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ABSTRACT 

Numerical estimates for the low lying hadron mass spectrum are obtained 

in the Quenched Approximation of lattice QCD using the standard Wilson pure 

gauge action and the Susskind fermionic action. 

The numerical techniques used are discussed and an Iterative Block SOR 

algorithm is found to be optimal for inverting the fermion matrix using the 

DAP. Block Gauss Elimination is found to be impractical. The Distant Source 

Method for extending quark propagaors in time is also tested and found to be 

of use where finite-size-effects are small. 

High statistics measurements of hadron masses are performed in the 

range 5.7 z 	. 	6.3 on 16 and 16 3 x24 lattices. Restoration of flavour 

symmetry in the meson sector occurs at around 	= 6.0, improving as B 

increases further, suggesting the possibility of observing continuum behaviour 

in this range. Finite size effects for mesons become significant for small 

quark masses at B = 6.3. 

A comparison of baryon propagators with different spatial boundary 

conditions is made at B = 6.15 and reveals finite size effects at small quark 

masses. Using antiperiodic spatial boundary conditions, the finite size effects 

are manifested as a discrepancy between two baryon propagators, EVEN and 

ALL, which should be equal on an infinite lattice. This discrepancy persists at 

B = 6.3. 

Mass ratios obtained at B = 6.0 and 6.15 are compared and found to be in 

good agreement, suggesting that there may be a scaling 'window' in this 

range of B. 



CONTENTS  

page 

Introduction 

1.1 QCD as a Gauge Theory 	
1 

1.2 Lattice Gauge Theory 	
10 

The Hadronic Spectrum from a Lattice 

2.1 Susskind Fermions 	
20 

2.2 Quark Propagators in the Quenched Approximation 	 26 

2.3 Local Lattice Operators for Mesons and Identification of 

Quantum Numbers 	
29 

2.4 Local Lattice Operators for Baryons 	 36 

2.5 Goldstone Bosons on the Lattice and in the Continuum 	42 

2.6 Review of Hadron Mass Calculations 	
44 

Numerical Techniques 

3.1 Monte Carlo Methods 
48 

3.2 Properties of the Fermion Matrix 
52 

3.3 The Conjugate Gradient Algorithm 56 

3.4 Block Gauss Elimination 
59 

3.5 Block Iterative Methods 
63 

3.6 The Distant Source Method 
66 

3.7 Fitting the Data 
69 

3.8 Conclusions 
74 



CONTENTS(contd.) 

page 

4. Results 

4.1 Propagator Distributions 77 

4.2 Results at $ = 5.7 on a 16 	Lattice 78 

4.3 Results at B = 6.0 on a 16 	Lattice 80 

4.4 Results at B = 6.0 on a 1624 Lattice 

4.4.1 The Meson Sector 82 

4.4.2 The Baryon Sector 84 

4.5 Results at B = 6.15 on a 16 3 x24 Lattice 

4.5.1 The Meson Sector 86 

4.5.2 Baryons and Finite Size Effects 87 

4.5.3 Baryon Mass Estimates 88 

4.6 Results at B = 6.3 on a 16 3 x24 Lattice 

4.6.1 The Meson Sector 90 

4.6.2 The Baryon Sector 91 

4.7 Conclusions 92 

Appendix 

The DAP 	 96 

References 	 99 



CHAPTER ONE 

Introduction 

Quantum Chromodynamics (QCD) is widely believed to be the theory 

which describes the strong interaction. Its formulation is straightforward : it 

is a non-Abelian gauge field theory of quarks and gluons, analogous to the 

well-established Abelian theory QED of electrons and photons. However, the 

dynamics resulting from the non-Abelian structure are quite different, 

encompassing all the complex phenomena of the strong force. from jets to 

nuclear energy levels. The work presented here is an attempt to extract one 

aspect of this complex dynamics, namely the spectrum of quark bound states, 

and hence to predict hadron masses, using numerical techniques based on the 

lattice approximation to QCD. In this chapter we shall outline the framework 

for this calculation by discussing gauge theories, the development of QCD and 

the implementation of the lattice theory. 

1.1 QCD as a Gauge Theory 

Present day particle physics is dominated by gauge theories : the 

discovery of the W and Z bosons at CERN [Arnison et al (1983abc), Bagnaia et 

al. (1983) and Banner et al. (1983)] justified acceptance of the electroweak 

theory proposed by Glashow, Weinberg and Salam [Glashow (1961), Weinberg 

(1967) and Salam (1968)] and the theory of quantum electrodynamics (QED) is 

in astonishingly good agreement with experiment. Before discussing QCD in 

more detail, let us first look - at the concept of gauge theories. 

A gauge theory can be constructed by imposing local symmetry 

conditions on a Lagrangian. Taking as an example the Lagrangian for a free 

electron field, 

This has a global U(1) symmetry under 

e 

q(x) 	a."  
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We wish to elevate this to a /oca/space-tirne dependent symmetry namely 

— 

Now when we substitute these into the Lagrangiarl, the derivative term 

becomes 

(x)  

(I.4\ 

r 

The second term spoils the gauge invariance, so we replace 3 	in the 

Lagrangian by 2 4, a covariant derivative, which must transform as 

For this to hold we must introduce a new vector field A(x), the gauge field, 

where A 4 has the property 

(I.') 

and 

+ieAr 

Then (1.5) holds. So now ¶e o  reads 

0 



However we should also include a term involving the derivatives of Allif  we 

want A to have non-trivial dynamics. The simplest term which is gauge 

invariant is 

	

- 	F 	Ft' 	 (.9) 
t'v 

where 

	

= a. A V  - 	A 	 O. 0) 

Fp v  is related to 

(_ 	 (Lt%) 

From (1.5) we see that 

dp 1 

so 

= 
	 (i.t) 

i.e. 

F' tAv 

The final form of the gauge invariant Lagrangian is then 

	

= - FF 	(a+ArL)41—riW41 

This Lagrangian has no gauge field self-coupling as we cannot write down a 

gauge-invariant interaction and because the photon has no electric charge. 
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The Lagrangian for a non-Abelian gauge theory on the other hand does 

contain gauge field self-couplings as we now show. Yang and Mills [Yang 

and Mills (1954)] developed the gauge principle to include non-Abelian 

symmetry groups. Let us look at the formulation for SU(N). The form of the 

free Lagrangian is (1.1) as before but now 

ww  

an N-component object. Under the group transformation we have 

p(-.Q)4'(x) (Lt':).) 

where X a/2 a = 1...n 9, are the generators of SU(N) (for N=2 Xa)a = 1,2,3 are the 

Pauli matrices, for N=3 they are the Gell-Mann matrices, a = 1,..8). The X a  

obey 

L2. 

(i.i8j 

where f a b c  are the structure constants of SU(N). When the e 8  are space-time 

independent, this global transformation leaves the Lagrangian invariant. Under 

the local gauge transformation 

1 0  is not invariant, due to the derivative term which gives 

+ U 	
t46 

We introduce the vector gauge fields A, a = 1,..n 9  one for each group 

generator, and covariant derivative 

4 



Then for the Lagrangian to be invariant, where g is a coupling constant, 

(r') 	= 

or 

(r 	
A)(u(9)W) - 	 •'r "V ('• 

u (e)[-. j 

ie 

= 	ue 	u'. 	- 	[u(e}u '( 9) 

For an infinitesimal transformation 

0(e) 	- 	(x) 	 C:'.  

and (1.25) is 

= 	Pr 	B[)''  
A. 

(L2) 

15 

= 	 , 0 

- 

i.e. 

'7.., 	
Jc, 	b 	c. 

A 	 e 

U. a. a) 

61 



This defines the transformation law for the gauge fields. 	Following (1.11) we 

look at 

— PVP 	\) ()tC 
 

Al 

where 

	

M 	 a- 0 

	

FIXV 	
= l.j;v 

o,6 c 	 C 

-- ct 	A 	AV 

U(G) kA" L)(0) 	V, 

(G)(.FU(9) 

Q. 
so that in the infinitesimal case e 	< 	1 

F/Ct 	
CL a.6 c C. 

e 	V 

Thus Fv  has a non-trivial transformation, unlike the Abelian case, while 

FP V 	is gauge invariant. 	The final form for the gauge invariant Lagrangian is 

—! 	 F *_ 	F 'Av  C'_ tk  + 
4 

where 

c.. 	 c. 

F 	. 	 — 
0- 	 AC 	 C 

2), A 	+ 	. .f 	A 	A,, (L 

and 

= 	i 

The Yang-Mills term F 11  V  F 	factors which are trilinear and 

quadrilinear in A 	corresponding to the fact that the gauge fields are 

self-interacting. 
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We now briefly follow the development of QCD. Quarks were first 

postulated by Gell-Mann and Zweig in 1964. At that time they were widely 

viewed only as algebraic entities, serving as the building blocks of an 

observed internal - symmetry SU(3). This symmetry was seen as that of three 

quarks : u(p),d(own) and s(trange). Today we know that five quarks exist - 

c(harm) was discovered in 1974 and b(ottom) in 1977 - and a sixth, the t(op), 

is also postulated to exist. However, we believe that the number of such 

types of quark does not. have a. fundamental meaning in strong interaction 

physics : the basic dynamics of quarks and gluons do not depend on the 

flavour (which is in fact a broken symmetry) provided the number of flavours 

is sufficiently small not to spoil asymptotic freedom. 

In 1965 Han and Nambu [Han and Nambu (1965)] proposed that each 

quark occurred in three different types or co/ours . This solved the 

spin-statistics puzzle of the - a fermion which, in the absence of an extra 

degree of freedom, appeared to have an overall symmetric wave function - 

since bound states of three quarks could be overall anti-symmetric in colour. 

However, their quarks had integer electric charge (the non-integral charge of 

Gell-Mann and Zweig being obtained by averaging over the colour index) and 

the scheme mixed the electroweak interaction with the colour degree of 

freedom so had not yet acheived a description of the strong force alone. 

By the early seventies much work had been done on chiral symmetry and 

its breaking. The electromagnetic decay rate of the neutral pion was 

expressed in terms of the charges of the fundamental particles carrying the 

isospin charges, which annihilated via a triangle diagram. The experimental 

rate implied that the fundamental particles were non-integrally charged quarks 

occurring with three colours. Thus in 1972, the idea took shape of 

interpreting the colour quantum number as a 'hidden variable' so that quarks 

were tricoloured objects existing only inside hadrons. In order not to thereby 

introduce an extra multiplicity in the hadron spectrum it was postulated that 

quarks could only exist in colour singlet combinations. Thus quarks are 

presumed not to exist as free particles but are confined as colour singlet 

combinations inside hadrons. The group SU(3) describes the exact colour 

symmetry. Baryons are composed of three quarks and mesons of a quark and 

an anti-quark. The theory was supported by measurements of the ratio R 

—3 % oLctroir%c 

C- c et e- -9 
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at energies corresponding to the production of u,d and & quarks. Again the 

factor of three from having three colours is necessary for agreement between 

theory and experiment. Another important experimental result was that quarks 

only contribute about 50% of the momentum of a nucleon. The remaining 

50% must be carried by electrically neutral objects - the particles responsible 

for binding the quarks, the gluons. 

Deep inelastic scattering revealed that although the quark constituents of 

hadrons are not produced as free particles in the final states, they behave at 

short distances if they were weakly bound inside the target nucleons. The 

field theory must take account of all these features, particularly free 

propagation at short distance and confinement at long distance. In 1973 the 

discovery of asymptotic freedom marked an important step in the 

development of QCD - already it was known that the effective coupling 

between the particles of an interacting field theory is not a constant but 

depends on the energy scale involved. The functional dependence of the 

coupling constant on energy and distance scale is prescribed by the 

renormalisation group B-function, 

= 	- 	 ('.4°) 

which can be calculated in perturbation theory to be 

= — o 	 (.41) 

with 

Jo 	 3 	
4,1tt 	

foir SUCK)') 	
(.4'L') 

Higher order terms are regularisation-scheme dependent but these are 

universal. It turns out that for Yang-Mills theories the slope of the B-function 

at the origin is negative. Theories with this property are asymptotically free, 

i.e. the effective coupling decreases at short distances (as found in the deep 

inelastic scattering of leptons on nucleons). The only renormalisable theories 

8 



in four dimensions which are asymptotically free are non-Abelian gauge 

theories. The effect of asymptotic freedom also allows for the opposite effect 

at long distances 'infrared slavery' whereby the force between quarks 

becomes stronger at large distances, potentially giving rise to quark 

confinement, although for precisely this reason perturbation theory breaks 

down so that a non-perturbative approach is essential if we are to understand 

how hadronic:bound states are formed. 

To account for all the above features, QCD is thus a non-Abelian gauge 

field theory with SU(3) as its gauge group, describing the interactions between 

three colours of quarks (in the fundamental representation) and eight types of 

massless gluons (in the adjoint representation). So 

	

CL 

— 	 F 	F0' •- 	((9,_w) r(x) 

t__ '.9's ) 
—rv 

with 	9= 	a. 

Fr.v = 	 v4r 
'- 	 Q- 

Ar 	 At,,. 	:. 
1 

o_ I 

CJC a. 	tC 

	

At 
.  Av 	O'4 

and 

(t.4 - 
Lj 2 

where the Xa  are now the GeII-Mann matrices and f a bc  the structure constants 

of SU(3). 

Predictions based on QCD perturbation theory have been tested 

experimentally : through deep inelastic lepton-nucleon scattering, quarkonium 

physics and quark-gluon jets. However these only probe the short distance 

regime Where the bare coupling g is small, whereas the directly observable 

particles, the hadrons, are the product of non-perturbative effects where g is 

large. Lattice QCD is a non-perturbative formulation of the theory which 

permits the study of effects like confinement of quarks, chiral symmetry 

breaking, hadron masses, meson and baryon coupling constants and so on. 

Within the approximations it makes, it provides a means of calculating 



non-perturbative quantities and checking the results of the theory with 

experiment. We now discuss lattice theories. 

1.2 Lattice Gauge Theory 

A quantum field theory on a Euclidean lattice of discrete space-time 

points becomes mathematically well-defined. Wilson (1974) showed that it is 

possible to make gauge theories discrete in this way and still maintain exact 

gauge-invariance, though, of course breaking Euclidean invariance. Hence a 

space-time lattice provides a non-perturbative cut-off which removes the 

ultra-violet divergences by eliminating all wavelengths less than twice the 

lattice spacing. As with any regulator, it must be removed after 

renormalisation so that physics results can only be extracted in the continuum 

limit where the lattice spacing is taken to zero. Here also, we expect 

Euclidean invariance to be restored. 

As an illustration, consider a free scalar field 4(x). Working in Euclidean 

space-time, the Lagrangian is 

1 

p 	•j• 	((t:' L 	+ 	1. 
VIA 

and we can write down the action 

S ci 	- cLC L( r- 

 for a given field configuration. In the Feynnian Path Integral formulation 

(Feynman (1948)], the matrix element <4't'jt> is written as a functional 

integral : 

ft 
 

< 't' I st 	N 	 L cU( ,  

where 

L =  f'- 
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represents the sum of contributions over all paths connecting the initial and 

final states, weighted by the exponential of i times the action. Here the 

generating functional -- 

J{ctP  

where the functiona.l integral over field configurations requires careful 

definition. Expectation values are given by 

- 

— 	J 
 [a 	ç6,çb-•. -axp-sEø) 

2: 

Introducing a regular hypercubic lattice (there are other possibilities e.g. 

triangular or random lattices) of spacing a and extent La with sites n, 

= (i,ntv.) 	 0-50 

we make the substitutions 

CL 

 where 	is a unit vector in the 4-direction, 4=1,2,3,4. The lattice action is then 

a sum 
4 	 1. 

2. 

! 	+ 
CLI 	

01 

2.. 	 .7. 

t,L:t 

and we can write down the Feynman Path Integral 

.)p - SLØ1 
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which is now perfectly well defined mathematically the functional integrals 

are now multiple integrals since the total volume of the system is finite. 

If we add an interaction term g 24  to the Lagrangian, we see that if we 

rescale the fields 

then 

=SE  / 	E 	! s'fc'J 	('•) 

i.e. the coupling constant g appears as an overall factor in the action, and 

rewriting (1.57) 

I(Th c1) 	— 	s'[']
IT  

(.o) 

This has the same form as the partition function for a statistical spin system 

where instead of S/g 2  in the exponential there would be EAT. Thus we may 

consider g 2  to be the analogue of temperature so that strong and weak 

coupling can be equated with high and low temperature respectively. This 

correspondence between lattice field theories and spin systems means 

statistical mechanics techniques can be applied to both : a particular example 

of this as we shall see in chapter 3 is Monte Carlo techniques. 

Let us now move on to look at Wilson's formulation of an SU(3) pure 

gauge theory on the lattice [Wilson 19741. The continuum action is 

.3 	_5cx - F 

We work with a Euclidean lattice (the connection with Minkowski space is 

made by a Wick rotation of the time variable t -> it. On the lattice, the 

gauge fields A,, are replaced by elements of the gauge group 

U — 	 = _txp 
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where Xa/2  are the generators of the gauge group (SU(3) in this case) on the 

links between the sites. (1.62) is the discretised form of the connection 
S. 

P ..€x.p 	)s 	which transports colour from x to y with x = y+a and 

hence it is naturally associated with the link from x to x+a So we have on 

each link a matrix Uab  where a and b are colour labels associated with the 

sites at each end of the link. We make the assignment 

A 

	

U rj1fY%#P') 	= 

and we can perform discrete elementary transports 

	

u 6 	 (t.4) 

of the colour vector 4.i equivalent to infinitesimal displacements in the 

continuum. For local gauge invariance, we allow an arbitrary group rotation at 

each site of the lattice and assume the same transformation law as for the 

line integral of the gauge field in the continuum: 

' 

 

r 

Thus 2(n) defines the orientation of a local colour frame at each site n, 

whereas U(n)  provides the transport from one frame to the next in the 

direction p. From (1.65) the trace of the product of U matrices round a closed 

path is a gauge invariant quantity and Wilson proposed constructing the 

action from the simplest such products, round the elementary squares on the 

lattice called plaquettes. 

S 	 Tr U 	Tr 

2 

where 

1- 	A 

'U (-+v) U uv  (#r) r 

13 



This must have (1.61) as its continuum limit; indeed it does as we now show. 

Since 

U =
XP 

writing (1.67) out in full gives 

U 13 

__ fl  jixp 	B()+a 

_jP 	- 

where we have used 

We now use the Baker-Campbell-Hausdorff relation 

pA+ 	 - 	IL] ....] 

to obtain 

UQ =f 	yV} 

+ k.jer 

(t 	(A-A) +- 

+ 	jr ovcLl-d 

14 



-QX 
	 (l.4) 

Q, 

4 
U 	 + 	 - 	 F 	

(.5) 

Since Fp v  = V FUj  is linear in the generators, its trace is zero so we look at 

the next term FF" 

0- 	CL  F 
Tr FtAV 	

Tr 	 , 

where 

	

. 	b 
TrX 	= 

	

a. 	2 

so making the equivalence 

Jr 

cLLx 
 

OL 

we have 

I ¶ Yr Un  ((L9) 

2 

2 	1 OL 	 'i (F 	F 	) (- °-2. 

J. 	c_t 	&frl 

— / 
Coirt+c 
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dx Z F 
a- 

Thus we recover the Yang-Mills action of (1.61) 

The lattice theory provides a precise mathematical meaning for any 

quantity we wish to measure, but we must remember that we need to take 

the limit of zero lattice spacing to recover the physical value. Consider some 

physical quantity q with dimension -d in lattice units. In a lattice calculation 

it takes the form 

—S 	
(t.%) 

The dimensionless function f(g) contains all the physical information. (g is a 

dimensionless coupling constant in four dimensions). If q=m is a mass 

- 

C6 

where f(g) will give the mass in terms of the number of lattice spacings. 

Letting a —> 0 will not produce a sensible limit unless g is also tuned 

towards some value gcr  (i.e. g is renormalised) so that quantities like m 

approach well defined finite values : as a —> 0 we need f(g) —> 0. This 

implies 

(1. 2 3) 

and gcr  IS such that 

= 0 

This critical point gcr  must have scaling properties — once the functional 

16 



relationship between g and a is established from one particular observable, 

the same relation must also give the correct, well-defined values for all other 

observables as a - > 0. For non-Abelian gauge theories, gcr = 0. 

We also have, for small enough 

=0 
	 (i.$) 

cto- 

so from (1.82) 

. 

CL 	 06 

CL  
act- 

U..) 

Near g=0 

21 rip (.&r) 

(1.88)  

the 8-function of (14Q),which may be expressed as in (1.41) We thus have 

	

<(fi)fZO 	(_lft) [\ +o(]Aje-p 

0. 'so) 

We may write 

A 

where A is a dimensionful constant of integration which sets the scale for all 

masses in the theory. (1.91) may thus be written 

	

-4'f 	z. 

A 	! 0. 1 	 O 	 [tO(i)] 
 /q.' ) 

0 
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and all masses in the theory may be expressed 

.a.tt 
= c, A 	 (1.93) 

So masses are given by expressions like (1.92) which are non-analytic at g0 

meaning the masses are therefore non-perturbative quantities. Mass ratios 

are independent of A and become constant in the asymptotic scaling regime 

where both have the same g dependence (where only the two-loop B function 

is required). It is crucial to establish numerically how close to g = 0 the 

scaling regime (in which all masses have the same g dependence) sets in, 

because it will not be necessary to reduce the lattice spacing further in order 

to make continuum predictions. Asymptotic scaling (in which the g 

dependence is given by the two-loop B-function) may set in at this value of g 

or at a smaller value. All existing lattice gauge theory calculations have been 

done in the hope that scaling sets in for g 2  not very much smaller than 1, 

although the evidence for this is not yet conclusive. Monte Carlo 

Renormalisation Group analysis has been used to discover at which values of 

B = 6/g 2  asymptotic scaling sets in. The latest results (Bowler et aL (1986at 

high S (6.9 and 7.2) are inconclusive, indicating that whereas previous 

calculations of the parameter AB at lower values of B seemed to be 

approaching the asymptotic value of 0.58 ) the 6.9 and 7.2 results, seem to have 

levelled off at 0.51, albeit with high errors (0.51±0.07 at B = 7.2) On the other 

hand, recent work in finite temperature QCD shows asymptotic scaling setting 

in at 5 = 6.15 [Kennedy (1986)]. 

Quark confinement is exact on the lattice [Tomboulis (1983)] but it has 

not been shown to persist as the lattice spacing a -> 0. Lattices have been 

used to obtain the string tension cy. Consider a q- pair adiabatically 

separated to a distance R, held for a time T and then adiabatically brought 

together again and annihilated. The Euclidean amplitude is 

(R17

Ht 	 (.s4 

On the lattice this process is represented by the Wilson loop 

W( ) T) 	Tr 

tit 	 C 
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where C is the path described by the RxT loop. If the energy of our q-q 

system is V(R), we expect 

-TV(P.' 	 (t.%) 

1--- 00 

Using 

ratios of measurements of Wilson loops W(R,T) may be used to extract 

estimates for the string tension a. 

So we have a lattice theory which is confining at strong coupling, and 

whose continuum limit is the g->O limit. As long as there is no deconfining 

transition in the intermediate coupling region, we can proceed with 

simulations and extract physical results. Studies of both the SU(2) and SU(3) 

theory using discrete subgroups have indicated that there is no such 

transition in four dimensions, so that quarks are confined at all couplings. 

Other quantities have been investigated in the pure gauge theory such as the 

mass gap and topological effects. These will not be discussed here but 

details may be found in for example [Kogut (1983) and references therein]. 

We now move on from the pure gauge sector to discuss in chapter two how 

to include fermions in the lattice theory and how to construct hadronic states, 

so that we may calculate hadron masses. 



CHAPTER TWO 

The Hadronic Spectrum from a Lattice 

In the previous chapter, it was shown how to set up a pure non-Abelian 

gauge theory on a lattice. If we wish to calculate the particle spectrum, we 

must further introduce fermions since the observed low-lying hadrons are 

bound states of quarks. This chapter is concerned with formulating fermionic 

fields on the lattice and then using the quark propagator to obtain mesonic 

and baryonic propagators from which hadron masses may be extracted. In 

the final section of this chapter, we review lattice hadron mass calculations to 

date. 

2.1 Susskind Fermions 

The fermionic part of the QCD Lagrangian in Euclidean space is 

OL 

where 

and 

{ 

1- 	- 
Ir 	

- 

The most obvious method of formulating fermions on the lattice is to use the 

'naive lattice action' 

20 



	

SW 	 () { 	U( 	( -'N 4 ) 

tA 

(...4) 

where the (n) fermionic fields are associated with lattice sites n, and the a 1  
has been evaluated using a central difference operator. The point-splitting 

has been rendered gauge invariant by including the appropriate link variable. 

It is straightforward to demonstrate that this reduces to (2.1) in the naive 

continuum limit. 

However, if we look at this expression in more detail we discover things 

are not as straightforward as we would like; the continuum limit actually-leads 

to a multiplicity of fermionic modes which cannot be ignored in the 

interacting theory. The existence of these extra degrees of freedom can most 

easily be demonstrated in the free theory. Using the central difference 

approximation as above, 

-F 

(.S) 

so that the lattice Green function in a finite box of side L satisfies (for a=1) 

	

- 	

A. 	

- 	 s o T -~6 	G_ (P^ 4 r ) 0 ) 

Using the Fourier transform 

P 	2L? 

1r' 	
L 

(2.\ 

- I. 	./''% 

2I.. 	o) 

we have 
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PrPr) 	(P) + 	 () 

For m=0, 0(p) has poles at E sin213 = 0. This happens not only when p = 

0, but also when one or more component of p = 7r with the other 

components 0. Thus in four dimensions there are 2= 16 poles, corresponding 

to 16 degenerate fermions. This is of no consequence if there are no 

interactions, but in the presence of interactions the fermion species mix 

[Guerin and Kenway (1980)]. This is known as the 'fermion doubling problem '. 

The naive lattice action is not, however, the only possible action we 

could use and we might think that another choice could circumvent the 

problem of these 15 unwanted species. In fact, it has been shown [Nielsen 

and Ninomiya (1981)] that a fermionic lattice action cannot reproduce all the 

features of the continuum : if we want a local description of fermions on the 

lattice, either we must give up chiral symmetry as m •-> 0 or we will have 

cancellation of the anomaly in the currents associated with the chiral 

symmetries. Chiral symmetry is important for the low-lying hadron spectrum 

so we are reluctant to give that up. The two most commonly used fermion 

formulations are Wilson fermions [Wilson (1975,1977)] and Susskind fermions 

[Kogut and Susskind (1975); Susskind (1977); Kawamoto and Smit (1981)1. The 

Wilson formulation introduces a new term to the action which causes a 

splitting between the sixteen species, so that in the continuum limit a - > 0 

fifteen of them become infinitely heavy leaving a single fermion species with 

zero mass. However, the extra term explicitly breaks chiral symmetry. Aside 

from this undesirable feature, at finite lattice spacing the 15 unwanted species 

must be retained in the computer simulation even though it is hoped that they 

are approximately decoupled from the low-lying spectrum : their presence is 

an unnecessary burden on computation and memory. 

For this technical reason, and because it is important to retain a remnant 

of the chiral symmetry of the continuum theory, we choose to work with the 

Susskirid formulation. Here some of the unwanted fermion degrees of 

freedom are explicitly decoupled on the lattice via the transformation 

(3z 	Tt( 	 (.q) 
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where 
1  

(- 	= 	 ir 	r. 	 (.io) T  

Then the naive free action becomes 

	

57C 	7 

tA 

S 

4. 	. V..' 	 $(') 

Let us look at the cases i.' = 1 and 2 

	

= 	Tt 

- 	
P3 

= 	( 	•. T.L  6 	1T, 	 ,: X(4i) 

(+) 

	

ntj 	n3 	
sti. 

% 

so the free action becomes 

S 	 °r') 
P) r (a. 

where 

r2. 
	

(2.15) 
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This is diagonal in the spinor indices : we have four identical copies and so 

only need consider one of them. Dropping three of the copies reduces the 

degeneracy from sixteen to four, which are sometimes considered as four 

different flavours. At non-zero lattice spacing a there is a continuous 

U(1)U(1) symmetry for m —> 0 ,which is a remnant of the full U(4)jJ(4) 

chiral symmetry of the continuum. This will be discussed in section 2.5. In 

this formulation, there are two Grassmann variables per lattice site, x  and . 

This action should describe 2d12 = 4 Dirac fermions in the continuum limit, but 

these 'flavours' are not apparent in (2.14). Kluberg-Stern, Morel, Napoly and 

Petersson have proposed a method of id-entifying them [Kluberg-Stern et al. 

(1983)] which defines the quark fields on hypercubes of side 2a Each lattice 

site can be written 

	

+ 	
(2.i(.) 

where the xU  describe a lattice with spacing 2a and 112d  times the number of 

sites of the yp lattice. We may then define the quark fields by 

	

2: r 	7(j1-eb) 

(2.1 -+) 

•k:'6 
	 r 

where 

91 '6
'  Ir 

'7 	2k 
	

(. ia) 

The ot indices are interpreted as Dirac indices and the a indices as flavour. 

This comes from rewriting the free action for F flavours as 

ci.. 	() r tI 

) fêl rl)# 	
(23 

p.- 

4 	 I 
where 	 - 

[ c1 (+i4 ) 	tLi) (o 
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and 
. —40 

fA  
1 

(.a) 

are defined on the 2y lattice of spacing 24 with i now of length 2a We have 

defined 

J. Tr 	Tr. r 	 (• 

and 

= ! Tr 'I v r1 	g, 	-;, : 
47 r F 

where 

4 	 Vr 
A = 

0 

This follows from the fact that we may write 

t11- 	 F 

- 	Tr (I47 	r - 	
£ 	)+4 

With the relations (2.17) we have, 

CL 

1- 	tt 
0 	 cj) 

where we use t to represent y 4  acting in flavour space. The first term is 

the naive action for F free Dirac fermions on a lattice of spacing 28, and 

suggests the flavour interpretation of the second index. It has the full 

U(F)J(F) symmetry of the continuum. The second term, involving second 

order lattice derivatives, is O(a ) with respect to the first and is responsible 

for lifting the fermion degeneracy. It explicitly breaks the Lorentz and flavour 

symmetry, and only the U(1)U(1) generators are conserved. Generalising 

(2.14) and (2.17) to the interacting theory, we use 
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( 

where 

"I 	 M 
.... 	 ( ) 

to relate the q-fields and the x fields. The Susskind action is 

S 	= I 	
- 	

) [ U 	
A) 

fA 

2.2 Quark Propagators in the Quenched Approximation 

We now show how to use the action discussed in the previous section to 

calculate expressions for expectation values of operators on the lattice. The 

expectation values for operators involving quark fields, such as the meson and 

baryon propagators are expressed in terms of the elementary quark 

propagators. 

The general expression for the expectation value of an operator is 

<0) Cl~ ] 

o €x.p—s(u,?c,) 	(a.30) 

where 
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with D defined as 

t 

4 ( 	. 	_ U ('' _i 1 
and M = ml. The quark propagator is 

(31) 

Because the fermionic part of the action is bilinear in the quark fields, we can 

integrate 	out 	the 	x and 7 degrees of 	freedom 	(Matthews 	and 	Salam 

(1954,1955), see Cheng and Li (1984)1, to obtain 

5 E4uj f CLILt ( D i- H 	
(3(4) 

The integral over the bosonic gauge fields must be performed numerically, 

and so is replaced by a finite sum over configurations of gauge fields 

:i cI±(tt+ )1 ) [Ib+M'l 	p - sCc)  

Since det (D+M) > 0, a Monte-Carlo technique (see chapter three) may in 

principle be used to generate a sequence of pure gauge configurations, each 

occurring with probability {det(D+M)exp(-SG)} We may then approximate 

expectation values by the corresponding quantities averaged over a finite 

sized sample, which ideally should be as large as possible. Thus 
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Figure 2.1 This decay of the $ -> 3ii involves unconnected quark lines and is 

suppressed. This suppression is known as the Zweig rule and is seen in 

terms of a multi-gluon intermediate state. 



On a 16 3 x24 lattice the matrix D+M is of dimension 16 3 x24x3, and to 

calculate det(D+M) for a given (D+M) would be computationally very intensive. 

Furthermore, during the Monte-Carlo updating described in chapter three, it 

would be necessary to recalculate the determinant at each sweep as D is 

updated. This would not be practical on currently available computers if we 

wish to work with large lattices. Instead, we choose to work in the 'Quenched 

Approximation', which neglects the effect of the determinant by setting it to 

unity. This is equivalent to ignoring quark loops in perturbation theory and 

hence we only have valence quarks in our hadrons. We are solving the 

problem of quark propagation in a background gauge field, ignoring the back 

reaction of the quarks on the gauge fields themselves. This is certainly a 

good approximation for high quark mass, but it is not known at what point it 

breaks down as m -> 0 . Determining this is one of the aims of this study. 

The quenched approximation effectively enforces the Zweig rule for all 

flavours. Several authors have used this as a justification for using the 

quenched approximation - Zweig suppression of diagrams like fig 2.1 is indeed 

observed in nature. These approximations mean we have nonet symmetry, 

since we do not measure any diagrams which would remove the rr-r 

degeneracy. Weingarten [1982dJ has also used the following argument. 

Removing closed quark loops inside diagrams should result in the gauge fields 

between a valence quark and anti-quark in a meson being string-like, with a 

string tension T. If the determinant is restored it is plausible that the field in 

the meson remains string-like but now with breaks at various points where 

there is a quark loop. This string will have a new string tension T' with a real 

part re T' < T . In fact, in nature meson Regge trajectories are nearly linear. 

If we can shift so that T = Re T', we might thus hope that the behaviour of 

the quenched and unquenched theories to be (qualitatively at least) the same. 

This effect has recently been confirmed in a study on a 9 3 x18 lattice [Fukugita 

et al. (1986)]. What we use, then, to calculate the quark propagator is (2.36), 

an average over independent configurations distributed according to the pure 

gauge action. We must calculate the Green function [D+MF 1  for the lattice 

Dirac equation 

(q) , M  ) C7 	= cS 	 (..%:?.) 

for a large number of configurations, and having done so , we can then build 
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up meson and baryon propagators from it. 

2.3 Local Lattice Operators for Mesons and Identification of Quantum Numbers 

We will now show how, using Susskind fermions, a range of operators 

can be constructed to create mesonic bound states which may be identified in 

the continuum limit with the pion, rho, B, A 1  and 6 states etc. 

A general meson operator at a site y is 

A 

where A is a colour index, X a spinor index and 6 a flavour index. The rx are 

the appropriate Gamma matrices (X = 1,16). The q(y) fermionic fields are 

related to the one component Susskind fields by (2.27). 

Thus 

f 

3
.(l+) U() 	

a- ( rr) f. O'()  

(3) 

Because the solution of (2.37) is so computationally demanding on large 

lattices, and must be performed for as large a set of gauge configurations as 

possible, we prefer to solve it for just one origin per configuration and hence 

work with hadron operators which are local ,i.e. we require 2y+TJ and 2y+TJ to 

be the same site. If we put n=ri' in the above equation we have 

47 
= 

 Tor[ t  r., r (.4o 

Ai1 

which requires X=S for a non-zero trace. So, the general local meson 

operator is 

= 	 Tr[ rrt, 	(.4' 

29 



To calculate mesonic rest-frame propagators , we must evaluate 

<J( 	J(o)> 

for a range of rx. We have rx = 1 	i ' 1015 , 1j , 	'p 15Yj and 

yxy p . We define the parity operation as follows 

CP t() 	P 	 (.41) 

p 
	

(c.44) 

where the Y4  acts in spinor space and the 1 in flavour space, and use it to 

operate on (y) in (2.41) for each value of X, to obtain the following 

(continuum) parity identifications 

o1  

- o_ 	
(.4S) 

0 

•'s 

The meson timeslice propagator 

G! (*) 	_ ' H 	 (.4" 

where 

(;t\ 	 t) 	 (a .4—+) 
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is expected to be an exponential function of time 

A-exp  

So we make the identifications of table 2.1, between the lattice states and the 

lowest lying continuum states. 

M 

(140 - 

K e 	met 

6C 1135 ) 

Pt 	12-7 

Table 2.1 Identification of continuum quantum numbers for the lowest lying 

states in local meson timeslice propagators. 

Let us look, for example, at M 1. in more detail. 

-16 	T5C, 	] T  

'i 

YL 

since 

- 	 t 

= 	Tr 	C1  T5 
] 	A 

(i 
) 
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We take r' = (0,i) so that the origin is at 0. We must therefore sum over r' 

= 0,1 and T1 4  = 0,1. Considering r, 4 = 0 and 1 separately, we need the 

following four traces 

Tr ( r T5  r r5 ) 

	

	 Tr 

'14 

Tr( 1 	T 	T11  

4 

- F (—t" 

Tr(ri,,1, r,;' 	Tr TO' 
/ 

F 

4 
Tr(1.. , T5  16 	= Tr Y4 V  

"1 
- —F 

so that 

M 	= F 	 x 

e,( °)  

-. 	
o) 

-- 

AS 	 - 
With G 	(y,O) = < xA(2yn)xe(n)> and using 

t ( ) o 	C 1 	
4 4 	C) 

and translational invariance, we have 
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( ((Ot) 	(54) 

c 	A 	 (°)') 

The relation (2.53) changes the relative signs of the terms in (2.52) because of 

the Ti4 and  fl4. Following the same procedure for the other choices of A 

- 
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However these operators M(t) are expressed as functions of 2t. Let us also 

define the following set of operators 

< 

- 	 - 
()  

(..ScL-cL) 

M (4) 	Ljer 	-( +(—' 	-)}< P (x)g(O' 
1.  

1. 	xi4 	YZ49 	 — 
10) it 

+(-i) +(- 

%4t3 

The- seven correlation functions defined in (2.54) and (2.55a-f) are related to 

the four defined above as follows 

M () = 	( 2M (2.t) +-H 	2..t+l + 

F t  (Zh(2A')4- Hp(U+I)  1- 

F' 	( 	- H se,  (1 

F 	(2 M(L{.') + M VT 	i) + 	t-1,,- (2k -1)) 

( 2 Mt4.) M PV  (t-F t1Pv (2A.— 1)) 

i. (st+%) 4- M,vtH) 

F(2 M, 1-(*) 	t .\VT( :I;+I ) — 

Now we use table 2.1 and also make the approximation 

vtps (Q*+) .-. 	 (+) 
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and similarly for the other states of (2.56). This comes from the fact that the 

PS propagator is decaying exponentially in time. We then obtain 

.exp(-rrtt) 1-.... 

4coSl%r1t,t.Q. 
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For the lowest order in 4 these equations can be rewritten as below 

VA 1p,, (if) 	, AP-t 

p p -bt 4- A 	p-t 

( 

(.O&-ct) 

K PV () A' _Plet 
4 - 	A 1t 

These then are the functions we will use to fit the data from measurements of 

MPS, MSC, MVT, Mpv on the lattice. We see from equations (2.60) that each 

operator we measure on the lattice is a mixture of continuum states with 

opposite parities (with the exception of Mps). This makes the fitting procedure 

more difficult as we must use at least two exponentials merely to extract the 

ground state, and contamination from higher excited states is likely at short 

times. It is consequently particularly important when using local Susskind 

operators to have lattices of large extent in the time direction in order to 

expose the asymptotic decay. More details of the method of fitting will be 

given in chapter three. 

2.4 Local Lattice operators for Baryons 

In the same way as we did for the mesons, we wish to work with local 

fields and so following Kluberg-Stern et al (Kluberg-Stern et al. (1983)] we 

define 

L 1 j* 	(2.6I 

We must relate this to a general baryonic field in terms of q-fields. If we 

define 

Ok Ca- 

we can see that B depends on B the same way q depends on x and we 

also have the result that B°'  (y) transforms in the same way as q (y) i.e. as 

a spin 1/2 field on the lattice. Using equations (2.27) and (2.61), we have 

CLA 
p 	bo. 
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where C, the charge conjugation matrix is defined by 

Looking now at the propagator, we have 

< 	((o 

Morel and Rodrigues [Morel and Rodrigues (1984)] use the Fierz transformation 

< 	B(o) 	 X 	() 
(.(6) 

- 
i-Of XEC 	 o''7 

to rewrite (2.65) as 

< 	() B (o)7 = E P < f(2 e -e•i 	(o)'? r r 
'1 (.2. Cot) 

wherep =S +c 	mod 2, and P is a phase, dependent on r,6 and e. 

Then using Fourier transforms on an infinite lattice 

00  

c rL P 
'Tr CL LI 

1II2. 

where f(y) is defined on a lattice spacing 2a with hypercubes at sites 2y, the 

momentum space propagator 

= :;i.. Qx 	 <€(B(0)) 
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can be written, using (2.67), as 

-T 'r-t 	
() I (P  4 

where 

= CA 

r 
and 

cfl 	 <BCl+ 	(o) 
(j 

and P' is a phase dependent on 6 and e only. The second term above comes 

from the case r = (1,1,1,1). To see how the propagator behaves, we should 

now look at l(P). 

Now the Susskind action (2.29) is invariant under 

z a' 

' U 	 Xt
) 

and because B and B transform like x and 7, we must have 

(... 	 c C 	P.,  

Looking now at the centre of mass frame P = ( 2,P4 ) for i = 1,2,3 we have 

e 	 'e 

', 	1) 1 ) 3 
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In the centre of mass therefore, l is non-zero only when p = 0. This fact 

leads to the following form for the propagator [Morel and Rodrigues (1984)] 

1, ) = I L * ~'- a. P ( -C (D 0  ) 
(.)4) 

	

('Vs (!) a 	F, (4 	P4 ) 

F0 (.'- P4  

where 

;, ( Pq ) 	'.- SP4. c (3wPt4 

r0,0 (P( 

from the properties of 1 0 , 1  and l. This has the same structure as a free 

quark propagator in the centre of mass, with F 0  and F 1  real with poles at the 

same place. 

Using the parity operator as defined in (2.43), we have 

P 	-j4 p 	= - 	 ( - )j 4  

Looking at the propagator above, we see a term proportional to Y5  which is 

parity violating, so the lattice states at finite $ are not eigenstates of T. Recall 

that what is actually measured is 

- '2 <(?te g(o)7 
- 	

EcJcc EA 

<X (o) Xb(2 +e) XB(0) 	Lp) 	07 

and 

(t) 

T1 	
(..&o) 

from the definition of l. Since l(P 4 ) = 0 if 	0 1  we have 

< €'Ui' L+ 	'(Y? = 0  
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and so 

2 <S(,+e) ())  

Performing the inverse Fourier transform on the momentum space propagator, 

Morel and Rodrigues [ibid] obtain for the propagator with /4 >0 

(s4ts) 
(.23) 

p-Ht.j 9  

where R i  is constant and e j  is ±1 according to the sign of R 0/R 1 . The sum is 

over all poles of the functions F 0  and F 1 . 

< 	 1o)) 

14 
z?C P4 

-1P4  (tq) 
F0  (sP) 

LcTr 

- PqCt+1 
Lsv.Pq 

for 

frowt 2O) 

r 

0r  e(2)) 

and F0(sin 2P4) = F 1 (sin 2 P4 ) near the poles. This can be used to write an 

approximate form for the timeslice propagator on the lattice, taking the lowest 

states only 
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This represents a spin 1/2 baryon on the lattice - the nucleon. For a lattice 

with a finite time extent and Dirichiet boundary conditions, we should use the 

asymptotic form 

f-Pe-n\1t "' A 

to fit to the propagator 

1 < 	Q,( 

This is the EVEN nucleon. 

We note the following two properties, (which are obtained in the 	infinite 

lattice case) 

a) 
iyj 	° 

This comes from the 	invariance 	of the action 	under complex conjugation 

which means 

= 	< 

where 
CW 

e 	 (o) 
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b) 
	

< (x) 	O) 	(_14Xt4 	< c ) Lfe4)(o)> 

for arbitrary T1. This comes from (2.81), so there is no new information to be 

gained from measuring the left hand side of (2.91), as it is in fact independent 

of n - we need only measure at one corner of each hypercube on the lattice. 

In practice in order to check these relationships we shall also measure the 

ALL nucleon, 

< C 2 ,te 	(o)? 
	

(01. 

which adds the contribution from all the sites on the x-lattice. The additional 

sites' contribution should average to zero by (2.81). However, on a finite 

lattice identity b) may not always hold. In fact, numerical evaluation of the 

analytic expression for free fermions shows that it holds for periodic boundary 

conditions but not for antiperiodic boundary conditions [Kenway et al.(1986)] 

If identity b) is violated in QCD for a particular choice of boundary conditions 

then it is a finite size effect, and the extent of the violation is a measure of 

the finite size effects on baryons. This will be further discussed in the 

interacting theory in chapter four. 

For the ALL propagator, we use the same asymptotic form as used to fit 

to the EVEN nucleon. 

2.5 Goldstone Bosons on the Lattice and in the Continuum 

In section 2.3 we discussed local lattice operators for mesons, and we 

saw how there were two states with the same quantum numbers as the 

7T(140), viz the M and the M. 
.5 
 If we identify both with the continuum pion, 

we might hope both to be Goldstone bosons in the continuum limit 

corresponding to the spontaneously broken full chiral symmetry, a remnant of 

which is present in the lattice action. In fact, only the Y5  state is a Goldstone 

boson at finite a as we show below. 

The continuum Lagrangian is invariant under a U(FJ(F) group of 
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transformations for F flavours, which is broken to SU(F)U(F) A U(1) v&U(1)A . 

The lattice action is invariant under a global U(1)J(1) group of 

transformations of the x fields. This comes from the fact that Xs at even 

sites are only coupled to 7s at odd sites and vice versa. We can write the 

transformations as 

-a, 	 octet 

- 	 . 
- 

This symmetry is explicitly broken to the diagonal sub-group U(1) where 

T=V by the mass term. 

U(1)J(1) has two generators, 

V =1t 	
(qq) 

A 

respectively the vector and axial vector generator. Since y 5 xy5  is traceless in 

flavour space, it belongs to the axial SU(F)A and not the axial U(l)A  which is 

subject to the anomaly in the continuum. Thus if the symmetry is broken we 

would expect the Goldstone boson to be flavour non-singlet like the pion and 

unlike the Ti'. Kluberg-Stern et al. (1983) show that the axial current 

corresponding to the axial generator above is 

[ 	

tA 

CL +r) Odt-yooT 

t t 	 (.$) 
JA + 	£{ J. .,T]') 
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where t and T 8  represent y ll  and r B  acting in flavour space, and use the 

point-dependent axial rotations 

0i') (T&)] cL(&) 
(.q) 

'() Ct ( ) 

to find 

Y 4  A)—A- 	 a 

+T 4(j) ({)(J 

() (©Th) () 

In order that the current be conserved as m -> 0, we require {tt5,TB} to 

vanish, and thus must choose TB = t 5. This choice corresponds to the 

Goldstone boson of the spontaneously broken generator y$'. Any other 

choice of T 8  does not give a conserved current. In other words, on the lattice 

at finite 4 we have one (only) Goldstone boson. Other 'pion' states will only 

be Goldstone-like in the continuum limit. This fact can be used to test how 

near the continuum limit our simulations are, as we shall show in chapter 

four. 

2.6 Review of Lattice Hadron Mass Calculations 

Hadron mass calculations on the lattice have been in progress since 

Hamber and Parisi first published results of a simulation on 6 3 x10 and 6 3 x12 

lattices at 8 = 6.0 [Hamber and Parisi (1981)] This and other early work 

(Marinari et aL(1981), Weingarten (1982a.,b)4. Fucito et al. (1982), Hamber et al 

(1982), Bernrd et al. (1983a,1983b), Hasenfratz et al. (1982a,1982b)] provided 

some very encouraging results despite the smallness of the lattices and the 

fact that we now know they were above the deconfining transition 

temperature. For example, the spontaneous breaking of chiral symmetry was 

demonstrated, the pion was certainly the lightest hadron and other states 
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were well reproduced : the first reported measurement of the p mass [Hamber 

and Parisi 1981'] was 800±100 MeV : and it was hoped that by moving up to 

larger lattices and better statistics, errors would be reduced and the spectrum 

described more accurately. 

However, the next generation of results, on larger lattices, uncovered 

several problems. [Bowler et al. (1983), Gilchrist et al. (1984a,b), Lipps et al. 

(1983), Billoire et at. (1984a,b,1985A, Itoh et at. (1984), Bowler et al. (1984a)]. On 

lattices now of sizes 8 and 10 3 in space, finite size effects were still 

considerable. These were due to the fact that at the values of B chosen, the 

lattice size corresponded to a physical linear size of about lfm or less. The 

electromagnetic radius of the proton is - 1.07 fm which suggests that the 

spatial lattice sizes were still too small. It also became apparent that the time 

extent of most lattices was not large enough to see true asymptotic decay of 

the propagators, free from contamination from radial excitations or higher 

excited states that were not fitted directly. This was especially true for the 

baryons. The measurements of the ratio of the nucleon mass to the rho mass 

were systematically too high - by 60% in some cases- and, perhaps most 

significantly, results using Wilson fermions did not agree with those using 

Susskind fermions. [Bowler et al. (1984a)]. In the continuum limit we certainly 

expect the formulations to produce the same results for the hadron masses, 

because, in the limit a->0 both actions reduce to the continuum QCD action. 

The discrepancy suggested that calculations were not being done at high 

enough values of 8 , and future calculations would need to have 8' .. 6.0. 

However, increasing 8 also meant moving up to even larger lattices so that 

the enclosed physical volume was not correspondingly decreased. The 

conclusions of these papers were that lattice volumes of at least 16 were 

necessary, and at least 16 units in the time direction (for non-periodic 

boundary conditions). [Periodic boundary conditions in time mean the 

propagators decay only as far as the centre if the lattice, before rising again 

exponentially towards the next time boundary. This reduces the effective 

distance over which the propagators may be fitted. If non-periodic boundary 

conditions such as Dirichlet , with G(t=0) = G(t=N+1) = 0, are used then the 

propagators will decay across the entire lattice and may be fitted over most 

of the timeslices (removing some near the boundaries to reduce edge effects). 

At present 8 values the boundary contaminates about four timeslices, so that 

for 16 or more timeslices Dirichiet boundary conditions are better than 

periodic. However, using periodic boundary conditions essentially doubles the 
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statistical sample by including the reflection in time.] 

The latest results involve a variety of new techniques and can be divided 

into two classes 

Direct Inversion of the Fermion Matrix 

This is now an enormous computational undertaking since the lattice itself 

contains some 65000 sites for a 16 lattice. Powerful computers are required 

as well as very efficient numerical algorithms to solve the systems of linear 

equations. Algorithms will be discussed in detail in chapter three. Susskind 

fermions are preferred now, for as well as their better chiral properties, the 

fermion matrix is a factor of four smaller than for Wilson fermions. It is then 

even more important to obtain a clean signal, by measuring over many 

independent configurations, so that the two parity states described in 

preceding sections can be 'disentangled'. At present, the only Susskind 

fermion results published [Barkai et at. (1985a)] apart from [Bowler et at. (1986)] 

are measured on only five independent gauge configurations. The direct 

inversion of the Wilson fermion matrix has been performed on a 16 3 x48 lattice 

recently using a renormalisation group improved pure gauge action at a 

coupling corresponding to 5.7 [ Itoh et at. (1986a)]. They have analysed 

fifteen configurations, and report being able to observe asymptotic decay of 

the baryon propagators on this size of lattice, which was not the case in their 

previous work on smaller lattices [Itoh et al,(1986b,1986c)]. They are however 

unable to fit directly to two independent exponentials to account for the first 

excited state, and fix the latter to be 500 MeV above the ground state. In 

chapter four, full details of a simulation on 16 and 16 3 x24 lattices using 

Susskind fermions at a range of B values will be given. 

Indirect Methods 

These include methods using some sort of renormalisation group 

blocking. 

The Wuppertal group uses a 'block diagonalisation' scheme [Konig et al 

(1984)1 which reduces the calculation to inverting an effective fermion matrix 

on a smaller lattice. They use Wilson fermions and work at 6 = 6.0 on a 16 

spatial lattice with 56 units in the time direction. This allows 28 time steps to 

observe the decay of the propagators (but only seven after blocking twice) 

and they report [Konig et al. (1984)] being able to fit the nucleon well with 

only one exponential - i.e. ground state only - having sufficiently long times 
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to let any heavier excited states decay. However, there is as yet no test of 

any systematic errors the block diagonalisation scheme introduces although 

such a test is in progress at present on a 16 3 x28 lattice. They report 

observing 'exceptional' configurations, which they suggest [Mutter (1986)] 

correspond to the fact that the quenched approximation allows large 

fluctuations in the eigenvalues of the fermion matrix which would be 

suppressed by the fermionic determinant in the full theory. They claim that 

three of their 28 configurations are of this type, resulting in propagators 

whose amplitudes and masses have large deviations from the mean. We will 

discuss this further in chapter our where we analyse 32 163 x24 

configurations to look for such an effect. 

A simpler scheme [Kilcup et al.  (1985)] has also been employed where 

only the gauge fields are blocked and the standard fermion matrix is inverted 

on the smaller blocked lattice. However the consequent systematic errors are 

hard to estimate and so interpretation of the results is difficult. 

In summary, then, early results on small lattices produced encouraging 

results which led to work at higher values of B and larger lattices. Current 

studies are being done on spatial lattices of 16, with up to 56 timesteps for 

periodic boundary conditions in time or up to 24 timesteps for non-periodic 

boundary conditions at values of B 6.0 . Current work is mainly concerned 

with reducing the statistical errors and understanding the systematics. It is 

especially important to do this in order to expose the failings of the quenched 

approximation : this means that errors should be controlled to the point where 

a clear discrepancy with the experimental masses can be established. The 

next generation of mass calculations will be done with dynamical simulations, 

and it should be known what size of effects to look for. 
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CHAPTER THREE 

Numerical Techniques 

As described in chapter two, the numerical calculation of hadron masses 

on the lattice can be divided into three main steps 

production of a set of gauge configurations with the correct statistical 

distribution. 

inversion of the fermion matrix on the gauge configurations to provide 

the quark propagators. 

averaging gauge invariant combinations of the quark propagators and 

fitting the averages to analytic formulae in order to extract masses. 

In this chapter, we shall discuss the numerical techniques which are used in 

each of these steps. We will see that the best algorithm to use for the matrix 

inversion depends on the features of the machine being used, in this case the 

Distributed Array Processor (DAP), and also on the size oV the lattice. Some 

of the features of the DAP are outlined in Appendix A. Because the matrix 

inversion is the most time-consuming part of the procedure, it is important to 

find as efficient an algorithm as possible for this, both in terms of 

convergence rate and of the balance between cpu time and I/O overhead. 

Before describing the matrix inversion algorithms and fitting routines however, 

let us first look at how gauge-field configurations are generated. 

3.1 Monte Carlo Methods 

Recall that in chapter two, we saw that the expression for the quark 

propagator was 

{c 

This is a sum over all possible configurations of gauge-field matrices U. 

Even if we restricted the U matrices to be members of a finite group it would 

48 



be impossible to compute this sum directly on anything but minute lattices. 

However, only a small subset of all the possible states contribute significantly 

to the expression (3.1) - the exp(- SG(C))  factor ensures that when the action 

is large, the contribution to the sum is exponentially small. The idea of Monte 

Carlo simulations is to sample the ensemble of possible U matrices with a 

stochastic sequence of configurations C, so that the probability of reaching a 

particular configuration C is proportional to exp( -SG(C) ). This is known as 

importance sampling. As mentioned in chapter two, we work in the quenched 

approximation and set the determinant in (3.1) .  equal to one. We may then 

use 

<0> 	. 	I  ° 	 (3.) 

to approximate the average value of 0, where N should be as large as 

possible. We must find an algorithm for producing such a sequence. 

The transition from one configuration C i  to the next one C1 can be 

expressed by the transition matrix W ( C -> C1 ) which must satisfy 

wC-' C') 
	

7 0 

(11- 3 ) 
i w(c—',c) 
	

= 	I 

We will use an algorithm which attempts one link update at a time and then 

moves on to the next one, eventually updating all the links and thus 

completing one sweep through the lattice. We then really have a collection of 

transition matrices W,, (C->C') representing the transitionU(n) -> U'(n) 

with the other links fixed. They can obviously be combined to give a W 

(C->C'), in which one (or more) update attempt has been made on every link 

variable. 

If P( CA) denotes the probability of configuration C at time tk,then 
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- P (C+) =L  w(c'—c) PCc') ±) 

fc'} 	 . 

- :EI wCc—c.' P cc )  +) 

{c 

For systems in thermal equilibrium, we require both sides to be 0. 

2: w(c'—,c) PCc > - 1 	 Vj( C  

A sufficient (but not necessary) condition [Binder (1976)1 is detailed balance 

i.e. that this equality holds term by term: 

= Qi.p -  s6 Cc') 	= 
wCc—c') 	PCC') 4 k' 

( 3M 

where 

LS 	sC.c.') - 

The algorithm is thus specified by the transition probabilities between states. 

If we define the distance between two ensembles E and E' as 

C. 

where P(C) denotes the probability density for 	in E, P'(C) the probability 

density for C in E', and supposing E' resulted from an application of our 

Monte-Carlo algorithm to E, then 
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P'c) = _1 iCc'—c) P(c) 	 (3.9 

C' 

and so 

II11 
=wc'c){PCc')- PCc']I 

C. 	c' 

pcc') - Pew 

where EEQ is the equilibrium ensemble. As long as W(C'->C) 0 0, the 

inequality is strict and the algorithm always moves towards equilibrium. The 

detailed balance condition (3.6) does not not specify completely the actual 

W(C'->C), and so different implementations use different forms for W. The 

two commonest are the Metropolis [Metropolis et al. (1953)] and the Heat-Bath 

[Creutz (1980), Pietarinen (1981), Cabibbo and Marinari (1982)] which are 

equivalent for a multi-hit Metropolis where the number of hits->. The 

Heat-Bath Algorithm, used to generate the configurations in chapter four, 

successively touches a heat-bath to each of the links in the lattice. A real 

thermal source in contact with a link would cause that variable to fluctuate 

thermally throughout the group manifold, and when the source was removed, 

the link would be left in any of its allowed states with a probability given by 

the associated Bolzmann weight. So the algorithm replaces each group 

element in turn with a new value selected randomly from a set with a 

probability distribution proportional to exp( -SG). The new value is thus 

independent of the old one, and the detailed balance condition (3.6) is 

obviously satisfied. The advantage of this method is that there is no 

possibility that the Monte-Carlo step rejects a change only because a 'bad' 

new candidate was selected, since all new candidate values for U ji  are 

considered simultaneously. The configurations used for measurement must be 

separated by many sweeps to ensure they are statistically independent. In the 

ideal case, our estimates for the quantity being measured by such a procedure 
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will have associated uncertainties of —N 112  for a sample of size N. 

3.2 Properties of the Fermion Matrix 

Recall from chapter two that we may write the fermion matrix as 

D nm [U] = 1/2 n1(n) [ 1J1(n)6n1+1,m1 - Uit(m)6ni_i,mi ] 6n2m215n3m35n4m4 

+ 1/2 p 2(n) ( U2(fl)6n2+1,m2 - U2t(m)6n2_1,m2 I Sn j M1 5n3m36n4m4 
 

+ 1/2 p 3(n) [ U3(fl)n3+1,m3 - U3t(m)6n3_1,m3 I n1m1o2m2n4m4 

+ 1/2 p 4(n) ( U4(n)ôn4+1,m4 - U4t(m)n4_1,m4 I6njmj6 n2m26n3m3 

where the Uu(n) (4= 1 ,4) are SU(3) matrices. With M = ml, the resulting 

formula for the quark propagator from the origin 0 to the site n is 

1L 	(+M) 	 p -S(u 

,   

As discussed in the previous chapter, in the quenched approximation the 

determinant term in the generating functional is neglected, and we use a 

Monte Carlo algorithm to generate a sequence of configurations distributed 

with probability exp(-SG)  so that 

<(o(-'?  
C 

For a statistically significant estimate we should calculate (D+M) nm 1  for 

many independent configurations, and for each configuration that requires 

solving the following system of linear equations 

t1D C ~ UA) + M1 	_X_ 	= S j.. 	l 2.3 
J I 

where the indices a,b,c refer to colour. For each initial space-time origin 0 

we calculate three columns of x, the inverse, corresponding to the three 

values of the colour index b. In the following sections we shall be concerned 
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with finding the best way to calculate x for a given configuration of U 

matrices. 

Because the system size is so large compared to the memory of the DAP, 

we want to restrict the amount we store, so we choose to work in temporal 

gauge. Recalling from chapter one that link matrices Uab  on the lattice 

represent the gauge transformation 

where a and b are the colour labels associated with the sites at each end of 

the link, and that the U = exp (igA), where the A are the Yang-Mills fields, 

we have under a point-wise gauge transformation 2 

where the 0 € SU(3), which means Tr (U m  ) is gauge invariant for a closed 

path. In other words, lattice gauge theory is invariant under independent 

SU(3) rotations at each site. In particular we may choose S2(n+i) to be the 

inverse of the time-link at site n i.e. 

and perform the transformation (3.16) on all four links there: 

-I 	 - 

U1r\) 	 J4  (,'-)  

This choice is temporal gauge where the A 0  components of the Yang-Mills 

fields are zero, giving us time-links equal to the identity: 

+ 	)(-) I 

=1 
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since the time links on the previous timeslice are I. So choosing temporal 

gauge means we use the time-like links as transformation matrices and 

transform these links themselves to I (in general the links on the last timeslice 

will not be transformed; choosing Dirichiet boundary conditions however 

means we do not need these links). This has the advantage that we need not 

keep the time-like links any more and so have achieved a 25% saving in the 

amount we have to store. By also storing only two rows of the SU(3) link 

matrices as scaled 16 bit integers and reconstructing the third row whenever 

we need it we can compress the storage of the non-zero entries of D into 

2x10 6  words of 32 bit memory on a 16 lattice. This is still four times the 

total memory of the DAP, so our system must be partitioned into blocks of 

manageable size which must be repeatedly paged from disk to memory while 

computation is proceeding. Thus we must look for algorithms with balanced 

computation and I/O requirements. Many of the standard algorithms for 

solving large systems of linear equations do not meet this criterion. 

The sparse matrix (operator) D is not explicitly stored, instead we use the 

expression 

A 

= ± e((
$) -u 

(3..o) 

to define its action on a vector x given a set of link matrices {U}. The matrix 

operator D connects a site on the lattice to each of its nearest neighbours, 

but there is no term from the site itself, so we can divide the lattice up into 

two classes of sites, even and odd [Bowler et al. (1984)1 (depending on 

whether n 1 +n 2 +n 3 +n 4  is even or odd) in such a way that the calculation of Dx 

on even sites requires data on odd sites only (and vice versa). This allows us 

to split the propagator equation into two parts 

0act 
4- 	X 	 = 

(3.l) 

oIct 	 0ctct 
+ 	 =cJ 

where (Dxodd)  is a vector defined on even sites, and (DXeven)  is defined on odd 

54 



sites. By restricting our source term to the even sites we have 

I 	't•.) £..P%. 	 jj 

(t#M )x 

Oct&l 	 OX 

VVI- 

x 

where D 2  = (Dx) = -D(Dx), and the matrix operator (-D 2 +M2 ) is hermitian and 

the system (3.22a) is halfthe size of (3.14). 

A convenient partitioning of (D+M) is into 3-dimensional timeslices i.e. 

(D 1 +M) 13  i 

-T (D 2 +M) 3  T 

-T (D 3 +M)t 3  T 

(D+M) 4  = 
	

(3.23) 

-T (DN _ 1 +M) 3  T 

-T (DN +M)' 3  

where D  is the 3-dimensional equivalent of (3.11) (i.e. j.i runs from 1 to 3) for 

links on timeslice t, and 

v\ r4v + 

T 	 I 
	

(3..4) 

We choose boundary conditions on the quark propagator to be Dirichiet in 

time and anti-periodic in the spatial directions. The advantages of choosing 

Dirichiet boundary conditions (which set the propagator to zero on the zeroth 

and N t+l th  timeslices) were mentioned in chapter two (2.6) and they have the 

additional advantage that, should subsequent work be desired on lattices with 

larger times, propagators may be extended using the Distant Source Method 

[Kenway (1985)] as discussed in section 3.7, without- having to rerun the whole 

calculation. We will discuss the spatial boundary conditions further in chapter. 

tour. 
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Each of the blocks D t  has dimension 6N 3  and is banded, but with a very 

large bandwidth due to the anti-periodic boundary conditions in space. Thus 

(D+M) is complex, block tridiagonal and sparse, the sum of an anti-hermitean 

piece and a diagonal piece. For a 16 3 x24 lattice we must solve a system of 

589,824 real linear equations. 

When partitioned into timeslices _02  in eq.(1.14) has the form 

1/41_D1 2  (D 2-D 1 )T 

(D 2-0 1 )T 1/21_0 2 2  

-1/41 (D 3 -D2 )T 

-1/41 

(D3-0 2)T -1/41 

1/21-13 3 2  (D 4-03)T 

D2 = 

-1/41 
	 (3.2.S) 

-1/41 

1/21-D N _ 1 2 
 

(D N -DN _ 1 )T 

-1/41 (D N-D N _ 1 )T 1/41-D N 2  

It is hermitian, positive definite and (still) very sparse. Again the operator 

(-0 2 +M2 ) is not stored, but is built up by two applications of the rule (3.14). 

We will use these partitioning schemes in the following sections. 

3.3 The Conjugate Gradient Algorithm. 

Our starting point for solving the propagator equation (3.22) is the 

Conjugate Gradient (CG) Algorithm (Hestenes and Stiefel (1952)], introduced as 

an exact method for matrix inversion, but now established as an iterative 

method for solving large sparse systems of equations [Reid (1971), Concus et 

al (1976)]. The relation between CG and the Lanczos algorithm used by 

Barbour et al. [Barbour et al. (1985a)] has recently been discussed by Burkitt, 

who suggests they are step-by-step equivalent [Burkitt (1986)]. 
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To solve Ax=b for hermitian A 

initial guess x0  

Po = r0  = b - Ax0  

loop while (rk,rk) > c for k = 0,1,2 

ak = (rk,rk) / (pk,Apk) 

Xk+1 = Xk + kPk 	 (3.26) 

rk+1 = rk - kAPk 

Bk = (rk+1,rk+1) / (rk,rk) 

Pk+1 = rk+1 + BkPk 

end loop 

The choice of CG as 	a 	starting 	point 	is motivated by properties of the 

matrix operator D First 	we must, 	under all 	circumstances, 	preserve 	its 

sparsity and structure. Secondly, solutions of (3.24) will be investigated for a 

range of values of m for each configuration, and we are most interested in 

the small m region for which (-D 2 +M 2 ) is 	not 	diagonally 	dominant. 	In 	this 

limit CG converges significantly faster than relaxation methods [ Bowler et al. 

(1984)]. 

The CG algorithm is known to converge best for matrices with clustered 

eigenvalues and 	low condition number K(A) which 	is 	defined, for hermitian 

positive definite A by 

x(A) 
A 

where Amax  and  Amin  are the highest and lowest eigenvalues of A 

respectively. Earlier work on small lattices [Barbour et al. (1985bhas shown 

that the distribution of eigenvalues of D for an 8 configuration is as in fig 3.1. 

Let D have eigenvalues iX, with X real. The eigenvalues A of (-D 2 +M2) will be 

X 2 +m 2 . For values of m in our range of interest, A max X max  18. When 

m>>X m j n  we have Amin - m 2, and the condition number will be 

approximately 18/rn 2 . However, for very small m, it is the lowest eigenvalue 

X m i n  that controls convergence and this eigenvalue is very unstable, varying 

by many orders of magnitude from one configuration to the next. Hence 

provided we do not lower m too far we would expect (Concus et al (1976)1 
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Figure 3.1 Eigenvalues of D on an 8 lattice multiplied by -i the eigenvalues 

are pure imaginary as D is anti-hermitian). This plots the first 100 

eigenvalues to converge using a Lanczos algorithm. 
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i.e. linear behaviour with m. 

The CG method is implemented for lattices of size 16 on the DAP to 

solve directly (3.22). The iteration scheme is found to converge smoothly, at 

a rate approximately proportional to m (for 0.01<m<0.50), up to some level 

determined by the precision used to do the calculation. This is shown in fig 

3.2 

The departure of rk,  the iterative residual, from b-Axk  is a sign of the 

onset of roundoff errors in the CG algorithm; the importance of such errors 

can be judged by restarting the system with Xk  as the new x 0. We see a 

marked increase in the residual on restarting after 700 iterations in 32-bit 

arithmetic at m = 0.01, indicating that round-off errors have become 

significant. We therefore restart the solver after 500 iterations at the lowest 

mass and run on for a further 200 iterations, by which time the desired 

accuracy is achieved (see table 3.1a). 

The following criteria are used to decide when to stop the iterations 

that baryon propagators should be unchanged in the third decimal place 

on all timeslices under further iterations. 

on restarting, baryon propagators should not change and the norm of the 

residual vector should not increase. 

the baryon propagator should be unchanged under a random gauge 

transformation of a given configuration. 

Values of (rk,rk)  sufficient for the above are in table 3.1b.. Note that 

accuracy to 3 decimal places on the last timeslices means accuracy to 4 or 5 

decimal places near the source. Some systems of equations require more 

frequent restarts, e.g. restarts after 50 iterations were necessary even at high 

mass using the Distant Source Method which is discussed in section 3.6. 

The CG algorithm performs well, but is very expensive in terms of 

storage. Three or four vectors (see next paragraph) have to be stored per 

colour, each of size 3NNwords,  which together with the 27NN  words of 

links must be paged through the machine on each iteration if the system is 

too big to be held in memory. This disk-to-DAP paging of timeslices is done 
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Figure 3.2 Convergence rates of the CG algorithm at the five mass values 

used on a 16 lattice. 



number of sweeps (rk,rk) (rk,rk) on restart 

100 0.2850-2 

200 0.322E-3 

300 0.406E-4 

400 0.746E-5 

500 0.771E-6 0.780E-6 

600 	 - 0.903E-7 

700 0.856E-8 0.150E-7 

Table 3.1a Residual measurements for CG algorithm on a 16 lattice, and 

effects of restarting. m= 0.01, 8 = 6.0 

0.01 0.04 0.09 0.16 0.5 

# iterations 500+200 

at_8_=_5.7  

300 150 120 40 

# iterations 500+200 

at_8=_6.0  

250 120 100 40 

1og10(r 	r) -8 -9 -12 -15 -15 

Table 3.1b Convergence and stopping conditions for odd/even partitioned CG 

algorithm on a 16 lattice. 



asynchronously, the links for timeslice (t+1) beirg paged on while those for 

timeslice t are being used. The DAP data expansion software, DDX, enables 

variables held in COMMON areas to be transferred between DAP and disk in 

parallel with computation. 

The CG vectors can only be updated when calculations of the scalars 

and B in (3.26) are complete. Barkai et al. (1985b)have proposed a modified 

CG algorithm which avoids some of the synchronisation problems at the 

expense of an extra vector. However, because of the DAP's low I/O rate 

(approximately 250-300. Kbytes/sec compared to a floating-point performance 

of around 15 Mflops) the matrix multiply step qk = Axk is I/O bound by itself, 

and so we use the standard algorithm for a hermitian matrix. 

The total connect time for a CG propagator calculation running on the 

DAP is a factor of six longer than the processor time used. Similar I/O stretch 

factors have been found in other work on a Cyber 205 [Barkai et al (1985)1. 

The total elapsed time per colour iteration is 48 seconds whereas the cpu 

time is 8 seconds. The algorithm uses 15 seconds of I/O time per iteration to 

bring in the links and 30 seconds to bring in the vectors, with a combined I/O 

overhead of 40 seconds. Almost all the DAP Cpu time is used applying the D 

operators, as the cpu time for updating the vectors is insignificant. 

The results at B = 5.7 and 6.0 on 16 lattices, discussed in chapter four, 

were generated using the Conjugate Gradient algorithm. However, the method 

is only really practical for propagator calculations when either (I) the system 

of equations is small enough to fit within the machine's fast memory, or (ii) 

the disk-to-fast-memory bandwidth is sufficiently high to keep the 

processor(s) going all of the time. Systems of equations satisfying (i) are not 

usually large enough to be of physical significance and machines satisfying (ii) 

are not widely available. Since we want larger lattices in order to explore the 

approach to the continuum limit, new algorithms that do not require large 

numbers of vectors and that use many more floating-point operations per 

word of I/O transfer would be of great importance. 

3.4. Block Gauss Elimination 

Bowler et al. (1984b), have proposed that Gauss Elimination be used on 

the blocks of the matrix (D+M) 41  for the interacting theory (see eq.(3.23)): 
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(D 1 +M) 	T 
	

x l  

-T (D2 +M) 3  T 
	

X2 
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-T (D 3 +M) 13  T 
	

6 
	

('i. 2) 

	

-T (DN_l+M)13  I 	 6N-1 

	

-T (D N +M) 13 	XN 	6 N 

Consider the first two rows of this operator. Let P0 = I and P 1  = 4(D 1 +M)T, 

and adding row one to P 1 .(row two) we obtain 

PIT 	 P0• T 
	 0 	0 	 1 	

(3.30) 

..• 

Now let P 2T = P 1 (02 +M) + P OT so that P 2  = 4P 1 (D 2+M)T+ P 0  as 4T2  = I. 

Continuing the process until all the blocks in the lower triangle have been 

eliminated, we obtain 

P 	PT Q - 	 - • 0 	X. 

o 	F7, -r- 	1 r 	o-- 

O 	0 	PT Pj 0-- 

0 

PT FN_J 

OPT 	 C )') 

P 	4- 4 P 	(D+ t-iT 

ar%ct 	 4-TS, + 	PTc 	1-  •... 
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For a delta function source on timeslice t 

St Of
= cS 0 	fort =t ' - ct Ck) 	 c 	

(3.3&) 

0 	 0 t't4\.,4 

So, the forward elimination step requires that we solve 

(P T)x. 	= c m 	 (3.4)
Vj  

XN is the propagator from the origin to timeslice N, and its calculation is the 

only non-trivial matrix inversion. Consequently the size of the system of 

equations that must be solved is reduced by a factor of N,-and the resulting 

system, with 24,576 real linear equations rather than 589,824, might be 

expected to be easier to invert. 

Having solved for XN,  we obtain x for 1<t<N by back substitution 

(3) 
DC 	4T J, +4T( 	+) (sJ 

ti -i 	 t4- 

setting XN+1 = 0. 

However, PN  involves all N timeslices, so we must bring the complete set 

of links through the machine (twice) per iteration of the Bi-Conjugate Gradient 

algorithm. These transfers are done asynchronously. The stretch factor is of 

order 2. 

When this reduced inversion scheme for the interacting theory was tested 

at high quark mass (m = 0.5) convergence rates in line with those predicted 

by Bowler et al. (1980)were obtained, and pion propagators were consistent 

with previous results. But when the quark mass was lowered, convergence 

rates dropped dramatically and pion masses calculated from apparently 

converged quark propagators were clearly incorrect. At a quark mass of 0.01 

the propagator still had not converged after 10,000 sweeps on a 16 3 x8 system 

(see fig 3.3). 

There are two main reasons why the method does not converge 
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Figure 3.3 Convergence of the pion propagator signal using the block Gauss 

Elimination algorithm. 8000 iterations on a 16 3 x8 lattice at m=0.01. 



The operator PN,  although of dimension 24,576 rather than 589,824, is a 

fully dense matrix, containing terms linking each site of the 16 spatial lattice 

to every other site. It is only diagonally dominant at very high m. 

The projection mechanism (3.35) for obtaining x on timeslices 1 to N-i 

amplifies exponentially any errors present in the solution XN. In fact the 

propagator on timeslice N is always the last to converge and so using it as a 

basis for obtaining x t  for 1 <t<N is unsound. 

To confirm these conclusions let us look at the free fermion data of 

Bowler et al. for a 16 lattice. Here we find the convergence of the 

propagators to be qualitatively the same, but on a much shorter timescale 

(see fig 3.4). Pion propagators, given by 

<w ( 0  ) ()) 	 \ <" o) t 

are stable and apparently converged to five or more decimal places for large 

numbers of iterations for free fermions, 50 out of a total of 100; for a 

random gauge transformation of the free (unit) configuration 500 out of a total 

of 1500 (the disparity in the rates of convergence for these two 

gauge-equivalent configurations is only observed for this algorithm). The 

propagators then undergo changes of several orders of magnitude before 

converging to the analytic result. This seems to indicate that the algorithm is 

losing track of the long range structure in time of the propagators. 

We must therefore conclude that Block Gauss Elimination is intrinsically 

unreliable; without knowing the answer in advance, it is difficult to know when 

to stop the iterations when the convergence pattern is like that in fig 3.4. 

Consequently we cannot use it to produce hadron propagators. 

We would like to be able to retain some of the features of this algorithm 

- in particular, solution of small systems of linear equations (preferably for 

diagonally dominant matrix operators). But we require a scheme in which an 

approximation to the correct long range structure of the propagator is 

obtained quickly. Such a method ,which works well, is discussed in the next 

section. 
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Figure 3.4 Convergence of the free pion propagator signal using block Gauss 

Elimination. 1400 iterations on a 16 lattice at m=0.01 



3.5 Block Iterative Methods 

Consider the partitioning scheme for (D+M) in temporal gauge (eq.(3.23)) 

We can define a Block-Iterative algorithm based on Successive 

Over-Relaxation (SOR) by regarding each 3N 3  x 3N 3  complex block as a 

component of an N x N linear system of equations. To do this, multiplication 

is replaced by block matrix-vector products, and division by the solution of a 

3N 3  system of equations. 

Then the Iterative Block SOR scheme for solving 

(13 1 +M) 131  i 	 xl 

-T (D2+M) 31  T 	 x2  

-T (D 3 +M)' 3  T 	 x 3  

	

-T (DN1 +M)' 31  T 	XN1 

	

-T (D N +M) 3 	XN 

6 1  

62 

63 

6 N-1 

SN 

(3.3) 

is 

(ki) 
OD 	At 

 
= W ( 6t. 	- 

where the parameter w is selected for optimum convergence. We can 

generalise this to the solution of (-D 2 -'-M 2)x = 6 by analogy with 3.25 as 

follows 

tk+L) 

l/ 	
-t)Tx 4- t- 

k 	 <. 
'ThC 

C 4 L 

+() (C- 	
\ 
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where C=cI. 

Working with 02  reduces the system  size by a factor of 2, but requires 

the use of three sets of links and 5 timeslices of the vector to accumulate a t . 
The method can be used for any choice of temporal boundary conditions ; for 

our choice of Dirichlet boundary conditions, c = 1/4 for x 1  and XN,  and terms 

on the right-hand side of (3.39) with t<1 or t>N are dropped. If we wished 

to use periodic boundary conditions, we would set c = 1/2 and identify x 0  with 

XN+1. 

We use a Conjugate Gradient algorithm to do the 'divisions' by 

(C-02 +M2 ): these systems are quite small, a factor of N down on the full 

system, and diagonally dominant for all values of m, so a CG algorithm is fast 

and involves no I/O problems. 

We might think that this Block SOR scheme would require a huge amount 

of work, to invert exactly N systems of size 3N 3  per sweep, but this is not the 

case. 6 (the RHS of (3.39) ) is accumulated from terms on 5 timeslices and if 

we assume that the algorithm converges then the error on 3 of these 

timeslices x, x. 1 , Xt+2  is greater than that on the other two Xt_2,  x 1 _ 1 . So we 

should aim to converge the (k+1)'th iterate on timeslice t to a level where the 

residual on this timeslice is some factor lower than that on (t-1). We should 

not run the inversion so long that we do work which will be wasted on the 

next sweep, when x 4. 1  and Xt+2  have also been upgraded. This fits in with our 

aim of producing a balanced or cpu-dominated program, if we can do the 

necessary iterations in the time taken to page out x_2  and page in x +3  and 

the next set of links. This is the case. 

We must tune w for optimum convergence and determine whether this 

tuning depends upon our choice of configuration - if it does then the 

algorithm will be useless as we must calculate propagators on large numbers 

of configurations. Tuning the parameter w for mass values 0.50, 0.16, 0.09, 

0.04 and 0.01, it turns out that quark mass is the only significant dependent 

variable. w is independent of N (8<N<32) and does not need re-tuning from 

one configuration to the next. When we change a (in the small range 

explored ) only slight adjustments are necessary. The range of acceptable w 

values narrows with decreasing mass. The values of w used are shown below. 
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M 0.50 0.16 0.09 0.04 0.01 

W 1.25 1.55 1.70 1.88 1.955 

Fig 3.5 illustrates the variation of the rate of convergence with mass and the 

slight dependence on configuration (at the lightest mass). The attainable 

residuals Ib-Axj 2  are limited by the precision to which we store the propagator 

as shown in the first column of table 3.28. But because the calculation of B is 

limited to a range of five timeslices and there are no global scalars to be 

accumulated, the timesliced residual falls off exponentially away from the 

source, at approximately the same rate as the propagator. We can see this 

from table 3.2 and fig 3.6. The source term is seen by the algorithm on every 

sweep, so there is no roundoff-error-induced cumulative drift of the 

propagator from the correct solution. 

The variation of convergence rate with the number of sub-block CO 

iterations is shown in fig 3.7 for a mass of 0.04. Eight iterations of the CO 

inverter are more than sufficient at all the mass values. This can be traced to 

c>1/4 in the LHS of (3.39) which guarantees diagonal dominance of the 

sub-blocks. 

32-bit arithmetic is sufficient to converge all our propagators for 

M=0.01.....0.50 on a 16 x 24 lattice, and the convergence rate is independent 

of N (for 8<N<32 ) . The behaviour of the timesliced residual shown in fig 

3.6 is a feature of all mass values. 

The algorithm was tested by measuring the number of sweeps necessary 

to obtain agreement between hadron propagators calculated using the CG 

algorithm and those obtained using the Iterative Block SOR method. In both 

cases convergence of the propagators was required on the last timeslice to 3 

significant figures (this gives 4 or 5 significant figures near the source) and 

the results agreed to this accuracy. 

When 6 or 8 iterations of the block inverter are used per sweep we find 

that our stretch factor is 1.02 (compared with about 6 for the full CO 

algorithm) The time taken to produce a set of 16 propagators drops by a 

factor of around 3. For a 16 x 24 or larger lattice we gain a factor of 

[*1 
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Figure 3.5 Rate of convergence of the block SOR algorithm, showing 

dependence on mass. 16 3 x24 lattice. 



Limiting Timesliced Residuals 

Residuals 

Free Fermions to 

16 	 32 bit 0.14x1O 3  0.13x10 13  0.92x10 18  

64 bit 0.20x 10-30 0.18x10 30  0.15x10 35  

Interacting Fermions  t0+5 t+10 t0+15 

16 3x24 	m0.01 0.1x10 8  0.68x10 10  0.35x10 10  0.19x10 10  

32 bit 	m0.09 03x10 10  0.54x10 12  0.22x10 13  0.10x10 14  

m=0.50 0.1x10 12  0.38x10 15  0.19x10 18  0.86x10 22  

Table 3.2a Limiting residuals for block SOR algorithm. 

rn 0.01 0.04 0.09 0.16 0.5 

CG 	iterations 8 6 6 6 6 

SOR 	iterations 350 105 70 35 15 

1og10( r 	r) -8 -9 -10 -12 -12 

Table 3.2b Convergence of block SOR algorithm for a 16 4 x24 lattice. 
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Figure 3.6 Timeslice residuals for the block SOR algorithm on a 16 3 x24 lattice 

at m0.09. The figure shows t0,t0..2 ...... t0..18 
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Figure 3.7 Dependence of the convergence rate of block SOR on the number 

of CG inversion steps. 16 3 x24 lattice at m = 0.04 



between 5 and 7 on the CG method, increasing with mass.. 

3.6 The Distant Source Method. 

The Distant Source Method (Keriway (1985)] uses small lattices to 

calculate the propagator on larger lattices. This is potentially very useful 

because we are able to alleviate some of the constraints imposed by limited 

computer memory and speed. This is because we need less data per 

computation, and also because numerical algorithms tend to converge faster 

for smaller systems. 

If we look again at (3.29) we see that it can be written 

(D 1  +M) 3  I 	 x 1  

-T (D 2+M) 3  T 

-T (D 3 +M) 3  T 	 x3  

	

-T (D N _ l +M) 3  T 	XN_1 

	

-T (DN+M) 3 	X  

6 1  

62 

6 3  

6 N-1 

CIAO) 

We have put the source on one of the first J timeslices. With 

All
= 0 - 	o a

= - 

o 	o 	Tb.i-4 To 

° r 	- - 0 [D.Ti-P..% 

- 

a •0 0 -T 	C)wj+ Mi 

where A ll  is JxJ and A22  is N-JxN-J, and x  = 	(x 1  ...... Xj), y 	 = 	(Xj+i .....XN) 	we 
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then have 

Ali 	
+A1 	

(3.4 

+ 	 2 

Assuming we know, X1,...XJ from a previous calculation, we may solve for i 

since 

- 	 T 

and this is similar to the system of (3.40) but with Tx j  used as the source. 

We-could also divide (3.39) into more than two sets of blocks, in an obvious 

way. In practice it is necessary to perform the first calculation on a larger 

lattice than J 4  because the estimate for x j  computed on a J 4  lattice would be 

contaminated by (time) boundary effects, and so would be a bad choice for 

the source on the next computation. Thus we take x j  to be well away from 

the time boundary on the first lattice. For example, with N = 24 and J = 8, we 

calculate x 8  on a 16 lattice, and use Tx 8  as the new source for a calculation 

on timeslices 9 - 24. A schematic picture of this is shown in fig (3.8). 

If we look at table 3.3'_we see this method accurately reproduces the 

analytic results in the free fermion case, at mass of 0.2. Tables 3.4a-d show 

the results in the interacting case, for a range of mass values. This analysis 

was done on four configurations, each separated by 1792 sweeps. The 

Distant Source Method and the Iterative Block SOR were used to invert the 

fermion matrix, and both sets of results are given for comparison. The 

algorithm used to invert the 16 blocks in the DSM was the Conjugate 

Gradient, but any algorithm could have been used. At the second stage of the 

DSM calculation in which a 16 propagator is extended to a 16 3 x24 

propagator, the CG algorithm converges more slowly than for the original 16 

calculation. The iteratively computed residual departs significantly from the 

actual residual at all mass values, probably due to rounding errors, and it 

proves necessary to counter this by restarting the CG calculation, as shown in 

table 3.5, using the latest approximation for the quark propagator as the first 

guess. 
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Figure 3.8 Distant Source Method of obtaining 16 3 x24 propagators by 

calculating on 16 lattices 



Time 
DSP1 

P -p 
OSM 	anal mOSM m 

anal 

0.41870413E+00 

0.66545557E-01 

0.13064271E-01 

0.32714591E-02 

0.10225728E-02 

0.37519753E-03 

0.15201406E-03 

0.65217215E-04 

0.28907807E-04 

0.13057338E-04 

0.59636741E-05 

0.27419372E-05 

0.12657792E-05 

0.58576771E-06 

0.27150451E-06 

0.12595108E-06 

0.58475338E-07 

0.27146697E-07 

0.12617372E-07 

0.58534336E-08 

0.27275569E-08 

0.12592496E-08 

0.59316427E-09 

0.26758683E-09 

0.13243555E-09 

0.53587215E-10 

0.33168095E-10 

0.78259907E-11 

0.12689521E-10 

0.00005153E+00 

0.00023691E -01 

0.00010903E-01 

0.00050338E-02 

0 .0003295E-O2 

0.00107971E-03 

0.00050090E-03 

0.00232523E-04 

0.00107978E-04 

0.00050154E-04 

0.00232996E-05 

0.00108249E-05 

0.00050295E-05 

0.00233694E-06 

0.00108590E-06 

0.00050454E-06 

0.00234477E-07 

0.00108922E-07 

0.00050645E-07 

0.00235010E-08 

0.00109526E-08 

0.00050570E-08 

0.00238226E-09 

0.00107471E-09 

0.00053191E-09 

0.00215233E-10 

0.00133222E-10 

0.00314335E-11 

0.00050968E-10 

0.18392778E+01 

0.16280057E+01 

0.13846450E+01 

0.11629143E+01 

0.10026244E+01 

0.90347962E+00 

0.84624955E+00 

0.81361177E+00 

0.79476142E+00 

0.78366352E+00 

0.77702207E+00 

0.77297678E+00 

0.77051987E+00 

0.76894456E+00 

0.76808517E+00 

0.76728848E+00 

0.76734971E+00 

0.76618079E+00 

0.76804617E+00 

0.76362213E+00 

0.77289031E+00 

0.75279989E+00 

0.79602726E+00 

0.70334800E+00 

0.90478560E+00 

0.47972209E+00 

0.14441381E+01 

-.48332620E+00 

0.18395107E+01 

0.16284845E+01 

0.13853500E+01 

0.11636551E+01 

0.10032256E+01 

0.90389831E+00 

0.84652074E+00 

0.81378231E+00 

0.79486765E+00 

0.78372960E+00-  

0. 77706322E+00 

0.77300247E+00 

0.77053596E+00 

0.76895465E+00 

0. 7 6 809 15 3E+00 

0.76729245E+00 

0,76735223E+00 

0.76618238E+00 

0.76804713E+00 

0.76362276E+00 

0.77289073E+00 

0.75280013E+00 

0.79602739E+00 

0.7033481 2E+00 

0.90478566E+00 

0.47972216E+00 

0.14441381E+01 

- .48332615E+00 
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5 

6 

7 

8 

9 

10 

11 

12 

13. 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

Table 3.3 Timeslice propagator and effective mass for the PS meson 

composed of free fermions, computed using the DSM on a 16 3 x32 lattice 

compared with the analytic result. Here timeslice 4 is the source, and m = 

0.02. 



Quark mass = 0.09 

Time 	DSM PS 	 IBSOR PS -- 	 CG 16 	PS 

1 0.8288E-01 0.8291E-01 0.8288E-01 

2 0.1014E+00 0.1014E+00 0.1014E+00 

3 0.3033E+00 0.3033E+00 0.3033E+00 

4 0.8493E+00 0.8493E+00 0.8493E+00 

5 0.2724E+01 	. 0.2725E+01 0.2724E+01 

6 0.8355E+00 0.8355E+00 0.8355E+00 

7 0.2994E+00 0.2995E+00 0.2994E+00 

8 0.1115E+00 0.1115E+00 0.1115E+00 

9 0.4570E-01 0.4576E-01 0.4570E-01 

10 0.1939E-01 0.1951E-01 0.1957E-01 

11 0.8733E-02 0.8595E-02 0.8534E-02 

12 0.3987E-02 0.3971E-02 0.4049E-02 

13 0.1894E-02 0.1884E-02 0.1815E-02 

14 0.9092E-03 0.9039E-03 0.1009E-02 

15 0.4493E-03 0.4463E-03 0.3777E-03 

16 0.2155E-03 0.2140E-03 0.3779E-03 

17 0.1030E-03 0.1022E-03 

18 0.5022E-04 0.4981E-04 

19 0.2414E-04 0.2394E-04 

20 0.1176E-04 0.1166E-04 

21 0.5239E-05 0.5193E-05 

22 0.2975E-05 0.2948E-05 

23 0.1101E-05 0.1091E-05 

24 0.1120E-05 0.1109E-05 

Table 3.4a Results from one configuration, comparing the pseudoscalar 

propagator using the Distant Source method (DS) and the Iterative Block SOR 

(IBSOR) on a 16 3 x24 lattice and the Conjugate Gradient on a 16 lattice. 



Quark mass = 0.09 

Time 	DSM VT 	 IBSOR VT 	 CG 16 	VT 

1 0.2907E-01 0.2909E-01 0.2907E-01 

2 0.4892E-01 0.4887E-01 0.4892E-01 

3 0.1386E+00 0.1386E+00 0.1386E+00 

4 0.6683E+00 0.6683E+00 0.6683E+00 

5 0.2114E+01 0.2114E+01 0.2114E+01 

6 0.8791E+00 0.8790E+00 0.8791E+00 

7 0.1389E+00 0.1389E+00 0.1389E+00 

8 0.7283E-01 0.7277E-01 0.7283E-01 

9 0.1635E-01 0.1639E-01 0.1635E-01 

10 0.7120E-02 0.7368E-02 0.7410E-02 

11 0.2622E-02 0.2609E-02 0.2566E-02 

12 0.1618E-02 0.1613E-02 0.1655E-02 

13 0.4534E-03 0.4514E-03 0.4205E-03 

14 0.2562E-03 0.2550E-03 0.2889E-03 

15 0.7462E-04 0.7421E-04 0.5760E-04 

16 0.2630E-04 0.2612E-04 0.6478E-04 

17 0.1136E'-04 0.1129E-04 

18 0.5674E-05 0.5634E-05 

19 0.2040E-05 0.2027E-05 

20 0.1560E-05 0.1548E-05 

21 0.4351E-06 0.4326E-06 

22 0.3632E-06 0.3605E-06 

23 0.8494E-07 0.8420E-07 

24 0.1251E-06 0.1241E-06 

Table 3.4b Results from one configuration, comparing the vector propagator 

using the Distant Source method (DS) and the Iterative Block SOR (IBSOR) on 

a 16 3 x24 lattice and the Conjugate Gradient on a 16 lattice. 



Quark mass = 0.09 

Time 	DSM vector 	 IBSOR vector 	CG 16 4 vector 

1 0.1866E-01 0.1867E-01 0.1866E-01 

2 0.4175E-01 0.4173E-01 0.4175E-01 

3 0.1189E+00 0.1189E+00 0.1189E+00 

4 0.8764E+00 0.8764E+00 0.8764E+00 

5 0.1788E+01 0.1788E+01 0.1788E+01 

6 0.8116E+00 0.8115E+00 0.8116E+00 

7 0.1075E+00 0.1075E+00 0.1075E+00 

8 0.5067E-01 0.5064E-01 0.5067E-01 

9 0.1065E-01 0.1066E-01 0.1065E-01 

10 0.4087E-02 0.4198E-02 0.4222E-02 

11 0.1445E-02 0.1435E-02 0.1416E-02 

12 0.7451E-03 0.7431E-03 0.7603E-03 

13 0.2391E-03 0.2382E-03 0.2254E-03 

14 0.1135E-03 0.1130E-03 0.1315E-03 

15 0.3694E-04 0.3672E-04 0.2669E-04 

16 0.1399E-04 0.1390E-04 0.3004E-04 

17 0.5847E-05 0.5812E-05 

18 0.2778E-05 0.2759E-05 

19 0.1009E-05 0.1001E-05 

20 0.6595E-06 0.6539E-06 

21 0.1230E-06 0.1219E-06 

22 0.1548E-06 0.1536E-06 

23 0.3596E-07 0.3565E-07 

24 0.5475E-07 0.5433E-07 

Table 3.4c Column 1 shows the averaged vector (VT) propagator measured 

with four configurations on a 16 3 x24 lattice using the Distant Source Method; 

column 2 using the Iterative Block SOR ; and column 3 is the Conjugate 

Gradient on a 16 lattice. 



Quark mass = 0.04 

Time DSM vector 	IBSOR vector 	CG 16 4 IBSOR SDEV 

1 0.2285D-01 0.2291D-01 0.2285D-01 0.1271D-01 

2 0.4285D-01 0.4282D-01 0.4285D-01 0.8747D-02 

3 0.1208D+00 0.1209D+00 0.1208D+00 0.2566D-01 

4 0.8937D+00 0.8940D+00 0.8937D+00 0.1980D+00 

5 0.1708D+01 0.1708D+01 0.1708D+01 0.2822D+00 

6 0.8625D+00 0.8619D+00 0.8625D+00 0.1226D+00 

7 0.1114D+00 0.1.116D+00 0.1114D+00 0.2681D-01 

8 0.6327D-01 0.6287D-01 0.6327D-01 0.1989D-01 

9 0.1453D-01 0.1467D-01 0.1453D-01 0.5356D-02 

10 0.5745,D-02 0.6915D-02 0.7179D-02 0.4284D-02 

11 0.3010D-02 0.2584D-02 0.2427D-02 0.1711D-02 

12 0.2014D-02 0.1957D-02 0.2109D-02 0.1836D-02 

13 0.7189D-03 0.6937D-03 0.5986D-03 0.7021D-03 

14 0.3570D-03 0.3446D-03 0.4782D-03 0.4497D-03 

15 0.1700D-03 0.1619D-03 0.1078D-03 0.1913D-03 

16 0.4017D-04 0.3825D-04 0.7265D-04 0.9151D-04 

17 0.1043D-04 0.1022D-04 0.8322D-04 

18 0.1300D-04 0.1204D-04 0.4104D-04 

19 -0.3278D-05 -0.3783D-05 0.2782D-04 

20 0.1233D-04 0.1123D-04 0.1695D-04 

21 -0.8109D-07 -0.2133D--06 0.7149D-05 

22 0.6788D-05 0.6160D-05 0.7709D-05 

23 0.1689D-05 0.1566D-05 0.1745D-05 

24 0.4467D-05 0.4081D-05 0.4173D-05 

Table 3.4d Column 1 shows the averaged vector (VT) propagator measured 

with four configurations on a 16 3 x24 lattice using the Distant Source method; 

column 2 using the iterative Block SOR algorithm; column 3 from a 16 lattice 

using the Conjugate Gradient algorithm and column 4 shows the standard 

deviation of the IBSOR data. 



• 	 M # 	iterations on 

first 	(16 4) 	stage 

# 	iterations on 

second stage 

0.. 50 40 60+30 

0.16 120 100+50 

0.09 150 150+50 

0.04 300 230+50 

0.01 500+200 600+300 

Table 3.5 Numbers of iterations used in a DSM calculation on a 16 3 x24 

lattice. 

In tables 3.4a and 3.4b we can see the results from one configuration for 

the pseudoscalar and vector propagators at a mass of 0.09. The results at 

higher masses are of the same or better quality. The two sets of data for the 

DSM and the IBSOR are in very good agreement. Table 3.4c shows the 

averaged vector propagator (from the four configurations) and as we might 

expect, the two sets of data are very close. What is apparent from table 3.4d 

is that agreement is not quite so good at lower values of the quark mass, 

although as can be seen from the column of standard deviations, the 

discrepancy between the two methods is an order of magnitude smaller than 

the statistical error. A probable explanation for the disagreement is that the 

second 'source' Tx 8  becomes increasingly contaminated by finite time effects 

as the quark mass is lowered, due to the lattice only having 16 timeslices. 

At a given quark mass, the discrepancy between DSM and the IBSOR 

results is most marked near the 'join' in the DSM i.e. on timeslices 10 and 11 

(as can be seen clearly in table 3.4d). The effect of this join becomes 

unobservable after two timeslices in our data. However, in high statistics 

measurements and at low quark masses, it may be sufficiently pronounced to 

require corrective action. In that case we would replace the bad DSM 

timeslices (10 and 11) by the corresponding timeslices obtained for the first 

16 lattice. In this latter data, the effect of timeslice 16 is relatively 

insignificant whenever finite size effects are small, as is evident from table 

3.4d. 
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To summarise then, we can see that the method works well as long as 

we do not lower the quark mass too far or, in general, provided finite size 

effects are small. At the lower quark masses it might be advisable to use 

three steps on a 16 lattice so that, say, x6 could be used as the source in the 

second stage, and x 12  in the third stage, to reduce finite time effects. So far, 

the IBSOR has proved the more efficient way of obtaining 16 3 x24 propagators 

on the DAP, and because these lattices are long enough for our present 

analysis (at least to the extent that signal-noise ratio problems begin around 

timeslice 19) we do not need to extend these lattices. However, in future 

work with higher statistics it might be beneficial to extend the propagators in 

time to 16 3 x32 for example, where we might then be able to use up to 

timeslice 24 for fitting. Given the existence of a large set of 16 3 x24 

propagators, the DSM would be a more efficient way of accomplishing this 

than starting from scratch. 

3.7 Fitting the Data 

We saw in chapter two that the propagators are expected to have the 

functional forms 

A 	 (ps) 
(3.44j 

A-xp- rv(-t o) + ( 	p 	-,c(4-t0 ) 

(Ev ALL )  VT )  SC)  PV) 

accounting for the ground state only. We can allow for the first excited state 

for the PS fit in general because we have sufficient degrees of freedom, so 

we need a routine to fit to two types of function 

I. Al xp- 1 (tt.o 	1- A x  exp rC-  - to) 

2. A; 	p(-to) 
	L_tt0 % &P —C) 
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Fit 2 can be written 

6() = A f( 	+ 	l 5( I 	 () 

where 

and 
to 	

(3.4 

For fit 1 we have g replaced by f in (3.46). Let us look at fit 2 and see how to 

implement a routine. We have data y j  and (j i  at each timeslice t 1, the result of 

averaging the propagators over the configurations, so we define 

= 	 - 	
C3.4s 

where nd = number of data points included. We wish to minimise this 

expression with respect to the parameters m 1 ,m 1 , A 1 ,A 1 . Looking first at 

we have 

0 
	 BA I 

	 (so) 

= 	 - 

A f( 

so the minimum values are given by 
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f(,) 5(P)• f t (b 	1- 	 I  

it 

OL  

—2 

( 2.. 

and similarly for 	. Using the notation 

<F) 

we have 

- 	t 	 = <'j 5'? 

<3t) 4I 141 <f3'7 

(3.S) 

(3.53) 

or 

= 

(aSS) 

so the linear parameters A 1  and A, may be treated as dependent variables. 

We need only vary m 1  and m, independently. In practice, the first stage of 

the fitting procedure takes the form of a series of user-determined histograms 

of the x2  in the (m 1 , 1 ) space. The region round the minimum may be 

successively enlarged to obtain as good a starting point as possible for the 

second stage, the steepest descent. This also ensures we can study several 
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regions of the space interactively to search for new minima. 

In the second stage of the fitting a steepest descent algorithm is 

performed 

( ) 	P4 

	 ( fri p •• k 
	

I —k ) t 	)' 

WV 

where k is some (small) step size chosen as follows: 

ryt 
1 

- 	____ 
(s. S:4) 

and define 

p.- 
_=(\ 

rt.0 	r.. 	 Y%4% 

(.'8) 

Then we expect im +1  < sm,, if the system is converging, so 

+ 
L 	L (3.$) 

'K 	- 
	 (.co) 

	

ry 	
Vt 

We take 

kr 

and use 1/20 kr  for k. We perform the steepest descent until ,- 	begins 

to increase again, signalling that we have reached a minimum, and then 

interpolate between the last three points as shown in fig 3.9. 

The programme is designed so that it is easy to vary the range of 

timeslices used to fit with. We can thus find out the effect of timesEices near 
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kmin  

Figure 3.9 Location of the minimum x 2  as k varies 



the boundary and locate the onset of asymptotic decay of the propagators. It 

also divides the configurations up into NB  blocks of NC  Configurations and 

performs the fit on these averaged data as well. This is used to estimate the 

errors: we use 

J. 	7- C !~ -'C ) 
_L 

- 

.'.. , 	

J- 
ts 	

(3.i) 

as the error in mF,  calculated from the full data; for each parameter m 1 , 

1,A 1 ,A 1 . 

In principle, if the lattice is long enough in the time direction, we could 

use timeslices far enough away from the origin that only have ground states 

remain in the signal. However, there are various factors to consider which 

mean this may not be an appropriate procedure in practice. Timeslices near 

the boundary will be edge-affected, the signal-to-noise ratio may be very low 

so that we cannot go to as long times as we would like, and we might have a 

situation where the lowest mass (ground state) has a very small amplitude 

and so only becomes dominant at very large times, beyond the effective 

extent of the lattice, in which case we would not be seeing the ground state 

at the range of timeslices we have. For these reasons, we have to find ways 

of accounting for excited states. We use two approaches. 

Rely on the lattices being long enough for asymptotic decay to set in 

i.e. when only the signals from the lightest mass in the direct and oscillating 

channel remain. In this case a sequence of two exponential fits is performed, 

in which successively more points are dropped near the source until the 

resulting masses stabilise. In certain cases, for example the baryons at B=6.0, 

this procedure is not sufficient to give us the lowest mass state and we must 

use the second approach. 

Explore an eight-parameter space by using a sequence of 

two-exponential (four-parameter) fits. Here one excited state is included in 

both the direct and oscillating channel and the aim is to refine the data 

interactively by subtracting out successively better approximations to these 

excitations. In this case, because we are accounting for excitations, we can 

include points close to the source, in general dropping only one point as well 

as the source itself. An example of this procedure is 
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fit to one direct and one oscillating term. 

subtract the direct part from the data and fit the remainder to two 

oscillating exponentials 

subtract the two oscillating exponentials from the data and fit the 

remainder to two direct exponentials. 

subtract the estimates for the excitations in ii) and iii) from the data 

and repeat fit i). 

We may then continue the procedure. until the masses are stable. In 

some cases there is no measureable oscillating exponential in which case a 

simpler procedure can be used. The x 2  falls during the steps above, usually 

to a pOint significantly lower than the corresponding two-exponential fit. The 

disadvantage of this method is that we must perform a large number of fits at 

each mass value - this is quite a consideration since the error estimation 

needs analysis on blocks of data as well. However, we are able to include as 

much of the propagator data as possible in the fits, and we do obtain an 

estimate for the excited state mass (this will not be very reliable however due 

to contamination by higher excitations). Where the data is of sufficient 

quality, we use both these procedures in chapter four. 

3.8 Conclusions 

In this chapter, we have discussed a variety of numerical techniques 

which have been used in obtaining the results presented in the next chapter. 

The most time-consuming part of a hadron mass calculation is the inversion 

of the fermion matrix and it is thus very important to find as efficient an 

algorithm as possible to do this. 

The Conjugate Gradient Algorithm works well, but is expensive in terms 

of storage and needs a large amount of data transfer each iteration. This 

means, because of the low I/O rate of the DAP, that the connect time is about 

six times the cpu time. The method is only really practical where the 

disk-to-fast-memory bandwidth is very high - so that the calculation is 

continuous - or for systems small enough to fit within the machine's fast 

memory. As far as our calculations are concerned, the former does not apply 

to the DAP and so, for the lattice sizes we wish to use, we had to look for an 

alternative [Chalmers et al. (1986a)]. 
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The Distant Source Method computes quark propagators on large lattices 

via two or more calculations on smaller lattices. Use of the DSM does involve 

a systematic  error, which is due mainly to -finite size effects on the small 

lattice. It has already been shown that this is insignificant for free fermions 

[Kenway (1985)] and we saw that the systematic error introduáed by the DSM 

in quenched QCD is much smaller than the statistical error in an average over 

four gauge configurations (Chalmers et al. (1986b)]. This systematic error 

grows with decreasing quark mass, but is likely to remain acceptably small, 

relative to the level of statistical accuracy of present hadron mass 

calculations, whenever finite size effects are themselves acceptably small. 

The DSM is not competitive with other algorithms for generating quark 

propagators from scratch; its usefulness lies in permitting the extension of an 

existing set of propagators in time where analysis shows that this is desirable. 

The investigation of the Block Gauss Elimination method proposed by 

Bowler et al (1984) forced us to conclude that this method was unreliable - 

the scheme reduces to inverting an ill-conditioned fully dense matrix, and the 

projection mechanism of (3.35) amplifies any errors present in the XN  solution; 

indeed, using XN to obtain the solutions on the other timestices is unwise as 

XN is always the last to converge. 

On the other hand, the iterative Block SOR scheme described in section 5 

proved to be ideal for our system. The stretch factor when this scheme is 

implemented is now only 1.02 and we gain a factor of around six in elapsed 

time as compared with the Conjugate Gradient algorithm on the 16 3 x24 

lattice. At present the Block SOR algorithm requires slightly more cpu time 

than CG at low masses, but there is no I/O overhead. The algorithm work in 

this chapter has been developed and tested for the DAP, whose performance 

peaks at around 15 Mflops and whose asynchronous I/O rate is around 

250-300 Kbytes/sec. The conclusions however are valid for most 

memory-limited supercomputers on which the Conjugate Gradient algorithm 

has high I/O overheads. The Iterative Block SOR algorithm in its present form 

has. between 1/3 and 1/4 of the vector I/O per sweep, and generally fewer 

sweeps are needed. Consequently, performance is determined by the cpu 

speed, not the disk-to-fast-memory transfer rate. Further, the removal of 

synchronising scalars means that the Iterative Block SOR algorithm can run at 

very close to 100% efficiency on multiprocessor systems, such as the Cray 

XMP/4. If processor 1 is inverting the (k)'th block equation for x  then 

processor 2 can work in parallel on the (k+1)'th equation for Xt_3  without any 
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danger of write conflicts arising. Extending this idea we can fully utilise an 

n-processor system when our lattice has temporal extent 3n or larger. 

In general, we conclude that when the calculations are small the 

Conjugate Gradient algorithm remains the best way of obtaining columns of 

the inverse fermion matrix, but for large systems the Iterative Block SOR 

algorithm is more efficient. In addition the roundoff problems in accumulating 

the CG scalars have been avoided, and so bigger systems can be studied in 

32-bit arithmetic than is possible with CG. Thus for the work on lattices of 

16 3 x24 the Iterative Block SOR algorithm was. used. 
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CHAPTER FOUR 

Results 	 -- 

In this chapter, results of hadron mass calculations at four different 

values of B are presented and discussed. We use the quenched 

approximation, with pure gauge configurations on 16 lattices at = 5.7, 6.0 

and 6.3 (which we periodically-extend to 16 3 x24) and, on 16 3 x24 lattices at 

= 6.15. The Susskind formulation of lattice fermions and local hadron 

operators are used (see chapter two), and we invert the fermion matrix using 

either the even/odd partitioned Conjugate Gradient algorithm or the Iterative 

Block SOR depending on lattice size. Before looking at the hadron mass 

results in sections 2-6, first we discuss propagator distributions. 

4.1 Propagator Distributions 

It has been suggested [Mutter (1986)] that the quenched approximation 

allows large fluctuations in the eigenvalues of the fermion matrix which would 

be suppressed by the fermionic determinant in the full theory. The 

corresponding 'exceptional' gauge configurations have been associated with 

unusual behaviour of quenched hadron propagators. As mentioned in chapter 

three, the Wuppertal group have claimed that three of their sample of 28 B = 

6.3, 243 x48 gauge configurations are of this type, and result in hadron 

propagators whose amplitudes and masses have large deviations from the 

mean. Let us look at how the timeslice propagators for the various hadrons 

in this calculation are distributed. We perform a simple statistical analysis of 

our 16 3 x24, l3 = 6.0 propagators to check whether or not they display any 

evidence of 'exceptional' behaviour. This consists of taking the data for one 

hadron at a particular quark mass, consisting of 32 timeslice propagators, and 

constructing histograms of the deviations of the 32 measurements from the 

mean at each time scaled by the sample standard deviation. We then add 

together the histograms for times n 4  = 9 to 19 in order to increase the 

statistics. These 11 sets of data are, of course, correlated. The histograms 

plotted in figs 4.1-4.3 use 1/2 a bins. 

Fig. 4.1 shows the logarithm of the pseudoscalar (PS) meson, or pion, 
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Fig. 4.1 Histogram of the deviation of the log of the pion propagator from the 

mean at time n 4  , scaled by the standard deviation and summed over r 4  = 

9-19, in 1/2 a bins. B = 6.0 and the quark mass is 0.04. Superimposed is an 

appropriately normalised Gaussian. 
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Fig. 4.2 Histogram of the deviation of the vector meson propagator from the 

mean at time n 4, scaled by the standard deviation and summed over n 4  = 

9-19, in 1/2 a. bins. 6 = 6.0 and the quark mass is 0.04. Superimposed is an 

appropriately normalised Gaussian. 
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Fig. 4.3 Histogram of the deviatiOn of the EVEN baryoA propagator from the 

mean at time n 4, scaled by the standard deviation and summed over n 4  = 

9-19, in 1/2 a bins. B = 6.0 and the quark mass is 0.04. Superimposed is an 

appropriately normalised Gaussian. 
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propagator data at m = 0.04 together with a superimposed, appropriately 

normalised Gaussian, included for the purpose of comparison only. We plot 

the logarithm of the data because the raw data itself is asymmetrically 

distributed, because the PS propagator is strictly positive from (2.56a). Our 

measurements are approximately consistent with a normal distribution in the 

pion mass estimates. 

Figs 4.2 and 4.3 are the histograms for the vector (VT) meson propagator 

and for the EVEN baryon propagator at m = 0.04, together with the 

corresponding Gaussians. Again the agreement is reasonable and, for 

example, the number of data points more than 2a from the mean is roughly in 

accordance with the normal distribution. The same comments apply at other 

quark mass values. While we cannot be sure of the correct distribution of 

hadron propagators, this qualitative agreement with normal distributions 

suggests that we do not have any exceptional configurations in our sample. 

We can further test this assertion by replacing one of the pion propagators in 

fig. 4.1 with a 'rogue' propagator and observing the effect on our histograms. 

In fig. 4.4a we show the effect of multiplying the amplitude of one propagator 

in the sample by 10, and in fig 4.4b we show the effect of replacing one 

propagator by a propagator at m = 0.01. Both have dramatic effects on the 

distribution, producing a narrow peak due to the artificially increased a. In 

both cases the peak is shifted below the mean. When one propagator has an 

exceptionally low mass, there is also a second peak in the distribution 

approximately 5a above the mean. We therefore conclude that there is 

nothing obviously exceptional about our propagators. 

4.2 Results at B = 5.7 on a 16 lattice 

At S = 5.7 we have quark propagators at five mass values on eight gauge 

configurations separated by 896 pseudo-heatbath sweeps. We use Dirichlet 

boundary conditions in time on a 16 lattice (with the source on timeslice 5) 

an,1 work with the odd/even partitioned CG algorithm, with the gauge 

configurations in temporal gauge. The hadron propagators which result are 

not of sufficient quality to support more than 2-exponential fits, so we 

attempt to remove excitations at short times by successively dropping data 

points near the source, looking for the resulting masses to stabilize. For the 

PS propagator there is no signal in the oscillating channel and so we are able 
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to include a radial excitation in the fit. The full results are given in table 4.1. 

At the lighter quark masses there is no evidence of an excited state in the 

pseudoscalar propagator. 

These results may be compared with previous results at B = 5.7 using 8 

gauge configurations, which were duplicated in time for the calculation of 

83 x16 quark propagators [Bowler et al. (1984a)1. Those on the small lattice 

have been accumulated from a variety of measurements, described in detail in 

[Bowler et al. (1984a)]. Fig. 4.5 shows our best estimates for the pion masses, 

along with the 8 3 x16 results, plotted against /m. On the 16 lattice these are 

taken from the single exponential fits. Any spatial finite size effect in the pion 

data is apparently small. 

The full data for plan, rho and (1/2) nucleon are shown in fig. 4.6 together 

with the 8 3 x16 results. The rho and nucleon masses at small quark mass are 

systematically lower on the smaller lattice, although the statistical errors are 

large. However, since we have only eight propagators on the 16 lattice, the 

error estimation is crude (the spread in the measurements from two 

consecutive bins of 4). 

The local meson operators and the corresponding timeslice propagators 

permit the measurement of two different flavour combinations of the plan and 

the rho, as we saw in chapter two. This therefore provides a means of 

testing the restoration of flavour symmetry. From table 4.1 we can see that 

there is some agreement between the mass estimates for the two rhos at 

high quark mass, but not at m = 0.01. There is no agreement between the 

two pions, although the errors on the state in the scalar (SC) propagator are 

large and this state may be contaminated by excitations. We conclude that 

there is no compelling evidence for flavour symmetry restoration. Where both 

yield successful fits, the two nucleon propagators give consistent mass 

estimates. However, as can be seen from fig. 4.7, the behaviour of the ALL 

and EVEN propagators themselves is different especially at the lowest quark 

masses, although the general quality of the data (with only eight 

configurations) is poor. 

In fig. 4.8 we plot the nucleon/rho mass ratio versus the pion/rho ratio. 

The numerical values are given in table 4.2. 
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PS 
1-exp 

Mg 
0.50 
0.16 
0.09 
0.04 
0.01 

Al 
1.616 
2.366 
2.672 
3.264 
5.543 

(36) 
(38) 
(42) 
(94) 
( 6) 

ml 
1.661 
1.022 
0.795 
0.550 
0.273 

(1) 
(3) 
(5) 
(1) 
(1) 

Mg Al ml A2 m2 
0.50 0.120 ( 	146) 1.639 ( 	7) 1.487 ( 	153) 1.662 ( 	72) 

PS 0.16 0.119 (1096) 0.894 (260) 2.285 (1148) 1.035 ( 	194) 
0.09 2.654 ( 	189) 0.794 ( 	8) 0.216 ( 	229) 1.938 ( 	 670) 
0.04 3.251 ( 	224) 0.549 ( 	15) 3.470 (6903) 4.409 (1504) 
0.01 0.726 (2497) 0.165 ( 	78) 5.036 (5535) 0.305 (2092)' 

Mq Al ml 
-_ 
Al ml 

0.50 3.111 C 	47) 1.930 ( 	9) 0.009 (6641) 1.583 (1115) 
VT 0.16 4.022 ( 	44) 1.558 ( 	3) 0.559 ( 	 - 	 ) 1.761 (1795) 

0.09 4.642 ( 	302) 1.471 (27) 4.761 (2558) 2.114 ( 	673) 
0.04 3.340 (1867) 1.242 (75) 6.807 ( 	 - 	 ) 2.037 (2127) 
0.01 4.354 ( 	743) .1.055 ( 	 7) 2.10+3 ( 	9) 3.391 ( 	701) 

Mq Al ml Al ml 
0.50 2.083 ( 	173) 2.048 ( 	27) -1.394 ( 	 395) 2.458 (320) 

PV 0.16 1.022 (1118) 1.459 ( 	249) -1.405 ( 	 - 	 ) 1.776 (785) 
0.09 0.862 (2393) 1.306 ( 	424) -1.512 (3449) 1.596 (385) 
0.04 1.273 ( 	 - 	 ) 1.348 (2067) -1.761 ( 	 - 	 ) 1.435 (450) 
0.01 2.048 ( 	349) 1.480 ( 	28) -1.473 ( 	586) 1.214 (165) 

Mq Al ml Al ml 
0.50 0.643 ( 	37) 2.256 (163) -0.547 ( 	16) 2.277 (157) 

SC 0.16 0.291 ( 	57) 1.586 (170) -1.521 (145) 1.650 ( 	19) 
0.09 0.257 (156) 1.418 (563) -1.766 ( 	74) 1.386 ( 	75) 
0.04 0.129 (103) 1.105 (512) -2.332 ( 	99) 1.224 ( 	27) 
0.01 - - - - 

Mg Al ml Al ml 
0.5 0.858 ( 	70) 3.040 ( 	11) -0.509 (262) 3.495 (378) 

EVEN N 0.16 0.858 (293) 2.550 (165) -0.962 (103) 2.875 ( 	18) 
0.09 1.020 (518) 2.543 (263) -0.897 ( 	94) 2.643 ( 	17) 
0.04 0.965 ( 	51) 2.448 ( 	4) -1.086 (318) 2.593 (179) 
0.01 0.945 (242) 2.359 ( 	89) -1.089 (373) 2.466 (196) 

Mg Al ml Al ml 
0.5 0.920 ( 	9) 3.042 	( 44 -0.403 ( 	59) 3.514 	(211) 

ALL N 0.16 1.329 (214) 2.703 	C  70 -0.512 ( 	31) 2.748 	( 28) 
0.09 1.420 (245) 2.627 	(104 -0.566 (158) 2.625 	( 92) 
0.04 0.988 (464) 2.368 	(274 -1.490 (109) 3.031 	(141) 
0.01 - - - - 

Table 4.1 
Amplitudes and masses from 2-exponential fits to hadron propagators on a 
16 lattice at 8=5.7. The PS and SC were fitted using timeslices 6-13, the VT 
and 1-exp PS using 8-13 and the PV used 7-13. The baryons were obtained 
from 6-13 . The starred point should be not be regarded as a reliable 
estimate. 
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Fig. 42 Mass ratios at B = 5.7; the starred points are the experimental and 

infinitely—heavy quark values. 
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rnq  mTr/mp MN/MP 

0.50 0.861 ( 	 4) 1.575 ( 	 1) 

0.16 0.653 ( 	 2) 1.635 (110) 

0.09 0.540 (12) 1.729 (217) 

0.04 0.443 (24) 1.971 (107) 

0.01 0.259 ( 	 3) 2.236 ( 	 71) 

Table 42 Ratios of hadron masses at 3 = 5.7. 

The spatial finite size effects in the rho and nucleon masses appear 

approximately to cancel in the ratios and both spatial lattice sizes support the 

conclusion that M nuc i eon/ M r h o  increases as M 10  /Mrho  decreases and that 

there is no crossover to the light quark regime necessary for agreement with 

the experimental values. More importantly, this ratio is not consistent with 

that at B = 6.0 (see later), indicating that quenched hadron masses are not 

scaling at 5.7. Consequently, no further analysis was done at B = 5.7. 

4.3 Results at B = 6.0 on a 16 4  lattice 

We have propagators on eight 16 configurations separated by 896 

pseudo-heatbath sweeps. The same boundary conditions, quark masses, 

conjugate gradient algorithm and convergence criteria as at B = 5.7 were 

used, although convergence is slightly faster, as we saw in table 3.1b. 
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The results from 2-exponential fits to the hadron propagators are given 

in table 4.3. As before, only the pion fit includes an excitation and, except at 

the highest quark mass, we observe a clear signal for the excited state in this 

channel. There is no evidence that the masses of other hadrons are 

stabilizing as data near the source is dropped from the fits. This is not 

surprising given the smallness of the lattice and makes the results of little 

significance in themselves, but they are valuable for comparison with the B = 

5.7 results and with the larger lattice results at B = 6.0. 

The pion mass estimates obtained from 2-exponential fits to the 

pseudoscalar propagator are plotted against /m in fig. 4.9. They deviate from 

the estimates of [Barkai et al. (1985a)] as the quark mass decreases, being 

almost 20% higher at m = 0.01. A linear fit through our data supports a larger 

intercept at m = 0 than on the 16 lattice at B = 5.7, which suggests larger 

finite size effects (Billoire et al. (1985b)]. We also see a signal for the pion in 

the scalar propagator with masses in rough agreement with those in fig. 4.9 

for all but the lightest quark mass. The estimates from the scalar propagator 

are systematically higher, probably due to the presence of remnants of excited 

states, and agree better with estimates from 1-exponential fits to the 

pseudoscalar propagator. This is indicative of flavour symmetry restoration at 

the higher quark masses. The other hadron masses are shown in fig. 4.10. As 

remarked for our B = 5.7 data, the error bar estimation is poor. 

There is a signal for the rho in the pseudovector propagator, with a mass 

within 8% of the first, except at the lowest quark mass, although the lack of 

evidence for asymptotic decay means we can attach little significance to this 

observation. The nucleon mass estimates from the two types of propagator 

analysed are in agreement. However, both our rho and nucleon masses are 

higher than those of [Barkai et al. (1985a)] and are certainly over-estimated by 

our fitting procedure. Even so, it is tempting to conclude on the basis of the 

stronger evidence for flavour symmetry in the spectrum, that these 

measurements show significantly better indications of continuum behaviour 

than we observed at B = 5.7. Nothing can be concluded about mass ratios 

because it is certain we have not properly been able to remove the effects of 

excitations. 
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PS 
1-exp 

Mq 
0.50 
0.16 
0.09 
0.04 
0.01 

Al 
1.450 
1.396 
1.249 
1.063 
1.013 

( 	65) 

( 	 50) 

( 	74) 

C 	89) 

C 	44) 

ml 
1.665 
1.016 
0.793 
0.561 
0.319 

( 	4) 

( 	1) 

( 	4) 
(17) 
(29) 

Mq Al ml A2 m2 
0.50 1.365 ( 	59) 1.658 ( 	 4) 0.214 	(28) 2.083 (54) 

Ps 0.16 1.101 (102) 0.985 ( 	7) 1.056 	(37) 1.525 (38) 
0.09 0.928 ( 	 67) 0.754 ( 	 8) 1.352 	(16) 1.389 (14) 
0.04 0.800 ( 	71) 0.523  1.596 	(26) 1.228 (23) 
0.01 0.833 ( 	15) 0.300  1.746 	(30) 1.223 (82) 

r' 
Mq Al ml Al ml 
0.50 2.202 ( 	 22) 1.839 ( 	 1) -5.082 ( 	 - 	 ) 2.843 (1166) 

VT 0.16 0.917 ( 	1) 1.196 ( 	 8) -186.7 ( 	 - 	 ) 3.226 ( 	390) 
0.09 0.580 (103) 0.981 (19) -183.5 (145.1) 3.045 ( 	855) 
0.04 0.564 ( 	44) 0.873  -2.803 (1.823) 1.640 ( 	323) 
0.01 0.958 (124) 0.959 (25) -0.140 ( 	 - 	 ) 0.739 (1184)* 

Mq Al ml Al ml 
0.50 1.437  1.913 ( 	5) -2.407 (2727) 2.398 (287) 

PV 0.16 0.582 ( 	8) 1.265 ( 	1) -2.427 ( 	250) 1.736 ( 	20) 
0.09 0.386 (88) 1.059 (40) -1.809 ( 	480) 1.464 ( 	96) 
0.04 0.249 (70) 0.870 (51) -1.570 ( 	255) 1.265 ( 	55) 
0.01 1.682 (42) 0.732 (39) -1.340 ( 	131) 1.095 ( 	13) 

Mq Al ml Al ml 
0.50 0.344 (19) 1.880 (13) -0.607 (470) 2.080 (269) 

SC 0.16 0.102  1.070 (48) -1.187 ( 	56) 1.305 ( 	5) 
0.09 0.071 (11) 0.848 (71) -1.266 (120) 1.044 ( 	8) 
0.04 0.034 (10) 0.582 (71) -1.169 (138) 0.775 ( 	11) 
0.01 0.125 (58) 0.511 (87) -0.677 ( 	 96) 0.399 ( 	38) 

Mq Al ml Al ml 
0.50 0.599 ( 	 30) 2.921 ( 	 11) -0.707 (545) 3.323 (232) 

EVEN N 0.16 0.442 ( 	 40) 2.370 ( 	11) -0.547 (321) 2.524 (175) 
0.09 0.340 ( 	 15) 2.193 ( 	49) -0.510 (230) 2.344 (142) 
0.04 0.286 (138) 2.062 (132) -0.351 ( 	80) 2.128 ( 	 83) 
0.01 0.193 (282) 1.881 (298) -0.203 ( 	 71) 1.894 (137) 

Mq Al ml Al ml 
0.50 0.648 ( 	11) 2.924 ( 	 6) -0.432 ( 	 40) 3.239 ( 	65) 

ALL N 0.16 0.511 (150) 2.370 ( 	 27) -0.354 (527) 2.427 ( 	249) 
0.09 0.382 (112) 2.178 ( 	 13) -0.342 (313) 2.245 ( 	178) 
0.04 0.166 ( 	 97) 1.907 (327) -0.977 ( 	 - 	 ) 2.409 (1155) 
0.01 0.431 (327) 2.066 (221) -0.281 (245) 2.056 (1258) 

Table 4.3 
Amplitudes and masses from 2-exponential fits to hadron propagators on a 
16 lattice at =6.0. The VT,PV and 1-exp PS mesons were fitted using 
timeslices 8-13 ; the SC used 7-13 and the PS used 6-13. The baryons were 
obtained from 8-13. The starred point should be not be regarded as a reliable 
estimate. 
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4.4 Results at B = 6.0 on a 163 x 24 lattice 

These 16 3 x24 gauge configurations are constructed by periodically 

extending 16 configurations in time. Since hadron propagation over more 

than 16 timeslices is unobservable at our level of statistical accuracy, we do 

not expect this procedure to introduce any observable effects. We analyse 

propagators on 32 configurations, separated by 224 pseudo-heatbatti sweeps. 

We impose Dirichlet boundary conditions in time and antiperiodic boundary 

conditions in space on the quark propagators (with the source on timeslice 5), 

and use the Iterative Block SOR algorithm described in chapter three. In all 

cases, our quoted errors are the standard deviation in the mean estimated 

from dividing the data into four consecutive bins. We perform a variety of fits 

to the timeslice hadron propagators in order to try to extract estimates of the 

ground state masses in each channel. This involves fits to sums of as many 

as four exponentials. A fairly clear picture emerges for the meson sector. 

The baryon propagators are more difficult to fit and it is unclear how reliable 

the resulting mass estimates are. 

4.4.1 The meson sector 

The results are given in table 4.4. Where comparable fits have been 

performed, the estimates are - in very good agreement with [Barkai et al. 

(1985a)]. We include in tables 4.4a, b and c results from both fitting 

techniques described in chapter three. Typically, we see no evidence for an 

excitation in the oscillating channel. Consequently, we include either one or 

two exponentials for the direct channel (in the former case restricting the data 

to 'asymptotic' times) and just a single excitation in the oscillating channel. 

Usually, the 3-exponential fits give lower estimates for the ground state mass 

in the direct channel, and so we regard these as the most reliable. The pion 

mass estimates from 2-exponential fits to the pseudoscalar meson propagator 

(i.e. including an excitation) are shown in fig. 4.11. Linear dependence on 

persists even at m = 0.01, from which we conclude that finite size effects are 

very small. We find 

kA 	(.400t0 .0,)i 	p (o.00 G ± 0.04) 
	

(4.I) 
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PS 
1-exp 

Mq 
0.50 
0.16 
0.09 
0.04 
0.01 

Al 
1.288 
1.033 
0.806 
0.639 
0.651 

( 	8) 
(17) 
(20) 
(29) 
(37) 

ml 
1.650 
0.972 
0.733 
0.492 
0.247 

(1) 
 
 

(2) 
(3) 

Mq Al ml A2 m2 
0.50 1.262 (287) 1.648 (11) 0.174 	( 293) 2.089 (394) 

PS 0.16 0.953 ( 	63) 0.966 ( 	 5) 1.144 	( 257) 1.468 (779) 
0.09 0.736 ( 	68) 0.725 ( 	 6) 1.497 	( 171) 1.287 ( 	44) 
0.04 0.611 ( 	83) 0.488 ( 	8) 2.380 	(1238) - 1.252 (166) 
0.01 0.640 (264) 0.245 (13) 2.356 	(3555) 1.135 (241) 

Mq Al ml Al ml 
0.50 2.049 (128) 1.823  -4.307 (2143) 2.497 (134) 

VT 0.16 0.687 ( 	68) 1.132 (15) -1.378 (5586) 1.672 (172) 
0.09 0.399 ( 	36) 0.893  -0.901 ( 	 - 	 ) 1.426 (395) 
0.04 0.272 ( 	18) 0.709 (15) -0.139 (5927) 0.959 (330) 
0.01 0.260 (251) 0.617 (71) -0.010 ( 	5) 0.317 ( 	87) 

Mq Al ml 
"-I 

Al - 	 ml 
0.50 1.350 ( 	212) 1.896 ( 	24) -0.372 ( 	127) 1.937 ( 	37) 

PV 0.16 0.326 ( 	58) 1.147 ( 	21) -0.614 ( 	836) 1.368 ( 	98) 
0.09 0.174 ( 	41) 0.895 ( 	33) -0.639 ( 	195) 1.184 ( 	69) 
0.04 0.097 ( 	25) 0.686 ( 	31) -0.750 ( 	292) 1.052 ( 	62) 
0.01 0.129 (1233) 0.661 (180) -0.775 (3677) 0.912 (182) 

Mq Al ml Al ml 
0.50 0.189 (177) 1.814 (61) -0.343 (285) 1.895 (77) 

SC 0.16 0.087 ( 	29) 1.070 (36) -0.802 ( 	91) 1.218 (22) 
0.09 0.051 ( 	4) 0.800 (16) -0.872 ( 	94) 0.984 (19) 
0.04 0.031 ( 	10) 0.540 (19) -0.788 ( 	50) 0.752 (11) 
0.01 0.029 ( 	9) 0.312 (47) -0.266 ( 	42) 0.366 (60) 

Mq Al ml Al ml 
0.50 0.551 ( 	42) 2.922 ( 	6) -0.761 ( 	698) 3.224 (104) 

EVEN N 0.16 0.148 ( 	56) 2.168 ( 	41) -0.746 ( 	 - 	 ) 2.523 (291) 
0.09 0.017 ( 	18) 1.727 ( 	93) -0.032 ( 	9) 1.892 (156) 
0.04 0.003 ( 	1) 1.314 (152) -0.004 ( 	1) 1.401 (110) 
0.01 0.017 (124) 1.418 (341) -0.016 ( 	161) 1.400  

Mq Al ml Al ml 
0.50 0.504 ( 	62) 2.909 ( 	11) -8.447 ( 	 - 	 ) 3.683 (407) 

ALL N 0.16 0.156 (565) 2.174 (143) -0.859 ( 	382) 2.541 (143) 
0.09 0.025 (349) 1.797 (209) -0.004 (1.717) 1.602  
0.04 0.001 ( 	45) 1.055 (146) -0.8d+5(87.25) 4.512 (454) 
0.01 0.026 ( 	2) 1.332 (255) 0.5d-6( 	- 	) 0.158 (809) 

Table 4.4a 
Amplitudes and masses from 2-exponential fits to hadron propagators on a 
16 3 x24 lattice at B=6.0. the 1-exp PS and the SC were fitted using tirrieslices 
11-19, the VT and the PV using 10-19, the PS using 9-19 and the baryons 
were obtained from 11-19. 



Mq 

0.50 

0.16 

0.09 

0.04 

0.01 

EVEN N 

Mq 

0.50 
0.16 

0.09 

0.04 

0.01 

MI 

2.882 (150) 

1.752 (158) 

1.193 (106) 

1.018 ( 86) 

0.935 (136) 

Al 

	

0.263 	( 40) 

	

0.002 	(800) 

0.7720-4(293) 

0.128D-3(103) 

0.213D-4(419) 

m2 

3.024 ( 35) 

2.373 ( 54) 

2.219 ( 76) 

2.140 ( 99) 

1.801 (111) 

A2 

0.417 ( 33) 

0.459 (107) 

0.392 (139) 

0.375 (132) 

0.212 (641) 

M1 

3.177 (233) 

1.190 (284) 

0.893 (142) 

1.055 (213) 

0.594 (487) 

Al 

-0.587 	(-) 
0.379D-5(-) 

0.108D-5(-) 

-0.945D-4(-) 

-0.795D-5(7100)  

m2 

3.547 (217) 

2.404 ( 72) 

2.239 ( 81) 

2.140 (117) 

1.798 (158) 

A2 

0.355 ( - 

-0.400 (121) 

-0.379 (140) 

0.370 ( - 

-0.211 (597) 

Mq 

0.50 
0.16 

0.09 

0.04 

0.01 

ALL N 

Mq 

0.50 
0.16 

0.09 
0.04 

0.01 

MI 

2.722 (128) 

1.799 (225) 
1.517 (264) 

1.068 (189) 

0.904 (237) 

Al 

0.036 (136) 

0.005 (132) 

0.002 ( 33) 

0.4280-3 (-) 

0.8590-3 (-) 

m2 

3.011 (47) 

2.520 (67) 

2.412 (63) 

2.329 (29) 

2.157 (81) 

A2 

0.756 (176) 
0.848 (113) 

0.856 ( 67) 

0.845 ( 67) 

1.553 (264) 

M1 

3.153 ( 63) 

2.264 ( 56) 
1.904 (108) 

1.938 (218) 

1.749 (516) 

Al 

	

-0.376 	(56) 

	

-0.128 	(57) 

	

-0.035 	(24) 

	

-0.066 	(56) 
1.046D+3( 3) 

m2 

4.840 (293) 

2.989 (125) 

2.716 (106) 

2.668 (126) 

1.749 (308) 

A2 

-0.697 (260) 
-0.909 (170) 

-0.955 ( 56) 

-0.941 ( 96) 

-1.0470+3(2) 

Table 44-b 
Amplitudes and masses from 4-exponential fits to baryon propagators on a 
16 3 x24 lattice at =6.0. The EVEN baryons were fitted from timeslices 7-16, 
and the ALL using 6-16. 



Mq ml m2 ml 

0.50 1.806 (60) 1.966 	( 	87) 2.062 ( 	 24) 

0.16 1.104 (37) 1.527 	( 	55) 1.454 ( 	18) 

0.09 0.862 (54) 1.354 	( 	80) 1.228 ( 	25) 

0.04 0.648 (65) 1.182 	(121) 1.042 (100) 

VT 0.01 0.352 (82) 0.845 	(212) 0.530 (111) 

3-exp 
Mq Al A2 Al 

0.50 1.534 (459) 0.909 	( 	389) -0.325 (31) 

0.16 0.480 (147) 1.472 	( 	137) -0.335 (17) 

0.&9 0.271 ( 	 80) 1.288 	( 	119) -0.259 (14) 

0.04 0.141 ( 	60) 1.100 	( 	177) -0.217 (31) 

0.01 0.015 (239) 0.669 	(2395) -0.050 (13) 

Mq ml m2 ml 

0.50 1.849 (63) 3.307 	(630) 1.942 (58) 

0.16 1.048 (98) 2.799 	(481) 1.230 (15) 

0.09 0.778 (19) 2.608 	(274) 0.997 (13) 

0.04 0.525 (14) 4.236 	(652) 0.773 (10) 

SC 0.01 0.280 (54) 4.745 	(684) 0.550 (41) 

3-exp 
Mq Al A2 Al 

0.50 0.252 (78) 5.971 	( 	- 	) -0.504 ( 	183) 

0.16 0.069 (21) 0.177D+2 	( 	179) -0.889 ( 	45) 

0.09 0.040 ( 	 7) 0.196D+2 	(1055) -0.972 ( 	 51) 

0.04 0.027 ( 	 4) 0.489D+4 	(6570) -0.933 ( 	 45) 

0.01 0.032 (54) -0.108D+4 	( 	 - 	 ) -0.896 (2215) 

Mq ml m2 

PV 0.01 0.574 (154) 1.668 	(447) 1.177 (49) 
3-exp Al A2 Al 

0.057 (898) 1.677 	(383) -1.831 (679) 

Table 4.4c 
Amplitudes and masses from 3-exponential fits to meson propagators on a 
16 3 x24 lattice at 6=6.0. The VT and SC mesons were fitted from timeslices 
7-18, and the 0.01 PV was 6-16. 



+ 

1.60 

1.40 

1.20 -  

1.00 - 

E 
0.80 

0.60 

0.40 

0.20 - 

	

0 00- 	 I 

	

0.00 	0.12 	0.24 	0.36 	0.48 	0.60 	0.72 
vM 

Fig. 4.11 Pion mass in lattice units on a 16 x 24 lattice at B = 6.0 plotted 

against /m. The error bars are smaller than the symbol size. 



Comparison of these results with the 16 estimates in fig. 4.9 and table 4.3, 

reveals a finite-time effect at small quark masses, which is the origin for the 

discrepancy with (Barkai et al. (1985a)] mentioned in the previous section. On 

the longer lattice our pion mass estimates are in complete agreement with 

[ibid). In spite of our better statistics, our quoted errors are larger than those 

of [ibid]; this may be due to correlations in their data. 

As discussed in section 2.5, the member of the pion multiplet obtained 

from the scalar meson propagator is not a Goldstone boson at nonzero lattice 

spacing, but should become degenerate with the pion from the pseudoscalar 

propagator (which is a Goldstone boson at m 0 and non-zero lattice 

spacing) in the continuum limit. So the extent to which these two pion mass 

estimates agree is a measure of our proximity to the continuum limit. There 

is an oscillating channel in -the scalar propagator (identified with the 0 ), and 

so in order to be able to perform a proper comparison between the two pion 

mass estimates, we should include at least an excitation in the direct channel. 

For this reason we perform 3-exponential fits to the scalar meson propagator. 

The two pion mass estimates thus obtained are shown in fig. 4.12. Flavour 

symmetry holds to about 10% for m 0.16 and furthermore, the pion mass 

estimate from the scalar propagator extrapolates linearly in /m to a small 

value which is consistent with zero within errors. 

For the rho meson in the vector propagator, where we saw no evidence 

for asymptotic decay on the shorter lattice, the extra timeslices appear to 

expose the ground state. The 2-exponential fits at large times provide 

evidence that the resulting mass estimates are stabilizing. There is a slight 

drop in the rho mass when we include an excitation explicitly in that channel, 

although, except at m = 0.01, agreement with estimates from 2-exponential 

fits is very good. These results are in table 4.4c. The big drop in the rho 

mass at m= 0.01 from a 3-exponential fit is probably due to instability in this 

procedure when the data is poor. As for the pion, we obtain mass estimates 

for two rho mesons with different flavour components, the second one 

coming from the pseudovector propagator. We have performed 2-exponential 

fits at 'asymptotic' times for both of these and the results are shown in fig. 

4.13 (the numerical values are in table 4.4a). We see that flavour symmetry 

has been restored to a good accuracy, in fact to within 7% at all quark 

masses, in agreement with the conclusions from the shorter lattice. We 

conclude that there are signs that flavour symmetry is beginning to be 

restored in the meson sector at B = 6.0. To this extent, we may be 

83 



2.0C' 

I 
I.. / 7 .C 

 

1 .5C 

1 .25 

(1) 
Ct) 
C 1.00 
E 

0.75 

0.50 

0.25 

INSIS] 
	

0.15 	0.30 	O.45- 0.60 	0.75 	0.90 
Jm 

Fig. 4.1.2 Extent of flavour symmetry restoration in the pion sector on a 16 x 

24 lattice at B = 6.0. 



0.10 	0.20 	0.30 	0.40 0.50 	0.60 

0 

E jQ 

0.20 

0.40 

• SO 
SS1 

1.2C 

1 .. 4C 

2.0C' 

1.6C 

1.8C 

rn 

Fig. 4.13 Extent of flavour symmetry restoration in the rho meson sector 

on a 16 3 x 24 lattice at B = 6.0. 



approaching the continuum limit. 

4.4.2 The baryon sector 

The situation in the baryon sector is not so clear. The problems appear 

to be exaggerated by the antiperiodic boundary conditions in space, 

suggesting that finite size effects are large. 

We measure two baryon timeslice propagators ALL and EVEN, as described 

in section 2.4. According to [Morel and Rodrigues (1984)], these should be 

identical on an infinite lattice. Our results are plotted for the five different 

quark masses in fig 4.14. It is obvious that the discrepancy between ALL and 

EVEN increases with decreasing quark mass. However, it appears from this 

figure that asymptotic decay of the two propagators is similar. We find this 

to be true of the mass estimates from our fits, as can be seen in table 4.4. 

As we found for the rho meson, there is better evidence for asymptotic 

decay of the baryon propagator on the longer lattice (see fig. 4.14). The mass 

estimates from the 2-exponential fits do appear to be stabilizing at large 

times, although errors become large because of a low signal-to-noise ratio. 

However, as can be seen from the values in table 4.4a, the resulting nucleon 

mass estimates are in serious disagreement with [Barkai et al. (1985a)], the 

discrepancy getting worse as the quark mass decreases. The only significant 

difference between [ibid I and the present study is their use of periodic 

boundary conditions in space. Given the difference, mentioned above, 

between the EVEN and ALL propagators when antiperiodic boundary conditions 

are used, it is possible that this is the reason for the discrepancy. This will 

be investigated in the next section. 

In order to investigate the baryons more thoroughly, we perform 

4-exponential fits on both the EVEN and ALL baryon propagators, with the 

results given in table 4.4b. We find a large contribution coming from the 

excited states in both the direct and oscillating channels for both propagators. 

For the EVEN propagator the two excitations are degenerate in mass and 

amplitude to a surprising accuracy. Notwithstanding the relative size of the 

amplitudes of the ground and excited states, fig 4.14 indicates that asymptotic 

decay with the ground state mass is just observable on the 16 3 x24 lattice. 

However, the excitation dominates over most of the range for which we are 

able to obtain reliable fits and so is responsible for the overly high mass 
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estimates found with only 2-exponentials (this phenomenon has also been 

observed with periodic boundary conditions [Itoh et al. (1986d)]). The ground 

state amplitudes and masses that we get from the 4-exponential fits are in 

agreement with [Barkai et al. (1985a)]. Hence it appears that imposing 

antiperiodic boundary conditions in space enhances a large 'parity-doublet' 

excitation in the local EVEN baryon propagator. The contributions of the 

excitation in the ALL propagator are also large, but appear not to be 

degenerate in mass, although this propagator is noisier, so that the excitations 

are not so easy to extract. The ground state masses obtained from 

4-exponential. fits to the ALL propagator are in good agreement with those 

from the EVEN propagator, so it may be that the symmetry of [Morel and 

Rodrigues (1984)1 is manifested only in the ground states in our data. 

The full results for the pion, rho and nucleon masses are shown in fig. 

4.15, plotted against quark mass. The ratio of the nucleon to rho mass is 

plotted versus the ratio of the pion to rho mass in fig. 4.16. The numerical 

values are given in table 4.5. 

M 	 m/mp 	 mN/'mp 

0.50 0.913 ( 	 36) 1.596 (111) 

0.16 0.875 ( 	 29) 1.587 (156) 

0.09 0.841 ( 	 49) 1.384 (129) 

0.04 0.753 (107) 1.571 (108) 

0.01 0.427 ( 	 93) 1.629 (630) 

Table 45 Ratios of hadron masses at a = 6.0 (the p mass is taken from VT 

propagator except at m = 0.01 where it is from the PV propagator 

We see that, compared to our results at B = 5.7, the nucleon to rho mass ratio 
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Fig. 4.15 Hadron masses in lattice units on a 16 3 x24 lattice at B = 6.0. The 

pion error bars are smaller than the symbol size. 
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Fig 4.1G. Mass ratios at 	= 6.0; the starred points are the experimental and 

infinitely-heavy quark values. 



is lower at 8 = 6.0 and may be showing signs of crossing over from the 

heavy quark limit, but the errors are still too large to draw firm conclusions. 

4.5 Results at B = 6.15 on a 163 x24 lattice 

The results in this section were obtained from a set of twenty-four full 

16 3 x24 gauge configurations with periodic boundary conditions, separated by 

176 pseudo-heat bath sweeps, and gauge fixed to temporal gauge. We 

imposed periodic spatial boundary conditions and Dirichlet boundary 

conditions in time on the quark propagators. In order to assess the effect of 

the spatial boundary conditions (any effect being a finite size effect) we also 

recomputed quark propagators on eight of the twenty-four configurations 

using ant/periodic boundary conditions. 

4.5.1 The meson sector 

The PS propagator averaged over twenty-four configurations is fitted 

using both 1-exponential and 2-exponential fits and the data is shown in table 

4.6. Excitations appear to be still present in the data at timeslice 12 (i.e. 

seven timeslices from the source), so that the 2-exponential fit is necessary 

to extract the ground state. These estimates for the pion mass are plotted in 

fig 4.17 and lie on a curve through the origin suggesting that finite size 

effects are very small at these quark masses. From a fit to data at the lowest 

four quark masses we find 

ir 

(4.-) 

Unlike the results at B = 6.0, there is now a term quadratic in /m but this 

term is less important at low quark mass, and we must remember that 

because we have chosen to keep the values of the quark mass fixed in lattice 

units, the corresponding physical values are now higher than at B = 6.0 since 

the lattice spacing, has decreased. We would thus expect linear behaviour 

with /m to set in at correspondingly lower values of the quark mass in lattice 

units. Looking now at fig 4.18, where the PS propagators from the eight 

configurations on which we have computed propagators both for periodic and 
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'S 
l-exp 

Mg 
0.50 
0.16 
0.09 
0.04 
0.01 

Al 
1.159 
0.679 
0.452 
0.300 
0.250 

(32) 
(13) 
( 7) 
(10) 
(13) 

ml 
1.640 
0.930 
0.680 
0.436 
0.206 

(1) 
(1) 
(1) 
(3) 
(7) 

Mq Al ml A2 m2 

0.50 1.129 (145) 1.638 (7) 0.408 	(1272) 2.065 (277) 

?S 0.16 0.528 ( 	40) 0.911 (5) 1.260 	( 210) 1.301 ( 	50) 
0.09 0.356 ( 	17) 0.661 (2) 1.402 	( 264) 1.130 ( 	41) 

0.04 0..256 ( 	8) 0.423 (2) 1.510 	( 293) 1.004 ( 	33) 
0.01 0.238 ( 	14) 0.202 (6) 1.926 	( 611) 1.049 (111) 

Mq Al ml Al ml 
0.50 1.421 (82) 1.764 ( 	6) -1.889 (3624) 2.325 (169) 

/T 0.16 0.351 (35) 1.017 (15) -0.011 ( 	12) 0.971 (120) 
0.09 0.189 (12) 0.764  -0.014 ( 	6) 0.764 ( 	92) 
0.04 0.105 (12) 0.543 (18) -0.008 ( 	86) 0.493 (174) 
0.01 0.062 (47) 0.384 (77) -0.011 ( 	 - 	 ) 0.340 (892) 

Mq 'Al ml Al ml 
0.50 0.793 ( 	46) 1.801 ( 	11) -0.160 (196) 1.823 (102) 

PV 0.16 0.119 ( 	22) 0.991 ( 	25) -0.108 ( 	39) 1.089 ( 	60) 
0.09 0.069 ( 	5) 0.741 ( 	13) -0.101 ( 	30) 0.861 ( 	55) 
0.04 0.049 ( 	50) 0.532 ( 	8) -0.058 ( 	72) 0.607 ( 	78) 
0.01 0.029 (197) 0.344 (130) -0.025 ( 	12) 0.333 ( 	42) 

Mg Al ml Al 
'-I 

ml 
0.50 0.150 (53) 1.771 (53) -0.443 (173) 1.929 ( 	51) 

SC 0.16 0.045 C 	5) 0.970 (lO) -0.560 ( 	50) 1.141 ( 	12) 
0.09 0.025 ( 	5) 0.686  -0.571 ( 	26) 0.902 ( 	6) 
0.04 0.016 ( 	4) 0.426 (17) -0.611 (126) 0.705 ( 	36) 
0.01 0.013 ( 	8) 0.224 (34) -0.238 ( 	 - 	 ) 0.398 (201) 

Mg Al ml Al ml 
0.50 0.326 (44) 2.805 ( 	6) -0.071 (11) 2.880 (52) 

EVEN N 0.16 0.012 ( 	1) 1.627 ( 	19) -0.008 ( 	3) 1.723 (49) 
0.09 0.004 ( 	1) 1.226 ( 	21) -0.003 ( 	1) 1.332 (40) 
0.04 0.110( 13)D-2 0.865 ( 	24) -0.120( 18)D-2 0.960 (29) 
0.01 0.366(235)D-3 0.568(63) -0.765(118)D-2 0.688 (24) 

Mg Al ml 
-Sf 

Al ml 
0.50 0.294 (48) 2.797 ( 	14) -0.041 (10) 2.798 (74) 

ALL N 0.16 0.014 ( 	2) 1.643 ( 	23) -0.009 ( 	8) 1.753 (69) 
0.09 0.358( 52)D-2 1.242 ( 	21) -0.416(303)D-2 1.390 (63) 
0.04 0.970(213)1-3 0.862 ( 	32) -0.328(472)D-2 1.103 (97) 
0.01 0.229( 18)D-3 0.510 (240) -0.732(455)D-3 0.669 (82) 	- 

- 	 Table 4.6 
Amplitudes and masses from 2-exponential fits to hadron propagators on a 
16 3 x24 lattice at =6.15. The 1-exp PS was fitted using timeslices 12-19; the 
PS using 9-19 and the SC using 11-19. The VT was obtained from 12-19 for 
m = 0.5,0.16 and 0.09, and 11-19 for m = 0.04 and 0.01. The PV and ALL both 
used 11-19 for m = 0.5,0.16 and 0.09, and 12-19 for 0.04 and 0.01. EVEN was 
obtained from 11-19 apart from the lowest mass where 12-19 was used. 
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antiperiodic boundary conditions are plotted, we see that the choice of 

boundary conditions has no effect on the PS propagator, confirming the 

absence of finite size effects. Fig 4.19 shows the pion from both the PS and 

the SC propagators, and we see that flavour symmetry holds better than at at 

B = 6.0; for m . 0.16 the symmetry holds to within 6%. The SC data does 

extrapolate to zero within errors but has a higher curvature than the PS data 

and appears to be more affected by finite size effects - as we can see from 

fig 4.20 (however, the SC propagator also contains the meson so we cannot 

compare directly the effect of the boundary conditions on the pion content). 

From a similar fit to (4.2), we find for the SC pion 

+ 0.41±O. 	' )r1 #-(O.54 ±O) 

(4.3) 

The large errors in these coefficients are almost entirely due to the relatively 

large error in the pion mass estimate at m = 0.01. 

Fig. 4.21 indicates that, as for the PS propagator, the finite size effects on 

the VT propagator are small and any discrepancies at low quark mass may 

well be statistical, due to this comparison using only eight configurations. For 

the full twenty-four configurations 2-exponential fits were sufficient to extract 

estimates for the rho mass from both the VT and the PV propagators, and the 

results are given in table 4.6. Fig. 4.22 demonstrates that flavour symmetry is 

excellent - there is a 2% discrepancy at m = 0.5 which however corresponds 

to a very high physical quark mass. This effect is also observed at all other B 
values and lattice sizes in this chapter and the 2% discrepancy compares well 

with the figure of 7% seen at B = 6.0. 

4.5.2 Baryons and finite size effects 

Here we use the same set of eight configurations to obtain EVEN baryon 

propagators using both periodic and antiperiodic spatial boundary conditions. 

Obviously, if we had large enough lattices the choice of boundary conditions 

(BC) would have a negligible effect, so a comparison between the propagators 

obtained from each choice is an important indication of the extent of the finite 

size effects. Carpenter and Baillie (Carpenter and Baillie (1985)] have shown 

that for free Wilson fermions on lattices infinite in the time direction the 

propagator is bounded above and below by the periodic BC propagator and 

the antiperiodic BC propagator respectively. This is shown in fig. 4.23, taken 
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from [Carpenter and Baillie (1985)]. Figs 4.24a-e show the corresponding 

results on a 16 3 x24 lattice at B = 6.15 for the EVEN propagator using five 

values of the quark mass. There appear to be large finite size effects, and the 

disagreement in the propagators obtained from the two choices of BC 

increases as we lower the quark mass. The signal from the periodic BC 

propagator is larger than from the antiperiodic BC propagator at all values of 

the quark mass, as found in the free fermion case by (Carpenter and Baillie 

(1985)]. The antiperiodic propagator is noisier than the periodic but taking 

statistical fluctuations into account the asymptotic decays are similar. At 

short times, the antiperiodic propagators fall much faster and this shows up in 

the fits as a larger contamination by excited states. 

Another important estimate of the finite size effects is the degree to 

which the EVEN and ALL propagators are equal. As we saw in chapter two, on 

an infinite lattice the two propagators should be identical, but for free 

fermions on finite lattices this identity does not hold for antiperiodic boundary 

conditions. For a confining theory, violation of this identity must be a finite 

size effect if our box size is about the size of a proton, then the quarks 

inside are approximately free and we would expect to see the same sort of 

violation of the identity as for free fermions. The proton size presumably 

increases as the quark mass decreases. As we can see from fig. 4.25, the 

identity appears to be satisfied for periodic boundary conditions in this case. 

However, fig 4.26 shows that for antiperiodic BC EVEN and ALL are not the 

same, the discrepancy increasing with decreasing quark mass, and becoming 

very pronounced at short times. We are thus forced to conclude from these 

two independent estimates, that finite size effects are considerable for this 

choice of 8 = 6.15 and 16 lattices. 

4.5.2 Baryon mass estimates at B = 6.15 

We have EVEN and ALL propagators for 24 gauge configurations using 

periodic spatial boundary conditions, and fig. 4.27 indicates that the two are 

almost identical (with the exception of one point which we take to be a 

statistical fluctuation). Not surprisingly therefore, the mass estimates for the 

nucleon obtained from each propagator are in complete agreement. This is 

shown in table 4.6 and fig 4.28. 2-exponential fits appeared to be sufficient to 

expose the ground state as, where tested, 4-exponential fits gave similar 
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masses for the lowest state and higher x2 per degree of freedom. The errors 

in the estimates are very much smaller than for the B = 6.0 (antiperiodiC BC) 

results. The mass ratios shown in table 4.7 below are plotted in figure 4.29. 

mq  mlT/'mp tnN/mp 

0.50 0.929 	( 7) 1.590 	( 9) 

0.16 0.896 	( 16) 1.600 	( 8) 

0.09 0.866 	( 15) 1.605 	( 17) 

0.04 0.779 	( 22) 1.592 	( 43) 

0.01 0.526 	(106) 1.480 	(307) 

Table 47 Ratios of hadron masses at B = 6.15 

These results show much clearer evidence of crossover between the heavy 

and light quark regimes, and again the errors are lower than we saw at B = 

6.0. However, we have already seen that the baryons are more seriously 

affected by the finite size of this lattice than are either the pion or the rho, so 

that these ratios are presumably also finite size affected. The mass ratio 

linearly extrapolated to zero quark mass using the lowest three data points is 

O.t4(0 	 (4.4) 

We can also see that, as the lowest value of the pion to rho mass ratio is 

0.51, that the values of the quark mass we have been using are still rather 

high to justify such an extrapolation. 
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Fig. 4.7Y Mass ratios at B = 6.15; the starred points are the experimental and 

infinitely-heavy quark values. 
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4.6 Results at B = 6.3 on a16 3 x24 lattice 

This section describes the results of a study performed before that of the 

previous section; having seen that the baryon data at B = 6.15 is finite size 

affected, we expect more severe problems at B = 6.3. However, while we 

should not expect sensible baryon physics, it is important to establish whether 

the mesons are now also affected. 

We have thirty-two gauge configurations, separated by 224 

pseudo-heatbath sweeps and gauge-fixed to temporal gauge. We impose 

Dirichlet boundary conditions in time and anti-periodic spatial boundary 

conditions on the quark propagators. Although the foregoing suggets that 

the signal-to-noise ratio for baryons is much worse with these spatial 

boundary conditons, our choice does enable us to use the discrepancy 

between the EVEN and ALL baryon propagators as a measurement of finite 

size effects. Since we do not expect sensible baryon masses, the poor signal 

does not matter. 

4.6.1 The meson sector 

The results of the meson analysis are presented in table 4.8a. The PS 

propagator was again fitted using both one and two exponentials, and as can 

be seen from the table, the two-exponential fit was necessary to expose the 

ground state. Fig. 4.30 shows that there are large finite size effects in the PS 

data, giving a curvature which persists to low quark mass. The points at a 

quark mass of 0.005 and 0.0 were obtained from only four configurations, 

hence we have no error estimates at these points. A fit to the data for 0.01 

—< m .< 0.16 gives 

MIT (.°rJs ± O.3i ' " + (.%SO.I' 	+ (O.,$3±0.0 

(4. 

where now the intercept is non-zero and the term in m is much bigger than 

at B = 6.15. The data at m =0.005 and 0.0 are consistent with this curve. 

Note that it is the presence of large finite size effects which permits the 

calculation of quark propagators down to zero quark mass, by producing a 

non-zero lower bound to the eigenvalues of the fermion matrix which is 

responsible for ensuring convergence of our iterative linear equation solver. 
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PS 
1-exp 

Mq 
0.50 
0.16 
0.09 
0.04 
0.01 

Al 
1.142 
0.586 
0.376 
0.243 
0.199 

(15) 
(18) 
(18) 
(20) 
(39) 

ml 
1.636 
0.912 
0.666 
0.437 
0.250 

( 	1) 

( 	 1) 

( 	 5) 
(15) 
(30) 

Mq Al ml A2 m2 
0.50 1.074 (28) 1.632 ( 	3) 0.330 	( 145) 1.962 (233) 

PS 0.16 0.427 (28) 0.888 ( 	4) 1.104 	( 78) 1.288 ( 	32) 
0.09 0.277 (25) 0.642 ( 	8) 1.181 	( 92) 1.125 ( 	33) 
0.04 0.190 ( 	5) 0.417 (17) 1.202 	( 318) 1.002 ( 	83) 
0.01 0.197 (44) 0.250 (26) 2.286 	(1145) 1.185 (244) 

Mq Al ml Al ml 
0.50 1.591 (76) 1.759 ( 	9) -0.055 (503) 1.859 (153) 

VT 0.16 0.328 (16) 0.975 ( 	4) -0.030 ( 	 7) 1.074 ( 	 9) 
0.09 0.166 (15) 0.719 (11) -0.016 ( 	 6) 0.776 ( 	32) 
0.04 0.085 (19) 0.496 (28) -0.006 ( 	6) 0.442 ( 	79) 
0.01 0.044 (19) 0.329 (58) -0.008 ( 	9) 0.269 ( 	89) 

Mq Al ml Al ml 
0.50 0.807 C 	) 1.789 (20) -0.188 ( 	 ) 1.823 (146) 

PV 0.16 0.142 ( 	 ) 0.969 ( 	8) -0.207 ( 	 ) 1.116 ( 	6) 
0.09 0.074 ( 	 6) 0.715 (10) -0.154 (10) 0.865 ( 	 23) 
0.04 0.036 ( 	 6) 0.491 (26) -0.085 (56) 0.606 ( 	23) 
0.01 0.020 ( 	 4) 0.337 (46) -0.044 (20) 0.370 ( 	51) 

Mq Al ml Al ml 
0.50 0.172 (49) 1.768 (24) -0.628 (114) 1.925 (26) 

Sc 0.16 0.043 (10) 0.938 (25) -0.478 ( 	58) 1.091 (16) 
0.09 0.023 ( 	2) 0.656 (15) -0.384 ( 	90) 0.825 (30) 
0.04 0.012 ( 	 3) 0.402 (12) -0.253 (141) 0.563 (61) 
0.01 0.005 ( 	 2) 0.152 (17) -0.136 ( 	40) 0.281 (42) 

Mq Al ml Al ml 
0.50 0.465 ( 	44) 2.894 ( 	11) -0.320 (498) 3.064 (111) 

EVEN  0.16 0.057 (214) 2.041 (118) -0.165 ( 	-) 2.292 (548) 
0.09 0.017 (174) 1.735 (193) -0.084 ( 	 - 	 ) 2.043 (690) 
0.04 0.001 ( 	11) 1.254 (206) -0.006 ( 	 - 	 ) 1.571 (407) 
0.01 0.007 ( 	 10) 1.486 (344) -4.213 (368) 2.567 (420)* 

Mq Al ml Al ml 
0.50 0.441 ( 	52) 2.909 ( 	11) -0.042 (118) 2.805 	(121) 

ALL N 0.16 0.095 ( 	11) 2.072 ( 	41) -1.564 ( 	 1) 2.759 	(340) 
0.09 0.018 ( 	41) 1.708 (143) 0.26D-5( - 	 ) 0.882 	(508) 
0.04 0.003 ( 	5) 1.304 ( 	99) 0.51D-4( - 	 ) 0.983 	(426) 
0.01 0.002 C 	- 	) 1.099 (764) -0.15D-6( 	- 	) 0.227 	( 95) 

Table 4.8a 
Amplitudes and masses from 2-exponential fits to hadron propagators on a 
16 3 x24 lattice at 8=6.3. The mesons were fitted using timeslices 11-19 
(except the 2-exponential fit to the PS which used 9-19) and the baryons 
were obtained from 11-18. The starred point should be not be regarded as a 
reliable estimate. 



Mq 
0.50 
0.16 
0.09 
0.04 
0.01 

ALL 
Mq 
0.50  
0.16 
0.09 
0.04 
0.01 

Mq 
0 . 50 
0.16 
0.09 
0.04 
0.01 

EVEN N 
Mq 
0.50 
0.16 
0.09 
0.04 
0.01 

M1 
	

m2 

	

2.677 ( 82) 
	

3.003 (34) 

	

1.778 (107) 
	

2.549 (55) 

	

1.504 (143) 
	

2.456 (71) 

	

1.141 (278) 
	

2.384 (45) 

	

1.1.38 (326) 
	

2.381 (81) 

Al A2 
0.027 	(36) 0.699 (31) 
0.005 	( 	5) 0.788 (43) 
0.002 	( 	4) 0.791 (80) 
0.335(1070)0-3 0.769 (37) 
0.223(9750)D-3 0.784 (95) 

M1 
3.113 ( 71) 
2.178 (193) 
1.983 ( 50) 
1.821 (179) 
2.257 (212) 

Al 
-0.414 ( 96) 
-0.041 (132) 

	

-0.034 ( 	1) 

	

-0.023 ( 	1) 

	

-0.379 ( 	2) 

m2 
4.220 (399) 
2.648 (180) 
2.547 (401) 
2.478 (377) 
1.609 (838) 

el- 

A2 
-0.317 ( 32) 
-0.780 (204) 
-0.828 (410) 
-0.842 ( 33) 
-0.476 (937) 

M1 
2.751 (189) 
1.555 (184) 
1.136 (161) 
0.985 (139) 
0.820 (334) 

Al 
0.087 	(127) 
0.3790-3 (-
0.42 D-4(- 
0.1420-3 (- 
0.1090-3 

m2 
3.018 3.018 (143) 
2.318 ( 78) 
2.140 ( 80) 
2.175 ( 98) 
2.101 (253) 

A2 
0.665 (133) 
0.428 (134) 
0.330 (182) 
0.462 (293) 
0.407 (211) 

M1 
2.673 (165) 
1.862 (267) 
1.539 (289) 
1.602 (281) 
1.835 (370) 

Al 

	

-0.009 	(12) 

	

0.005 	(- 

	

0.003 	(- 

	

0.014 	(- 
3.28D+l(- 

m2 
3.261 ( 80) 
2.328 (308) 
2.085 (132) 
2.091 (179) 
1.836 (287) 

A2 
-0.438 	55) 
-0.238 (104) 
-0.161 C - 
-0.258 (348) 
-3.300+1 (-) 

Table 4b 
Amplitudes and masses from 4-exponential fits to baryon propagators on a 
16 3 x24 lattice at =6.3. The EVEN baryons were fitted from timeslices 6-16, 
and the ALL using 7-16. 



Mg ml m2 ml 

0.50 1.693 (37) 1.886 (301) 2.059 (24) 

0.16 0.925 (29) 1.373 (102) 1.259  

0.09 0.677 (11) 1.214 ( 	6) 1.020  

VT 	0.04 0.456 (31) 1.075 ( 	28) 0.801 (32) 

3-exp 	0.01 0.296 (75) 0.969 (299) 0.,567 (82) 

Mq Al A2 Al 

0.50 0.535 (289) 1.808 (301) -0.344 (13) 

0.16 0.172 ( 	42) 1.392 (102) -0.206  
0.09 0.096 ( 	7) 1.147 ( 	40) -0.162 (30) 
0.04 0.053 ( 	12) 0.951 ( 	14) -0.162 (19) 

0.01 0.028 ( 	42) 0.821 ( 	 - 	 ) -0.088 (65) 

A Q. 

Amplitudes and masses from 3-exponential fits to the VT propagator on a 
16 3 x24 lattice at =6.3. It was fitted using timeslices 7-18. 
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Fig. 4.30 Pion mass in lattice units at 	= 6.3 plotted against /m. 



Fig. 4.31 shows the pion mass estimates obtained from both the PS and SC 

propagators. The line is a best fit through the SC data. At the lowest mass, 

the lightest particle is the SC pion. In the absence of severe finite size 

effects, the lightest particle on the lattice should be the Goldstone pion (from 

the PS) however, it could be that the small physical size of this lattice is 

affecting this state most and forcing it to have a much higher value. At the 

other values of the quark mass (0.01 < m < 0.5), flavour symmetry is better 

than at the lower values of 8, especially when we take into account the 

relatively high physical quark masses. 

If we turn now to the rho sector, we see from fig 4.32 that we have 

almost perfect flavour symmetry. The VT propagator has also been fitted 

using three exponentials because these give slightly lower mass estimates 

than the two-exponential fits. These results are in table 4.8c. We have no 

direct measurement of finite size effects in the rho sector, however fig 4.33 

shows signs of a pion-rho degeneracy which has previously been observed 

[Bowler and Pendleton (1984), Bowler et al (1984a)] as a symptom of 

finite-size effects. The VT can also be fitted using three exponentials, and 

here a slight decrease in mass occurs at all but the lowest quark mass. 

These results are in table 4.8c. 

4.6.2 The baryon sector 

As we might anticipate, due to the boundary conditions and the shrinking 

of the physical lattice size due to the higher 8 the nucleon is harder to 

extract than at 8 = 6.15. We can see from tables 4.8a and b that the four 

exponential fits are necessary to extract the ground states and achieve good 

fits. Fig. 4.33 shows that the ALL and EVEN mass estimates agree within 

errors at all but m = 0.09, but this is mainly due to the fairly large error bars 

on all the points. The decay of the two propagators shown in fig. 4.34 is 

quite different, especially near the source, (where the large oscillations are 

present in the EVEN propagator). This serves to confirm that finite size 

effects are large. The nucleon to rho mass ratios shown in fig. 4.35 and in 

table 4.9 below are thus poor, and clustered near the heavy quark limit. 
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mq  m.T/mp mN/mp 

0.50 0.964 	( 21) 1.625 	( 126) 

0.16 0.960 	( 34) 1.682 	( 208) 

0.09 0.947 	( 24) 1.677 	( 232) 

0.04 0.915 	( 38) 2.160 	( 244) 

0.01 0.708 	(102) 2.326 	(1836) 

Table 4.9 Ratios of hadron masses at 8 = 6.3, measured using the ALL nucleon 

obtained from a 4-exponential fit and the p from a 3-exponential fit. 

As we have seen, the baryons seem to be most affected by the finite size of 

the lattice, but we also saw that the lowest mass pion from the PS propagator 

(used in this plot) is badly affected. If instead, the pion mass from the SC 

propagator is used, the lowest point is pushed down to a value for the pion to 

rho ratio of 0.431(49). 

4.7. Conclusions 

The aim of the work presented here was to perform high statistics 

measurements of hadron masses at several values of the gauge coupling, 

extending upwards from B = 6.0. 

As a precursor to this, low statistics measurements at B = 5.7 on a 16 

lattice were performed . Here the matrix inversion is relatively more costly to 

perform than at higher B. and our results do not show any indications of 
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perform than at higher B, and our results did not show any indications of 

continuum behaviour setting in at this value of the coupling; flavour symmetry 

was broken in the meson sector, and the nucleon-to-rho mass ratio did not 

cross over from the heavy to light quark regimes, but continued to grow as 

the pion-to-rho mass ratio decreased. For this reason we chose to begin 

high statistics measurements at B = 6.0 [Bowler et al. (1986b)]. 

Preliminary results at B = 6.0 on a 16 lattice suggested that we should 

extend the lattice in the time direction, so subsequent work used 16 3 x24 

lattices. Using 32 configurations on this size of lattice at B = 6.0, we 

observed signs of flavour symmetry restoration in the meson sector, 

particularly for the rho meson. The pion multiplet is a more severe test for 

the lattice calculation because only one pion is a Goldstone boson at zero 

quark mass and nonzero lattice spacing. Only in the continuum limit will the 

other 15 pions be driven to zero mass at zero quark mass. It is perhaps not 

surprising then that the non-Goldstone pion mass which we measured is 2-3 

standard deviations higher than the Goldstone pion mass at nonzero quark 

mass; although it does extrapolate to a value consistent with zero at zero 

quark mass. We conclude that there is a marked improvement in flavour 

symmetry in going from B = 5.7 to 6.0, and that the latter B value may be 

close to the onset of continuum behaviour in the meson masses. 

The results for baryon masses at B = 6.0 were less conclusive. It is 

important to comment that, at our level of statistics i.e. 32 gauge 

configurations, the baryon propagators with antiperiodic spatial boundary 

conditions become submerged in the noise before reaching the time 

boundary. So a lattice of 24 timeslices, with Dirichlet boundary conditions in 

time, is long enough; higher statistics are what is needed for improvement. In 

spite of observing a difference between the EVEN and ALL baryon timeslice 

propagators, the ground state masses extracted from them are in very good 

agreement and the resulting nucleon-to-rho mass ratio shows some sign of 

crossing over from the heavy to light quark regime, although errors are large 

and the pion-to-rho mass ratio is probably not small enough for this 

crossover to be clearly visible. Because the difference between the EVEN and 

ALL propagators increases with decreasing quark mass, and has not been 

reported for periodic spatial boundary conditions, we tentatively interpreted 

the difference as a finite-size effect which has somehow been highlighted by 

our choice of antiperiodic spatial boundary conditions. 

93 



At B = 6.15, we tested directly the effects of the spatial boundary 

conditions by obtaining propagators on the same eight configurations with 

both periodic and antiperiodic boundary conditions [Bowler et al. (1986c)]. For 

the mesons, there is good agreement between the two sets of propagators 

which indicates that the mesons are not significantly affected by the finite 

size of the 16 lattice at this value of B. The two pions, from the PS and SC 

propagators, are in good agreement and both lie on a straight line through 

zero. The two measurements of the rho agree to within 2% at all values of 

the quark mass, an improvement in flavour symmetry from the situation at B = 

6.0. 

On the other hand, there is a significant difference between the baryon 

propagators measured for the two choices of spatial boundary conditions and 

the discrepancy increases as the quark mass decreases. In addition, the 

disagreement between EVEN and ALL propagators noted for B = 6.0 persists at 

8 = 6.15 for antiperiodic boundary conditions but is not present for periodic 

boundary conditions. We ascribe these differences to finite size effects. 

We note that with antiperiodic boundary conditions on a finite lattice a 

three-quark state cannot have zero momentum : the timeslice projection does 

not single out a zero momentum baryon state; however the smallest 

momentum corresponds to only a 5% effect in the lightest baryon mass we 

measure, which is much less than the statistical error, so this fact alone does 

not account for the discrepancy between the data for the two choices of 

boundary conditions. In future high statistics work using antiperiodic spatial 

boundary conditions however, it might be advisable to take account of the 

non-zero minimum momentum by projecting onto a single non-zero 

momentum state and subtracting out the momentum contribution from the 

resulting mass estimates. 

Using periodic boundary conditions, the signal appears to be cleaner and 

it is easier to extract masses. The mass ratios we obtain at B = 6.15 suggest 

that we may have reached the asymptotic scaling region, but we must 

remember that these ratios are calculated from data which may be 

finite-size-affected. 

At 8 = 6.3 we find that now, at the lowest quark mass, the mesons are 

also finite-size-affected. The PS propagator seems to be the worst affected - 

the masses are no longer a linear function of the square root of the quark 

mass and the intercept is non-zero. However, for 0.04 . m z 0.5, there is a 
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further improvement in flavour symmetry, due to the smaller value of a 

Although we only have measurements for antiperiodic spatial boundary 

conditions, we conclude from the discrepancy between EVEN and ALL 

propagators that baryon propagators are badly finite-size-affected for m < 

0.16. Hence we do not expect reliable nuceon-to-rho mass ratios at this 

value of S. The values of the physical quark mass that we have used are high 

because, although our quark propagator algorithm converges for all quark 

masses, significant finite size effects are observed in all hadron massses for 

quark masses below 0.01 in lattice units. So there is little to be gained by 

working at lower quark masses. 

Finally, we look at the evidence for scaling in our hadron mass 

measurements. In fig 4.36, we plot the nucleon-to-rho mass ratio versus the 

pion-to-rho mass ratio obtained from three different sets of measurements - 

those of this chapter at B = 6.0 and 6.15 and also those of [Barkai et al. 

(1985a)] at B = 6.0. If meson and baryon masses are scaling between these 

8-values, then these data should all lie on a single universal curve. We can 

see that the data of [Barkai et al.], which was obtained using a 16 3 x32 lattice 

with periodic boundary conditions, is in excellent agreement with our $ = 6.15 

results using periodic spatial boundary conditions. Our 8 = 6.0 results, 

obtained using antiperiodic boundary conditions, are also consistent with the 

other data, and all three sets of points lie approximately on the same curve. 

Thus it may be the case that there is a " scaling window " between 8 = 6.0 

and B = 6.15. From fig. 4.35 it is clear that this window does not extend up to 

8 = 6.3, except at high quark masses. It is therefore of interest to perform 

higher statistics measurements at B = 6.15 and to explore smaller quark 

masses in order to obtain mass estimates closer to the physical value of the 

pion-to-rho mass ratio. This work indicates that fairly accurate 

measurements of meson masses are possible using 16 spatial lattices and 6.0 

. 8 < 6.15. In particular, flavour symmetry holds to a good approximation in 

this range. These measurements should be extended to mesons other than 

the pion and rho. The situation in the baryon sector is less clear, and further 

analysis of finite-size and non-zero momentum effects is needed in order to 

intepret our results properly. Bearing this caveat in mind, we conclude that 

on the basis of fig. 4.36 and the observed flavour symmetry in the meson 

sector, predictions for continuum quenched hadron masses are possible using 

16 3 x24 lattices between B = 6.0 and 6.15. 
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Appendix 

The DAP 

The Distributed Array Processor (DAP) is a square array of 4096 

processing elements (PEs), each with 4kbits of store, giving a total of 2 

Mbytes. 

It is accessed through an ICL 2900 mainframe (known in this context as 

the host) and it can also be used as normal store for the host when it is not 

acting as a parallel processor. Figure A.1 is a diagram of the DAP. 

The 64x64 array is connected two-dimensionally with each processing 

element linked to its four neighbours. These are identified by N,S,E and W in 

an obvious way, and the connections at the edges of the array depend on 

whether planar or cyclic geometry is in operation : cyclic geometry connects 

the edges N to S and E to W to form a torus, whereas planar defines a zero 

input at the edges. Each processing element has its own one-bit processor 

with three registers. Two of these are an accumulator store and a 'carry' 

store, and the third, the activity register (A-register) allows programmable 

control of the PEs : only if the A-register is set will certain store instructions 

be implemented. 

The DAP is programmed in a development of fortran, DAP fortran. Any 

DAP program is composed of two parts - a host fortran program and a DAP 

fortran program which is called as a subroutine from the host. The two parts 

are linked by the shared COMMON blocks which are loaded into DAP store. 

The processing begins in the host, where the input routines and data are set 

up and any initial processing completed, before control is passed over to the 

DAP using a DAP entry subroutine which can call other DAP subroutines in the 

usual way. When the parallel processing is complete, control is passed back 

to the host for final processing. 

DAP fortran has three types of variable - scalars, vectors and matrices-

which may be Real (3-8bytes), Integer (1-8bytes) or Logical. Scalars are like 

the ordinary fortran variables whereas vectors and matrices are arrays of 64 

and 64x64 entries respectively. The parallelism means that for example to 

add two numbers at every PE we use 

DIMENSION A(,),B(,),C(,) 

A = B + C 



and the calculation and assignment is performed simultaneously at every 

processing element. The fact that the matrices are 64x64 is made implicit in 

the DIMENSION statement by using (,). 

There are two important features of DAP fortran which are fully exploited 

in efficient QCD programs. These are the SHIFT functions and logical 

MASKing. The shift functions are used to bring information stored at one PE 

to another. A variant of the illustration above would be 

DIMENSION A(,),B(,),C(,) 

A = B + SHEC(C,4) 

whose effect would be to add to B at each PE the value of C at the PE four 

sites away in the west direction, and assign the sum to A. SHEC SHifts East 

Cyclically, so at the western boundary data is moved on from the eastern one. 

There are eight shifting functions, corresponding to the four directions and the 

two choices of geometry : SHEC,SHWC,SHNC,SHSC,SHEP,SHWP,SHNP and 

SHSP. There are also functions which perform shifts in long vector mode. 

Operations may be made conditional on the value of a logical matrix 

(MASK) at the particular PE. These MASKs set the A-register mentioned 

above, and may be set up using built-in functions such as ALTR(n) and 

ALTC(n). ALTR(n) sets the first n rows and every alternate n rows to FALSE. 

and the rest of the entries to .TRUE. as shown in fig A.2. Then we can use 

LOGICAL LCHESS(,) 

LCHESS = ALTR(1).LEQ.ALTC(1) 

for example to set up a 'chessboard' MASK , as shown in fig A.2. Then the 

statement 

A(LCHESS) = B 

assigns B only to the corresponding values of A which are at .TRUE. PEs, or 

alternatively, using the MASKs in combination with MERGE statements, we 

have 

A = MERGE(B,C,LCHESS) 
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where now A is assigned the value of B at sites where LCHESS is .TRUE. and 

C where it is .FALSE.. 

In using the DAP for QCD programs, we map one 16 timeslice onto the 

64x64 structure in the way shown in fig A.3 thus for example, the data for 

site (1,1,5) of the 16 3  timeslice is held at position (2,4) on the 64x64 array 

since the 3-direction is packed into a 4x4 square for each 

(1-direction,2-direction) coordinate. This means shifts in the 1 and 2 

directions are straightforward but for the shifts in the 3-direction we need a 

series of masks as shown in Fig A.4. These masks allow us to link the data at 

a given site with that one point away in the 3-direction; as we can see the 

.TRUE. sites are the ones on the array which are adjacent to the neighbouring 

lattice site in the given direction (L3FS = L3FSouth etc). 

So the following code will shift W 'back' in the 3-direction onto WS. 

WS(L3FNG1) = - SHNC(W,1) 

WS(L3FNG2) = SHNC(W,1) 

WS(L3FS) 	= SHSC(W,i) 

WS(L3FE) 	= SHEC(W,i) 

WS(L3FW) 	= SHWC(W,1) 

M. 
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