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Abstract

Many signal transduction pathways in eukaryotic cells are controlled by the reversible

assembly of proteins into signalling complexes that integrate and transmit signals from

cell surface receptors to the cytoplasm and nucleus. Protein phosphorylation on serine,

threonine and tyrosine residues plays a key role in these events by creating binding sites

for modular protein-interaction domains to allow proteins to associate with one another,

and regulating the activitiy ofmany enzymes and transcription factors.

The extracellular signal regulated kinase (ERK) cascade is one of the most intensively

studied signalling pathways in mammalian cells. ERK 1 and 2 have been shown to

regulate gene expression programmes in response to extracellular signals, including

gonadotrophin releasing hormone (GnRH), which binds to a G-protein coupled receptor

(GPCR). However, many questions remain to be answered regarding the proximal events

that lead to the activation of the ERK cascade by GnRH.

A HEK 293 cell line, stably expressing the rat GnRH receptor, was used to investigate

the mechanism of ERK activation by GnRH. ERK activation was found to be dependent

on cell adhesion to the extracellular matrix, and required an intact actin cytoskeleton.

Through the use of specific pharmacological inhibitors and by expression of dominant

negative cDNA constructs, ERK activation was found to be mediated by the Rho family

GTPase Racl, and the non-receptor tyrosine kinases focal adhesion kinase (FAK) and

Src. FAK was found to function as a tyrosine phosphorylated scaffold upon which key

components of the ERK cascade assembled.

Having established a role for Src in the activation of ERK, a proteomics study was

undertaken to identify novel Src binding proteins that may be involved in the regulation

of GnRH receptor signalling. Through a combination of immune precipitation, two-

dimensional gel electrophoresis and matrix assisted laser desorption ionisation-time of

flight (MALDI-ToF) mass spectrometry, Src was found to associate with the lipid kinase
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diacylglycerol kinase t, (DGKQ. This interaction was found to be required for GnRH to

stimulate DGK^ enzyme activity. By phosphorylating the second messenger molecule

diacylglycerol to produce phosphatidic acid, DGK^ may play an important role in

regulating GnRH receptor signalling.

In this thesis, a potential mechanism of ERK activation is described for the GnRH

receptor, with Src playing a key role in this pathway. In addition, Src was found to be

involved in the activation of DGK^, and is therefore implicated in the regulation of

diacylglycerol signalling. This is the first report of an interaction between Src and DGK(^.
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Literature review

Introduction

This literature review is divided into two parts. In the first part, modular protein- and

lipid-interaction domains are introduced, and their role in controlling the activity and

substrate specificity of protein kinases are discussed. Src and the conventional and novel

protein kinase C (PKC) isozymes are given as examples. In the second part,

Gonadotrophin releasing hormone (GnRH) physiology is introduced and GnRH receptor

signalling discussed. Emphasis is placed on the role of interaction domains and protein

kinases in this process.

Signal transduction in eukaryotic cells

Virtually every aspect of cellular function within a metazoan organism is controlled by

external signalling molecules, either in the form of soluble hormones or proteins

anchored to the membrane of adjacent cells or the extracellular matrix. These factors

exert their effects by binding to receptors on the surface of the cell and activating a

myriad of intracellular signal transduction pathways. Over the past two decades,

considerable advances have been made in the field of signal transduction and have

demonstrated that many signalling pathways in eukaryotic cells are regulated by the

reversible assembly of protein complexes, which integrate and transmit signals from

receptors to the cytoplasm and nucleus (Pawson and Scott, 1997).

Many proteins involved in intracellular signalling are constructed in a modular fashion

from domains that have enzyme activity or mediate molecular interactions. These

interaction domains target proteins to specific subcellular localisations, provide a means

for recognition of post-translational modifications or chemical second messengers,

nucleate the formation of signalling complexes, and control the conformation, activity,

and substrate specificity ofmany enzymes (Pawson and Nash, 2003). Thus, they assist in
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maintaining the fidelity of signal transduction. As a result mutations in these domains

contribute to a number of pathological conditions, including cancer (Tartaglia et al.,

2001; He et al., 2002).

Modular interaction domains

Modular interaction domains often fold independently with their N- and C-termini

closely apposed in space, allowing them to be readily incorporated into proteins in a

manner that leaves their ligand-binding surface available (Pawson and Nash, 2003). This

feature is thought to have facilitated the evolution of complex signalling pathways in

eukaryotic cells, as they can be incorporated into proteins to create new connections and

bestow new functions. Indeed, several interaction domains are present in hundreds of

copies in the genome of mammals (Venter et al., 2001). Evolution therefore appears to

have used a limited set of domains, joined together in a combinatorial fashion, to direct

the actions ofmany enzymes (Pawson and Scott, 1997; Pawson and Nash, 2003).

Modular interaction domains can usually be identified through their consensus amino

acid sequences, allowing the binding properties of proteins to be predicted (Copley et al.,

2002). They recognise exposed sites on their protein partners or bind the charged head

groups of phospholipids, with dissociation constants in the low nanomolar to high

micromolar range. Typically, a protein-interaction domain recognises a core determinant

with flanking residues providing additional contacts and an element of specificity

(Songyang et al., 1993; Gustafson et al., 1995). Post-translational modifications often

complete binding sites, allowing precise control of ligand binding, enzyme activity, and

the assembly of signalling complexes. The most frequently used modification is the

phosphorylation of serine, threonine or tyrosine residues. However, hydroxylation,

acetylation, methylation, ubiquitination and sumoylation of proteins can also function to

control modular interactions (Min et al., 2002; Jacobson et al., 2000; Bannister et al.,

2001; Polo et al., 2002, Melchior, 2000). hi many cases, the affinity of a single domain
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for a peptide motif appears sufficient for a specific interaction to occur between two

proteins in vitro. However, tertiary interactions, sub-cellular localisation and structural

organisation of interacting proteins are also likely to contribute to selectivity in vivo

(Pawson and Nash, 2003).

In the following discussion emphasis is placed on Src homology 2 (SH2), Src homology

3 (SH3), C kinase homology 1 (CI) and C kinase homology 2 (C2) domains, which

regulate the activity of many enzymes and are therefore important modulators of signal

transduction. SH2 and SH3 domains were among the first protein-interaction modules to

be described, and have been shown to recognise phosphotyrosine motifs and proline rich

sequences in their protein partners, respectively (Anderson et al., 1990; Ren et al., 1993).

They are frequently found together in the non-receptor tyrosine kinases, where they

regulate the activity of the catalytic domain and its interaction with target molecules

(Pellicena et al., 1998; Schaller et al., 1999). CI and C2 domains were first identified in

conventional and novel PKC isozymes, and were found to bind diaclglycerol and

phosphatidylserine, respectively (Newton, 1997). Subsequently, they have been identified

in a wide range of cytoplasmic proteins and additional ligands have been discovered.

Numerous structural and biochemical studies have provided many details of the

mechanisms of ligand binding for these important domains.

SH2 domains

The SH2 domain was originally defined in the retroviral oncoprotein v-Fps as a sequence

of approximately 100 amino acids that regulated the function of the catalytic domain and

its interaction with target proteins in the host cell (Sadowski et al., 1986). Related

sequences were identified in Src family kinases, leading to the 'Src homology domain'

nomenclature, with the catalytic domain designated SHI. Subsequently, SH2 domains

were identified in many proteins involved in signal transduction and were found to bind
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phosphotyrosine motifs in receptor tyrosine kinases and cytoplasmic proteins alike

(Anderson et ah, 1990; Mayer et ah, 1991).

The SH2 fold (Figure 1) consists of a seven-stranded (3-meander that is sandwiched on

either side by an a-helix (Waksman et ah, 1992). The spine of the domain comprises an

anti-parallel P-sheet formed from strands PA, PB, PC, PD and PG, which divide it into

two functionally distinct sides. One side, flanked by helix aA, binds the phosphotyrosine

moiety, while the other side, flanked by helix aB and the EF and BG loops, provides

residues that interact with the side chains of the peptide ligand C-terminal to the

phosphotyrosine (Waksman et ah, 1992; Kuriyan and Cowbum, 1997). In most SH2-

ligand structures, the phosphopeptide binds in an extended conformation and lies across

the surface of the domain perpendicular to the axis of the central p-sheet. The SH2-ligand

interaction is of moderate strength (Kd ~ 0.1 pM - 1.0 pM) and analyses of binding

kinetics have shown that the on and off rates are quite high, allowing rapid association

and dissociation of the ligand (Felder et ah, 1993). This feature is common to a number

of interaction domains that recognise phosphorylated motifs and may therefore be

physiologically important given the transient nature of many signal transduction events,

as the balance shifts between the activity of protein kinases and phosphatases (Yaffe and

Elia, 2001; Pawson and Nash, 2003).

Although the specifics of ligand binding vary between individual SH2 domains, the

overall nature of the interaction is well conserved. Phosphotyrosine recognition elements

are provided by residues in aA, PB, pD, and the loop connecting strands PB and pC. The

phosphotyrosine sits in a moderately deep pocket; the backbone of the residue is held in

position by residues in the pD strand, and the phosphate group enters into ionic

interactions with ArgPB5 (Waksman et ah, 1992; Kuriyan and Cowburn, 1997). This

interaction is strictly conserved in all SH2 domains, and mutation of the arginine residue

to alanine significantly inhibits ligand binding (Mayer et ah, 1992). The location of
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PB5

Fps WYH GAI PRSEVQELLK CS G DFLVRES QGKQ EYVLSVLW D

Src WYF GKI TRRESERLLL NPENPR G TFLVRES ETTK G AYCLSVSD FD

Hck WFF KGI SRKDAERQLL APGNML G SFMIRDS ETTK G STSLSVRD YD

Lck WFF KNL SRKDAERQLL APGNTH G SFLIRES ESTA G SFSLSVRD FD

Grb2 WFF GKI PRAKAEEMLS GQRHD G AFLIRES ESAP G DFSLSVKF

She WFH GKL SRREAEALLQ LN G DFLVRES TTTP G QYVLTGLQ R

PA aAl pB pc

Fps G QRPHFII QAA DN LYRL EG DGF S TIPLLIDHLLQS
Src NAK GL NVKHYKI RKL DS G GFYI TSR TQF S SLQQLVAYYSKH
Hck PRQ GD TVKHYKI RTL DN G GFYI SPR STF S TLQELVDHYKKG
Lck QNQ GE WKHYKI RNL DN G GFYI SPR ITF P GLHDLVRHYTNA

Grb2 GN DVQHFKV LRD GA G KYFL WV VKF N SLNELVDYHRST

She G QPKHLLL VDP E G WRT KD HRF E SVSHLISYHMDN

PD PD' pE pF cxA2

Fps QQPIT KK SGI NLR KPC

Src ADGL CH RLT NVC

Hck NDGL CQ KLS VPC

Lck SDGL CT RLS RPC

Grb2 SVSRN QQI FLR DIE

She HLPIIS AGSEL CLQ QPV

PG

Figure 1: Sequence alignment of SH2 domains. Several SH2 domains from non-receptor

tyrosine kinases and adapter proteins are shown, red and blue boxes indicate the positions of a-
helices and P-strands, respectively. The conserved arginine residues at the PB5 position, which
plays a critical role in phosphotyrosine recognition, is highlighted in bold. Adapted from Kuriyan
and Cowburn (1997).
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ArgPB5 is such that in the fully extended conformation, its side chain is just long enough

to interact with the phosphate group of the ligand. The ArgPB5 side chain rises up to

meet the phosphate from the interior of the domain, and in the crystal structures of Src

and Lck SH2 domains it is not solvent accessible in this complex (Kuriyan and Cowbum,

1997). Under these circumstances, formation of the optimal ionic interactions is critical

for phosphate recognition, thus phosphoserine or phosphothreonine are not bound.

Several side chains and backbone groups satisfy the hydrogen bonding potential of the

phosphate group and provide hydrophobic interactions with the aromatic ring of the

phosphotyrosine. However, the nature of these interactions varies with individual SH2

domains. In the case of the SH2 domains of the Src family kinases, there is an amino-

aromatic interaction between ArgaA2 and the phenol ring of the phosphotyrosine

(Waksman et al., 1992; Tong et al., 1996). Such interactions have been observed in a

number of protein structures and can provide stabilisation comparable to that of a

hydrogen bond (Burley and Petsko, 1986). It has been suggested that this type of

interaction is favourable when conventional hydrogen bonding is not possible.

Phosphotyrosine binding provides approximately half of the binding free energy that is

seen with specific phosphopeptides (Bradshaw et al., 1999). The large energetic

contribution of the phosphotyrosine residue to ligand binding therefore strongly

discriminates between phosphorylated and non-phosphorylated sequences. The remaining

free binding energy comes from a network of interactions involving adjacent residues

(Bradshaw and Waksman, 1999). Using phosphopeptide libraries, many SH2 binding

specificities have been identified (Cantley and Songyang, 1994). This pioneering work

established that the three residues immediately C-terminal to the phosphotyrosine are key

determinants of specificity, and that sequence preferences in the targets could be

correlated with particular residues in the SH2 domain. The clearest example of this

correlation is provided for by the residue at the (3D5 position, which contacts the side
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chains of the ligand at the pY+1 and pY+3 positions. The SH2 domains of the Src family

kinases have aromatic side chains at pD5 and preferentially bind peptides containing

polar side chains at the pY+1 position. In contrast, the SH2 domains of PLCy have

hydrophobic residues at 0D5 and preferentially select hydrophobic amino acids at the

pY+1 position (Cantley and Songyang, 1994). Furthermore, by mutating this critical

amino acid, it is often possible to switch the binding specificity of individual SH2

domains (Marengere et al., 1994; Songyang et al., 1995a).

Because SH2 domains play an important role in controlling protein interactions,

mutations in them have been implicated in a number of pathological conditions. For

example, point mutations in the SH2 domain of Bruton's tyrosine kinase cause some

cases of X-linked agammaglobulinaemia (Vihinen et al., 1999). These mutant proteins

cannot interact with their tyrosine phosphorylated substrates during B cell development

(Mattson et al., 2000), resulting in severe B cell deficiency due to the failure of precursor

cells to differentiate in the bone marrow (Noordzij et al., 2002). Point mutations in the

SH2 domain of SAP, a T-cell specific adapter protein that mediates signalling through the

SLAM receptor (Latour et al., 2001), cause X-linked lymphohyperproliferative

syndrome, which is characterised by impaired cytotoxic activities of T cells (Sharifi et

al., 2004) and extreme susceptibility to infection by Epstein-Barr virus (Purtilo et al.,

1975). These studies emphasise the important role played by SH2 domains in maintaining

the fidelity of signal transduction pathways involving the tyrosine phosphorylation of

proteins, and in the physiology of the whole organism.

SH3 domains

SH3 domains are small (55 - 70 amino acid) protein-interaction modules that are found

in many signalling proteins (Pawson, 1995). In addition, they are also present in a

number of proteins involved in the regulation of the cytoskeleton, and may therefore

represent a link between signal transduction pathways and the structural organisation of
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the cell (Musacchio et al., 1992a). The SH3 fold (Figure 2) is highly conserved and

consists of a two-stranded P-sheet and a three-stranded P-sheet packed together

approximately at right angles to form a P-barrel structure (Musacchio et al., 1992b). The

inner face of the P-sheets form a hydrophobic core lined with conserved aromatic

residues, which maintain the structure of the binding site and make contacts with the

peptide ligand (Yu et al., 1992). Determination of SH3-ligand structures by X-ray

crystallography established that the ligand forms a left-handed type II polyproline helix

(Musacchio et al., 1994). Polypeptides with this conformation adopt an extended

molecular scaffold that is well suited to the long shallow groove of the SH3 domain (Yu

et al., 1994). In comparison, an a-helix with an equivalent number of residues would be

approximately half the length. However, the most striking feature of the polyproline type

II helix is its highly regular structure and approximately three-fold symmetry. The helix

has three residues per turn and amino acids at position n and n+3 lie on the same face of

the helix (Adzhubei and Sternberg, 1993).

Polyproline type II helices are ideal mediators of protein-protein interactions as they are

frequently found on the surface of globular proteins (Adzhubei and Sternberg, 1993).

This is because the structure is not internally hydrogen bonded but depends on backbone

solvation for stability (Adzhubei and Sternberg, 1993). The bound peptide interacts with

the SH3 domain by intercalating its side chains into the ladder of aromatic residues that

line the binding site (Feng et al., 1994). Screening combinatorial libraries of proline rich

peptides has identified optimal ligands for a number of SH3 domains (Yu et al., 1994).

Optimal ligands for the SH3 domain of PI-3 kinase have the consensus sequence

R-X-L-P-P-R-P-X-X, where X represents any amino acid other than cysteine, while

ligands for the SH3 domain of Src have a similar consensus sequence,

R-X-L-P-P-L-P-R-<)>, where X represents any amino acid other than cysteine and <j>

represents a hydrophobic residue.
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Sem5 EAVA EHDF QAGSPD ELSFKRGN TLKVLN KDEDPH WYKAEL D GN

Src TFVA LYDY ESRTET DLSFKKGE RLQIVN NTE GD WWLAHS LSTGQ

Hck IWA LYDY EAIHHE DLSFQKGD QMWLE ES GE WWKARS LATRK

Fyn LFVA LYDY EARTED DLSFHKGE KFQILN SSE GD WWEARS LTTGE

Nck2 PAVY KFNY MAERED ELSLIKGT KVIVME KCS DG WWRGSY N GQ

N WMafy
PA PB PC

Sem5 EGFI PSNY IRM TE

Src TGYI PSNY VAP SD

Hck EGYI PSNY VAR VD

Fyn TGYI PSNY VAP VD

Nck2 VGWF PSNY VTE EG

■4 ^ C
PD pE

Figure 2: Sequence alignment of SH3 domains. The SH3 domains from several non-receptor

tyrosine kinases and adapter proteins are shown, blue boxes indicate the position of P-strands.
Adapted from Kuriyan and Cowburn (1997).

24



Comparison of the sequences of many SH3 binding motifs revealed they contain a

conserved P-X-X-P motif (Yu et al., 1994). However, most ligands contain more than

two proline residues. The occurrence of multiple prolines within the ligand may be

favourable because the pyrrolidone rings restrict the conformation of the polypeptide,

thereby promoting the left handed type II helix conformation (Yu et al., 1994). In

particular, additional proline residues are commonly found in the P-2 and P+l positions,

where P represents the first amino acid of the conserved P-X-X-P motif. These residues

are especially suitable for substitution because they point away from the binding surface

of the SH3 domain in the SH3-ligand complex and do not mediate specific contacts.

Rather, proline residues at these sites appear to facilitate SH3 binding by helping to

stabilise the conformation of the ligand and induce the proper spacing and orientation of

key contact residues (Yu et al., 1994). Other amino acids at these positions tend to be

hydrophobic, possibly reflecting packing interactions between the helix and the rest of the

SH3 binding protein (Yu et al., 1994). An unusual feature of the SH3 domain is that

ligands appear to be able to bind in two orientations (Yu et al., 1994; Feng et al., 1994).

The direction in which the peptide binds is determined primarily by charge pairing

between arginine residues in the peptide and acidic residues on the surface of the domain

(Lim et al., 1994).

Because SH3 domains bind to their targets with a relatively small interaction surface,

with limited hydrogen bonding, SH3-ligand interactions tend to be quite weak (Kd ~ 1

- 10 pM). The reliance of binding affinity on hydrophobic interactions, which are

generally less specific than those involving hydrogen bond formation, also results in

relatively promiscuous peptide recognition. Therefore, for many SH3 domains,

specificity requires multiple binding sites and/or tertiary interactions. For example, in

many of the non-receptor tyrosine kinases, SH3 domains compliment SH2 domains in

target recognition, and thereby function to increase the affinity of the kinase for its
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substrates. As a result, mutations in SH3 domains can contribute to a number of

pathological conditions. For example, deletion of the C-terminal 21 amino acids of

the SH3 domain of Bruton's tyrosine kinase causes some cases of X-linked

lymphohypoproliferative syndrome (Zhu et al., 1994). The deletion of these amino

acids causes the domain to adopt a random coil conformation rather than the normal

P-barrel structure (Chen et al., 1996), which prevents it form binding its cognate

ligands.

CI domain

CI domains are small (approximately 50 amino acid) lipid-interaction modules that are

found in many proteins involved in cell signalling, notably the PKCs, diacylglycerol

kinases (DGKs), kinase supressor of Ras (KSR) and Raf-1. They contain the conserved

sequence motif H-X10-12-C-X2-C-Xn-19-C-X2-C-X4-H-X2.4-C-X5.9-C (Zhou et al., 2002)

that is responsible for co-ordinating two Zn2+ ions that are required for the proper folding

of the domain (Quest et al., 1992). The CI domain (Figure 3) belongs to the zinc finger

fold, and consists of two small P-sheets and a very short C-terminal a-helix. The first P-

sheet is formed from strands pi, P4 and p5, and the second from strands P2 and P3. The

C-terminal helix packs against the pi strand to fonn one of the Zn2+ binding sites, while

the other is formed from residues in the loop connecting strand P5 and the C-terminal

helix (Mott et al., 1996; Zhou et al., 2002). The two histidine residues and five of the

conserved cysteine residues are absolutely required for the co-ordination of the Zn2+ ions,

and mutation of any of these residues has a detrimental effect on the structural integrity of

the domain and consequently inhibits ligand binding (Kazanietz et al., 1995).

Biochemical and mutational studies have shown that CI domains bind to membranes via

a combination of electrostatic and hydrophobic interactions. Basic residues around the
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PKCa HKFKIHTY GSP TFC DHCG SLL YGLIHQG MKC DTCD MNV HKQ

PKCS HRFKVYNY MSP TFC DHCG TLL WGLVKQG LKC EDCG MNV HHK

Raf-1 HNFARKTF LKL AFC DICQ KFL L NG FRC QTCG YKF HEH

PKCa CVINV PSLC

PKCS CREKV ANLC

Raf-1 CSTKV PTMC

ffl&S c

a

Figure 3: Sequence alignment of CI domains. The CI domains of PKCa, PKCS and Raf-1 are

shown. Red and blue boxes indicate the positions of a-helices and p-strands, respectively. The six
conserved cysteine residues and the two conserved histidine residues are highlighted in bold.

Adapted from Zhang et al. (1995) and Mott et al. (1996).
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top of the domain make electrostatic contacts with the head groups of acidic

phospholipids such as phosphatidylserine, while the side chains of hydrophobic residues

in the pi-(32 and p3-p4 loops penetrate into the membrane (Bittova et al., 2001; Zhou et

al., 2002). Differences in the amino acid sequence of these loops are thought to determine

the lipid binding specificity of individual CI domains (Mott et al., 1996; Zhou et al.,

2002), though this remains to be fully investigated.

Because CI domains play a crucial role in regulating the activation and subcellular

localisation of several important enzymes, mutations associated with them contribute to a

number of pathological conditions. For example, missense mutations in the CI domains

of PKCy cause some cases of spinocerebellar ataxia, a severe and debilitating hereditary

neurodegenerative disorder that is characterised by progressive loss of gait and motor

function, and by speech and eye movement disturbances (Chen et al., 2003). However,

only neurones in the central nervous system are affected in this disorder, due to the

restricted tissue distribution of PKCy.

C2 domain

C2 domains are a second class of lipid-interaction modules that are found in many

proteins involved in cell signalling, including the PKCs, phospholipase Cs (PLCs),

phospholipase A2 (PLA2), and the synaptotagmins. The C2 fold consists of a compact

anti-parallel (1-sandwich composed of eight P-strands connected by three loops at the top

of the domain and four loops at the bottom (Sutton et al., 1995; Essen et al., 1996; Shao

et al., 1996). There is a high degree of structural homology between C2 domains in their

core P-sandwiches, however, the sequences of the top loops, which are involved in ligand

binding, are much more variable (Rizo and Siidhof, 1998).

Classically, the C2 domains have been divided into two groups based on their mode of

ligand binding. The first group, which includes the C2 domains of the conventional
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PKCs, bind acidic phospholipids in a Ca2+-dependent manner. Five conserved aspartate

residues in the top loops and at the top of the |3-strands (Figure 4) are responsible for

co-ordinating a cluster of two or three Ca2+ ions at the tip of the domain (Rizo and

Siidhof, 1998). In the absence of Ca2+, the negative charges of these aspartate residues

repel the negatively charged head groups of acidic phospholipids, thereby preventing

membrane binding. However, when Ca2+ binds, it causes a major change in the

electrostatic potential of the domain and allows basic residues in the top loops to make

electrostatic contacts with acidic phospholipids (Shao et al., 1997; Ubach et al., 1998).

The co-ordination spheres of the Ca2+ ions are incomplete when bound to the C2 domain

and are fulfilled by interacting with the phosphate head group of phospholipids. Thus, the

Ca2' ions also act as a bridge between the C2 domain and phospholipids (Verdaguer et

al., 1999). Mutation of the conserved aspartate residues to asparagine prevents the co¬

ordination of Ca2+ ions and abolishes membrane binding (Bolsover et al., 2003).

The second group of C2 domains, which includes those of the novel PKCs, bind

phospholipids in a Ca2+-independent manner. These domains lack some or all of the five

aspartate residues that are found in the top loops of the Ca2+-dependent C2 domains and

consequently do not bind Ca2+. These domains appear to bind to membranes through a

combination of electrostatic and hydrophobic interactions (Ochoa et al., 2001). In the

case of the C2 domain of PKCs, Arg26, Arg32 and Arg50 make electrostatic contacts

with acidic phospholipids, while the hydrophobic side chains of Trp23, Ile89 and Tyr92

insert into the membrane (Ochoa et al., 2001).

Mutations in C2 domains are also found in a number of pathological conditions,

where they cause the miss-location of the affected protein. For example, mutations in

the C2 domain of the lipid phosphatase PTEN, which prevent it from efficiently

binding to the plasma membrane, are found in many sporadic primary cancers,

including endometrial carcinomas and glioblastoma multiform (Eng, 2003).
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PKCa AKRGRIYLKAEV AD EKLHVTVRDAKNL IPMDPNGLS DPYVKLKL IPDPKN

PKC(3l ERRGRIYIQAHI DR DVLIVWRDAKNL VPMDPNGLS DPYVKLKL IPDPKS

PS PI P2

PKCa ESKQXTKT IRS TLNPQWNESF TFKLKPSDKDRR LSVEIWDWD RTTRND

PKCpi ESKQKTKT IRS SLNPEWNETF RFQLKESDKDRR LSVEIWDWD LTSKND

P3 p4 P5

PKCa FMGSLSFGVS ELMKMP ASGWYKLL NQE

PKCPI FMGSLSFCIS ELQKAS VDGWFKLL SQE

p6 P7

Figure 4: Sequence alignment of Ca2+-dependent C2 domains. The C2 domains of PKCa and

PKCpi are shown. Blue boxes indicate the position of P-sheets. The five conserved aspartate
residues responsible for the co-ordination of Ca2+ ions are highlighted in bold. Adapted from
Ochoa etal. (2001).
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Protein kinase domain

Protein phosphorylation on serine, threonine and tyrosine residues plays a key role in

many signal transduction pathways, regulating the activity of enzymes and transcription

factors, and creating binding sites for protein-interaction domains (including SH2

domains) to nucleate the formation of signalling complexes. As protein kinases regulate

many aspects of cell growth, differentiation and metabolism, their activities are tightly

regulated. Kinase activity in the wrong place or at the wrong time can have disastrous

consequences, leading to cellular transformation and cancer (Kolibaba and Druker, 1997;

Hanahan and Weinberg, 2000). Indeed, the first oncogene to be discovered, v-Src,

encodes an aberrantly regulated tyrosine kinase (Levinson et al., 1978).

The serine/threonine and tyrosine kinases comprise a large family of homologous

proteins that are related by virtue of their conserved catalytic domains (Hanks and

Hunter, 1995), which catalyse the transfer of the y-phosphate of adenosine triphosphate

(ATP) to the hydroxyl group of serine, threonine or tyrosine, generating adenosine

diphosphate (ADP) (Figure 5). Receptor kinases are activated by their cognate ligands

binding to their extracellular domains, while non-receptor kinases are activated by a wide

variety of intracellular signals downstream of cell surface receptors. Efficient substrate

phosphorylation requires the precise co-ordination of ATP in complex with divalent

cations, usually Mg2+ or Mn2+, and substrate. Comparison of the crystal structures of the

catalytic domains of several protein kinases reveals they adopt a similar conformation in

the active state, reflecting the chemical constraints that must be met for phosphotransfer

(Jeffrey et al., 1995, Canagarajah et al, 1997; Hubbard, 1997; Huse and Kuriyan, 2002).

However, they may adopt different conformations in the inactive state, reflecting the

diverse mechanisms that have evolved to regulate the activity of individual kinases (Huse

and Kuriyan, 2002). Structural and biochemical studies indicate that these regulatory

elements determine kinase activity by impinging upon just a few key components of the
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Figure 5: The protein phosphorylation reaction. Protein kinases catalyse the reversible transfer
of the y-phosphate group of ATP to the hydroxyl group of serine, threonine or tyrosine residues.
The reaction is opposed by protein phosphatases, which catalysed the removal of the phosphate

group.
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catalytic domain (Morgan and De Bondt, 1994; Johnson et al., 1996; Hubbard et al.,

1998).

The catalytic domain of the protein kinases is separated into two lobes (Knighton et al.,

1991). The N-terminal lobe is composed of a five-stranded (1-sheet and one prominent

a-helix, designated aC, while the C-terminal lobe is much larger and is predominantly

helical in structure (Figure 6). ATP is bound in a deep cleft between the two lobes where

it sits beneath a highly conserved loop that connects stands pi and (32. This phosphate-

binding loop contains a conserved glycine rich sequence motif, G-X-G-X-c|)-G, where <j) is

usually an aromatic amino acid. The glycine residues approach the a- and P-phosphate

groups of ATP very closely and help co-ordinate them via backbone interactions, while

the conserved aromatic side chain caps the site of phosphate transfer (Hanks and Hunter,

1995; Huse and Kuriyan, 2002). The adenine ring of the nucleotide is enclosed in a

hydrophobic pocket formed by surrounding residues (Hanks and Hunter, 1995).

Peptide substrates bind to the catalytic domain in an extended conformation across the

front of the nucleotide-binding pocket, and are brought into close proximity to the

y-phosphate group of ATP. A centrally located loop, called the activation loop, provides a

platform for the peptide substrate and interacts with residues adjacent to the

phosphoacceptor. In most protein kinases, this loop is phosphorylated when the catalytic

domain is active. Phosphorylation has been shown to stabilise the activation loop in an

open conformation that is permissive to substrate binding (Yamaguchi and Hendrickson,

1996), however, the number and exact placement of phosphorylation sites varies with

individual kinases. In the unphosphorylated state, the activation loop often collapses back

into the active site to block the binding of ATP and substrate, and is therefore an

important autoinhibitory element for many protein kinases (Hubbard et al., 1994; Xu et

al., 1997).
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ATP binding loop

LRLEVKL GQGCFGE VWMGTW NGT TRVAIKTLK PGTMS PEAFLQEAQVMKKL RHEKLVQ

P1 P2 (33 aC

LYAWS EEPI YIVT EYMSK GS LLDFL KGETGKYLR LPQLVDMAAQIASGMAYVER

P4 P5 cxD aE

Activation loop
MNYVHRDLRAAN ILVG ENLV CKVA DFGLARLIEDNEYTARQGAK FPIKWTA PEAALY

p6 P7 aEF

GRFT IKSDVWSFGILLTELTTKGRVPYPG MVN REVLDQVERG YRMPCPPECP ESLHDLMCQC

aF aG aH

WRKEP EERPT FEYLQAFLE DYFTSTEP

al

Figure 6: Organisation of the catalytic domain of Src. The catalytic domain of Src is shown,
red and blue boxes indicate the positions of a-helices and (3-strands, respectively. The N-terminal
lobe is comprised of strands (31, (32, p3, P4, P5 and helix aC. The C-terminal lobe is comprised of
strands P7, P8 and helices aD, aE, otEF, aF, aG, ocH and od. The ATP binding loop and
activation loop are highlighted. Adapted from Xu et al. (1997).
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Optimal phosphotransfer requires the precise spatial arrangement of several catalytic

residues that are absolutely conserved among protein kinases, namely Lys295, Glu310,

Asp386 and Asp404 (chicken Src numbering). These basic and acidic amino acids form a

network of interactions that are required for the co-ordination of ATP and substrate.

Asp386 interacts with the attacking hydroxyl group of the substrate to position it properly

for phosphorylation, while Asp404 binds the divalent cation (Mg2* in the case of Src) that

is required for nucleotide recognition (Huse and Kuriyan, 2002). Asp404 forms part of a

highly conserved D-F-G motif that is situated at the base of the activation loop. The

structure of this motif and in particular the conformation of Asp404 is tightly coupled to

the phosphorylation status of the activation loop, and in many protein kinases ATP can

only be oriented productively when it is phosphorylated (Huse and Kuriyan, 2002).

Lys295 also makes crucial contacts with the a- and (3-phosphate groups of ATP,

positioning them properly for catalysis. This residue lies in the cleft between the N- and

C-terminal lobes, where it is stabilised and oriented by forming a salt bridge with Glu310

in helix aC (Yamaguchi and Hendrickson, 1996). The integrity of the Lys295-Glu310

interaction is critical for enzyme activity. Structural studies of the active and inactive

forms of Src family kinases have revealed some of the mechanism whereby enzyme

activity may be regulated by altering the spatial orientation of these conserved catalytic

residues (Xu et al., 1997; Yamaguchi and Hendrickson, 1996).

Regulation of the Src family kinases

The Src family non-receptor tyrosine kinases play an important role in signal transduction

by many cell surface receptors, including receptor tyrosine kinases, integrins, and

GPCRs. To date, nine family members have been cloned in mammals (Src, Yes, Yrk,

Fyn, Fgr, Lyn, Hck, Lck and Blk). While Src, Fyn and Yes are ubiquitously expressed,

the other family members are much more restricted in their tissue distribution. Each

shares a common modular structure consisting of a unique N-terminal domain that
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contains a myristoylation sequence, an SH3 domain, an SH2 domain, a catalytic domain,

and a short C-terminal tail that includes an important conserved tyrosine residue (Tyr527

in chicken Src) (Figure 7).

Myristoylation of Src family kinases allows them to associate with cell membranes. All

N-myristoylated proteins begin with the sequence Met-Gly. The initiating methionine is

removed by methionine amino peptidase and myristate, a 14 carbon saturated fatty acid

moiety, is attached to the a-amino group of the N-terminal glycine residue via a stable

amide link in a reaction that is catalysed by N-myristoyl transferase (Gordon et al.,

1991). Studies of myristoylated proteins have established that the addition of myristate

occurs co-translationally and that the N-terminal glycine is absolutely required for this

reaction, however, no strict consensus sequence has been identified (Wilcox et al., 1987).

Covalent modification by fatty acid acylation occurs on a wide variety of signalling

proteins and plays a key role in controlling their subcellular localisation and therefore

interaction with substrates and regulatory molecules. Indeed, non-myristoylated, activated

mutant forms of Src are incapable of transforming cells (Kamps et al., 1985), indicating

that membrane targeting is crucial for enzyme function.

Because the Src family kinases are potent oncogenes, they are under tight control and

have low basal enzyme activity. Structural and biochemical studies have shown that they

are maintained in an assembled inactive conformation by intramolecular interactions

involving their SH2 and SH3 domains (Eck et al., 1994; Williams et al., 1997; Xu et al.,

1997). In quiescent cells, the conserved tyrosine residue in the C-terminal tail is

phosphorylated by C-terminal Src kinase (Csk) (Nada et al., 1991; Okada et al., 1991),

thereby creating a binding site (pY-Q-P-G) for the SH2 domain. When the SH2 domain

binds to the phosphorylated tail, it causes the molecule to adopt a closed conformation in

which the N- and C-terminal lobes of the catalytic domain are not properly aligned for

catalysis. This is further stabilised by the interaction of the SH3 domain with a proline
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Tyr 416

SH3 SH2 Catalytic

Tyr 527
Li, Chicken Src

(533 amino acids)

Tyr 419

N SH3 SH2

'

Catalytic

Tyr 530
lu Human Src

(536 amino acids)

Figure 7: Structural organisation of chicken and human Src. Src has a modular structure

comprising an SH3 domain, an SH2 domain and a conserved catalytic domain. The N-terminus

contains a myristoylation sequence. The C-termius contains two regulatory tyrosine residues,

Tyr416 and Tyr527 in chicken Src, and Tyr419 and Tyr 530 in human Src. Tyr416/419 lie within

the activation loop of the catalytic domain.
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rich sequence in the linker between the SH2 and catalytic domains (Superti-Furga et al.,

1993). In v-Src, there is a C-terminal truncation that deletes the conserved tyrosine

residue. The loss of this important regulatory element contributes to the transforming

activity of the oncoprotein (Takeya and Hanafusa, 1983). Similarly, mutation of Tyr527

to phenylalanine results in constitutive enzyme activity (Kmiecik and Shalloway, 1987;

Cartwright et al., 1987).

In the assembled inactive conformation, the activation loop adopts an ordered helical

structure that occupies the cleft between the N- and C-terminal lobes of the catalytic

domain (Xu et al., 1999). This prevents substrate binding in two ways; the helix

physically occupies the space where the peptide should sit, and it stabilises the activation

loop in a conformation in which the peptide recognition site is not fully formed (Xu et al.,

1997). The regulatory phosphorylation site in the activation loop, Tyr416, intercalates

into a hydrophobic pocket that is formed by Phe278, Ile411, Phe424 and Pro425 and thus

is unavailable for phosphorylation (Xu et al., 1999). The interactions around Tyr419 also

stabilises the closed conformation of the catalytic domain by helping to fix the relative

orientation of the N- and C-terminal lobes (Xu et al., 1999). Residues at the base of the

activation loop interact closely with the N-terminal lobe, causing helix aC to swing away

from the active site, which prevents Glu310 from interacting with Lys295 (Xu et al.,

1997). In the inactive conformation, Glu310 is stabilised by forming a salt bridge with

Arg409 and by interactions with Tyr382, while Lys295 forms a salt bridge with Asp404

(Xu et al., 1999). This results in a non-productive alignment of the phosphate groups of

ATP.

During Src activation, the C-terminal regulatory tyrosine is dephosphorylated or

displaced from the SH2 domain by a high affinity ligand. Protein tyrosine phosphatase a

(PTPa) and protein tyrosine phosphatase IB (PTP1B) have been proposed to regulate Src

activity by dephosphorylating pTyr527. Evidence for this has been provided from studies
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of fibroblasts from PTPa and PTP1B knockout mice, which have reduced levels of Src

activity in vitro (Ponniah et al., 1999; Dadke and Chemoff, 2003). Binding of the SH2

domain of Src to high affinity phosphopeptide ligands in receptor tyrosine kinases such

as the epidermal growth factor receptor (EGFR), and focal adhesion kinase (FAK) also

leads to Src activation (Oude et al., 1994; Eide et al., 1995). The release of the inhibitory

intramolecular interactions allows Src to adopt an open conformation in which the N- and

C-terminal lobes of the catalytic domain are aligned for catalysis and the activation loop

is disordered. Helix aC rotates inwards, allowing Lys295 to form a salt bridge with

Glu310, thereby freeing Asp404 (Xu et al., 1999). Lys295 and Asp404 can then orient

the phosphate groups of ATP correctly for nucleophilic attack. Once these changes have

taken place, the catalytic domain becomes active and autophosphorylates Tyr416

(Kmiecik et al.„ 1988). The phosphorylated activation loop then packs against the

C-terminal lobe of the kinase domain to form the substrate recognition site and is held in

place by co-ordination of the phosphorylated tyrosine by two conserved arginine

residues, Arg385 and Arg409 (Yamaguchi and Hendrickson, 1996; Xu et al., 1999). The

catalytic domain can then bind and phosphorylate substrate molecules containing the

consensus sequence Y*-I/V-E/D-E/D (Songyang et al., 1995b), where the residue marked

by an asterix represents the phosphoacceptor. Elowever, as the catalytic domain is not

very stringent, the SF12 and SH3 domains also play a key role in substrate selection

(Pellicena and Miller, 2002). Src is inactivated by the dephosphorylation of pTyr416, by

an as yet unidentified protein tyrosine phosphatase, and by phosphorylation of Tyr527 by

Csk.

Many Src substrates are phosphorylated at multiple sites in vitro. In general, multiple

phosphorylations of a protein can proceed by either a processive or a distributive

mechanism (Scott and Miller, 2000). In a distributive mechanism, each phosphorylation

results form a separate collision between enzyme and substrate. In a processive
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mechanism, however, the kinase remains bound to its substrate until it completes all of

the phosphorylations; therefore only one collision between enzyme and substrate is

required. The presence of ligands for Src SH2 and/or SH3 domains in substrate molecules

promotes their stable association with Src and allows processive phosphorylation to occur

(Scott and Miller, 2000; Pellicena and Miller, 2001). Therefore, modular protein-

interaction domains also regulate the kinetics of Src activity.

Regulation of PKCs

Protein phosphorylation and modular interaction domains also play an important role in

regulating the activity of the PKC isozymes, though the mechanism involved is

somewhat different from that described for the Src family kinases. The PKCs comprise a

family of ten related serine/threonine kinases that have been divided into three groups

named conventional, novel and atypical, based on their domain structure and mechanism

of activation (Figure 8) (Newton, 1997). The conventional PKCs (a, pi, pil, y) were the

first to be identified and consist of a conserved catalytic domain, two CI domains

(designated CIA and C1B), a Ca2+-dependent C2 domain, and an auto-inhibitory

pseudosubstrate domain. They are activated by the Ca2+-dependent binding of the C2

domain to phosphatidylserine, and by the CI domains binding diacylglycerol. The novel

PKCs (r|, e, 8, 0) have a similar domain structure, consisting of a conserved catalytic

domain, two CI domains (also designated CIA and C1B), a Ca2+-independent C2

domain, and a pseudosubstrate domain. They are activated by the Ca2_r-independent

binding of the C2 domain to phosphatidylserine, and by the CI domains binding

diacylglycerol. The atypical PKCs (t, Q are smaller molecules, consisting of a conserved

catalytic domain, a single CI domain and a pseudosubstrate domain. They are activated

by the CI domain binding phosphatidylserine, however, they shall not be discussed

further in this section. Recent data indicates that the two CI domains of the conventional
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Figure 8: Structural organisation of the PKC isozymes. The PKCs have been organised into

three groups named conventional, novel and typical based on their domain structure and

mechanism of activation. The conventional PKC consist of a conserved catalytic domain, two CI

domains (designated a and b), a Ca2 -dependent C2 domain and a pseudosubstrate domain. The

sequence of the pseudosubstrate domain fits the consensus sequence for the catalytic domain but

lacks a phosphorylatable serine or threonine residue. The novel PKCs consist of a conserved

catalytic domain, two CI domains, a Ca2 -independent C2 domain and a pseudosubstrate domain.

The atypical PKCs consist of a conserved catalytic domain, a CI domain and a pseudosubstrate

domain.
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and novel PKCs are not equivalent. In vitro studies have shown that CIA has a much

higher affinity for diacylglycerol than C1B, and they appear to play different roles during

PKC activation as described below (Medkova and Cho, 1999; Wang et al., 2001).

In quiescent cells, conventional and novel PKC isozymes are found in the cytoplasm in

an inactive conformation in which the pseudosubstrate domain is bound in the active site

(Newton, 1997), and CIA is tethered to the C2 domain via a single hydrogen bond

(Bittova et al., 2001). During their activation they translocate to the plasma membrane

where the C2 domain binds phosphatidylserine and C1B binds acidic phospholipids

(Medkova and Cho, 1999). When the C2 domain binds phosphatidylserine, the hydrogen

bond that connects it to CIA is broken and the protein undergoes a conformational

change that induces the insertion of CIA into the lipid bilayer (Bittova et al., 2001).

Membrane penetration allows the side chains of hydrophobic residues in the ligand

binding surface of CIA to interact with diacylglycerol and drives the release of the

pseudosubstrate domain form the active site (Newton, 1997; Medkowa and Cho, 1999;

Bittova et al., 2001). The catalytic domain can then phosphorylate target molecules

containing the consensus sequence R/K-X-S*/T*-X-R/K, where X represents any amino

acid, and the residue marked by an asterix represents the phosphoacceptor (Kennedy and

Krebs, 1991).

The residence time of PKCs at the plasma membrane is relatively short and their

activation is transient unless they are stabilised by other mechanisms. Activated, PKCs

have been shown to bind to a family of intracellular proteins called receptor for activated

C Kinase (RACK), which maintain them in an active conformation and target them to

particular locations within the cell, where they interact with their substrates (Schechtman

and Mochly-Rosen, 2001). Each PKC isozyme has its own specific RACK, which

accounts for the differences observed in the subcellular localisations of the active

enzymes (Kiley et al., 1990; Mochly-Rosen et al., 1990; Disatnik et al., 1994). For
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example, RACK1 binds PKCpiI (Ron et al., 1994) and targets it to integrins (Liliental

and Chang, 1998), while RACK2 binds PKCs and targets it to the golgi (Csukai et al.,

1997). Therefore, the interaction of PKC isozymes with their respective RACKs plays an

important role in regulating access of the active kinase to pools of substrate molecules

and may ultimately determine the outcome of PKC activation (Mochly-Rosen, 1995).

Binding of PKCe to RACK2 has also been reported to increase the efficiency of substrate

phosphorylation (Csukai et al., 1997). Therefore, interactions with RACKs may also

regulate the kinetics of enzyme activity.

Before the conventional and novel PKC isozymes can be activated by extracellular

signalling molecules, they must undergo a process of enzyme maturation. The earliest

translational products are unphosphorylated and are found in association with the

cytoskeleton (Shirai and Saito, 2002). The initial step in the maturation process is the

phosphorylation of Thr500 (PKC-piI numbering) in the activation loop by

phosphoinositde dependent kinase 1 (PDK-1) (Dutil et al., 1998). This aligns the active

site for catalysis, and permits subsequent autophosphorylation of Thr641 and Ser660

(Keranen et al., 1995; Dutil et al., 1998). Once these residues are phosphorylated, the

enzyme assumes its mature conformation and it becomes cytoplasmic (Shirai and Saito,

2002). This series of phosphorylation events is required for the catalytic competence and

correct intracellular localisation of the conventional and novel PKCs in quiescent cells

and therefore represents one of the rate limiting steps for PKC activation. The exception

is PKCS, as phosphorylation of Thr505 in the activation loop is not required for its

catalytic activity. This is because the negative charge of the phosphate group is

compensated for by a glutamic acid residue (Glu500) that is adjacent to the

phosphorylation site (Stempka et al., 1997; Gschwendt, 1999).
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GnRH physiology

GnRH (pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly.NH2) plays a pivotal role in the

control of reproduction in mammals. It is synthesised by a small population of neurones

in the median basal hypothalamus whose axons project to the median eminence. GnRH is

secreted in a pulsatile manner into the hypophyseal portal blood vessels, and is carried to

the anterior pituitary where it binds to its cognate receptor on the surface of gonadotroph

cells to stimulate the synthesis and secretion of luteinizing hormone (LH) and follicle

stimulating hormone (FSH), which regulate gonadal function. Each pulse of GnRH

stimulates a pulse of LH secretion, however, FSH pulses are less distinct and it appears to

be constitutively released (Millar, 2002).

The gonadotrophins are structurally related glycoprotein hormones that are composed of

a common a subunit (aGSU) and a hormone-specific (3 subunit (LHP and FSHp) that are

non-covalently associated. In the rat, the gene encoding aGSU is located on chromosome

5, while the genes encoding LHp and FSHp are located on chromosomes 1 and 3,

respectively. In vivo and in vitro studies have shown that the expression of each

gonadotrophin subunit gene is differentially regulated by GnRH (Haisenleder et ah,

1991; Flaisenleder et al., 1993; Haisenleder et al., 1997).

The mammalian GnRH receptor

The mammalian GnRH receptor is a member of the rhodopsin family of G-protein

coupled receptors (GPCRs), which have a common structure consisting of an N-terminal

extracellular domain and seven transmembrane domains, connected by three intracellular

and three extracellular loops. However, the GnRH receptor is unique among the GPCR

superfamily as it does not possess an intracellular C-terminal tail (Tsutsumi et al., 1992,
Eidne et al., 1992). The cytoplasmic tails of GPCRs play a critical role in regulating

signal transduction, and are phosphorylated by a number of serine/threonine kinases,
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including caesin kinase 2 (CK2), protein kinase A (PKA), PKC and the G-protein

coupled receptor kinases (GRKs) (Chaung et al., 1996). Phosphorylation of the tail (and

intracellular loops) causes uncoupling from downstream signalling, and targets the

receptor for internalisation, a process referred to as desensitisation (Chaung et al., 1996).

Because the mammalian GnRH receptor lacks a cytoplasmic tail and is not

phosphorylated, it is not subject to rapid (seconds to minutes) agonist induced

desensitisation (Willars et al., 1999). This feature may be physiologically important as

gonadotroph cells are required to remain responsive to repeated pulses of GnRH, which

would otherwise cause the down regulation of a rapidly desensitising receptor (Willars et

al., 1999).

The rat and mouse GnRH receptors have been shown to be glycosylated at Asn4 and

Asnl8, within the N-terminal domain, while the human receptor is glycoslated at Asnl8

(Millar, 2002). Ligand binding studies have shown that glycosylation plays an important

role in receptor expression and/or stability, and mutation of these conserved asparagine

residues to glutamine decreases cell surface expression (Davidson et al., 1995). The

GnRH receptor is also stabilised by the formation of disulphide bonds between Cysl4 in

the N-terminal domain and Cysl99 in extracellular loop 2, and between Cysl44 in

extracellular loop 1 and Cysl95 in extracellular loop 2 (rat GnRH receptor numbering),

and mutation of these residues to alanine also decreases cell surface expression (Cook

and Eidne, 1997).

Though the three dimensional structure of the mammalian GnRH receptor is not known,

molecular models have been generated based on the structure of bovine rhodopsin, the

only GPCR to be crystallised to date (Palczewski et al., 2000). The seven transmembrane
domains are thought to form a tight bundle enclosing a hydrophilic pocket. GnRH is

thought to bind within this pocket, where it makes contact with residues in the
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extracellular loops and in the superficial regions of the transmembrane domains (Millar et

al., 2004).

GnRH receptor-ligand interactions

Short peptides such as GnRH are highly flexible in solution, and are thought to be able to

adopt many different conformations (Momany, 1976). However, studies by Maliekal et

al. (1997) indicate that GnRH binds to its receptor in a P-II' type conformation, in which

the N- and C-termini of the peptide are closely apposed in space in a horseshoe structure.

This conformation is stabilised by the formation of hydrogen bonds between pGlul and

GlylO.NH2, and between Ser4 and Arg8 (Maliekal et al., 1997). Mutagenesis studies

have identified a number of putative sites of interaction between ligand and receptor.

Arg8 of GnRH is thought to form an electrostatic interaction with Glu301 (in the human,

the equivalent residue is Asp302) at the top of transmembrane domain 7, and mutation of

this residue to glutamine reduces GnRH binding affinity by approximately fifty fold

(Flanagan et al., 1994). The interaction of Arg8 with this conserved acidic residue is

thought to induce or stabilise the P-II' type conformation of the ligand (Fromme et al.,

2001), which facilitates the interaction of pGlul and His2 with Lysl21 in transmembrane

domain 3 (Zhou et al., 1995; Millar, 2002), and GlylO.NH2 with Asnl02 in

transmembrane domain 2 (Davidson et al., 1996).

GnRH receptor signalling

When GnRH binds to its receptor, it is thought to bring about a change in the orientation

of the transmembrane domains. These changes are in turn transmitted to the intracellular

loops and thus uncover previously masked binding sites for G-proteins (Millar et al.,

2004), which are heterotrimeric molecules composed of an a, p and y subunit (Hamm,

1998). The a subunit is responsible for binding and hydrolysing guanine nucleotides,
while the P and y subunits form a dimer that is not dissociable except by denaturation
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(Hamm, 1998). The mammalian GnRH receptor has been shown to couple to Gq and G11

(Hsieh and Martin, 1992). Mutational studies have shown that Ala260 and Arg261, at the

C-terminus of intracellular loop 3, are important sites of interaction with these proteins.

Mutation of Ala260 to leucine, isoleucine, lysine, glutamate or phenylalanine causes

uncoupling of the receptor from downstream signalling (Myburgh et al., 1998). Similarly,

mutation of Arg261 to glutamine also causes uncoupling. This mutation has been found

in some cases of hypogonadotrophic hypogonadism in the human (de Roux et al., 1999).

In the inactive state, the a subunit of the G-protein has guanine diphosphate (GDP)

bound in the active site, and has a high affinity for the Py dimer. When Gq or Gil

interact with an activated GnRH receptor, the a subunits exchanges bound GDP for

guanine trisphosphate (GTP) and undergoes a conformational change that reduces its

affinity for the Py dimer leading to its dissociation from the complex (Hamm, 1998). Both

the a subunit and the Py dimer can then interact with their effectors to initiate

downstream signalling. Signalling is terminated by the intrinsic GTPase activity of the a

subunit, which hydrolyses GTP to GDP. When the a subunit has GDP bound in the

active site, it has a low affinity for its effectors, thereby promoting its re-association with

the Py dimer (Hamm, 1998). The GTPase activity of the a subunit is stimulated by

members of the RGS family of proteins, which bind to it via their conserved RGS domain

and stimulate GTP hydrolysis (Hamm, 1998).

Both Gaq and Gall have been shown to activate PLC-pl, which hydrolyses

PtdIns(4,5)P2 in the plasma membrane to generate the second messengers Ins(l,4,5)P3

and diacylglycerol (Smrcka and Sternweis, 1993). PLC-pi is a modular protein

consisting of an N-terminal PH domain, four EF hand motifs, a catalytic domain, a Ca2+-

independent C2 domain, and a 400 amino acid long C-terminal tail. The PH domain binds

inositol lipids and targets PLC-pi to the plasma membrane (Wang et al., 1999a), while

the C2 domain binds Gaq, leading to the allosteric activation of the catalytic domain
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(Wang et al., 1999b). Interestingly, the C2 domains of the PLCs do not appear to bind

phospholipids and therefore represent a novel protein-interaction module, with functions

that are distinct from those of other C2 domains (Wang et al., 1999b). The C-terminal tail

of PLC-pi also contacts Gaq and is required for the full activation of the catalytic

domain. In addition, it functions as a GTPase activating protein, which stimulates the

hydrolysis of GTP by Gaq, to terminate G-protein signalling (Paulssen et al., 1996).

The Ins(l,4,5)P3 that is generated by the PLC-(31 mediated hydrolysis of PtdIns(4,5)P2

binds to its intracellular receptor in the membrane of organelles to trigger the release of

Ca2+ from non-mitochondiral stores, which stimulates LH secretion (Stojilkovic et al.,

1994). Studies of cultured rat gonadotroph cells have shown that GnRH preferentially

stimulates the release of Ca2+ from structures called subsurface cisternae, which lie just

beneath the plasma membrane, close to the sites of hormone secretion (Tse et al., 1997).

(ja2+ entry through voltage gated Ca2+ channels does not appear to stimulate hormone

exocytosis in these cells (Tse et al., 1993). Ca2+ has also been shown to stimulate

gonadotrophin subunit gene transcription and therefore also plays a role in regulating

gonadotrophin synthesis (Haisenleder et al., 2001).

Many of the effects ascribed to Ca2+ are mediated by the serine/threonine kinase

Ca27calmodulin dependent kinase II (CaMKII), which is activated by binding

Ca27calmodulin. CamKII exists as a holoenzyme complex composed of eight to twelve

a, p, y and 8 subunits, mixed together at random (Bennet et al., 1983; Kuret and

Schulman, 1984). Each subunit contains a conserved catalytic domain, an autoinhibitory

pseudosubstrate domain, and a C-terminal association domain that is necessary and

sufficient for holoenzyme formation (Shen and Meyer, 1998; Hudmon and Schulman,

2002). They are organised into a ring like structure that allows them to behave

independently of one another for enzyme activity and Ca2+/calmodulin binding (Hudmon

and Schulman, 2002). In quiescent cells, the pseudosubstrate domain is bound in the
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active site, preventing phosphorylation of potential substrates. When a CaMKII subunit

binds Ca2+/calmodulin, it undergoes a conformational change that drives the release of

the pseudosubstrate domain from the active site. Binding of Ca27calmodulin (to the

subunits of CaMKII) is 1:1 in solution (Meyer et al., 1992), and maximal activation of

the holoenzyme appears to require stoichiometric binding (Katoh and Fujisawa, 1991).

The catalytic domain then autophosphorylates a conserved threonine residue (Thr286 in

the a subunit, Thr287 in the (3, y and 5 subunit), within the pseudosubstrate domain. As a

result, the enzyme becomes autonomous in its activity and no longer requires

Ca2+/calmodulin to be bound (Hanson et al., 1989; Waxham et al., 1990). Subsequent

dephosphorylation of this residue converts CaMKII back to its Ca2+/calmodulin

dependent state (Lai et al., 1986; Schworer et al., 1986). In cultured rat gonadotroph

cells, GnRH has been shown to activate CaMKII by inducing the autophosphorylation of

Thr286/287, and CamKII activity is required for the induction of aGSU, LHP and FSHp

gene expression by GnRH (Haisenleder et al., 2003). However, the substrates of CaMKII

in these cells are currently unknown.

The second messenger activities of Ins(l,4,5)P3 and Ca2+ are tightly regulated in cells.

Ins(l,4,5)P3 signalling is terminated by the actions of an inositol-5-phosphatase, which

dephosphorylates the D5 position of the inositol ring to produce I(1,4)P2, and by an

inositol-3-kinase which phosphorylates the D3 position of the inositol ring to produce

Ins(l,3,4,5)P4 (Shears, 1992). Neither of these molecules is able to bind the Ins(l,4,5)P3

receptor or trigger Ca2+ release from internal stores. Ca2+ is pumped back into organelles

or out of the cell by a membrane bound Ca2+ pump, to return the cytoplasmic

concentration of the ion to a low level of around 100 nM in resting cells (Alberts et al.,

1994).

The diacylglycerol that is generated by the PLC-pi mediated hydrolysis of PtdIns(4,5)P2

allosterically activates conventional and novel PKC isozymes as previously described.

49



PKC has been shown to play an important role in GnRH receptor signalling (Stojilkovic

et al., 1994). In cultured rat gonadotroph cells, activation of PKC with phorbol esters or

the diacylglycerol analogue sn-l,2-dioctanoylglycerol stimulates aGSU and LHp gene

expression, and LH secretion (Haisenleder et al., 1995). However, like CaMKII, the

substrates ofPKC in these cells are currently unknown.

The activity of conventional and novel PKC isozymes is negatively regulated by the

DGKs, which phosphorylate diacylglycerol to produce phosphatidic acid. To date, nine

isoforms of DGK have been identified in mammals (Topham and Prescott, 1999), which

have been divided into five groups based on their structural organisation (Figure 9). All

of the DGKs contain a bipartite catalytic domain that is responsible for phosphorylating

diacylglycerol, and either two or three CI domains (Topham and Prescott, 1999). The CI

domain closest to the catalytic domain is highly conserved and features a unique 15

amino acid extension that is required for efficient substrate phosphorylation. It has been

proposed that this sequence helps the CI domain to present diacylglyerol to the catalytic

domain, though how this is achieved is currently not understood (van Blitterswijk and

Houssa, 2000).

The catalytic domain of the DGKs shares some sequence similarity with those of the

protein kinases, including a putative ATP binding loop that contains the conserved

sequence motif G-X-G-X-X-G, where X represents any amino acid (Luo et al., 2004).

However, in several DGK isoforms the two lobes of the catalytic domain are separated by

a 300 amino acid long serine/threonine rich insertion, indicating that they may function as

two independent units for catalysis (Luo et al., 2004a). Such long inserts are not seen in

the catalytic domain of any known protein kinase. In addition, the DGKs feature a wide

variety of protein- and lipid-interaction domains, including elongation factor (EF) hand
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Figure 9: Structural organisation of the diacylglycerol kinase isozymes. Mammalian DGKs
are divided into five families (Type I-V) according to their domain structure. All dicaylglycerol
kinases share a common bipartite catalytic domain and two or three CI domains. In addition, the

posses a wide variety ofmodular interaction domains which define their class. Type I DGKs have
two EF hands motifs (EF) that bind calcium. Type II DGK have a PH domain that binds

phosphoinositides and a SAM domain that mediates homo- and hetero-oligomerisation of

proteins. Type III DGKs are the simplest in structure and do not contain any other recognisable
domains. Type IV DGKs have two tandem Ankyrin repeats (ANK) that may mediate protein-
protein interactions. Type V DGKs have three CI domain and an Ras association (RA) domain
that is found in several proteins that interact with the small GTPase Ras.



motifs, ankyrin repeats, and pleckstrin homology (PH) domains (Figure 9). The presence

of such diverse interaction modules suggests very precise regulation of these proteins by

extracellular signalling molecules, however, very little is currently known regarding their

mechanism of activation. Furthermore, the isoforms ofDGK that are activated by GnRH

in pituitary gonadotroph cells are unknown.

Studies of cultured rat gonadotroph cells have also shown that GnRH activates the

extracellular signal regulated kinases (ERK) 1 and 2 (Mitchell et al., 1994; Haisenleder et

al., 1998), which play an important role in regulating gene expression programmes in

mammalian cells by phosphorylating transcription factors and their co-regulatory proteins

in the cytoplasm and nucleus (Yang et al., 2003). Inhibition of this pathway significantly

inhibits aGSU and FSHP gene transcription in these cells in response to GnRH

(Haisenleder et al., 1998), indicating that these kinases play an important role in the

control of gonadotrophin synthesis.

ERK 1 and 2 are activated through a conserved cascade of protein kinases often operating

downstream of the small GTPase Ras, which is targeted to the plasma membrane by fatty

acid acylation and/or prenylation (Resh, 1996). Ras is activated by extracellular

signalling molecules through the membrane recruitment of guanine nucleotide exchange

factors such as Son-of-sevenless (Sos), which stimulate it to exchange bound GDP for

GTP (Aronheim et al., 1994). When Ras binds GTP, it undergoes a conformational

change (Hu and Redfield, 1993) that allows it to interact with the serine/threonine kinase

Raf-1 via its effector domain. Raf-1 is thereby recruited to the plasma membrane where it

is activated. The mechanism of Raf-1 activation by extracellular signalling molecules is

complex and remains poorly understood, however, protein phosphorylation by Src family

kinases has been shown to be important in this process. Src phosphorylates Raf-1 at

Tyr340 and Tyr341 (Marais et al., 1995), which lie just N-terminal to the catalytic

domain. Phosphorylation of these residues is thought to bring about a conformational
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change in the molecule that contributes to its activation (Cutler et al., 1998).

Furthermore, mutation of these amino acids to phenylalanine has been shown to abolish

Raf-1 activity in vitro (Marais et al., 1995). In addition, Raf-1 can be activated

independently of Ras by PKC (Seger and Krebs, 1995; Benard et al., 2001), which has

been shown to phosphorylate Ser499 within the activation loop of the catalytic domain

(Kolch et al., 1993). Mutation of this residue to alanine abolishes Raf-1 activation by

phorbol esters (which activate PKC), but not by Ras and Src (Kolch et al., 1993),

indicating that several different signals may converge at the level of Raf-1 to activate the

ERK signalling cascade in mammalian cells.

Once activated, Raf-1 phosphorylates the dual specificity serine/threonine and tyrosine

kinases MAP and ERK kinase (MEK) 1 and 2 at Ser218 and Ser222 (MEK1 numbering)

within their activation loops, leading to their activation. These kinases in turn activate

ERK 1 and 2 by phosphorylating them at Thrl83 and Tyrl85 (ERK 2 numbering) within

their activation loops. Phosphorylation of these residues correctly aligns the N- and C-

terminal lobes of the catalytic domain for phosphotransfer and leads to the refolding of

the activation loop to form the substrate binding pocket (Canagarajah et al., 1997). ERK

1 and 2 then phosphorylate substrates containing the consensus sequence P-X-S*/T*-P,

where X represents a neutral or basic amino acid, and the residue marked by an asterix

represents the phosphoacceptor (Clark-Lewis et al., 1991; Gonzalez et al., 1991). In

contrast, most other serine/threonine kinases actively exclude substrates with proline

residues in the S*/T* +1 position (Songyang et al., 1994).

Specificity of signalling through the ERK cascade is maintained by the direct interaction

of the successive kinases; Raf-1 binds to MEK 1 and 2, which in turn bind to ERK 1 and

2 (Kolch, 2000). In addition, the scaffolding protein KSR has been shown to bind Raf-1,

MEK and ERK in vitro and in vivo, and can assemble them into an organised signalling

module (Therrien et al., 1996; Michaud et al., 1997; Yu et al., 1998). While a low level
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of KSR expression has been shown to facilitate ERK activation, over expression of this

protein has an inhibitory effect (Cacace et al., 1999). Such a dose-dependent reversal in

effect is typical for a scaffolding protein that can only assemble its clients when present

in an appropriate stoichiometric ratio, but disperses signalling complexes when over-

expressed (Kolch, 2000).

Once activated, ERK 2 has been shown to homodimerise and translocate from the

cytoplasm to the nucleus, where it can phosphorylate nuclear substrates (Khokhlatchev et

al., 1998). When phosphorylated at Thrl83, ERK 2 undergoes a conformational change

that exposes a hydrophobic patch on its surface promoting homodimerisation

(Canagarajah et al., 1997). Because the size of the ERK 2 dimer exceeds the limit for

passive diffusion through the nuclear pore complex (approximately 40 KDa), it must be

actively transported into the nucleus. Nuclear import is controlled by a family of proteins

called importins, which recognise specific nuclear localisation sequences in target

molecules (Hood and Silver, 1999). Because ERK 2 does not contain a recognisable

nuclear localisation sequence, dimerisation may facilitate nuclear shuttling by allowing

the association of the dimer with an additional transport protein. Alternatively, a

functional nuclear localisation sequence may be created from two non-contiguous

stretches of amino acids, however, this remains to be determined (Khokhlatchev et al.,

1998). The requirement for phosphorylation and dimersation of ERK 2 for nuclear

translocation is reminiscent of the mechanism of activation of the signal transducers and

activators of transcription (STAT) proteins by cytokine receptors (Sekimoto et al., 1996),

and is emerging as a common theme in the control of nucleo-cytoplasmic shuttling of

proteins (Hood and Silver, 1999).

Studies in the aT3-l gonadotroph cell line have shown that GnRH activates ERK 1 and 2

via PKC (Sim et al., 1995; Sundaresan et al., 1996; Reiss et al., 1997), which can directly

activate Raf-1 (Benard et al., 2001), and via a protein tyrosine kinase that is required for
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the Ras dependent activation of Raf-1 (Benard et al., 2001). Protein tyrosine

phosphorylation has been shown to be important for the activation of ERK 1 and 2 by

many GPCRs (Delia Rocca et al., 1999), however, the identity of the tyrosine kinase(s)

involved in the activation of this pathway by GnRH are uncertain. In aT3-l cells GnRH

has been reported to activate Src, and inhibition of Src family kinases with

pharmacological inhibitors, or by over-expression of CSK, significantly inhibits ERK

activation (Grosse et al., 2000; Benard et al., 2001). In addition, Grosse et al. (2000) have

shown that the GnRH receptor can trans-activate the epidermal growth factor receptor

(EGFR) in this cell line, and that EGFR kinase activity is also required for the activation

of ERK 1 and 2 (by GnRH). However, several other studies have failed to show EGFR

dependent activation of the ERK signalling cascade in aT3-l cells, indicating that more

than one protein tyrosine kinase may be involved (Benard et al., 2001; Bonfil et al.,

2004). Benard et al. (2001) have reported that GnRH can activate focal adhesion kinase

(FAK) in these cells, which has been shown to be involved in the activation of ERK 1

and 2 by many other neuropeptide hormones that bind Gq coupled receptors (Zachary et

al., 1992; Sinnett-Smith et al., 1993). Activation ofFAK by GnRH may therefore provide

an alternative means for activating this signalling pathway, independently of the EGFR.

However, as over-expression of FAK-related non-kinase (FRNK), which can function as

a dominant negative inhibitor of FAK dependent signalling, did not significantly inhibit

the activation of ERK 1 and 2 by GnRH in aT3-l cells (Benard et al., 2001), it remains

to be demonstrated conclusively if FAK is indeed involved. The reason for the

differences in results published by these groups is not clear, however, it is possible that

under different growth conditions, populations of cells may be selected that exhibit

different repertoires of signalling molecules, or preferences for particular pathways.

Several other studies have sought to identify the G-proteins involved in the activation of

ERK 1 and 2 by the GnRH receptor. While an early study indicated that ERK activation
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by GnRH was mediated by Gi in aT3-l cells (Sim et al., 1995), subsequent studies have

failed to observe any effect of pertussis toxin, which ADP ribosylates and inactivates Gai

(Reiss et al., 1997; Grosse et al., 2000), and the activation of this pathway is generally

thought to proceed via Gq/11 (Grosse et al., 2000). Furthermore, a recent study in the

LPT2 gonadotroph cell line has shown that ERK activation by GnRH can be blocked by

cell permeable inhibitors of Gaq but not Gai (Liu et al., 2002).

The trans-activation of the EGFR by Gq/11 coupled GPCRs has been shown to be

mediated by a membrane metalloproteinase that cleaves heparin-binding epidermal

growth factor (EGF) from the cell surface. The soluble ligand then acts in an autocrine

manner on the EGFR (Prenzel et al., 1999; Dong et al., 1999). Cleavage of heparin-

binding EGF is thought to be mediated by metalloproteinases and is sensitive to the broad

range metalloproteinase inhibitor batimastat (Schafer et al., 2004). GnRH has been

shown to activate several matrix metalloproteinases (MMP), including MMP-2 and -9

(Roelle et al., 2003).

The EGFR is a receptor tyrosine kinase, which belongs to the ErbB/HER family. When it

binds ligand, it undergoes a conformational change that leads to receptor dimerisation,

activation of the catalytic domain, and trans-autophosphorylation. Though the EGFR has

emerged as an important drug target in cancer therapy, the mechanism of activation of the

catalytic domain remains poorly understood. Unlike other receptor tyrosine kinases, it

does not appear to require the phosphorylation of residues within the activation loop for

its activity. In the unphosphorylated state, the activation loop assumes an open

conformation that is permissive to substrate binding. This is due to the presence of four

glutamic acid residues (Glu841, 842, 844 and 847) within the loop that compensate for

the negative charge of the phosphate group (Stamos et al., 2002). However, the catalytic

domain is somehow maintained in an inactive conformation by the extracellular domain

until it binds ligand. Evidence for this is provided for by the oncoprotein v-Erb, in which
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truncation of the extracellular portion of the receptor results in constitutive kinase

activity, and leads to cellular transformation and cancer (Downward et al., 1984).

Autophosphorylation of the EGFR functions to recruit cytoplasmic proteins to the

receptor that couple it to downstream signalling pathways, including the ERK cascade

(Schlessinger, 2000). Autophosphorylation ofTyrl068 creates a high affinity binding site

(pY-I-N-Q) for the SH2 domain of the adapter protein Growth factor receptor bound 2

(Grb2) (Batzer et al., 1994), which binds Sos with its SH3 domain and thereby recruits it

to the activated receptor (Egan et al., 1994). In addition, autophosphorylation of the

EGFR at Tyrll48 and Tyrll73 creates docking sites for the adapter protein She, which

binds pTyrll73 (pY-L-R-V) via its SH2 domain (Batzer et al., 1994), and pTyrll48 (N-

P-D-pY) via its phosphotyrosine binding (PTB) domain (Sakaguchi et al., 1998). PTB

domains offer an alternative means of recognition of phosphotyrosine motifs in proteins

and recognise the core sequence N-P-X-pY, where X represents any amino acid (Blaikie

et al., 1994; Gustafson et al., 1995). She is then phosphorylated at Tyr317 by Src, which

is also recruited to and activated by the EGFR, to create an additional binding site (pY-L-

R-N) for the SH2 domain of Grb2 (Gotoh et al., 1997). Once recruited to the EGFR, Sos

then activates Ras at the membrane to initiate the activation ofERK 1 and 2.

Several other Gq/11 coupled GPCRs, including those of the neuropeptide hormones

bombesin, bradykinin, endothelin, gastrin and vasopressin have been shown to induce the

tyrosine phosphorylation of the non-receptor tyrosine kinase FAK (Zachary et al., 1992;

Sinnett-Smith et al., 1993). FAK phosphorylation requires the activation of members of

the Rho family of small GTPases (Rankin et al., 1994), which play a key role in

regulating the organisation of the actin cytoskeleton in eukaryotic cells (Hall 1998). The

most extensively characterised members of this family are RhoA, Racl and Cdc42. Like

Ras, these proteins act as molecular switches that cycle between GTP and GDP bound

states. When they bind GTP they undergo a conformational change that allows them to
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interact with effector molecules, which regulate actin dynamics. The intrinsic GTPase

activity of the proteins then returns them to the inactive GDP bound state to terminate

signal transduction (Van Aelst and D'Souza Schorey, 1997). Proper control of the actin

cytoskeleton requires the precise spatial and temporal regulation of these proteins, which

is orchestrated by a wide range of guanine nucleotide exchange factors and GTPase

activating proteins, and by the GDP-dissociation inhibitor Rho-GDI (Bishop and Hall,

2000). In quiescent cells, the Rho family GTPases are found in the cytoplasm in

association with Rho-GDI, which maintains them in the inactive (GDP bound) state

(Ueda et al., 1990). During activation by extracellular signalling molecules, they

dissociate from this complex and translocate to the plasma membrane, where they are

activated by their respective guanine nucleotide exchange factors, and can interact with

effectors (Bokoch et al., 1994).

Activation of RhoA typically leads to the formation of stress fibres (Ridley and Hall,

1992), which are contractile bundles of actin and myosin filaments (actinomyosin) that

resemble tiny myofibrils found in muscle cells (Alberts et al., 1994). The stress fibres are

anchored to the plasma membrane at focal adhesions, where aggregated integrin receptors

bind to the ECM on the outside of the cell and the actin microfilaments on the inside.

Integrins are heterodimeric molecules that are assembled from a pool of 17 a subunits

and 8 P subunits, to give rise to 23 different receptors that can bind a wide variety of

extracellular matrix proteins (Darribere et al., 2000). Most integrins involved in the

formation of focal adhesions belong to the pi and P3 families. For cells grown in serum,

vitronectin is normally the extracellular matrix protein that is adsorbed to the surface of

the dish, and focal adhesions form containing the avP3 integrin. For cells plated on

surfaces coated with fibronectin, focal adhesions normally contain the a5pi integrin

(Burridge and Chrzanowska-Wodnicka, 1996). A large number of cytoplasmic proteins

associate with integrins at focal adhesions. The structural proteins a-actinin, talin and
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vinculin provide a physical link between the integrin and actin microfilaments. FAK is

specifically targeted to focal adhesions by a unique 150 amino acid focal adhesion

targeting domain located at its C-terminus (Hildebrand et al., 1993), which contains

sequences that are responsible for binding talin and another focal adhesion protein,

paxillin (Chen et al., 1995; Hayashi et al., 2002).

The formation of stress fibres and focal adhesions following the activation of RhoA is

mediated by Rho kinase, which inhibits the activity of myosin light chain phosphatase

(Kimura et al., 1996), and directly phosphorylates the light chains of non-muscle myosin-

II (Amano et al., 1996). Light chain phosphorylation induces a conformational change in

myosin that promotes the formation of bipolar filaments containing 15-20 molecules. It

also exposes an actin binding site, which promotes the formation of actinomyosin, and

stimulates myosin ATPase activity. This leads to the contraction of actinomyosin, which

generates tension within the filament (Alberts et al., 1994). Myosin also cross-links

adjacent filaments, and bundles them together to form the prominent stress fibres that are

seen following the activation ofRhoA. It is the bundling of actinomycin into stress fibres

that leads to the aggregation of integrins at the plasma membrane to form focal adhesions

(Burridge and Chrzanowska-Wodnicka, 1996).

In contrast, activation of Racl and Cdc42 by extracellular signalling molecules stimulates

actin polymerisation at the cell cortex, leading to the formation of lamellipodia and

filopodia, respectively (Ridley et al., 1992; Nobes and Hall, 1995). These effects are

regulated by Racl and Cdc42 through their interaction with members of the Wiscott-

Aldrich Syndrome protein (WASp)/Scar family of proteins, which stimulate the Arp2/3

complex to nucleate the formation of new actin filaments (Machesky and Insall, 1998;

Machesky et al., 1999). Though actin is found at high concentrations in cells (up to 100

pM) it does not spontaneously polymerise due to the inherent instability of dimers and

trimers. The Arp2/3 complex stimulates the formation of actin filaments by stabilising
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actin trimers to allow the filament to grow beyond this critical length. Once nucleated,

new filaments grow rapidly towards the plasma membrane until capped by proteins such

as gelsolin and capping protein (Millard et al., 2004). The Arp2/3 complex also binds to

the sides and ends of existing actin filaments to stimulate filament branching, creating the

dense cortical actin network that is seen in lamellipodia and filopodia (Amann and

Pollard, 2001).

The mammalian WASp/Scar family consists of five members; WASp, N-WASp, and

Scar-1, -2 and -3. The C-termini of these proteins contains a conserved module that is

responsible for binding and activating the Arp2/3 complex (Machesky et al., 1999;

Suetsugu et al., 1999). The N-termini of WASp and N-WASp contain a Cdc42/Rac

interactive binding (CRIB) domain that binds Cdc42 (Higgs and Pollard, 2000; Rohatgi

et al., 2000). The N-termini of the Scar proteins contains a unique Scar homology domain

of unknown function (Millard et al., 2004).

In quiescent cells, WASp an N-WASp adopt an assembled inhibitory conformation in

which the CRIB domain is bound to the C-terminus of the protein, preventing interactions

with the Arp2/3 complex (Kim et al., 2000). When Cdc42 is activated, it undergoes a

conformational change that allows it to bind to the CRIB domain, which relieves this

inhibitory interaction, and allows WASp and N-WASp to interact with the Arp2/3

complex (Kim et al., 2000). In addition, Src has been shown to phosphorylate WASp at

Tyr291, adjacent to the CRIB domain (Cory et al., 2002). Phosphorylation of this residue

correlates with increased rates of actin polymerisation in vitro and may help to stabilise

the active conformation of WASp (Cory et al., 2002). When Cdc42 hydrolyses GTP to

GDP, it dissociates from WASp and N-WASP, allowing them to return to their

autoinhibited state.

As the Scar proteins do not contain a CRIB domain, their activity is regulated in a very

different manner by Racl. In quiescent cells, Scarl is found in the cytoplasm in
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association with four other proteins, namely PIR121, Napl25, Abi-2 and HSPC300,

which maintain it in an inactive state (Eden et al., 2002). When Racl is activated by

extracellular signalling molecules, it binds to this complex, causing the dissociation of

Scarl and HSPC300. Scarl can then activate the Arp2/3 complex (Eden et al., 2002).

In addition to stimulating actin polymerisation at the cell cortex, Racl and Cdc42 also

induce the formation of focal complexes, small clusters of integrins and associated

proteins, that provide anchor points for the cell as it extends its plasma membrane to form

lamellipodia and filopodia (Nobes and Hall, 1995). Though smaller than focal adhesions,

these structures contain many of the same components, including vinculin, paxillin and

FAK (Nobes and Hall, 1995; Hotchin and Hall, 1995). Several studies indicate that the

GnRH receptor can activate Rac (Levi et al., 1998; Allen et al., 2002), and that Rac is

involved in the activation ofERK 1 and 2 by GnRH (Allen et al., 2002).

The aggregation of integrins in focal adhesions and focal complexes (collectively referred

to as focal contacts) leads to the tyrosine phosphorylation of FAK, and the activation of

ERK 1 and 2 (Chen et al., 1994; Miyamoto et al., 1995). It is thought that when integrins

become aggregated in these structures, FAK forms dimers and oligomers that trans-

autophosphorylate each other at Tyr397 (Leu and Maa, 2002; Katz et al., 2002), though it

remains unknown how oligomerisation may regulate the activity of the catalytic domain.

Autophosphorylation of Tyr397 creates a high affinity binding site (pY-A-E-I) for the

SH2 domain of Src, which recruits it to the focal contact (Eide et al., 1995). Src also

binds to FAK via its SH3 domain, which recognises the sequence R-A-L-P-S-I-P-K-L

that is approximately twenty amino acids N-terminal to Tyr397 (Thomas et al., 1998).

The sequence of this motif is almost identical to the optimal ligand identified for the SH3

domain of Src by Yu et al. (1994). By binding to FAK at these sites, the inhibitory

intramolecular interactions that maintain Src in the inactive conformation are relieved,

leading to the activation of its catalytic domain. Src then phosphorylates FAK on a
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number of additional tyrosine residues, including Tyr576, Tyr577, and Tyr925 (Schaller

et al., 1999). Tyr576 and Tyr577 lie within the activation loop and phosphorylation of

these residues helps to stabilise the active conformation of the catalytic domain, which

allows FAK to phosphorylate exogenous substrates (Calalb et al., 1995). Phosphorylation

of Tyr925 creates a high affinity binding site (pY-E-N-V) for the SH2 domain of Grb2

(Schlaepfer et al., 1994), which recruits Sos to the plasma membrane, where it activates

Ras as described.

The use of either the EGFR or FAK by Gq/11 coupled receptors was originally though to

represented functional redundancy within the system. However, recent studies suggest

that this may not be the case. Activation of ERK by the EGFR typically results in the

translocation of the active enzymes to the nucleus (Horgan and Stork, 2003; Luttrell and

Luttrell, 2003). In contrast, ERK activated by FAK localises to focal contacts (Fincham et

al., 2000; Luttrell and Luttrell, 2003). Therefore, the mechanism of ERK 1 and 2

activation used by a GPCR may determine the localisation of the active enzymes within

the cell and promote the phosphorylation of a particular subset of substrates.

Aims

Tyrosine kinases such as the EGFR and FAK play an important role in the activation of

ERK 1 and 2 by many Gq/11 coupled GPCRs, creating dockings sites for Grb2, which

recruits Sos to the plasma membrane. Because the molecular events that lead to the

activation of ERK 1 and 2 by the GnRH receptor were not well understood when this

project was started, the initial aim was to investigate the role of protein tyrosine

phosphorylation in this pathway. Subsequently, it was decided to use proteomic

techniques to identify novel substrates of tyrosine kinases that may be involved in other

aspects of GnRH receptor signalling. As Src was found to play a key role in the

activation of ERK 1 and 2, and features SH2 and SH3 domains that mediate specific

molecular interactions, it was selected as the molecule upon which this study would be
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based. A HEK 293 cell line stably expressing the rat GnRH receptor was used as a model

for the majority of the experiments described in this thesis.
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Materials and Methods

This chapter details the methods and laboratory techniques used throughout this thesis.

Unless otherwise indicated all chemicals and reagents were from Sigma Aldrich. For

details of the antibodies and cDNA constructs used during the course of these studies

readers are directed to appendices A and B, at the back of this thesis.

Preparation of competent DH5a cells

A glycerol stock of E. coli strain DH5a was streaked out on a LB-agar plate and grown

overnight at 37°C. A single colony was picked, inoculated into 5 ml of LB medium, and

incubated for 16 hours at 37°C with constant shaking. 1 ml was then used to inoculate

100 ml of LB medium containing 20 mM MgSCL, and the culture grown until an

absorbance (600 nm) of 0.4 - 0.6 was reached. The culture was then chilled on ice and

bacteria harvested by centrifugation at 4,500 xg for 5 minutes at 4°C. All subsequent

steps were performed in a cold room using pre-chilled solutions and plasticware, as

competent cells are highly sensitive to elevated temperatures. The cell pellet was gently

resuspended in 40 ml of 30 mM potassium acetate, 10 mM CaCl2, 50 mM MnCL, 100

mM RbCl, 15% glycerol (pH 5.8) and collected by centrifugation at 4,500 xg for 10

minutes at 4°C. Cells were then suspended in 4 ml of 10 mM PIPES, 75 mM CaCl2, 10

mM RbCl, 15% glycerol (pH 6.5) and divided into 100 pi aliquots. The competent cells

were frozen in a dry ice/ethanol bath and stored at -70°C until use.

Transformation of competent cells

Cells were thawed on ice and incubated with 10 ng ofplasmid DNA for 30 minutes. They

were then warmed to 42°C for 30 seconds and returned to ice for a further 2 minutes. 1 ml

of LB medium was added, and the bacteria incubated for 1 hour at 37°C with constant

shaking. 100 pi of the culture was then streaked out on a LB-agar plate containing
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selective antibiotic and incubated overnight at 37°C. Ampicilin was routinely used at 100

pg/ml and kanamycin at 50 pg/ml.

Preparation of plasmid DNA

A single colony of transformed bacteria was picked and inoculated into 5 ml of LB

medium containing selective antibiotic. The culture was grown overnight at 37°C with

constant shaking. The following evening, 1 ml was used to inoculate 250 ml of fresh LB

medium containing selective antibiotic, and the culture grown for a further 12 hours.

Plasmid DNA was purified using Qiagen maxiprep columns and eluted in TE buffer (10

mM Tris-HCl (pH8), ImM EDTA) according to the manufacturers instructions. DNA

was examined by agarose gel electrophoresis and the concentration determined by

reading the absorbance at 260 nm using a spectrophotometer.

Preparation of glycerol stocks of transformed bacteria

Glycerol stocks of transformed E. coli were made by adding 100 pi of 80% glycerol to

900 pi of bacterial culture that had been grown to stationary phase overnight. Vials were

inverted to mix the glycerol, frozen in a dry ice/ethanol bath, and stored at -70°C. To

recover the bacteria, a sterile inoculating loop was used to scrape the surface of the frozen

culture. Bacteria were streaked out on a LB-agar plate containing selective antibiotic and

grown overnight at 37°C. A single colony was picked and plasmid DNA prepared as

described.

Agarose gel electrophoresis

1 to 2% agarose gels were prepared in TAE buffer (40 mM Tris, 320 mM acetic acid,

ImM EDTA, pH 7.2). Plasmid DNA, PCR products and restriction digests were

separated at 80 V for 2 hours, stained with ethidium bromide and visualised under

ultraviolet light using a transilluminator. For preparative work a 366 nm light source was
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used in order to minimise photo nicking and dimerisation of DNA. DNA was recovered

from agarose gel slices using a QIAquick gel extraction kit (Qiagen) according to the

manufacturers instructions.

Restriction digest of DNA

Single and double digests ofPCR products and vectors were performed in a volume of 20

pi using 1 unit of restriction enzyme in an appropriate buffer, chosen to give maximum

activity of the enzyme(s). All restriction enzymes and buffers were from Promega.

Digestions were performed at 37°C for 3 hours and enzymes heat inactivated at 65°C for

10 minutes where appropriate. DNA was fractionated by agarose gel electrophoresis and

the required bands cut from the gel with a clean scalpel. DNA was recovered by gel

extraction as described.

Ligation of DNA

PCR products were ligated into linearised vector with cohesive ends using T4 DNA

ligase (Promega). A molar ratio of 1:3 to 1:5 vectors:insert was normally used. The mass

of insert required for each ligation was calculated using the formula below:

100 ng of vector x kb size of insert , . . insert2
x molar ratio of = ng of insert

kb size of vector vector

100 ng of vector and the appropriate mass of insert were added to an Eppendorf tube and

made up to a volume of 8 pi with distilled water. Samples were heated to 45°C for 5

minutes then chilled on ice. 1 pi of 10 x T4 DNA ligase buffer (300 mM Tris-HCl (pH

7.8), 100 mM MgCl2, 100 mM DTT, 100 mM ATP) and 1 pi of enzyme were then added,

to give a final volume of 10 pi, and the reaction allowed to proceed for 2 hours at 22°C.

Control reactions were set up with either vector alone or insert alone. 1 pi of the ligation

66



mixture was then used to transform competent DH5a E. coli, and transformants selected

on LB-agar plates containing selective antibiotic as described. Single colonies of

transformants were picked and inoculated into 5ml of LB medium containing antibiotic

and grown overnight at 37°C with constant shaking. Bacteria were then harvested by

centrifugation at 5,000 xg for 5 minutes and plasmid DNA prepared using Qiagen

miniprep columns according to the manufacturers instructions. Restriction digests were

performed to confirm the presence ofDNA inserts and plasmids sequenced to ensure that

the inserts did not contain any mutations. Sequencing reactions were carried out by Miss

Nancy Nelson in the genomics and proteomics group at the MRC human reproductive

sciences unit.

Cell culture

HEK 293 cells stably transfected with the rat GnRH receptor (designated SCL60 cells)

were maintained in DMEM supplemented with 10% fetal calf serum, penicillin (50

IU/ml), streptomycin (50 mg/ml), G418 sulphate (0.5 mg/ml) and L-glutamine (4 mM) at

37°C in a humidified atmosphere of 5% carbon dioxide and 95% air. L(3T2 gonadotroph

cells were grown on Matrigel (BD Biosciences) coated plasticware in DMEM

supplemented with 10% fetal calf serum, penicillin (50 IU/ml), streptomycin (50 mg/ml),

and L-glutamine (4 mM) at 37°C in a humidified atmosphere of 5% carbon dioxide and

95% air.

Cell lines were routinely passaged twice weekly by enzymatic dispersal with trypsin-

EDTA. Briefly, the medium was removed from confluent cultures and cells washed three

times with 10 ml of PBS. 2 ml of 0.5 x trypsin-EDTA was then added to each 162 cm2

flask (Coming Costar), and the flasks returned to the incubator for 2 - 5 minutes. After

the cells had been dispersed, 8 ml of growth medium was added to quench the trypsin.

SCL60 cells were routinely split 1:3, while LPT2 cells were split 1:2.
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Dispersed cells were diluted 1:10 in DMEM and counted using a Nebauer

haemocytometer. Cells were counted in all four counting areas of the haemocytometer

and an average taken to give the cell number x 105 per ml. They were then seeded into

100 mm dishes or 12 well plates (Coming Costar) for experiments, as required.

Cryopreservation and resucitation of cell lines

Stocks of each cell line were stored at -196°C under liquid nitrogen in cryoprotectant

(10% DMSO (v/v) in fetal calf semm). Cells were recovered from the liquid nitrogen

store and rapidly warmed to 37°C in a water bath. They were then gently resuspended in

10 ml of growth medium and seeded into flasks. Frozen stocks were preserved by

banking cells for the first few passages after they were resuscitated. Confluent cultures

were passaged as described, and cells collected by centrifugation at 500 xg for 5 minutes.

The medium was decanted and the cell pellet gently resuspended in cryoprotectant,

aliquoted into vials, and frozen at -70°C in a cryo 1°C freezing container (Nalgene). Vials

were then transferred to liquid nitrogen for long term storage.

Transient transfection by Ca2+-phosphate precipitation

SCL60 cells were transfected by the calcium phosphate precipitation method (Wigler et

al., 1979). Briefly, 3xl06 cells were seeded into 100 mm dishes and allowed to attach

overnight. 3 hours prior to beginning the transfection, the medium was removed and

replaced with fresh growth medium. 10 pg of plasmid DNA was diluted to 438 pi in

sterile deionised water and 62 pi of 2 M CaCl2 added, to give a volume of 500 pi. The

DNA/CaCl2 solution was added drop wise to 500 pi of 2 x HEPES-buffered saline (50

mM HEPES, 280 mM NaCl, 1.5 mM Na2HP04, pH 7.1) whilst gently vortexing, and the

mixture incubated at room temperature for 2 minutes to allow the calcium phosphate and

DNA to from a co-precipitate. The transfection solution was then added drop wise to the
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cells, and cultures incubated overnight. After 16 hours the medium was removed and

replaced with fresh growth medium. Cells were harvested for experiments 48 hours later.

Transient transfection with Superfect reagent

LDT2 cells were transfected with Superfect transfection reagent (Qiagen) using 5 pi

of Superfect per pg of plasmid DNA. 3 x 106 cells were seeded into 100 mm dishes

and allowed to attach overnight. The following day 10 pg of plasmid DNA was

diluted to a volume of 300 pi with Optimem serum free medium (Gibco) in a sterile

Eppendorf tube. 50 pi of Superfect was added, and the mixture incubated at room

temperature for 10 minutes to allow the DNA to complex with the Superfect reagent.

The transfection solution was then added to the cells in 3 ml of growth medium for 5

hours. Cells were harvested for experiments 48 hours later.

Preparation of pharmacological inhibitors and ligands

Stock solutions of AG1478, BAPTA-AM, cytochalasin-D, GF109203X, herbimycin

A, latrunculin-B, PD 98059, PP2, Ro-318220, wortmannin, and U73122 (all from

Calbiochem) were prepared in dimethyl sulphoxide and stored at -20°C. RGDS and

RGES were dissolved in sterile water and stored at -20°C. C. difficile Toxin B

(Calbiochem), EGF and GnRH were dissolved in sterile water and stored at 4°C.

Inositol phosphate formation assay

SCL60 cells were seeded into 12 well plates at a density of 3 x 105 cells per well and

allowed to attach overnight. The following day, the medium was removed and

monolayers washed with 1 ml of PBS. Cells were then incubated for 48 hours in 1 ml of

inositol-free DMEM (Gibco) containing 1% dialysed fetal calf serum, penicillin (50

IU/ml), streptomycin (50 mg/ml), L-glutamine (4 mM) and 1 pCi/ml myo-[3H]inositol
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(Amersham Pharmacia Biotech). After 48 hours, the medium was removed and

monolayers washed with 1 ml of pre-warmed assay buffer (140 mM NaCl, 20 mM

HEPES (pH 7.2), 8 mM glucose, 4 mM KC1, 1 mM MgCl2, 1 mM CaCl2, 1 mg/ml fatty

acid free bovine serum albumin) to remove extracellular myo-[3H]inositol. Cells were

then incubated at 37°C in 500 pi of assay buffer containing 10 mM LiCl for 30 to 60

minutes to block inositol phosphatases, then stimulated with GnRH as described in the

figure legends. Pretreatment with chemical inhibitors was performed during the pre¬

incubation with LiCl.

Following stimulation with GnRH, the assay buffer was removed and cells lysed in 500

pi of 10 mM formic acid for 30 minutes at 4°C. 3H-inositol phosphates were purified by

ion-exchange chromatography using AG1-X8 resin (Formate form, Bio-Rad

Laboratories). The formic acid extract was added to 500 pi of a 50% slurry of AG1-X8

resin prepared in distilled water and mixed by vortexing. The supernatant was removed

and the resin washed with 1ml of distilled water followed by 1 ml of 60 mM ammonium

formate, 5 mM sodium tetraborate. Bound inositol phosphates were then eluted with 1 ml

of 1 M ammonium formate, 0.1 M formic acid. 800 pi of eluate was mixed with 2.5 ml of

Optiphase 3 scintillant (Perkin Elmer), and the radioactivity measured by liquid

scintillation spectroscopy. Assays were performed in triplicate.

Immunocytochemistry and confocal microscopy

SCL60 Cells were seeded into poly-L-lysine coated 8-well chamber slides (Labtech) at a

density of 7.5 x 104 cells per well and allowed to attach overnight. The medium was

removed, cells washed with PBS, and incubated overnight in serum free DMEM

containing penicillin (50 IU/ml), streptomycin (50 mg/ml), and 10 mM HEPES (pH 7.4).

Quiescent cells were then stimulated with GnRH the following morning. Chemical

inhibitors were added in serum free DMEM as described in the figure legends.
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After stimulation with GnRH, cells were washed with chilled PBS and fixed with ice cold

methanol at -20°C for 10 minutes. The fixed cells were then blocked with 10% fetal calf

serum, 1% bovine serum albumin in PBS (blocking solution) for 1 hour at room

temperature. Anti- tyrosine tubulin and p-actin antibodies were added at a 1:100 dilution

in blocking solution overnight at 4°C. Cells were then washed three times with PBS and

FITC conjugated secondary antibody added at a 1:200 dilution in blocking solution for 1

hour at room temperature. After three washes with PBS, slides were mounted in

permafluor mounting medium (Immunotech) and left to dry overnight in the dark.

Filamentous actin was stained with fluorescently labeled phalloidin. After fixing in ice

cold methanol, cells were incubated for 1 hour at room temperature with a 1:50 dilution

of Alexfluor-568 phalloidin (Molecular Probes) prepared in PBS. The cells were then

washed three times with PBS and mounted as above. For phase contrast microscopy, cells

were fixed in ice cold methanol and mounted as described.

Confocal microscopy was performed on a Zeiss LSM 510 laser scanning microscope

with a 40 x 1.4 numerical aperture oil immersion lens. Images were exported to

Adobe photoshop.

Fractionating cells with non-ionic detergents

The distinct chemical properties of non-ionic detergents allow cells to be fractionated into

specific subcellular proteomes for immune precipitation and Western blotting studies.

Cytoplasmic and nuclear extracts were prepared by gently lysing cells in a NP-40

(Calbiochem) based buffer. Low concentrations of this detergent do not solubilise the

nuclear lamina, allowing the nuclei to be separated from the cytosol and other organelles

by low speed centrifugation. In contrast, lysis in Triton X-100 based buffer allows the

isolation of detergent insoluble cytoskeletons from the majority of other cellular material.
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The cytoskeleton and associated proteins can then be extracted under depolymerising

conditions and separated from insoluble material by centrifugation.

Preparation of cytoplasmic and nuclear extracts

SCL60 cells were seeded into 100mm dishes at a density of 3 x 106 cells per dish and

allowed to attach overnight. The medium was removed, cells washed with PBS, and

incubated overnight in serum free DMEM containing penicillin (50 IU/ml), streptomycin

(50 mg/ml), and 10 mM HEPES (pH 7.4). Quiescent cells were stimulated with GnRH or

EGF the following morning. Chemical inhibitors were added in serum free DMEM as

described in the figure legends.

Following stimulation with ligands, cells were washed with chilled PBS and lysed on ice

for 10 minutes in 800 pi ofNP-40 based lysis buffer (0.5% NP40, 150 mM NaCl, 5 mM

HEPES (pH 7.4), 2 mM EDTA (pH 8.0), 100 pM Na3V04, 1 mM PMSF and 10 pg/ml

leupeptin). Lysates were recovered to Eppendorf tubes and nuclei sedimented by

centrifugation at 1,000 xg for 3 minutes at 4°C. Cytoplasmic lysates were recovered to

fresh tubes and clarified by centrifugation at 15,000 xg for 15 minutes at 4°C. The nuclear

pellet was washed twice in 800 pi ofNP-40 buffer to remove contaminating cytoplasmic

proteins and solubilised in 50 pi of NP-40 buffer containing 0.2% (w/v) SDS. Insoluble

material was sedimented by centrifugation at 15,000 xg for 15 minutes at 4°C and nuclear

lysates recovered to fresh tubes.

Protein tyrosine phosphorylation was analysed by immune precipitating proteins from

cytoplasmic extracts with anti-phosphotyrosine (PY20) agarose conjugated antibody,

followed by Western blotting. Phosphorylation of transiently expressed epitope tagged

proteins was analysed by immune precipitating proteins from cytoplasmic extracts with

anti-myc or anti-HA agarose conjugated antibodies as appropriate, followed by Western

blotting. ERK activation was analysed by Western blotting cytoplasmic and nuclear
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extracts with a phosphospecific antibody that recognises the active phosphorylated forms

of ERK 1 and 2. Protein interactions were analysed by reciprocal immune precipitation

and Western blotting or by two-dimensional gel electrophoresis and MALDI-ToF mass

spectrometry.

Preparation of cytoskeletal extracts

Cytoskeletal extracts were prepared essentially according to Payrastre et al. (1991).

SCL60 cells were seeded into 100mm dishes at a density of 3 x 106 cells per dish and

allowed to attach overnight. The medium was removed, cells washed with PBS, and

incubated overnight in semm free DMEM containing penicillin (50 IU/ml), streptomycin

(50 mg/ml), and 10 mM HEPES (pH 7.4). Quiescent cells were stimulated with GnRH

the following morning.

Following stimulation with GnRH, cells were washed with chilled PBS and lysed on ice

for 15 minutes in 1 ml of Triton X-100 based lysis buffer (0.5% Triton X-100, 20 mM

HEPES (pH 7.4), 50 mM NaCl, 1 mM EGTA, 100 pM Na3V04, 1 mM PMSF and 10

pg/ml leupeptin). Lysates were recovered to Eppendorf tubes and insoluble material

collected by centrifugation at 12,000 xg for 1 minute at 4°C. The pellet was washed four

times in 1 ml of 20 mM HEPES (pH 7.4), 50 mM NaCl, 1 mM EGTA, 100 pM Na3V04,

1 mM PMSF and 10 pg/ml leupeptin, to remove contaminating cytoplasmic proteins, and

cytoskeletons extracted in 2 ml of 0.6 M KI, 100 mM PIPES (pH 6.5), 100 mM KCL,

100 pM Na3V04, 1 mM PMSF and 10 pg/ml leupeptin for 20 - 30 minutes at 4°C with

gentle shaking. Insoluble material was sedimented by centrifugation at 15,000 xg for 15

minutes at 4°C and the supernatant recovered to a fresh tube. The association of proteins

with Triton X-100 insoluble cytoskeletons was then confirmed by immune precipitation

and Western blotting.
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Determination of protein concentration

Protein concentrations were determined according to Bradford (1976), using BSA as

standard. A standard curve (0-2 mg/ml) was prepared by serial dilution of a 10 mg/ml

stock of BSA in the appropriate buffer. 10 pi of each sample or standard was added to 1

ml of Bradford assay reagent (Bio-Rad Laboratories) in an Eppendorf tube, vortexed to

mix, and incubated at room temperature for 5 minutes. The absorbance was then

measured at 595 nm using a spectrophotometer. A standard curve was plotted and the

concentration ofprotein in each sample calculated from the equation of the line.

Immune precipitation

Proteins were immune precipitated from 500 pg of cell extract with 20 pi of agarose

conjugated antibody, or 2 pg of antiserum plus 20 pi of a 30% slurry of protein A plus

protein G agarose resin (Calbiochem). Briefly, samples were tumbled overnight with

antibody and protein A plus protein G agarose resin (if required) at 4°C and immune

precipitates collected by centrifugation at 5,000 xg for 10 minutes at 4°C. Immune

complexes were then washed twice in 1ml of NP-40 based lysis buffer to remove

contaminating proteins. To prevent the non-specific binding of proteins to the agarose

matrix, cell extracts were routinely pre-cleared with 20 pi of protein A plus protein G

agarose resin for 1 hour prior to immune precipitating.

SDS-PAGE

Discontinuous Tris-glycine gels were prepared according to Westermeier (1997). 8% and

10% resolving gels were prepared in 1.5 M Tris (pH 8.8), 1% (w/v) SDS, 25% (v/v)

glycerol. 5% stacking gels were prepared in 1.25 M Tris (pH 6.8), 1% (w/v) SDS.

Solutions were degassed for 5 minutes and polymerisation initiated by the addition of

TEMED and APS. The resolving gel was poured and then immediately overlaid with the

stacking gel. The inclusion of 25% glycerol in the resolving gel buffer allows both to be
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cast at the same time without them mixing together. Gels were allowed to polymerise for

1 hour at room temperature and stored at 4°C overnight before use.

Protein extracts were mixed with an equal volume of 2 x SDS-PAGE sample buffer (25

mM Tris-HCl (pH 6.8), 8% SDS, 0.9 M P-mercaptoethanol, 10% (v/v) glycerol), boiled

for 5 minutes and cooled to room temperature. Immune precipitates were routinely

solubilised in 25 pi of SDS-PAGE sample buffer, boiled for 5 minutes, cooled to room

temperature, and agarose beads pelleted by centrifugation at maximum speed in a bench

top centrifuge for 1 minute. A Hamilton syringe with a 22 gauge needle was used to load

the gels to prevent agarose resin being accidentally loaded into the wells. Proteins were

resolved by SDS-PAGE using a Mini Protean II electrophoresis system (Bio-Rad

Laboratories). Electrophoresis was routinely performed at 200 V for 1 hour in SDS-

PAGE running buffer (25 mM Tris, 192 mM glycine, 1% (w/v) SDS).

Western blotting

Proteins were transferred from SDS-PAGE gels to PVDF membrane (Perkin Elmer) for

Western blotting using a Novablot semi-dry transfer apparatus (Amersham Pharmacia

Biotech). PVDF membranes were prepared by washing with 100 % methanol for 1

minute, followed several washes with distilled water, and then equilibrated in semi-dry

transfer buffer (20mM Tris, 192 mM glycine, 20% methanol, 0.1% SDS) for 10 minutes.

Three thicknesses of electrode paper were soaked in semi-dry transfer buffer and placed

onto the anode plate of the transfer apparatus. The PVDF membrane was then placed on

top followed by the gel and then another three thicknesses of electrode paper wetted with

buffer. Air bubbles were rolled out with a glass test tube, and the cathode plate carefully

placed on top. Proteins were transferred at 12 V for 1 hour.

Following semi-dry transfer, membranes were rinsed in TBS-T (100 mM Tris-HCl (pH

7), 150 mM NaCl, 0.05% Tween 20, 0.05% NP-40) and blocked for 1 hour in 10 ml of

blocking buffer (4% (w/v) bovine serum albumin in TBS-T) with gentle shaking on a



plate rocker. The blocking buffer was discarded and primary antibody (diluted 1:1,000 in

10 ml of blocking buffer) added for 1 hour. Membranes were washed three times for 10

minutes each in TBS-T, then alkaline-phosphatase conjugated secondary antibody

(diluted 1:10,000 in 10 ml of blocking buffer) added for 1 hour. After three further 10

minute washes in TBS-T, blots were drained and developed with ECF substrate

(Amersham Pharmacia Biotech) for 1 - 5 minutes according to the manufacturers

instructions, and visualised using a Typhoon 9200 scanner (Amersham Pharmacia

Biotech). Bands were quantified using ImageQuant software (Molecular dynamics).

After being scanned, blots were washed in 40% methanol for 30 minutes to remove

precipitated fluorophore and rinsed in TBS-T. Antibodies were then stripped from the

membrane by incubating in 10 ml of 25 mM Tris-HCl (pH 7), 8% (w/v) SDS, 0.72 M

P-mercaptoethanol for 30 minutes at 80°C, followed by three 10 minute washes in

TBS-T.

In vitro protein kinase assay

The kinase activity of FAK and Src was assayed in vitro using rabbit muscle enolase

as substrate. Cytoplasmic extracts were prepared from SCL60 cells as described, and

FAK or Src immune precipitated with 2 Dg of specific antiserum and 20 pi of protein

A plus protein G resin for 4 hours at 4°C. Immune complexes were collected by

centrifugation at 15,000 xg for 10 minutes, washed twice with 1 ml of NP-40 based

lysis buffer, and once with 1ml of 150 mM NaCl, 20 mM HEPES (pH 7.4), 30 mM

MgCb. They were then resuspended in 10 pi of protein kinase assay buffer (150 mM

NaCl, 20 mM HEPES (pH 7.4), 30 mM MgCl2, 100 pM sodium orthovanadate, 10

pCi [D-32P]ATP (3000 Ci/mol; Amersham Pharmacia Biotech), 10 pM cold ATP,

and 0.3 mg/ml rabbit muscle enolase) on ice. The reaction was started by warming

samples to 30°C in a water bath, and samples incubated for 10 minutes. The reaction

76



was stopped by returning the samples to ice. 10 pi of SDS-PAGE sample buffer was

then added to each tube, and samples boiled for 5 minutes. Proteins were resolved by

SDS-PAGE as described, and the gels dried onto filter paper for 1 hour at 58°C using

a vacuum gel drier (Bio-Rad Laboratories), wrapped in cellophane and exposed to X-

ray film (Kodak).

Two-dimensional gel electrophoresis of Src immune complexes

Cytoplasmic extracts were prepared from SCL60 cells and Src immune precipitated with

20 pi of anti-Src agarose conjugated antibody as described. Immune precipitates were

then washed three times with 1 ml of Tris-sorbitol buffer (40 mM Tris, 10 mM sorbitol)

to remove contaminating salts, and solubilised in 50 pi of two-dimensional gel

electrophoresis sample buffer (8 M urea, 4% (w/v) CHAPS, 40 mM Tris) for 1 hour at

room temperature.

Proteins were separated according to their isoelectric points using an IPGphor isoelectric

focusing system and immobiline drystrip gels (Amersham Pharmacia Biotech). Samples

were applied to 11cm, pH 3-10 (linear) immobiline strips, in 200 pi of rehydration

solution (8M urea, 2% (w/v) CHAPS and 20 mM DTT), overlayed with mineral oil to

minimise evaporation and urea crystallisation, and strips rehydrated for 12 hours at 30 V.

Isoelectric focusing was then performed as follows; 500 V for lhour, 1,000 V for 1 hour

and 8,000 V for 2 hours (giving a total of 17,500 V hours). Immobiline strips were then

washed in SDS-PAGE equilibration buffer (50 mM Tris-HCl (pH 8.8), 6 M urea, 30%

(v/v) glycerol, 2% (w/v) SDS) containing 1% (w/v) DTT for 10 minutes, followed by a

second 10 minute wash in equilibration buffer containing 4% (w/v) iodoacetamide.

The immobiline strips were then placed onto Excel gel 12-14% SDS-PAGE gels

(Amersham Pharmacia Biotech) and proteins resolved by electrophoresis at 1,000 V

at 20 mA for 45 minutes, followed by 1,000 V at 40 mA for 2 hours 45 min using a
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Multiphor II flat bed system (Amersham Pharmacia Biotech). Proteins were

visualised by staining with silver or coomassie blue.

Silver staining SDS-PAGE gels

Gels were stained using a Hoefer automated gel stainer with a stainless steel tray

(Amersham Pharmacia Biotech). All solutions were prepared with double-distilled water

immediately before use. Following electrophoresis, gels were fixed in 10% glacial acetic

acid in 40% methanol for 30 minutes, washed three times for 5 minutes with distilled

water, and sensitised in 0.02% (w/v) sodium thiosulphate, 200 mM sodium acetate in

30% ethanol for 30 minutes. After three 5 minute washes in distilled water, silver stain

(0.25% (w/v) silver nitrate, 0.015% (w/v) formaldehyde) was added for 20 minutes. Gels

were then washed twice for 1 minute in distilled water and developed with 60 mM

sodium carbonate, 0.0074 % (w/v) formaldehyde for 2 to 5 minutes as required. The

reaction was stopped by the removal of the developer and the addition of 10 mM EDTA

to chelate free silver ions. After 10 minutes the EDTA solution was removed and gels

washed three times for 5 minutes in distilled water. Gels were preserved in 87% (v/v)

glycerol, wrapped in cellophane and stored at 4°C.

Coomassie blue staining SDS-PAGE gels

All solutions were prepared with double distilled water. Following electrophoresis, gels

were fixed and stained in 0.25 % (w/v) Coomassie brilliant blue R250 in

methanol/water/glacial acetic acid (45:45:10) for 1 hour. The stain was removed and gels

destained in several changes ofmethanol/water/glacial acetic acid (45:45:10) for 4 hours.

Gels were then preserved in 87% (v/v) glycerol, wrapped in cellophane and stored at 4°C.
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In-gel tryptic digests and MALDI-ToF mass spectrometry

Protein spots of interest were excised from SDS-PAGE gels with a clean scalpel blade

and recovered to Eppendorf tubes. An equal sized piece was cut from a blank area of the

gel to serve as a control for keratin contamination. The gel slices were dehydrated in 200

pi of 50% acetonitrile and dried under vacuum until all traces of solvent were removed.

Samples were then reduced in 15 pi of 10 mM DTT, 0.2% EDTA, 100 mM ammonium

bicarbonate for 30 minutes at 56°C, cooled to room temperature and alkylated in 50 pi of

50 mM iodoacetamide, 100 mM ammonium bicarbonate for 30 minutes at room

temperature in the dark. After alkylation, gel slices were washed in 200 pi of 100 mM

ammonium bicarbonate for 10 minutes and dehydrated in 200 pi of acetonitrile. Samples

were washed and dehydrated a further two times, then dried under vacuum to constant

weight. The gel pieces were rehydrated in 5 pi of digestion buffer (50 mM ammonium

bicarbonate buffer containing 12.5 ng/ml sequencing grade trypsin) at 37°C for 15

minutes, covered with 10 pi of 50 mM ammonium bicarbonate to prevent them from

drying out, and incubated at 37°C overnight. Peptides were extracted in 50 pi of 5%

formic acid in 50% acetonitrile for 1 hour at room temperature with constant shaking.

The supernatant was recovered to a fresh Eppendorf tube, dried under vacuum, and

peptides resuspended in distilled water. All steps were performed in a laminar flow hood

to minimise keratin contamination. Peptides were desalted using Zip Tips (Millipore) and

analysed by MALDI-ToF mass spectrometry by Dr P. Barran and Dr J. Creanor at the

Department of Chemistry (University of Edinburgh), using a Voyager MALDI-ToF mass

spectrometer (ABI). Proteins were identified from m/z peak lists using MS-Fit

(http://prospector.ucsf.edu) to interrogate the SwissProt protein database

(http://www.expasy.org). The parameters used during database searches are summarised

in Table 1 below. The primary amino acid sequences of proteins identified by mass
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spectrometry were analysed using scansite (http://scansite.mit.edu) to identify potential

protein-interaction domains and phosphorylation sites.

Parameter Setting used

Digest

Maximum number ofmissed cleavages

Cysteine modification

Other considered modifications

Instrument

Mass ions

Mass tolerance

Trypsin

1

Carboxymethylation

Oxidation ofmethionine

MALDI-ToF

Mono-isotopic
± 50 ppm

Table 1: Summary of parameters used in MS-Fit (http://prospector.ucsf.edu) while

searching the SwissProt database (http://www.expasy.org).

Preparation of the pET42a-DGK^

DGKTJ was cloned into pET42a (Novagen) for expression in E. coli as a fusion protein

with an N-terminal GST and 6-His tag. The coding sequence of rat DGK^ was amplified

by PCR from pEGFPBos-DGK^ using primers which contained an EcoRI or Sail

restriction enzyme cut site, for directional cloning into pET42a. Primer sequences were

GCGGCGGAATTCATGGAGCCGCGGGACCC (forward) and CGCCGCGTCGACCT

ACACAGCTGTCTCCTGGTCCT (reverse).

PCR reactions were performed in a Hybaid thermal cycler in a volume of 30 pi

containing; 1 X Thermopol buffer (New England Bioloabs, 10 mM KC1, 10 mM

(NH4)2S04, 20 mM Tris-HCl, 4 mM MgS04, 0.1% Triton X-100, pH8.8), 0.67 mM

dNTPs, 100 ng of each primer, and 1 unit ofDeep VentR DNA polymerase (New England

Biolabs). PCR conditions were as follows; denaturation at 94°C for 5 minutes, followed

by 30 cycles of 94°C for 1 minute, 58°C for 1 minute, and 72°C for 3 minutes, with a

final extension step at 72°C for 10 minutes. PCR product and pET42a vector were
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digested with EcoRI and Sail, ligated together, and transformed into DH5a competent E.

coli as described.

Single colonies of transformants were picked and inoculated into 5 ml of LB medium

containing antibiotic and grown overnight at 37°C with constant shaking. Plasmid DNA

was purified using Qiagen miniprep columns, and sequenced to ensure that the inserts did

not contain any deleterious mutations. Once the sequence had been verified as correct,

pET42a-DGK£, was transformed into BL21 competent cells (Novagen) for protein

expression.

Expression and purification of recombinant DGK£

A single colony of transformed BL21 cells was inoculated into 5ml of 2YT medium

containing 30 pg/ml kanamycin and incubated at 37°C with constant shaking until an

absorbance (600 nm) of 0.6 was reached. Cultures were stored at 4°C overnight. The

following day 1 ml was inoculated into 100 ml of 2YT medium, and the incubation

continued until an absorbance (600 nm) of 0.6 was reached once again. Protein

expression was then induced with 1 mM IPTG for 4 hours at 37°C with constant shaking.

In initial experiments, recombinant DGK^ was found to be produced as an insoluble

protein and therefore had to be purified under denaturing conditions using Ni2+-NTA

resin (Qiagen). p-mercaptoethanol was included in the column wash buffer to remove

contaminants that had formed disulphide bonds with the fusion protein.

Following the induction of protein expression, bacteria were harvested by centrifugation

at 5,000 xg for 10 minutes and lysed in 10 ml of denaturing lysis buffer (8 M urea, 20

mM sodium phosphate (pH 7.8), 0.5 M NaCl, 1 mM PMSF) for 10 minutes at room

temperature. Lysates were sonicated on ice, insoluble material sedimented by

centrifugation at 15,000 xg for 15 minutes at 4°C, and the clarified lysate recovered to a

fresh tube. Imidazole was added to a final concentration of 10 mM, and the cell free
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extract tumbled with 2 ml of pre-equilibrated Ni2+-NTA resin for 1 hour at 4°C. The resin

was then transferred to a disposable plastic column (Bio-Rad Laboratories) and washed

with 30 ml of denaturing lysis buffer containing 10 mM imidazole, followed by 30 ml of

denaturing wash buffer (8 M urea, 20 mM sodium phosphate (pH 6.5), 0.5 M NaCl, 10

mM imidazole, 10 mM (3-mercaptoethanol). The fusion protein was then refolded on the

column by washing with 30 ml of native wash buffer (20 mM sodium phosphate (pH

7.8), 0.5 M NaCl, 20 mM imidazole) to remove the urea, and eluted with 10 ml of 250

mM imidazole in 20 mM sodium phosphate (pH 7.8), 0.5 M NaCl. 1ml fractions were

collected and the elution of bound proteins monitored by Bradford assay. Fractions

containing recombinant DGKL, were identified by SDS-PAGE and staining with

Coomassie blue and pooled together.

Recombinant DGK<^ was further purified by gel filtration on a 20 ml Sephadex G-150

column, using 20 mM sodium phosphate (pH 7.8), 150 mM NaCl, 10 mM imidazole

as running buffer. 1 ml fractions were collected, and the elution of proteins monitored

by Bradford assay. Fractions that contained recombinant DGKZJ were identified by

SDS-PAGE and staining with Coomassie blue. They were then pooled together and

concentrated in dialysis tubing sprinkled with a little sephadex G-25 to absorb some

of the liquid. The fusion protein was then stored at 4°C until use.

Preparation of Sephadex G-150 gel filtration columns

lg of Sephadex G-150 (bead size 40 - 120 pm) was swollen in 50 ml of 20 mM sodium

phosphate (pH 7.8), 150 mM NaCl, for 5 hours at 80°C in a water bath, then allowed to

cool to room temperature. The resin was carefully poured into a 1 x 25 cm glass column

and allowed to settle under gravity. The column was then equilibrated with running

buffer and the void volume calculated by running dextran blue (average molecular weight

2 x 106 Da) through it.
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Preparation of rat brain Iysates

Brains were obtained from rats, frozen in dry ice/ethanol bath, and stored at -70°C until

required. Tissue was collected from animals that were being euthanised for other

researchers and would otherwise have gone to waste. Brains were homogenised on ice in

1 ml of 0.5% NP40, 20 mM sodium phosphate (pH 7.8), 150 mM NaCl, 100 pM

Na3V04, 1 mM PMSF and 10 pg/ml leupeptin with a glass tissue grinder and lysates

clarified by centrifugation at 15,000 xg for 10 minutes at 4°C. Lysates were recovered to

fresh tubes and the protein concentration determined by Bradford assay. Imidazole was

added to a final concentration of 10 mM before affinity chromatography was performed.

DGK^ affinity chromatography

250 pg of recombinant DGK^ was bound to 50 pi of Ni2+-NTA resin for 1 hour at

4°C and then washed three times with 1ml of wash buffer (0.5% NP-40, 20 mM

sodium phosphate (pH 7.8), 150 mM NaCl, 10 mM imidazole). Immobilised DGK£,

was then incubated for 4 hours at 4°C with 500 pg of rat brain lysate. Beads were

collected by centrifugation at 800 xg for 1 minute and washed twice with 1 ml of

wash buffer. Proteins were solubilised in 50 pi of SDS-PAGE sample buffer, boiled

for 5 minutes and cooled to room temperature. Protein interactions were analysed by

SDS-PAGE and Western blotting. To prevent non-specific binding of proteins to the

Ni2+-NTA resin during affinity chromatography, rat brain lysates were routinely pre-

cleared with 50 pi of resin for 1 hour prior to use.

Diacylglycerol kinase assay

The enzymatic activity of immune precipitated DGK^ was assayed in vitro using 1,2-

dioleoyl-sn-glycerol as substrate, as described by Payrastre et al. (1991). 1,2-dioleoyl-s-n-

glycerol and phosphatidylserine were suspended in chloroform/methanol (1:1) and stored
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at -20°C under nitrogen to prevent their oxidation. The required amount of each lipid was

pipetted into a glass tube and dried under vacuum. Mixed micelles were formed by

adding 100 mM Tris-HCl (pH7.4), 20 mM MgCl2 and sonicating.

Cytoplasmic and Triton X-100 insoluble cytoskeletal extracts were prepared as

described, and DGK<^ immune precipitated with 2 pg of specific antiserum and 20 pi

of protein A plus protein G resin for 4 hours at 4°C. Immune complexes were

collected by centrifugation at 15,000 xg for 10 minutes, then washed twice with 1 ml

of 50 mM Tris-HCl (pH7.4), 10 mM MgCl2. They were then resuspended in lOOpl of

lipid kinase buffer (50 mM Tris-HCl (pH7.4), 10 mM MgCl2, 10 pCi of [y-32P]ATP

(3000 Ci/mol; Amersham Pharmacia Biotech) 60 pM cold ATP, 50 pM 1,2-dioleoyl-

■sw-glycerol, and 100 pM phosphatidylserine) on ice. The reaction was started by

warming samples to 30°C in a water bath, and samples incubated for 10 minutes.

Reactions were terminated by the addition of 400 pi of chloroform/methanol (1:1).

Samples were then vortexed for 10 seconds, and centrifuged at 2,000 xg for 10

minutes to separate the organic and aqueous phases. The aqueous phase was

discarded and the organic phase containing the lipids recovered to a glass test tube.

Solvent was evaporated at 42°C under a stream of cold air, and lipids resuspended in

20 pi of chloroform for analysis by thin layer chromatography.

Thin-layer chromatography

Radio-labeled lipids were spotted onto 20 cm x 20 cm silica gel coated thin-layer

chromatography plates and separated using chloroform/methanol/water/ammonium

hydroxide (60:48:11:1.8) as solvent. Following chromatography, plates were dried for 1

hour in a fume hood to remove all traces of solvent, wrapped in cellophane and exposed

to X-ray film (Kodak). The identity of radiolabeled phosphatidic acid was confirmed by
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running phosphatidic acid standard, staining plates in an iodine chamber, and comparing

Rf values.

Translocation of GFP-tagged DGK^

Membrane translocation of GFP-tagged DGKtJ was observed in L□ T2 cells using a

Zeiss LSM 510 laser scanning microscope with a 40 x 1.4 numerical aperture oil

immersion lens. LPT2 cells were transfected with GFP-DGK^ as described. 24 hours

after transfection, cells were dispersed with 0.5 x trypsin-EDTA and seeded into

matrigel coated 35 mm microscope dishes (MaTek) at a density of 0.25 x 106 cell per

dish. The following evening the medium was removed, cells washed with PBS, and

incubated overnight in serum free DMEM containing penicillin (50 IU/ml),

streptomycin (50 mg/ml), and 10 mM HEPES (pH 7.4). For microscopy, cells were

maintained in serum free DMEM at 37°C in a heated chamber on the microscope

stage, stimulated with GnRFI, and images recorded periodically. Images were

exported to Adobe photoshop. All experiments were repeated at least three times.

Statistical analyses

Data are presented as mean values + or ± the standard error of the mean (SEM). Data

were analysed by Student's T-test or by one way analysis of variance (ANOVA) using

Tukey's pairwise comparison to identify groups, which were significantly different.
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Role of tyrosine kinases in ERK activation by the
GnRH receptor

Introduction

Many GPCRs initiate the activation ofERK 1 and 2 by recruiting the guanine nucleotide

exchange factor Sos to the plasma membrane in association with Grb2, which binds to

tyrosine phosphorylated proteins via its SH2 domain and to Sos via its SH3 domain

(Egan et al., 1994). The EGFR and FAK have both been proposed to act as plasma

membrane scaffolds upon which this Ras activation complex may assemble, and many

Gq coupled GPCRs have been shown to induce their tyrosine phosphorylation (Daub et

al., 1996; Delia Rocca etal., 1999).

The utilisation of different scaffolds for the activation of ERK 1 and 2 was originally

thought to represent functional redundancy within the system. However, experimental

data is now beginning to suggest that this is not the case. Activation of these enzymes by

the EGFR typically results in their translocation of the nucleus (Horgan and Stork, 2003;

Luttrell and Luttrell, 2003). In contrast, activation ofERK 1 and 2 by FAK may spatially

constrain the proteins at the plasma membrane and thus favour the phosphorylation of

proteins in the cytoplasm (Fincham et al., 2000; Luttrell and Luttrell, 2003). Therefore,

the mechanism of ERK activation employed by a GPCR may play an important role in

determining the function of the active enzymes within the cell. In this chapter, the role of

tyrosine kinases in the activation ofERK 1 and 2 by the GnRH receptor is investigated in

SCL60 cells.

Results

Immune precipitation and Western blotting studies revealed that GnRH (100 nM, 10

minutes) induced the tyrosine phosphorylation of four proteins in SCL60 cells, with

molecular weights of 70, 100, 115 and 125 KDa, respectively (Figure 10 A). The major

band was subsequently identified as FAK (Figure 10 B). However, the EGFR was not
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found to be tyrosine phosphorylated following stimulation with GnRH (data not shown).

These results are consistent with previous reports by Reiss et al. (1997) and Johnson et

al. (2000) who showed that GnRH induces the tyrosine phosphorylation of a 125 KDa

protein in aT3-l cells, and suggest that FAK may function as a scaffold for the activation

ofERK 1 and 2 in these cells.

Time course experiments revealed that GnRH induced a rapid and sustained increase in

FAK tyrosine phosphorylation, which reached a maximum at 5 minutes and remained

elevated above basal levels up to 1 hour after stimulation with GnRH (Figure 11 A). The

increase in FAK phosphorylation was found to be significantly different from basal levels

at each time point (P<0.01). The increase in tyrosine phosphorylation was also

accompanied by an increase in the kinase activity of immune precipitated FAK towards

exogenous substrate in vitro (Figure 11 B).

GnRH was also found to activate Src in SCL60 cells. Western blotting anti-

phosphotyrosine immune precipitates with phospho-specific antibodies revealed that

GnRH induced a rapid but transient dephosphorylation of Src at Tyr530, and a sustained

increase in the autophosphorylation of Tyr419 (Figures 12 A and B). Significant

decreases in Tyr530 phosphorylation were observed at the 1 and 2 minute time points

compared to the unstimulated control (P<0.01), while Tyr419 phosphorylation was found

to be significantly increased at each time point examined (compared to the control)

(P<0.01). These events are consistent with the activation of the catalytic domain of Src,

and were accompanied by an increase in the kinase activity of immune precipitated Src

towards exogenous substrate in vitro (Figure 12 C). In all subsequent studies, auto¬

phosphorylation of Src at Tyr419 was used as an indicator of enzyme activation.

The activation of ERK 1 and 2 by GnRH was analysed by Western blotting cytoplasmic

extracts with a phospho-specific antibody that recognises both isoforms when dually

phosphorylated at Thrl83 and Tyrl85 (ERK2 numbering) by MEK 1 or 2. The time
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course ofERK activation was similar to that observed for FAK, reaching a maximum at 5

minutes but remaining elevated above basal 1 hour after treatment (Figure 13 A). The

increase in ERK phosphorylation was found to be significantly different from the

unstimulated control at each time point examined (P<0.01). Western blotting nuclear

extracts revealed that GnRH also induced the nuclear translocation of ERK in SCL60

cells, however, it was found to be much less potent than EGF in this respect (Figure 13

B).

By immune precipitating FAK and Western blotting with antibodies raised against ERK2

and Src, it was found that FAK functions to assemble these proteins together into a

complex. In quiescent SCL60 cells, ERK2 was found to co-precipitate with FAK. The

association between the two proteins did not appear to be altered by GnRH treatment

(Figure 14). FAK was also found to associate with Src. However, this association was

dynamically regulated, as Src co-precipitated with FAK only following stimulation with

GnRH (Figure 14).
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Figure 10: Identification of proteins that are tyrosine phosphorylated in response to GnRH
in SCL60 cells. Quiescent cells were treated with vehicle or 100 nM GnRH for 10 minutes and

cytoplasmic extracts prepared. Phospho-tyrosine proteins were immune precipitated and analysed

by Western blotting with anti-phospho-tyrosine (A) or anti-FAK (B) antibodies. The band of

approximately 30 KDa is antibody light chain. The immunoblots shown are representative of three

separate experiments.
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Figure 11: GnRH induces the activation and tyrosine phosphorylation of FAK in SCL60
cells. Quiescent cells were treated with vehicle or 100 nM GnRH and cytoplasmic extracts

prepared. (A) Phospho-tyrosine proteins were immune precipitated and FAK tyrosine
phosphorylation analysed by Western blotting. GnRH induced a significant increase in FAK
tyrosine phosphorylation at each time point versus control (*, P<0.01, by ANOVA and Tukey's
pairwise comparison). Data represent the mean of three separate experiments + SEM. (B) FAK
was immune precipitated and kinase activity assayed in vitro using rabbit muscle enolase as

substrate. The autoradiograph shown is representative of three separate experiments.
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Figure 12: GnRH induces the activation of Src in SCL60 cells. Quiescent cells were treated
with vehicle or 100 nM GnRH and cytoplasmic extracts prepared. Phospho-tyrosine proteins were
immune precipitated and Src tyrosine phosphorylation analysed by Western blotting, using
antibodies that recognise Src when phosphorylated at Tyr419 (A) and Tyr530 (B). GnRH induced
a significant increase in Tyr419 phosphorylation at each time point and a significant decrease in
Tyr530 phosphorylation at 1 and 2 minutes versus control (*, P<0.01, by ANOVA and Tukey's
pairwise comparison). Data represent the mean of three separate experiments + SEM. Src was

immune precipitated and kinase activity assayed in vitro using rabbit muscle enolase as substrate
(C). The autoradiograph shown is representative of three separate experiments.
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Figure 13: GnRH induces the activation of ERK1/2 in SCL60 cells. (A) Quiescent cells were

treated with vehicle or 100 nM GnRH and cytoplasmic extracts prepared. GnRH induced a

significant increase in the phosphorylation of ERK 1/2 at each time point versus control (*,
P<0.01, by ANOVA and Tukey's pairwise comparison). Data represent the mean of three separate

experiments + SEM. (B) Quiescent cells were treated with 100 nM GnRH or 10 ng/ml EGF and
nuclear extracts prepared. ERK 1/2 activation was analysed by Western blotting. The immunoblot
shown is representative of two separate experiments.
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Figure 14: FAK functions as a molecular scaffold for ERK2 and Src in SCL60 cells.

Quiescent cells were treated with vehicle or 100 nM GnRH for 10 minutes and cytoplasmic
extracts prepared. FAK was immune precipitated and Src and ERK2 association analysed by
Western blotting. FAK was immune precipitated with a rabbit polyclonal antibody and Western
blotted with a monoclonal antibody. Src and ERK2 antibodies were rabbit polyclonal antibodies.
The band of approximately 30 KDa in the Src and ERK2 blots is antibody light chain. The
immunoblots shown are representative of three separate experiments.
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Transient transfection studies were performed with FAK point mutants to investigate the

role of the interaction between FAK and Src in the activation of ERK2 by the GnRH

receptor. In these experiments, SCL60 cells were transfected with wild type FAK, or

FAK point mutants that were kinase dead (K454R), unable to bind Src via its SH2

domain (Y397F), or unable to bind Grb2 via its SH2 domain (Y925F), along with myc-

tagged ERK2. Following stimulation with GnRH, the myc-tagged ERK was immune

precipitated from cytoplasmic extracts, and its activation analysed by Western blotting.

Expression of each FAK point mutant significantly inhibited the GnRH induced

phosphorylation ofERK2, compared to the wild type protein (PO.Ol) (Figure 15). These

results indicate that FAK autophosphorylation at Tyr397, association with Src, and

subsequent phosphorylation at Tyr925 by Src are important events in the activation of

ERK2.

A range of pharmacological inhibitors was used to investigate the proximal signals that

lead to the co-ordinated activation of FAK, Src and ERK by GnRH in SCL60 cells. FAK

tyrosine phosphorylation was found to be unaffected by the inhibition of PLC (U73122),

PKC (GF109203X, Ro-318220), PI-3 kinase (wortmannin), MEK (PD98059), EGFR

tyrosine kinase activity (AG1478), or chelation of intracellular calcium (BAPTA-AM).

However, it was sensitive to the inhibition of Src family kinases with PP2 (P<0.01)

(Figure 16). Src Tyr419 autophosphorylation displayed a similar spectrum of

sensitivities, and was only significantly inhibited by pre-treatment with PP2 (P<0.01)

(Figure 17). ERK 1 and 2 phosphorylation was also found to be unaffected by inhibition

of PLC, PI-3 kinase, EGF receptor tyrosine kinase activity, or chelation of intracellular

calcium. However, it was sensitive to inhibition of PKC (GF109203X, PO.05; Ro-

318220, P<0.05), MEK (PO.Ol) and Src family kinases (PO.Ol) (Figure 18).

As FAK and Src are known to be regulated by cell adhesion to the extracellular matrix,

the role of integrins and the actin cytoskeleton in GnRH receptor signalling was
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investigated. Overnight treatment of adherent cells with the fibronectin and vitronectin

fragment R-G-D-S causes the displacement of integrins from the extracellular matrix,

resulting in the dissolution of focal contacts, and the disassembly of the actin

cytoskeleton. Treatment of SCL60 cells with the R-G-D-S peptide completely blocked

FAK tyrosine phosphorylation, while the inactive control peptide R-G-E-S (that does not

bind integrins) had no effect (Figure 19). Disruption of the actin cytoskeleton with

cytochalasin-D or latrunculin-B, also abolished FAK tyrosine phosphorylation (Figure

19). Likewise, Src Tyr419 autophosphorylation was blocked by overnight treatment of

cells with the R-G-D-S peptide, and by treatment with cytochalasin-D and latrunculin-B

(Figure 20), while ERK 1 and 2 phosphorylation was significantly inhibited by treatment

with R-G-D-S (P<0.01), cytochalasin-D (P<0.01) and latrunculin-B (P<0.01) (Figure

4.21).

The Rho family GTPases play an important role in regulating the actin cytoskeleton in

eukaryotic cells. C. difficile Toxin B is a cell permeable bacterial toxin that

monoglucosylates and inactivates RhoA, Racl and Cdc42. Overnight treatment with

Toxin B was found to cause SCL60 cells to develop a rounded phenotype (data not

shown) and significantly inhibited FAK tyrosine phosphorylation (P<0.01), Src Tyr419

autophosphorylation (P<0.01) and ERK 1 and 2 phosphorylation (P<0.01), following

stimulation with GnRH (Figure 22).

Dominant negative cDNA constructs of RhoA (N19RhoA) and Racl (N17Racl) were

then used to investigate whether either of these two proteins were involved in stimulating

FAK tyrosine phosphorylation by GnRH. In these experiments, SCL60 cells were

transfected with HA-tagged FAK, or with HA-tagged FAK plus either N19RhoA or

N17Racl. Following agonist stimulation, HA-tagged FAK was immune precipitated from

cytoplasmic extracts and its phosphorylation status analysed by Western blotting.

Expression of N19RhoA did not significantly inhibit FAK phosphorylation following
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stimulation with GnRH. However, it was abolished by the expression of N17Racl

(Figure 23).

The GnRH receptor also activated PLC in SCL60 cells, leading to the hydrolysis of

PtdIns(4,5)P2. The accumulation of inositol phosphates in the presence of lithium

chloride, which inhibits inositol monophosphatases, was found to be linear up to 1 hour

following stimulation with GnRH (Figure 24 A). While the activation of the ERK

signalling cascade was critically dependent on cell adhesion to the extracellular matrix

and the integrity of the actin cytoskeleton, the activation of PLC was unaffected by

disruption of the actin cytoskeleton with cytochalasin-D or latrunculin-B (Figure 24 B),

indicating that there is a divergence between these two important pathways. The

accumulation of inositol phosphates following stimulation with GnRH was however

significantly inhibited by pretreating cells with the U73122 (P<0.01).
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Figure IS: The association of FAK and Src is important for the activation of ERK2 in
SCL60 cells. SCL60 cells were transfected with myc-tagged ERK2 and either wild type FAK,
Y397F FAK, K454R FAK or Y925F FAK. 48 hours after transfection, quiescent cells were

treated with vehicle or 100 nM GnRH for 10 minutes and cytoplasmic extracts prepared. Myc-

tagged ERK2 was immune precipitated and its phosphorylation analysed byWestern blotting. The

expression of Y397F, K454R and Y925F FAK all significantly inhibited the GnRH induced
phosphorylation of Myc-ERK compared to WT FAK (*, PO.01 by ANOVA and Tukey's
pairwise comparison). Data represent the mean of three separate experiments + SEM.
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Figure 16: Chemical sensitivities of FAK phosphorylation in SCL60 cells. Quiescent cells
were pre-treated with AG 1478 (100 nM, 30 minutes), BAPTA-AM (50 pM, 30 minutes), GF
109203X (1 pM, 30 minutes), PD 98059 (10 pM, 60 minutes), PP2 (5 pM, 30 min), Ro-318220

(100 nM, 30 min), U73122 (20 pM, 60 minutes) or wortmannin (100 nM, 30 minutes). Controls
received DMSO alone. Cells were then treated with vehicle or 100 nM GnRH for 10 minutes and

cytoplasmic extracts prepared. Phospho-tyrosine proteins were immune precipitated and FAK

phosphorylation analysed by Western blotting. Pretreatment of cells with PP2 significantly
inhibited the GnRH induced tyrosine phosphorylation of FAK (*, PO.01, by ANOVA and
Tukey's pairwise comparison). Data represent the mean of three separate experiments + SEM.
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Figure 17: Chemical sensitivities of Src activation in SCL60 cells. Quiescent cells were pre¬

heated with AG 1478 (100 nM, 30 minutes), BAPTA-AM (50 pM, 30 minutes), GF 109203X (1

pM, 30 minutes), PD 98059 (10 pM, 60 minutes), PP2 (5 pM, 30 min), Ro-318220 (100 nM, 30

min), U73122 (20 pM, 60 minutes) or wortmannin (100 nM, 30 minutes). Controls received
DMSO alone. Cells were then treated with vehicle or 100 nM GnRH for 10 minutes and

cytoplasmic extracts prepared. Phospho-tyrosine proteins were immune precipitated and Src
Tyr419 phosphorylation analysed by Western blotting. Pretreatment of cells with PP2
significantly inhibited the GnRH induced autophosphorylation of Src at Tyr419 (*, P<0.01, by
ANOVA and Tukey's pairwise comparison). Data represent the mean of three separate

experiments + SEM.
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Figure 18: Chemical sensitivities of ERK1/2 activation in SCL60 cells. Quiescent cells were

pre-treated with AG 1478 (100 nM, 30 minutes), BAPTA-AM (50 pM, 30 minutes), GF 109203X

(1 pM, 30 minutes), PD 98059 (10 pM, 60 minutes), PP2 (5 pM, 30 min), Ro-318220 (100 nM,
30 min), U73122 (20 pM, 60 minutes) or wortmannin (100 nM, 30 minutes). Controls received
DMSO alone. Cells were then treated with vehicle or 100 nM GnRH for 10 minutes and

cytoplasmic extracts prepared. ERK1/2 phosphorylation was analysed by Western blotting.
Pretreatment of cells with PD 98059, PP2, GF 109203X and R0-318220 all significantly inhibited
the GnRH induced phosphorylation of ERK1/2 (*, P<0.01; **, P<0.05, by ANOVA and Tukey's
pairwise comparison). Data represent the mean of three separate experiments + SEM.
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Figure 19: Role of focal contacts and the actin cytoskeleton in FAK phosphorylation in
SCL60 cells. Quiescent cells were pre-treated with RGDS (1 mM, 16 hours), RGES (1 mM 16

hours), cytochalasin-D (1 pM, 60 minutes) or latrunculin-B (1 pM, 60 minutes). Cells were then
treated with vehicle or 100 nM GnRH for 10 minutes and cytoplasmic extracts prepared.
Phospho-tyrosine proteins were immune precipitated and FAK phosphorylation analysed by
Western blotting. Pretreatment of cells with RGDS, cytochalasin B and latrunculin-D all
significantly inhibited GnRH induced tyrosine phosphorylation of FAK (*, P<0.01, by ANOVA
and Tukey's pairwise comparison). Data represent the mean of three separate experiments + SEM.
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Figure 20: Role of focal contacts and the actin cytoskeleton in Src activation in SCL60 cells.
Quiescent cells pre-treated with RGDS (1 mM, 16 hours), RGES (1 mM 16 horns),

cytochalasin-D (1 uM, 60 minutes) or latrunculin-B (1 pM, 60 minutes). Cells were then treated
with vehicle or 100 nM GnRH for 10 minutes and cytoplasmic extracts prepared. Phospho-

tyrosine proteins were immune precipitated and Src Tyr419 phosphorylation analysed by Western

blotting. Pretreatment of cells with RGDS, cytochalasin B and latrunculin-D all significantly
inhibited GnRH induced Src Tyr419 autophosphorylation (*, P<0.01, by ANOVA and Tukey's
pairwise comparison). Data represent the mean of three separate experiments + SEM.
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Figure 21: Role of focal contacts and the actin cytoskeleton in ERK1/2 activation in SCL60
cells. Quiescent cells were pre-treated with RGDS (1 mM, 16 hours), RGES (1 mM 16 hours),

cytochalasin-D (1 pM, 60 minutes) or latrunculin-B (1 pM, 60 minutes). Cells were then treated
with vehicle or 100 nM GnRH for 10 minutes, and cytoplasmic extracts prepared. ERK1/2

phosphorylation was analysed by Western blotting. Pretreatment of cells with RGDS,
cytochalasin B and latrunculin-D all significantly inhibited GnRH induced ERK1/2
phosphorylation (*, P<0.01, by ANOVA and Tukey's pairwise comparison). Data represent the
mean of three separate experiments + SEM.
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Figure 22: Role of Rho family GTPases in the activation of FAK, Src and ERK1/2 in SCL60
cells. Quiescent cells were pre-treated with Toxin B (5 ng/ml, 16 hours). They were then treated
with vehicle or 100 nm GnRH for 10 minutes and cytoplasmic extracts prepared. Phospho-

tyrosine proteins were immune precipitated and FAK phosphorylation (A) and Src Tyr419
phosphorylation (B) analysed by Western blotting. ERK phosphorylation was analysed by
Western blotting cytoplasmic extracts (C). Pretreatment of cells with Toxin B significantly
inhibited GnRH induced FAK, Src Tyr419 and ERK1/2 phosphorylation (*, P<0.01 by ANOVA
and Tukey's pairwise comparison). Toxin B was also found to significantly reduce basal levels of
FAK tyrosine phosphorylation (**, P<0.05). Data represent the mean of three separate

experiments + SEM.
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Figure 23: GnRH-induced FAK phosphorylation requires Racl in SCL60 cells. Cells were

transfected with HA-tagged FAK and either empty vector, N19RhoA or N17Racl. 48 hours after
transfection, quiescent cells were treated with vehicle or 100 nM GnRH for 10 minutes and
cytoplasmic extracts prepared. HA-tagged FAK was immune precipitated and tyrosine

phosphorylation analysed by Western blotting. Expression of N17 Rac 1 was found to

significantly inhibit the GnRH induced tyrosine phosphorylation of co-expressed HA-FAK (*,
P<0.01 by ANOVA and Tukey's pairwise comparison). Data represent the mean of three separate

experiments + SEM.
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Figure 24: The activation of PLC by GnRH is not dependent upon the actin cytoskeleton in
SCL60 cells. Cells were labeled with myo-[3H]inositol for 48 hours. (A) Cells were then treated
with vehicle or 100 nm GnRH for 10 to 60 minutes. Inositol phosphates were extracted and the

radioactivity counted. Data represent the mean of three separate experiments ± SEM. (B) Cells
were pretreated with U73122 (20 pM, 60 minutes), cytochalasin-D (1 pM, 60 minutes) or

latrunculin-B (1 pM, 60 minutes). Controls received DMSO alone. They were then treated with
vehicle or 100 nm GnRH for 60 minutes. Inositol phosphates were extracted and the radioactivity
counted. Pretreatment of cells with U73122 significantly inhibited GnRH induced inositol

phosphate accumulation (*, P<0.01 by ANOVA and Tukey's pairwise comparison). Data
represent the mean of three separate experiments + SEM.
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To provide further evidence for the activation of Racl, the effects of GnRH on cell

morphology and the organisation of the cytoskeleton were examined. Following

stimulation with GnRH, a progressive remodelling of the plasma membrane was

observed under the microscope, cells spreading and forming lamellipodia. Almost every

cell had formed prominent lamellipodia within 30 to 60 minutes of GnRH treatment

(Figure 25). A range of pharmacological inhibitors was used to identify the signalling

pathway(s) that may be involved in this process. Pre-treatment of cells with inhibitors of

PLC. (U73122), PKC (GF109203X, R0-318220), PI-3 kinase (wotmannin) EGFR

tyrosine kinase activity (AG1478) or MEK (PD 98059) had no effect on membrane

remodelling, however, inhibition of Src family kinases with PP2 abolished the formation

of lamellipodia (Figures 26 and 27). The observed changes in cell morphology were

accompanied by the reorganisation of the cytoskeleton. Immunocytochemical studies

revealed that GnRH treatment caused the redistribution of microtubules within the cell,

and stimulated actin polymerisation at the cell cortex (Figure 28). The formation of

filamentous actin networks at the cell cortex was found to be restricted to sites of active

plasma membrane remodelling i.e. within lamellipodia (Figure 29). In accordance with

the observed effects of PP2 on GnRH induced changes in cell morphology, actin

polymerisation was also found to be sensitive to the pharmacological inhibition of Src

family kinases (Figure 29). Western blotting revealed that Src associates with the Triton-

XI00 insoluble cytoskeleton in SCL60 cells. Furthermore, GnRH stimulation lead to a

significant increase in the autophosphorylation of Src (P,0.01) associated with the

cytoskeleton, where it is positioned to participate in the regulation of cortical actin

polymerisation (Figure 30).
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Figure 25: GnRH induces cell spreading and the formation of lammelipodia in SCL60 cells.

Quiescent cells were treated with vehicle (1) or with 100 nM GnRH for 10 minutes (2), 30
minutes (3) or 60 minutes (4). They were then fixed in methanol, and phase contrast images taken
using a Zeiss LSM 510 scanning laser microscope. Images shown are representative of at least
three separate experiments.
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Figure 26: Chemical sensitivities of GnRH induced cell spreading in SCL60 cells. Quiescent
cells were pretreated with 20 pM U73122 for 60 minutes (1 and 2), 100 nM Ro-318220 for 30
minutes (3 and 4), or 1 pM GF109203X for 30 minutes (5 and 6). Cells were then treated with
vehicle (1,3 and 5) or 100 nM GnRH (2,4 and 6) for 30 minutes, fixed in methanol and phase
contrast images taken using a Zeiss LSM 510 scanning laser microscope. Images shown are

representative of at least three separate experiments.
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Figure 27: Chemical sensitivities of GnRH induced cell spreading in SCL60 cells. Quiescent
cells were pretreated with 100 nM wortmannin for 30 minutes (1 and 2), 5 |iM PP2 for 30 minutes

(3 and 4), or 10 pM PD 98059 for 60 minutes (5 and 6). Cells were then treated with vehicle (1,3
and 5) or 100 nM GnRH (2,4 and 6) for 30 minutes, fixed in methanol and phase contrast images
taken using a Zeiss LSM 510 scanning laser microscope. Images shown are representative of three
separate experiments.
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Figure 28: GnRH induced alterations in the organisation of the cytoskeleton in SCL60 cells.

Quiescent cells were treated with vehicle (1,3 and 5) or 100 nM GnRH for 30 minutes (2, 4 and

6). Cells were then fixed in methanol and stained with antibodies to tyrosine tubulin (3 and 4) or

P-actin (5 and 6) and FITC conjugated secondary antibodies. Panels 1 and 2 show phase contrast

images. Images were taken using a Zeiss LSM 510 scanning laser microscope. Images shown are

representative of at least three separate experiments.
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Figure 29: GnRH induced actin polymerisation is sensitive to the inhibition of Src family
kinases in SCL60 cells. Quiescent cells were pretreated with DMSO (1 and 2) or 5 |iM PP2 for
30 minutes (3 and 4). They were then treated with vehicle (1 and 3) or 100 nM GnRH (2 and 4)
for 30 minutes and fixed in methanol. Filamentous actin was stained with Alexafluor-568 labeled

phalloidin. Images were taken using a Zeiss LSM 510 scanning laser microscope. Images shown
are representative of at least three separate experiments.
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Figure 30: GnRH induces the activation of Src, associated with Triton X-100 insoluble

cytoskeletons in SCL60 cells. Quiescent cells were treated with vehicle or 100 nM GnRH for 10
minutes. Triton X-100 insoluble cytoskeletons were prepared and Src Tyr419 phosphorylation

analysed by Western blotting. GnRH induced a significant increase in Src Tyr419

phosphorylation compared to the unstimulated control (*, P<0.01 by Student's T-test). Data

represent the mean of three separate experiments + SEM.
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Discussion

The results presented within this chapter suggest a role for the non-receptor tyrosine

kinases FAK and Src in the activation of ERK 1 and 2 by the GnRH receptor in SCL60

cells. In this cell line, FAK was found to function as a molecular scaffold for recruitment

of key components of this pathway at focal contacts. This function was critically

dependent on its kinase activity and association with, and tyrosine phosphorylation by

Src as over expression of FAK point mutants that were kinase dead or unable to bind the

SH2 domains of Src or Grb2 all significantly inhibited ERK2 activation (Figure 15).

These findings demonstrate the important role of tyrosine phosphorylation and protein-

protein interactions mediated by SH2 domains in this process.

While FAK has previously been shown to form a complex with Src (Eide et al., 1995;

Thomas et al., 1998), this is the first report of an interaction between FAK and ERK2 in

vivo. This interaction may be physiologically important as it provides a mechanism of

targeting ERK2 to focal contacts where it may be activated, and may also tether the

active protein at the plasma membrane, thereby inhibiting nuclear translocation. Thus, the

interaction of FAK and ERK2 may provide a potential explanation for why GnRH is less

potent at stimulating ERK nuclear translocation compared to EGF (Figure 13).

Alternatively, when ERK 1 and 2 are activated by FAK at focal contacts, they may be

spatially constrained in the cytoplasm through interactions with additional proteins.

Recently, PEA-15 has been shown to regulate ERK 1 and 2 by sequestering them in the

cytoplasm, thereby preventing nuclear translocation and phosphorylation of nuclear

substrates (Formstecher et al., 2001). In contrast, PEA-15 does not appear to inhibit the

phosphorylation of substrates in the cytoplasm, including the serine/threonine kinase

RSK (Formstecher et al., 2001), which is an important downstream regulator of ERK

dependent signalling (Frodin and Gammeltoft, 1999). As PEA-15 has previously been
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shown to regulate integrin-dependent signalling (Ramos et al., 1998), such an interaction

seems plausible.

Though ERK 1 and 2 do not contain any modular protein-interaction domains, they

interact with their substrates and regulatory molecules in a highly specific manner.

Several short peptide motifs have recently been identified in these proteins that mediate

these interactions. The ERK binding motifs present in MEK 1 and 2 consists of a cluster

of basic amino acids surrounded by hydrophobic amino acids (Tanoue and Nishida,

2003). The docking site for this motif has recently been identified in ERK2 and features

two aspartate residues that are thought to make electrostatic interactions with the basic

amino acids (Tanoue et al, 2000). The crystal structure of ERK2 (Canagarajah et al.,

1997) shows that these aspartate residues are situated on the surface of the molecule and

thus are available to form intermolecular interactions. The ERK binding motifs present in

KSR and the transcription factors Elk-l and SAP-1 consist of a conserved F-X-F-P motif,

where X represent any amino acid (Jacobs et al., 1999a; Fantz et al., 2001). The

phenylalanine residues within this motif are thought to mediate hydrophobic interactions

with ERK. Although the binding site for this motif has not been identified in ERK, it is

tought to comprise a hydrophobic patch on the surface of the molecule (Tanoue and

Nishida, 2003). In C. elegans, gain of function mutants of lin-1, a transcription factor that

is negatively regulated by the nematode homologue of ERK, have been identified in

which the F-X-F-P motif is mutated, indicating that it plays a physiologically important

role in kinase-substrate interactions (Jacobs et al., 1999b). Recently, a third ERK binding

motif has been identified in the transcription factors Ets-1 and Ets-2. This motif consists

of a cluster of basic residues followed by a conserved L-X-L motif and a hydrophobic

triplet (Seidel and Graves, 2002). Examination of the amino acid sequence of FAK

identified a similar sequence D-R-K-G-M-L-Q-L-K-I-A-G-A-P-E, consisting of two

basic amino acids, an LXL motif, and a stretch of hydrophobic residues. This putative
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ERK binding site may therefore represent the site of interaction between FAK and ERK2,

however, this remains to be investigated. A number of experimental approaches could be

used to test whether this sequence represents the site of interaction between these two

proteins, including the yeast two-hybrid system, which has proven to be a very powerful

and sensitive tool for exploring protein-protein interactions in vivo. Because the crystal

structure of FAK has not been solved, it is currently unknown whether this motif is

situated on the surface of the molecule, where it could participate in molecular

interactions.

By using a range of pharmacological inhibitors FAK tyrosine phosphorylation was found

to be independent of PLC, PKC, and intracellular Ca2+, but required an intact actin

cytoskeleton and cell adhesion to the extracellular matrix (Figures 16 and 19). These

findings are in accordance with previous studies of FAK activation by bombesin, which

has been shown to be mediated by members of the Rho family GTPases (Sinnet-Smith et

al., 1993; Rozengurt, 1998). In SCL60 cells, Racl was found to be required for FAK

activation by GnRH (Figure 22). Furthermore, Toxin B (which inactivates RhoA, Racl

and Cdc42) was found to inhibit GnRH induced FAK phosphorylation (Figure 22). Toxin

B was also found to significantly reduce basal levels of FAK phosphorylation in these

cells, consistent with the role of the Rho family GTPases in the control of the actin

cytoskeleton and the formation and turnover of focal contacts (Nobes and Hall 1995;

Hotchin and Hall, 1995).

The first evidence that the Rho family GTPases were involved in the activation of FAK

by Gq coupled receptors was provided by Rankin et al. (1994), who showed that the

microinjection of Swiss 3T3 cells with C3 exoenzyme, which ADP-ribosylates and

inactivates RhoA, could inhibit FAK tyrosine phosphorylation by bombesin. Subsequent

studies have shown that constitutively active mutant forms of Gaq and Gal 1 can activate

RhoA and induce the formation of stress fibres in Swiss 3T3 cells and mouse embryo
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fibroblasts (Dutt et al., 2002; Vogt et al., 2003), thereby providing a direct link between

Gq/11 coupled receptors and the regulation of Rho activity. Gaq has been found to

activate the Rho specific guanine nucleotide exchange factors pll5RhoGEF, PDZ-

RhoGEF and LARG (Chikumi et al., 2002), which contain an RGS domain that mediates

their association with G-proteins. In mouse embryo fibroblasts, expression of a dominant

negative mutant of LARG inhibits RhoA activation and the formation of stress fibres by

several Gq coupled receptors (Vogt et al., 2003). These studies therefore provide a

mechanism whereby RhoA can be activated by Gaq. However, constitutively active

mutants of Gaq have not been reported to stimulate Racl activation or the formation of

lamellipodia.

Racl activation by several receptor tyrosine kinases, including the PDGF and insulin

receptors, is mediated by PI-3 kinase (Nobes et al., 1995). However, Racl activation by

GnRH was not blocked by the PI-3 kinase inhibitor wortmannin in SCL60 cells (Figure

27). Similarly, Racl activation by bombesin is insensitive to wortmannin (Nobes et al.,

1995), indicating that Gq coupled receptors may use a PI-3 kinase independent

mechanism to activate Racl. Data presented within this chapter demonstrate that Src

plays a critical role in this pathway (Figures 27 and 29). Furthermore, Src was found to

be present in Triton X-100 insoluble cytoskeleton extracts, where it is positioned to

participate in the regulation of the cortical actin cytoskeleton (Figure 30).

Recent studies have shown that Src can regulate Rac activity by phosphorylating the

guanine nucleotide exchange factors Ras-GRFl, Vavl, Vav2 and Tiaml. Ras-GRFl was

originally identified as a guanine nucleotide exchange factor for Ras that is activated by

Ca2+ influx (Farnsworth et al., 1995). In addition, to possessing a Cdc25 homology

domain that is responsible for Ras GDP/GTP exchange activity, Ras-GRFl contains a

double homology (DH) domain that is responsible for catalysing the exchange of GDP

for GTP by the Rho family GTPases (Kiyono et al., 1999). In vitro and in vivo studies
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have shown that Ras-GRFl is specific for Racl, and that its Rac GDP/GTP exchange

activity requires tyrosine phosphorylation by Src family kinases (Kiyono et al., 1999;

Kiyono et al., 2000). In contrast, the Ras GDP/GTP exchange activity of the protein is

unaffected by tyrosine phosphorylation (Kiyono et al., 1999). However, as Ras-GRFl

expression is restricted to the brain it is unlikely to be the guanine nucleotide exchange

factor that is activated by GnRH in SCL60 cells.

The Vav proteins comprise a small family of Rac specific guanine nucleotide exchange

factors that share a modular structure consisting of a calponin homology (CH) domain

that binds actin, a DH domain that is responsible for guanine nucleotide exchange

activity, a PH domain, two SH3 domains and an SH2 domain. While Vavl is expressed

exclusively in haematopoietic cells, Vav2 is ubiquitously expressed (Adams et al., 1992;

Schuebel et al., 1996). In quiescent cells Vavl and Vav2 maintained in an inactive

conformation through intramolecular interactions involving the DH and PH domains.

Tyrosine phosphorylation of these proteins by Src family kinases disrupts this inhibitory

intramolecular interaction and allows the DH domain to bind and activate Racl (Crespo

et al., 1997; Han et al., 1997).

Tiaml is a Rac specific guanine nucleotide exchange factor that was originally identified

in a retroviral insertional mutagenesis screen for genes that conferred an invasive

phenotype to T-lymphoma cells (Habets et al., 1994). It is a widely expressed protein

with a modular structure consisting of two PEST domains, two PH domains, a coiled-coil

region, a PDZ domain, and a DH domain. In quiescent cells, Tiaml is maintained in an

inactive conformation by intramolecular interactions involving the N-terminus of the

protein (Mertens et al., 2003). Like Vavl and Vav2, tyrosine phosphorylation of Tiaml

by Src disrupts this inhibitory intramolecular interaction, leading to an increase in its

nucleotide exchange activity (Servitja et al., 2003).
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As Vav2 and Tiaml are widely expressed proteins and are found in lysates from many

cell types, including HEK293 cells (Servitja el al., 2003), they represents good potential

candidates for the Racl specific guanine nucleotide exchange factor regulated by GnRH

in SCL60 cells. To investigate this, immune precipitation and Western blotting studies

could be performed to determine if Vav2 or Tiaml are tyrosine phosphorylated by Src in

SCL60 cells following stimulation with GnRH. Because specific pharmacological

inhibitors are not commercially available for these proteins, RNAi could then be used to

study their role in GnRH receptor signalling.

Further evidence for a role of Src in the activation of Racl has been provided by studies

of cells transformed with the oncogene v-Src. When cells are transformed with this

oncogene they become able to grow independently of anchorage in soft agar. The

colonies that are formed are morphologically very similar to those seen when cells are

transformed with activated mutants of the Rho family GTPases or their guanine

nucleotide exchange factors (Servitja et al., 2003). Furthermore, when cells are

transformed with v-Src and a dominant negative form of Racl (N17Racl), the number of

colonies formed is significantly reduced (Servitja et al., 2003). These results therefore

suggest that Racl is an integral component of the signalling pathway used by v-Src and

by inference, its cellular homologue.

The studies of Src activation using phosphospecific antibodies shown within this chapter

suggest that Src may be initially activated by the dephosphorylation of pTyr530 (Figure

12), indicating that GnRH activates a protein tyrosine phosphatase in SCL60 cells.

Perhaps the best candidate molecule for this GnRH regulated phosphatase is PTPa,

which is widely expressed, localises to focal contacts and co-immune precipitates with

Src and Fyn in vivo (Harder et al., 1998; Bhandari et al., 1998). However, the mechanism

of activation of PTPa by extracellular signalling molecules such as GnRH remains poorly

understood. Though protein kinases are known to be important molecules in GnRH
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receptor signalling, protein phosphatases have received much less attention. Nevertheless,

these experiments indicate that a protein tyrosine phosphatase plays a key role in the

activation of Src by GnRH. This could be further investigated by using protein tyrosine

phosphatase inhibitors such as pervanadate or hydrogen peroxide. Because isoform-

specific pharmacological inhibitors are not currently available for these proteins, RNA

interference (RNAi) could also provide a useful tool for studying the role of individual

phosphatases in GnRH receptor signalling.

Though pTyr530 is only transiently dephosphorylated following stimulation of SCL60

cells with GnRH, Tyr419 autophosphorylation and Src kinase activity remained elevated

above basal levels for 1 hour (Figure 12). These findings are in accordance with a

previous study by Boerner et al. (1996), who showed that Src retains significant enzyme

activity when doubly phosphorylated at Tyr530 and Tyr419. Examination of the crystal

structures of the active and inactive forms of the enzyme provides clues to how this may

occur. In the inactive state, the activation loop adopts an ordered helical structure and

Tyr419 is sequestered in a hydrophobic pocket where it helps stabilise the closed

(inactive) conformation of the catalytic domain (Xu et al., 1999). However, when it is

phosphorylated, Tyr419 cannot be accommodated in this hydrophobic pocket and

therefore cannot help fix the N- and C-terminal lobes of the catalytic domain in the closed

conformation (Xu et al., 1999), even when the SH2 domain binds pTyr529. Thus the

catalytic domain can remain active. Therefore the inactivation of Src requires both the

phosphorylation of Tyr530 by Csk, and the dephosphorylation of Tyr419 by an unknown

protein tyrosine phosphatase. Src may also be active when doubly phosphorylated at

Tyr530 and Tyr419 when bound to FAK via its SH2 and SH3 domains, which relieves

the intramolecular repression of the catalytic domain. Both these situations may occur in

SCL60 cells, accounting for the prolonged activation of Src.
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These observations also suggest that Src activation in SCL60 cells may reflect two

distinct events that are temporally and mechanistically distinct. Src may be initially

activated by the transient dephosphorylation of pTyr530 by a protein tyrosine

phosphatase, and subsequently by interactions with FAK. Thus, Src activation may occur

upstream (protein tyrosine phosphatase dependent) and downstream (FAK dependent) of

Racl activation. Therefore, it would be expected that the initial activation of Src by

GnRH would occur independently of Rho family GTPases, while at later time points it

would be predicted to be sensitive to the inhibition of Rho family GTPases (which are

required for the activation of FAK). Indeed, Src Tyr419 autophosphorylation was found

to be inhibited by C. difficile toxin B at 10 minutes (Figure 22), however, it is unknown

what effect this compound has on Src pTyr529 dephosphorylation at earlier time points.

Based on these observations, a model of ERK activation may be proposed in which

GnRH activates a protein tyrosine phosphatase, which dephosphorylates the regulatory

tyrosine residue in the C-terminal tail of Src leading to its activation. Src then

phosphorylates a Racl specific guanine nucleotide exchange factor, perhaps Vav2 or

Tiaml, leading to the activation of Racl, Scar and the Arp2/3 complex, which initiates

actin polymerisation at the cell cortex. Once nucleated, actin filaments grow rapidly

towards the plasma membrane, providing the protrusive force that is required for the

extension of lamellipodia. Integrins become aggregated in lamellipodia, forming focal

complexes, which provide anchor points for the cell as it moves. Integrin aggregation in

turn leads to the oligomerisation and activation of FAK, which /ra«.v-autophosphorylates

at Tyr397 to create a binding site for Src. Thus, Src is recruited into a complex with FAK,

which stabilises it in an active conformation. Src then phosphorylates FAK on a number

of tyrosine residues, including Tyr925, which creates a binding site for the SH2 domain

ofGrb2. Grb2 then recruits Sos to the plasma membrane where it activates Ras to initiate

the activation of the ERK cascade.
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In accordance with this model, ERK activation was found to be dependent on cell

adhesion to the extracellular matrix, required an intact actin cytoskeleton and FAK, Src

and Racl activity (Figures 18, 21 and 22). In addition, ERK activation was also found to

be sensitive to inhibitors of PKC (Figure 18), indicating that multiple signals converge to

provide precise regulation of this pathway. Although the results presented within this

chapter indicate that PKC plays only a minor role in ERK activation, this may reflect the

fact that low concentrations of both PKC inhibitors were used in these studies, which

may not have been sufficient to completely block cellular PKC. Therefore, the role of

PKC in the activation of the ERK signalling cascade may have been under represented in

these cells. However, as ERK activation was not inhibited by BAPTA-AM, which

chelates intracellular Ca2+, conventional PKC isozymes do not appear to be involved.

These findings are in accordance with a study in LPT2 cells, which showed ERK

activation by GnRH to require PKC but to be independent of Ca2+ (Liu et ai, 2002).

Because inhibition of PLC did not significantly inhibit ERK activation by GnRH (Figure

18), it may be speculated that an atypical PKC may be involved in this pathway, as they

do not require diacylglycerol or Ca2+ for their activation (Newton, 1997). However,

activation of a novel PKC isozyme cannot be discounted as PLC activity was not

completely inhibited by U73122 in SCL60, even when used at concentrations up to 20

pM (Figure 24). Therefore, sufficient diacylglycerol may have been generated by PLC

mediated hydrolysis of PtdIns(4,5)P2 in the presence ofU73122 to activate these kinases.

By using RNAi to knockout the expression of specific PKC isozymes, it may be possible

to identify those isozymes involved in the activation of ERK in SCL60 cells, however,

this was beyond the scope of this thesis.

Future work

To gain a better understanding of the role played by tyrosine kinases such as FAK and

Src in GnRH receptor signalling, it would be desirable to identify the three other proteins
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that were tyrosine phosphorylated following stimulation of SCL60 cells with GnRH

(Figure 10). Potential candidate molecules for these phosphoproteins include Vav2 and

paxillin, which have molecular weights of 101 KDa and 68 KDa, respectively. Paxillin is

the prototypic member of a family of scaffolding proteins, which also includes hic-5 and

leupaxin (Schaller, 2001). These proteins contain a number of modular protein-

interaction domains, which control their subcellular localisation and interaction with

other proteins. The C-terminus of paxillin contains four Lin-11, Isl-1, Mec-3 (LIM)

domains (Schmiechel and Beckerle, 1994), which are responsible for targeting it to focal

contacts (Brown et al. 1996), while the N-terminus contains multiple copies of another

interaction domain called the LD motif, which features the consensus sequence L-D-X-L-

L-X-X-L, where X represents any amino acid (Brown et al., 1996). The LD motif is

predicted to form a a-helix with the leucine residues lying along one side, presenting a

hydrophobic protein-binding surface (Turner, 2000). The individual LD motifs ofpaxillin

have been shown to bind a number of different proteins and have discrete binding

preferences. LD1, LD2 and LD4 bind the structural protein vinculin, while LD2 and LD4

bind FAK (Brown et al., 1996; Turner, 2000).

The N-terminus of paxillin also contains two important tyrosine residues, Tyr31 and

Tyrll8, which are phosphorylated by Src and FAK (Schaller and Parsons, 1995).

Phosphorylation of these residues creates binding sites for the SH2 domains of the

adapter protein Crk (Schaller and Parsons, 1995), which is involved in the control of

integrin mediated cell motility, and Csk (Sabe et al., 1994) which plays an important role

in controlling Src activity by phosphorylating Tyr530 as described (Nada et al., 1991).

The structure of Csk is very similar to the Src family kinases, consisting of a conserved

catalytic domain, an SH2 domain and an SH3 domain (Ogawa et al., 2002). However,

unlike the majority of other protein kinases, Csk has a high basal level of enzyme

activity, and is not regulated by phosphorylation of residues within its activation loop
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(Lamers et al., 1999). Rather, Csk appears to be regulated through the control of its

subcellular localisation and thus access to potential substrates. Therefore, recruitment of

Csk into focal contacts through its association with tyrosine phosphorylated paxillin may

bring it into proximity to Src, allowing it to phosphorylate Tyr530. Thus, paxillin tyrosine

phosphorylation may play a role in the control ofGnRH receptor signalling by recruiting

proteins to the plasma membrane that are involved in the regulation of Src activity, and

the organisation of the actin cytoskeleton. Thus, identification of the remaining

phosphoproteins may help provide a more complete understanding of the role of protein

tyrosine phosphorylation in the regulation of GnRH receptor signalling, and may provide

new avenues for future research.
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Identification of Src binding proteins involved in
the regulation ofGnRH receptor signalling

Introduction

Many signalling pathways in eukaryotic cells are regulated by the reversible assembly of

multi-protein complexes that integrate and transmit signals from cell surface receptors to

the cytoplasm and nucleus. The assembly of these complexes is regulated by a variety of

protein- and lipid-interaction domains that target proteins to specific subcellular

localisations and mediate molecular interactions (Yaffe and Elia, 2001; Pawson and Nash

2003). Proteomic techniques offer a new, unbiased approach for studying the assembly of

these protein complexes during signal transduction.

The combination of two-dimensional gel electrophoresis and MALDI-ToF mass

spectrometry is one of the most commonly used methods in proteomics, and has become

the analytical tool of choice for many researchers. These techniques allow rapid

separation and identification of many cellular proteins and are applicable to high

throughput screening. Protein identification has been greatly facilitated by the sequencing

of the human and mouse genomes, and by the provision of detailed protein databases on

the worldwide web that can be searched using user friendly software such as MS-Fit

(http://prospcetor.ucsf.edu) to generate peptide mass fingerprints.

Having established a role for Src in the activation of the ERK cascade, a proteomics

study was undertaken to identify novel Src binding proteins that may be involved in the

regulation of GnRH receptor signalling. Src is an ideal molecule for such a study because

it contains SH2 and SH3 domains that mediate interactions with its substrates, and

specific antibodies are available for immune precipitation, which allows simple

purification of Src complexes. In this chapter, the identification of DGKTJ as a Src

binding protein is described using proteomic techniques and the role of this interaction

investigated.
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Results

Two-dimensional gel electrophoresis and silver staining revealed that Src associates with

many proteins in quiescent SCL60 cells. However, 20 different proteins were found to

co-precipitate with Src only after stimulation with GnRH (Figure 31). These proteins

were cut from the gel, digested with trypsin, and analysed by MALDI-ToF mass

spectrometry. In two separate experiments, good data sets were obtained for protein

number three, which had an apparent molecular weight of 100 KDa and an isoelectric

point of pH 8.5 (Figure 31). One of the mass spectra obtained for this protein is shown in

Figure 32. Peptide mass fingerprinting identified this protein as the lipid kinase

DGKC (Figure 33), with molecular weight search (MOWSE) scores of 6.45 xlO6 and

6.172 xlO6 being reported. A numer of keratins were also found to be present in the

sample, namely cytokeratin 1 (MOWSE score 1.129 x 106), cytokeratin 2e (MOWSE

score 1.082 x 106), cytokeratin 5 (MOWSE score 3.467 x 10s) and cytokeratin 9

(MOWSE score 4.609 x 106). As these proteins have molecular weights in the region of

60 - 70 KDa they probably do not represent proteins co-precipitating with Src but rather

contaminants from skin when handling the gel.

The other proteins analysed by MALDI-ToF mass spectrometry could not be identified

with any confidence. The low success rate of protein identification may reflect the low

abundance of proteins in the sample, which approached the limit of detection by silver

staining and the mass spectrometer, and was further hampered by keratin contamination

of the gel, which proved to be a major problem.

In the human, alternative splicing of the DGK^ gene gives rise to two isoforms of the

protein with predicted molecular weights of 104 KDa (Accession number: Q13374-2)

and 124 KD (Accession number: Q13374-1), respectively. The mass of the protein

estimated from the two-dimensional gel would suggest that it is the 104KDa isoform that
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co-precipitates with Src in these cells. Analysis of the amino acid sequence of DGK£,

using scansite (http://scansite.mit.edu) identified a potential Src phosphorylation site at

Tyr558 (Y*-L-E-V) and two proline rich motifs that may be ligands for the SH3 domain

of Src. The sequences of these proline rich regions are L-A-P-P-P-P-T-P-G-A-P (amino

acids 65 - 75) and D-L-P-T-P-T-S-P-L-P-T (amino acids 762 - 772). All three motifs are

conserved in rat and mouse DGK^, and may therefore represent the site(s) of interaction

between the two proteins.
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Figure31:Two-dimensionalgelelectrophoresisofSrcimmuneprecipitatedfromSCL60cells.Quiescentcellsweretreatedwithvehicleor1(iMGnRHfor10 minutesandcytoplasmicextractsprepared.Srcwasimmuneprecipitatedandsubjectedtotwo-dimensionalgelelectrophoresis.Gelswerestainedwithsilver.The20 proteinsfoundtoassociatewithSrcfollowingstimulationwithGnRHarehighlightedinred.Thetwo-dimensionalgelshownisrepresentativeoftwoseparate experiments.
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Figure32:MALDI-ToFmassspectrum.Themassspectrumobtainedforproteinnumber3,whichhadanapparentmolecularweightofapproximately100KDa andanisoelectricpointofpH8.5.
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MEPRDGSPEA RSSDSESASA SSSGSERDAG PEPDKAPRRL NKRRFPGLRL

FGHRKAITKS GLQHLAPPPP TPGAPCSESE RQIRSTVDWS ESATYGEHIW

FETNVSGDFC YVGEQYCVAR MLKSVSRRKC AACKIWHTP CIEQLEKINF

RCKPSFRESG SRNVREPTFV RHHWVHRRRQ DGKCRHCGKG FQQKFTFHSK

EIVAISCSWC KQAYHSKVSC FMLQQIEEPC SLGVHAAWI PPTWILRARR

PQNTLKASKK KKRASFKRKS SKKGPEEGRW RPFIIRPTPS PLMKPLLVFV

NPKSGGNQGA KIIQSFLWYL NPRQVFDLSQ GGPKEALEMY RKVHNLRILA

CGGDGTVGWI LSTLDQLRLK PPPPVAILPL GTGNDLARTL NWGGGYTDEP

VSKILSHVEE GNWQLDRWD LHAEPNPEAG PEDRDEGATD RLPLDVFNNY

FSLGFDAHVT LEFHESREAN PEKFNSRFRN KMFYAGTAFS DFLMGSSKDL

AKHIRWCDG MDLTPKIQDL KPQCWFLNI PRYCAGTMPW GHPGEHHDFE

PQRHDDGYLE VIGFTMTSLA ALQVGGHGER LTQCREWLT TSKAIPVQVD

GEPCKLAASR IRIALRNQAT MVQKAKRRSA APLHSDQQPV PEQLRIQVSR

VSMHDYEALH YDKEQLKEAS VPLGTVWPG DSDLELCRAH IERLQQEPDG

AGAKSPTCQK LSPKWCFLDA TTASRFYRID RAQEHLNYVT EIAQDEIYIL

DPELLGASAR PDLPTPTSPL PTSPCSPTPR SLQGDAAPPQ GEELIEAAKR

NDFCKLQELH RAGGDLMHRD EQSRTLLHHA VSTGSKDWR YLLDHAPPEI

LDAVEENGET CLHQAAALGQ RTICHYIVEA GASLMKTDQQ GDTPRQRAEK

AQDTELAAYL ENRQHYQMIQ REDQETAV

Figure 33: Peptide mass fingerprinting of human DGK£. Peptides identified by MALDI-ToF
mass spectrometry are highlighted in red. Peptide coverage was approximately 14%.
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The expression of DGKj^ in SCL60 cells was confirmed by immune precipitation and

Western blotting using a polyclonal antibody that was specific for the 104 KDa isoform

of the enzyme. A protein of approximately 100 KDa was identified in cytoplasmic

extracts, that was not detected when immune precipitations were performed with pre-

immune serum (Figure 34 A). The interaction between Src and DGKtJ was also

confirmed by immune precipitation and Western blotting. Src was found to co-precipitate

with DGK^ only following stimulation with GnRH (Figure 34 B). Src was also found to

bind to DGK^ in vitro by affinity chromatography, using immobilised recombinant rat

DGK^ as ligand (Figure 35). Note the recombinant protein has a molecular weight of

approximately 130 KDa, due to the presence ofGST and 6 His tags at the N-terminus.

The association between Src and DGK^ was found to be dependent on Src enzyme

activity, as it could be significantly inhibited by the pre-treatment of cells with the

general tyrosine kinase inhibitor herbimycin A or the Src family kinase inhibitor PP2

(P<0.01) (Figure 34 B). Although Src enzyme activity was appeared to be required for

the association of the two proteins, DGK^ was not found to be tyrosine phosphorylated

following stimulation of SCL60 cells with GnRH, as determined by Western blotting

DGK^ immune precipitates with an anti-phosphotyrosine antibody (Figure 36).

In vitro kinases assays, performed with mixed micelles containing phosphatidylserine and

dioleoyl-sn-glycerol as substrate, revealed that GnRH stimulated the enzymatic activity

ofDGK£, that was immune precipitated from SCL60 cells (Figure 37). The activation of

DGK^ by GnRH appeared to require Src enzyme activity, as it could be inhibited by pre-

treating cells with PP2 (Figure 37). However, PP2 had no direct effect on DGK^ kinase

activity in vitro when added to immune precipitates for 30 minutes prior to performing

the kinase assay. Thus, these effects were not due to the direct inhibition of the catalytic

domain of DGK^ by this compound (data not shown). In many cells, the cytoskeleton

functions as a scaffold for enzymes involved in lipid metabolism. Immune precipitation
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and Western blotting revealed that DGK^ was associated with Triton X-100 insoluble

cytoskeletons in SCL60 cells (Figure 38 A), and in vitro kinases assays revealed that

GnRH activated the DGK^ that was associated with the cytoskeleton (Figure 38 B).

DGK^ was also found to be expressed in LPT2 gonadotroph cells (Figure 39). As the

enzyme activity of the DGKs has been shown to be controlled in part by regulating their

access to substrate in the plasma membrane, the effects of GnRH on the subcellular

localisation of GFP-tagged DGK^, was investigated in these cells by confocal

microscopy. In quiescent LPT2 cells, GFP-DGK^ was found to be present in the nucleus

and cytoplasm. However, following stimulation with GnRH, it was observed to

translocate to the plasma membrane (Figure 40). Membrane translocation was rapid,

occurring within 10 minutes of agonist treatment, and was found to be sensitive to the

inhibition of Src enzyme activity with PP2 (Figure 41). Membrane translocation also

required an intact actin cytoskeleton, as it could be abolished by pre-treatment of cells

with cytochlasin-D (Figure 42) or latrunculin-B (Figure 43), and required PKC activity

(Figure 44), as previously reported (Santos et al., 2002).
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Figure 34: Confirmation of DGK^ expression and association with Src in SCL60 cells. (A)
Cytoplasmic extracts were prepared and proteins immune precipitated with pre-immune serum

(lane 1) or anti-DGK^ (lane 2). Proteins were resolved by SDS-PAGE and DGK^ expression

analysed by Western blotting. (B) Quiescent cells were pre-treated with PP2 (5 pM, 30 minutes),
herbimicin A (100 nM 30 minutes) or DMSO. They were then treated with vehicle or 100 nM
GnRH for 10 minutes and cytoplasmic extracts prepared. DGK^ was immune precipitated and Src
association analysed by SDS-PAGE and Western blotting. Pretreatment of cells with herbimycin
A or PP2 significantly inhibited the GnRH induced association of Src with DGK(^ (*, P<0.01 by
ANOVA and Tukey's pairwise comparison). Data represent the mean of three separate

experiments + SEM.
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Figure 35: Confirmation of Src-DGK^ association by DGK£ affinity chromatography. 6 His

tagged recombinant DGK^ was immobilised on Ni2+-NTA resin and incubated with buffer alone
(lane 1) or rat brain lysate (lane 2). Proteins were solubilised and Src association analysed by
SDS-PAGE and Western blotting. The immunoblots shown are representative of three separate

experiments.
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Figure 36: DGK£ is not tyrosine phosphorylated in SCL60 cells following stimulation with
GnRH. Quiescent cells were treated with vehicle or 100 nM GnRH for 10 minutes and

cytoplasmic extracts prepared. DGK^ was immune precipitated, and its tyrosine phosphorylation
status analysed by SDS-PAGE and Western blotting with an anti-phopshotyrosine antibody. The
immunoblots shown are representative of three separate experiments.
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Figure 37: Src mediated activation of DGK£ by GnRH in SCL60 cells. Quiescent cells were

treated with DMSO or PP2 (5 pM, 30 min). They were then treated with vehicle or 100 nM
GnRH for 10 minutes and cytoplasmic extracts prepared. DGK^ was immune precipitated and
kinase activity assayed in vitro using [y-32P]ATP and 1,2-dioleoyl-in-glycerol as substrate.
Radiolabeled lipids were extracted, resolved by thin-layer chromatography, and visualised by
autoradiography. The autoradiograph shown is representative of three separate experiments.
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Figure 38: DGK^ is associated with Triton X-100 insoluble cytoskeletons in SCL60 cells. (A)
Proteins were immune precipitated from solubilised cytoskeletons with pre-immune serum (lane

1) or anti-DGK^ antibody (lane 2). Proteins were resolved by SDS-PAGE and the association of

DGK^ with the cytoskeleton analysed by Western blotting. The immunoblot shown is

representative of three separate experiments. (B) Quiescent cells were treated with vehicle or 100
nM GnRH for 10 minutes and cytoskeletal extracts prepared. DGK^ was immune precipitated and
kinase activity assayed in vitro using [y-32P]ATP and 1,2-dioleoyl-sn-glycerol as substrate.
Radiolabelled lipids were extracted, resolved by thin-layer chromatography and visualised by
autoradiography. The autoradiograph shown is representative of three separate experiments.
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Figure 39: Expression of DGK^ in LPT2 cells. Cytoplasmic extracts were prepared from LPT2
cells and proteins immune precipitated with pre-immune semm (lane 1) or anti-DGKC antibody

(lane 2). Proteins were resolved by SDS-PAGE and DGKC expression analysed by Western

blotting. The immunoblot shown is representative of three separate experiments.
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Figure 40: GnRH stimulates the membrane translocation of GFP-DGK£ in LPT2 cells. 48
hours after transfection quiescent cells were stimulated with 100 nM GnRH. Images were before
treatment, (1) and at 2 minutes (2), 5 minutes (3), 10 minutes (4), 15 minutes (5) and 20 minutes
(6) after stimulation with GnRH, using a Zeiss LSM 510 laser scanning microscope. Images
shown are representative of five separate experiments.
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Figure 41: Membrane translocation of GFP-DGK^ is sensitive to the inhibition of Src family
kinases in LpT2 cells. 48 hours after transfection quiescent cells were pretreated with PP2 (5 |iM,
30 minutes) then stimulated with 100 nM GnRH. Images were taken before treatment (1) and at 2
minutes (2), 5 minutes (3), 10 minutes (4), 15 minutes (5) and 20 minutes (6) after stimulation
with GnRH, using a Zeiss LSM 510 laser scanning microscope. Images shown are representative
of five separate experiments.
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Figure 42: Membrane translocation of GFP-DGK^ is sensitive to actin filament disruption
with cytochalasin-D in LPT2 cells. 48 hours after transfection quiescent cells were pretreated
with cytochalasin-D (1 |iM, 30 minutes) then stimulated with 100 nM GnRH. Images were taken
before treatment (1) and at 2 minutes (2), 5 minutes (3), 10 minutes (4), 15 minutes (5) and 20
minutes (6) after stimulation with GnRH, using a Zeiss LSM 510 laser scanning microscope.

Images shown are representative of five separate experiments.
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Figure 43: Membrane translocation of GFP-DGK£ is sensitive to actin filament disruption
with latrunculin-B in LPT2 cells. 48 hours after transfection quiescent cells were pretreated with
latrunculin-B (1 pM, 30 minutes) then stimulated with 100 nM GnRH. Images were taken before
treatment (1) and at 2 minutes (2), 5 minutes (3), 10 minutes (4), 15 minutes (5) and 20 minutes
(6) after stimulation with GnRH, using a Zeiss LSM 510 laser scanning microscope. Images
shown are representative of five separate experiments.
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Figure 44: Membrane translocation of GFP-DGK^ is sensitive to inhibition of PKC in L|3T2
cells. 48 hours after transfection quiescent cells were pretreated with Ro-318220 (100 nM, 30

minutes) then stimulated with 100 nM GnRH. Images were taken before treatment (1) and at 2
minutes (2), 5 minutes (3), 10 minutes (4), 15 minutes (5) and 20 minutes (6) after stimulation
with GnRH, using a Zeiss LSM 510 laser scanning microscope. Images shown are representative
of five separate experiments.
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Discussion

The results presented within this chapter provide evidence for the first time that Src

associates with the lipid kinase DGK^ following stimulation of SCL60 cells with GnRH.

Furthermore, this interaction was found to play a role in regulating DGK^ enzyme

activity and was required for it to translocate from the cytoplasm to the plasma membrane

where it interacts with its substrate.

The first evidence that Src may be involved in the regulation of diacylglycerol signalling

was provided by studies of fibroblasts transformed with the oncogene v-Src. Expression

of this oncogene was found to cause a significant increase in the cellular concentration of

phosphatidic acid, and a diacylglycerol kinase activity co-purified with v-Src (Sugimoto

et al., 1984). Subsequently, it has been shown that Src can associate with DGKa

following stimulation of cells with hepatocyte growth factor (HGF) (Cutrupi et al., 2000)

and that this interaction is required for HGF and vascular endothelial growth factor

(VEGF) to stimulate DGKa enzyme activity (Cutrupi et al., 2000; Baldanzi et al., 2004).

The association between Src and DGKa was also reported require Src kinase activity as it

could be abolished by pretreating cells with the Src family kinase inhibitor PP1, or by

over expressing a kinase dead point mutant of Src (Cutrupi et al., 2000). These findings

suggest that Src may regulate the activity of DGKa and DGKCj through a conserved

mechanism.

While DGKa contains three conserved tyrosine residues that are putative Src

phosphorylation sites, tyrosine phosphorylation could not be detected with endogenous

levels of protein without inhibiting protein tyrosine phosphatases with pervanadate

(Cutrupi et al., 2000). Phosphorylation of DGKa by Src appears to be transient and occur

at low stoichiometry, nevertheless, the tyrosine phosphorylated protein has high levels of

enzyme activity, indicating that tyrosine phosphorylation may still be an important event
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in its activation (Cutrupi et al., 2000). Therefore, Src mediated phosphorylation of DGK^

may also be a transient event, which may explain why it could not be detected by

immune precipitation and Western blotting. Furthermore, if Src phosphorylates DGK^ at

low stoichiometry, a more sensitive means of detection may be required. Alternatively,

protein tyrosine phosphatases may need to be inhibited if tyrosine phosphorylation is to

be detected. By mutating the putative Src phosphorylation site in DGK£, (Tyr558) to

alanine it may be possible to determine if Src mediated tyrosine phosphorylation of this

residue is required for its DGK^ by GnRH. Conversely, substitution of this residue with

the phosphomimetic amino acid aspartic acid may lead to constitutive enzyme activity.

Activation of the DGKs also requires that they translocate from the cytoplasm to the

plasma membrane where they interact with their substrate. A recent study by Santos et al.

(2002) has provided many details of the mechanism whereby DGK^ is recruited to the

plasma membrane following the activation of Gq coupled receptors. GFP-tagged

DGK^ rapidly translocates to the membrane following the activation of the type I

muscarinic receptor with carbachol, when expressed in Jurkat cells. Membrane

recruitment was found to be independent of DGK^ enzyme activity, but required serine

phosphorylation by PKC (Santos et al., 2002). DGK^ contains anl8 amino acid motif (K-

A-S*-K-K-K-K-R-A-S*-F-K-R-K-S*-S*-K-K) that is very similar to the PKC

phosphorylation motif of the myristoylated alanine rich C kinase substrate (MARCKS)

protein (Bunting et al., 1996). Pharmacological inhibition of PKC, or mutation of the

serine residues within this MARCKS homology domain to alanine prevented enzyme

activation and membrane translocation of DGK^ in response to carbachol. When the

serine residues within this motif were substituted with aspartic acid, DGK^ retained the

ability to translocate to the plasma membrane. However, it was not found to be

constitutively associated with the membrane, indicating that phosphorylation of the
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MARCKS homology domain by PKC is necessary but not sufficient for membrane

recruitment (Santos et al., 2002).

MARCKS homology domains are found in a number of proteins that shuttle between the

cytoplasm and the plasma membrane. In the MARCKS protein, the basic residues in this

motif mediate electrostatic interactions with acidic phospholipids in the membrane

(Arbuzova et al., 1997; Bahr et al., 1998). Phosphorylation of the serine residues

dramatically alters the electrostatic potential of the domain, reducing its affinity for

membranes, which causes the protein to become cytoplasmic (Kim et al., 1994a; Kim et

al., 1994b). However, phosphorylation of the serine residues within the MARCKS

homology domain of DGK^ appears to have the opposite effect as it is required for

membrane translocation. It has been proposed that phosphorylation of these residues may

facilitate membrane recruitment of DGK^ by causing a conformational change in the

molecule that alters its association with regulatory proteins (Santos et al., 2002).

Alternatively, the MARCKS homology domain may make electrostatic contacts with an

acidic patch on DGK^ that maintains it in an inactive conformation and prevents

interactions with substrate or regulatory molecules until it is phosphorylated by PKC.

Santos et al. (2002) also demonstrated that both CI domains are required for enzyme

activity and membrane recruitment of DGK^. Mutation of the two conserved histidine

residues required for the co-ordination of Zn2+ in either of the CI domains to glycine

abolished enzyme activity and membrane recruitment in response to carbachol (Santos et

al., 2002).

The results presented within this chapter provide further details of the mechanism of

DGK^ membrane recruitment following the activation of Gq coupled receptors. In

addition to phosphorylation of serine residues within the MARCKS homology domain,

and the CI domains, which are thought to bind diacylglycerol, membrane translocation

appears to require an intact actin cytoskeleton and Src activity. The role of Src-mediated
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tyrosine phosphorylation in this process could be investigated by mutating the putative

Src phosphorylation site (Tyr558) to phenylalanine and aspartic acid. If tyrosine

phosphorylation of this residue by Src is a prerequisite for membrane recruitment

substitution with phenylalanine would be predicted to abolish it, while substitution with

aspartic acid should facilitate it. Alternatively, DGK^ may be recruited to the plasma

membrane in association with an additional protein that is activated by Src, or by binding

to the SH3 domain of Src, which is itself targeted to the plasma membrane via N-terminal

myristoylation. This latter point could tested by creating deletion mutants of DGKC,

lacking the proline rich regions that were identified as potential ligands for the SH3

domain of Src.

By phosphorylating diacylglycerol to produce phosphatidic acid, the diacylglycerol

kinases may play an important role in regulating the activity of the conventional and

novel PKC isozymes. Thus the results presented in this chapter provide a mechanism for

the feedback regulation of PKC activation by GnRH. In addition, phosphatidic acid plays

a number of roles in the cell. It is an important intermediate in the synthesis of

phosphatidylinositol, and also has second messenger functions. Perhaps the best evidence

for the essential role of diacylglycerol kinases in phosphatidylinositol biosynthesis has

been provided by studies of retinal degeneration mutants in D. melanogaster. In the rdgA

mutant, photoreceptor cells differentiate normally but degenerate rapidly after eclosion

(Hotta and Benzer, 1970). Their degeneration starts with the breakdown of the

subrhabdomeric cistemae, which is the specialised smooth endoplasmic reticulum that

forms immediately beneath the rhabdomeric microvilli in the compound eye (Matsumoto

et al., 1988; Matsumoto-Suzuki et al., 1989; Masai et al., 1997). Biochemically, the rdgA

mutant lacks an eye specific diaclyglycerol kinase in a gene dosage-dependent manner

(Inoue et al., 1989). Cloning of the rdgA gene showed that it encoded a diacyglycerol

kinase, designated DGK2, that is expressed exclusively in the compound eye (Masai et
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al., 1993; Massai et al., 1997). The Drosophila DGK2 contains a catalytic domain that is

conserved with the mammalian diacylglycerol kinases, two CI domains and four tandem

ankyrin repeats (Masai et al., 1993), and therefore is very similar in structure to the

mammalian type IV DGKs, which includes DGK^ (Figure 9). In the retina, DGK2 is

found almost exclusively in association with the membranes of the subrhabdomeric

cisternae, where diacylglycerol is converted to phosphatidic acid. In the rdgA mutant, it is

thought that the lack of phosphatidic acid in the subrhabdomeric cistemae leads to its

breakdown and results in an insufficient supply of phosphatydlinositol to the

photoreceptive membrane, which is essential for the maintenance of the photoreceptors as

well as for phototransduction (Masai et al., 1997).

Phosphatidic acid is also recognised to play a role in the regulation of the ERK signalling

cascade (Andresen et al., 2002), and has been shown to bind Raf-1 in vitro (Ghosh et al.,

1996). Mutational analysis has determined that the phosphatidic acid binding site in Raf-

1 is contained within a 35 amino acid polybasic motif that is adjacent to the catalytic

domain (Ghosh et al., 1996). Mutation of a single arginine residue (Arg398) within this

polybasic motif to alanine is sufficient to reduce the affinity of the mutant protein for

phosphatidic acid, to impair membrane binding, and inhibit ERK activation by

extracellular signalling molecules (Rizzo et al., 1999). It is now thought that phosphatidic

acid binding rather than Ras binding drives the plasma membrane translocation of Raf-1

(Rizzo et al., 1999). A putative polybasic phosphatidic acid binding motif has also been

identified in the ERK scaffolding protein KSR (Figure 45), indicating that phosphatidic

acid may also recruit this protein to the plasma membrane to facilitate the assembly of the

kinases of the ERK cascade into a cohesive signalling module. Thus, activation of DGKd^

by GnRH may also contribute to the activation of ERK 1 and 2. Because the currently

available diacylglycerol kinase inhibitors do not affect DGK<^ activity, RNAi could be

used to investigate its role in this pathway.
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Raf-1 FRNEVAVRKTRHVNILLFMGYMTKDNLAIVTQWCEG

KSR FKKEVMNYRQTRHENWLFMGACMNPPHLAIITSFCKG

Figure 45: The phosphatidic acid binding domains of Raf-1 (amino acids 390 - 426) and
KSR (amino acids 497 - 533).

Phosphatidic acid has also been shown to stimulate the activity of PIP-5 kinase, which

phosphorylates PtdIns(4)P to produce PtdIns(4,5)P2 (Ishihara et al., 1996). Although

PtdIns(4,5)P2 represents less than 1% of total membrane phospholipids it has a pivotal

role in numerous signalling events (Toker, 1998). It is hydrolysed by PLC to generate

diacylglycerol and Ins(l,4,5)P3 as described previously, and is phosphorylated by PI-3

kinase to produce PtdIns(3,4,5)P3. In addition PtdIns(4,5)P2 regulates the activity ofmany

proteins involved in the regulation of the actin cytoskeleton (Sechi and Wehland, 2000).

Recently, PIP5Ia has been shown to bind to DGK^, and both proteins co-localise in

lamellipodia in migrating cells (Lou et al., 2004b), where they are positioned to

participate in the regulation of the cortical actin cytoskeleton. Thus, DGK^ may also be

involved in the regulation of the actin cytoskeleton in SCL60 cells by activating PIP-5Ia

kinase.

Future work

Although the data presented within this chapter show that Src interacts with DGK^

following stimulation of SCL60 cells with GnRH, many of the molecular details

regarding this interaction remain unknown. By using techniques such as the yeast-two

hybrid screen, it may be possible identify which domains in Src are important for this

interaction. However, it is also possible that the interaction between these proteins is not

direct but mediated by an additional protein in a putative complex with Src. Improved

proteomic techniques such as tandem affinity purification may therefore help to solve this
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problem by reducing the number of non-specific proteins co-precipitating with Src during

immune precipitation and allowing a more detailed analysis of Src complexes.

By using purified proteins, it may be possible to show Src mediated phosphorylation of

DGK^ in vitro and allow the phosphorylation sites to be mapped. Such studies would

undoubtedly shed light on the mechanism ofDGK<^ activation by Src.
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Conclusion

Protein phosphorylation on serine, threonine and tyrosine residues plays an important role

in GnRH receptor signalling, regulating the activity of protein and lipid kinases and

creating binding sites for protein-interaction domains to nucleate the formation of

signalling complexes. The non-receptor tyrosine kinase Src appears to play a central role

in GnRH receptor signalling and is intimately involved in numerous processes, including

the regulation of the actin cytoskeleton, diacylglycerol signalling and the activation of the

ERK signalling cascade. The data presented within this thesis indicate that these events

may not be separate, but represent a co-ordinated cellular response to receptor activation.

Activation of Src stimulates the formation of lamellipodia, which in turn leads to the

activation of FAK. Src is then recruited into a complex with FAK and phosphorylates it

on tyrosine residues to allow the binding of Grb2/Sos, which initiates the activation of

ERK (Schlaepfer et al, 1994).

Src was also found to be involved in the activation of DGK^, which phosphorylates

diacylglycerol to produce phosphatidic acid. This provides a potential mechanism for the

feedback regulation of conventional and novel PKC isozymes, which are allosterically

activated by diacylglycerol. In addition, Raf-1 has been shown to be recruited to the

plasma membrane by binding to phosphatidic acid (Ghosh et al., 1996). Thus, DGK^

may also participate in the activation of ERK 1 and 2.

Phosphatidic acid is also known to be an important intermediate in the biosynthesis of

phosphatydlinositol and activates PBP-5 kinase, which phosphorylates PtdIns(4)P to

produce PtdIns(4,5)P2 (Toker, 1998). As well as serving as serving as a substrate for

PLC, PtdIns(4,5)P2 regulates the activity of many proteins involved in the regulation of

the actin cytoskeleton (Sechi and Wehland, 2000). Therefore, DGK^ may also be

involved in the regulation of the cytoskeleton in SCL60 cells.
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Overall these studies demonstrate the integrative nature of signal transduction in

eukaryotic cells, and that several pathways may interact to give a co-ordinated response

to a given signal.
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Appendix A: Antibodies

Antibody Supplier Species

Anti-goat AP conjugate Sigma (A4187) Rabbit

Anti-mouse AP conjugate Sigma (A1293) Goat

Anti-mouse FITC conjugate Sigma (F0257) Goat

Anti-rabbit AP conjugate Sigma (A3687) Goat

12CA5 Boehringer Mannheim (583816) Mouse

p-actin Sigma (A1978) Mouse

DGKC, Santa Cruz Biotech (SC-8721) Goat

ERK2 Santa Cruz Biotech (SC-154) Rabbit

ERK 1/2 (pThr83, pTyrl85) New England Biolabs (9101S) Rabbit

EGFR Santa Cruz Biotech (SC-03) Rabbit

FAK Santa Cruz Biotech (SC-558) Rabbit

FAK Transduction Laboratories (F15020) Mouse

HA-agarose conjugate Santa Cruz Biotech (SC-7392) Mouse

Myc Santa Cruz Biotech (SC-40-AC) Mouse

PY20 Santa Cruz Biotech (SC-508) Mouse

PY20-agarose conjugate Santa Cruz Biotech (SC-508-AC) Mouse

Src Santa Cruz Biotech (SC-18) Rabbit

Src-agarose conjugate Santa Cruz Biotech (SC-18-AC) Rabbit

Src pTyr419 Bioscource international (44-662) Rabbit

Src pTyr530 Bioscource international (44-662) Rabbit

Tyrosine tubulin Sigma (T9028) Mouse
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Appendix B: cDNA constructs

cDNA construct

HA-FAK

HA-Y397F FAK

HA-R454K FAK

HA-Y925F FAK

Myc-ERK2

N19RhoA

N17Racl

GFP-DGKC

Vector

pCDNA 3.1

pCDNA 3.1

pCDNA 3.1

pCDNA 3.1

pCMV5

pCDNA 3

pCDNA3

pEGFPBos

Supplier

Dr D Schlaepfer
Salk Institute, California, USA

Dr E Nishida

University of Tokyo, Japan

Dr A Hall

University College London, UK

Dr I Merida

University ofMadrid, Spain
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