic
extract was purified by ultracentrifugation through a 20% sucrose cushion,
followed by a further ultracentrifugation step through a 5-55% sucrose
gradient, resulting the in appearance of an obvious virus containing band.
This band, along with the upper and lower bands were removed and
concentrated by ultracentrifugation.

Virus band Titre (PFU/ml)

Sucrose cushion 3xl09

Virus band 3x 107

Upper band 9.5 x 105

Lower band 9.25 x 106

Table 3.1 Viral titres of virus purified as in figure 3.2.
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A

Figure 3.3 Transmission electron micrograph of MHV-68 virions grown
within BHK-21 and purified on a 10-55% sucrose gradient. Virions were
negatively stained with uranyl acetate and lead citrate. Two different fields
of view (A and B) are shown. In A, both virus (V) and empty capsids (E)
can be seen, whereas in B, a large amount of either virus or cellular debris
(D) is present.
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Following treatment with the RNase, no PCR product was visible, indicating that
RNaseONE is able to digest vtRNAl. In addition, PCR amplification was not a result
of contaminating genomic DNA, as no band was present when the reverse

transcriptase was absent from the reaction. PCRs were also carried out on the cDNA
for the remaining vtRNAs, which were all found to be positive. In addition, the

presence of highly expressed viral and cellular mRNAs was also investigated. M3,
the most abundantly expressed mRNA within infected cells at the time of infection
was also found within the purified viral stock, as were the cellular mRNAs, GAPDH
and (3-actin, indicating that the virus preparation still contained contaminating

cytoplasmic material or that mRNA molecules were also encapsidated within the
virus particles.

The same procedure was carried out on all three bands of the sucrose gradient

purified virions. Following RT-PCR for vtRNAl, a band of the correct size was

present for the higher titre virus and lower bands (figure 3.5). A faint product was
also visible following RT-PCR on the RNA isolated from the upper-band virions.

However, no viral or cellular mRNA molecules, such as M3 or (3-actin, could be
detected in any of the bands by RT-PCR. Although the sucrose gradient purified
virus stock appeared to be cleaner than that purified through a sucrose cushion, as

judged by the removal of the mRNA molecules, electron-micrographs of the virus

preparations revealed that they still contained cellular debris (figure 3.3). In addition,
a 2 log decrease in viral titre during the purification step resulted in a lower RNA

yield and hence it is not clear whether the mRNAs could not be detected due to their
levels falling below the limit of detection, or as a result of further purification of the
virions. In addition, the loss in viral titre hampered any further experimentation into
the exact nature of the RNA species present within the viral preparations and hence a

different method for the production of high titre, purified virus stocks was employed.

3.3.2 Extracellular virus purification and RNA detection
3.3.2.1 Purification of extracellular virus

A simpler way to produce viral stocks free from contaminating cytoplasmic material
is to purify virus which is released from infected cells into the supernatant, as no
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A

M 1 2 3 4 5 M

GAPDH M3
- + + - +

p-actin

Figure 3.4 RT-PCR on RNA extracted from MHV-68 virions grown in BHK-21
cells and purified through a sucrose cushion. A; for vtRNAl; 1, RNA treated
with RNaseONE -RT; 2, RNA treated with RNaseONE +RT; 3, RNA -RT; 4,
RNA +RT; 5, ddH20. B; RT-PCR for the remaining vtRNAs (t2-t8), p-actin,
GAPDH and M3. PCR products were analysed on 1-3% TAE-agarose gels. The
size of molecular weight markers (M) in bp are shown. Abbreviations; W,
ddH20; C, positive control; RT, reverse transcription.
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Figure 3.5 RT-PCR on RNA extracted from MHV-68 grown in BHK-21 and
purified through a sucrose gradient. RT-PCR was carried out for vtRNAl (A)
and (3-actin (B) on virus taken from the upper band (1), lower band (2),
virus band (3), ddH20 (W) and a positive control (C). In B, RNA was
extracted from the virus taken from the virus band. PCR products were
analysed on 1% TAE-agarose gels. The size of molecular weight markers in
bp are shown.

121



Chapter Three Results

homogenization of the infected cells is required. However, BHK-21 cells produce

very low levels of extra-cellular virus. Therefore, in order to produce highly purified,

high titre virus preparations, both MHV-68 and MHV-76 were grown within type I
interferon receptor deficient (IFNR)_/" murine embryonic fibroblasts (MEFs), which

produce high levels of extracellular virus (J. Stewart, personal communication). This
allows much easier purification of the viral stock as large amounts of contaminating

cytoplasmic material are absent. Following CPE the supernatant was removed and

centrifuged to concentrate the extracellular virions. The concentrated preparation was

then purified by ultracentrifugation through a 20% sucrose cushion followed by
treatment with RNase ONE to remove any remaining extra-viral RNA molecules.
Both the MHV-68 and MHV-76 viral stocks were titrated on BHK-21 cells, and were

found to contain 5x1010 PFU and 1.25xl010 PFU respectively. Transmission electron

microscopy of the resulting virus stock indicated that it contained high levels of

enveloped virions and relatively little contaminating debris (figure 3.6). In addition, a
mock preparation was produced following the same protocol.

3.3.2.2 Nature of the RNA species present
The size of RNA molecules present within both MHV-68 and MHV-76 was

investigated. Although MHV-76 lacks the vtRNA molecules it was included in the

experiments in order to determine whether additional RNA species are present within
the purified virus preparations in the absence of the vtRNAs. Hence, both MHV-68
and MHV-76 were grown within type I IFNRMEFs and purified as in section

3.3.2.1, followed by lysis of the virions and RNA extraction. The total RNA was

then end-labelled using T4 RNA ligase and [ P] pCp. An RNA ladder was also
labelled in the same way. Any unincorporated nucleotides were removed and the

samples run overnight on a 1% denaturing agarose gel. The gel was then dried down
and exposed to photographic film. As can be seen in figure 3.7, the RNA molecules
detected by T4 RNA ligase labelling within both the MHV-68 and MHV-76 pure

viral preparations are less than 240 nucleotides in length. No other RNA species
could be detected using this method. Hence it appears that both MHV-76 and MHV-
68 preferentially package small RNA molecules, although the exact nature of those

present in MHV-76 is not clear. The absence of any RNA species in the mock
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Figure 3.6 Transmission electron micrograph of MHV-68 virions grown in
type I IFNR_/" MEFs and purified through a 20% sucrose cushion. Virions
were negatively stained with uranyl acetate and lead citrate.
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infected preparation indicates protection of the RNA within the virions and not

contamination from cellular RNA molecules.

In order to determine the exact size of the RNA species present, the experiment was

repeated but this time the labelled RNA run on a 10% polyacrylamide/urea gel,
which separates RNA molecules of between 10 nucleotides and 150 nucleotides in

length. The RNA samples were run alongside a labelled RNA ladder, containing
molecules that range in size from 10 nucleotides to 150 nucleotides. The major RNA

species extracted from both MHV-68 and MHV-76 viral preparations were

approximately 70 nucleotides in length (figure 3.7) therefore indicating that in the
absence of the vtRNA (i.e. in MHV-76), the virus is able to package RNA molecules
of the same size. Minor bands of around 120 and 150 nucleotides were also present

within both the viral preparations. Once again, no labelled RNA could be detected
within the mock infected preparation.

In order to determine that the small polynucleotides present within MHV-68

represent the vtRNAs, Northern blot analysis was carried out. RNA was extracted
from both MHV-76 and MHV-68 and run on a 10% polyacrylamide/8M urea gel and

electrophoretically transferred to a Zetaprobe™ membrane (Biorad). Hybridization
was carried out using an in vitro transcribed j2P CTP labelled probe specific for the
fist 20 nucleotides of vtRNAl. As figure 3.8 shows, two RNA species of

approximately 70 and 90 nucleotides in length were detected. No hybridization was

detected to MHV-76 RNA. The 70 nucleotide fragment corresponds to fully

processed vtRNA, however the nature of the longer transcript is not clear, although it
is possible that it represents RNA that has been semi-processed from the longer

primary transcript.

Therefore it is clear that the 70 nucleotide band seen following total RNA labelling
contains the vtRNAs. However, it is not clear whether additional RNA molecules of

the same size, such as cellular tRNAs are also present. Although it is possible, given
the size of the RNA molecules present, that the small encapsidated species present
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1 2 3 4 1 2 3 4

1% agarose gel

Figure 3.7 Analysis of the RNA species present within purified virus stocks,
grown in type I IFNR7- MEFs. RNA was isolated from a mock infected
preparation (lane 2), extracellular or MFIV-76 (lane 3) or MHV-68 (lane 4)
virions, radiolabeled with 32P-CTP and ran on either an agarose or
polyacrylamide/urea gel. The size in nucleotides of radiolabeled RNA
markers are also shown (lane 1).
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Figure 3.8 Northern-blot analysis of the RNA species present within
purified virus stocks, grown in type I IFNR~/_ MEFs. RNA was isolated from
either MFIV-76 or MFIV-68 and run a 10% polyacrylamide/urea gel.
Hybridization was carried out using a 32P CTP labelled RNA probe specific
for the first 20 nucleotides of vtRNAl.The size of molecular weight markers
is shown in nucleotides on the left.
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within MHV-76 represent cellular tRNAs, their identity has not been unequivocally
defined. Given that the vtRNAs are not aminoacylated, it can be assumed that any

amino-acylated RNA molecules packaged within the virus particles represent cellular
tRNA molecules. In order to assess what proportion of RNA molecules present

within both MHV-68 and MHV-76 are aminoacylated, RNA was extracted from
virions under acidic conditions and radiolabeled. An aliquot of RNA was then de-

acetylated by increasing the pH. Given that acetylated and de-acetylated tRNAs
exhibit differing migrations on acidic polyacrylamide/urea gels, it would be possible
to establish the proportion of acetylated RNA present. However, this approach was

not successful, most likely due to the inability of the T4 RNA ligase to work at the
acidic conditions required to maintain the aminoacylated state of the tRNAs.

3.3.2.3 Detection of the RNAs present by RT-PCR
In order to determine the specific RNA species present within MHV-68 and MHV-
76 viral particles, RT-PCR was carried out on the RNA extracted from the extra¬

cellular virions. The RNA samples were DNase treated twice, with a denaturation

step prior to the second treatment to ensure that all contaminating genomic DNA was

removed, and reverse transcribed to generate cDNA. PCR reactions were carried out

on the cDNA using primers specific for all eight vtRNAs, cellular (GAPDH and P-

actin) and viral mRNA molecules. M3 and M9 mRNAs are present at high levels at

the late times of infection when the virus particles are maturing. Mil and DNA

polymerase (ORF9), although expressed, are present at much lower levels (Ebrahimi
et al, 2003). The results of the PCR are summarised in table 3.2. All the vtRNAs

were found to be present within the MHV-68 viral preparation, except vtRNA7.

Although this PCR was repeated a number of times and a positive control included in
the reaction, vtRNA7 was never detected. As predicted, none of the vtRNAs were

present within either a MHV-76 or mock infected preparation. The viral mRNA M3
could be detected within MHV-68, but once again not in MHV-76, which is as

expected given that it lacks the M3 gene. Additional viral mRNAs could be detected
within both MHV-68 and MHV-76, including M9, and surprisingly given their

apparent low level of expression Mil and DNA polymerase mRNAs were also
found to be encapsidated. The detection of cellular mRNAs within the viral stocks
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MHV-68 MHV-76 Mock

vtRNAl + - -

vtRNA2 + - -

vtRNA3 + - -

vtRNA4 + - -

vtRNA5 + - -

vtRNA6 + - -

vtRNA7 - - -

vtRNA8 + - -

M3 + - -

M9 + + -

Mil + + -

DNA pol + + -

Beta-Actin + + -

GAPDH + - -

Table 3.2 RNA species present within a pure MHV-78, MHV-76 and a mock
infected preparation grown within type IIFNR-/- MEFs, as determined by RT-
PCR.
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appeared to vary, with both GAPDH and P-actin being present within the MHV-68

preparation. However, GAPDH mRNA could not be detected by RT-PCR within the
MHV-76 preparation. No cellular RNA molecules could be detected by RT-PCR
within the mock infected preparation. Hence it is apparent that the presence of RNA
molecules within the virus preparations is due to their protection within the virion
and not a result of contamination from cellular RNA.

3.4 Discussion

It is apparent from these results that the vtRNAs are packaged within the MHV-68
virion particle, as determined by their presence within different viral preparations

produced from both intracellular and extracellular virions. Extensive treatment of the
virions with a nuclease to digest RNA exterior to the virus particles prior to RNA
isolation makes it unlikely that the results are due to contaminating RNA. It is

possible that homogenization of infected cells results in the production of
membranous vesicles which may also contain vtRNAs, however the presence of the
vtRNAs within extracellular virions which did not contain homogenized cellular
material argues against this. RT-PCR analysis on virion RNA samples demonstrated
that along with the vtRNAs, both viral and cellular mRNA molecules are also present

within the MHV-68 virion. However, mRNAs can only be detected within
intracellular and extracellular viral preparations purified through a sucrose cushion
but not those banded on a sucrose gradient. Sucrose gradient purification resulted in
a significant loss of viral titre, most likely due to the osmotic lysis of the virions
within high concentration sucrose. The inability to detect mRNA by RT-PCR within
this viral preparation is most likely a consequence of the reduction in the level of
RNA extracted, and not due to further purification of the virions. This is supported

by the presence of mRNAs within the higher titre extracellular viral preparation,
which upon electron microscopy appeared to contain less contaminating cellular
debris.

Although mRNA molecules are present within the MHV-68 particle, the vtRNAs

appear to be present with a greater abundance, given that they are the only RNA

species that can be detected by RT-PCR analysis on lower titre viral stocks. In
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addition, direct labelling of the total RNA present within the virion indicated that the

major encapsidated RNA species are small RNA molecules of approximately 70
nucleotides in length, whereas no longer length transcripts were visible. Although it
is possible that the mRNA detected represents degradation products, these would
have to be of at least 300 nucleotides in length to be detected by the PCR assay used.

Although the vtRNAs represent the most abundant virion RNA species identified in
this study, the exact amount of vtRNAs present within the virus particles has not

been investigated. In order to calculate the copy number, the efficiency of the RNA
extraction would have to be known. RNA is extracted from virions using a

phenol/guanidine thiocyanate approach, instead of using commercially available
RNA extraction columns, due to the fact that these usually exclude small RNA
molecules. Hence it is difficult to ensure total recovery of the RNA from the purified

virions, especially when working with such small quantities.

Interestingly, a deletion mutant ofMHV-68 which lacks the vtRNAs (MHV-76) also

appears to encapsidate small RNA molecules of the same size. Given that the most

abundant RNA species within cells of approximately 70 nucleotides in length are

tRNAs, it is likely that the encapsidated RNA species within MHV-76 are cellular
tRNAs. This raises the question of whether MHV-68 also encapsidates cellular
tRNAs along with the vtRNAs but unfortunately it was not possible to ascertain
whether cellular tRNAs were indeed present within both the MHV-76 and MHV-68
virions.

Cellular and viral mRNA have previously been found to be packaged within the
HCMV and HSV virions (Bresnahan and Shenk, 2000; Greijer et al, 2000; Sciortino
et al, 2001). In addition a recent study by Bechtel et al demonstrated that along with
10 viral mRNA molecules, the non-coding PAN RNA is encapsidated by KSHV

(Bechtel et al, 2005). However, this is the first demonstration of the selective

packaging of small RNA molecules by a herpesvirus. All previous studies were

based upon the detection of specific transcripts by RT-PCR, northern blotting and

micro-array analysis, but not the total RNA present and hence it is not clear whether
the high level of encapsidation of small RNA is unique to MHV-68.
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A matter of controversy is the mechanism by which RNA is incorporated within

herpesvirus particles. In the case of HCMV it has been demonstrated that viral and
cellular RNAs are packaged in proportion to the relative quantities present within
infected cells at the time of virion assembly (Terhune et al, 2004). Work done on

HSV-1 indicates that the packaged viral RNA does not correspond to the most

abundantly expressed transcripts present within infected cells, however the cellular

transcripts incorporated were representative of the most abundant cellular mRNAs

(Sciortino et al, 2001). In the case of KSHV, the majority of RNA species packaged
are present at very high levels at the time of virion assembly, although by contrast a

single incorporated transcript encoding ORF17 appears to be preferentially packaged
above more abundantly expressed unincorporated transcripts (Bechtel et al, 2005).
Whether the specific RNA incorporated by MHV-68 is related to the relative
abundance within the cell at the time of virion assembly is not clear. A superficial

analysis of the RNA species present indicates that the very highly expressed vtRNAs
are the most abundant viral RNA within the virion. However, the Mil transcript is
one of the least abundantly expressed genes within infected cells (Ebrahimi et al,

2003) and yet this is also present within the virion. Therefore a comprehensive study
of the relative levels of all RNA species compared to those within infected cells
needs to be undertaken to establish whether RNA is incorporated by MHV-68 in
relation to the expression levels within cells late within infection.

A second theory is that mRNA is selectively packaged, perhaps through binding to

viral proteins, in a way analogous to that of genomic RNA packaging by RNA
viruses. However the basis of this selectivity remains unclear, especially as no cis-

mediated packaging elements have been identified within herpesvirus packaged
RNA. In addition, they appear not to be selected based upon their kinetic class as the
RNA extracted from MHV-68 represents immediate early (vtRNAs), early (M3 and
DNA polymerase) and late (M9) transcripts (Ebrahimi et al, 2003). It is possible that
there is a structural or size basis for selection given that the most abundant viral RNA

species within the MHV-68 are the highly structured vtRNAs.
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The key issue that arises from this data is the possible function of encapsidated RNA,
and in particular the vtRNAs. In the case ofmRNA it can be hypothesized that their
immediate translation within the cell results in the formation of a cellular

environment more conducive to viral infection. In fact it has been shown that a

number of virion mRNAs delivered into the cell are translated (Bechtel et al, 2005).
The expression of the broad spectrum chemokine binding protein encoded by M3

(Parry et al, 2000; van Berkel et al, 2000) may be required at early time points

following infection in vivo to subvert the immune response. In addition, Mil
encodes vBcl-2 which blocks apoptosis (Roy et al, 2000; Wang et al, 1999) and may
be required to function early within infection to subvert the apoptosis response. It is
less clear what function DNA polymerase may have at very early time points

following infection, unless it plays additional roles during infection aside from the

replication of viral DNA. However, given that the vtRNAs do not encode protein,

they are not delivered into the host cell to allow immediate translation. However, it is

possible that whatever role the vtRNAs play during infection it is beneficial for the
virus to deliver the vtRNAs immediately upon infection of the host cell. Further

investigations into the functional roles of the vtRNAs within infection are required to

determine whether this is likely to be the case. However this does not explain the

apparent encapsidation of small RNA molecules by MHV-76, although it is possible
that in the absence of the vtRNAs the virus still maintains the mechanism response

for vtRNA packaging and cellular tRNAs are incorporated in their place, effectively

by mistake.

A further hypothesis is that the packaged RNA has a structural role, either acting as a

scaffold during virion assembly or maintaining the integrity of the virion. tRNAs of
both viral and cellular origin have been proposed to act as nucleating agents during
the assemble of the plant virus, brome mosaic virus (Choi et al, 2002). In

retroviruses, the viral genome is important for virion assembly, however in its

absence, this role can be fulfilled by nonspecifically incorporating cellular RNA

(Muriaux et al, 2001; Wang and Aldovini, 2002). In addition to functioning during
the assembly of retrovirus particles, RNA has also be found to be an integral part of
the structure of retrovirus particles demonstrated by the disruption of the particle in
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the presence of both an RNase and detergent but not detergent alone (Muriaux et al,

2001). Unfortunately the contribution of RNA to maintaining the integrity ofMHV-
68 virion could not be answered in this study as treatment with detergent results in

stripping away the outer part of the viral tegument. If RNA, and in particular low
molecular weight RNA, is important in virion assembly and structure, this would

explain the incorporation of cellular tRNAs within the MHV-76 virion. It could be

argued that if tRNAs are required for either assembly of the virus particle or

maintaining its integrity then it may be advantageous for the virus to express large
amounts of tRNA molecules, in the form of the vtRNAs. In order to determine

whether the vtRNAs do indeed play a structural role within the virion, it is important
to deduce the exact location of the vtRNAs within the virus particle. This could be
achieved through electron-microscopy in situ hybridization or removal of the

tegument from the virion by nonionic detergents and deoxycholate (Gibson and

Roizman, 1972) and investigating whether they are found within the tegument or

nucleocapsids. In addition, the identification of possible interacting proteins both
within the virion and infected cells would help determine the possible functions of

encapsidate vtRNAs and their method of incorporation.
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Chapter 4: Characterizing the sub-cellular
localization of the vtRNAs and potential

interacting proteins

4.1. Aims

4.2 The localization of the vtRNAs during lytic and latent
infection

4.3 Potential vtRNAl interacting proteins
4.4 Potential vtRNA4 interacting proteins
4.5 Discussion
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4.1 Aims

In order to shed light on the function of the vtRNAs, it is necessary to investigate
their sub-cellular localization pattern and potential interacting proteins. Non-coding
RNAs are able to bind a variety of proteins and exhibit differing localization patterns

that can be related to their function. For instance, certain non-coding RNAs are found

predominately within the nucleus. These include the small U RNAs that assemble
into small ribonucleoprotein particles (snRNPs) to function predominantly in RNA

splicing, although they have also been associated with transcription initiation (Kwek
et al, 2002), transcription elongation (Yang et al, 2001) and telomere maintenance

(Seto et al, 1999). The HSURs of HVS resemble cellular small U RNAs and are

therefore thought to function in a similar manner. This is further confirmed by their
nuclear localization and ability to assemble into snRNPs. They have been found to

up-regulate the expression of host genes linked to T-cell activation (Cook et al,

2005). Although the mechanism by which they achieve this is unknown it is likely to
be related to their assembly into snRNPs. The LATs of HSV-1 also localize

predominantly to the nucleus, although they can be found in the cytoplasm during

lytic infection indicating that their function is dependent upon the cell-type and/or

replication cycle (Ahmed and Fraser, 2001).

miRNAs can be found within both the nucleus and cytoplasm. In the nucleus they are

able to regulate transcription by mediating chromatin remodeling (Mourelatos et al,

2002; Volpe et al, 2002). In the cytoplasm they regulate translation by either

stimulating mRNA degradation or causing translational repression (Bartel, 2004).
Both these functions ofmiRNAs are mediated by their interactions with Dicer. Other

non-coding RNAs found in the cytoplasm include VAI and the EBERs (Jimenez-
Garcia et al, 1993; Schwemmle et al, 1992), which both prevent the dsRNA
stimulated decrease in protein synthesis (Laing et al, 2002). VAI is able to do this by

binding PKR and preventing its activation (Ghadge et al, 1991). In addition it has
been found to bind the nuclear export protein Exportin 5 along with Dicer to inhibit
RNA silencing (Lu and Cullen, 2004). The mechanism by which the EBERs function
has not been fully characterised, although they are able to bind PKR and prevent its
activation (Clarke et al, 1991). In addition their cytoplasmic localization pattern
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suggests that they operate at the level of translational control (Schwemmle et al,

1992).

A common theme of non-coding RNAs is their ability to regulate protein synthesis,

through a variety of mechanisms. It can therefore be hypothesized that the vtRNAs
also function in such a manner, especially given their resemblance to cellular tRNAs.

Investigating whether they have a predominantly nuclear or cytoplasmic localization
will shed some light on whether this would occur at the level of transcription and
RNA processing (i.e. within the nucleus) or translational control (i.e. in the

cytoplasm). In addition, although they have been shown to resemble tRNAs, it is not
known to what extent they share the same processing pathways and mechanisms of
action. tRNAs are transcribed and processed within discrete nuclear regions prior to

export to the cytoplasm (Thompson et al, 2003). Therefore investigating whether

they exhibit the same localization pattern will help to determine whether they exhibit
certain characteristics of cellular tRNAs.

Furthermore, it is apparent from the results in chapter 3 that the vtRNAs are

packaged within the MHV-68 virion. However, what it not clear is the mechanism by
which they are incorporated into the maturing virus particle. Virion proteins have
been identified in both HSV-1 and HCMV that are capable of binding packaged
RNA (Sciortino et al, 2002; Terhune et al, 2004). Therefore investigating the sub¬
cellular localization pattern of the vtRNAs and identifying putative vtRNA binding

proteins may help in the understanding of how the vtRNAs are packaged within the

virion, where within the virus particle they can be found and the possible functions of

packaged vtRNAs.

4.2 The localization of the vtRNAs during lytic and latent infection
4.2.1 Dot-blot analysis on cellular extracts
The localization pattern of the vtRNAs was initially investigated by examining their
relative distribution within different cellular fractions; cytoplasm, nuclear membrane,

nucleoplasm and the extract of the nuclear pellet which contains the nucleolar
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material. The localization of the vtRNAs was investigated in vitro during both

productive infection of the CI27 mouse cell line and the latently infected B-

lymphocyte, S11 cell line. The relative levels of vtRNAs within the various extracts

was measured by dot-blot analysis using a probe specific for nucleotides 106-1517 of
MHV-68 and hence the vtRNAsl-4 (Bowden et al, 1997).

CI27 cells were infected at a multiplicity of infection of 5pfu/cell for 18 hours.
Cellular extracts were produced from both cell types as described in section 2.8.3.
DNase I treatment was then carried out in order to remove any DNA found within
the extracts. Due to the difference in volume between the cellular extracts, the

volumes were normalized with respect to the total volume of the smallest extract; the
extract of nuclear pellet. In the case of the nuclear membrane, nucleoplasm and the
extract of nuclear pellet, volumes equivalent to 1 Opl of extract of nuclear pellet were

spotted onto a nylon membrane for dot-blot analysis. However, due to the much

larger volume of the cytoplasmic fraction, a volume equivalent to only 5pi of extract
of nuclear pellet was spotted onto the membrane. Hybridization was subsequently
carried out using the EcoRl/Hindlll digested fragment of pEH1.4 (Bowden et al,

1997), which detects the vtRNAsl-4. Following autoradiography, the intensity of the

dots, and hence the relative levels of the vtRNAs present within each dot, was

analysed using the Labworks 4™ program, taking into account the fact that the
relative volume of the cytoplasmic fraction was half that of the other factions.

It appeared that during both lytic and latent infection, the highest proportion of the
vtRNAs was present within the cytoplasm (64% and 57% respectively, figure 4.1). In
both the lytically and latently infected cells, the vtRNAs could also be detected
within the three other fractions. The fraction containing the second highest levels of
the vtRNAs was the nucleoplasm (18% in lytic infection, 19% in latent infection),
followed by the nuclear membrane (13% in lytic infection, 11% in latent infection),
with the vtRNAs showing their lowest abundance within the extract of the nuclear

pellet (8% during lytic infection, 9% in latent infection). In addition, there was no

significant difference (p>0.05 Mann-Whitney test) in the relative levels of the
vtRNAs during lytic and latent infection in the any of the extracts.
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Figure 4.1 Dot blot analysis of the relative sub-cellular localization of the
vtRNAs, performed on either C127 cells infected at an MOI of 5 PFU/cell for 18
hours or Sll cells. Cellular fractions were produced containing the cytoplasm
(1), nuclear membrane (2), nucleoplasm (3) and extract of the nuclear pellet,
containing the chromatin, nucleolar material and nuclear membranes (4).
Hybridization was carried out using a probe specific for vtRNAsl-4 (pEH1.4, nt
106 to 1517). Quantification was carried out using Labworks 4™ software.
Data shown represent the means and standard deviations of two separate
experiments.
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4.2.2 In situ hybridisation
In order to examine the localization pattern of the vtRNAs in more detail, in situ

hybridisation was carried out using an anti-sense probe corresponding to nucleotides
106-1517 of MHV-68, which recognises the vtRNAs 1-4. This was derived from a

Hindlll digestion of pEH1.4. The digoxygenin (DIG) labelled probe was produced

by in vitro transcription using T7 RNA polymerase and the size of the resulting RNA
checked by electrophoresis on a 1% agarose gel. The probe was then digested to a

length of 170bp by alkaline hydrolysis. The concentration of labelled probe present

was estimated by dot-blot analysis and compared to a control probe of known
concentration (data not shown).

In order to investigate the localisation of the vtRNAs during infection, cytospins
were produced from CI27 cells infected with MHV-68 for 18 hours at an MOI of

5pfu/cell. Detection of the dig-labelled probe was initially carried out using an anti-

dig/alkaline phosphatase conjugated antibody and 5-bromo-4-chloro-3-indolyl

phosphate/nitroblue tetrazolium (BCIP/NBT). As figure 4.2A shows, a positive

signal could be seen within cells infected with MHV-68 but not within mock infected
cells. In the majority of the infected cells the vtRNAs appear to localize to discrete
areas of the nucleus. The specificity of probes used for in situ hybridization is often
demonstrated by using a sense probe as a negative control. However, in this instance
a sense probe was not used as a negative control, as this was often found to result in a

positive signal, although of a lower intensity than the anti-sense probe (data not

shown). This is perhaps due to the fact that the vtRNAs have regions which are

complementary, and hence the sense probe may be able to undergo a certain amount

of base-pairing with the vtRNAs. Instead, to establish that the hybridization was

specific for the vtRNAs, a recombinant MHV-76 virus known as intRNA(9) was

utilized, which expresses the vtRNAs 1-5 from the left-hand end of the genome (see
section 5.3). In situ hybridization was carried out following infection with both

intRNA(9) and MHV-76. intRNA(9) infection gave a staining pattern within cells
identical to that seen within MHV-68. No staining could be seen in cells infected
with MHV-76. Given that the only difference between MHV-76 and intRNA is the
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presence of the vtRNAs, this indicates that the probe hybridizes specifically to the
vtRNAs.

In order to investigate in greater detail the exact localization pattern of the vtRNAs,
fluorescent in situ hybridization was carried out. This allows the sections to be
viewed using confocal microscopy and hence gives a greater resolution. In order to
do this, the dig-labeled probe was detected using a primary antibody, followed by a

secondary biotin-conjugated antibody and streptavidin/alexafluor 488. C127 cells
were once again infected at a MOI of 5 pfu/cell, but this time for various times from
1 hour to 24 hours As figure 4.2 shows, the vtRNAs can first be detected by in situ

hybridisation at 3 hours p.i., where they localize to specific areas within the nucleus,

forming between one and three large dots. At later time-points (from 12 hours

onwards), their nuclear distribution pattern changes, as the numbers of vtRNA

containing areas increase and they exhibit a more globular distribution pattern. By
12 hours p.i. they are also present at high levels within the cytoplasm. This is in

agreement with the data on the dot blot analysis on the cellular factions. In order to

investigate the localization of the vtRNAs during latent infection, in situ

hybridisation was carried out on the latently infected SI 1 B-cell line. Once again the
vtRNAs localize mainly within the cytoplasm, but unlike during lytic infection, their
localization is much more globular and they appear to be peri-nuclear. To determine
that the probe is binding to the vtRNAs and not DNA, the cytospins were treated
with both RNase A and DNase ONE prior to hybridisation. Pre-treatment with the
DNase did not affect the staining pattern; however treatment of the slides with the
RNase resulted in loss of the signal, indicating that the probe is specific for RNA and
not DNA.

4.3 Potential vtRNAl interacting proteins
4.3.1 Electrophoretic mobility shift assays
Electrophoretic mobility shift assays (EMSAs) are a method of detecting nucleic

acid-protein interactions. Radiolabeled RNA is mixed with protein extracts and then

electrophoresed through a non-denaturing polyacrylamide gel. Any RNA-protein
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Figure 4.2 In situ hybridization for vtRNAsl-4 performed on either C127 cells
infected at an MOI of 5 PFU/cell as indicated or Sll cells. Detection of the
digoxygenin (dig) labelled probe was carried out using either anti-dig-AP (A)
and BCIP/NBT, or a secondary antibody-biotin conjugate and streptavidin-
alexafluor 488 (B). Sections were counterstained in nuclear fast red (A) or
propidium iodide (B).
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complexes that are formed run with a slower mobility through the gel in comparison
with non-complexed RNA, and can therefore be visualized following exposure of the

gel to radioactive film.

The DNA template used for in vitro transcription of vtRNAl was produced by

annealing synthetic DNA oligomers, resulting in a double stranded T7 RNA

polymerase promoter and single stranded vtRNAl coding sequence containing the 3'
CCA sequence, which is added to the vtRNA post-transcriptionally in vivo (see

appendix 3). Following in vitro transcription of radiolabeled vtRNAl the template
DNA was digested by DNase ONE and unincorporated nucleotides removed by

passage through a size exclusion chromatography column. The resulting radiolabeled
RNA was refolded as described in section 2.5.8 Additional RNA species were also

generated by in vitro transcription; unlabelled or cold vtRNAl and human 18S
ribosomal RNA.

The protein extracts used in the reactions were produced from CI27 cells, which
were either mock infected or infected with MHV-68 at an MOI of 5pfu/cell for 18
hours. Cytoplasmic and nuclear extracts were produced from the cells, as described
in section 2.8.3. Radiolabeled vtRNAl was mixed with protein and incubated for 20
minutes at room temperature. The reactions were then run on a 5% polyacrylamide

gel and exposed to photographic fdm. Two RNA-protein complexes could be
visualised following incubation with protein extracts from both the nucleus and

cytoplasm of infected cells, however no complexes were present following
incubation with cellular extracts taken from uninfected cells (figure 4.3) indicating
that vtRNAl is capable of interacting with proteins or protein complexes present

only within infected cells. The specificity of the interaction was investigated by

carrying out the binding reaction in the presence of excess homologous and non¬

homologous competitor RNA. Formation of the complexes was inhibited by the

presence of excess unlabelled vtRNAl, but not equivalent concentrations of 18S
RNA or yeast tRNA. Flence the interaction is specific for the vtRNAl.
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Figure 4.3 Electophoretic mobility shift assays using radiolabeled vtRNAl and
cellular extracts of C127 cells infected with either MHV-68 at an MOI of 5

pfu/cell or mock infected. The assays were carried out using both cytoplasmic
(C) and nuclear (N) extracts. Increasing concentrations of unlabelled vtRNAl,
18S RNA and yeast tRNA (2.5ng; also shown as +, and lOng) were also
including in the reactions, represented as open triangles. The RNA/protein
complexes were analysed on a 5% TBE-polyacrylamide gel.
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The identification of proteins present with the RNA-protein complex is possible by
addition of a specific antibody to the reaction mixture, resulting in either super-

shifting of the band due to the formation of a higher molecular weight complex or

loss of the complex as RNA-protein binding is inhibited. Reactions were therefore
carried out using radiolabeled vtRNAl and cytoplasmic extracts taken from MHV-68
infected CI27 cells, in the presence of equivalent concentrations of a polyclonal anti-
MHV-68 antibody produced in rabbits or normal rabbit serum (figure 4.4A).
Incubation in the presence of the anti-MHV-68 antibody resulted in the loss of the
two protein complexes following electrophoresis. A faint band of a higher molecular

weight was also visible. Incubation in the presence of normal rabbit serum had no

effect upon the assay. It therefore appears that the interaction is blocked by the
addition of the anti-MHV-68 antibody and therefore the vtRNAl interacts directly
with viral protein(s).

In order to characterise further the viral protein(s) capable of binding to vtRNAl, the

expression class of the protein was investigated. Treatment of cells with

cyclohexamide (CHX) and phosphonoacetic acid (PAA) prior to virus infection
blocks protein synthesis and DNA replication respectively. Protein extracts were

produced from MHV-68 infected CI27 cells which were either untreated or pre-

treated with CHX or PAA. EMSAs were carried out by incubation of labelled
vtRNAl with the cellular extracts. As figure 4.4B shows, protein complexes were

present following incubation with both nuclear and cytoplasmic extracts from
untreated cells, but not from those treated with CHX or PAA. vtRNAl therefore

binds viral protein(s) expressed following the onset of viral DNA replication.

4.3.2 Identification of protein complexes
Geek et al have previously described a method to UV cross-link RNA-protein

complexes excised from polyacrylamide gels, by subjecting gel slices containing the

complexes to UV light, enabling the cross-linked RNA-protein complex to be

electrophoresed on a denaturing SDS-polyacrylamide gel (Geek et al, 1994). This
allows the size of proteins which directly interact with RNA within a complex to be
determined. EMSAs were therefore carried out using cytoplasmic extracts produced
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Figure 4.4 Electrophoretic mobility shift assays using radiolabelled
vtRNAl and cellular extracts from MHV-68 infected C127 cells, in the
presence of equivalent concentrations anti-MHV-68 polyclonal antibody or
normal rabbit serum (A). Assays were also carried out using either nuclear
(N) or cytoplasmic extracts (C) from MHV-68 infected untreated cells or
cells pre-treated with either cyclohexamide (CHX) or phosphonoacetic acid
(PAA) to block protein synthesis and DNA replication respectively. The
RNA/protein complexes were analysed on a 5% TBE-polyacrylamide gel.
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from MHV-68 infected C127 cells. The locations of RNA-protein complexes were

determined following autoradiography, the two bands excised and UV crosslinked at

a wavelength of 254nm, for 17 minutes. The gel slices were then treated with a

nuclease to digest any RNA not cross-linked to protein. The gel slices were

subsequently run on a 12% SDS polyacrylamide gel. Following this procedure, bands
were only visible following crosslinking of protein complex 2 but not complex 1,

perhaps because the RNA-protein interactions within complex 1 are less stable or

due to there being less protein or vtRNAl present. The two RNA-protein complexes
were of approximately 38 and 55KDa in size (figure 4.5B).

Elution of proteins from RNA-protein complexes following EMSAs has been

previously described (Heaton et al, 2001; Ranish and Hahn, 1991). This technique
was therefore used to try to identify proteins present within the two vtRNAl-protein

complexes. In vitro transcription of cold vtRNAl was carried out on a larger scale
and refolded as previously described. Binding reaction were carried out using
labelled vtRNAl, in addition to a larger scale cold reaction with cytoplasmic extract

produced from MHV-68 infected C127 cells. Using the labelled complexes as a

guide the corresponding sections of the gel, where the unlabelled reactions were run,

were excised and proteins eluted. The eluted proteins were concentrated using spin
columns and run on a 12% SDS-PAGE gel, which was then subjected to silver

staining (figure 4.5C). Within complex 1 many protein bands were visible, ranging
from approximately 40KDa to 170kDa. A major band of 48kDa was clearly visible.

Only 4 bands were visible within complex 2, of approximately 48kDa, 60kDa,
70kDa and lOOkDa respectively. As for complex 1, the major band present within

complex 2 was of approximately 48kDa. In order to try and identify proteins present

within complexes 1 and 2, the extracts were once again run on a 12% SDS PAGE gel
and subjected to SYPRO ruby staining. However, the only bands that could be
visualized following SYPRO ruby staining were the higher molecular weight bands

along with a band of 50kDa. The individual bands were excised from the gel and

subjected to MALDI-TOFF mass spectrometry (carried out by the Edinburgh Protein
Interaction Centre). The proteins present are shown in table 4.1. Most of the proteins

represent house keeping genes present at high levels within cells. Given that there is
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Figure 4.5 Identification of the protein complexes in band 1 and band 2. The
designation of the two bands is shown in a typical EMSA in A. Both
radiolabeled vtRNAl/protein complexes were excised from the gel, UV
crosslinked and run on an 12% polyacrylamide/SDS gel. Bands were only
visible following cross linking of complex 2 (B). The proteins from each
complex were eluted and run on 12% polyacrylamide/SDS gels and either
silver-stained (C) or Western blotted using a polyclonal anti-MHV-68 antibody
(D). The molecular weight of protein markers are shown.
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no obvious function of these proteins within the vtRNA-protein complex, they are

perhaps most likely contaminants of the complex. However, one protein was

identified as mouse jmjdla protein, a mouse protein of unknown function that
contains a jmjC domain, thought to be involved in chromatin organisation by

modulating heterochromatisation (Balciunas and Ronne, 2000).

The protein complexes eluted from the EMSA were also subjected to Western blot

analysis, using an anti-MHV-68 polyclonal antibody (figure 4.5D). In both

complexes bands of approximately 38kDa and 48kDa could be visualised, which
were not present within a control blot performed on uninfected cytoplasmic extract.

Taking together both the UV-crosslinkage results and experiments on the eluted

proteins, it appears that the complexes contain at least two proteins capable of

binding directly to vtRNAl, of approximately 38kDa and 55kDa in size and two

viral proteins of approximately 38kDa and 48kDa. Further work is required to

determine whether the 38kDa protein capable of directly binding vtRNAl represents
a viral protein. In addition, the complexes appear to contain a number of other

proteins, at least some of which are very abundant cellular proteins, such as actin,
which may not be part of the complex and are perhaps contaminants of the

experiment.

4.4 Potential vtRNA4 interacting proteins
4.4.1 Electrophoretic mobility shift assays
In order to identify proteins capable of interacting with a second vtRNA, EMSAs
were carried out using vtRNA4. The vtRNA was in vitro transcribed from annealed

synthetic DNA oligomers consisting of the vtRNA sequence, the T7 RNA

polymerase promoter and a 3' CCA sequence. However, unlike the template used for
the in vitro transcription of vtRNAl which was partially single-stranded, the one

used for vtRNA4 was entirely double-stranded. Assays were carried out by
incubation of labelled vtRNA4 with cellular extracts taken from both uninfected and

MHV-68 infected CI27 cells (figure 4.6A). The cellular fractions used in the assay

consisted of the cytoplasm, nuclear membrane, nucleoplasm and extract of the
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Band Protein
MW

(kDa)

Percentage
mass

tolerance

(ppm)

% Masses
Matched

1 Jmjdla 147 100 13%

1
Proplyl

endopeptidase 81 50 12%

1 m-calpain 79 50 11%

1
Extracellular

signal-related
kinase 7

61 50 11%

2
Heat-shock

protein 90-(3
83 50 37%

2 B-actin 42 50 7%

Table 4.1 Proteins identified by mass spectrometry within vtRNAl-
protein complexes in bands 1 and 2. The proteins from each complex
were eluted, run on 12% polyacrylamide/SDS gels and stained with
SYPRO-ruby. Visible bands were excised and subjected to MALD-TOFF
mass spectrometry. Proteins present were identified using MS-FIT,
using a percentage mass tolerance of either 50 or 100 parts per million
(ppm). The molecular weight and the percentage peptide coverage of
the identified protein are shown.
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nuclear pellet, which contains the chromatin, nucleolar material and nuclear
membranes. RNA-protein complexes were clearly visible following incubation with
the cellular fractions taken from MHV-68 infected CI27 cells, which resembled the

two RNA-protein complexes formed when vtRNAl was used in the reaction. In

addition, RNA-protein complexes exhibiting different migrations were present

following incubation with both the nuclear membrane fraction and nucleoplasm

produced from uninfected CI27 cells.

The specificity of the interaction of vtRNA4 with proteins present within uninfected
CI27 cells was investigated by incubating with increasing concentrations (2.5ng and

lOng) of unlabelled vtRNA4, along with equivalent concentrations of in vitro
transcribed 18S RNA and yeast tRNA (figure 4.6B). The formation of the RNA-

protein complexes was out-competed by excess unlabeled vtRNA4 (lOng) but not by

equivalent concentrations of 18S RNA and yeast tRNA and hence the vtRNA-protein
interaction is specific.

4.4.2 Identification of protein complexes
The proteins present within the vtRNA4-protein complex were eluted from the

polyacrylamide gel as previously described for vtRNAl. Using labelled vtRNA4 as a

guide the corresponding sections of the gel the unlabelled RNA-protein complexes
were excised and the proteins eluted. Following concentration, the eluted protein was

electrophoresed on a 12% SDS-PAGE gel and subjected to silver staining (figure

4.7). A number of proteins were present within the complex, ranging from

approximately 33kDa to 170kDa. Major protein bands were present of approximately

33kDa, 47kDa, 60kDa, 80kDa and 90kDa. However, insufficient quantities of

proteins were extracted for SYPRO ruby staining and therefore could not be analysed

by mass spectrometry. Therefore the identity of the cellular protein(s) capable of

interacting with vtRNA4 remains to de determined.
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Figure 4.6 Electrophoretic mobility shift assays using vtRNA4 and cellular
extracts from infected and uninfected C127 cells. Cellular fractions
composed of cytoplasm (1), outer nuclear membrane (2), nucleoplasm (3)
and the extract of nuclear pellet, which contains chromatin, nuclear
membranes and nucleolar material (4) were used in the assay (A). The
specificity of vtRNA4 binding to proteins within the nucleoplasm of
uninfected cells was investigated by carrying out the assay the presence of
increasing concentrations (2.5ng and lOng) of unlabelled vtRNA 4, 18S RNA
and yeast tRNA, shown as open triangles (B). The RNA/protein complexes
were analysed on a 5% TBE-polyacrylamide gel.
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Figure 4.7 Identification of the protein complexes present within the
vtRNA4-protein complex, as identified by electophoretic mobility shift assay.
The proteins present within the vtRNA4-protein complex, formed by
incubating vtRNA4 with nucleoplasm from uninfected cells, were eluted and
run on 12% polyacrylamide/SDS gels and silver-stained. The molecular
weight of protein markers are shown.
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4.5 Discussion

In this study, the sub-cellular localization of the vtRNAs and potential interacting

proteins have been investigated. It is clear from chapter 3 that the vtRNAs are

packaged within the MHV-68 virion and are released into the cell immediately

following infection. However they could not be detected by in situ hybridization
within the cytoplasm of infected cells immediately following infection. This is

perhaps because they were below the limit of detection of the assay at this stage. The
localization could first be seen at three hours post-infection within isolated areas of
the nucleus. This is reminiscent of the localization pattern of newly transcribed
cellular tRNAs (Thompson et al, 2003) and therefore although the identity of these
areas has not been investigated, it could be speculated that this reflected transcription
and early processing within the nucleolus. By 24 hours post-infection they showed a

globular pattern of nuclear staining. Given that at late time points in infection viral
RNA synthesis is closely linked to DNA replication, it can be hypothesized that this

globular distribution pattern reflects vtRNA synthesis occurring within replication

compartments. However, further investigations such as co-staining for viral DNA

replication proteins are required to determine if this is the case. At this time, the
vtRNAs were found at high levels within the cytoplasm as demonstrated by both in
situ hybridization and dot-blot analysis. This was also the case for latently infected

cells, although minor differences could be seen by in situ hybridization in the

cytoplasmic distribution between productively and latently infected cells; in the
former the vtRNAs appeared to be spread throughout the entire cytoplasm, whereas
in the latter they appeared to localize to the peri-nuclear region. It is possible that the
more diffuse distribution pattern observed within lytically infected cells is a result of

packaging of the vtRNAs within newly formed virions in the cytoplasm. However, it

may also indicate that the vtRNAs function differently within the two different cell

types.

As mentioned in section 4.1, non-coding RNAs display differing localization patterns

which can be related to their function. If one function of the vtRNAs is the regulation
of protein synthesis, their abundance within the cytoplasm suggests that this occurs at

the level of translation. Such a localization pattern is similar to that seen for both

153



Chapter 4 Results

VAI of adenovirus and the EBERs of EBV, which have both been found to regulate
translation within the cytoplasm. Therefore it is possible that the vtRNAs carry out a

similar role. In order to further characterise the function of the vtRNAs in the

cytoplasm it is necessary to identify cytoplasmic proteins with which they interact. In
this study EMSAs were carried out to determine whether the vtRNAl and vtRNA4
are capable of interacting with proteins. EMSAs have an advantage over other

techniques in that the proteins extracted are in their native conformation. In addition,
the vtRNAs could be radiolabeled in such a way as to minimise any disruption to

their secondary structure and without adding elements to either their 3' or 5' ends
that might interfere with protein binding. It is clear from the EMSA data that at least
one vtRNA (vtRNA4) is capable of specifically interacting with cellular protein(s).

Unfortunately it was not possible to discover the nature of these proteins within the
course of this study. Further work is required to determine the identity of the
vtRNA4 binding protein(s), perhaps utilizing the conditions optimized in this study
to either scale up the binding reaction to try to extract larger amounts of vtRNA-

binding protein, or trying alterative techniques such as immobilizing the vtRNAs and

pulling down proteins that bind.

Although it was not possible to identify proteins from uninfected cells capable of

interacting with the vtRNAs, one protein was identified from the eluted vtRNA 1-

protein complex present within infected cells as Jmjdla, a mouse protein of unknown
function that contains a jmjC domain, which is thought to be involved in chromatin

organisation by modulating heterochromatisation (Balciunas and Ronne, 2000).
Chromatin remodelling plays an important role in the regulation of gene expression

during both lytic and latent herpesvirus infection (reviewed in Efstathiou and

Preston, 2005). In addition, recent data suggest LATs of EISV-1 play a role in

regulating lytic cycle gene expression during latency by promoting the assembly of
heterochromatin on productive cycle promoters (Wang, Q, Coen, D.M. and Knipe,
D.M. in press). If this represents a generic feature of herpesvirus non-coding RNAs,
it is possible that the vtRNAs are able to form a complex with proteins involved in
chromatin remodelling. Given that they can be found in the nucleus in areas that
resemble replication compartments, the vtRNAs could potentially operate at the level
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of transcription to regulate the expression of viral genes. However, it is also possible
that this protein was a contaminant of the reactions and further work is required to

determine whether the vtRNAs form complexes with proteins containing jmjC
domains to play a role in the regulation of gene expression.

It is clear that in order to localize within the cytoplasm, the vtRNAs must be

exported across the nuclear membrane, and this is reflected by their presence within
the nuclear membrane containing cellular fraction. However, the mechanism by
which they are able to do this is not clear. Two proteins have been found to be
involved in the translocation of cellular tRNAs across the nuclear membrane;

exportin-t and exportin-5 (Gwizdek et al, 2004; Lund and Dahlberg, 1998). Both

proteins employ proof-reading mechanisms to ensure that only mature tRNAs are

exported to the cytoplasm, as exportin-t requires the addition of 3' CCA sequences

to tRNA molecules, whereas exportin-5 mediates the export of amino-acylated tRNA
molecules. As the vtRNAs do possess post-transcriptionally added 3' CCA

sequences, it could be predicted that the vtRNAs are exported from the cytoplasm via

exportin-t. However, exportin-5 also facilitates the export of pre-miRNAs and other
viral non-coding RNAs such as VAI of adenovirus (reviewed in Rodriguez et al,

2004), and it is therefore possible that this protein may be responsible for the
translocation of the vtRNAs, either in their mature form or as longer full length

transcripts, which also contain predicted miRNA sequences. Investigations into the
exact nature of the vtRNA transcripts within the different cellular fractions would
indicate whether they are processed within the nucleus prior to export or within the

cytoplasm and therefore which export pathway they are likely to utilize. It is also

possible that they are exported by a third pathway which is dependent upon viral and
not cellular proteins.

The vtRNAs represent the major viral RNA species incorporated into the MHV-68
virion. However, the function of the encapsidated vtRNAs is not understood.

Understanding the mechanism by which they are incorporated may give an indication
of the function of packaged RNA. Virion assembly is a complex process involving
DNA packaging, capsid assembly, peri-nuclear transport and virion tegumentation
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and envelopment (Roizman and Knipe, 2001). The formation of the virion begins in
the cytoplasm, with the assembly of the nucleocapsids. Immature capsids then move

into the nucleus, where the viral genomes are loaded into the empty capsids within

particular loci in the nucleus known as replication compartments. The nucleocapsids
then leave the nucleus after obtaining a tegument layer that is required for passage

through the inner nuclear membrane; however, the composition of this initial

tegument varies from that of the mature tegument. Final tegumentation takes place
within the cytoplasm through a network of protein-protein interactions, the

complexity ofwhich is only just being understood.

The localization pattern of the vtRNAs gives some insight into the mechanism by
which they are packaged. At late times within infection when virion assembly is

taking place, the vtRNAs could be found within both the nucleus and cytoplasm. In
the nucleus they exhibited a globular distribution pattern, which possibly reflects

ongoing transcription within replication compartments where capsid assembly takes

place. It is possible that the presence of the vtRNAs at the sites of capsid formation
results in their incorporation and subsequent translocation across the inner-nuclear
membrane within the nucleocapsids. However given that the major incorporated
RNA species within the virion were found to be of approximately 70 nucleotides in

length, it appears that the fully processed and not the immature vtRNA transcripts are

selectively incorporated, thus arguing against their immediate packaging following

transcription.

Given the abundant cytoplasmic distribution pattern late within infection, it is

possible that the vtRNAs assemble in the cytoplasm to form part of the tegument

layer. Based on a number of observations, packaged RNA in other herpesviruses has
been hypothesized to be present within the tegument. Firstly, the encapsidated RNA
of HCMV was found to localize predominantly within the cytoplasm and not the
nucleus (Terhune et al, 2004). Secondly, tegument proteins from both HSV and
HCMV have been shown to be capable of binding RNA species that are packaged
within the virion (Sciortino et al, 2002; Terhune et al, 2004). It is therefore useful to

identify viral proteins capable of interacting with the vtRNAs in order to determine
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the mechanism by which they are packaged. EMSAs demonstrated the interactions
of both vtRNAl and vtRNA4 with protein complexes present solely within infected
cells indicated binding to viral proteins and this was confirmed by the ability of an
anti-MHV-68 polyclonal antibody to block the interaction.

Despite the clear interaction of the vtRNAs with viral protein(s), the identity of the
viral protein could not be determined in this study. The majority of late proteins

expressed by MHV-68 represent structural proteins (Ebrahimi et at, 2003), and
therefore the observation that the vtRNA bound viral protein(s) expressed following
the onset of viral DNA replication suggested binding to a viral structural protein.

UV-crosslinking of the vtRNA-protein complexes indicated direct binding to

proteins of approximately 38kDa and 55kDa, whereas Western-blotting of the

protein complexes identified viral proteins of 38kDa and 47kDa in size. Virion

proteins of similar sizes include the ORF45 tegument protein (48kDa) and ORF48

(37.9kDa). ORF45 has been implicated in transcriptional activation (Jia et al, 2005);
however the functional significance of this is unclear. The function of ORF48 is
unknown and sequence analysis using BLAST failed to detect any known functional
domains within either protein.

Additional methods were attempted to try to identify the vtRNA-binding proteins.
North-western blotting is another technique used to identify RNA-protein

interactions, in which proteins are electrophoretically separated in denaturing gels,
blotted onto a nylon membrane, re-natured and then reacted with a labelled

riboprobe. This was attempted using proteins extracted from MHV-68 virions. No
interactions between the proteins and the vtRNAs could be identified, however this
does not mean that vtRNAs do not interact within virion proteins as it is possible that
the proteins did not re-nature correctly. Hence further investigations are required to

determine the identity of the vtRNA-binding proteins in order to gain an

understanding into how the vtRNAs are incorporated into the virion and the potential
functions of the vtRNAs.
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5.1 Aims

The role of the vtRNAs within infection has not been extensively characterised and
therefore it is currently unclear what biological function they fulfil. Deletion of
vtRNAsl-4 along with Ml from MHV-68 resulted in no difference from wild type

virus during either in vitro replication or in the ability of the virus to establish a latent
infection (Simas et al, 1998). However, it is possible that the individual vtRNAs
have overlapping functions and thus deletion of just four vtRNAs would not

completely abrogate their function. Within the MHV-68 genome the vtRNAs are

found interspersed amongst the Ml and M2 genes (figure 1.4), making deletion of all

eight vtRNAs particularly problematic. Hence, MHV-76 has been utilized for the

study of the vtRNAs within infection by construction of recombinant knock-in
viruses containing the vtRNAs. Given that MHV-76 is a deletion mutant of MHV-

68, the left hand genes can be inserted into MHV-76 in a position equivalent to that
in MHV-68 without disrupting genes required for viral replication or the
establishment and reactivation from latency. This approach has been used

successfully in our laboratory to assess the role of the M4 gene within infection

(Townsley et al, 2004).

5.2 Construction of intRNAl-5 virus

In order to investigate the contribution of the vtRNAs within infection, a knock in
virus ofMHV-76 had previously been produced (T. Heckel, Y. Ligertwood and B.M.

Dutia) by insertion of vtRNAsl-5 into the left-hand end ofMHV-76 (intRNA). The
recombination cassette used to generate intRNA (pL2a5) consists of the vtRNAl-5

genes flanked by MHV-68 derived sequences common to both MHV-68 and MHV-
76: partial M4 and ORF4 gene sequences (bp 9540-10914) and a 1213bp terminal

repeat fragment derived from a Pstl digestion of the terminal repeat, which cuts at

ntll870 (fig 5.1). Given that each terminal repeat corresponds to ntl 18237-11940,
the terminal repeat region present within the recombination cassette contains 463
nucleotides of 5' sequence downstream of 840 nucleotides of 3' sequence (figure 5.1).
The resulting recombinant virus had been purified by serial dilution plaque

purification (see section 2.9.2) and was found to be free from contaminating wild-
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type MHV-76 by Southern blot analysis. The resulting virus will be referred to as

intRNA(9). A further independent clone was produced using the same recombination
cassette. The L2a5 plasmid was partially digested to yield a 4.3kb fragment

containing vtRNAs and homologous MHV-76 sequences, to prevent the

incorporation of plasmid DNA into MHV-76 during construction of intRNAl-5.
BHK-21 cells were co-transfected by electroporation and wells containing single

plaques isolated as described in section 2.9.1. Viral DNA was then extracted and
PCR undertaken for the presence of the vtRNA fragment using the tRNAfor2 and
tRNArev primers (see appendix 2).

Selections of plaque picks were then purified away from MHV-76 using both the

limiting dilution assay and agarose overlay methods (see section 2.9.2). Using the

limiting dilution approach, DNA could be extracted from the individual plaques and
PCR carried out, firstly to detect the vtRNAs, and secondly using the M4B/TR

primer pair to amplify a section ofDNA from the terminal repeats to the residual M4

sequence present within MHV-76, thus allowing the detection of contaminating

parental virus. Due to the small volume produced when plaques were picked under
an agarose overlay, DNA could not be extracted for PCR analysis and therefore all

plaques picked under an agarose overlay were immediately subjected to a cycle of

limiting dilution plaque purification, following which the DNA could be extracted.

Following two rounds of limiting dilution plaque purification and one agarose over¬

lay, the viral stock was found to be free from contaminating MHV-76 (figure 5.2). A
further three rounds of limiting dilution plaque purification was carried out to ensure

any remaining MHV-76 that was below the level of detection for the PCR assay was

removed and a homogenous viral stock produced. The resulting virus will be referred
to as intRNA(2).

5.3 Construction of MHV-76intRNAl-5 revertant virus

In order to confirm that any observed phenotype with the intRNA viruses is the result
of vtRNA expression and not due to unwanted mutations in other areas of the

genome, a revertant virus was produced by restoration of the intRNA(9) genome to
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Figure 5.1 Schematic diagram demonstrating the construction of the intRNA
viruses by homologous recombination between MHV-76 DNA and L2a5
plasmid. The L2a5 plasmid consists of vtRNAl-5 (shown as filled triangles),
along with the PstL fragment of the terminal repeats and partial M4 and ORF
sequences. Approximately 24kb of the left-hand region of MHV-76 is shown,
along with the restriction endonuclease cutting sites for Barrel (B), EccRl (E),
PsG. (P), Apal (A) and NotI (N). The location of the probes HindllG and EH1.4,
used for Southern analysis are indicated.
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vtRNA MHV-76

M123456WC1 23456WCM

Figure 5.2 Screening plaque picks for intRNAl-5 and MHV-76.
Single plaques were picked following transfection (1) or successive
rounds of serial dilution plaque purifications (2-6). PCR analysis was
carried out on the extracted DNA using primers which amplify the
vtRNAs or wild-type MHV-76. Gel electrophoresis of the PCR
products was carried out through a 1% TAE-agarose gel. The size of
molecular weight marker in bp is shown on the left. Abbreviations;
M, IKb-plus markers; W, negative control (ddH20); C, positive
control.
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that of MHV-76. This was initially attempted using the Lla5 plasmid, from which
L2a5 was derived and hence contains the 1,2kb Pstl fragment of the terminal repeats
and 1.4 kb of sequence homologous to the left-hand end ofMHV-76. The MHV-76

fragment was removed from the plasmid by digestion with Hindlll and £coRI, and

gel purified. BHK-21 cells were co-transfected by electroporation with the DNA

fragment and intRNA(9) DNA, and single plaques isolated. The DNA was extracted
and PCR carried out using the M4B/TR primer pair to detect wild-type MHV-76.

However, this procedure was repeated three times with 64 plaques screened each
time and all found to be negative for MHV-76. In order to control for the presence of
viral DNA, PCRs were also carried out for both DNA polymerase and the vtRNAs,
which were all positive (data not shown).

It was possible that the MHV-76 PCR reaction was not sensitive enough to detect

any revertant DNA within a mixed population of intRNA(9) virus and revertant

virus. An alternative approach was therefore taken, by utilizing a multiplex PCR,

using both the DNA polymerase primers along with EH14E and EH14F primers,
which amplify a region containing the vtRNAs (see appendix 2) within the same

reaction to generate two distinct products of 477bp and 351bp respectively. This
would show the relative abundance of viral DNA present containing the vtRNAs and
therefore indicate whether revertant virus was present within a plaque. The assay was

optimized so that the vtRNA and DNA polymerase products were amplified with

equal efficiency within the same reaction, using intRNA(9) DNA as a control. In
order to detect the relative abundance of the two DNA sequences, it was necessary

that the reaction did not reach saturation and therefore a limited number of cycles
were performed. However, using this approach, all plaques contained an equal
amount of both DNA polymerase and vtRNA DNA, indicating that no revertant virus
was present (data not shown).

Due to the fact that no positive plaques could be detected using Lla5 co-transfection,
a cosmid was used instead. Cosmid Ml (cMl) is a previously published cosmid

corresponding to ntl 15165-26842 of MHV-76 encompassing part of ORF75a, M12,
13 and 14 from the right hand end ofMHV-76, a full terminal repeat and ORFs 4-11,
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K3, M5 and the first 288bp of M6 from the left-hand end (Macrae et al, 2001). Co-
transfection of cMl with intRNA(9) DNA into BHK-21 resulted in the formation of
12 plaques positive for revertant virus when screened by PCR for MHV-76 and using
the multiplex approach as described above.

After two rounds of plaque purification using an agarose over lay and 4 rounds using
a limiting dilution approach, one transfection clone (48) was found to be free from

contaminating intRNA(9). To ensure that a homogenous viral stock was present that
was free from any small amounts of intRNA(9) virus that was below the level of
detection of the PCR assay, a further three rounds of limiting dilution plaque

purification were carried out. The resulting virus will be referred at as

intRNA(9)Rev.

5.4 Southern analysis of the intRNA and intRNARev viruses
Viral DNA was extracted from MHV-76, both intRNA viruses and intRNA(9)Rev

grown within BHK-21 cells as described in section 2.2.3. Southern analysis was

performed on the viral DNA to determine whether the fragments had inserted

correctly into the genome and to ensure that the revertant virus was identical to
MHV-76. Restriction endonuclease digestions were carried out using either BamHl
or EcoR\ and Notl. An additional Southern analysis was carried out following
construction of intRNA(2) by digestion with BamHl and Apal. The cut sites for these

enzymes are shown in figure 5.1 and the size of expected fragments in table 5.1. In
order to check whether the vtRNAs had been correctly inserted into the left-hand end
of MHV-76, hybridization was carried out using the EcoRVHin&lU digested

fragment of pEH1.4 (Bowden et al, 1997), which detects the vtRNAsl-4.

Hybridization to EcoRl/Notl digested DNA revealed a major band of 2.2kb, along
with a fainter, minor band of 1.87kb (figure 5.3). Sequence analysis revealed that the
5' end of the genomes of the intRNA viruses contained the 463bp sequence

corresponding to ntl 18237-118700 (depicted in figure 5.1), as a result of

homologous recombination ofMHV-76 DNA with the L2a5 recombination cassette,

which contains the Pstl fragment of the terminal repeats. During viral replication, an

oligoclonal population of viral DNA is produced containing variable numbers of
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terminal repeat sequences. Hence the 2.2kb band corresponds to the size of the

expected band following digestion with Notl within the terminal repeats, whereas the
smaller 1.86kb band corresponds to linearised DNA containing only a single 463
nucleotide fragment of terminal repeat sequence. In keeping with this, digestion with

BamYll, which cuts at 1695 and therefore downstream of the vtRNAs (figure 5.1) but
does not cut within the terminal repeat region, yielded a fragment of 2.1kb in length

corresponding to the linearised viral DNA containing 463 nucleotides of terminal

repeat sequence. The bands of 3.3kb and above correspond to linearised viral DNA
with successive numbers of terminal repeats present. There appear to be minor
differences in the Bamlil digestion pattern between the two intRNA viruses

indicating that there may be small abnormalities in the terminal repeats of intRNA(2)

(figure 5.4). However, Southern blotting carried out on Apal digested DNA yielded
bands of the correct size, once again indicating correct insertion of the vtRNAs into
both recombinant virus clones.

In order to determine whether the vtRNAs had inserted correctly into the genome

with respect to upstream sequences, hybridization was also carried out with a

labelled fragment of MHV-68 (HindlllG fragment, nt 11099-16237), firstly on

EcoRl/Notl and BamlAl digested DNA (figure 5.3) and then following the
construction of intRNA(2), on Apal and Bamlil digested DNA (figure 5.4). This
resulted in fragments of the correct size as predicted by sequence analysis, verifying
that the vtRNAs had inserted correctly into the left-hand region ofMHV-76.

Southern analysis carried out on the revertant virus digested with Bamlil,
Notl/EcoRl or Apal yielded bands of the expected size based upon sequence analysis

(table 5.1, figure 5.3, figure 5.4), which were identical to those seen following
Southern analysis on MHV-76. Extra bands were present following EcoRHNotl

digestion (figure 5.3), although these most likely resulted from undigested DNA and
not due to changes in the genome structure as further Southern analysis on the
revertant virus yielded a band of the correct size (figure 5.4). In addition, no

hybridization could be seen using the probe specific for the vtRNAs, indicating they
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Digest MHV-76 MHV-76intRNA intRNArev

Notl/EcoRI 5.1, 4.85 2.2, 1.87*
7.5, 4.9

11.37

BamHI 8.9
+ 1.2 ladder.

2.1,+1.2 ladder,
7.7

8.9
+ 1.2 ladder.

Apal 7.8, 3.5 0.984, 0.964,
7.8, 3.2

3.5, 7.8Kb

Table 5.1 The fragment sizes (in Kb) produced following restriction endonuclease
digest of viral DNA. Those indicated in red correspond to fragments detected with
the HintAUG probe, whereas those in red are detected using EH 1.4. * denoted a
minor band due to the presence of a small number of viral genomes possessing
only a partial terminal repeat sequence (see text).
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Figure 5.3 Southern analysis of mutant viruses. DNA from MHV-76 (76),
intRNA9 (int) and intRNA9rev (Rev) was digested with either BarrkW or NoG.
and EccRi. Hybridization was carried out using probes specific for either
vtRNAsl-4 (EH1.4, nt 106-1517) or a probe generated from the HindillG
fragment of the MHV-68 genome (nt 11099-16237). Probes used are
indicated below the appropriate autogradiograph. The sizes of the molecular
weiaht markers are shown to the riaht of the autoradioaraohs.
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Figure 5.4 Southern analysis of mutant viruses. DNA from MHV-76 (76),
intRNA(2), intRNA(9) and intRNA(9)Rev was digested with either BarrkW or
Apal. Hybridization was carried out using probes specific for either vtRNAsl-
4 (EH 1.4, nt 106-1517) or a probe generated from the HindlllG fragment of
the MHV-68 genome (nt 11099-16237). Probes used are indicated below the
appropriate autogradiograph. The sizes of the molecular weight markers are
shown to the right of the autoradiographs.
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had been successfully removed from the revertant virus and it had been fully purified
so that no contaminating intRNA(9) virus was present in the stock.

5.5 Construction of WTTintRNA

5.5.1 Cloning strategy
Due to the presence of a small population of viral DNA molecules which possessed

only half a terminal repeat at the 5' end of the genome, the production of further
mutant viruses which would have wild-type terminal repeats (designated

WTTintRNA) was attempted. The recombination cassette used for the generation of
WTTintRNA was produced using a previously constructed plasmid, pBS-76LHE,
which is composed of a 3kb fragment of MHV-76 (nt 9539-12569) cloned into the
BamHI/EcoRI sites of pBS. vtRNAsl-5 were amplified from the MHV-68 genome

with PfuTurbo DNA polymerase (Stratagene, UK) using the tRNAforNotl and
tRNArev primers, which yielded a PCR product of 1.7kb containing vtRNAsl-5. The

primers used generated upstream Bamttl and downstream Notl restriction sites to

allow directional cloning. Following gel purification and digestion with the

appropriate restriction endonucleases, the insert was directionally cloned into pBS-
76LHE. Correct insertion of the vtRNAs was confirmed by restriction digest.

For creation of WTTintRNA, pBS-76LHE/vtRNAl-5 was partially digested with
EcoR\/Notl to yield a 4.7kb band containing the vtRNAs and downstream 3kb

fragment homologous to ME1V-76. This was performed to prevent undesirable
recombination events that may incorporate plasmid DNA into ME1V-76 during the
formation of WTTintRNA. BITK-21 cells were co-transfected with the excised DNA

and MHV-76 DNA and single plaques isolated from wells of a 96 well microtitre

plate. PCR analysis was carried out on the viral DNA and 5 plaques (designated 1-5)
were found to be positive for the vtRNAs.

5.5.2 Purification of recombinant viruses

Purification of WTTintRNA was attempted for all five viral stocks using the limiting
dilution approach. After one round of purification, clones 1-3 were still positive for

169



Chapter Five Results

the vtRNAs by PCR. After two rounds, only clones 1 and 3 contained the vtRNAs.
After four rounds of purification, the presence of the vtRNAs could not be detected

by PCR within any of the plaque picks. To ensure that viral DNA was present, PCR
was also undertaken for MHV-76 and all plaques were found to be positive. Hence it

appeared that the WTTintRNA virus could not be maintained, perhaps because the
insert sequence was not stable and further recombination events had taken place to

revert the virus back to parental MHV-76, or because they were attenuated for in
vitro growth. Hence it was decided that the WTTintRNA viruses could not be

produced in this study.

5.6. Construction of intRNA5 viruses

In addition, mutant viruses were also constructed by insertion of vtRNA5 into the
left-hand end of MHV-76 in order to establish whether a single vtRNA plays a role
within infection. The recombination cassette had been previously generated by Ben

Addams, and consisted of a DNA fragment from MHV-68 (ntl477-1695) inserted
between the terminal repeat and residual M4/ORF4 fragments of pLla5. Co-
transfection with MHV-76 DNA was also carried out by Ben Addams and five

plaques were found to be positive for vtRNA5. However, after six rounds of limiting
dilution plaque purification and two agarose over-lays, although a number of plaques
were positive for vtRNA5, all plaques were also positive for MHV-76 (figure 5.5).
As the mutant virus could not be purified away from MHV-76 it was decided that it
could not be used to determine the role ofvtRNA5 within infection.

5.7 Characterisation of MHV-76 insertion viruses in vitro

5.7.1 vtRNA expression
As vtRNA knock-in recombinant MHV-76 viruses could not be produced that

possessed wild-type terminal repeat sequences, it was decided that the original
intRNA viruses would be used to characterize the role of the vtRNAs within

infection. In order to ensure that all five vtRNAs were expressed from the intRNA 1-
5 viruses, CI27 cells were infected at an MOI of 5 pfu/cell for 18 hours and the RNA
extracted. RT-PCR analysis was carried out using primers specific for all five
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10 11 12 13 14 15 16 17 C M

Figure 5.5 Screening plaque picks for intRNA5. Single viral plaques were
harvested following transfection. Following six rounds of serial dilution plaque
purification along with two rounds of single plaque selection using an agarose
overlay, single plaque isolates were analysed for the presence of the vtRNA5
(A) and all vtRNA5 positive plaques for MHV-76 (B). Single plaque isolates are
denoted numerically (1-17). In addition both negative control (ddH20, W) and
positive control (C) PCR reactions were carried out. PCR products were
analysed on a 1% TAE-agarose gel. The sizes of molecular weight markers
(M) in bp are shown.
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Figure 5.6 The expression of the vtRNAsl-5 from MHV-68, MHV-76,
intRNA(2), intRNA(9) and intRNA(9)Rev. RNA was extracted from C127
cells were infected at an MOI of 5 pfu/cell for 18 hours. RNA was DNAase
treated and RT-PCR carried out for the vtRNAsl-5 (+RT). Control
reactions in the absence of reverse transcriptase (-RT) were also carried
out, along with negative control PCR reactions (ddH20, W). PCR products
were analysed on 3% TAE-agarose gels. The sizes of molecular weight
markers (M) in bp are shown.
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76 Rev int9 int2 68 76 Rev int9 int2 68

EH 1.4 ORF50

Figure 5.7 Northern analysis of vtRNAl-4 transcription by MHV-76, MHV-68,
intRNA(9), intRNA(2) and intRNA(9)Rev. RNA was extracted from C127 cells
infected at an MOI of 5 pfu/cell for 18 hours. Hybridization was carried out
using a probe specific for vtRNAsl-4 (EH1.4, nt 106-1517) or a probe
spanning the ORF50 region (nt68483-68838). The sizes of the molecular
weight markers, in Kb are shown to the right of the autoradiographs.
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vtRNAs, which were all found to be expressed (figure 5.6). The level of expression
was also verified and compared to that ofMHV-68 by northern blot analysis (figure

5.7). Hybridization was carried out using a probe specific to vtRNAsl-4 (EH1.4),

along with an ORF50 probe, which was used to control for the amount of RNA

present. Hybridization with the probe specific for the vtRNAs yielded bands of the
correct size (less than 240nt in length). Although there appeared to be greater

expression of the vtRNAs from intRNA(9), once this is normalised to the amount of
RNA present, as indicated by hybridization of the ORF50 probes, it was clear that
the approximate level of expression for the intRNA viruses was comparable to that of
MHV-68. As expected, no vtRNA expression could be detected within MHV-76 and

intRNA(9)Rev infected cells.

5.7.2 Growth characteristics

In order to assess the growth kinetics of the vtRNAl-5 expressing viruses in

comparison to MHV-76 and MHV-68, both single step and multistep growth analysis
were carried out. Single step growth curves were carried out within BHK-21 cells, to
assess a single replication cycle. Cells were infected at an MOI of 5pfu/cell and

duplicate samples taken at time points from Oh to 72h p.i. Samples were titrated on

BHK-21 cells and the final viral titre at each time point was calculated. It was

apparent that both the recombinant viruses, along with the revertant virus, replicated
with identical kinetics to MHV-76 and MHV-68 (figure 5.8). Multistep growth curve

analysis was also carried out within BHK-21 cells, by infection at an MOI of 0.05,
and duplicate samples taken at time points from Oh to 144h p.i. The resulting growth
curve can be seen in figure 5.9. The data indicate that the recombinant viruses

replicate with identical kinetics to wild-type viruses and therefore the expression of
the vtRNAs within MHV-76 has no effect upon the cell-to-cell spread of the virus. In
addition, this indicates that any abnormalities within the terminal repeats of

intRNA(2), as detected by Southern blotting (figure 5.4), had no deleterious effect on
the ability of the virus to replicate in vitro.

Due to the fact that BHK-21 cells are a hamster cell line, it is possible that any effect
that the vtRNAs might have upon replication may not be effective within BHK-21
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Figure 5.8 Single step replication of MHV-68, MHV-79, intRNA(9),
intRNA(2) and intRNA(9)Rev in BHK-21 cells in vitro, using an MOI of 5
pfu/cell. Values represent two independent experiments, with each
sample titrated in duplicate. Data points represent the virus titre log10 ±
standard deviation. The time in hours represents the time post-infection.
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Figure 5.9 Multi-step replication of MHV-68, MHV-79, intRNA(9),
intRNA(2) and intRNA(9)Rev in BHK-21 cells in vitro, using an MOI of
0.05 pfu/cell. Values represent two independent experiments, with each
sample titrated in duplicate. Data points represent the virus titre log10 ±
standard deviation. The time in hours represents the time post-infection.
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Figure 5.10 Single step replication of MHV-68, MHV-79, intRNA(9),
intRNA(2) and intRNA(9)Rev in L929 cells in vitro, using an MOI of 5
pfu/cell. Values represent two independent experiments, with each
sample titrated in duplicate. Data points represent the virus titre log10 ±
standard deviation. The time in hours represents the time post-infection.
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cells. Therefore, a single-step growth curve was also carried out with the mouse

L929 fibroblast cell line. Samples were once again taken in duplicate and titrated on

BHK-21 cells. As figure 5.10 shows, expression of the vtRNAs within MHV-76 did
not affect the replication kinetics of the virus within L929 cells.

5.8 Characterisation of MHV-76 insertion viruses in vivo

5.8.1 Lytic replication in the lung
In order to investigate the contribution of the vtRNAs to the pathogenesis ofMHV-

68, 200 3-4 week old female BALB/c mice were infected intranasally with 4x105 pfu
of either MHV-68, MHV-76, intRNA(2), intRNA(9) and intRNA(9)Rev, with four
mice infected with each virus per time point. Lungs were harvested at 2, 4, 6, 8 and
10 days p.i. and assessed for productive infection as by plaque assay described in
section 2.9.9. All titrations were performed in duplicate. At 2 days p.i. there was a

significant increase in the level of the mutant viruses compared to MHV-76 (p<0.05,
Mann Whitney test) (figure 5.11). However, there was no difference between the
levels of either intRNA(2) or intRNA(9) compared to the revertant virus. At such an

early time point it is likely that levels of productive infection within the lung is

particularly sensitive to small variations in the viral inoculum. By four days post¬

infection there is no significant difference between any of the viruses (p>0.05, Mann

Whitney test). However, by 6 days p.i. there is significantly less productive infection
within mice infected with MHV-76 compared to MHV-68, which is in agreement

with previous findings (Macrae et al, 2001). At this time-point there is no difference
between the two intRNA viruses and the revertant compared to MHV-76. At 8 days

p.i. productive infection can only be detected with 2/4 mice infected with MHV-68,
but not in any other the other mice.

5.8.2 Acute latency within the spleen
Acute latency is this period following infection with MHV-68 up to day 40 when
there is a rapid increase in the number of latently infected splenocytes. At this time a

variety of genes are expressed which are not detected during long term latent
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Figure 5.11 Viral titres in the lungs of BALB/c mice infected intranasally with
4 x 105 pfu of either MHV-68, MHV-76, intRNA(2), intRNA(9) or intRNA(9)Rev.
Lungs were harvested at day 2 (A), day 4 (B), day 6 (C) and day 8 (D) post¬
infection. Data shown are compiled from one experiment using four mice per
time point, with each titration carried out in duplicate. Each data points
represents the viral titres from individual mice, with the mean viral titres
displayed as a solid line. The dashed line represents the limit of detection of
the assay (lOpfu). Viruses which have mean viral titres that vary significantly
(p<0.05 in a Mann Whitney test) are indicated by *.
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infection (see section 1.3.5). The viral load following intra-nasal infection during this

period was measured by ex vivo reactivation (infective centre) assay, real-time PCR
and in situ hybridization for the vtRNAs. In addition, the extent of splenomegaly was
assessed by measurement ofwhole spleen weight.

The results of the ex vivo reactivation assay are shown in figure 5.12. In mice
infected with MHV-68, infective centres could be detected from day 7 onwards, with
a peak of latency, reaching 1500 infective centres/107 splenocytes between days 10
and 14 p.i. In contrast, mice infected with MHV-76 showed a markedly reduced level
of infective centres, at least 10 fold less than MHV-68 during the peak of latency at

day 10. This is in agreement with previous findings (Macrae et al, 2001).

Furthermore, latency levels appeared to decrease from day 10 onwards. Both of the
intRNA viruses and the revertant showed infective centre levels that were not

significantly different to those seen with MHV-76 at all time points (p>0.05, Mann

Whitney test).

Ex vivo reactivation takes into account both the level of latent load within the spleen
and the ability of the virus to reactivate from latency. In order to measure the viral
latent load in isolation, real-time PCR analysis was carried out on DNA extracted
from splenocytes. The levels of viral DNA were measured by amplification of

ORF50, and normalised to the levels of cellular DNA present as determined by

amplification using primers specific for P-actin. Latent load was measured at day 14

pi. As figure 5.13 shows, there is significantly higher latent viral load within mice
infected with MHV-68 than MHV-76 and both recombinant viruses. There was no

significant difference between the latent loads of the recombinant viruses compared
with either MHV-76 or intRNA(9)Rev. Therefore both recombinant viruses were

able to establish and reactive from latency in a manner indistinguishable from the

parental wild type virus.

In situ hybridization was also carried out to further clarify the results of the real-time

assay in determining that the intRNA viruses establish latency at much lower levels
than MHV-68. In addition, the vtRNAs are used to visualise latent infection with
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B

Days post-infection

Figure 5.12 Latent virus in the spleens of BALB/c mice infected intranasally
with 4 x 105 pfu of either MHV-68, MHV-76, intRNA(2), intRNA(9) or
intRNA(9)Rev, as determined by ex vivo reactivation assay (infective centre
assay). Data points represent the mean number of infective centres per 1 x
107 splenocytes for four mice ± the standard deviation.
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Figure 5.13 Determination of the viral latent load in splenocytes of
BALB/c mice infected intranasally with 4 x 105 pfu of either MHV-68,
MHV-76, intRNA(2), intRNA(9) or intRNA(9)Rev. Total DNA was
extracted from splenocytes at 14 days post-infection and quantitative
PCR carried out using a Rotorgene (Corbett Research). The levels of
viral DNA were quantified by amplification of a region of the ORF50
gene and normalized to the levels of cellular DNA as determined by the
amplification of a region of the (3-actin gene. The mean and standard
deviation of four mice per group are shown. Viruses which have mean
viral latent load that vary significantly (p<0.05 in a Mann Whitney test)
are indicated by *.
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MHV-68. However, the absence of the vtRNAs from MHV-76 has meant that the

behaviour of MHV-76 within the spleen has not been fully characterized. Hence in
situ hybridization against the intRNA viruses will give an indication of how MHV-
76 behaves. Sections were taken from spleens 14 days post-infected, and processed
for in situ hybridization using EH1.4, which recognizes the vtRNAsl-4. Within
MHV-68 infected mice, a high level of vtRNA expression could be detected within
the splenic germinal centres (figure 5.14). However, in all four mice infected with
either intRNA(9) or intRNA(2) no staining could be detected. There were two

possible reasons for the lack of staining; firstly due to the expression of the vtRNAs
within these mice being below the level of detection or secondly as a result of the

genomes reverting back to that of the parental MHV-76 virus.

In order to determine whether the genomes of the intRNA viruses had reverted, PCR

analysis were carried out on DNA extracted from spleens at 14 days post-infection.
A portion of the vtRNA region of the genome was amplified using the tRNAfor2 and
tRNArev primers, which indicated that DNA sequences encoding the vtRNAs were

present within the spleens of mice infected with both intRNA viruses (figure 5.15).
The apparent lower levels of vtRNA DNA in spleens infected with the intRNA
viruses is most likely a result of the decreased viral load within these mice. vtRNA

encoding DNA could not be detected within one mouse infected with intRNA(9), and
it is not clear whether this is due to the lack of the vtRNAs or because the amount of

DNA present is below the limit of detection of the assay. PCRs were also attempted
for parental MHV-76 DNA within these mice, using the M4B/TR primer pair,
however, this failed to amplify DNA sequences taken from MHV-76 infected mice
and therefore could not be used to determine whether a proportion of the intRNA
viruses had reverted back to wild-type. Unfortunately RNA was not extracted at the
time of organ harvesting and therefore the presence of the vtRNAs within infected

spleens could not be analysed.

Although it was apparent that the insertion of vtRNAs 1-5 into MHV-76 had no

effect upon the ability of the virus to establish latency, it was still possible that they
could play a role in the splenomegaly seen following infection with MHV-68.
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Figure 5.14 In situ hybridization to
detect the vtRNAs during latent
infection. BALB/c mice were infected
intranasally with 4 x 10s PFU of either
MHV-68, intRNA(2) or intRNA(9).
Spleens were removed at 14 days p.i.
and fixed in paraformaldehyde prior to
wax embedding and sectioning.
Hybridization was carried out using a
probe specific for the vtRNAs1-4
(EH1.4, nt 106-1517). Sections were
counter-stained with nuclear fast red
and viewed using a an Olympus BX51
microscope.
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Figure 5.15 PCR on DNA extracted from spleens of BALB/c mice infected
intranasally with 4 x 105 pfu of either intRNA(2), intRNA(9) or MHV-68. Total
DNA was extracted from splenocytes at 14 days post-infected and PCR
carried out to detect the presence of the vtRNAs within the viral genomes,
using the tRNAfor2 and tRNArev primers, which give a PCR product of
218bp. Each lane represents DNA extracted from individual mice (numbered
1-4). PCR products were analysed on a 2% TAE-agarose gel. The sizes of
molecular weight markers (M) in bp are shown.
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Figure 5.16 Whole spleen weights of BALB/c mice infected intranasally with
4 x 105 PFU of either MHV-68, MHV-76, intRNA(2), intRNA(9) or
intRNA(9)Rev. Data points represent the mean spleen weight of four mice ±
the standard deviation.
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However, the degree of splenomegaly, as assessed by whole spleen weight, did not

significant vary from MHV-76 for both intRNA viruses (p>0.05, Mann Whitney

test). As expected, infection with MHV-68 did result in splenomegaly (figure 5.16).

5.8.3 Long term infection

During the maintenance of long-term latency with MHV-68, the gene expression

pattern changes. Many genes expressed during the acute stage of latency, such as

M3, M4, vGPCR and Mil are no longer expressed. At this stage, the vtRNAs are

one of the few genes that are expressed and hence it is possible that they play a role
in the maintenance of long term latency. Spleens were harvested at 77 days post¬

infection and assessed for the degree of splenomegaly, as measured by whole spleen

weight, and the levels of latent virus by infective centre assay. 1/4 mice infected with

intRNA(4) and 1/5 with intRNA(9) showed an increase in spleen weight to

approximately three times the weight of the other spleens (figure 5.17). However,
this was not accompanied by an increase in the levels of latent virus present within
the spleens (figure 5.18).

In order to determine whether the vtRNAs do contribute to an increased

splenomegaly during long term infection, 8 mice were infected with 4xl05 pfu of
either MHV-68, MHV-76, intRNA(2), intRNA(9) and intRNA(9)Rev. The degree of

splenomegaly was measured by whole spleen weight at 70 days and 120 days post¬

infection. In addition, the viral load was measured by infective centre assay at 120

days post-infection. At both time points, there was no significant increase in either

splenomegaly in mice infected with any of the viruses (p>0.05, Mann Whitney test)

(figure 5.19). It therefore appears that the insertion of the vtRNAs into the left-hand
end ofMHV-76 has no effect upon the ability of the virus to cause splenomegaly. At
120 days post-infection, no infective centres were detected within the spleens of any
of the mice. It therefore appears that the levels of latent virus within the spleen are

below the level of detection of this assay and whilst it does appear that insertion of
the vtRNAs in to left-hand end of MHV-76 had no effect upon the levels of latent
virus during long-term persistence, the fact that small differences might exist cannot
be ruled out.
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Figure 5.17 Long term experiment 1: Whole spleen weights of BALB/c
mice infected intranasally with 4 x 105 pfu of either MHV-68, MHV-76,
intRNA(2), intRNA(9) or intRNA(9)Rev, at 77 days post-infection. Data
points represent the whole spleen weight from individual mice. The
mean spleen weight per group is represented by a solid line.
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Figure 5.18 Long term experiment 1: Latent virus in the spleens of
BALB/c mice infected intranasally with 4 x 105 pfu of either MHV-68,
MHV-76, intRNA(2), intRNA(9) or intRNA(9)Rev, at 77 days post¬
infection as determined by infective centre assay. Data points represent
the numbers of infective centres from individual mice. The number of
infective centres per group is represented by a solid line.
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Figure 5.19 Long term experiment 2: Whole spleen weights of BALB/c
mice infected intranasally with 4 x 105 pfu of either MHV-68, MHV-76,
intRNA(2), intRNA(9) or intRNA(9)Rev, at 70 (A) and 120 (B) days post¬
infection. Data points represent the whole spleen weight from individual
mice. The mean spleen weight per group is represented by a solid line.
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5.9 Construction of a vtRNA expressing cell line
In order to investigate the function of the vtRNAs in vitro in the absence of any other
viral gene expression, a cell line was constructed to stably express the vtRNAl-5.
vtRNAs 1-5 were amplified from the MHV-68 genome with PfuTurbo DNA

polymerase (Stratagene, UK) using the tRNAforBamHI and tRNArev primers, which

yielded a PCR product of 1.7kb containing vtRNAsl-5. The primers used generated

upstream and downstream Bamlil restriction sites to allow cloning. Following gel

purification and digestion with BamHl, the insert was directionally cloned into

pLXSN (see appendix 1 for plasmid map). Correct insertion of the vtRNAs was

confirmed by restriction digest.

The resulting plasmid was transfected into the mouse epithelial CI27 cell line, and
cells containing the plasmid were selected for by addition of G418. Clonal cell

populations were produced using a limiting dilution approach (see section 2.8.6).
RNA was extracted from the clonal cell lines and the expression of the vtRNAs

analysed by both PCR and Northern blotting. Although the expression of vtRNA 1
could be detected in two clonal lines by PCR analysis, vtRNA expression could not

be detected by Northern blotting (figure 5.20). Given that the expression level was so

much lower than that following viral infection, it was decided that the cell lines could
not be used to assay the function of the vtRNAs in vitro.

5.10 Discussion

The generation of mutant viruses by deletion of genes from MHV-68 has given

insight into the function of a number of genes within viral pathogenesis, such as

identifying a role for Mil, ORF73 and K3 during the establishment of latency (de
Lima et al, 2005; Fowler et al, 2003; Stevenson et al, 2002). In addition, the use of

homologous recombination to insert genes into the left-hand end of MHV-76 has
ascertained roles for two genes found within the left hand region of MHV-68

(Macrae et al, 2003; Townsley et al, 2004), along with characterizing genes from
other gammaherpesviruses (Douglas et al, 2004). In this study, a similar approach
was taken to try and establish a role for the vtRNAs within the pathogenesis of
MHV-68, by insertion of vtRNAs 1-5 into the left-hand end ofMHV-76. The
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Figure 5.20 Expression of the vtRNAs from a stably transfected cell line.
Clonal cell populations were produced by transfection of C127 cells with a
plasmid containing the vtRNAsl-5 and the gentamycin resistance gene.
Positive cells were selected for by growth in the presence of G418 and
cloned from single cells. RNA was extracted from the different clonal lines
and analyzed for the expression of the vtRNA by PCR for vtRNA 1 (A). The
relative expression levels of the vtRNAs was analyzed by Northern blotting.
Hybridization was carried out using a probe specific for vtRNAs 1-4 (EH 1.4
nt 106-1517) (B).
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vtRNAs were expressed from their natural promoters and no additional sequences
were added to aid the purification of the viruses. Recombinant viruses have

previously been purified by the insertion of selection markers, such as the LacZ or

GFP under the control of foreign promoter elements (Clambey et al, 2000; Hoge et

al, 2000) Flowever, the insertion of such sequences, particularly into the left-hand
end of the genome can result in an attenuation of the virus during latency. For

example the insertion of LacZ under the expression of HCMV immediate early

promoter and enhancer into the M1 locus results in a decreased ability of the virus to

establish latency in vivo (Clambey et al, 2000). In addition, the insertion of GFP into
the left-hand end of MHV-76 results in a decreased viral latent load within the

spleens of infected mice (Brass, 2004). The reason for such attenuation is not clear,

although it is possible that an immune response generated against foreign elements
results in an increased clearance of the virus. Additionally, the insertion of foreign

promoter elements may disturb chromatin remodelling occurring during the
establishment of latency (reviewed in Efstathiou and Preston, 2005) therefore

affecting the expression of latency associated genes.

Due to the fact that no selection markers were present within the recombinant

viruses, a PCR approach taken to detect both recombinant and contaminating

parental virus, which was much more time consuming than detection based upon the

presence of selection markers. However, recombinant viruses have been successfully

purified using this method in the past (Townsley et al, 2004) and this method was

successfully employed in this study for the purification of intRNA(2) and

intRNA(9)Rev. Thus the inability to purify a number of insertion viruses away from

wild-type virus using this method was puzzling. The repeated selection of single

plaques should result in the production of a purified viral stock. It is possible that

using the limiting dilution approach, foci of infected cells may have gone unnoticed
and therefore be harvested in addition to the observed plaque. However, overlaying
with agarose would only have allowed cell to cell spread of the virus thus increasing
the confidence of harvesting only a single clone of virus. Therefore the repeated
combination of the two approaches should have eventually led to the purification of
the viruses. However, one virus (intRNA5) could never be purified away from
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parental MHV-76, whereas the WTTintRNA virus appeared to be lost following four
rounds of purification.

There are two possible reasons for the inability to purify intRNA5 and WTTintRNA.
The first being that insertion of the vtRNAs resulted in the production of viruses with
decreased abilities to replicate. However, it is unlikely that the expression of the
vtRNAs themselves resulted in a growth defect as MHV-68, which contains the

vtRNAs, exhibits identical growth characteristics to MHV-76 in vitro, as do the
intRNA viruses created in this study. It is possible that insertion of the vtRNAs
resulted in deregulated expression of neighbouring genes causing a decreased growth
rate. However, given that the neighbouring sequences include the terminal repeats, a
residual M4 sequence that is not known to be expressed (Macrae et al, 2001) and

ORF4, which has not been found to be required for viral replication in vitro (Kapadia
et al, 2002), this is unlikely to be the case. Nevertheless, it is possible that the
recombinant cassette inserted elsewhere in the genome resulting in the disruption of

genes required for viral replication.

A second possibility as to why the intRNA5 and WTTintRNA viruses could not be

purified away from MHV-76 is that the insert sequences are not maintained within
the viral genome. It has been noted in the past that the left-hand terminus has a

propensity to undergo recombinant events in vitro, as highlighted by the observation
that inserted sequences are able to undergo duplication events within this region

(Simas et al, 1998). This is possibly the mechanism by which Ml arose through a

duplication event from M3, or vice versa, given that they are approximately 25%

homologous (Virgin et al, 1997). The targeted knock out of the ORF74 in MHV-68
was previously found to result in integration of the cloning vector into the left-hand

region of the genome (Wakeling, 2001), highlighting the presence of a possible
recombination "hot-spot" in this area. In support of this, various deletion mutants of
MHV-68 have been isolated which lack all or a portion of this left-hand sequence

(Clambey et al, 2002; Macrae et al, 2001; Oda et al, 2005). The nature of this hot-

spot is unknown, although there are a number of possible contributing factors, such
as the close proximity to the terminal repeats or an origin of replication that has been
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hypothesized to localise to this region (Bowden et al, 1997). It is also possible that
the vtRNAs themselves create areas easily able to undergo recombination, as is the
case for tRNAs found within pathogenicity islands of certain bacteria (reviewed in

Hou, 1999). If this is the case it may also have resulted in the insertion of vtRNA

sequences elsewhere within the genome disrupting the function of essential genes as

described above.

Despite the problems encountered in the purification of the recombinant viruses, it
was possible to generate vtRNA knock-in viruses that contained partial terminal

repeat sequence at the left-hand end. If the partial terminal repeat sequences do have
an effect upon the replication of the virus, this would be evident during in vitro

replication. However, recombinant viruses have been produced previously using this

approach, which were found not to be attenuated during replication (Townsley et al,

2004). Hence it was decided to go ahead and characterise the intRNA viruses.
Southern analysis on the recombinant viruses demonstrated that their genomes

possessed the desired genomic rearrangements clearly indicating that the sequences

had been inserted correctly within the left-hand end and no additional insertion
events had taken place. RT-PCR and Northern analysis demonstrated that all five
vtRNAs were expressed during lytic infection with the intRNA viruses to the same

levels as that seen following MHV-68 infection. The identical replication of the
viruses to both MHV-68 and MHV-76 in vitro was not surprising given that MHV-
76 displays identical replication kinetics to MHV-68 (Macrae et al, 2001).

In vivo analysis of the mutant viruses demonstrated no differences from parental
MHV-76 during productive replication within the lungs. This is perhaps surprising

given that MHV-76 is cleared more rapidly from the lungs than MHV-68, with an

accompanying increase in inflammatory infiltrate (Macrae et al, 2001). This was

initially hypothesised to be due to the presence of the M3 gene within MHV-68,
which encodes a broad spectrum chemokine binding protein (Parry et al, 2000; van
Berkel et al, 2000) and hence may block the inflammatory response resulting in
increased persistence of the virus. However, disruption of the M3 gene from MHV-
68 had no effect on the ability of the virus to replicate within the lung (Bridgeman et
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al, 2001). Recombinant virus studies have been conducted in order to ascertain the
function all four of the unique genes absent from MHV-76, but none have

highlighted a role for a single gene in the persistence of the virus in the lung (Macrae
et al, 2003; Simas et al, 1998; Townsley et al, 2004). It was therefore possible that
the vtRNAs were involved in the increased persistence of MHV-68 within the lung,

especially given their high level of expression during this period of infection

(Bowden et al, 1997). However, if this is the case it could not be demonstrated by
insertion of vtRNAsl-5 into MHV-76. Given that the increased persistence ofMHV-
68 within the lung has not been found to be due to the action of a single gene within
the left-hand region, it appears that they act together, either as a cumulative effect or

working in combination. Therefore perhaps a better approach to characterise the role
of the vtRNAs would be to delete all eight from MHV-68. However, this is much
more problematic due to the location of the vtRNAs. Multiple recombination events

would be required to disrupt all eight vtRNAs, increasing the probability of
unwanted recombination events and possible disruptions to the expression of the Ml-
M4 genes.

Insertion of the vtRNAs into the left-hand end of MHV-76 appeared to have no

effect on either the establishment or reactivation from latency. This was also

surprising given their high level of expression during the latent stage of infection

(Bowden et al, 1997). In a similar manner to replication within the lungs, it appears
that Ml-4 genes do not function in isolation to mediate the increased pathogenicity
associated with MHV-68. For instance, the insertion ofM4 into the left-hand region
results in the increased establishment of latency, but not to the same levels as MHV-
68 (Townsley et al, 2004). Similarly, although deletion ofM2 results in a decreased
establishment of latency, this was still greater than that achieved by MHV-76

(Macrae et al, 2003). Interestingly, neither of these effects was associated with a

change in splenomegaly, indicating that an increased establishment of latency is not

directly associated with an increased splenomegaly. In fact, the production of
recombinant viruses has failed to identify which of the genes within the left-hand

region contribute to the increased splenomegaly seen following MHV-68 infection. It
therefore appears that the genes within this region act in cooperation to mediate this
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effect, either as a cumulative effect or by working together. Hence it is possible that
the vtRNAs work in conjunction with the other genes found within the left-hand

region to mediate their effects.

Given that the vtRNAs could not be detected by in situ hybridization within the

spleens of mice infected with either intRNA viruses, it is possible that they were not

expressed. However, PCR analysis revealed that in seven out of eight mice infected
with the intRNA viruses, the genomes still contained vtRNA sequences, indicating
that recombination events resulting in the absence of the vtRNAs from the genome

had not taken place. It would have been useful to check for wild-type MHV-76
within these mice. However, the PCR used to detect MHV-76 is very insensitive,
most likely due to the multiple primer binding sites present within the terminal

repeats. Therefore it was not possible to determine whether a subset of viruses had

undergone recombination. An alternative explanation is that the levels of vtRNA

expression were below the limit of detection of the in situ hybridization. This could
occur if the copy number of virus present per cell is less than MHV-68, which is

likely given that the viral latent load is decreased.

Given that infection with the recombinant viruses failed to highlight a role for the
vtRNAs within infection, alternative approaches need to be taken. As mentioned

above, one such approach would be to knock all eight vtRNAs out of the genome of
MHV-68. Another approach would be to infect wood-mice instead of BALB/c mice
with the recombinant viruses. As wood-mice are the natural host of the virus

(Blasdell et al, 2003) it is possible that the vtRNAs play a role within infection not

evident within BALB/c mice, especially since experimental infection of wood-mice
with MHV-68 results in differing pathologies to those seen in BALB/c mice, as

demonstrated by a greater inflammatory response within the lung and an absence of

splenomegaly (D. Hughes, personal communication). At least one left-hand gene

(M3) has been found to play a role during infection in the lung of wood-mice, but not
within BALB/c mice (Bridgeman et al, 2001; D. Hughes, personal communication),

highlighting the need to also investigate the role of genes within their natural host.
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An alternative approach to characterizing the role of the vtRNAs would be to

investigate their function in vitro. This was attempted through construction of a

stably transfected epithelial cell line in order to investigate any effects that the
vtRNAs might have upon cell growth, transformation, apoptosis or protein synthesis.
A similar approach has been taken to dissect possible functions of the EBERs of
EBV (Laing et al, 2002). However, as was found for the EBERs, the stable
transfection of the vtRNAs resulted in a very low level of expression. The reason for
the low level of expression is not clear. It is perhaps a result of only a low copy

number of the plasmid being maintained within transfected cells. It is also possible
that vtRNA expression is enhanced by viral factors. Indeed, cellular tRNA genes

have up and down-stream sequences which regulate their levels of expression, akin
to those found in RNA polymerase II expressed genes (Sprague, 1995). In addition,
certain viruses enhance RNA polymerase III mediated transcription and it is
therefore possible that MHV-68 does this resulting in increased vtRNA expression
within infection (Berger and Folk, 1985; Gaynor et al, 1985). The low level of

expression of the EBERs during stable transfection was overcome by using an

expression vector containing multiple copies of the EBERs. An analogous approach
was attempted in this project, but unfortunately it was not possible to clone the
concatemeric vtRNA sequences, perhaps as a result of their large degree of

secondary structure.

Although infection of BALB/c mice with the intRNA viruses failed to ascertain the
function of the vtRNAs within infection, it is unlikely that they play no role at all.
Further investigations are required in order to determine exactly what role the
vtRNAs do play. The recombinant viruses produced in this study will be excellent
tools to characterize the role of the vtRNAs during lytic and latent infection based

upon more specific assays that can be performed during both lytic and latent
infection in vitro, in addition to during the course of viral pathogenesis in vivo.
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As the function of the vtRNAs has not been previously characterised, a global

approach was taken in this study to try and ascertain the role of the vtRNAs within
infection. This was undertaken by examining their expression pattern and
localization during infection, along with investigating their ability to interact with
both viral and cellular proteins. In order to determine whether the vtRNAs play a key
role in viral pathogenesis, recombinant MHV-76 viruses were produced by insertion
of the vtRNAs into the left-hand end of the genome and the ability of the knock-in
viruses to persist within the lung and to establish and reactivate from a latent
infection was studied.

The presence of the vtRNAs immediately following in vitro infection was surprising.

However, studies on purified virus stocks indicated that this was a result of their

presence within the virus particle. Although both viral and cellular mRNA have

previously been found to be packaged within herpesviruses (Bechtel et al, 2005;

Greijer et al, 2000; Sciortino et al, 2001), this is the first study to demonstrate the

preferential packaging of a non-coding RNA. A functional role for RNA

incorporated within the virion still remains to be resolved. In particular whether it is
related to a specific function of the packaged RNA or whether it simply occurs as a

result of the random incorporation of cytoplasmic material into the maturing virion.
The observation in HCMV that the level of each RNA packaged is in proportion to

its relative expression within the cell supports the random incorporation model

(Terhune et al, 2004). However, this does not appear to be the case for HSV-1 and

KSHV, which both package mRNA present at low levels late within infection

(Bechtel et al, 2005; Sciortino et al, 2001). In addition, the presence of proteins
within both HSV-1 and HCMV virions capable of binding packaged RNA indicates
that there is a specific mechanism in play (Sciortino et al, 2002; Terhune et al, 2004).
In this study, it was confirmed that viral proteins are capable of specifically

interacting with the vtRNAs, thus demonstrating a possible selective mechanism of

incorporation. In addition, it can be argued that given the highly evolved nature of

herpesviruses, it is unlikely that they perform useless functions, and hence would not

package RNA unless it carried out a beneficial role within infection.
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Determining the mechanism by which RNA is incorporated within the maturing
virion may give an indication as to the function of packaged RNA. For instance,
whether RNA is able to act as a scaffold during virion assembly, perhaps through

mediating protein-protein interactions. tRNA molecules play a role in virion
formation of a variety of viruses, such as retroviruses and bromoviruses (Choi et al,

2002; Muriaux et al, 2001; Wang and Aldovini, 2002). Given that the most abundant
RNA species found to be present within the MHV-68 virion were the vtRNAs, along
with perhaps cellular tRNAs, it is possible that they perform an analogous role within
MHV-68 virion maturation. In order to address this issue it is necessary to identify

proteins that mediate RNA incorporation and their location within the virion. The
available data so far on incorporated RNA suggests that it is found within the viral

tegument (Sciortino et al, 2002; Terhune et al, 2004) and the high level of vtRNAs

present within the cytoplasm during lytic infection indicates their more likely

incorporation during virus tegumentation. The presence of RNA within the virus

tegument would allow its immediate release into the cytoplasm following infection
of a new cell. In the case of packaged mRNA, this has been shown to be translated

(Bechtel et al, 2005; Greijer et al, 2000; Sciortino et al, 2001), allowing the resulting

proteins to function immediately upon infection. However, whether the vtRNAs

carry out a role at very early time points cannot be addressed until their function
within infection has been characterised.

Given that no role had previously been ascribed to the vtRNAs within infection, the
obvious first step was to try and establish this through the construction of
recombinant viruses. As the vtRNAs are found interspersed amongst other genes

within the genome of MHV-68 (Bowden et al, 1997), it was decided to insert them
into MHV-76. However this failed to demonstrate a key role for the vtRNAs within
infection. Although past studies utilizing recombinant viruses have determined roles
for key genes within both the lytic and latent stages of infection, the fact that the
recombinant viruses displayed identical characteristics to MHV-76 in vivo does not

necessarily mean that the vtRNAs do not carry out a role during viral pathogenesis.
Given that they are found within a region of the genome associated with a high level
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of recombination, if they were not beneficial to the virus then it is likely that they
would have been lost during the period of viral evolution.

Studies on deletion mutants ofHSV-1 have uncovered a role for the LATs during the
latent stage of infection (reviewed by Kent et al, 2003). Given that they are the only

species present to high levels within neurones it is perhaps not surprising that their
absence results in attenuation of the virus during latent infection. In contrast, MHV-
68 expresses a much larger array of genes during latency (Marques et al, 2003).
Hence it may not be possible to determine the function of the vtRNAs through
recombinant studies investigating changes in the level of viral load present within
infected mice, as the presence or absence of latency associated genes may not have
such a profound effect. Other genes expressed during latency include those found
within the left-hand region of the genome. Experimental evidence suggests that the
effects of these genes in isolation can not explain the attenuated phenotype ofMHV-
76 (Macrae et al, 2003; Simas et al, 1998; Townsley et al, 2004). Therefore it

appears that they work in cooperation to mediate the increased pathogenicity
associated with MHV-68. The left-hand region of the MHV-68 genome could be said
to resemble pathogenicity islands found in certain strains of bacteria, such as E. coli
and Vibrio cholerae, which are areas of the genome encoding virulence associated

genes that often work together to mediate their effects and regulate gene expression

(reviewed by Wain et al, 2001). A propensity of pathogenicity islands to undergo
recombination facilitates their horizontal transfer between individual bacteria. A key
feature of pathogenicity islands is their location downstream of tRNA genes, which
have been hypothesized to mediate DNA recombination by an unknown mechanism

(Hou, 1999). Past studies have highlighted the existence of a recombination "hot-

spot" within the left-hand region of the MHV-68 genome (Simas et al, 1998;

Wakeling, 2001). In addition, the inability to purify recombinant viruses consisting
of the vtRNAs inserted into the genome of MHV-76 indicated either possible
recombination events taking place resulting in the reversion of the viruses back to

wild-type, or insertion of the vtRNAs elsewhere in the genome. Hence it is possible
that the vtRNAs facilitate DNA recombination. The location of the vtRNAs within

the left-hand region of the genome would enable the generation of genetic diversity
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by allowing the incorporation of DNA within disrupting the function of genes

essential for viral replication and the establishment of latency.

Although studies conducted on the intRNA viruses failed to highlight a key role for
the vtRNAs during infection, the recombinant viruses produced in the course of this

study will be useful tools for further investigating the function of the vtRNAs. It is

possible that the vtRNAs play a more important role during infection of their natural

host, the wood mouse. Although roles have been established for a number of genes

during pathogenesis within BALB/c mice, given that the pathogenesis of the virus
differs within its natural host, it is possible that genes display differing functions.
This is highlighted by the role of the broad-spectrum chemokine binding protein M3,
which appears to function in reducing the inflammatory response within the lungs of
wood-mice (Hughes et al, 2005), but not in BALB/c mice (Bridgeman et al, 2001). It
is therefore possible that the vtRNAs play a role within pathogenesis of their natural
host not evident during infection of BALB/c mice.

The intRNA viruses can also be used for more targeted in vitro investigations into
the functions of the vtRNAs. Such studies have characterized functions for the

EBERs in the regulation of protein synthesis, resistance to apoptosis and cell
transformation (Komano et al, 1999; Laing et al, 2002; Nanbo et al, 2002; Ruf et al,

2000). These investigations have relied upon the transient and stable transfection of
the EBERs. However, their function in the context of viral infection has not been

characterized due to the inability of EBV to undergo lytic infection in vitro. Given
that MHV-68 is able to undergo productive infection within a variety of cell types in

vitro, specific functions of the vtRNAs can be investigated in the context of viral

replication. In addition MHV-68 is also able to establish a latent infection within the
NS0 B-cell line (Sunil-Chandra et al, 1993), enabling the contribution of the vtRNAs

during latent infection to be studied in vitro. Based upon the functions of both

uncharged and other viral non-coding RNAs, perhaps the most obvious starting point
would be to investigate their contribution to the regulation of protein synthesis.
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Uncharged tRNAs play a role in the regulation of protein synthesis in both

eukaryotic and prokaryotic cells during periods of amino acid starvation. In certain
strains of Gram-negative bacteria, mRNA encoding genes involved in the regulation
of aminoacyl-tRNA synthetase and amino acid biosynthesis have untranslated leader

sequences (known as T boxes) to which uncharged tRNAs are capable of binding

(Putzer et al, 2002). Direct tRNA binding results in the stabilization of an anti-
termination element, thus allowing translation to proceed. It is not known whether
the vtRNAs are able act in a similar way to regulate the expression of viral proteins.
Therefore studies into the expression of viral proteins in the presence and absence of
the vtRNAs would give an indication of whether they are able to function in this
manner.

Within eukaryotic cells a different mechanism exists to stimulate the transcription of

genes involved in amino acid biosynthesis, wherein uncharged tRNAs induce the

phosphorylation of eIF2a via a protein kinase known as GCN2 (general control

nonderepressible 2) (Wek et al, 1995). This results in a decrease in global protein

synthesis, complemented by an increase in the transcription of genes related to amino
acid biosynthesis. It is possible that MHV-68 has created a way to hijack an aspect of
this pathway by the expression of uncharged tRNAs in order to alter protein

expression within infected cells.

A common function of viral non-coding RNA is their ability to regulate protein

synthesis. The LATs of HSV-1 appear to down-regulate the expression of lytic genes

during the establishment of latency (Garber et al, 1997), whereas the HSURs ofHVS
are able to up-regulate the expression of host genes linked to T-cell activation (Cook
et al, 2005). The EBERs of EBV are able to prevent dsRNA mediated down-

regulation of protein synthesis, in a manner that was initially hypothesized to be due
to the inhibition of PKR activation (Sharp et al, 1993). However, their ability to

mediate this response within a PKR knock-out cell line indicates an alternative
mechanism of action (Laing et al, 2002).
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VAI of adenovirus acts in a variety ofways to prevent the down-regulation of protein

synthesis as a result of virus infection. Firstly by preventing the activation of PKR
and subsequent phosphorylation of eIF-2a (Clemens et al, 1994; Laing et al, 2002;

Sharp et al, 1993), and secondly inhibiting the RNA silencing response (Lu and

Cullen, 2004), an anti-viral mechanism known to operate within animal cells (Li et

al, 2002). One way in which it has been shown to do this is through binding the
nuclear export protein exportin-5; a protein involved in the export of pre-miRNAs
from the nucleus (Lu and Cullen, 2004). Due to the large amounts of VAI present
within infected cells, it out-competes pre-miRNAs for export from the nucleus and
hence they can no longer interact with Dicer to mediate RNA silencing. The
abundance of the vtRNAs within the cytoplasm along with their presence within the
outer nuclear membrane fraction indicates their export from the nucleus. It is clear
that at least one vtRNA is able to bind proteins found in the outer nuclear membrane
fraction. Further work is required to identify any nuclear export proteins capable of

binding the vtRNAs in order to characterise the mechanism by which they are

transported across the nuclear membrane whether this occurs at the expense of
cellular RNAs.

The vtRNAs are processed from a longer primary transcript, which also contains
miRNA sequences (Bowden et al, 1997; Pfeffer et al, 2005). It has been suggested
that the only role for the vtRNAs is to provide RNA polymerase III promoter

elements required for the transcription of miRNAs (Pfeffer et al, 2005). Although
this is a possibility, it is unlikely given that such high levels of vtRNAs are present

within the cell and not subsequently degraded. Furthermore, the selective packaging
of the vtRNAs into the virion indicates a specific role for the vtRNAs in either virion

assembly or immediately upon infection of host cells. In addition, as mentioned

previously, the tRNA structure is conserved between all eight tRNAs. As other
miRNAs can be processed in the absence of tRNA elements (Bartel, 2004), it is

likely that they would have diverged from the predicted cloverleaf structure if this
was not necessary for their function. The role of the vtRNAs within miRNA

processing can be addressed by mutating critical residues required for maintenance
of the tRNA-like structure and determining whether the miRNAs are still processed.
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Although miRNAs have been found to be expressed during latent infection, it is not
clear whether they function as miRNAs to regulate protein synthesis. It should be
noted that the intRNA viruses also contained miRNAs absent from MHV-76, and

therefore no key role for the miRNAs within infection could be demonstrated in this

study. Functions of miRNAs may involve the regulation of both viral and protein

synthesis, either by the degradation or translational silencing of target mRNA,

perhaps at the same time deviating from a cellular anti-viral response. Recent
evidence has also uncovered a role for RNA in transcriptional silencing. siRNAs
have been shown to be involved in the recruitment of histone methyltransferase to

target genes, resulting in the formation of heterochromatin (Volpe et al, 2002). An
additional mechanism has also been discovered within plants, in which siRNAs
direct DNA methylation (Wassenegger et al, 1994). However, whether this occurs in
other organisms is still a matter of debate (reviewed by Matzke and Birchler, 2005).
Given that the transcription control of herpesvirus genes during latent infection has
been related to chromatin remodelling (Kubat et al, 2004), it is possible that this is
mediated by miRNAs.

It is therefore clear that more targeted studies are required to determine the function
of both the vtRNAs and miRNAs ofMHV-68. In order to uncover their mechanism

of action, it is important to identify interacting proteins. It is evident from this study
that vtRNAs are capable of interacting with both cellular and viral proteins. Perhaps
a more focused approach should now be taken to determine whether the vtRNAs and
miRNAs are capable of interacting with cellular proteins such as PKR, GCN2,

exportin-5 and DICER, along with identifying the vtRNA-binding viral proteins. The
continued investigations into the functions of the vtRNAs and miRNAs will not only

give insight into the role of viral non-coding RNAs within infection, but also the

versatility ofRNA as a whole.
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