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Lay Summary 

Agricultural production is one of the key limitations for human population growth. 

To sustain more people on the planet, the agricultural output per area needs to be 

increased, while at the same time it is essential to minimise the environmental impact 

of agriculture, such as the use of pesticide, fertiliser and irrigation water and the 

emission of greenhouse gases. Numerous strategies have been suggested to achieve 

this aim; one of them being the use of so-called biochar, which is a charcoal-like 

material produced at elevated temperatures in an atmosphere containing limited or no 

oxygen. This process of thermo-chemical conversion of biomass results in material 

with unique properties which, when applied to soil or growing media, can improve 

plant growth and at the same time reduce the amount of fertilisers and irrigation 

water required and greenhouse gases emitted. However, the feedstocks used for 

conversion, or the production process itself, can result in contamination of the 

biochar. Contaminants can result in adverse effects on soil, plants and the 

environment and it is essential to investigate the formation and fate of different types 

of contaminants during biochar production and effects after application. 

Consequently, in this thesis, 90 different biochars were analysed for contaminants 

which typically occur in biochar. The overall aim was to give recommendations 

about feedstock and production conditions to create safe biochar. The contaminants 

in biochar clearly have to be distinguished into two groups, inorganic and organic 

contaminants, due to their different properties and origins. The concentration of 

inorganic compounds in biochar, such as the heavy metals copper, cadmium or zinc, 

is mostly affected by the type of feedstock used for biochar production. In this study, 

it was demonstrated that even biomass rich in inorganic compounds could be 

promising, cost-effective feedstocks usable for conversion into biochar. The results 

also revealed that under normal circumstances, organic contaminants which, in 

contrast to inorganics, form during the thermo-chemical conversion, are mostly 

evaporated and separated from biochar during the production process. Consequently, 

biochars made in well-designed and well-monitored production units had only low 

concentrations of organic contaminants. Overall, the results from this study are very 

encouraging for production and application of biochar; most biochars, indeed, can be 

used safely for environmental management.   
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Abstract 

For widespread use of biochar in agriculture and horticulture, it must be ensured that 

application will neither adversely affect soil and plants, nor exceed legislated 

contaminant concentrations. The most relevant groups of contaminants in biochar are 

potentially toxic elements (PTEs), polycyclic aromatic hydrocarbons (PAHs) and 

volatile organic compounds (VOC). In this thesis, the concentrations of these groups 

of contaminants were analysed in 90 different biochars produced by slow pyrolysis. 

Subsequently, the concentrations were compared to legislation/guideline threshold 

values and linked to production conditions. The risk these contaminants pose to plant 

growth was also assessed, to give recommendations on production of safe biochar.  

PTEs can neither be formed nor destroyed, which means their presence in biochar is 

predominantly determined by feedstock type. However, significant levels of Cr, Fe 

and Ni were introduced into biochar from the furnace steel, whilst PTEs with low 

boiling points, such as As, Cd and Zn, partially evaporated during pyrolysis. PTEs 

were not responsible for phytotoxic effects observed for PTE-rich biochars despite 

biochar’s exceedance of available and total PTE threshold values for soil and soil 

amendments. Although initial tests were promising, the risk that PTE-rich biochars 

as amendment for soil and growing media pose, needs further investigation.  

The PAH concentration in biochar was markedly reduced by increasing carrier gas 

flow rate, and the type of feedstock also influenced the PAH content. However, there 

was no clear dependence of pyrolysis temperature on PAH concentrations, which 

was attributed to PAHs being increasingly formed and evaporated at higher pyrolysis 

temperatures. Ultimately, condensation of pyrolysis vapours and deposition on 

biochar was identified as the main risk for biochar contamination with PAHs, as this 

resulted in elevated concentrations of high-risk, higher molecular weight PAHs.  

Weaknesses in the pyrolysis unit design, such as cold zones, resulted in elevated 

concentrations of VOCs, as well as PAHs, in biochar. Comparing concentrations and 

phytotoxic potential of both compound groups, it was concluded that observed toxic 

effects were much more likely caused by VOCs in biochars containing both 

contaminants. Overall, formation of VOCs and PAHs cannot be prevented, but their 

presence in biochar resulting from retention and deposition can be minimised.   
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Chapter 1   Introduction 

1.1 Present challenges in global food producing systems 

Under the prospects of a world population of 9.7 billion in 2050, it was predicted that 

the amount of food produced will need to double relative to 2005 levels to catch-up 

with the population growth (Campbell et al., 2014; Tilman et al., 2011; United 

Nations, 2015). Over human history up until the early 20th century, the area used for 

agriculture expanded and more land was converted into cropland to meet the 

increasing demand for agricultural products (Amundson et al., 2015). Over recent 

decades, e.g. between 1985 and 2005, the global crop production increased by 

around 28%, but only 2.4% of this was attributed to expansion of cropland area as 

today most of the suitable land is already used for agriculture. Consequently, nearly 

all of the increase in production of agricultural goods was due to a rise in yields per 

area which has only been possible since the discovery of the Haber-Bosch process 

and the application of nitrogen-fertilisers (Amundson et al., 2015; Foley et al., 2011).  

Nowadays, external nutrient provision and organic inputs are essential in agriculture 

because the natural mechanisms that replenish both are very slow, leaving input and 

output in imbalance (Amundson et al., 2015). In addition, external water supply is 

vital in many parts of the world and global cereal production is predicted to decrease 

by 20% without irrigation (Foley et al., 2011). In summary, over the past half-

century, the global use of fertiliser has increased by five-fold and the area of irrigated 

agricultural land has doubled (Foley et al., 2011).  

Agricultural intensification has led or contributed to numerous environmental 

problems, such as soil erosion, climate change (greenhouse gas emission (GHG)), 

pollution of limnic and marine ecosystems and water degradation (Amundson et al., 

2015; Foley et al., 2011; Withers et al., 2014). In addition, while mineral nitrogen-

fertilisers can be generated from the air using energy only, the availability of P and K 

resources is limited, e.g. according to different scenarios P-resources are predicted to 

run out in 80-1300 years, which has led to increasing prices (Amundson et al., 2015; 

Reijnders, 2014).  

Consequently, the amount of research channelled into “sustainable intensification”, 

which is the increase of yields per area and simultaneous decrease of the 
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environmental footprint, is growing (Campbell et al., 2014; Elliott et al., 2013; Foley 

et al., 2011; Mueller et al., 2012). Various approaches and concepts have been 

proposed and tested; these aim to increase biodiversity in agricultural areas, decrease 

GHG emissions, decrease the use and environmental impact of pesticides and 

mineral fertiliser and at the same time increase the crop yields per area (Brooker et 

al., 2015; Campbell et al., 2014; Elliott et al., 2013; Tittonell, 2014; Wezel et al., 

2014). One management strategy that can tackle several of these issues at the same 

time is a carbon-rich material called biochar which can contribute to effective 

nutrient and water management in soil, increase soil biodiversity, promote plant 

growth directly and help mitigate GHG emissions (Lehmann and Joseph, 2015a). 
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1.2 Biochar definition and background 

Different technologies can be used for biochar production, including slow pyrolysis, 

fast pyrolysis, gasification and hydrothermal carbonisation (HTC). In all cases, 

elevated temperatures are applied in the absence or limited presence of oxygen which 

converts biomass in a thermo-chemical process to a material, called ‘char’ (Boateng 

et al., 2015; EBC, 2012a; Lehmann and Joseph, 2015b). Char used as a fuel is called 

‘charcoal’ (Brown et al., 2015; Wiedner and Glaser, 2015), while char used for 

environmental management is called ‘biochar’ (EBC, 2012a; Lehmann and Joseph, 

2015b). In addition, to distinguish the product of HTC from the remaining chars that 

are intended for environmental management, the term ‘hydrochar’ has been 

established (Libra et al., 2011). More specific definitions for biochar exist which are 

based on physiochemical properties such as the organic carbon content, H/C ratio, 

O/C ratio or the parent material (EBC, 2012a; International Biochar Initiative, 2011).  

Already centuries ago, char was applied to soil, unintentionally and intentionally, e.g. 

biochar has been found in the Amazon Basin which resulted in soil patches that were 

much more fertile than the surrounding soils (Wiedner and Glaser, 2015). The 

research on these Amazonian dark earths (Terra Preta de Indio) led to the re-

discovery of biochar and the global interest in using it for environmental 

management (Glaser et al., 2002, 2001; Lehmann and Joseph, 2015b). Due to the 

increasing research and commercial interests in biochar and the lack of biochar 

legislation, national and international non-governmental organisations were founded 

which established guidelines for the definition, production and use of biochar, the 

International Biochar Initiative (IBI), the European Biochar Certificate (EBC) and 

the British Biochar Foundation (BBF). 

Nowadays, the perception of biochar goes beyond soil improvement; conversion of 

waste materials into a stable-carbon product is seen as a waste management 

alternative. In addition, biochar’s aromatic carbon lattice has shown to be very stable 

against degradation in soil and could contribute to climate change mitigation through 

the removal of carbon from the atmosphere for a prolonged period (carbon 

sequestration) (Kuzyakov et al., 2014; Lehmann and Joseph, 2015b; Windeatt et al., 

2014; Woolf et al., 2010). While the mean residence time of biochar in soil is one of 
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the main uncertainties in this area of research and currently a central issue for debate, 

there is general consensus, that biochar is more stable than its parent material 

(Ameloot et al., 2013; Lehmann et al., 2015).  
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1.3 Biochar production 

1.3.1 Technologies 

Biochar can be produced using different technologies which form solid (char), liquid 

and gaseous products in varying proportions. Gasification operates at highest 

treatment temperatures (HTT), which is the maximum temperature the feedstock is 

exposed to, of 500-1500°C with the addition of small amounts of air which results in 

partial oxidation of the solids and vapours and the predominant formation of gases 

(Boateng et al., 2015). Fast pyrolysis is optimised for high liquid yields; HTTs of 

400-600°C are applied while using comparatively small feedstock particles (<2 mm) 

which are heated up very rapidly (<1s) (high heating rates and high heat transfer), 

resulting in a very low hot vapour residence time in the range of tens of seconds and 

a solid residence time of seconds to minutes (Boateng et al., 2015; International 

Energy Agency, 2006; Kuppusamy et al., 2016). Slow pyrolysis, on the other hand, 

operates at similar HTTs to fast pyrolysis (temperature threshold depends on 

definition: >250°C (Lehmann and Joseph, 2015b), >350°C (EBC, 2012a)) but the 

heating rate is lower and the total residence time of the solids at HTT is in the range 

of minutes to hours (Kuppusamy et al., 2016). This results in maximisation of the 

solid char yield and consequently, this technology is commonly used for biochar 

production. Pyrolysis reactors most frequently used for slow pyrolysis are fixed bed 

reactors, rotary kilns (drums) and screw pyrolysers (Boateng et al., 2015).  

1.3.2 Principles of pyrolysis 

During biomass pyrolysis, the educts, mostly cellulose, hemicellulose and lignin, are 

chemically transformed and the products of pyrolysis are char, liquids (aqueous 

fraction and pyrolysis oils) and non-condensable gases. Generally, lignin conversion 

into char is reported to be more efficient than hemicellulose and cellulose conversion 

(Sharma et al., 2004; Yang et al., 2007). Degradation occurs in the range 220-315°C 

for hemicellulose, 315-400°C for cellulose and in a much wider range for lignin, 

160-900°C (Yang et al., 2007). After a particular process temperature is exceeded, 

pyrolysis is an exothermic process. This activation energy that is needed to start the 

reactions depends on feedstock, e.g. in the case of wood it is reported that 280°C are 

needed (Antal and Grønli, 2003). 
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The pyrolysis liquids which can be used as biofuel consist of a vast variety of 

intermediate degradation products from the decomposition of biomass which include 

organic acids, aldehydes, alcohol, ketones, phenols, PAHs, furans and other chemical 

species (Cordella et al., 2012; Khor et al., 2009; Sánchez et al., 2009). Due to the 

wide range of possible products, different analytical and separation techniques have 

been applied to characterise and group the chemical compounds within pyrolysis 

liquids (Ben and Ragauskas, 2013; Garcia-Perez et al., 2007; Sfetsas et al., 2011; 

Tessarolo et al., 2013). The main non-condensable gases formed during pyrolysis are 

H2, CO2, CO, H2O, CH4, C2H4, C2H6 and their relative proportion changes with 

pyrolysis conditions (Crombie and Mašek, 2014; Fagernäs et al., 2012b; Fu et al., 

2011; Mahinpey et al., 2009). 

The solid input and output materials of pyrolysis have distinctively different 

chemical and physical properties. During the heat treatment the feedstock is 

considerably depleted in O and H and partially depleted in N; in contrast, most of the 

C and P is retained and up to 90% of the final char product can be C, which is 

strongly aromatic (Antal and Grønli, 2003; Cantrell et al., 2012; Jindo et al., 2014; 

Lehmann and Joseph, 2015b; Xie et al., 2015). The char loses most of its oxygen-

containing functional groups, such as OH and C=O. In addition, aliphatic and 

aromatic CH-bonds are lost during the conversion, highly condensing the aromatic 

ring structure, increasingly so with higher HTTs, (Antal and Grønli, 2003). The 

predominant reactions during char formation are dehydration, elimination, 

depolymerisation, re-polymerisation and cross-linking (Hajaligol et al., 2001). Char 

is formed by rearrangements of the molecular carbon structure which results in 

aromatisation leading to a recalcitrant carbon framework. Initially, primary char 

formation reactions occur, forming char due to solid-solid interactions. Then 

secondary char formations take place from reactions of organic vapours/tars with 

solid carbonaceous material within the particle undergoing pyrolysis (Figure 1.1) and 

on the gas-solid interface which can enhance the char yield significantly (Antal and 

Grønli, 2003; Huang et al., 2013; Pattanotai et al., 2013). Various techniques have 

been used to characterise the changes occurring during the thermo-chemical 

conversion (e.g. FTIR, SEM, TEM, XRD, BET surface area and proximate analysis 

(PA)), demonstrating shrinkage and mass loss of the feedstock with increasing 
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aromaticity and decreasing surface functional groups (Abrego et al., 2009; Bourke et 

al., 2007; Haas et al., 2009; Keiluweit et al., 2010; Krzesińska et al., 2006; Kwon et 

al., 2009; Podgorski et al., 2012; Rutherford et al., 2012). 

 

 

Figure 1.1: Schematic of intraparticle secondary char reactions (at low heating rates) 

(Pattanotai et al., 2013). 

 

1.3.3 Influence of production parameter on biochar properties 

The most important parameters during pyrolysis are: HTT, the residence time at 

HTT, the carrier gas flow rate and the heating rate (Antal and Grønli, 2003). 

HTT is reported to be the parameter with the highest influence on char yield and char 

properties and, in general, higher HTTs decrease total carbon and char yields (Antal 

and Grønli, 2003; Enders et al., 2012). Moreover, with increasing HTT, the O/C and 

H/C ratios of the char decrease, which facilitates the build-up of an aromatic carbon 

framework, enhances the degree of carbonisation and leads to a higher carbon 

content in the char (Manyà, 2012). However, some studies have shown that the 

proportion of carbon stable to thermal and chemical oxidation was nearly 

independent of HTT (Mašek et al., 2013). Pyrolysis also increases the surface area, 

pore volume, pH and EC from feedstock to char and these parameters also increase 

with increasing HTT; in contrast, the average pore diameter is claimed to decrease 

(Al-Wabel et al., 2013; Cantrell et al., 2012; Jindo et al., 2014; Ronsse et al., 2013; 

Schimmelpfennig and Glaser, 2012; Zhao et al., 2013). Cation exchange capacity 
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(CEC) is generally thought to be reduced in chars produced using higher HTTs due 

to loss of functional groups. Yet, at low HTTs the CEC of biochar is higher than in 

material exposed to temperatures just below the range defined as pyrolysis (e.g. 

200°C) (Gaskin et al., 2008; Harvey et al., 2011; Kloss et al., 2012). In one study, the 

CEC even increased in biochars from two feedstocks in the whole temperature range 

investigated, 200°C to 650°C (Zhao et al., 2013). 

During slow pyrolysis, variation of the residence time at HTTs of 350°C and 650°C 

did not result in any considerable effect on biochar properties such as fixed carbon 

content (carbon fraction remaining after treating char at 900°C in an N2-atmosphere) 

or elemental concentrations (Crombie and Mašek, 2015). However, in other studies 

at 300°C the residence time at HTT did have an impact on biochar parameters such 

as pH, fixed carbon, total C, biochar yield, H/C ratio and surface characteristics 

(Ronsse et al., 2013; Rutherford et al., 2012). Generally, increasing carrier gas flow 

rates reduce secondary char forming reactions, therefore, reduced biochar yields, 

biochar stable carbon contents and changed the pyrolysis gas composition (Crombie 

and Mašek, 2015, 2014; Ronsse et al., 2013). While the feedstock heating rate only 

had a marginal effect on stable carbon content and biochar pH, low heating rates 

resulted in higher char yields during pyrolysis but the increase occurred 

asymptotically (Angin, 2013; Antal and Grønli, 2003; Crombie et al., 2014, 2013).  

Overall, this shows that there are still some knowledge gaps which need to be 

addressed before reaching the aim in biochar production research which is the 

prediction of biochar properties from feedstock and production conditions (Morales 

et al., 2015). 

1.3.4 Feedstocks, feedstock characteristics and biochar properties 

Besides unprocessed, virgin biomass, chemically/biologically treated biomass (non-

virgin biomass) can be used as feedstock for pyrolysis. The typical feedstocks used 

for biochar production (virgin as well as non-virgin) are agricultural and forestry 

residues and manures (Cantrell et al., 2012; Enders et al., 2012; Gaskin et al., 2008; 

Inyang et al., 2010; Jindo et al., 2014; Kim et al., 2014; Kloss et al., 2012; Mukome 

et al., 2013; Troy et al., 2013; Windeatt et al., 2014). Furthermore, pyrolysing marine 

and limnic algae has been investigated because algae have very high growth rates 
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and do not compete with crops for land resources (agricultural land, nutrients, water). 

Most algae-derived biochars have high ash contents which can mean high nutrient 

concentrations but this can also lead to salinity-related issues and low biochar carbon 

contents (Bird et al., 2011; Kan et al., 2014; Ronsse et al., 2013). However, from an 

economic perspective, the ideal feedstocks for conversion into biochar are materials 

of little or no economic value, here referred to as ‘marginal biomass’, which have no 

competitive use and partly even gate fees are applied, which are fees companies are 

charged for waste disposal (Shackley et al., 2011). Therefore, sewage sludge (Abrego 

et al., 2009; Agrafioti et al., 2013; Liu et al., 2014; Luo et al., 2014; Méndez et al., 

2012; Van Wesenbeeck et al., 2014; Zielińska and Oleszczuk, 2015) and 

anthropogenic wastes (Bernardo et al., 2009; Enders et al., 2012; Kaminsky et al., 

1996; Martinez et al., 2013; Oh and Shinogi, 2013; Paradela et al., 2009; Sánchez et 

al., 2009; Williams and Williams, 1997) have gained a wide interest for use for 

biochar production. 

Various feedstock characteristics can influence the pyrolysis process and the 

resulting biochar properties. It has been shown that ash/mineral, total organic carbon 

and fixed carbon content and the C/N ratio of the char are mostly determined by 

feedstock type, while O/C and H/C ratios are predominantly influenced by pyrolysis 

conditions (Mukome et al., 2013; Zhao et al., 2013). The moisture content of the 

feedstock increases the amount of energy and the residence time needed for full 

carbonisation of the feedstock as the moisture needs to be driven off first (Antal and 

Grønli, 2003). However, at elevated pressures, elevated feedstock moisture contents 

(42-62%) can also facilitate char production (Manyà, 2012). Furthermore, minerals 

in the feedstocks act as catalysts and reduce the volatilisation of organics which 

promotes the interaction of volatiles and solids resulting in increased char formation 

(Antal and Grønli, 2003; Sharma et al., 2004; Sharma and Hajaligol, 2003). 

Feedstock particle size can also influence pyrolysis; bigger particles sizes lead to 

enhanced intraparticle secondary reactions which resulted in positive charcoal yield 

responses and decreased tar formation (Manyà, 2012; Pattanotai et al., 2013). 

However, it was reported that the particle size did not have an influence at slow 

heating rates (0.17°C s-1), only at fast heating rates (>1000°C s-1) (Asadullah et al., 

2010).  
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1.4 Benefits of biochar in soil 

1.4.1 Biochar carbon stability and CO2 sequestration potential 

Pyrolysis increases the persistence of the carbon in biochar against degradation 

compared to its parent material; this is a central feature that boosts biochar research 

as the recalcitrance in soil is relevant for carbon sequestration purposes (Lehmann et 

al., 2015; Woolf et al., 2010). 

The high-temperature treatment results in an aromatic carbon lattice which is 

difficult to be degraded by microorganisms and the stability is reported to increase 

with HHT and is influenced by feedstock (Ameloot et al., 2013; Calvelo Pereira et 

al., 2011; Fang et al., 2014; McBeath et al., 2014). Parts of the carbon in biochar is 

degraded comparatively fast, the so-called “labile carbon” content, while the fraction 

of “stable carbon” is reported to be degraded much slower, resulting in a bi-phasic 

degradation profile (Ameloot et al., 2013; Wang et al., 2015). A range of residence 

times of biochar have been reported in the literature: in one study only 6% of the 

biochar added to soil was mineralised within 8.5 years in a lab experiment which 

corresponds to a mean residence time of around 400 years under optimal conditions 

in the lab and an estimated residence time in the field of ~4000 years (Kuzyakov et 

al., 2014). Other studies report mean residence times of 90-1600 years (McBeath et 

al., 2014; Singh et al., 2012; Wang et al., 2015). 

Various methods, e.g. elemental analysis, thermogravimetric analysis (TGA) and 

chemical oxidation, have been used in an attempt to establish easy-to-analyse 

physiochemical properties as proxies for carbon stability to ultimately estimate the 

biochar residence time (Calvelo Pereira et al., 2011; Crombie et al., 2013; Cross and 

Sohi, 2013; Lehmann et al., 2015; Spokas, 2010). 

The level of uncertainty regarding biochar’s CO2-sequestration and GHG-mitigation 

potential increases exponentially when the complexity of the whole biochar-soil 

system is taken into account. Among others, influencing factors are: variability of 

field experiments due to soil type and climate, extrapolation beyond the (mostly) 

short-term studies, potential negative/positive priming of existing soil carbon stocks 

and the effect of biochar on emission of GHG by microorganisms (Kammann et al., 
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2012; Lehmann et al., 2015; Van Zwieten et al., 2015). Figure 1.2 shows a selection 

of processes and factors influencing the biochar degradation in soil. 

 

 

Figure 1.2: Factors and processes affecting biochar degradation in soil (Wang et al., 2015). 

 

Besides simple carbon sequestration, the stability of biochar in soil can also result in 

long-lasting positive effects on soil properties as observed for Amazonian dark earth; 

one such potential effect is the remediation of contaminated sites (Beesley et al., 

2011; Glaser et al., 2001). 

1.4.2 Biochar’s use in soil remediation 

Contaminated sites, polluted through mining, industrial and commercial activities, 

inadequate waste disposal and agrochemicals is a global problem; in Europe alone, 

thousands of contaminated sites exist (World Health Organization regional office for 

Europea, 2013). Biochar has been used to successfully remediate such sites (Beesley 

et al., 2015) and consequently, major efforts have been channelled into this area of 

research. For remediation of contaminated soils it is vital that the treatment results in 

a permanent immobilisation or removal of contaminants, and the long-term stability 

of biochar makes it a viable option. 
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Where biochar has been applied to soil, it decreased the availability and plant uptake 

of various potentially toxic elements (PTEs) such as Cd, Pb, Cu, Ni and Zn (Beesley 

et al., 2011; Buss et al., 2012; Karer et al., 2015; Kim, 2015; Kloss et al., 2014a; 

Méndez et al., 2012; Park et al., 2011; Puga et al., 2015; Uchimiya et al., 2011). The 

mechanisms responsible for the immobilisation can be separated into: (I) direct 

mechanisms, e.g. chemical, physical sorption and precipitation; and (II) indirect 

mechanisms, e.g. increase in pH (Beesley et al., 2015; Uchimiya et al., 2012). Direct 

immobilisation is mostly influenced by functional groups on the biochar surfaces 

(Beesley et al., 2015) and the proposed mechanism are inner-sphere complexation, 

ion exchange and surface complexation, electrostatic attraction, precipitation and ᴨ-

interactions (Ding et al., 2016). As discussed in 1.3.3, the CEC of biochar decreases 

with HTT, consequently, so does the ability for direct immobilization of PTEs. The 

pH of biochar, however, increases with HTT. The effect of pH on PTE mobility is as 

followed: at lower soil pH, cationic elements such as Pb, Cu, Zn, Co, Ni and Mn are 

very mobile and an increase in soil pH as caused by biochar leads to nearly complete 

sorption to oxide surfaces which happens rapidly once a specific pH value is 

exceeded (Figure 1.3) (Basta et al., 2005). This means that biochars produced at high 

HTTs increasingly immobilise cationic PTEs through the indirect mechanisms and 

decreasingly through the direct mechanisms. However, biochar’s high pH can also 

increase the mobility of some elements (Mo, B and As) which can be beneficial as 

Mo and B are plant micronutrients but can also result in adverse effects on plants 

(Beesley et al., 2011; Kloss et al., 2014a; Rondon et al., 2007). 
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Figure 1.3: Adsorption of cationic PTEs on goethite (Basta et al., 2005). 

 

In addition to PTE, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated 

biphenyls (PCBs) have been reported to be immobilised by the application of biochar 

through surface sorption (Beesley et al., 2011; Chen and Yuan, 2011; Denyes et al., 

2012; Huang and Chen, 2010; Ogbonnaya and Semple, 2013; Oleszczuk et al., 

2012). Other organic compounds, such as pesticides, can also be immobilised which 

can be positive as they are not leaching into groundwater but it can also reduce their 

efficacy (Cabrera et al., 2014; Jones et al., 2011; Kuppusamy et al., 2016; Yao et al., 

2011; Yu et al., 2009). Sorption of organic compounds to biochar is complex and 

consists of different mechanisms (Kupryianchyk et al., 2016; Lattao et al., 2014; 

Ogbonnaya and Semple, 2013; Wang et al., 2016). The sorption of hydrophobic 

organic compounds of biochar tends to increases with HTT which is assumed to be 

caused by the increased surface area of high-temperature biochars (Graber et al., 

2012; Kupryianchyk et al., 2016; Wang et al., 2016). 

Immobilisation of PTEs and organic contaminants can result in increased crop 

growth via reduction of phytotoxic effects and so biochar can be used as a soil 

remediation tool enabling crops for consumption or energy production to be grown 

on contaminated land (Brennan et al., 2014; Buss et al., 2012; Fellet et al., 2014). 
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However, biochar can also increase plant growth in more ways than just through a 

decrease in contaminant toxicity.  

1.4.3 Effect of biochar on plant growth 

Although biochar addition to soil has resulted in increased plant growth in many 

studies, in particular in sandy soils with low organic carbon contents, depleted soils 

or acidic soils, reported effects have been highly variable (Butnan et al., 2015; 

Cornelissen et al., 2013; Deal et al., 2012; de la Rosa et al., 2014; Hammond et al., 

2013; Spokas et al., 2012; Van Zwieten et al., 2010). Due to the immense number of 

combinations of biochar type (feedstock, production condition, post-treatment), plant 

species, biochar application rate, additional application (fertiliser, liming, pesticides), 

climate and soil type, biochar application does not always result in the desired plant 

growth promotion.  

After initial trial-and-error experiments, it became clear that not every biochar fits to 

every system and that there is the need for fitting a particular biochar to a particular 

system to gain a desired effect (Novak and Busscher, 2012). Still, meta-analyses 

from a large number of studies, conducted already in 2011 when most biochar trials 

were still performed in trial-and-error attempts, showed that on average biochar 

increased crop growth by around 10% globally (Jeffery et al., 2011). As biochar 

research only took off this millennia, very few long-term studies exist and the long-

term effects of biochar in soil are very difficult to predict, yet, investigations on 

Amazonian dark earth suggest that biochar indeed can result in positive effect on 

plant growth even after hundreds of years in the ground (Glaser et al., 2001). 

Pyrolysis changes the characteristics of the feedstock material majorly, resulting in 

biochars with unique properties which can improve the nutrient and water status of 

the soil, change the abundance and composition of soil organisms and decrease the 

mobility of contaminants in soil (section 1.4.2) which subsequently, can stimulate 

plant growth. 

1.4.3.1 Soil nutrient status 

One of the key limitations for crop growth is nutrient availability and biochar can 

improve the nutrient status of soils in a number of ways (Gunes et al., 2014; Jeffery 

et al., 2015a; Kloss et al., 2014b). Biochar can reduce the leaching of P and N due to 
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sorption to its surfaces and consequently, increase the nutrient-use efficiency (de la 

Rosa et al., 2014; Uzoma et al., 2011). Furthermore, biochar can also increase the 

CEC in some instances, resulting in increased retention and exchange of cations, 

such as K (Basso et al., 2013; Deal et al., 2012; Kloss et al., 2014b; Laird et al., 

2010; Liang et al., 2006; Van Zwieten et al., 2010). In addition, biochar’s high pH 

can increase the pH of the soils which in turn increases the availability of nutrients 

such as P, N, Ca, Mg and Mo which were previously ‘locked up’ within the soil 

matrix (Jeffery et al., 2015a). However, biochar can also supply nutrients directly 

originated from the feedstock used for biochar production (Hossain et al., 2011; 

Ippolito et al., 2015).  

1.4.3.2 Soil water regime 

In some instances, biochar increased the water holding capacity (WHC) and the 

plant-available water content, resulting in increased plant growth and a higher plant 

tolerance against droughts. Yet, a high variability in observed effects has resulted in 

this topic being highly debated in the literature (Baronti et al., 2014; Basso et al., 

2013; Jeffery et al., 2015b; Kammann et al., 2011; Laird et al., 2010; Masiello et al., 

2015; Mulcahy et al., 2013; Ojeda et al., 2015; Uzoma et al., 2011). The properties 

mostly affecting the soil water regime are soil and biochar porosity (pore volume, 

pore size distribution) and particle size (Gray et al., 2014; Masiello et al., 2015). For 

example, the intraparticle pore volume decreases when the biochar is ground finely, 

while the interparticle pore size is affected by interactions of soil and biochar 

(Masiello et al., 2015). In addition, biochar’s hydrophobicity plays an important role 

on biochar’s effect on the water regime in soil which has been reported to be caused 

by alkyl surface groups in low-temperature biochars and ceases after weathering in 

soil where the alkyl groups are oxidised and become more hydrophilic (Das and 

Sarmah, 2015; Eibisch et al., 2015; Gray et al., 2014; Kinney et al., 2012; Masiello et 

al., 2015; Ojeda et al., 2015). Overall, there are a number of parameters in biochar 

which interact with soil characteristics and together affect the soil water regime 

which explains why the observed effects of biochar on soil water regime were so 

variable in practise.  
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1.4.3.3 Abundance and composition of soil biota 

Biochar can change abundance and composition of soil biota by being a habitat or a 

substrate for organisms, e.g. for soil microorganisms (Jeffery et al., 2015a; Van 

Zwieten et al., 2015). Biochar application can increase abundance of mycorrhiza and 

N2-fixing bacteria (LeCroy et al., 2013; Masiello et al., 2013; Quilliam et al., 2012; 

Robertson et al., 2012; Rondon et al., 2007; Warnock et al., 2007). Biochar can also 

decrease the action of pathogenic species by inducting systemic resistance against 

pests and therefore, increase the plant performance directly (Elad et al., 2011, 2010).  
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1.5 Risks of biochar application 

1.5.1 Adverse effects of biochar 

To gain acceptance with farmers, growers and legislators, consistent growth 

promoting effects needs to be achieved with biochar application and it needs to be 

demonstrated that biochar addition to soil does not cause any negative effects. 

Unfortunately, suppression of plant growth has been observed in many instances; 

these include various biochars, soils, plant species, under fertilised/unfertilised 

conditions, in field/pot experiments and using low/high biochar application rates 

(Butnan et al., 2015; Gell et al., 2011; Jones and Quilliam, 2014; Kloss et al., 2014b; 

Kwapinski et al., 2010; Lucchini et al., 2014a; Mukherjee et al., 2014; Oleszczuk et 

al., 2013; Quilliam et al., 2012; Rajkovich et al., 2012; Solaiman et al., 2011; Spokas 

et al., 2012; Van Zwieten et al., 2010). In addition, negative effects of biochar and 

biochar extracts were observed in Vibrio fischeri, algae, collembolan, protozoa and 

crustacean (Bernardo et al., 2010, 2009; Domene et al., 2015; Oleszczuk et al., 2013; 

Smith et al., 2013). 

1.5.2 Mechanisms of growth inhibition caused by biochar 

Many of biochar’s beneficial properties can also be classed as disadvantages as they 

have the potential to be detrimental to plant growth. Table 1.1 shows the positive and 

negative implications of the same biochar effect in soil and includes exemplar 

references. As reported in section 1.4.3, biochar can reduce the losses of N in soil, 

however, biochar can also lock up N or increase microbial growth resulting in 

increased N use and lower availability for plants which causes issues, in particular 

when no extra N is applied with biochar (references in Table 1.1). In addition, 

biochar’s high surface area is predestined to bind and immobilise organics, such as 

pesticides, when applied to soil. This can reduce the efficacy of pesticides which 

could reduce crop yields due to pests not being targeted. Furthermore, the increase of 

soil pH after biochar application is one of the most important benefits of biochar, yet, 

it can lead to germination and plant growth inhibition by shifting the pH too far into 

the alkaline range. Similarly, nutrient supply usually increases crop growth but the 

application of biochars with high-ash contents can result in nutrient imbalances or 

salinity-related issues causing reduction of plant growth. Finally, biochar can also 

contain contaminants which are supplied to soil with biochar. 
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Table 1.1: Biochar effects in soil and their positive and negative implications. 

biochar effect in soil positive implication negative implication 

binding of N in soil reduced N loss 

(de la Rosa et al., 2014; Uzoma 

et al., 2011) 

locking up of N 

(Deenik et al., 2010; Nelissen 

et al., 2014; Prommer et al., 

2014; Rondon et al., 2007; 

Shenbagavalli and 

Mahimairaja, 2012) 

binding and 

immobilisation of organic 

compounds 

reduced toxicity of 

contaminants 

(Beesley et al., 2011; Buss et 

al., 2012; Karer et al., 2015; 

Kim, 2015) 

reduced efficacy of pesticides 

(Cabrera et al., 2014; Cao et 

al., 2011; Graber et al., 2012; 

Jones et al., 2011; Kuppusamy 

et al., 2016; Yu et al., 2009) 

increase in soil pH reduced availability and toxicity 

of several PTEs and increased P 

availability 

(Butnan et al., 2015; Deal et al., 

2012; Jeffery et al., 2015a; 

Kloss et al., 2014b) 

potential germination and 

plant growth inhibition when 

pH raised into alkaline range 

(Jeffery et al., 2015a; 

Shoemaker et al., 1990; Singh 

et al., 1975) 

supply of ash to soil provision of plant nutrients 

(Hossain et al., 2011; Ippolito et 

al., 2015) 

nutrient imbalances and 

salinity-related issues 

(Butnan et al., 2015; Domene 

et al., 2015; Gell et al., 2011; 

Rajkovich et al., 2012) 

 

1.5.3 Adverse effects of contaminants in biochar 

Contaminants in biochar were reported to result in toxicity to plants and aquatic and 

soil organisms. Adverse effects were pinpointed to various inorganic and organic 

species, yet, in many cases there was a high uncertainty as to what had caused the 

effects. 

Potentially toxic elements (PTEs) is one group of contaminants in biochars that can 

cause toxic effects, e.g. Cu in biochar inhibited plant growth or Zn reduced growth of 

the bioluminescent bacteria, Vibrio fischeri (Bernardo et al., 2010; Lucchini et al., 

2014a). Polycyclic aromatic hydrocarbons (PAHs) in water extracts of high-

temperature biochar were suspected to be responsible for inhibitions of growth of 
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corn (Rogovska et al., 2012). Oleszczuk et al. (2013) and Kołtowski and Oleszczuk 

(2015) had the same assumption when biochars and biochar extracts caused 

inhibition of cress growth, Vibrio fischeri, algae, crustacean and protozoa. In a 

different study, radish and lettuce plants showed stunted growth after the addition of 

pig co-digestate biochar produced at 300°C and the toxicity was associated with high 

salinity and aliphatic/aromatic hydrocarbons (Gell et al., 2011). In Bernardo et al. 

(2009) and Bernardo et al. (2010) biochars from different waste mixtures (pine, 

plastics, tyres) were investigated and toxicity on Vibrio fischeri was proposed to be 

caused by various organic compounds, mostly volatile organic compounds (VOCs). 

In Rombolà et al. (2015), inhibition of germination of cress (Lepidium sativum) by 

biochar extracts was suspected to be caused by water-soluble degradation products of 

lipids or proteins. Smith et al. (2013) even went one step further and pinpointed the 

toxicity of biochar extracts to <500 Da organic molecules with at least one carboxyl 

group.  

The above examples show that organic and inorganic contaminants in biochar can 

pose a threat to plant growth and other organisms but the responsible chemical 

species and their interactions are only partially understood and need further 

investigation.   
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1.6 Contaminants in biochar 

1.6.1 Potentially toxic elements (PTEs) 

Potentially toxic elements (PTEs) can be non-essential elements which have no 

function in plants, such as As, Cd, Cr, Hg, Se and Pb. Some, such as As and Hg, 

cause plant inhibitions even at very low concentrations, e.g. 0.1 mg L-1 Hg in 

solution and 20 mg kg-1 of As in soil inhibited plant growth (Baderna et al., 2015; 

Davis et al., 1978; Mondal et al., 2015). Plants are, however, less sensitive to Cd than 

animals and humans which can result in plants not showing any symptoms despite 

comparatively high concentrations of Cd in their tissues. Consequently, consumption 

of plants or plant parts grown on Cd-contaminated land can cause toxicity in humans 

and animals (Gupta and Gupta, 1998; Kabata-Pendias, 2011).  

In addition, some PTEs are micronutrients which are essential for plant growth in 

low amounts, B, Cu, Fe, Mn, Mo, Ni and Zn (Broadley et al., 2011; Gupta and 

Gupta, 1998). For these elements, the concentration plants are exposed to defines 

their character as an essential nutrient or toxic element (Davis et al., 1978; Gupta and 

Gupta, 1998; Kopittke et al., 2010; MacNicol and Beckett, 1985). High 

concentrations of B and Mn, mainly originating from irrigation water and acidic soil, 

respectively, have frequently been reported to inhibit plant growth (Gupta and Gupta, 

1998). Mo, on the other hand, is more similar to Cd, and can be taken up by plants in 

high amounts without causing toxic effects but can cause toxicities in grazing 

animals that ingest the plants (Kabata-Pendias, 2011). Therefore, defining what a 

nutrient and what a potentially toxic element is and setting clear limit values is not a 

straight forward approach as some PTEs are essential for plant growth and the 

supply, e.g. with biochar, can result in plant growth promotion. Nevertheless, 

establishing PTEs threshold values for biochar when applied to soil is necessary and 

biochar initiatives have included PTE limit values in their guidelines on biochar 

quality (British Biochar Foundation, 2013; EBC, 2012a; International Biochar 

Initiative, 2011). 

PTE concentrations have been determined for a wide range of biochars, originating 

from virgin biomass (Anjum et al., 2014; Freddo et al., 2012; Kloss et al., 2012), as 

well as non-virgin materials (Bernardo et al., 2010; Evangelou et al., 2014; Farrell et 
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al., 2013; Jones and Quilliam, 2014; Lucchini et al., 2014a; Qiu et al., 2015; Singh et 

al., 2010) and in particular from sewage sludge (Agrafioti et al., 2013; Liu et al., 

2014; Luo et al., 2014; Méndez et al., 2012; Van Wesenbeeck et al., 2014). In some 

studies, it was concluded that PTEs in biochars were not of concern for soil and/or 

plant health (Freddo et al., 2012; Lucchini et al., 2014b). However, biochars from 

non-virgin feedstocks frequently exceeded PTE guideline values and generally, Zn 

and Cd were the metals of highest concern (Bernardo et al., 2010; Evangelou et al., 

2014; Qiu et al., 2015; Singh et al., 2010; Van Wesenbeeck et al., 2014). In addition, 

some biochars from Cu-contaminated wastes exceeded Cu threshold values and plant 

growth inhibitions were associated with a high Cu content (Jones and Quilliam, 

2014; Lucchini et al., 2014a). 

The availability of PTEs as determined by extracting biochar and its feedstock with 

weak extractants, such as salt solutions, typically decreased after pyrolysis (Farrell et 

al., 2013; Khanmohammadi et al., 2015; Kistler et al., 1987; Liu et al., 2014; Meng et 

al., 2013). Consequently, it is suggested that due to the immobilisation of PTEs 

during pyrolysis, PTE-rich biochar is safer to use on soil than its feedstock (Agrafioti 

et al., 2013; Méndez et al., 2012). Elements with low boiling points, e.g. As, Cd, Hg, 

Pb and Se, can evaporate during pyrolysis to some degree (Evangelou et al., 2014; 

Kistler et al., 1987; Van Wesenbeeck et al., 2014). This can be beneficial when 

mentioned non-essential and more toxic elements are lost from the char but it is a 

drawback when nutrients are evaporated. 

In conclusion, there are various factors and parameters to consider when PTE 

contaminated feedstock is pyrolysed and there is a need for systematic studies that 

investigate the effect of the pyrolysis process on the PTE content of biochars where 

the feedstocks are from various PTEs contaminated materials. This is an essential 

prerequisite in determining their suitability for land application. 

1.6.2 Chlorinated aromatic compounds: dioxins, furans and PCBs 

Polychlorinated dibenzodioxins (PCDDs; known simply as dioxins), polychlorinated 

dibenzofurans (PCDFs; known simply as furans) and polychlorinated biphenyls 

(PCBs) are all chlorinated hydrocarbons which are regarded as persistent organic 

pollutants and consist of a total of 210 structurally related compounds of dioxins and 
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furans and 209 PCBs (Environment Agency, 2009; Van den Berg et al., 2006). While 

dioxins and furans are mostly by-products of different industrial processes, PCBs 

have been industrially manufactured (Environment Agency, 2009; White and 

Birnbaum, 2009). In the environment, dioxins, furans and PCBs usually co-exist as 

mixture of chlorinated aromatic compounds (Van den Berg et al., 2006; White and 

Birnbaum, 2009). Therefore, the WHO has compiled a list of 7 dioxins, 10 furans 

and 12 PCBs that have dioxin-like character and introduced toxicity equivalent 

factors (TEFs) which relate the toxicities of all compounds to the toxicity of 2,3,7,8-

TCDD (Environment Agency, 2009; Van den Berg et al., 2006; White and 

Birnbaum, 2009). Using the TEFs, toxicity equivalent quantities (TEQ) are 

calculated which is the sum of the concentrations of the individual compounds 

multiplied by their respective TEFs. 

Since chlorinated organic compounds are typically formed in high-temperature 

processes, biochar initiatives have adopted threshold values for the concentration of 

various PCBs (mg kg-1) and dioxins/furans (in TEQ) (EBC, 2012a; International 

Biochar Initiative, 2011). For chlorinated aromatics to be formed, the feedstock 

naturally needs to contain sufficient chlorine and needs to be exposed to elevated 

temperatures (Conesa et al., 2009). In an oxygen rich-atmosphere (combustion) the 

peak of dioxin and furan formation was shown to be at 300-400°C (McKay, 2002; 

Xhrout et al., 2001). Dioxins and furans contain O in their structure and it was 

reported that much higher quantities were formed in an oxygen atmosphere 

(combustion) compared to an oxygen-limited atmosphere (pyrolysis) (Conesa et al., 

2009). Consequently, measured concentrations of dioxins and furans in biochars 

from both, virgin and non-virgin feedstocks, were very low, far below threshold 

values, in the range of background levels or even below current detectable limits 

(Downie et al., 2012; Granatstein et al., 2009; Hale et al., 2012; Wiedner et al., 

2013). Even chlorine-rich feedstocks such as food waste (2.9% chlorine) resulted in 

biochars with dioxin concentrations (92 pg g-1) far below threshold values (250 pg g-

1) (Hale et al., 2012). In addition, state-of-the-art measurement equipment could not 

detect available dioxins in a suite of biochar samples (Hale et al., 2012). 

Furthermore, it was shown that during pyrolysis, feedstock already contaminated 

with chlorinated compounds lost 99.998% of dioxins and furans when pyrolysed at 
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800°C for 30 min (Wijesekara et al., 2007) and >75% of PCBs were destroyed at 

HTT of 450°C (Bridle et al., 1990). 

In conclusion, the limited information available suggests that pyrolysis conditions do 

not favour the formation of chlorinated hydrocarbons. Acknowledging biochar’s 

strong organic compound sorption capacity, overall, it was concluded that the 

concentrations of dioxins are not of any concern for biochar application (Downie et 

al., 2012; Hale et al., 2012; Wilson and Reed, 2012) and therefore, chlorinated 

organic compounds will not be discussed further in this thesis. 

1.6.3 Polycyclic aromatic hydrocarbons (PAHs) 

Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds with ≥2 

aromatic carbon rings that only consist of C and H and are typically formed during 

incomplete combustion of biomass (Baek et al., 1991). Although more than 100 

different PAHs are known, for environmental monitoring purposes, usually only the 

16 PAHs of the US EPA priority pollutant list are analysed (Keith, 1979; US 

Department of Health and Human Services, 1995). Yet, even the 16 US EPA PAHs 

are a very heterogeneous group possessing variable chemical structures (2-6 rings), 

chemical properties (from partly water soluble and volatile to non-volatile and 

hydrophobic) and ecotoxicological, phytotoxic and toxicological effects (The 

Environmental Applications Group LTD, 1990; US Department of Health and 

Human Services, 1995). Due to their heterogeneity, as for dioxin-like compounds, 

TEFs were introduced, comparing the toxicity/carcinogenicity of each PAH to 

benzo(a)pyrene which is the best investigated and one of the most hazardous PAHs 

(Nisbet and LaGoy, 1992). Pyrolysis is predestined to promote the synthesis of PAHs 

and therefore, PAHs are priority pollutants in biochar. Consequently, the EBC and 

IBI have set 16 US EPA PAH threshold values in biochars based on legislation 

values which are in the range of 4-20 mg kg-1 (EBC, 2012a; International Biochar 

Initiative, 2011). 

The yield of the concentration of 16 US EPA PAHs and the TEQ of PAHs during 

pyrolysis has been reported to increase with HTT, at least in the temperature range 

used for biochar production (Figure 1.4) (Aracil et al., 2005; Dai et al., 2014a; 

McGrath et al., 2001, 2003; Sharma and Hajaligol, 2003; Wei and Lee, 1998). 
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However, biochar studies show, that the concentrations of PAHs in biochars did not 

consistently increase with HTT (Bucheli et al., 2015; Dai et al., 2014b; Devi and 

Saroha, 2015; Hale et al., 2012; Keiluweit et al., 2012). Similarly uncertain are the 

relationships of PAH concentrations in biochar with other parameters, such as carrier 

gas flow rate, residence time or feedstock (Bucheli et al., 2015). Several studies 

found PAH concentrations in biochar which were not regarded as a concern for the 

environment as they were below threshold values (IBI lower limit value 6 mg kg-1), 

e.g. 3.3 mg kg-1 in Brown et al. (2006), 0.08-5.66 mg kg-1 in Freddo et al. (2012) and 

0.07-3.27 mg kg-1 in Hale et al. (2012). However, in other studies much higher PAH 

concentrations, exceeding even the upper IBI threshold value (20 mg kg-1), were 

observed (Table 1.2) (Anjum et al., 2014; Hilber et al., 2012; Keiluweit et al., 2012; 

Kloss et al., 2012; Kołtowski and Oleszczuk, 2015; Quilliam et al., 2013). Overall, 

the PAH concentrations in biochars from slow pyrolysis were between 0.07 and 355 

mg kg-1. 

 

 

Figure 1.4: Influence of HTT on the PAH concentration and toxicity equivalent quantity (TEQ) 

of PAHs in pyrolysis vapours of sewage sludge (Dai et al., 2014a).  
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Since PAHs are mostly hydrophobic, they preferentially attach to soil particles rather 

than leach into groundwater which makes biochar a good sorbent material to clean-

up PAH contaminated soil (Quilliam et al., 2013). Since PAHs sorb strongly to 

biochar, as expected, the concentrations of available PAHs in biochars have been 

reported to be in the range of only 0.1% of the total concentration. This meant the 

available PAH concentrations were mostly under the detection limit of the 

measurement equipment or in the range of background soil levels and were not 

regarded as concern for plant growth (Hale et al., 2012; Mayer et al., 2016). Yet, in 

some studies PAHs in biochar and biochar extracts were claimed to be responsible 

for toxic effects observed in plants, soil and water organisms (Anjum et al., 2014; 

Kołtowski and Oleszczuk, 2015; Oleszczuk et al., 2013; Rogovska et al., 2012).  

Overall, little is known about the relationship of pyrolysis conditions and feedstocks 

with PAH concentrations in biochar and the risk associated with PAHs in biochar for 

plant growth. 

 

Table 1.2 Range of PAH concentrations (mg kg-1) measured in different biochars in the 

literature. 

biochars 
PAH 

concentrations 
 

International Biochar Initiative threshold 6-20 
(International Biochar 

Initiative, 2011) 

pine pyrolysed at 450, 525°C 3.2-3.3 (Brown et al., 2006) 

rice, bamboo, redwood, maize pyrolysed at 300, 600°C 0.08-5.66 (Freddo et al., 2012) 

~50 slow pyrolysis biochars 0.07-3.27 (Hale et al., 2012) 

hemp and wood pellets pyrolysed at 500°C 33.7-34.9 (Anjum et al., 2014) 

grapevine wood 600, miscanthus 750, wood 750 9.1-355 (Hilber et al., 2012) 

grass and wood pyrolysed at 300, 400, 500, 600, 700°C 0.206-23.0 (Keiluweit et al., 2012) 

straw, spruce, poplar pyrolysed at 400, 460, 525°C 1.8-33.7 (Kloss et al., 2012) 

miscanthus, willow, wheat straw, HTT unknown 3.5-39.9 
(Kołtowski and 

Oleszczuk, 2015) 

wood 450 and rice husk 300-600°C 9.6-64.6 (Quilliam et al., 2013) 
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1.6.4 Volatile organic compounds (VOCs) 

During pyrolysis, vapours are created from the thermochemical conversion which 

usually separate from the char; however, a proportion of the compounds, which are 

intermediate degradation products from biomass transformation, remain attached 

onto the solids. A vast variety of organic compounds has been found in association 

with biochar but most studies only determined the concentrations of certain chemical 

groups (Cole et al., 2012; Jamieson et al., 2014; Lin et al., 2012; Norwood et al., 

2013; Yu et al., 2012); in others, the analysis was done on individual compounds but 

only in a qualitative way (Spokas et al., 2011; Yang et al., 2013) or if quantitative 

analysis were performed it was done only for few compounds (Lievens et al., 2015).  

Volatile organic compounds (VOCs), is one of the most important groups to be 

found in biochar because of their very high mobility and biological activity (Spokas 

et al., 2011). These are organic compounds with boiling points below 250° and 

consequently also include the PAH naphthalene (Directive 2004/42/CE of the 

European parliament and of the council, 2004). VOCs can have both, growth 

promoting and inhibiting effects; this has been demonstrated in studies of VOCs 

which (I) occur naturally after forest fires (Brown and Staden, 1997; Keeley and 

Pizzorno, 1986; Nelson et al., 2012); and (II) originate from biochar (Bargmann et 

al., 2013; Elad et al., 2011; Smith et al., 2013). Interestingly, the initial biochar 

guidelines of the EBC from 2012 did not contain threshold values for VOCs but, in 

the updated version from June 2015, VOCs were incorporated, showing the 

increasing interest and importance of these compounds in biochar (EBC, 2012a, 

2012b). 

Very little is known about the magnitude of biochar contamination with VOCs and 

quantitative assessments are lacking. In addition, the effects of VOCs in biochar and 

subsequent risks for biochar application are completely unknown. Overall, there is a 

need for investigating how relevant VOCs are for biochar and its actions in soil. 
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1.7 Aims and objectives 

1.7.1 Thesis objectives 

As outlined in this introduction, biochar application to soils has mostly resulted in 

positive effects on the soil itself and on crop yields. However, the magnitude of 

observed effects was often highly variable and, in some cases, inhibition of plant 

growth was also observed; the latter was usually linked to contaminants which were 

associated with the biochars. To gain commercial, public and governmental 

acceptance, it needs to be ensured that biochar is safe to be used in food producing 

systems. Therefore, biochar needs to be thoroughly analysed for potential 

contaminants and concentrations of these contaminants, both inorganic and organic, 

must meet guideline and legislation threshold values. Biochar producers need to 

know which combination of pyrolysis conditions and feedstocks are most suitable for 

biochar production to be able to offer a safe product. As large-scale biochar 

application is a recent idea and due to biochar’s unique properties that are very 

different to other environmental samples, besides simply analysing contaminant 

concentrations, there is a need to assess the risks of analysed concentrations for plant 

growth, the environment and human health.  

Consequently, the aims of this thesis termed “Contaminant issues in production and 

application of biochar” were: 

1. Contaminant issues in biochar production: 

- Identify and quantitatively assess the most relevant groups of contaminants in 

a variety of biochars, produced from both, virgin and non-virgin feedstocks, 

and from different production conditions 

- Compare contaminant concentrations with currently available threshold 

values 

- Link contaminant concentrations to production conditions and feedstocks 

- Where appropriate, assess the suitability of biochar post-treatment measures 

for reducing contamination  

2. Contaminant issues in biochar application: 

- Develop easy-to-perform phytotoxicity screening tests for biochar 

- Assess the potential risk of biochars to plant growth 
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- Link phytotoxic effects to contaminant concentrations 

- Evaluate which groups of contaminants in biochar are of concern to plant 

growth and to humans and under which circumstances  

The overall objective of this thesis was to identify production conditions and 

feedstocks suitable for the production of biochar safe to be used as soil amendment 

on the basis of contaminant concentrations and risk of biochars to cause adverse 

effects. 

1.7.2 Chapter structure 

These aims have been addressed over the seven experimental chapters of this thesis 

which have been prepared in journal article format and in one general discussion 

chapter. The journal article chapters were sub-divided according to three groups of 

contaminants: Chapter 3 and Chapter 4 deal with PTEs and in particular with 

biochars from marginal biomass; Chapter 5 and Chapter 6 are about the relationship 

between PAH concentrations in biochar and various production parameters; in 

Chapter 7 and Chapter 8 the potential effects of high-VOC biochars on plants and 

human health and post-treatment measures were investigated; Chapter 9 compares 

the risk posed by PAHs and VOCs to plant growth. 



  Chapter 2: Materials and methods 

29 

Chapter 2   Materials and methods 

2.1 Overview 

Altogether, 90 biochars, produced with the Stage I, Stage II and Stage III pyrolysis 

units of the UKBRC under highly controlled conditions, monitoring pressure and 

temperature, were analysed during this PhD project. When inconsistencies during a 

pyrolysis run were detected, such as high pressure peaks, the biochars were either 

discarded and the pyrolysis run was repeated, ensuring comparable conditions 

between runs or the resulting biochars were treated as contaminated (high-VOC 

biochars, section 2.2.6). 

Instead of analysing all 90 (including three post-treated) biochars for all 

contaminants, groups of biochars were selectively analysed for PTEs, PAHs or 

VOCs: 

- Nineteen biochars from PTE-rich (marginal) feedstocks were analysed for 

total and ‘available’ PTEs (and nutrients) by digesting using the “modified 

dry ashing” procedure and by extraction using NH4NO3, followed by 

inductively coupled plasma-optical emission spectroscopy (ICP-OES) (see 

section 2.4) 

- 84 (including three post-treated) biochars were analysed for PAHs using 36 h 

Soxhlet extraction followed by gas chromatography-mass spectrometry (GC-

MS) (see section 2.5) 

o 46 of these were selected to systematically investigate the effect of 

different production conditions and feedstocks on sum of 16 US EPA 

PAHs in biochar 

o All 84 (including post-treated) were analysed for the concentrations of 

the individual 16 US EPA PAHs to pinpoint specific production 

conditions resulting in high-risk biochars based on PAH composition 

- Three biochars were analysed for VOCs using different extraction and 

analysis techniques (see section 9.2.2) 

In Table 6.1, 84 (including three post-treated) biochars are listed with details on 

production conditions and feedstocks (all 84 biochars analysed for PAHs including 
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thirteen marginal biomass-derived biochars) and the remaining six biochars can be 

found in Table 3.1 (Table with all nineteen marginal biomass-derived biochars).  
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2.2 Pyrolysis units and biochars 

Three pyrolysis units, called ‘Stage I, II and III’, located at the UK Biochar Research 

Centre (UKBRC) were used to produce 87 biochars investigated in this PhD project. 

The Stage I and III pyrolysis units were not run as part of this PhD project but 

biochars produced in other projects using these units were analysed, while, the Stage 

II unit was central to biochar production during this PhD project. 

2.2.1  ‘Stage I’ pyrolysis unit 

The ‘Stage I’ pyrolysis unit is a small-scale, batch pyrolysis reactor with a vertical 

quartz tube (inner diameter 50 mm) which has a sample bed depth of around 200 mm 

and is heated up by a 12 kW infra-red gold image furnace (P610C; ULVAC RIKO, 

Yokohama, Japan) (Figure 2.1). Depending on feedstock density, different amounts 

of materials were pyrolysed at varying residence times (RT) (5 to 40 min). The 

furnace can heat up to 1300°C with a wide range of heating rates, for this project 

HTTs of 350-700°C and a heating rate of 5°C min-1 were adopted. A thermocouple 

within the sample bed was used to control the pyrolysis temperature during pyrolysis. 

Nitrogen carrier gas (flow rates 0 to 0.67 L min-1) was injected at the bottom of the 

quartz tube which ensured an oxygen-limited atmosphere in the reactor. A 

condensation system (Figure 2.1) was assembled to collect four fractions of 

condensable gases in a series of traps at different temperatures. The first zone in the 

condensation system was heated up by heating tapes to ensure that the glass tubes do 

not block due to excessive condensation of pyrolysis vapours, while the last two 

traps were cooled with liquid nitrogen. Non-condensable gases were collected in a 

gas bag after the second cold trap. For this PhD project, however, only the biochars 

were analysed, not the pyrolysis liquid and gases. 
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Figure 2.1: Small-scale, batch pyrolysis reactor, ‘Stage I’, UK Biochar Research Centre 

(Crombie et al., 2013). 

 

2.2.2  ‘Stage II’ pyrolysis unit 

The ‘Stage II’ unit is a continuous flow pyrolysis unit which is equipped with an 

electrically heated split-tube furnace. As depicted in Figure 2.2, a feed hopper 

delivered the feedstock to a rotary valve that prevented syngas to flow back in the 

feed hopper. When the material passed the rotary valve, it was picked up by the 

furnace-screw which transported it through the furnace (inner diameter 100 mm). 

The typical feedstock residence time used corresponds to around 21.5 min in the 

heated zone. In the discharge chamber adjacent to the furnace, the solid char was 

separated from the vapours which were drawn up into a propane-fuelled afterburner. 

A combustion air fan supplied additional air into the afterburner to ensure complete 

combustion of the syngas. The discharge chamber was heated by two heating tapes, 

set to 500°C (HT I) and 400°C (HT III). After an initial purge with nitrogen, two 

injection points delivered nitrogen into the unit during operation: (I) a carrier gas 

inlet near the feed hopper that was usually set to 1 L min-1 and (II) a heated stream of 

nitrogen (tube goes all the way through the furnace) injected at 4 L min-1 at the end 

point of the furnace. (Figure 2.2). The second carrier gas injection, so-called ‘hot 

purge’, delivered hot nitrogen to ensure an oxygen-limited atmosphere in the 
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discharge chamber area and to further heat the discharge chamber to avoid 

condensation of syngas on surfaces. The pipes connecting the discharge chamber 

with the afterburner were heated by an additional heating tape (HT II, 400°C) and 

were insulated to minimise vapour condensation. After the separation of the 

pyrolysis vapours and solids, the biochar was collected in a glass vessel and was 

cooled down under a nitrogen atmosphere.  



 

 

3
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Figure 2.2: Continuous screw-pyrolysis unit, ‘Stage II’, UK Biochar Research Centre (Buss et al., 2016). 
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2.2.3 ‘Stage III’ pyrolysis unit 

The ‘Stage III’ pyrolysis unit is a pilot-scale rotary kiln with a heat-tube length of 2.8 

m, an inner diameter of 24.4 mm, an angle of 0.5° and a rotational speed of 1-7 rpm 

(Figure 2.3). The rotary kiln can process between 31-50 kg h-1 for high-density 

feedstocks (wood pellets, density 610 kg m-3) and 4-19 kg h-1 for low-density 

materials (miscanthus straw, density 130 kg m-3). A biomass hopper with a feed 

screw delivered the feedstock to the rotary kiln where it was heated up to a maximum 

temperature of 750°C. The discharge chamber separated pyrolysis vapours from 

solids which dropped on a cooling crew that transported the char to a nitrogen-

purged discharge drum. From the discharge chamber, the vapours were channelled 

into an afterburner where they were combusted with propane and the exhaust gases 

were released. Temperature and pressure were monitored at different entry points 

within the heat-tube. 

 

 

Figure 2.3: Pilot-scale rotary kiln pyrolysis unit, ‘Stage III’, UK Biochar Research Centre (Buss 

and Mašek, 2014). 
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2.2.4 Marginal biomass-derived biochars 

2.2.4.1 Marginal biomass feedstocks 

Ten marginal biomass feedstocks were sourced from five different countries to 

provide a variety of materials and plant species for biochar production to investigate 

PTEs in biochar. The feedstocks used were as follows:  

Seven biomass samples grown on contaminated land: 1) Wheat straw (Triticum 

aestivum), ‘WSI’ from the village Madlauda (Panipat, Haryana, India) in the vicinity 

of Panipat thermal power station (coal fired plant; village Assan, Jind road, Panipat, 

India) and 2) sugarcane bagasse (Saccharum spp., species unknown), ‘SBI’ from the 

vicinity of the river Yamuna close to the village Sarurpur (Uttar Pradesh, India) were 

sourced from India. Both locations have problems with several PTE (and organic) 

pollution: Panipat thermal power station (Hajarnavis, 2000) and river Yamuna 

(Mehra et al., 2000). 3) Winter rye straw (Secale cereal) (WRB) and 4) willow logs 

with bark (salix spp., species unknown), ‘WLB’ originated from the Campine region 

in Belgium from heavy metal (Cd, Zn, Pb) contaminated soil (Van Slycken et al., 

2013). 5) Whole plant without roots of Salix purpurea ‘SLP’, 6) Paulonia tomentosa, 

‘PAT’ and 7) Arundo donax, ‘ADX’ were sourced from Italian industrial waste sites. 

Salix and Paulonia were grown on a site of an old Zn smelter that covers 

approximately 50 ha near the city of Crotone, Italy (Marchiol et al., 2013). Arundo 

donax was harvested from an industrial area located in Torviscosa from soil 

contaminated by various metals (Fellet et al., 2007). PTE concentrations at the 

various contaminated sites the biomass were sourced from are shown in Table 2.1. 

One feedstock grew in contaminated waters: 8) Water hyacinth (whole plant) 

(Eichhornia crassipes), ‘WHI’ originated from a municipal waste water drain (Rajiv 

Nagar, Bhalswa, New Delhi, India) flowing close to Bhalswa Landfill Site, New 

Delhi which is known for its high levels of contamination (Jhamnani and Singh, 

2009; Talyan et al., 2008) 

Two non-virgin feedstocks were used: 9) Solid residues from anaerobic digestion of 

food waste, sourced from the UK, denoted ‘FWD’ and containing a high amount of 

plastics; and 10) heterogeneous, glued, laminated, painted, coated, or otherwise 

treated demolition wood (without halogenated compounds), sourced from Germany 
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and denoted ‘DW’, which included pieces of metal, glass and plastics. The FWD was 

autoclaved and dried for several days at 80°C while the DW was shredded to <5 mm 

particle size prior to pyrolysis. A summary of all marginal biomass feedstocks is 

given in Table 2.2.



 

 

3
8
 

Table 2.1: PTE concentrations in soils from the area where the marginal biomass feedstocks used for biochar production were grown. No data for the region 

of wheat straw (India) was available; water hyacinth (India) was grown in a waste water drain. 

plant location reference  As Cd Cu Hg Ni Pb Zn 

    lower soil limit EU #  mg kg -1   1.00 50   30 30 150 

  soils limit Germany * mg kg -1 200   5    

sugarcane Sarurpur, India (Mehra et al., 2000) mg kg -1   0.46 18   13 16 47 

willow, winter rye campine region, Belgium (Van Slycken et al., 2013) mg kg -1   6.50     377 

Salix purpurea,  

Paulonia tomentosa 
Crotone, Italy  (Marchiol et al., 2013) mg kg -1 242 498 1535 32  5802 44048 

Arundo donax Torviscosa, Italy (Fellet et al., 2007) mg kg -1 20 0.83 73   22 97 
# EU Council Directive 86/278/EEC, 1986, ANNEX 1 A, on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture 

* German Federal Soil Protection and Contaminated Sites Ordinance, 1999, Annex 2, 2.2, Guidance values for contaminant transfer soil-crop on agricultural fields in regards to plant quality 
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2.2.4.2 Marginal-biomass-derived biochar production 

If not stated otherwise in section 2.2.4.1, feedstocks were dried and shredded with a 

Bosch AXT Rapid 2200 shredder prior to pyrolysis to give a particle size of around 

<30 mm. When very fine and dusty particles were created during the processing the 

fraction <2 mm was sieved out and excluded from pyrolysis as the feed and furnace 

screws were not able to pick up these very fine particles. A sub-sample of the 

feedstock was dried in an oven at 105°C for 24 h and the moisture content was 

determined for every run. 

The feedstocks were pyrolysed with the Stage II pyrolysis unit with a feeding rate of 

around 500 g h-1 if possible; however, due to the low bulk density of some feedstocks 

partly lower feeding rates needed to be applied (Table 3.1). Typically between 300-

700 g of material was used for the production of one biochar at each HTT. A 

residence time that corresponds to around 21.5 min in the heated zone was applied 

for all biochars. Two feedstocks (DW, ADX) were pyrolysed at five temperatures 

(350, 450, 550, 650, 750°C), one (WLB) at two temperatures (550, 700°C) and the 

remaining seven feedstocks were pyrolysed at 550°C, the typical HTT for biochar 

production.  

The biochar yield of SBI 550 could not be determined because the furnace screw did 

not pick up the straw properly and the exact amount of biomass used could not be 

measured. Consequently, the char yield is not reported in Table 3.1 and mass 

balances of elements could not be determined.   
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Table 2.2: Ten marginal biomass feedstocks used for biochar production. 

feedstock abbreviation 

seven materials from contaminated land  

 wheat straw (Triticum aestivum) from Belgium WSI 

 sugarcane bagasse (Saccharum spp., species unknown) from India SBI 

 winter rye straw (Secale cereal) from India WRB 

 willow logs with bark (salix spp., species unknown) from Belgium WLB 

 whole plant without roots of Salix purpurea from Italy SLP 

 whole plant without roots of Paulonia tomentosa from Italy PAT 

 whole plant without roots of Arundo donax from Italy ADX 

one material from contaminated water  

 

water hyacinth (whole plant) (Eichhornia crassipes), originated from a 

waste water drain was sourced from close to Bhalswa Landfill Site (New 

Delhi, India) 

WHI 

two non-virgin materials  

 solid residues from anaerobic digestion of food waste from Scotland FWD 

 

demolition wood (heterogeneous, glued, laminated, painted, coated, or 

otherwise treated wood) from Germany 
DW 

 

2.2.5 Various biochars analysed for PAHs 

2.2.5.1 Variation of HTT 

Different feedstocks were pyrolysed using two pyrolysis units in the typical 

temperature range used for biochar production (350-750°C). The Stage II pyrolysis 

unit was used to pyrolyse willow chips (WC) (Koolfuel 40, supplied by Strawsons 

(Retford, UK)) at three temperatures (350, 550, 750°C) and miscanthus chips (MC) 

(Miscanthus x giganteus) at four temperatures (350, 450, 550, 750°C). Furthermore, 

sewage sludge (SS) was pyrolysed at five temperatures (350, 450, 550, 650, 750°C) 

with the Stage III pyrolysis unit.  

2.2.5.2 Variation of HTT, residence time, feedstock, carrier gas flow rate 

The Stage I pyrolysis unit was used to pyrolyse around 100 g of straw pellets (WSP 

II) from 50/50 wheat/oilseed rape straw (Crombie and Mašek, 2015) and softwood 

pellets (SWP II) from 5/95 pine/spruce. Using a constant heating rate of 5°C min-1, 

two HTTs (350, 650°C), two residence times (10, 40 min) and three carrier gas flow 

rates (0, 0.33, 0.67 L min-1) were applied, reflecting a diverse but, in industrial terms, 

significant range of production conditions (Crombie and Mašek, 2015). Twenty-four 

biochars were produced. 
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2.2.5.3 Variation of ash and moisture content 

For testing the effect of moisture content on PAH concentration, miscanthus chips 

(MC) were pre-treated and pyrolysed at 450, 550 and 750°C with the Stage II 

pyrolysis unit. To obtain dry miscanthus chips the feedstock was dried in an oven at 

105°C until no change in weight could be determined. To obtain high-moisture 

feedstock, tap water was sprayed onto the material. On the day the samples were 

pyrolysed, the moisture contents were (determined again by drying as above): 

untreated sample 13.4 wt% (same as described in section 2.2.5.1), dried sample 0.28 

wt% and wetted sample 23.5 wt%.  

The effect of ash content was tested by altering the ash content in miscanthus chips. 

To obtain low-ash biomass, the chips were washed twice in hot tap water and once 

with cold DI water over night. To prepare high-ash biomass, K+ was added in form 

of an aqueous solution of potassium acetate which was evenly sprayed onto the dried 

miscanthus chips which restored the original moisture content. The ash contents were 

(determined using method described in 2.3.1): 4.2 wt% (dry weight basis) for the 

untreated miscanthus (same as described in section 2.2.5.1), 3.2 wt% for the washed 

sample and 7.4 wt% for the K-spiked sample. The untreated and two treated samples 

were pyrolysed at 350, 550 and 750°C with the Stage II pyrolysis unit. 

2.2.5.4 Sewage sludge and anaerobically digested sewage sludge 

To investigate if anaerobic digestion of the feedstock has an effect on PAH 

concentration of the resulting biochars, sewage sludge (SS I) and anaerobically 

digested sewage sludge (AD) from Wessex water (Avonmouth, UK) were pyrolysed 

at HTTs of 550 and 700°C with the Stage II pyrolysis unit, respectively. No carrier 

gas flow was applied during biochar production, only for initial purging of the 

pyrolysis unit. In addition, during the production of SS at 700°C the heating tape I of 

the pyrolysis’ units discharge chamber was faulty and could not be used. 

2.2.5.5 Modifications on Stage II pyrolysis unit 

It was hypothesised that the set-up of the discharge chamber of the pyrolysis unit can 

affect the PAH concentration of resulting biochars significantly. Consequently, two 

biochars were produced from softwood pellets (SWP I) at 550°C with the Stage II 

pyrolysis unit with modifications to the unit’s discharge chamber. Following 
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modifications were performed: under normal circumstances the discharge chamber, 

where pyrolysis vapours and solids are separated, was heated up with two heating 

tapes and the hot air from the nitrogen that streams through the furnace at a rate of 4 

L min-1 (Figure 2.2). Here, however, the purge gas flow rate was turned down to 2 L 

min-1, producing ‘SWP I - 550 - purge 2 l min-1‘. ‘SWP I - 550 - no HT III’ was 

produced under identical conditions, however, instead of turning down the nitrogen 

gas flow, the heating tape III was switched off.  

2.2.5.6 Stage comparison 

Wheat straw pellets (WSP I) and softwood pellets (SWP I) were pyrolysed at HTTs 

of 550 and 700°C with all three pyrolysis units using production conditions as 

comparable as possible. In the two continuous units (Stage II and III), mean 

residence times (RT) of 20 min were applied. In Stage I, the RT at HTT was varied 

for WSP I and SWP I and the two HTTs to reflect the RT in the heated areas of the 

furnace of the continuous units (10 min RT for SWP I 550 and 700, 5 min RT for 

WSP I 550 and 6 min for WSP I 700). Twelve biochars were produced this way. The 

biochar ‘SWP I 550 - Stage III’ is the ‘NC biochar’ described in section 2.2.6. 

2.2.6 High- and low-VOC biochars 

Three biochar samples were produced from the same feedstock (softwood pellets, 

(SWP I)) pyrolysed at the same nominal highest treatment temperature (550°C), with 

the same mean residence time (20 min) and in the same pyrolysis unit (rotary kiln; 

Stage III). However, due to production difficulties during the set-up of the unit two 

biochar batches were contaminated, in different ways, resulting in biochars with 

high-VOC content. The high-VOC content could be readily detected due to the 

strong odour of the biochars. To investigate the properties of these contaminated 

biochars, the two high-VOC biochars, herein described as liquid contaminated (LC) 

biochar and gas contaminated (GC) biochar were assessed against a low-VOC, non-

contaminated (NC) biochar. 

LC biochar was contaminated by liquids which condensed on the wall of the 

discharge chamber, where biochar is separated from pyrolysis vapours, as the 

temperature of the wall was lower than usual due to improper insulation (Figure 2.3). 

During a separate pyrolysis run, under the same experimental conditions, fouling had 
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blocked a pipe that normally leads gases from the discharge chamber to the 

afterburner, again due to a non-insulated pipe. As a result, pyrolysis gases and 

vapours filled the discharge chamber and cooling screw (Figure 2.3) and were 

therefore absorbed by the biochar, resulting in contamination of the GC biochar. NC 

biochar was obtained following a successful pyrolysis run with no observed 

blockages or condensation of volatiles after proper insulation of the pyrolysis unit, 

resulting in odourless, comparably uncontaminated biochar.  

For this pyrolysis facility, the degree of condensation and deposition on these high-

VOC biochars can be considered as high and unusual; however, it is important to 

investigate these materials to become aware of potential effects of condensed 

products, even if at lower concentrations, as highly diverse biochars from numerous 

and varied pyrolysis units are used for plant studies. 

2.2.6.1 Thermally post-treated high- and low-VOC biochars 

All three unground biochars (NC, GC, LC biochar) were spread in aluminium trays 

in one layer and exposed to air at 200°C for 20 h in a laboratory oven.  
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2.3 Biochar properties 

2.3.1 Thermogravimetric analysis (TGA) 

Thermogravimetric analysis (TGA) was performed on ground biochar samples (~10-

15 mg) using a method called proximate analysis with a Mettler-Toledo TGA/DSC1 

instrument.  

The method used was as follows: from room temperature the temperature was 

increased at a heating rate of 25°C min-1 to 110°C and held for 10 min to drive off 

moisture. Next, the temperature was increased to 900°C at 25°C min-1 and also held 

for 10 min for removal of volatile matter (VM). Both steps were performed at a 

nitrogen gas flow rate of 50 mL min-1. For the final step the temperature was hold at 

900°C for 20 min but oxygen was introduced to oxidise the remaining carbon content 

and determine the so-called fixed carbon content and ash content.  

2.3.2 Electrical conductivity (EC) and pH 

Electrical conductivity (EC) and pH were measured according to Rajkovich et al. 

(2012) using 1 g of ground biochar (using mortar and pestle) in 20 mL of DI water, 

which was shaken at 150 rpm for 1.5 h on a bench-top shaker (EC: Hach HQ40d 

portable meter, conductivity probe meter CDC 401; pH Mettler Toledo FE 30). 

These analyses were performed in duplicates. 
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2.4 Analysis of total and available elemental content 

2.4.1 Total elemental content: “modified dry ashing” 

The biochars were digested according to the “modified dry ashing” method described 

as the best total elemental analysis method for biochar by Enders and Lehmann 

(2012). The method was adjusted in two ways (more biochar digested, less DI water 

added in final step) to yield a higher elemental concentration in order to improve the 

final ICP-OES analysis. Briefly: 0.5 g of each biochar was weighed into crucibles, 

heated to 500°C and held at this temperature for 8 h. After cooling, the samples were 

placed in a steam bath and 5 mL of concentrated (70%) HNO3 (analytical grade, 

Fisher Scientific) was added and evaporated to dryness. Again, after cooling, 1 mL 

HNO3 and 4 mL H2O2 (30%, analytical grade, Fisher Scientific) were added and 

evaporated to dryness. Next, 2 mL HNO3 was added to dissolve the solids. The 

resulting solution was filtered through Whatman No. 41 filter paper and the volume 

increased to 50 mL with DI water. All biochars, the feedstocks and reagent blanks 

were prepared using the same method prior to elemental analysis. Using a high-

temperature pretreatment means that some of the elements that evaporate easily, such 

as As and Hg, will be lost during the process (Bridle et al., 1990). Consequently, care 

needs to be taken when this method is used to prepare samples which have not been 

previously exposed to such high temperatures (mainly feedstocks) and the focus in 

the analysis is on elements with low boiling points. 

2.4.2 Available elemental content: NH4NO3-extraction 

In this project, the BS ISO 19730:2008 (2008) method, based on 1 mol L-1 NH4NO3-

extraction, was used for determining the available fraction of nutrients and PTEs. 

This method was selected as it has been used to establish German soil legislation 

threshold values for available PTEs to protect crop growth (German Federal Soil 

Protection and Contaminated Sites Ordinance, 1999) and has been used for 

extraction of cationic nutrients in soil (Schöning and Brümmer, 2008; Stuanes et al., 

1984) and PTEs and nutrients in biochars (Alling et al., 2014; Karer et al., 2015; 

Kim, 2015; Kloss et al., 2014b; Park et al., 2011). 

The method was established for soil samples and needed to be slightly adjusted to 

reflect the different properties of biochar. According to BS ISO 19730:2008 (2008), 
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the recommended soil-to-NH4NO3-solution ratio is 1:2.5 (m/v); however, due to its 

low bulk density and high water sorption capacity, the ground biochar did not mix 

well with the small amount of water and the mixture was too viscous to ensure 

proper extraction. Different solid-to-solution ratios were tested and thorough mixing 

of the sample was ensured by using a ratio of 1:10 (m/v). In short, representative 

samples were taken from each biochar container by taking sub-samples, grinding 

those with mortar and pestle and taking triplicate aliquots. Next, the samples were 

weighed into 50 mL centrifuge tubes and suspended in 1 mol L-1 NH4NO3 

(laboratory grade, Fisher Scientific) using a bench-top shaker (150 rpm for 2 h). 

Afterwards, the samples were centrifuged for 30 min at 3500 rpm and passed through 

Whatman No. 1 filter papers and then through 0.45 µm membrane filters (Millipore, 

Watford, UK). Reagent blanks were prepared using the same procedure.  

2.4.3 Elemental analysis: ICP-OES 

The digests and the NH4NO3-extracts were both analysed by ICP-OES (Perkin Elmer 

Optima 5300DV) for 20 (19) elements. The following elements were analysed: Al, 

As, B, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P, Pb, Se and Zn (Na 

only for digests, not NH4NO3-extracts). Most elements were analysed in the axial 

mode of the instrument, but elements present in high concentrations were analysed in 

the radial mode. For the digests, Na, Ca, K, Al, Mg, Fe and for the NH4NO3-extracts 

only K was analysed in the radial mode of the instrument. For calibration purposes, 

the ICP multi-element standard solution IV (Certipur®, Merck) (standard 1) covered 

most of the elements analysed; the remaining elements (As, Hg, Mo, P, Se) were 

combined from single ICP standards to form standard 2. Depending on the range in 

which the element concentrations fell, calibration curves of three standards 

(calibration blank, 0.01, 0.1 and 1 ppm), four standards (including 10 ppm) or five 

standards (including 100 ppm) were used. The standards 1 and 2 as well as the ICP 

multi-element standard solution VI (Certipur®, Merck) were used as internal quality 

control standards for every batch analysed. Reagent blanks were analysed with each 

batch of digested and extracted biochars.  

The calculation of elemental contents from raw intensity was done the following way 

for the digests and the NH4NO3-extracts: 
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- Each sample-aliquot was analysed in triplicates by the ICP-OES which 

automatically calculated the averages 

- With the calibration curves, the relative intensities were converted into 

concentrations for each sample (mg L-1) 

- The reagent blank was subtracted from the value of the analysed sample 

- The concentration was converted into mg kg-1 using the exact amount weight 

in the crucible and the volume of the solution 

- Each biochar sample was digested/extracted in triplicates and the averages 

and standard deviations were calculated, however, negative concentrations 

were regarded as zero for the averages 

- When the average of the triplicate analysis was below the detection limit, ‘< 

LOD’ was shown 

The limit of detection (LOD) was measured/calculated the following way:  

- 10 DI water blanks were analysed with the ICP-OES with the methods for the 

digests and the methods for the extracts, respectively 

- The standard deviation of the raw intensities of the 10 DI water blanks was 

calculated  

- Three times the standard deviation was divided by the slope of the respective 

calibration 

- This was done for each element 

- The LOD calculated for the solution in mg L-1 was then based on:  

o Digests: 0.5 g of material and a volume of 50 mL of solution 

o Available extracts: 1.5 g of material and 15 mL of solution 

The LODs for the various elements are stated in Table 2.3 for the methods for digests 

and available extractions.  
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Table 2.3: Limit of detection (LOD) of the ICP-OES analysis for twenty elements using two 

methods. Digests (total elements) and NH4NO3-extracts (available elements) of biochars were 

analysed. n/a, not available. 

element unit digests extracts 

Al mg kg-1 0.712 0.105 

As  mg kg-1 0.721 0.102 

B  mg kg-1 0.356 0.016 

Ca  mg kg-1 3.085 0.072 

Cd  mg kg-1 0.035 0.161 

Co  mg kg-1 0.077 0.008 

Cr mg kg-1 0.489 0.029 

Cu  mg kg-1 0.061 0.019 

Fe  mg kg-1 0.492 0.009 

Hg  mg kg-1 0.232 0.018 

K  mg kg-1 7.080 0.830 

Mg mg kg-1 2.011 0.023 

Mn mg kg-1 0.037 0.002 

Mo  mg kg-1 0.211 0.061 

Na mg kg-1 5.340 n/a 

Ni  mg kg-1 0.095 0.011 

P  mg kg-1 0.644 0.103 

Pb  mg kg-1 0.739 0.037 

Se  mg kg-1 1.401 0.230 

Zn mg kg-1 0.473 0.139 

 

2.4.4 Calculations of total elemental content 

2.4.4.1 Relative change of elemental content in % (RECC) 

To be able to assess if elements were lost (or gained) during the pyrolysis process, 

the percentage change of the total elemental content from feedstock to biochar 

(relative elemental content change (RECC)) in % was determined the following way: 

𝑅𝐸𝐶𝐶 (%) = (
𝐶𝐵 ∗ 𝑌 −  𝐶𝐹

𝐶𝐹
) ∗ 100  

𝐶𝐵 = 𝑡𝑜𝑡𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑏𝑖𝑜𝑐ℎ𝑎𝑟 (𝑚𝑔 𝑘𝑔−1)  

𝐶𝐹 = 𝑡𝑜𝑡𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 (𝑚𝑔 𝑘𝑔−1)  

𝑌 = 𝑏𝑖𝑜𝑐ℎ𝑎𝑟 𝑦𝑖𝑒𝑙𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑝𝑦𝑟𝑜𝑙𝑦𝑠𝑖𝑠 
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The individual changes of the elemental contents were further processed and the 

average changes after pyrolysis for all biochars and only for the biochars produced at 

≥700°C were determined. The geometric mean and geometric standard deviation 

were calculated to reflect the percentage change appropriately. This was done by 

converting the RECC into ratios (R): 

𝑅𝑅𝐸𝐶𝐶 = (
𝐶𝐵 ∗ 𝑌

𝐶𝐹
) =  

(100 + 𝑅𝐸𝐶𝐶 (%))

100
 

Next, the natural logarithm was applied, the averages and standard deviations of the 

transformed values were calculated and the values were converted back: 

ū𝑅 =  𝑒
(ln 𝑅1+ ln 𝑅+ln 𝑅3…+ln 𝑅𝑛)

𝑛  

ū𝑅 = 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 (%) 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑜𝑐ℎ𝑎𝑟𝑠 

As described in Bland and Altman (1996), the standard deviation cannot simply be 

converted back from logarithmic to normal scale because the value would be 

dimensionless. Thus, the average plus and minus standard deviation in the ln-scale 

was calculated and then was converted back. The result are unequal standard 

deviations around the average. In addition, the ln-transformed data were used for 

one-sample, 2-tailed t-tests to investigate if a significant change (p <0.05) of the 

elemental content occurred assuming the null hypothesis 0% change. WSI 550 was 

identified as outlier and was not taken into account for the calculation of the averages 

as it showed significant mass gains for elements which showed constant mass or 

mass reductions from feedstock to biochar in the other samples (Zn +620%, Ca 

+50%, Cu +134%, Mg +43%, Mn +75%, P +88%). A likely explanation for this 

phenomenon is a cross-contamination or a non-representative sampling of the 

feedstock used for digestion. 

Using the average and standard deviation of the elemental content of feedstocks and 

biochars analysed in triplicates, the standard deviation for the relative elemental 

content change (RECC) was calculated through error propagation (standard deviation 

(s)) according to the following, using partial derivatives: 
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𝑠𝑅𝐸𝐶𝐶 =  √(
𝜕𝑓

𝜕𝐶𝐵
)

 2

∗ 𝑠𝐶𝐵

2 +  (
𝜕𝑓

𝜕𝐶𝐹
)

2

∗ 𝑠𝐶𝐹

2  

𝜕𝑓

𝜕𝐶𝐵
=  

𝑌

𝐶𝐹
 

𝜕𝑓

𝜕𝐶𝐹
= 𝐶𝐵 ∗ 𝑌 ∗  𝐶𝐹

−2 

𝑠𝑅𝐸𝐶𝐶 = 𝑝𝑟𝑜𝑏𝑎𝑔𝑎𝑡𝑒𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑅𝐸𝐶𝐶 (𝑚𝑔 𝑘𝑔−1) 

𝐶𝐵 = 𝑡𝑜𝑡𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑏𝑖𝑜𝑐ℎ𝑎𝑟 (𝑚𝑔 𝑘𝑔−1)  

𝐶𝐹 = 𝑡𝑜𝑡𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 (𝑚𝑔 𝑘𝑔−1)  

𝑌 = 𝑏𝑖𝑜𝑐ℎ𝑎𝑟 𝑦𝑖𝑒𝑙𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑝𝑦𝑟𝑜𝑙𝑦𝑠𝑖𝑠 

Incorporating both equations in the equation above:  

𝑠𝑅𝐸𝐶𝐶 =  √(
𝑌

𝐶𝐹
)

 2

∗ 𝑠𝐶𝐵

2 + (𝐶𝐵 ∗ 𝑌 ∗ 𝐶𝐹
−2)2 ∗ 𝑠𝐶𝐹

2  

The biochar production was only performed once (no replicates) and therefore, the 

biochar yield was used as a fixed parameter. Values smaller the LOD were not used 

for the error propagation as no standard deviation existed. 

2.4.4.2 Total change of elemental content in mg kg-1 (ECC) 

The deviation of the actual concentration (in mg kg-1) from the expected 

concentration (in mg kg-1) assuming 100% elemental retention was calculated. The 

elemental content change in mg kg-1 (ECC) shows how much of the elemental 

concentration was lost or gained during pyrolysis in mg kg-1: 

ECC (𝑚𝑔 𝑘𝑔−1) = 𝐶𝐵 −  (
𝐶𝐹

𝑌
) 

The LOD was used as described for the RECC (section 2.4.4.1) and the standard 

deviation (s) was calculated as followed, using partial derivatives: 

𝑠𝐸𝐶𝐶 =  √(
𝜕𝑓

𝜕𝐶𝐵
)

 2

∗ 𝑠𝐶𝐵

2 +  (
𝜕𝑓

𝜕𝐶𝐹
)

2

∗ 𝑠𝐶𝐹

2  
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𝜕𝑓

𝜕𝐶𝐵
=  𝑌 

𝜕𝑓

𝜕𝐶𝐹
= −1 

𝑠𝐸𝐶𝐶 = 𝑝𝑟𝑜𝑏𝑎𝑔𝑎𝑡𝑒𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐸𝐶𝐶 (𝑚𝑔 𝑘𝑔−1)  

𝐶𝐵 = 𝑡𝑜𝑡𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑏𝑖𝑜𝑐ℎ𝑎𝑟 (𝑚𝑔 𝑘𝑔−1)  

𝐶𝐹 = 𝑡𝑜𝑡𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 (𝑚𝑔 𝑘𝑔−1)  

𝑌 = 𝑏𝑖𝑜𝑐ℎ𝑎𝑟 𝑦𝑖𝑒𝑙𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑝𝑦𝑟𝑜𝑙𝑦𝑠𝑖𝑠 

Incorporating both equations in the equation above: 

𝑠𝐸𝐶𝐶 =  √(𝑌) 2 ∗ 𝑠𝐶𝐵

2 +  (−1)2 ∗ 𝑠𝐶𝐹

2  

2.4.5 Calculations of available elemental content 

2.4.5.1 Relative/percentage availability of elements in biochars (RAEC) 

Calculating the percentage elemental availability was done by dividing the NH4NO3-

extractable elemental content (in mg kg-1) by the total elemental content (also in mg 

kg-1). For visualising Figure 4.2 and for calculating the average availability for all 

biochars, for each element smaller the LOD, where “<” is depicted, 0.5 * the 

calculated value was used (value varies with total elemental concentration of 

respective biochar). 

The propagated standard deviation (standard deviation (s)) for percentage available 

elemental concentration was calculated in the following way: 

𝑠𝑅𝐴𝐸𝐶 =  √(
1

𝐶𝐵
)

2

∗  𝑠𝐴𝐶𝐵

2 + (−
𝐴𝐶𝐵

𝐶𝐵
2 )

2

∗  𝑠𝐶𝐵

2  

𝑠𝑅𝐴𝐸𝐶 = 𝑝𝑟𝑜𝑏𝑎𝑔𝑎𝑡𝑒𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑅𝐴𝐸𝐶 (𝑚𝑔 𝑘𝑔−1) 

𝐶𝐵 = 𝑡𝑜𝑡𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑏𝑖𝑜𝑐ℎ𝑎𝑟 (𝑚𝑔 𝑘𝑔−1)  

𝐴𝐶𝐵 = 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑏𝑖𝑜𝑐ℎ𝑎𝑟 (𝑚𝑔 𝑘𝑔−1)  
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2.5 PAH analysis 

2.5.1 Sampling 

To gain representative samples, first the container with the biochar was mixed and 

around 1/10 of the amount produced was sampled (~10 g) from different areas of the 

container. The ~10 g sample was ground with mortar and pestle and homogenised, 

transferred into a sample tube, and mixed again before a 2 g sub-sample was taken. 

Finally, accurately weighed aliquots (1 g) were used for extraction. 

2.5.2 Extraction and analysis 

Biochar has a very high sorption capacity for PAHs and studies have shown that a 

longer extraction duration results in much higher PAH recoveries compared to 

conventional extraction techniques used for soil (e.g. 6 h Soxhlet extraction) (Fabbri 

et al., 2013; Hale et al., 2012; Hilber et al., 2012). Since recovery rates reached 

maximum values after an extraction for 36 h (Fabbri et al., 2013; Hilber et al., 2012), 

the method recommended in the European Biochar Certificate (EBC, 2012b) is a 36 

h Soxhlet extraction using toluene (Hilber et al., 2012), followed by GC-MS analysis 

which was also applied in this study. 6 h extraction was tested as well on three 

biochar samples and as reported in the literature, it resulted in much lower PAH 

recovery (described in Chapter 9). 

Each homogenised biochar sample was subjected to a 36 h Soxhlet extraction using 

approximately 100 mL of toluene. The resulting extract was rotary evaporated to 1 

mL and analysed without clean-up for the 16 PAHs on the US EPA priority 

pollutants list by GC-MS (Agilent 6890 GC plus 5975c MS). Full details including 

validation of the method can be found in Hilber et al. (2012). The deuterated PAHs 

(stable isotopes), naphthalene-d8, acenaphthene-d10, phenanthrene-d10, chrysene-

d12 and perylene-d12 were used as internal standards. Relative standard deviations 

(RSDs) of the GC-MS analysis for all individual PAHs were calculated, measuring 

high and low standards (A Table 1). The LODs for the individual PAHs were 0.10 

mg kg-1. The analyses were performed by Northumbrian Water Scientific Services 

(Newcastle, United Kingdom), accredited by United Kingdom Accreditation Service 

(UKAS). Several biochars were extracted and analysed in triplicate (separate vials on 

separate occasions) and RSD values were typically <20% (A Table 2).  
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2.6 Germination tests 

Germination and early seedling growth tests were developed and performed as part 

of this PhD project as an easy, quick and reproducible phytotoxicity screening 

method. One tests was specifically developed to investigate the effects of VOCs 

emitted from biochar (‘volatiles only’ test). A second test was established to evaluate 

and differentiate between the effects of volatiles, compounds easily leachable from 

biochar and biochar in direct contact to be able to narrow down the origin of the 

observed inhibitions (‘all exposure routes’).  

Both germination tests, i.e., ‘volatiles only’ and ‘all exposure routes’ were based on 

the same principle: a seven day germination test with 30 cress seeds (Lepidium 

sativum) on filter paper in plastic jars at 20-25°C and 24 h light in the lab. The 

continuous light regime was chosen according to Müller et al. (2006). Cling foil was 

wrapped around the top of the jars and punctured several times to allow some gas 

exchange. All tests were performed in triplicates unless stated otherwise. The 

containers with seeds were placed on a shelf in a randomised design to provide 

similar growth conditions. Germination rate, root and shoot length were determined 

(details mentioned in the materials and methods sections of the chapters). As in other 

studies (El-Darier and Youssef, 2000; Jones-Held et al., 1996), germination was 

defined here as cracking of seed coating and visibility of root growth. 

2.6.1 ‘Volatiles only’ germination test 

The test design was adapted from Busch et al. (2012) with the aim of assessing the 

phytotoxicity of organic compounds that vaporise readily at room temperature 

(VOCs). Different amounts of ground biochar were placed in an aluminium container 

(55 mm height, 80 mm diameter) with a stainless metal mesh on top. The mesh 

supported a filter paper (Whatman No. 1, 70 mm) on which 30 cress seeds (Lepidium 

sativum) were spread and to which two folded filter papers (Whatman No. 1, 110 

mm) supplied DI water. This set up was placed within a 1 L plastic storage jar, so 

that only volatiles released from biochar could access and affect the seeds (Figure 

2.4).  
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Figure 2.4: Schematic of the experimental setup for the ‘volatiles only’ germination test for 

assessing effect of volatiles released from biochar on seed germination (Buss and Mašek, 2014). 

 

 

Figure 2.5: Schematic of the experimental setup for the ‘all exposure routes’ germination test 

for assessing effect of volatiles released, compounds dissolved by water and direct contact of 

biochar and seeds (Buss and Mašek, 2014). 

 

2.6.2 ‘All exposure routes’ germination test 

The ‘all exposure routes’ test is based on the setup used by Bargmann et al. (2013) to 

study the effect of VOCs and direct contact of seeds with biochar-sand, but adds a 

biochar leachate fraction. This way, the test is designed to assess the effect of 

contaminants in three different seed-contact systems: 

1) Volatiles only 
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2) Volatiles and leached (dissolved) compounds (in water) and 

3) Volatiles, leached (dissolved) compounds and direct contact with biochar 

Ground biochar was mixed with sterilised sand (50-70 µm, sterilisation at 500°C for 

~2 h) in different ratios (w/w) and 50 g of this mixture was placed in an aluminium 

container (25 mm height, 70 mm diameter) with holes in the bottom. The control was 

sterilised sand only. 35 mL of DI water was poured over the mixture which 

percolated through the sample to dissolve mobile compounds. The design allowed 

the leachate to flow back towards the biochar-sand mixture through a folded filter 

paper. Two small lids and two pieces of filter paper supplied clean water to a filter 

paper on an elevated area on top of the biochar-sand mixture. 30 seeds were spread 

on the top filter paper, on the biochar-sand mixture and on a filter paper at the bottom 

on the metal mesh (all Whatman No. 1, 70 mm). 
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Chapter 3   Fate of PTEs and nutrients during 

pyrolysis and suitability of marginal biomass-

derived biochars for soil amendment 

 

The following chapter is based on the published article: 

Buss, W., Graham, M.C., Shepherd, G.J., Mašek, O., 2016. Suitability of marginal 

biomass-derived biochars for soil amendment. Sci. Total Environ. 547, 314–322. doi: 

10.1016/j.scitotenv.2015.11.148 

Journal impact factor (2014): 4.099 

Number of citations (September 2016): 6 

The candidate was solely responsible for data analysis and writing of the article and 

this chapter. Supervisors provided guidance and supervisors and co-authors 

contributed to the editing of the manuscript. The experimental work was performed 

by the candidate, apart from digestion of the biochars and feedstocks which was 

conducted by Andy Gray and John Morman. The ICP-OES analysis was performed 

by the candidate with the assistance of Lorna Eades and Jessica Shepherd. The 

schematic of the Stage II pyrolysis unit (Figure 2.2) was created by Alberto Gonzalez 

Fernandez. 



 

 

5
7
 

 

Figure 3.1: Graphical abstract of Chapter 3. Marginal biomass, which are waste feedstocks that often contain contaminants, are landfilled in most cases. 

Here it was tested if those biochars can be pyrolysed to reduce the amount of material that is landfilled. The pyrolysis gases and liquids from this process 

could be used for production of energy. It could be shown that many biochars are suitable to be applied to soil for nutrient provision or potential soil 

remediation. After biochar application, the plants that grow on contaminated land could for example be used for energy production.  
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3.1 Introduction 

To achieve economically viable biochar production in a sustainable context, the use 

of waste feedstocks is essential. While crop residues fit into this category, they are 

not considered to be an ideal feedstock (Shackley et al., 2011). On the other hand, 

plant material from contaminated sites/phytoremediation as well as non-virgin 

feedstocks (chemically/biologically transformed, amended or treated material 

(Shackley et al., 2011)) are resources that need additional treatment before re-use, 

and so these may be more suited to biochar production.  

Large areas of land world-wide have been contaminated by inorganic contaminants, 

whilst the actual size of the area depends on definition. The scale of the problem is 

still increasing, so the use of plants from this underutilised land for conversion into 

biochar could be a valuable treatment option (Evangelou et al., 2012). Non-virgin 

feedstocks, such as food waste (anaerobic digestate (AD)), sewage sludge (AD) or 

demolition wood are also readily-available materials; in the UK alone, around 200 

million tonnes of anthropogenic waste is produced annually (DEFRA, 2015). If such 

wastes could be converted into a valuable resource through pyrolysis, a wide variety 

of feedstocks would be accessible in large quantities for biochar production. To 

describe biomass of little economic value the term ‘marginal biomass’ is used here, 

taken from the established term “marginal land” for land which, for various reasons, 

has little agricultural importance (e.g. poor soil quality, pollution) (Peterson and 

Galbraith, 1932). These marginal biomass feedstocks can be untreated virgin 

materials such as contaminated plant biomass or non-virgin feedstocks from 

chemically/biologically transformed materials. 

For biochar application to soil to be acceptable, adverse ecosystem effects need to be 

avoided and contaminant levels kept to a minimum. The contaminants of concern in 

biochar are organic compounds that are formed during production and can attach 

loosely or tightly to the biochar framework (PAHs, VOCs, dioxins) (Hale et al., 

2012; Spokas et al., 2011) as well as potentially toxic elements (PTEs) originating 

from the feedstock (Evangelou et al., 2014; Méndez et al., 2012; Van Wesenbeeck et 

al., 2014). Total PTE concentrations have been analysed in biochars from virgin 

biomass sources (materials which have not been chemically/biologically 
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transformed, amended or treated) and the results have not indicated any reasons for 

concern for soils and plants so far (Freddo et al., 2012; Lucchini et al., 2014b). 

However, the use of the term ‘marginal biomass’ here describes materials that have a 

high probability of being somewhat contaminated and predominantly contain 

elevated levels of PTEs. Thus, the resulting biochars could exceed legislation values 

applied to soil amendments. This makes it essential to investigate separately the 

levels of PTEs in each biochar produced from a new, marginal biomass for 

compliance with existing regulations. According to the International Biochar 

Initiative (IBI) (International Biochar Initiative, 2011), arsenic, cadmium, chromium, 

cobalt, copper, lead, mercury, molybdenum, nickel and zinc are the PTEs of concern 

in biochar which, with the exception of cobalt and molybdenum, are also part of the 

priority pollutant list of the US EPA (Environmental Protection Agency, 1982). 

Sewage sludge is a marginal feedstock that could be used for biochar production but 

often contains elevated levels of PTEs. It is available in large quantities and will be 

so into the future. For example, in 2008 1.6 million t of sewage sludge was produced 

in the UK (DEFRA, 2011), which could make commercial biochar production viable. 

Sewage sludge biochar has already been investigated intensively regarding risks and 

benefits with variable results, mostly related to its heterogeneity and varying 

composition (Liu et al., 2014; Luo et al., 2014; Méndez et al., 2012; Van 

Wesenbeeck et al., 2014; Zielińska and Oleszczuk, 2015). In several recent studies, 

single feedstocks from contaminated biomass were investigated regarding their 

usefulness for conversion into biochar (Evangelou et al., 2014; Jones and Quilliam, 

2014; Lucchini et al., 2014a). However, to my best knowledge, no studies to date 

have carried out systematic and extensive assessment of PTE in biochars from a 

range of marginal biomass under different pyrolysis conditions. 

Besides PTEs, elements with positive effects on plant growth are present in the ash 

of feedstocks. The PTEs Cu, Zn, Ni and Mo are phytotoxic in elevated 

concentrations in soil, in contrast however, low concentrations are needed by plants 

as micronutrients (Broadley et al., 2011). N, P and K are the major elements in 

fertilisers and are macronutrients by definition, which means they are the elements 

needed by plants in high quantities (Hawkesford et al., 2011). All of these nutrients 

can be found in biochar (Enders and Lehmann, 2012; Mukome et al., 2013). 
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Therefore, use of nutrient-rich marginal feedstocks for biochar production could be 

an alternative way of supplying nutrients to plants through application of the 

resulting biochar to soil. 

During pyrolysis, P and K mostly remain in the solid fraction and are, therefore, 

applied with the biochar to soil. However, N in the feedstock is mostly evaporated, 

together with most of the organic material and this results in a N-poor material 

(Antal and Grønli, 2003; Liu et al., 2014). During the high temperature treatment of 

biomass, part of the mineral matrix evaporates as well (Kistler et al., 1987). The 

‘loss’ of elements from the solid char material can be beneficial when PTEs are 

concerned, but are a drawback when nutrients are vaporised (Kistler et al., 1987; 

Nzihou and Stanmore, 2013). Investigation of volatilisation of elements from 

pyrolysis solids is essential to select the best suitable production conditions of 

biochar from mineral-rich feedstocks. 

The aim of this chapter was to investigate whether feedstocks contaminated with 

PTEs through various routes: (I) plant uptake through soil, (II) plant uptake through 

water and (III) direct anthropogenic contamination, are suitable for biochar use in 

soil in relation to their PTEs compositions. This was evaluated by pyrolysing the 

mentioned materials and analysing the fate of PTEs (and nutrients) during pyrolysis. 

Furthermore, the main objective was to identify the best marginal biomass feedstock 

for conversion into biochar and the most suitable HTT judged on the basis of PTE 

concentrations (comparison with legislation threshold values), nutrient 

concentrations and basic biochar characteristics (pH, EC, ash, fixed carbon). For this 

purpose, nineteen biochars were produced from ten different materials: feedstocks 

included various plant species that were grown in PTE contaminated soils, a plant 

grown in contaminated water and two non-virgin feedstocks. 
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3.2 Materials and methods 

3.2.1 Biochars 

The ten marginal biomass feedstocks and the production of the nineteen biochars 

from these feedstocks are described in section 2.2.4.1. An overview of feedstocks 

and production conditions can be found in Table 3.1. Feedstock effects were studied 

for all ten materials where pyrolysis at 550°C was used as a typical medium HTT. To 

study the effects of temperature, two feedstocks (ADX, DW) were pyrolysed at 

HTTs of 350, 450, 550, 650 and 750°C and one (WLB) was pyrolysed at 550°C and 

700°C. 

In addition, ten “UKBRC standard biochars” produced with the Stage III pyrolysis 

unit using softwood pellets (SWP), rice husk (RH), oilseed rape pellets (OSR), 

miscanthus straw pellets (MSP) and wheat straw pellets (WSP) at 550°C and 700°C 

were used as a reference for comparison of nutrient concentrations. Detail on the 

individual biochars can be found at http://www.biochar.ac.uk/standard_materials.php 

(Mašek, 2014). 

3.2.2 Digestion of biochar 

The biochars were digested using the “modified dry ashing” procedure (Enders and 

Lehmann, 2012) and were analysed for the following elements using ICP-OES as 

described in section 2.4: Al, As, B, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, 

Ni, P, Pb, Se and Zn. The digestions and analyses were performed in triplicates 

(elements As, B, Hg, K, Mo, Na, Se for feedstocks and biochars of DW, FWD, SBI, 

WHI and WSI, however, are only available in duplicates). 

The relative change of elemental content in % from feedstock to biochar and the 

change of elemental content in mg kg-1 was calculated (section 2.4.4). 

3.2.3 Thermogravimetric analysis (TGA), pH, electrical conductivity 

(EC) 

Proximate analysis (PA) using thermogravimetric analysis (TGA), pH and electrical 

conductivity (EC) measurements were performed as described in section 2.3.  
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3.3 Results and discussion 

Ten marginal biomass samples that either grew on/in PTE contaminated land/waters 

or were biologically/chemically treated feedstocks sourced from five different 

countries were converted into biochar using the same pyrolysis unit and very similar 

process conditions but varying the HTT. Details on yields and production conditions 

of all biochars are depicted in Table 3.1. 

3.3.1 Yields, pH, EC and proximate analysis of biochars 

As expected and reported in other studies, the char yield consistently decreased with 

pyrolysis temperature (Table 3.1) due to increased loss of volatiles (Antal and 

Grønli, 2003). Proximate analyses showed a decrease of the volatile matter content 

with temperature and consequently an increase in fixed carbon content (dry ash-free 

basis) which is again consistent with general observations in other studies (Crombie 

et al., 2013; Enders et al., 2012; Jindo et al., 2014; Ronsse et al., 2013; Xie et al., 

2015). 

The pH values of the biochars strongly increased with pyrolysis temperature and 

were all in the range of 9-10.5, apart from the lower temperature biochars made from 

demolition wood which had a lower pH (Table 3.1). In a meta-analysis of biochar 

studies, biochar has shown to increase the soil pH on average (Biederman and 

Harpole, 2013). Thus, the biochars with a high pH investigated here can be useful for 

soil pH elevation and the associated benefits of PTE mobility reduction and 

improvement of P availability (Biederman and Harpole, 2013). The demolition wood 

biochars had the lowest ash content and pH values; this relationship of low ash 

content with pH has already been described in Enders et al. (2012). The electrical 

conductivity (EC) of the biochars (used for approximation of the salinity) increased 

with HTT and was well correlated with ash content (R²=0.7538; data not shown). 

WHI 550 had an ash content of over 40% and the highest EC (8115 µS cm-1) which 

originated from the uptake of minerals from a waste water drain by the feedstock, 

water hyacinth. This biochar and some of the others (e.g. WSI 550, WRB 550, FWD 

550) could potentially cause negative effects on plants and soil organisms due to 

their high salinity if applied in high concentrations.
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Table 3.1: Selected production conditions and biochar properties of nineteen biochars investigated in this study. Proximate analysis (volatile matter, fixed 

carbon, ash), pH and electrical conductivity (EC) were performed in duplicates and averages (AV) ± standard deviations (SD) are shown. HTT, highest 

treatment temperature; FR, feeding rate during pyrolysis; yield, char yield during pyrolysis; db, dry basis; daf , dry ash free basis.  

biochar feedstock HTT FR yield volatile matter fixed carbon ash pH EC 

  °C g h-1 % db % daf % db    µS cm-1 

DW                                       

DW 350 Demolition wood, Germany 350 500 31.60 28.90 ± 1.63 71.10 ± 1.63 5.35 ± 0.78 7.56 ± 0.39 175 ± 18 

DW 450 Demolition wood, Germany 450 500 28.61 23.44 ± 0.91 76.56 ± 0.91 3.51 ± 0.92 7.78 ± 0.30 212 ± 25 

DW 550 Demolition wood, Germany 550 500 25.51 14.72 ± 0.26 85.28 ± 0.26 5.32 ± 0.01 7.65 ± 0.08 189 ± 29 

DW 650 Demolition wood, Germany 650 500 22.16 10.17 ± 0.52 89.83 ± 0.52 4.97 ± 0.49 8.48 ± 0.11 206 ± 17 

DW 750 Demolition wood, Germany 750 500 19.95 8.25 ± 1.78 91.75 ± 1.78 5.70 ± 2.48 9.85 ± 0.27 408 ± 37 

ADX                      

ADX 350 Arundo donax, Italy 350 500 38.69 33.72 ± 0.79 66.28 ± 0.79 12.38 ± 0.90 8.79 ± 0.44 1095 ± 306 

ADX 450 Arundo donax, Italy 450 500 30.13 21.83 ± 0.55 78.17 ± 0.55 12.62 ± 0.92 9.84 ± 0.11 2165 ± 191 

ADX 550 Arundo donax, Italy 550 500 26.24 17.13 ± 0.34 82.87 ± 0.34 14.75 ± 0.43 9.68 ± 0.21 2580 ± 85 

ADX 650 Arundo donax, Italy 650 500 25.49 14.10 ± 1.10 85.90 ± 1.10 16.01 ± 2.47 10.13 ± 0.41 2915 ± 78 

ADX 750 Arundo donax, Italy 750 500 22.95 10.84 ± 0.22 89.16 ± 0.22 15.51 ± 0.84 10.61 ± 0.64 3430 ± 269 

SBI 550 Sugarcane bagasse, India 550 250 * 16.84 ± 0.43 83.16 ± 0.43 12.91 ± 0.48 9.34 ± 0.03 954 ± 153 

WHI 550 Water hyacinth, India 550 400 45.20 43.39 ± 3.75 56.61 ± 3.75 42.92 ± 4.16 9.85 ± 0.11 8115 ± 389 

WSI 550 Wheat straw, India 550 250 30.74 21.87 ± 1.68 78.13 ± 1.68 24.55 ± 1.10 10.12 ± 0.01 6385 ± 431 

WLB                      

WLB 550 Willow logs, Belgium 550 500 26.68 16.38 ± 0.14 83.62 ± 0.14 7.22 ± 0.89 9.52 ± 0.16 192 ± 23 

WLB 700 Willow logs, Belgium 700 500 23.78 10.85 ± 0.27 89.15 ± 0.27 8.37 ± 1.78 9.52 ± 0.11 620 ± 49 

WRB 550 Winter rye straw, Belgium 550 225 20.76 21.93 ± 1.04 78.07 ± 1.04 15.92 ± 1.28 10.10 ± 0.62 6330 ± 42 

SLP 550 Salix purpurea, Italy 550 350 35.79 27.25 ± 0.39 72.75 ± 0.39 22.21 ± 0.62 10.15 ± 0.49 1678 ± 177 

PAT 550 Paulonia tomentosa, Italy 550 350 34.40 29.98 ± 2.99 70.02 ± 2.99 21.12 ± 0.21 10.55 ± 1.09 3150 ± 170 

FWD 550 Food waste digestate, UK 550 150 28.79 30.07 ± 0.99 69.93 ± 0.99 26.85 ± 0.58 8.88 ± 0.24 5580 ± 438 

*not available, see section 2.2.4.2                  
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3.3.2 Nutrients in biochar 

In Table 3.2, elements are depicted for which statistically significant changes in mass 

balance from feedstock to biochar were detected. On average, around 15% and 10% 

of the macronutrients Ca and Mg were lost during pyrolysis in all biochars (Mg: 

p<0.001, Ca: p=0.009) and for the biochars produced ≥700°C around 22.5% of Ca 

(p=0.042) and 15.4% of Mg (non-significant) was lost, respectively. The loss of 

macronutrients at typical pyrolysis HTTs indicates that lower temperatures are 

advisable if greater nutrient retention is desired. However, most importantly, P and K 

were not lost despite previous reports of K being volatilised during pyrolysis to a 

higher extent than Ca and Mg (Okuno et al., 2005). In this data set, the K 

concentration even increased significantly (p=0.041), however, by 14.1% only 

(biochars from 8 feedstocks gave mass balances between +20% and -20% (Digital 

Appendix Table 1), only the two feedstocks pyrolysed at five temperatures had 

consistently positive mass balances). 

The total concentrations of the four macronutrients, P, K, Mg and Ca, are plotted in 

Figure 3.2 (micronutrient concentrations can be found in Table 3.3). To provide 

baseline values, besides the biochars from marginal biomass feedstocks investigated 

in this study, ten “UKBRC standard biochars” from five conventional, 

uncontaminated feedstocks pyrolysed at 550°C and 700°C were included. The wood 

biochars (SWP and DW), as expected, had the lowest concentrations of the four 

reported macronutrients. The elemental content increased with pyrolysis temperature 

as proportionally more organic material volatilised, while most of the minerals 

remained in the char. WHI 550 contained a very high concentration of Mg, and while 

the concentration of Ca was in the same range as for most of the other biochars, P 

and K concentrations were also elevated. WRB 550 showed comparably high 

concentrations of P and K but the concentrations of Ca and Mg were in a similar 

range to most of the other biochars. PAT 550, FWD 550, SLP 550 and WHI 550 all 

contained levels of macronutrients higher than most of the other biochar samples. In 

particular, FWD 550 had highly elevated concentrations of P and Ca compared to the 

other biochars. The total levels of macronutrients in this char were: P 2.0% (w/w), K 

2.3%, Ca 9.2% and Mg 0.4%. It has already been shown in early biochar studies that 

biochar can directly provide nutrients to plants, which can lead to crop yield 
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increases (Lehmann et al., 2003). The key, however, is nutrient availability, and total 

concentration can only give an indication of this, if at all. Studies showed that 

biochar has the potential for suppling high amounts of available K to plants, as well 

as Ca, Mg and micronutrients (Lehmann et al., 2003; Major et al., 2010; Xu et al., 

2013). Phosphorus, on the other hand, is reported to be present in available form in 

slaughterhouse waste, cattle manure and AD sewage sludge biochars and it has been 

proposed that there is potential for P-rich biochars to act as slow-release fertilisers 

(Wang et al., 2014; Zwetsloot et al., 2014). These findings suggests that nutrients-

rich biochars, like FWD 550, can be used as fertilisers on arable soils, as long as PTE 

levels are not of concern. This is discussed in detail in Chapter 4.
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Table 3.2: Relative changes of elemental content from feedstock to biochar after pyrolysis (%). Geometric means and geometric standard deviations (SD) 

were calculated for biochars produced at all temperatures and only the ones produced ≥700°C. One sample, two tailed t-tests were performed to identify 

significant changes of the ln transformed data (p<0.05). Only the elements that showed significant changes are depicted here. nt, not tested; n, number of 

biochars. 

      Al Ca  Cr Fe  K Mg Ni  Zn 

all biochars 

geometric mean % -35.0 -14.1 82.8 207.2 14.1 -9.7 226.0 -13.7 

 - geometric SD % 32.3 16.1 108.5 197.0 23.8 12.5 227.7 21.3 

 + geometric SD % 64.2 19.9 266.9 549.4 30.0 14.5 754.9 28.4 

n   17 17 17 17 17 17 17 17 

 p-value  0.013* 0.009* 0.012* 0.000* 0.041* 0.000*' 0.001* 0.056 

           

 biochars produced ≥700°C 

geometric mean % -53.2 -22.5 82.6 161.0 19.5 -15.4 397.5 -37.5 

 - geometric SD % 15.0 6.9 98.9 110.6 35.9 7.6 393.0 9.7 

 + geometric SD % 22.1 7.5 215.9 192.1 51.3 8.3 1870.3 11.4 

n   3 3 3 3 3 3 3 3 

 p-value  0.077 0.042* 0.313 0.095 0.478 0.091 nt 0.040* 

* significantly different (p<0.05)         

' exponentially back-transformed before statistically analysed     
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Table 3.3: Total plant micronutrient (Mn, B, Fe) concentrations (mg kg-1) in nineteen biochars 

and their ten feedstocks with averages and standard deviations. 

    Mn B  Fe  

DW mg kg-1 82.60 ± 2.82 < 0.36     304.82 ± 36.27 

DW 350 mg kg-1 234.74 ± 18.49 15.65 ± 5.26 1167.99 ± 101.40 

DW 450 mg kg-1 274.44 ± 14.04 17.82 ± 8.59 1730.56 ± 290.66 

DW 550 mg kg-1 308.73 ± 20.03 19.00 ± 6.04 2150.04 ± 306.12 

DW 650 mg kg-1 360.66 ± 38.81 17.21 ± 0.30 2686.24 ± 699.55 

DW 750 mg kg-1 386.90 ± 21.95 16.97 ± 0.27 2260.76 ± 318.36 

ADX mg kg-1 6.60 ± 0.88 < 0.36    76.97 ± 4.46 

ADX 350 mg kg-1 34.80 ± 6.23 6.48 ± 4.18 2733.32 ± 249.75 

ADX 450 mg kg-1 23.92 ± 3.54 2.55 ± 2.94 1154.50 ± 275.16 

ADX 550 mg kg-1 28.76 ± 4.85 3.31 ± 2.83 1615.50 ± 123.36 

ADX 650 mg kg-1 32.86 ± 3.12 4.57 ± 1.93 2177.96 ± 761.06 

ADX 750 mg kg-1 26.17 ± 5.23 1.98 ± 2.88 904.80 ± 215.72 

SBI mg kg-1 15.59 ± 2.13 < 0.36    365.30 ± 33.06 

SBI 550 mg kg-1 122.44 ± 10.62 15.71 ± 5.01 5967.62 ± 2388.56 

WHI mg kg-1 231.55 ± 21.15 42.71 ± 0.23 15391.10 ± 1395.12 

WHI 550 mg kg-1 371.27 ± 58.98 82.94 ± 11.22 23957.84 ± 6443.47 

WSI mg kg-1 18.62 ± 4.59 2.53 ± 0.45 970.30 ± 252.90 

WSI 550 mg kg-1 105.68 ± 12.61 27.72 ± 2.03 4550.54 ± 748.52 

WLB mg kg-1 15.41 ± 0.55 8.83 ± 1.21 121.19 ± 6.64 

WLB 550 mg kg-1 37.30 ± 1.97 29.82 ± 2.24 1033.93 ± 209.92 

WLB 700 mg kg-1 52.50 ± 2.63 40.52 ± 4.32 2269.32 ± 199.36 

WRB mg kg-1 28.66 ± 0.33 7.13 ± 4.20 394.55 ± 13.46 

WRB 550 mg kg-1 108.56 ± 2.89 17.95 ± 3.73 2676.68 ± 338.39 

SLP mg kg-1 57.26 ± 1.63 42.67 ± 3.26 117.45 ± 6.27 

SLP 550 mg kg-1 237.19 ± 5.99 103.47 ± 10.98 14183.85 ± 1089.12 

PAT mg kg-1 42.48 ± 28.50 22.98 ± 3.17 674.23 ± 436.95 

PAT 550 mg kg-1 142.28 ± 7.17 107.87 ± 7.59 10099.77 ± 68.40 

FWD mg kg-1 50.97 ± 4.00 26.11 ± 10.70 1549.28 ± 632.03 

FWD 550 mg kg-1 184.67 ± 18.09 42.70 ± 1.01 6820.38 ± 469.58 

 



 

 

6
8
 

Table 3.4: Potentially toxic element (PTE) concentrations (mg kg-1) of nineteen biochars and their ten feedstocks with averages and standard deviations.  

  As Cd Co Cr Cu Hg Mo Ni Pb Zn 

DW mg kg -1 < 0.72   < 0.04   0.27 ± 0.18 15.96 ± 8.33 10.36 ± 6.49 < 0.23 < 0.21   1.69 ± 0.94 35.25 ± 29.30 40.29 ± 3.96 

   DW 350 mg kg -1 < 0.72   0.50 ± 0.46 0.51 ± 0.11 35.86 ± 5.12 34.70 ± 19.62 < 0.23 0.28 ± 0.31 10.18 ± 1.03 48.63 ± 20.46 117.69 ± 15.78 

   DW 450 mg kg -1 < 0.72   0.22 ± 0.19 1.19 ± 0.97 47.44 ± 8.90 34.71 ± 4.57 < 0.23 < 0.21   8.01 ± 0.48 62.15 ± 12.37 150.15 ± 14.89 

   DW 550 mg kg -1 < 0.72   0.19 ± 0.18 0.78 ± 0.13 55.92 ± 9.18 35.68 ± 4.18 < 0.23 < 0.21   12.62 ± 3.92 66.50 ± 9.80 167.30 ± 20.34 

   DW 650 mg kg -1 < 0.72   0.33 ± 0.36 1.02 ± 0.12 94.54 ± 4.99 46.38 ± 2.65 < 0.23 < 0.21   38.48 ± 7.92 149.56 ± 123.82 236.84 ± 136.75 

   DW 750 mg kg -1 < 0.72   0.12 ± 0.11 2.08 ± 2.18 82.16 ± 15.61 53.16 ± 10.35 < 0.23 < 0.21   16.62 ± 1.30 35.71 ± 8.15 105.91 ± 9.63 

ADX mg kg -1 < 0.72   0.05 ± 0.05 < 0.08   < 0.49   1.58 ± 0.70 < 0.23 < 0.21   0.47 ± 0.25 < 0.74   11.87 ± 3.97 

   ADX 350 mg kg -1 < 0.72   0.92 ± 0.24 0.25 ± 0.04 6.08 ± 3.91 6.72 ± 0.95 < 0.23 0.56 ± 0.61 8.33 ± 2.37 1.43 ± 2.47 42.02 ± 8.11 

   ADX 450 mg kg -1 < 0.72   0.11 ± 0.02 0.16 ± 0.04 2.31 ± 2.74 5.89 ± 0.78 < 0.23 0.28 ± 0.49 3.39 ± 0.92 37.70 ± 62.57 38.16 ± 4.36 

   ADX 550 mg kg -1 < 0.72   0.98 ± 0.12 0.21 ± 0.04 5.67 ± 2.83 6.54 ± 0.66 < 0.23 0.58 ± 0.84 7.06 ± 1.07 5.30 ± 9.18 40.84 ± 4.40 

   ADX 650 mg kg -1 < 0.72   2.70 ± 0.18 0.28 ± 0.06 8.47 ± 2.08 7.73 ± 0.49 < 0.23 1.40 ± 0.79 9.35 ± 0.43 1.73 ± 2.99 48.85 ± 4.34 

   ADX 750 mg kg -1 < 0.72   2.64 ± 0.55 0.16 ± 0.05 2.85 ± 2.09 7.46 ± 1.14 < 0.23 0.54 ± 0.47 4.22 ± 0.89 27.22 ± 42.73 37.89 ± 5.64 

SBI mg kg -1 < 0.72   < 0.04   0.37 ± 0.32 4.28 ± 3.74 2.14 ± 0.34 < 0.23 < 0.21   3.26 ± 0.49 19.37 ± 33.55 8.19 ± 2.45 

   SBI 550 mg kg -1 < 0.72   0.47 ± 0.42 0.90 ± 0.28 24.21 ± 7.42 13.98 ± 6.59 < 0.23 0.92 ± 0.13 37.89 ± 13.74 4.73 ± 1.94 39.77 ± 9.21 

WHI mg kg -1 1.63 ± 0.12 1.24 ± 0.86 9.81 ± 5.15 173.62 ± 29.43 105.57 ± 8.08 < 0.23 6.07 ± 0.37 88.81 ± 1.48 100.86 ± 15.27 262.06 ± 19.83 

   WHI 550 mg kg -1 < 0.72   0.45 ± 0.39 7.44 ± 0.30 176.42 ± 18.81 118.85 ± 7.41 < 0.23 7.70 ± 0.44 110.59 ± 4.56 215.10 ± 154.13 392.82 ± 35.25 

WSI mg kg -1 < 0.72   < 0.04   0.35 ± 0.05 14.35 ± 12.43 2.17 ± 0.17 < 0.23 2.55 ± 0.21 1.41 ± 0.72 < 0.74   2.65 ± 1.25 

   WSI 550 mg kg -1 < 0.72   0.05 ± 0.05 1.17 ± 0.20 17.83 ± 13.80 16.55 ± 1.54 < 0.23 8.51 ± 0.35 26.32 ± 1.99 5.98 ± 2.66 62.00 ± 9.03 

WLB mg kg -1 < 0.72   11.46 ± 0.07 0.09 ± 0.02 < 0.49   6.91 ± 0.33 < 0.23 < 0.21   0.36 ± 0.22 16.27 ± 2.15 513.64 ± 64.20 

   WLB 550 mg kg -1 < 0.72   8.29 ± 0.50 0.29 ± 0.11 3.98 ± 3.56 16.46 ± 0.54 < 0.23 1.65 ± 2.64 16.73 ± 4.42 42.57 ± 7.65 1230.45 ± 98.92 

   WLB 700 mg kg -1 < 0.72   7.32 ± 0.72 0.48 ± 0.01 9.13 ± 2.25 19.95 ± 0.81 < 0.23 0.31 ± 0.54 45.96 ± 4.52 45.87 ± 17.94 1375.12 ± 30.58 

WRB mg kg -1 < 0.72   2.70 ± 0.03 0.16 ± 0.02 1.60 ± 2.77 9.07 ± 0.30 < 0.23 1.94 ± 0.22 0.48 ± 0.13 24.99 ± 17.78 295.75 ± 33.90 

   WRB 550 mg kg -1 < 0.72   6.82 ± 0.27 0.42 ± 0.02 6.98 ± 2.90 25.72 ± 1.14 < 0.23 9.48 ± 0.81 14.51 ± 2.62 21.95 ± 5.22 810.89 ± 25.73 

SLP mg kg -1 < 0.72   48.86 ± 3.60 0.57 ± 0.03 0.83 ± 1.44 8.14 ± 0.36 < 0.23 0.52 ± 0.90 0.78 ± 0.10 20.71 ± 27.73 629.87 ± 43.78 

   SLP 550 mg kg -1 < 0.72   22.00 ± 0.75 2.19 ± 0.09 13.13 ± 3.60 52.22 ± 1.11 < 0.23 7.85 ± 0.54 18.89 ± 2.28 42.03 ± 5.68 1404.33 ± 33.33 

PAT mg kg -1 1.22 ± 0.23 6.71 ± 1.21 0.23 ± 0.05 < 0.49   13.39 ± 2.57 < 0.23 < 0.21   1.07 ± 0.08 29.04 ± 32.54 208.63 ± 33.52 

   PAT 550 mg kg -1 1.96 ± 0.81 19.13 ± 1.27 1.36 ± 0.08 17.68 ± 3.40 47.71 ± 1.37 < 0.23 5.48 ± 0.23 24.08 ± 3.17 48.06 ± 17.14 544.68 ± 4.39 

FWD mg kg -1 < 0.72   < 0.04   0.49 ± 0.09 6.34 ± 4.22 14.38 ± 0.98 < 0.23 0.51 ± 0.58 15.49 ± 2.35 35.61 ± 42.09 56.41 ± 2.27 

   FWD 550 mg kg -1 < 0.72   < 0.04   2.76 ± 1.54 25.05 ± 6.33 45.71 ± 2.88 < 0.23 1.15 ± 0.01 10.21 ± 0.74 15.12 ± 4.06 218.77 ± 17.63 
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Table 3.5: Guideline and legislation threshold values for PTEs.  

  As  Cd  Co  Cr Cu  

IBI biochar guideline (2011) mg kg -1 12 - 100 1.4 - 39 40 - 150 64 - 1200 63 - 1500 

EBC basic grade biochar + mg kg -1    1.5      100   100   

EBC premium grade biochar ° mg kg -1    1      80   100   

compost (EEC No 2092/91*) mg kg -1    0.7      70   70   

sewage sludge (86/278/EEC #) mg kg -1    20 - 40       1000 - 1750 

                 

  Hg  Mo  Ni  Pb  Zn 

IBI biochar guideline (2011) mg kg -1 1 - 17 5 - 20 47 - 600 70 - 500 200 - 7000 

EBC basic grade biochar + mg kg -1 1      50   150   400   

EBC premium grade biochar ° mg kg -1 1      30   120   400   

compost (EEC No 2092/91*) mg kg -1 0.4      25   45   200   

sewage sludge (86/278/EEC #) mg kg -1 1.6 - 25    300 - 400 750 - 1200 2500 - 4000 
+ (EBC, 2012a) = German Biowaste Ordinance, 1998 (update 2013), § 4, valid for all biological residues/wastes that are supposed to be applied to soil 

° (EBC, 2012a) = Swiss Chemical Risk Reduction Ordinance, 2005 (update 2014), appendix 2.6, organic fertilisers (chromium threshold only in EBC (2012)) 

* EU Council Regulation (EEC) No 2092/91, 1991 (update 2007), ANNEX II Part A, on organic production of agricultural products; agricultural products and foodstuffs; composted or 
fermented household wastes 
# EU Council Directive 86/278/EEC, 1986, ANNEX 1 B, on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture 
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3.3.3 PTEs in biochar 

For comparison of PTE levels in biochar (Table 3.4), legislation and guideline values 

were used. Here the values reported are from the “German Biowaste Ordinance” 

(German Biowaste Ordinance, 1998), the “Swiss Chemical Risk Reduction Act” 

(Swiss Chemical Risk Reduction Ordinance, 2005) adapted as the “EBCC basic” and 

the “EBCC premium” grade biochar limits (EBC, 2012a), respectively, the European 

compost and sewage sludge legislation (EU Council Regulation 2092/91/ECC, 1991) 

and the International Biochar Initiative guidelines (originated from legislation from 

Australia, Canada, EU, UK and the USA) (summarised in Table 3.5). 

Arsenic and Hg concentrations in feedstocks and biochars were mostly below 

detection limits and did not exceed any of the thresholds (Table 3.4, Table 3.5). Only 

in WHI and PAT feedstocks and biochar from PAT could As be detected at all (1.63 

mg kg-1, 1.22 mg kg-1 and 1.96 mg kg-1, respectively). In both biochars, the As 

concentration was lower than theoretically expected, since enrichment through 

vaporisation of organic matter should result in higher concentrations of minerals than 

in the feedstock (WHI biochar below detection limit). This finding shows that As 

was lost during pyrolysis which can be attributed to its low boiling point of 613°C, 

and has been observed in other studies (Bridle et al., 1990; Helsen et al., 1997; Kim 

et al., 2012).  

Although Al is not mentioned in any of the reported legislation and regulations, Al 

toxicity can be a major problem in acidic soils (Delhaize and Ryan, 1995). In this 

study, the Al content decreased on average from feedstock to biochar significantly by 

35.0% (p=0.013) for all of the biochars investigated in this study (Table 3.2). A non-

significant reduction of 53.2% was observed for the biochars produced at ≥700°C 

(p=0.077) (average of only three biochars) which is confirmed by findings by Chiang 

et al. (2014). Although Zn was reduced by 37.5% (p=0.040) for the three biochars 

produced at ≥700°C (Table 3.2) which is similar to findings by Chiang et al. (2014) 

and Koppolu et al. (2003), Zn threshold values were still exceeded (Table 3.4, Table 

3.5). However, biochars with similar Zn levels from feedstocks also grown on 

contaminated land have previously shown to result in positive effects on plant shoots, 

leading the authors to conclude that the increased Zn levels in shoots were beneficial 

for growth (Evangelou et al., 2014). Besides virgin feedstocks, non-virgin feedstock, 
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e.g. sewage sludge, has been shown to contain Zn contents similar to those in this 

study (1256 mg kg-1) (Srinivasan et al., 2015). Threshold values for Mo exist only in 

Canada and the US; none are reported in the various European legislation used for 

comparison in this study. Still, five of the investigated biochars exceeded the 

reported limit values for Mo (Table 3.4). Furthermore, several biochars surpass the 

threshold values for Cd, including the biochars produced from feedstocks from the 

heavily contaminated sites in Italy and Belgium (Table 3.4). Overall, no significant 

change in Cd mass balance was observed on average for all biochars (data not 

shown), although Cd levels in four biochars were reduced by more than 80% 

compared to the feedstock (Digital Appendix Table 1) and the fact that volatilisation 

of Cd from pyrolysis solids is frequently reported in literature, specifically at 

temperatures above 600°C (Chiang et al., 2014; Evangelou et al., 2014; Kistler et al., 

1987; Luo et al., 2014). Yet, for example in Liu et al. (2014), Cd remained in the 

char to the highest extent in comparison with various other PTEs (Cu, Pb, Zn, Cr). In 

general, volatilisation of elements is not simply a function of temperature but differs 

according to elemental concentrations in the feedstock and is influenced by 

interactions with the other inorganic and organic components, which explains the 

high fluctuations of the same elements in different feedstocks in this study, as for 

example shown for Cd (Digital Appendix Table 1) (Cuypers and Helsen, 2011; 

Okuno et al., 2005; Olsson et al., 1997; Van Wesenbeeck et al., 2014). 

Ni and Cr have also been reported to vaporise during pyrolysis (Kistler et al., 1987; 

Koppolu et al., 2003). Interestingly however, for these elements and Fe, even 

significant increases have been observed (Table 3.2). Cr increased by 82.8%, Fe by 

207.2% and Ni even by 226.0% on average for all biochars, which indicates 

contamination during pyrolysis. This can be a result of erosion of small amounts of 

metal from reactor walls by feedstock and biochar in the continuous pyrolysis unit 

used in this study. The friction caused by the pressure the moving furnace screw 

applied onto the material in the furnace most likely eroded small steel particles which 

contaminated the biochar. As the reactor is made of a high grade stainless steel 

253MA (contains 21% chromium and 11% nickel), such a contamination path is 

probable. It has already been indicated in the EBC quality guidelines that there is 

potential for this to happen, specifically in new pyrolysis units (EBC, 2012a). 
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Overall, this is an important point to consider as, for example, DW 650 and 750 

would not be allowed to be applied on Swiss soils due only to the exceedance of Cr 

limit values and SBI 550 due only to Ni exceedance (EBC premium grade limit, 

Table 3.4). 

To further elucidate whether the Ni and Cr exceedances were only attributed to 

erosion of Ni and Cr from steel in the pyrolysis unit, in contrast to percentage change 

as above, additional calculations were undertaken. The change in concentration of 

elements after pyrolysis compared to the expected concentration with the scenario of 

100% elemental retention in mg kg-1 was calculated (Digital Appendix Table 1). This 

was done specifically to investigate how much Ni and Cr in the biochars could be 

attributed to contamination with these elements during the pyrolysis process. The 

deviation in concentrations expected (100% elemental retention) to actual 

concentrations for Ni were up to 45 mg kg-1 and up to 16-22 mg kg-1 for Cr. 

Considering the legislation/guideline values for Ni of 30-50 mg kg-1 and for Cr of 

80-100 mg kg-1 (Table 3.4), this shows Ni and Cr enrichment from steel during 

pyrolysis can cause exceedance of threshold values. To overcome this, a rotary drum 

could be used to replace the furnace screw (which puts a lot of pressure on the 

furnace metal), or the Ni-Cr steel of the screw could be replaced by a different steel. 

However, these results show that the exceedance of guideline values (e.g. SBI 550) 

can be avoided by using a different pyrolysis unit and the feedstock itself is not a 

concern regarding these PTEs. 

In the nineteen biochars investigated here, the PTEs Zn and Cd in particular cause 

problems with exceedance of threshold values, The highest Zn and Cd concentrations 

exceed the lowest guideline values (compost guideline) by 7-fold and 31-fold, 

respectively (Table 3.4, Table 3.5). The feedstocks resulting in biochar that caused 

exceedances here originated from soil that is known for its contamination with these 

elements. Pb, Cu, As and Hg did not exceed biochar guideline values despite the fact 

that some of the land the plants were grown exceed soil guideline values (Table 2.1). 

A fraction of As, Hg, Zn and Al from feedstocks were lost from pyrolysis solids, 

which can be beneficial for biochar soil application, yet, it must be ensured that these 

PTEs are not released into the environment as vapours during pyrolysis. In addition 
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to Zn and Cd, concentrations of Ni and Cr in some biochars exceed legislation values 

which can be traced back to the biochar production process itself. 

 

 

Figure 3.2: Total concentrations (mg kg-1) of macronutrients P and K (upper figure, A) and Mg 

and Ca (lower figure, B) in nineteen biochars. In addition, ten UKBRC standard biochars are 

plotted for comparison. Top figure in A shows the same figure in smaller scale. The 

abbreviations symbolise the different biochars in the way feedstock – pyrolysis temperature. 
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3.3.4 Effect of HTT on concentration of PTEs in biochar 

One virgin feedstock, A. donax (plant biomass from PTE contaminated land), and 

one non-virgin feedstock, demolition wood, were pyrolysed at five HTTs in the 

range 350-750°C. As discussed in 3.3.1, increasing pyrolysis temperatures decreased 

the volatile matter content of the biochars and increased the fixed carbon and ash 

content (Table 3.1). Volatile organics vaporised, while most of the ash/PTEs 

remained. This led to enrichment of PTEs in the biochar and a higher concentration 

of PTEs compared to the feedstock (Table 3.4). However, some PTEs partially 

evaporated at the applied temperatures, reducing their concentration, e.g. Zn for DW 

and ADX (Table 3.4). Elements such as Cu did not evaporate and, due to this 

enrichment, the biochars produced at highest pyrolysis temperatures had the highest 

Cu concentrations (ADX 650 and 750 not significantly different). Consequently, the 

effect of HTT on the concentration of PTEs in biochar is not only dependent on the 

element under investigation but also on the feedstock matrix, which, as discussed in 

3.3.3, affects the evaporation behaviour of the elements. However, the parameter 

which influences the concentration of PTEs in biochar most is their concentration in 

the initial material. Thus, appropriate selection of feedstock is the most crucial 

parameter for production of biochar with low total concentrations of PTEs (Kookana 

et al., 2011). 

3.3.5 Environmental implications of marginal biomass-derived biochar 

3.3.5.1 Biochars unsuitable for soil application 

Although water hyacinth biochar (WHI 550) contained high concentrations of 

nutrients, it also contained a very high ash content which could lead to salinity-

related toxic effects. Despite having lost large amounts of PTEs during pyrolysis 

(Digital Appendix Table 1), the concentrations of Cr, Cu, Ni, Pb and Zn greatly 

exceeded threshold values (Table 3.4, Table 3.5). It is known that water hyacinth can 

take up and accumulate large amounts of toxic substances from water, making it 

interesting for waste water treatment (Mehra et al., 2000), however, this is a clear 

disadvantage for its use in biochar production. 

Willow logs, winter rye, Salix purpurea and Paulonia tomentosa all originated from 

contaminated sites where soil PTE concentrations exceed legislation values 

(Campine region in Belgium, region of an old Zn smelter in Italy) (Table 2.1) (EU 
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Council Directive 86/278/EEC, 1986; German Federal Soil Protection and 

Contaminated Sites Ordinance, 1999). The biochars produced from these feedstocks 

all exceeded Cd and Zn legislation values and the IBI guideline values for Mo. 

Again, the ability of willow to accumulate Cd is useful for phytotextraction but here 

it shows that, when grown on Cd contaminated land, willow is unsuitable to use for 

biochar production for soil application (Van Slycken et al., 2013). 

From this it can be concluded that it is not advisable to use plants grown on soil that 

already exceeds legislation values or plants from polluted waters for conversion into 

biochar used for soil amendment, although exceedance of biochar threshold values 

does not always occur. Specifically, the use of plant species capable of accumulating 

high amounts of PTEs as feedstock for biochar is problematic. Instead, as described 

in Evangelou et al. (2012) and Witters et al. (2012), since plants grown on heavily 

contaminated land are not competing with crops for human consumption they have 

high potential to be used for sustainable energy production. 

3.3.5.2 Biochars with little concern for application 

The biochars from wheat straw (WSI) grown at a site close to a thermal power plant 

(India), and sugarcane bagasse (SBI) that grew close to the highly polluted river of 

Yamuna (India) in PTE contaminated soil (Table 2.1) comply with regulations and 

have mostly moderate levels of nutrients along with medium to high pHs. The 

biochars from the woody materials, demolition wood and A. donax, showed rather 

low concentrations of macronutrients and no relevant exceedances of threshold 

values, despite A. donax having grown on a metal contaminated site with PTE 

concentrations close to PTE threshold values for soil (Table 2.1). 

Overall, as also concluded in Nzihou and Stanmore (2013) for combustion ash from 

similar materials, biochars from feedstocks grown on less heavily contaminated land 

and demolition wood biochars seem safe to apply on soil. Therefore, the high 

temperature biochars from these feedstocks can be suitable for increasing soil pH 

when applied in high doses (Biederman and Harpole, 2013), for immobilising metals 

(Uchimiya et al., 2010) and for carbon sequestration due to their recalcitrance 

indicated by their high fixed carbon contents (which can be used as a proxy for 

carbon stability (Crombie et al., 2013)). Consequently, these biochars could be used 
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for remediation of contaminated land (e.g. the land the feedstocks were sourced 

from) by immobilising PTEs, improving soil properties and subsequently increasing 

plant yields (Buss et al., 2012). 

3.3.5.3 Biochar with high potential for soil application 

Anaerobically digested food waste biochar (FWD 550) not only complied with 

biochar guideline values for heavy metal content in biochar, it also showed high 

concentrations of all the four macronutrients measured. This is a significant finding 

as around 16 million tonnes of food waste are produced every year in the UK alone 

(DEFRA, 2011). However, it is important to keep in mind that the composition of 

food waste can differ widely. Nevertheless, this makes food waste (AD) a very 

suitable marginal feedstock that is available in large quantities for the production of 

biochar and subsequent application on soil, as long as the nutrients in the biochar are 

plant available which is discussed in Chapter 4.   
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3.4 Conclusions 

In this study, ten marginal biomass-derived feedstocks from either contaminated 

land/waters or non-virgin biomass were investigated for their suitability for biochar 

production. First, it was shown that at typical pyrolysis temperatures some PTEs (e.g. 

As, Al, Zn) and nutrients partially evaporated from the mineral-rich materials. Using 

higher pyrolysis temperatures was not optimal as the macronutrients Mg and Ca were 

increasingly lost. Furthermore, it was shown that the long-standing assumption that 

contamination issues in biochar were either attributed to organic compounds formed 

during pyrolysis or inorganic PTEs originating in the feedstock is not always valid. 

Here, it was shown that another source of contaminants can be present, namely 

contamination by Ni and Cr from high grade steel used in some high-temperature 

reactors. This finding has important consequences for the design and operation of 

industrial biochar production units. Overall, feedstocks grown on industrial waste 

sites and in heavily PTE contaminated water bodies were found to be unsuitable for 

biochar production due to exceedance of threshold values for total PTE 

concentrations. Biochars produced from biomass grown in less contaminated soils 

and two biologically/chemically converted materials did comply with regulations and 

appear to be safe to apply to soils. Finally, food waste AD was found to be the best 

marginal feedstock for biochar production tested here due to very high 

concentrations of plant macronutrients, making the resulting biochar a promising 

potential organic fertiliser. Yet, from this study it remains uncertain if these 

macronutrients are present in an available form and whether the biochars exceeding 

threshold values for total PTEs indeed pose a risk to plant growth. Both is 

investigated in the next chapter. 



Chapter 4: PTEs II 

78 

Chapter 4   Risks and benefits of marginal biomass-

derived biochars for plant growth 

 

The following chapter is based on the published article:  

Buss, W., Graham, M.C., Shepherd, G.J., Mašek, O., 2016. Risks and benefits of 

marginal biomass-derived biochars for plant growth. Sci. Total Environ. 569-570. 

doi: 10.1016/j.scitotenv.2016.06.129  

Journal impact factor (2014): 4.099  

Number of citations (September 2016): 0  

The candidate was solely responsible for data analysis and writing of the article and 

this chapter. Supervisors provided guidance and supervisors and co-authors 

contributed to the editing of the manuscript. The experimental work was performed 

by the candidate. The ICP-OES analysis was performed by the candidate with the 

assistance of Lorna Eades and Jessica Shepherd. 
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Figure 4.1: Graphical abstract of Chapter 4. Marginal biomass-derived biochars were tested in phytotoxicity tests (germination and early seedling growth 

assays). Most biochar did not result in any negative effects on cress seedlings. In the few biochars that did result in stunted plant growth, the inhibition were 

not related to high concentration of available potentially toxic elements, but to high pH and high available K+ concentration of the biochars. 
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4.1 Introduction 

Biochar can improve soil chemical properties (e.g. pH, CEC), soil biological 

properties (e.g. stimulate microbial growth) and soil physical properties (e.g. water 

holding capacity) (Lehmann and Joseph, 2015b) and in addition, supply nutrients 

directly to the soil (Ippolito et al., 2015). Consequently, among other things, biochar 

is being tested for plant growth promotion in agriculture, horticulture and viticulture. 

However, inhibiting effects caused by biochar could negate any positive effects and 

so biochar should not contain contaminants which pose a risk to plant growth.  

The contaminants in biochar which have been reported to be present at sufficient 

concentrations to affect plant growth are: PAHs, VOCs and PTEs. These can 

originate from the feedstock (predominantly PTEs) and/or the production process 

itself (VOCs, PAHs and some metals) (Hale et al., 2012; Hilber et al., 2012; Spokas 

et al., 2011) (Chapter 3). While process conditions can be adjusted and pyrolysis 

units can be built to minimise contamination resulting from the production process 

(Hale et al., 2012) (Chapter 3), contaminants in the feedstock are source-dependent, 

and therefore, careful selection of biomass is necessary. 

From an economic and sustainability perspective, the ideal feedstock for biochar 

production is biomass or organic waste that would otherwise be landfilled or 

incinerated (Shackley et al., 2011). However, these materials are likely to contain 

contaminants, e.g. originating from the soil or water bodies in which the biomass was 

grown or from direct anthropogenic influences (e.g. wood from demolition sites, 

sewage sludge and food waste). Such materials of limited economic value are 

henceforth referred to as ‘marginal biomass’. Biochars produced from marginal 

biomass containing organic contaminants, e.g. PAHs or dioxins, have been shown to 

pose a low risk as such contaminants tend to be largely destroyed or evaporated 

during pyrolysis (Wijesekara et al., 2007; Zielińska and Oleszczuk, 2015).  

PTEs, on the other hand, mostly remain in the solids (feedstock/biochar) during 

biochar production and only a few are partially evaporated (Chapter 3). 

Consequently, guideline values for total concentrations of PTEs have been 

introduced and biochars can be tested for compliance against these guidelines (EBC, 

2012b; International Biochar Initiative, 2011). However, when biochar is applied to a 
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soil or a plant growth medium, only a fraction of the PTEs (and nutrients) are present 

in forms which can be taken up by plants. This proportion is usually termed the 

‘bioavailable’ fraction and, since it usually does not correlate with total elemental 

content (Ippolito et al., 2015), methods to assess the extent of PTE availability have 

been developed.  

Numerous chemical extraction methods using a wide range of extractants including 

deionised (DI) water, salt solutions, complexing agents or weak acids have been used 

to approximate the bioavailable fraction of PTEs (and nutrients) in soils and biochar 

(Farrell et al., 2013; McLaughlin et al., 2000; Monter Roso et al., 1999; van Raij, 

1998). BS ISO 19730:2008 (2008) describes soil extraction with 1 mol L-1 NH4NO3 

for assessing the fraction of trace elements able to interact and affect crop growth 

and was used to establish German legislation threshold values for PTEs for 

protecting plant growth and crop quality (German Federal Soil Protection and 

Contaminated Sites Ordinance, 1999). In addition to extraction of PTEs in soil, the 

method has also been tested and recommended for extractable cationic nutrients 

(Schöning and Brümmer, 2008; Stuanes et al., 1984) and for extracting PTEs and 

nutrients in biochar/biochar-amended soils (Alling et al., 2014; Karer et al., 2015; 

Kim, 2015; Kloss et al., 2014b; Park et al., 2011). The proportion recovered by such 

extractants has been described in various ways, e.g. “easily soluble” (BS ISO 

19730:2008, 2008), “readily soluble/available” (Gryschko et al., 2004), “mobile” 

(Schöning and Brümmer, 2008), “exchangeable” (Meers et al., 2007), “extractable” 

(Kim et al., 2015) or “available” (McLaughlin et al., 2000) fraction. In this study, the 

term ‘available’ will be used throughout. 

Previous studies, determining the available concentration of PTEs in feedstocks and 

biochars, have revealed that the pyrolysis process itself can immobilise various PTEs 

already present in the feedstock; this resulted in pyrolysis being recommended for 

waste treatment prior to landfilling (Farrell et al., 2013; Hwang and Matsuto, 2008; 

Khanmohammadi et al., 2015; Liu et al., 2014; Meng et al., 2013). The 

immobilisation was reported to result from different binding of PTEs to the carbon 

lattice after pyrolysis and through increase in pH of the material when converted into 

biochar (Gu et al., 2013; Liu et al., 2014). Yet, it is still unclear if biochars resulting 
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from feedstocks significantly contaminated with PTEs are suitable for amendment of 

soil and growing media. 

In Chapter 3, the total concentrations of nutrients and PTEs were analysed in 

nineteen marginal biomass-derived biochars and PTE concentrations were tested for 

compliance with threshold values for total PTEs. In the current chapter, cress 

germination and early seedling growth tests were conducted to assess the risk of 

PTEs in biochar for plant growth. Furthermore, available PTEs were determined 

using NH4NO3 and compared to German legislation threshold values. To complete 

the risk-benefit analysis of application of marginal biomass-derived biochar to soil 

and growing media, the availability of nutrients were determined to assess the 

potential fertiliser value. In addition, the effect of HTT and feedstock on percentage 

available of total PTEs and nutrients was examined. Ultimately, the available 

elemental content of the biochars (and biochar pH and EC values) were correlated 

with phytotoxic effects with the aim to identify the parameter with the greatest 

potential to affect plant growth adversely.   
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4.2 Materials and methods 

4.2.1 Biochars 

Nineteen biochars produced from ten marginal biomass feedstocks were used for this 

study. All these materials were described in detail in section 2.2.4 and an overview 

can be found in Table 3.1. 

4.2.2 Ammonium nitrate (NH4NO3)-extractions 

The extractions and analysis are described in section 2.4 and were performed 

according to BS ISO 19730:2008 (2008). 

The results were expressed as the mass of available elemental content relative to the 

mass of solid biochar (i.e. mg kg-1 or g kg-1 for elements present at high 

concentration). The data were also converted to percentage availability using the 

total elemental concentration data for the same biochar samples (Chapter 3). Details 

on the calculation can be found in section 2.4.5. 

4.2.3 Germination tests 

Biochar phytotoxicity screening tests were performed as described in section 2.6 

using 7-day ‘all exposure routes’ cress (Lepidium sativum) seed germination tests. 

Each biochar sample was ground and incorporated in sterilised sand (sterilisation at 

500°C for ~2 h) to give a 5% w/w biochar-sand mixture. The control was sterilised 

sand only. Cress seeds were either in direct contact with the biochar-sand mixture or 

only exposed to the solution leaching through the mixture (set-up done in triplicates). 

The effect of volatile organic compounds (VOCs) from the biochars on seedling 

growth was not tested here as previous work showed no phytotoxic effects even for 

heavily VOC-contaminated biochars (Chapter 7). 

To assess the effect of PTE-rich biochars in the germination tests, following 

evaluations scheme was used. Seedling growth is reported to be more sensitive to 

PTEs than seed germination which can lead to seeds with emerged radicle (root) but 

no growth of the embryo (Li et al., 2005) and consequently, an intermediate stage 

between germinated seeds and readily developed seedlings was distinguished here, 

termed ‘stunted seedlings’. ‘Stunted seedlings’ were defined as seeds with visible 

roots but a root length of <5 mm (which was also used as the limit of quantification 

(LOQ)); this has also been used by the US EPA (1996) as the threshold for “active 



Chapter 4: PTEs II 

84 

growth by an embryo”. For all seeds with root length >5 mm (here called ‘healthy, 

non-stunted seedlings’), shoots and roots were measured using image analysis 

(ImageJ) and the difference compared to the sand-only control was calculated. 

Germination rate and root growth was summarised in one parameter by calculating 

the Munoo-Liisa-Vitality index (MLV-index) which gives the percentage difference 

of the parameters to performance of the seedlings in the sand only control (European 

Standard, 2011) (for seedlings with roots <LOQ, 0.5 * LOQ was used). 

4.2.4 Removal of available elements from biochar samples prior to 

germination tests 

After the phytotoxicity screening was performed, nine biochars were selected for 

further testing. These included biochars which caused growth stimulation, growth 

suppression and no effects. The biochars were extracted with 1 mol L-1 NH4NO3 as 

described in section 2.4.2. To remove excess salt solution, this process was followed 

by addition of 25 mL of DI water and shaking at 150 rpm for 2 h. Filtration was 

achieved using the protocol described in section 2.4.2 and the biochar samples were 

pre-dried in an oven overnight at 50°C. The treated biochars were again tested in 

germination tests as described in section 4.2.3 to predict the effect that could be 

expected from the biochars after they have been exposed to the environment, e.g. 

after extractable nutrients and PTEs were removed by natural leaching processes 

shortly after biochar application. 

4.2.5 Statistics 

Available concentrations of nineteen elements (if <LOD, 0.5 * LOD was used), pH 

and EC (pH and EC data both from Chapter 3) were correlated with percentage of 

healthy, non-stunted seedlings using Pearson correlation (r) in R studio (Version 

0.99.484, https://www.rstudio.com/) and regression was performed using the least 

square method (R2) in excel.. P-values were calculated and stated as following: p 

<0.05 are indicated as *, p <0.01 as ** and p-values <0.001 as ***.  
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4.3 Results and discussion 

In this study, the availability of nineteen elements (PTEs and nutrients) in nineteen 

biochars was determined using 1 mol L-1 NH4NO3 -extractions followed by elemental 

analyses. The amount of an element extracted by NH4NO3 will be referred to as 

‘available concentration’ when expressed on biochar mass basis (mg kg-1, mg g-1) 

(Table 4.1) or as ‘percentage available’ (wt%) when expressed relative to the total 

concentration of the given element present in each biochar sample.
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Table 4.1: NH4NO3-extractable (available) PTE concentrations of nineteen biochars (mg kg-1) as average and standard deviation (n=3). 

  Al As  Cd  Co  Cr Cu  Hg  Mo  Ni  Pb  Se  Zn 

DW 350 mg kg -1 < 0.11     < 0.10     < 0.16     < 0.01 0.09 ± 0.05 0.12 ± 0.02 < 0.02     < 0.06     0.02 ± 0.01 < 0.04     < 0.23     2.01 ± 0.16 

DW 450 mg kg -1 < 0.11   < 0.10   < 0.16   < 0.01 0.11 ± 0.05 0.10 ± 0.05 < 0.02   < 0.06   < 0.01   < 0.04   < 0.23   0.50 ± 0.04 

DW 550 mg kg -1 < 0.11   < 0.10   < 0.16   < 0.01 0.10 ± 0.03 0.15 ± 0.06 < 0.02   < 0.06   0.06 ± 0.06 < 0.04   < 0.23   1.16 ± 0.11 

DW 650 mg kg -1 < 0.11   < 0.10   < 0.16   < 0.01 0.14 ± 0.01 0.54 ± 0.08 < 0.02   < 0.06   0.22 ± 0.02 < 0.04   < 0.23   1.95 ± 0.16 

DW 750 mg kg -1 2.60 ± 0.45 < 0.10   < 0.16   < 0.01 0.52 ± 0.24 1.93 ± 0.21 0.34 ± 0.04 0.18 ± 0.11 0.14 ± 0.02 0.13 ± 0.23 0.34 ± 0.10 3.45 ± 0.42 

ADX 350 mg kg -1 2.75 ± 0.49 < 0.10     < 0.16     < 0.01 0.87 ± 0.44 0.29 ± 0.07 0.02 ± 0.02 < 0.06     < 0.01     < 0.04     0.63 ± 0.05 0.21 ± 0.09 

ADX 450 mg kg -1 0.49 ± 0.17 < 0.10   < 0.16   < 0.01 0.10 ± 0.09 0.13 ± 0.01 < 0.02   0.06 ± 0.04 < 0.01   < 0.04   < 0.23   < 0.14   

ADX 550 mg kg -1 0.88 ± 0.33 < 0.10   < 0.16   < 0.01 0.28 ± 0.12 0.09 ± 0.00 < 0.02   0.20 ± 0.01 < 0.01   < 0.04   < 0.23   < 0.14   

ADX 650 mg kg -1 0.96 ± 0.11 < 0.10   0.21 ± 0.03 < 0.01 0.34 ± 0.06 0.15 ± 0.02 < 0.02   0.25 ± 0.05 < 0.01   < 0.04   < 0.23   < 0.14   

ADX 750 mg kg -1 2.17 ± 0.01 < 0.10   0.36 ± 0.03 < 0.01 0.98 ± 0.02 0.29 ± 0.01 0.35 ± 0.09 0.35 ± 0.02 0.08 ± 0.04 < 0.04   0.66 ± 0.04 < 0.14   

SBI 550 mg kg -1 1.39 ± 0.21 < 0.10     < 0.16     < 0.01 0.44 ± 0.04 < 0.02     < 0.02     0.18 ± 0.08 < 0.01     < 0.04     < 0.23     < 0.14     

WHI 550 mg kg -1 1.95 ± 0.27 0.82 ± 0.35 0.27 ± 0.04 < 0.01 0.86 ± 0.10 0.18 ± 0.02 0.09 ± 0.07 0.79 ± 0.01 0.02 ± 0.01 < 0.04   0.69 ± 0.05 1.06 ± 0.25 

WSI 550 mg kg -1 1.28 ± 0.43 0.62 ± 0.32 < 0.16 ±  < 0.01 0.59 ± 0.20 0.14 ± 0.01 0.13 ± 0.02 2.01 ± 0.16 < 0.01   < 0.04   0.99 ± 0.15 < 0.14   

WLB 550 mg kg -1 < 0.11   < 0.10   < 0.16   < 0.01 < 0.03   0.17 ± 0.01 0.02 ± 0.04 < 0.06   0.12 ± 0.02 < 0.04   0.44 ± 0.20 24.28 ± 0.81 

WLB 700 mg kg -1 1.34 ± 0.27 < 0.10   < 0.16   < 0.01 0.41 ± 0.10 0.14 ± 0.02 < 0.02   < 0.06   0.32 ± 0.11 0.48 ± 0.84 < 0.23   51.48 ± 0.97 

WRB 550 mg kg -1 < 0.11   < 0.10   < 0.16   < 0.01 0.03 ± 0.03 0.16 ± 0.01 0.12 ± 0.05 4.54 ± 0.34 < 0.01   < 0.04   0.76 ± 0.11 46.19 ± 2.96 

SLP 550 mg kg -1 1.01 ± 0.27 < 0.10   < 0.16   < 0.01 0.22 ± 0.12 0.17 ± 0.03 < 0.02   0.27 ± 0.01 < 0.01   < 0.04   < 0.23   7.47 ± 0.74 

PAT 550 mg kg -1 0.64 ± 0.04 < 0.10   < 0.16   < 0.01 0.20 ± 0.05 0.14 ± 0.00 < 0.02   0.50 ± 0.05 < 0.01   < 0.04   0.42 ± 0.19 23.77 ± 1.64 

FWD 550 mg kg -1 0.55 ± 0.34 < 0.10   0.24 ± 0.02 < 0.01 0.26 ± 0.23 0.21 ± 0.15 < 0.02   0.16 ± 0.02 0.03 ± 0.05 < 0.04   1.52 ± 0.14 0.66 ± 0.08 

BBodSchV* mg kg -1       0.4 #0.1         1             1.5 0.1       2 

* German Federal Soil Protection and Contaminated Sites Ordinance, 1999; Trigger values in agriculture for As, Cu, Ni and Zn in regards to growth inhibition of crops (Annex 2.4) and Cd, Pb in regards to crop 

quality (Annex 2.2), using NH4NO3 extraction  
# Action value, if the plant species accumulates Cd strongly, a lower value of 0.04 mg kg-1 is defined 
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Figure 4.2: Percentage available of PTEs (Cr, Ni, Cu and Zn) (Figure A, B) and nutrients (Ca, K, Mg and P) (Figure C, D). Function of pyrolysis temperature 

(highest treatment temperature) for biochars produced from demolition wood (A, C) and A. donax (B, D). Availability was measured as percentage NH4NO3-

extractable of the total elemental content.
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4.3.1 Effect of pyrolysis HTT on percentage of PTE available 

The effects of pyrolysis HTT on percentage availability of typical PTEs (Cr, Cu, Ni 

and Zn) and nutrients (Ca, K, Mg and P) were studied using biochars from 

demolition wood (DW) (Figure 4.2A) and a plant (A. donax, ADX) grown on 

contaminated soil (Figure 4.2B). For biochars from both feedstocks, the percentage 

available of Cr, Ni, Cu and Zn increased sharply when the HTT was increased from 

650 to 750°C (Figure 4.2A, B). Khanmohammadi et al. (2015) observed the same 

behaviour of Cr, Cu, Ni and Zn in sewage sludge biochars pyrolysed at five 

temperatures between 300 and 700°C; the highest availability (%) was detected at 

700°C and it increased in particular after a HTT increase from 600 to 700°C. 

Confirming this trend, in Meng et al. (2013), Cu and Zn showed a higher percentage 

of availability in biochars produced at 700°C compared to those produced at 400°C 

(DTPA extraction) and in Yachigo and Sato (2013), Cd and Zn demonstrated higher 

percentage availability in biochar produced at 800°C compared with that produced at 

300°C (0.1 M HCl extraction). 

The influence of HTT on external metal sorption behaviour of biochar has previously 

been explained as follows: biochars produced at low HTT possess more negative 

surface charges and functional groups (higher CEC) which are reported to sorb 

external cations strongly (chemisorption). For biochars produced at higher HTT, 

however, chemisorption is reduced (due to reduced CEC) and external cations are 

attached to biochar through electrostatic bonds which are weaker (Beesley et al., 

2015). The same mechanisms responsible for sorption of external PTEs onto biochar 

might also explain the sharp increase in the percentage availability of inherent PTEs 

within biochar produced at 750°C. More mechanistic studies are needed to confirm 

this hypothesis. 

The curve of percentage availability with HTT displays a different shape in the two 

feedstocks, ADX-derived biochar showed a higher percentage available for PTEs at a 

HTT of 350°C which was not visible in DW-biochar (Figure 4.2). This could be 

related to the fact that the feedstock particle size of ADX prior to pyrolysis was 

bigger (<30 mm) than for DW (<5 mm) (details on feedstock and biochar production 

in section 2.2.4) which, due to the relatively short residence time of 20 min, might 

have resulted in only partial pyrolysis of ADX at 350°C. Indeed, the comparatively 
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high char yield and volatile matter content of ADX 350 compared to ADX 450 did 

indicate an incomplete carbonisation (Table 3.1). Concluding from this, it seems that 

ADX 350 behaved similarly to unpyrolysed material which generally exhibits a 

higher percentage availability of PTEs compared to the resulting biochar (Farrell et 

al., 2013). 

In summary, it was shown that neither the highest, nor the lowest pyrolysis 

temperature were suitable for production of biochars from contaminated feedstocks 

as the percentage availability of PTEs increased in both cases. However, to further 

assess the risks posed by PTEs in biochar, their availability needs to be compared 

with the percentage availability obtained for other biochars and soils and, where they 

exist, with legislative threshold values.  

 

Table 4.2: Percentage available PTEs and nutrients in n biochars as average (AV) and standard 

deviation (SD) determined as NH4NO3-extractable of the total elemental content. The number of 

biochars used for calculating the percentage availability is listed in the column with heading 

“n”; for biochars with total and available concentrations below the detection limit, no 

percentage available could be calculated. 

element unit AV ± SD n 

PTEs      

Al % 0.46 ± 0.68 19 

Cr % 4.09 ± 8.02 19 

Cu  % 1.27 ± 1.33 19 

Mo  % 23.8 ± 23.7 16 

Ni % 0.33 ± 0.48 19 

Zn % 1.32 ± 1.70 19 

nutrients      

B  % 13.1 ± 16.1 19 

Ca  % 28.3 ± 19.6 19 

Fe  % 0.02 ± 0.02 19 

K  % 47.7 ± 19.7 19 

Mg % 27.2 ± 22.2 19 

Mn % 4.30 ± 3.10 19 

P  % 10.8 ± 10.0 19 

 

4.3.2 Average percentage availability of PTEs in all biochars 

In relation to the total elemental content only 1.27±1.33% of Cu, 0.33±0.48% of Ni, 

0.02±0.02% of Fe, 1.32±1.70% of Zn and 4.09±8.02% of Cr was available (when the 
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five biochars from feedstock A. donax are not taken into account only 1.18±0.68% of 

the total Cr was available) (Table 4.2). Two recent studies on total and available 

PTEs in various biochars obtained comparable results to those in this study; in 

Khanmohammadi et al. (2015) 0.5-1.4% of the total concentration of Cu, Fe, Ni, Zn 

and Cr was extractable with 0.005 mol L-1 DTPA and in Farrell et al. (2013) less than 

1% of Ni, Cu, Cr and Zn was extractable with 1 mol L-1 NH4NO3. Including this 

study, typically less than 1.5% of the total concentrations of common PTEs in 

biochar were available. Clearly, PTEs are typically strongly sorbed to biochars but to 

place these results in a wider context, further comparison must be made with the 

average percentage availability of PTEs present in soils. 

In Liebe et al. (1997), 335 soil samples from North Rhine-Westphalia (Germany) 

from different land use types containing comparable total PTE concentrations to the 

biochars in this study were extracted with 1 mol L-1 NH4NO3. The pH of the soils 

varied widely, while the biochar samples in this study all had pHs >7.5 (Table 3.1). 

Elevated pH decreases the percentage availability of Cu, Cr, Ni and Zn and 

consequently, the average percentage availability in soils with pH >7.5 was 

calculated from Liebe et al. (1997). The availability (%) of Cu and Ni in 23 soils 

with pH >7.5 (average pH 7.93±0.65, organic carbon content 2.94±1.93%) was not 

significantly different to the average percentage available in the nineteen marginal 

biomass-derived biochars (p=0.206, p=0.108; two-sample, two-tailed t-test) and the 

availability (%) of Cr and Zn was even significantly lower in soils (Cr: p=0.037, Zn: 

p=0.012). From this it was concluded that biochars do not sorb PTEs more strongly 

than soils do at similar pH values and confirms that the effect of biochar on Cu, Cr, 

Ni and Zn immobilisation in soil can be mostly attributed to pH increase, e.g. as 

shown in Houben et al. (2013). 

4.3.3 Exceedance of threshold values for available PTEs in biochar 

Threshold values for available As, Cd, Cu, Ni, Pb and Zn for soils for protecting crop 

quality and crop growth were established in the German Federal Soil Protection and 

Contaminated Sites Ordinance (1999) (Table 4.1). Comparing the available 

concentrations of As (mg kg-1) for the biochars in this study with the German 

legislation threshold, only the As concentrations for biochars WHI 550 and WSI 550 

exceed the limit (Table 4.1). Both of these biochars showed very high availability of 
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As (close to 100%). This can be explained by the fact that both biochars have a pH of 

around ten and the mobility of As is higher at elevated pH. This is a general problem, 

as addition of biochar and subsequent increase of soil pH, could mobilise As that is 

already present in the soil. This can lead to increased leaching of As into 

groundwater and increased uptake by plants (Beesley et al., 2015; Kloss et al., 

2014a).  

The threshold value for available Cd (0.1 mg kg-1) was exceeded by four biochars 

(ADX 650, ADX 750, WHI 550 and FWD 550) by a factor of 2-3 (Table 4.1). 

However, the biochars derived from plant biomass from Cd, Zn and Pb contaminated 

sites (WLB 550, WLB 700, WRB 550, SLP 550 and PAT 550) and which 

significantly exceeded biochar guideline values for total Cd (Table 3.4), did not show 

detectable concentrations of Cd in NH4NO3 extracts (LOD 0.16 mg kg-1). The 

available Zn concentrations (in mg kg-1), however, were far above the limit values 

for all five biochars despite the fact that the average percent availability of Zn in all 

biochars was only 1.32±1.70% (Table 4.2). Despite exceeding German soil threshold 

values for available Zn, application of Zn-rich biochar as soil amendment can be 

beneficial for plant growth in Zn-deficient soils as Zn is a micronutrient and is 

intentionally added to some fertilisers (see section 4.3.8) (Beesley et al., 2010; 

Evangelou et al., 2014; Rogowski et al., 1999). 

The concentration of available PTEs is relevant when effect on plants are concerned, 

yet, legislation and guideline threshold values are mostly based on total 

concentrations, consequently, the exceedance of threshold values for total and 

available concentrations were compared for two biochars. DW 750, which only 

exceeded the threshold value for total Cr (Table 3.4), exceeded the threshold values 

for available Cu, Pb and Zn (Table 4.1). This might be related to the fact that the 

metals in demolition wood were concentrated close to the surface, where paints and 

other coatings were applied and therefore were easy to extract. WHI 550, on the 

other hand, had the highest values for total concentrations for most PTEs but the 

available concentrations were very low, only two threshold values were slightly 

exceeded (As, Cd). These two examples confirm that total concentrations in biochar 

do not relate to available concentrations and highlight the need to investigate the 

availability in biochars from different feedstocks separately. For risk assessment, the 
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available concentrations are to be determined, therefore, threshold values should also 

be based on available concentrations. 

4.3.4 (Percentage) availability of K, Ca and Mg in biochar 

Besides PTEs, biochars contain potentially beneficial elements, such as the 

macronutrients K, Ca and Mg. For assessing the value of biochar as fertiliser, the 

concentration of available nutrients is of primary importance. 

K was the most available of all elements; 47.7±19.7% of the total K was extractable 

with 1 mol L-1 NH4NO3 (Table 4.2), which is similar to what was reported in Ippolito 

et al. (2015) for various biochars and extraction techniques. The percentage 

availability of K increased when the HTT was increased from 650°C to 750°C in 

both feedstocks (Figure 4.2). A similar effect was observed by Wu et al. (2011) (300-

750°C) and Singh et al. (2010) (400, 550°C). Around 30% of the Mg and Ca in 

biochar were available (Table 4.2), however, the availability showed different trends 

with HTT. While the percent of available Ca decreased slightly with increasing HTT 

in biochars from both feedstocks, the percent of available Mg decreased with 

increasing HTT in ADX-biochars and remained constant in the range 350-650 for 

DW-biochars, increasing at 750°C (Figure 4.2). 

Available K, Ca and Mg concentrations on biochar mass basis were between 0.3-30 g 

kg-1 (highest for WHI 550, WSI 550 and WRB 550), 1.3-5.6 g kg-1 and 0.03-1.2 g kg-

1, respectively (Table 4.3) which is in a similar range to cow manure and poultry 

litter biochars (K 14-18 g kg-1, Ca 0.5-2.5 g kg-1 and Mg 0.5-1.3 g kg-1) (Singh et al., 

2010). 

Ippolito et al. (2015) calculated the application rate of different biochars needed to 

satisfy the K and P demands of corn plants based on concentrations of available 

nutrients in biochar (“medium soil”, 67 kg ha-1 K2O and P2O5), which was between 

20 t ha-1 (turkey litter biochar) and 145 t ha-1 (softwood pellets biochar) for P and 1.8 

t ha-1 (papermill waste biochar) and 41.4 t ha-1 for K (hazelnut biochar). Applied to 

the biochars from this study, this would correspond to an application rate of only 1.2 

to 2.6 t ha-1 of ADX 650/750, WSI 550, WHI 550, SLP 550, PAT 550 and FWD 550 

to satisfy the K demands of the same corn plants and these biochars would also 
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provide high amounts of available Ca and Mg. This emphasises the suitability of 

marginal biomass-derived biochars for provision of cationic nutrients to plants. 

4.3.5 (Percentage) availability of P in biochar 

Like K, Ca and Mg, P is also a plant macronutrient and is needed by plants in 

comparatively high amounts (Kirkby, 2011). For the biochars investigated here, the 

percentage availability of P decreased with pyrolysis HTT (Figure 4.2) which was 

also reported in literature for biochar produced from swine manure (Meng et al., 

2013), A. donax, (Zheng et al., 2013) and biosolids (Wang et al., 2012). This was 

ascribed to assumed structural changes and resulting stabilisation of P/transformation 

of P into a less soluble form. 

Between 0.10 and 34.0% (Digital Appendix Table 2) and on average 10.8±10.0% 

(Table 4.2) of the total P was available. Although different extraction solvents were 

used in other studies, the percentage of available P was in the same range: in Singh et 

al. (2010) Olsen-P per total P was between not detectable to 40% (wood, leave, 

poultry litter), water soluble concentrations in (composted) swine manure biochars 

were between 0.3-25.5% (Meng et al., 2013) and for numerous other biochars, 

available P was between 0.4-34% determined by various extraction methods 

(Ippolito et al., 2015). 

FWD 550 was the biochar with the highest total P concentrations by far (Figure 3.2), 

but the available concentration was only 20 mg kg-1 (Table 4.3), which corresponded 

to 0.10% of the total P, by far the lowest percentage of P available in all biochars 

(Digital Appendix Table 2). FWD 550 also had the lowest percentage of available Ca 

(Digital Appendix Table 2). A plausible explanation for this is as follows: it was 

reported that P is mostly bound as Ca-phosphates in biochar (Bridle and Pritchard, 

2004; Wang et al., 2012) which are initially extracted by the 1 mol L-1 NH4NO3 

solution (pH of solution 4.6). However, with the gradual increase in solution pH due 

to the high pH of the biochars, it is suggested that Ca-phosphates increasingly 

precipitated (Goss et al., 2007) and were filtered from the solution during preparation 

for analysis, which was also observed in Xu et al. (2013). Generally, at high 

concentrations of Ca and P (FWD had the highest total concentrations of P and Ca), 

more ions are present in solution to react to form Ca-phosphates. This resulted in a 
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very low measured percentage availability of P and Ca in FWD 550. The same would 

not necessarily occur when total biochar Ca and P concentrations are low, as there 

would be less present to extract and therefore fewer ions in the extraction solution to 

react and precipitate, resulting in more reliable analysis results. This phenomenon 

could also be responsible for the generally low measured availability of P in other 

biochars (particularly those using unbuffered and non-acidic extractants), and the 

percentage of available P not having exceeded 40% in numerous studies. 

While WRB 550 had the highest available P concentrations by far and only 16.6 t ha-

1 would need to be applied to satisfy the P requirements in a “medium soil” (Ippolito 

et al., 2015), 1458 t ha-1 of FWD 550 would be needed to provide sufficient available 

P. In contrast, only 2.6 t ha-1 of FWD 550 would be needed to supply K (FWD 550 

available concentrations: 14 g kg-1 K, 5.6 g kg-1 Ca, 10 g kg-1 Mg and 0.02 g kg-1 P). 

Despite generally comparatively low concentrations of available P in biochar, some 

studies did show that certain biochar can be used as P-fertiliser with high agronomic 

efficiencies, in some instances even performing better than mineral fertilisers (Wang 

et al., 2012; Weber et al., 2014).
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Table 4.3: NH4NO3-extractable (available) nutrient concentrations of nineteen biochars (mg kg-1) as average and standard deviation (n=3).  

  B Ca Fe K Mg Mn P 

DW 350 mg kg -1 < 0.02     1911.81 ± 131.84 0.12 ± 0.04 264.04 ± 4.40 36.42 ± 1.57 6.09 ± 0.16 15.36 ± 0.37 

DW 450 mg kg -1 < 0.02   1981.25 ± 83.59 < 0.01   247.41 ± 4.08 26.76 ± 1.21 6.47 ± 0.06 14.28 ± 0.13 

DW 550 mg kg -1 < 0.02   1828.74 ± 174.81 < 0.01   308.62 ± 14.90 26.54 ± 1.75 10.29 ± 0.63 8.47 ± 0.48 

DW 650 mg kg -1 < 0.02   1627.32 ± 52.09 < 0.01   754.54 ± 6.38 49.83 ± 3.29 8.87 ± 0.38 13.21 ± 0.48 

DW 750 mg kg -1 6.80 ± 1.14 1731.43 ± 90.58 < 0.01   1945.05 ± 88.55 333.39 ± 22.24 29.52 ± 1.41 4.34 ± 0.23 

ADX 350 mg kg -1 1.56 ± 0.57 1566.53 ± 83.58 0.80 ± 0.05 11396.19 ± 567.74 468.17 ± 25.09 3.63 ± 0.40 267.61 ± 17.12 

ADX 450 mg kg -1 < 0.02   2625.05 ± 70.22 0.69 ± 0.03 17119.33 ± 222.85 810.66 ± 18.10 1.41 ± 0.04 455.52 ± 9.35 

ADX 550 mg kg -1 0.42 ± 0.38 2381.03 ± 92.87 0.59 ± 0.06 17214.35 ± 380.96 841.69 ± 23.84 2.35 ± 0.07 427.48 ± 15.59 

ADX 650 mg kg -1 < 0.02   2150.60 ± 47.24 0.38 ± 0.02 19409.80 ± 202.94 768.22 ± 11.50 2.74 ± 0.05 357.60 ± 8.68 

ADX 750 mg kg -1 1.16 ± 0.48 1524.37 ± 29.54 0.17 ± 0.06 27071.02 ± 886.79 661.31 ± 4.82 2.26 ± 0.05 230.84 ± 5.73 

SBI 550 mg kg -1 0.27 ± 0.47 1323.06 ± 35.58 3.19 ± 0.36 7123.26 ± 242.66 1156.43 ± 98.67 8.59 ± 0.23 390.23 ± 27.71 

WHI 550 mg kg -1 6.90 ± 0.16 5118.32 ± 143.48 < 0.01   29827.20 ± 647.63 973.44 ± 37.05 9.08 ± 0.17 158.27 ± 11.68 

WSI 550 mg kg -1 3.87 ± 0.15 2109.14 ± 89.68 0.12 ± 0.01 26794.53 ± 461.14 805.64 ± 29.67 1.86 ± 0.04 107.34 ± 0.48 

WLB 550 mg kg -1 2.01 ± 0.29 2830.15 ± 163.09 0.25 ± 0.01 2524.05 ± 364.50 228.01 ± 10.12 0.96 ± 0.05 241.54 ± 13.06 

WLB 700 mg kg -1 5.58 ± 0.03 2732.63 ± 86.83 0.88 ± 0.76 4511.81 ± 115.88 494.04 ± 13.68 1.68 ± 0.05 212.53 ± 6.22 

WRB 550 mg kg -1 6.32 ± 0.51 1496.45 ± 76.67 1.84 ± 0.09 31751.74 ± 715.76 77.51 ± 4.15 0.79 ± 0.04 1759.49 ± 82.86 

SLP 550 mg kg -1 12.38 ± 1.08 4608.27 ± 192.06 0.83 ± 0.15 14721.49 ± 790.28 1115.42 ± 65.59 2.73 ± 0.01 238.55 ± 15.11 

PAT 550 mg kg -1 14.10 ± 0.66 3794.41 ± 130.56 2.76 ± 0.06 24696.58 ± 719.37 1240.34 ± 27.39 1.91 ± 0.09 70.09 ± 1.94 

FWD 550 mg kg -1 2.72 ± 0.26 5582.42 ± 351.53 < 0.01   14123.90 ± 378.96 996.97 ± 49.30 2.96 ± 0.13 20.06 ± 1.40 
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4.3.6 Effect of biochars on germination and early seedling growth 

4.3.6.1 Growth promoting effects of biochars 

Of the nineteen biochars tested, eight showed significant shoot growth-promoting 

effects on cress seedlings in direct contact with the biochar-sand mixture (Figure 

4.3B). In four treatments, cress seedlings only exposed to the solution leaching 

through biochar-sand mixtures also displayed significantly longer shoots (Figure 

4.3A). Besides shoot growth, root growth was also stimulated, reflected by >100% 

Munoo-Liisa Vitality indices (MLV-indices) which takes into account root growth 

and germination rate (Table 4.4). 

Improvements of physical soil properties by biochar can mostly be excluded as the 

reason for the stimulation of seedling growth, because seedlings also showed 

improved growth when only exposed to the solution leaching through the biochar-

sand-mixture. Although nutrients may have been partially responsible for the growth 

promoting effects, these cannot explain effects observed in the case of DW biochars. 

Four of the five DW-biochars significantly increased shoot length, despite having 

comparatively low available nutrient concentrations (Table 4.3) and in particular, 

DW 550 showed striking stimulation of shoot growth, which cannot be associated 

with available nutrients. 

Overall, DW 550, SBI 550 and FWD 550 increased shoot length significantly in 

seedlings in either direct contact with biochar-sand or exposed to biochar leachate. 

FWD 550 and DW 550 stimulated the growth by 60-80% in the 7-day cress test 

compared to the control (Figure 4.3A, B). While the biochars from demolition wood 

produced at five HTTs showed strong growth promoting effects which peaked at 

medium HTT, ADX-derived biochars inhibited seedling growth with increasing HTT 

(in ADX 350 seedlings could fully develop, while in ADX 750 100% of the seedling 

showed stunted growth, Table 4.4). 

4.3.6.2 Growth suppression effects of biochars 

Germination rate (cracked seed coatings and visible roots) was barely affected by 

any of the biochars; it was ~100% in almost all cases, with the exception of WRB 

550 and PAT 550 where germination rate was only 80-90% (Table 4.5). As also 

observed in Li et al. (2005), however, early root growth extension was significantly 
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inhibited by five of the nineteen biochars, all of which were derived from biomass 

from PTE-contaminated land (ADX 650/750, WSI 550, WRB 550 and PAT 550). 

This resulted in a reduction of healthy seedlings (roots >5 mm) to only 0-60% when 

in direct contact with biochar-sand or when exposed to biochar-sand leachate (Table 

4.4). Seedlings were able to germinate but their further development was 

immediately and strongly impeded and the seedlings that did grow further showed 

reduced shoot (Figure 4.3) and root growth (MLV-indices, Table 4.4). 

To test the nature and persistence of the growth-suppressing effects, nine of the 

biochars, including the ones showing highest suppression, were washed with DI after 

NH4NO3-extraction and re-tested in the same germination experiment. The results 

revealed that for ADX 750 and WSI 550 the growth suppression was alleviated 

(germination rate, roots >5 mm and shoot length not significantly different to 

control; Table 4.6, Figure 4.4). On the other hand, in case of WRB 550 significant 

inhibitive effects remained, ~50% of the seedlings were stunted and the shoot growth 

was reduced by around 40%. Generally, the MLV-index was lower in the biochar 

treatments than in the sand only controls most probably resulting from residues of 

NH4+ which caused toxicity to the roots of cress which belongs to a plant family that 

reacts sensitive to NH4+ (Britto and Kronzucker, 2002). Overall, it can be concluded 

that leaching which would occur under natural conditions does alleviate some, but 

not all, of the toxic effects caused by the investigated biochars. The next step was to 

find out what caused the inhibition of growth of cress seeds in the samples in the first 

place.  
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Table 4.4: Percentage of seedlings with roots >5 mm (‘healthy, non-stunted seedlings’) as 

average and standard deviation, and Munoo-Liisa-Vitality-Index (MLV-index) (%) of nineteen 

biochars tested in 'all exposure routes' germination tests. Seeds were only affected by leachate 

from biochar-sand or were in direct contact with the mixture. Results for biochars were 

compared to the control using two sample, two tailed t-tests. p-value: <0.05 = * , <0.01 = ** , 

<0.001 = ***. 

      leachate affected only         direct contact seeds-biochar 

  roots >5 mm MLV-index   roots >5 mm MLV-index 

  %  % %   %  % % 

DW 350   100.00 ± 0.0 131.1     100.0 ± 0.0 119.8 

DW 450  96.3 ± 6.4 107.1   100.0 ± 0.0 117.2 

DW 550  100.0 ± 0.0 158.5   98.6 ± 2.4 111.0 

DW 650  95.3 ± 4.8 101.6   100.0 ± 0.0 114.5 

DW 750  100.0 ± 0.0 142.8   100.0 ± 0.0 96.7 

ADX 350   99.0 ± 1.8 142.1     96.5 ± 3.3 172.8 

ADX 450  * 86.4 ± 7.1 55.3   75.8 ± 16.2 53.2 

ADX 550  76.6 ± 26.5 42.6   76.5 ± 31.0 58.6 

ADX 650  * 59.1 ± 24.0 26.2   *** 49.0 ± 3.2 21.2 

ADX 750  *** 12.2 ± 10.8 6.5   *** 0.0 ± 0.0 7.5 

SBI 550   100.0 ± 0.0 160.1     97.5 ± 4.3 108.8 

WHI 550  98.7 ± 2.2 89.5   100.0 ± 0.0 109.3 

WSI 550  55.9 ± 33.2 25.7   ** 31.4 ± 18.8 18.5 

WLB 550  89.6 ± 15.1 81.8   97.8 ± 1.9 101.8 

WLB 700  93.5 ± 2.8 58.5   100.0 ± 0.0 85.0 

WRB 550  *** 0.0 ± 0.0 3.7   *** 0.0 ± 0.0 7.0 

SLP 550  93.2 ± 7.8 51.0   100.0 ± 0.0 93.2 

PAT 550  ** 21.7 ± 21.4 6.3   *** 0.0 ± 0.0 7.7 

FWD 550  96.0 ± 4.2 123.2   100.0 ± 0.0 117.0 
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Figure 4.3: Shoot length of cress seedlings compared to control (%) after exposure to 5% 

biochar in sand for 7 days. (A) shows the results from seeds only being affected by leachate from 

the mixture and (B) shows the seeds which were exposed to biochar-sand. Results for biochars 

were compared to the control using two sample, two tailed t-tests. LOQ, limit of quantification; 

* significant difference with p <0.05, ** with p <0.01, *** with p <0.001, # not statistically tested 

because only two of the replicates showed growth and one replicate had 100% below LOQ.  



Chapter 4: PTEs II 

100 

Table 4.5: Germination rate (%) of nineteen biochars tested in 'all exposure routes' germination 

tests with average and standard deviation. Seeds were only affected by leachate from biochar-

sand or were in direct contact. p-value: <0.05 = * , <0.01 = ** , <0.001 = ***. 

 leachate affected fraction direct contact seeds-biochar 

 germination rate germination rate 

 %  % %  % 

DW 350 100.0 ± 0.0 98.0 ± 3.4 

DW 450 100.0 ± 0.0 100.0 ± 0.0 

DW 550 98.7 ± 2.3 100.0 ± 0.0 

DW 650 100.0 ± 0.0 100.0 ± 0.0 

DW 750 100.0 ± 0.0 100.0 ± 0.0 

ADX 350 100.0 ± 0.0 98.8 ± 2.1 

ADX 450 97.3 ± 4.6 93.4 ± 4.7 

ADX 550 93.8 ± 5.7 96.5 ± 3.6 

ADX 650 98.7 ± 2.3 96.1 ± 3.8 

ADX 750 98.8 ± 2.1 90.5 ± 10.5 

SBI 550 98.4 ± 2.7 100.0 ± 0.0 

WHI 550 97.4 ± 4.4 98.8 ± 2.1 

WSI 550 92.2 ± 3.7 90.2 ± 5.8 

WLB 550 100.0 ± 0.0 100.0 ± 0.0 

WLB 700 100.0 ± 0.0 98.9 ± 1.9 

WRB 550 *81.0 ± 8.7 **84.2 ± 4.8 

SLP 550 100.0 ± 0.0 100.0 ± 0.0 

PAT 550 96.2 ± 3.5 *92.5 ± 3.7 

FWD 550 100.0 ± 0.0 98.9 ± 2.0 

 

Table 4.6: Germination rate (GR) (%), percentage of seedlings with roots >5 mm (‘non-stunted 

seedlings’) and Munoo-Liisa-Vitality-Index (MLV-index) (%) of nine leached biochars tested in 

'all exposure routes' germination tests. Seeds were only affected by leachate from biochar-sand 

or were in direct contact. p-value: <0.05 = * , <0.01 = ** , <0.001 = ***. 

 leachate affected fraction direct contact seeds-biochar 

 GR roots >5 mm MLV-index GR roots >5 mm MLV-index 

  %   % %   % % %   % %   % % 

DW 550 98.9 ± 2.0 98.8 ± 2.1 57.7 94.7 ± 4.6 100.0 ± 0.0 65.7 

DW 750 98.7 ± 2.2 90.4 ± 8.8 51.7 98.7 ± 2.2 98.9 ± 1.9 62.5 

ADX 350 97.6 ± 2.1 * 91.4 ± 3.0 51.1 97.6 ± 2.1 94.5 ± 5.2 43.1 

ADX 750 97.4 ± 2.3 89.9 ± 9.7 41.2 96.4 ± 3.5 86.0 ± 9.1 37.3 

WHI 550 98.9 ± 2.0 94.0 ± 7.4 57.0 97.7 ± 4.0 90.5 ± 1.9 42.4 

WSI 550 98.7 ± 2.2 * 78.8 ± 7.4 34.0 98.7 ± 2.2 90.2 ± 2.5 40.7 

WLB 550 98.7 ± 2.3 98.9 ± 1.9 61.4 100.0 ± 0.0 98.9 ± 2.0 49.7 

WRB 550 91.3 ± 6.0 *** 14.5 ± 16.1 5.0 93.2 ± 0.4 * 51.8 ± 18.0 13.1 

FWD 550 96.3 ± 0.5 93.4 ± 2.9 45.5 98.9 ± 2.0 91.7 ± 5.5 38.4 
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Figure 4.4: Shoot length of cress seedlings compared to control (%) after exposure to 5% 

biochar in sand for seven days. Top figure shows the results from seeds only being affected by 

leachate from the mixture and lower figure shows the seeds which were exposed to the biochar-

sand mixture. * significant difference with p <0.05, ** with p <0.01, *** with p <0.001 

 

4.3.7 Correlating plant response with biochar characteristics (available 

elemental concentrations, pH and EC) 

Measuring the concentrations of available PTEs and conducting plant tests is a 

means of risk assessment; to be able to take appropriate risk management measures 

to avoid the toxic effects of biochar, however, the underlying reasons need to be 

understood. Consequently, the performance of biochars in cress germination and 

growth tests (percentage of healthy, non-stunted seedlings) was correlated with the 

available elemental concentrations of all nineteen elements and with biochar pH and 
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electrical conductivity (EC) (Table 3.1) to identify the parameter that most likely 

affected the cress seedling growth adversely. 

The effects of ADX-biochars in the plant test were striking; the phytotoxicity 

increased linearly with HTT (Table 4.4, Figure 4.3). The availability of most PTEs in 

ADX-biochar, however, did not increase with HTT, except for Mo which increased 

from <0.06 mg kg-1 in ADX 350 to 0.35 mg kg-1 in ADX 750 (Table 4.1). Indeed, 

correlating the percentage of healthy, non-stunted seedlings with available Mo 

concentrations for the whole set of nineteen biochars showed a significant negative, 

linear correlation (Table 4.7). It is reported that phytotoxic effects caused by Mo are 

very uncommon (Gupta and Gupta, 1998; Kabata-Pendias, 2011; Kaiser, 2005; 

MacNicol and Beckett, 1985), yet, Mo-related inhibitions were observed in some 

studies: the lowest concentration that showed toxic effects on pea plants and in 

various other plants in solution was 0.96 mg L-1 Mo (0.01 mmol L-1) and 1-2 mg L-1, 

respectively (Kevresan et al., 2001; McGrath et al., 2010). In the germination tests 

conducted in this study, a water-to-biochar ratio of 1:14 was used, while the 

extractions were performed with a ratio of biochar-to-NH4NO3-solution of 1:10 and 

consequently, the Mo concentrations to which the seeds were exposed were 

comparable to the concentrations detected in the NH4NO3-extracts (concentrations in 

the raw extracts 10 fold lower than in Table 4.1). In the literature inhibitory effects 

started at ~1 mg L-1, while in this study biochars with Mo concentrations in the 

NH4NO3-extracts of 0.035 mg L-1 (ADX 750) totally inhibited early seedling growth 

in direct contact with biochar. In conclusion, while it cannot be entirely excluded that 

Mo has contributed to the total inhibition of early seedling growth, it seems highly 

unlikely. Instead this could be a case of wrongly interpreted cause-effect relationship. 

The available concentration of Mo is not the cause for the toxicity but it is a 

symptom of the high pHs of these biochars. Therefore, it is the elevated pHs that 

caused the observed growth suppression effects. Indeed, biochar pH (Table 3.1) 

showed a similarly high negative correlation with healthy, non-stunted seedlings as 

the available Mo concentration observed in this study (Table 4.7). 

Henig-Sever et al. (1996) and Singh et al. (1975) showed that solutions with pH in 

the range 7-9 reduced germination rates in most plant species and by pH of 10-11, 

total inhibition was observed in most cases. Singh et al. (1975) suggested that the 



Chapter 4: PTEs II 

103 

germination rate-response to pH followed a 2nd order polynomial curve, and 

therefore, a linear correlation (Pearson) does not describe the relationship between 

pH and growth response appropriately. Tested on the data from this study, is shows 

that indeed a 2nd order polynomial curve fitted very well with the plant response 

(Figure 4.5A: R²=0.63, Figure 4.5B: R²=0.68). Investigation of the causes of 

relatively high pH of the biochar used in this study showed that it can be attributed 

mainly to potassium salts, e.g. potassium carbonate, as potassium was the element 

with by far the highest available elemental concentration in all biochars (Table 4.1, 

Table 4.3). 

Consequently, K most likely caused indirect inhibition of plant growth by increasing 

the pH in solution. Yet, the available K concentration itself shows an even higher 

significant correlation with seedling growth than pH and a better 2nd order 

polynomial fit, in fact available K displays the best fit of all parameters tested (r=-

0.728, p<0.001) (Table 4.7, Figure 4.5C, D). However, the only direct, adverse effect 

reported for K excess is reduced uptake of other nutrients, which should not affect 

the early seedling growth, where nutrients are mostly provided by the seed itself 

(Butnan et al., 2015; Hawkesford et al., 2011). Consequently, the most likely 

mechanism responsible for growth inhibition caused by available K, as for pH, is an 

indirect mechanism, an increase in osmotic pressure. El-Darier and Youssef (2000) 

in their study on effects of different salt concentrations on cress seeds, reported that 

due to the osmotic pressure of a solution containing >50 mmol L-1 NaCl (100 mmol 

L-1 active ions) the shoot and root length were significantly reduced. In the current 

study, the four biochars that caused the highest inhibition had concentrations of K of 

~3,000 mg L-1 in NH4NO3-extracts (concentrations in the raw extracts ten fold lower 

than in Table 4.3) which corresponds to 77 mmol L-1. Assuming K dissolution as 

potassium carbonate or chloride, the active concentrations of ions resulting from this 

would be 231 and 154 mmol L-1, respectively, which is well in the range where 

reductions of cress seedling growth have been reported. 

As electrical conductivity (EC) is often used as a proxy for osmotic potential of a 

solution, it was assessed as a potential indicator of plant response. Statistical analysis 

showed that EC showed a comparatively low Pearson correlation (Table 4.7) and R² 

(not shown) with seedling growth, much lower than that shown by the available K 
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concentration. This is attributed to the fact that, while ions in solution contribute to 

EC to different extents, depending on type of ion and its charge, in case of osmotic 

potential/pressure, which is the actual factor affecting seedling growth, only the 

quantity of solute per unit volume of solution (molarity) is relevant (Richards, 1954). 

Consequently, EC is not necessarily a good predictor for the inhibition of 

germination and early seedling growth, while molarity of the solution is. In 

conclusion, it was shown that it was the osmotic potential of the solution and 

partially the high pH (both of which are mostly a result of dissolved K) that were the 

primary causes of observed phytotoxicity in this study and not the PTEs contained in 

the biochar. 

 

Table 4.7: Pearson correlation coefficient (r) of available elemental content, pH and EC of 

nineteen biochars with percentage of seedlings with roots >5 mm (‘healthy, non-stunted 

seedlings’) for leachate affected seeds and seeds in direct contact with sand-biochar. Only 

parameters with significant effect shown. * significant difference with p <0.05, ** with p <0.01, 

*** with p <0.001. 

 leachate affected seeds direct contact seeds-biochar 

 r p-value r p-value 

K -0.729 ***<0.001 -0.749 ***<0.001 

Mo -0.660 **0.002 -0.608 **0.006 

P -0.573 *0.010 -0.478 *0.038 

EC -0.471 *0.042 -0.484 *0.036 

pH -0.615 **0.005 -0.627 **0.004 
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Figure 4.5: Regression of available K concentration and pH of nineteen biochars with percentage of roots >5 mm (‘healthy, non-stunted seedlings’). Biochar 

pH (determined in solution in liquid-to-solid ratio of 20:1) is shown with (A) seedlings affected by biochar-sand leachate and (B) seedlings in direct contact 

with biochar-sand. Available K concentration in biochar (determined by NH4NO3-extraction) is depicted with (C) seedlings affected by biochar-sand leachate 

and (D) seedlings in direct contact with biochar-sand. The equations in the boxes show the fit of the linear and 2nd order polynomial curves.  
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4.3.8 Use of biochars from marginal biomass for amendment of soil or 

as ingredients in growing media 

For the use of biochar for amendment of soil and in growing media, biochar has to 

comply with environmental, health and safety legislations and cannot pose a threat 

for plant growth. On the contrary, it needs to offer beneficial properties, such as the 

provision of nutrients. 

Overall, in this study, all biochars with agronomically viable concentrations of 

available cationic nutrients also contained concentrations of available PTEs which 

exceed the soil threshold values for protection of crop growth of the German Federal 

Soil Protection and Contaminated Sites Ordinance (1999). However, the threshold 

values are limits for soil and not soil amendments. Consequently, where pure 

biochars exceeded threshold values, incorporation in soil at <1% (<20 t ha-1) results 

in a dilution of 100-fold and consequently, available PTEs would not exceed the 

limit. Furthermore, comparing the total PTE concentrations to commercially 

available fertiliser products shows that the concentrations of As, Cd, Cr and Ni are 

much higher in inorganic fertilisers than in the biochars investigated here and Zn is 

even added intentionally to inorganic fertilisers to supply Zn for Zn-deficient soils 

(Rogowski et al., 1999). Therefore, although the compliance/non-compliance of 

respective biochars with legislation would need to be decided by the responsible 

governmental bodies, considering the available concentrations, PTEs do not seem to 

be of any concern. More importantly, the phytotoxic effects observed in this study 

could not be correlated with available PTEs concentrations. 

Five of the nineteen biochars did adversely affect growth in germination tests (linked 

to high pH and high content of available K), while eight showed significant growth 

stimulating effects, even in these high application rates (5 wt%, corresponding to 

>100 t ha-1, depending on soil and application type). Consequently, some of the 

tested biochars would not be suitable for application in high concentrations, e.g. in 

growing media, without causing phytotoxic effects. However, the application rates 

used in this work were unrealistically high from the perspective of agricultural 

application (these were selected intentionally high to exacerbate negative effects of 

PTEs) and therefore application in lower, practically relevant application rates (1-10 

t ha-1) would result in smaller increases in pH and lower additions of K and would 
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therefore most likely result in growth stimulating effects. This application rate would 

also not exceed the available PTE concentrations in soil above the threshold values. 
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4.4 Conclusions 

In this chapter, nineteen biochars produced from marginal biomass feedstocks were 

investigated to assess their content of available PTE and nutrients, and any growth 

promoting or suppressing effects. The study confirmed that total concentrations are 

not good predictors for available concentrations and the potential risk for biochars to 

cause adverse effects in plants. In addition, it was concluded that in the investigated 

biochars inherent Cu, Cr, Ni and Zn were bound with similar strength to that of soil 

at a similar pH (>7.5). The highest HTT applied in this study, 750°C increased the 

availability of most PTEs and decreased the availability of several nutrients. Eight of 

the nineteen biochars used in this study significantly increased early seedling growth, 

while five biochars suppressed growth. The phytotoxic effects showed only poor 

correlation with available PTEs, but a strong correlation with pH and available K 

concentration. The available K concentrations most probably resulted in high 

osmotic pressure which caused the growth inhibition. It is concluded that, although 

high available K concentrations and high pH were responsible for seedling growth 

inhibitions in this study using very high biochar application rates, were such biochars 

used at lower application rates, both factors (available K and pH) would contribute to 

growth promoting effects and would be among the most important assets of these 

biochars. Overall, in this chapter it was shown that most marginal biomass-derived 

biochars have good potential to be used as nutrient source for plants and have low 

risk to cause adverse effects despite increased content of PTEs. Based on this, 

revisions of guidelines for application of biochar and other materials to soil is 

suggested, to reflect the true risks posed by different materials, and not simply base 

such judgments on the total content of PTEs. Yet, effects of PTE-rich biochars on 

other plants and soil organisms, as well as long-term fate of PTEs are still uncertain 

and need to be tested before PTE-rich biochar can be considered safe for soil 

amendment. 
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Chapter 5   Influence of production conditions and 

common feedstock types on total PAH 

concentrations in biochar 

 

The following chapter is based on the published article: 

Buss, W., Graham, M.C., MacKinnon, G., Mašek, O., 2016. Strategies for producing 

biochars with minimum PAH contamination. J. Anal. Appl. Pyrolysis 119:24-30. doi: 

10.1016/j.jaap.2016.04.001 

Journal impact factor (2014): 3.564 

Number of citations (September 2016): 2 

The candidate was solely responsible for data analysis and writing of the article and 

this chapter. Supervisors provided guidance and supervisors and co-authors 

contributed to the editing of the manuscript. The experimental work was performed 

by the candidate apart for production of some biochars which was performed by 

Peter Brownsort, Kyle Crombie, Clare Peters, Juan Luis Turrion-Gomez and Walter 

Lowe. 
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Figure 5.1: Graphical abstract of Chapter 5. The effect of pyrolysis temperature on the polycyclic aromatic hydrocarbon (PAH) concentration in biochar was 

tested and no relationship could be found. This is explained by the simultaneous increase of PAH yield and increase of vaporisation of PAHs from biochar 

with increasing pyrolysis temperature. Both effects combined determine the PAH concentration in biochar (grey area – distance between the two graphes 

which stays the same at all pyrolysis temperatures).
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5.1 Introduction 

Biochar is the solid product of thermochemical conversion of biomass under an 

atmosphere with reduced content of free oxygen or its complete absence, i.e. 

pyrolysis and gasification (Lehmann and Joseph, 2009). During such conversion, 

biomass undergoes extensive devolatilisation and develops a solid carbonised matrix 

(Bridgwater, 2003). This is accompanied by formation of polycyclic aromatic 

hydrocarbons (PAHs), an important class of organic contaminants, associated with 

environmental problems (Baek et al., 1991). PAHs can have acute adverse effects on 

human health, plants and the wider ecosystem with some displaying carcinogenic, 

mutagenic and teratogenic effects (US Department of Health and Human Services, 

1995). 

PAHs are defined as aromatic structures that consist of two or more linked carbon 

rings and only contain the elements carbon and hydrogen (Baek et al., 1991). PAHs 

are formed during incomplete combustion of any type of biomass and biomass-

derived material. Thus, PAHs are present in the environment naturally through forest 

fires and volcanic eruptions, with UK rural soils containing a mean PAH 

concentration of 2.2 mg kg-1 (Creaser et al., 2007). However, human actions increase 

PAH concentrations locally and the average PAH concentrations in UK urban soils 

were reported to be 14.2 mg kg-1 (Creaser et al., 2007). In soil they are known to 

accumulate as they are difficult to degrade, associate with organic matter and have 

low water solubility (half-life of PAHs of more than three rings >20 to hundreds of 

days) (US Department of Health and Human Services, 1995). 

There are two main pathways by which PAHs are known to form: at lower 

conversion temperatures Diels-Alder reactions take place which involve 

dehydrogenation, polymerisation, cyclisation and aromatisation of hydrocarbons to 

form PAHs (Chiang et al., 2014; Keiluweit et al., 2012; McGrath et al., 2003). At 

temperatures above 400-500°C, the alternative is a pyrosynthetic pathway consisting 

of demethylation, demethoxylation and dehydroxylation of lignin, cellulose and 

hemicellulose to form phenol, alkyl-phenols and BTEX. This is followed by 

deoxygenation/dehydrogenation, connecting single compounds and condensing these 

into larger compounds which end up as polyaromatic networks (PAHs or pyrolytic 
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carbon) (Chiang et al., 2014; Hajaligol et al., 2001; McGrath et al., 2003; Sharma 

and Hajaligol, 2003). 

Research effort regarding anthropogenic pollution with PAHs used to focus on 

reducing PAH emissions from fossil fuel and biomass combustion (Baek et al., 

1991). Studies that dealt with PAHs and pyrolysis mostly investigated PAH 

formation and concentrations in pyrolysis liquids/gases (McGrath et al., 2001, 2003; 

Sharma and Hajaligol, 2003; Wei and Lee, 1998; Zhou et al., 2014b). Recently, 

attention has shifted to PAH concentrations in pyrolysis solids because of the 

potential application of biochar to soil for soil improvement, soil remediation and 

carbon sequestration (Dai et al., 2014b; Devi and Saroha, 2015; Freddo et al., 2012; 

Hale et al., 2012; Keiluweit et al., 2012; Kloss et al., 2012; Rogovska et al., 2012). In 

order to avoid possible negative effects on soil ecosystems and to comply with 

environmental legislation, it is essential to produce biochars with low PAH 

concentrations. Biochar guideline values have been established which are based on 

current legislation. For example, the European Biochar Certificate (EBC) allows up 

to 12 mg kg-1 of 16 US EPA PAHs for basic grade and up to 4 mg kg-1 for premium 

grade biochar which was adopted from the Swiss Chemical Risk Reduction Act 

(EBC, 2012b). The International Biochar Initiative (IBI) guidelines use threshold 

values of 20 mg kg-1 and 6 mg kg-1 based on the Austrian Compost Ordinance 

(International Biochar Initiative, 2011). 

The few systematic studies on dependence of PAH concentrations on pyrolysis 

conditions that exist, provide different perspectives and no overall trend is observed 

(Brown et al., 2006; Dai et al., 2014b; Devi and Saroha, 2015; Freddo et al., 2012; 

Hale et al., 2012; Keiluweit et al., 2012; Kloss et al., 2012; Rogovska et al., 2012). In 

Hale et al. (2012), the effects of highest treatment temperature (HTT-maximum 

temperature material is exposed to), residence time and feedstock was investigated 

by analysing 59 biochars, however, due to the highly variable technologies used for 

biochar production only limited conclusions could be drawn. This shows the absolute 

need for a systematic study on the relationship of pyrolysis conditions and feedstock 

with PAHs in biochars produced from highly controlled, slow pyrolysis units. 
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Consequently, in this chapter the effects of two common feedstock types (wood and 

straw) and typical pyrolysis parameters (residence time, HTT and carrier gas flow 

rate) were investigated to determine their effect on total concentrations of 16 US 

EPA PAHs in resulting biochars. The overall objective was to provide 

recommendations to produce pyrolysis solids (biochar) with minimal PAH 

contamination based on a data set of biochars produced from highly controlled 

pyrolysis units.  
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5.2 Materials and methods 

5.2.1 Biochar production 

Forty-six biochars were produced under highly controlled pyrolysis conditions using 

three different slow pyrolysis units that are located at the UK Biochar Research 

Centre (UKBRC). Production parameters, such as HTT (350-750°C), residence time 

(10, 20, 40 min) and carrier gas flow (0, 0.33, 0.67 L min-1) were varied. The carrier 

gas flows under standard conditions were 10 L min-1 for Stage III (inner diameter 

244 mm), 1 L min-1 for Stage II (inner diameter 100 mm) and 0.3 L min-1 for Stage I 

(inner diameter 50 mm). When inconsistencies during a pyrolysis run were detected, 

such as high pressure peaks, the biochars were discarded and the pyrolysis run was 

repeated ensuring comparative conditions between runs. An overview of all the 

biochars including production conditions and feedstocks can be found in Table 5.1. 

More details on feedstocks and biochar production are described in section 2.2.5, 

2.2.4 and 2.2.6, here is a short overview of the biochars analysed in this chapter. 

5.2.1.1 Highest treatment temperature (HTT) 

To be able to find overall trends of the influence of HTT on the total PAH 

concentration in biochar, different feedstocks were pyrolysed using two pyrolysis 

units in the typical temperature range used for biochar production (350-750°C). 

Stage II pyrolysis unit was used to pyrolyse demolition wood and A. donax at five 

temperatures (350, 450, 550, 650, 750°C), willow chips at three temperatures (350, 

550, 750°C) and miscanthus chips at four temperatures (350, 450, 550, 750°C). 

Furthermore, sewage sludge was pyrolysed at five temperatures (350, 450, 550, 650, 

750°C) with the Stage III pyrolysis unit. 

5.2.1.2 Carrier gas flow rate, HTT, feedstock, and residence time at HTT 

The Stage I pyrolysis unit was used to pyrolyse straw pellets (WSP II) and softwood 

pellets (SWP II) at two HTTs (350, 650°C), two residence times (10, 40 min) and 

three carrier gas flow rates (0, 0.33, 0.67 L min-1). In total, 24 biochars were 

produced. The feedstocks and production conditions were chosen as typical 

feedstocks and production conditions for biochar production. More details on the 

feedstocks, such as elemental content (ultimate analysis) and biomass components, 

can be found in Crombie and Mašek (2015). 
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5.2.2 PAH analysis 

The analyses were performed by Northumbrian Water Scientific Services 

(Newcastle, United Kingdom), accredited by United Kingdom Accreditation Service 

(UKAS). More details can be found in section 2.5. The sum of 16 US EPA priority 

PAHs is reported for 46 biochars. 

5.2.3 Statistics 

Results were evaluated statistically using two-sample, two-tailed t-tests and Analysis 

of Variance (ANOVA) followed by Student-Newman-Keuls post hoc tests performed 

with SigmaPlot 12 (Systat Software Inc., Chicago, IL). Significant differences are 

stated with a p-value <0.05. 
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5.3 Results and discussion 

Production conditions and total PAH concentrations for all 46 biochars used in this 

work are shown in Table 5.1. The 16 US EPA PAH concentrations detected in the 46 

biochars analysed in this study were between 1.2 and 100 mg kg-1. This falls in the 

range of PAH concentrations detected in published studies which employed various 

solvents and extraction durations (but all used Soxhlet extractions), 0.07-355 mg kg-1 

(Anjum et al., 2014; Fabbri et al., 2013; Granatstein et al., 2009; Hale et al., 2012; 

Hilber et al., 2012; Kloss et al., 2012; Schimmelpfennig and Glaser, 2012). However, 

comparison of the measured values against guideline values for acceptable PAHs 

concentrations in biochar for soil application showed that out of the 46 biochars 

tested 59% exceeded the EBC premium grade PAH limit (4 mg kg-1), 46% were 

above the EBC basic grade limit (12 mg kg-1) and 43% were higher than the IBI 

threshold (20 mg kg-1) (Table 5.2). 
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Table 5.1: Production conditions and total 16 US EPA concentrations (mg kg-1) of 46 biochars 

investigated in this study. HTT, highest treatment temperature; RT, residence time at peak 

temperature; HR, heating rate (batch process only); CGF, carrier gas flow; n/a, not available. 

biochar Feedstock pyrolysis unit HTT RT HR CGF PAHs 

   °C min °C min-1 L min-1 mg kg -1 

DNX - 350 Arundo donax Stage II 350 20 n/a 1 2.9 

DNX - 450 Arundo donax Stage II 450 20 n/a 1 3.9 

DNX - 550 Arundo donax Stage II 550 20 n/a 1 5.5 

DNX - 650 Arundo donax Stage II 650 20 n/a 1 7.8 

DNX - 750 Arundo donax Stage II 750 20 n/a 1 67 

DW - 350 Demolition wood Stage II 350 20 n/a 1 2.2 

DW - 450 Demolition wood Stage II 450 20 n/a 1 1.5 

DW - 550 Demolition wood Stage II 550 20 n/a 1 3.6 

DW - 650 Demolition wood Stage II 650 20 n/a 1 3.4 

DW - 750 Demolition wood Stage II 750 20 n/a 1 48 

MC - 350 Miscanthus chips Stage II 350 20 n/a 1 27 

MC - 450 Miscanthus chips Stage II 450 20 n/a 1 44 

MC - 550 Miscanthus chips Stage II 550 20 n/a 1 26 

MC - 750 Miscanthus chips Stage II 750 20 n/a 1 52 

SS - 350 Sewage sludge Stage III 350 20 n/a 10 31 

SS - 450 Sewage sludge Stage III 450 20 n/a 10 21 

SS - 550 Sewage sludge Stage III 550 20 n/a 10 26 

SS - 650 Sewage sludge Stage III 650 20 n/a 10 21 

SS - 750 Sewage sludge Stage III 750 20 n/a 10 37 

WC - 350 Willow chips Stage II 350 20 n/a 1 20 

WC - 550 Willow chips Stage II 550 20 n/a 1 45 

WC - 750 Willow chips Stage II 750 20 n/a 1 100 

SWP II-350-10-0 Softwood pellets II Stage I 350 10 5 0.00 2.9 

SWP II-350-10-0.33 Softwood pellets II Stage I 350 10 5 0.33 2.1 

SWP II-350-10-0.66 Softwood pellets II Stage I 350 10 5 0.67 2.2 

SWP II-350-40-0 Softwood pellets II Stage I 350 40 5 0.00 5.3 

SWP II-350-40-0.33 Softwood pellets II Stage I 350 40 5 0.33 2.3 

SWP II-350-40-0.66 Softwood pellets II Stage I 350 40 5 0.67 1.3 

SWP II-650-10-0 Softwood pellets II Stage I 650 10 5 0.00 13 

SWP II-650-10-0.33 Softwood pellets II Stage I 650 10 5 0.33 1.9 

SWP II-650-10-0.66 Softwood pellets II Stage I 650 10 5 0.67 1.4 

SWP II-650-40-0 Softwood pellets II Stage I 650 40 5 0.00 8.5 

SWP II-650-40-0.33 Softwood pellets II Stage I 650 40 5 0.33 1.9 

SWP II-650-40-0.66 Softwood pellets II Stage I 650 40 5 0.67 1.3 

WSP II-350-10-0 Straw pellets II Stage I 350 10 5 0.00 52 

WSP II-350-10-0.33 Straw pellets II Stage I 350 10 5 0.33 38 

WSP II-350-10-0.66 Straw pellets II Stage I 350 10 5 0.67 5.7 

WSP II-350-40-0 Straw pellets II Stage I 350 40 5 0.00 33 

WSP II-350-40-0.33 Straw pellets II Stage I 350 40 5 0.33 25 

WSP II-350-40-0.66 Straw pellets II Stage I 350 40 5 0.67 3.4 

WSP II-650-10-0 Straw pellets II Stage I 650 10 5 0.00 34 

WSP II-650-10-0.33 Straw pellets II Stage I 650 10 5 0.33 1.4 

WSP II-650-10-0.66 Straw pellets II Stage I 650 10 5 0.67 3.0 

WSP II-650-40-0 Straw pellets II Stage I 650 40 5 0.00 53 

WSP II-650-40-0.33 Straw pellets II Stage I 650 40 5 0.33 4.5 

WSP II-650-40-0.66 Straw pellets II Stage I 650 40 5 0.67 2.0 
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Table 5.2: Biochars exceeding PAH guideline values. The values depicted are for biochar soil 

application according to European Biochar Certificate (EBC, 2012b) and International Biochar 

Initiative (International Biochar Initiative, 2011) and number and percentage of biochars out of 

the set of 46, exceeding these guideline values. 

  EBC premium EBC basic IBI 

threshold mg kg -1 4 12 20 

exceedance 
biochars 27 21 20 

% 59 46 43 

 

5.3.1 Effect of highest treatment temperature (HTT) on PAHs in biochar 

Four different feedstocks were pyrolysed with Stage II pyrolysis unit and one with 

Stage III pyrolysis unit in the temperature range 350-750°C (Figure 5.2). For 

production temperatures of up to 650°C, biochars from both pyrolysis units showed 

some variations in the PAH concentrations, but, taking all feedstocks and both 

pyrolysis units into account, there was no significant change in the range 350-650°C 

(one-way ANOVA). However, on average, the biochars produced at 750°C showed 

significantly higher PAH concentrations than biochars produced at any of the lower 

temperatures (one-way ANOVA). Yet, the PAH concentrations of the biochar 

produced at 750°C with the Stage III pyrolysis unit was only 1.2 fold higher than the 

biochar from the same feedstock produced at 350°C, while the PAH concentrations 

in the biochars produced at 750°C with the Stage II pyrolysis unit were 1.9 fold to 

23.3 fold higher than the 350°C-biochars (DW 21.8 fold, ADX 23.3 fold, MC 1.9 

fold and WC 5.0 fold) (Figure 5.2).  
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Figure 5.2: Effect of pyrolysis temperature on 16 US EPA PAH concentration in biochar (mg 

kg-1). The biochars were produced from four different feedstocks in Stage II pyrolysis unit 

(ADX, Arundo donax; DW, demolition wood; MC, miscanthus chips; WC, willow chips) and one 

feedstock in Stage III pyrolysis unit (SS, sewage sludge). For all the feedstocks combined, the 

PAH concentration in the biochars produced at 750°C is significantly different to all the other 

pyrolysis temperatures (HTTs) (one-way ANOVA). 

 

So far, no satisfactory explanation has been given in the literature regarding the 

relationship of PAH concentrations in biochar and pyrolysis HTT (Bucheli et al., 

2015). Brown et al. (2006) (450-1000°C) and Freddo et al. (2012) (300, 600°C) 

reported decreasing PAH concentrations with increasing temperature. Kloss et al. 

(2012) (400-525°C) did not observe any temperature dependence, while Rogovska et 

al. (2012) (450-850°C) and Zielińska and Oleszczuk (2015) (500-700°C) found that 

PAH concentrations increased with increasing pyrolysis temperature. In the current 

study, the PAH concentrations were not significantly different in biochars produced 

in the temperature range 350-650°C. At 750°C, however, a significant increase in 

PAH concentration was observed. Although most published studies did not 

investigate biochar produced at temperatures ≥700°C, those that did, did not report 

any marked increase in PAH concentrations at temperatures ≥700°C (Brown et al., 

2006; Dai et al., 2014b; Devi and Saroha, 2015; Hale et al., 2012; Keiluweit et al., 
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2012). Several studies observed maximum PAH concentrations in biochars produced 

at lower pyrolysis temperatures than 750°C, e.g. Hale et al. (2012) over the range 

350-550°C using various feedstocks; Devi and Saroha (2015) at 500°C with sewage 

sludge; Keiluweit et al. (2012) at 500°C with wood and grass and Dai et al. (2014b) 

at 600°C with sewage sludge.  

Although there appears to be no clear trend in biochar PAH concentrations with 

temperature, PAH yield in all pyrolysis products, i.e. solids, liquids and gases, has 

been shown to increase with temperature (at least in the temperature range suitable 

for biochar production) (Aracil et al., 2005; Dai et al., 2014a; McGrath et al., 2001, 

2003; Sharma and Hajaligol, 2003; Wei and Lee, 1998; Zhou et al., 2014b). The 

PAH yield at a particular temperature consists of PAH formation and destruction 

(conversion of PAHs into lighter hydrocarbons/gases (Dai et al., 2014b; McGrath et 

al., 2001) and condensation to form high molecular weight PAHs/pyrolytic carbon 

(Keiluweit et al., 2012; Sharma and Hajaligol, 2003; Zhou et al., 2014b)). This 

concept is illustrated in Figure 5.3. However, during fast/slow pyrolysis the particle 

that is heated up goes through all the different temperature phases in rapid/slow 

succession until the highest treatment temperature (target) is reached, e.g. as shown 

in Huang et al. (2013). Consequently, what is actually determined when the total 

PAH concentration in pyrolysis solids, liquids and gases is measured is the PAH 

yield integrated over temperature which is the accumulation of all PAHs produced 

from starting to highest treatment temperature. Consequently, the peak of PAH yield 

(Figure 5.3A) indicates the temperature where the highest accumulated yield increase 

is reached (slope change Figure 5.3B). At even higher temperatures, the PAH yield 

decreases until PAH destruction equals PAH formation (PAH yield is zero) and the 

maximum accumulated PAH yield is reached (Figure 5.3A, B) which is between 

750-900°C (Aracil et al., 2005; Dai et al., 2014a, 2014b; Zhou et al., 2014b). 

However, neither PAH formation, nor accumulated PAH yield alone are the key for 

elucidating the relationship between pyrolysis temperature and PAH concentrations 

in biochar; the distribution of PAHs into the pyrolysis fractions is a highly important 

contributing factor. Since PAHs are reported to be mostly formed at the gas-solid 

interphase (Bucheli et al., 2015; Hajaligol et al., 2001; Keiluweit et al., 2012; 

McGrath et al., 2003; Zhou et al., 2014b), most PAHs created are easily vaporised at 
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typical pyrolysis temperatures (>99% end up in pyrolysis liquids/gases) (Dai et al., 

2014b; Fagernäs et al., 2012a). Naturally, increasing pyrolysis temperature leads to 

higher PAH vaporisation from pyrolysis solids which counteracts the increasing 

amount of accumulated PAH yield at higher temperatures. The difference between 

PAHs formed and PAHs vaporised is the actual concentration of PAHs in biochar, 

which is illustrated in Figure 5.3C. It is hypothesised that simultaneous increase in 

PAH formation and PAH vaporisation with temperature is the reason why no general 

trend of PAHs in biochar with pyrolysis temperature has been reported in literature 

as the effects are counteracting, one resulting in increased and one in decreased 

PAHs in biochar (Figure 5.3C).  

This explanation is supported by the PAH concentrations in biochars produced in the 

temperature range 350-650°C (Table 5.2) where no significant changes were seen. 

Yet, the significantly higher PAH concentrations observed in biochars produced at 

750°C (with the Stage II pyrolysis unit) in the current study could be seen as 

contradictory. However, a plausible explanation of this unit-specific effect, is that it 

is caused by the pyrolysis unit design and operation, resulting in distribution of 

temperatures that allowed cooling of volatiles at the discharge end of the unit. Due to 

the pyrolysis unit design, where pyrolysis vapours (containing >99% of the produced 

PAHs (Dai et al., 2014b; Fagernäs et al., 2012a)) travel concurrently through the 

pyrolysis chamber and into a discharge chamber where biochar is separated, 

extensive contact between biochar and vapours is possible. Therefore, if at any point 

the reactor or material temperature drops below the dew point of the tars, including 

PAHs in the pyrolysis vapours, these would condense onto the biochar. This effect 

has been described in section 2.2.6. The discharge chamber of the Stage II pyrolysis 

unit is actively heated up with heating tapes which are fixed at a certain temperature 

irrespective of the pyrolysis temperature. This can result in a major difference in 

furnace and discharge chamber temperature and condensation of pyrolysis vapours, 

including PAHs. The discharge chamber of the Stage III pyrolysis unit, however, is 

heated by the furnace and released vapours/gases and consequently, the temperature 

of the discharge chamber is increasing with the furnace temperature. The difference 

in set-up of the discharge chamber may be the reason for the difference in PAH 
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concentration observed for the biochars produced at 750°C with the Stage II and III 

pyrolysis unit. 

5.3.2 Effect of carrier gas flow and residence time on PAHs in biochar 

The effects of carrier gas flow rate, HTT, and residence time at HTT on PAH 

concentrations were tested by pyrolysing two feedstocks (straw, wood) at twelve 

different conditions in a batch pyrolysis reactor (Stage I), respectively (Figure 5.4). 

Straw pyrolysis yielded biochar with much higher PAH concentrations than wood 

(further discussed in section 5.3.3). The biochars that only differed in residence time 

showed very similar PAH concentrations (Figure 5.4), confirming previous 

observations that in these samples residence time at HTT in the range investigated 

had negligible effect on resulting biochars (energy content of pyrolysis products and 

carbon sequestration potential tested in Crombie and Mašek (2015)). 

It is also apparent that the concentration of PAHs in biochar decreased with 

increasing carrier gas flow rate irrespective of HTT and residence time from 43.1 mg 

kg-1 to 17.3 mg kg-1 and 3.5 mg kg-1 for biochars produced from WSP and 7.4 mg kg-

1 to 2.0 mg kg-1 and 1.5 mg kg-1 for biochars produced from SWP (Figure 5.4, 

averages in Table 5.3). For biochars from both feedstocks this meant a significant 

reduction of PAHs due to increased carrier gas flow rates from 0 to 0.33 L min-1 

(two-sample, two-tailed t-test; WSP II: p-value=0.046, SWP II: p-value=0.048) and 

from 0 to 0.67 L min-1 (WSP II: p-value=0.0003, SWP II: p-value=0.035). At 650°C 

the effect was more pronounced, with a sharp decline with increase of carrier gas 

flow rate from 0 to 0.33 L min-1 for both feedstocks. At 350°C the decrease with 

flow rate was more gradual, ultimately reaching concentrations similar to those 

obtained for the 650°C biochar when the carrier flow rate was increased to 0.67 L 

min-1. Most importantly both feedstocks resulted in biochars with PAH 

concentrations of less than 6 mg kg-1 (IBI lower guideline value) at higher carrier gas 

flow rate, and wood pellets biochars even stayed below the premium grade biochar 

limit (4 mg kg-1) at low carrier gas flow rate. It was shown that increasing carrier gas 

flow through the bed of biomass undergoing pyrolysis in a fixed bed reactor 

decreased the PAH concentrations in biochar. On the other hand, residence time of 

biomass at HTT in the fixed bed did not have any discernible effect on PAH 

concentrations.  
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Figure 5.3: Schematic illustration of conceptual relationship of PAHs and pyrolysis 

temperature. (A) shows PAH yield consisting of PAH formation and destruction, regarding each 

individual pyrolysis temperature separately. (B) is the integral of (A) and shows the total yield 

accumulated over the whole temperature range up to the highest treatment temperature, i.e. the 

PAH yields from each temperature step summed up. (C) shows the concentration of PAHs in 

biochar at each pyrolysis temperature as the difference between accumulated PAH yield (as in 

(B)) and PAHs vaporised (released from solids to gas phase). (D) shows which effect increased 

carrier gas flow had on PAHs in biochar which was either caused by a decreased PAH yield or 

an increased PAH vaporisation from the solid (indicated as arrows with question marks in the 

schematic). 

 

Table 5.3: Average concentration of PAHs (mg kg-1) in biochars produced from straw pellets 

(WSP II) and softwood pellets (SWP II) using the same carrier gas flow. On the right side the 

results from two-sample, two-tailed t-tests comparing the different treatments is shown. 

Significant differences are shown in bold. 

 PAH concentration    p-value 

carrier gas flow WSP II SWP II   carrier gas flow WSP II SWP II 

L min-1 mg kg-1 mg kg-1   comparison   

0 43.1 7.4   0 vs 0.33 0.046 0.048 

0.33 17.3 2.0   0.33 vs 0.67 0.167 0.064 

0.67 3.5 1.5   0 vs 0.67 0.0003 0.035 

 

PAHs are mainly formed through secondary reactions of vapours, and similar 

reaction pathways also form biochar through combining PAHs to higher molecular 

weight PAHs and further combine these to build pyrolytic carbon (Hajaligol et al., 
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2001; McGrath et al., 2001; Sharma and Hajaligol, 2003). It is reported that the 

magnitude of secondary (char) reactions is mainly influenced by the intensity and 

duration of contact of vapours with feedstock/biochar (Connor, 2008; Huang et al., 

2013) as longer vapour residence times increase biochar yields (Zaror et al., 1985). 

This means that reduced hot vapour residence time, besides reducing biochar 

formation (Crombie and Mašek, 2015), should also reduce PAH formation as already 

speculated in McGrath et al. (2003) and shown in Dai et al. (2014a). 

Residence time of feedstock in the heated zone, however, must be clearly 

differentiated from hot vapour residence time. During fast pyrolysis, vapour 

residence time indeed is influenced by residence time of the feedstock in the heated 

zone and has a major effect on PAH yield (McGrath et al., 2001). Residence time 

during slow pyrolysis, on the other hand, is in the range of minutes (10 and 40 min 

tested here) to hours and hot vapour residence time in the range of seconds, which is 

much longer than during fast pyrolysis (Bridgwater, 2013). Consequently, during 

slow pyrolysis in a batch reactor, variation of the residence time of the feedstock in 

the heated zone has much less effect on hot vapour residence time. This could 

explain why no effect of residence time on PAH concentration has been observed in 

this study. However, it needs to be stressed that this has only been investigated in a 

batch reactor and in a continuous pyrolysis reactor the system is quite different. In a 

continuous unit, pyrolysis vapours can interact with pyrolysis solids further down-

stream within the pyrolysis unit on their way to the gas outlet (e.g. after-burner) 

(Huang et al., 2013). Therefore, in a continuous unit a change of residence time 

could also have an effect on secondary char reaction and on PAH concentration in 

biochar. 

Carrier gas flow rate also affects the vapour-solid interaction. In a batch-reactor with 

no carrier gas flow, the gas-solid residence time for secondary reactions to take place 

is maximised (Crombie and Mašek, 2015; Zaror et al., 1985). Higher carrier gas flow 

decreases the hot vapour residence time which results in decreased PAH formation 

(Dai et al., 2014a). In addition, carrier gas flow rate increases the driving force for 

physical removal of PAHs from the solids (biochar). Thus, carrier gas flow increases 

PAH vaporisation from biochar and decreases PAH formation which is illustrated in 

Figure 5.3D, however, it is unclear which is the dominant factor. Considering the 
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small proportion of PAHs that attached to pyrolysis solids without carrier gas flow in 

the Fagernäs et al. (2012) study (0.6% = 24 mg kg-1), a small change in the 

distribution of PAHs in solids and liquids/gases could have a large effect on total 

PAH concentrations in biochar. The phenomenon that carrier gas flow has a major 

effect on PAH concentrations in biochar could explain parts of the high fluctuations 

of PAH concentrations reported in literature and increased PAH concentrations in 

biochars produced under field conditions (no carrier gas flow) (Hale et al., 2012). 

Again, this has only been investigated in a batch reactor and needs to be tested for 

continuous units. 

 

Figure 5.4: Effects of HTT, residence time (RT) and carrier gas flow rate on 16 US EPA PAH 

concentration in biochar (mg kg-1). Biochars were produced from (A) softwood pellets (SWP II) 

and (B) straw pellets (WSP II) in Stage I pyrolysis unit. 
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5.3.3 Effect of biomass type on PAHs in biochar: wood – straw 

As already indicated above in Figure 5.4, there is a notable difference in scale for 

total PAH concentrations for (A) wood- and (B) straw-derived biochars produced at 

twelve different pyrolysis conditions, respectively. The results showed that straw 

pyrolysis yielded biochars with significantly higher PAH concentrations compared to 

softwood pellets (two-sample, two-tailed t-test, p-value=0.007), on average the PAH 

concentration in straw biochar was 5.8 fold higher than in wood biochar (Table 5.4). 

The difference in PAH concentrations between straw and wood biochar was most 

apparent at low carrier gas flow rates, but were almost undetectable at the highest 

carrier gas flow rate in the range investigated. 

 

Table 5.4: Total PAH concentrations (mg kg-1) of biochars produced under varying pyrolysis 

conditions from two feedstocks (WSP II, straw pellets; SWP II, softwood pellets). Production 

conditions are highest treatment temperature (HTT), residence time (RT) and carrier gas flow 

rate (CGF). On average WSP-derived biochar had 5.8 times higher PAH concentrations than 

SWP II-derived biochar. 

production conditions PAH concentration 

HTT RT CGF WSP II SWP II 

°C min L min-1 mg kg-1 mg kg-1 

350 10 0 52 2.9 

350 40 0 33 5.3 

650 10 0 34 13 

650 40 0 53 8.5 

350 10 0.33 38 2.1 

350 40 0.33 25 2.3 

650 10 0.33 1.4 1.9 

650 40 0.33 4.5 1.9 

350 10 0.66 5.7 2.2 

350 40 0.66 3.4 1.3 

650 10 0.66 3.0 1.4 

650 40 0.66 2.0 1.3 

average 21.3 3.6 

 average difference 5.8 

two-sample, two-tailed t-test, p-value: 0.007 

 

The findings that straw-derived biochar contained 5.8 times more PAHs than wood-

derived biochar are similar to those obtained by Keiluweit et al. (2012) who reported 

four times higher concentrations of PAHs in grass-derived biochar produced at 

500°C, compared to wood biochar. Similarly, Kloss et al. (2012) observed 

considerably higher PAH concentrations in straw-derived biochar compared to 
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spruce-derived biochar and Fabbri et al. (2013) reported that slow pyrolysis of 

woody biomass resulted in the lowest PAH concentrations compared to various other 

feedstocks. 

In general, lignin-rich feedstocks have been observed to produce biochars with less 

PAHs than those which are comprised mainly of pectin and cellulose (Sharma et al., 

2004; Sharma and Hajaligol, 2003). Yet, the opposite was observed by Zhou et al. 

(2014a). As the lignin content of straw pellets and wood pellets used in the current 

study was very similar (~22%, analysed in Crombie and Mašek (2014)), the content 

of lignin cannot explain the trends observed in the current study. Besides lignin 

content, the composition of lignin, which is very different between straw and woody 

biomass (Burhenne et al., 2013; del Río et al., 2012) could be at least partly 

responsible for differences in PAH content, however, insufficient studies on this are 

available. In addition, the C, H, N, O-elemental contents and cellulose and 

hemicellulose content of the feedstocks varied greatly (Crombie and Mašek, 2014) 

which could explain the different PAH contents after pyrolysis. Zhou et al. (2014a) 

observed non-additive, synergistic effects of biomass components, i.e. of cellulose, 

hemicellulose and lignin, on the formation of PAHs during pyrolysis, making 

prediction of PAH concentrations in biomass based on feedstock composition very 

challenging.  
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5.4 Conclusions 

From data collected on the 46 biochars investigated in this study, it is concluded that 

residence time at peak temperature (slow pyrolysis, batch reactor) did not influence 

the PAH concentration in biochar. On the other hand, it was observed that pyrolysis 

of woody biomass yielded biochar with considerably lower PAH contents than straw 

biomass, at least in the units and operating conditions deployed in this study. Overall, 

this work showed how complex the matter of effects of feedstock characteristics on 

PAH concentrations in biochar is and how many factors could have an influence. 

This study presents a significant contribution to the limited body of knowledge on 

feedstock effects on PAHs in biochar and shows that: (I) feedstock selection is a 

critical parameter and (II) careful matching with conversion technology is necessary 

to ensure production of biochars with low PAH concentration. Based on the 

extensive data set collected in this study, it is not possible to recommend particular 

HTTs for production of biochar with low PAH content. This research showed that 

HTT alone did not seem to be the main influencing factor of PAH concentration in 

biochar. The HTT should be considered in conjunction with the specific design of the 

pyrolysis unit used, as this study indicates that it is the combined effect that 

determines the PAH concentrations in resulting biochar. Besides HTT, the flow of 

carrier gas in the pyrolysis reactor has an important effect and in general, higher 

carrier gas flow rate resulted in biochars with lower PAH concentrations 

(independent of HTT, residence time and feedstock). However, even low carrier gas 

flow rates can be sufficient for production of biochar with PAH concentrations below 

guideline values, for certain feedstock, HTT and unit design. Overall, it may not be 

possible to completely eliminate formation of PAHs during biomass pyrolysis, but it 

is possible to minimise contamination of produced biochar by suitably combining 

feedstock with conversion unit and operating parameters. In this study, it was shown 

that ‘clean’ biochar, i.e., with low PAH content, can be produced from a range of 

feedstock and in different units. Furthermore, this study provides critical information 

for bringing us one step closer to production of biochar with low PAH contamination 

from diverse biomass using different production processes. However, an assessment 

of the risk of PAHs for human health and plant growth is lacking which will be 

conducted in Chapter 6 and Chapter 9.
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Chapter 6   Composition of PAHs in biochar and 

implications for recommendations for biochar 

production 

 

The following chapter is based on the submitted manuscript:  

Buss, W., Graham, M.C., Mašek O. Composition of PAHs in biochar and 

implications for biochar production. J. Anal. Appl. Pyrolysis (submitted) 

Journal impact factor (2014): 3.564 

The candidate was solely responsible for data analysis and writing of the article and 

this chapter. Supervisors provided guidance and supervisors and co-authors 

contributed to the editing of the manuscript. The experimental work was performed 

by the candidate apart for production of some biochars which was performed by 

Peter Brownsort, Kyle Crombie, Clare Peters, Juan Luis Turrion-Gomez and Walter 

Lowe. 
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Figure 6.1: Graphical abstract of Chapter 6. The effect of condensation of pyrolysis vapours due to cold zones in the post-pyrolysis area is presented. Biochar 

is transported from the left to the right. In the post-pyrolysis zone pyrolysis vapours and biochar are separated. The green box shows biochar production in a 

well-insulated post-pyrolysis zone which does not result in significant condensation of pyrolysis vapours on the wall of the pyrolysis unit. Consequently, the 

biochar produced with this unit contains only a low concentration of PAHs. The post-pyrolysis zone of the pyrolysis unit in the red box is not insulated 

sufficiently. Therefore, during biochar production vapour condensation occurs which results in increased concentration of PAHs, in particular of higher 

molecular weight PAHs. 
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6.1 Introduction 

Exposing biomass to high temperatures in an oxygen-limited atmosphere, results in 

the formation of potentially toxic substances. A variety of intermediate, primary and 

secondary degradation products of cellulose, hemicellulose and lignin and newly 

synthesised hydrocarbons are formed during pyrolysis. These compounds can either 

be further transformed into so-called secondary char or get released into the vapour 

phase (Cordella et al., 2012; Fagernäs et al., 2012b; Huang et al., 2013). 

Polycyclic aromatic hydrocarbons (PAHs) is one of the groups of hydrocarbons that 

form during pyrolysis. PAHs are commonly defined as organic compounds 

composed of polycyclic aromatic networks containing only C and H and at least two 

aromatic rings (Baek et al., 1991). Previous studies reported that >99% of the PAHs 

formed will end up in the pyrolysis liquid and gas fraction in the whole temperature 

range suitable for biochar production (Dai et al., 2014b). PAHs have been shown to 

cause short-term adverse effects in humans and plants, but their long-term effects are 

of particular concern causing carcinogenic, mutagenic and teratogenic effects (The 

Environmental Applications Group LTD, 1990; US Department of Health and 

Human Services, 1995). Although a huge variety of PAHs exists (US Department of 

Health and Human Services, 1995), in most cases legislation threshold values are 

given for the sum of 16 US EPA PAHs as published in the priority pollutant list of 

the US EPA proposed in the late 1970s (Keith, 1979).  

PAH threshold values have been established for various soil and soil amendments, 

such as soils in residential areas (20 mg kg-1) (Australia National Environment 

Protection Council, 1999), for compost made from waste (6 mg kg-1) (Austrian 

Compost Ordinance, 2001) and for compost and digestate (4 mg kg-1) (Swiss 

Chemical Risk Reduction Ordinance, 2005) which are all based on the sum of the 

concentrations of the 16 US EPA PAHs. Several biochar guideline values, proposed 

for safe biochar production, are based on the mentioned legislation and consequently, 

PAH limit values in the International Biochar Initiative (IBI) guidelines, European 

Biochar Certificate (EBC) and in the Biochar Quality Mandate (BQM) are also based 

on the sum of 16 US EPA PAHs (British Biochar Foundation, 2013; EBC, 2012b; 

International Biochar Initiative, 2011).  
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A number of studies have investigated the total concentration of PAHs in various 

biochars and overall, the PAH concentrations varied greatly, from 0.07 and 355 mg 

kg-1 (Freddo et al., 2012; Hale et al., 2012; Hilber et al., 2012; Kloss et al., 2012). 

Despite the relatively large number of biochar types analysed, it has so far been 

challenging to give specific recommendations regarding production conditions and 

feedstocks for production of biochars with low PAH concentrations (below threshold 

values). 

Although the EPA identified 16 priority PAHs as the main PAHs of concern, the 

chemical structures of these compounds vary greatly, and so do their properties and 

toxicities. Among the 16 US EPA PAHs, naphthalene (NAP) is the only one with 

two aromatic rings, it is the least toxic one and, according to some definitions, it 

actually does not belong to the PAH category (Delistraty, 1997). NAP is not 

considered to be carcinogenic, nor genotoxic, the LD 50 (lethal dose to kill half of 

the population) for mice and rats is as high as 350-9500 mg kg-1 body weight 

(European Commission Scientific Committee on Food, 2002). NAP is also the most 

volatile PAH and evaporates significantly when present in soil (US Department of 

Health and Human Services, 1995). Furthermore, the half-life of NAP in soil was 

reported to be only two days, the shortest of eleven PAHs tested and in some cases 

NAP can be degraded in hours, e.g. in sediment that has previously been 

contaminated with PAHs and where microbial communities have adapted (US 

Department of Health and Human Services, 1995).  

The different status of NAP compared with the rest of the 16 US EPA PAHs has 

been recognised and after recommendation by the European Scientific Committee on 

Food in 2005, the EU Commission established a list of 15 priority pollutants for 

investigation in food which did not include NAP (nor some other lower toxicity 

PAHs such as phenanthrene) (EU Commission Recommendation, 2005). The PAH-

related risk associated with biochars containing similar total PAH concentration can 

vary greatly, depending on PAH composition; NAP plays an important role as it 

typically comprises ≥40% of the total PAH concentrations in biochar (Bucheli et al., 

2015; Freddo et al., 2012; Hilber et al., 2012; Khalid and Klarup, 2015; Kloss et al., 

2012; Quilliam et al., 2013; Yargicoglu et al., 2015). It is clear that even biochar with 

a high content of total 16 US EPA PAHs may not pose environmental or health risk 
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if NAP is the major PAH component. Previous studies have shown, however, that the 

NAP content in biochar can vary widely, e.g. in Fabbri et al. (2013) the percentage of 

NAP was between 14 and 63% and in Freddo et al. (2012) between 11 and 83%. 

Significantly, very few biochar studies to date have considered the different 

composition of PAHs and the implications for biochar production and utilisation (Dai 

et al., 2014a) and even existing guidelines for biochar use fail to take into account the 

discrepancy between sum of PAH concentrations, individual composition of PAHs 

and risk. This highlights the need for a risk-based evaluation of PAHs in biochars 

based on PAH concentration and composition, rather than total content. 

While in the previous chapter only total PAH concentrations were investigated, in 

this chapter, the relative concentrations of 16 US EPA PAHs were investigated in 84 

biochars produced from various feedstock and production conditions, in three slow 

pyrolysis units of different scales. This extensive set of biochar samples and the fact 

that different technologies with well-monitored production conditions and at 

different scales were used, makes this data set unique. The objective was to develop 

recommendations for production of biochar with low PAH-related risk. In particular, 

the aim was to investigate, whether high concentrations of non-NAP 16 US EPA 

PAHs in biochars can be linked to particular pyrolysis conditions. Consequently, the 

ten of the 84 biochars with the highest non-NAP PAH concentrations were studied to 

pinpoint the reasons for the high concentrations, based on detailed and in-depth 

understanding of the production processes.  
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6.2 Materials and methods 

6.2.1 Biochars 

84 biochars were produced from fourteen different feedstocks in three different 

pyrolysis units at the UKBRC (rotary kiln, auger reactor and fixed bed reactor). The 

parameters controlled during the production include: HTT, residence time and carrier 

gas flow rates. Some of the materials also reflected changes to the pyrolysis unit set-

up. In addition, four different feedstock pre-treatments (K+-doping, washing, drying, 

increase of moisture content), and one biochar post-treatment (treatment at 200°C for 

20 h) were applied. Overall, as many parameters as possible were covered that could 

potentially affect the concentration and composition of PAHs in biochar. 

All biochars described in section 2.2.5 and 2.2.6 and thirteen of the nineteen biochars 

described in section 2.2.4 (ADX 350-750, DW 350-750, WHI 550, WSI 550, FWD 

550) were analysed in this study. An overview of all biochars and their production 

conditions can be found in Table 6.1. 

6.2.2 PAH analysis 

Representative samples were taken from all biochar samples, ground biochars were 

extracted using a 36 h extraction with toluene and the resulting extracts were 

analysed by GC-MS. The analyses were performed by Northumbrian Water 

Scientific Services (Newcastle, United Kingdom), accredited by United Kingdom 

Accreditation Service (UKAS). More details can be found in section 2.5. The 

individual concentrations of 16 US EPA PAHs in 84 biochars are reported.   
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6.3 Results and discussion 

The 16 US EPA PAH concentration without NAP in the following will be referred to 

as ‘non-NAP PAHs’. The individual concentrations of all 16 US EPA PAHs in the 

84 biochars are shown in Digital Appendix Table 3. 

 

Table 6.1: Production conditions, total 16 US EPA (mg kg-1), naphthalene (NAP) and non-NAP 

PAH concentration of 84 biochars. HTT, highest treatment temperature; RT, residence time at 

peak temperature; HR, heating rate (batch process only); CGF, carrier gas flow; bdl, below 

detection limit. 

biochar feedstock unit HTT RT HR CGF PAHs NAP non-NAP 

      °C min °C min-1 L min-1 mg kg-1 mg kg-1 % mg kg-1 

DNX - 350 Arundo donax Stage II 350 20 n/a 1 2.9 2.5 87 0.36 

DNX - 450 Arundo donax Stage II 450 20 n/a 1 3.9 3.4 88 0.47 

DNX - 550 Arundo donax Stage II 550 20 n/a 1 5.5 4.4 80 1.1 

DNX - 650 Arundo donax Stage II 650 20 n/a 1 7.8 5.5 70 2.3 

DNX - 750 Arundo donax Stage II 750 20 n/a 1 67 26 39 41 

DW - 350 Demolition wood Stage II 350 20 n/a 1 2.2 2.2 100 0 

DW - 450 Demolition wood Stage II 450 20 n/a 1 1.5 1.5 100 0 

DW - 550 Demolition wood Stage II 550 20 n/a 1 3.6 2.6 72 1.0 

DW - 650 Demolition wood Stage II 650 20 n/a 1 3.4 2.7 80 0.67 

DW - 750 Demolition wood Stage II 750 20 n/a 1 48 18 37 30 

MC - 350 Miscanthus chips Stage II 350 20 n/a 1 27 24 89 3.1 

MC - 350 - high ash Miscanthus chips Stage II 350 20 n/a 1 16 15 91 1.4 

MC - 350 - low ash Miscanthus chips Stage II 350 20 n/a 1 42 34 80 8.5 

MC - 450 Miscanthus chips Stage II 450 20 n/a 1 44 44 99 0.24 

MC - 450 - dry Miscanthus chips Stage II 450 20 n/a 1 34 21 61 13 

MC - 450 - wet Miscanthus chips Stage II 450 20 n/a 1 35 35 99 0.38 

MC - 550 Miscanthus chips Stage II 550 20 n/a 1 26 25 97 0.74 

MC - 550 - dry Miscanthus chips Stage II 550 20 n/a 1 30 30 99 0.29 

MC - 550 - high ash Miscanthus chips Stage II 550 20 n/a 1 14 14 100 0 

MC - 550 - low ash Miscanthus chips Stage II 550 20 n/a 1 22 22 99 0.3 

MC - 550 - wet Miscanthus chips Stage II 550 20 n/a 1 36 36 100 0.14 

MC - 750 Miscanthus chips Stage II 750 20 n/a 1 52 44 85 8.1 

MC - 750 - dry Miscanthus chips Stage II 750 20 n/a 1 26 21 82 4.5 

MC - 750 - high ash Miscanthus chips Stage II 750 20 n/a 1 49 26 53 23 

MC - 750 - low ash Miscanthus chips Stage II 750 20 n/a 1 168 55 33 113 

MC - 750 - wet Miscanthus chips Stage II 750 20 n/a 1 53 37 70 16 

SS II - 350 Sewage sludge II Stage III 350 20 n/a 10 31 24 77 7.2 

SS II - 450 Sewage sludge II Stage III 450 20 n/a 10 21 17 81 3.9 

SS II - 550 Sewage sludge II Stage III 550 20 n/a 10 26 20 78 5.6 

SS II - 650 Sewage sludge II Stage III 650 20 n/a 10 21 18 87 2.7 

SS II - 750 Sewage sludge II Stage III 750 20 n/a 10 37 32 87 5.0 
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SWP II-350-10-0 Softwood pellets II Stage I 350 10 5 0 2.9 2.7 94 0.16 

SWP II-350-10-0.33 Softwood pellets II Stage I 350 10 5 0.33 2.1 1.9 91 0.19 

SWP II-350-10-0.66 Softwood pellets II Stage I 350 10 5 0.67 2.2 1.5 70 0.65 

SWP II-350-40-0 Softwood pellets II Stage I 350 40 5 0 5.3 4.9 92 0.43 

SWP II-350-40-0.33 Softwood pellets II Stage I 350 40 5 0.33 2.3 2.0 87 0.29 

SWP II-350-40-0.66 Softwood pellets II Stage I 350 40 5 0.67 1.3 1.3 100 0 

SWP II-650-10-0 Softwood pellets II Stage I 650 10 5 0 13 11 86 1.8 

SWP II-650-10-0.33 Softwood pellets II Stage I 650 10 5 0.33 1.9 1.8 94 0.11 

SWP II-650-10-0.66 Softwood pellets II Stage I 650 10 5 0.67 1.4 1.4 100 0 

SWP II-650-40-0 Softwood pellets II Stage I 650 40 5 0 8.5 7.5 89 0.97 

SWP II-650-40-0.33 Softwood pellets II Stage I 650 40 5 0.33 1.9 1.9 100 0 

SWP II-650-40-0.66 Softwood pellets II Stage I 650 40 5 0.67 1.3 1.3 100 0 

WC - 350 Willow chips Stage II 350 20 n/a 1 20 13 65 7.0 

WC - 550 Willow chips Stage II 550 20 n/a 1 45 42 94 2.8 

WC - 750 Willow chips Stage II 750 20 n/a 1 100 28 28 72 

WSP II-350-10-0 Straw pellets Stage I 350 10 5 0 52 37 71 15 

WSP II-350-10-0.33 Straw pellets Stage I 350 10 5 0.33 38 38 99 0.21 

WSP II-350-10-0.66 Straw pellets Stage I 350 10 5 0.67 5.7 5.7 100 0 

WSP II-350-40-0 Straw pellets Stage I 350 40 5 0 33 32 97 1.1 

WSP II-350-40-0.33 Straw pellets Stage I 350 40 5 0.33 25 25 99 0.21 

WSP II-350-40-0.66 Straw pellets Stage I 350 40 5 0.67 3.4 3.4 100 0 

WSP II-650-10-0 Straw pellets Stage I 650 10 5 0 34 31 90 3.5 

WSP II-650-10-0.33 Straw pellets Stage I 650 10 5 0.33 1.4 1.4 100 0 

WSP II-650-10-0.66 Straw pellets Stage I 650 10 5 0.67 3.0 3.0 100 0 

WSP II-650-40-0 Straw pellets Stage I 650 40 5 0 53 52 98 1.0 

WSP II-650-40-0.33 Straw pellets Stage I 650 40 5 0.33 4.5 4.5 100 0 

WSP II-650-40-0.66 Straw pellets Stage I 650 40 5 0.67 2.0 2.0 100 0 

SWP I - 550 - GC Softwood pellets I Stage III 550 20 n/a 10 53 8.2 15 45 

SWP I - 550 - LC Softwood pellets I Stage III 550 20 n/a 10 28 9.9 35 18 

SWP I - 550 - Stage III - NC Softwood pellets I Stage III 550 20 n/a 10 6.1 4.3 71 1.8 

SWP I - 550 - GC - 200 T Softwood pellets I Stage III 550 20 n/a 10 2.8 2.5 90 0.29 

SWP I - 550 - 200 T Softwood pellets I Stage III 550 20 n/a 10 1.8 1.5 84 0.29 

SWP I - 550 - LC - 200 T Softwood pellets I Stage III 550 20 n/a 10 1.2 0.95 79 0.26 

AD - 550 Sewage sludge AD Stage II 550 20 n/a 0* 19 17 90 1.8 

AD - 700 Sewage sludge AD Stage II 700 20 n/a 0* 22 14 63 8.3 

SS I - 550 Sewage sludge I Stage II 550 20 n/a 0* 21 20 96 0.88 

SS I - 700 - no HT I Sewage sludge I Stage II 700 20 n/a 0* 232 25 11 207 

FWD - 550 Food waste AD Stage II 550 20 n/a 1 9.8 5.5 56 4.3 

WHI - 550 Water hyacinth, India Stage II 550 20 n/a 1 39 37 95 2.1 

WSI - 550 Wheat straw, India Stage II 550 20 n/a 1 11 8 70 3.5 

SWP I - 550 - no HT III Softwood pellets I Stage II 550 20 n/a 1 17 17 99 0.24 

SWP I - 550 - purge 2 L min-1 Softwood pellets I Stage II 550 20 n/a 1 14 13 96 0.5 

SWP I - 550 - Stage I Softwood pellets I Stage I 550 10 80 0.3 21 21 99 0.2 

SWP I - 550 - Stage II Softwood pellets I Stage II 550 20 n/a 1 25 25 99 0.15 
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SWP I - 700 - Stage I Softwood pellets I Stage I 700 10 87 0.3 23 23 100 0 

SWP I - 700 - Stage II Softwood pellets I Stage II 700 20 n/a 1 20 19 97 0.5 

SWP I - 700 - Stage III Softwood pellets I Stage III 700 20 n/a 10 20 20 100 0 

WSP I - 550 - Stage I Wheat straw pellets Stage I 550 5 80 0.3 54 54 100 0.23 

WSP I - 550 - Stage II Wheat straw pellets Stage II 550 20 n/a 1 67 67 99 0.5 

WSP I - 550 - Stage III Wheat straw pellets Stage III 550 20 n/a 10 57 55 97 2.0 

WSP I - 700 - Stage I Wheat straw pellets Stage I 700 6 80 0.3 94 73 78 21 

WSP I - 700 - Stage II Wheat straw pellets Stage II 700 20 n/a 1 54 53 98 1.3 

WSP I - 700 - Stage III Wheat straw pellets Stage III 700 20 n/a 10 46 46 100 0 

 *no carrier gas flow during operation of unit 

 

Table 6.2: 16 US EPA PAH concentration, naphthalene concentration, proportion of 

naphthalene and toxicity equivalent quantity (TEQ) of 84 biochars, the ten biochars with the 

highest non-NAP PAH concentration (group 1) and the remaining 74 biochars (group 2). 

 PAHs total naphthalene TEQ 

 AV SD AV SD AV SD AV SD 

  mg kg-1 mg kg-1 mg kg-1 mg kg-1 % % B(a)P eqi B(a)P eqi 

all 84 biochars 28 35 20 17 84 218 1.33 3.95 

   group 1 89 64 31 20 40 22 8.49 8.52 

   group 2 20 18 18 17 90 12 0.37 0.89 

 

6.3.1 PAH composition in 84 biochars 

The concentration of 16 US EPA PAHs in all 84 biochars investigated in this study 

was between 1.2 and 232 mg kg-1 and on average 28±35 mg kg-1 (Table 6.2) which is 

similar to reports for various biochars in other studies, e.g. 0.07-355 mg kg-1 (Anjum 

et al., 2014; Fabbri et al., 2013; Granatstein et al., 2009; Hale et al., 2012; Hilber et 

al., 2012; Kloss et al., 2012; Schimmelpfennig and Glaser, 2012). The proportion of 

NAP of the total PAH concentration was 84±21% (Table 6.2) and overall, the 

proportion ranged between 11 and 100%. Similarly high proportions of NAP were 

reported in other studies, e.g. in Fagernäs et al. (2012a) and in the higher temperature 

biochars (525°C) in Kloss et al. (2012) the proportion of NAP of the (16 US EPA) 

PAHs was also >80%. In a review, taking into account many biochars, rotary kilns 

were reported to produce biochars with a proportion of NAP of 30-80% (Bucheli et 

al., 2015). The average NAP proportion in this thesis is still slightly exceeding this 

range which is attributed to the way the proportion was calculated with individual 

PAH concentrations <LOD (which was 0.10 mg kg-1) considered as zero. Using the 

LOD instead of zero results in an average proportion of NAP of 72±21% which is 
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well in the range reported for other biochars. The reason for the high concentration of 

NAP in biochars in general, could be that NAP, being the smallest PAH, has access 

to very small biochar pores other PAHs do not have access to where it is trapped and 

accumulated. 

The PAH concentrations and NAP proportion for all 84 biochars is displayed in 

Figure 6.2. Most biochars possessed very high proportions of NAP (grey bars) and 

barely any other PAHs. However, some biochars stood out, as they contained very 

high concentrations of non-NAP PAHs (black bars) and comparatively low 

proportions of NAP (Figure 6.2). To investigate this phenomenon further, ten 

biochars with the highest non-NAP concentrations were selected and the average 

proportion of NAP in this group of biochar (group 1; n=10) was calculated. The 

resulting value was compared to the average NAP/total PAH ratio of all remaining 

biochars (group 2; n=74). This comparison revealed stark differences between the 

two groups; while in biochar group 1 NAP represented only 40% of the PAHs 

measured, in group 2 it represented 90% (Table 6.2). In group 1, the NAP 

concentration did not increase proportionally with the concentration of total PAHs, 

while it did for group 2 (Figure 6.3).
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Figure 6.2: 16 US EPA PAH concentration (mg kg-1) in 84 biochars. The proportions of naphthalene and non-NAP PAHs are indicated, respectively. Biochars 

are abbreviated in the following way: feedstock - HTT - further production conditions or pre-/post-treatments. Following PAH threshold values are 

indicated: upper line IBI threshold values of 20 mg kg-1 and lower line EBC premium quality threshold values of 4 mg kg-1. 
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Investigating the composition of PAHs in individual biochars proved to be 

challenging as in most biochars individual PAH compound concentrations were 

under the detection limit of 0.10 mg kg-1 (Digital Appendix Table 3). Consequently, 

detailed analysis of individual PAHs was conducted only for the ten biochars in 

group 1. The results showed that, with the exception of the biochar with the highest 

PAH concentration (‘SS I - 700 - no HT I’), NAP was the compound with highest 

concentration of all individual PAHs (Figure 6.4). The PAH with the second highest 

concentration in this set of ten biochars was phenanthrene which was also the PAH 

with the second highest concentration on average in all 84 biochars in this study 

(average 1.8 mg kg-1) and in biochars in other studies (Fabbri et al., 2013; Hilber et 

al., 2012; Quilliam et al., 2013). The concentrations of the other 3-ring PAHs and 

more toxic 5- and 6-ring PAHs were typically slightly lower than the concentrations 

of 4-ring PAHs (Figure 6.4) which was also reported for other biochars (Fabbri et al., 

2013; Freddo et al., 2012; Hale et al., 2012). However, ‘WSP I 700’ produced with 

the Stage I unit contained only NAP, 5- and 6-ring PAHs and surprisingly barely any 

PAHs with 3 and 4 rings; therefore, the composition of PAHs of this biochar is very 

different to all the other biochars (Figure 6.4). 

In conclusion, the biochars with the highest concentration of non-NAP PAHs (group 

1) had a proportionally lower concentration of NAP than the remaining biochars 

(group 2) (Figure 6.3). There are a number of possible causes for this distribution of 

PAHs in biochar and these are discussed in detail in the following section, together 

with options for avoiding high-non-NAP PAH biochar production.  
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Figure 6.3: Naphthalene (A) and non-NAP PAH (B) concentrations of 84 biochars plotted with 

total 16 US EPA PAH concentrations, respectively. The black squares show group 1 which are 

the ten biochars with the highest non-NAP PAH concentrations, while the grey squares are the 

remaining biochars (group 2). The equations show the fit of a linear curve with group 2 in (A) 

and group 1 in (B). 
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Figure 6.4: Individual concentration of 16 US EPA PAHs (mg kg-1) in the ten biochars with highest non-NAP PAH concentrations (group 1). Biochars are 

abbreviated in the following way: feedstock - HTT - further production conditions or pre-/post-treatments.   
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Table 6.3: The ten biochars with the highest non-NAP PAH concentration and the feature most likely responsible for the high concentration.  

biochar non-NAP PAH total NAP feature most likely responsible for high non-NAP PAHs 

  mg kg -1 mg kg -1 mg kg -1 %   

SS I - 700 - no HT I 207 232 25 10.8  faulty heating tape - cold spots 

MC - 750 - low ash 113 168 55 32.8 750°C Stage II unit - low-temperature discharge chamber 

WC - 750 72 100 28 28.1 750°C Stage II unit - low-temperature discharge chamber 

SWP I - 550 - GC 45 53 8.2 15.4 pipe not insulated - cold spot in pyrolysis unit 

DNX - 750 41 67 26 39.0 750°C Stage II unit - low-temperature discharge chamber 

DW - 750 30 48 18 37.5 750°C Stage II unit - low-temperature discharge chamber 

MC - 750 - high ash 23 49 26 52.9 750°C Stage II unit - low-temperature discharge chamber 

WSP I - 700 - Stage I 21 94 73 77.7 ? 

SWP I - 550 - LC 18 28 9.9 35.5 discharge chamber not insulated - cold spot in pyrolysis unit 

MC - 750 - wet 16 53 37 70.4 750°C Stage II unit - low-temperature discharge chamber 
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6.3.2 Reasons for high concentrations of non-NAP PAHs in biochar 

When comparing the production conditions and feedstocks of the ten biochars with 

the highest non-NAP PAH concentrations, it becomes apparent that the high 

concentrations of PAHs cannot be associated with a particular feedstock type. Both 

virgin biomass, such as softwood pellets, wheat straw pellets, miscanthus and willow 

and non-virgin biomass (sewage sludge, demolition wood) yielded biochars with 

high concentrations of non-NAP PAHs under certain production conditions (Table 

6.3). Furthermore, the increased non-NAP PAHs content could not be unanimously 

ascribed to a particular pyrolysis temperature, nor pyrolysis unit. The causes of 

production of biochar with increased non-NAP PAHs are complex and depend on 

more than simple feedstock, HTT or pyrolysis unit type. Specific causes identified 

for the ten biochar are discussed in the following. 

6.3.2.1 Biochars produced at 750°C with Stage II 

Six of the ten biochars with the highest non-NAP PAH concentration were produced 

at HTT of 750°C in the Stage II pyrolysis unit. Analyses of total PAHs in these and 

other biochar samples as reported in section 5.3.1 showed that biochar produced in 

the Stage II unit at 750°C had significantly higher total PAH concentrations than 

biochar produced at lower temperatures. This marked increase in PAH content with 

HTT increase to 750°C became even more prominent when only non-NAP PAHs 

were considered (Figure 6.5). Compared to the non-NAP PAH concentrations of the 

biochars produced at 350°C, the biochars produced at 750°C had 300 fold (DW), 113 

fold (DNX), 2.6 fold (MC) and 10.2 fold (WC) higher concentrations. This trend is 

in direct contrast to that observed for biochar produced in the other continuous 

pyrolysis unit (the Stage III pyrolysis unit), where the non-NAP PAH concentration 

in biochar produced at 750°C compared to the content of the biochar produced at 

350°C decreased from 7.2 to 5.0 mg kg-1 (Figure 6.5).  
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Figure 6.5: Effect of pyrolysis temperature on non-NAP PAH concentrations (mg kg-1) in 

different biochars. The biochars were produced from four different feedstocks in Stage II 

pyrolysis unit (ADX, Arundo donax; DW, demolition wood; MC, miscanthus chips; WC, willow 

chips) and one feedstock in Stage III pyrolysis unit (SS, sewage sludge). 

 

As reported in section 5.3.1, after detailed investigations, the fixed temperatures of 

the heating tapes in the discharge chamber of the Stage II pyrolysis unit were 

identified as source of the high PAH concentrations of biochars produced at 750°C 

with the Stage II unit. The heating tapes, which were fixed at 500°C and 400°C, 

resulted in the discharge chamber walls being cool enough for pyrolysis vapour 

condensation and deposition on biochar. In addition, it was reported that the PAH 

yield during pyrolysis increased drastically at temperatures >700°C (Aracil et al., 

2005; Dai et al., 2014a, 2014b; Font et al., 2003; Zhou et al., 2014b). This means that 

pyrolysis vapours formed at HTTs of 750°C contained much higher PAH 

concentrations than vapours produced at lower HTT, e.g. vapour generated at 650°C. 

However, in the Stage II pyrolysis unit, the temperature in the discharge chamber 

was the same at all HTTs due to the fixed temperature of the heating tapes and 

consequently, a higher amount of PAHs condensed from the vapours produced at 

750°C compared to the vapours produced at lower HTTs (650°C as example) which 

is illustrated in Figure 6.6. 
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Figure 6.6: Schematic illustration of contamination of biochars by condensation of high-vapour 

pressure and low-vapour pressure PAHs in the discharge chamber of a pyrolysis unit which 

uses heating-tapes to heat up the post-pyrolysis zone. Generally, the concentrations of PAHs in 

pyrolysis vapours produced at 750°C (B) are much higher than the concentration of PAHs in 

pyrolysis vapours produced at lower temperatures, here reflected by 650°C (A). In this pyrolysis 

unit, the temperature in the discharge chamber is set by heating tapes and is the same at both 

pyrolysis temperatures. Therefore, the ratio of PAHs in the vapour phase and condensed on 

biochar is the same in (A) and (B), but it is different for low-vapour pressure PAHs (here 

reflected by naphthalene) and high-vapour pressure PAHs (here reflected by benzo(a)pyrene). 

Due to the higher PAH concentration in the pyrolysis vapours produced at 750°C, the 

concentration of PAHs in biochar is much higher in (B) and most of those PAHs are high-

vapour pressure PAHs. 

 

6.3.2.2 ‘SS I-700’ biochar 

The biochar produced from anaerobically digested sewage sludge at 700°C (‘AD- 

700’) had a PAH concentration of 22 mg kg-1 which mostly consisted of NAP and 

barely differed from PAH concentrations in biochar produced from AD and SS I 

produced at 550°C (Figure 6.7). However, SS I pyrolysed at 700°C had a total PAH 
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concentration of 232 mg kg-1 and all of the additional PAHs compared to the other 

three biochars are non-NAP PAHs (207 mg kg-1).  

During production of this particular biochar, one of the heating tapes in the discharge 

chamber was faulty (HT I) and consequently, the temperature in the discharge 

chamber was much lower than in comparable pyrolysis runs (side of the discharge 

chamber of Stage II pyrolysis unit: ‘AD-700’ 198°C, ‘SS I-700’ 113°C). Most likely, 

due to the lower temperature in the discharge chamber, PAHs condensed and 

deposited on biochar. This example illustrates that PAH contamination through 

condensation and deposition is a common phenomenon in biochar production and 

can occur even due to small modifications of the pyrolysis unit set-up. 

 

 

Figure 6.7: 16 US EPA PAH concentration (mg kg-1) in seven biochars. The proportions of 

naphthalene and non-NAP PAHs are indicated, respectively. The first three biochars were 

produced under the same condition from the same feedstock (SWP, softwood pellets) with the 

Stage III pyrolysis unit, but two biochars were contaminated with pyrolysis vapours during 

production (LC and GC). The second group of biochars was produced from two different 

feedstocks (SS I, sewage sludge; AD, anaerobic digestate of sewage sludge) at two different 

temperatures (550, 700°C) with the Stage II pyrolysis unit, but during the pyrolysis run of the 

‘SS I – 700’ one of the heating tapes (HT I) which heats up the discharge chambers was faulty. 
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6.3.2.3 GC and LC biochars 

The GC (gas contaminated) and LC (liquid contaminated) biochars were produced 

from softwood pellets at 550°C with the Stage III pyrolysis unit and are described 

and characterised in more detail in Chapter 7, Chapter 8 and Chapter 9. The 

particular pyrolysis runs took place after the pyrolysis unit was set-up initially and 

run for the first time. Irregularities during the production led to contact of biochar 

with pyrolysis vapours/liquids (section 2.2.6). During the ‘GC biochar’-production, a 

tube was blocked due to a build-up of tars while during ‘LC biochar’-production the 

discharge chamber was much cooler than the pyrolysis vapours. In both cases 

improper insulation and resulting cold zones in the pyrolysis unit caused 

condensation of pyrolysis vapours on biochar. This resulted in marked increases of 

PAH concentrations and in particular increases in non-NAP PAHs. Another biochar 

was produced under the same production conditions and from the same feedstock 

after the discharge chamber and the previously blocked tube were insulated and very 

low PAH concentrations were detected in this biochar (NC biochar; Figure 6.7). 

In conclusion, all the biochars with high concentrations of non-NAP PAHs most 

likely were contaminated with pyrolysis vapours in a similar way during production. 

Cold zones in the post-pyrolysis stage caused condensation which resulted in high 

PAH concentrations in biochars. However, it still remains unclear why the proportion 

of NAP is smaller in these biochars compared to the remaining biochars and this will 

be discussed further in the sections below. 

6.3.3 Post-pyrolysis PAH contamination and its consequences 

The pyrolysis process itself is very effective in separating PAHs from pyrolysis 

solids; <1% of the PAHs synthesised during pyrolysis were found in biochar, the 

remaining proportion was detected in pyrolysis liquids and gases (Dai et al., 2014b; 

Fagernäs et al., 2012a). The elevated temperatures are favourable for PAHs formed 

on the biochar surface or in the biochar structure to be evaporated and also, result in 

PAHs synthesised at the solid-gas interface to remain in the gas phase. However, 

condensation of pyrolysis vapours onto its parent material still occurs frequently 

during pyrolysis. Under high temperatures in the furnace, vapours containing PAHs 

and other organics can react with the char in so-called secondary char formation 

reactions which are responsible for a significant part of the char formation (Huang et 
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al., 2013; Pattanotai et al., 2013). However, when condensation of pyrolysis vapours 

happens in the post-pyrolysis stage, in areas colder than the furnace and compounds 

such as PAHs (or VOCs) deposit on biochar, they are not transformed but physically 

sorb to the biochar matrix and contaminate the materials.  

The processes determining the concentrations of PAHs in biochar within the furnace 

area (formation and evaporation) are very complex (section 5.3). However, as 

displayed in Figure 6.8 (and discussed in section 6.3.4) for wheat straw biochar vs. 

wood-derived biochars, the feedstock only influenced the concentration of NAP, 

while the non-NAP concentration changed only marginally. As for feedstock type, 

the carrier gas flow also only influenced the concentration of NAP in biochar, at least 

in most cases (Table 6.1). Consequently, the different pyrolysis conditions and 

feedstock types mainly affect the NAP concentration; contamination in the post-

pyrolysis stage, however, mostly increased the concentration of non-NAP PAHs 

which can be explained as follows.  

In the case of lower temperatures in the post-pyrolysis stage, formation and 

transformation reactions of organic compounds are strongly reduced and instead the 

extent of contamination of biochar with PAHs (and VOCs) depends on: (I) the 

concentration of the respective PAH in the gas phase; (II) the (equilibrium) vapour 

pressure of the PAH (boiling point); and (III) the temperature difference between the 

gases and the surface for potential condensation (inner surfaces of the pyrolysis unit 

or biochar). In the post-pyrolysis area, the PAH concentration in the vapour phase 

and the condensed phase reach a thermodynamic equilibrium which is dependent on 

the equilibrium vapour pressure of the PAH. NAP has a boiling point of 218°C and a 

much higher vapour pressure than higher molecular weight (HMW) PAHs, such as 

benzo(a)pyrene (boiling point 495°C). This means that a bigger proportion of 

benzo(a)pyrene present in the gas phase will condense and deposit as liquid in 

comparison to NAP which is more volatile and remains in the gas phase to a higher 

extent (illustrated in Figure 6.6). This resulted in biochars with high non-NAP PAH 

concentrations and a smaller proportion of NAP than observed in biochars not 

contaminated by post-pyrolysis condensation.  



Chapter 6: PAHs II 

150 

This phenomenon does happen to some extent in every biochar production run; 

consequently, the biochars investigated here cannot be clearly differentiated into two 

groups (biochar contaminated by condensation and biochars not contaminate by 

condensation) since the ratios of NAP/total PAH concentration are continuous (Table 

6.1). Yet, as shown in section 6.3.2, the concentrations for biochars in group 1 were 

clearly more strongly affected than other biochars. To investigate if this process is 

influenced by the different pyrolysis technologies, the three pyrolysis units under 

investigation were directly compared. 

To test how comparable PAH concentrations in biochars from different, but highly 

controlled, pyrolysis units are, two feedstocks (softwood pellets and wheat straw 

pellets) were pyrolysed at two temperatures (550, 700°C) with the batch and the two 

continuous pyrolysis units. The same residence times in the heated area were applied 

to result in pyrolysis conditions as comparable as possible. And indeed, as depicted 

in Figure 6.8, non-NAP PAH concentrations were very comparable in biochars from 

different pyrolysis units, except for ‘WSP I 700’ from Stage I which had very high 

PAH levels. As already discussed in 6.3.1, the composition of this biochar is very 

different to all the other biochars and it can be concluded that the biochar was 

contaminated in a different way. The PAHs present in this biochar are typical for the 

heavy tars which are collected in a “hot trap” (assembly described in Crombie et al. 

(2013)). During the production run, the system is nitrogen purged and it is rather 

unlikely that the contamination occurred. However, it is likely that the biochar got in 

contact, either with the content of the heavy tar trap or with tars condensing at the top 

of the glass tube that contains the biochar after production which caused the 

contamination with HMW PAHs only.  

In summary, the 16 US EPA PAH and non-NAP PAH concentrations were 

comparable between all three pyrolysis units, which demonstrates that biochar 

production can, in principle, be done on different scales and using different 

technologies without negative effects on PAH concentrations in biochar. 

 



Chapter 6: PAHs II 

151 

 

Figure 6.8: 16 US EPA PAH concentrations (mg kg-1) in twelve biochars from two feedstocks 

(SWP, softwood pellets; WSP, wheat straw pellets) produced at two HTTs (550, 700°C) in three 

different pyrolysis units. The proportion of non-NAP PAHs is indicated, respectively. 

 

6.3.4 Recommendations for biochar production and future studies 

It was concluded that the high concentrations of non-NAP PAHs mostly resulted 

from condensation and deposition of PAH in cold zones of the post-pyrolysis area. 

This shows the importance of proper insulation of the pyrolysis unit to avoid cold 

zones and the crucial role of the design of biochar discharge arrangements in the 

pyrolysis unit. Generally, where pyrolysis gases and solids travel in the same 

direction through the pyrolysis unit, the discharge chamber, which separates 

pyrolysis solids and vapours, needs to be maintained at temperatures as close to the 

HTT used in the pyrolysis process as possible. Another option would be to separate 

pyrolysis vapours from solids already within the pyrolysis reactor, e.g. by using a 

counter-current arrangement, where pyrolysis gases are extracted close to the 

feedstock entry point, i.e. on the opposite end from the biochar discharge. Such 

counter-current arrangement would have an impact not only on the quality of the 

biochar, yielding biochar with lower PAHs concentrations, but could also reduce the 

yield of biochar, due to reduced secondary char formation (Huang et al., 2013). This 
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work emphasises the importance of monitoring and controlling of the pyrolysis 

process beyond just simple HTT in the pyrolysis reactor, to achieve production of 

good quality biochar. 

In the literature, effects of various pyrolysis parameters on PAHs concentrations in 

biochar were reported; in particular, numerous different effects were observed of 

HTT on PAHs in biochar (Dai et al., 2014b; Devi and Saroha, 2015; Freddo et al., 

2012; Hale et al., 2012; Keiluweit et al., 2012; Rogovska et al., 2012). Despite 

significant efforts, these studies did not provide a general relationships between 

biochar PAH concentrations and pyrolysis parameters. Based on the investigations is 

this chapter, it is suggested that this is due to the fact that important aspects of 

biochar production were not sufficiently addressed by these studies, to allow 

development of such general understanding. In this study, it was demonstrated that 

weaknesses in design, or in operation of biochar production units, in particular the 

post-pyrolysis area, can have a striking effect, resulting in high concentrations of 

non-NAP PAHs in biochar. This effect was much more important and surpassed the 

effects of HTT, carrier gas flow or feedstock. In Hale et al. (2012), it was reported 

that the PAH concentrations were highest in biochars from "uncontrolled field 

conditions” which confirms the need for highly controlled and monitored pyrolysis 

units. When studying relationships between biochar PAHs concentrations as a 

function of feedstock and different pyrolysis parameters, it is critical to ensure that 

these are compared on the same basis, i.e. that there is sufficient information on all 

the relevant aspects of the production, so that certain effects (such as deposition of 

PAHs) are not misinterpreted as effects of, for example, pyrolysis temperature. 

6.3.5 PAH composition in biochar and threshold values 

For a risk-based assessment of biochars, changes in the concentration of NAP is of 

little relevance due to naphthalene’s low carcinogenicity, low toxicity and rapid 

degradability in soil (European Commission Scientific Committee on Food, 2002; 

Nisbet and LaGoy, 1992; US Department of Health and Human Services, 1995). 

However, comparing with legislation and guidelines values which are based on the 

sum of the 16 US EPA PAHs, it is clear that the concentration of NAP takes in a 

crucial part concerning compliance/non-compliance of biochar PAH concentrations 

with threshold values. 
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Table 6.4: The number and percentage of biochars out of the set of 84, exceeding guideline 

values. Total PAHs and non-NAP PAHs were considered separately. The threshold values 

depicted were established for biochar soil application according to (EBC, 2012b) and 

International Biochar Initiative (2011). 

  EBC premium IBI upper limit 

  4 mg kg-1 20 mg kg-1 

total PAHs 
biochars 62 45 

% 73.8 53.6 

non-NAP PAHs 
biochars 21 8 

% 25.0 9.5 

 

In Figure 6.2 and Table 6.4 the lowest and the highest of the PAH guideline values 

from IBI, EBC and BQM are shown, both based on national legislation (20 mg kg-1 

Australian legislation=IBI upper PAH limit, 4 mg kg-1 Swiss legislation=EBC lower 

limit/premium grade biochar). When NAP is taken into account, 45 (53.6%) and 62 

(73.8%) biochars of the set of 84 exceed the IBI upper limit and the EBC lower limit 

values, respectively. However, when NAP is excluded, only eight biochars (9.5%) 

exceeded the IBI upper limit and 21 biochars (25.0%) exceed the EBC lower limit 

guideline values, respectively. This shows the disadvantage of using the sum of the 

16 US EPA PAHs for evaluating the risk of PAH contamination in biochar as 

individual toxicity is not taking into account and consequently, alternative ways of 

evaluating the risk of PAHs in biochar should be established. 

 

Table 6.5: Number and percentage of 84 biochars exceeding benzo(a)pyrene threshold values of 

the German Federal Soil Protection and Contaminated Sites Ordinance (1999) for certain land 

use types. 

  agricultural 

soils 

children’s 

playgrounds 

residential 

areas 
parks 

industrial 

areas   

  threshold 1 mg kg-1 2 mg kg-1 4 mg kg-1 10 mg kg-1 12 mg kg-1 

exceedance 
biochars 10 6 2 2 0 

% 11.9 7.1 2.4 2.4 0.0 

 

Benzo(a)pyrene is the most investigated PAH and is often used as reference point to 

compare the toxicities of all 16 US EPA PAHs (Delistraty, 1997). Its average 

concentration in all 84 biochars was 0.53 mg kg-1 but most biochars showed 

concentrations below the limit of detection (Digital Appendix Table 3). In the 
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German Federal Soil Protection Ordinance, benzo(a)pyrene is used as an indicator 

for PAHs and the limit value for protection of plant growth is 1 mg kg-1. Comparing 

with this limit value, it shows that only ten of the 84 biochars exceed it and apart 

from two, all of these are part of the biochars of group 1 with identified vapour-

condensation during production (Table 6.5) (German Federal Soil Protection and 

Contaminated Sites Ordinance, 1999). Benzo(a)pyrene soil threshold values were 

also established for children’s playgrounds, residential areas, parks and industrial 

areas (2, 4, 10 and 12 mg kg-1) which are only exceeded by 6, 2, 2, and 0 biochars, 

respectively (Table 6.5). Benzo(a)pyrene is well-correlated with the non-NAP PAH 

concentrations in this study (data not shown) and consequently, could be used as an 

indicator for non-NAP PAHs and PAH associated risk as already established for food 

products in the EU (EU Commission Recommendation, 2005).  

In addition, Nisbet and LaGoy (1992) used benzo(a)pyrene to set up toxicity 

equivalent factors (TEFs) based on carcinogenicity of benzo(a)pyrene. Using these to 

calculate the average toxicity equivalent quantity (TEQ) for all 84 biochars in this 

study, the TEQ was 1.33 benzo(a)pyrene-TEQ kg-1 (Table 6.2) and varied from 0 to 

24.7 benzo(a)pyrene-TEQ kg-1. While the TEQ of group 1 (8.49 benzo(a)pyrene-

TEQ kg-1) was higher than the value for UK urban soils (1.37) (Creaser et al., 2007), 

the average values in group 2 was only 0.37 benzo(a)pyrene-TEQ kg-1 which is lower 

than the average TEQ of PAHs in rural soils in the UK (0.44 benzo(a)pyrene TEQ 

kg-1) (Creaser et al., 2007). 

Overall, it does not seem advisable to use threshold values based on the sum of the 

concentration of 16 US EPA PAHs as they comprise of both, compounds which pose 

low risk for humans and the environment, such as naphthalene, and highly 

carcinogenic compounds, such as benzo(a)pyrene. For biochar this is a particular 

issue as NAP is the dominant compound and its concentration fluctuates widely and 

so total PAH concentrations do not reflect the risk associated with biochars 

appropriately. Instead, the concentration of benzo(a)pyrene or the TEF-approach 

could be used. Alternatively, different threshold values could be established 

individually for NAP and the sum of the remaining 15 US EPA PAHs as done in the 

German Federal Soil Protection Ordinance for the soil-groundwater interface 

(German Federal Soil Protection and Contaminated Sites Ordinance, 1999).  
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6.4 Conclusions 

In this chapter, involving 84 biochars, post-pyrolysis contact of pyrolysis vapours 

with biochar was the most significant factor determining the concentration of non-

NAP PAHs in biochar. Weaknesses in pyrolysis unit design can result in cold zones 

in the post-pyrolysis area and condensation and physical deposition of PAHs on 

biochar, in particular HMW PAHs due to their lower vapour pressure. Biochars 

affected by PAH-deposition had a high concentration of heavier, high-risk PAHs, 

such as benzo(a)pyrene, and a lower concentration of the 2-ring, highly volatile 

PAH, naphthalene. As a result, such biochars pose a higher risk to humans and plants 

after application. This effect is not limited to any particular technology or unit, as 

demonstrated using three units based on different designs (rotary kiln, auger reactor 

and fixed bed reactor). Therefore, appropriate construction and operation of pyrolysis 

units focussed on reduction of PAH deposition is critical. The observed differences 

in total PAH concentrations in biochar, but even more importantly, the distribution of 

individual PAHs, highlighted issues with using the 16 EPA PAHs as a measure of 

quality or of the risk posed by biochar, due to the often disproportionally large 

contribution of NAP to the total PAH content. More than half of the biochars 

investigated in this study exceeded the PAH limit values proposed in biochar 

guideline values based on the sum of 16 US EPA PAHs. Yet, very few biochars 

exceeded legislation threshold values for soil, based on the concentration of the 

highly toxic PAH, benzo(a)pyrene. This illustrates the discrepancy of biochar 

guideline value for PAHs in biochar and actual PAH-associated risk and shows that 

the current state of biochar guidelines do not reflect the risk of PAHs in biochar and 

should be adapted accordingly. 
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Chapter 7   Impact of high-VOC biochars and post-

treatment measures on plant growth  

 

The following chapter is based on the published article:  

Buss, W., Mašek, O., 2014. Mobile organic compounds in biochar – a potential 

source of contamination – phytotoxic effects on cress seed (Lepidium sativum) 

germination. J. Environ. Manage. 137, 111–119. doi:10.1016/j.jenvman.2014.01.045 

Journal impact factor (2014): 2.723 

Number of citations (September 2016): 36 

The candidate was solely responsible for data analysis and writing of the article and 

this chapter. Ondřej Mašek provided guidance and contributed to the editing of the 

manuscript. The experimental work was performed by the candidate, apart from the 

biochar production which was performed by Juan Luis Turrion-Gomez. 
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Figure 7.1: Graphical abstract of Chapter 7. Low- and high-VOC biochars were tested in cress germination and early seedling growth tests. Vapours of low-

VOC biochar did not have any effect on plant growth, while vapours of high-VOC biochar strongly inhibited growth. Post-production treatments of high-

VOC biochar resulted in improved germination and early seedling growth.
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7.1 Introduction 

For future large-scale application of biochar, it is important to ensure that biochar 

will neither show toxic effects nor otherwise pose a short or long-term threat to soil 

and the environment, e.g. in form of bound contaminants. Most research on 

contaminants in biochar focus on the latter, on bound and rather non-bioavailable 

potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) 

(Fabbri et al., 2013; Freddo et al., 2012; Hale et al., 2012; Hilber et al., 2012; 

Oleszczuk et al., 2013; Rogovska et al., 2012; Singh et al., 2010). Nevertheless, 

volatile and/or easily leachable organic compounds exist within biochar and can 

cause positive (Elad et al., 2011) as well as negative effects (Smith et al., 2013). 

Few studies have been published in which the composition and impact of residual 

tars and other organic compounds from pyrolysis on direct and acute toxicity has 

been assessed (Smith et al., 2013; Spokas et al., 2011; Yang et al., 2013). Pyrolysis 

liquids primarily consist of low-molecular weight (LMW) degradation products of 

cellulose, hemicellulose and lignin (Cordella et al., 2012) and the compound classes 

that are covered are mainly organic acids, aldehydes, furans, ketones, alcohols and 

phenols, however, PAHs can be found as well (Cordella et al., 2012; Sánchez et al., 

2009; Sfetsas et al., 2011). Most of those are VOCs which are compounds with 

boiling points ≤250°C (Directive 2004/42/CE of the European parliament and of the 

council, 2004). 

Depending on production conditions and pyrolysis technology, condensation and 

deposition of pyrolysis liquids and gases on biochar occurs (Spokas et al., 2011). As 

contamination of char with organic compounds is not an issue in systems focused on 

electricity/biofuel production, this aspect has not been a focus of extensive research. 

It is, yet, a critical consideration in designing units for production of biochar. 

Furthermore, due to the high variability of vapour condensation and deposition on 

biochar and the influence of post-handling on concentrations and composition of 

residues of pyrolysis vapours, it is difficult to draw conclusions about their impact on 

plant growth and the ecosystem. Thus, to be able to determine the potential impact of 

biochar-derived mobile organic compounds on seed germination, this study 
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investigated biochar samples containing high concentrations of VOCs and other 

organic compounds as a result of irregularities during production. 

Several studies have looked at different methods for reducing the toxicity of 

biochar/hydrochar (char from hydrothermal carbonisation) vapours (Bargmann et al., 

2013; Busch et al., 2012). Busch et al. (2012) demonstrated significant improvement 

of germination performance when exposed to hydrochar vapours after the hydrochar 

had been kept in closed storage and were dried. Furthermore, washing of hydrochar 

and biochar with water or an organic solvent has been successfully tested to reduce 

phytotoxicity of solids or extracts (Bargmann et al., 2013; Bernardo et al., 2010; 

Rogovska et al., 2012). 

Another potential method for VOC toxicity mitigation is to use low-VOC biochar to 

sorb contaminants from high-VOC biochar. Biochar has proven to sorb organic and 

inorganic compounds from soil (Buss et al., 2012; Gomez-Eyles et al., 2011; Huang 

and Chen, 2010; Ogbonnaya and Semple, 2013). Furthermore, Rogovska et al. 

(2012) showed that biochar can sorb allelochemicals from corn residues in solution 

and reduces their toxicity on seedling growth. As shown for activated carbon, which 

is used in practice for effluent gas cleaning (Rodríguez-Mirasol et al., 2005), biochar 

might be able to sorb VOCs, thus, reduce toxicity of VOCs. 

Therefore, in this chapter, biochar contaminated by pyrolysis vapours during 

production (high-VOC) were investigated for chemical characteristics (pH, ash, 

volatile matter, fixed carbon content) and their phytotoxicity and compared to a 

biochar not contaminated by pyrolysis vapours produced under the same conditions 

(low-VOC). This chapter focussed on the effect these biochars have on germination 

and early seedling growth of cress. Storage and blending of high- with low-VOC 

biochars were tested as measures to reduce the phytotoxicity, because these methods 

are easy to perform, cheap and reasonable to be used in practical applications. The 

aim of the chapter was to assess the extent of phytotoxicity of VOCs, to determine 

whether high-VOC biochar can be safely used in practice and whether toxicity can be 

reduced/mitigated.  
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7.2 Materials and methods 

7.2.1 High- and low-VOC biochars 

For this study, the NC, GC and LC biochars were used as described in section 2.2.6. 

Two of the biochars (GC and LC) were high-VOC biochars, contaminated during 

production and one biochar (NC biochar) was not contaminated and resulted from a 

production run without irregularities during production. 

7.2.2 Characterisation of biochars 

Proximate analysis and pH measurements were performed on LC, GC and NC 

biochar according to the method described in section 2.3. 

7.2.3 Germination tests 

‘Volatiles only’ germination tests were performed (section 2.6.1) using a range of 

amounts of crushed LC, GC and NC biochars (30, 10, 5, 2, 1, 0.5, 0.25 g). For 

evaluation of the tests, the germination rate was calculated and the shoot and root 

length was measured manually with a ruler. 

‘All exposure routes’ germination test were performed with 1, 2 and 5% GC, LC and 

NC biochar in sand (section 2.6.2). The roots of the seedlings were categorised into 

three groups (<15 mm, between 15 and 60 mm and above 60 mm) and the percentage 

of seedlings with a particular roots length was calculated. 

The pH of the filter paper on which the seeds were placed was measured using 

universal indicator paper. 

7.2.4 Biochar post-treatments 

Different biochar post-treatments were performed to assess their suitability for 

reducing the release of volatiles from contaminated biochars and the treated biochars 

were subsequently assessed in ‘volatile only’ germination tests. 

NC, GC and LC biochar samples were stored at ambient temperature in aluminium 

trays for four weeks, covered by a paper tissue to avoid contamination from particles 

from the air. To prevent an initial peak release of volatiles in the germination tests, 

stored biochar samples were crushed after storage to release any desorbed, gaseous 

VOCs trapped within the biochar structure. The biochars were assessed in different 
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amounts (0.25, 0.5, 1, 2, 5, 10, 30 g) in ‘volatile only’ germination tests in three 

replicates. 

In addition to storage, blending of biochar samples was also investigated. Low-VOC 

biochar (NC) was blended with high-VOC biochars (LC, GC) to test if low-VOC 

biochar was able to mitigate the release of VOC associated with the high-VOC 

biochar via sorption. 10 g samples of biochar containing 1 and 2 g (w/w) LC or GC 

biochar were tested using a ‘volatile only’ germination test in five replicates. In the 

following they are referred to as GCB 1:9, GCB 2:8, LCB 1:9 and LCB 2:8. 

7.2.5 Statistics 

Results were evaluated statistically using Analysis of Variance (ANOVA) performed 

with SigmaPlot 12 (Systat Software Inc., Chicago, IL) followed by Student-

Newman-Keuls post hoc tests. In addition, t-tests were used to determine differences 

between the treatments. Different letters in the figures indicate significant differences 

between the treatments (p <0.05). The p-values in the legends of the figures indicate 

the error probability of an effect of the treatments on a respective parameter. 
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7.3 Results and discussion 

 

Figure 7.2: Temperature and weight loss curves of low-VOC and high-VOC (LC) biochar 

during thermogravimetric analysis (TGA).  

60 75 



 

 

1
6
3
 

Table 7.1: Characteristics of low-VOC and two high-VOC biochars. Proximate analysis performed by TGA. The pH was determined in solution. RT, 

residence time; % daf, % dry, ash-free basis. 

biochar VOC feedstock temperature RT pH moisture ash fixed C volatile matter 

   °C min  % % % daf % daf 

         total VM <550°C* >550°C# 

non-contaminated (NC) low softwood pellets 550°C 20 min 7.12 1.71 1.67 85.05 14.95 2.95 12.37 

gas contaminated (GC) high softwood pellets 550°C 20 min 3.64 4.47 1.93 73.67 26.33 15.48 12.85 

liquid contaminated (LC) high softwood pellets 550°C 20 min 3.64 4.96 1.21 75.43 24.57 13.90 12.39 

* volatile matter content released <550°C calculated based on dry, ash free basis  

# volatile matter content released >550°C calculated based on total mass at TGA temperature of 550°C (excluding moisture, ash and volatiles lost <550°C) 
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7.3.1 Characterisation of biochars 

Results for proximate analysis of LC, GC and NC biochar can be found in Table 7.1. 

Proximate analysis showed NC biochar had a volatile matter (VM) content of 14.7% 

and a fixed carbon content of 83.6%. The NC biochar contained low VM-levels 

compared to values found in literature for the VM content of pine biochar (pyrolysis 

temperature 450-600°C; VM 17-37%) (Crombie et al., 2013; Mukome et al., 2013; 

Ronsse et al., 2013).  

The thermo-gravimetric analysis (TGA) revealed weight loss in the liquid 

contaminated and gas contaminated biochar at 110°C of 5% and 4.5% respectively, 

but only 1.7% in the NC biochar. In proximate analyses, this weight loss is attributed 

to moisture but in this case a component of this figure could be attributed to 

condensed organic compounds that vaporised at low temperatures. 

Table 7.1 indicates nearly the same relative amount of volatiles-release above the 

pyrolysis process temperature of the biochars (550°C) for all biochar samples. This is 

also depicted in Figure 7.2, where the slopes of low-VOC biochar and high-VOC 

biochar weight loss curves above the pyrolysis temperature are the same (in Figure 

7.2 only LC is depicted but GC biochar showed the same pattern). However, during 

heating of the samples to the pyrolysis HTT (i.e. between 110-550°C), the 

contaminated biochars lost more weight compared to the low-VOC biochar. 

Obviously, as already described, the contamination of the two biochars occurred due 

to compounds that vaporised during the pyrolysis process to 550°C initially, but 

condensed onto the solid product because of low temperature in certain areas of the 

unit. LC and GC biochar contained a 10% higher proportion of VM than NC biochar 

and potentially organic compounds disguised within the “moisture fraction”.  

As shown in Table 7.1, NC biochar had a pH of 7.12, whereas the contaminated 

biochars had a pH of 3.64. Typically, the pH of wood biochar produced at mid-

pyrolysis temperatures is between 6.7-7.9 (Calvelo Pereira et al., 2011; Mukome et 

al., 2013; Ronsse et al., 2013), but in one instance, a pine biochar (<450°C, fast 

pyrolysis) was stated to have a pH of only 3.9 (Smith et al., 2013). The acidic nature 

of the condensed pyrolysis liquids is the reason for the low pH of contaminated 

biochars (Fagernäs et al., 2012a), which originated from the degradation of cellulose, 
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hemicellulose and lignin and the formation of acetic acid and other organic acids 

during pyrolysis (Fagernäs et al., 2012a; Spokas et al., 2011). 

 

 

Figure 7.3: Germination rate (%) and shoot/root length (mm) of cress tested in a ‘volatiles only 

germination’ test using different amounts of biochar. LC and GC biochar were tested using 

sealed storage (SS) and open storage (OS) for four weeks. Different letters indicate significant 

differences between the treatments.  
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Figure 7.4: Germination rate (%) (values above bars) and seedling fractions (%) with root 

growth <15 mm, between 15 and 60 mm and above 60 mm as bars are depicted. ‘All exposure 

routes’ germination test was performed assessing toxicity of gaseous compounds released (A), 

leachable compounds (B) and direct contact of seeds and biochar (C). Two high-VOC biochars 

(GC and LC) were tested in sand (w/w). Germination rate is given as averages with standard 

deviation and letters indicate significant differences of germination rate between the treatments. 

 

7.3.2 Assessment of phytotoxicity of VOCs and mitigation methods 

7.3.2.1 Effect of volatiles 

Germination rate for ‘volatile only’ tests can be seen in Table 7.2. The vapours 

released from NC biochar showed no toxic effect on cress seeds and germination 

rates were close to 100% in all NC biochar treatments and in the controls (controls 
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not shown in Table 7.2). Yet, the vapours emitted from LC and GC biochars were 

highly inhibitive to germination. The use of biochar amounts >0.5 g fully suppressed 

the germination of cress seeds (Table 7.2). Even 0.5 g of high-VOC biochars led to 

significant reductions in the rate of germination compared to the control (GC: p 

<0.001; LC: p <0.001), while 0.25 g resulted in a non-significant reduction in 

germination rate (GC: p=0.164; LC: p=0.150) (Figure 7.3). There were no toxic 

effects identified in the volatile fraction of the ‘all exposure routes’ germination test, 

except for a slight but significant decrease of germination for the highest LC 

treatment (LC 5% compared to control: p=0.014) (Figure 7.4). This can be explained 

by the fact that biochar was incorporated into sand and leached with water, which 

reduced the potential of VOC to be vaporised. 

The impact of volatiles on seed germination from high temperature biochars (800-

860°C) produced from different feedstocks has been tested on barley seed 

germination and no inhibition was observed (Bargmann et al., 2013). Nevertheless, 

proximate analyses have shown that high-temperature biochars possess a lower VM 

content compared to biochar produced at lower temperatures and so less/no toxic 

effects would be expected for high temperature biochars (Ronsse et al., 2013). In a 

similar pyrolysis experiment carried out by Busch et al. (2012), peanut hull biochar 

produced at 500°C did show inhibition of germination and on hypocotyl (shoot) 

growth, however, this was attributed to adverse effects caused by a moisture shortage 

and not due to toxicity (Busch et al., 2012). Furthermore, in the study one year old 

biochar was used and therefore a large amount of VOCs might have dispersed over 

the time of storage (Busch et al., 2012). 

Simple storage 

It has been stated that processing, handling and storage of biochar led to reduction of 

VOCs and these seem to be the most relevant factors which determine the profile of 

VOCs sorbed to biochar (Spokas et al., 2011). Thus, biochar storage was chosen as a 

suitable parameter to investigate effects on mitigation of VOC toxicity. The 0.5 g GC 

biochar treatment showed a significant improvement from close to 0% germination 

for fresh samples to nearly 100% for stored biochar (p <0.001) (Figure 7.3). In the 

LC treatment this effect was less pronounced. Storage did not mitigate toxicity or 
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improve germination rates in treatments with more than 0.5 g biochar, all showed 

total inhibition of germination (apart from 1 g stored GC biochar which improved 

germination rate to 4%) (Table 7.2). Tests with 0.5 g of stored GC biochar showed 

similar toxicity as 0.25 g non-stored GC biochar treatment and an increase in 

amounts of biochar in both treatments decreased germination strongly, thus, a 

twofold reduction of toxicity was achieved while the storage of LC biochar showed a 

smaller improvement. 

It is clear that this type of storage of contaminated biochars was a poor measure to 

reduce toxicity and it is unlikely that the contaminated biochars would release 

vapours continuously in high amounts even after four weeks (further investigated in 

Chapter 8). This indicates that even small amounts of vapours released after four 

weeks of storage are highly toxic or the introduction of stored biochar into the 

germination test jars led to an additional peak of vapour release. A reason for 

desorption of VOCs after storage could be the increased moisture content due to the 

water reservoir in the closed jars used during the germination tests. It has been shown 

for soil that a water saturated nitrogen/helium stream desorbs a higher fraction of 

compounds than a dry stream, due to displacement of VOC by water (Thibaud et al., 

1993; Yeo et al., 1997). However, in the case of activated carbon, 

sorption/desorption behaviour showed both no influence (Delage et al., 1999) and 

decreased sorption (thus increased desorption) (Li et al., 2008) due to increased 

relative humidity. Only when water has a higher affinity to the solid material than the 

respective VOC, is it able to displace VOCs and facilitate desorption (hydrophobicity 

of the solid and the kind of VOC determine these affinities). Soil has a higher affinity 

to water than to VOCs (Thibaud et al., 1993) and for activated carbon it is reported to 

be the opposite due to hydrophobic surfaces (Delage et al., 1999). It remains unclear 

if biochar rather has a higher affinity to water or to VOCs, therefore, if relative 

humidity increases VOC desorption. 

The use of short term storage (four weeks) was deemed to be unsuitable to reduce 

toxicity of biochars with very high VOC content. Potentially, storage parameters 

could be improved to result in higher performance, e.g. by increasing temperature 

(investigated in Chapter 8). 
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Blending of low- and high-VOC biochar 

The potential for low-VOC biochar to sorb organic vapours from contaminated 

biochar and consequently, reduce their inhibition of germination was tested through 

the blending of LC and GC biochars with NC biochar. The ‘volatiles only’ 

germination tests showed a reduction in toxicity due to blending (Table 7.2, Figure 

7.5). While, treatments of 1 and 2 g LC and GC biochar without blending led to total 

inhibition of germination (Table 7.2), blending of 1 g of GC biochar with 9 g of NC 

biochar (GCB 1:9) resulted in a similar germination rate as the control, but 2 g GC 

blended with 8 g NC (GCB 2:8) did not improve the plant growth (Figure 7.5). In 

addition, LCB2:8 did not improve germination rate, while LCB 1:9 did, the 

germination rate increased to around 50% when blended (Table 7.2, Figure 7.5). 

The 0.25 g non-blended GC biochar (Figure 7.3) treatment was slightly more toxic 

than 1 g blended treatment (Figure 7.5), thus, the toxicity was reduced by at least a 

factor of four due to blending. For LC biochar the toxicity was reduced to a smaller 

degree. 

Di Lonardo et al. (2013) observed that biochar (poplar, 550°C, pyrolitic stove) 

decreased concentrations of gaseous ethylene in closed glass vials and decreased 

negative influences on plant growth. The same effect could explain the reduced 

toxicity when LC and GC samples were blended with NC biochar, due to the ability 

of low-VOC biochar to adsorb more toxic VOCs (further investigated in Chapter 8). 

Blending of contaminated biochars with low-VOC biochars appears to reduce the 

toxicity of VOCs from contaminated biochars. Nonetheless, as the large standard 

deviation of germination rate in the LCB 2:8 treatment shows (Figure 7.5) the effect 

can be highly variable. An explanation for this variability could be that only one or a 

few compounds are responsible for germination inhibition and could already effect 

germination in low concentrations. As soon as biochar cannot adsorb any more 

compounds, germination inhibition occurs. The adsorption capacity in the LCB 2:8 

treatment could have reached this limit and in some replicates, when highly toxic 

VOCs could not be trapped anymore, they were released and caused near total 

inhibition of germination. Yet, poor blending of the two biochars could also have 

caused non-consistent release of VOCs during the replicate runs. 
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Volatiles effect in practice 

Major negative effects on seed germination by VOC were noted, however, it is 

difficult to assess what impact VOCs from biochar will have on plant germination 

and growth in practice. Biochar handling does have a major impact on amounts and 

composition of volatiles in biochar (Spokas et al., 2011). It has been reported that 

vapours released from hydrochar caused toxicity in closed containers but not when 

free gas exchange was ensured (Bargmann et al., 2013). The ‘all exposure routes’ 

experiment confirmed that vapours from fresh contaminated biochars in a wetted 

sand-mixture caused little toxicity, which indicates this could also be the case if 

applied in agricultural soil. Still, it has been reported that in hydrochar most vapours 

causing toxicity are water soluble (Bargmann et al., 2013). This also seems to be the 

case for contaminated biochars, as leaching reduced toxicity of the volatile fraction 

strikingly. The toxicity of the resulting leachate and biochar is discussed in the 

following section. 

 

 
Figure 7.5: Germination rate (%) and shoot/root length (mm) of cress tested in a ‘volatiles only 

germination’ test. High-VOC biochars (LC and GC) were blended with low-VOC biochar as 

measure to reduce phytotoxicity in a ratio of 1g to 9g (GCB 1:9, LCB 1:9) and in a ratio of 2g to 

8g (GCB 2:8, LCB 2:8). Different letters indicate significant differences between the treatments. 

No statistical analysis was performed for parameter germination rate. 
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7.3.2.2 Effects of water soluble compounds and direct biochar contact 

The fraction in the ‘all exposure routes’ germination test affected by volatiles as well 

as by the leachate from the biochar-sand mixture showed very strong negative effects 

on germination (Figure 7.4). In the highest treatment (5%), both contaminated 

biochars inhibited germination almost completely (6% GC; 0% LC) which clearly 

shows that water soluble compounds from biochar can cause high toxicity on seed 

germination. In the 1% and 2% LC biochar treatments, in which no significant effect 

on germination could be detected, a shift of root length fraction to a greater 

proportion of smaller roots was visible. Seeds exposed to leachate from NC biochar 

showed 100% germination rate in all biochar concentrations (A Table 3). 

Furthermore, positive effects of NC biochar on plant growth (roots) was observed, 

agreeing with reports for most biochars (Jeffery et al., 2011; Lehmann and Joseph, 

2009) (A Figure 2). 

In the ‘solid fraction’, seeds were in direct contact with biochar and were 

additionally exposed to dissolved compounds and released gases. As expected due to 

exposure to all toxic routes, this treatment demonstrated the highest level of 

germination inhibition with 1% of contaminated biochar in soil leading to 

detrimental effects on germination rate (45% GC; 25% LC) and growth (entire roots 

smaller 15 mm). 

It can be clearly seen (Figure 7.4) that direct contact with seeds increased biochar 

toxicity compared to seed contact only with leachates. It needs to be noted, however, 

that the seed-contact-systems were different, therefore, water supply might have been 

different and might have influenced germination. Yet, the controls on filter paper and 

on biochar-sand mixture all showed 100% seed germination rate, indicating that the 

contact system did not have any (negative) influences.  
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Table 7.2: Effect of GC and LC biochar amounts on the germination rate (%) during ‘volatile 

only’ germination tests with cress. Samples were either stored in sealed containers or openly for 

4 weeks. 

biochar storage amount used (g) 

  30 10 5 2 1 

  germination rate (%) 

non-contaminated (NC) 
sealed 98 97 98 99 97 

open 99 100 100 98 100 

gas contaminated (GC) 
sealed 0 0 0 0 0 

open 0 0 0 0 4 

liquid contaminated (LC) 
sealed 0 0 0 0 0 

open 0 0 0 0 0 

 

Table 7.3: Determination of pH of filter paper from ‘volatiles only’ germination tests using 

openly stored (OS) and sealed (SS) LC and GC biochar in different amounts. nt, not tested. 

amount low-VOC biochar GC biochar LC biochar 

g SS OS SS OS SS OS 

0.25 nt nt 7.0 6.5 7.3 6.8 

0.5 nt nt 6.5 6.5 6.7 6.8 

1 6.8 6.7 6.2 6.3 5.5 6.0 

2 7.0 7.0 6.2 6.3 5.3 5.5 

5 6.7 6.0 6.0 6.3 5.3 5.5 

10 6.8 6.2 5.0 5.2 4.5 4.5 

 

7.3.3 Nature of toxicity 

It has been shown that high phytotoxic effects are associated with mobile compounds 

from biochar, but how does this affect plant growth and which factors are 

responsible? 

In the ‘volatiles only’ germination test, four treatments showed a significant 

reduction of shoot length compared to the control (GC SS 0.25: p=0.024; GC OS 0.5: 

p=0.013; LC SS 0.25: p=0.028; LC OS 0.5: p=0.023) and LC OS 0.5 showed a 

significant reduction on root length (p=0.009) (Figure 7.3). This could be attributed 

to direct negative effects on growth after germination but it was observed that the 

listed treatments showed delayed germination; except in the control case no visible 

germination was detected after 48 h (A Figure 1). Delayed germination, which was 

also seen for barley seeds exposed to volatiles from hydrochar (unsealed conditions) 

(Bargmann et al., 2013), could have resulted in reduced time for growth and so 



Chapter 7: VOCs I 

173 

reduced shoot and root length. This shows that the most sensitive parameter for 

toxicity of mobile compounds from biochar is germination rate and changes in shoot 

and root length only seem to be a result of inhibition of germination. 

One potential underlying cause for reduced germination caused by vapours from 

biochar could be low pH of <5, leading to total or close to total inhibition of seed 

germination on filter paper for various plant species (Shoemaker et al., 1990). By 

measuring the pH of filter paper it was identified that in the ‘volatile only’ 

germination test the filter paper of the high biochar treatments (10 g) had a pH of 

around 4.5 (Figure 7.4). Nevertheless, in the lower treatments (1, 2, 5 g), the pH 

increased and reached neutral values (5.3-7.0), but still no germination was observed. 

In a study of eight plant species, it was reported that a pH of 5.5 to 7.5 is the 

optimum pH for germination (Shoemaker et al., 1990). This clearly shows that the 

reduced pH in the experiments outline here might have contributed to the inhibition 

of seed germination, but is not the sole cause. A pine wood biochar extract with a pH 

of 3.9 showed toxic effects on algae; yet, even when the pH was neutralised the toxic 

effects still occurred (Smith et al., 2013). This confirms that mobile compounds from 

biochar can cause direct toxicity as reported in Smith et al. (2013). 

Seeds in direct contact with biochar and affected by biochar leachate were even 

stronger inhibited than seeds only exposed to biochar vapours. Gell et al. (2011) 

demonstrated that biochar produced from digested pig manure at 300°C caused 

major toxicity on germination due to salt stress and/or dissolvable phytotoxic organic 

compounds. However, adverse effect due to the salt-stress caused by the ash in 

biochar, as also suggested in Busch et al. (2012), can be excluded as LC, GC and NC 

biochars had ash contents of less than 2%. The toxic effects of water extracts from 

biochar have been investigated before with extracts from VM-rich charcoal 

(macadamia nut shell, 430°C), demonstrating reduced germination of radish and corn 

seeds (Deenik et al., 2010). It has been reported that three out of six biochar extracts 

from different feedstocks and HTTs decreased seedling growth but did not have an 

influence on germination rate (Rogovska et al., 2012). In another study, pine biochar 

extracts (biochar produced at 450°C) exhibited toxic effects on blue-green and green 

algae (Smith et al., 2013). Furthermore, biochar extracts from different feedstocks 

showed variable negative impacts on aquatic species of several organism groups 
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(bacteria, algae, crustacea, protozoa) which was attributed to organic compounds in 

biochar (Oleszczuk et al., 2013). 

These studies confirm that biochar can possess readily water soluble compounds that 

can have a negative impact on different organisms. In all four above mentioned 

studies, biochar was extracted by shaking with water. Yet, in this study, biochar was 

simply leached by water that percolated through a biochar-sand mixture and still this 

resulted in highly toxic leachates. These results show that acute toxic compounds in 

biochar of organic origin can be dissolved easily into water and could potentially be 

readily transported into soil, leached into groundwater and also taken up by 

organisms. It is difficult, however, to assess the degree of which condensation and 

deposition affects biochar produced in other pyrolysis units and if mobile organic 

compounds might have been responsible for some of the variable results of plant 

response in field and greenhouse trials (Biederman and Harpole, 2013; Spokas et al., 

2011) as no studies on these factors could be found. Which particular organic 

compounds might have caused the toxic effects observed here will be further 

discussed in Chapter 9.  



Chapter 7: VOCs I 

175 

7.4 Conclusions 

In this study, condensation and deposition of liquids and gases during pyrolysis 

resulted in biochar with a high content of organic compounds that were released 

below HTT. These volatiles were highly mobile and showed strong toxic effects on 

cress seed germination, both in vapour form and dissolved in water, indicating 

potential problems in the use of this type of biochar for soil amendment. Two 

methods, storage and blending, for reducing toxicity of high-VOC biochar were 

tested. The results showed that despite the high potential of VOC to vaporise/to be 

released, simple open-air storage proved insufficient for toxicity reduction, at least 

within the range investigated. On the other hand, blending of high-VOC biochar with 

low-VOC biochar showed positive synergy and effective reduction of toxicity was 

demonstrated in some cases. Due to the limited efficacy of tested post-treatment 

measures, the VOC-release and post treatment measures were further investigated in 

the next chapter. It was concluded that the phytotoxic effects of the biochar samples 

might be attributed partly to a reduction in pH caused by volatiles and dissolved 

compounds. However, it does not explain the toxic effects in all cases. Since salt and 

water stress were excluded as causes for the inhibition, it was deduced that mobile 

organic compounds were most likely responsible for the undescribed adverse effects 

on germination. Variable plant responses observed in previous studies might be 

explained by this phenomenon of mobile organic compounds and therefore it is very 

important to continue research in this area. Consequently, in Chapter 9 it is further 

discussed which compounds caused the toxicity. In addition, there is a need to 

investigate the condensation and deposition of pyrolysis vapours for different 

pyrolysis facilities as the degree is unique to the individual unit. Findings in this 

work open up a new area of research of high importance to biochar development and 

application. 
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Chapter 8   Mechanisms of post-treatment measures 

and potential human health effects of high-VOC 

biochars 

 

The following chapter is based on the published article: 

Buss, W., Mašek, O., 2016. High-VOC biochar – Effectiveness of post-treatment 

measures and potential health risks related to handling and storage. Environ. Sci. 

Pollut. Res.  doi: 10.1007/s11356-016-7112-4 

Journal impact factor (2014): 2.828 

Number of citations (September 2016): 0 

The candidate was solely responsible for data analysis and writing of the article and 

this chapter. Ondřej Mašek provided guidance contributed to the editing of the 

manuscript. The experimental work was performed by the candidate, apart from the 

biochar production which was performed by Juan Luis Turrion-Gomez. 
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Figure 8.1: Graphical abstract Chapter 8. Two biochars were produced, one of those was contaminated with pyrolysis vapours due to problems during 

production. Different post-treatments were investigated regarding their effect on reduction of VOC emissions from the high-VOC biochar. Open storage was 

not sufficient to mitigate VOC emissions completely. Blending of high- with low-VOC biochar was more successful, while heat-treatments fully mitigated 

VOC emissions.  
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8.1 Introduction 

Biochar has shown to possess a range of beneficial properties which make it suitable 

for various purposes, e.g. carbon storage, soil remediation, soil improvement and 

wastewater treatment (Lehmann and Joseph, 2015b). However, in some studies 

biochar has been shown to cause negative effects on plants and soil organisms 

(Deenik et al., 2010; Domene et al., 2015; Gell et al., 2011; Oleszczuk et al., 2013; 

Rajkovich et al., 2012; Rogovska et al., 2012; Smith et al., 2013). High salinity and 

nitrogen immobilisation after biochar application have been suggested to be two of 

the factors having caused adverse effects (Deenik et al., 2010; Domene et al., 2015; 

Gell et al., 2011; Rajkovich et al., 2012), yet, the majority of studies identified 

contaminants to be responsible for observed phytotoxicity (Gell et al., 2011; Jones 

and Quilliam, 2014; Oleszczuk et al., 2013; Smith et al., 2013). For application of 

biochar to soil, as well as for general handling of biochar, it needs to be ensured that 

biochar does not pose any excessive risk to plants, humans and the ecosystem. 

Consequently, conducting phytotoxicity tests and analysing contaminants in biochar 

is essential and different groups of contaminants have been found; inorganics, as well 

as organics. 

Potentially toxic elements (PTEs) in biochar most often originate from the feedstock 

but sometimes also from materials used for construction of the processing equipment 

(Chapter 3). Organic contaminants in biochar are a more complex issue, as these are 

formed in elaborate reactions during the high-temperature treatment in pyrolysis 

units; the relevant groups are volatile organic compounds (VOCs), polycyclic 

aromatic hydrocarbons (PAHs) and dioxins. It has been shown that, while total 

concentrations of dioxins are typically below threshold values for soils (Bucheli et 

al., 2015; Hale et al., 2012), concentrations of PAHs can, in some cases, exceed 

values recommended in current legislation (Hale et al., 2012; Hilber et al., 2012). 

However, concentrations of available dioxins were below the detection limit of 

analytical equipment and available PAH levels were lower than clean urban 

sediments (Hale et al., 2012). The third category, i.e. VOCs, on the other hand, are 

not studied very well in biochar, but the studies that exist indicate that a wide 

selection of VOCs are present with considerable potential for negative or positive 

impact on plants and soil due to their high mobility (Elad et al., 2011; Spokas et al., 
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2011). Consequently, phytotoxicity tests were conducted investigating the effect of 

vapours from VOC-rich biochars and indeed strong inhibitions were observed 

(Chapter 7). Post-treatment measures showed only partially to be successful in 

alleviating negative effects and there is a need for understanding the VOC-removal 

mechanisms and for developing more effective methods for post-treating biochars. 

VOCs are defined as organic compounds that have boiling points of ≤250°C and due 

to their volatility are often considered contaminants that can threaten air quality 

(Directive 2004/42/CE of the European parliament and of the council, 2004). During 

handling or storage of VOC-rich biochars, people involved could be exposed to 

VOCs which could be a health and safety hazard. Depending on the use of biochars, 

different threshold values for human health would apply. When used at a work place, 

occupational exposure limit values regulate the VOC concentration thresholds, which 

exist in most countries (Aussschuss für Gefahrstoffe, 2006; EU Commission 

Directive 91/322/ECC, 1991; US Department of Health and Human Services, 2007). 

When biochar is used privately e.g. in growing media, VOCs released from biochar 

would have to be evaluated differently. E.g. in Germany, guideline values for indoor 

air pollution in private and public buildings were introduced to assess the 

toxicological risk for long-term exposure to VOCs (Arbeitsgemeinschaft 

Ökologischer Forschungsintitute, 2013) or to regulate the maximum permissible 

VOC release of construction products which was also partially implemented in EU 

legislation (Ausschuss zur Gesundheitlichen Bewertung von Bauprodukten, 2012; 

European Union Joint Research Centre, 2013). To my knowledge compliance of 

biochar with existing VOC threshold values has not been tested before which could 

be highly relevant for human health and safety. 

Continuing the investigations of Chapter 7, this chapter focused on the release 

mechanisms of VOCs from biochar to understand the effects of vapours from VOC-

rich biochars on plant growth and the way the post-processing affected the VOC-

release in the previous chapter. In addition, further post-treatment measures for 

reducing the VOC concentrations in biochar to levels not affecting plant growth were 

investigated. Furthermore, the potential impact of VOCs from biochar on human 

health was assessed by comparing VOC concentrations with threshold values. The 
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release of VOCs from two types of biochar during open storage was investigated: (I) 

biochar contaminated during production with pyrolysis vapours (high-VOC) and (II) 

comparable biochar (same feedstock and pyrolysis conditions) with low 

concentration of VOCs (low-VOC). Mass change of the biochars during open storage 

was measured to see if it is possible to use this easy-to-perform method to assess the 

volatile carbon fraction that is already emitted at room temperature and if this can be 

correlated with VOC concentration in the head-space of the samples measured with a 

VOC analyser. Furthermore, potential mitigation measures, such as sorption of 

VOCs onto low-VOC biochar, and low-temperature oxidation were tested. The 

objective of this research was to assess the release dynamics of VOCs from 

contaminated biochars and to develop effective post-treatment measures for reducing 

VOC concentrations. 
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8.2 Materials and methods 

An overview of all the experiments that were conducted in this chapter can be found 

in Figure 8.2. 

8.2.1 Biochars 

Liquid contaminated (LC) biochar and gas contaminated (GC) biochar were assessed 

against a low-VOC, non-contaminated (NC) biochar. Details on the biochars can be 

found in section 2.2.6. 

8.2.2 VOC measurements 

For the VOC measurements, a miniRAE lite VOC analyser (RAE Systems, Inc, San 

Jose, California) with a photoionisation detector and a 10.6 eV gas-discharge lamp 

was used. The instrument has a flow rate of around 0.5 L min-1 and detects VOCs 

with a resolution of 0.1 ppm. A two point calibration using fresh air (0 ppm) and 

isobutylene standard reference gas (100 ppm) was performed. As control, the air in 

the lab was sampled for each measurement. 

8.2.3 VOC emissions of fresh biochar samples 

To analyse the initial VOC release of the three biochars, 10 g of ‘fresh’ (stored in a 

sealed container after production) NC, GC and LC biochar pellets were added into 

125 mL glass jars and the VOC concentration in the head-space above the biochar 

samples was measured. The biochars were not ground prior to analysis to be able to 

measure the VOC concentration released from the undisturbed samples (the same for 

thermally treated samples in 8.2.6). The concentration in the head-space of the 

biochar samples was measured for 10 s and the peak VOC concentration within this 

time period was reported. Triplicate analysis were performed by measuring the VOC 

concentration in the head-space of the container after 5 min sealed storage (open 

container, measure for ~10 s, close container for 5 min, open container and measure 

for ~10s, repeat all). 

8.2.4 Time series measurements of VOC release dynamics 

Three different experiments were performed to investigate the VOC release 

dynamics by high- and low-VOC biochars when openly stored (exposed to air), after 

storage in sealed containers since the day of production. The VOC concentration in 

the head-space above the samples, the change of mass of the samples and the change 
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of pH of a water reservoir surrounding the samples was determined (grey underlined 

area in Figure 8.2). For the following time series of VOC measurements during open 

storage the samples were ground using pestle and mortar. 2 g of ground NC, GC and 

LC biochar were filled in 125 mL glass vials, respectively. 

8.2.4.1 VOC measurement in the head-space of biochar 

Prior to the first VOC measurement, the samples were stored openly for 5 min 

because the VOC concentrations of the freshly ground samples fluctuated 

significantly. To investigate the release of VOCs during open storage, the VOC 

concentration in the head-space of the biochar samples were measured every 30 min 

over the course of 50 h using the miniRAE lite VOC analyser as described. To 

eliminate short-term fluctuations, instead of taking one measurement every 30 min, 

at each stage the concentration was measured four times within 40 s and an average 

was reported. Cross-contamination was avoided by conducting the experiments with 

different biochars individually, at different days. The temperature was kept at 

~17±1°C. Afterwards, the samples were stored openly in the lab for 2 month (17-

22°C) before the VOC concentration in the head-space was measured again. A 

summary of all the VOC measurements conducted can be found in Table 8.1. 

8.2.4.2 Change of mass of biochar sample 

To determine the change in biochar mass as a result of VOC release, ~2 g of each of 

NC, GC and LC biochar was added to pre-weighed aluminium foil cups (25 mm 

height, 70 mm diameter at the top, 40 mm at the bottom) and the mass was measured 

over 50 h. Variations of relative humidity in the lab led to significant fluctuations of 

the mass of the samples and to account for this, the same experiment was performed 

with samples that were stored in the lab for several weeks prior to the experiment (no 

net change of mass). The change in mass of these samples was subtracted from the 

fresh samples for the different points in time. The analyses were performed in 

triplicates. 

8.2.4.3 Change of pH of water reservoir affected by biochar vapours 

To investigate the acidity of the vapours released, the change of pH of a water 

reservoir surrounding, but not in direct contact with the biochar samples, was 

measured. Again 2 g of ground NC, GC and LC biochar was added to aluminium 
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cups and placed into plastic jars on an elevated platform above 100 mL of a 0.1 mol 

L-1 KCl solution. The KCl was added because resistance errors can occur measuring 

the pH of distilled water and the resulting value can differ significantly (Youmans, 

1972). The pH was measured with a pH meter (Mettler Toledo FE 30) over the 

course of 50 h. The change in H+ concentration was calculated from the pH. The 

analyses were performed in triplicates. 

8.2.5 Blending of low-VOC and high-VOC biochars 

To evaluate if low-VOC biochar had the ability to sorb measurable amounts of VOCs 

from high-VOC biochar, fresh samples of LC biochar were mixed in ratios of 1 g to 

9 g and 2 g to 8 g with NC biochar (same ratio as used in the germination test in 

Chapter 7). The biochars were ground, mixed together and 10 g of the mixture was 

placed into a 125 mL glass jar. In the following, the blends will be referred to as 

LCB 1:9 and LCB 2:8. The VOC concentration in the head-space was measured 

(section 8.2.3). The experiment was not performed for 50 h as for the experiment 

with the unblended biochars, but for 60 h as the VOC concentration was still 

changing after 50 h. 

8.2.6 Thermal post-treatment 

Samples of all three uncrushed biochars (NC, GC and LC biochar) were spread in 

aluminium trays in one layer and exposed to air at 200°C for 20 h in a laboratory 

oven. 10 g of each of the thermally treated biochars was placed in a 125 mL glass jar 

and the VOC concentration in the head-space was measured as described in 8.2.3. 

The treated samples were used for germination tests (section 8.2.7) and parts were 

stored openly for 14 days and the VOC emission was measured again. 

8.2.7 Germination tests 

‘Volatiles only’ and ‘all exposure routes’ cress seed germination tests (section 2.6) 

were performed using 1, 2 and 5 g of ground NC, GC and LC biochar treated at 

200°C for 20 h (for ‘volatiles only’ test) and 1, 2 and 5% of the three biochars in 

sand (for ‘all exposure routes’ test). In the 'volatiles only' germination test, seeds 

were not directly exposed to the biochar but only to its vapours. In the 'all exposure 

routes' germination test, seeds were either only exposed to the vapours from a 

biochar-sand mixture, exposed to the vapours and leachate from the mixture or were 
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in direct contact with biochar. For the ‘volatiles only’ germination test, length of 

shoots and roots were determined, while in the ‘all exposure routes’ germination test 

the roots were categorised in three fractions (roots <15 mm, roots between 15-60 mm 

and roots >60 mm). More details can be found in section 2.6. The tests were 

performed in triplicates. 

8.2.8 PAH analysis 

Concentrations of total and water extractable PAHs were determined using 36 h 

Soxhlet extraction with toluene and shaking of biochar in DI water with a ratio of 

1:10, respectively. PAH analyses were performed by Northumbrian Water Scientific 

Services (Newcastle, United Kingdom), laboratories accredited by United Kingdom 

Accreditation Service (UKAS). More details can be found in section 2.5. 

8.2.9 Statistics 

Freundlich-langmuir sorption isotherms were fitted to the data for VOC release and 

change of H+ concentration according to a best fit model. R² was used to show the 

deviation of the data from this fit. For the evaluation of the germination tests the 

difference to the control was determined using one-way ANOVAs in SigmaPlot 12.5 

(Systat Software Inc).  
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Figure 8.2: Schematic of the experiments conducted in this chapter. The low-VOC biochar and 

the two high-VOC biochars were tested in all five tests. Results for experiment 1 can be found in 

Table 8.1, the results for the grey underlined experiments which were all performed on the same 

time scale are depicted in Figure 8.3, the results of experiment 4 are shown in Figure 8.4 and 

results of experiment 5 can be found in Table 8.1 and in the Figure 8.5 and Figure 8.6. More 

details about the experiments can be found in section 8.2.
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8.3 Results and discussion 

8.3.1 VOC release of fresh and stored biochars 

To investigate the VOC release of biochars, two high- and one low-VOC biochar 

were tested in three times series experiments conducted over 50 h. The experimental 

set-ups can be found in Figure 8.2 (grey underlined area). VOC release 

characteristics of GC, LC and NC biochars were investigated by measuring the head-

space VOC concentration, the change of mass of the biochars and the change of the 

pH of a water reservoir surrounding the samples (measured as change of H+ 

concentration). The results are shown in Figure 8.3.  

The low-VOC, NC biochar increased in mass rapidly within the first 5-6 h of open 

storage, saturation was reached at around 6% with barely any additional weight 

change until the end of the experiment (freundlich-langmuir sorption isotherm, 

R²=0.999). The mass gain can be attributed to uptake of moisture from the air which 

is typical for hygroscopic, porous carbons (Li et al., 2008). Measurement of 

concentrations of VOCs in the head-space showed that the NC biochar did not 

release any detectable levels of VOCs and there was also no noticeable change in the 

pH of the water reservoir surrounding it (Figure 8.3). 

Unlike the NC, both the GC and LC biochar released considerable amount of VOCs. 

The head-space concentrations of VOCs for fresh (crushed) samples were 2.9 ppm 

for GC and 8.5 ppm for LC biochar (Table 8.1) which reduced dramatically with 

exposure to air, dropping to 1 ppm after 10 h open storage and then to 0.4 ppm until 

the end of the experiment (50 h) for GC biochar (Figure 8.3). For LC biochar the 

concentration declined to 1.8 ppm after 10 h exposure to air and in the following 40 h 

it decreased slowly to 0.7 ppm. During the 50 h VOC release period under ambient 

conditions, the GC biochar sample increased in mass by around 2% while the mass 

of LC biochar remained constant. This could mean that LC in contrast to NC biochar 

did not take up any moisture and the mass of the VOCs released was too small to be 

captured with the balance. However, in Chapter 7 using thermogravimetric analysis it 

was shown that, when heated to 110°C for 15 min, there was an extra mass loss of 

~5% in the LC biochar sample compared to the NC biochar indicating that 

measurable amount of VOCs were released. This 5% extra loss of mass of the LC 
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biochar matches the 6% mass uptake of the NC biochar very closely, suggesting that 

VOC release and moisture uptake happened simultaneously and to a similar extent in 

LC biochar, overall, resulting in no change in mass. In addition, the mass gain curve 

(moisture uptake) of the NC sample and the VOC release curve of the LC sample are 

inversely correlated (Figure 8.3), which means moisture uptake and VOC release 

happened at a similar rate. Overall, the simultaneous release of VOCs and uptake of 

moisture resulted in constant weight of the LC biochar confirming that moisture 

uptake masked the release of VOCs. This highlights an issue with using gravimetric 

methods for simple assessment of VOC release in biochar. 

 

Table 8.1: VOC concentrations (ppm) in the head-space of low-VOC (NC) and two high-VOC 

(GC and LC) biochars treated in different ways as average (AV) and standard deviation (SD). 

  low-VOC  high-VOC  

  NC biochar GC biochar LC biochar 

treatment unit AV SD AV SD AV SD 

* fresh (0 min) ppm 0.0 0.0 7.3 0.9 13.7 2.2 

# crushed and stored for 5 min ppm 0.0 0.0 2.9 0.2 8.5 0.7 

# open storage for 50 h ppm 0.0 0.0 0.4 0.0 0.7 0.0 

# open storage for 2 months ppm 0.0 0.0 0.2 0.1 0.3 0.1 

* 200°C for 20 h from fresh ppm 0.0 0.0 0.0 0.0 0.7 0.2 

* + 14 days of storage ppm 0.0 0.0 0.0 0.0 0.0 0.0 

* 10 g of uncrushed biochar were measured in 125 mL vials in triplicates 

# 2 g of crushed biochar was measured in 125 mL vials in quadruplicates  
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Figure 8.3: Mass change (%), VOC concentration in the head-space (ppm) (both left axis) of 

non-contaminated (NC), gas contaminated (GC) and liquid contaminated (LC) biochar when 

exposed to air and the change of H+ concentration (mol L-1) of a water reservoir surrounding the 

samples is shown (right axis). H+ concentration change and mass change are given with 

standard deviation (n=3). R² are depicted where freundlich-langmuir sorption isotherms were 

fitted to the data. The small graphs in each figure show the same data over the whole duration 

of the experiment, i.e. 50 h. 
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Furthermore, the high-VOC biochars (GC, LC), increased the H+-concentration in 

the water reservoir surrounding the samples (this corresponds to a pH decrease) 

(Figure 8.3). The VOC release and change of H+-concentration were inversely 

correlated, which in addition to high concentrations of LMW aliphatic acid detected 

in the samples (Chapter 9), strongly indicates that the pH change indeed originated 

from VOCs emitted by biochar. The change of the pH of the water reservoir was 

very similar for both high-VOC biochars (~6*10-6 mol L-1) which showed to have the 

same pH (3.64) and very similar amounts of volatile, LMW, aliphatic acids (~1600 

mg kg-1) (Chapter 7 and Chapter 9) (the higher amounts of phenols detected in LC 

biochar is the likely cause for the difference in head-space VOC concentrations). The 

starting pH in the tests varied slightly, nevertheless, change of H+ concentration of 

6*10-6 mol L-1 corresponds to a pH decrease of 1.8 units when starting at a pH of 7. 

Here it was shown that VOCs emitted by biochar indeed have the ability to change 

the pH of a water reservoir to a significant extent which means emissions of VOC 

from biochars could lead to corrosion of metal containers or metal structures close to 

the area these biochars are stored. 

Overall, after 50 h of storage in open air and even after open storage for 2 months in 

the lab, still, VOC emissions from GC and LC biochars were at detectable levels 

(Table 8.1). It shows the ineffectiveness of simple, open storage as post-treatment for 

removing VOCs from these specific biochars. In Busch et al. (2012), on the contrary, 

storage of char from hydrothermal carbonisation for 2 weeks showed to reduce VOC 

emissions successfully and cress seeds were able to grow unhampered. The 

phenomenon of constant release of VOCs shown by the two highly contaminated 

biochars, even after long-term storage could be a hazard for application of such 

biochar to soil. However, previously, it was shown that incorporation of biochars into 

wet sand or washing of biochar alleviated phytotoxic effects of VOCs to a large 

extent (Bargmann et al., 2013) (Chapter 7). Consequently, under natural conditions, 

biochar will be exposed to natural weathering and precipitation/irrigation which will 

reduce effects of VOCs significantly. 
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8.3.2 Blending of low-VOC and high-VOC biochars as a measure for 

mitigating risk for plant growth 

In this experiment, it was tested, whether low-VOC biochar can sorb measureable 

amounts of VOCs from high-VOC biochar. The initial (0 h) VOC concentration in 

the head-space above LC biochar samples amended with low-VOC (NC) biochar was 

0 ppm for both blends (LCB 1:9 and LCB 2:8) (Figure 8.4). Compared to the initial 

concentration of VOCs above the pure 2 g LC sample (8.5 ppm, added in Figure 8.4), 

it shows that blending with NC was effective and that NC biochar was able to sorb 

most, if not all, of the VOCs released by LC biochar. However, after a few hours the 

VOC concentration in the head-space of LCB 2:8 increased and a peak concentration 

of 0.9 ppm after around 14 h was detected. Consequently, it seems that NC biochar 

reached its maximum sorption capacity and could not take up more of the VOCs. 

Subsequently, the VOC concentration slowly decreased until it reached 0.1 ppm after 

52 h. The situation was different for the LCB 1:9, which showed no detectable VOC 

release for the duration of the experiment, confirming NC biochar’s ability to prevent 

VOC release from the LC sample at lower concentrations (Figure 8.4).  

In the case of activated carbon, the VOC sorption capacity in two studies was tested 

with gaseous benzene and different activated carbons were able to take up around 0.4 

g benzene/g on average (Chiang et al., 2001; Rodríguez-Mirasol et al., 2005). The 

biochars investigated here clearly did not have the capacity to sorb an amount as 

high. Still, blending high-VOC and low-VOC biochars could be used to help to 

control the desorption rate of VOCs, providing more time for their degradation in 

soil or for deliberate release of small amounts of VOCs to trigger positive effects on 

plant growth as observed in several studies (Elad et al., 2011; Keeley and Pizzorno, 

1986; Kwapinski et al., 2010). 
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Figure 8.4: VOC concentration (ppm) in the head-space of LC biochar samples blended in 

different ratios when openly stored for 60 h. 1 g of LC biochar was mixed with 9 g of NC 

biochar (LCB 1:9) and 2 g LC mixed with 8 g NC biochar (LCB 2:8). For comparison, the VOC 

concentration in the head-space of 2 g LC biochar as in Figure 8.3 is shown (measured for 50 h). 

 

8.3.3 Thermal post-treatment as measure for VOC-removal and 

alleviation of phytotoxic effects 

As long-term open-storage did not show to be promising in terms of VOC release 

mitigation, and blending was effective only at relatively low concentrations of 

contaminated biochar, low-temperature oxidation/devolatilisation (200°C for 20 h) as 

another method for VOC content management was investigated. Thermal treatment 

reduced the VOC content in the head-space in GC biochar to 0 ppm and in LC 

biochar to 0.7 ppm (Table 8.1). In combination with open-air storage for 14 days, the 

VOC concentration in the head-space of LC biochar also dropped to 0 ppm. 

In Kołtowski and Oleszczuk (2015), a similar thermal treatment approach was tested 

for removal of PAHs in biochars with similar PAH concentration (3.5, 20 and 40 mg 

kg-1) as determined in the biochars investigated in this study (6, 28 and 53 mg kg-1) 

(PAH results shown in Chapter 9). As in Kołtowski and Oleszczuk (2015), thermal 
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treatment effectively reduced the total concentrations of PAHs to 1.79 mg kg-1 for 

NC, 2.79 mg kg-1 for GC and 1.21 mg kg-1 for LC biochar and the water-extractable 

concentrations to below 0.001 mg kg-1 (Table 8.2) (fresh GC biochar contained 1.6 

and LC 2 mg kg-1 water extractable PAHs (Chapter 9)). This shows that 200°C 

treatment for 20 h can remove VOCs as well as PAHs from biochar. 

The thermally treated biochars were tested in 1, 2 and 5 g in ‘volatiles only’ cress 

seed germination tests and where vapours from fresh and 4 week-stored biochars 

resulted in 100% germination inhibition (Chapter 7), low-temperature treatment 

alleviated all toxic effects (Figure 8.5) (100% germination rate was observed in all 

treatments and the shoot and root growth did not differ statically from the control). 

Testing all three biochars in ‘all exposure routes’ seed germination tests revealed the 

same, seeds affected by vapours, seeds affected by the leachate from biochar-sand 

and seeds in direct contact with biochar-sand showed no inhibition of germination 

rate and early seedling growth compared to the control (Figure 8.6). In Kołtowski 

and Oleszczuk (2015), thermal treatment did remove PAHs, however, the thermally 

treated biochars showed inconclusive effects (positive and negative) on growth of 

shoots and roots in the same plant species as tested here, suggesting that other than 

VOC or PAH effects were responsible for the toxicity. 

Overall, in the current study, thermal treatment showed to be effective in reducing 

PAHs and VOCs of both contaminated biochars (GC and LC biochar) and in 

alleviating previously observed phytotoxicity. 
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Table 8.2: Concentrations of PAHs in low-temperature biochars extracted by toluene in 36 h 

Soxhlet extraction (total) and by DI water. 

 low-VOC high-VOC 

 NC biochar GC biochar LC biochar 

 total water total water total water 

 µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 

naphthalene 1.5 <0.001 2.5 <0.001 0.95 <0.001 

acenaphthylene <0.10 <0.001 <0.10 <0.001 <0.10 <0.001 

acenaphthene <0.10 <0.001 <0.10 <0.001 <0.10 <0.001 

fluorene <0.10 <0.001 <0.10 <0.001 <0.10 <0.001 

phenanthrene <0.10 <0.001 <0.10 <0.001 <0.10 <0.001 

anthracene <0.10 <0.001 <0.10 <0.001 <0.10 <0.001 

fluoranthene <0.10 <0.001 <0.10 <0.001 <0.10 <0.001 

pyrene <0.10 <0.001 <0.10 <0.001 <0.10 <0.001 

benz(a)anthracene 0.29 <0.001 0.29 <0.001 0.29 <0.001 

chrysene <0.10 <0.001 <0.10 <0.001 <0.10 <0.001 

benzo(b)fluoranthene <0.10 <0.001 <0.10 <0.001 <0.10 <0.001 

benzo(k)fluoranthene <0.10 <0.001 <0.10 <0.001 <0.10 <0.001 

benzo(a)pyrene <0.10 <0.001 <0.10 <0.001 <0.10 <0.001 

indeno(1,2,3-cd)pyrene <0.10 <0.001 <0.10 <0.001 <0.10 <0.001 

dibenz(a,h)anthracene <0.10 <0.001 <0.10 <0.001 <0.10 <0.001 

benzo(g,h,i)perylene <0.10 <0.001 <0.10 <0.001 <0.10 <0.001 

16 USEPA 1.79 <0.001 2.79 <0.001 1.21 <0.001 

 

 

 

Figure 8.5: Shoot and root length of cress seeds tested in ‘volatiles only’ germination tests with 

1, 2 and 5 g low-temperature treated NC, GC and LC biochar. Shoot and root length of the 

treatments are not statistically different to the control (one-way ANOVA). 

 



Chapter 8: VOCs II 

194 

 

Figure 8.6: ‘All exposure routes’ germination test assessing toxicity of gaseous compounds 

released (A), leachable compounds (B) and direct contact of seeds and biochar (C). Seven day 

germination test using low-temperature treated NC, LC and GC biochar mixed in three 

concentrations in sand (1, 2 and 5%). Germination rates are depicted above the bars; bars show 

percentage of seedlings with root growth <15 mm, between 15 and 60 mm and above 60 mm. 
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Table 8.3: Threshold values for individual VOCs based on German, EU and US guidelines and 

legislations. 

  occupational exposure limits indoor air quality 

 short-term 40 h-week GV II LCI 

 1EU 2NIOSH  1EU/3TRGS 2NIOSH 4AGÖF 2013 5AgBB 2012 

 ppm ppm ppm ppm ppm ppm 

phenol 4 +15.6 2 5 0.052   

cresol    2.3 *0.011  

naphthalene  15 0.1 10 0.006 0.0001 

formic acid   5 5  0.66 

acetic acid  15 10 10  0.13 

propionic acid 20 15 10 10  0.12 

TVOC3      2.6 

TVOC28           0.26 

* sum of three cresols   

+ ceiling value: should not be exceeded at any time   

1 EU Commission Directive 2000/39/EC, 2000; EU Commission Directive 2006/15/EC, 2006; EU 

Commission Directive 2009/161/EU, 2009; EU Commission Directive 91/322/ECC, 1991. 

Occupational exposure limits based on weighted-averages in a 40 h work-week and short-term (15 

min) exposure limits. Lower of the EU/German occupational limit value depicted. 

2 US Department of Health and Human Services, 2007, "Pocket Guide to Chemical Hazards". 

Occupational exposure limits based on weighted-averages in a 40 h work-week and short-term (15 

min) exposure limits. 

3 Aussschuss für Gefahrstoffe, 2006 (Germany), "Technische Regeln für Gefahrenstoffe, 

Arbeitsplatzgrenzwerte". Occupational exposure limits based on weighted-averages in a 40 h work-

week. Lower of the EU/German occupational limit value depicted. 

4 Arbeitsgemeinschaft Ökologischer Forschungsintitute, 2013 (Germany), "Guidance Values for 

Volatile Organic Compounds in Indoor Air". GV II, reference value, for indoor air quality of 

private and public homes, based on toxicological studies, when exceeded countermeasures to be 

taken. Values in µg m-3 were converted into ppm based on 25°C and 1 bar pressure. 

5 Ausschuss zur Gesundheitlichen Bewertung von Bauprodukten, 2012 (Germany), "Health-related 

evaluation procedure for volatile organic compounds emissions (VOC and SVOC) from building 

products". LCI, lowest concentration of interest, threshold value emitted by construction products 

in a test chamber after 28 days. TVOC3, total VOCs after 3 days. TVOC28, total VOCs after 28 

days. Values in µg m-3 were converted into ppm based on 25°C and 1 bar pressure, for TVOC3 and 

TVOC28 in addition the molecular weight of phenol was used. 
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8.3.4 Potential human health and safety risks associated with VOC 

release from fresh and treated biochars 

During handling and storage of contaminated biochar, such as GC and LC used in 

this study, relatively high amounts of VOCs can be released, leading to risk of 

exposure for anyone working with these materials, particularly in enclosed areas with 

poor ventilation. Fresh LC and GC biochar resulted in head-space concentrations of 

VOCs of up to 13.7 ppm (LC) and 7.3 ppm (GC) directly after removing from closed 

containers. In Chapter 9, the individual composition of LMW-hydrocarbons in GC 

and LC biochar are listed and the effects on plant growth were discussed. Although 

measured in water extracts from the samples, a very similar composition can be 

assumed in the head-space above the biochars as the identified compounds are 

typical VOCs which partly vaporise at room temperature. Methanol, phenol, cresols 

and LMW aliphatic acids were the compounds in the highest concentrations; 

naphthalene was also present but in comparably low concentrations (Chapter 9). 

According to EU and US legislation, short-term occupational exposure limits for 

workers for the described VOCs are in the range of 4-20 ppm (Table 8.3). The 

exposure to phenol should not exceed 4 ppm for 15 min and 15.6 ppm should never 

be exceeded. Naphthalene, acetic acid and propionic acid short-term exposure 

threshold values, as defined by the US National Institute for Occupational Safety and 

Health, were set to 15 ppm (US Department of Health and Human Services, 2007). 

Based on results obtained in this study, 13.7 and 7.3 ppm release of a mixture of 

VOCs by high-VOC biochar, it seems feasible for short-term exposure values for 

certain VOC constituents to be exceeded under certain conditions, especially during 

handling. Risks related to long-term exposure can also be foreseen, as limits in this 

case are much lower than for short-term exposure, e.g. phenol should not exceed 2-5 

ppm, acetic acid 5 ppm and cresol 2.3 ppm (Table 8.3). Overall, long-term exposure 

could be an issue where, for example, VOC-contaminated biochar would be stored 

openly next to a work place. Considering that biochars stored for 50 h showed head-

space concentrations of VOCs of 0.4 ppm (GC) and 0.7 ppm (LC) (Table 8.1), it 

seems rather improbable that threshold values would be exceeded. Furthermore, low-

VOC biochar, e.g. NC biochar in this study, did not emit any detectable 
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concentrations of VOCs and would definitely comply with occupational exposure 

limits. 

In addition to risks to workers handling contaminated biochar, public and private 

indoor air quality could also become an issue for use of high-VOC biochar. This 

could be the case, for example, if such contaminated biochar was used in growing 

media used for potted plants in residential or commercial buildings. VOC-rich 

biochars stored for 2 months still emitted measurable amounts of VOCs (0.2, 0.3 

ppm) (Table 8.1) which could exceed the toxicological reference values for phenol 

(0.052 ppm), sum of the three cresols (0.011) and naphthalene (0.006) of indoor air 

quality guidelines in Germany (Table 8.3). Another concept for monitoring indoor air 

quality which could apply for biochar, is VOC testing of building products in a 

ventilated test chamber after 3 and 28 days (Ausschuss zur Gesundheitlichen 

Bewertung von Bauprodukten, 2012). As an example, in Germany, the total values of 

VOCs emitted by construction products (materials used in buildings and furniture) as 

well as so-called “lowest concentration of interest (LCI)” for individual VOCs were 

established and were partly incorporated into EU legislation (Ausschuss zur 

Gesundheitlichen Bewertung von Bauprodukten, 2012; European Union Joint 

Research Centre, 2013). In this study, high-VOC biochar openly stored for 50 h (0.4, 

0.7 ppm) did not exceed the total VOC threshold value for 3 days (2.6 ppm) but 

biochars stored for 2 months (0.2, 0.3 ppm) exceeded the value for 28 days (0.26 

ppm). Again, the low-VOC biochar did not show any VOC emissions, therefore, did 

not exceed any of the threshold values for VOC exposure and in fact can act as a 

sorbent for VOCs, subsequently, improving indoor air quality. 

Overall, it shows that handling of high-VOC biochar, as well as the use in closed 

spaces can pose hazards to human health, and where handling of contaminated 

biochar cannot be avoided, appropriate measures need to be implemented. Further 

processing of such high-VOC biochar is highly recommended to allow safe handling 

and use, such as, blending with low-VOC biochar or thermal post-treatment.  
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8.4 Conclusions 

In this study, the VOC release dynamics from biochars contaminated by deposition 

of pyrolysis vapours during biochar production was investigated and the 

effectiveness of potential post-treatment measures aimed at reducing VOC 

contamination were assessed. It was shown that simply measuring the mass change 

of biochar samples when openly stored is not a sufficient indicator for assessing 

changes in VOC content due to the simultaneous uptake of water vapour. From three 

measures for reducing VOC content in contaminated biochar reported in this study, 

open air storage proved to be the least effective as biochar even released VOCs after 

several weeks of storage. As already shown in Chapter 7, blending of contaminated 

biochar with clean biochar yielded promising results and showed biochar’s ability to 

take up VOCs from its surroundings. However, for the biochar studied this method 

was effective only at relatively low concentrations of contaminated biochar (1 g 

high-VOC biochar in 9 g of low-VOC biochar). The most effective post-treatment 

method was thermal treatment at relatively low temperature (200°C), as such 

treatment removed VOCs and previously observed phytotoxic effects. Furthermore, 

it was shown that under certain circumstances, high-VOC biochars can pose a risk to 

human health. However, this is limited only to extreme cases and in general most 

biochars are likely to sorb VOCs from the environment rather than to release them. 
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Chapter 9   PAHs vs. VOCs – Quantitative assessment 

and potential for plant growth inhibition in high-

VOC biochars 

 

The following chapter is based on the published article: 

Buss, W., Mašek, O., Graham, M., Wüst, D., 2015. Inherent organic compounds in 

biochar–Their content, composition and potential toxic effects. J. Environ. Manage. 

156, 150–157. doi:10.1016/j.jenvman.2015.03.035 

Journal impact factor (2014): 2.723 

Number of citations (September 2016): 14 

The candidate was solely responsible for data analysis and writing of the article and 

this chapter. Supervisors provided guidance and supervisors and co-authors 

contributed to the editing of the manuscript. The experimental work was performed 

by the candidate, apart from the biochar production which was performed by Juan 

Luis Turrion-Gomez. In addition, the phenol index test was performed by Raphael 

Pierro at the University of Hohenheim.
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Figure 9.1: Graphical abstract of Chapter 9. In biochars contaminated with pyrolysis vapours, both, VOCs and PAHs, were detected in concentrations high 

enough to cause phytotoxic effects. However, it was concluded that with a high probability VOCs were responsible for previously observed plant inhibitions 

caused by these biochars. This was attributed to the higher mobility and phytotoxicity of VOCs compared to PAHs.  
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9.1 Introduction 

It is well known that char from natural forest fires and organic compounds released 

from such processes can promote seed germination and plant growth (Brown and 

Staden, 1997; Keeley and Pizzorno, 1986). However, negative effects of compounds 

generated during forest fires have also been observed and various organic 

compounds like phenolics and naphthalene can be responsible (Nelson et al., 2012). 

Recent work has shown that biochar can be used to improve soil properties, to 

remediate soil contamination and for long-term carbon storage (Buss et al., 2012; 

Lehmann and Joseph, 2009). Similar to natural char, besides positive effects of 

biochar, negative effects have also been reported (Bernardo et al., 2010; Gell et al., 

2011; Kloss et al., 2014b; Oleszczuk et al., 2013; Quilliam et al., 2012; Rogovska et 

al., 2012; Smith et al., 2013), however, detailed understanding of causes of such 

negative effects is yet lacking. In Chapter 7, it showed that pyrolysis vapours 

condensed on biochar can have toxic effects on plants; and this chapter further 

investigated the causes of this toxicity resulting from this contamination pathway. 

Contaminants within biochar may present a risk following application to soil, 

therefore, several studies have determined the total and bioavailable concentrations 

of potentially toxic elements (PTE) (e.g., Cd, Cu, Pb, Zn) and polycyclic aromatic 

hydrocarbons (PAHs) in biochars from various feedstocks and produced under 

various pyrolysis conditions. As low total levels and much lower levels of 

bioavailable PAHs and PTEs have generally been detected in biochars, these are not 

usually considered as a threat to plants and the environment (Hale et al., 2012; Singh 

et al., 2010). Nevertheless, in some studies, PAHs in biochar were suspected to have 

been responsible for acute toxicity to various organisms (Oleszczuk et al., 2013; 

Rogovska et al., 2012). 

During pyrolysis, organic matter is broken down and new compounds are formed 

that are either transformed and incorporated into char or are volatilised and end up in 

the pyrolysis liquid/gas phases (Antal and Grønli, 2003; Spokas et al., 2011). Small 

amounts of compounds with a boiling point lower than the pyrolysis temperature 

naturally end up in the solid pyrolysis fraction, depending on the extent and nature of 

interaction between pyrolysis gases and solids. However, condensation, deposition 



Chapter 9: PAHs vs. VOCs 

202 

and trapping in biochar pores are among the mechanisms responsible for enhancing 

biochar’s concentration of compounds that are normally associated with the pyrolysis 

liquid fraction (Fagernäs et al., 2012a; Spokas et al., 2011). The amount of 

condensation is highly variable and is related to the design of different pyrolysis 

units, where influences such as cold spots can cause vapour-condensation and a 

contamination by liquids (Gundale and DeLuca, 2006; Spokas et al., 2011). A huge 

variety of organic thermal degradation intermediates of various chemical classes 

have been found in pyrolysis liquids (Cordella et al., 2012; Sánchez et al., 2009). 

Among these are volatile organic compounds (VOCs), e.g. low molecular weight 

(LMW) organic acids, alcohols, ketones and phenols (Cordella et al., 2012). In 

addition, PAHs have also been reported in pyrolysis liquids and biochar, in much 

higher levels in the former than the latter (less than 1% of the total PAHs produced 

are present in pyrolysis solids) (Fagernäs et al., 2012a). Although levels of VOCs in 

biochar show a decrease with a rise in pyrolysis temperature (more volatilisation 

from solid product), the picture for PAHs is more complex (Fabbri et al., 2013; Hale 

et al., 2012) (Chapter 5). 

Since there are only a limited number of reported studies on the topic of VOCs and 

biochars and to my knowledge no quantitative studies, there is a need to investigate 

the composition and concentration of organics sorbed to biochar. This is especially 

important since highly varied responses have been reported for biochar application to 

soil (Jeffery et al., 2011) and mobile organic compounds within the biochar may be 

responsible for some of the positive and negative effects that cannot be explained by 

factors like nutrients, pH or soil structure improvements (Elad et al., 2011; Nelson et 

al., 2012; Spokas et al., 2011). 

In this chapter, biochars contaminated by a high dose of condensed pyrolysis liquids 

and gases (high-VOC biochars) were analysed for low-molecular weight (LMW) 

organics and priority PAHs as potentially toxic compounds and compared to a low-

VOC biochar. These samples represent the worst-case scenario of uncontrolled 

pyrolysis and production in poorly designed or operated pyrolysis units. In Chapter 

7, phytotoxicity of these high-VOC biochars on cress seeds was already 

demonstrated and the mechanisms investigated. The objectives of the current chapter 

were to assess the nature of condensed compounds on biochar, to identify classes of 
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compounds with the highest potential for adverse impact after soil application and to 

explain the toxic effects of this specific set of biochars observed in Chapter 7. The 

two working hypotheses behind this research were as follows: (I) condensation of 

pyrolysis vapours on biochar simultaneously increases concentration of two classes 

of organic contaminants, PAHs and VOCs; (II) VOCs, not PAHs are responsible for 

the main negative effects of biochar affected by pyrolysis vapour-condensation.  
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9.2 Materials and methods 

9.2.1 Biochars 

NC, GC and LC biochars were all produced from the same feedstock and process 

conditions, but NC and GC biochars were contaminated during production by 

pyrolysis vapours. More details are described in section 2.2.6. 

9.2.2 Extractions and analyses 

The concentrations stated in this study are not reported on a dry weight basis due to 

the high-VOC content of two of the samples. It was not possible to either remove the 

biochar moisture content without releasing VOCs or to determine the moisture 

content of the samples. The following extractions and analyses were performed for 

the NC (low-VOC) biochar and the two high-VOC biochars. If not stated otherwise 

the analysis were performed by Northumbrian Water Scientific Services (Newcastle, 

United Kingdom), laboratories accredited by United Kingdom Accreditation Service 

(UKAS). Validation/quality control of the analyses are stated in A Table 1 as 

percentage standard deviation of the concentration of (low, high) standards analysed 

in replicates. 

9.2.2.1 Total PAH extraction and analysis 

The total concentrations of the 16 US EPA PAHs were determined according to 

Hilber et al. (2012) by 6 h and 36 h Soxhlet extractions using toluene, followed by a 

GC-MS analysis (6890 GC plus autosampler and Agilent 5975c MS). Both 

extractions were performed to compare the extractability of different PAHs with time 

and to compare total PAH levels with literature values based on the same extraction 

duration. The limit of detection for PAHs was 0.10 µg g-1. 

9.2.2.2 Water extractable phenols 

According to the method of Hildebrand (1979), 5 g solid material was extracted with 

500 mL DI water (solid-to-liquid ratio of 1:100) for 12 h in a closed bottle to prevent 

the loss of volatiles. Instead of using a Soxhlet apparatus, a magnetic stirrer was used 

since it resulted in higher phenol recoveries and gave results with lower standard 

deviations. The mixtures were filtered under vacuum and the LCK 345 phenol index 

test (Hach, Loveland, Colorado, USA) was used for analysis of the phenol index in 

the extracts using a DR5000 Spectrophotometer UV-VIS (Hach, Loveland, 
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Colorado, USA). Furthermore, the samples were analysed for methylated and 

chlorinated phenols according to BS EN 12673:1999 / BS 6068-2.65:1999 (2008) 

using a Restek Rxi-XLB column in an Agilent 7890 GC-5975c MS. Analyses were 

performed by EUROFINS Umwelt West (Wesseling, Germany), accredited 

laboratory by Germany's National Accreditation Body (DakkS). Compounds below 

the detection limit and phenol index results from a different solid-to-liquid ratio than 

1:100 are stated in A Table 4 and A Table 5, respectively. 

9.2.2.3 Water extractable PAHs, organic acids, alcohols and ketones  

10 g of biochar was extracted with 100 mL of DI water (solid-to-liquid ratio of 1:10) 

for 24 h on a reciprocal shaker at 150 rpm. Samples were then vacuum filtered using 

Whatman No. 1 filter paper. 

Water extractable PAHs 

Aqueous samples were extracted with dichloromethane and the extracts analysed for 

the 16 US EPA PAHs by GC-MS (6890 GC plus autosampler and Agilent 5975c 

MS). The detection limit was 0.1 µg L-1 for the extracts, therefore 0.001 µg g-1 for 

the biochar samples. 

Water extractable organic acids 

Aqueous samples were analysed by ion-exchange chromatography (KOH mobile 

phase, Dionex IonPac® AS15 column) and a conductivity detector (Dionex DX-320). 

Acetic, formic, propionic and butyric acids were analysed. The detection limits for 

the different compounds are stated in A Table 6. 

Water extractable alcohols and ketones 

Head-space GC-FID (Varian 450-GC-FID with Varian PAL head-space 

autosampler) analysis was used for alcohols and ketones (listed in Table 9.1). Again 

the respective detection limits are stated in A Table 6. 

9.2.2.4 VOC scan 

To identify additional mobile organic compounds, a semi-quantitative scan for a 

large series of organic compounds in organic solvent extracts was undertaken. 1 g of 

biochar was extracted with 10 mL of toluene-d8 spiked carbon disulphide for 1 h and 

occasionally agitated before injection onto a capillary GC column (Varian 3900 GC 
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fitted with a Restek RTX-VMS, 20 m, 0.18 mm ID, 1 μm film column). The extract 

was analysed by a Varian Saturn 2100 ion trap MS run in full scan mode. 

Compounds were identified from a suit of around 60 VOCs according to NIST 

library of mass spectra and the concentrations are approximated from the response 

factor of toluene as an internal standard. The detection limit of these tentatively 

identified compounds was 20 µg g-1. Compounds below this limit are not listed in 

Table 9.1. 

9.2.3 Data analysis 

As described in section above (9.2.2.2, 9.2.2.3), the water extractions were 

performed using a biochar solid-to-liquid ratio of 1:10 and 1:100. In Chapter 7, high- 

and low-VOC biochars were mixed at varying ratios in sand (A Table 7), a fixed 

amount of water was added and the resulting leachates were tested on their effect on 

seed germination. An overview of the theoretical concentrations of the compounds 

present in the leachates according to the solid-to-liquid ratios used can be found in A 

Table 7. For this study, it is assumed that all compounds extracted in both 1:10 and 

1:100 ratios were also present in the leachates. However, since the biochars were not 

actually extracted in the germination tests, where the water percolated through the 

mixture instead, the levels stated represent a worst-case scenario.  
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9.3 Results and discussion 

Table 9.1: Concentrations of various organic compounds expressed per mass of biochar (µg g-1), 

extracted from high- and low-VOC biochars in different ways. Alcohols, ketones and LMW 

aliphatic acids extracted in water in a solid-to-liquid ratio of 1:10 and phenols in 1:100. 16 US 

EPA PAHs extracted by toluene (6 h and 36 h) and DI water (solid-to-liquid ratio 1:10). VOC 

scan performed by carbon disulphide extraction and semi-quantitative analysis with an internal 

standard. bdl, below detection limit. 

  low-VOC high-VOC 

    NC biochar GC biochar LC biochar 

alcohols and ketones     

acetone µg g-1 bdl bdl bdl 

butan-1-ol µg g-1 bdl bdl bdl 

butan-2-ol µg g-1 bdl bdl bdl 

ethanol µg g-1 bdl 20.0 46.0 

isobutanol µg g-1 bdl bdl bdl 

methanol µg g-1 bdl 380.9 250.1 

methyl ethyl ketone (MEK) µg g-1 bdl bdl bdl 

methyl isobuthyl ketone (MIBK)  µg g-1 bdl bdl bdl 

propan-1-ol µg g-1 bdl bdl bdl 

propan-2-ol µg g-1 bdl bdl bdl 

LMW aliphatic acids     

acetate as acetic acid µg g-1 97.0 771.9 730.3 

acetic acid µg g-1 97.0 771.9 730.3 

butyric acid µg g-1 bdl 210.5 150.1 

formic acid µg g-1 85.0 541.3 500.2 

propionic acid µg g-1 bdl 37.1 260.1 

phenols     

phenol index (n = 3) µg g-1 5.45 2165 3265 

phenol µg g-1 bdl 190 310 

2-methylphenol (o-cresol) µg g-1 0.005 240 380 

3-methylphenol (m-cresol) µg g-1 bdl 160 240 

4-methylphenol (p-cresol) µg g-1 bdl 150 220 

2,6-dimethylphenol µg g-1 bdl 43 47 

2,5-dimethylphenol µg g-1 bdl 42 58 

2,4-dimethylphenol µg g-1 0.017 300 260 

3,5-dimethylphenol µg g-1 bdl 31 60 

2,3-dimethylphenol µg g-1 bdl 18 24 

3,4-dimethylphenol µg g-1 bdl 21 28 

2,4,6-trimethylphenol µg g-1 bdl 20 30 

2,3,6-trimethylphenol µg g-1 bdl 4.4 8 

2,3,5-trimethylphenol µg g-1 bdl 13 12 

3,4,5-trimethylphenol µg g-1 bdl 2.0 3 

2-chlorophenol µg g-1 bdl 0.066 0.120 

2,4/2,5-dichlorophenol µg g-1 bdl 0.40 0.770 
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16 US EPA PAHs     

DI water extraction µg g-1 <0.001 1.6 2.0 

6 h toluene extraction µg g-1 0.34 29 17 

36 h toluene extraction µg g-1 6.1 53 28 

VOC scan (various organics)     

phenol µg g-1 bdl 49 110 

3-methyl-1,2-cyclopentadione µg g-1 bdl 60 91 

2-methylphenol µg g-1 bdl 60 130 

3/4-methylphenol µg g-1 bdl 92 200 

3,4-dimethylphenol µg g-1 bdl 120 240 

2-methoxy-5-methylphenol µg g-1 bdl 23 bdl 

4-ethylphenol µg g-1 bdl 61 110 

3-ethyl-5-methylphenol µg g-1 bdl 20 64 

4-ethyl-3-methylphenol µg g-1 bdl 59 110 

1,2-benzenediol µg g-1 bdl 49 66 

4-methyl-1,2-benzenediol µg g-1 bdl 31 45 

 

Three biochars were investigated in this study, one biochar from a regular pyrolysis 

run (NC biochar) and two biochars that were contaminated by condensation and 

deposition during pyrolysis (GC and LC biochar). These biochars were previously 

characterised by proximate analysis, pH measurements and phytotoxicity tests 

(Chapter 7). It was revealed that the NC biochar was non-toxic while the GC and LC 

biochars contained a high content of VOCs and caused adverse effects on seed 

germination. 

9.3.1 Origin, levels and mobility of organic compounds 

9.3.1.1 VOCs 

GC and LC biochar were extracted with an organic solvent (carbon disulphide) 

followed by a GC-MS analysis which indicated high concentrations of methylated 

and ethylated phenols; phenol, 2-methylphenol, 3/4-methylphenol, 3,4-

dimethylphenol, 4-ethylphenol and 4-ethyl-3-methylphenol were most abundant 

(Table 9.1). In addition, biochar water extracts showed that acetic acid, methanol, 

formic acid, butyric acid, propionic acid, phenol, o-, m-, p- cresol and 2,4-

dimethylphenol, were the dominant compounds, all present at levels higher than 100 

µg g-1 (Table 9.1). The low-VOC biochar, on the contrary, did not show any of these 

compounds in concentrations above 100 µg g-1. Very few studies have dealt with 

quantitative determination of the mentioned compounds in biochar. However, a study 
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by Gundale and DeLuca (2006) detected lower water extractable concentrations of 

phenols for wood charcoal (30-40 µg g-1) than observed here. The heavier, organic 

fraction of pyrolysis liquids mainly consists of phenol, methylated phenols and 

longer chain organic acids (Ogunjobi and Lajide, 2013; Sánchez et al., 2009), while 

the lighter aqueous fraction has been shown to contain compounds such as acetic 

acid and methanol (Elliott, 1986). All of these compounds have been identified in 

this study, indicating that the high-VOC biochars have been contaminated by both, 

the organic and aqueous pyrolysis liquid fractions. In Chapter 7, it was shown that 

the pHs of the high-VOC biochars were low (pH 3.64, respectively). In the study of 

Ogunjobi and Lajide (2013) the organic pyrolysis liquid fraction had a pH of around 

5.3, while the aqueous fraction had a pH of around 3, the latter explained by high 

concentrations of LMW organic acids which could be the same reason for the low 

pH of the LC and GC biochars. 

9.3.1.2 PAHs 

As shown in Figure 9.2, LMW PAHs were most abundant in the high-VOC biochars 

investigated in this study. Naphthalene was identified in the highest concentrations, 

followed by phenanthrene as already discussed in Chapter 6. Reported concentrations 

for total 16 USEPA PAHs associated with slow pyrolysis biochars vary greatly 

(<0.1-355 µg g-1) (Fabbri et al., 2013; Hale et al., 2012; Hilber et al., 2012; Singh et 

al., 2010), however, the extraction method has been identified as having a large 

influence on measured PAH levels in biochar (Fabbri et al., 2013; Hilber et al., 

2012). For this reason, in this study 6 h and 36 h toluene extractions were performed 

to assess the effect of extraction length on the concentration of PAHs extracted. Hale 

et al. (2012) investigated over 50 biochars using 6 h Soxhlet extraction with toluene, 

reporting concentrations between 0.07 and 3.27 µg g-1. These levels are much lower 

than the ones for high-VOC biochars contaminated by vapour-condensation in this 

study (29 µg g-1 for GC biochar; 17 µg g-1 for LC biochar; Table 9.1) but in the same 

range as the low-VOC, NC biochar (0.34 µg g-1). Concentrations of PAHs for 

biochars extracted for 36 h, were 6.1 µg g-1 for NC, 53 µg g-1 for GC and 28 µg g-1 

for LC biochar (Table 9.1). Again the concentrations of PAHs for GC and LC 

biochar in this study revealed to be higher than for most other biochars extracted for 

36 h (1.2-19 µg g-1) (Fabbri et al., 2013) but equivalent to a miscanthus biochar 



Chapter 9: PAHs vs. VOCs 

210 

produced at 750°C (Hilber et al., 2012). Guideline values for PAHs from the 

International Biochar Initiative (6-20 µg g-1) are exceeded by both contaminated 

biochars, especially the GC biochar, and the NC biochar levels are just at the lower 

threshold (International Biochar Initiative, 2011). 

The concentrations of PAHs after 6 h extraction were then compared in more detail 

with those obtained after 36 h (A Table 8). The ratio of extractability of 6 h to 36 h 

varied for the different PAHs between 30-85% (GC biochar) and 50-95% (LC 

biochar). This means that some PAHs showed only 30% of the levels when biochar 

was extracted for 6 h compared to the levels they showed after 36 h extraction. This 

not only shows, in agreement with Hilber et al. (2012), a 36 h extraction is a much 

more suitable method for extracting the total PAHs content of biochar, but it also 

shows the dissimilarity in PAH extractability in the two high-VOC biochars. No 

relationship was identified between extractability and molecular weight of the PAHs, 

with some high molecular weight (HMW) PAHs having similar levels with 6 h and 

36 h extraction (A Table 8). 

Although the concentration of water extractable PAHs for NC biochar was below the 

analytical detection limit, the values were 1.6 and 2.0 µg g-1 for the GC and LC 

biochars, respectively (Table 9.1). Although not directly comparable, these 

concentrations are around 1000 times higher than the levels of PAHs sorbed to 

passive samplers in a study by Hilber et al. (2012) (~2 ng g-1). Also, while the 

proportion of PAHs determined by passive samplers relative to total PAHs (6 h 

toluene extraction) was around 0.05% in that study (Hale et al., 2012), in this work 

the ratio of water extractable to 6 h toluene extraction was as much as 5.5% and 

12.3% for the GC and LC biochars, respectively (data not shown). This shows that 

contamination with condensing vapours results in higher availability of the PAHs 

deposited onto the biochar surfaces (A Table 8). In addition, contamination by 

condensation also resulted in unexpected patterns in extractability of different PAHs. 

As HMW PAHs have a higher soil organic carbon-water partitioning coefficient (log 

Koc), they are less soluble in water and more extensively attach to organic surfaces 

than LMW PAHs (A Table 8). Despite this, the percentage of water extractable of 

the total concentration of individual PAHs in this study did not simply decrease with 

increasing molecular weight. For example, several 5- and 6-ring PAHs showed 
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similar or slightly greater water extractability than naphthalene. This may be an 

artefact of the analysis as the results for water and solvent extraction both turned out 

to be very close to the detection limit of the measurement equipment. But as the 

varying extractability of 6 h compared to 36 h for the individual PAHs described 

above, it could also signal a different distribution and therefore availability of 

different PAHs in the porous biochar structure. Due to the external nature of 

contamination (from gas phase surrounding biochar particles), the distribution of 

PAHs within biochar would be determined by their ability to diffuse into the porous 

structure, and therefore the HMW PAHs could potentially be closer to the particle 

surface and therefore be more readily available. To understand these results further, 

additional investigations such as surface and pore analysis of biochar to physically 

locate PAH sorption sites and to link this to PAH properties are needed. However 

this was beyond the scope of this study and will be considered in future work. The 

log Koc does, however, explain the very high water extractability of acenaphthylene 

(24% GC biochar, 61% LC biochar) (A Table 8). This shows that acenaphthylene in 

biochar should be monitored more closely due to its high mobility as this makes it a 

potential compound to leach into groundwater.  
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Figure 9.2: Water extractable (A) and 36 h toluene extractable (B) concentrations of individual 

16 US EPA PAHs in NC, LC and GC biochars (µg g-1). The small figure at the top right shows 

figure A in full view. 

 

9.3.2 Phytotoxic potential of analysed contaminants 

In Chapter 7, it was shown that cress seeds were strongly inhibited by a 5% high-

VOC biochar-sand-composite, exposed to a leachate from this mixture and by 

vapours of pure biochar. It was concluded that the inhibition was caused by toxic 

compounds but it could not be pin-pointed specifically which compounds were 

responsible for the effects. However, the analyses in this study makes it feasible to 

link the detected concentrations in water extracts (Table 9.1) to the biochar-sand 



Chapter 9: PAHs vs. VOCs 

213 

leachates in the germination test of Chapter 7 (A Table 7) (further explanation 

section 9.2.3). This was done to discuss the toxicity of the individual compounds in 

the investigated leachates and to be able to relate the levels to literature values and 

generally identify which compound class in the concentrations detected here has the 

highest potential to cause adverse effects as observed in Chapter 7. Therefore, in the 

following, levels for 5% biochar treatment refers to the calculated concentrations in 

the 5% biochar-sand leachate that showed toxic effects in Chapter 7. 

9.3.2.1 Phytotoxic potential of VOCs: phenols, organic acids, alcohols 

Related to the 5% biochar treatment (explanation beginning 9.3.2), the 

concentrations of phenol were 13.6 mg L-1 (GC biochar) and 22.4 mg L-1 (LC 

biochar) and the concentrations for o-cresol 17.1 mg L-1 (GC biochar) and 27.1 mg L-

1 (LC biochar) as two typical compounds of the class of ‘phenols’ (A Table 7). In a 

study by Feng et al. (1996), the inhibition of root elongation by phenols was tested in 

Chinese cabbage. Effective concentration for 50% reduction (EC50) of roots for 

phenol was 125.6 mg L-1 and for o-cresol 54.9 mg L-1. In Bargmann et al. (2013), L. 

sativum was used as the test organism and only 60 mg L-1 phenol was applied, which 

did not negatively affect germination and root elongation. However, the data above 

show that individual phenols present in concentrations slightly higher than those 

calculated for the highly toxic leachate in Chapter 7 caused inhibitory effects on seed 

germination and plant growth in other studies. Taking into account that the extracts 

from the biochars in this study contain a mixture of various phenols, it is very likely 

that they pose a serious threat to plant growth and were at least partly responsible for 

the phytotoxic effects observed in the germination tests of Chapter 7. An aqueous 

leachate from a char produced by pyrolysis of waste performed in a closed container, 

allowing direct contact of pyrolysis solids with liquids and gases, showed a complex 

mixture of benzene, toluene, ethylbenzene, and xylenes (BTEX), and methylated 

phenols in similar concentrations to those detected in this study (Bernardo et al., 

2010). The eluate was toxic to bioluminescent bacteria (Vibrio fischeri) which 

suggests the detrimental effects of compounds emanating from the char probably 

originated from the pyrolysis liquids. However, after washing with an organic 

solvent (dichloromethane) to remove aromatics like phenols and BTEX, a water 

extract from this char still demonstrated toxic effects. This indicates that compounds 
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insoluble in organic solvents, such as LMW organic acids and alcohols, were 

responsible for a significant part of the observed growth inhibition (Bernardo et al., 

2010). 

The concentrations of formic, acetic, propionic and butyric acid in the 5% LC 

biochar treatment were 35.7, 52.2, 18.6 and 10.7 mg L-1, respectively (A Table 7). 

These levels are only slightly lower than the individual concentrations reported to 

have caused toxic effects to plants in various other studies (Lynch, 1980; Rao and 

Mikkelsen, 1977). Acetic acid, for example, inhibited growth as follows; 25% 

inhibition of root extension at 300 mg L-1 (Lynch, 1980) and 60 mg L-1 significant 

reduction of root growth in rice seedlings (Rao and Mikkelsen, 1977). 1600 mg L-1 

acetic acid caused impediment of root length of Lepidium sativum but had no effect 

on germination (Bargmann et al., 2013). However, as discussed for phenols above, 

besides acetic acid, various other potentially toxic organic acids were present in the 

water extracts and thus, in the leachates in the germination tests of Chapter 7 and as 

such, the phytotoxic influences of the different compounds are expected to 

accumulate. Generally, the adverse effects of LMW organic acids have been reported 

to increase with increasing number of carbon atoms (Lynch, 1980). But more 

importantly, the pH of the solution/soil influences the toxicity of the acids 

investigated (Lynch, 1980; Rao and Mikkelsen, 1977). Stronger effects were seen at 

lower pH as a larger fraction of the acids were present in their undissociated form, 

which is more toxic (Rao and Mikkelsen, 1977). This is important to note as the pH 

of the high-VOC biochars (determined in Chapter 7) was 3.64 and as indicated in 

Table 9.1, all of the acetate in the water extracts was indeed present as acetic acid, 

thus, undissociated. Furthermore, not only might the organic acids be directly 

responsible for toxicity but the low pH itself, caused by the above mentioned LMW 

organic acids and other acids, could have at least partly contributed to the inhibition.  

The concentrations of alcohols and ketones identified in water extracts were mostly 

below detection limits, with the exceptions of ethanol and methanol, which related to 

the 5% biochar treatment were present in concentrations of less than 30 mg L-1 (A 

Table 7). Toxic concentrations of these compounds reported in the literature are 

much higher; around 2000 mg L-1 for ethanol and 8000 mg L-1 for methanol resulted 

in delayed germination of Euphorbia heterophylla after 24 h (Kern et al., 2009). 
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Even these effects proved to be short-term only. There are many other compounds, 

especially aromatic compounds, that are also typical products of thermal degradation 

of biomass that show partially toxic effects in similar concentrations as the phenols 

reported above (Lynch, 1980). Yet, due to the vast quantities of compounds present, 

not all could be analysed in detail in this study. 

To summarise, individual VOCs have been shown to cause phytotoxic effects at 

concentrations not much greater than the concentrations detected in this study. 

Furthermore, the boiling points of the above discussed compounds are below 200°C 

and they can be considered as volatile (Dreisbach and Shrader, 1949). Taken their 

mobility into account, overall, this suggests that the complex mixture of LMW 

organic acids and phenols detected are very likely to cause phytotoxic effects and 

have caused the acute toxic effects of biochar, biochar leachate and vapours from 

biochar revealed in Chapter 7. Although the effects of VOCs are likely to be short-

lived due to their degradability and natural volatility it is important to measure their 

concentration in biochar. In order to analyse and monitor concentrations the BS EN 

ISO 16703:2011 (2011) method could be used, but strong odour and a low pH of the 

biochars after production can also be used as a likely indicator of high concentrations 

of condensed pyrolysis vapours. 

9.3.2.2 Phytotoxic potential of PAHs 

PAHs effects in solution 

As done for VOCs, the water extractable amounts of PAHs in the biochars were 

compared with the treatments in Chapter 7. In the 5% LC biochar treatment 

(explanation beginning 9.3.2), naphthalene (2 rings) was found at levels of 32.9 µg 

L-1, phenanthrene (3 rings) at 20.7 µg L-1, chrysene (4 rings) at 2.0 µg L-1 and 

benzo(a)pyrene (5 rings) at 2.4 µg L-1 (A Table 7). The concentrations of 

naphthalene and phenanthrene are around 900 times and 60 times lower than the 

maximum possible, based on their water solubilities, respectively, whereas the 

concentrations of chrysene and benzo(a)pyrene are in the same range (maximum 

water soluble concentrations: naphthalene 30,000 µg L-1, phenanthrene 1,200 µg L-1, 

chrysene 2.8 µg L-1, benzo(a)pyrene 2.3 µg L-1, A Table 7). In the work of Loibner et 

al. (2004), the effects of saturated aqueous solutions of each of the 16 US EPA PAHs 

were tested on bioluminescence of V. fischeri individually. It was discovered that 
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only two and three aromatic ring PAHs inhibited bioluminescence, whereas HMW 

PAHs did not show any toxicity (Loibner et al., 2004). Henner et al. (1999) also 

studied the influence of maximum water soluble amounts of each individual PAH on 

germination of several plant species in petri dishes. They found that naphthalene and 

phenanthrene delayed germination by 24 h but after five days the germination rate of 

the affected seeds was the same as the control. For chrysene and benzo(a)pyrene no 

toxicity was reported for concentration very similar as detected in this study 

(maximum water soluble concentrations). 

Overall, it becomes clear that only LMW PAHs, when present in levels close to their 

maximum soluble concentrations, are able to cause negative effects on seed 

germination due to their higher solubility in water. The concentrations of PAHs in 

water extracts in the high-VOC biochars were exceptionally high for biochar (the NC 

biochar taken as a reference for a typical concentration of PAHs) but still far below 

the reported toxic concentrations of each individual PAH (A Table 7 and Figure 9.2). 

Additionally, in another study it has been shown that the effect of PAH mixtures 

proved to be cumulative and not synergistic (or antagonistic) (Loibner et al., 2004). 

This shows that phytotoxic influences of high-VOC biochar leachates on seed 

germination are very unlikely to be related to PAHs. 

PAHs effects in soil 

Total concentrations of PAHs as depicted in Figure 9.2 and Table 9.1 were 53 µg g-1 

for GC biochar and 28 µg g-1 for LC biochar. These levels are above concentrations 

that are reported to have caused toxic effects in soil. Somtrakoon and Chouychai 

(2013) identified negative impacts on sweet corn seed germination in soil that had 

been freshly contaminated with 2 µg g-1 of anthracene, fluorene or fluoranthene 

(Somtrakoon and Chouychai, 2013). These concentrations are mostly exceeded by 

the high-VOC biochars in this study (Figure 9.2). It seems that solid material 

contaminated with PAHs exhibits a higher potential to cause adverse effects in plants 

than PAH-containing solutions. PAHs are mostly hydrophobic and have high Koc’s 

(Marchal et al., 2014; US Department of Health and Human Services, 1995); this 

means high levels of PAHs can accumulate on/in organic material. However, to 

cause negative effects in plants, PAHs must be able to interact with the plant, which 

is not possible when they are strongly attached to soil organic matter. Uptake of 



Chapter 9: PAHs vs. VOCs 

217 

dissolved compounds via soil solution and gaseous uptake via leaves and shoots are 

the two mechanisms by which toxic compounds can affect plants (US Department of 

Health and Human Services, 1995), thus, solubility in water and volatility are the 

main factors that determine plant uptake. Consequently, LMW PAHs are more likely 

to gain access to plants to cause adverse effects (Somtrakoon and Chouychai, 2013). 

Yet, besides these two mechanisms, PAHs can be adsorbed onto root surfaces as 

plant tissue is organic matter (Marchal et al., 2014). It has been shown that after 

washing of roots, the overall PAH concentration of the root tissue decreased, 

indicating an association of PAHs with root surfaces (Vácha et al., 2010). Due to 

their low water solubility, HMW PAHs do not cause toxic effects in solution 

(Loibner et al., 2004), still, an accumulation in soil and adsorption to roots (high log 

Koc) poses a risk. 

On the other hand, in Lors et al. (2010), coal-tar contaminated soil after 6 months of 

biotreatment, still showing PAHs concentrations of 345 mg kg-1 (mainly 4-ring 

PAHs) did not cause phytotoxic effects (on Lactuca sativa). This could indicate that 

PAHs ready to interact with living organisms had been degraded and only PAHs that 

associated with soil particles very strongly retained which did not affect the plants. 

However, it could also have been the case that the PAH concentrations were too low 

to cause toxic effects in this plant species as the negative effects of PAHs reported in 

soil vary strongly, depending on the plant tested. One species (waxy corn) showed no 

germination inhibition even when exposed to concentrations of individual PAHs as 

high as 400 µg g-1 (Somtrakoon and Chouychai, 2013). Oleszczuk et al. (2014) 

showed root growth of L. sativum was inhibited by different soils contaminated with 

varying PAH concentrations of up to 100 µg g-1. However, in the same study a soil 

sample with less than 0.5 µg g-1 PAHs showed even higher toxicity than the 100 µg 

g-1 sample, indicating that contaminants other than PAHs in the soil were responsible 

for the observed effects. All this shows how complex the topic of PAH toxicity in 

soil is and gives an indication of the magnitude of complexity of PAH effects in even 

less well investigated biochar. 

PAHs effects in biochar 

As a result of the cause of contamination by condensation, PAH concentrations in the 

high-VOC biochars are high and PAHs are rather loosely sorbed to biochar surfaces 
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which makes them more readily available (high concentrations in water extracts). 

Despite this, naphthalene is the only PAH that has been detected in the head-space 

above PAH contaminated sites (Henner et al., 1999) and therefore, is the only one 

that can be considered volatile under environmental conditions. Taking into account 

the low toxicity of naphthalene (Henner et al., 1999; Loibner et al., 2004), it seems 

highly unlikely that PAHs are causing toxic effects in the vapour phase. Furthermore, 

maximum soluble amounts of PAHs in water are considered only to be of low risk to 

plant growth. Since the total and available PAH concentrations in these high-VOC 

samples are already worst-case scenarios, leachates from biochars from a pyrolysis 

run without condensation are even much less likely to pose any threat to plants. 

However, the acute, short-term toxic effects caused by direct contact with the 

contaminated biochars described in Chapter 7 may have been partially caused by 

PAHs when the high concentrations observed and the fact that mixtures of PAHs 

already influence plants negatively in µg g-1 levels in soil are taken into account. But 

generally, it is difficult to transfer the conclusions of PAH toxicity in artificially 

contaminated soils to PAHs in biochar. One reason for this is that biochars sorb 

PAHs much stronger than soil, and this is why biochar can be used for remediation 

of PAH contaminated soils (Chen and Yuan, 2011). Secondly, the reason for the 

observed low availability and strong attachment of PAHs in biochar after pyrolysis 

(Hale et al., 2012) is probably not only the high sorption capacity of biochar, but also 

attributed to the fact that weaker attached PAHs vaporise during the pyrolysis 

process (at least if they are not contaminated by condensed pyrolysis vapours). As 

discussed for soil above, this removal of available PAHs might only leave very 

inactive PAHs behind that, even if present in high concentrations, do not pose a 

threat to plants (Lors et al., 2010). Furthermore, the largest proportion of PAHs in 

biochar has been shown to be allocated to naphthalene which is mobile but little 

toxic (Fabbri et al., 2013; Hilber et al., 2012) (Chapter 6). This shows that total levels 

of PAHs are not necessarily a good indicator for potential adverse effects but rather 

the individual PAH concentrations need to be taken into account as already discussed 

in Chapter 6. Koltowski and Oleszczuk (2015) demonstrated toxic effects of 

biochars, but they were not able to correlate PAH concentrations in (thermally 

treated) biochars to shoot and root inhibition of L. sativum. In Busch et al. (2013), it 
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was shown that a biochar with similar PAH concentration as in this study (62.7 µg g-

1
 (Hilber et al., 2012)), did not result in any negative influences on germination or 

biomass weight of Brassica rapa and Zea mays, even in levels of 10% in soil, 

supporting the hypothesis of little concern of high PAH concentration in biochar 

regarding short-term, acute plant effects. 

Long-term PAH effects 

However, since PAHs also have mutagenic properties and could be a long-term risk, 

to conclude the potential negative influences of PAHs in the high-VOC biochars this 

topic is shortly discussed here. In the study of Busch et al. (2013), despite no visible 

influences on plant growth, biochar increased DNA damage in pollen cells. 

Nevertheless, it could not be proven that these effects were due to the presence of 

PAHs. Anjum et al. (2014) conducted a study using hemp and wood biochar (batch 

unit, 500°C, 30 min residence time), both with similar concentrations of PAHs, but 

hemp biochar contained higher concentrations of LMW PAHs. Significant higher 

mutagenic effects were observed in the hemp biochar treatments compared to the 

wood biochar and it was concluded that this was due to the higher concentration of 

LMW PAHs. However, LMW PAHs have been reported to have lower mutagenic 

potential (Nisbet and LaGoy, 1992), thus, using the toxicity equivalency factors 

(TEF) to calculate the toxic equivalent quantity (TEQ) of the PAH levels compared 

to benzo(a)pyrene, hemp biochar turns out to have 0.22 benzo(a)pyrene-TEQ and 

wood biochar a 2.5 fold higher value of 0.55 benzo(a)pyrene-TEQ. But it needs to be 

mentioned that the TEFs were derived from toxicological and not plant studies, and 

might differ for plants. Still, this shows that no correlation of TEQ and mutagenic 

effect exists and it seems very unlikely that PAHs were responsible for the effects in 

that study. Interestingly, the phenol concentrations in the more mutagenic hemp 

biochar were much higher (55 µg g-1) than phenols in the wood biochar (8.3 µg g-1), 

indicating that phenols and other VOCs might have caused these effects instead. 

9.3.3 VOCs vs. PAHs – Relevance in environmental samples 

In the above discussion it was concluded that due to the concentrations, toxicity and 

mobility of individual organics in these specific biochars, VOCs pose a greater 

concern for plant growth than PAHs. The concentrations of both compound classes 

are likely to be exaggerated by the nature of these specific biochars, however, it 
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clearly demonstrates that even in biochar with lower concentrations of organic 

contaminants, VOCs are likely to play a significant role, and that these compounds 

can help to explain previous observations reported in literature. 

In their work, Eom et al. (2007), Manzo et al. (2008) and Oleszczuk et al. (2014) all 

investigated soils contaminated with PAHs and in all of these studies the authors 

concluded that observed toxicity (mostly) could not be correlated with PAH 

concentrations and the adverse effects were rather caused by non-PAH compounds. 

Loibner et al. (2004) showed that in leachates from soil contaminated with PAHs by 

gasification and incineration processes contaminants other than PAHs were 

responsible for inhibition of V. fischeri. It shows that in soils compounds co-

occurring with PAHs can be a greater risk than PAHs themselves. In this chapter, it 

was now shown that this can be the case for biochar as well. 

Among the products of pyrolysis, PAHs tend to concentrate in pyrolysis liquids. 

Therefore, if as a result of the design or operation of a pyrolysis unit, biochar is 

extensively exposed to pyrolysis vapours or condensing liquids, it is likely to be 

heavily contaminated with PAHs, as well as VOCs. Therefore, as shown in Chapter 

6, when biochar contains high amounts of PAHs, it often is a result of contamination 

by condensed pyrolysis vapours and consequently, such biochars, when fresh, would 

contain high amounts of VOCs in addition to the PAHs originating from pyrolysis 

liquids. This hypothesis holds true for the biochars in the current study, but needs to 

be proven for other biochars. However, fresh biochars are necessary to investigate 

this hypothesis due to the high volatility of VOCs. 

Overall, VOCs in biochar are much more likely to be responsible for phytotoxic 

effects observed in other biochar studies than PAHs. This is supported by the fact 

that in longer-term studies, the observed negative influence of fresh biochar showed 

to be only short-lived, which could be a result of VOCs in biochar naturally 

dispersing with time (Gell et al., 2011; Kloss et al., 2014b; Quilliam et al., 2012). 

Similarly, it has been reported that many of the biochars showing adverse influences 

had a low pH value (Bernardo et al., 2010; Gell et al., 2011; Oleszczuk et al., 2013; 

Smith et al., 2013) which could be related to LMW organic acids and other acids 

from pyrolysis liquids.  
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9.4 Conclusions 

The high-VOC biochars investigated in this study contained compounds typically 

present in the pyrolysis liquids fraction, confirming their contamination by pyrolysis 

vapours during production. Water-soluble concentrations of both compound groups, 

VOCs and PAHs, were comparatively high. It was shown for the first time that the 

more mobile VOCs, co-occurring with PAHs, are a bigger threat to plant growth than 

PAHs. Water extractable LMW organic acids and phenols have been found in 

biochars contaminated by condensed pyrolysis vapours in concentrations that can 

cause phytotoxic effects and hence, most probably caused the inhibitions of plant 

growth observed in Chapter 7. However, their mobility also makes VOCs prone to be 

leached, vaporised and degraded after application of VOC-rich biochar to soil and 

will, consequently, not pose a long-term threat. Concentrations of VOCs in biochar 

with minimal, if any, pyrolysis vapour contamination were mostly below detection 

limits, explaining why no adverse effects on plant growth were observed in Chapter 

7. In contrast to biochars contaminated by pyrolysis vapours during production, the 

water-extractable concentrations of PAH in non-contaminated biochar were also 

below the detection limit, showing that PAHs in biochar pose very little risk to plants 

and soil. In general, the concentration of VOCs in biochar could be a good indicator 

for potential phytotoxic effects but this research area needs further investigation. 

This is an important finding providing strong evidence based on which VOCs 

content in biochar should be included among criteria for quality assessment of 

biochar and in biochar guidelines. From this study, however, it remains unknown 

how pyrolysis production parameter affect the VOC concentrations in biochar. In 

addition, although high concentrations of PAHs and VOCs were found in biochars in 

this study, it cannot be foreseen if both compound groups always correlate in 

biochar. VOCs have much lower boiling points than most PAHs (although 

naphthalene can be considered a VOC) which could mean that the VOC and PAH 

concentrations in biochar are affected differently by pyrolysis conditions, such as 

carrier gas flow or HTT. This is a very interesting research area, however, it requires 

the analysis of fresh biochar samples due to the high potential for VOCs to dissipate. 
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Chapter 10   Discussion, conclusions and further 

research 

The aim of this thesis was to investigate contaminants in biochar and give 

recommendations for production of biochar safe to be used for environmental 

management. Feedstocks and production conditions most suitable for biochar 

production were assessed on the basis of contaminant concentrations (compliance 

with threshold values) and potential and actual effects of contaminants in biochars on 

plant growth. The results from this research are essential for biochar producers to be 

able to adjust production conditions and use suitable feedstocks to produce biochars 

with minimum contamination and to ensure users that respective biochars are safe to 

be applied.  

Three groups of priority contaminants in biochar were identified and analysed: 

potentially toxic elements (PTEs), polycyclic aromatic hydrocarbons (PAHs) and 

volatile organic compounds (VOCs). All are diverse groups which were investigated 

separately, yet, due to their similar behaviour during pyrolysis, VOCs and PAHs 

were also discussed together.  
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10.1   Potentially toxic elements (PTEs) 

Potentially toxic elements (PTEs) are of particular concern as they are indestructible 

and therefore, very persistent in the environment, can inhibit plant growth and can 

cause adverse effects in humans and animals ingesting PTE-containing biomass 

(Kabata-Pendias, 2011). However, PTE concentrations in biochars produced from 

typical feedstocks, such as wastes from forestry or agriculture, were shown 

previously not to exceed threshold value and not to be of any concern for plant 

growth (Freddo et al., 2012; Lucchini et al., 2014b). Consequently, studying the 

worst case scenario, PTEs were investigated in a set of PTE-rich biochars from 

marginal biomass which is material of little/no economic value. 

10.1.1   PTE concentrations and pyrolysis conditions 

As expected, the concentrations of PTEs in biochar were mostly dependent on the 

concentrations of PTEs in the feedstock used for biochar production. However, the 

pyrolysis unit also contributed to contamination with PTEs due to erosion of Cr, Ni 

and Fe from the furnace steel of the screw-pyrolysis unit. To avoid this 

contamination pathway, different materials of construction should be used for critical 

parts of the pyrolysis unit or a different reactor design that reduces erosion, e.g. a 

rotary kiln can be used. This needs to be taken into account in the design of biochar 

production units. 

With increasing highest treatment temperature (HTT), an increasing amount of 

organic compounds were vaporised, while most of the minerals remained in the 

pyrolysis solids and therefore, PTE concentrations were enriched from feedstock to 

biochar. Yet, depending on boiling point, PTEs, such as As, Cd, Hg, Se or Zn, did 

evaporate from the solids to some extent and both, the HTT and feedstock type, 

influenced the extent of evaporation. For some feedstocks that are contaminated with 

one or several PTEs with low boiling points, the use of high HTT seem to be a 

suitable way to produce biochar with minimum PTE-contamination. However, the 

evaporated PTEs will, subsequently, contaminate pyrolysis liquids or gases. When 

the pyrolysis liquids and gases are used to fuel the pyrolysis process, the exhaust 

gases would need to be treated to remove the respective PTEs. Upgrading of PTE-

contaminated pyrolysis liquids to biofuel could be even more problematic. In 
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addition, it was shown that the macronutrients Ca and Mg increasingly evaporated at 

high HTTs which would decrease biochar’s fertiliser value. Most importantly, 

despite evaporation of various elements with increasing HTT, the available 

concentration of most PTEs (mg kg-1) was highest at the highest HTT investigated 

(750°C). Consequently, applying high pyrolysis temperatures to remove PTEs cannot 

be recommended as the remaining proportion of the PTEs left in biochar showed to 

be highly available. 

Overall, the easiest way to avoid contamination of biochar with PTEs is the use of 

feedstocks with low PTE concentrations. Yet, PTE-rich feedstocks can have 

economic benefits as the materials often have little or no (marginal) economic value. 

Pyrolysing PTE-rich feedstocks in the range 350-750°C, the availability of PTEs was 

lowest at medium HTTs. Consequently, the most suitable way to convert PTE-

contaminated feedstocks into biochar, is the pyrolysis in a reactor made from PTE-

free stainless steel at temperatures of 450-550°C. 

10.1.2   PTE concentrations, limit values and potential effects  

Biochars produced from biomass grown on heavily contaminated soil exceeded 

legislation threshold values for soil amendments and biochar guidelines values. The 

biochars from both anthropogenic wastes investigated here, demolition wood and 

food waste digestate, complied with European threshold values for biochar and soil 

amendments. However, the composition and PTE-content of most anthropogenic 

wastes varies majorly and consequently, biochars made from different feedstock 

sources need to be investigated individually regarding compliance with threshold 

values. 

Besides total concentrations of PTEs, legislation values exist for available 

concentrations of PTEs, such as the NH4NO3-extractable PTE limit values in the 

German Federal Soil Protection and Contaminated Sites Ordinance (1999), which 

reflect the risk of PTEs to cause adverse effects more appropriately. Compared to 

these limit values, a very different picture to the comparison with threshold values 

for total PTEs was shown. The contrasting results highlight the difficulty to conclude 

about the legality of biochar application to soil. 
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Phytotoxic effects, as observed for some biochars in this thesis in small scale, short-

term germination and growth tests, could not be correlated with available (and total) 

PTE concentrations. Some biochars with concentrations of PTEs exceeding threshold 

values for available PTEs even resulted in growth promoting effects. Consequently, 

PTEs in biochars might not be a concern for plant growth at all. Yet, it is unknown 

what happens to PTEs in biochar on long-term after application to soil. When the 

PTEs are bound to inorganic compounds, they could be immobilised permanently. 

However, when they are bound to organic compounds, they will become available 

eventually, when the organic material is degraded (McBride, 1995). Biochars from 

waste feedstocks containing PTEs have not been applied for long enough to 

investigate long-term effects in soil and it was not possible to investigate this in the 

limited time frame of this PhD. However, relatively high amounts of PTEs have been 

applied to arable land within the past decades via the application of sewage sludge 

and despite a long history of investigating the (long-term) fate of PTEs in soil 

applied with sewage sludge, many uncertainties remain, while it is generally agreed 

that, the (long-term) risks of PTEs in soil should not be underestimated (McBride, 

2003, 1995; McGrath et al., 1995). 

Overall, it cannot be clearly concluded if the use of biochar from PTE-rich 

feedstocks for environmental management is safe. The risks and benefits of the 

respective biochar and application scenarios need to be assessed separately. For 

example, blending PTE-rich biochars with growing media and using the mixture for 

growing plants in pots might be less problematic as only the plant performance and 

potentially the PTE concentration in respective plant parts used for consumption 

need to be evaluated. Some marginal biomass-derived biochars strongly increased 

the plant performance in 5% in sand and could be suitable to be used for amendment 

of growing media, while some biochars strongly inhibited the growth in the same 

application scenario. Incorporation of biochar into soil, however, can have 

unforeseen consequence, e.g. the long-term availability of PTEs applied with biochar 

to soil are completely unknown, so are the effects on soil flora and fauna. Testing the 

biochars in short-term phytotoxicity tests and measuring the total and available 

concentration can only be the start to ensure safe application to soil.  
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10.2   PAHs 

PAHs are an important group of organic contaminants, in particular due to their 

carcinogenic properties and their ubiquitous presence and increasing concentration in 

soils world-wide from anthropogenic sources (Jones et al., 1989; US Department of 

Health and Human Services, 1995; Wilcke, 2007). PAHs are typically formed during 

incomplete combustions and consequently, are also priority pollutants in biochar. A 

large range of biochars were investigated for PAHs in previous studies with various 

claims regarding the effects of pyrolysis conditions on PAH concentrations and the 

risk of PAHs in biochar (Anjum et al., 2014; Brown et al., 2006; Freddo et al., 2012; 

Hale et al., 2012; Keiluweit et al., 2012; Kloss et al., 2012; Kołtowski and 

Oleszczuk, 2015; Oleszczuk et al., 2013). 

To help close these knowledge gaps, in this thesis, the 16 US EPA PAH 

concentrations were analysed in 84 biochars. The effect of various process conditions 

and common feedstock types on total PAH concentrations in biochar was 

investigated in a systematic set of 46 biochars. In addition, the composition of PAHs 

in these biochars and additional 38 biochars was analysed to identify particular 

process conditions and feedstocks resulting in high-risk biochars based on a 

particular PAH composition. Finally, three biochars were tested in toxicity tests to 

assess the risk of PAHs to cause adverse effects in plants. 

10.2.1   PAH concentrations, PAH composition and pyrolysis conditions 

In a batch pyrolysis unit, increasing carrier gas flow rates decreased the PAH 

concentrations in biochar. It is hypothesised, this happened both, due to decreased 

PAH forming reactions (resulting from decreased hot vapour residence time) and 

increased evaporation of PAHs (resulting from elevated driving force for physical 

PAH removal). Woody biomass resulted in much lower PAH concentrations in 

biochar than straw-based material, yet, the underlying reasons could not be 

identified. Neither residence time, nor HTT displayed clear effects on the PAH 

concentration in biochar. The fact that the PAH concentration did not significantly 

change with HTT was explained by a simultaneous increase in formation and 

evaporation of PAHs with increasing HTT. 
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On average, in all biochars the proportion of NAP of the sum of PAHs was very high 

(84.1%). The most likely reason for the high percentage of NAP was that NAP, being 

the only 2-ring PAH and the smallest molecule, was trapped in small biochar pores 

which opened up during pyrolysis. This is confirmed by a comparatively low 

percentage of water-extractable of the total NAP concentration, described in section 

9.3.1.2. Overall, the strongest effect on the concentration of PAHs in biochar was 

attributed to the pyrolysis unit itself, to weaknesses in the pyrolysis unit design and 

its operation. 

Contact of biochar with pyrolysis vapours, which contain >99% of the PAHs 

synthesised during pyrolysis (Dai et al., 2014b; Fagernäs et al., 2012a), outside the 

furnace area, in colder parts of the pyrolysis units (discharge chamber) resulted in 

condensation and deposition of PAHs on biochar. The composition of PAHs in 

biochars contaminated via this pathway showed high concentrations of total and 

water-extractable PAHs, and in particular, very high total concentrations of non-NAP 

PAHs. This shift in PAH composition to a lower proportion of NAP in biochars 

contaminated by condensing pyrolysis vapours was attributed to the lower vapour 

pressure of NAP compared to the other PAHs which meant NAP mostly remained in 

the gas phase, while the HMW PAHs condensed and deposited on biochar. 

Overall, the best way to ensure low concentration of PAHs in biochar is to avoid 

condensation of pyrolysis vapours which contain most of the PAHs. Pyrolysis solids 

and vapours need to be effectively separated in the discharge chamber of the 

pyrolysis unit by ensuring high temperatures and by avoidance of cold spots in the 

post-pyrolysis set-up. This is best achieved by a well-insulated discharge chamber or 

in case the discharge chamber is heated up actively, an adjustment of the temperature 

of the heating tapes according to the furnace temperature. Yet, even when 

condensation of pyrolysis vapours did not take place, high NAP concentrations were 

found in some biochars, e.g. biochars from wheat straw, which cannot be avoided 

easily. Overall, the biochar with the lowest 16 US EPA PAH concentrations were 

produced from wood pellets at a high carrier gas flow rate. Post-treatment at 200°C 

showed to be effective in removing PAHs and could be used for strongly PAH-

contaminated biochars. 
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10.2.2   Potential toxic effects and fate of PAHs in biochar 

Generally, PAHs in soil and solution can result in short-term adverse effects on plant 

growth, yet, in particular due to their low water solubilities and therefore low uptake 

into plants, plant growth inhibitions happen rather infrequently (Chapter 9). Two 

biochars that were highly contaminated with pyrolysis vapours in the post-pyrolysis 

process and showed high water-soluble concentrations of PAHs, inhibited plant 

growth strongly in short-term germination and growth studies. It was concluded, 

however, that VOCs, co-occurring with PAHs and being highly mobile, caused the 

observed phytotoxic effects. Biochars not contaminated by condensation of pyrolysis 

vapours showed water-extractable PAH concentrations below the detection limit and 

very low PAH availability was also shown in various studies in the literature which 

is predicted to stay low also on long-term (Hale et al., 2012; Jonker et al., 2005; 

Mayer et al., 2016). Therefore, it can be concluded that PAHs in biochar pose a low 

risk to cause adverse effects on plants. 

Despite the strong sorption of PAHs to biochar, rapid loss of PAHs, in particular 

three and four ring PAHs, from biochar incorporated in soil was observed in 

Kuśmierz et al. (2016) and it was hypothesised that biodegradation and leaching was 

responsible for the loss. The concentration of PAHs in soil, which was elevated due 

to the application of biochar, decreased to the level of the control within the two and 

a half years of the experiment. The concept that the desorption rate of PAHs from 

organic matter is the factor mostly influencing the rate of degradation of PAHs in 

soil was the general consensus, yet, many biochar studies do not support this (Anyika 

et al., 2015; Shuttleworth and Cerniglia, 1995). Marchal et al. showed that the 

sorption of PAHs to biochar limits its degradation in biochar-amended soils but not 

in pure biochar (Marchal et al., 2013a, 2013b). In Khalid and Klarup (2015), the 

PAH concentration in biochar was strongly reduced by exposure to sun light and 

water addition which is encouraging as it suggests that PAH concentrations in 

biochar can be reduced rapidly in the environment after soil application despite being 

strongly sorbed. 

In conclusion, PAHs in biochar neither seem to pose a threat to plant growth and the 

ecosystem on short-term, nor on long-term. Nevertheless, biochars still need to 

comply with existing PAH legislation and guideline values. 
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10.2.3   PAH concentrations, PAH composition and limit values 

More than 50% and nearly ¾ of the 84 biochars investigated in this study, exceeded 

the upper limit of the IBI guideline (20 mg kg-1) and the lower limit of the EBC 

(premium grade, 4 mg kg-1) guideline, respectively (EBC, 2012a; International 

Biochar Initiative, 2011). Generally, it is difficult to recommend particular process 

conditions to guarantee biochars with PAH concentrations under biochar guideline 

values. Yet, using a high carrier gas flow rate, seven of eight biochars produced from 

two feedstocks, two HTTs and two residence times in a batch pyrolysis unit 

complied with the EBC premium grade threshold value. This clearly shows that an 

increase in carrier gas flow rate can be a suitable measure to produce biochars that 

comply with threshold values for 16 US EPA PAHs, at least in a batch pyrolysis unit. 

However, comparing the sum of the 16 US EPA PAHs does not take into account the 

different properties and toxicities of the various PAHs which is essential for a risk 

assessment of PAHs in biochar. 

NAP is the PAH that is most different from all the other PAHs: it is highly volatile, 

easily degradable in soil, not considered carcinogenic and genotoxic and shows low 

toxicity in mammals (European Commission Scientific Committee on Food, 2002; 

US Department of Health and Human Services, 1995). The high proportion of NAP 

in biochar results in NAP being the crucial compound that decides about non-

/compliance with threshold values in many biochars. Excluding the NAP 

concentration from the sum of PAHs, only 10% and ¼ of previous 50% and ¾ of the 

biochars exceeded the IBI upper limit and EBC premium grade biochar threshold 

value. In addition, all of the biochars that exceeded the IBI upper limit threshold 

value when only the non-NAP PAH concentration is taken into account in this study, 

were shown to be contaminated with pyrolysis vapours during biochar production 

caused by weaknesses of the pyrolysis unit design. 

Threshold values based on the sum of all 16 US EPA PAHs do not adequately reflect 

the risk posed by PAHs to cause adverse effects. Instead, alternative evaluation 

schemes should be applied such as: (I) the TEF-approach, (II) threshold values only 

for benzo(a)pyrene as an indicator for toxic PAHs (III) separate threshold values for 

NAP and non-NAP PAHs. All of these methods are proven, used in practise for other 

materials and could easily be applied for biochar as well (Delistraty, 1997; EU 
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Commission Recommendation, 2005; German Federal Soil Protection and 

Contaminated Sites Ordinance, 1999; Wisconsin Department of Natural Resources 

Bureau of water quality, 2015). Overall, the results on PAHs in this thesis are very 

encouraging, however, guideline and legislation values will need to be adjusted to 

reflect the risk associated with PAHs in biochar appropriately.  
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10.3   Volatile organic compounds (VOCs) 

Generally, volatile organic compounds (VOCs) are organic compounds with a 

boiling point below 250°C (Directive 2004/42/CE of the European parliament and of 

the council, 2004). Many VOCs are highly water soluble and due to their low boiling 

points, partially vaporise already at room temperature which makes them highly 

mobile in the environment. In addition, VOCs can be highly toxic, therefore, they are 

potential high risk compounds for plants, human health and the ecosystem (Cordella 

et al., 2012). However, very little is known about concentrations, composition and 

potential toxic effects of VOCs in biochar. 

In this thesis, VOCs in biochar were examined and potential post-treatment measures 

for VOC removal were tested on three biochars produced under nominally same 

process conditions but, due to irregularities during production, two of the biochars 

were contaminated with pyrolysis vapours after production (high-VOC biochars). 

Comparing biochars from the same feedstock and same production conditions meant 

that observed differences in effects could clearly be attributed to the contamination 

with pyrolysis vapours. 

10.3.1   Potential toxic effects of VOCs in biochar 

It was shown that vapours from the high-VOC biochars inhibited germination and 

early seedling growth of cress. The adverse effect could clearly be attributed to the 

high volatility and toxicity of VOCs and it was concluded that compounds, such as 

phenols and LMW organic acids, caused the inhibition. In addition, seeds in direct 

contact with biochar and seeds exposed to the leachate from a biochar-sand mixture 

were strongly inhibited. Besides, high concentrations of mobile VOCs, the biochars 

also contained high concentrations of water-extractable PAHs and it was more 

difficult to pinpoint phytotoxicity in the seeds affected by the leachate and in direct 

contact with biochar to either group. Still, after an extensive literature review, it was 

concluded that the observed inhibitory effects were much more likely caused by the 

LMW organic acids and phenols due to their high mobility and easy uptake by plants 

(Chapter 9). However, the high mobility also results in VOCs being easily degraded 

by soil microorganism and lost through volatilisation and leaching (Takijima, 1964; 

van Schie and Young, 2000; Wilson and Jones, 1996). Consequently, no long-term 
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negative effects of VOCs on plant growth are expected, even if strong inhibitory 

effects are present in the short-term. 

Due to their high volatility and as a result exposure of humans to VOCs during 

biochar processing, handling and storage, the potential human health effects of VOCs 

from biochar, such as phenols, cresols, LMW organic acids and methanol, were 

investigated. The concentration of the individual VOCs in the head-space above 

biochar were estimated and compared to occupational exposure limits and public and 

private indoor air quality guidelines. It was concluded that short-term occupational 

exposure limits for individual VOCs could be exceeded by VOC-rich biochars, yet, 

due to the fast volatilisation of VOCs, it seems rather improbable that long-term 

exposure limits would be exceeded. However, the lower indoor air quality guideline 

values could be surpassed by compounds such as phenol or cresols. In addition, the 

maximum allowable VOC-emissions from building products could be exceeded by 

VOC-rich biochars. However, only the two high-VOC, contaminated biochars posed 

a potential risk to human health, the clean biochar did not emit any detectable VOCs 

at all. VOC-rich biochar, consequently, needs to be handled with care and any 

processing should be done with face masks equipped with organic filters. 

10.3.2   VOCs and biochar production 

In the highly controlled pyrolysis unit under investigation, only irregularities in the 

area that separates pyrolysis solids and vapours (discharge chamber) resulted in 

biochars with high VOC concentrations. However, uncontrolled pyrolysis units and 

low-tech units might also result in biochars with high VOC concentrations in normal 

operation. This makes the topic of VOCs in biochars and their adverse effects in soils 

highly important as some traditional, very rudimentary techniques are used for the 

production of biochar (Wiedner and Glaser, 2015). The concentrations of VOCs in 

biochars from different pyrolysis techniques, units and conditions need further 

investigations to give recommendations for production of biochar with minimum 

VOC contamination. The difficulty with investigating VOCs is the need for freshly 

produced biochar as VOCs volatilise very easily and consequently, the set of 84 

biochars used for investigating PAHs in this thesis could not be used to investigate 

VOC concentrations. 
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From the limited sets of biochars tested here, it can be concluded that for highly-

controlled pyrolysis units, pyrolysis runs resulting in high-VOC biochar are 

identified easily due to significant excursions of production parameters from the 

design parameters. Examples of such excursions can be smoke in the unit/unit-outlet, 

lower than usual temperatures in different parts of the unit and strong odour of 

resulting biochars. As discussed for PAHs, for minimising contamination with 

VOCs, pyrolysis units need to be properly designed by avoiding cold spots which 

could result in vapour condensation and deposition on biochar. 

Due to the high volatility of VOCs, relatively simple post-treatment of biochar could 

be sufficient to reduce contaminant concentrations. Among the methods tested, 

simple open air storage under ambient conditions for two months was not sufficient 

to remove VOCs completely and treated biochars still demonstrated inhibitory 

effects. In addition, blending of high-VOC biochars with low-VOC biochar, even at a 

ratio of 2:8 still resulted in VOC emissions and phytotoxic effects of the vapours. 

Yet, blending at a ratio of 1:9 showed considerable suppression of VOC emissions 

and mitigated the previously observed toxicity. To a limited extent, blending could 

be used to control the desorption rate of VOCs, for example during biochar storage. 

Low temperature oxidation treatment at 200°C in air for 20 h resulted in biochars 

that did not emit detectable levels of VOCs. Although, the priority should be to avoid 

VOC contamination of biochar in the first place, 200°C treatment in air is a suitable 

method that could be used for VOC removal in practise. 

Overall, biochar contamination with VOCs is preventable, however, it is uncertain 

how strong VOC contamination of biochar in other pyrolysis units and under varying 

conditions is. Due to the significant toxic effects observed for high-VOC biochar 

here and potential human health effects, VOC levels should be monitored closely (in 

particular when fresh biochar is handled) and incorporated in biochar guideline 

values as recently done for the European Biochar Certificate (EBC, 2012a).  
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10.4   Conclusions 

There are two main groups of contaminants in biochar, inorganic contaminants 

(PTEs) and organic contaminants (PAHs and VOCs). Inorganic contaminants mostly 

originate from the feedstock and organic contaminants are synthesised during the 

production process itself. Generally, careful feedstock selection is necessary to avoid 

contamination with PTEs, while pyrolysis unit and production conditions need to be 

optimised to avoid contamination with organic contaminants. 

The type of feedstock used is the main factor that determines the concentration of 

PTEs in biochar, yet, the type of material used for critical parts of the pyrolysis unit, 

in contact with biomass or biochar, can also contribute to PTE contamination. The 

use of high HTTs to evaporate PTEs from pyrolysis solids cannot be recommended 

as the resulting biochars showed elevated availability of the remaining PTEs. 

However, despite high concentrations of PTEs in biochar and high biochar 

application rates, PTEs in biochar did not cause phytotoxic effects in this study. This 

is encouraging, yet, the biochars need to be exposed to further testing to confirm the 

safety of PTE-rich biochars for soil application as unexpected long-term effects or 

harmful effects on soil flora and fauna could occur. The risks and benefits of a 

specific PTE-rich, marginal biomass-derived biochar need to be evaluated 

individually for the particular application scenario (including evaluating economic 

factors) before making a decision about biochar application. 

Two main groups of organic contaminants were identified in biochar, VOCs and 

PAHs, which are both intermediate degradation products of biomass constituents and 

under normal circumstances during pyrolysis, they are either further transformed into 

char or are evaporated and form the pyrolysis liquids and gases. The pyrolysis 

process is very effective in separating pyrolysis solids from PAHs and VOCs, yet, 

due to weaknesses in the pyrolysis unit design or operation, strong contamination 

with PAHs and VOCs through condensation and deposition can occur. Biochar 

contaminated by pyrolysis vapours, contained comparatively high concentrations of 

PAHs, in particular non-NAP PAHs and VOCs and were highly phytotoxic. Yet, the 

phytotoxicity was mainly attributed to VOCs. It remains unclear if in fresh biochar, 

the concentrations of both compound groups always correlate or whether they co-



Chapter 10: Discussion 

235 

occur only in some instances (differences in boiling points). Post-treatment at 200°C 

was successful in removing both compounds groups, yet, avoidance of the 

contamination in the first place is more effective than post-treatments. Most 

importantly, biochars produced under normal circumstances, which were not 

contaminated by condensation and deposition of pyrolysis vapours in the post-

pyrolysis stage, showed not to be a risk to plant growth and human health as they 

contained very low concentrations of VOCs and the PAHs were mostly composed of 

naphthalene and not water extractable. Consequently, these biochars can be 

considered safe to be used for environmental management. 

  



Chapter 10: Discussion 

236 

10.5   Further research 

- The availability of PTEs in biochars increased at the highest HTT 

investigated (750°C), yet, it can only be speculated what the underlying 

mechanisms were (decreased CEC with increasing HTT which decreased the 

binding force for PTEs). Consequently, the mechanisms of availability of 

PTEs in biochar and how pyrolysis affects the availability need further 

investigation. 

- It was concluded, based on availability of PTEs and the short-term effects on 

cress seedling growth, that PTE-rich biochars do not present a risk when 

applied in the right application rate. However, the effects of PTEs in biochars 

from heavily PTE contaminated materials on other plant species and soil 

organisms should be investigated, both, in short-term and long-term studies. 

In particular the long-term availability of PTEs in biochar and the effect of 

biochar aging on availability is unknown. This knowledge is essential to 

assess the risk of application of PTE-rich biochars to soil. 

- In this study, the effects of pyrolysis conditions, such as residence time and 

carrier gas flow rate on the PAHs concentrations in biochar were investigated 

for a batch pyrolysis unit only. To be able to give general recommendation 

for biochar production with minimum PAH contamination, respective 

pyrolysis parameters should also be investigated regarding their effect in 

continuous pyrolysis units of different designs. 

- Using literature data, it was concluded that PAHs are of rather low concern 

for plant growth in comparison to VOCs. This could be further confirmed by 

studying the effect of PAH-rich biochars with low VOC concentration on 

plant growth. 

- It was hypothesised that PAHs and VOCs co-occur in biochars as they 

showed similar contamination pathways. This was confirmed for the two 

biochars investigated in this study, but needs to be further investigated for 

other biochars. However, biochars need to be analysed for VOCs 

immediately after production as VOCs vaporise and dissipate easily. In 

addition, the VOC concentrations of various fresh biochars should be 

correlated with pyrolysis technique, unit and conditions to give further 
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recommendations for production of biochar with minimum VOC 

contamination. 

- It has been shown that VOCs can have significant adverse effects on plant 

growth, yet, in the literature various VOCs have also been reported to result 

in growth-promoting effect, if present in the right concentration. 

Consequently, the growth-promoting properties of VOCs originating from 

biochar should be investigated further. 
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Appendix 1   Supplementary information 

A 1.1   Supplementary information for Chapter 2 

A Table 1: Validation/quality control of chemical analyses performed in this study in percentage 

standard deviation of the concentration of (low, high) standards analysed in replicates. 

 standard deviation (%) 

 low standard high standard 

acetone 17.72 7.06 

butan-1-ol 18.64 7.11 

butan-2-ol 18.61 6.80 

ethanol 17.97 7.49 

isobutanol 18.06 6.83 

MEK 18.08 7.21 

methanol 16.90 7.25 

MIBK 17.79 8.67 

propan-1-ol 18.24 7.27 

propan-2-ol 18.18 7.06 

acetic acid 5.33 6.45 

formic acid 7.73 9.42 

propionic acid 5.73 6.67 

butyric acid 5.97 7.61 

naphthalene 1.69 1.16 

acenaphthylene 5.54 4.48 

acenaphthene 2.06 1.30 

fluorene 3.54 3.78 

phenanthrene 1.79 1.41 

anthracene 5.64 2.63 

fluoranthene 6.52 7.35 

pyrene 5.20 8.39 

benz(a)anthracene 7.83 3.08 

chrysene 2.64 1.98 

benzo(b)fluoranthene 9.41 8.95 

benzo(k)fluoranthene 8.23 9.11 

benzo(a)pyrene 9.57 9.19 

indeno(1,2,3-cd)pyrene 9.17 5.88 

dibenz(a,h)anthracene 9.64 6.53 

benzo(g,h,i)perylene 8.64 6.16 

phenol 45.00  

2,4-dimethylphenol (as marker for alkylphenols) 17.00  

pentachlorophenol (as marker for chlorophenols) 51.00  

VOC scan semi-quantitative only 

PAHs in solids no standard / reference for biochar exists yet 
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A Table 2: 16 US EPA PAHs in three biochars analysed in triplicates, respectively. Extraction and analysis was done on separate vials on different occasions. 

Average (AV) and standard deviation (SD) (in mg kg-1 and %) is shown. n/a, not available. 
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29-20120705/350 Dec-14 mg kg-1 0.15 0.8 0.53 0.4 0.34 0.3 0.21 0.1 0.32 <0.10 0.66 0.51 0.24 1.7 0.89 24 31.2 7.2 

29-20120705/350 May-15 mg kg-1 0.13 0.59 0.52 0.47 0.41 0.38 0.23 0.12 0.47 <0.10 0.69 0.4 0.24 1.6 0.95 n/a n/a 7.2 

29-20120705/350 May-15 mg kg-1 0.19 0.94 0.7 0.51 0.41 0.39 0.22 0.12 0.47 <0.10 0.85 0.63 0.24 2.1 1.1 n/a n/a 8.9 

AV mg kg-1 0.16 0.78 0.58 0.46 0.39 0.36 0.22 0.11 0.42  0.73 0.51 0.24 1.80 0.98   7.7 

SD 
mg kg-1 0.03 0.18 0.10 0.06 0.04 0.05 0.01 0.01 0.09  0.10 0.12 0.00 0.26 0.11   1.0 

% 19.5 22.7 17.3 12.1 10.5 13.8 4.5 10.2 20.6  13.9 22.4 0.0 14.7 11.0   12.6 

                     

35-1012/97/700 Dec-14 mg kg-1 <0.10 <0.10 <0.10 0.11 0.11 <0.10 0.11 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 0.17 <0.10 19 19.5  

35-1012/97/700 Feb-15 mg kg-1 <0.10 <0.10 <0.10 0.16 0.18 0.26 0.19 0.14 0.13 <0.10 <0.10 <0.10 0.22 0.16 0.1 27 28.5  

35-1012/97/700 Feb-15 mg kg-1 <0.10 <0.10 <0.10 <0.10 <0.10 0.11 0.15 <0.10 <0.10 <0.10 <0.10 <0.10 0.15 <0.10 <0.10 20 20.4  

AV mg kg-1    0.14 0.15 0.19 0.15      0.19 0.17  22 22.8  

SD 
mg kg-1    0.04 0.05 0.11 0.04      0.05 0.01  4.4 5.0  

%    26.2 34.1 57.3 26.7      26.8 4.3  19.8 21.8  

                     

16-1011/23/750 Dec-14 mg kg-1 0.69 0.42 2.2 1.6 1.2 1.2 0.51 0.49 1.7 0.21 2.8 <0.10 0.57 7.2 2.4 26 49.19 23.2 

16-1011/23/750 Apr-15 mg kg-1 0.73 <0.10 0.45 1 0.47 3.6 1.3 1.5 1.9 0.47 2.4 <0.10 1 7.9 1.9 47 71.62 24.6 

16-1011/23/750 May-15 mg kg-1 0.81 0.24 1 1.6 0.96 3.4 1.7 1.5 2.5 0.68 3.5 <0.10 1.7 8.6 2.9 n/a n/a 31.1 

AV mg kg-1 0.74 0.33 1.22 1.40 0.88 2.73 1.17 1.16 2.03 0.45 2.9  1.1 7.9 2.4   26.3 

SD 
mg kg-1 0.06 0.13 0.89 0.35 0.37 1.33 0.61 0.58 0.42 0.24 0.6  0.6 0.7 0.5   4.2 

% 8.2 38.6 73.6 24.7 42.4 48.7 51.8 50.1 20.5 51.9 19.2  52.3 8.9 20.8   16.0 
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A 1.2   Supplementary information for Chapter 7 

A Table 3: Germination rate (%) from ‘all exposure routes’ germination tests including low-

VOC biochar treatments in average (AV) and standard deviation (SD). 

 volatiles only leachate affected direct contact seed-biochar 

biochar AV SD AV SD AV SD 

control 1.00 0.00 1.00 0.00 1.00 0.00 

1% NC 1.00 0.00 1.00 0.00 1.00 0.00 

2% NC 1.00 0.00 1.00 0.00 1.00 0.00 

5% NC 1.00 0.00 1.00 0.00 1.00 0.00 

1% GC 1.00 0.00 0.84 0.19 0.45 0.09 

2% GC 1.00 0.00 1.00 0.00 0.07 0.07 

5% GC 1.00 0.00 0.06 0.03 0.01 0.02 

1% LC 1.00 0.00 0.99 0.01 0.25 0.17 

2% LC 0.98 0.03 0.67 0.47 0.00 0.00 

5% LC 0.86 0.02 0.00 0.00 0.00 0.00 

 

 

 

A Figure 1: Progression of cress seeds from the start of ‘volatiles only germination’ test using 

different amounts of biochar. 0.25 g gas contaminated biochar sealed storage (GC SS 0.25), 0.5 g 

gas contaminated biochar four weeks open storage (GC OS 0.5) and 0.25 liquid contaminated 

biochar sealed storage (LC SS 0.25) are depicted. 
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A Figure 2: ‘All exposure routes’ germination test assessing toxicity of gaseous compounds 

released (A), leachable compounds (B) and direct contact of seeds and biochar (C). Seven-day 

germination test using NC, LC and GC biochar mixed in three concentrations with sand. 

Germination rates are depicted above the bars; bars show percentage of seedlings with root 

growth <15 mm, between 15 and 60 mm and above 60 mm.  
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A 1.3   Supplementary information for Chapter 9 

A Table 4: Phenols with concentrations below 0.005 µg g-1 biochar from water extracts (solid-to-

liquid ratio 1:100) in low- and high-VOC biochars. 

phenols phenols 

3-chlorophenol 2,3,5-trichlorophenol 

4-chlorophenol 2,4,5-trichlorophenol 

2,6-dichlorophenol 2,3,4-trichlorophenol 

3,4-dichlorophenol 3,4,5-trichlorophenol 

3,5-dichlorophenol 2,3,5,6-tetrachlorophenol 

2,3-dichlorophenol 2,3,4,6-tetrachlorophenol 

2,4,6-trichlorophenol 2,3,4,5-tetrachlorophenol 

2,3,6-trichlorophenol pentachlorophenol 

 

A Table 5: Concentrations of water extractable phenols determined by a phenol index test in 

NC, GC and LC biochar using two different solid-to-liquid extraction ratios. The extraction 

with solid-to-liquid extraction ratio of 1:100 was performed in triplicates and averages ± 

standard deviation are shown. Percentage extracted shows the fraction of 5/500 already 

extracted by 9/100 ratio 

   low-VOC  high-VOC  

 solid-to-liquid ratio  NC biochar GC biochar LC biochar 

phenol index 5 g / 500 mL µg g-1 5.45  2165  3265  

phenol index 9 g / 100 mL µg g-1 <45 1797 2734 

percentage extracted % - 83.02 83.74 

      

 

Water-extractable phenols were extracted in a solid-to-liquid ratio of 1:100 to follow 

the method Hildebrand (1979). However, in the germination tests in Chapter 7 ratios 

of biochar-to-water of 1:14 (5% biochar), 1:35 (2% biochar) and 1:70 (1% biochar) 

were used. Thus, it was tested if it is possible to extract all phenols with lower solid-

to-liquid ratios by extracting with a ratio of 1:9 and analyse the phenol index. 83% of 

the phenols extracted by a 1:100 ratio were already extracted by a ratio of 1:9 which 

indicates that the concentrations measured for individual phenols by the 1:100 ratio 

can be scaled-up to the solid-to-liquid ratio of 1:9 and to the ratios used in the 

germination tests accordingly. 
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A Table 6: Detection limits (LOD) for alcohols, ketones and LMW aliphatic acids. 

alcohols and ketones   

acetone µg g-1 10.0 

butan-1-ol µg g-1 12.0 

butan-2-ol µg g-1 12.0 

ethanol µg g-1 13.0 

isobutanol µg g-1 10.0 

methanol µg g-1 14.0 

methyl ethyl ketone (MEK) µg g-1 5.0 

methyl isobuthyl ketone (MIBK)  µg g-1 2.0 

propan-1-ol µg g-1 11.0 

propan-2-ol µg g-1 10.0 

LMW aliphatic acids   

acetic acid µg g-1 12.0 

butyric acid µg g-1 10.0 

formic acid µg g-1 15.0 

propionic acid µg g-1 12.0 
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A Table 7: Concentrations of organic compounds in low- and high-VOC biochars. The grey areas show the concentrations in the water extracts (solid-to-

liquid ratio of 10 or 100) as determined. The remaining columns depict the extracted concentrations up or down scaled according to the leachates in the 

germination tests in Chapter 7. Three different concentrations of biochar in sand were used, all with the same amount of water. According to these solid-to-

liquid ratios, the expected concentrations in the leachates were calculated. 

          5% BC 2% BC 1% BC 

   high-VOC   1:100 1:10 1:14 1:35 1:70 

  NC GC  LC  5 g : 500 mL 10 g : 100 mL 2.5 g : 35 mL 1 g : 35 mL 0.5 g : 35 mL 

alcohols and ketones      GC LC GC LC GC LC GC LC GC LC 

acetone µg g-1 bdl bdl bdl mg L-1             

butan-1-ol µg g-1 bdl bdl bdl mg L-1             

butan-2-ol µg g-1 bdl bdl bdl mg L-1             

ethanol µg g-1 bdl 20.0 46.0 mg L-1 0.20 0.46 2.0 4.6 1.4 3.3 0.6 1.3 0.29 0.66 

isobutanol µg g-1 bdl bdl bdl mg L-1             

methanol µg g-1 bdl 380.9 250.1 mg L-1 3.81 2.50 38.1 25.0 27.2 17.9 10.9 7.1 5.44 3.57 

methyl ethyl ketone (MEK) µg g-1 bdl bdl bdl mg L-1             

methyl isobuthyl ketone (MIBK) µg g-1 bdl bdl bdl mg L-1             

propan-1-ol µg g-1 bdl bdl bdl mg L-1             

propan-2-ol µg g-1 bdl bdl bdl mg L-1             

                  

LMW aliphatic acids                  

acetic acid µg g-1 97.0 771.9 730.3 mg L-1 7.72 7.30 77.2 73.0 55.1 52.2 22.1 20.9 11.03 10.43 

butyric acid µg g-1 bdl 210.5 150.1 mg L-1 2.11 1.50 21.1 15.0 15.0 10.7 6.0 4.3 3.01 2.14 

formic acid µg g-1 85.0 541.3 500.2 mg L-1 5.41 5.00 54.1 50.0 38.7 35.7 15.5 14.3 7.73 7.15 

propionic acid µg g-1 bdl 37.1 260.1 mg L-1 0.37 2.60 3.7 26.0 2.6 18.6 1.1 7.4 0.53 3.72 
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phenols                

phenol index µg g-1 5.45 2165 3265 mg L-1 21.65 32.65 216.50 326.50 154.64 233.21 61.86 93.29 30.93 46.64 

phenol µg g-1 bdl 190 310 mg L-1 1.90 3.10 19.00 31.00 13.57 22.14 5.43 8.86 2.71 4.43 

2-methylphenol (o-cresol) µg g-1 0.005 240 380 mg L-1 2.40 3.80 24.00 38.00 17.14 27.14 6.86 10.86 3.43 5.43 

3-methylphenol (m-cresol) µg g-1 bdl 160 240 mg L-1 1.60 2.40 16.00 24.00 11.43 17.14 4.57 6.86 2.29 3.43 

4-methylphenol (p-cresol) µg g-1 bdl 150 220 mg L-1 1.50 2.20 15.00 22.00 10.71 15.71 4.29 6.29 2.14 3.14 

2,6-dimethylphenol µg g-1 bdl 43 47 mg L-1 0.43 0.47 4.30 4.70 3.07 3.36 1.23 1.34 0.61 0.67 

2,5-dimethylphenol µg g-1 bdl 42 58 mg L-1 0.42 0.58 4.20 5.80 3.00 4.14 1.20 1.66 0.60 0.83 

2,4-dimethylphenol µg g-1 0.017 300 260 mg L-1 3.00 2.60 30.00 26.00 21.43 18.57 8.57 7.43 4.29 3.71 

3,5-dimethylphenol µg g-1 0.008 31 60 mg L-1 0.31 0.60 3.10 6.00 2.21 4.29 0.89 1.71 0.44 0.86 

2,3-dimethylphenol µg g-1 bdl 18 24 mg L-1 0.18 0.24 1.80 2.40 1.29 1.71 0.51 0.69 0.26 0.34 

3,4-dimethylphenol µg g-1 bdl 21 28 mg L-1 0.21 0.28 2.10 2.80 1.50 2.00 0.60 0.80 0.30 0.40 

2,4,6-trimethylphenol µg g-1 bdl 20 30 mg L-1 0.20 0.30 2.00 3.00 1.43 2.14 0.57 0.86 0.29 0.43 

2,3,6-trimethylphenol µg g-1 bdl 4.4 8 mg L-1 0.04 0.08 0.44 0.82 0.31 0.59 0.13 0.23 0.06 0.12 

2,3,5-trimethylphenol µg g-1 bdl 13 12 mg L-1 0.13 0.12 1.30 1.20 0.93 0.86 0.37 0.34 0.19 0.17 

3,4,5-trimethylphenol µg g-1 bdl 2.0 3 mg L-1 0.02 0.03 0.20 0.29 0.14 0.21 0.06 0.08 0.03 0.04 

2-chlorophenol µg g-1 bdl 0.066 0.120 mg L-1 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 

2,4/2,5-dichlorophenol µg g-1 bdl 0.40 0.770 mg L-1 0.00 0.01 0.04 0.08 0.03 0.06 0.01 0.02 0.01 0.01 
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PAHs                

naphthalene µg g-1 bdl 0.12 0.46 µg L-1 1.20 4.60 12.00 46.00 8.57 32.86 3.43 13.14 1.71 6.57 

acenaphthylene µg g-1 bdl 1.10 0.79 µg L-1 11.00 7.90 110.00 79.00 78.57 56.43 31.43 22.57 15.71 11.29 

acenaphthene µg g-1 bdl 0.001 0.018 µg L-1 0.01 0.18 0.10 1.80 0.07 1.29 0.03 0.51 0.01 0.26 

fluorene µg g-1 bdl 0.038 0.089 µg L-1 0.38 0.89 3.80 8.90 2.71 6.36 1.09 2.54 0.54 1.27 

phenanthrene µg g-1 bdl 0.16 0.29 µg L-1 1.60 2.90 16.00 29.00 11.43 20.71 4.57 8.29 2.29 4.14 

anthracene µg g-1 bdl 0.035 0.073 µg L-1 0.35 0.73 3.50 7.30 2.50 5.21 1.00 2.09 0.50 1.04 

fluoranthene µg g-1 bdl 0.011 0.021 µg L-1 0.11 0.21 1.10 2.10 0.79 1.50 0.31 0.60 0.16 0.30 

pyrene µg g-1 bdl bdl bdl µg L-1             

benz(a)anthracene µg g-1 bdl 0.071 0.091 µg L-1 0.71 0.91 7.10 9.10 5.07 6.50 2.03 2.60 1.01 1.30 

chrysene µg g-1 bdl bdl 0.028 µg L-1  0.28   2.80  2.00  0.80  0.40 

benzo(b)fluoranthene µg g-1 bdl 0.012 0.024 µg L-1 0.12 0.24 1.20 2.40 0.86 1.71 0.34 0.69 0.17 0.34 

benzo(k)fluoranthene µg g-1 bdl 0.015 0.030 µg L-1 0.15 0.30 1.50 3.00 1.07 2.14 0.43 0.86 0.21 0.43 

benzo(a)pyrene µg g-1 bdl 0.017 0.033 µg L-1 0.17 0.33 1.70 3.30 1.21 2.36 0.49 0.94 0.24 0.47 

indeno(1,2,3-cd)pyrene µg g-1 bdl 0.015 0.031 µg L-1 0.15 0.31 1.50 3.10 1.07 2.21 0.43 0.89 0.21 0.44 

dibenz(a,h)anthracene µg g-1 bdl 0.019 0.042 µg L-1 0.19 0.42 1.90 4.20 1.36 3.00 0.54 1.20 0.27 0.60 

benzo(g,h,i)perylene µg g-1 bdl 0.011 0.022 µg L-1 0.11 0.22 1.10 2.20 0.79 1.57 0.31 0.63 0.16 0.31 

16 USEPA µg g-1 bdl 1.62 2.04 µg L-1 16.24 20.42 162.40 204.20 116.00 145.86 46.40 58.34 23.20 29.17 
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A Table 8: Mobility/extractability of 16 US EPA PAHs. The first three columns contain the fraction of PAHs extracted by toluene after 6 h compared to the 

total amount of PAHs after 36 h extraction. In the next columns, the percentage concentrations of PAHs extracted by water in relation to the total (36 h 

toluene extracted) PAHs are depicted. The last four columns show literature values on several properties of PAHs. n/a, not available. 

 NC  GC  LC  NC  GC  LC  literature values 

 extractability water/36 h extractability 6 h/36 h boiling point solubility log Kow log Koc 

  % % % % % % °C mg L-1   

PAHs           

naphthalene n/a 1.46 4.65 5.35 48.78 56.57 218* 30# 3.30§ 2.97+ 

acenaphthylene n/a 23.91 60.77 n/a 52.17 63.08 265-275 3.93 4.07 1.4 

acenaphthene n/a 0.08 1.64 n/a 30.77 53.64 96.2 1.93 3.98 3.66 

fluorene n/a 0.64 2.23 n/a 38.98 50.00 295 1.68-1.98 4.18 3.86 

phenanthrene n/a 1.45 5.09 50.00 43.64 56.14 340 1.2 4.45 4.15 

anthracene n/a 1.17 5.21 n/a 43.33 59.29 342 0.076 4.45 4.15 

fluoranthene n/a 0.26 1.91 n/a 57.14 80.91 375 0.2-0.26 4.9 4.58 

pyrene n/a n/a n/a n/a 64.15 91.67 393 0.077 4.88 4.58 

benz(a)anthracene n/a 2.22 10.22 n/a 81.25 88.76 400 0.01 5.61 5.3 

chrysene n/a n/a 7.00 n/a 72.22 75.00 448 0.0028 5.16 5.3 

benzo(b)fluoranthene n/a 0.71 12.00 n/a 82.35 95.00 481* 0.0012 6.04 5.74 

benzo(k)fluoranthene n/a n/a n/a n/a n/a n/a 480 0.00076 6.06 5.74 

benzo(a)pyrene n/a 1.21 15.00 n/a 85.71 68.18 495 0.0023 6.06 6.74 

indeno(1,2,3-cd)pyrene n/a 2.17 20.67 n/a 76.81 66.67 530 0.062 6.58 6.2 

dibenz(a,h)anthracene n/a 4.63 23.33 n/a 51.22 n/a 524* 0.0005 6.84 6.52 

benzo(g,h,i)perylene n/a 1.53 10.48 n/a 70.83 n/a 550 0.00026 6.5 6.2 

total 16 USEPA n/a 3.04 7.31 5.58 54.66 59.25     
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Kow, octanol-water partitioning coefficient 

Koc, soil organic carbon-water partitioning coefficient 

n/a, not available, one/both concentrations was/were under the detection limit 

references: all from US Department of Health and Human Services (1995) apart from the following 

* Alves de Lima Ribeiro and Ferreira (2003) 
# Shiu and Ma (2000) 
§ Sangster (1989) 
+ Lee (2010)  
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Appendix 2   Digital appendix 

Following documents can be found on the flash drive supplied with the PhD thesis: 

 One excel file, called “Digital Appendix_PhD thesis_Wolfram Buss“, 

containing the following three tables: 

o Digital Appendix Table 1: Concentration (mg kg-1), relative change 

(%) and total change of the elemental content after pyrolysis (mg kg-1) 

(assuming 100% retention) for twenty elements in eighteen biochars. 

o Digital Appendix Table 2: Percentage available of the total elemental 

content for nutrients and PTEs in nineteen biochars. 

o Digital Appendix Table 3: Concentration of individual and total 16 

US EPA PAH concentrations in 84 biochars. 

 The published manuscripts included in this PhD thesis. 
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