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“All good computer simulations only take 10 minutes.”



Abstract

This works examines the question whether a vapour-liquid phase transition exists in
systems of particles with purely dipolar interactions, a topic which has been the subject
of a longstanding debate. Monte Carlo simulation results for two modi operandi to
tackle this issue are presented. One approach examines the phase behaviour of fluids of
charged hard dumbbells (CHD), each made up of two oppositely charged hard spheres
with diameters σ and separation d. In the limit d/σ → 0, and with the temperature
scaled accordingly, the system corresponds to dipolar hard spheres (DHS) while for
larger values of d ionic interactions are dominant. The crossover between ionic and
dipolar regimes is examined and a linear variation of the critical temperature T ∗c in
dipolar reduced units as a function of d is observed, giving rise to an extrapolated
T ∗c,DHS ≈ 0.15. The second approach focuses on the dipolar Yukawa hard sphere (DYHS)
fluid, which is given by a dipolar hard sphere and an attractive isotropic interaction εY
of the Yukawa tail form. In this case, the DHS limit is obtained for εY → 0. It is found
that T ∗c depends linearly on the isotropic interaction strength εY over a wide range,
coinciding with the results for the CHD model and extrapolating to a similar value
of T ∗c,DHS . However, with the use of specially adapted biased Monte Carlo techniques
which are highly efficient, it is shown that the linear variation of T ∗c is violated for very
small values of the Yukawa interaction strength, almost two orders of magnitude smaller
than the characteristic dipolar interaction energy. It is found that phase separation is
not observable beyond a critical value of the Yukawa energy parameter, even though in
thermodynamic and structural terms, the DYHS and DHS systems are very similar. It is
suggested that either some very subtle physics distinguishes the DYHS and DHS systems,
or the observation of a phase transition in DHSs is precluded by finite-size effects. In the
context of phase separation in highly correlated fluids, new flat-histogram Monte Carlo
simulation techniques based on the Wang-Landau algorithm are evaluated and shown
to be useful tools. This work presents a general and unifying framework for deriving
Monte Carlo acceptance rules which facilitate flat histogram sampling. The framework
yields uniform sampling rules for thermodynamic states given either by the mechanically
extensive variables appearing in the Hamiltonian or, equivalently, uniformly sample the
thermodynamic fields which are conjugate to these mechanical variables.
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Outline

The aim of this thesis is to shed light on the question of whether a vapour-liquid phase

transition exists in systems of particles with purely dipolar interactions, a topic which has

been the subject of a longstanding debate [1–5]. Dipolar fluids have numerous scientific

and industrial applications, mostly related to the strong field-responsive properties of

colloidal ferrofluids [6] or electrorheological fluids [7]. For these applications, it is crucial

to know whether the system exists in a single homogeneous phase. Dipolar fluids also

have theoretical significance as a fundamental model of statistical mechanics; they are

perhaps the simplest example of an anisotropic fluid, which may provide physical insight

into polar fluids such as hydrogen fluoride or even water [8]. In order to investigate

these questions, use is made of computer simulations using the Monte Carlo method.

The organisation of this work is as follows:

• In the Introduction, the theoretical challenges associated with the subtle physics

of the underlying mechanism which drives phase separation in such fluids are

examined and the Monte Carlo method is briefly described.

• Part I is devoted to a detailed discussion of Monte Carlo simulation techniques in

the context of phase separation, with particular attention to flat-histogram sam-

pling algorithms which can overcome some of the problems from which normal

Monte Carlo methods suffer. These methods are illustrated and validated using

a variety of both continuous and lattice models featuring first-order phase transi-

tions.

• In Part II, phase separation of dipolar particles is investigated. Two models of

particular relevance to this topic are studied. Firstly, the phase behaviour of

fluids of charged hard dumbbells (CHD), each made up of two oppositely charged

hard spheres with diameters σ and separation d. In the limit d/σ → 0, and

with the temperature scaled accordingly, the system corresponds to dipolar hard

spheres (DHS) while for larger values of d ionic interactions are dominant. This

model thus facilitates the crossover from the ionic regime where phase separation is

known to occur to the dipolar regime where the answer to this question is unclear.

1



Outline 2

The second approach focuses on the dipolar Yukawa hard sphere (DYHS) fluid,

in which the particles are given by dipolar hard spheres with attractive isotropic

interactions of the Yukawa form and strength εY . In this case, the DHS limit is

obtained for εY → 0. By starting from a high value of εY where phase separation

is driven by the isotropic interaction and then reducing εY , this model also allows

to track the critical parameters as dipolar interactions become important.



Chapter 1

Introduction

1.1 Vapour-liquid phase separation

Condensation of a simple fluid from a dilute gas to a dense liquid is well understood

since van der Waals’ (vdW) seminal work [9] well over a century ago. He realised that a

qualitative description of phase separation could be obtained by modifying the ideal-gas

equation of state, pV = NkBT , which links pressure p and volume V to the number of

particles N and temperature T using Boltzmann’s constant kB. His modification was to

account for a reduced pressure peff = p−∆p which is due to the presence of attractive

intermolecular forces, and, a reduced effective volume Veff = V − bN where b is the

excluded volume, i.e. that region of space which two particles cannot simultaneously

occupy due to their repulsive character at short distances. The famous vdW equation

of state (EOS) thus reads

p+
a

v
=
kBT

v − b
(1.1)

where the parameter a describes the attractive intermolecular forces and v is the vol-

ume per particle. This picture, entirely motivated by physical insight, is intrinsically a

mean field description of the microscopic particle-particle correlations as it incorporates

only an approximate description of the inter-particle forces. A complete microscopic

description would, for example, predict an enhanced probability of finding two particles

as close together as possible without overlapping, due to the hard core repulsion and

short-ranged attraction. However, such detailed correlations are completely absent in

the vdW EOS. Yet, phase separation emerges naturally as a violation of the thermody-

namically required inequality ∂p
∂v ≤ 0 which implies that the free energy as a function of

density is not a convex function. Whenever convexity is violated, the system can attain

a lower free energy by separating into two phases, see Fig. 1.1. vdW theory predicts

that the shape of the coexistence envelope close to the critical point (located at a critical

3
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ρ

T

phase coexistence

vapour liquid

Tc

Tc

T1 < Tc

T2 < T1

critical point

Figure 1.1: Projection of Van der Waals isotherms onto the liquid-vapour coexistence
envelope in the number density–temperature plane. Below the critical temperature
Tc, the vdW isotherms loop around a point of inflection, violating the thermodynamic
requirement ∂p

∂ρ ≥ 0. The occurrence of these loops is associated with phase separation
into a dilute vapour and a dense liquid.

temperature Tc and critical density ρc) follows a power law: coexisting vapour (−) and

liquid (+) densities scale like ρ± = ρc ± a|t|β, where t = (T − Tc)/T and β = 1/2. Such

a scaling behaviour with this specific value of β is a generic feature shared by all mean-

field theories. At low densities, low free energy is realised via high translational entropy

while the dense liquid phase is stabilised by attractive forces. But why is it not possible

to go continuously from low to high densities? It is the presence of a mechanical insta-

bility at intermediate densities, caused by the competition between the excluded volume

effects and the attractive intermolecular forces which drives abrupt phase separation in

this model. In general, this mechanism is associated with a high critical temperature

comparable to the well-depth of the interaction potential (expressed in units of kBT ) in

order to sufficiently stabilise the entropic contribution to the free energy of the dilute

phase.

As the vdW model employs only a mean-field picture of the physical interactions, it is ob-

vious that vapour-liquid phase separation can be phenomenologically described without

referring to the correlations between the particles. But what happens if these correla-

tions are taken into account? The answer to this question is in general very difficult to

obtain, as a closed form expression for the free energy of a correlated system involves

solving an interacting many-body problem. However, in a mathematical tour de force,

Onsager succeeded in doing so for the Ising model in two dimensions, a model system

for magnetic short-range interactions [10] which can also be mapped on to the problem
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m

T

|m| ∝ [(Tc − T )/T ]
1
2

|m| ∝ [(Tc − T )/T ]
1
8

Tc

Figure 1.2: Order-disorder transition in the two-dimensional Ising model: Above the
critical temperature Tc, the system is in a completely disordered paramagnetic state
with zero magnetisation m. At Tc phase separation into an ordered phase with finite
magnetisation |m| > 0 and a disordered phase occurs with the value of m governed by
a power law. Mean-field descriptions of this phenomenon yield an exponent β = 1/2
while the exact value for the Ising model in two dimensions is β = 1/8.

of vapour-liquid phase separation1. It turned out that his exact solution resulted in

different behaviour near the critical point to what mean-field theory predicted. Specif-

ically, the exponents of the power laws which describe the scaling behaviour of various

macroscopic observables such as the susceptibility, or the increase of magnetisation be-

low the critical temperature, were found to deviate from their corresponding mean-field

values. Fig.1.2 compares Onsager’s solution to the scaling behaviour of the magnetisa-

tion with the prediction made by mean-field theory. Using renormalisation group theory

[11, 12], the difference between mean-field and exact behaviour could be traced back to

density fluctuations which become important at the critical point. Indeed, the corre-

lation length, which characterises the spatial extent of density fluctuations, diverges at

the critical point, a fact completely absent in mean-field theory. Experimental evidence

for the diverging correlation length is given by the phenomenon of critical opalescence,

where an otherwise clear and transparent fluid becomes opaque at the critical point. The

physical reason for this is the formation of fluctuating vapour and liquid domains cover-

ing all lengthscales, including the wavelength of visible light, causing scattering. Phase

diagrams of simple liquids which show this phenomenon are reported in Chapter 4.
1This is the so-called lattice-gas model in which lattice sites are either fully occupied or not. In this

model, phase coexistence emerges between low and high occupation fractions of the lattice, corresponding
to the vapour and liquid phases of a real fluid.
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1.1.1 Vapour-liquid condensation in highly correlated fluids

It is remarkable that the critical behaviour of all physical models interacting via short-

ranged forces can be described by a universal set of exponents 2, depending only on the

number of dimensions. Owing to its historical importance, this set is usually referred

to as the Ising universality class. It is even more surprising that systems of charged

particles interacting via long-range coulombic forces (such as the model of charged soft

spheres, for which the phase diagram is reported in Chapter 4) have also been shown to

belong to this universality class [13]. This can only be understood if one considers the

effective interaction potential which suffers from electrostatic screening due to charge

ordering, attenuating the interaction exponentially over distance. However, the mech-

anism by which phase transition is driven in a coulombic fluid is very different from a

vdW fluid. In the latter case, it is the competition between hard-core repulsion and at-

tractive interaction which leads to a mechanical instability. Because both effects become

important only at high concentrations, the critical density of a simple fluid is relatively

high. In contrast, coulombic fluids have a much lower critical density such that the

effects of hard-core repulsion cannot be important. Additionally, due to the isotropic

distribution of charges, the mean electrostatic potential is zero throughout space, im-

plying that the vdW mean-field pressure correction to the ideal-gas equation of state is

zero [14]. The fact that systems of charged hard particles do have a vapour-liquid phase

transition must be attributed to details completely absent at the vdW mean-field level

and therefore be related to strong correlation effects. Correlation becomes important

only at low temperatures which rationalises the unusually low critical temperature of

coulombic fluids.

rµ1

µ2

Figure 1.3: Dipolar hard spheres: Spheres of diameter σ with a point dipole at the centre.
The interaction potential uDHS (r,µ1,µ2) is +∞ for |r| < σ and µ1·µ2

r3 − 3(µ1·r)(µ2·r)
r5

otherwise.

2This is strictly only true in the absence of particular symmetries. Depending on the dimensionality
of space and the order parameter, different sets of exponents are obtained.
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1.1.2 Vapour-liquid condensation caused by dipolar forces?

Particles interacting via dipolar forces represent another class of strongly correlated flu-

ids. The simplest model for such a fluid is one comprised of dipolar hard spheres (DHS),

each possessing a spherical hard core with a point dipole at its centre (see Fig. 1.3). In

1970, de Gennes and Pincus argued that, because the Boltzmann-weighted, angle average

of the dipole-dipole potential has a leading order, attractive contribution proportional

to −r−6, “on the whole, we expect in 0 field a mechanical phase diagram somewhat

similar to that of a conventional Van der Waals [sic] fluid, with a gas phase, a liquid

phase and a solid phase.” However, up to date no experimental results, in silico or oth-

erwise, are available which have proved the existence of vapour-liquid phase separation

in DHSs. It is obvious that, as in the case of charged hard spheres, the vdW mean-field

pressure correction is again zero as the average electric field within an isotropic phase

of a dipolar fluid vanishes. The hard core/low enthalpy competition picture which gives

rise to high temperature phase separation thus cannot apply but we might expect a

correlation-driven mechanism to occur at low temperatures. It is precisely the low tem-

peratures at which phase separation is expected that makes theoretical treatment of

DHSs so difficult. At low temperatures, DHS align in strong spaghetti-like chains, being

highly correlated over many particle diameters both with respect to their orientation

and position (see Fig. 1.4). Additionally, the absence of electrostatic screening for point

dipoles means no damping of the long-ranged dipolar interactions, which implies that

the hypothetical phase transition of DHS must belong to a different universality class

different from the Ising model [15]. In 2000, Tlusty and Safran presented a mechanism

which accommodates phase separation in strongly clustered dipolar fluids [8]; in essence,

the transition is driven by the free energies of defects, these being particles at the ends

of chains (‘end’ defects) and particles having three nearest neighbours (‘Y’ defects). In

their picture, the phase separation occurs as a demixing transition of the different defect

types. Fig. 1.5 illustrates these defect types.

Capturing these effects is difficult at any level of liquid state theory, and so the problem

calls for computer simulations. Part II of this work presents an attempt to unravel

the mystery whether or not there exists vapour-liquid phase separation in DHSs using

state-of-the-art Monte Carlo simulation methods. The other focal point of this thesis,

Part I, lies in devising new Monte Carlo simulation methods which are tested on both

simple and complicated models of fluids, and are ultimately applied to DHSs.
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Figure 1.4: Example configuration of DHS at T ∗ = 0.15, ρ∗ = 0.025 (dipolar reduced
units, see text for definition).
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Figure 1.5: Illustration of defect types and ground state in strongly dipolar fluids.
(top) free chain ends with high translational entropy, (middle) branching point with
configurational entropy, energetic ground state (bottom)
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1.2 Computer simulations of many-body systems

It is a most challenging mathematical task to study directly the behaviour of three inter-

acting particles and no analytical closed-form solutions exist for four or more particles.

Statistical mechanics significantly simplifies this problem because, rather than focussing

on the complete behaviour of a particular particle, the average behaviour of a large col-

lection of interacting particles is studied. Still, even the stochastic analysis of statistical

expectation values is a daunting task as averages, e.g. those computed in the canonical

ensemble at fixed temperature T , volume V , and number of identical particles N take

on the following form:

〈A〉 =

∫
(P̂,Q̂)

A(pN , qN ) exp
[
−βH(pN , qN )

]
dpNdqN∫

(P̂,Q̂)

exp [−βH(pN , qN )] dpNdqN
(1.2)

The integration domain (P̂, Q̂) is the quantum-mechanical phase space of all allowable

combinations of momenta p and positions q of all N particles; instantaneous values of

A(pN , qN ) are weighted by their corresponding Boltzmann factor exp
[
−βH(pN , qN )

]
where β = 1/kBT and H(pN , qN ) is the Hamiltonian of the system. If quantum-

mechanical effects are neglected, a classical expectation value can be formed by ab-

sorbing the quantum degrees of freedom into an effective constant hDN , where D is

the dimensionality of the system, and accounting for the indistinguishability of identical

particles with a factor of N !:

〈A〉 =

1
hDNN !

∫
(P,Q)

A(pN , qN ) exp
[
−βH(pN , qN )

]
dpNdqN

1
hDNN !

∫
(P,Q)

exp [−βH(pN , qN )] dpNdqN
(1.3)

The integration domain (P,Q) now only includes classical values for momenta and

positions. The Hamiltonian can then be written as a sum of potential energy E and

kinetic energy K,

H(pN , qN ) = E(qN ) +
N∑
i=1

|pi|2

2m
(1.4)

where m is the mass of a particle. The simultaneous dependence of H on all positions

and momenta is precisely what confounds exact analytical solutions as it prohibits fac-

torisation of the integral. However, in the case of time-independent properties A(qN ),
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the integration domain can be significantly reduced within the so-called classical approx-

imation [16], by integrating out the kinetic energy dependence analytically:

1
hDN

∫
P

exp

(
−β

N∑
i=1

|pi|2

2m

)
dpN =

(
2πm
βh2

)ND/2
(1.5)

It is common practice to absorb the right-hand side of the above equation into the so-

called thermal de Broglie wavelength, λ =
√
βh2/2πm. The classical expectation value

thus takes on the following form:

〈A〉 =
1

λDNN !

∫
A(qN ) exp

[
−βE(qN )

]
dqN

1
λDNN !

∫
exp [−βE(qN )] dqN

(1.6)

The above equation makes it clear that classical, time-independent averages do not

depend on a specific value of the quantum-mechanical fudge factor h as the Broglie

wavelength vanishes by cancellation. In the following, the convention λ = 1 is therefore

adopted. Still, even this simplified problem is not analytically tractable and quasi-exact

numerical integration methods (e.g. Gaussian quadrature) also fail to work due to the

high dimensionality of the integration domain: for a small system of only 10 particles in

D = 3 spatial dimensions, the integrand already lives in 30 dimensions, rendering the

numerical summation over a grid impossible.

The denominator appearing in the above equation is the partition function of the system

and acts as a normalisation constant. In the context of a computer experiment where

particles are usually confined to a cubic simulation volume V of lateral length L, it is

convenient to define the partition function of a system of N identical particles in D

dimensions as follows, making use of a set of scaled coordinates r = q/L:

Q(N,V, T ) =
1

λDNN !

∫
exp

[
−βE(qN )

]
dqN

=
V N

λDNN !

∫
exp

[
−βE(rN ;L)

]
drN

=
V N

λDNN !

∫
exp [−βE(Γ)] dΓ (1.7)

In the last line the short-hand notation Γ = rN is introduced and it is understood

that the configurational energy E is evaluated using the original, unscaled set of coordi-

nates. The above form allows the partition function to be decomposed into an ideal-gas

contribution, Qid(N,V ) and a non-ideal term arising from the particle interactions,
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Qconf(N,V, T ):

Q(N,V, T ) =
V N

λDNN !
×
∫

exp [−βE(Γ)] dΓ

= Qid × Qconf (1.8)

It is only stochastic sampling methods which can save us from a life dominated by the

approximations required to make a mathematical treatment of averages like Eq. (1.3)

possible. This is due to the fortunate fact that only a vanishingly small proportion

of phase space contributes significantly, so that only these configurations need to be

sampled in order to estimate averages with sufficient accuracy. The methods which

sample only important regions of phase space can be broadly divided into two classes:

1. Importance sampling Monte Carlo – This method generates individual phase space

configurations with a probability proportional to the Boltzmann weight. Only av-

erage static properties can be probed as time does not occur as a natural variable.

These properties are directly obtained by simple averaging over the generated con-

figurations as they are sampled according to the correct probability distribution.

2. Molecular Dynamics – The dynamical behaviour of the model system under study

is discretised into finite time steps thus allowing a numerical integration of the

equations of motion to propagate the system forward in time. This method tra-

verses phase space with an average sampling frequency exactly proportional to

the Boltzmann weight, however as simulation time is always finite in practice, it

remains a stochastic sampling method.

If dynamical behaviour is of interest, one necessarily has to use the Molecular Dynamics

method. However, if only thermodynamic properties like the phase diagram of a sys-

tem are required, the choice is between both methods and one has to consider potential

advantages and disadvantages associated with each method. This work deals only with

phase separation and it is here where the alleged disadvantage of Monte Carlo, namely

the absence of dynamical information, can be turned into a powerful tool, as it permits

faster changes from one sampled configuration to another than what is thermally real-

isable on the physical timescale of the system. Therefore, only Monte Carlo sampling

has been used for the simulations described here.
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1.2.1 The importance sampling Monte Carlo method

The problem at hand is to compute an average in phase space according to the Boltzmann

probability distribution,

P (Γ) =
Qid(N,V ) exp [−βE(Γ)]

Q(N,V, T )
(1.9)

Via a transformation of the integration variable as shown in Appendix A, it is possible

to recast the computation of the average into a simple arithmetic mean,

〈A〉 ≈ 1
K

K∑
i=1

A(Γi) (1.10)

if only K discrete samples Γi are drawn from the probability distribution Eq. (1.9). The

problem therefore is transferred to the generation of samples according to P (Γ), which

is not trivial as a direct transformation necessitates the partition function which is so

difficult to compute due to its high dimensionality. This is where the celebrated solution

of Metropolis et al. [17] comes into play as it allows for sampling Γ according to P (Γ)

without requiring the normalisation of P (Γ).

The idea behind Metropolis’ sampling algorithm is that, starting from an arbitrary sam-

ple point in phase space, new sampling points are generated which ultimately converge

towards the limiting distribution P (Γ). Central to this idea is an expression for how the

Q

P

Figure 1.6: Visualisation of the Metropolis algorithm. Starting from arbitrary initial
conditions, samples in phase space are successively generated such that regions of high
Boltzmann probability are reached.

system is propagated through phase space,

q(t+ 1) = q(t)Π (1.11)
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where the transition matrix Π is a square matrix operating to the left on the probability

vector q(t) whose elements qn(t) describe the probability for the system of being in state

n at step t. Because the propagation to the next state only requires information about

the current state, this constitutes a Markov Chain. The required convergence towards

the limiting distribution P , now expressed as a vector with elements drawn from the

distribution P (Γ), is stated by:

q(t) = q(0)

t times︷ ︸︸ ︷
Π . . .Π (1.12)

P = lim
t→∞

q(0)Π(t) (1.13)

Once the algorithm is converged, the steady state condition is reached

P = PΠ (1.14)

which is an eigenvalue equation with eigenvalue one. This property translates into a

sum rule for the matrix rows, ∑
n

Πon = 1 (1.15)

which can be understood in physical terms as conservation of probability. Note now

that the elements of Π are labelled ‘on’, describing the transition probability from old

state o to new state n. Decomposing the matrix product Eq. (1.14) into sums for each

row, the following equation is obtained

Pn =
∑
o

PoΠon (1.16)

which is generally impossible to solve for Π. However, Metropolis introduced the detailed

balance condition to significantly restrict solution space,

PoΠon = PnΠno (1.17)

and gave one possible solution3 as:

Πon = min
[
1,
Pn
Po

]
(1.18)

The correctness of the Metropolis solution is verified by substituting it into Eq. (1.15).

Using the above results, the acceptance probability of moving from an old state in phase

space, Γo, to a new state Γn can be explicitly expressed as follows:
3Another solution to Eq. (1.17) is Πon = Pn/(Po + Pn). This is often referred to as Barker sampling

and appears to have lower statistical efficiency than the Metropolis solution Eq. (1.18) [18].
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• In the case of the canonical ensemble (fixed N,V, T ), the phase space probability

is given by Eq. (1.9) and the Monte Carlo transition probability reads:

acc(o→ n) = min
{

1, e−β[E(Γn)−E(Γo)]
}

(1.19)

• The isothermal-isobaric ensemble (fixed N , pressure p, T ) extends the canonical

ensemble by allowing the simulation volume to fluctuate, while the average volume

is controlled by p. The partition function is given by

∆(N, p, T ) =
∫
Qid(N,V )e−βpVQconf(N,V, T )dV (1.20)

and the phase space probability is

PNpT (Γ) =
Qid[N,V (Γ)]e−β[E(Γ)+pV (Γ)]

∆(N, p, T )
(1.21)

leading to the Monte Carlo transition rule:

acc(o→ n) = min
{

1, e−β[E(Γn)−E(Γo)]−βp[V (Γn)−V (Γo)]−N ln[V (Γn)/V (Γo)]
}

(1.22)

• For the grand-canonical ensemble (fixed chemical potential µ, V , T ), particle num-

bers are allowed to fluctuate and the average number density N/V is controlled

by µ. The partition function is given by

Ξ(µ, V, T ) =
∞∑
N=0

Qid(N,V )eβµNQconf(N,V, T ) (1.23)

and the phase space probability is

PµV T (Γ) =
Qid[N(Γ), V ]e−β[E(Γ)−µN(Γ)]

Ξ(µ, V, T )
(1.24)

resulting in the grand-canonical acceptance rule for particle additions and dele-

tions:

acc(o→ n) = min

{
1,
V N(Γn)λDN(Γo)N(Γo)!
V N(Γo)λDN(Γn)N(Γn)!

e−β[E(Γn)−E(Γo)]+βµ[N(Γn)−N(Γo)]

}
(1.25)

All of these Monte Carlo acceptance rules are independent of the partition function

which is relevant for the ensemble as this normalisation constant vanishes by cancellation

when the ratio defined in Eq. (1.18) is formed. It is thus possible to sample equilibrium

configurations for a statistical ensemble without needing to know the partition function
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itself! In practice, the algorithm is implemented by generating a random number R

uniformly on the interval [0, 1] and accepting the move if R ≤ Pn/Po.

1.2.2 Practical implementation

In order to use the Monte Carlo method on a computer, a suitable representation of the

interacting particles needs to be devised. The most widely used method is to employ a

real-space representation4 using position and orientation coordinates for each particle.

Energies are often evaluated using approximate5 pair-decomposable potentials, i.e. the

interaction between two particles depends only their distance and relative orientation,

E =
∑
i>j

u(i, j) (1.26)

where the summation includes all distinct pairs 〈ij〉. A typical functional form repre-

senting classical interactions between two atoms separated by a distance r = |ri − rj | is
the Lennard-Jones potential,

u(i, j) 7→ u (r) = 4ε
[(σ
r

)12
−
(σ
r

)6
]

(1.27)

which is plotted in Fig. 1.7. The parameters σ and ε set the diameter and potential well

depth, respectively. It is convenient to define all physical quantities in units of σ and

ε; this defines a set of so-called reduced units characteristic of the length- and energy

scales of the simulated model. Some often used quantities are collected in Table 1.1.

The advantage of using reduced units is that, if the potential takes the form u(r) =

εf(r/σ), there is a principle of corresponding states for all thermodynamic, structural

and dynamic properties [18]. This enables one to compare characteristic parameters like

the location of a critical point between different models.

Particle-based computer simulations are typically restricted to relatively small system

sizes with 103–104 particles. A näıve approach to compute the bulk properties of such

a system with no special treatment of the boundary conditions of the simulation box

would suffer severely from the fact that a large number of particles are located at the

surface. Such a simulation would thus not be representative of the behaviour of a bulk

system where only a minute fraction of particles is located at the surface of a macroscopic

volume. One solution is to introduce periodic boundary conditions, where the system
4It is also possible to use a many-body field-theoretical description where the interactions between

all particles are represented using functional integrals over fields associated with the Fourier transform
of the number density, ρ(q). The mapping into field-space is performed via the Hubbard-Stratonovich
transformation, see Ref. [19] for a recent review in the context of complex fluids.

5Realistic potentials incorporate induced electric multipole moments which depend on interactions
with all particles and are therefore not pair-decomposable.
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Table 1.1: Typical reduced units.

quantity reduced units
number density N/V ρ∗ = ρσ3

temperature T ∗ = kBT/ε
energy E∗ = E/ε
pressure p∗ = pσ3/ε

time t∗ = t
√
ε/mσ2

force f∗ = fσ/ε

is surrounded by replicas of itself. However, this method allows for the possibility

that a particle can interact with multiple copies of another particle, or itself, which is

clearly nonphysical. This problem is circumvented by introducing the minimum image

convention which ensures that only interactions between distinct copies are allowed,

namely those which are closest by distance. See Fig. 1.8 for a graphical representation

of periodic boundary conditions and the minimum image convention.

1.2.3 Measurements

With the basic Monte Carlo samplings schemes defined in Eqns. (1.19–1.25), and a

suitably defined particle interaction potential, measurable quantities of interest can be

accumulated during the course of a simulation. Because Monte Carlo simulations do

2
(1/6)

r/σ0

-ε

u(r)

1/r
12

-1/r
6

LJ potential

σ

Figure 1.7: The Lennard-Jones potential. Crossing of the abscissa at r = σ defines the
particle diameter. The potential well depth is found at r = 2

1
6σ.
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Figure 1.8: Periodic boundary conditions and minimum image convention in two dimen-
sions. The central box is surrounded by replicas, particle ‘1’ in the central box interacts
across replica boundaries with closest neighbouring particles.

not yield physically correct dynamics, only structural, time-independent quantities can

be measured. For example, we have the average of the instantaneous configurational

energy Ei =
∑N

j>k u(j, k),

〈E〉 =
1
K

K∑
i

Ei. (1.28)

In the following, 〈· · · 〉 will be used as a short-hand notation for a simulation average

like the above equation. Fluctuations in the observed Ei are also of interest. In the

NV T -ensemble, the canonical heat capacity is given by

cV =

〈
E2
〉
− 〈E〉2

kBT 2N
. (1.29)

Similarly, the variance of the distribution of observed particle numbers in the µV T -

ensemble is related to the isothermal compressibility.

κT =
β

ρ

〈
N2
〉
− 〈N〉2

〈N〉
(1.30)

It is of particular interest to describe the complicated structure of the entire system

in terms of reduced, easily accessible relations. This means in most cases that these

relations contain only a limited subset of the entire information encoded in the complete
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configuration of the system, however, thermodynamic quantities can indeed be described

without referring to the particles’ coordinates. The two-particle distribution function

ρ(2)(r, r′) defines the probability of finding one particle at position r and the other

particle at r′, irrespective of the positions of all other particles.

ρ(2)(r, r′) =

〈
N∑
i=1

N∑
j 6=i

δ(r − ri)δ(r′ − rj)

〉
(1.31)

If the system is isotropic and homogeneous, ρ(2)(r, r′) is only a function of the separation

r = |r′ − r|. An explicit transformation of Eq. (1.31) to depend only on r is achieved

by substituting r = r + r′, choosing r′ as the origin from which r is measured and

integrating over all r′:

ρ(2)(r + r′, r′) =

〈
N∑
i=1

N∑
j 6=i

δ(r + r′ − ri)δ(r′ − rj)

〉
∫
V

ρ(2)(r + r′, r′)dr′ =

〈
N∑
i=1

N∑
j 6=i

δ(r + rj − ri)

〉
∫
V

ρ(2)(|r − r′|)dr′ =

〈
N∑
i=1

N∑
j 6=i

δ(r + rj − ri)

〉

4πr2V ρ(2)(r) =

〈
N∑
i=1

N∑
j 6=i

δ(r + rj − ri)

〉
(1.32)

The radial distribution function g000(r) = ρ(2)(r)/ρ2 relates the interacting two particle

distribution function to that of an ideal gas of the same number density. It is thus a

measure for the density correlations introduced by the particle interactions. We have,

in final form

g000(r) =
1

4πNρr2

〈∑
i

∑
j 6=i

δ(r − rij)

〉
. (1.33)

g000(r) provides all pair expectation values which depend only on distance. For example,

if the interaction potential is isotropic and pairwise additive, the expectation value for

the energy becomes

〈E〉 = 2πNρ

∞∫
0

r2u(r)g000(r)dr. (1.34)

Similarly, the compressibility can be related to an integral over g000(r):

κT =
β

ρ
+ 4βπ

∞∫
0

r2 [g000(r)− 1] dr. (1.35)
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The total correlation function is defined as h000(r) = g000(r)− 1. Its Fourier transform

is known as the structure factor S(q). It is the response function of the number density

to a weak external perturbation of wavelength 2π/q, and is experimentally accessible to

neutron and X-ray scattering experiments.

S(q) = 1 + ρ

∫
V

h000(r)e−iqrdr

= 1 + 4πρ

∞∫
0

h000(r)r2 sin(qr)
qr

dr (1.36)

In principle, the structure factor contains exactly the same information as g000(r) because

they are related via the Fourier transform. It is however useful to examine the structure

using both the real-space and reciprocal space description in order to gain understanding

about the system. Additionally, the structure factor is related to many thermodynamic

properties in a more direct fashion than g000(r).

If systems with anisotropic particles are studied, as in the case of e.g. dipolar hard

spheres, the distance dependence of angular correlations between particles can be defined

by the projections of pair distribution functions on rotational invariants [20]:

h110(r) =

〈∑
i

∑
j 6=i

δ(r − rij)ei · ej

〉
4πNρr2

(1.37)

h112(r) =
3
2

〈∑
i

∑
j 6=i

δ(r − rij)[3(ei · r̂ij)(ej · r̂ij)− ei · ej ]

〉
4πNρr2

(1.38)

h220(r) =
5
2

〈∑
i

∑
j 6=i

δ(r − rij)[3(ei · ej)2 − 1]

〉
4πNρr2

, (1.39)

where r̂ij = rij/|rij | and ei is the orientation of the ith particle. In the case of dipoles,

the total energy of the system can be expressed as an integral over h112(r),

〈E〉dipolar = 2πρN

∞∫
0

−2
3
µ2r−3h112(r)dr, (1.40)

and the dielectric constant is related to an integral over h110(r) [21].

The remainder of this work is structured as follows: In Chapter 2, advanced Monte Carlo

sampling methods addressing some of the problems associated with the simulation of

phase transitions in general are developed. Applications of these methods are presented

in Chapters 3 and 4. Vapour-liquid criticality and the crossover behaviour between ionic
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and dipolar interactions are then addressed in Chapter 6 using a model of charged hard

dumbbells. Finally, the issue of a vapour-liquid phase transition in dipolar hard spheres

is investigated in Chapter 7.





Part I – Advanced Monte Carlo

methods

23





Chapter 2

Flat histogram Monte Carlo

sampling

The results obtained from computer simulations of many-body systems rely on averag-

ing a large number of observable properties over statistically independent configurations.

However, in practice the generation of statistically uncorrelated states is complicated by

the existence of free energy barriers between regions of phase space with high Boltz-

mann probabilities. This point is illustrated in Fig. 2.1. These probability bottlenecks

play no role for macroscopic system sizes and timescales, but the accuracy of computer

simulations may be severely decreased if important regions of phase space are not ac-

cessed in finite simulation time. In the context of the vapour-liquid phase transition,

the free energy barrier is due to the formation of an interface which separates the dilute

gas from the dense liquid. This interface poses formidable problems to computer sim-

ulations of phase coexistence at subcritical temperatures: if the temperature is cooled

from supercritical to subcritical temperatures along the coexistence isochore, a thermal

fluctuation suffices to carry the system in one of its two phases and the low probability of

crossing between two phases then leads to an apparent broken symmetry. This potential

pitfall is illustrated in Fig. 2.2 where the grand-canonical number density probability

distribution for a typical vapour-liquid transition is shown. It can be seen that the tran-

sition probability to switch between two phases can attain very low values at subcritical

temperatures.

25
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Γ

F (Γ)

Figure 2.1: Free energy F as a function of phase space coordinate Γ. The maxima in F
suppress fluctuations between minima which correspond to regions with high Boltzmann
probabilities. Imperfect statistical sampling arises when the system becomes trapped in
in one minimum, leading to the wrong ensemble average.
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Figure 2.2: Number density probability distributions from GCMC simulations for a
square-well fluid with T ∗c = 1.8 at different temperatures.
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2.1 Overcoming free energy barriers: Umbrella sampling

Special techniques have been invented to overcome the sampling problems associated

with free energy barriers. Historically the most important method is the umbrella sam-

pling method due to Torrie and Valleau [22], where the simulation trajectory is obtained

using a modified, non-Boltzmann probability P̃ (Γ) ∝ P0(Γ) exp[W (Γ)], where P0(Γ)

is the proper Boltzmann probability and W (Γ) is an arbitrary perturbation in units

of kBT . This new probability can be chosen such that its corresponding free energy

landscape is flat and the simulation does not suffer from sampling problems. The true

partition function Q0 =
∫

exp[−βE(Γ)]dΓ is related to the biased partition function Q̃

in the following way,

Q̃/Q0 =
∫

exp[−βE(Γ)] exp[W (Γ)]dΓ/Q0

∴

Q0 =
Q̃

〈exp[W (Γ)]〉0
(2.1)

where the notation 〈· · · 〉0 refers to an ensemble average accumulated with the unbiased

probability P0(Γ). Simulation averages for the unbiased case with W (Γ) = 0 can be

recovered from the biased simulation exactly through the following relationship,

〈A(Γ) exp[−W (Γ)]〉∼ /Q0 =
∫
A(Γ) exp[−W (Γ)]P̃ (Γ)dΓ/Q̃Q0

=
∫
A(Γ) exp[−βE(Γ)]dΓ/Q̃Q0

∴

〈A(Γ)〉0 =
Q̃

Q0
〈A(Γ) exp[−W (Γ)]〉∼ (2.2)

where the notation 〈· · · 〉∼ refers to an ensemble average accumulated with the biased

probability P̃ (Γ). Ideally, one would like the non-Boltzmann probability to be a constant

as the biased simulation would then perform a random walk in phase space. However,

this is wishful thinking as the requirement for this, exp[W (Γ)] ∝ 1/P0(Γ), implies that

we know the absolute Boltzmann probabilities a priori which is not possible. Neverthe-

less, the biasing distribution W (Γ) can be obtained iteratively if one starts an unbiased

simulation at a thermodynamic state point which does not suffer from free energy bar-

riers. Berg and Neuhaus [23] have given a formulation for such an iterative scheme in

the canonical ensemble, which is referred to as multi-canonical sampling. As the focus of

this work is mainly on the study of phase transitions in the grand-canonical ensemble,

the iterative scheme which is employed in Chapter 6 to obtain the phase diagram of

charged hard dumbbells is outlined below.
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1. Obtain the number probability distribution P (N) at a temperature and chemical

potential close to criticality.

2. Obtain an estimate for the new P (N)est. at a slightly lower temperature Tnew with

the chemical potential µnew chosen such that P (N)est. is bimodal with equal areas

under each peak using the histogram reweighting technique [24]. Form the biasing

distribution W (N) = 1/P (N).

3. Perform a new simulation at Tnew using the non-Boltzmann probability P̃ (Γ) =

P0(Γ)/P (N).

4. The observed number probability distribution P̃ (N) in the biased simulation will

be approximately flat, depending on the statistical precision of P (N). Recover the

true Boltzmann probability P0(N) at Tnew, µnew from P0(N) = P̃ (N)/W (N).

5. If a simulation at yet another subcritical temperature is desired, go to step 2.

While this scheme works reliably in practice, it is somewhat cumbersome to use it

because it requires to step down a temperature range in small intervals with manual

interaction involved after each step. This inconvenience leads to the question if it is not

possible to directly determine the biasing distribution W . This will necessarily be an

iterative process as these weights are related to partition functions – in the last case,

W (N) = 1/P (N)est. ∝ 1/Q(N,V, T ) exp(βµN), for example. The next section presents

a general procedure for obtaining these weights from a single simulation.

2.2 Flat histogram sampling of mechanical variables

As exemplified above, Monte Carlo importance sampling may in some cases suffer from

free energy barriers which render the simulation essentially non-ergodic in finite simu-

lation time. Ideally, we would like to carry out a simulation in a biased ensemble where

the distribution of the relevant fluctuating mechanical variables is uniform. In the fol-

lowing, biased Monte Carlo acceptance rules which facilitate uniform sampling of these

variables are derived.

2.2.1 Canonical Ensemble

In the canonical ensemble we usually observe a sharply peaked distribution around some

energy. The aim is now to derive microstate probabilities corresponding to an ensemble

where this distribution is uniform. Once the microstate probabilities are expressed in

closed form, they can be utilised in a Metropolis scheme to yield a valid Monte Carlo
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energy E

P(
E

)
flat histogram
importance sampling

Figure 2.3: Energy distribution in the canonical ensemble obtained using unbiased
Metropolis sampling and biased flat-histogram sampling.

simulation which obeys detailed balance ultimately. The expected outcome is illustrated

in Fig. 2.3.

The unbiased microstate probability with an associated energy E(Γ) in the canonical

ensemble reads:

P (Γ) =
Qid(N,V )
Q(N,V, T )

exp[−βE(Γ)] (2.3)

Correspondingly, a macrostate probability is defined which expresses the probability of

observing some energy E irrespective of the microscopic details,

P (E) =
∫
P (Γ)δ[E − E(Γ)]dΓ

=
Qid(N,V )
Q(N,V, T )

Ω(E) exp(−βE) (2.4)

where Ω(E) =
∫
δ[E − E(Γ)]dΓ is a measure for the degeneracy of the energy level E.

Ω(E) is usually referred to as the microcanonical partition function, or the density of
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states (DOS). P (E) is now used to define a biased microstate probability:

P̃ (Γ) =
P (Γ)

P [E(Γ)]

=
1

Ω[E(Γ)]
(2.5)

Note that this new microstate probability is unaffected by the thermal field β which

weighed the energy distribution in the original canonical ensemble. The corresponding

biased macrostate probability for any energy is now a constant as all degrees of freedom

are integrated out,

P̃ (E) =
∫
P̃ (Γ)δ[E − E(Γ)]dΓ

=
1

Ω[E]

∫
δ[E − E(Γ)]dΓ

∴

P̃ (E) = 1 (2.6)

and the Monte Carlo acceptance rules which satisfy detailed balance are readily obtained

by inserting Eq. (2.5) into Eq. (1.18):

acc(o→ n) = min

[
1,
P̃ (Γn)
P̃ (Γo)

]

= min
{

1,
Ω[E(Γo)]
Ω[E(Γn)]

}
. (2.7)

However, it is not possible to employ the above sampling scheme directly as the weights

Ω[E(Γ)] are an unknown quantity at the start of the simulation. An effective algorithm

to solve for the density of states in a self-consistent fashion was introduced by Wang and

Landau [25] in 2001 (abbreviated in the following as the WL-algorithm) and is stated

below.

1. At the beginning of the simulation, the energy range [Emin, Emax] to be sampled

must be decided upon. For lattice systems it can be a trivial task to determine the

lowest and highest energies attainable by the model, but for off-lattice systems this

will usually require some trial and error. In any case, the energy limits must bracket

the thermally accessible energies for the range of temperatures one is interested

in. For the density of states an initial guess is made, e.g. Ω(E) = constant∀E.

2. Define a histogram H(E) of visited energy states (or discretised energy bins for

continuous models) and set it to zero.
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3. Propose moves from Γo to Γn and accept using Eq. (2.7). After each move, suc-

cessful or not, update the current estimate of the density of states via Ω(E) →
f×Ω(E), where f is an arbitrary convergence factor greater than unity. Similarly,

update the visited energy histogram via H(E)→ H(E) + 1.

4. Due to the dynamic updating of Ω(E), the simulation is always pushed away from

the current energy state in the next Monte Carlo move and H(E) will eventually

become flat. When this is the case reduce f , e.g., via f →
√
f .

5. Check if f is smaller than a required convergence criterion. In practice this means

that f is so close to unity that future updates of Ω(E) are negligible. If this is the

case, terminate the simulation. Otherwise continue with step 2.

It is apparent that there is substantial freedom in the parameters of this recipe, such

as the initial value of the convergence factor f or the criterion when H(E) is termed

‘flat’. Nevertheless the convergence of the WL-algorithm has been formally proved [26],

but the optimal choice for these parameters will depend on the actual system studied.

The speed of convergence and residual error are sensitive to these parameters and care

must be taken in order not to reduce f too quickly [27]. The general idea to determine

Ω(E) iteratively is not altogether new, as this was realised before in Lee’s 1993 entropic

sampling [28] and by Berg and Neuhaus in 1992 with their multi-canonical sampling

methods [23]. However, the newer WL algorithm differs from both these schemes in

that the update is performed via a multiplication operation as opposed to an addition.

At the end of a converged flat histogram simulation in the canonical ensemble, one

does not directly have statistical expectation values for some temperature but rather an

accurate estimate for the density of states. This enables the calculation of expectation

values at arbitrary values of the temperature via a Laplace transform:

〈A〉β =

Emax∫
Emin

A(E)Ω(E) exp(−βE)dE

Emax∫
Emin

Ω(E) exp(−βE)dE
. (2.8)

Thus, all the usual observables such as 〈E〉 and CV = (
〈
E2
〉
−〈E〉2)/kBT 2 are available

over a continuous range of temperatures using the output from a single simulation.

Similarly, the Helmholtz free energy is obtained from:

〈F 〉β = −kBT ln

Emax∫
Emin

Ω(E) exp(−βE)dE (2.9)
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Because Ω(E) can, in general, only be determined up to a multiplicative constant, 〈F 〉β
is only known up to an additive constant with the exception of some lattice systems

where the energetic ground state is accessible and its degeneracy is known.

2.2.2 Generalisation to mechanically coupled ensembles

The above derivation can be readily applied to an ensemble where, besides the coupling

of the energy to a heatbath, a mechanically extensive variable X is coupled to the

surroundings via an additional field ξ. The partition function is thus defined by

Ξ(β, ξ, V ) =
∫
Qid(N,V ) exp [−βE(Γ)− βξX(Γ)] dΓ (2.10)

and the unbiased microstate probability for any element of configuration space reads:

P (Γ) =
Qid(N,V )
Ξ(β, ξ, V )

exp[−βE(Γ)− βξX(Γ)] (2.11)

The field ξ could be an external magnetic field and X the magnetisation in which case

we would recover the partition function for a magnetic system. Similarly the grand-

canonical or isothermal-isobaric ensembles are obtained if ξ represents the chemical

potential or the external pressure, in which case X would correspond to the number

of particles N or the volume V , respectively. The aim is now to obtain microstate

probability expressions which sample all E and X with equal probability. The unbiased

joint macrostate probability for any E,X reads

P (E,X) =
∫
P (Γ)δ[E − E(Γ)]δ[X −X(Γ)]dΓ

=
Qid(N,V )
Ξ(β, ξ, V )

Ω(E,X) exp(−βE − βξX) (2.12)

where Ω(E,X) =
∫
δ[E−E(Γ)]δ[X−X(Γ)]dΓ is the density of states for the combined

occurrence of E and X. This expression is used to define a biased microstate probability,

P̃ (Γ) =
P (Γ)

P [E(Γ), X(Γ)]

=
1

Ω[E(Γ), X(Γ)]
(2.13)
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which corresponds again to a constant biased macrostate probability for observing any

E,X:

P̃ (E,X) =
∫
P̃ (Γ)δ[E − E(Γ)]δ[X −X(Γ)]dΓ

=
1

Ω[E,X]

∫
δ[E − E(Γ)]δ[X −X(Γ)]dΓ

∴

P̃ (E,X) = 1 (2.14)

As the above derivation has been completely general, consider now the Ising model as

an example to implement uniform sampling of energy E and magnetisation M (corre-

sponding to the mechanical variable X above). Additionally, let us denote the external

magnetic field by h (corresponding to ξ above). The unbiased Boltzmann phase space

probability then reads:

P (Γ) = exp [−βE(Γ)− βhM(Γ)] /Ξ(β, h, V ) (2.15)

Note that, for the Ising model, Qid(N,V ) = 1, because (i) lattice sites are distinguish-

able, (ii) there are strictly only classical degrees of freedom, and (iii) there is no kinetic

energy term. Applying the above formalism yields:

1. Define the unbiased microstate probability P (Γ).

2. Define the unbiased macrostate probability

P (E,M) =
∫
P (Γ)δ[E − E(Γ)]δ[M −M(Γ)]dΓ.

3. Define the biased microstate probability P̃ (Γ) = P (Γ)/P [E(Γ), X(Γ)]

4. Obtain the uniform sampling Monte Carlo rules by inserting the biased microstate

probability expression into the detailed balance condition:

acc(o→ n) = min
{

1,
Ω[E(Γo),M(Γo)]
Ω[E(Γn),M(Γn)]

}
(2.16)

As with the uniform sampling of all energies in the canonical case above, all reference to

the coupling thermodynamic fields vanishes. In order to solve for the unknown Ω[E,M ],

the WL algorithm can be employed. Once converged, the joint density of states enables

the calculation of expectation values over wide ranges of temperature and external mag-

netic field, all from a single simulation. However, in this case a two-dimensional surface

has to be iteratively determined which, in practice is only possible for small systems.

An example of such a simulation can be found in Ref. [29], and similar applications to

systems with continuous degrees of freedom in Refs. [30, 31]. A certain improvement in
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convergence speed can be realised by partitioning the sampling range into smaller win-

dows or stripes, which can be understood in terms of a random walker which traverses

the sampling surface. The WL algorithm relies on local updates of the density of states

and Ω(E,X) has to be updated for all values of E and X before one convergence cycle

can be completed. The dynamics of the local walker can be approximated by an ideal

random walk, describing a diffusion process, with a round trip time proportional to the

square of the system size, τ ∝ L2 [32]. Splitting the total system into k equally sized

partitions, the required time to converge all of these simulations scales as kτk ∝ L2/k2

which result in a speedup τk/τ ∝ 1/k. Nevertheless it remains impossible to obtain a

well converged joint density of states for any off-lattice model with a system size of a few

hundred particles which can be considered the absolute minimum by today’s standards.

2.2.3 Hybrid flat histogram sampling

In order to alleviate the huge sampling problem associated with a two-dimensional joint

density of states and be able to apply flat-histogram sampling to interesting model

systems of acceptable system sizes, a Monte Carlo scheme which maintains a Boltzmann

distribution for the energy but otherwise samples a mechanical variable uniformly was

investigated by the author in Ref. [33]. The starting point for the derivation of such a

scheme is the ensemble defined in Eq. (2.11) but now the macrostate probability for a

value of X irrespective of E is required:

P (X) =
∫
P (Γ)δ[X −X(Γ)]dΓ

=
∫
Qid(N,V ) exp[−βE(Γ)− βξX(Γ)]δ[X −X(Γ)]dΓ

= exp(−βξX)Qid(N,V )
∫

exp[−βE(Γ)]δ[X −X(Γ)]dΓ

= exp(−βξX)Q(X,N, V, T ) (2.17)

Q(X,N, V, T ) = Qid(N,V )
∫

exp[−βE(Γ)]δ[X−X(Γ)]dΓ is the canonical partition func-

tion corresponding to the Boltzmann weighted subset of phase space sporting a given

value of the mechanical variable X, at fixed N , T , and V . The biased microstate prob-

ability is then defined through

P̃ (Γ) =
P (Γ)

P [X(Γ)]

=
Qid(N,V ) exp[−βE(Γ)− βξX(Γ)]

exp[−βξX(Γ)]Q[X(Γ), N, V, T ]

=
Qid(N,V ) exp [−βE(Γ)]

Q [X(Γ), N, V, T ]
. (2.18)
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It is straightforward to show that X is sampled uniformly using this microstate proba-

bility:

P̃ (X) =
∫
P̃ (Γ)δ[X −X(Γ)]dΓ

=
∫
Qid(N,V ) exp [−βE(Γ)]

Q [X(Γ), N, V, T ]
δ[X −X(Γ)]dΓ

=
1

Q(X,N, V, T )

∫
Qid(N,V ) exp [−βE(Γ)] δ[X −X(Γ)]dΓ

∴

P̃ (X) = 1 (2.19)

Fruitful application of the above result can be made in the grand-canonical and isobaric-

isothermal ensembles where it is of interest to sample a wide range of number densities at

fixed temperature. If this temperature is subcritical, prohibitively large free energy bar-

riers prevent standard importance sampling algorithms to work as illustrated in Fig. 2.2.

However, the flat-histogram sampling scheme will not suffer from this problem by defini-

tion. It should be noted that the constrained canonical partition function Q(X,N, V, T )

defined above is parameterised by four variables which represents the most general case.

For the specific application of uniform number density sampling where X is given by

either the volume V or the number of particles N , the number of parameters reduces to

three.

• In the case of the grand-canonical ensemble, we obtain the biased microstate ex-

pression

P̃ (Γ) =
Qid[N(Γ), V ] exp [−βE(Γ)]

Q [N(Γ), V, T ]
, (2.20)

leading to the explicit uniform sampling Monte Carlo rule:

acc(o→ n) = min
[
1,
Q(No, V, T )
Q(Nn, V, T )

V NnNo!Λ3No exp [−βE(Γn)]
V NoNn!Λ3Nn exp [−βE(Γo)]

]
(2.21)

• For the isothermal-isobaric ensemble, the biased microstate probability is given by

P̃ (Γ) =
Qid(N,V ) exp [−βE(Γ)]

Q [N,V (Γ), T ]
, (2.22)

resulting in the uniform volume sampling Monte Carlo rule:

acc(o→ n) = min
[
1,
Q(N,Vo, T )
Q(N,Vn, T )

V N
n exp [−βE(Γn)]
V N
o exp [−βE(Γo)]

]
(2.23)

The weights Q(N,V, T ) appearing in the above equations are unknown a priori and

need to be determined iteratively by the WL algorithm. In the grand-canonical case
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this involves deciding upon a range of particle numbers {Nmin..Nmax} to be sampled,

while the isothermal-isobaric simulation requires lower and upper bounds for the vol-

ume and a suitable discretisation thereof. Once converged results have been obtained,

expectation values e.g. the average number of particles for a given chemical potential

can be calculated:

〈N〉µ =

Nmax∑
N=Nmin

N exp(βµN)Q(N,V, T )

Nmax∑
N=Nmin

exp(βµN)Q(N,V, T )
(2.24)

The advantages of these sampling schemes are manifold for the study of phase coexis-

tence. First of all, neither the chemical potential nor the pressure for coexistence have to

be specified a priori, which usually requires many trial-and-error attempts in traditional

Monte Carlo methods. The sampling algorithm can thus be used in a black-box man-

ner without user intervention. Further, it is only a one dimensional sampling problem

which permits application to interesting system sizes. The usability of this scheme is

demonstrated in Chapter 4 where results for complex fluids with very rough free-energy

landscapes and entropic bottlenecks are presented. Flat histogram sampling of exten-

sive mechanical variables shall henceforth be abbreviated as WLEXT for ‘Wang-Landau

sampling of extensive mechanical variables’.

2.3 Flat histogram sampling of thermodynamic fields

While the preceding sampling schemes have focused on sampling mechanical extensive

variables, it is also possible to sample the conjugate thermodynamic fields appearing in

the partition function with uniform probability. As a thermodynamic field is coupled

to a macroscopic observable (e.g., E is coupled to T by a Boltzmann distribution), a

broad range of this observable can be visited by sampling a broad range of values for

the field. This approach is somewhat similar to the expanded ensemble and replica

exchange techniques [34–37] but here a simple and systematic derivation for such a MC

sampling scheme is presented which does not need multiple copies of the same system

to be propagated through phase space. However, the advantage of parallel tempering

which allows the system to get around (rather than over, as in umbrella sampling)

free energy barriers is preserved. To derive such probabilities, the starting point is the

Boltzmann probability of a mechanically coupled ensemble, Eq. (2.11), incorporated into

the following über partition function

Ψ =

βmax∫
βmin

ξmax∫
ξmin

∫
Qid(N,V )
Ξ(β, ξ, V )

exp[−βE(Γ)− βξX(Γ)]dβdξdΓ, (2.25)
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where the ensemble definition incorporates not only the mechanical configurations that

the system can attain but also a range of the thermodynamic fields β and ξ. By exact

analogy to the above derivation the unbiased microstate probability for any microscopic

configuration is now defined

P (Γ, β, ξ) =
Qid(N,V )

Ψ
exp[−βE(Γ)− βξX(Γ)] (2.26)

and the corresponding unbiased joint macrostate probability for observing a particular

combination of (β, ξ) reads

P (β, ξ) =

βmax∫
βmin

ξmax∫
ξmin

∫
P (Γ, β′, ξ′)δ(β′ − β)δ(ξ′ − ξ)dβ′dξ′dΓ

=
1
Ψ

∫
Qid(N,V ) exp[−βE(Γ)− βξX(Γ)]dΓ

=
Ξ(β, ξ, V )

Ψ
(2.27)

Continuing along the usual path, the biased microstate probability is again obtained by

dividing the unbiased microstate probability by the unbiased macrostate probability:

P̃ (Γ, β, ξ) =
P (Γ, β, ξ)
P (β, ξ)

=
Qid(N,V )
Ξ(β, ξ, V )

exp[−βE(Γ)− βξX(Γ)] (2.28)

The above expression is of course just the Boltzmann probability in the general ensem-

ble defined in Eq. (2.11). One might therefore argue that this derivation has turned

itself in a circle, however, the corresponding biased macrostate probability shows that

P̃ (Γ, β, ξ) indeed defines an ensemble with uniform probability of observing a particular

combination of (β, ξ).

P̃ (β, ξ) =

βmax∫
βmin

ξmax∫
ξmin

∫
P̃ (Γ, β′, ξ′)δ(β′ − β)δ(ξ′ − ξ)dβ′dξ′dΓ

=
∫
P̃ (Γ, β, ξ)dΓ

=
1

Ξ(β, ξ, V )

∫
Qid(N,V ) exp[−βE(Γ)− βξX(Γ)]dΓ

∴

P̃ (β, ξ) = 1 (2.29)
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MC transition probabilities for changing the thermodynamic fields from (βo, ξo) to

(βn, ξn) while maintaining the current phase space configuration Γ are obtained by insert-

ing Eq. (2.28) into the Metropolis solution to the detailed balance condition, Eq. (1.18).

acc(o→ n) = min

[
1,
P̃ (Γ, βn, ξn)
P̃ (Γ, βo, ξo)

]

= min
{

1,
Ξ(ξo, βo, V )
Ξ(ξn, βn, V )

exp [−βnE(Γ) + βnξnX(Γ)]
exp [−βoE(Γ) + βoξoX(Γ)]

}
(2.30)

The weights Ξ(ξ, β, V ) which appear in this sampling scheme are unknown a priori and

can be determined self-consistently during the course of the simulation with the WL

algorithm. To do this, we choose discrete values of ξ and β which we wish to sample and

start out with a uniform guess for all Ξ(β, ξ, V ). We let the system evolve in the current

state (β, ξ) via a normal Boltzmann-weighted MC scheme and attempt changes in ξ or

β at fixed intervals. After such a change – irrespective of whether it has been accepted

or not – the current value of Ξ(β, ξ, V ) is modified by letting Ξ(β, ξ, V ) → fΞ(β, ξ, V )

where f is greater than unity. Also a histogram H(β, ξ) is kept which serves as an

indicator for when to reduce the value of f . Once we deem H(β, ξ) to be sufficiently

flat, f is reduced and the histogram reset to zero. This process is iterated until f

is arbitrarily close to unity. When this is the case, we stop updating Ξ(β, µ) so that

detailed balance is recovered. The simulation will now perform a random walk in ξ and

β and we can accumulate unbiased averages of quantities such as E and X for all states

(β, ξ) by means of Boltzmann MC sampling. The entire simulation is thus a combination

of a thermodynamic field random walk and importance sampling Monte Carlo. In the

following, this scheme will be abbreviated as CFRW for “conjugate field random walk”.

In contrast to the WLEXT scheme which does not directly yield statistical expectation

values but rather sets of partition functions which can be reweighted to expectation

values, CFRW directly determines Boltzmann-weighted averages.

After this general introduction to different kinds of flat-histogram Monte Carlo schemes,

the next two chapters will show applications of these sampling methods. Chapter 3

deals with a two-dimensional decorated lattice gas model – the Hubbard model in the

atomic limit – which is an ideal candidate to compare and assess different Monte Carlo

schemes, because it is computationally cheap to simulate and features a rich phase

diagram. Chapter 4 then applies flat-histogram sampling to the computationally more

challenging task of computing phase diagrams for off-lattice fluids.



Chapter 3

Application of flat histogram

sampling to the Hubbard model

in the atomic limit

3.1 Introduction

The two dimensional extended Hubbard model in the atomic limit (AL-EHM) on a

square lattice is an interesting candidate to study as the wealth of features present in

the phase behaviour of this model system – first and second order transition lines as

well as tricriticality – render it an ideal test case for investigating the usefulness of flat-

histogram methods over traditional Boltzmann MC. The results presented here have

been published [38] and I gratefully acknowledge Dr G. Pawlowski’s contribution to this

work. The AL-EHM derives from the more general extended Hubbard Hamiltonian,

HEHM =
∑
ijσ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ +W
∑
ij

ninj − µ
∑
i

ni, (3.1)

where tij is the hopping integral between sites i and j, c†iσ(ciσ) is the creation (annihi-

lation) operator for an electron with spin σ =↑, ↓, ni = ni↑ + ni↓ is the total number

of electrons {0, ↑, ↓, ↑↓} on the ith site , U represents the on-site and W the inter-site

Coulomb interactions (here restricted to nearest-neighbours) and µ is the chemical po-

tential. This Hamiltonian represents an effective model for the description of phenomena

such as superconductivity, magnetism or charge density waves [39, 40].

The atomic limit is obtained by setting all tij = 0, which is a good approximation if the

kinetic energy of the electrons is small compared to the Coulomb interaction parameters

39
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U and W . In this limit, the electrons can be treated as classical particles as they are

strongly localised at the lattice sites. This classical Hamiltonian reads

HAL−EHM = U
∑
i

nDi +W
∑
ij

ninj − µ
∑
i

ni, (3.2)

where ni = {0, 1, 2} and we have introduced the symbol nDi = ni↑ni↓ to denote whether

lattice site i is occupied with two electrons or not.

The AL-EHM is an adequate model for describing charge-ordering (CO) effects of elec-

trons in strongly correlated systems [41–43]. Despite its formal simplicity, the AL-EHM

shows highly nontrivial phase behaviour, including a tricritical point. Depending on the

electron concentration n =
∑

i ni/L
2, where L is the lateral size of the square lattice,

and the Coulomb repulsions U and W , different spatial distributions of electrons on the

lattice are obtained. These are described in terms of a charge-order parameter φ which

is defined by

φ =
1
2
|nA − nB| , (3.3)

where nA and nB are the electron concentrations on sub-lattices A and B, given by

a checkerboard decomposition of the bipartite lattice (as shown in the bottom right

picture in Fig. 3.1). φ varies between zero and unity, with the latter describing the

fully charge-ordered (HCO) state and the former the non-ordered (NO) state. Low-

charge order (LCO) is given by φ = 0.5. The relative stability of different charge-

ordered states strongly depends on temperature and the ratio of on-site repulsion U

and inter-site interaction zW with z being the number of nearest neighbours. Examples

of different charge-ordered states are shown in Fig. 3.1. At low temperatures, quarter-

filling (n = 0.5) gives LCO and half-filling of the lattice (n = 1) results in HCO, both as

lattice-spanning ordered domains. Filling fractions which are not integer multiples of 1/4

can result in striped phases containing LCO and HCO domains. Other configurations

with domains that only persist over a few lattice sites are interpreted as NO states. It

should be noted that, when n ≈ 1, the charge order parameter φ roughly coincides with

the concentration of doubly occupied lattice sites, i.e. φ ≈ 2
∑

i nDi/L
2. Therefore,

φ is coupled in this regime to the Hamiltonian which implies that transitions between

states of different charge-order will be accompanied by the usual signs indicating a

thermodynamic phase transition, such as a peak in the heat capacity or some other

response function.
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Figure 3.1: Example projections of the checkerboard states at low temperature and
different values of the on-site repulsion parameter U∗ < 1. Legend: grey squares – one
electron per site, black – two electrons per site and white – empty site.

3.2 Results

For notational convenience, reduced units are employed throughout. The inter-site in-

teraction parameter W is set to unity, the on-site Hubbard repulsion is expressed as

U∗ = U/4W , temperature is defined as T ∗ = kBT/W with kB = 1 and all energies are
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given in units of W . Unless otherwise stated, square lattices of lateral length L = 40

were studied. One Monte Carlo cycle (MCS) consists of L2 MC moves.

3.2.1 Tricritical behaviour at half-filling

It has been observed before [44] that the high-temperature charge-disordered state turns

into a charge ordered state as temperature is lowered. Depending on the value of U this

transition is either discontinuous (first-order) or continuous (second-order). In general,

the crossover between a first- and second-order phase transition regime implies the ex-

istence of a multicritical point [45] which, in this case, is a tricritical point (TCP). At

temperatures below the TCP, the system shows phase coexistence between a disordered

state and an ordered state which itself is split up into two symmetric phases. The disor-

dered state is characterised by low concentration of doubly occupied sites m = ND/L
2,

where ND =
∑

i nDi , and a low value of the charge-order parameter φ. The ordered state

features a high concentration of doublets and a high value of φ and its two symmetric

phases are given by the two checkerboard sublattices on either of which the doublet

density is located. A quantitative order parameter which identifies the sublattice is ob-

tained from Eq. (3.3) by removing the modulus operator: M = (nA − nB)/2; the two

coexisting ordered states have ±M .

As the TCP marks the crossover from a line of first-order transitions to a line of (critical)

second order transitions it is possible to obtain its precise location in the following way

[46]: one starts out at a sub-tricritical temperature and finds phase coexistence between

the ordered and disordered states by tuning U such that the probability distribution

p(m) is bimodal with equal areas under both peaks. The Binder cumulant ratio [47],

UL = 1−
〈
(m− 〈m〉)4

〉
3 〈(m− 〈m〉)2〉2

(3.4)

is then calculated and this procedure is repeated for a range of different temperatures

and system sizes L. Due to the scale invariance of UL at criticality, all curves of UL
when plotted against the temperature will intersect at a single temperature which is

then taken as the estimate of the tricritical temperature. However, the specific value of

UL is not a universal quantity as the model studied is constrained to a fixed number

of lattice vacancies, which influences the boundary conditions. A detailed discussion of

this point can be found in Ref. [48].

In order to begin the above procedure it is first necessary to obtain a rough estimate

for the parameter range of U and T in which the probability distribution p(m) starts to
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appear bimodal. We obtained p(m) through WLEXT simulations which sample all pos-

sible numbers of doublets ND at constant temperature and fixed electron concentration

(c.f. Section 2.2.3). The MC acceptance rule for this sampling scheme reads

acc(NDo → NDn) = min
{

1,
exp[−βE(NDn)]
exp[−βE(NDo)]

Q(NDo)
Q(NDn)

}
(3.5)

and the converged simulation provides the canonical partition functions Q(ND). As

the conjugate thermodynamic field for the number of doublets is the Hubbard on-site

repulsion U , the probability distribution for the order parameter m is directly given by

p(m) ∝ Q(ND) exp(−βUND).

These simulations were run with convergence parameters finitial = exp(1), ln(ffinal) =

10−8 and f was reduced as soon as every possible number of doublets that the system

can attain had been visited at least 1000 times. After the onset of bimodality in p(m)

had been conveniently located this way we performed a single long Metropolis MC

simulation at this state point for system sizes L = {24, 32, 48, 64} and used the histogram

reweighting technique [49] to calculate UL for different temperatures with U chosen

subject to the constraint that p(m) satisfies the equal-area rule. The resulting plot of

UL against temperature is shown in Fig. 3.2: all four curves for different system sizes

intersect to within numerical uncertainty at T ∗TCP = 0.6080(4) with the uncertainty in

the last decimal place given by the uncertainty in the average of the crossing points.

In order to further verify the TCP in this system we invoke the universality of the

ordering parameter distribution p(M). Because microscopic details are irrelevant at

criticality, the measured form of p(M) will coincide with other model systems featuring

a TCP, provided that the distributions are scaled to unit norm and variance. To this

end we employ a measured p(M) for the two-dimensional Blume-Capel model as a

reference (courtesy of N. B. Wilding [46]) and adjust T and U for each system size L

such that p(M) collapses on the reference distribution. Results are shown in Fig. 3.3

where the agreement is clearly excellent. This procedure yields the apparent, system-size

dependent values of TTCP and UTCP for each value of L, which is to be contrasted with

the Binder cumulant intersection method that yields an estimate for the bulk tricritical

temperature. An estimate for the L =∞ TCP based on the apparent finite-size values

is obtained from the finite-size scaling relation [49] TTCP(L) = TTCP(L =∞) + λL−1/νt

where λ is a model dependent constant and νt is the tricritical scaling exponent, which

is a universal quantity. To this end, we use νt = 0.56 from Ref. [50]. Plots of TTCP(L)

and UTCP(L) against L−1/νt are shown in Fig. 3.4. Extrapolation of these data points

to L = ∞ yields T ∗TCP = 0.6082(3) which agrees with the Binder cumulant estimate to

within error, and U∗TCP = 0.7720(2).
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Figure 3.2: Binder cumulant ratio UL in the vicinity of the tricritical point at half-filling
for different lattice sizes L.

It is interesting to ask what happens to the lines of phase transitions and the TCP at

electron concentrations different from half-filling. We found that a perfect match of p(M)

onto the tricritical reference distribution is only possible at half-filling and the deviation

between the measured distribution and the reference becomes larger the further the

density deviates from half filling. This indicates that a TCP exists only at half-filling

but does not rule out the existence of a different type of multicritical point such as a

critical end point at other electron concentrations. While it was not possible to identify

the exact nature of these multicritical points using our methodological apparatus, we

note that the onset of a bimodal distribution in p(m) shifts to lower temperatures as

the density is reduced and no bimodal distribution could be observed for n < 0.8, which

can be explained in terms of a vanishing interfacial tension between the two phases of

different charge order: a first-order transition can only occur if the coexisting phases

are separated by an interface which constitutes a free energy barrier that stabilises the

phases against mixing with each other. By changing the electron concentration to values

beyond n = 1 one introduces single occupied sites or holes in the lattice which hinder the

formation of an interface and thus promote mixing, resulting in a continuous transition

between states of different charge order as U is varied. We conclude this analysis by

noting that a line of multicritical points exists in the n–T plane which extends from

an upper tricritical temperature at n = 1 to a vanishing multicritical temperature at

n ≈ 0.8. Therefore, first-order phase transitions between states of different charge order

can only be observed at temperatures and densities below this line [cf. the global phase

diagram Fig. (3.11)].
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Figure 3.3: Tricritical ordering parameter distribution p(M) at half-filling for different
lattice sizes and the reference distribution for the 2D Blume-Capel model. All distribu-
tions are scaled to unit norm and variance.

Figure 3.4: Upper plot: Finite size scaling plot of the apparent tricritical temperature
at half-filling for different lattice sizes L. Open circles denote simulation results and
the straight line represents a least-squares fit to these data points which is used to
extrapolate to L = ∞ yielding T ∗TCP = 0.6082(3). The cross marks the estimate for
T ∗TCP = 0.6080(4) obtained from the Binder cumulant intersection method (see text).
Lower plot: Open squares denote the apparent value of U∗TCP at tricriticality for different
system sizes. Extrapolation to L = ∞ using a linear least-squares fit yields U∗TCP =
0.7720(2), shown as a solid square. Errorbars show the estimated uncertainty in the data
points as obtained from the standard deviation of the average from four independent
runs.
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3.2.2 Global order parameter distribution

Figure 3.5: Charge-order parameter φ as a function of density and temperature for
U∗ = 0.5 (top) and U∗ = 0.8 (bottom). Projected solid lines indicate lines of constant
charge-order parameter.

The charge order parameter as function of temperature and density has been obtained

using the CFRW sampling scheme [Eq. (2.30)] for the range µ∗ = [−1.0..12.0], T ∗ =

[0.1..1.6] with discretisation ∆µ∗ = 0.1 and ∆T ∗ = 0.01. Attempts to change either µ

or T were performed once every 2 MCS. The WL convergence procedure of the weights

Ξ(µ, β) was initiated with finitial = exp(10) and f was reduced according to f =
√
f

once every state (µ, β) had been visited a minimum of 100 times. The weights were

converged down to ln(ffinal) = 10−6 before a histogram of φ was accumulated for each

thermodynamic state point (µ, β) during a production run of length 109 MCS. Results

for the charge-order parameter in the T–n plane are shown in Fig. 3.5 for U∗ = 0.5 and

0.8. These selected cases of the on-site Hubbard repulsion behave quite differently: For

U∗ = 0.5 no abrupt transitions between different charge orders can be seen, while for

U∗ = 0.8 a step-like change of φ along the half-filling line can be observed. As discussed

above, this agrees with the value of the critical on-site repulsion U∗TCP = 0.7720(2) below

which the transition occurs continuously for all densities.
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3.2.3 The density of states and thermodynamic quantities

The full DOS for U∗ = 0.8 and U∗ = 0.5 has been obtained for a lattice size L = 20.

While this approach allows the calculation of thermodynamic quantities at arbitrary

state points, it was only possible to converge the WLEXT algorithm for this two-

dimensional sampling problem [cf. Eq. (2.16)] for small systems. We note that, com-

pared to existing WLEXT simulations of both E and the magnetisation M for the Ising

model [51] on square lattices, the accessible configuration space of our Hamiltonian is

much larger. For a given lattice size L, one has 2L more states in the present model

with four lattice-site states than for the Ising model. In order to obtain the DOS with

high accuracy we resorted to a tighter convergence criterion compared to that employed

above: the ratio of any entry in the histogram of visited states was required to be within

a 15% interval of the mean value of the histogram. finitial was set to exp(1) and the

simulation was stopped at ln(ffinal) = 10−8. The total run time required was on the

order of 1010 MCS which translates into 10 CPU days on a 2.0GHz processor. Fig. 3.6

shows the DOS surface which is spanned over the trivial points 0, 1/4, 1/2, 3/4 and full

filling of the lattice. The corresponding entropy s = S/L2 in the n–T ∗ plane is shown in

Fig. 3.7. Again, the trivial commensurate lattice fillings can be seen but also a region

with a step-like drop at the half-filling line is identified. Because
(
∂s
∂T

)
V

= cV /T this is

indicative of a discontinuous transition involving latent heat. As discussed above, the

DOS contains all information necessary to calculate all thermodynamic potentials. For

Figure 3.6: Density-of-states for U∗ = 0.8 on a logarithmic scale. E∗ = E/Emax denotes
the fractional energy with respect to the maximum energy possible for this lattice size.
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a fixed number of electrons, we have the internal energy

〈EN (T )〉 =

∑
E

EΩ(E,N) exp(−βE)∑
E

Ω(E,N) exp(−βE)
, (3.6)

the free energy

〈FN (T )〉 = −kBT ln

[∑
E

Ω(E,N) exp(−βE)

]
, (3.7)

and the entropy

〈SN (T )〉 =
〈EN (T )〉 − 〈FN (T )〉

T
. (3.8)

Fig. 3.8 shows these thermodynamic quantities for U∗ = 0.5 and 0.8 at n = 0.45

and 0.95. At the lower density considered here, n = 0.45, neither system attains any

significant number of doubly occupied lattice sites, simply because there is enough room

on the lattice to accommodate all electrons without any nearest neighbours. Therefore,

their thermodynamic behaviour must be largely independent of U as the Hubbard on-

site repulsion only makes a negligible contribution the to system’s energy. The upper

parts of Figs. 3.8 indeed confirm this reasoning with a small peak in cV at T ∗ ' 0.6 for

both systems. This peak indicates a temperature-driven phase transition between the

LCO at low T and the completely disordered NO state at high T. In contrast to the

low-density behaviour, the thermodynamic quantities at n = 0.95 depend strongly on

U . Here, we have the situation that nearest-neighbour interactions compete with the

Figure 3.7: Entropy per lattice site for U∗ = 0.8 in the n–T ∗ plane. The step along the
n = 1 line indicates the region of discontinuous phase transition.
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Figure 3.8: Thermodynamic quantities per lattice site for U∗ = 0.5 (left part of the
figure) and U∗ = 0.8 (right part): Free energy F – solid line, internal energy E – long
dashed line, entropy S – short dashed line and heat capacity cV – dotted line. The upper
graphs are for n = 0.45 and the lower for n = 0.95.

Hubbard on-site interaction and, in the case of U∗ = 0.8, we find a strong first-order

transition between HCO and NO states indicated by a step-like change of the entropy

and a well-defined peak in the heat capacity at T ∗ ' 0.54. For U∗ = 0.5 this peak

is much broader and, owing to the system’s dependence on U , it is also located at a

different temperature T ∗ ' 1.00.

3.2.4 Phase diagrams

Traversal of the boundary between two phases is usually accompanied by an abrupt

change of a suitably defined order parameter and a peak in the susceptibility asso-

ciated with this order parameter. We have used the latter signal to plot the phase

diagram in the n–T ∗ plane for U∗ = 0.5 and 0.8. Phase boundaries were identified
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using canonical heat capacities cV = 〈E
2〉−〈E〉2
kBT 2N

and charge order parameter suscepti-

bilities χV = 〈φ
2〉−〈φ〉2
N from the CFRW sampling scheme at fixed density but varying

temperature [i.e., a one-dimensional version of the sampling scheme Eq. (2.30) which

samples only a range of temperatures]. Discretisation of the temperature range was set

to ∆T ∗ = 5 × 10−3 and the WL convergence parameters used were finitial = exp(1),

and ln(ffinal) = 10−10. f was reduced as above once every discrete temperature had

been visited 1000 times. A production run of length 107 MCS was appended after the

WL procedure was converged. Histograms of E and φ were kept for the subsequent

calculation of the canonical heat capacity cV and the susceptibility of the charge order

parameter χV . Complementary to this the isothermal compressibility was computed at

fixed temperature from a WLEXT simulation [cf. sampling scheme Eq. (2.21)] which

samples all electron concentrations at fixed temperature in a single simulation. Con-

vergence parameters were as above for the canonical CFRW simulations. Using the

converged Q(N) obtained from this simulation, the first and second moments of the

electron number distribution were computed,

〈N〉 =

∑
N

NQ(N) exp(βµN)∑
N

Q(N) exp(βµN)

〈N2〉 =

∑
N

N2Q(N) exp(βµN)∑
N

Q(N) exp(βµN)
, (3.9)

which then afforded the isothermal compressibility κT = β
ρ
〈N2〉−〈N〉2
〈N〉 .

Both phase diagrams are symmetric with respect to mirroring along the half-filling line

due to the particle-hole symmetry of the Hamiltonian Eq. (3.2). Fig. 3.9 shows the

results for the case U∗ = 0.5. We obtain second-order transitions between NO and CO.

Within the CO phase no indication for an abrupt change of the density or the charge-

order parameter was found. The situation for U∗ = 0.8, shown in Fig.3.10 is very

different: a new line of peaks in κT emerges in the CO phase separating it into LCO and

HCO regimes. The two sampling schemes used here – CFRW at constant density and

WLEXT sampling at a given temperature – constitute already a great improvement over

normal Boltzmann MC sampling because they enable us to study an entire temperature

or electron concentration range in a single simulation. They are well suited to determine

precisely the location of phase boundaries and require only very modest CPU resources.

Nevertheless, we still require several of these simulations to construct an entire phase

diagram. This is inconvenient if one wishes to obtain the phase diagram not only as a

function of n and T but also at different values of U . Ideally, one would perform one large

simulation which samples the joint density of states Ω(N,E,U), from which the entire
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Figure 3.9: Phase diagram in the n–T ∗ plane for U∗ = 0.5. Phase boundaries have been
obtained from peaks in cV (circles), χV (triangles) and κT (diamonds).

phase diagram in the space of density, temperature, and Hubbard interactions could be

determined. In practice this approach is hardly feasibly due to the very long time it

would require for the three-dimensional DOS to converge, even for the smallest systems.

As noted above, it is already difficult to converge the two-dimensional DOS Ω(N,E) for

medium sized systems. If accuracy and finite-size effects are not of great importance

one can resort to the compromise of running multiple, very small WL simulations which

sample the two-dimensional DOS for specified values of U . This approach is feasible in

practice and substantially reduces the number of simulations required to obtain a global

phase diagram. Fig. 3.11 shows such a global phase diagram obtained for very small

systems and loose WL convergence parameters (L = 8, ln(ffinal) = 10−5).

3.3 Discussion

The development of flat-histogram sampling techniques in general and especially the

robust and easy to implement algorithm of Wang and Landau, which allows for the

iterative determination of the biasing weights needed to accumulate a flat histogram,

have greatly eased the simulation efforts needed to obtain phase diagrams. We have

employed different sampling strategies which either uniformly sample mechanical vari-

ables such as energy, or which perform a random walk in the corresponding conjugate

thermodynamic field, e.g., temperature. Depending on the actual system to be studied

one might prefer one approach over the other. The advantage of the WLEXT scheme

which samples extensive variables is that ensemble averages can be calculated at any
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Figure 3.10: Phase diagram in the n–T ∗ plane for U∗ = 0.8. Symbols are as for Fig 3.9.

Figure 3.11: Global phase diagram. Solid- and dashed-lines indicate the second- and
first-order transitions respectively, whereas the multicritical points are denoted by a
dotted line. The grey area shows the transition LCO – HCO as indicated by peaks in
κT .
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thermodynamic state point by simple reweighting. The CFRW scheme on the other

hand seems to converge faster but is limited in the chosen discretisation width of the

thermodynamic fields to be sampled. It has been noted before [26] that the WL al-

gorithm asymptotically reaches a level of uncertainty which does not decrease if the

simulation is continued. In comparison, the CFRW scheme employs normal Boltzmann

MC sampling for each state point with errors inversely proportional to the square-root

of the run length. For both algorithms considered, it is possible to sample multiple vari-

ables in a single simulation. However, for the WLEXT scheme it has been found [33, 52]

that in practice this is only possible for small systems and it is much more efficient to

concentrate the sampling effort on a single variable to be uniformly sampled and to run

multiple simulations. The CFRW scheme appears to suffer less from this drawback but,

as noted beforehand, it produces less information because it is limited to a certain range

of discrete values for the thermodynamic field variables. On the other hand, there are

many cases where only a certain range of e.g., temperatures is of interest so that CFRW

allows one to focus on the relevant range, whereas normal WL sampling will need to

sample all energies the system can attain because it cannot be determined in advance

which of these states will have a high Boltzmann weight. This advantage of CFRW is

reflected by our simulation timings where it required only a few hours of CPU time to

sample a wide range of temperatures and chemical potentials simultaneously; it required

almost two orders of magnitude longer simulation times to converge the joint DOS using

the WLEXT algorithm for a system of only half the size.





Chapter 4

Application of flat histogram

sampling to phase transitions in

fluids

4.1 Introduction

The phase behaviour of fluids is of general importance in many fields of science and

engineering. Monte Carlo (MC) methods are particularly well suited for simulating

phase transitions in simple models [53]. While standard simulation methods are often

sufficient for sampling coexisting phases with comparable and low densities, they cannot

be used to probe directly the phase coexistence region well below the critical temperature

where the transition is strong, i.e., where there is a large difference in order parameter

between the coexisting phases. The problem arises mainly from the large free-energy

barrier separating the coexisting phases, which is associated with forming an interface

within the simulation cell. Many new algorithms have been devised to overcome or

circumvent this barrier. Multicanonical sampling [23] biases the simulation such that

the free energy barrier is cancelled out, allowing uniform sampling of the coexisting

phases and all intermediate states. In order to sample an order parameter uniformly, one

needs to know the weights which yield a flat histogram. As has been shown in Chapter

2, these weights are directly related to partition functions and thus to the free energy

as a function of the order parameter, which of course is unknown a priori. However,

iterative schemes can be employed to map out the free energy profile and build up the

biasing distribution during the course of a simulation. Here, the Wang-Landau (WL)

algorithm [25] is employed in order to facilitate flat histogram sampling of the number

density ρ, which is the appropriate order parameter for vapour-liquid phase transitions

55
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(at least away from the critical point). This is accomplished via the WLEXT sampling

scheme devised in Chapter 2 and working either in the isothermal-isobaric ensemble and

performing changes in the volume V [NpT -WLEXT scheme, see Eq. (2.23)], or in the

grand-canonical ensemble by changing the number of particles N [GC-WLEXT scheme,

see Eq. (2.21)].

This chapter compares the accuracy of the NpT -WLEXT and GC-WLEXT schemes

against high-quality data already available for the Lennard-Jones fluid. The broad appli-

cability of these sampling schemes is then tested by attacking some ‘difficult’ transitions,

namely the vapour-liquid transitions of charged soft spheres and of the strongly dipolar

Stockmayer fluid, and the isotropic-nematic transition of Gay-Berne mesogens. Fig. 4.1

gives an overview of the models studied in this chapter. The results presented here have

been published in [33] and I gratefully acknowledge Dr P. J. Camp’s contribution to this

work.
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4.2 Results

4.2.1 Lennard-Jones fluid

This example serves to demonstrate the correctness of the hybrid schemes represented

by Eq. (2.21) (GC-WLEXT) and Eq. (2.23) (NpT -WLEXT) which sample a uniform

number density distribution at fixed temperature in the grand canonical and isothermal-

isobaric ensemble, respectively. In order to assess the performance of the GC-WLEXT

and NpT -WLEXT approaches, we compare results against existing high-quality GCMC

transition matrix (TM) data [54, 55] for the Lennard-Jones potential

u(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(4.1)

truncated at rij = 3σ. Following Refs. [54] and [55], GC-WLEXT simulations were

run at exactly the same system size, i.e., V = 512σ3, and with the usual long range

corrections applied [18]. For the NpT -WLEXT calculations we chose N = 216. The

density ranges sampled during the WL simulations were as follows: with GC-WLEXT,

0 ≤ N ≤ 454 corresponding to 0 ≤ ρ∗ = Nσ3/V ≤ 0.89; with NpT -WLEXT, 10−3 ≤
ρ∗ ≤ 0.9. While there is a natural discretisation of Q(N,V, T ) if the particle number

is varied (as in GC-WLEXT), this is not the case for the continuous variable V (as in

NpT -WLEXT). Therefore an arbitrary binning scheme has to be employed which is fine

enough to capture the curvature of Q(N,V, T ), but does not use too many bins because

otherwise computational efficiency deteriorates. We decided to use 100 histogram bins

with a uniform spacing in lnV , and in the NpT -WLEXT update scheme we performed

changes in lnV with a maximum stepsize of twice the bin width. For this model and

the other simulations reported below, f started from ln f = 1 and a run was considered

converged when it reached ln f = 10−8 for GC-WLEXT and ln f = 10−5 for NpT -

WLEXT. In order to monitor convergence for each cycle of fixed f , a histogram of

visited number density bins H(ρ) was maintained and f was reduced according to the

rule f =
√
f as soon as all entries in H had been visited at least 1000 times for GC-

WLEXT and 500 times for NpT -WLEXT. Maximum displacements for single-particle

moves were adjusted to give acceptance ratios of 50%. The time required to converge

the simulations was 4h and 12h for GC-WLEXT and NpT -WLEXT, respectively. All

simulation times reported here are for Intel Xeon processors clocked at 2.4GHz.

In the case ofGC-WLEXT, coexisting vapour and liquid densities were obtained from the

converged estimates ofQ(N,V, T ) by integrating the low and high density branches in the

particle number probability probability distribution P (N), with the chemical potential

adjusted such that both branches have equal area. If the boundary so determined is
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at N = Nb, then the average densities in the vapour (N < Nb) and liquid (N > Nb)

branches are given by,

〈ρvap〉 =

∑
N<Nb

(N/V )Q(N,V, T )eβµN∑
N<Nb

Q(N,V, T )eβµN

〈ρliq〉 =

∑
N>Nb

(N/V )Q(N,V, T )eβµN∑
N>Nb

Q(N,V, T )eβµN
. (4.2)

The boundary Nb between vapour and liquid peaks was identified with the value of N

where P (N) is at a minimum. In the case of NpT -WLEXT, the procedure is completely

analogous but with N replaced by V , and sums replaced by integrals:

〈ρvap〉 =

∫∞
Vb

(N/V )Q(N,V, T )e−βPV dV∫∞
Vb
Q(N,V, T )e−βPV dV

〈ρliq〉 =

∫ Vb
0 (N/V )Q(N,V, T )e−βPV dV∫ Vb

0 Q(N,V, T )e−βPV dV
. (4.3)

Coexistence results are shown in Fig. 4.2, with a maximum deviation between WLEXT

and TM data [54, 55] of 1.0% and an average deviation of 0.4%. The good agreement of

the coexistence densities is also reflected in rough estimates of the critical parameters,

obtained by fitting the universal equation

ρ± = ρc +At±Btβ (4.4)

where t = |T − Tc|/Tc and β = 0.3265 is the three-dimensional Ising order-parameter

exponent [56]. The apparent critical temperatures and densities are T ∗c = kBTc/ε =

1.300(4) and ρ∗c = 0.314(1) from GC-WLEXT, and T ∗c = 1.290(6) and ρ∗c = 0.313(4)

from NpT -WLEXT. These are to be compared with fits to TM data [54, 55]; T ∗c =

1.2950(6) and ρ∗c = 0.3125(8). Estimates of the uncertainties in the last decimal places

are given in brackets; these were taken from the fitting errors and are therefore under-

estimates compared to the true statistical error.

4.2.2 Charged soft spheres

While there have been a number of publications on the WL simulation of phase coexis-

tence in fluids, all of these have been applied to simple systems like the Lennard-Jones

potential. In this study we aim to show the general applicability of WL sampling by

applying the method to complex fluids. The restricted primitive model (RPM) is one

such complex fluid. It consists of an equimolar mixture of hard spheres with charges

±q and equal diameters σHS. The vapour-phase structure is characterised by the strong

association of oppositely charged ions to form dumbbells [57, 58]. After a significant
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Figure 4.2: Vapour-liquid coexistence envelopes for the Lennard-Jones fluid from sim-
ulations (points) and fits to the simulation points using Eq. (4.4) (lines): transition
matrix MC [54, 55] – squares and dotted lines; GC-WLEXT – crosses and solid lines;
NpT -WLEXT – circles and dashed lines.

number of intensive simulation studies, the location of the critical point and the univer-

sality class (Ising) have been established unambiguously [13, 59]. Such systems are much

harder to simulate than the Lennard-Jones fluid because insertions/and deletions have

to be effected using pairs of oppositely charged particles in order to maintain charge

neutrality; moreover, the favoured separation and orientation of each inserted ion pair

has to be selected in a biased fashion [60]. Here we have chosen to use a soft repulsive

potential as this facilitates simulations with volume scaling moves as in NpT -WLEXT:

if a hard core was used, even an infinitesimal overlap after a volume contraction move

would lead to rejection. The interaction potential of the ‘charged soft spheres’ (CSSs)

is defined by

u(rij) = 4ε
(
σ

rij

)12

+
qiqj
Drij

(4.5)

where D = 4πε0. Long-range interactions were treated with the Ewald sum and con-

ducting boundary conditions [18]. The soft repulsive potential was cut at r = 2.5σ. In

order to compare our results for CSSs with the data available for the RPM, we fixed

the reduced charge at q∗ =
√
q2/Dσε =

√
48, which sets the minimum in the cation-

anion potential at r = σ. The characteristic cation-anion interaction energy is therefore

ε± = −u(σ) = 44ε. In order to increase the efficiency of ion-pair insertions and dele-

tions in GC-WLEXT simulations, we employed a distance-biased scheme similar to that

in Ref. [60], but with a Gaussian biasing function. In GC-WLEXT simulations, ion
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numbers within the fixed volume V = 1000σ3 varied in the range 0 ≤ N/2 ≤ 163, cor-

responding to ion densities of 0 ≤ ρ∗ = Nσ3/V ≤ 0.326; in NpT -WLEXT simulations,

N = 128 ions were simulated at densities in the range 10−4 ≤ ρ∗ ≤ 0.4. The WL

simulation protocol was the same as that described in Sec. 4.2.1.

The coexistence envelopes are shown in Fig. 4.3. GC-WLEXT and NpT -WLEXT results

do not coincide perfectly at all temperatures, but we attribute this to strong finite-size

effects connected with the particle number; in GC-WLEXT, the number of ion pairs

in the vapour phase is very small, whereas in NpT -WLEXT, the number of ions is

fixed. There is a substantial amount of scatter in the data points, which is caused by

very broad and flat number-density probability distributions, which in turn complicates

the identification of a boundary between liquid and vapour peaks and the subsequent

computation of 〈ρvap〉 and 〈ρliq〉. In order to assess the statistical errors, we performed

four independent GC-WLEXT simulations at each temperature and calculated the sta-

tistical uncertainties based on one standard deviation; these are shown as horizontal

errorbars in Fig. 4.3. It was not possible to improve the accuracy of the individual

simulations by requiring a lower limit on f or a higher minimum count of visited states.

Average simulation times for one state point were 4h with GC-WLEXT and 48h with

NpT -WLEXT.

Rough estimates of the critical temperatures and densities obtained using fits of Eq. (4.4)

are T ∗c = kBTc/ε = 2.07(1) and ρ∗c = 0.073(2) using GC-WLEXT, and T ∗c = 2.059(3) and

ρ∗c = 0.070(1) using NpT -WLEXT. Interestingly, the critical density for CSSs obtained

here is quite close to the corresponding value for the RPM, ρ∗c = ρσ3
HS = 0.0790(25)

[13]. The RPM critical temperature is kBTcDσHS/q
2 = 0.05069(2) [13], where q2/DσHS

is the magnitude of the minimum cation-anion energy; the corresponding parameter for

CSSs is ε± = 44ε, leading to an ‘ionic’ critical temperature of kBTc/ε± ' 0.047, which

is comparable to that for the RPM. Comparison to real molten salts can be made by

using an atom diameter σ ' 2.8×10−10m, which is an approximate value often used for

simulations of Sodium Chloride [61], and q = 1.602176 × 10−19C. The thus predicted

critical temperature is TNaClc ' 1.23 × 105K, roughly one order of magnitude higher

than the melting temperature for NaCl, TNaClmelt ' 1074K [61].

We note that the use of the scaling law Eq. (4.4) is questionable because corrections

to scaling, and a crossover between classical and Ising regimes, are expected to occur

within the range of temperatures being fitted. Nonetheless, the resulting curves look

reasonable, and the apparent critical temperatures serve as useful estimates.

We also investigated the possibility of ‘parallelising’ GC-WLEXT simulations by split-

ting up the interval in N to be sampled, and running separate simulations for each
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Figure 4.3: Vapour-liquid coexistence envelopes for the charged soft sphere fluid from
simulations (points) and fits to the simulation points at T ∗ ≥ 1.85 using Eq. (4.4) (lines):
GC-WLEXT – crosses and solid lines; NpT -WLEXT – circles and dashed lines.

subinterval. This greatly reduces the time required to sample all relevant particle num-

bers uniformly. A simplistic argument is as follows. Consider an interval in N to be

sampled, which we denote by ∆N . If the sampling process is approximated by a one-

dimensional random walk in N (which is valid in the limit f → 1), then the sampling

time required to visit all states in the interval is proportional to the square of the size of

the interval, i.e., t ∝ (∆N)2. If ∆N is divided in to n subintervals of width δN = ∆N/n,

then the simulation time t ∝ n×(δN)2 = (∆N)2/n. This implies that to sample a given

range ∆N , the total simulation time is reduced by a factor comparable to the number of

subintervals. As an illustration, GC-WLEXT simulations of CSSs in the density range

0 ≤ ρ∗ ≤ 0.3 at T ∗ = 1.9 and V = 2197σ3 were run until ln f = 10−6. We allowed

for an overlap of 10 particles between neighbouring subintervals and joined Q(N,V, T )

from each subinterval by scaling them such that the midpoints of the overlapping regions

were aligned. By simultaneously running simulations over equal subintervals in N , the

total simulation times were 9.4h, 4.7h, and 3.0h with one, two, and four subintervals,

respectively, roughly conforming to a 1/n scaling. For a larger system with V = 4096σ3,

the total simulation time required to reach convergence within four equal subintervals

was 10.7h, which is to be compared with the time of 3.0h for calculations with the same

number of subintervals but with half of the volume and hence half the value of ∆N ;

these results are roughly in line with the suggested (∆N)2 scaling.
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4.2.3 Stockmayer fluid

The phase behaviour of strongly dipolar fluids is the subject of a long-running and

somewhat controversial debate, which has been comprehensively reviewed several times

[62, 63]. In fact, this topic will be examined in depth in Chapters 6 and 7. Briefly,

de Gennes and Pincus suggested in 1970 that fluids of dipolar hard spheres should

exhibit an entirely conventional phase diagram – with vapour, liquid, supercritical

fluid, and solid phases – because the leading-order isotropic interaction obtained by

a Boltzmann-weighted orientational average of the dipole-dipole interaction potential

varies like −1/r6, just like dispersion interactions [64]. The results of computer simula-

tions published in the 1990s suggested otherwise. In the case of dipolar hard spheres,

Caillol could find no evidence of a vapour-liquid transition [5] although more recent

work suggests that this was due to the simulated isotherms being supercritical [65, 66].

Another widely studied dipolar system is the Stockmayer fluid, the interaction potential

for which is

u(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

+
(µi · µj)
r3
ij

− 3(rij · µi)(rij · µj)
r5
ij

(4.6)

where µi is the dipole moment on particle i, and the dipole strength µ = |µi| is the same

for all particles. The conventional reduced units are temperature T ∗ = kBT/ε, number

density ρ∗ = ρσ3, and dipole strength µ∗ =
√
µ2/εσ3. Gibbs ensemble MC (GEMC)

simulations of the Stockmayer potential suggested that the vapour-liquid transition is

absent from the phase diagram when (µ∗)2 ≥ 24.3 [4, 67, 68]. (Note that van Leeuwen

and Smit [4] actually simulated a slightly different potential, but one that can be mapped

on to the Stockmayer potential [68]; therefore, we only quote equivalent results for the

Stockmayer potential.) The disappearance of the vapour-liquid transition has been put

down to the formation of chain-like aggregates at low temperatures, with the dipoles in

the chains aligned ‘nose-to-tail’ [69]. The absence of the transition in some simulations

is almost certainly connected with aggregation, but it may be an artifact rather than a

real physical effect. The GEMC technique relies on effecting a sufficient number of par-

ticle and volume transfers between two different simulation boxes [70] but the presence

of strong aggregation drastically reduces the probability of accepting a simultaneous

particle deletion (from one box) and particle insertion (in the other box). In addition,

the network of chain-like aggregates severely restricts volume moves. Therefore, it is

possible that the disappearance of the vapour-liquid transition in GEMC simulations is

actually due to the simulations failing to achieve equilibration and convergence.

Any sort of grand-canonical simulation of strongly dipolar particles is going to be hard

work, because of the requirement to execute sufficient numbers of particle insertions
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and deletions. Nonetheless, we managed to perform GC-WLEXT simulations of the

Stockmayer fluid with dipole strengths (µ∗)2 = 24, 27, and 30; the phase behaviour at

low dipole strengths is already well established [4, 68, 71–74]. The system volume was

V = L3 = 1000σ3, with particle numbers in the range 0 ≤ N ≤ 600. The Lennard-Jones

component of the potential was cut off at L/2 with no long-range correction applied,

while the long-range dipolar interactions were handled using Ewald sums and conducting

boundary conditions [18]. GC-WLEXT simulations were performed covering intervals

of 100 particles plus overlaps of 10 particles with neighbouring intervals in order to

help splice together the different portions of Q(N,V, T ). For (µ∗)2 = 24, 27, and 30 we

performed 3, 5, and 10 independent runs, respectively, at each temperature and averaged

the results. Higher dipole strengths required more independent runs due to the difficulty

of sampling (by any means) strongly aggregated fluids. We could not simulate higher

values of µ∗ because the underlying density of states becomes extremely rough due to

the presence of system-spanning chains, artificially stabilised by the periodic boundary

conditions. Note that this is a limitation of the finite-size system, and not a failure of

the simulation technique per se.

The phase diagrams for systems with (µ∗)2 = 24, 27, and 30 are shown in Fig. 4.4; the

apparent critical parameters obtained by fits of Eq. (4.4) are {T ∗c = 7.18, ρ∗c = 0.188},
{T ∗c = 7.89, ρ∗c = 0.173}, and {T ∗c = 8.50, ρ∗c = 0.165}, respectively. Our results at

(µ∗)2 = 24 are consistent with earlier work [4, 68, 71–73], and following Bartke and

Hentschke [74], we confirm that the transition persists at higher dipole strengths, at

least up to (µ∗)2 = 30. These findings show that the GC-WLEXT method can indeed

be used with success for simulation of phase coexistence in highly complex fluids.

4.2.4 Isotropic-nematic transition in Gay-Berne mesogens

The isotropic-nematic (I-N) transition in the Gay-Berne model of liquid crystals involves

a very small change in density and requires an enormous number of traditional NpT

MC simulations to locate accurately [75–77]. The Gay-Berne potential is given by

u(rij ,ui,uj) = 4ε(rij ,ui,uj)

{[
σ0

d(rij ,ui,uj)

]12

−
[

σ0

d(rij ,ui,uj)

]6
}

(4.7)

where rij is the interparticle separation vector, ui is the orientational vector along the

symmetry axis of particle i, and d(rij ,ui,uj) = |rij |−σ(rij ,ui,uj)+σ0. The quantities

ε(rij ,ui,uj) and σ(rij ,ui,uj) are orientation dependent and proportional to the basic

energy and range parameters ε0 and σ0, respectively. The full expressions are given in

Ref. [75], but we note that they depend on two further parameters: κ, which defines

the aspect ratio of the (roughly) ellipsoidal molecules; and κ′, which sets the ratio
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Figure 4.4: vapour-liquid coexistence envelopes for the Stockmayer fluid from GC-
WLEXT simulations (points) and fits to the simulation points using Eq. (4.4) (lines):
(µ∗)2 = 24 – squares; (µ∗)2 = 27 – circles; (µ∗)2 = 30 – diamonds. The critical points
are indicated with filled symbols.

between the potential-energy wells for the side-by-side and end-to-end configurations.

We focus our attention on the system with κ = 3 and κ′ = 5 as studied in previous work

[75–77]. Using thermodynamic integration techniques, de Miguel [76] determined the

coexistence properties at a temperature T ∗ = kBT/ε0 = 1.25 to be P ∗ = Pσ3
0/ε0 = 5.20,

ρ∗I = ρIσ
3
0 = 0.3152 and ρ∗N = ρNσ

3
0 = 0.3219.

With the output from a single WL simulation, we can calculate the isothermal compress-

ibility κT for a range of pressures. In a finite-size simulation, a peak in κT plotted as a

function of P can signal a first-order transition between two phases differing in density.

Statistical expectation values in the NpT ensemble can be calculated with Q(N,V, T )

obtained from NpT -WLEXT simulations by numerical integration, as in Eq. (4.3). The

compressibility as a function of p is thus readily obtained from the fluctuation formula

[18]

κT = − 1
V

(
∂V

∂P

)
N,T

=

〈
V 2
〉
− 〈V 〉2

〈V 〉 kBT
. (4.8)

In the NpT -WLEXT simulations N = 192 particles were used, and the potential was

truncated at r = 4σ0 with no long-range corrections applied. We did not attempt

GC-WLEXT simulations for this model because the number of successful particle inser-

tions/deletions is expected to be prohibitively low in the density range 0.25 ≤ ρ∗ ≤ 0.35

considered here. Rotations and translations were performed independently with maxi-

mum displacements chosen to give an acceptance ratio of approximately 50%.
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Results for the equation of state, compressibility, and nematic order parameter S (com-

puted as described in Ref. [78]) are shown in Fig. 4.5, along with available existing

canonical molecular dynamics data for N = 500 particles [75, 76]. In addition to the

NpT -WLEXT results, we show the results of our own standard NpT simulations with

N = 192 particles. Using the NpT -WLEXT data, we also calculated 〈p〉 as a function of

ρ (canonical ensemble average) by differentiating F = −kBT lnQ(N,V, T ) numerically,

but the results were indistinguishable from those obtained by computing 〈ρ〉 as a func-

tion of p (NpT ensemble average). This is due to the fact that there is no observable

‘van der Waals’ loop in the canonical-ensemble equation of state, and no pronounced

hysteresis in the NpT results; the absences of these features in simulations of weak I-N

transitions have been noted before [78]. A clear peak in κT emerges at p∗ ' 5.25 (cor-

responding to a density ρ∗ ' 0.32) which coincides with the jump in the nematic order

parameter. This pressure is quite close to the coexistence pressure p∗ = 5.20 identified

by de Miguel [76]. It proved impossible to resolve a bimodal density distribution P (ρ)

from the NpT -WLEXT results at the apparent coexistence pressure because the change

in density is too small. In an attempt to improve on this we performed simulations on

a slightly larger system with N = 324 but it was still not possible to observe a bimodal

distribution; the peak in κT occurs at essentially the same pressure as in the N = 192

system. The overall agreement between standard NpT , NpT -WLEXT, and canonical

molecular dynamics [75, 76] simulations is good. Therefore, the NpT -WLEXT offers a

viable route to mapping out the equation of state at fixed temperature from a single sim-

ulation – even for dense fluids. A similar simulation has been reported in Ref. [52], where

the athermal isotropic-cubatic phase transition of cuboidal particles constructed from

hard spheres was probed using a TM based flat-histogram method. In that case, how-

ever, the transition is strongly first-order with a difference in density between isotropic

and cubatic phases of approximately 10%.
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Figure 4.5: Results for Gay-Berne mesogens. (a) Equation of state from NpT -WLEXT
simulations (line), standard NpT -MC simulations (circles), and canonical molecular
dynamics simulations [75, 76] (crosses). (b) Isothermal compressibility κ∗T = κT ε0/σ

3
0

from NpT -WLEXT simulations. (c) Nematic order parameter S from standard NpT -
MC simulations (circles) and canonical molecular dynamics simulations [75, 76] (crosses).
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4.3 Discussion

In this Chapter, a robust method for determining phase coexistence has been presented.

The advantage over traditional multicanonical MC techniques is that only the density

range and temperature at which a transition is expected to occur is to be specified in

advance. The effect of the external field, given by the external pressure in the NpT

ensemble, or the chemical potential in the grand-canonical ensemble, is determined after

the simulation has converged and it is thus possible to obtain number-density distribu-

tions at arbitrary values of the external field (provided a sufficient range of densities has

been sampled in the first place). This also implies that the equation of state for the

density range considered can be obtained from a single simulation.

The algorithms described here – GC-WLEXT and NpT -WLEXT – belong to the visited-

states class of flat-histogram techniques for determining partition functions. GC-WLEXT

effects changes in the number density by particle insertions and deletions at fixed volume,

while NpT -WLEXT varies the volume at fixed number of particles. We have applied

both algorithms to the vapour-liquid transitions in the Lennard-Jones fluid, charged soft

spheres, and Stockmayer fluids with high dipole strengths.

For the Lennard-Jones fluid, we find that both algorithms reproduce existing high-

quality transition-matrix data with good accuracy. At strongly subcritical temperatures,

one might expect deviations between the GC-WLEXT and NpT -WLEXT results for

the vapour coexistence density, because the number of particles in the GC-WLEXT

simulation is very low compared to that in the NpT simulation. However, for the

Lennard-Jones fluid, we find that this effect is not significant.

Surprisingly, the coexistence curves for charged soft spheres fromGC-WLEXT andNpT -

WLEXT simulations are consistent with one another over the entire temperature range

considered, but there is a significant amount of statistical scatter. Rough estimates of

the critical parameters obtained from fitting an Ising-like scaling law are T ∗c ' 2.06 and

ρ∗c = 0.07. The apparent critical parameters – expressed in ‘ionic’ reduced units – are in

good accord with those for charged hard spheres (restricted primitive model) [13, 59].

The vapour-liquid coexistence curves for the Stockmayer fluid with high dipole strengths

could be generated reliably using the GC-WLEXT approach. Our results – like those of

Bartke and Hentschke [74] – indicate that the transition persists well above the critical

dipole strength identified by van Leeuwen and Smit [4]. In fact the apparent disappear-

ance of the transition in GEMC simulations [4, 67, 68] is more than likely associated

with failures of the simulation methodology.
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The natural discretisation of N renders the GC-WLEXT approach computationally

more straightforward than NpT -WLEXT. Simulation times for GC-WLEXT reported

here are moderate [However, still nowhere near the proclaimed time limit of a good

simulation, see page (i)]. In addition, parallelisation of the algorithm is simple because

the density range can be split into multiple intervals for which independent simulations

are performed. The resulting numerical estimates of the canonical partition functions

from each subinterval are then scaled so that they match up at the boundaries [25,

30]. Preliminary investigations of this approach showed that the total time needed to

complete a simulation is reduced by a factor comparable to the number of subintervals.

In the light of these results, the application of parallelised GC-WLEXT simulations to

very large systems is an attractive proposition. Based on these observations, we can

recommend using GC-WLEXT for locating vapour-liquid transitions.

In general, we observed that it was not possible to reduce errors in vapour and liquid

coexistence densities by increasing the primary adjustable parameters in the WL scheme

– the final value of the convergence factor and the flatness of the histogram of visited

states. It has been noted before that the WL algorithm does not improve on the sta-

tistical error after f has reached a certain value [79]. We therefore propose that if very

accurate results are required, a combination of GC-WLEXT and GCMC with multi-

canonical biasing could be employed: the required value for the chemical potential and

a good guess for the multicanonical bias is obtained from a preliminary GC-WLEXT

simulation; a multicanonical GCMC simulation can then be run, which also enables the

use of histogram reweighting.

The isotropic-nematic transition of Gay-Berne mesogens is only feasible using NpT -

WLEXT simulations because the packing fraction in the vicinity of the transition is

too high to effect particle insertions and deletions. Unfortunately, the transition is so

weak that a bimodal density distribution could not be obtained; this property of the

isotropic-nematic transition gives rise to problems in other ‘direct’ simulation techniques

[78]. Nonetheless, by calculating the compressibility and equation of state from a single

simulation, we could locate the transition pressure. Therefore, the NpT -WLEXT tech-

nique might also find application in the simulation of strong, first-order phase transitions

at high densities.





Part II – Vapour-liquid transition

in dipolar fluids
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Chapter 5

Introduction to the vapour-liquid

transition in dipolar hard spheres

Dipolar hard spheres (DHSs) represent the simplest model of polar liquids and colloidal

ferrofluids. Despite several decades of intensive theoretical and simulation work, some

questions concerning the properties of dipolar fluids remain [62, 63, 80]. The existence

of ferroelectric or ferromagnetic fluid phases has been discussed widely [81–86].

In simple fluids with isotropic attractive interactions of sufficient range [87] the con-

densation transition occurs between a low-density vapour with high potential energy

and high entropy, and a high-density liquid with low potential energy and low entropy.

Systems with strong dipolar interactions, however, seem to behave very differently. The

Boltzmann-weighted, orientational average of the dipolar interaction potential has an

isotropic, attractive, leading-order term proportional to −1/r6 where r is the particle

separation, and one might therefore anticipate that the condensation transition in such

systems would be conventional [64]. Computer simulations show that at low tempera-

tures, the anisotropy and long range of dipolar interactions give rise to extensive chain-

like aggregation at low densities [69] and branched-network formation at high densities

[88], the primary structural signature being the nose-to-tail conformation of neighbour-

ing dipoles. It is unclear whether such association precludes any kind of fluid-fluid

coexistence.

The anisotropic, dipole-dipole (DD) interaction potential reads

uDD(r,µ1,µ2) =
(µ1 · µ2)

r3
− 3(µ1 · r)(µ2 · r)

r5
(5.1)

where r is the centre-centre separation vector, r = |r|, and µi is the dipole moment

on particle i. The dipolar potential may then be supplemented with either a soft or
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a hard short-range repulsion to guarantee mechanical stability, and any other relevant

interactions for a specific system. DHSs are formed by combination of uDD with the

hard sphere (HS) potential

uHS(r) =

{
∞ r < σ

0 r ≥ σ
(5.2)

where σ is the particle diameter. Conventional theoretical calculations on DHSs, such

as thermodynamic perturbation theory (e.g. [1]) and integral equations [2] support

the existence of a vapour-liquid phase transition. Early simulation results on small

systems of DHSs – but without proper treatment of the long-range dipolar interactions

– qualitatively confirmed this picture [3]. Direct experimental tests are so far impossible,

primarily because of the difficulty in producing monodisperse, single-domain magnetic

nanoparticles with sufficiently strong dipole moments.

It came as something of a surprise in the early 1990s when more sophisticated simulation

techniques indicated the absence of a vapour-liquid transition in systems of strongly

interacting dipolar particles. Gibbs-ensemble Monte Carlo (MC) calculations by van

Leeuwen and Smit showed that, when dipolar interactions dominate over short-range

isotropic attractions proportional to −r−6, a vapour-liquid coexistence region is appar-

ently absent from the phase diagram. Instead, the particles form extended chain-like

structures resembling a living-polymer network, stabilised by the energetically favourable

nose-to-tail parallel conformation of neighbouring dipoles. [4]. The system studied by

van Leeuwen and Smit can be mapped on to the Stockmayer (SM) fluid [89], for which

the interaction potential is a combination of Lennard-Jones and dipole-dipole terms:

uSM(r,µ1,µ2) = 4ε
[(σ
r

)12
−
(σ
r

)6
]

+ uDD(r,µ1,µ2). (5.3)

It was observed that the transition disappeared when the characteristic dipolar inter-

action energy µ2/σ3 (with µ = |µ|) measured against the Lennard-Jones well depth ε,

exceeded a critical value µ2/εσ3 = 24.3 [4, 67, 89].

In the case of DHSs, Caillol did not see any sign of phase separation in constant-pressure

and Gibbs-ensemble MC simulations at reduced temperatures kBTσ3/µ2 = 0.18 and

0.222 [5]. The chain-like clustering in DHS fluids was thoroughly characterised by Weis

and Levesque [69, 90].

A number of other model dipolar fluids were studied throughout the 1990s, all seemingly

sharing the property that phase separation is somehow precluded by the formation of

chain-like clusters. McGrother and Jackson studied hard spherocylinders with longitu-

dinal dipoles as a function of the length (L) to breadth (D) ratio L/D [91] and found

that phase separation does not occur below a critical value of L/D > 0 (the DHS limit
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being L/D = 0). Szalai et al. studied a so-called dipolar Yukawa hard sphere (DYHS)

fluid [92] with an interaction potential given by

uDYHS(r,µ1,µ2) = uHS(r) + uDD(r,µ1,µ2)− εY

(σ
r

)
e−z(r−σ) (5.4)

where εY is the well depth of the attractive isotropic Yukawa interaction, and z = 1.8/σ

is a decay parameter. Using the NpT+test particle insertion technique, Szalai et al.

found that condensation exists only for µ2/εYσ
3 ≤ 9 [92]. In the light of this collected

simulation evidence, several theoretical works set out to explain why the vapour-liquid

transition disappears when the propensity for chaining (in the cases above, related to

the strength of the dipolar interactions) exceeded some critical level [93–96].

Recent simulation and theoretical results have reignited the controversy. In 2000, Camp

et al. suggested that, on the basis of MC simulation results, two or more distinct isotropic

fluid phases may be present in DHSs [65]. In the same year, Tlusty and Safran presented

a mechanism which accommodates phase separation in strongly clustered dipolar flu-

ids [8]; in essence, the transition is driven by the free energies of defects, these being

particles at the ends of chains (‘end’ defects) and particles having three nearest neigh-

bours (‘Y’ defects). Fig. 1.5 in the Introduction visualises these defect types. This semi-

phenomenological approach has the benefit of acknowledging, at the outset, the presence

of very strong positional and orientational correlations between particles, which other

theoretical approaches can only hint at through series expansions, integral-equation clo-

sures, etc. In 2007, Hentschke et al. [97] reported phase separation in the Stockmayer

fluid for dipole interaction strengths up to µ2/εσ3 = 36, well beyond the limit proposed

by van Leeuwen and Smit in 1993 [4]; and Bartke and Hentschke state that a ‘van der

Waals loop’ is visible in the equation of state for a system with µ2/εσ3 = 100 [74], which

may indicate a phase transition. These results, which had been obtained from molecular

dynamics simulations, were confirmed in a subsequent study by the author of this thesis

(see Chapter 4.2.3). A critical comparison of all available Stockmayer-fluid results has

been presented [33], and an attempt has been made to map the Stockmayer fluid on to

DHSs [98]. In 2008, the author reported phase separation in the DYHS fluid for dipole

interaction strengths up to µ2/εYσ
3 = 36 (see Chapter 7.4.1), significantly higher than

the upper limit proposed by Szalai et al. in 1999 [92] (see Sec. 7.4.1).

Why are the new results so different from those in earlier works? One possible reason

is that many of the pioneering studies employed the Gibbs-ensemble MC technique [70]

which is almost certainly going to fail when there is very strong particle association in

both the dilute and concentrated coexisting phases [99]; the probability of accepting

simultaneous particle deletion in one box and particle insertion in the other is so low

that convergence becomes practically impossible. Even single-box simulation techniques,
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such as constant-pressure MC simulations, have convergence problems due to the low

probability of accepting volume changes in low-density systems with almost-percolating

networks of particles. In recent times, grand-canonical ensemble simulations have be-

come the method of choice for examining condensation transitions, but these too can

run in to problems due to the low probabilities of inserting or deleting particles from

extended clusters.

Various strategies have been attempted for sneaking up on purely dipolar systems, start-

ing from models which are relatively easy to simulate. In 2007, the author studied

so-called charged hard dumbbells charged hard spheres fused into cation-anion pairs

with centre-centre separation d; DHSs correspond to the limit d/σ → 0, and the ex-

trapolation of critical parameters for systems in the range 0.1 ≤ d/σ ≤ 0.25 yielded

estimates for the DHS critical temperature and critical density of kBTcσ
3/µ2 = 0.153(1)

and ρcσ
3 ' 0.1, respectively. In 2008, Almarza et al. [100] studied mixtures of apolar

and dipolar hard spheres; extrapolating vapour-liquid critical parameters to the limit of

vanishing apolar-sphere concentration yielded estimates for the DHS critical parameters

of kBTcσ
3/µ2 = 0.153(3) and ρcσ

3 = 0.06(5), very close to those obtained by the author

for the charge hard dumbbells model. However, while these results hint at the existence

of vapour-liquid separation in DHS, a large-scale finite-size simulation study of DYHS

by the author contradicts these findings.

In the following, results for the charged hard dumbbells are presented in Chapter 6, and

for the dipolar Yukawa system in chapter 7.



Chapter 6

Vapour-liquid condensation in

charged hard dumbbells

6.1 Introduction

This chapter makes an approach towards vapour-liquid coexistence in dipolar fluids by

studying so-called charged hard dumbbells (CHDs) [58] with extensive MC simulations.

Each CHD is made up of two oppositely charged hard spheres with diameters σ and

charges ±q, fused at a centre-centre distance d; see Fig. 6.1(a). When d = σ the

transition is very similar to that in the restricted primitive model (RPM) of ionic fluids

[13, 101, 102]; in the RPM, oppositely charged ions associate at low temperature to

form ion pairs that resemble CHDs [58, 103], and see Fig.4.1 in Chapter 4. As d/σ → 0,

and with the temperature scaled accordingly, the CHD model can be mapped on to

DHSs with dipole moment µ = qd. Hence, the CHD model provides a convenient bridge

between ‘ionic’ condensation (typified by the RPM, and CHDs with d/σ = 1) and pure

dipolar condensation.

6.2 Simulation details

(45:315:0.5); d; σ; Two oppositely charged hard spheres with diameters σ and The

ionic interaction potential is qiqj/Dr where D = 4πε0. Reduced units for the CHD

model are as follows: ‘ionic’ temperature τ i = kBTDσ/q
2; ‘dipolar’ temperature τd =

kBTDσ
3/µ2 = τ iσ2/d2; reduced density ρ∗ = ρσ3, where ρ = N/V is the number

of CHDs (N) in a volume V . Grand-canonical Monte Carlo (GCMC) simulations

were performed using a cubic simulation cell with periodic boundary conditions applied.
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Figure 6.1: Configurations of CHDs: (a) side-by-side, antiparallel arrangement; (b)
nose-to-tail, parallel arrangement; (c) vapour phase with d/σ = 0.5 at τd = 0.0777 and
ρ∗ = 0.0055; (d) vapour phase with d/σ = 0.1 at τd = 0.126 and ρ∗ = 0.0035.

Coulomb interactions were evaluated using Ewald sums with conducting boundary con-

ditions [18]. CHD translations and rotations were effected through attempted deletions

and random insertions. Multicanonical preweighting as described in Chapter 2 was used

to overcome the free-energy barrier separating coexisting phases; the weighting function

W (N) was iterated during each simulation to achieve uniform sampling across the full

range of density. Simulations at each state point consisted of between 109 and 1010

insertion/deletion attempts, and the particle number and configurational energy E were

recorded at intervals of 100-500 such attempts. Histogram reweighting was used to com-

bine data obtained with different chemical potentials and temperatures to form the joint

probability distribution function P (N,E) from which thermodynamic functions can be
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computed over the ranges of parameters sampled in the simulations. Coexisting phases

were identified by equating the temperatures, chemical potentials, and pressures. The

complete procedure (comprising multicanonical preweighting, histogram reweighting,

and the determination of phase coexistence) was implemented as described in Ref. [53].

The lengths of the simulations (total of ∼ 2 CPU years) precluded a finite-size scaling

study of the critical behaviour, and so one system size (L/σ = 12.5 or 13) was adopted

for each value of d/σ. Estimates of the critical parameters were obtained by fitting

the coexistence densities to the equation ρ± = ρc + At ± Btβ, where ρc is the critical

density, t = |T − Tc|/Tc, Tc is the critical temperature, and β = 0.326 is the 3D-Ising

order-parameter exponent 1.

6.3 Results

Coexistence curves in the ρ∗-τd plane are shown in Fig. 6.2. The results indicate that the

condensation transition exists all the way down to almost purely dipolar hard particles

(d = 0.1σ). Beyond this point, the simulations became intractable due to the extent

of aggregation. At low densities the simulations become trapped in sharp, local energy

minima corresponding to configurations of system-spanning chains. This is a finite-

size effect and it does not imply that condensation disappears for d < 0.1σ. Alternative

simulation methods may not improve the situation because the characteristic lengthscale

in the fluid is comparable to the box length; the only cure may be to increase the box

length by an order of magnitude.

Critical parameters are summarised in Table 6.1; the quoted uncertainties were taken

from the fitting procedure only, and are therefore underestimates. The critical tem-

perature and critical density at d/σ = 1 are in good agreement with earlier finite-size

scaling values of τ ic = 0.04911(3) and ρ∗c = 0.0505(15) [102], which justifies the simula-

tion procedure. The results are also comparable to those for the RPM [13] (also shown

in Table 6.1) and a related ‘tethered dimer’ fluid [101]. The CHD ionic critical temper-

ature decreases with decreasing d because of the reduction in the dipole moment, but

the dipolar critical temperature remains finite.

Figure 6.3(a) shows τdc and ρ∗c as functions of d/σ. As d/σ is decreased, the critical tem-

perature increases monotonically and shows a linear dependence for d/σ < 0.3. Fitting

a straight line to the critical temperatures in the range d/σ < 0.3 yields an apparent

critical temperature for DHSs (d/σ → 0) of τdc ' 0.153 ± 0.001. This is in surprisingly

1The near-critical data are not suitable for fitting the leading correction-to-scaling term ∝ tβ+∆

with any confidence. Apparent critical parameters vary by a few percent if classical or fitted effective
exponents are used. Ising-exponent fits are sufficient to demonstrate the existence of the transition, and
the crossover between ionic and dipolar regimes.
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Figure 6.2: Vapour-liquid coexistence curves for CHDs with, from top to bottom,
d/σ = 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, and 1: (open symbols) GCMC simulation results;
(lines) fits; (filled symbols) fitted critical points.

d/σ L/σ τ ic τdc ρ∗c
1 13 0.04900(7) 0.04900(7) 0.0556(2)

0.75 13 0.03612(4) 0.06422(8) 0.0655(1)
0.5 13 0.02157(4) 0.0863(2) 0.0749(5)
0.25 13 0.007585(5) 0.12136(7) 0.0885(9)
0.2 12.5 0.005114(6) 0.1279(1) 0.0960(9)
0.15 12.5 0.003024(4) 0.1344(2) 0.0958(8)
0.1 12.5 0.001401(3) 0.1401(3) 0.0933(8)

RPM FSS 7–12 0.05069(2) n/a 0.0790(3)

Table 6.1: Apparent critical parameters of the CHD fluid. For comparison, the critical
parameters for the RPM fluid from Ref. [13] are shown in the last line.

good agreement with the rough estimate of τdc = 0.15-0.16 made in Ref. [65]. In 2008,

Almarza et al. [100] studied mixtures of apolar and dipolar hard spheres; extrapolating

vapour-liquid critical parameters to the limit of vanishing apolar-sphere concentration

yielded estimates for the DHS critical temperature of kBTcσ
3/µ2 = 0.153(3), in excellent

agreement with our results. The apparent critical densities do not vary in a well-defined
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way, although these are notoriously difficult to determine accurately because of the flat-

ness of the coexistence curves near the critical point. Nonetheless, a DHS critical density

of ρ∗c ' 0.1 seems reasonable. This value is again supported by the study of Almarza et

al. [100] who extrapolate to ρ∗c = 0.06(5).

Even though the critical temperatures as a function of dumbbell elongation d fall on a

perfect straight line for low d and only up to the smallest value of d considered here,

is highly questionable whether these extrapolations are robust. It might seem unlikely

for a new mechanism to emerge in the narrow range 0 < d/σ < 0.1 and prevent the

transition to occur, however, anticipating the results of Chapter 7, such a phenomenon

indeed appears to exist. Nevertheless, it is instructive to study how the phase behaviour

of CHDs is affected by the dumbbell elongation d as done in the following.

Figure 6.3: (a) Critical temperature (open symbols) and critical density (filled symbols)
for CHDs as functions of d/σ. The line is a linear fit to the critical temperatures
for 0.1 ≤ d/σ < 0.3. (b) Interaction energy of two CHDs at contact in side-by-side
antiparallel (dashed line) and nose-to-tail parallel (solid line) arrangements.



Vapour-Liquid condensation in charged hard dumbbells 82

The characteristics of condensation in the two regimes d/σ < 0.3 and d/σ > 0.3 are dif-

ferent. It is useful to first compare the energies of two CHDs at contact in the antiparallel

side-by-side and parallel nose-to-tail arrangements illustrated in Figs. 6.1(a) and 6.1(b),

respectively. The energies are plotted in dipolar units in Fig. 6.3(b). The nose-to-tail

conformation becomes energetically favourable over the side-by-side conformation when

d/σ < 0.3163. It might therefore be anticipated that when d/σ . 0.3 the condensation

is ‘dipolar’ and the coexisting phases contain extended chain-like aggregates, and when

d/σ > 0.3 the condensation is ‘ionic’ in the sense that the coexisting phases contain

more isolated compact clusters such as those in the RPM at coexistence [103]. This is

indeed the case, as evidenced by Figs. 6.1(c) and 6.1(d) which show simulation snapshots

of vapour phases near coexistence at relative temperature 0.9τdc . With d/σ = 0.5, the

clusters are more compact and neighbouring particles are preferentially aligned side-by-

side. With d/σ = 0.1, the vapour exhibits extensive chain-like aggregates. A similar

crossover in cluster structure is apparent in fluids of dipolar hard spherocylinders and

dumbbells as the hard-core aspect ratios are varied [99, 104].

The structure of the coexisting vapour and liquid phases is reflected in the correlation

functions hl1l2m(r), as defined in the Introduction [Eqns. (1.37)-(1.39)]. Taking the unit

orientation vector on molecule i to be parallel with its dipole vector, h110(r) discriminates

between side-by-side and nose-to-tail conformations of neighbouring particles. h110(r)

was measured in canonical MC simulations of N = 128 CHDs in the vapour and liquid

phases near coexistence at relative temperature 0.9τdc . For comparison, simulations of

DHSs were also carried out at comparable densities, and at a temperature of τd = 0.138,

approximately 0.9 times the critical temperature determined from Fig. 6.3(a). Figures

6.4(a) and 6.4(b) show h110(r) in vapour and liquid phases of CHD systems with d/σ = 1

and d/σ = 0.1, and of the DHS system. To aid comparison, the abscissas are scaled

by the separation of two nose-to-tail CHDs at contact. In both the vapour and liquid

phases of the system with d/σ = 1, h110(r) is large and negative close to the side-by-

side contact separation σ, reflecting antiparallel alignment of the dipoles. Correlations

die off rapidly beyond that distance. By contrast, the system with d/σ = 0.1 exhibits

pronounced correlations between parallel dipoles at integer values of the nose-to-tail

contact separation σ + d, reflecting chaining; in the vapour phase, the negative ‘blip’ at

r . σ+d arises from rare instances of the side-by-side conformation. The DHS results are

qualitatively similar, although the nose-to-tail correlations are more pronounced. This

demonstrates that the CHD model with d/σ = 0.1 sports the characteristic structural

features of the DHS fluid.

A comparison of structures can also be made in reciprocal space via the static struc-

ture factor S(q) [defined in Eq. (1.36)]. Simulation results for low- and high-density

phases are shown in Figs. 6.4(c) and 6.4(d), respectively. S(q) in the CHD system with
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d/σ = 0.1 is almost identical to that in the DHS fluid at the same density and at the

same relative temperature, provided that the wavevectors are scaled by the nose-to-

tail separation (σ + d): features at q(σ + d) ' 2π are due to near neighbours in the

nose-to-tail conformation; in the vapour phases, the low-wavevector ‘divergence’ of S(q)

signals aggregation [88]. By contrast, there are clear differences between the results

for the CHD system with d/σ = 1, and those for DHSs. In the liquid, the position

of the first major peak in S(q) (qσ ' 4.5) corresponds to a real-space separation of

2π/q ' 1.4σ. This separation may correspond to the orientationally averaged distance

of closest approach for two dumbbells, which would signal the presence of nose-to-tail

and side-by-side conformations.

Figure 6.4: h110(r) and S(q) in vapour and liquid phases near coexistence at relative
temperature 0.9τdc : (a) h110(r) in the vapour phase; (b) h110(r) in the liquid phase;
(c) S(q) in the vapour phase; (d) S(q) in the liquid phase. Systems and parameters:
CHDs with d/σ = 1, τd = 0.0441, ρ∗vap = 0.0040, ρ∗liq = 0.15 (black dot-dashed lines);
CHDs with d/σ = 0.1, τd = 0.126, ρ∗vap = 0.0035, ρ∗liq = 0.30 (red dashed lines); DHSs,
τd = 0.138, ρ∗vap = 0.0035, ρ∗liq = 0.30 (green solid lines).

As stated in the Introduction, Tlusty and Safran have put forward a mechanism of

dipole-driven coexistence based on not only the density difference between the coexisting

phases, but also the topologies of the aggregates in the coexisting phases [8]. The low-

density chain-like phase is characterised by ‘end’ defects, particles at the ends of chains

with only one near neighbour. The high-density ‘network’ phase is characterised by



Vapour-Liquid condensation in charged hard dumbbells 84

branching points, particles with three near neighbours. To explore this possibility, the

fractions of particles with n near neighbours, xn, have been calculated: x1 and x3 signal

end and ‘Y’ defects, respectively. Two particles were assigned as near neighbours if any

two spheres on different particles were within a distance 1.1σ. In the CHD system with

d/σ = 0.1, the results for coexisting vapour and liquid phases at relative temperature

0.9τdc are {x1 = 0.42, x3 = 0.02} and {x1 = 0.17, x3 = 0.39}, respectively. These

are to be compared with results for the DHS system at the same densities and relative

temperature 0.9τdc – {x1 = 0.14, x3 = 0.01} in the vapour and {x1 = 0.08, x3 = 0.34} in

the liquid. Hence, the simulation results are broadly in line with the scenario proposed

by Tlusty and Safran: the dilute phase is rich in ‘end’ defects, while the dense phase is

rich in ‘Y’ defects.

6.4 Discussion

In summary, vapour-liquid coexistence in CHD fluids shows a crossover between ‘ionic’

and ‘dipolar’ regimes. The ionic regime is characterised by isotropic aggregation whereas

the dipolar regime features long chains of CHD aligned in ‘nose-to-tail’ fashion. Severe

sampling problems, caused by very strong chaining, were encountered for CHDs with a

value of the elongation parameter d < 0.1. Still, the structure of the CHD fluid with

d = 0.1 bears close similarity to that of the DHS fluid, indicating that the dumbbell

model used here presents a viable approach for simulating properties of almost dipolar

hard spheres with good accuracy. For small values of the dumbbell elongation parameter

d, a linear relationship between the critical temperature τdc (in dipolar reduced units)

is observed. Extrapolation to the DHS limit yields reduced critical parameters of τdc '
0.153 and ρ∗c ' 0.1. Agreement is found between the structure of CHD with small d and

the mechanism of phase separation in dipolar fluids proposed by Tlusty and Safran [8].

It is important to emphasise, however, that the agreement between their picture and

small-d CHD structural features does not imply that the vapour-liquid transition exists

in the limit d→ 0; it only provides an insight into what drives phase separation in nearly

point dipolar fluids. These findings are therefore in agreement with the study of Yukawa

dipolar hard spheres (DYHS: DHS with an attractive isotropic interaction of the Yukawa

type) which will be presented in the next chapter: Phase separation can be observed if

the Yukawa attraction is larger than a threshold value and the structure of coexisting

vapour and liquid phases is in good agreement with Tlusty and Safran’s picture. A

possible explanation for the absence of a phase transition in pure DHS has been put

forward by Miller et al [105]: These authors consider a model of charged dumbbells

with soft repulsive cores and provide evidence that, for small values of d, the system

suffers dynamical arrest, leading to a percolating gel phase at a temperature and density
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range where the spinodal line should be located. The existence of a dynamically arrested

phase could preempt phase separation from occurring on macroscopic timescales. At the

same time, one might argue that the phase transition exists but can only be observed

in much larger systems which exclude the possibility of a system-spanning chain, i.e. a

chain which is linked with itself via the periodic boundary conditions and thus stabilised,

with artificially induced percolation. Clearly, larger system sizes need to be studied in

order to exclude this possibility. The next chapter attempts to gain more insight on this

matter.





Chapter 7

Vapour-liquid condensation in

dipolar hard spheres with

attractive Yukawa interaction

7.1 Introduction

The preceding chapter investigated the model of charged hard dumbbells in order to

shed light on the question whether or not there exists vapour-liquid separation in dipolar

hard spheres (DHS). In that study, the dumbbell elongation d serves as an adjustable

parameter which bridges the inter-particle force behaviour between ionic (large d) and

dipolar (small d). The crossover behaviour of the phase transition between ionic and

dipolar regimes was examined and extrapolation to the DHS limit d → 0 was made,

suggesting a vapour-liquid critical point located at T ∗c ' 0.153 and ρ∗c ' 0.1 in dipolar

reduced units. However, the reliability of the extrapolation is questionable due to the

likely presence of strong finite-size effects. These finite-size effects arise mainly from the

fact that DHS form long chains at low temperatures which can be artificially stabilised

by the periodic boundary conditions if they reach a system-spanning length. A reliable

study of vapour-liquid criticality in DHS thus calls for the simulation of large systems

which in turn needs very efficient simulation methods. This chapter attempts to satisfy

these requirements by studying so-called dipolar Yukawa hard spheres (DYHS), given

by the DHS potential and an additional attractive isotropic Yukawa interaction [see

Eq. (5.4)]. This pair potential is computationally cheaper to evaluate than CHD because

only one site with long-range interaction has to be considered per particle, as opposed

to two for CHD. At the same time, DYHS can bridge between ‘normal’ condensation,

87
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mediated through isotropic interactions, which occur at large values of the isotropic

interaction strength εY, and purely dipolar interactions for εY → 0.

With results for large system sizes, this chapter provides accurate grand-canonical re-

sults for phase coexistence and critical points of the DYHS fluid in the limit of van-

ishing Yukawa interaction strength. Phase diagrams are presented for DYHS with

0 ≤ µ2/εY σ
3 ≤ 36 while for even higher dipole strengths, only critical points were

identified in order to keep the computational effort manageable. The problems of sam-

pling and convergence are tackled by employing biased particle insertions and deletions,

with some filtering rules to speed up the identification of unfavourable moves. As well

as coexistence data being presented, some comparisons are made between the DHS and

DYHS fluids in terms of thermodynamic functions and structural properties. This chap-

ter is organised as follows: The biased sampling scheme is devised in Section 7.2. In

Section 7.3 the simulation methods are presented. The results are presented in Section

7.4, and Section 7.5 contains a critical discussion of the results obtained so far. Parts of

this work have been published in [106] in affiliation with Prof. G. N. Patey and Dr P. J.

Camp, and in [107] in affiliation with Dr Yu. V. Kalyuzhnyi and Dr I. A. Protsykevytch,

and Dr P. J. Camp.

7.2 Efficient sampling methods for dipolar hard spheres

The usual formulation of the Metropolis solution to the detailed balance condition

[Eq. (1.18), see Section 1.2.1] assumes implicitly that the trial moves leading to dis-

placement or rotation of particles, are chosen randomly from all available possibilities

within the entire configurational part of phase space Q for which the system is defined.

This sampling procedure works well for simple systems such as, e.g., a Lennard-Jones

fluid at moderate densities, but for more complex models it cannot generate a large

number of uncorrelated states within reasonable computer time and will fail to provide

accurate statistical expectation values. The cause of this misery is that an unbiased

generation of trial moves leads to a large fraction of high energy configurations with a

vanishingly small acceptance rate. Therefore, much computation time is wasted with

the evaluation of the energy of trial states which do not contribute towards propagating

the system through phase space.

It is possible to devise biased sampling schemes which improve computational efficiency

by using two different strategies:
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1. Variance reduction – The trial move is chosen according to its Boltzmann weight

from a subset of proposed moves. Sampling is therefore directed towards important

regions of phase space which reduces the statistical error.

2. Early rejection – Trial moves are classified according to their acceptance probability

and directly rejected if this probability is below a given threshold, without having

to evaluate their computationally expensive full Boltzmann weight.

Both methods can only provide an increase in efficiency if they employ an approximate

way of estimating the Boltzmann weight of a trial configuration which is computa-

tionally faster to calculate than the true potential used in the Metropolis acceptance

criterion1. Both schemes can increase the simulation efficiency dramatically by orders

of magnitude, thus rendering feasible problems which are otherwise prohibitive in their

computational demands. For historical reasons, the name associated with the variance

reduction method is the Rosenbluth scheme which will be henceforth used. This sec-

tion will describe both the Rosenbluth scheme and the early rejection method for the

generation of biased trial moves of strongly interacting dipolar particles.

7.2.1 Generation of biased trial moves

In the Rosenbluth scheme, trial moves are generated approximately in accordance with

the limiting Boltzmann probability distribution of the Monte Carlo Markov chain. The

Metropolis sampling algorithm Eq.( 1.18) thus rarely has to reject a proposed move and

the Markov chain quickly propagates through phase space. The trial move generating

process can be formally introduced by decomposing the stochastic transition matrix Π

(Section 1.2.1) into a Hadamard product2 of two separate matrices,

Π = acc ·α (7.1)

where acc is a matrix of Boltzmann transition probabilities and α is a matrix describing

the probabilities of what trial move to generate. Inserting this definition of Π into

the Metropolis solution to the detailed balance condition, Eq. (1.18), one finds the
1This is strictly only true for if rigid particles are simulated. In the case of flexible multi-segment

particles like polymers, the variance reduction method can employ the true potential for biasing the
placement of the individual segments separately and achieve a significant increase in efficiency[108].

2The Hadamard product is also known as the entrywise Schur product and is defined for two matrices
A,B of the same dimensions as (A ·B)ij = AijBij . It is commutative, unlike matrix multiplication.
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acceptance rule

ΠonPo = ΠnoPn

acconαonPo = accnoαnoPn

∴

acc(o→ n) = min
[
1,
Pn
Po
· αno
αon

]
(7.2)

which will converge towards the limiting Boltzmann distribution, independent of α. It is

clear from the above equation, that if αij = Pj , all proposed trial moves will be accepted.

A practical implementation of the Rosenbluth sampling scheme will therefore strive to

generate trial moves according to the target Boltzmann distribution. In the crudest

fashion, this can be realised by generating a set of K trial candidate configurations

Γ ∈ {Γ1,Γ2, ...,ΓK} and selecting one Γj from this set according to its Boltzmann

weight calculated with some approximate, computationally cheap energy function U(Γ).

αij =
exp [−βU(Γj)]∑K
k=1 exp [−βU(Γk)]

(7.3)

It may come somewhat as a surprise that the results obtained with a biasing scheme

which employs an approximate energy function and furthermore only samples K discrete

trial configurations still obey the correct limiting Boltzmann distribution. However, we

can easily check the requirements for a correct Markov chain. As detailed balance is

obeyed by construction in Eq. (7.2), it only needs to be verified that acc and α are

row-stochastic matrices. Due to the commutative property of the Hadamard product

this can be done separately for each matrix and the following shows that α is indeed

row-stochastic, regardless of the value of K:

K∑
j=1

αij =
K∑
j=1

exp [−βU(Γj)]∑K
k=1 exp [−βU(Γk)]

= 1 (7.4)

Given that α is row-stochastic, construction of the matrix elements accon via the detailed

balance condition ensures that acc is row-stochastic as well.

7.2.2 Early rejection scheme

The local environment of strongly interacting particles is often characterised by very

narrow distributions, in terms of how neighbours are geometrically arranged. Most

randomly generated Monte Carlo trial moves will therefore not be accepted as they

have a low probability of being generated in accordance with the local environment.
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Using the Swendsen-Wang (SW) scheme [109, 110], it is possible to classify trial moves

according to an a priori criterion and directly reject moves with a probability depending

on this criterion. For example, if it is known that almost all particles in a system have a

minimum nearest neighbour interaction energy Unn ≤ Umin, then typically one would like

to skip evaluation of an expensive pair potential with all particles if the computationally

cheap nearest neighbour interaction energy is greater than Umin. Formally, the SW

scheme can be introduced as transition probabilities into the detailed balance condition

[111]:

acconα
SW
on Po = accnoα

SW
no Pn

acc(o→ n) = min
[
1,
Pn
Po
· α

SW
no

αSW
on

]
(7.5)

The factor αSW
no /α

SW
on can be taken to be a step function depending on the energy dif-

ference ∆Ũon between Γo and Γn, calculated with an approximate, computationally

effective pair potential Ũ(Γ):

αSW
no

αSW
on

= Θ(∆Ũon)

=

1 if ∆Ũon ≤ Umin

0 reject according to some fixed probability
(7.6)

There is considerable freedom as to which rejection criterion to use. A straightforward

way is to decide on an approximate energy function, e.g., only the real-space energy if the

Ewald summation technique is used, and to run an unbiased simulation, keeping track of

the average energy change of a successful MC move. A certain percentage threshold of

this average energy can then be used as the a priori criterion for the biased simulation

involving SW filtering rules.

7.2.3 Application to grand-canonical simulation of strongly dipolar flu-

ids

Simulations in the grand-canonical ensemble rely on particle insertions and deletions,

and so sampling becomes very difficult at low temperatures where practically all parti-

cles are part of a stiff polymer-like network. The orientation of each dipole is strongly

influenced by the local electric field, which is dominated by contributions from its near

neighbours. Any unbiased insertion algorithm that generates trial positions and orienta-

tions at random will therefore be highly ineffective because the probability of appending

a new particle to an existing chain in just the right position and orientation is low.



L/V condensation in dipolar hard spheres with attractive Yukawa interaction 92

Similarly, random deletion moves will fail in most cases because the majority of parti-

cles are part of linear chains and huge energetic penalties are associated with breaking

these favourable conformations. An effective insertion/deletion algorithm must therefore

meet the following requirements: for insertions, dipole orientations must be chosen in

accordance with the local electric field and particles should preferably be appended to

existing chains; deletions should preferably remove particles from the ends of existing

chains.

Caillol has given a solution to the orientational problem [5] for the Gibbs and NV T

ensembles. This solution was adapted for the grand-canonical ensemble to facilitate the

simulations reported in Ref. [106]. As the interaction energy of a chosen dipole µ with

other dipoles is given by U = −µ ·E, where E is the local electric field at the position of

the chosen dipole, the Boltzmann factor for a given orientation relative to the direction

of E is

exp(βµ ·E) (7.7)

and the Boltzmann probability distribution function of enclosed angles θ between µ and

E is:

P (θ) =
exp [−β|µ||E| cos(θ)]

π∫
0

exp [−β|µ||E| cos(θ)] sin(θ)dθ

=
exp [β|µ||E| cos(θ)](

e2β|µ||E| − 1
)
e−β|µ||E|/(β|µ||E|)

(7.8)

The fact that the integral which appears in the definition of P (θ) can be worked out

analytically allows for the significant advantage that a trial orientation can be drawn

directly from the correct distribution through inversion of the cumulative distribution

function of P (θ) as discussed in Appendix A. To do this, it is sufficient to generate a

random number R uniformly on [0, 1] and obtain the enclosed angle from

cos(θ) =
1

β|µ|E|
ln [2R sinh (β|µ||E|) + exp (−β|µ||E|)]. (7.9)

Therefore, it is not necessary to generate a set of trial orientations as discussed above

for the Rosenbluth scheme. Because the direction of the electric field is dominated

by the local environment, it is computationally economic and relatively accurate to

estimate E using only the nearest neighbours at the position of the particle which is to

be inserted/deleted. [106], using only the particles located in a central cell and its 26

immediate neighbouring cells to compute E.

No highly effective biasing scheme is available to solve the the problem of appending and

deleting particles from existing chains. Nonetheless, SW filter rules can be employed to
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increase the simulation convergence rate by a large factor. Crucial to the SW scheme is

that a quick and sufficiently accurate predictor for the acceptance of a proposed move is

available. For strongly dipolar particles, a good predictor is based on the scalar product

of the dipole vector and the approximate local electric field at the insertion/deletion

position.

As shown in Ref. [58], it is also beneficial to attempt insertions with a higher frequency

than deletions for dipolar particles in conjunction with the SW filtering scheme. This

can be understood by noting that random insertions will rarely generate a configuration

with a high Boltzmann weight resulting in a large fraction of early rejections. Deletions,

on the other hand, take place among existing configurations which by definition are

energetically favourable resulting in very few early rejections.

The Metropolis acceptance probabilities for insertion (N → N + 1) and deletion (N →
N−1) – taking in to account the SW filter, orientational biasing, and increased insertion

probability – are thus given by

acc(N→N+1) = min
[
1,Θ(|µ||E| cos θ)

1− pins

pins

1/2
P (θ)

zV e−β∆U

N + 1

]
(7.10)

acc(N→N−1) = min
[
1,Θ(|µ||E| cos θ)

pins

1− pins

P (θ)
1/2

Ne−β∆U

zV

]
(7.11)

where Θ(|µ||E| cos θ) is the SW filtering rule, pins is the probability of attempting an

insertion, P (θ) is the biasing probability associated with generating an orientation in

accordance with the local electric field and the factors of 1/2 result from P (θ) for the

creation/destruction of particles in the ideal gas reservoir connected to the simulation

box.

Comparison of the above biased sampling scheme to dipolar hard spheres with a com-

pletely unbiased GCMC simulation [using the Monte Carlo acceptance rule Eq. (1.25)]

serves to demonstrate the correctness of the acceptance rules Eq. (7.11). Simulation

convergence was monitored by calculating the density-density autocorrelation function

C(τ) = 〈δρ(τ)δρ(0)〉 where δρ(τ) = ρ(τ) − 〈ρ〉 and τ is the simulation CPU time. The

decay times for C(τ) with the sampling scheme outlined here are roughly decreased

by a factor of three for a small system with V = 512σ3 whereas a larger system with

V = 1000σ3 already shows a factor of 10 in efficiency increase when compared with unbi-

ased simulations (see Fig. 7.1). This scaling with system size reflects that the evaluation

of the pair potential requires CPU time proportional to the square of the system size

and that a significant fraction of ‘bad’ trial moves are skipped by the Swendsen-Wang

filter. The results reported here used the biased sampling scheme with an enhanced

insertion probability of pins = 0.95, a SW energy cutoff of E∗min = −1.25 (in reduced

units, see Sec. 7.3) and the approximate local electric field was computed by employing
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a spatial cell decomposition with width 1.25σ of the simulation box, summing only over

particles contained within the cell centred at the insertion/deletion position and its 26

immediate neighbouring cells.
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Figure 7.1: Number density time autocorrelation function C(τ) for biased and unbiased
GCMC simulation of dipolar hard spheres. The autocorrelation time is proportional to
the long-time limit of the integral of C(τ).

7.3 Simulation details

The DYHS potential is given in Eq. (5.4). Reduced units are defined in the conventional

way: reduced temperature T ∗ = kBTσ
3/µ2; reduced Yukawa energy parameter ε∗Y =

εYσ
3/µ2; reduced dipolar interaction parameter (µ∗)2 = µ2/εYσ

3 = 1/ε∗Y; reduced

number density ρ∗ = ρσ3. With such a definition for ε∗Y, the DHS limit corresponds to

ε∗Y = 0.

GCMC and NV T simulations of the DYHS fluid were performed in a cubic box of

volume V = L3, with periodic boundary conditions applied [16, 18]. The box lengths

spanned the range 10 ≤ L/σ ≤ 22.5, depending on the other system parameters. The

long-range dipolar interaction was handled using the Ewald summation method with

conducting boundary conditions; the screening parameter was taken to be αL = 6,
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and the reciprocal space vectors were restricted to the domain |k| ≤ 6 × 2π/L. The

calculation of real-space interactions used lookup tables with Newton-Gregory forward

interpolation [18], and the trigonometric functions that appear in the reciprocal-space

Ewald sum were efficiently vectorised using Intel’s optimised Math Kernel Library. For

the Yukawa potential, a long-range correction was applied in the normal way by assuming

that g(r) = 1 for r > L/2. The phase diagrams to be presented in Section 7.4.1 were

obtained with the GC-WLEXT flat histogram sampling method at fixed temperature

as described in Section 2.2.3. For the determination of the critical points shown in

Sec. 7.4.2, GCMC simulations were employed using the biased sampling scheme as

detailed in Sec. 7.2. The pair correlation functions shown in Section 7.4.4 were obtained

from NV T simulations which employed a simultaneous translation/rotation move with

the displacement chosen at random and the orientation at the new position generated

according to Eq. (7.8).

7.4 Results

7.4.1 Phase diagrams

Phase diagrams for the DYHS fluid with ε∗Y = {1/4, 1/9, 1/16, 1/25, 1/36} and one

system size L∗ = 10 are shown in Fig. 7.2. Coexistence data were fitted with the

truncated Wegner-type expansions,

ρ± = ρc ± (A0t
β +A1t

β+θ) + (B0t
1−α +B1t) + . . . (7.12)

where α = 0.11, β = 0.326, and θ = 0.54 are the usual Ising critical exponents [112], ρ+

and ρ− are the liquid and vapour coexistence densities, respectively, and t = |T −Tc|/Tc.
Fig. 7.3 compares the shape of the phase diagrams on a corresponding-states plot. A

clear trend to a wider coexistence envelope towards the DHS limit is apparent, however,

this might just reflect the fact that finite-size effects become more important in this

limit. One finds in general that the coexistence densities are shifted inward towards the

mean density as system size is increased [113].

7.4.2 Critical points

For values of the interaction parameter ε∗Y < 1/36, the computational effort needed to

accumulate accurate statistics becomes so high that it is not practicable to obtain the

critical parameters by fitting a universal scaling function to coexistence densities ob-

tained at several temperatures. Instead, an alternative approach was taken by using the
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
Concentration  ρ / ρ

c

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

T
em

pe
ra

tu
re

  T
 / 

T
c

ε
Y

=0, (µ*)
2
=1

ε
Y

=1/4, (µ*)
2
=1

ε
Y

=1/9, (µ*)
2
=1

ε
Y

=1/16, (µ*)
2
=1

ε
Y

=1/25, (µ*)
2
=1

ε
Y

=1/36, (µ*)
2
=1

Figure 7.3: Corresponding state phase diagrams for DYHS with different εY.



L/V condensation in dipolar hard spheres with attractive Yukawa interaction 97

Table 7.1: Critical parameters for the DYHS fluid. The critical temperatures Tc were
determined by finite-size scaling (FSS) fits to results from simulations with the box
lengths L indicated; the critical densities ρ∗c are those from simulations with the largest
box lengths. For comparison, the critical parameters as obtained from fitting the trun-
cated Wegner type expansions (see Sec. 7.4.1, Eq. (7.12) to the phase diagrams for
L∗ = 10 are also shown. Note that there are no FSS estimates for the system with
ε∗Y = 0.0278. Results are also shown for the apolar Yukawa hard sphere fluid, corre-
sponding to (µ∗)2 = 0 [107, 114]. For comparison with the Stockmayer fluid results in
Section 4.2.3, the ratio of dipolar to isotropic interaction strength is also expressed in a
set of units with ε∗Y fixed at unity and the dipole moment scaled accordingly (col. 3).

ε∗Y T ∗c (µ∗)2 kBTc/εY ρ∗c L/σ

0.0125 0.16660(27) 80 13.328(22) 0.0907 15, 17.5, 20, 22.5
0.01875 0.186493(49) 53.3333 9.9463(26) 0.1021 15, 17.5, 20, 22.5
0.025 0.19966(12) 40 7.9862(50) 0.1143 15, 17.5, 20, 22.5
0.0278 0.2061(46) 36 7.42(17) 0.1201(39) 10 (Wegner type fit)
0.04 0.222423(95) 25 5.5606(24) 0.1392 15, 17.5, 20
0.04 0.2227(23) 25 5.567(58) 0.1465(33) 10 (Wegner type fit)
0.0625 0.251456(65) 16 4.0233(10) 0.1687 10, 15, 17.5
0.0625 0.25255((65) 16 4.041(10) 0.1730(23) 10 (Wegner type fit)
0.11111 0.30802(13) 9 2.7722(12) 0.2149 10, 15, 17.5
0.11111 0.30921(66) 9 2.7829(59) 0.2143(15) 10 (Wegner type fit)
0.25 0.46203(41) 4 1.8481(16) 0.2665 10, 15, 17.5
0.25 0.46190(54) 4 1.8476(22) 0.2682(15) 10 (Wegner type fit)

0 1.2090(18) 0.3184(18) 10 (Wegner type fit)
0 1.212(2) 0.312(2) 9 – 21 (Ref. [114])

mixed-field finite-size scaling method introduced by Bruce and Wilding [115]. Briefly, at

the apparent finite-size critical point, the probability distribution of the ordering oper-

ator M = ρ− su, (where u = U/V is the energy density) falls on to a universal scaling

curve, which was assumed to be that of the three-dimensional Ising model pIsing(M)

[116]. (Note that ‘dipolar’ criticality has been stated as belonging to a distinct univer-

sality class [15] but that the exponents, and presumably the critical ordering-operator

distribution, differ only minutely from the Ising results. In any case, the matching of

the bimodal distribution serves as a pragmatic means of locating a critical point [117].)

GCMC simulations were performed at near-critical conditions where bimodal distribu-

tions of the particle number were observed. For each system, up to 100 independent

simulations were performed and the joint probability distributions p(N,U) were mea-

sured. The results were combined using multiple histogram reweighting [118] in order

to find the temperature, chemical potential, and non-universal parameter s that pro-

vide the best fit to the universal distribution pIsing(M). The apparent finite-size critical

temperatures Tc(L) then scale like

Tc(L)− Tc ∝ L−(θ+1)/ν (7.13)



L/V condensation in dipolar hard spheres with attractive Yukawa interaction 98

0.1985

0.199

0.1995

T
c*(

L
)

0.1855

0.186

0.1865

T
c*(

L
)

0 0.0004 0.0008 0.0012

L
-(1+θ)/ν

0.162

0.164

0.166

T
c*(

L
)

ε
Y

 = 0.025

ε
Y

 = 0.01875

ε
Y

 = 0.0125

Figure 7.4: MFFSS plots for the apparent finite-size critical temperature plotted against
L−(1+θ)/ν for systems with ε∗Y = 0.0125, 0.01875, and 0.025. The points are from
simulations, and the lines are fits from Eq. (7.13).

where θ = 0.54 and ν = 0.6294 are the correction-to-scaling and correlation-length

exponents, respectively, for the (assumed) three-dimensional Ising universality class.

Examples of MFFSS plots are shown in Fig. 7.4 for systems with ε∗Y = 0.0125, 0.01875,

and 0.025; in each case, the system sizes considered were L/σ = 15, 17.5, 20, and 22.5.

The uncertainties in T ∗c quoted in Table 7.1 are associated with the fitting procedure, and

not with systematic errors from any other source. The critical densities showed almost

no meaningful finite-size dependence, and so the values reported in Table 7.1 are simply

those for the largest systems simulated. Note that it was possible to observe a vapour-

liquid critical point for dipolar interaction strengths almost two orders of magnitude

greater than the Yukawa energy parameter εY.

Fig. 7.5 shows a plot of the dipolar critical temperatures T ∗c against ε∗Y. With smaller

values of ε∗Y, T ∗c follows a sub-linear variation. It was found heuristically that the

simulation data could be fitted with a simple function of the form

T ∗c (ε∗Y) = Aε∗Y +B + C arctan (Dε∗Y). (7.14)

There is no physical justification for this choice of function, but the combination of

a simple saturation function and a linear term does fit the simulation data very well:
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the fit parameters are A = 1.0894(24), B = −34.12060(24), C = 21.84370(15), and

D = 45907(571). (Note, though, that the value of A represents the extrapolated value

of kBTc/εY at (µ∗)2 = 0, and that it deviates from the actual values of approximately

1.21 given in Table 7.1.) A näıve extrapolation of the fitted function suggests that

the critical temperature reaches zero at ε∗Y ' 0.0025, implying that there is no phase

separation in the DHS limit (ε∗Y = 0). Attempts were made to find the vapour-liquid

critical point in a system with ε∗Y = 0.01, for which Eq. (7.14) predicts that T ∗c ' 0.155;

simulations as far down as T ∗ = 0.135 did not show any sign of phase separation.
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Figure 7.5: Critical temperature T ∗c against the Yukawa energy parameter ε∗Y. Pluses
are the FSS data from Table 7.1. The solid line is the fit from Eq. (7.14). The crosses
indicates simulation results at ε∗Y = 0.01 for which no phase separation could be ob-
served. Inset: Enlargement of the region of highest curvature to show the quality of the
fit. No phase separation could be observed in the temperature range T ∗ = [0.155, 0.135]
at ε∗Y = 0.01.

The critical density ρ∗c against ε∗Y is shown in Fig. 7.6. The data points for ε∗Y < 0.05

appear to fall on a straight line, and a fit to the equation ρ∗c(ε
∗
Y) = A+Bε∗Y yields the

parameters A = 0.0693(16) and B = 1.776(60). A is an estimate of the critical density

of DHSs, in good agreement with the results for the charged hard dumbbells, Chapter 6,

and the work of Almarza et al [100].

A discussion of the significance of these results is postponed until Section 7.5, before

which results for the thermodynamic and structural properties will be presented.
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Figure 7.6: Critical density ρ∗c against ε∗Y. The solid points are the data from Table
7.1. The solid line is a linear fit to the data for ε∗Y < 0.05.

7.4.3 Thermodynamics

It is interesting to ask how such small values of the Yukawa energy εY, almost two

orders of magnitude smaller than the characteristic dipolar energy µ2/σ3, have such a

strong effect on whether a vapour-liquid transition can be seen in computer simulations.

To examine the role of the energy, NV T MC simulations of N = 1024 particles were

conducted for the DHS fluid, and for a DYHS fluid with ε∗Y = 0.0125 (the smallest

value for which the transition can still be observed in simulations). For the purposes

of comparison, a single isotherm with T ∗ = 0.15 was considered; this is about 10%

below the critical temperature for the DYHS system, and about 2% below the putative

critical temperature for DHSs, T ∗c,DHS ' 0.153. The potential energies as functions of

the reduced density ρ∗ are shown in Fig. 7.7. The potential energy for DHSs levels off

for densities ρ∗ ≥ 0.1, but over the range considered, the variations are only on the order

of 0.1kBT per particle. For the DYHS system, two sets of data are shown: the total

energy – dipolar plus Yukawa – which drops by about 0.3kBT per particle in the range

0.025 ≤ ρ∗ ≤ 0.3; and the dipolar energy only, which mirrors that of the pure DHS fluid

quite closely.
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It is also of interest to ask in which way the isotropic interaction part of the energy is

responsible for the phase separation mechanism. For this, it is instructive to look at the

Zwanzig expression for a free energy perturbation:

∆F = −kBT ln
〈
exp

[
−β(H′ −H0)

]〉
0

(7.15)

Here, H′ refers to the perturbed Hamiltonian while H0 is the Hamiltonian corresponding

to the ensemble over which the average is taken. Application of Eq. (7.15) to ensemble

averages obtained from finite computer simulation amounts to a first-order perturbation

theory as the free energy perturbation is only evaluated using configurations character-

istic of the original Hamiltonian. Starting from an original Hamiltonian which incor-

porates a high enough value of εY such that phase separation is observed, one would

expect the Zwanzig expression to predict vanishing phase separation as εY is reduced if

only the energetic contribution of the isotropic interaction energy is responsible for phase

separation. Fig. 7.8 shows number density probability distributions P (N) for a system

simulated using a Hamiltonian H0 with ε∗Y = 0.04 and perturbed H′ with ε∗Y = [0, 0.08].

It is obvious that the changes due to different εY only have very minor effects which
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allows to unambiguously conclude that the role of the isotropic interaction energy is to

induce structural changes which lead to phase separation.

In the classical picture of vapour-liquid phase separation, the vapour phase is of high

energy, high enthalpy, and high entropy, while the liquid phase is of low energy, low

enthalpy, and low entropy. The temperature-driven transition at fixed pressure is there-

fore dictated by balances of enthalpy and entropy. The pressure at low temperature is

anomalously low (a consequence of strong clustering) and so the addition of the PV

term to the energy is not going to change the picture very much; a further variation of

0.1-0.2kBT per particle over the density range considered is all that is to be expected

[65]. It is clear that the classical picture does not apply to DHSs, and it is questionable

whether it is relevant for the DYHS system either. Alternative scenarios include the

defect-driven mechanism proposed by Tlusty and Safran [8]. The relevant structural

properties of the DHS and DYHS fluids will be discussed next.
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7.4.4 Pair correlation functions

Fig. 7.9 shows the projections of the molecular pair correlation function on to rotational

invariants [20, 84], determined from canonical MC simulations with N = 1024 particles.

Two systems are considered, the DHS fluid and the DYHS fluid with ε∗Y = 0.0125, at

reduced densities of ρ∗ = 0.025 and 0.3 and at the same dipolar temperature T ∗ = 0.15

(as in Section 7.4.3). In order to bring the results for dilute and concentrated phases

on to the same scale, the functions hl1l2m(r) are multiplied by ρ∗. Fig. 7.9(a) shows the

total pair correlation function h000(r) = h000(r) − 1. The essential point is that for a

given density, the results for the DHS and DYHS fluids are almost identical, the only

noticeable difference being that the peaks are slightly higher and the troughs are slightly

shallower in the DYHS fluid than in the DHS fluid; presumably this can be put down to

the additional isotropic attraction. For the most part, all of the remaining projections

shown in Fig. 7.9(b)-(d) exhibit similar features. h112(r) shows a more pronounced

deviation between the DHS and DYHS results at high concentration. This projection

mirrors the dipolar interaction potential, and the DYHS system seems to possess longer-

range correlations of this type. This explains the slightly lower dipolar energy for the

DYHS system shown in Fig. 7.7. As expected, the functions h110(r) and h220(r) rapidly

decay to zero meaning that there is no ferroelectric or nematic ordering at these low

densities.
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Table 7.2: Mean cluster sizes n̄ for the DHS fluid and the DYHS fluid with ε∗Y = 0.0125,
at a dipolar temperature T ∗ = 0.15 and at various reduced densities ρ∗. Results are
given for different energy cutoffs uc.

ρ∗ = 0.025 ρ∗ = 0.05 ρ∗ = 0.1 ρ∗ = 0.2 ρ∗ = 0.3
System ucσ

3/µ2 n̄ n̄ n̄ n̄ n̄

DHS -1.0 27.20 29.01 29.74 28.89 28.44
DYHS -1.0 27.02 28.82 29.85 29.53 29.66
DHS -1.1 19.09 19.20 18.30 15.59 13.40
DYHS -1.1 18.80 18.73 17.85 15.19 13.29
DHS -1.2 13.24 13.01 12.17 10.02 8.38
DYHS -1.2 13.07 12.65 11.73 9.66 8.18
DHS -1.3 9.06 8.85 8.28 6.88 5.76
DYHS -1.3 8.97 8.62 7.98 6.62 5.62
DHS -1.4 6.12 5.99 5.66 4.82 4.12
DYHS -1.4 6.08 5.86 5.49 4.66 4.03
DHS -1.5 4.11 4.03 3.85 3.39 2.98
DYHS -1.5 4.08 3.96 3.76 3.29 2.93

7.4.5 Clustering

The characteristic structural feature of dipolar fluids at low temperatures is the presence

of chains and networks. The impact of such clustering on experimentally accessible

scattering functions in colloidal ferrofluids is well known [88, 90, 98]. Weis and co-workers

have provided in-depth analyses of cluster distributions [69, 119]. Tlusty and Safran

have described the structure theoretically in terms of ‘end’ and ‘Y’ defects [8]. The most

simple measure of clustering is the mean cluster size n̄. Again, the comparison made here

is between the DHS fluid and the DYHS fluid with ε∗Y = 0.0125, at a fixed temperature

of T ∗ = 0.15. Table 7.2 shows results for n̄ determined in NV T MC simulations of

N = 1024 particles at various reduced densities in the range 0.025 ≤ ρ∗ ≤ 0.3. Two

particles were considered to be bonded if the dipolar interaction energy between them

was less than some cutoff uc. Using this energy criterion, the system of N particles was

partitioned in to a set of disjoint clusters, and the mean cluster size n̄ was computed.

The choice of uc is somewhat arbitrary, so results for several values of uc in the range

−1.5µ2/σ3 ≤ uc ≤ −µ2/σ3 are shown in Table 7.2. The essential point is that, in terms

of the mean cluster size, the DHS fluid shows a slightly higher degree of clustering than

the DYHS fluid, but only to the extent of a few percent. A reasonable explanation

could be that the isotropic Yukawa interaction increases the possibility of excursions

from the ideal nose-to-tail parallel conformation of neighbouring dipoles, resulting in

dipolar interaction energies that do not satisfy the clustering criterion. In any case, the

deviations are tiny.

To shed more light on the cluster structure, coordination-number histograms have been
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constructed, this time using a distance cut-off criterion of rc = 1.1σ. To simplify the

analysis, and to make contact with the defect-based theory of Tlusty and Safran [8],

each particle has been placed in to one of three categories: ‘free end’, which contains

particles with either 0 or 1 nearest neighbour within a distance rc; ‘ideal chain’, which

contain those particles with 2 nearest neighbours and thus belong to chains; and ‘branch’,

which contain those particles with 3 or more nearest neighbours. Histograms have been

computed in NV T MC simulations of the DHS fluid, and DYHS fluids with ε∗Y = 0.0125

and ε∗Y = 0.025, at a temperature T ∗ = 0.15 and at densities in the range 0.025 ≤
ρ∗ ≤ 0.3; the results are shown in Fig. 7.10. In all cases, with increasing density the

proportions of particles in the ‘free end’ and ‘ideal chain’ categories decrease, while the

proportion of ‘branch’ particles increases. This is broadly in line with the defect-based

theory of Tlusty and Safran [8]. At all densities, increasing the Yukawa interaction

parameter disfavours ‘free ends’ and ‘ideal chains’, but favours ‘branches’. This is easily

explained by the decreasing net anisotropy of the interactions with increasing ε∗Y.

Figure 7.10: Coordination-number histograms for the DHS fluid (red, left-hand bar),
and DYHS fluids with ε∗Y = 0.0125 (green, central bar) and ε∗Y = 0.025 (blue, right-
hand bar), at a temperature T ∗ = 0.15 and at densities in the range 0.025 ≤ ρ∗ ≤ 0.3.
The particles are divided in to three categories: ‘free end’, which contains particles with
either 0 or 1 nearest neighbour; ‘ideal chain’, which contain those particles with 2 nearest
neighbours and thus belong to chains; and ‘branch’, which contain those particles with
3 or more nearest neighbours.
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7.5 Discussion

In this chapter, phase coexistence data from large-scale grand-canonical simulations of

dipolar hard spheres (DHSs) interacting with an additional isotropic attractive Yukawa

potential, termed dipolar Yukawa hard spheres (DYHSs) are presented. In contrast to

prior work a biased particle insertion/deletion Monte Carlo algorithm was employed

which has facilitated the study of DYHS model in the vicinity of the limit of vanish-

ing isotropic interactions. Critical parameters are presented for systems with Yukawa

interaction strengths down to ε∗Y = 0.0125, meaning a well depth almost two orders of

magnitude smaller than the characteristic dipolar interaction parameter µ2/σ3. Simula-

tions closer to the DHS limit fail to indicate phase separation but for intermediate and

large values of the isotropic interaction parameter, a linear variation of T ∗c with ε∗Y is

observed.

However, in the low-ε∗Y regime the linear relationship is violated with T ∗c decreasing

quickly as ε∗Y is lowered. These findings suggests that the transition disappears before

the DHS limit is reached. To gain insight on the differences between the DYHS fluid and

the DHS fluid, the configurational energy, pair correlation functions, and cluster statis-

tics have been examined as functions of temperature along a low-temperature isotherm

(below the putative critical temperatures). An analysis of the configurational energy

shows that even at the highest density considered, the difference between the DYHS

and DHS systems is only of order 0.1kBT per particle. Projections of the molecular

pair correlation function on to rotational invariants are qualitatively similar in the two

systems, with only small relative variations in the peaks and troughs. The mean cluster

sizes within the two systems differ by only a few percent. The coordination-number

histograms for both types of fluid are qualitatively similar, showing decreasing propor-

tions of particles with 0/1 and 2 nearest neighbours as the density is increased, while

the proportions of particles with 3 or more nearest neighbours increases. Increasing

the Yukawa interaction parameter disfavours particles having 0/1 and 2 neighbours, but

favours particles having 3 or more neighbours.

Frustratingly, there are no clear differences between DYHS which marginally show phase

separation and DHS in the various quantities measured so far. Therefore, the conclusions

are necessarily speculative. With this caveat, two alternative scenarios are proposed

which will hopefully help focus future studies.

Scenario 1: Phase separation does not exist in the DHS fluid. This is the most obvious

conclusion suggested by the simulation results; however, many people have fallen in to

this trap before. If this is the correct scenario, then some subtle physics has yet to be

uncovered which would explain the apparently different phase behaviour between the
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DHS and DYHS systems, and the abrupt disappearance of the phase transition when

the isotropic interactions are reduced below a critical level. One possible explanation

is as follows. In the theory put forward by Tlusty and Safran, vapour-liquid phase

separation is considered a demixing transition between ‘end’ and ‘Y’ defects, each type

of defect making its own contribution to the total free energy of the fluid [8]. Phase

separation is predicted for particular ranges of the energetic costs per defect, with the

critical temperature and density being dictated only by the values of these energetic

parameters. If the theory is correct then the defect energies in the DYHS fluid must

be within the necessary ranges for phase separation to occur. Specifically, the energetic

cost of an ‘end’ defect ε1 and the energetic cost of a ‘Y’ defect ε3 must satisfy the

relationship ε1 > 3ε3; see Eq. (3) of reference [8]. It is possible that with the bare

dipolar interaction potential, the defect energies are outside of the ranges necessary for

phase separation. This would explain the sudden disappearance of the transition as the

DHS limit is approached, and is less dramatic than other scenarios such as the existence

of a preemptive freezing transition [87], gel formation [120], or a shrinking region of

stability of the vapour phase as in some patchy colloids [121].

Scenario 2: Phase separation cannot be observed in finite-size systems accessible at

present. If phase separation exists in dipolar fluids, and if the mechanism is of the kind

proposed by Tlusty and Safran [8], then perhaps the fundamental problem facing sim-

ulations is one of finite size. As the isotropic energy parameter in the DYHS system is

reduced, the net anisotropy of the interactions increases, leading to a ‘stiffer’ network

and fewer branching points. Perhaps the simulation cell cuts off structures on longer

lengthscales, affecting the free energies of the defects, and particularly the ‘Y’ defects?

This kind of effect might perturb the relevant free energies of ‘ends’ and ‘Ys’ to a suf-

ficient extent to preclude phase separation. This is not an easy problem to overcome.

It is going to be some time before such accurate calculations can be performed on sys-

tems with linear dimensions at least one order of magnitude larger than at present, in

order to confirm or deny this scenario. It should be noted, that this scenario is not sup-

ported by the finite-size analysis carried out in Section 7.4.2. Näıvely, one would expect

an anomalous free energy dependence on the system size to affect e.g., the scaling law

Eq. (7.13). However, absolutely no anomalous system-size effects in the analyses of the

critical points could be observed. Still, one needs to be cautious as it is not straight-

forward to foresee how such finite-size effects would couple to the critical temperature

dependence.



Chapter 8

Conclusion

Two different topics in computer simulation of phase separation were investigated in

this work: (i) Application and development of flat histogram sampling methods and (ii)

the phenomenon of phase transition in dipolar fluids.

* * *

In Part I, a unifying framework is devised to derive Monte Carlo sampling schemes

based on the Wang-Landau (WL) algorithm which facilitates flat histogram sampling.

The framework yields uniform sampling rules for thermodynamic states given either by

the mechanically extensive variables (WLEXT scheme) appearing in the Hamiltonian

or, equivalently, uniformly sample the thermodynamic fields which are conjugate to

these mechanical variables (CFRW scheme). The methods are evaluated in Chapters 3

and 4 by simulating a classical lattice Hubbard model, and vapour-liquid transitions in

the Lennard-Jones fluid, charged soft spheres, and Stockmayer fluids with high dipole

strengths.

The advantage of the WLEXT scheme is that ensemble averages can be calculated at

any thermodynamic state point by simple reweighting. The CFRW scheme on the other

hand seems to converge faster but is limited by the chosen discretisation width of the

thermodynamic fields to be sampled. The WLEXT scheme asymptotically reaches a level

of uncertainty which does not decrease if the simulation is continued. In comparison,

the CFRW scheme employs normal Boltzmann MC sampling for each state point with

statistical errors inversely proportional to the square-root of the run length.

For both algorithms considered, it is possible to sample multiple variables in a single

simulation. However, for the WLEXT scheme we have found that in practice this is

only possible for small systems and it is much more efficient to concentrate the sampling
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effort on a single variable to be uniformly sampled, and to run multiple simulations.

The CFRW scheme appears to suffer not as much from this drawback but, as noted

beforehand, produces less information because it is limited to a certain range and dis-

cretisation of thermodynamic field variables. On the other hand, there are many cases

where only a certain range of e.g. temperatures is of interest so that CFRW allows one

to focus on the relevant range whereas normal WL sampling will need to sample all

energies the system can attain because it cannot be determined

One particularly effective sampling scheme is given by uniform sampling of particle

numbers in the grand-canonical ensemble at fixed temperature. This method is found

to work well even when applied to the Stockmayer fluid at high dipole strengths, an

example of a complex fluid which is difficult to sample using conventional Monte Carlo

algorithms.

* * *

Part II examines the question whether a vapour-liquid phase transition exists in systems

of particles with purely dipolar interactions, a topic which has been the subject of a

longstanding debate. Monte Carlo simulation results for two different ways of tackling

this issue are presented. One approach examines the phase behaviour of fluids of charged

hard dumbbells (CHD), each made up of two oppositely charged hard spheres with

diameters σ and separation d. In the limit d/σ → 0, and with the temperature scaled

accordingly, this system corresponds to dipolar hard spheres (DHS) while for larger

values of d ionic interactions are dominant. The crossover between ionic and dipolar

regimes was examined and a linear variation of the critical temperature T ∗c in dipolar

reduced units as a function of d is observed, giving rise to an extrapolated T ∗c,DHS ' 0.15.

The second approach focuses on the dipolar Yukawa hard sphere (DYHS) fluid, which is

given by a dipolar hard sphere and an attractive isotropic interaction εY of the Yukawa

tail form. In this case, the DHS limit is obtained for εY → 0. It is found that T ∗c depends

linearly on the isotropic interaction strength εY over a wide range, coinciding with the

results for the CHD model and extrapolating to a similar value of T ∗c,DHS. However, with

the use of specially adapted biased Monte Carlo techniques which are highly efficient, it

is shown that the linear variation of T ∗c is violated for very small values of the Yukawa

interaction strength, almost two orders of magnitude smaller than the characteristic

dipolar interaction energy. It is found that phase separation is not observable below

a critical value of the Yukawa energy parameter, even though in thermodynamic and

structural terms, the DYHS and DHS systems are very similar. It is suggested that either

some very subtle physics distinguishes the DYHS and DHS systems, or the observation

of a phase transition in DHSs is precluded by finite-size effects. At present, there is no
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clear indication of how to discriminate between these two scenarios, or of alternative

scenarios. Despite several decades of theoretical and simulation work, the question of

whether a vapour-liquid phase transition exists in systems of particles with purely dipolar

interactions still does not seem to have been settled definitively.





Appendix A

Transformation of probability

distributions

The following1 describes how to transform a probability distribution function (PDF) f(x)

for the occurrence of a sample x into an equivalent PDF g(y) for the event y = y(x).

We require the transformation y = y(x) to be unique such that there is an unambiguous

mapping between x and y. This necessitates y(x) to be a monotonous function of

x since any other behaviour implies the existence of multiple valued correspondences

y = y(x). A physical requirement is that the transformation must conserve probability.

We therefore have in the monotonic increasing case:

f(x)dx = prob(x ≤ x′ ≤ x+ dx)

g(y)dy = prob(y ≤ y′ ≤ y + dy)

Physical equality of the differential probabilities yields:

f(x)dx = g(y)dy

g(y) =
f(x)

dy/dx

If the transformation is monotonously decreasing, implying dy/dx < 0, we obtain:

g(y) =
f(x)
−dy/dx

1This section is essentially derived from the “Computational Science Education Project”,
http://www.phy.ornl.gov/csep/mc/mc.html with contributions from N. Drakos. Here, only the essential
background is stated to lay out the basis for Metropolis importance sampling.
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This leads to the final transformation rule, as both PDF’s g(y) and g(x) are necessarily

positive:

g(y) =
f(x)
|dy/dx|

A useful transformation is the special case where g(y) draws samples y according to

cumulative distribution function (CDF) of f(x). Consider the following manipulation

y(x) = F (x) =

x∫
−∞

f(x′)dx′

dy(x)
dx

= f(x)

∴

g(y) =
f(x)
|dy/dx|

= 1; y ∈ [0, 1]

which allow us to rewrite an integral according to some PDF f(x),

〈a〉 =

x1∫
x0

a(x)f(x)dx

to a simpler integral

〈a〉 =

1∫
0

a [x(y)] dy.

In the context of Monte Carlo sample-mean integration with K discrete samples xi
obtained at random and uniformly on the interal [x0, x1], we have thus

〈a〉 =
(x1 − x0)

K

K∑
i=1

a(xi)f(xi)

=
1
K

K∑
i=1

a [x(yi)] .

where the samples x(yi) are obtained by generating a uniform number yi ∈ [0, 1] and then

inverting the CDF y(x) to find xi. The above results can now be applied to derive the

Monte Carlo importance sampling scheme as applied to integrals of an observable a(Γ)

according to the Boltzmann distribution f(Γ) over phase space coordinates Γ ∈ (P,Q):

〈a〉 =
∫

(P,Q)

a(Γ)f(Γ)dΓ.
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Sampling Γi according to the inverse CDF of f(Γ), phase-space averages therefore be-

come simple arithmetic averages:

〈a〉 ≈ 1
K

K∑
i=1

a [Γi] .
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