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Abstract

Next-generation wireless cellular networks are morphing into a massive Internet

of Things (IoT) environment that integrates a heterogeneous mix of wireless-

enabled devices such as unmanned aerial vehicles (UAVs) and connected vehicles.

This unprecedented transformation will not only drive an exponential growth in

wireless traffic, but it will also lead to the emergence of new wireless service

applications that substantially differ from conventional multimedia services. To

realize the fifth generation (5G) mobile networks vision, a new wireless radio

technology paradigm shift is required in order to meet the quality of service

requirements of these new emerging use cases. In this respect, one of the major

components of 5G is self-organized networks. In essence, future cellular networks

will have to rely on an autonomous and self-organized behavior in order to manage

the large scale of wireless-enabled devices. Such an autonomous capability can be

realized by integrating fundamental notions of artificial intelligence (AI) across

various network devices.

In this regard, the main objective of this thesis is to propose novel self-

organizing and AI-inspired algorithms for optimizing the available radio resources

in next-generation wireless cellular networks. First, heterogeneous networks that

encompass licensed and unlicensed spectrum are studied. In this context, a deep

reinforcement learning (RL) framework based on long short-term memory cells is

introduced. The proposed scheme aims at proactively allocating the licensed as-

sisted access LTE (LTE-LAA) radio resources over the unlicensed spectrum while

ensuring an efficient coexistence with WiFi. The proposed deep learning algo-

rithm is shown to reach a mixed-strategy Nash equilibrium, when it converges.

Simulation results using real data traces show that the proposed scheme can yield

up to 28% and 11% gains over a conventional reactive approach and a proportional

fair coexistence mechanism, respectively. In terms of priority fairness, results

show that an efficient utilization of the unlicensed spectrum is guaranteed when

both technologies, LTE-LAA and WiFi, are given equal weighted priorities for

transmission on the unlicensed spectrum. Furthermore, an optimization formula-

tion for LTE-LAA holistic traffic balancing across the licensed and the unlicensed

bands is proposed. A closed form solution for the aforementioned optimization

problem is derived. An attractive aspect of the derived solution is that it can be

applied online by each LTE-LAA small base station (SBS), adapting its trans-
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mission behavior in each of the bands, and without explicit communication with

WiFi nodes. Simulation results show that the proposed traffic balancing scheme

provides a better tradeoff between maximizing the total network throughput and

achieving fairness among all network flows compared to alternative approaches

from the literature. Second, UAV-enabled wireless networks are investigated. In

particular, the problems of interference management for cellular-connected UAVs

and the use of UAVs for providing backhaul connectivity to SBSs are studied.

Specifically, a deep RL framework based on echo state network cells is proposed

for optimizing the trajectories of multiple cellular-connected UAVs while minimiz-

ing the interference level caused on the ground network. The proposed algorithm

is shown to reach a subgame perfect Nash equilibrium upon convergence. More-

over, an upper and lower bound for the altitude of the UAVs is derived thus

reducing the computational complexity of the proposed algorithm. Simulation

results show that the proposed path planning scheme allows each UAV to achieve

a tradeoff between minimizing energy efficiency, wireless latency, and the interfer-

ence level caused on the ground network along its path. Moreover, in the context

of UAV-enabled wireless networks, a UAV-based on-demand aerial backhaul net-

work is proposed. For this framework, a network formation algorithm, which is

guaranteed to reach a pairwise stable network upon convergence, is presented.

Simulation results show that the proposed scheme achieves substantial perfor-

mance gains in terms of both rate and delay reaching, respectively, up to 3.8 and

4-fold increase compared to the formation of direct communication links with the

gateway node. Overall, the results of the different proposed schemes show that

these schemes yield significant improvements in the total network performance

as compared to current existing literature. In essence, the proposed algorithms

can also provide self-organizing solutions for several resource management prob-

lems in the context of new emerging use cases in 5G networks, such as connected

autonomous vehicles and virtual reality headsets.
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Lay Summary

The combination of billions of connected devices, petaflops of computing re-

sources, and advanced communication capabilities that enable real-time inter-

actions is leading to the creation of systems on a scale and complexity level that

is beyond the ability of humans to manage and control. Management and opera-

tion of these systems require an extremely high degree of intelligent automation,

which is one of the main components of 5G networks. In this regard, the main

scope of this thesis is to leverage the use of optimization and artificial intelli-

gence techniques for managing the wireless resources in next-generation cellular

networks.

First, we focus on spectrum management in 5G networks. 5G networks will

support more spectrum bands in order to adapt to the vast increase in the number

of connected devices. In particular, we focus on the operation of LTE over the

unlicensed spectrum. We propose a proactive resource management scheme for

the coexistence of LTE and WiFi in the unlicensed spectrum. The proposed

proactive mechanism can be combined with traditional reactive schemes thus

guaranteeing the promised quality-of-service for different types of applications.

Furthermore, we propose a traffic balancing framework for enabling small base

stations to steer their traffic between the licensed and the unlicensed bands based

on the congestion level on each band, respectively.

Second, we investigate UAV-enabled wireless networks. In particular, we pro-

pose an interference-aware path planning scheme for cellular-connected UAVs.

The main intention of the proposed scheme is to optimize the trajectories of

multiple cellular-connected UAVs while minimizing the interference level caused

on the ground network. Moreover, we propose a UAV-based on-demand aerial

backhaul scheme for providing backhaul connectivity to small base stations for

scenarios in which high-speed ground backhaul links are either unavailable or

limited in capacity.
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Chapter 1

Introduction

1.1 Motivation

Wireless cellular networks are witnessing a radical change that is mainly driven

by new wireless use cases that significantly vary from the conventional voice-

based or multimedia services. These emerging use cases, such as connected au-

tonomous vehicles, remote controlled robots, haptic feedback-enabled drones and

fixed wireless access – rivalling fiber capacity – for residential homes, will ulti-

mately impact both consumers and industries. In essence, the emergence of these

new cases will result in the proliferation of bandwidth-intensive wireless appli-

cations such as high definition video streaming and multimedia services which

can drastically strain the capacity of current wireless cellular networks. Along-

side the dramatic growth in mobile data traffic, future mobile networks must be

able to deliver ultra-reliable, low-latency communication [10–13], that is adaptive

in real-time to a rich and dynamic Internet of Things (IoT) environment. For

instance, a real-time and low-latency communication system is essential for the

autonomous behavior of future wireless devices such as drones and connected

vehicles. Therefore, these emerging new applications and use cases have created

a radically different networking environment whose quality-of-service (QoS) re-

quirements mandate a fundamental change in the way in which wireless networks

are modelled, analyzed, designed, and optimized. Consequently, the goal of the

fifth generation (5G) mobile networks is to expand the broadband capability of

mobile networks, and to provide the promised QoS for consumers and for various

industries and society at large, hence unleashing the potential of the IoT.

To realize this, current wireless cellular networks will require major changes

1
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Figure 1.1. Experiential networked intelligence for future wireless cellular networks [2].

in the implementation and deployment of the networking infrastructure as well

as the management of the available radio resources. In particular, 5G networks

will be based on software-defined networking (SDN), network functions virtual-

ization, dense small cell deployments, heterogeneous spectrum, millimeter wave

(mmWave) communications, and device-to-device communications. While the

main ingredients for 5G have been identified, integrating them into a truly harmo-

nious wireless system requires instilling intelligent functions across both the edge

and core of the network. These intelligent functions must be able to adaptively

exploit the wireless system resources and generated data, in order to optimize net-

work operation and guarantee, in real-time, the QoS needs of emerging wireless

and IoT services. Such network intelligence can be mainly realized by integrat-

ing artificial intelligence (AI) [14] and online optimization techniques across the

wireless infrastructure and end-user devices.

In particular, next-generation wireless cellular networks will rely heavily on

experiential networked intelligence, alongside traditional optimization techniques.

Experiential learning is described as the process of learning through experience

i.e., “learning through reflection on doing”. Such experiential intelligence tech-

niques will be integrated at various components of the 5G network such as intel-

ligent service deployment, intelligent policy control, intelligent resource manage-

ment, intelligent monitoring, and intelligent analysis and prediction [2], as shown

in Fig. 1.1. AI will essentially allow next-generation cellular networks to dy-

namically adapt to changing context in real-time and thus enabling autonomous

and self-adaptive operations. For instance, machine learning-based AI techniques

can be used to investigate and predict network and user behavior so as to pro-
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vide users’ information for solving diverse wireless networking problems such as

cell association, spectrum management, computational resource allocation, and

cached content replacement. These techniques can also be used to extract in-

formation from the user environment thus providing a wireless network with the

ability to predict the users’ future behaviors and, hence, design an optimal strat-

egy to improve the QoS and reliability. Therefore, machine learning-based AI

optimization algorithms will provide inherently self-organizing, self-healing, and

self-optimizing solutions for a broad range of problems within the context of

network optimization and resource management. Such AI-driven self-organizing

solutions are particularly appropriate for ultra dense wireless networks in which

classical centralized and distributed optimization approaches can no longer cope

with the scale and heterogeneity of the network. Consequently, machine learning

solutions will enable next-generation wireless cellular networks to evolve from a

network of connected things to a network of connected intelligence.

Therefore, the main goal of this thesis is to leverage machine learning and

optimization techniques for optimizing the management of the available radio

resources in next-generation wireless cellular networks. We focus on spectrum

management for 5G networks, and in particular, the coexistence of long term

evolution (LTE) and WiFi in the unlicensed spectrum. We further address some

of the challenges that arise in the context of unmanned aerial vehicles (UAVs)

for wireless communications. Specifically, we tackle the problem of interference

management for cellular-connected UAVs and the use of UAVs for providing

backhaul connectivity to small base stations (SBSs). Next, we highlight our

contributions in the aforementioned areas. Then, we give an overview on the

structure of this thesis.

1.2 Thesis Contributions

The main objective of this thesis is to propose novel algorithms and method-

ologies for optimizing the management of the available radio resources in future

wireless cellular networks. The main contributions of this thesis are summarized

as follows:

• First, we propose a proactive LTE-WiFi coexistence scheme that allows a

better utilization of the unlicensed spectrum as compared to the existing
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literature. In this regard, current existing literature [15–18] relies on a re-

active approach in which data requests are first initiated and, then, radio

resources are allocated based on their corresponding delay tolerance value.

Nevertheless, this sense-and-avoid approach can cause an underutilization

of the spectrum due to the impulsive reconfiguration of the spectrum usage

that does not account for the future dynamics of the network. Meanwhile,

in a proactive approach, rather than reactively responding to incoming de-

mands and serving them when requested, an SBS can predict traffic patterns

and determine future off-peak times so that incoming traffic demand can be

properly allocated over a given time window. Hence, a proactive coexistence

scheme allows an efficient use of the available spectrum thus resulting in a

lower collision probability for WiFi nodes and more transmission opportu-

nities for LTE. In this context, our main contribution can be summarized

as follows:

– We propose a novel deep reinforcement learning (RL) algorithm based

on long short-term memory (LSTM) cells [19] for proactively allo-

cating LTE resources over the unlicensed spectrum. The proposed

framework enables the SBSs to autonomously learn which unlicensed

channels to use along with the corresponding channel access probabil-

ity on each channel taking into account future environmental changes,

in terms of wireless local area network (WLAN) activity on the unli-

censed channels and LTE traffic loads.

– We show that our proposed deep RL algorithm reaches a mixed-strategy

Nash equilibrium (NE) upon convergence. We also show that the gain

of the proposed proactive resource allocation scheme and the optimal

size of the prediction time window is a function of the traffic pattern

of the dataset under study.

– Simulation results using real data traces show that the proposed scheme

can yield up to 28% and 11% gains over a conventional reactive ap-

proach and a proportional fair (PF) coexistence mechanism, respec-

tively. The results also show that the proposed framework prevents

WiFi performance degradation for a densely deployed licensed assisted

access (LTE-LAA) network.

– The proposed approach can also be combined with online machine
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learning to accommodate traffic changes, by properly re-training the

weights of the neural network. Moreover, the proposed scheme can be

combined with the conventional reactive approach thus serving differ-

ent types of applications.

– The results of this work have been published in [20] and [21].

• Second, we present a holistic approach for LTE-LAA small cell traffic bal-

ancing by jointly optimizing the use of the licensed and unlicensed bands.

In this regard, current existing literature [15, 17, 22–24] either do not con-

sider the operation of LTE-LAA SBS in the licensed band while optimizing

its operation over the unlicensed bands alongside WiFi or consider both

bands but do not optimize them jointly [1]. This can however lead to a

suboptimal resource allocation when seen globally. For instance, it can re-

sult in an over-utilization of the unlicensed band by LTE-LAA SBS and a

decrease in WLAN performance. In this context, our main contributions

can be summarized as follows:

– We present a formulation of the optimization problem for holistic traf-

fic balancing that seeks PF coexistence of WiFi, small cell and macro

cell user equipments (UEs) by adapting the transmission probability

of the LTE-LAA SBS in the licensed and unlicensed bands. The ra-

tionale behind this formulation is for the LTE-LAA SBS to switch

between or aggregate licensed and unlicensed bands depending on the

interference/traffic level and number of active UEs in each cell.

– We derive a closed-form solution for the aforementioned optimization

problem. An attractive aspect of the proposed approach is that it can

be applied online by each LTE-LAA SBS, adapting its transmission

behavior in each of the bands, and without explicit communication

with WiFi nodes.

– Simulation results reveal that approaches focusing on coexistence in

one band while ignoring the other cause load imbalance and a decrease

in the total network throughput and/or fairness. Meanwhile, the pro-

posed approach, owing to its holistic nature, results in improved net-

work performance as it achieves a better tradeoff between maximizing

the total network throughput and attaining fairness among all network

flows while also providing better LTE-WiFi coexistence.
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– The results of this work have been published in [25].

• Third, we propose an interference-aware path planning scheme for a net-

work of cellular-connected UAVs. Unlike current wireless UAV connectivity

that rely on short-range communication range (e.g., WiFi, bluetooth, and

radio waves), providing cellular connectivity to the UAVs allows beyond

line-of-sight control, low latency, real time communication, and ubiquitous

coverage. Such cellular-connected UAV-user equipments (UAV-UEs) will

thus enable a myriad of applications ranging from real-time video stream-

ing to surveillance. In this regard, current existing literature [26–29] is

limited to studying the impact that cellular-connected UAVs have on the

ground network. Indeed, the existing literature [26–29] does not provide

any concrete solution for optimizing the performance of a cellular network

that serves both aerial and ground UEs in order to overcome the inter-

ference challenge that arises in the context of cellular-connected UAVs.

UAV trajectory optimization is essential in such scenarios. An online path

planning that accounts for wireless metrics is vital and would, in essence,

assist in addressing the aforementioned interference challenge along with

new improvements in the design of the network, such as 3-dimensional (3D)

frequency reuse. Such a path planning scheme allows the UAVs to adapt

their movement based on the rate requirements of both aerial UAV-UEs

and ground UEs, thus improving the overall network performance. The

problem of UAV path planning has been studied mainly for non-UAV-UE

applications [30–33] with [34] being the only work considering a cellular-

connected UAV-UE scenario. Nevertheless, the work in [34] is limited to

one UAV and does not account for the interference that cellular-connected

UAVs cause on the ground network during their mission. Moreover, the

work in [34] relies on offline optimization techniques that cannot adapt to

the uncertainty and dynamics of a cellular network. In this context, our

main contributions can be summarized as follows:

– We propose a novel deep RL framework based on echo state network

(ESN) cells [35] for optimizing the trajectories of multiple cellular-

connected UAVs in an online manner. This framework will allow

cellular-connected UAVs to minimize the interference they cause on

the ground network as well as their wireless transmission latency. Two



1.2. Thesis Contributions 7

important features of our proposed algorithm are adaptation and gen-

eralization; the UAVs can take decisions for unseen network states,

based on the reward they got from previous states.

– We show that the proposed algorithm reaches a subgame perfect Nash

equilibrium (SPNE) upon convergence. Moreover, we derive an up-

per and lower bound for the altitude of the UAVs thus reducing the

computational complexity of the proposed algorithm.

– Simulation results show that the proposed approach improves the trade-

off between energy efficiency, wireless latency, and the interference level

caused on the ground network. The results also show that each UAV’s

altitude is a function of the ground network density and the UAV’s

objective function and is an important factor in achieving the UAV’s

target.

– The results of this work have been published in [36] and [37].

• Fourth, we propose a novel backhaul scheme that relies on UAVs as an on-

demand flying network. In fact, a fundamental challenge for the efficient

operation of a dense SBS deployment is to provide an economical and ubiq-

uitous backhaul connectivity to the SBSs that would allow the routing of the

traffic to/from the SBSs from/to the core network. In this regard, current

existing solutions for SBS backhauling [38–41] do not account for scenarios

in which the high-speed ground backhaul is either congested, unavailable,

or limited in capacity. In such scenarios, the backhaul connectivity of SBSs

can become a bottleneck thus degrading the performance of the radio access

network. To address this challenge, the authors in [41–43] propose a ver-

tical fronthaul/backhaul framework based on UAVs and free-space optics

communication. In [42, 43], the authors propose an optimization formula-

tion for the association problem of the UAVs and the SBSs but ignoring the

design of the multi-hop links among the UAVs. Therefore, one challenging

area which remains relatively unexplored is the dynamic formation of the

aerial graph that connects the UAVs to the core network. Indeed, the ex-

isting prior art does not provide an efficient scheme, in terms of achievable

rate and delay, for the formation of a multi-hop aerial network for SBS

backhauling. In this context, our main contributions can be summarized as

follows:
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– We propose an online framework that relies on a network of UAVs as

an on-demand flying network linking the SBSs and the core network in

scenarios where the ground backhaul is either unavailable or limited in

capacity. The design of the aerial backhaul network is formulated as a

network formation game [44] in which the players are the UAVs. The

objective of the proposed game is to allow the UAVs to autonomously

learn which air-to-air (A2A) and air-to-ground (A2G) links to form in

order to guarantee the connectivity of the SBSs to the core network.

– To solve this game, we propose a dynamic network formation algorithm

that is guaranteed to reach a pairwise stable network upon conver-

gence. Moreover, to ensure an efficient backhauling process between

the UAVs, we incorporate the notion of virtual force fields [45] into our

dynamic algorithm. In essence, virtual forces allow the UAVs to adjust

their location dynamically based on the links they want to form.

– Simulation results show that the proposed network formation algo-

rithm achieves substantial performance gains in terms of both rate and

delay reaching, respectively, up to 3.8 and 4-fold increase compared to

the formation of direct communication links with the gateway node.

– The results of this work have been published in [46].

This thesis yielded the following journals and conference publications:

• U. Challita, A. Ferdowsi, M. Chen, and W. Saad, “Artificial Intelligence

for Wireless Connectivity and Security of Cellular-Connected UAVs”, Sub-

mitted to IEEE Wireless Communications, available at arXiv:1804.05348.

• U. Challita, W. Saad, and C. Bettstetter, “Interference Management for

Cellular-Connected UAVs: A Deep Reinforcement Learning Approach”,

Submitted to IEEE Transactions on Wireless Communications (TWC),

available at arXiv:1801.05500.

• U. Challita, L. Dong and W. Saad, “Proactive Resource Management

for LTE in Unlicensed Spectrum: A Deep Learning Perspective”, IEEE

Transactions on Wireless Communications (TWC), vol. 17, no. 7, July

2018.
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• A. Ferdowsi, U. Challita, W. Saad, and N. Mandayam, “Robust Deep

Reinforcement Learning for Security and Safety in Autonomous Vehicle

Systems”, the 21st IEEE International Conference on Intelligent Trans-

portation Systems (ITS), Nov. 2018, Maui, Hawaii, USA.

• A. Ferdowsi, U. Challita, and W. Saad “Deep Learning for Reliable Mobile

Edge Analytics in Intelligent Transportation Systems”, Submitted to IEEE

Network, available at: arXiv:1712.04135.

• M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah “Machine Learn-

ing for Wireless Networks with Artificial Intelligence: A Tutorial on Neural

Networks”, Submitted to Proceedings of IEEE, available at: arXiv:1710.02913.

• U. Challita, W. Saad, and C. Bettstetter, “Deep Reinforcement Learning

for Interference-Aware Path Planning of Cellular-Connected UAVs”, IEEE

International Conference on Communications (ICC), May 2018, Kansas

City, USA.

• U. Challita, and W. Saad, “Network Formation in the Sky: Unmanned

Aerial Vehicles for Multi-hop Wireless Backhauling”, IEEE Global Commu-

nications Conference (Globecom), Dec. 2017, Singapore.

• U. Challita, L. Dong, and W. Saad, “Deep Learning for Proactive Resource

Allocation in LTE-U Networks”, European Wireless (EW), May 2017, Dres-

den, Germany.

• U. Challita, and M. K. Marina “Holistic Small Cell Traffic Balancing

across Licensed and Unlicensed Bands”, The 19th ACM International Con-

ference on Modeling, Analysis and Simulation of Wireless and Mobile Sys-

tems (MSWiM), Nov. 2016, Malta.

• C. Hasan, M. K. Marina, and U. Challita, “On LTE-WiFi Coexistence and

Inter-Operator Spectrum Sharing in Unlicensed Bands: Altruism, Cooper-

ation and Fairness”, The 17th International Symposium on Mobile Ad Hoc

Networking and Computing (MobiHoc), July 2016, Paderborn, Germany.

In what follows, we give an overview on the structure of this thesis.
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1.3 Structure

The rest of this thesis is structured as follows:

• Chapter 2 gives a general overview on topics of direct relevance to the

work presented in this thesis. The first part of this chapter presents general

background on next-generation cellular networks. The second part of this

chapter provides background information about the underlying techniques

of the proposed solutions in this thesis such as game theory and machine

learning.

• Chapter 3 presents a proactive resource management scheme for the co-

existence of LTE and WiFi in the unlicensed band. The proposed scheme

allows different SBSs to autonomously update their channel selection and

channel access probabilities based on the traffic of WLAN on each of the

unlicensed channels.

• Chapter 4 introduces a holistic approach for LTE-LAA small cell traffic

balancing by jointly optimizing the use of the licensed and unlicensed bands.

The proposed scheme enables the LTE-LAA small cell to autonomously

switch between or aggregate licensed and unlicensed bands depending on

the interference/traffic level and the number of active UEs in each band.

• Chapter 5 explores an interference-aware path planning scheme for a net-

work of cellular-connected UAVs. The proposed scheme enables each UAV

to achieve a tradeoff between maximizing energy efficiency and minimiz-

ing both wireless latency and the interference level caused on the ground

network along its path.

• Chapter 6 investigates a novel UAV-based backhaul framework for linking

the SBSs and the core network in scenarios where the ground backhaul is

either unavailable or limited in capacity. Based on the proposed scheme,

the UAVs would either serve as a bridge among the SBSs and relay the

traffic to a nearby gateway node (with core network access) or act as an

intermediate relay point between different backhaul transceivers.

• Chapter 7 summarizes the work presented in this thesis and provides some

future direction in the scope of this thesis.



Chapter 2

Background

In this chapter, we give an overview on topics of direct relevance to the work pre-

sented in this thesis. The first part of this chapter presents general background

information on next-generation cellular networks. In particular, we overview the

different types of spectrum for future cellular networks and we focus on the co-

existence of LTE-LAA and WiFi in the 5 GHz unlicensed spectrum. Moreover,

we give a general background on the IoT with a focus on UAV-enabled wire-

less networks and connected autonomous vehicles. Finally, we discuss different

5G backhaul solutions and elaborate more on different fairness notions used in

wireless networks. Background information related to the underlying analytical

techniques of the proposed solutions is presented in the second part of this chap-

ter. We overview game theory, specifically, network formation games, and deep

learning techniques such as LSTM and deep ESNs.

2.1 Next-Generation Cellular Networks

5G cellular networks promise to deliver enhanced mobile broadband, mission

critical services, massive IoT, and vehicular communications [3, 47]. In essence,

beyond the need for high data rates – which has been the main driver of the

wireless network evolution in the past decade – next-generation wireless networks

must be able to deliver ultra-reliable, low-latency communication [10–13], that is

adaptive, in real-time to a rich and dynamic IoT environment. In particular, the

5G key elements, given in Fig. 2.1, can be summarized as follows:

• Higher data capacity: Area capacity 1000× fourth generation (4G) mo-

bile networks and edge capacity 100×4G.

11
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Figure 2.1. Key elements of 5G.

• High reliability and low latency: Roundtrip air latency of 1 msec.

• Cost reduction: For instance, SBSs should be 10 − 100× cheaper than

macro base stations (MBSs).

• Machine type devices: such as virtual reality headsets, connected au-

tonomous vehicles, and UAVs.

• Low energy consumption: 5G will allow a huge boost to network capac-

ity while maintaining a flat energy consumption.

• Lower outage probability: and thus better coverage.

Therefore, to achieve these key elements and thus cope with this ongoing

and rapid evolution of wireless services, much research has been dedicated to

investigate the optimal cellular network architecture within the context of the

emerging fifth generation wireless networks (e.g., see [47] and references therein).

For instance, the 1000× data rate will be mainly achieved through combined

gains in the following categories:

• Dense SBS deployment: 5G networks will consist of a dense deployment

of SBSs with reduced cell sizes and will essentially rely on offloading in order

to improve the area spectral efficiency. This in turn would result in more

active nodes per unit area and Hz.

• More efficient use of existing spectrum: Unlike early generations of

wireless cellular networks that operate exclusively over the licensed spec-

trum, 5G networks would transmit over the 5 GHz unlicensed spectrum
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and other underutilized spectrum bands such as the 3.8 GHz, alongside the

conventional licensed spectrum.

• More spectrum: 5G networks will leverage the large amount of available

bandwidth (BW) in the mmWave frequencies. In fact, mmWave communi-

cations will provide high data rates by exploiting directional antennas and

transmitting over a large BW.

• Increased spectral efficiency: This can be achieved through advances

in multiple-input-multiple-output (MIMO) to support more bits/s/Hz per

node.

Therefore, the drastic growth in mobile broadband data will require drastic im-

provements in spectrum efficiency, small cell network densification and large

amounts of additional spectrum. As such, the combination of more nodes per

unit area, more spectrum, and more bits/s/Hz per node, will compound higher

data rates in bits/s per unit area. Next, we give a general overview on the spec-

trum for future 5G networks while focusing on the operation of LTE in the 5

GHz unlicensed band. This is then followed by a discussion on the internet of

things and in particular, UAVs and connected autonomous vehicles. Finally, we

summarize the different proposed solutions for 5G SBS backhauling.

2.1.1 Spectrum Management and Coexistence of Multiple Ra-

dio Access Technologies (Multi-RATs)

To cope with the unprecedented increase in mobile data traffic and realize the en-

visioned 5G services, significant enhancement of per-user throughput and overall

system capacity is required [48]. Such an enhancement can be achieved through

advanced physical (PHY)/medium access control (MAC)/network technologies

and efficient methods of spectrum management. In fact, one of the main ad-

vancements in the network design for 5G networks relies on the integration of

multiple different radio access technologies, as shown in Fig. 2.2. With multi-

RAT integration, a mobile device can potentially transmit data over multiple

radio interfaces such as LTE and WiFi, at the same time, thus improving its

performance [49]. Moreover, a multi-RAT network allows fast handover between

different RATs and, thus, providing seamless mobility experience for the UEs.

Therefore, the integration of different RATs results in an improvement in the
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WiFi

mmWave

Cellular

Figure 2.2. Multiple radio access networks [3].

overall utilization of the available radio resources and, thus, an increase in the

system’s capacity. It also guarantees a consistent service experience for differ-

ent UEs irrespective of the served RAT and facilitates the management of the

resulting network.

Spectrum management is also regarded as another key component of 5G net-

works [4, 47]. The radio spectrum is mainly divided into two types, licensed and

unlicensed. The former includes frequencies that can be reserved for a specific

use while the unlicensed spectrum is publicly owned and can be used without the

need of a license. The unlicensed spectrum has been an attractive band for the

operation of many current wireless technologies such as WiFi hotspots, cordless

phones, RFID, and many applications such as medical equipment, wireless head-

sets and keyboards, remote car door openers and industrial systems. Meanwhile,

static assignments of dedicated and exclusive licenses over many years have dom-

inated spectrum policy for mobile services in order to assure high service quality

and reliability for the subscriber. However, due to the increase in the traffic de-

mand and the need for more spectrum, regulators are now considering spectrum

sharing with other incumbent technologies over various frequency bands.

Therefore, unlike early generations of cellular networks that operate exclu-

sively on the sub-6 GHz (microwave) licensed band, 5G networks are expected to

transmit over the conventional licensed sub-6 GHz band, sub-6 GHz unlicensed

spectrum and the high-frequency mmWave band, which can be either licensed

or unlicensed [50–52]. The shared spectrum mechanism will be used as a com-

plement to dedicated licensed spectrum. Future mobile networks would operate

over the unlicensed (sub-6 GHz and high-frequency mmWave band) and licensed

shared access (LSA) bands alongside the sub-6 GHz licensed spectrum via the

carrier aggregation (CA) feature that has been defined in LTE Advanced, Rel-

10. The CA feature allows a maximum of five component carriers, contiguous or
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Figure 2.3. Spectrum complements for future mobile networks [4].

Figure 2.4. Sub-6 GHz spectrum for future mobile networks [5].

non-contiguous, to be aggregated in order to form a single LTE radio interface. It

defines three different use cases for the available spectrum: licensed and licensed

CA, licensed and unlicensed CA, and licensed and shared access CA as shown in

Fig. 2.3.

Within this spectrum landscape, on the one hand, the classical LTE sub-6

GHz licensed band provides a reliable, albeit limited and scarce resource. On

the other hand, the sub-6 GHz unlicensed bands can be used to serve best ef-

fort traffic only since the operation over this spectrum should account for the

presence of other coexisting technologies. Fig. 2.4 summarizes the sub-6 GHz

spectrum which is indeed valuable due to its channel characteristics that essen-

tially provide better penetration and thus a higher coverage range as compared

to high-frequency bands. Meanwhile, the high-frequency mmWave spectrum (li-

censed or unlicensed) has a large amount of available BW and can provide multi-

gigabit communication services, however, the uncertainty and dynamic channel

variations of the mmWave band due to blockage make it unreliable. Therefore, a

multi-mode BS operating over the sub-6 GHz licensed, sub-6 GHz unlicensed, and

the high-frequency mmWave bands can exploit the different characteristics and

availability of the frequency bands thus providing robust and reliable communica-

tion links for the end users [52]. In what follows, we give a brief overview on LSA,

sub-6 GHz unlicensed spectrum, and the high-frequency mmWave spectrum.
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2.1.1.1 Licensed Shared Access

The sub-6 GHz spectrum bands are largely fragmented and challenging to har-

monize. These bands have been allocated to different primary systems, and hence

their exclusive use for mobile broadband would be hard to accomplish. LSA, also

known as authorized shared access (ASA) is a new regulatory concept which was

initially introduced by Nokia and Qualcomm in 2011 in order to support more

spectrum for mobile broadband [53]. It provides a solution for bands that cannot

be easily refarmed or totally vacated by their incumbent users and where spec-

trum usage is underutilized and infrequent. For example, spectrum for military

radar may have been allocated on countrywide basis, but the radar operations

may only be utilizing it at certain places such as coastline [53]. Therefore, LSA is

intended to be applicable to frequency bands that are not being used by licensees

at particular locations or times, extending a certain level of quality of service to

all rights holders, including sub-licensees. For instance, the 2.3-2.4 GHz band

has been identified in Europe as the first potential application area for spectrum

sharing between a mobile network operator and incumbent spectrum users under

an LSA framework. To realize such a sharing mechanism, most of the existing

literature suggest the use of an ASA geo-location database by a network operator,

which instructs the relevant base station (BS) to aggregate the ASA channels that

are free at a particular time. Therefore, the geo-location database manages the

spectrum resource allocation based on predefined policies and availability thus

ensuring protection of the primary UEs.

2.1.1.2 Sub-6 GHz Unlicensed Spectrum

The unlicensed spectrum refers to the frequency bands for which no exclusive

licenses are granted and on which unregistered UEs may operate wireless devices

without a federal communications commission (FCC) license. This spectrum can

be categorized into two main bands – the industrial, scientific and medical (ISM)

and the unlicensed national information infrastructure (U-NII) bands. The ISM

bands are generally confined to the 900 MHz and 2.45 GHz range, while the UNII

band covers the higher 5.15-5.35 GHz and 5.725-5.825 GHz range. Numerous

applications use the ISM/U-NII bands, including cordless phones, wireless garage

door openers, wireless microphones, vehicle tracking and amateur radio as well

as a number of access technologies such as 802.11 (WiFi), 802.15.1 (Bluetooth)
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and 802.15.4 (ZigBee).

The 2.4 GHz ISM band provides 13 overlapping channels spread equally over

the frequencies in addition to a 14th channel used in Japan with the center

frequency 2.484 GHz. This leaves available only three non-overlapping channels

in the 2.4 GHz band. On the other hand, the 5 GHz band is divided up into

sub-bands named U-NII-1, U-NII-2, U-NII-2e, and U-NII-3 where U-NII-3 is not

freely available worldwide. In total, there are 23 non-overlapping channels in the

5 GHz band where 4 of these have limitations based on location. The 23 available

non-overlapping channels in the 5 GHz band can provide a possibility for easier

planning of an interference-free and stable wireless communication as compared to

three non-overlapping channels in the 2.4 GHz band. Moreover, the availability

of 23 non-overlapping channels allows for increased density i.e., more wireless

devices can be connected in the same radio environment. This in turn makes

the 5 GHz unlicensed band an attractive spectrum for future mobile networks.

Nevertheless, to operate over the unlicensed band, future mobile networks must

comply with the requirements of the FCC’s Part 15 Rules, which are summarized

as follows [54]:

• Dynamic frequency selection (DFS): DFS is a mechanism that en-

ables devices to operate over the 5 GHz unlicensed frequency bands without

causing interference to existing radar systems in this frequency band. In

particular, DFS requires coexisting devices to vacate a particular channel

on the 5 GHz band if the level of a radar signal is detected to be above a

certain threshold value on that channel.

• Listen-before-talk (LBT): LBT or clear channel assessment (CCA) is

a technique whereby a radio transmitter is required to sense its radio en-

vironment for a period of at least 20 µsec before it starts a transmission.

The LBT regulation is imposed only in markets such as Japan, India and

Europe.

• Discontinuous transmission (DTX): DTX limits the use of a channel

for a maximum transmission duration set by the regulations (1 to 10 msec).

For example, the maximum transmission duration in Japan is set to 4 msec.

• Transmit power control (TPC): TPC limits the maximum transmission

power on the unlicensed bands based on the country and the area of the
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Figure 2.5. The mmWave band between 30 and 300 GHz. Atmospheric absorption across

mmWave frequencies in dB/km. The attenuation caused by atmospheric absorption is 0.012

dB over 200 m at 28 GHz and 0.016 dB over 200 m at 38 GHz. Frequencies from 70 to 100

GHz and 125 to 160 GHz also have small loss. Figure from [6].

band being used. For example, FCC allocates both the 900 MHz and 2.4

GHz band with a maximum transmission power of 1 W, whereas ETSI

allocates only the 2.4 GHz band with 100 mW as the maximum transmission

power (900 MHz is used for GSM cell phones in Europe). For the 5 GHz

band, the lower portion of the spectrum is restricted to indoor use, with a

maximum transmit power of 200 mW, while the upper part allows higher

transmission power, typically 1 W [55].

2.1.1.3 High-frequency mmWave Spectrum

MmWave frequencies between 30 and 300 GHz are a new frontier for cellular

communications that offer the promise of orders of magnitude greater bandwidths

combined with further gains via beamforming and spatial multiplexing from mul-

tielement antenna arrays [56]. In fact, the available spectrum at these high fre-

quencies offer more than 200 times the current cellular spectrum, as depicted in

Fig. 2.5. Operation over the mmWave band will essentially allow multi-Gbps wire-

less transmission. However, a main difference between microwave and mmWave

frequencies is the sensitivity of the latter to blockages. In essence, mmWave fre-

quency bands exhibit a path loss exponent of 2 for line-of-sight (LoS) propagation

and 4 (plus additional power loss) for non-line-of-sight (NLoS) links [57]. Indeed,

mmWave cellular research will need to incorporate sensitivity to blockages, more

complex channel models, and the use of higher density infrastructure and re-

lays [58]. Therefore, despite the potential of mmWave cellular systems, there are
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a number of key challenges for realizing the vision of cellular networks in these

bands, which are summarized as follows [56]:

• Short range and directional communication: According to Friis’ trans-

mission law, the free space omnidirectional path loss grows with the square

of the frequency. Therefore, signal attenuation is high for mmWave. How-

ever, the smaller wavelength of the mmWave signals enable proportionally

greater antenna gain for the same physical antenna size. Consequently, the

higher frequencies of the mmWave signals do not result in any increased

free space propagation loss, provided that the antenna area remains fixed

and suitable directional transmissions are used. Meanwhile, the reliance

on highly directional transmissions will necessitate novel design changes to

current cellular systems.

• Shadowing: mmWave signals are extremely susceptible to shadowing. For

example, materials such as brick can attenuate signals by as much as 40-80

dB [56] and the human body itself can result in a 20-35 dB loss. Mean-

while, humidity and rain fades are not an issue in cellular systems. On the

contrary, the human body and other outdoor materials are very reflective

for mmWave signals and thus act as scatterers for mmWave propagation.

• Rapid channel fluctuations and intermittent connectivity: For a

given velocity, channel coherence time is linear in the carrier frequency and

is therefore very small in the mmWave range. For instance, the Doppler

spread at 60 km/h at 60 GHz is over 3 kHz, hence the channel will change

in the order of hundreds of microseconds, which is considerably much faster

than current cellular systems. Moreover, the presence of obstacles would

lead to dramatic swings in path loss as a result of high levels of shadowing.

Consequently, this rapid change in the path loss would result in changes for

cell association and thus an intermittent connectivity for the UEs.

• Multiuser coordination: Current applications for mmWave transmis-

sions are generally for point-to-point links. Nevertheless, to achieve high

spatial reuse and spectral efficiency, cellular systems require simultaneous

transmissions over multiple interfering links, which therefore necessitates

new mechanisms for coordinating these transmissions in mmWave networks.



20 Chapter 2. Background

Here, it is important to note that, due to the limited range of the mmWave

signals, most of the cellular applications for mmWave systems have focused on

small-cell, outdoor deployments such as in campus- and stadium-like settings

where the UEs could obtain relatively unobstructed connections to SBSs operat-

ing over the mmWave band. It is also worth noting that, due to the inherent lim-

itations of the mmWave propagation, mmWave cellular systems cannot provide

uniform, robust high capacity across a range of deployments. As such, mmWave

networks will be inherently heterogeneous. For instance, mmWave cells will have

to coexist with a conventional microwave cellular overlay for universal coverage

due to the limitation in their coverage range [52].

Having defined the different types of bands over which 5G networks will op-

erate, next, we elaborate more on the operation of LTE over the unlicensed spec-

trum, an approach known as licensed assisted access LTE.

2.1.2 Licensed Assisted Access LTE

The significant amount of unlicensed band in the 5 GHz band has recently at-

tracted operators to deploy LTE in unlicensed spectrum bands, an approach

known as licensed-assisted access using LTE or LTE-Unlicensed (LTE-U). In this

section, we give a general overview on LTE-LAA along with its opportunities and

challenges.

2.1.2.1 Spectrum for LTE-LAA

According to the third generation partnership project (3GPP) release 13, LTE

is expected to start using the unlicensed spectrum alongside the licensed spec-

trum [59]. The frequency band of most interest for 3GPP is the 5 GHz band,

which has up to 500 MHz of spectrum with 23 non-overlapping channels of 20

MHz BW channels available globally as compared to three non-overlapping 20

MHz channels in the 2.4 GHz frequency band. Moreover, the 5 GHz spectrum

is not shared with widely used devices that utilize Bluetooth and cordless phone

technology and equipment such as microwave ovens which therefore implies less

interference upon transmitting over the 5 GHz band than the 2.4 GHz band.

The 5 GHz unlicensed band is divided into three main categories: U-NII-1

(5.15 - 5.25 GHz), U-NII-2 (5.25 - 5.35 GHz), extended UNII-2 (5.470 - 5.725

GHz), and U-NII-3 (5.725-5.825 GHz). These bands are categorized based on
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the radio frequency (RF) requirements (e.g., the maximum transmit power, an-

tenna gain) and other regulatory requirements that define the operation areas

and license requirement. For instance, the U-NII-1 band is restricted for indoor

operations with a power limit of 200 mW in order to protect co-channel mobile

satellite service feeder links. Due to these restrictions, this sub-band is most

suitable for U-NII devices providing communication links between indoor devices

separated by short distances. On the contrary, the U-NII-2 band can be used for

indoor and outdoor operations with a maximum transmit power of 1 W and is

suitable for communication links within and between buildings such as the case

in campus-wide local area networks. This band is shared with the federal govern-

ment radio location service, earth exploration satellite service, and space research

service. Finally, the U-NII-3 band (also known as U-NII/ISM due to overlap with

the ISM band) is intended for outdoor and indoor transmissions with a maximum

transmit power of 4 W and is suitable for communication links within and among

buildings and over long distances through the use of high gain antennas. This

U-NII sub-band is shared with federal government radio location, amateur, ISM,

and other Part 15 devices.

Therefore, to select the most suitable band for the operation of LTE-LAA,

one has to consider the availability of BW, regulation restrictions, and the inter-

modulation interference with existing international mobile telecommunications

bands. For example, there exists some cross-band emission issues (e.g., the inter-

modulation interference between 5.47-5.725 GHz band and the 1.8 GHz band)

which prohibit their aggregation with other LTE licensed bands. Moreover, the

5.15-5.25 GHz and 5.25-5.35 GHz bands are currently used by residential WLAN

which therefore makes these bands undesirable for LTE-LAA operation. Conse-

quently, the most suitable bands for LTE-LAA are 5.725-5.850 GHz. This is due

to the large available BW, indoor and outdoor operation, high transmit power,

relatively lower interference than other sub-bands, no inter-modulation interfer-

ence with most of LTE licensed bands, and fewer regulatory requirements in most

regions.

2.1.2.2 LTE-LAA Operation Modes

The goal of LTE-LAA is to leverage the unlicensed spectrum as a complement to

licensed spectrum to offload best-effort traffic data through the CA framework,

while critical control signalling, mobility, voice and control data will always be
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transmitted over the licensed band. Therefore, the primary carrier always uses

licensed spectrum in order to ensure that the connection is maintained while the

secondary carrier uses unlicensed spectrum. Three modes of operation for LTE-

LAA have been defined [59]: standalone, supplemental downlink (SDL), and

carrier aggregation. In the standalone mode, both control plane and data plane

traffic are carried over the unlicensed spectrum and can therefore be adopted in

interference-limited scenarios only. Unlike the supplemental downlink mode that

uses the unlicensed spectrum only for the downlink (DL), the carrier aggregation

mode will use the unlicensed spectrum for both the DL and uplink (UL) directions.

When operating in the SDL mode, LTE SBSs can perform most of the necessary

operations to ensure reliable communications. For instance, the SBS would check

the availability of a particular channel and should aim to select a channel that is

either free or slightly loaded.

2.1.2.3 LTE-LAA Deployment Scenarios

LTE-LAA is considered as an attractive spectrum for the operation of small cells

(femto, pico, and micro cells) due to the low power restriction in the unlicensed

band which in turn results in a smaller coverage range. Two deployment scenarios

are considered: co-located and non-co-located. In the former scenario, an SBS

transmits on both bands, while in the latter an SBS transmits only on the unli-

censed band. Therefore, in the non-co-located scenario, a UE receives its control

and critical information from the MBS that transmits over the licensed band and

the best effort data from the SBS that operates over the unlicensed band only.

It is the SBS that would decide on how to split data transmission between the

licensed and the unlicensed bands on the basis of an LTE subframe duration (1

msec).

LTE-LAA relies on the existing core network for the backhaul and other ca-

pabilities such as security and authentication. However, a new RF support is

needed at both the UE and the SBS in order to accommodate the new frequency

bands. For the CA mode, the SBS and the UE should incorporate new capabil-

ities that would ensure proper sharing of the unlicensed frequencies such as the

LBT feature and radar detection. On the other hand, these features are needed

only at the SBS side for the SDL mode.
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2.1.2.4 LTE-LAA Opportunities

LTE-LAA provides new opportunities for both, the UEs and the network opera-

tors. In what follows, we summarize the gains achieved upon the transmission of

LTE over the unlicensed spectrum.

2.1.2.4.1 Data Rate Improvement LTE-LAA allows an increase in the trans-

mission BW by aggregating the licensed and the unlicensed bands. This in turn

allows the UEs to achieve a higher data rate and better QoS. Moreover, as com-

pared to WiFi, LTE offers a higher data rate and hence a more efficient use of the

unlicensed spectrum. For example, LTE offers a peak data rate of 1.09 Gbps at

80 MHz and 4x4 MIMO while that of WiFi is 0.75 Gbps. In [60], Qualcomm ex-

periments have shown that, for the same number of LTE-LAA nodes, LTE-LAA

provides twice the capacity as compared to WiFi. Moreover, the same capacity

can be provided with fewer nodes with LTE-LAA versus WiFi.

2.1.2.4.2 Better Spectrum Efficiency As compared to WiFi and other tech-

nologies operating over the unlicensed band, LTE offers better spectrum effi-

ciency. This is due to the fact that LTE is a scheduled system and therefore

overcoming any intra-system contention. In addition, LTE offers various per-

formance enhancing techniques (channel quality indicator scheduling, fast link

adaptation, L1 hybrid automatic repeat request, coordinated multipoint, CA, in-

tercell interference (ICIC) management, etc.) and better QoS management and

control. For instance, it can operate at lower signal-to-interference-plus-noise ra-

tio (SINR) values as compared to WiFi systems and supports eight different QoS

class identifiers with different performance requirements such as guaranteed bit

rates, priority, delay, and packet error loss rate.

2.1.2.4.3 Reliable and Predictable Performance As opposed to the unli-

censed spectrum, the licensed spectrum offers a reliable and predictable perfor-

mance. Therefore, through CA, LTE-LAA guarantees UE experience in which

control and signalling information is always transmitted over the licensed band.

In essence, the licensed spectrum ensures service quality in case the unlicensed

spectrum becomes unusable for any reason, such as reduced coverage and inter-

ference from other systems.
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2.1.2.4.4 Wider Coverage Range LTE-LAA SBSs provides a larger coverage

range, as compared to WiFi access points (WAPs). For example, at 5.9 GHz and

power level of 20 dBm, LTE offers a coverage range of 38 m while that of WiFi

is 28 m.

2.1.2.4.5 Seamless Indoor/Outdoor Mobility What makes LTE an attrac-

tive technology over WiFi is that the former is a cellular technology while the

latter is a hotspot technology that does not account for mobility. LTE offers

automatic subscriber authentication, integrated backhaul, and seamless mobility

to and from the MBSs. In LTE-LAA, the UE mobility is controlled via the li-

censed band which allows robust mobility through licensed anchor carrier. This in

turn enables LTE-LAA to offer seamless indoor/outdoor mobility and to support

handover and service continuity.

2.1.2.4.6 Management of a Single Network LTE-LAA can be integrated

into a mobile operator’s existing radio network setup which therefore allows the

management of a single network. This in turn results in a unified LTE net-

work with common authentication, security, and management thus simplifying

the overall network maintenance. In essence, a unified network allows joint oper-

ation, load balancing, and interference management along with a flexible charging

policy.

2.1.2.4.7 Increase in Revenue LTE-LAA is fully transparent to the LTE core

network and thus does not require any upgrade for the evolved packet core ele-

ments. This in turn keeps the capital expenditure (CAPEX) of LTE-LAA deploy-

ment at a reduced level cost due to the existence of the backhaul, core network,

and the SBSs that are already deployed for licensed LTE carriers. Therefore,

operators would only need to upgrade the SBSs so that they can operate over the

unlicensed spectrum.

From an operational perspective, LTE-LAA allows a unified operation and

management between the licensed and the unlicensed spectrum, including OAM

configuration, authorization, charging, and RRM management through a common

RAN framework across the whole network. This in turn keeps the operational

expenditure (OPEX) at a lower cost especially that the secondary cell can be

activated/deactivated by the primary cell dynamically within few milliseconds.
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Therefore, given the fact that the unlicensed spectrum is free to use and the low

CAPEX and OPEX cost, LTE-LAA offers operators an opportunity for increasing

their revenue.

2.1.2.5 LTE-LAA Challenges

To reap the benefits from the operation of LTE over the unlicensed spectrum,

several challenges need to be addressed such as traffic balancing across the licensed

and the unlicensed bands, the coexistence of multiple LTE-LAA operators, and

the coexistence of LTE with other incumbent technologies such as WLAN. The

main LTE-LAA challenges are summarized as follows.

2.1.2.5.1 Meeting the Regulatory Requirements Regulatory requirements

should be met for any technology operating on the unlicensed band. This in turn

necessitates an update for the MAC layer of LTE in order to support DFS, LBT,

DTX, and TPC.

2.1.2.5.2 AP Discovery An LTE-LAA SBS should be aware of any other

technology transmitting on the unlicensed band in order to allow a fair coexistence

and coordination with these incumbent technologies. For instance, WAPs use

beacon request/report pairs for AP discovery. Similarly, an LTE-LAA SBS should

be able to detect nearby WAPs through new discovery mechanisms such as beacon

signalling or fingerprint techniques.

2.1.2.5.3 MAC Layer Time Synchronization Inter-operator and intra-operator

time synchronization is required for the coexistence of multiple operators on the

unlicensed band. In fact, an LTE SBS can transmit at the beginning of a subframe

only which in turn necessitates synchronization among different operators. More-

over, WAPs can only transmit during the contention-free periods (CFP) which

in turn necessitates synchronization between LTE SBSs and WiFi nodes. In par-

ticular, the beginning of an LTE subframe should coincide with the beginning of

a WiFi CFP.

2.1.2.5.4 Traffic Balancing An SBS would essentially operate over the li-

censed and unlicensed spectrum via the CA framework. As such, intelligent traf-

fic offloading between both bands is vital. On the licensed band, an LTE-LAA
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SBS causes ICIC on other neighbouring SBSs. Meanwhile, an LTE-LAA SBS can

cause disruption to the operation of WiFi APs on the unlicensed band. There-

fore, an LTE-LAA SBS should automatically balance its traffic in the licensed and

unlicensed bands based on channel gains, interference, and traffic conditions on

both bands. In this regard, new strategies are required in order to steer the traffic

between the licensed and the unlicensed bands in a way that would maximize the

total network performance.

2.1.2.5.5 Global Solution A global solution for the operation of LTE-LAA

over the unlicensed band is required in order to address the regulatory require-

ments of different regions. For instance, LBT is necessary in markets such as

Europe and Japan but not in the US. Therefore, a global solution is required in

order to avoid market fragmentation.

2.1.2.5.6 Multi-operator Coexistence A new policy for sharing the unli-

censed spectrum among different LTE-LAA operators is necessary. This is needed

in order to guarantee a fair share among different operators and to avoid spectrum

overlapping which in turn can result in low spectrum efficiency.

2.1.2.5.7 Multi-technology Coexistence To allow an efficient operation of

LTE over the unlicensed band, LTE-LAA should coexist fairly with other in-

cumbent technologies such as WLAN. However, the limitation for the efficient

coexistence of LTE and WiFi is due to the lack of an inter-RAT coordination and

mutual interference management when these two technologies share the same

unlicensed spectrum. For instance, preliminary results show that WAP through-

put could drop by 70% and even 100%, depending on the scenario, if mutual

interference is not mitigated [61]. In fact, the LTE-WiFi coexistence challenge

stems primarily from the difference in the PHY and MAC layers of these two

technologies.

The PHY layer of WiFi is based on orthogonal frequency division multiplexing

(OFDM) and a time division duplex (TDD) mode. During one OFDM symbol

(4 µs), a device would operate over the entire BW and thus only one device can

transmit during a WiFi time slot. The employed MAC mechanism of WiFi is

carrier sense multiple access with collision avoidance (CSMA/CA) also known

as the distributed coordination function (DCF). In this mechanism, a device is
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Figure 2.6. The DCF mechanism of WiFi.

required to sense the channel before attempting to transmit. If the medium is

sensed to be busy, the device would wait for the channel to become idle. On the

contrary, if the channel is sensed to be free for at least DCF interframe space

(DIFS) (34 µs), the device will backoff for a random number of slots between

[0, CW], where CW is the contention window size, and then start transmitting

if the medium was still free [62]. The CW of a STA starts from CWmin, is

reset to CWmin when a packet is successfully transmitted, and doubles on each

unsuccessful MAC protocol data unit transmission reaching a maximum limit

of CWmax. When the CW is increased to CWmax, it remains at CWmax even

if there was still more collisions. If the channel becomes busy during a backoff

process, the backoff is suspended. When the channel becomes idle again, and

stays idle for an extra DIFS time interval, the backoff process resumes with the

suspended backoff counter value. For each successful reception of a frame, the

receiver acknowledges by sending an acknowledgement (ACK) frame. The ACK

frame is transmitted after a short interframe space (SIFS), which is shorter than

the DIFS. Other STAs resume the backoff process after the DIFS idle time. If an

ACK frame is not received after the data transmission, the frame is retransmitted

after another random backoff process. All of the MAC parameters including SIFS,

DIFS, Slot Time, CWmin, and CWmax are dependent on the underlying PHY layer.

A summary of the WiFi DCF mechanism is provided in Fig. 2.6.

Meanwhile, LTE is based on orthogonal frequency division multiple access

(OFDMA) for DL transmission and single-carrier frequency-division multiple ac-

cess (SC-FDMA) in the UL in order to benefit from a lower peak-to-average power

ratio. SC-FDMA results in a better transmit power efficiency and hence a reduced

cost for power amplification. LTE can operate in TDD and frequency division

duplex (FDD) modes in which the UL and the DL traffic could be transmitted

on either the same or different frequencies, respectively. The LTE bandwidth is

divided in time and frequency units called resource blocks (RBs) [63,64]. As such,
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Figure 2.7. The allocation of the bandwidth in LTE OFDMA [7].

a UE may be allocated at least one RB and hence many UEs can transmit at the

same time on different portions of the channel during one LTE OFDM symbol

(71.4 µs). A summary of the LTE bandwidth division in OFDMA is provided in

Fig. 2.7.

Therefore, when WiFi and LTE coexist over the same band, as shown in

Fig. 2.8, WAPs will sense the channel as busy and would therefore defer from

transmission. Consequently, in the absence of new LTE-WiFi coexistence mech-

anisms, the aforementioned challenges for WiFi arise thus resulting in an unfair

spectrum sharing. Next, we overview some of the main techniques for the enabling

the coexistence of LTE-LAA and WiFi in the 5 GHz band.

2.1.2.6 Enabling Techniques for the Coexistence of LTE-LAA and WiFi

In this section, we summarize various LTE-WiFi coexistence mechanisms such

as LBT, almost blank subframe (ABS), transmission power control, and channel

selection.

2.1.2.6.1 Listen-before-talk LTE-LAA SBSs can essentially adopt an LBT

mechanism similar to that of WiFi. By using LBT, it will no longer be possible

for LTE-LAA SBSs to transmit immediately since the intended wireless shared

channel may be occupied by other SBSs or WAPs. 3GPP has standardized LBT

as an effective solution for the coexistence of LTE and WiFi [59]. In particular,

3GPP is considering different requirements for LBT to access spectrum bands in

different countries and define parameters to ensure better coexistence of RATs,

including WiFi and other LAA-based MAC mechanisms, in the shared unlicensed

band [65].
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Figure 2.8. PHY and MAC comparisons between LTE and WiFi systems in both time and

frequency domains [8].

2.1.2.6.2 Almost Blank Subframe An intuitive way to share the spectrum

is to prevent different technologies from accessing a given channel at the same

time. Therefore, LTE systems can mute all their operations in certain subframes

termed almost blank subframes [65]. These subframes are called “almost blank”

because LTE can still transmit some broadcast signals, control signals, and syn-

chronization signals over these subframes. This will in turn yield a reduction in

the co-channel interference during the ABS periods.

2.1.2.6.3 Transmission Power Control Another viable solution for the effi-

cient coexistence of LTE and WiFi in the unlicensed band is SBS transmit power

reduction. A controlled decrease of the SBSs’ transmit powers can reduce the

interference level caused to neighbouring WiFi nodes, thus creating more WiFi

transmission opportunities as WiFi nodes detect the channel as vacant.

2.1.2.6.4 Channel Selection The uncoordinated nature of WiFi deployments

and the limitation of non-overlapping channels in the ISM bands have motivated

several studies about channel selection for WiFi networks, which could also be

exploited for the coexistence with LTE. For instance, an LTE-LAA SBS can select

the least congested unlicensed channel based on WiFi and LTE measurements.
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Moreover, instead of having fixed BW channels, adaptive BW channels could be

defined and selected in coexistence scenarios. Therefore, by adapting the trans-

mission channel and the corresponding channel BW, LTE-LAA would essentially

operate over the less congested channels thus reducing the disruption caused to

WiFi.

We note that an LTE-WiFi coexistence approach is not restricted to only

one of above enabling techniques. In essence, multiple coexistence schemes can

be combined into a single framework in order to utilize the unlicensed spectrum

in a more efficient way. In what follows, we elaborate more on alternative LTE

solutions in the unlicensed spectrum, such as LTE-Unlicensed and LTE-WiFi link

aggregation (LWA).

2.1.2.7 LTE-LAA v/s LTE-Unlicensed v/s LTE-WiFi link aggregation

In this section, we give a general overview on different LTE operation schemes

over the unlicensed spectrum, such as LTE-U and LWA.

2.1.2.7.1 LTE-Unlicensed LTE-U is a proposal, originally developed by Qual-

comm, for the operation of LTE over the unlicensed spectrum [66]. As opposed

to LTE-LAA, LTE-U does not incorporate an LBT mechanism for its coexistence

with WiFi and thus does not meet the regulatory requirements for using the un-

licensed spectrum in various parts of the world. As such, LTE-U is suitable for

countries such as the United States and China in which LBT is not mandatory.

To provide fair coexistence with incumbent devices, LTE-U relies on channel

selection and carrier-sensing adaptive transmission [67].

2.1.2.7.2 LTE-WiFi link aggregation LWA, also know as LTE-H combines

LTE and WiFi links, for existing and new carrier grade WiFi [68]. Unlike LTE-

LAA which operates over the 5 GHz band only, LWA transmits on both the 2.4

GHz and the 5 GHz unlicensed bands. In this scenario, WAPs will be connected

to the LTE network, like any other SBS, and can fully utilize LTE’s core net-

work, encryption, control, authentication, and other systems. LWA allows a user

to receive data through an LTE link and a WiFi link simultaneously and thus

resulting in a significant increase in the data rates by combining two networks’

best achievable rates. LTE-WiFi link aggregation can essentially occur between

either collocated or separate (but coordinated) WiFi and LTE nodes. Here, note
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that the decision on whether to use both LTE and WiFi or just LTE is the net-

work’s decision, not a user’s. The traffic that flows over WiFi is collected at the

WAP and then tunneled back to the LTE SBS. It is the role of the LTE SBS to

control the amount of traffic scheduled over WiFi, and thereby ensure proper load

balancing between the LTE and the WiFi links. In fact, LTE-LAA and LWA will

be both adopted for future wireless cellular networks – LTE-LAA for new small

cell deployments operating over the 5 GHz band, and LWA for existing and new

WiFi deployments using both the 2.4 GHz and the 5 GHz unlicensed bands [68].

In this subsection, we provided a general background on the spectrum for

future mobile networks. Next, we overview two emerging machine-types devices

in the Internet of Things, namely, unmanned aerial vehicles and autonomous

connected vehicles.

2.1.3 Internet of Things

Future wireless cellular networks will encompass trillions of machine-type devices

that will be connected to the Internet [69]. This IoT environment will enable

these devices to connect with each other over wireless links and thus operate in a

self-organizing manner. Therefore, IoT devices can collect and exchange real-time

information to provide smart services. In this respect, the IoT will allow the deliv-

ery of innovative services and solutions in the realms of smart cities, smart grids,

smart homes, and connected vehicles that can provide a significant improvement

in people’s lives. For example, IoT devices can be used to intelligently manage

all the city’s systems such as local departments’ information, schools, libraries,

transportation, hospitals, water supply, and electricity systems hence improving

service efficiency. Meanwhile, retailers, restaurant chains and makers of consumer

goods can use data from smartphones, wearable devices and in-home devices to

do targeted marketing and promotions. However, the practical deployment of

the IoT system sill faces many challenges such as data analytics, computation,

transmission capabilities, connectivity end-to-end latency, security [70], and pri-

vacy [71]. In particular, how to provide massive device connectivity with stringent

latency requirement will be one of the most important challenges. The current

centralized communication models and corresponding technologies may not be

able to provide such massive connectivity. Moreover, for each IoT device, energy

and computational resources are limited. Hence, how to allocate computational
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resources and power for all IoT devices to achieve the data rate and latency re-

quirements is another challenge. In this section, we overview two machine-types

devices, UAVs and connected autonomous vehicles, that will be an integral part

of IoT in 5G networks.

2.1.3.1 Unmanned aerial vehicles

Due to their rapid and flexible deployment capabilities, mobility, ability to fly

above obstacles, and relatively low cost, aerial platforms such as UAVs have re-

ceived considerable interest for different applications in wireless communications.

In addition, compared to ground base stations, UAVs can establish line-of-sight

communication links with ground UEs by intelligently adjusting their altitude.

These evident benefits make UAV-aided wireless communication a promising in-

tegral component of future wireless systems. For instance, in 2013, Amazon

announced a research and development initiative focused on its next-generation

Prime Air delivery service [72]. The goal of this service is to deliver packages

to customers within 30 minutes using UAVs. In 2014, the Phantom and Inspire

from DJI, the Loon Project from Google [73], AR Drone and Bebop Drone from

Parrot, and IRIS Drone from 3D Robotic have been launched [74].

In particular, UAVs can be broadly classified into two categories, fixed wing

and rotary wing, each of which having its own benefits and drawbacks [75]. For

example, fixed-wing UAVs are mainly characterized by their high speed and heavy

payload. However, such UAVs must maintain continuous forward motion in order

to remain aloft thus rendering them unsuitable for stationary applications like

close inspection. In contrast, rotary-wing UAVs such as quadcopters, while having

limited mobility and payload, are able to move in any direction as well as to stay

stationary in the air. Therefore, the choice of UAVs largely depends on the

underlying applications. Meanwhile, in the context of wireless communication

systems, UAVs mainly have three roles: UAVs as aerial base stations, UAVs as

aerial relays, and UAVs as cellular-connected UAV-UEs. In what follows, we

summarize these three typical use cases of UAV-aided wireless communications:

• UAVs as aerial BSs: UAVs can be used as flying BSs for coverage exten-

sion, capacity enhancement, mission critical services, and other scenarios in

which no terrestrial infrastructure exists (e.g., in public safety scenarios or

in rural areas) or in an event of damaged/overloaded terrestrial BSs. Two
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example scenarios are rapid service recovery after partial or complete infras-

tructure damage due to natural disasters, and offloading of ground networks

in extremely crowded areas (e.g., a stadium during a sports event). UAVs

can also be used as part of a fully-fledged flying wireless cellular network

that can dynamically change its architecture to service the ground UEs.

• UAV as aerial, cellular-connected UEs: 3GPP is considering the sup-

port of UAVs by LTE [76,77]. Providing cellular connectivity to the UAVs

offers several advantages to other current short-range wireless connections

such as WiFi, bluetooth, and radio waves. For instance, cellular technology

will enable beyond LoS control, low wireless latency, ubiquitous coverage,

and seamless mobility to various UAV operations. This in turn paves the

way to a widescale deployment of UAVs over 5G systems, especially for

mission-critical use cases. It also enables many IoT applications in agricul-

ture, military, mining operations and industrial inspection services such as

real time video streaming, delivery, surveillance, and transmitting telemat-

ics and flight information. Nevertheless, providing wireless cellular connec-

tivity for UAV-UEs is contingent upon proper management of their resulting

interference. In essence, most UAV communication links are LoS dominated

which can therefore result in a high interference level on the ground UEs.

As such, network operators will have to limit the admission of aerial vehi-

cles so that the perceived throughput performance of conventional UEs is

not deteriorated. Another major challenge for cellular-connected UAVs is

the need for efficient handover mechanisms and robust signaling.

• UAVs as aerial relays: UAVs can also act as relays between a source and

a destination in which a LoS link does not exist. For instance, this could

be between the frontline and the command center for emergency responses.

UAVs can also form a multihop aerial network for coverage extension or

backhaul connectivity to ground SBSs. They can engage in a cooperative

transmission scheme thus forming an ad-hoc network in the air. Moreover,

a UAV can offer a mobile relaying strategy, as opposed to a static relay-

ing, which is more suited for delay-tolerant applications [75]. With mobile

relaying, the UAV flies continuously between the source and destination

aiming to reduce the link distances during both UAV information reception

and relaying phases. An alternative strategy to mobile relaying is known as
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data ferrying or load-carry-and-delivery [75]. With this strategy, the UAV

“loads” the data from the source as it reaches the nearest possible location

from the source, flies toward the destination with the loaded data until it

reaches the nearest possible location to the destination, and then delivers

the data to the destination. As data ferrying has less communication time

than the proposed mobile relaying, its achievable throughput is expected to

be smaller, especially for cases with low UAV speed and/or stringent delay

requirements.

Despite the many promising benefits for UAV-enabled wireless networks, sev-

eral challenges need to be addressed. In what follows, we summarize the main

challenges that arise in the context of UAV-based wireless communication sys-

tems:

• 3D placement: UAVs need to be deployed in a 3D system which there-

fore makes their deployment more complicated as compared to that of the

terrestrial BSs. In this regard, the altitude of the UAVs plays a vital role

in establishing a LoS communication link with the terrestrial network and

should therefore be optimized accordingly. Moreover, the deployment of

the UAVs need to be flexible, short-term, and fast.

• Antenna design: Current network deployments assume that communica-

tion occurs within a 2-dimensional plane, and must support human devices

(with low mobility) and ground vehicles (with potentially high mobility).

Nevertheless, aerial networks consist of A2G and A2A links and require

data to be delivered at different altitudes and orientation angle. As such,

directed antenna radiation characteristics are more likely to have high im-

pact on the performance of 3D connectivity.

• Path planning: Appropriate path planning schemes are crucial for UAVs

in order to guarantee high-capacity performance, particularly, for UAV-UE

applications. One useful method for UAV path planning is to approximate

the UAV’s dynamics by a discrete-time state space, with the state vector

typically consisting of the position and velocity in a 3D coordinate system.

The UAV’s trajectory is then given by the sequence of states which are sub-

ject to finite transition constraints that reflect the practical UAV’s mobility

limitations.
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• Channel modeling: UAV-based communication is different from terres-

trial communication in various aspect which essentially necessitates a sta-

tistical RF propagation model for the UAV communication channel [78]. In

essence, such a model can mainly vary based on the different communication

environments.

• Backhaul connectivity: A major limitation for the use of UAVs as aerial

BSs is the availability of a reliable wireless backhaul link. As compared to a

ground BS that usually has a fixed wired/wireless backhaul connection and

can relatively offer very high data rates to a core network, a UAV can only

have a wireless backhaul. This in turn limits the achievable peak data rate

of a UAV which can also be susceptible to inclement weather conditions.

• Design of a multi-hop aerial network: As mentioned earlier, UAVs

can form an multihop aerial network for coverage extension or backhaul

connectivity for the ground SBSs. However, a major challenge in that scope

is the formation of such an aerial network. In particular, the UAVs need to

form the A2A and A2G link while taking into account the delay incurred

over the formed multihop links.

• Interference management: UAV-based communication links are LoS

dominated which therefore make the issue of intercell interference more

critical than terrestrial communications. As such, novel methods for in-

terference management, and in particular, for the coexistence of the aerial

UAVs with the ground network, are indispensable.

• Power limitation: UAVs are typically limited in power which therefore

result in a limitation for their flight duration. This in turn necessitates

energy-aware UAV deployment and operation mechanisms for intelligent

energy usage and replenishment.

• Security issues: Drone delivery systems are vulnerable to several cyber

and physical attacks [79]. On the physical side, UAVs are susceptible to

a range of civilian owned hunting rifles due to their low altitude. More-

over, the UAVs are vulnerable to a range of cyber threats targeting their

communication links with ground control and with other air units.

• Spectrum allocation: Due to the fact that the UAVs’ channel experience
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less blockage and high probability for establishing a LoS link, the use of

mmWave spectrum bands could be a potential candidate for UAV-based

communication. Nevertheless, the Doppler spread due to the mobility of

the UAVs needs to be compensated in such scenarios.

2.1.3.2 Connected autonomous vehicles

5G access will provide a whole load of horsepower for the auto industry to build

advanced solutions to make vehicles smarter, safer, and more energy-efficient.

The innovations will not only improve the vehicles’ internal functions, but will

also allow the vehicles to connect and interact with the outside environment

thus enabling better and safer use of the road infrastructure. In fact, cellular-

connected vehicles are expected to be the next frontier for automotive revolution

and the key to the evolution to next-generation intelligent transportation sys-

tems. Cellular-connected vehicles are considered as one of the main emerging

wireless-enabled devices in 5G networks and will constitute a main part of future

smart city services, e.g., the Waymo google project [80]. Connected autonomous

vehicles are expected to anticipate and avoid possible collisions, navigate the

quickest route to their destination making use of up-to-the-minute traffic reports,

identify the nearest available parking slot, and minimize their carbon emissions.

To realize this, connected vehicles and the transportation infrastructure would

be equipped with smart sensors that can collect and process a heterogeneous set

of data on each vehicle, its passengers, and its environment [81]. Communication

can be between different nodes i.e., vehicle-to-infrastructure, vehicle-to-vehicle,

or vehicle-to-pedestrian, all together known as vehicle-to-everything. The collec-

tion of information from other vehicles and/or the infrastructure must be done

at ultra-low latency and in real time in order to support the autonomous feature

of connected vehicles. In this context, several challenges need to be addressed in

order to reap the benefits of connected autonomous vehicles. In what follows, we

summarize some of these challenges.

• Latency: Latency is defined as the time interval between the generation of

the data packet by the transmitter and the time this data packet is deliv-

ered to the recipient. For connected autonomous vehicles, ultra-low latency

is required in order to ensure reliable real time reception of the informa-

tion. To improve reliability and latency requirements, optimal processing
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methods must be deployed to combine the heterogeneous data collected

from different types of sensors. This in turn would reduce the unnecessary

and redundant information before transmission to other vehicles or to the

infrastructure.

• Path planning and autonomous control: Connected autonomous vehi-

cles would need to find their optimal routing in an effort to reduce the total

road travel delay. Nevertheless, the high density of the vehicles in crowded

streets and the random decisions taken by human drivers make vehicular

path planning and autonomous control algorithms a challenging aspect in

such systems.

• Security: Connected autonomous vehicles are susceptible to cyber attacks

in which an attacker can inject faulty information to autonomous vehicles.

This in turn necessitates new techniques for authenticating and securing

the vehicle-to-everything communication links.

• Heterogeneous data integration: Connected autonomous vehicles will

encompass a variety of sensors, from light sensors and cameras to ultrasound

sensors, enabling each vehicle to make sense of its surrounding environment.

As such, any control action taken by an autonomous vehicle will depend

on the different types of sensor data. Integrating such heterogeneous sensor

readings into one vector can provide a better assessment of the environment

as compared to using each type of data independently. Nevertheless, there

exist differences between sensors ranging from sampling rates to the data

generation model thus making the integration of data sensors a challenging

aspect in this context [81].

• Resilience: Autonomous vehicles must be resilient to vehicle accidents,

congestion, and natural disasters. For instance, autonomous vehicles must

be resilient to possible collisions so as to recover from congestion caused

by accidents. Furthermore, they must be capable of adapting to extreme

situations such as floods, hurricanes, and other disasters.

Therefore, with the advent of the Internet of Things and the dramatic increase

in the mobile data traffic, an ultra-dense network deployment is required for

5G networks, as discussed earlier. Nevertheless, a critical issue in such a dense
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deployment is the connectivity of the SBSs to the core network. As such, next

we give general background on SBS backhauling in 5G networks, a topic of direct

relevance to this thesis.

2.1.4 5G Backhaul

As we have mentioned earlier, SBSs have been introduced as a promising approach

to boost the coverage and capacity of current cellular networks. This is mainly

accomplished through a paradigm shift in the network design by considering a

reduction in the cell size and a denser deployment of the SBSs. However, a

fundamental challenge for the efficient operation of such a dense SBS deployment

is to provide an economical and ubiquitous backhaul connectivity to the SBSs

that would allow the routing of the traffic to/from the SBSs from/to the core

network.

To achieve gigabits-per-second transmission capacity and maximum allowed

latency in the orders of hundreds of microseconds, fibre optics would be the

only backhaul viable solution. Nevertheless, relying on fibre to connect all the

SBSs to the core network may be impossible in some cases due to geographical

constraints, for instance, and certainly very costly otherwise. To this end, the

5G backhaul research has received much attention, aiming at bridging the gap

between the 5G requirements and the realistic backhaul capabilities [38]. The 5G

backhaul evolution will essentially include wired and wireless backhauling to and

from core network aggregators such as MBSs, cooperation through anchor base

stations, multi-hopping at short range links, and cloud-based architecture. Since

the backhaul requirements can significantly vary depending on the locations of the

SBSs, the cost of implementing backhaul connections, traffic load intensity of the

SBSs, latency, and target quality of service requirement of SBS UEs, there is no

single optimal approach for the backhauling of SBSs. Therefore, in this section,

we summarize the different types of 5G backhauling schemes. In particular, we

highlight the benefits and drawbacks of wired and wireless backhauling solutions

and elaborate more on novel backhauling solutions such as caching and SDN.

2.1.4.1 Optical Fibre

Current backhaul networks are mostly built with microwave and fibre links with

different proportions per operator and country [82]. In fact, fibre-optic-based
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backhaul is a leading attractive 5G solution owing to its superior performance

relative to other technologies. It is an ideal solution for connecting the backhaul

in view of their intrinsic low-latency-high-capacity characteristics. Nevertheless,

fiber backhaul network does not exist always and its deployment cost is considered

to be relatively high. Moreover, highly reliable wired backhaul connectivity may

not be necessary for small cells, which typically serve a relatively reduced traffic

load compared to a macrocell. As such, an alternative solution, that is easy

and cost-effective to deploy, is crucial in order to bridge the existing fibre-based

network and the small cells in an ultra-dense network.

2.1.4.2 Wireless backhauling

Wireless backhauling is considered as a viable and cost-effective approach that

allows operators to obtain end-to-end control of their network rather than leasing

third party wired backhaul connections [83]. The key wireless backhaul solutions

exploit the mmWave spectrum in the 60 GHz and 70-80 GHz bands, microwave

spectrum between 6 GHz and 60 GHz bands, sub-6 GHz band, TV white spaces

(TVWS), and satellite technologies [83]. An optimal solution of the wireless back-

haul solution depends on the propagation environment and a number of system

parameters such as locations and deployment density of the SBSs, desired back-

haul capacity, interference conditions, cost, coverage, hardware requirements, and

spectrum availability. In what follows, we summarize the benefits and limitations

of the main wireless backhaul solutions [83].

• Sub-6 GHz spectrum: Sub-6 GHz frequencies support NLoS propagation

and have better penetration through obstacles as opposed to high frequency

bands. As such, sub-6 GHz frequencies can support point-to-multipoint

backhaul connectivity, however, at the cost of interference. Moreover, the

sub-6 GHz spectrum does not require any new hardware for managing the

access and backhaul links. Nonetheless, relying on the sub-6 GHz frequen-

cies for providing wireless backhaul solution is highly vulnerable to inter-

ference and traffic congestion, and has a high licensing cost.

• mmWave: The propagation characteristics of the mmWave spectrum are

attractive for high-capacity short-range communication links. Moreover, as

we mentioned earlier, the mmWave band is characterized by the availabil-

ity of a large bandwidth as well as the ability to minimize interference with
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highly directive narrow beamwidth antennas. Nevertheless, mmWaves are

affected by atmospheric attenuation to a greater degree than lower frequen-

cies. The power attenuation at 60 GHz is basically due to the oxygen or dry

air, whereas 70-80 GHz is more similar to conventional microwave, where

attenuation is mainly caused by water molecules in the air. As a result,

the 60 GHz band is more heavily attenuated. However, the license-exempt

nature of the 60 GHz band makes it more cost effective from the operators’

perspective.

• Microwave: The microwave frequency band ranges between 6 GHz and

60 GHz. It is characterized by shorter wavelength and hence is suitable for

LoS scenarios with fixed antenna alignments on both the transmitter and

receiver ends. Moreover, the microwave bands are favorable for short-range

communications, such as neighbourhood backhauling in ultra-dense small

cell deployment scenarios, due to their high signal attenuation.

• TVWS: The TV band is divided into two bands: VHF band (54-60 MHz,

76-88 MHz, 174-216 MHz) and UHF band (470-698 MHz). TVWS refers

to the large amount of TV spectrum that became vacant upon the emer-

gence of digital TV transmission. Therefore, TVWS can be exploited for

SBS backhauling in a cognitive manner such that the backhaul interference

caused to primary TV transmissions does not exceed a prescribed thresh-

old. The TVWS spectrum is characterized by their longer wavelengths and

unlicensed nature which results in a lower cost. Moreover, the channels

in the TVWS offer much better propagation characteristics compared to

low-frequency cellular bands. Nevertheless, this spectrum band would be

strictly limited by the transmit power and location of primary TV trans-

mitters when used for SBS backhauling.

• Satellite frequency: The degree of attenuation due to weather or rain

fade is different for various satellite frequency bands. For instance, lower

frequency bands (4-6 GHz) are unaffected by weather, the Ku-band (10-12

GHz) is slightly more affected, and the Ka-band (20-30 GHz) suffer from up

to 24 dB of rain fade. The main advantage of satellite-based backhauling is

that it is feasible at any location where a convenient satellite is visible. It is

also efficient in high mobility scenarios, such as SBSs deployed on airplanes

and ships, thus providing continuous backhaul coverage to mobile SBSs.
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Nevertheless, the limitation of satellite backhaul solution is time delay and

hardware and spectrum cost.

2.1.4.3 Caching

A promising solution for addressing the backhaul bottleneck is to cache the con-

tent at the edge of network (SBS or UE) thus transforming the network intelli-

gence from being “reactive” to “proactive” [38]. In other words, if the user’s data

was predicted and cached in advance during low traffic periods, it can be trans-

mitted during peak hours without burdening the backhaul while still achieving

good QoS. Nonetheless, the success of caching remains conditional upon many

challenges, such as the SBSs storage capacity, very large catalogue size of users’

files, and the need for fast and dynamic learning of cells while making the caching

decision.

2.1.4.4 SDN in the backhaul

The network topology for SDN consists of a single controller that manages ac-

cess to dumb devices or routers in the carrier IP-based mobile backhaul. On the

other hand, all control plane functions or intelligence is embedded in the SDN con-

troller. The communication between SDN controller and devices happens through

the use of the Open Flow protocol. SDN essentially decouples control from the

data forwarding function, in a programmable manner, thus, creating a dynamic,

manageable, cost-effective, and adaptable architecture that gives administrators

unprecedented automation and control. In fact, an SDN-based backhaul solu-

tion expedites the possibilities of adding, extending, and dynamically reallocating

the radio resources in the backhaul network. Such an architecture allows multi-

operators and multi-technology sharing thus reducing the cost per bit to the UE

and maximising the resource usage efficiency. Nonetheless, the separation of con-

trol and data forwarding exposes the network to security challenges, especially

when used with cloud computing, due to malicious usage or malfunctioning in

the system.

2.1.5 Fairness In Wireless Networks

Alongside various network design performance such as maximizing data rate and

minimizing wireless latency, the notion of fairness among different wireless devices
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is an important design factor that should be accounted for while optimizing the

performance of a network. In wireless network, fairness can be analysed from

several dimensions such as energy usage, achieving required quality of services,

spectrum sharing. Fairness can be considered at the system and device levels. The

system fairness addresses the overall fairness amongst all devices in the network,

and individual fairness indicates whether a certain device is treated fairly by the

network. Moreover, considering the time duration, fairness can be categorized

into short-term and long-term. Short-term fairness focuses on resource allocation

in a very short time period and thus has a significant impact on QoS, especially

in real-time applications because of the focus on the current QoS measurements.

On the other hand, long-term fairness measures the resource allocation over a

longer time period and is more important when the resources are scarce. Several

fairness tools have been introduced for measuring the level of fairness in a wireless

network, as given below [84]:

• Jain’s index : Jain’s index is one of the earliest proposed and widely studied

fairness measures. Fairness in an allocation can be represented by an index

value f(X) and is computed as:

f(X) =
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

, (2.1)

where n corresponds to the number of nodes, x is the metric used for defining

fairness, and 0 ≤ f(X) ≤ 1. A large value of f(X) represents a fairer

resource allocation from the system perspective i.e., a resource allocation

scheme tends to be fairer when Jain’s index is closer to 1 [84]. Here, note

that Jain’s index of fairness is mainly used for providing insights into the

overall system fairness.

• Entropy : Entropy was introduced by Shannon [85]. It assumes that the

proportions of resource are allocated to n individuals P=(p1, p2, ..., pn),

and

pi =
xi∑n
i=1 xi

, (2.2)

where 0 ≤ pi ≤ 1 and
∑n

i=1 pi = 1. The uncertainty of the distribution P is

called the entropy of the distribution P and is usually measured by H(P ):

H(P ) = −
n∑
i=1

(pilog2pi), (2.3)
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• Other measures: Difference or ratio between the highest and lowest values

of particular performance parameter could be a system fairness measure.

Even though H(P ) may be employed as a fairness measure, the quality of

measuring the fairness is not clear yet. For example, how sensitive they are to

the allocation changes and whether they can locate unfairness [84]. It is also

worthwhile noting that Jain’s index of fairness has received much traction in the

literature for assessing the fairness level for resource allocation schemes in wireless

networks [84, 86]. As such, given the fact that the main objective of this thesis

is to investigate resource allocation schemes for LTE-WiFi coexistence and UAV-

based wireless communication, we adopt the notion of Jain’s index for evaluating

the level of fairness for the outcome of the proposed schemes.

In the first part of this chapter, we gave a general background on specific topics

in next-generation cellular networks that are of direct relevance to this thesis. In

the remaining part of this chapter, we elaborate more on the underlying analytical

techniques adopted as part of the proposed solutions in this thesis. We mainly

focus on machine learning techniques, and in particular, neural networks, followed

by game theory tools, and specifically, network formation games.

2.2 Machine Learning

In this section, we first provide a brief overview on the basics of machine learning,

while motivating the importance of neural networks. We expose the fundamentals

of a suite of neural network algorithms and techniques. Then, we elaborate more

on two types of artificial neural networks (ANNs); recurrent neural networks

(RNNs) and deep neural networks (DNNs). Table 2.1 provides a summary for

the description of the main notations used in this section.

2.2.1 Machine Learning Basics

First coined in 1956 by John McCarthy, AI involves machines that can perform

tasks that are characteristic of human intelligence. It can be categorized into two

groups; general and narrow. General AI would have all of the characteristics of

human intelligence. Narrow AI exhibits some facet(s) of human intelligence, and

can do that facet extremely well, but is lacking in other areas. For instance, a

machine that’s great at recognizing images, but nothing else, would be an example
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Table 2.1 Variables and notations.

Notation Description

wj weight of neuron j

oj Output signal of neuron j

bj Bias of neuron j

x Input vector

W Weight matrix

Win Input weight matrix

Wout Output weight matrix

γ Learning rate

α Leaky parameter

ρ Spectral radius

of narrow AI. At its core, machine learning is simply a way of achieving AI.

Recently, due to growing volumes of generated data – across critical infras-

tructure, communication networks, and smart cities – and the need for intelligent

data analytics, the use of machine learning algorithms has become ubiquitous [87]

across many sectors such as financial services, government, health care, technol-

ogy, marketing, and entertainment. Using machine learning algorithms to build

models that uncover connections and predict dynamic system or human behavior,

system operators can make intelligent decisions without human intervention. For

example, in a wireless system such as the IoT, machine learning tools can be used

for big data analytics and edge intelligence. Machine learning tasks often depend

on the nature of their training data. In machine learning, training is the pro-

cess that teaches the machine learning framework to achieve a specific goal, such

as for speech recognition. In other words, training enables the machine learn-

ing framework to discover potentially relationships between the input data and

output data of this machine learning framework. There exists, in general, four

key classes of learning approaches [88]: a) supervised learning, b) unsupervised

learning, c) semi-supervised learning, and d) reinforcement learning.

Supervised learning algorithms are trained using labeled data. When dealing

with labeled data, both the input data and its desired output data are known to

the system. In contrast, training of unsupervised learning tasks is done without

labeled data. The goal of unsupervised learning is to explore the data and in-

fer some structure directly from the unlabeled data. Semi-supervised learning is

used for the same applications as supervised learning but it uses both labeled and

unlabeled data for training. This type of learning can be used with methods such
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Figure 2.9. A mathematical neuron model.

as classification, regression and prediction. Semi-supervised learning is useful

when the cost of a fully labeled training process is relatively high. In contrast to

the previously discussed learning methods that need to be trained with historical

data, RL is trained by the data from implementation. The goal of RL is to learn

an environment and find the best strategies for a given agent, in different envi-

ronments. RL algorithms are used for robotics, gaming, and navigation [89]. To

perform these learning tasks, several frameworks have been developed. Among

those frameworks, artificial neural networks [90] constitute one of the most im-

portant pillars of machine learning, as they are able to mimic human intelligence,

to model complex relationships between inputs and outputs, to find patterns in

data, or to extract the statistical structure in an unknown joint probability dis-

tribution from the observed data. ANNs can also be used in a self-organizing

manner to learn how to perform tasks based on the data given for training or ini-

tial experience. Next, we introduce the basic concepts and general architecture

of ANNs.

2.2.1.1 General Architecture of Artificial Neural Networks

The architecture of ANNs consists of a number of simple, highly interconnected

processing elements known as neurons, which are used to mimic how the human

brain learns. ANNs are essentially an artificial model of a human nervous system

whose base elements are also neurons used to process information in the sense

of cognition and transmit this information signal in the nervous system [91]. In

essence, ANNs use artificial neurons to replicate the operation of the human ner-

vous system, thus enabling artificial intelligence. Mathematically, an artificial

neuron consists of the following components: (a) a number of incoming con-

nections; (b) a number of outcoming connections; and (c) an activation value

assigned to each neuron. The connection strength between two neurons is mainly

captured by a weight value. The basic model for a neuron j is shown in Fig. 2.9
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and mathematically given by:

oj (wj, bj,nj) = f

(
bj +

N∑
j=k

njk · wjk

)
, (2.4)

where njk is the input signal from neuron j to neuron i, nj = [nj1, nj2, . . . , njN ]

is a vector of the input signal of neuron j, wjk is the corresponding input weight

value, wj = [wj1, wj2, . . . , wjN ] is a vector of input weight of neuron j, oj is the

output signal of neuron j, bj is the bias of neuron j, and f (·) is a nonlinear ac-

tivation function. A bias value can shift the activation function, which is critical

for successful learning. The activation function in a neural network will represent

the rate of action potential firing in the cell of a neuron. The simplest form of

an activation function [92] is binary such as a Heaviside step function, which is

used to indicate whether a neuron is firing or not. However, using linear acti-

vation functions, many neurons must be used in the computation beyond linear

separation. Meanwhile, an ANN constructed using linear activation functions in

(2.4) cannot reach a stable state after training since the value of the activation

function will increase without bound. To avoid this drawback, one can choose,

f (·) in (2.4) to be a normalizable activation function such as a sigmoid activa-

tion function rather than a linear activation function. The selection of a type of

activation functions in ANNs depends on the sought objectives such as analytic

tractability, computational power, and the type of the desired output signal (lo-

gistic or continuous). In essence, an ANN is a composition of multiple neurons

connected in different ways and operating using different activation functions. In

general, the main components of an ANN that consists of multiple neurons will

include the following:

• Input layer that consists of a number of neurons used to represent the input

signal.

• Output layer that consists of a number of neurons used to represent the

output signal.

• Hidden layer that consists of a number of neurons used to mimic the human

brain.

• Input weight matrix that represents the strengths of the connections be-

tween the neurons in the input layer and the neurons in the hidden layer.
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Figure 2.10. Feed-forward neural network.

• Neuron weight matrix that represents the strengths of the connections be-

tween the neurons in the hidden layer.

• Output weight matrix that represents the strengths of the connections be-

tween the neurons in the hidden layer and the neurons in the output layer.

The connection strength in all weight matrices can be used to calculate the value

of the activation function as per (2.4). For example, if nj = [nj1, nj2, . . . , njN ] in

(2.4) is an input signal vector, then wj = [wj1, wj2, . . . , wjN ] will represent the

value of the input weight, and, thus, the value of the activation function can be

calculated by (2.4). The hidden layer is used to analyze the relationship between

the input signal in the input layer and the output signal in the output layer.

One of the simplest forms of an artificial neural network is the feed-forward

neural network (FNN) [93], as shown in Fig. 2.10. An FNN consists of the

following components: (a) input layer, (b) hidden layer(s), and (c) output layer.

In an FNN, the connection between the neurons is unidirectional and there is

no connection between the neurons in a layer. Each neuron in the hidden layer

calculates its output using an activation function such as the function in (2.4).

Moreover, each neuron in the hidden layer has incoming connections only from

the previous layer and outgoing connections only to the next layer, and, hence,

this architecture is named feed-forward neural network.

Having introduced the general architecture of an ANN, next, we discuss the

training methods that ANNs can use to perform their learning tasks.

2.2.1.2 Training in Artificial Neural Networks

To learn information from their input data, ANNs must adjust the weights of the

connections between the neurons in the system. The process of adjusting and



48 Chapter 2. Background

updating the weights is known as the training process. Different learning tasks

require different training algorithms. Here, we mainly focus on the general train-

ing algorithms for supervised learning tasks, as they constitute the foundation

for other types, such as unsupervised learning.

For supervised learning tasks, the objective of training ANNs is to minimize

the errors between the desired output signal and actual output signal. This error

can be typically defined as:

E (W , b) = 0.5 ·
∑
S

(‖y (W , b,x)− yD‖2), (2.5)

where S is the training dataset, x is a vector of input signals, W is the weight

matrix that is a combination of the input weight matrix, hidden weight matrix,

and output weight matrix, b is a vector of bias factor, and yD is the desired

output. y (W , b,x) is the actual output signal for each neuron, which can be

calculated based on (2.4). In (2.5), the error is scaled by 1
2

to facilitate differ-

entiation. In general, the most commonly used supervised learning algorithms

for ANNs include gradient descent and backpropagation [94], which is a special

case of gradient descent. Hence, we overview these learning algorithms as they

constitute a building block for any other learning algorithm.

In order to minimize E (W , b), the weights of each neuron are updated via

the gradient descent algorithm, as explained next. For a given neuron j, the error

between the desired output signal oD,j and actual output signal oj will be given by

Ej (wj, bj) = 0.5·‖oj (wj, bj,nj)− oD,j‖2. The gradient descent algorithm is used

to minimize Ej (wj, bj). For every element wjk of vector wj, the minimization of

Ej (wj, bj) using gradient descent algorithms follows from the following equations:

wjk,new = wjk,old − γ
∂Ej (wj, bj)

∂wjk
, (2.6)

bj,new = bj,old − γ
∂Ej (wj, bj)

∂bj
, (2.7)

where γ is the learning rate. Based on (2.6) and (2.7), ANNs can update

the weight matrix and bias to find the optimal wj and bj that will minimize

Ej (wj, bj). From (2.6) and (2.7), we can see that, the update of wjk and bj is

easy to compute and, hence, the gradient descent algorithm is known to be com-

putationally fast, even on large datasets [95]. The gradient descent algorithm

mentioned above only focuses on the update of a single neuron. However, in an

ANN, the signal is transmitted from one neuron to another neuron and, hence,
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we must design a rule to train all of these neurons. Backpropagation is the most

widely used algorithm to calculate the gradient of the error such as
∂Ej(wj ,bj)

∂wjk
in

(2.6) and
∂Ej(wj ,bj)

∂bj
in (2.7), so as to effectively minimize E (W , b) for an ANN.

In fact, backpropagation is a method to compute the gradient of each neuron for

an ANN, which is just a chain rule.

Next, we provide a step-by-step explanation of the backpropagation algorithm.

We first assume that neuron j is at layer L and neuron i is at layer L+ 1, which

is closer to the output layer than layer L. The backpropagation procedure that

can be used to update the weight value of wij proceeds as follows:

• An input signal is transmitted from the input layer to the hidden layer of

the ANN, until it reaches the output layer. If an ANN does not have hidden

layers, (e.g., a perceptron), the input signal will be directly transmitted to

the output layer. Then, the activations of the neurons in all of the layers

will be computed based on (2.4).

• The ANN will next compute the error between the targeted output and

actual output based on (2.5) and will derive an error propagation value δ

for each neuron. δi of neuron i can be given by [96]:

δi =
∂E (W i, b)

∂oi
· ∂oi
∂nsum,i

, (2.8)

where oi is the output of neuron i and nsum,i = bi +
N∑
k=1

nik · wik is the

summation of the input signal of neuron i and its bias. In particular, if

the activation function is a logistic function, f(x) = 1
1+e−x , then the error

propagation of neuron j can be given by [94]:

δi =


(oi − oD,i) oi (1− oi) , neuron i in the output layer,( ∑

l∈LL+1

δlwli

)
oi (1− oi) , neuron i in the hidden layer,

(2.9)

where LL+1 represents the set of neurons at layer L + 1 (layer L + 1 is

closer to the output layer than layer L). From (2.9), we can see that error

propagation δi of a neuron in layer L depends on the error propagation

δl, l ∈ LL+1, of a neuron at layer L + 1. Therefore, each neuron must

transmit its error propagation parameter to the neurons at the former layer.

This is the central definition of backpropagation.
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• Next, the ANN updates the weight value of wij, which can be given by

wij = wij − γδioj.

• The above process is repeated until all weight values reach the minimum

of E (W , b). Note that backpropagation is not guaranteed to find a global

minimum as it typically converges to a local optimum since the dataset

used for training ANNs is finite and, hence, it must have some blindness in

exploration.

In backpropagation, the gradient is computed based on the complete labeled

data. However, if the size of the labeled data is very large, then using backprop-

agation may be time consuming. To reduce the time used for training when the

size of the labeled data is very large, a stochastic gradient descent (SGD) algo-

rithm [97] can be employed to update the weight values and bias. The stochastic

gradient descent algorithm performs a weight value update for each training ex-

ample. However, the SGD algorithm will often update frequently, which can lead

to overshooting – the weight values are larger or smaller than the optimum. To

overcome these drawbacks of SGD, the mini batch gradient descent [98] can be

used. The mini batch gradient descent is an algorithm that strikes a balance be-

tween stochastic gradient descent and batch gradient descent [98]. In mini-batch

gradient descent, the gradient is computed based on a small number of samples,

e.g., of around 10-500. One benefit of mini-batch gradient descent is that it can

be performed in a distributed manner and, hence, it can train ANNs in a time

efficient manner.

In summary, gradient descent algorithms enable an ANN to be trained in

a computationally simple manner, and hence, they can quickly converge to a

local minimum value for the error, even on a large dataset. However, choosing a

proper learning rate for the update of the weights and bias can be difficult. In

fact, the learning rate determines the step size that the algorithm uses to reach

the minimum and, thus, it has an impact on the convergence rate. In particular, a

learning rate that is too large can cause the algorithm to diverge from the optimal

solution. This is due to the fact that choosing very large initial learning rates

will decay the loss function faster thus not allowing the model to explore better

the optimization space. On the other hand, a learning rate that is too small will

result in a slow speed of convergence. In particular, the optimal value of the initial

learning rate is dependent on the dataset under study, whereby for each dataset,
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there exists an interval of good learning rates at which the performance does not

vary much [99]. Moreover, gradient descent algorithms can often converge to a

sub-optimal local minimum rather than the global minimum. To solve these

challenges, several algorithms have been proposed, such as momentum SGD,

RMSProp [98], nesterov accelerated gradient [100], Adagrad [101], and AdaDelta

[102]. For instance, Adagrad and Adam are independent of the initial value of the

learning rate while RMSProp relies heavily on a good choice of an initial learning

rate. Moreover, one can use pruning techniques [103] to minimize the number

of neurons in ANNs and make the ANNs become smaller and faster. The basic

concept of pruning is that to eliminate ANN neurons that may not contribute to

the output as they are not relevant to the learning task.

It is worth noting that two central problems in training ANNs are overfitting

and underfitting. Overfitting corresponds to the case in which the model learns

the random fluctuations and noise in the training dataset to the extent that they

negatively impact the model’s ability to generalize when fed with new data. This

occurs mainly when the dataset is too small compared to the number of model

parameters that must be learned. On the other hand, underfitting occurs when a

learning algorithm cannot capture the underlying trend of the data. Intuitively,

underfitting occurs when the learning algorithm does not fit the data well enough.

Therefore, one must carefully choose the architecture of an ANN along with the

proper training methods to avoid overfitting and underfitting.

Using the aforementioned training algorithms, the values of the weight matrix

and bias can be updated to their optimal values, and, hence, a trained ANN can

output the desired output signal. However, each type of ANNs is suitable for a

particular type of data. For instance, RNNs are more convenient for time series

data while spiking neural networks are good at modeling continuous data. Next,

we elaborate more on two types of ANNs – RNNs and DNNs.

2.2.2 Recurrent Neural Networks

In this section, we overview the basics of RNNs. Then, we discuss the training

algorithms that are generally used for training RNNs.
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Figure 2.11. Recurrent neural network.
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Figure 2.12. Architecture of an unfolded recurrent neural network.

2.2.2.1 Architecture of Recurrent Neural Networks

Unlike traditional ANNs that assume that all inputs are independent from each

other or all outputs are independent from each other, recurrent neural networks

[104] allow neuron connections from a neuron in one layer to neurons in previous

layers, as shown in Fig. 2.11. This in turn enables the output of a neural network

to depend, not only on the current input, but also on the historical input, as

shown in Fig. 2.12. This allows RNNs to make use of sequential information and

exploit dynamic temporal behaviors such as those faced in mobility prediction,

handwriting recognition, or speech recognition. RNNs can also be seen as an ANN

that has a “memory”, which in essence allows them to store historical information

and thus perform time-related tasks such as users’ mobility pattern predictions

compared to traditional ANNs (e.g., FNNs). In terms of architecture, the key

components of a given RNN can be specified as follows:

• Input signal xt: this signal represents the input data to a given RNN at

time t.
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• Input weight matrix W in: this matrix represents the strengths of the con-

nections between the neurons in the input layer and the neurons in the

hidden layers.

• Output weight matrix W out: this matrix is used to represent the strengths

of the connections between the neurons in the output layer and the neurons

in the hidden layers.

• Recurrent weight matrix W : The hidden weight matrix is defined as the

recurrent weight matrix, which captures the strengths of the connections

between the neurons in the hidden layers of the RNN.

• Hidden state st: this is effectively the hidden state of a neuron in the hidden

layer at time t. The hidden state represents the value of the activation

function at time t, which is calculated based on the previous hidden state

st−1 and the input at time t. st can be computed using different methods

for different recurrent neural networks. For most commonly used RNNs, we

have st = f(Wst−1 +W inxt) where f(x) = ex−e−x

ex+e−x or f(x) = max (0, x).

However, in more elaborate types of RNNs, such as long short-term memory

algorithm [19], each neuron needs to decide what to keep in and what to

erase from the hidden state.

• Output signal : yt is the output of a RNN at time t, representing the output

signal.

Clearly, we can see that the basic architecture of RNNs is similar to that of FNNs

except for the generation of the input, output, and recurrent weight matrices.

Moreover, the hidden state in RNNs depends on both current and historical

inputs, which enables RNNs to store the historical information. However, when

the architecture of an ANN changes from FNNs to RNNs, traditional training

methods may not be applicable to RNNs. Hence, next, we introduce training

methods suitable for RNNs.

2.2.2.2 Training in Recurrent Neural Networks

In the RNN architecture, the connections between units will form a directed cycle

and, hence, the feedforward gradient descent algorithms such as backpropagation

cannot be directly used. This is due to the fact that the error backpropagation
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pertaining to a backpropagation algorithm requires no cycles in the connections

between the ANN neurons. In consequence, the backpropagation through time

(BPTT) algorithm [105] is more commonly used for training RNNs. The BPTT

approach unfolds the recurrent network in time, by stacking identical copies of

it, and redirecting connections within the network to obtain connections between

subsequent copies, as shown in Fig. 2.12. In consequence, the BPTT algorithm

actually transforms an RNN into an FNN, which is amenable for training by

a backpropagation algorithm. However, due to the cycle connections in RNNs,

BPTT may get more often trapped in numerous sub-optimal local minima com-

pared to the gradient descent algorithms used for training FNNs. Moreover, like

backpropagation, the gradient in BPTT is computed based on the complete train-

ing set, which may become time consuming if the size of the training set is very

large.

To overcome these drawbacks in BPTT training, real-time recurrent learning

(RTRL) [106] can be used to compute the exact error gradient at every time

step, which is suitable for online learning tasks. In contrast to the BPTT that

unfolds RNNs in time, RTRL propagates error forward in time. From (2.6), we

can see that the gradient value with respect to w at time t is ∂E(t)
∂w

. In RTRL, the

update of weight w depends not only on the gradient value at time t but also on

the gradient value at the previous time instant, i.e., wt+1 = wt − γ
t∑

k=0

∂E(k)
∂wk

. In

RTRL, the gradient of errors propagates forward in time rather than backward in

time as in the BPTT algorithm and, therefore, there is no need to unfold RNNs

as needed by the BPTT algorithm. However, the time complexity of RTRL is

O (N4
w) where Nw is the number of neurons in the considered RNN. In contrast,

BPTT has a time complexity of O (N2
wG) where G is length of the input data.

Next, we elaborate more on a particular type of RNNs, namely the echo state

network.

2.2.2.3 RNN Example: Echo State Network

Here, we introduce a type of RNNs that is conceptually simple and easy to imple-

ment, called echo state networks [35]. Since their inception, ESNs proved to be

a highly practical type of RNNs due to their effective approach for training the

neural network [107]. In ESN, the input weight matrix and hidden weight matrix

are randomly generated without any specific training. Therefore, one would need
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to train the output weight matrix only for ESN. Moreover, ESNs belong to a class

of algorithms in the framework of reservoir computing (RC) [108]. In general, an

ANN algorithm is considered part of the framework of RC if its input signals

are mapped to a higher dimensional dynamics of the randomly generated hidden

layers, known as a reservoir, and the dynamics of the reservoir are mapped to the

desired output signals by using a simple training method such as backpropaga-

tion. The main benefit of RC is that the neural network training is performed only

at the readout stage while the input and hidden weight matrices are fixed. ESNs

can, in theory, approximate arbitrary nonlinear dynamical system with arbitrary

precision. In wireless networks, ESNs admit many natural applications, such as

content prediction, resource management, and mobility pattern estimation. Next,

the specific architecture and training methods for ESNs are introduced.

• Architecture of an Echo State Network: ESNs use an RNN architecture with

only one hidden layer. The generation of an ESN can be given as follows:

• Generation of a Reservoir: Generate a large random reservoir that is repre-

sented by the tuple (W in,W , α) where α is known as the leaking rate which

can be seen as the speed of the reservoir update dynamics, discretized in

time. As we mentioned previously, the dynamical system in RC is known

as a reservoir. In ESN, the input and hidden weight matrices are jointly

known as the reservoir. Setting the leaking rate α must match the speed of

the dynamics of hidden state st and output yt. Here, W in and W is gen-

erated randomly. In particular, W is a sparse matrix while W in is a dense

matrix. The generation of W in and W are determined by the training data

and other ESN parameters. If one ESN uses discrete bi-valued distribution,

i.e., (−0.5, 0.5), to generate W in and W , then the ESN tends to have a

slightly less rich signal space (there is a non-zero probability of identical

neurons), but might render the analysis of what is happening in the reser-

voir easier. To allow ESNs to store historical information, the reservoir

should satisfy the so-called echo state property (ESP) which means that

the hidden state st should be uniquely defined by the fading history of the

input x0,x1, . . . ,xt. This is in contrast to traditional ANNs such as FNNs

that need to adjust the weight values of the neurons in hidden layers, ESNs

only need to guarantee the ESP. To guarantee the echo state property of

an ESN, the spectral radius of W should be smaller than 1. The scaling of

W in is another key method to optimize an ESN. In order to have a small
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number of freely adjustable parameters, all elements in W in are scaled us-

ing a single scaling value. If the input signals are of different types and have

different contributions to the learning task, one should separately optimize

the scalings of W in. For very linear tasks, W in should be small, letting

the neruons operate around 0. For large W in, the neurons will get easily

close to their −1 and 1 values acting in a more nonlinear, binary switching

manner.

• ESN Implementation: Run ESN using the training input xt and collect the

corresponding hidden states st. The input xt can be a vector or a scalar,

which depends on the training dataset. Normalization of input data xt

can keep the input xt bounded and avoid the hidden weight matrix being

infinity. In general, the input data from the beginning of the training will

be discarded and not used for training W out since it may introduce an

unnatural starting state which is not normally visited once the network

has learnt the task. The amount of input data to discard depends on the

memory of the ESN.

• Training Output weight matrix: Compute the output weight matrix W out

from the reservoir using a training algorithm such as gradient descent or

ridge regression (explained next) to minimize the mean square error (MSE)

between the targeted output and action output.

• Generate Output: Use the trained network on new input data x computing

yt by employing the trained output weights W out.

Given the components of ESNs, we will describe the activation value of each

neuron. Even though the input and hidden weight matrices are fixed (randomly),

all neurons of an ESN will have their own activation values (hidden state). As

opposed to the classical RNNs in which the hidden state depends only on the

current input, in ESNs, the hidden state will be given by:

s̃t = f(W [1; st−1] +W inxt) , (2.10)

st = (1− α) st−1 + αs̃t, (2.11)

where f(x) is the tanh function and [·; ·] represents a vertical vector (or matrix)

concatenation. The model is also sometimes used without the leaky integration,

which is a special case for α = 1 which yields s̃t = st. From (2.10), we can
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see that the scaling of W in and W determines the proportion of how much the

current state st depends on the current input xt and how much on the previous

state st−1. Here, a feedback connection from yt−1 to st can be applied to the

ESNs, which is defined as a weight matrix W fb. Hence, (2.10) can be rewritten

as s̃t = f
(
W [1; st−1] +W inxt +W fbyt−1

)
.

Based on the hidden state st, the output signal of ESN can be given by:

yt = W out [1; st;xt] . (2.12)

• Training in Echo State Networks : The objective of the training process in ESNs

is to minimize the MSE between the targeted output and actual output. When

this MSE is minimized, the actual output will be the target output which can be

given by yD
t = W out [1; st;xt] where yD

t is the targeted output. Therefore, the

training goal is to find an optimalW out that enablesW out [1; st;xt] to be equal to

yD
t . In contrast to conventional recurrent neural networks that require gradient-

based learning algorithms, such as BPTT mentioned in Subsection 2.2.2.2 to

adjust all input, hidden, and output weight matrices, ESNs only need to train

the output weight matrix with simple training methods such as the least mean

squares (LMS) method. The LMS algorithm, which is a stochastic gradient de-

scent algorithm, allows the training of W out in an online manner [109]. At every

time step t, the LMS algorithm changes W out in the direction of minimizing the

instantaneous squared error
∥∥yD

t − yt
∥∥2

. LMS is a first-order gradient descent

method, locally approximating the error surface with a hyperplane. However,

this approximation in LMS is not always accurate. In particular, the curvature

of the error surface is very different in different directions. To overcome this dis-

advantage, a learning algorithm named the recursive least squares (RLS), can be

used for training ESNs. RLS, is insensitive to the detrimental effects of eigenvalue

spread and exhibits a much faster convergence. Demonstrations of RLS for ESNs

are presented in [110] and [111]. The backpropagation-decorrelation in [112] and

the so-called FORCE learning algorithm in [113] are two other powerful meth-

ods for online training of single-layer output with feedback connections. Hence,

the output weight matrix of each ESN can be optimized using different training

methods. One can select the most suitable ESN training algorithm according to

the scenario and target performance needed.

Next, we give a general overview on DNNs, which in essence, are ANNs with

multiple hidden layers. We investigate two types of DNNs, namely, LSTM and
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Figure 2.13. Architecture of a DNN.

deep ESNs.

2.2.3 Deep Learning

A deep neural network is an ANN with multiple hidden layers between the input

and output layers [114], as shown in Fig. 2.13. Therefore, a DNN models high-level

abstractions in data through multiple nonlinear transformations and thus learning

multiple levels of representation and abstraction [114]. Several types of DNNs

exist such as deep convolutional networks, deep RNNs, deep belief networks,

deep feedforward networks, deep SNNs, deep Q-learning, deep ESN, deep residual

network (ResNet), and long-short term memory [114]. The main reasons that

have enabled a paradigm shift from conventional, shallow ANNs, towards DNN

possible and desirable include recent advances in computing capacity due to the

emergence of capable processing units, the wide availability of data for DNN

training, and the emergence of effective DNN training algorithms such as those

made possible by the use of rectified linear units (ReLUs) instead of sigmoid or

tanh functions [115]. As opposed to shallow ANNs that have only one hidden

layer, a DNN having multiple layers is more beneficial due to the following reasons:

• Number of neurons: Generally, a shallow network would require a lot more

neurons than a DNN for the same level of performance. In fact, the number

of units in a shallow network grows exponentially with the complexity of

the task.

• Task learning: While shallow networks can be effective to solve small-scale

problems, they can be ineffective when dealing with more complex problems,

such as proactive resource management in wireless networks. In fact, the

main issue is that shallow networks are very good at memorization, but



2.2. Machine Learning 59

not so good at generalization. As such, DNNs are more suitable for many

real-world tasks which often involve complex problems that are solved by

decomposing the function that needs to be learned into a composition of

several simpler functions thus making the learning process effective.

It is worth noting that, although DNNs have a large capacity to model a high

degree of nonlinearity in the input data, a central challenge is that of overfitting.

While overfitting can be a challenge in any type of ANN, typically, it can be

overcome by simple regularization methods [116]. However, in DNNs, it becomes

particularly acute due to the presence of a very large number of parameters. To

overcome this issue, several advanced regularization approaches, such as dataset

augmentation, early stopping, and weight decay [116] have been designed. These

methods modify the learning algorithm so that the test error is reduced at the

expense of increased training error. For instance, data augmentation overcomes

overfitting by synthetically creating more data while early stopping aims at inter-

rupting the training process once the performance of the model on a validation

set gets worse. A validation set is a set of examples that are not used for either

the training or the testing process.

2.2.3.1 Training Deep Neural Networks

DNNs are often much harder to train than shallow ANNs due to the instability of

their gradient that occurs when training them with gradient-based methods such

as those described earlier. In such conventional methods, each one of the ANN’s

weights receives an update proportional to the gradient of the error function

with respect to the current weight in each iteration of training. In particular, the

weights and the activation functions (or more precisely, their derivatives) that the

gradient passes through will affect the magnitude of the gradients. Here, note

that the gradient by the backpropagation algorithm is computed by the chain

rule. Therefore, multiplying n of the gradients at each layer makes the gradients

at the “front” layers, in an n-layer DNN, exponentially decrease or increase with

n for small gradient values within range (-1, 1) or for large gradient values, re-

spectively. This is obviously not a major problem in conventional shallow ANNs,

as they have only one single layer. For example, the tanh derivative is < 1 for

all inputs except 0 and the sigmoid is always ≤ 0.25 when used as activation

functions f (·) in (2.4). These two problems are known as the vanishing gradient
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Figure 2.14. Architecture of an LSTM [9].

problem and the exploding gradient problem, respectively, and they can result in

having different layers in DNNs learn at vastly different speeds. For instance,

for a vanishing gradient problem, when latter layers in the DNN are learning

well, early layers often learn almost nothing during training. To overcome this

instability, several techniques for training DNNs have been proposed in the litera-

ture [19,117–119] such as adaptive learning rate algorithms (e.g., Adagrad, Adam,

AdaDelta, RMSProp [101, 117, 120]), multi-level hierarchy [118], LSTM [19] and

ResNets [119]. For instance, multi-level hierarchy of DNNs [118] is based on pre-

training one level at a time through unsupervised learning and then fine-tuning

through backpropagation. Meanwhile, the LSTM is a special type of deep RNN

with the identity function with a derivative of 1 being its activation function [19].

Therefore, in LSTM, the backpropagated gradient neither vanishes nor explodes

when passing through, but remains constant, and, thus, iterative gradient descent

such as backpropagation through time can be used for training LSTMs.

The above discussion gives a brief overview on general DNNs. Next, we elabo-

rate more on LSTM, a special kind of DNN that is capable of storing information

for long periods of time by using an identity activation function for the memory

cell. This in turn makes LSTM suitable for various wireless communication prob-

lems such as channel selection in which SBSs or WAPs need to learn a sequence

of future traffic patterns on each channel and thus allocate the available radio

resources accordingly.

2.2.3.2 DNN Example (1): LSTM

LSTMs are a special kind of “deep learning” RNNs that are capable of storing

information for either long or short periods of time. In particular, the activa-
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Table 2.2 Various behaviors of an LSTM cell.

Input gate Forget gate Behavior

0 1 remember the previous value

1 1 add to the previous value

0 0 erase the value

1 0 overwrite the value

tions of an LSTM network correspond to short-term memory, while the weights

correspond to long-term memory. Therefore, if the activations can preserve in-

formation over long duration of time, then this makes them long-term short-term

memory. Although both ESN and LSTM are good at modeling time series data,

LSTM cells have the capability of dealing with long term dependencies. An

LSTM network contains LSTM units each of which having a cell with a state ct

at time t. Access to this memory unit, shown in Fig.2.14, for reading or modifying

information is controlled via three gates:

• Input gate (it): controls whether the input to is passed on to the memory

cell or ignored.

• Output gate (ot): controls whether the current activation vector of the

memory cell is passed on to the output layer or not.

• Forget gate (ft): controls whether the activation vector of the memory cell

is reset to zero or maintained.

Therefore, an LSTM cell makes decisions about what to store, and when to

allow reads, writes, and erasures, via gates that open and close. At each time

step t, an LSTM receives inputs from two external sources, the current frame xt

and the previous hidden states of all LSTM units in the same layer st−1, at each

of the four terminals (the three gates and the input). These inputs get summed

up, along with bias factors bf , bi, bo, and bc. The gates are activated by passing

their total input through the logistic function. Table 2.2 summarizes the various

behaviors an LSTM cell can achieve depending on the values of the input and

forget gates. Moreover, the update steps of a layer of LSTM units are summarized

in the following equations:

gt = fg(W fxt +U fst−1 + bf ), (2.13)

it = fg(W ixt +U ist−1 + bi), (2.14)
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ot = fg(W oxt +U ost−1 + bo), (2.15)

ct = gt � ct−1 + it � fc(W cxt +U cst−1 + bc), (2.16)

st = ot � fh(ct), (2.17)

where gt, it, and ot are the forget, input and output gate vectors at time t,

respectively. xt is the input vector at time t. ct−1 is the cell state vector (i.e.,

internal memory) and st−1 is the hidden/output vector at time (t− 1). W f and

U f are the weight and transition matrices of the forget gate, respectively. fg, σc,

and fh are the activation functions and correspond respectively to the sigmoid,

tanh and tanh functions. � denotes the Hadamard product. Compared to a

standard RNN, LSTM uses additive memory updates and separates the memory

c from the hidden state s, which interacts with the environment when making

predictions. To train an LSTM network, the stochastic gradient descent algorithm

that was introduced in Subsection 2.2.1.2 can be employed.

LSTM is thus suitable for applications involving sequential learning; it can

classify, process and predict time series given time lags of unknown size and du-

ration between important events. Several variants of LSTM exist such as bidirec-

tional LSTM, sequence-to-sequence LSTM (a.k.a. encoder-decoder LSTM) [121],

peephole LSTM [122], and gated recurrent unit (GRU) [123]. For instance, the

encoder-decoder LSTM is suitable for solving problems with sequences whose

lengths are not known a-priori [121]. The authors in [124] show that some mod-

ifications to the LSTM architecture such as coupling the input and the forget

gates or removing peephole connections simplify the LSTM architecture without

significantly degrading its performance.

In this subsection, we discussed LSTMs that are particularly suitable for se-

quence learning. Next, we elaborate more on another type of DNNs, namely deep

ESNs, which are characterized by their ability to represent features at different

levels of abstraction while preserving the RC training efficiency.

2.2.3.3 DNN Example (2): Deep ESN

Here, we introduce a different type of DNNs, namely, deep ESNs. In essence,

multiple non-linear reservoir layers can be stacked on top of each other resulting

in a deep ESN architecture. Deep ESNs exploit the advantages of a hierarchical

temporal feature representation at different levels of abstraction while preserving

the RC training efficiency. They can learn data representations at different levels
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of abstraction, hence disentangling the difficulties in modeling complex tasks by

representing them in terms of simpler ones hierarchically. Let N
(n)
R be the number

of internal units of the reservoir at layer n, NU be the external input dimension,

and NL be the number of layers in the stack. Next, we define the following deep

ESN components:

• xt ∈ RNU the external input at time t,

• s(n)
t ∈ RN

(n)
R as the state of the reservoir at layer n and time t,

• W (n)
in as the input-to-reservoir matrix at layer n, where W

(n)
in ∈ RN

(n)
R ×NU

for n = 1, and W
(n)
j,in ∈ RN

(n)
R ×N(n−1)

R for n > 1,

• W (n) ∈ RN
(n)
R ×N(n)

R as the recurrent reservoir weight matrix at layer n,

• W out ∈ R|Z|×(NU+
∑

nN
(n)
R ) as the reservoir-to-output matrix for layer n only.

The objective of the deep ESN architecture is to approximate a function

F = (F 1, F 2, · · · , FNL) based on the input vector at each time t. For each n =

1, 2, · · · , NL, the function F (n) describes the evolution of the state of the reservoir

at layer n, i.e., s
(n)
t = F (n)(x, s

(n)
t−1) for n = 1 and s

(n)
t = F (n)(s

(n−1)
t , s

(n)
t−1) for

n > 1. Here, the initialization of W (n) should satisfy the echo state property of

deep ESN. In essence, the echo state property of deep ESN states that for each

input sequence of length N , SN = [x(1),x(2), · · · ,x(N)], and for all couples of

deep ESN initial states s, s′ ∈ R
∑

nN
(n)
R , ‖ F̂ (SN , s)−F̂ (SN , s

′) ‖→ 0 as N →∞,

where F̂ denotes the iterated version of the deep ESN state transition function

F . Equivalently, the current state s of the network is a function of its past input

history independently of initial state values [125]. To satisfy the ESP, a neces-

sary condition is that the spectral radius of W (n) (i.e., the largest eigenvalue in

absolute value), ρ(n), is strictly less than 1 [125]. If this condition is violated, the

dynamical reservoir is locally asymptotically unstable at the zero state 0 ∈ RN
(n)
R

and echo states cannot be guaranteed if the null sequence is an admissible input

for the system. In fact, the value of ρ(n) is related to the variable memory length

and the degree of contractivity of reservoir dynamics, with larger values of ρ(n)

resulting in longer memory length. Varying the values of ρ(n) implies a variability

of contractivity and memory length among the state dynamics of different layers.

Here, note that for deep ESN architecture, we distinguish between two types

of inputs: external input, xt, that is fed to the first layer of the deep ESN and
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corresponds to the current state of the network and input that is fed to all other

layers for n > 1. The input to any layer n > 1 at time t corresponds to the state

of the previous layer, s
(n−1)
t . Therefore, the state transition function of the first

layer s
(1)
t will be:

s
(1)
t = (1− α(1))s

(1)
t−1 + α(1)tanh(W

(1)
in xt +W (1)s

(1)
t−1), (2.18)

where α(n) ∈ [0, 1] is the leaky parameter at layer n which relates to the speed

of the reservoir dynamics in response to the input, with larger values of α(n)

resulting in a faster response of the corresponding n-th reservoir to the input.

The state transition, s
(n)
t , for n > 1 is given by:

s
(n)
t = (1− α(n))s

(n)
t−1 + α(n)tanh(W

(n)
in s

(n−1)
t +W (n)s

(n)
t−1), (2.19)

The output yt of the deep ESN at time t is used to estimate the reward after

training W out and can be computed as:

y(xt) = W out,t[x(t), s(1)(t), s
(2)
t , · · · , s(n)

t ]. (2.20)

Here, note that training deep ESN networks can be achieved via similar meth-

ods as training shallow ESN. Moreover, the authors in [126] compare the perfor-

mance of a deep ESN architecture with decreasing leaky parameter, α(n), for

increasing layer depth with its shallow counterpart. Results show that the vari-

ability of the leaky parameter has a great impact on the separation among the

emerging time-scales dynamics, reaching longer times-scales than the shallow ESN

with the slowest dynamics. In fact, this characterization is a result of the inter-

play between layering and leaky integration variability, and indeed it is lost when

non-stacked architectures are considered.

Next, we give general background on game theory, and in particular, network

formation games. Game theory is a mathematical framework for modelling the

conflict and cooperation between intelligent rational decision-makers. Network

formation games are a branch of game theory which essentially deal with the

formation of a network among different players in a given network.

2.3 Game Theory

In this section, we provide a general overview on game theory and some of its

general concepts. Then, we elaborate more on a particular type of games, namely

network formation games.
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2.3.1 Basics of Game Theory

Game theory is a formal analytical framework with a set of mathematical tools

to study the strategic interactions among independent rational players [127].

Throughout the past decades, game theory has made a revolutionary impact

in different disciplines ranging from economics, politics, philosophy, or even psy-

chology. Likewise, the emergence of large-scale distributed wireless networks, as

well as the recent interest in mobile flexible networks where the nodes are au-

tonomous decision makers has made game theory an interesting tool for various

competitive and cooperative problems in wireless communications [21, 46, 127].

In essence, the application of game-theoretic concepts in wireless communication

networks lies at the heart of the need for self-organizing, self-configuring, and

self-optimizing networks [127]. In its basic form, a game consists of:

• Players: with conflicting interests or mutual benefit.

• Actions or strategies: set of actions available for each player.

• Utility or payoff: corresponds to the benefit that a player can obtain

upon taking a particular action.

Different types of games exists. Broadly speaking, these games can be classi-

fied into two main categories: non-cooperative games, in which different players

have conflicting interests, and cooperative games, in which different players may

have mutual benefits. In these types of games, it is important to characterize

the solution that the players of each game aim at reaching. As such, different

solution concepts exist for different types of games. In this thesis, we limit our

discussion to the most commonly adopted solution concepts for non-cooperative

games. In what follows, we summarize such concepts:

• Nash equilibrium: The NE is a fundamental solution concept for strategic-

form games, on which many other concepts are built. It corresponds to

the stable state of a system involving the interaction of multiple players,

in which no player can gain by a unilateral deviation of his strategy if the

strategies of the other players remain unchanged. Therefore, at NE, each

player’s choice of action is a best response (BR) to the actions taken by his

opponents and, thus, the NE outcome can be regarded as a steady state of

a strategic interaction. Here, it is important to distinguish between pure,
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mixed and behavioral NE. A pure strategy is an unconditional and defined

choice that a player makes in a game, i.e., each player plays one specific

strategy. On the contrary, a mixed strategy is an assignment of a probability

to each pure strategy, i.e., at least one player in the game randomizes over

some or all of their pure strategies. Meanwhile, a behavioral strategy exists

in dynamic games. It allows each player to assign independent probabilities

to the set of actions at each state of the game that is independent across

the different states.

• Pareto optimality : The outcome of a game is Pareto optimal if there is

no other outcome that makes every player at least as well off and at least

one player strictly better off. In other words, it implies an operating point

where no player can do better without “hurting” the others.

Given the above basic concepts in game theory, next, we elaborate more on a

particular type of game, namely, the network formation game. In essence, network

formation games correspond to situations where network structure plays a key role

such as trading agreements, personal relationships, and wireless sensor networks.

As such, these type of games rely on theories on how network structures matter

and how they are formed. For these games, one needs to predict which networks

can form and assess the stability and efficiency of these networks. Next, we define

the basics of network formation games and the solution concepts adopted in such

type of games.

2.3.2 Network Formation Games

Network formation games involve a number of independent decisions makers that

interact with each other in order to form a suited network graph that connects

them [44]. Therefore, these type of games are mainly suited for applications in

which network structure plays a key role thus making them suitable for various

wireless communication problems. In essence, network formation games capture

two conflicting objectives of self-interested nodes in a network. On the one hand,

such a node wishes to be able to reach all other nodes in the network; on the

other hand, it wishes to minimize its cost of participation. A network formation

game consists of:

• Players: that are connected in some network relationship.
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• Links: a link represents a relationship between two players. It can be either

a directed or an undirected link. The former refers to links with directed

edges, i.e., directional links, while the latter corresponds to bidirectional

links. An undirected graph can be simulated using a directed graph by

using pairs of edges in both directions.

• Network: is a list of which pairs of players are linked to each other and thus

corresponds to a relationship between the players. It is typically represented

by a graph G with the players being the vertices. For any pair of players i

and j, a formed link is denoted ij.

Here, it is important to define the basic notations for network formation games.

A graph is denoted by g where g + ij represents adding a link to a network and

g − ij represents deleting a link from a network. A path in a network g is a

sequence of players i1, . . . , iK such that ikik+1 ∈ g for each k. A component of a

network g is a subnetwork gc, i.e., every i and j that have at least one link in gc are

connected by a path and any link ij that is in gc is also in g. A value function v is

a function that provides the total amount accrued from a certain graph structure

and thus an allocation rule defines how this value is divided between the players.

Therefore, a network game can be defined as the pair (N, v) where N is the set

of players and v is the value.

For a given network formation game, the main objective of the players is to

form a network among them. Several approaches have been proposed for forming

a network, each of which considering a different solution concept. In what follows,

we overview the main considered solution concepts [44]:

• Nash network (Baya and Goyal, 2000): The most basic dynamic net-

work formation process is BR dynamics, where at each round of the process,

a profitable deviation is undertaken by one or a pair of nodes at a time. In

these games, the strategy of a player is the other player with which it wants

to link to. The outcome of such an approach is the Nash network, at which

each player plays their BRs. Here, note that the notion of Nash network

is applicable to directed graphs only. Although BR dynamics are attrac-

tively simple, they may fail to converge; further, BR dynamics can lead to

inefficient equilibria or even to multiplicity of Nash networks. For instance,

consider a game where each player simultaneously announces which other

player he or she is willing to link to. It is always a NE for each player to say
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that he or she does not want to form any links, anticipating that the other

player will do the same i.e., the empty graph is always a NE. Generally, this

allows for a large multiplicity of equilibria, many of which make little sense

from a network perspective in which mutual interest is essential. Therefore,

although suitable in some social networks applications, the model is unsuit-

able for complex problems such as communication networks. The concept

of NE does not account for the fact that the players can discuss their de-

cisions, which in fact is essential for the formation of networks. To model

such a situation a stability concept that accounts for the consent of both

players is required.

• Pairwise stable networks (Jackson and Wolinsky, 1996): Given

the fact that, in network formation games, the consent of two nodes is

required to form a single link, the stability of the outcome can be more

accurately characterized than in Nash networks by considering bilateral de-

viations [128]. As such, a network is said to be pairwise stable if there is no

incentive for any player to break a link that is formed with another player

(unilateral deviation) and no pair of players have an incentive to establish

a new link (bilateral deviation). The notion of pairwise stability accounts

for the mutual consent of both players and is therefore applicable to undi-

rected graphs only. Link stability, on the other hand, is a similar concept to

pairwise stability but for directed graphs. Watts proposed dynamic model

for forming pairwise stable networks [44]. The Watts process starts with

an empty network. At each time t, a link is identified, and is added or

deleted only if the resulting network defeats the previous network. For this

process, myopic players are adopted, i.e., players update their strategic de-

cisions considering only the current state of the network without taking into

account the future evolution of the network. The process ends in a stable

state if no more links can be added or deleted and a pairwise stable network

is reached in that case. The stochastic dynamic model is another process

that would reach a pairwise stable network and was proposed by Jackson

and Watts in 2001. This process is in fact an improvement over the Watts

model, by allowing the reverse of the players intentions to occur with prob-

ability ε. Nevertheless, like Nash network, a pairwise stable network may

not always exist. In particular, this occurs when each network is defeated
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by some adjacent network, and that these improving paths form cycles with

no undefeated networks existing. Here, an improving paths is a sequence of

networks {G1, G2, . . . , Gk} where Gk is defeated by the subsequent network

Gk+1. Moreover, a cycle is an improving path {G1, G2, . . . , Gk} such that

G1 = Gk. Consequently, a network is pairwise stable if and only if it has

no improving paths emanating from it [129]. Another drawback that makes

the pairwise stability concept weak, is the fact that it is does not consider

changes in multiple links at a time, but it only looks at changes that happen

between single links. In other words, it does not consider deviations where

players delete some links and add other links at the same time.

• Pairwise Nash stable: Pairwise-Nash equilibrium is a variation of NE

where players are allowed to deviate by pairs. Therefore, as opposed to

pairwise stable networks which are robust to one-link deviations, pairwise-

Nash networks are robust to the bilateral one-link creation and to unilateral

multi-link severance [130]. In other words, a network is said to be a pairwise-

Nash equilibrium network if it is both pairwise stable and a NE outcome.

Given the above solution processes and concepts, it is important to characterize

the efficiency of the resultant network. The proposed solution concepts exhibit

different tradeoff between stability and efficiency. In essence, achieving both

efficiency and stability is challenging for network formation games. For instance,

the star network is an efficient network but is not pairwise stable while the empty

network can be pairwise stable but non-efficient.





Chapter 3

Deep Learning for Proactive

Resource Management for LTE in

Unlicensed Spectrum

3.1 Introduction

As we have mentioned in Chapter 2, future mobile networks will essentially op-

erate over the unlicensed band along with the conventional licensed spectrum.

LTE-LAA has mainly emerged due to the dramatic growth in mobile data traffic

on one hand and the scarcity of the licensed spectrum on the other hand. There-

fore, to reap the benefits of LTE-LAA and thus allow a higher system capacity

and better user experience, the main LTE-LAA challenges that were highlighted

in Chapter 2 need to be addressed. These challenges include effective coexistence

with existing WiFi networks, resource allocation, multiple access, traffic offloading

from licensed to unlicensed spectrum, and inter-operator spectrum sharing [131].

In this chapter, we address the problem of LTE-WiFi coexistence in the unli-

censed band. In particular, we propose a novel proactive resource management

scheme for the coexistence of LTE and WiFi in the unlicensed spectrum. The

proposed scheme allows different SBSs to autonomously update their channel se-

lection and channel access probabilities based on the traffic load of WLAN on

each of the unlicensed channels. The work presented in this chapter has appeared

in the Proceedings of European Wireless Conference [20] and an extended journal

version has been accepted for publication at the IEEE Transactions on Wireless

Communications [21]. Table 3.1 provides a summary for the description of the

71
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Table 3.1 Variables and notations.

Notation Description

J Number of LTE-LAA SBSs

W Number of WAPs

C Number of unlicensed channels

Kj Number of LTE-LAA UEs associated with SBS j

Pt Transmit power of SBS

T Time window

t Time epoch

τj Stationary probability of WAP w

τj,c,t Stationary probability of SBS j on channel c at t

tmax Maximum fraction of time an unlicensed channel can be used

CWj,c,t CW of SBS j on channel c at t

αj,c,t Fraction of time during which SBS j transmits on channel c during t

xj,c,t The channel c that SBS j transmits over during t

Mc Maximum channels that can be aggregated by SBS

λ Learning rate

γ Learning rate decay

hm,t Hidden vector of the traffic encoder m

hj,t Hidden vector of the action decoder of SBS j

φ LSTM cell function

θt Model parameters at t

main notations used in this chapter. Next, we give an overview on the related

literature and then we present our problem statement and contribution.

3.1.1 Related Work

There has been a number of recent works [15, 16, 18, 25, 132–135] that study

the problem of enhanced LTE-LAA and WiFi coexistence. This existing body

of works can be categorized into two groups: channel access [25, 132–134] and

channel selection [15,18,135]. The authors in [132–134] propose different channel

access mechanisms based on LBT that rely on either an exponential backoff [132],

a fixed/random CW size [133], or an adaptive CW size [134]. Nevertheless, an

exponential backoff approach leads to unnecessary retransmissions while a fixed

CW size cannot handle time-varying traffic loads thus yielding unfair outcomes.

The authors in [25] develop a holistic approach for both traffic offloading and

resource sharing across the licensed and unlicensed bands but considering one

SBS. In [16], the authors study the problem of resource allocation with UL-DL
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decoupling for LTE-LAA. The authors in [17] propose an inter-network coordi-

nation scheme with a centralized radio resource management for the LTE-WiFi

coexistence. However, this prior art is limited to one unlicensed channel and does

not jointly account for channel selection and channel access. In other words, these

works do not analyze the potential gains that can be obtained upon aggregating

or switching between different unlicensed channels. Operating on a fixed unli-

censed channel limits the amount of cellular data traffic that can be offloaded to

the unlicensed band and leads to an increase in the interference level caused to

neighbouring WAPs operating on that same channel.

In terms of LTE-LAA channel selection, the authors in [18] propose a dis-

tributed approach based on Q-learning. A matching-based solution approach is

proposed in [135], which is both distributed and cooperative. Moreover, the work

in [15] combines channel selection along with channel access. Despite the promis-

ing results, all of these works [15, 18, 135] consider a reactive approach in which

data requests are first initiated and, then, radio resources are allocated based on

their corresponding delay tolerance value. Nevertheless, this sense-and-avoid ap-

proach can cause an underutilization of the spectrum due to the impulsive recon-

figuration of the spectrum usage that does not account for the future dynamics of

the network. Despite the predominance of the reactive LTE-WiFi coexistence so-

lutions, cellular data traffic networks are known to exhibit statistically fluctuating

and periodic demand patterns, especially applications such as file transfer, video

streaming and browsing [136], therefore providing an opportunity for the network

to exploit the predictable behavior of the UEs to smooth out the traffic over time

and reduce the difference between the peak and the average load. Therefore, in a

proactive approach, rather than reactively responding to incoming demands and

serving them when requested, an SBS can predict traffic patterns and determine

future off-peak times so that incoming traffic demand can be properly allocated

over a given time window.

3.1.2 Problem Statement and Contribution

The main objective of this chapter is to propose a proactive LTE-WiFi coexistence

scheme that would allow a better utilization of the unlicensed spectrum. This is

mainly accomplished by either serving a fraction of the LTE-LAA traffic when

requested or shifting part of it to the future, over a given time window, so as
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to balance the occupancy of the unlicensed spectrum usage across time and,

consequently, improve its degree of utilization. From the LTE-LAA network

perspective, this will increase its transmission opportunities on the unlicensed

spectrum, reduce the collision probability with WAPs and other SBSs and, hence,

provide a boost for its throughput. Moreover, a proactive resource allocation

scheme can exploit the inherent predictability of the future channel availability

status so as to allocate the radio resources in a window of time slots based on

the predicted requests. This, in turn, can lead to a decrease in the probability of

occurrence of a congestion event while ensuring a degree of fairness to the WLAN.

The main contribution of the work presented in this chapter is a novel deep

RL algorithm based on long short-term memory (RL-LSTM) cells for proactively

allocating LTE-LAA resources over the unlicensed spectrum. The LTE-LAA re-

source allocation problem is formulated as a noncooperative game in which the

players are the SBSs. To solve this game, we propose an RL-LSTM framework

using which the SBSs can autonomously learn which unlicensed channels to use

along with the corresponding channel access probability on each channel taking

into account future environmental changes, in terms of WLAN activity on the

unlicensed channels and LTE-LAA traffic loads. Unlike previous studies which

are either centralized [15] or rely on the coordination among SBSs [134], the

proposed scheme in this chapter is based on a self-organizing proactive resource

allocation scheme in which the SBSs utilize past observations of the network

state to build predictive models on spectrum availability and to intelligently plan

channel usage over a finite time window. The use of long short term memory

cells enables the SBSs to predict a sequence of interdependent actions over a

long-term time horizon thus achieving long-term fairness among different under-

lying technologies. We show that, upon convergence, the proposed algorithm

reaches to a mixed-strategy distribution which constitutes a mixed-strategy NE

for the studied game. We also show that the gain of the proposed proactive re-

source allocation scheme and the optimal size of the prediction time window is

a function of the traffic pattern of the dataset under study. Simulation results

show that the proposed approach yields significant rate improvements compared

to conventional reactive solutions such as instantaneous equal weighted fairness,

proportional fairness and total network throughput maximization. The results

also show that the proposed scheme prevents disruption to WLAN operation in

the case large number of LTE operators selfishly deploy LTE-LAA in the un-
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WiFi AP2

WiFi AP1

SBS 3 
Operator C

SBS 2 
Operator B

SBS 1 
Operator A

Figure 3.1. Illustration of the system model. In the above example, 3 SBSs belonging to different

operators and 3 unlicensed channels are only shown for simplicity. The channel selection vector

over a time window of 3 epochs is also shown.

licensed spectrum. In terms of priority fairness, results show that an efficient

utilization of the unlicensed spectrum is guaranteed when both technologies are

given equal weighted priorities for transmission on the unlicensed spectrum.

The rest of this chapter is organized as follows. In Section 3.2, we present

the system model. Section 3.3 describes the proposed coexistence game model.

The LSTM-based algorithm is proposed in Section 3.4. In Section 3.5, simulation

results are analyzed. Finally, a summary is provided in Section 3.6.

3.2 System Model

Consider the downlink of an LTE-LAA network composed of a set J of J LTE-

LAA SBSs belonging to different LTE operators, a setW of W WAPs, and a set C
of C unlicensed channels as shown in Fig. 3.1. Each SBS j ∈ J has a set Kj of Kj

LTE-LAA UEs associated with it. We consider a network scenario corresponding

to environments such as work offices, a university campus, and airports in which

the traffic load of a given WAP or SBS can be characterized through a particular

model that typically remains unchanged over coarse periods of time (e.g., one

day) [136]. We focus on the operation of the SBSs over the unlicensed band, while

the licensed spectrum resources are assumed to be allocated in a conventional

way [137]. Both SBSs and WAPs adopt the LBT access scheme and, thus, at

a particular time, a given unlicensed channel is occupied by either an SBS or

a WAP. We consider the LTE carrier aggregation feature using which the SBSs

can aggregate up to five component carriers belonging to the same or different

operating frequency bands [138]. This, in turn, would enable the SBSs to operate
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on multiple unlicensed channels simultaneously thus maximizing their data rate

during a particular transmission opportunity.

Our goal is to jointly determine the dynamic channel selection, carrier aggre-

gation, and fractional spectrum access for each SBS, while guaranteeing long-term

airtime fairness with WLAN and other LTE-LAA operators. The main motiva-

tion for adopting a long-term fairness approach is to avoid the underutilization of

the unlicensed spectrum by either serving part of the LTE-LAA traffic when re-

quested or shifting part of it in the future over a given time window in a way that

would balance the occupancy of the unlicensed spectrum usage across time and,

consequently, improve its degree of utilization. This will subsequently result in

an increase in the transmission opportunities for LTE-LAA as well as a decrease

in the collision probability for the WLAN. To realize this, we need to dynamically

analyze the usage of various unlicensed channels over a particular time window.

To this end, we divide our time domain into multiple time windows of duration

T , each of which consists of multiple time epochs t, as shown in Fig. 3.2. Our

objective is to proactively determine the spectrum allocation vector for each SBS

at t = 0 over T while guaranteeing long-term equal weighted airtime share with

WLAN. To guarantee a fair spectrum allocation among SBSs belonging to differ-

ent operators, we consider inter-operator interference along with inter-technology

interference. In fact, inter-operator interference is the consequence of the selfish

behavior of different operators and could result in a degradation in the spectral

efficiency if not managed. Next, we define xj,c,t = 1 if channel c is selected by

SBS j during time epoch t, and 0, otherwise, and αj,c,t ∈ [0, 1]. xj,c,t determines

the channel c that is used by SBS j during time t and αj,c,t is the channel access

probability of SBS j on the unlicensed channel c at time t.

Since the 3GPP has identified LBT as an access mechanism for standardizing

a global solution for the operation of LTE in the unlicensed spectrum, we consider

a contention-based protocol for our proposed channel access mechanism [139]. In

this protocol, prior to transmission, an SBS applies clear channel assessment for

the duration of DIFS to detect the state of the channel (idle or busy) based on the

detected energy level. If the channel is idle, the SBS would backoff for a random

number between [0, CW] and if the medium was still free, it gets a transmit op-

portunity for up to 10 LTE sub-frames (considering priority class 1 devices [140]);

it sends a reservation signal, e.g., clear-to-send (CTS), with the duration of its

transmission period along with the remaining time period until the beginning of
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Prediction window T1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
t1 t2 t3 t4 t5 tT t1 t2 t3 t4 t5 tT

Prediction window T2

,1,1j ,1,2j ,1,3j ,1,4j ,1,5j ,1,j T

,2,1j ,2,2j ,2,3j ,2,4j ,2,5j ,2,j T ,2,1j ,2,2j ,2,3j ,2,4j ,2,5j ,2,j T

,3,1j ,3,2j ,3,3j ,3,4j ,3,5j ,3,j T ,3,1j ,3,2j ,3,3j ,3,4j ,3,5j ,3,j T

, ,1j C
, ,2j C

, ,3j C , ,4j C , ,5j C
, ,j C T , ,1j C

, ,2j C , ,3j C , ,4j C , ,5j C
, ,j C T

,1,1j ,1,2j ,1,3j ,1,4j ,1,5j ,1,j T

Figure 3.2. The division of the time domain into multiple time windows T , each of which

consists of multiple time epochs t.

its next subframe. This allows prevention of other competing devices from get-

ting access to the unlicensed channel until the beginning of the next subframe

of the corresponding SBS and hence reserving the channel for transmission. On

the other hand, if the channel was busy, the SBS keeps monitoring the channel

until it becomes idle. Here, we note that our proposed algorithm is not fully

compliant with the regulations in terms of CW size adjustment. In particular, we

consider an exponential backoff scheme for WiFi while the SBSs adjust their CW

size (and thus the channel access probability) on each of the selected channels

in a way that would guarantee a long-term equal weighted fairness with WLAN

and other SBSs. In essence, the exponential backoff access method that has been

adopted by 3GPP for SBSs can lead to short-term unfairness [141]. This results

from the fact that, after each collision, the colliding hosts double their CWs and,

thus, have higher probability of choosing a larger backoff during which other

hosts may benefit from channel access. This also means increased delay for hosts

that doubled their CW. Therefore, the standard DCF method controls the load

on the channel by reducing the number of contending hosts, because the hosts

that have failed their transmission are likely to attempt to access the channel in

the future. Moreover, hosts consider all failed transmissions as collisions in DCF,

however, this is not always the case. Thus, DCF bases its load control on a biased

indicator, which can potentially lead to lower performance and increased unfair-

ness [141]. On the other hand, by having a fixed CW size for each SBS during

each time epoch t, we can alleviate these problems and, more importantly, we

can decouple the load control from handling failed transmissions. It is also worth

noting that small CW sizes lead to an increase in the collision probability while
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large CW sizes result in too much time spent waiting in idle slots. Therefore,

an efficient access method should adapt the value of the CW of each SBS to the

traffic conditions of the network.

To derive the throughput achieved by an LTE-LAA UE and a WAP, we first

define the stationary probability of each WAP w and each SBS j, τw and τj,c,t

respectively. The stationary probability is the probability with which a given

base station attempts to transmit in a randomly chosen slot. Considering an

exponential backoff scheme for WiFi, the stationary probability with which WAPs

transmit a packet during a particular WiFi time slot, τw, will be given by [142]:

τw =
2(1− 2qw)

(1− 2qw)(CWmin + 1) + qwCWmin(1− (2qw)m)
, (3.1)

where qw is the collision probability of a WAP, m is the maximum backoff stage

where CWmax = 2mCWmin. CWmin and CWmax are the minimum and maximum

contention window size, respectively. For LTE-LAA, m=0 since no exponential

backoff is considered, and, thus, the stationary probability of an SBS on a given

unlicensed channel c during time epoch t will be τj,c,t = 2
CWj,c,t+1

, where CWj,c,t is

the contention window size of SBS j on channel c during time epoch t. Therefore,

we do not consider a contention stage for LTE-LAA and, thus, the CW size of

the SBSs is not doubled after each unsuccessful transmission. Instead, the SBSs

consider a fixed value for the CW for each time epoch t and this value is adjusted

adaptively from one time epoch t to another in order to control the corresponding

channel access probabilities over the unlicensed band for different time epochs.

The collision probability of a WAP is defined as qw = 1−
∏W

v=1,v 6=w(1−τv)
∏J

j=1(1−
τj,c,t), where c is the channel used by WAP w. The throughput Rw of a WAP w

during a particular WiFi time slot will be:

Rw =
Pw,succ · E[Dw]

Pw,idle · θ + Pw,busy · Tb
, (3.2)

where E[Dw] is the expected payload size for WAP w, Pw,succ = τw
∏W

v=1,v 6=w(1−
τv)
∏J

j=1(1−τj,c,t) is the probability of a successful transmission, Pw,idle =
∏J

j=1(1−
τj,c,t)

∏W
w=1(1− τw) is the probability of an idle slot, and Pw,busy = 1−

∏J
j=1(1−

τj,c,t)
∏W

w=1(1− τw) is the probability of a busy slot, regardless of whether it cor-

responds to a collision or a successful transmission. θ and Tb are, respectively,

the average durations of an idle and a busy slot and, thus, the denominator in

(3.2) corresponds to the mean duration of a WiFi MAC slot.
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Figure 3.3. An illustrative example for computing the actual data transmission time of an

LTE-LAA SBS.

The achievable airtime fraction for an LTE-LAA SBS j on channel c at time

t is:

αj,c,t = τj,c,t

J∏
i=1,i 6=j

(1− τi,c,t)
W∏
w=1

(1− τw). (3.3)

The airtime fraction represents the time allocated for an SBS on channel c

during time t which essentially accounts for both the data transmission time as

well as the reservation signal overhead. Here, it is important to account for the

reservation signal overhead during a transmission burst of an SBS when comput-

ing the throughput, as done in [143]. As such, we let ξj,c,t be the average fraction

of time of αj,c,t during which LTE-LAA SBS is transmitting data. Fig. 3.3 pro-

vides an illustrative example for computing the fraction of time of t during which

LTE-LAA SBS is transmitting data. Thus, the total throughput of all Kj,t UEs

that are served by SBS j during time epoch t is:

Rj,t =
C∑
c=1

αj,c,tξj,c,trj,c,t, (3.4)

where

rj,c,t =

Kj,t∑
k=1

Bclog

(
1 +

Pj,c,thj,k,c,t
Ij,c,t +BcN0

)
. (3.5)

Here, Ij,c,t =
∑W

w=1 Pw,c,thw,k,c,t +
∑J

i=1,i 6=j Pi,c,thi,k,c,t is the interference level on

SBS j when operating on channel c during time t and Bc is the BW of channel

c. Pj,c,t is the transmit power of SBS j on channel c during time t. hj,k,c,t is the

channel gain between SBS j and UE k on channel c during time t. N0 is the

power spectral density of additive white Gaussian noise. Since SBSs and WAPs

both adopt LBT, then one cell may occupy the entire channel at a given time

thus transmitting exclusively on a given channel c. However, hidden and exposed
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terminals could be present on a given channel which can result in interference

and thus a degradation in the throughput.

Given this system model, next, we develop an effective spectrum allocation

scheme that can allocate the appropriate unlicensed channels along with the cor-

responding channel access probabilities to each SBS simultaneously over T , at

t = 0.

3.3 Proactive Resource Allocation Scheme for Un-

licensed LTE

3.3.1 Proactive Resource Allocation Game

We formulate the resource allocation problem as a noncooperative game G=(J ,Aj, uj)
with the SBSs in J being the players, each of which must choose a channel se-

lection and channel access pair aj,c,t =(xj,c,t,αj,c,t) ∈ Aj at t = 0 for each t of

the next time window T . The objective of each SBS j is to maximize its total

throughput over the selected channels:

uj(aj,a−j) =
T∑
t=1

C∑
c=1

αj,c,tξj,c,trj,c,t, (3.6)

where aj = [(aj,1,1, · · · , aj,1,T ), · · · , (aj,C,1, · · · , aj,C,T )] and a−j correspond, re-

spectively to the action vector of SBS j and all other SBSs, over all the channels

C during T . Note that the utility function (3.6) of SBS j depends on its actions

as well as those of other SBSs which makes the formulation of a game model

suitable for this problem. This is mainly due to the interference from other SBSs

transmitting on the same channel as SBS j as it was shown previously in the

definition of the rate expression in (3.5). The goal of each SBS j is to maximize

its own utility:

max
aj∈Aj

uj(aj,a−j) ∀j ∈ J , (3.7)

s.t. αj,c,t ≤ xj,c,t ∀c, t, (3.8)

C∑
c=1

xj,c,t ≤ min(Mc, C) ∀t, (3.9)
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t∑
tT =1

C∑
c=1

αj,c,tTBc ≤
t∑

tT =1

f(Lj,tT ) ∀t, (3.10)

αw,c,t + αj,c,t +
J∑

i=1,i 6=j

αi,c,t ≤ tmax ∀c, t, (3.11)

xj,c,t ∈ {0, 1}, αj,c,t ∈ [0, 1] ∀c, t, (3.12)

where Mc is the total number of unlicensed channels which an SBS can aggregate.

(3.8) allows the allocation of a channel access proportion for SBS j on channel c

during t only if SBS j transmits on channel c at time t. (3.9) guarantees that each

SBS can aggregate a maximum of Mc channels at a given time t. (3.10) limits

the amount of allocated BW to the required demand where f(Lj,t) captures the

relationship between bandwidth requirement and offered load. (3.11) captures

coupling constraints which limit the proportion of time used by SBSs and WLAN

on a given unlicensed band to the maximum fraction of time an unlicensed channel

can be used, tmax
1. (3.12) represents the feasibility constraints.

Given the fact that different operators and technologies have equal priorities

on the unlicensed spectrum, we incorporate the Homo Egualis (HE) anthropo-

logical model, an inequity-averse based fairness model, into the strategy design

of the agents [144].

Definition 1. Inequity aversion is the preference for fairness and resistance to

incidental inequalities. In other words, it refers to the willingness of giving up

some material payoff in order to move in the direction of more equitable outcomes.

In an HE society, agents focus not only on maximizing their own payoffs, but

also become aware of how their payoffs are compared to other agents’ payoffs [144,

145]. Therefore, their utility function is influenced not only by their own reward,

but also by envy and altruism. An agent is altruistic to others if its payoff is

above an equitable benchmark and is envious of the others if its payoff exceeds

that benchmark and therefore, an unfair distribution of resources among agents

results in disutility for inequity-averse agents. The HE concept comes from the

anthropological literature in which Homo sapiens evolved in small hunter-gatherer

groups without a centralized governance [144].

1tmax depends on the channel access method in the unlicensed band and should be strictly
less than 1 in the case of LBT, otherwise, the channel will always be sensed busy and devices
would not be able to access it.
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In fact, we incorporate the notion of airtime fairness in the modeling of our

HE agents. The average airtime per radio system is considered as one of the

most important fairness metrics in the unlicensed band and is the focus of this

work [146]. Our motivation for considering a time-fair channel allocation scheme

is to overcome the rate anomaly problem that arises when different nodes use

distinct data rates, which leads to the slowest link limiting the system perfor-

mance [134, 146], and [141]. Therefore, to model our players as HE agents, we

consider the following two coupling constraints for the allocated airtime fraction

on each channel c for each SBS j:

1

wj,c

1

T

∑T
t=1 αj,c,t∑T
t=1 L̄j,t

=
1

wi,c

1

T

∑T
t=1 αi,c,t∑T
t=1 L̄i,t

∀c ∈ Ĉj, i ∈ Ŝj,c(i 6= j), (3.13)

1

T

∑T
t=1

∑
n∈Sc,t αn,c,t

PLTE

∑T
t=1

∑
n∈Sc,t L̄n,t

=
1

T

∑T
t=1 αw,c,t

PWiFi

∑T
t=1 Lw,c,t

∀c ∈ Ĉj , (3.14)

where Ĉj is the subset of channels used by SBS j during T . Sc,t is the subset of

SBSs that are transmitting over channel c, c ∈ Ĉj, during time t and Ŝj,c is the

subset of other neighbouring SBSs, i 6= j, that are using the same channel c ∈ Ĉj
as SBS j during T . L̄j,t = Lj,t−

∑
c′ f(αj,c′,t) corresponds to the remaining traffic

that needs to be served by SBSs j with Lj,t being the total aggregate traffic

demand of SBS j on channel c during time epoch t. f(.) corresponds to the

served traffic load as a function of the airtime allocation. c′ represents all the set

of channels except channel c. αw,c,t = min(f(Lw,c,t), tmax − αj,c,t −
∑

i∈Sj,c,t αi,c,t)

is the airtime allocated for WLAN transmissions over channel c during time t.

wj,c =
∑T

t=1 xj,c,t is the weight of SBS j on channel c during T and thus different

SBSs are assigned different weights on each channel c based on the number of time

epochs t a given SBS j uses that particular channel. PWiFi and PLTE correspond to

the priority metric defined for each technology when operating on the unlicensed

band. These parameters allow adaptation of the level of fairness between LTE-

LAA and WLAN.

Constraint (3.13) represents inter-operator fairness which guarantees an equal

weighted airtime allocation among SBSs belonging to different operators on a

given channel c. The adopted notion of fairness is based on a long-term weighted

equality over T , as opposed to instantaneous weighted equality. (3.14) defines an

inter-technology fairness metric to guarantee a long-term equal weighted airtime
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allocation over T for both LTE-LAA and WiFi. Therefore, (3.13) and (3.14)

reflect the inequity aversion property of the SBSs.

In fact, the optimal value of T , which corresponds to the time window size

that allows the maximum achievable throughput for LTE-LAA as compared to

the reactive approach, is dataset dependent. Next, we characterize the optimal

value of T under a uniform traffic distribution.

Proposition 1. For a uniform traffic distribution, the optimal value of T is

equal to 1.

Proof. Under a uniform demand model, the traffic load for each of SBS j and

WAP w is an independent and identically distributed sequence of random vari-

ables which implies that all requests of the same UE are statistically indistinguish-

able over time. In our model, WAPs are passive in that their channel selection

action is fixed and, thus, the activity on a given channel is characterized by the

level of activity of WAPs operating on that channel. In that case, the WLAN

traffic load on each channel also follows a uniform distribution. At the conver-

gence point, (3.8)-(3.14) are satisfied and, hence, the average airtime allocated to

the LTE-LAA network on channel c over the time window T will be:

1

T

T∑
t=1

∑
j∈Sc,t

αj,c,t =
PLTE

PWiFi

∑T
t=1

∑
j∈Sc,t L̄j,t∑T

t=1 Lw,c,t

1

T

T∑
t=1

αw,c,t ∀c ∈ C, (3.15)

However, for the case of uniform traffic demand, the channel selection vector

over T is the same for each SBS because the network state is the same for every

t in T . Moreover, if an SBS aggregates multiple channels, then its load on each

channel is the same for each t in T . This implies that L̄j,t for each SBS j is

uniform over T and thus
∑T

t=1

∑
j∈Sc,t

L̄j,t∑T
t=1 Lw,c,t

=
∑

j∈Sc,t
L̄j,t

Lw,c,t
. Consequently, (3.15) can

be written as:

1

T

T∑
t=1

∑
j∈Sc,t

αj,c,t =
PLTE

PWiFi

∑
j∈Sc,t L̄j,t

Lw,c,t

1

T

T∑
t=1

αw,c,t ∀c ∈ C, (3.16)

When T = 1, the airtime allocated to the LTE-LAA network on channel c

will be:

∑
j∈Sc,t

αj,c,t =
PLTE

PWiFi

∑
j∈Sc,t L̄j,t

Lw,c,t
αw,c,t ∀t, c ∈ C, (3.17)
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Over a fixed time window T , the average airtime allocated to the LTE-LAA

network on channel c can be written as:

1

T

T∑
t=1

∑
j∈Sc,t

αj,c,t =
1

T

T∑
t=1

(
PLTE

PWiFi

∑
j∈Sc,t L̄j,t

Lw,c,t
αw,c,t

)
(3.18)

=
PLTE

PWiFi

∑
j∈Sc,t L̄j,t

Lw,c,t

1

T

T∑
t=1

αw,c,t ∀c ∈ C. (3.19)

(3.19) is equivalent to (3.16) and, hence, our proposed framework does not offer

any gain for the LTE-LAA network when considering a time window T larger

than 1 in the case of a uniform traffic pattern. This completes the proof.

From Proposition 1, we conclude that the gain of our proposed long-term

fairness notion is evident in the case of traffic fluctuations. Under a uniform

traffic distribution, the SBSs cannot make use of future off-peak times to shift

part of their traffic forward in time and, hence, the gain is limited to predicting the

network state for the next time epoch only. It is also worth noting that the gain

of the proactive scheduling approach decreases in the case of a highly congested

WLAN network. This is mainly due to the fact that the system becomes more

congested with incoming requests, thereby restricting the opportunities of shifting

part of the LTE-LAA load in the future.

3.3.2 Equilibrium Analysis

Our game G is a generalized Nash equilibrium problem (GNEP) in which both

the objective functions and the action spaces are coupled. To solve the GNEP,

we incorporate the Lagrangian penalty method into the utility functions thus

reducing it to a simpler Nash equilibrium problem. The resulting penalized utility

function will be, ∀(j ∈ J ):

ûj(aj ,a−j) =
T∑
t=1

C∑
c=1

αj,c,trj,c,t−ρ1,j

C∑
c=1

T∑
t=1

(
min(0, tmax − αw,c,t − αj,c,t −

J∑
i=1,i 6=j

αi,c,t)

)2

−ρ2,j

∑
c∈Ĉj

∑
i∈Ŝj,c(i 6=j)

1

T 2

(
1

wj,c

∑T
t=1 αj,c,t∑T
t=1 L̄j,t

− 1

wi,c

∑T
t=1 αi,c,t∑T
t=1 L̄i,t

)2

−ρ3,j

∑
c∈Ĉj

1

T 2

( ∑T
t=1

∑
n∈Sc,t αn,c,t

PLTE

∑T
t=1

∑
n∈Sc,t L̄n,t

−
∑T

t=1 αw,c,t

PWiFi

∑T
t=1 Lw,c,t

)2

,

(3.20)
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where ρ1,j, ρ2,j and ρ3,j are positive penalty coefficients corresponding to con-

straints (3.11), (3.13), and (3.14), respectively. Here, we consider equal penalty

coefficients for all players for each coupled constraint, ρ1,j = ρ1, ρ2,j = ρ2 and

ρ3,j = ρ3. This allows all SBSs to have equal incentives to give up some payoff in

order to satisfy the coupled constraints. To determine the values of ρ1, ρ2 and ρ3,

we adopt the incremental penalty algorithm in [147] that guarantees the existence

of penalty parameters ρ∗l = [ρ∗1, ρ
∗
2, ρ
∗
3] that satisfy the coupled constraints.

In our game G, αj,c,t is a continuous variable bounded between 0 and 1, how-

ever, for a particular network state, we are interested only in a certain region of

the continuous space where the optimal actions are expected to be. Therefore, we

will propose a sampling-based approach to discretize αj,c,t in Section 3.4. Under

such a discretization of the action space, we turn our attention to mixed strategies

in which players choose their strategies probabilistically. Such a mixed-strategy

approach enables us to analyze the frequency with which players choose different

channels and channel access combinations. In fact, the optimal policy is often

stochastic and therefore requires the selection of different actions with specific

probabilities [148]. This, in turn, validates our choice of adopting a mixed strat-

egy approach as opposed to a pure strategy one that is oriented towards finding

deterministic policies. A player can possibly choose different possible actions with

different probabilities which enables it to play a combination of strategies over

time. Moreover, unlike pure strategies that might not exist for a particular game,

there always exists at least one equilibrium in mixed strategies [149].

Let ∆(A) be the set of all probability distributions over the action space

A and pj = [pj,a1 · · · , pj,a|Aj |
] be a probability distribution with which SBS j

selects a particular action from Aj. Therefore, our objective is to maximize

the expected value of the utility function, uj(pj,p−j) = Epj [ûj (aj,a−j)] =∑
a∈A ûj(aj,a−j)

∏J
j=1 pj,aj

, where ûj(aj,a−j) is given in (3.20).

Definition 2. A mixed strategy p∗=(p∗1, · · · ,p∗J)=(p∗j ,p
∗
−j) constitutes a mixed-

strategy Nash equilibrium if, ∀j ∈ J and ∀pj ∈ ∆(Aj), uj(p∗j ,p∗−j) ≥ uj(pj,p
∗
−j).

Here, we note that any finite noncooperative game will admit at least one

mixed-strategy NE [149]. To solve for the mixed-strategy NE of our game G, we

first consider the simpler scenario in which the number of SBSs is less than the

number of unlicensed channels. Then, we develop a learning algorithm to handle

the more realistic scenario in which the number of SBSs is much larger than the
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number of unlicensed channels.

Remark 1. If the number of SBSs is less than the number of available unlicensed

channels (i.e., J ≤ C), then the mixed-strategy NE solution will simply reduce

to a pure strategy that is reached when all SBSs occupy disjoint channels during

each time epoch of the time window T .

To show this, we consider two cases depending on whether or not CA is

enabled. Let Mc = 1. Consider the state in which each SBS is operating on a

different unlicensed channel. If SBS j changes its channel from c to c′ on which

SBS i is transmitting, then it would have to share channel c′ with SBS i in an

equal weighted manner (based on the inter-operator fairness constraint). This

leads to a decrease in the reward function of SBS i on channel c′ (and potentially

for SBS j), which makes SBS i deviate to another channel that is less occupied

(e.g., c). Therefore, a given strategy cannot be a BR strategy for SBS i in case it

results in its transmission on the same channel as SBS j. Therefore, all strategies

that result in more than one SBS occupying the same channel are dominated

by the alternative where different SBSs transmit on disjoint channels and hence

cannot correspond to BR strategies. Consequently, at the NE point, all SBSs play

their BR strategies that would result in each SBS occupying a disjoint channel.

Similarly for Mc > 1. If SBS j transmits on multiple channels, then aggregating a

channel that is already occupied by SBS i would make SBS i change its operating

channel to a less congested one. This implies that an SBS would not aggregate

more channels unless they are not occupied by other SBSs.

Therefore, we can conclude that our proposed scheme results in having fewer

SBSs on each of the unlicensed bands. This leads to a lower collision probability

on each channel and a better coexistence with WLAN. Moreover, enabling CA

does not necessarily allow LTE to offload more traffic to the unlicensed band. On

the other hand, our proposed scheme can avoid causing performance degradation

to WLAN in case a large number of LTE operators deploy LTE-LAA in the

unlicensed bands.

Now, when J > C, multiple SBSs will then potentially have to share the

same channel. In this case, the mixed-strategy NE is challenging to characterize,

and therefore, next, we propose a learning-based approach for solving our game

G. Given the fact that each SBS needs to learn a sequence of actions over the

time window T at t = 0 based on a sequence of previous network states, the
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proposed learning algorithm must be capable of generating data that is sequential

in nature. This necessitates the knowledge of historical traffic values as well

as future network states for all the time epochs of the following time window

T . Moreover, in order to satisfy the long-term fairness constraints (3.13) and

(3.14), future actions cannot be assumed to be independent due to the long-term

temporal dependence among these actions. Conventional RL algorithms such

as Q-learning and multi-armed bandit take as an input the current state of the

network and enable the prediction of the next state only and therefore do not

account for the interdependence of future actions [150]. To learn several steps

ahead in time, recursive learning can be adopted. However, such an approach

uses values already predicted, instead of measured past values which produces

an accumulation of errors that may grow very fast. In contrast, deep learning

techniques, such as time series prediction algorithms, are capable of learning

long-term temporal dependence sequences based on input sequences [19]. This is

viable due to their adaptive memory that allows them to store necessary previous

state information to predict future events. Therefore, next, we develop a novel

time series prediction algorithm based on deep learning techniques for solving the

mixed-strategy NE of our game.

3.4 RL-LSTM for Self-organizing Resource Alloca-

tion

The proposed game requires each SBS to learn a sequence of actions over the

prediction time window T , at t = 0, without any knowledge of future network

states. This necessitates a learning approach with memory for storing previous

states whenever needed while being able to learn a sequence of future network

states. Employing LSTMs is therefore an obvious choice for learning as they are

capable of generating data that is sequential in nature [19]. Consequently, we

propose a novel sequence level training algorithm based on RL-LSTM that allows

SBSs to learn a sequence of future actions at operation time based on a sequence

of historic traffic load thus maximizing the sum of their future rewards.

LSTMs are a special kind of “deep” RNN capable of storing information for

long periods of time to learn the long-term dependency within a sequence [151].

LSTMs process a variable-length sequence y = (y1, y2, ..., ym) by incrementally
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adding new content into a single memory slot, with gates controlling the extent

to which new content should be memorized, old content should be erased, and

current content should be exposed. Unlike conventional one-step RL techniques

(e.g., Q-learning), LSTM networks are capable of predicting a sequence of future

actions [19]. Predictions at a given time step are influenced by the network acti-

vations at previous time steps thus making LSTMs suitable for our application.

The total number of parameters W in a standard LSTM network with one cell

in each memory block is given by:

W = nc × nc × 4 + ni × nc × 4 + nc × no + nc × 3 (3.21)

where nc is the number of memory cells, ni is the number of input units, and no

is the number of output units. The computational complexity of learning LSTM

models per weight and time step is linear i.e., O(1). Therefore, the learning

computational complexity per time step is O(W ) [152].

Consequently, we consider an end-to-end RL-LSTM based approach to train

the network to find a mixed-strategy NE of the game G. LSTMs have three types

of layers, one input and one output layer as well as a varying number of hidden

layers depending on the dataset under study. For our dataset, adding more hidden

layers does not improve performance and thus one layer is sufficient. Moreover, in

order to allow a sequence to sequence mapping, we consider an encoder-decoder

model. The encoder network takes the input sequence and maps it to a vector of

a fixed dimensionality. The encoded representation is then used by the decoder

network to decode the target sequence from the vector. Fig. 3.4 summarizes the

proposed approach. The traffic encoder takes as an input the historical traffic

loads and learns a vector representation of the input time-series. The multi-layer

perceptron (MLP) summarizes the input vectors into one vector. In our scheme,

an MLP is required to encode all the vectors together since a particular action

at time t depends on the values of all other input vectors (i.e., traffic values of all

SBSs and WLAN on all the unlicensed channels). The action decoder takes as an

input the summarized vector to reconstruct the predicted action sequence. All

SBSs have the same input vector for the traffic encoders and thus they share the

same traffic encoders. On the other hand, SBSs learn different action sequences

and thus different SBSs use different action decoders.

In the first step, we need to train the neural networks in order to learn the

parameters of the algorithm that would maximize the proposed utility function.



3.4. RL-LSTM for Self-organizing Resource Allocation 89

LST
M

LSTM
LSTM

LST
M

.

.

.

MLP

O
O
O

O
O
O

O
O
O

1L̂

2L̂

3L̂

ML̂

2],...,,[ 21 jaaa T



Traffic encoder Action decoder

Jjaaa T ],...,,[ 21



1],...,,[ 21 jaaa T



LSTM
LSTM

LSTM
LSTM

.

.

.

3],...,,[ 21 jaaa T



Figure 3.4. Proposed framework.

Therefore, the proposed algorithm is divided into two phases, the training phase

followed by the testing phase. In the former, SBSs are trained offline before they

become active in the network using the architecture given in Fig. 3.4. The input

dataset represents the WiFi traffic load distribution on the unlicensed channels as

well as the SBSs traffic load collected over several days. On the other hand, the

testing phase corresponds to the actual execution of the algorithm after which the

parameters have been optimized and is implemented on each SBS for execution

during run time.

For the training phase, we train the weights of our neural network using a

policy gradient approach that aims at maximizing the expected return of a policy.

This is achieved by representing the policy by its own function approximator and

updating it according to the gradient of the expected reward with respect to

the policy parameters [148]. Consider the set M of M history traffic sequences

corresponding to either an SBS or WiFi on each unlicensed channel, where M =

J + C. Let hm,t ∈ Rn and hj,t ∈ Rn be, respectively, the hidden vectors of the

traffic encoder m and action decoder of SBS j at time t. hm,t and hj,t are then

computed by:

hm,t=φ (vm,t,hm,t−1) , hj,t=φ (vj,t,hj,t−1) , (3.22)

where φ refers to the LSTM cell function [151] being used, and vm,t is the input

vector. For the encoder, vm,t =
[
L̂m,t

]
is the history traffic value. For the decoder,

vj,t = [W de(xj,t−1)||αj,c,t−1] is the vector of the previous predicted action where

e() maps discrete value to a one-hot vector, W d ∈ Rn×Nx is a matrix that is

used to transform the discrete actions of each of the unlicensed channels into

a vector, and Nx is the number of discrete actions. In our approach, we learn

the channel selection vector for all the channels simultaneously and thus xj,t =
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[xj,1,t, · · · , xj,C,t].
To learn the mixed strategy of our proposed game, we need to initialize the

action space with a subset of the continuous action space of αj,c,t. A naive ap-

proach for working with continuous action spaces is to discretize the action space;

however, this approach would lead to combinatorial explosion and thus the well

known problem of “curse of dimensionality” when highly discretizing our space

and a loss in the accuracy of the predicted action when considering less discretized

values. Therefore, we consider a sampling-based approach where we first define

a probability distribution for the continuous variable αj,c,t and for the discrete

variable xj,c,t in order to deal with the large discrete action space as T increases.

We use a softmax classifier to predict the distribution for the discrete variable

xj,t and a Gaussian policy for the distribution of the continuous variable αj,c,t.

For the Gaussian policy, the probability of an action is proportional to a Gaus-

sian distribution with a parameterized mean and a fixed value for the variance in

our implementation. The variance of the Gaussian distribution defines the area

around the mean from which we explore the action space. For our implementa-

tion, the initial value of the variance is set to 0.06 in order to increase exploration

and then is decreased linearly towards 0.02. Therefore, defining probability dis-

tributions for our variables allows the initialization of the action space Aj by

sampling Z actions from the proposed distributions. This enables the SBSs to

learn more accurate transmission probabilities for αj,c,t, as opposed to fixed dis-

cretization, thus satisfying the fairness constraints. The hidden vector hj,t in the

decoder is used to predict the t-th output actions xj,t and αj,c,t. The probability

vector over xj,t and αj,c,t can be defined, respectively, as:

xj,t|xj,<t, αj,c,<t, L̂t ∼ σ (W xhj,t), (3.23)

µj,c,t = S (W µhj,t), αj,c,t ∼ N (µj,c,t,Var(αj,c,t)), (3.24)

where µj,c,t and Var(αj,c,t) correspond to the mean value and variance of the

Gaussian policy respectively, W x ∈ R|Va|×n,W µ ∈ Rn are parameters, σ(.) is

the softmax function σ(b)q = ebq∑O
o=1 e

bo
for q = 1, · · · , O, and S(.) is the sigmoid

function where S(b) = 1
1+e−b and is used to normalize the value to (0, 1). αj,c,t is

computed only when xj,c,t = 1. The probability of the whole action sequence for

SBS j, given a historic traffic sequence L̂, pj,aj |L̂, is given by:
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pj,aj |L̂ =
T∏
t=1

p
(

(xj,t, αj,c,t)|xj,<t, αj,c,<t, L̂t
)
, (3.25)

where L̂t=(L̂1,t, · · · , L̂M,t), xj,<t=[xj,1, · · · ,xj,t−1], and µj,c,<t=[µj,c,1, · · · , µj,c,t−1].

Our goal is to maximize the exact expectation of the reward ûj(aj,a−j) over

the action space for the training dataset. Therefore, the objective function can

be defined as:

max
aj∈Aj

∑
D

uj(pj,p−j), (3.26)

where D is the training dataset. For this objective function, the REINFORCE

algorithm [153] can be used to compute the gradient of the expected reward with

respect to the policy parameters, and then standard gradient descent optimization

algorithms [148] can be adopted to allow the model to generate optimal action

sequences for input history traffic values. Specifically, Monte Carlo sampling is

adopted to compute the expectation.

In particular, we adopt the RMSprop gradient descent optimization algorithm

for the update rule [117]. The learning rate of a particular weight is divided by

a running average of the magnitudes of recent gradients for that weight. The

RMSprop update rule is given by:

E[g2]t = γE[g2]t−1 + (1− γ)g2
t , (3.27)

θt+1 = θt −
λ√

E[g2]t + ε
gt, (3.28)

where θt corresponds to the model parameters at time t, gt is the gradient of the

objective function with respect to the parameter θ at time step t, E[g2]t is the

expected value of the magnitudes of recent gradients, γ is the discount factor, λ

is the learning rate and ε is a smoothing parameter. It is important to note here

that the more complex the network is, the longer training phase. In particular,

as the number of SBSs increases, the time required for training the proposed

architecture increases. For a network size less than 15 SBSs, the training time of

the proposed framework is in the order of hours.

Meanwhile, the testing phase corresponds to the actual execution of the algo-

rithm on each SBS. Based on historical traffic values, each SBS learns the future

sequence of actions based on the learned parameters from the training phase. For

practicality, we assume knowledge of historical measurements of the WiFi activity

on each of the unlicensed channels using simple network management protocol
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Algorithm 1: Training phase of the proposed approach.

Input: J ;W; C; L̂j,t∀j ∈ J , t; L̂w,c,t∀c ∈ C , t.
Initialization: The weights of all LSTMs are initialized following a uniform distribution with arbitrarily

small values.

Training : Each SBS j is modelled as an LSTM network.

while Any of the coupled constraints is not satisfied do

for Number of training epochs do

for Size of the training dataset do

Step 1. Run Algorithm 2 to compute the best actions for all SBSs.

for j=1:J do

Step 2. Sample actions for SBS j based on the best expected actions of other SBSs.

Step 3. Use REINFORCE [153] to update rule and compute the gradient of the expected value

of the reward function.

Step 4. Update model parameters with back-propagation algorithm [154].

end for

end for

end for

Step 5. Using the incremental penalty algorithm, check the feasibility of the coupled constraints and

update the values of ρl accordingly.

end while

Algorithm 2: Testing phase of the proposed approach.

Input: J ;W; C; L̂j,t∀j ∈ J , t; L̂w,c,t∀c ∈ C , t.
for For each SBS j do

Step 1. Traffic history encoding : The history traffic of each SBS and WLAN activity on each channel

is fed into each of the M LSTM traffic encoders.

Step 2. Vector summarization: The encoded vectors are transformed to initialize action decoders.

Step 3. Action decoding : Action sequence is decoded for each SBS j.

end for

statistics with accurate calibration [155] and of other SBSs by exchanging past

traffic information via the X2 interface as done in [25] and [15]. For our proposed

scheme, the SBSs are trained over a large training dataset taking into account

the traffic load over multiple days. The likeliness that an error occurs at the same

time over multiple days is thus very rare. Moreover, our proposed scheme takes

into account a sequence of history traffic values. Therefore, in case of non-ideal

information, the impact of this error can be considered to be negligible. The

proposed approach can also be combined with online machine learning [156] to

accommodate changes in the traffic model, by properly re-training the developed

learning mechanism. Consequently, the proposed algorithm offers a practical so-

lution that is amenable to implementation. Here, we note that one practical

challenge for deploying this algorithm in a real-world network is synchronization

between SBSs and WAPs. In essence, such synchronization can be achieved by

inter-operator cooperation, using mechanisms such as in [40]. The training and
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the testing phases are given in Algorithms 1 and 2 respectively.

Note that guaranteeing the convergence of the proposed algorithm is challeng-

ing as it is highly dependent on the hyperparameters used during the training

phase. It has been shown in [99] that the learning rate and the hidden layer

size are the two most important hyperparameters for the convergence of LSTMs.

For instance, using too few neurons in the hidden layers results in underfitting

which could make it hard for the neural network to detect the signals in a com-

plicated data set. On the other hand, using too many neurons in the hidden

layers can result in either overfitting [157] or an increase in the training time.

Therefore, in this work, we limit our contribution to providing simulation results

(see Section 3.5) to show that, under a reasonable choice of the hyperparameters,

convergence is observed for our proposed game, as per the following theorem:

Theorem 1. If Algorithm 1 converges, then the convergence strategy profile

corresponds to a mixed-strategy NE of game G.

Proof. In order to prove this theorem, we first need to show that the solution of

the adopted multi-agent learning algorithm converges to an equilibrium point. In

fact, every strict NE is a local optimum for a gradient descent learning approach

but the reverse is not always true (Theorems 2 and 3 in [158]). Therefore, to show

that a gradient-based learning method guarantees convergence of our proposed

game to an equilibrium point, we define the following lemma.

Lemma 1. The square of a linear function is convex. It follows that the payoff

function of player j defined in (3.20) is an affine combination of convex functions,

and hence is convex. Therefore, a gradient-based learning algorithm for our game

G allows the convergence to an equilibrium point of that game.

Lemma 1 is the consequence of the convexity of the players’ payoffs where

it has been shown in [159] that under certain convexity assumptions about the

shape of payoff functions, the gradient-descent process converges to an equilib-

rium point. However, convergence is only guaranteed under a decreasing step-size

sequence [160]. Therefore, given the fact that we employ an adaptive learn-

ing rate method satisfying the Robbins-Monro conditions (λ > 0,
∑∞

t=0 λ(t) =

+∞,
∑∞

t=0 λ
2(t) < +∞), one can guarantee that under suitable initial conditions,

our proposed algorithm converges to an equilibrium point.

Moreover, following the penalized reformulation of our game G, one can eas-

ily show that a strategy that violates the coupled constraints cannot be a BR
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Table 3.2 System parameters.

Parameters Values Parameters Values

Transmit power (Pt) 20 dBm BW (channel) 20 MHz

CCA threshold -80 dBm Noise variance 92 dBm/Hz

Path loss 15.3 + 50 log10(m) SIFS 16 µs

Hidden size (encoder) 70 DIFS 34 µs

Hidden size (decoder) 70 CWmin 15 slots

time epoch (t) 5 min CWmax 1023 slots

Action sampling (Z) 100 samples ACK 256 bits

History traffic size 7 time epochs PLTE, PWiFi 1, 1

Learning rate (λ) 0.01 LSTM layers 1

Learning rate decay (γ) 0.95 tmax 0.9

strategy. From [147], there exists ρ∗l such that the incremental penalty algorithm

terminates. Therefore, there exists a mixed strategy for which the coupled con-

straints are satisfied at ρ∗l . In that case, there is no incentive for an SBS to

violate any of the coupled constraints, otherwise, its reward function would be

penalized by the corresponding penalty function. Hence, all strategies that vio-

late the coupled constraints are dominated by the alternative of complying with

these constraints. Since in the proposed algorithm, the optimal strategy pro-

file results in maximizing Epj [ûj (aj,a−j)], we can conclude that the converged

mixed-strategy NE is guaranteed not to violate the coupled constraints and hence

it corresponds to a mixed-strategy NE for the game G. Therefore, our proposed

learning algorithm learns a mixed strategy of the game G, by using a deep neural

network function approximator to represent strategies, and by averaging those

strategies via gradient descent machine learning techniques.

3.5 Simulation Results and Analysis

For our simulations, we consider a 300 m × 300 m square area in which we

randomly deploy a number of SBSs and 7 WAPs that share 7 unlicensed chan-

nels. We use real data for traffic loads from the dataset provided in [161] and

divide it as 80% for training and 20% for testing. During the training phase,

we randomly shuffle examples in the training dataset in order to prevent cycles

when approximating the reward function. Table 3.2 summarizes the main sim-

ulation parameters. All statistical results are averaged over a large number of

independent runs.
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Figure 3.5. The average throughput gain for LTE-LAA upon applying a proactive approach

(with varying T ) as compared to a reactive approach.

Fig. 3.5 shows the average throughput gain, compared to a reactive approach,

achieved by the proposed approach for different values of T under three different

network scenarios. Here, we note that, in Fig. 3.5, the case in which T = 1 cor-

responds to other proactive schemes such as exponential smoothing and conven-

tional RL algorithms (e.g., Q-learning and multi-armed bandit) [150]. Intuitively,

a larger T provides the framework additional opportunities to benefit over the

reactive approach, which does not account for future traffic loads. First, evi-

dently, for very small time windows, our proposed approach does not yield any

significant gains. However, as T increases, LTE-LAA network utilizes statisti-

cal predictions for allocating resources and thus the gains start to become more

pronounced as compared to the reactive approach as well as to other proactive

approaches at T = 1. For example, from Fig. 3.5, we can see that, for 4 SBSs

and 4 channels, our proposed scheme achieves an increase of 17% and 20% in the

average airtime allocation for LTE-LAA as compared to other proactive schemes

and the reactive approach, respectively. Eventually, as T grows, the gain of our

proposed framework remains almost constant at the maximum achievable value.

This corresponds to the minimum value of T required to allow the LTE-LAA

network smooth out its load over time and thus achieve maximum gain while

guaranteeing fairness to WLAN.

Fig. 3.6 shows the proportion of LTE-LAA served load for different values of T .

Clearly, as T increases, the proportion of LTE-LAA served traffic increases. For

example, the proportion of served load increases from 82% to 97% for the case of 4



96Chapter 3. Deep Learning for Proactive Resource Management for LTE in Unlicensed Spectrum

2 4 6 8 10 12
70

75

80

85

90

95

100

Time window T

S
er

ve
d 

LT
E

−
LA

A
 tr

af
fic

 lo
ad

 (
%

)

 

 

2 SBSs, 2 channels
4 SBSs, 4 channels
7 SBSs, 7 channels

Figure 3.6. The proportion of load served over LTE-LAA as a function of T .

SBSs and 4 channels. The gain of the LTE-LAA network stems from the flexibility

of choosing actions over a large time horizon T . In contrast to the myopic reactive

approach, our proposed proactive scheme takes into account future predictions

of the network state along with the current state. Therefore, the optimal policy

will balance the instantaneous reward and the available information for future

use and thus maximizing the total load served over time.

Fig. 3.7 shows the (a) average airtime allocated for the LTE-LAA network,

(b) average airtime allocated for WLAN, (c) proportion of served total network

traffic load, and (d) Jain’s fairness index as a function of T resulting from our

proposed scheme as well as from a centralized solution considering a proportional

fairness utility function that is widely used for resource allocation [162], subject

to constraints (3.8)-(3.12) with T = 1. Here, we compute the Jain’s index based

on the proportion of served traffic load for each network using J (lo) =
(
∑O

o=1 lo)2

O·
∑O

o=1 l
2
o
,

where lo is the proportion of served traffic load for network o and O is number of

networks [163]. The centralized solution of the PF resource allocation is obtained

using the branch-and-bound algorithm in [164]. From Fig. 3.7 (a), we can see

that for small values of T , the PF allocation offers higher airtime allocation for

the LTE-LAA network. For example, for the scenario of 4 SBSs and 4 channels,

PF offers airtime gains of 7% and 5% as compared to our proposed approach for

T = 1 and 2 respectively. However, as T increases, our proposed scheme achieves

more transmission opportunities for the LTE-LAA network as compared to the

PF solution. For instance, for the scenario of 2 SBSs and 2 channels, our proposed

scheme achieves an increase of 11% in the transmission opportunities for T ≥ 8.

This gain stems from the proactive resource allocation approach that allows more
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Figure 3.7. The (a) average airtime allocated for LTE-LAA, (b) average airtime allocated

for WLAN, (c) proportion of served total network traffic load, and (d) Jain’s fairness index

resulting from our proposed scheme as well as from a centralized proportional fairness utility

maximization scheme (with varying T ).

flexibility in spectrum allocation as T increases. From Figs. 3.7 (b) and (c), we

can see that, although the average airtime allocation for WiFi resulting from our

proposed scheme is less than that of the PF scheme for T > 4, the proportion

of the total network traffic load served by our proposed scheme is higher than

that of the PF scheme for all values of T (e.g., 84% for our proposed scheme as

compared to 74% for PF for the case of 2 SBSs and 2 channels and for T > 6).

Moreover, from Fig. 3.7 (d), we can conclude that, as T increases, our proposed

scheme achieves similar fairness performance as that of PF. This is due to the fact

that, for our proposed scheme, as T increases, the proportion of LTE served traffic

load increases while that of WiFi decreases eventually, converging to a constant

value for T > 7. In particular, a relatively large time window allows SBSs to

exploit future off-peak hours on the unlicensed band and thus increasing their

transmission opportunities. Therefore, at the convergence point, the proportion
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Figure 3.8. The (a) average airtime allocated for LTE-LAA, (b) average airtime allocated

for WLAN, (c) proportion of served total network traffic load, and (d) Jain’s fairness index

resulting from our proposed scheme as well as from a centralized total network throughput

utility maximization scheme (with varying T ).

of served traffic load of both technologies is almost the same. In summary, our

proposed scheme allows more transmission opportunities for LTE-LAA, increases

the proportion of the total network served load while also preserving fairness

with WiFi. It offers better tradeoff in terms of efficiency and fairness compared

to the centralized PF allocation scheme. Note that the resulting problem for

the PF solution is a mixed integer nonlinear optimization problem (MINLP) and

therefore, finding its solution becomes challenging for larger network scenarios

due to the polynomial computational complexity.

Fig. 3.8 shows the (a) average airtime allocated for the LTE-LAA network, (b)

average airtime allocated for WLAN, (c) proportion of served total network traffic

load, and (d) Jain’s fairness index as a function of T resulting from our proposed

scheme as well as a centralized solution considering a total network throughput

(TNT) utility function subject to constraints (3.8)-(3.12) with T = 1. From
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Figure 3.9. LTE/WLAN airtime ratio as a function of the LTE/WLAN traffic ratio for 3

different values of Mc (Mc = 1, 2 and 3). The LTE and WLAN airtime fraction correspond

to the average airtime allocated per SBS and per WAP, respectively. Moreover, the number of

unlicensed channels is fixed to 7 and the number of SBSs is equal to 2 and 7 in (a) and (b)

respectively.

Fig. 3.8 (a), we can see that our proposed resource allocation scheme offers higher

transmission opportunities for LTE-LAA for all values of T as compared to the

centralized solution considering a TNT utility function. For example, for the case

of 4 SBSs and 4 channels, the gain for our proposed approach can reach up to 52%

for T ≥ 8. Similarly, from Figs. 3.8 (b) and (c), we can observe that, although the

average airtime allocation for WLAN for our proposed scheme is less than that of

the TNT scheme for all T , the proportion of the total served network traffic load

for our proposed scheme is higher than that of the TNT scheme. From Fig. 3.8

(d), we can also conclude that, as T increases, our scheme achieves similar fairness

to TNT due to the fact that, as T increases, the proportion of LTE served traffic

load increases while that of WiFi decreases for our proposed scheme, converging

to a constant value for T > 7. At this convergence point, the proportion of served

traffic load of both technologies is almost the same. In summary, our proposed

scheme offers a better tradeoff in terms of efficiency and fairness as compared to

the centralized TNT allocation scheme.

Fig. 3.9 shows the value of the LTE/WLAN airtime ratio under varying

LTE/WLAN traffic ratio and for different values of Mc. Note here that the

LTE and WLAN airtime fraction correspond to the average airtime allocated per

SBS and per WAP, respectively. We consider two different scenarios with varying

number of SBSs (2 and 7 SBSs for scenarios (a) and (b) respectively), while the
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Figure 3.10. The proportion of LTE-LAA served traffic load as a function of the number of

SBSs and for different number of unlicensed channels (C = 2, 4, and 7).

number of unlicensed channels is fixed to 7. Fig. 3.9 shows that inter-technology

fairness is satisfied. This can be clearly seen in scenario (b) for the case of Mc = 1.

For instance, when the traffic ratio is 1, LTE/WLAN airtime ratio is 1 and thus

equal weighted airtime is allocated for each technology (given that PLTE = 1 and

PWiFi = 1). From Fig. 3.9, we can also see that enabling carrier aggregation

impacts the resource allocation outcome. In fact, we can see that a considerable

gain in terms of spectrum access time can be achieved with CA. For instance, in

the case of 2 SBSs, the LTE/WLAN airtime ratio increases from 0.84 for Mc = 1

to 1.7 and 2.4 for Mc = 2 and 3 respectively for the value of 0.6 for LTE/WLAN

traffic ratio. On the other hand, this gain decreases as more SBSs are deployed

and for a densely deployed LTE-LAA network, there is no need to aggregate

more channels. This can be seen from (b) where the LTE-LAA network gets the

same airtime share for Mc = 1, 2 and 3 (as also shown in Remark 1). Moreover,

Fig. 3.9 shows that deploying more SBSs does not necessarily allow more airtime

for the LTE-LAA network. For example, LTE/WLAN airtime ratio of scenarios

(a) and (b) corresponding to 0.6 LTE/WLAN traffic ratio is equal to 0.84 and 0.6

respectively for Mc = 1. Consequently, the proposed scheme can avoid causing

performance degradation to WLAN in the case LTE operators selfishly deploy a

high number of SBSs.

Fig. 3.10 investigates the proportion of served LTE-LAA traffic for different

network parameters. From Fig. 3.10, we can see that, as the number of SBSs

increases, the proportion of LTE-LAA served traffic, relative to its corresponding

offered load decreases. Moreover, reducing the number of unlicensed channels
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Figure 3.11. The proportion of the (a) total network served traffic load (b) LTE-LAA served

traffic load and (c) WiFi served traffic load as a function of the priority fairness ratio on

the unlicensed band, (PLTE/PWiFi). The straight line in (c) represents the proportion of WiFi

served traffic load for the case when the LTE network is replaced by an equivalent WiFi network.

leads to a decrease in the proportion of LTE-LAA served traffic. Although the

number of available unlicensed channels are not players in the game, they affect

spectrum allocation action selection for each SBS. As the number of channels

increases, the action space for the channel selection vector increases, thus giving

more opportunities for an SBS to serve more of its offered load.

Fig. 3.11 shows the total network served traffic load as well as that of LTE-

LAA and WiFi as a function of the priority fairness ratio on the unlicensed

band (PLTE/PWiFi) for three different network scenarios considering T = 6. From

Figs. 3.11 (b) and (c), we can see that more LTE-LAA and less WiFi traffic load

is served as PLTE/PWiFi increases and thus the priority fairness parameters PLTE

and PWiFi can be regarded as network design parameters that can be adjusted

in a way that would avoid LTE-LAA from aggressively offloading traffic to the

unlicensed bands. Moreover, from Fig. 3.11 (a), we can see that the served total

network traffic load is maximized at PLTE/PWiFi = 1 thus allowing an efficient

utilization of the unlicensed spectrum. On the other hand, from Fig. 3.11 (c),

we can see that the served WiFi traffic load for our proposed scheme is greater

than or equal to the served WiFi traffic load for the case in which LTE-LAA is

replaced by an equivalent WiFi network for values of PLTE/PWiFi less than 0.8.

From Fig. 3.11 (c), we can conclude that the WiFi performance for our proposed

spectrum sharing scheme, when considering equal weighted airtime share (i.e.,

PLTE/PWiFi = 1), achieves very close performance to the case when only WLAN
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Figure 3.12. The average airtime allocated for LTE-LAA as a function of the number of epochs

for different values of the learning rate.

is operating over the unlicensed spectrum. For instance, the proportion of WiFi

served traffic load corresponds to 68% for the WiFi-LTE scenario as opposed to

70% for the WiFi-WiFi scenario in the case of 4 SBS and 4 channels. This slight

decrease is mainly due to the differences in the MAC layers of both technologies.

For instance, LTE adopts a more efficient scheduling mechanism and has less

overhead as compared to WiFi. In particular, the DCF protocol of WiFi results

in the channel being unused for some period of time and, thus, WiFi should be

given a slightly larger priority in that case. In summary, we can deduce that the

values of PLTE and PWiFi can be regarded as tuning parameters that allow the

network operator to achieve a tradeoff between efficiency and fairness.

Fig. 3.12 shows the average value of airtime allocated to the LTE-LAA network

as a function of the number of epochs required for the network to converge while

considering different values for the learning rate. The learning rate determines

the step size the algorithm takes to reach the minimizer and thus has an impact

on the convergence rate of our proposed framework. Moreover, an epoch, which

consists of multiple iterations, is a single pass through the entire training set,

followed by testing of the verification set. From Fig. 3.12, we can see that for

λ = 0.1, our proposed algorithm requires more than 50 epochs to approximate

the reward function, while, for λ = 0.01, it only needs 20 epochs. In fact, for

λ = 0.1, we can see that our proposed algorithm fluctuates around a different

region of the optimization space. Clearly, a learning rate that is too large can

cause the algorithm to diverge from the optimal solution. This is because too

large initial learning rates will decay the loss function faster and thus make the
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model get stuck at a particular region of the optimization space instead of better

exploring it. On the other hand, a learning rate that is too small results in a

low speed of convergence. For instance, for λ = 0.0001 and λ = 0.00005, our

proposed algorithm requires ∼ 40 epochs to converge. Therefore, although we

use an adaptive learning rate approach, the optimization algorithm relies heavily

on a good choice of an initial learning rate [165]. In other words, the initial value

of the learning rate should be within a particular range in order to have good

performance. Choosing a proper learning rate is an important key aspect that has

an impact on the solution as well as the convergence speed. The optimal value of

the initial learning rate is dependent on the dataset under study, where for each

dataset, there exists an interval of good learning rates at which the performance

does not vary much [99]. This in turn necessitates the need for experimental

studies in order to search for good problem-specific learning rates [165]. A typical

range of the learning rate for the dataset under study falls approximately between

0.0005 and 0.01, requiring ∼ 20 epochs.

3.6 Summary

In this chapter, we have proposed a proactive resource allocation framework for

the coexistence of LTE-LAA and WiFi in the unlicensed band. We have formu-

lated a game model where each SBS seeks to maximize its rate over a given time

horizon while achieving long-term equal weighted fairness with WLAN and other

LTE-LAA operators transmitting on the same channel. To solve this problem,

we have developed a novel deep learning algorithm based on LSTMs. The pro-

posed algorithm enables each SBS to decide on its spectrum allocation scheme

autonomously with limited information on the network state. Simulation results

have shown that the proposed approach yields significant performance gains in

terms of rate compared to conventional approaches that considers only instan-

taneous network parameters such as instantaneous equal weighted fairness, pro-

portional fairness and total network throughput maximization. Results have also

shown that our proposed scheme prevents disruption to WLAN operation in the

case large number of LTE operators selfishly deploy LTE-LAA in the unlicensed

spectrum.





Chapter 4

Holistic Small Cell Traffic Balancing

across Licensed and Unlicensed

Bands

4.1 Introduction

As we have discussed in Chapter 2, LTE-LAA has emerged as an effective solution

to overcome the scarcity of the radio spectrum [131]. When operating over the

licensed and the unlicensed bands simultaneously, the problem of SBS traffic bal-

ancing arises which essentially impacts the coexistence of LTE and WiFi over the

unlicensed band. Therefore, the main scope of this chapter is to provide a holistic

approach for LTE-LAA small cell traffic balancing by jointly optimizing the use

of the licensed and unlicensed bands. In particular, we pose this traffic balanc-

ing as an optimization problem that seeks proportional fair coexistence of WiFi,

small cell, and macro cell users by adapting the transmission probability of the

LTE-LAA small cell in the licensed and unlicensed bands. The motivation for this

formulation is for the LTE-LAA small cell to autonomously switch between or ag-

gregate licensed and unlicensed bands depending on the interference/traffic level

and the number of active users in each band. The work presented in this chapter

has appeared in the Proceedings of ACM International Conference on Modeling,

Analysis and Simulation of Wireless and Mobile Systems (MSWiM) [25]. Ta-

ble 4.1 provides a summary for the description of the main notations used in this

chapter. Next, we give an overview on the related literature and then we present

our problem statement and contribution.

105
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Table 4.1 Variables and notations.

Notation Description

Nm Number of macro UEs

Nf Number of small cell UEs

Nw Number of WiFi STAs

α Fraction of time SBS is muted on the unlicensed channel

β Fraction of time SBS is transmitting over the licensed band

Γl
F,f DL SINR at SUE f over the licensed band

Γu
F,f DL SINR at SUE f over the unlicensed band

PF,f Received signal power for SUE f

σ2 Thermal noise power

PM,m Received signal power for MUE m

Pw,succ Probability of successful transmission

Pw,idle Probability of an idle slot

Pw,busy Probability of a busy slot

τw Stationary Probability of STA w

sm Throughput of MUEs

sf Throughput of SUEs

sw Throughput of WiFi STAs

snoABS
m Throughput of MUE m when SBS is transmitting over the licensed band

sABS
m Throughput of MUE m during the ABS period of SBS

slf Throughput of SUE f when SBS is transmitting over the licensed band

suf Throughput of SUE f when SBS is transmitting over the unlicensed band

Rw Normalized offered load of WiFi STAs

4.1.1 Related Work

LTE use of unlicensed bands has been receiving growing amount of attention

within the research community in recent years. The authors in [166] provide an

overview of LTE-LAA as well as the benefits and challenges it brings. Several

papers have looked at the performance impact of LTE operating in unlicensed

bands on WiFi. In a recent paper [167], the authors conduct an experimental

evaluation for characterizing the interference impact of LTE-LAA on WiFi under

various network conditions; it is shown that the impact of LTE-LAA on WiFi

throughput depends on the channel bandwidth, center frequency and MIMO

and can be heavily degraded for some scenarios. Concerning mechanisms for

LTE-WiFi coexistence, most of the previous work uses muting (adaptive duty

cycling) [15,17,22–24]. More crucially, much of the existing work does not consider

the operation of LTE-LAA SBS in the licensed band while optimizing its use in
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the unlicensed bands alongside WiFi. This can however lead to a suboptimal

resource allocation when seen globally. For instance, it can result in an over-

utilization of the unlicensed band by LTE-LAA SBS and a decrease in WLAN

performance, as it will be shown later in Section 4.5.

LTE-LAA small cells enable efficient and flexible use of the unlicensed spec-

trum, leveraging the LTE-Advanced carrier aggregation feature. Nevertheless,

early work on traffic balancing across licensed and unlicensed bands (e.g., [168,

169]) focused on dual-access small cells (with both LTE and WiFi air interfaces)

and thus lacking these benefits. To the best of our knowledge, [1] is the only

notable traffic balancing work in the literature that applies to LTE-LAA small

cells. The proposed traffic balancing technique in [1] is based on adjusting the

power level in the licensed spectrum and the number of muted subframes in the

unlicensed bands. We identify three aspects of the work in [1] discussed below,

which together result in a lower WLAN performance and a degradation in the

overall network performance compared to our proposed scheme, as shown later

in Section 4.5.

1. Use of power control in the licensed band. In the context of ICIC manage-

ment in heterogeneous networks (HetNets), 3GPP Release 10 introduced

ABS as an efficient way to enhance the network performance. In [170], the

authors evaluate the 3GPP enhanced ICIC (eICIC) techniques through re-

alistic system-level simulations where it is shown that the ABS eICIC time

method provides the best macrocell UE (MUE) protection as compared to

other eICIC power methods. There is other work (e.g., [171]) which also

shows that ABS muting achieves better macro-layer performance at less

degradation of the SBS layer performance as compared to power adapta-

tion. Therefore, the use of power control on the licensed band in [1] leads to

a sub-optimal performance on both the licensed and the unlicensed bands

given the fact that the coexistence mechanism in the licensed spectrum

directly influences the optimization process in the unlicensed band.

2. Considering a fixed level of performance for MBS. The use of a fixed and

predefined interference threshold value for MBS in [1] results in prioritizing

the MBS performance irrespective of the degradation level caused to the

SBS layer. This uncoordinated optimization approach on the licensed band

would result in an unfair share of that band which in turn could lead to an
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over-utilization of the unlicensed band by the SBS and thus a degradation

in the WLAN performance.

3. Sequential approach to optimizing the licensed band first then the unlicensed

band. The authors in [1] consider a sequential approach for optimizing both

bands i.e., the output of the power allocation sub-problem in the licensed

spectrum serves as an input to the muting sub-problem for the unlicensed

bands. This results in prioritizing the licensed band and potentially over-

utilizing the unlicensed band by SBS as well as degrading the total network

performance.

4.1.2 Problem Statement and Contribution

The main objective of this chapter is to propose a holistic small cell traffic balanc-

ing scheme across the licensed and the unlicensed bands. In essence, LTE-WiFi

coexistence depends on the extent to which LTE-LAA small cells (operating in

both licensed and unlicensed bands) rely on unlicensed spectrum to meet their

traffic demand, and this in turn is dependent on the nature of inter-tier inter-

ference in the licensed spectrum shared by a macro cell and small cells in its

coverage area. This link between LTE small cell operation in the unlicensed band

and inter-tier/inter-cell interference in the licensed spectrum is essentially the

traffic balancing problem1. The transmission of the SBS on the unlicensed band

can disrupt WiFi transmissions as the latter relies on a contention-based channel

access and hence starvation may occur when coexisting with LTE. On the other

hand, LTE-LAA SBS transmission on the licensed band can cause inter-tier/inter-

cell interference to the macro cell and other small cell users, potentially degrading

their throughput. Thus addressing the traffic balancing problem is challenging as

it entails a LTE-LAA small cell base station to adaptively decide on how to steer

its traffic between the licensed and unlicensed bands while optimizing the overall

network performance and achieving fair coexistence among the technologies op-

erating on both bands. Though the above discussion highlights the importance

of traffic balancing for optimizing the performance of co-located networks based

on different technologies (LTE and WiFi) sharing same unlicensed bands, and for

more effective LTE-WiFi coexistence, this problem has till date received little at-

1Traffic balancing can be seen as addressing LTE-WiFi coexistence and LTE traffic offloading
challenges together.
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tention in the research literature with [1] as the only notable work. Nevertheless,

the work in [1] leads to an inefficient utilization of the available radio resources

due to the inefficient coexistence mechanism on the licensed band as well as the

sequential adaptation approach for optimizing both bands, as discussed in the

previous subsection.

The main contribution of the work presented in this chapter is a holistic frame-

work for LTE-LAA small cell traffic balancing across licensed and unlicensed

bands. In other words, we aim to jointly address the LTE-LAA small cell opera-

tion in licensed and unlicensed bands by determining its transmission behavior on

both bands in a coordinated fashion depending on the interference/traffic levels

on each of the bands. Specifically, we make the following key contributions:

• We present a formulation of the optimization problem for holistic traffic

balancing that seeks PF coexistence of WiFi, small cell and macro cells

by deciding on the transmission probability of LTE-LAA small cell in the

licensed and unlicensed bands. The intention behind this formulation is for

the LTE-LAA SBS to switch between or aggregate licensed and unlicensed

bands depending on the interference/traffic level and number of active UEs

in each cell. We derive a closed form solution for the aforementioned op-

timization problem. An attractive aspect of our solution is that it can be

applied online by each LTE-LAA SBS, adapting its transmission behavior

in each of the bands, and without explicit communication with WiFi nodes.

• We also propose a transmission mechanism for the operation of SBS on

the licensed and unlicensed bands. Our mechanism leverages the above

mentioned traffic balancing solution and aims at avoiding the disruption to

on-going WiFi transmissions while adhering to the LTE frame structure.

• We provide extensive numerical and simulation results using several sce-

narios to highlight the main capabilities of our proposed scheme. Results

show that LTE-LAA SBS, aided by our scheme, would adaptively steer its

traffic from one band to another or transmit on both bands simultaneously

depending on the interference/traffic levels and number of active UEs on

each of the bands. Simulation results additionally demonstrate the effective-

ness of our proposed scheme in comparison with [1] and other approaches,

representing the state-of-the-art. They reveal that approaches focusing on

coexistence in one band while ignoring the other cause load imbalance and
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Figure 4.1. Illustration of the system model.

a decrease in the total network throughput and/or fairness. On the other

hand, our approach, aided by its holistic nature, results in improved net-

work performance as it achieves a better tradeoff between maximizing the

total network throughput and attaining fairness among all network flows

while also providing better LTE-WiFi coexistence.

The rest of this chapter is organized as follows. Section 4.2 details the system

model for the coexistence of an LTE-LAA SBS with an LTE MBS and WLANs in

the overlapping coverage area. In Section 4.3, we present an optimization problem

for balancing traffic of the LTE-LAA SBS on the licensed and unlicensed bands

and also derive a closed form solution for the problem. Section 4.4 describes our

proposed transmission mechanism for the operation of the LTE-LAA SBS on the

licensed and unlicensed bands. Section 4.5 presents numerical and simulation re-

sults for the proposed algorithm and compares its with other approaches. Finally,

a summary is provided in Section 4.6.

4.2 System Model

We consider a system model (depicted in Fig. 4.1) similar to that in [1,24] consist-

ing of a macrocell base station, a small cell and multiple independently operated

WiFi networks. We assume a dual band small cell that transmits on both li-

censed and unlicensed bands via the LTE CA feature. The licensed band is

shared between MBS and SBS where smaller portions of the spectrum, referred
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to as RBs, are allocated to UEs. On the other hand, SBS and WiFi networks

share an unlicensed channel in the time domain and hence at a particular time,

the unlicensed channel is occupied by either SBS or WiFi. This represents a

dense WiFi deployment scenario where SBS and WiFi may need to time share

the same channel.

Let Nm, Nf and Nw, respectively, denote the number of macro-cell UEs, small

cell UEs (SUEs) and WiFi stations (STAs) in a given time period T . We assume

the supplemental downlink mode for the transmission of the small cell in the

unlicensed band. On the other hand, traffic for WiFi STAs can be in either DL

or UL directions. A full-buffer traffic model is assumed for the SBS, consistent

with the motivation for SBS to use both licensed and unlicensed bands to meet

its traffic demand.

In order to coexist with MBS on the licensed band and WLAN on the unli-

censed band, we adopt in our model a holistic traffic balancing approach where

SBS adjusts the proportion of time it transmits on both licensed and unlicensed

bands. Therefore, at a particular time, the small cell would adaptively choose to

transmit on the licensed, unlicensed or both bands depending on the interference

level and traffic load of MUEs and WiFi nodes. The proposed scheme can be

implemented at the MAC layer and hence the traffic assignment would be trans-

parent to applications on the UEs. SBS would defer from transmission on the

unlicensed band in order to allow WiFi transmission opportunities and on the

licensed band in order to avoid inter-tier interference. Therefore, to decide on the

proportion of time the small cell transmits on the licensed and unlicensed bands,

the following decision variables are defined:

• αε[0, 1]: the fraction of time SBS is muted on the unlicensed channel.

• βε[0, 1]: the fraction of time SBS is transmitting on the licensed band.

Note that upon muting on the licensed band, SBS would defer from sending

data on the physical channels, however, would still send control and reference sig-

nals, an approach known as ABS [170]. On the other hand, the use of unlicensed

band by the small cell is limited to data plane traffic while control and reference

signals are transmitted by the SBS on a licensed carrier, which is essentially the

license assisted access aspect of LTE-LAA. It is important to note here, that

the work in [172] shows that conceptually both LBT and adaptive duty cycling
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(muting) provide the same level of fairness to WiFi transmissions when properly

configured.

4.2.1 Throughput Modeling

In order to assess the network performance for the coexistence of LTE MBS,

LTE-LAA small cell and WiFi, we define the throughput for each of the MUEs,

SUEs and WiFi STAs.

Upon the transmission on the licensed band, SBS would share the frequency

band with MBS. In LTE, the DL RB allocation among UEs is via OFDMA,

implying no intra-cell interference. However, frequency reuse in LTE can be one

where macro and adjacent small cells may transmit on the same frequency leading

to inter-cell interference. On the other hand, when SBS is transmitting on the

unlicensed channel, it shares the channel with WLAN. Therefore, the DL SINR

at SUE f , served by SBS F , in our model assuming a single MBS and SBS, during

the transmission of SBS on the licensed and unlicensed channels respectively, can

be expressed as follows:

ΓlF,f =
PF,f

σ2 + IM,f

and ΓuF,f =
PF,f

σ2 + IW,f
(4.1)

where PF,f denotes the received signal power for SUE f from its serving SBS F ,

σ2 is the thermal noise power, IM,f represents the interference power from MBS

M on SUE f and IW,f corresponds to the aggregate interference power from

neighbouring WLAN APs/STAs on SUE f . Note that upon the transmission

of SBS on the unlicensed channel, WLAN would defer from transmission since

WiFi STAs sense the carrier, i.e. listen to the channel before transmissions, and

transmit only if the channel is idle. Therefore, IW,f corresponds to the interference

power due to WLAN hidden terminals.

Similarly, the DL SINR at MUE m, served by MBS M , during the non-ABS

and ABS periods of SBS on the licensed band respectively, can be expressed as

follows:

ΓnoABS
M,m =

PM,m

σ2 + IF,m
and ΓABS

M,m =
PM,m

σ2
(4.2)

where PM,m denotes the received signal power for MUE m from its serving

MBS M , and IF,m represents the interference power from SBS F on MUE m.

We denote by sk the total throughput attained by an LTE UE k (where k is m

or f). An upper bound for the DL UE throughput, based on Shannon’s capacity,
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is computed as follows:

sk(bps) = BWk · log2(1 + Γk) (4.3)

where BWk is the channel bandwidth allocated to UE k and Γk is the SINR value

of UE k.

To derive the throughput attained by a WiFi STA w when using the unli-

censed band exclusively, we consider a slotted channel, as per the IEEE 802.11

modus operandi [173]. Let τw denote the stationary probability that station w is

attempting transmission in a randomly chosen slot time. The total throughput

ŝw attained by a WiFi STA w when using the channel exclusively is:

ŝw(bps) =
Pw,succ · E[Dw]

Pw,idle · σ + Pw,busy · Tb
, (4.4)

where E[Dw] is the expected payload size for station w, Pw,succ is the probability

of a successful transmission and can be expressed as Pw,succ = τw
∏Nw

i=1,i 6=w(1 −
τi), Pw,idle is the probability of an idle slot and can be expressed as Pw,idle =∏Nw

w=1(1− τw) and Pw,busy is the probability of a busy slot, regardless of whether

it corresponds to a collision or a successful transmission and can be expressed as

Pw,busy = 1−
∏Nw

w=1(1− τw) [174]. σ and Tb correspond to the average durations

of an idle and a busy slot respectively and thus the denominator corresponds to

the mean duration of a WiFi MAC slot.

Therefore, during an epoch T , the throughput attained by a macro, small cell

and WiFi UE respectively can be expressed as follows:

sm = βsnoABS
m + (1− β)sABS

m (4.5)

sf = βsl
f + (1− α)su

f (4.6)

and

sw = αŝw (4.7)

where sm, sf and sw are the achieved throughputs of MUEs, SUEs and WiFi

STAs respectively during a given period of time T . snoABS
m and sABS

m correspond

to the throughput achieved by MUE m during the transmission of the SBS on

the licensed band and during the ABS period of SBS, respectively. sl
f and su

f

correspond to the throughput of SUE f during the transmission of SBS on the

licensed band and an unlicensed channel, respectively.
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4.3 Holistic Traffic Balancing

In order to maximize the total network throughput while coexisting fairly with

other LTE and WiFi cells, we aim in this section at proposing a traffic balancing

approach that aims at providing a proportional fair coexistence of WiFi STAs,

SUEs and MUEs. The rationale behind this approach is to allow SBS to either

switch between or aggregate the unlicensed and licensed bands based on the

interference level on each band. This will allow higher throughput for MUEs

that are in the vicinity of the SBS when SBS is not transmitting on the licensed

band, and similarly, more transmission opportunities for WiFi nodes when SBS

is not transmitting on the unlicensed band. Therefore, the utility function can

be expressed as the product of the throughputs obtained by SUEs, MUEs and

WiFi STAs:

U =
Nm∏
m=1

sm

Nf∏
f=1

sf

Nw∏
w=1

sw (4.8)

U in turn can be expressed as the summation of the logarithmic function of

the achieved rates as given below:

Ulog =
Nm∑
m=1

log(sm) +

Nf∑
f=1

log(sf ) +
Nw∑
w=1

log(sw)

=
Nm∑
m=1

log

[
βsnoABS

m + (1− β)sABS
m

]

+

Nf∑
f=1

log

[
βsl

f + (1− α)su
f

]

+
Nw∑
w=1

log

[
αsw

]
(4.9)

The proposed utility function Ulog corresponds to a PF coexistence of MUEs,

SUEs and WiFi STAs. The PF scheduling algorithm has been an attractive

allocation criterion in wireless networks since it maintains a balance between

maximizing the total network throughput while achieving good fairness among

network flows [162]. Therefore, our optimization problem is formulated as follows:

max
α,β

Ulog (4.10)

subject to

α ≤ Rw (4.11)
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α ≤ β (4.12)

0 ≤ α ≤ 1, 0 ≤ β ≤ 1 (4.13)

where Rw(≤ 1) corresponds to the normalized offered load across all WiFi sta-

tions; it can be obtained via long-term channel sensing where SBS would monitor

the WLAN activity on the unlicensed band and estimate the average WLAN traf-

fic load. In the above formulation, constraint (4.11) limits the fraction of time

SBS is muted on the unlicensed band to the time it is busy due to WiFi activity.

In other words, it is to make sure that the unlicensed band is not underutilized.

The purpose of constraint (4.12) is to ensure that SBS transmits on either the

licensed or the unlicensed channel at any given point in time. Constraints (4.13)

limit the range of values variables α and β can take.

Lemma 2. log(x) is concave. It follows that the utility function Ulog is an affine

combination of concave functions, and hence is concave. Therefore, the opti-

mization problem defined by (4.10)-(4.13) is concave since the objective function

and the feasible region defined by the constraints are concave and hence a closed

form solution can be obtained using the Karush-Kuhn-Tucker (KKT) conditions

at optimality [175].

Based on the above lemma, we now aim to derive a closed form solution for the

optimization problem (4.10)-(4.13) using the KKT conditions at optimality. The

KKT conditions are necessary and sufficient for convex optimization problems

and consist of the stationarity, primal and dual feasibility, and complementary

slackness conditions [175]. Therefore, the Lagrangian of the optimization prob-

lem (4.10)-(4.13) can be written as follows:

L(α, β, λ1, λ2, λ3, λ4, λ5, λ6) = −Utotal + λ1(α−Rw) + λ2(α− β)− λ3α

+ λ4(α− 1)− λ5β + λ6(β − 1) (4.14)

where λ1, λ2, λ3, λ4, λ5 and λ6 correspond to the Lagrangian multipliers of

constraints (4.11)-(4.13).

In the first step, we compute the candidates for an optimal solution pair (α∗,

β∗) from the possible combinations of feasible solutions satisfying the stationarity

and complementary slackness conditions. Note that the total number of possible

combinations for the Lagrangian multipliers is 64 (i.e., 26) where a given mul-

tiplier could be either zero or non-zero (NZ) at an optimal solution. However,



116Chapter 4. Holistic Small Cell Traffic Balancing across Licensed and Unlicensed Bands

for our optimization formulation, only 6 combinations are possible candidates

for an optimal solution due to some infeasible and redundant combinations. For

instance, the combinations that have λ4 and λ5 as NZ can be omitted since their

corresponding solution is (α∗, β∗) = (1,0), however, this will lead to the violation

of constraint (4.12). Similarly, if a constraint has finite values for both lower and

upper bounds, one would need to consider the possible combinations when at

most one of the Lagrange multipliers for that constraint is NZ. This is due to the

fact that one or the other, or both, of the multipliers will always be equal to zero

since only one of the bounds can be active at a time. Therefore, the combina-

tions that have both λ3 and λ4 or λ5 and λ6 as NZ can be omitted. Moreover,

we impose a non-zero muting period on the unlicensed band (i.e., restrict α to be

greater than 0) in order to allow the small cell to sense WiFi activity and number

of stations and thus we omit the combinations having λ3 as NZ. More details

on the possible combinations for solution candidates is given in Appendix A.1.

Based on the above, the 6 candidate solutions for α∗, β∗ and (λ∗1, λ
∗
2, λ
∗
3, λ
∗
4, λ
∗
5, λ
∗
6)

are as follows:

Candidate solution 1: λ=(NZ,0,0,0,0,NZ)

α1 = Rw and β1 = 1

λ1 = −
Nf∑
f=1

suf
β1slf + (1− α1)suf

+
Nw

α1

λ6 =
Nm∑
m=1

(snoABS
m − sABS

m )

β1snoABS
m + (1− β1)sABS

m

+

Nf∑
f=1

slf
β1slf + (1− α1)suf

Candidate solution 2: λ=(0,0,0,0,0,NZ)

α2 corresponds to the solution of the following equation:

Nf∑
f=1

suf
slf + (1− α2)suf

− Nw

α2

= 0

β2 = 1

λ6 =
Nm∑
m=1

(snoABS
m − sABS

m )

β2snoABS
m + (1− β2)sABS

m

+

Nf∑
f=1

slf
β2slf + (1− α2)suf
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Candidate solution 3: λ=(NZ,NZ,0,0,0,0)

α3 = Rw and β3 = Rw

λ2 = −
Nm∑
m=1

(snoABS
m − sABS

m )

β3snoABS
m + (1− β3)sABS

m

−
Nf∑
f=1

slf
β3slf + (1− α3)suf

λ1 = −
Nf∑
f=1

suf
β3slf + (1− α3)suf

+
Nw

α3

− λ2

Candidate solution 4: λ=(NZ,0,0,0,0,0)

α4 = Rw

β4 corresponds to the solution of the following equation:

−
Nm∑
m=1

(snoABS
m − sABS

m )

β4snoABS
m + (1− β4)sABS

m

−
Nf∑
f=1

slf
β4slf + (1− α4)suf

= 0

λ1 = −
Nf∑
f=1

suf
β4slf + (1− α4)suf

+
Nw

α4

Candidate solution 5: λ=(0,NZ,0,0,0,0)

α5 is equal to β5 and their corresponding value is the solution of the following

equation:

−
Nm∑
m=1

(snoABS
m − sABS

m )

α5snoABS
m + (1− α5)sABS

m

−
Nf∑
f=1

slf

α5slf + (1− α5)suf

+

Nf∑
f=1

suf

α5slf + (1− α5)suf
− Nw

α5
= 0

λ2 = −
Nf∑
f=1

suf
β5slf + (1− α5)suf

+
Nw

α5

Candidate solution 6: λ=(0,0,0,0,0,0)

α6 and β6 correspond to the solution of the following two equations:

Nf∑
f=1

suf
β6slf + (1− α6)suf

− Nw

α6

= 0
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−
Nm∑
m=1

(snoABS
m − sABS

m )

β6snoABS
m + (1− β6)sABS

m

−
Nf∑
f=1

slf
β6slf + (1− α6)suf

= 0

Note that two more candidate solutions exist for λ= (NZ,NZ,0,NZ,0,NZ) and

λ= (0,NZ,0,NZ,0,NZ) where α and β are both equal to 1. However, we can avoid

checking these two candidate solutions as they exist only in the case when Rw=1

and hence their solution matches with that of candidate solution 1.

In the second step, we check the primal and dual feasibility conditions for each

of the 6 candidate solution pairs and the pair satisfying these conditions is the

optimal solution.

Note that all the candidate solutions are independent of the WiFi throughput

sw and hence the SBS needs to know only the normalized WiFi offered load as well

as the number of active WiFi STAs; the SBS can learn the number of active WiFi

STAs based on their corresponding MAC addresses during the sensing period [1].

The number of MUEs and their throughput can be conveyed to the SBS through

the X2 interface. Using this information, SBS can determine the optimal values

for α and β locally when needed.

4.4 A Transmission Mechanism for LTE-LAA SBS

Operation

LTE is designed for the exclusive use of the spectrum and hence when operat-

ing on the unlicensed band, a new channel access scheme is needed to coexist

with other devices having different air interfaces. Therefore, in this section, we

propose a transmission mechanism for the operation of an LTE-LAA small cell

on the licensed and unlicensed bands. This mechanism builds upon the problem

formulation from Section 4.3 and incorporates a channel access scheme on the un-

licensed channel that would allow LTE-LAA SBS to transmit on the unlicensed

band in a way that would not disrupt any ongoing WiFi transmissions.

For our proposed mechanism, we divide the time domain into T epochs, where

in each epoch we aim at finding the optimal values of α and β using the results

of Section 4.3. Taking into account that LTE transmits only at the beginning

of a subframe, our proposed transmission mechanism is aligned with LTE frame

structure where (1− α)T and βT are rounded to an integer multiple of an LTE
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Figure 4.2. Illustration of the proposed SBS transmission mechanism on the licensed and

unlicensed bands. The two possible states upon sensing the unlicensed channel (idle and busy)

are demonstrated. SBS will remain in a sensing state when it encounters a busy channel. The

three states of SBS (i.e., transmission on the licensed, unlicensed and both bands) are also

shown.

subframe duration (1 msec). Moreover, we define δ as the duration of time the

SBS would sense the unlicensed channel before attempting to transmit. Let δ

be such that SIFS < δ < DIFS, and hence this will guarantee that the ACK of

any previous WiFi transmission is received at the sender and that SBS would get

access to the unlicensed channel before any other WiFi STA that would be sensing

the channel at the same time. The proposed LTE-LAA transmission mechanism is

illustrated in Fig. 4.2 where the two possible states upon sensing the channel (idle

and busy) are demonstrated. Moreover, the steps of the proposed mechanism are

summarized as follows:

1. SBS calculates the values of α and β before the beginning of a T period

based on the throughput values and number of active nodes of the previous

T period and using the results of Section 4.3.

2. At the beginning of a T period, SBS remains silent for the period αT on

the unlicensed band and transmits for the period βT on the licensed band.

3. SBS senses the unlicensed channel for δ sec before αT expires in order to
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detect any ongoing WiFi transmissions and guarantee alignment with LTE

frame structure.

4. If the channel is idle, SBS transmits for a period of (1− α)T .

5. If the channel is busy, SBS keeps on listening to the channel until it detects

a silent period for a duration of δ sec in order to avoid the disruption to any

ongoing WiFi transmission. After detecting a silent period of δ sec, SBS

sends a CTS with the duration of the remaining time of the (1−α)T period

to reserve the channel for SBS transmission on the unlicensed band. It is

important to note that the maximum channel occupancy time is limited

to 10 msec after which the unlicensed channel must be released and the

LBT process is repeated. Therefore, for the cases where (1 − α)T is less

than 10 msec, there is a risk that the SBS will not be able to get access to

the unlicensed band when the WLAN burst is larger than (1 − α)T . For

such scenarios, the WLAN transmission period for the next T period is

shortened accordingly to maintain the average time allocated for LTE-LAA

and WLAN.

4.5 Simulation Results and Analysis

In this section, we examine the behavior of our proposed holistic traffic balancing

scheme in various scenarios using a combination of numerical and simulation

results. We also conduct a comparative study of our holistic traffic balancing

approach with respect to [1] and other alternative approaches, representing other

proposed techniques from the literature.

In simulations, for WiFi we consider the 802.11 DCF medium access mech-

anism based on CSMA/CA. We assume randomly located STAs that transmit

and receive packets according to an independent Poisson process. For simplicity,

we consider that all WiFi STAs use the same physical layer parameters, 64-QAM

modulation with a 5/6 coding rate when using a 20 MHz channel, which provides

a 65 Mbps MAC layer throughput. The simulation parameters for the 802.11

network are the same as those used in [24].

For the LTE and LTE-LAA networks, we assume the same channel conditions

for all RBs on both bands and hence the same modulation and coding scheme

i.e., 64 QAM with 5/6 coding rate, is applied to all RBs of the given 20 MHz
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Figure 4.3. Numerical results for the optimal values of (i) (1− α) and (ii) β for varying levels

of MBS to SUEs interference in three different scenarios; sc (a) considers an equal number of

MUEs, SUEs and WiFi STAs, sc (b) considers the number of WiFi STAs to be three times

that of each of MUEs and SUEs and sc (c) considers the number of each of MUEs and SUEs

to be three times that of WiFi STAs. For the studied scenarios, we consider medium and high

WiFi offered load i.e., Rw=0.5 and 0.9 respectively, as well as a fixed value for SBS to MUEs

interference level (-85 dBm).

channel. Maximum MAC layer throughput for LTE with the above settings

is 75 Mbps. These simulation parameters are similar to the ones used in [1].

We assume a round robin scheduler and equal transmit power for all OFDM

symbols in a transmission time interval due to the fact that all RBs have the

same modulation and coding scheme and thus equal number of bits are allocated

to each subcarrier. The maximum transmit power for MBS and SBS is 43 dBm

and 23 dBm, respectively. We consider an urban area characterized by the path

loss model (for outdoor and indoor locations of the base station and UEs) as given

in [176]. A constant payload size of 1500 bytes is assumed for MUEs, SUEs and

WiFi STAs. Simulation results are provided for the average of 1000 runs with a

95% confidence interval.

4.5.1 Behavior of α and β in different scenarios

In this subsection, we study the effect of the variation of the traffic arrival rate

as well as the number of active UEs on the values of α and β by conducting

numerical and simulation results for different practical deployment scenarios.

For the numerical results, we consider three different scenarios with different
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number of MUEs, SUEs and WiFi STAs. Fig. 4.3 shows the optimal values of

(1−α) and β as a function of the MBS to SUE interference level on the licensed

band, for a fixed value of the SBS to MUE interference level (-85 dBm) and two

different WLAN traffic loads (Rw=0.5 and 0.9). Note that the MBS to SUE

interference and the SBS to MUE interference levels are relevant during the non-

ABS period only.

For the simulation results (shown in Fig. 4.4), we consider only scenario (a) of

Fig. 4.3. Fig. 4.4 shows the variation of the proportion of time SBS is transmitting

on the licensed and unlicensed bands during the period T as a function of the

WLAN traffic arrival rate (λWLAN (packets/sec)) and for a low and high MUEs

traffic arrival rates, i.e., λMUE = 0.5 and 2 (packets/sec) respectively. Note that

λWLAN and λMUE correlate to Rw and inter-tier interference level respectively of

Fig. 4.3. Each data point in the simulation results is obtained from 1000 runs,

each of length 200 msec and with T set to 20 msec.

We can make the following observations from Figs. 4.3 and 4.4. First, com-

paring the three considered scenarios of Fig. 4.3, we conclude that our proposed

traffic balancing scheme provides per node airtime fairness among each of the

MUEs, SUEs and WiFi STAs. For example, consider -60 dBm for the value of

MBS to SUEs interference level and Rw=0.5 for the WLAN load, we observe that

in scenario (c), SBS transmits more on the unlicensed band (80%) and less on the

licensed band (20%) as compared to scenario (b) where SBS transmits 50% on

the unlicensed band and 50% on the licensed band. This is because the number

of each MUEs and SUEs is larger than that of WiFi STAs in scenario (c) while

in scenario (b) the number of WiFi STAs is larger than each of the number of

MUEs and SUEs.

Second, our proposed scheme copes with the interference level on both bands by

adapting the values of α and β. This can be observed for high values of inter-tier

interference in Fig. 4.3 or high values of λMUE in Fig. 4.4. In those scenarios,

WLAN shares the unlicensed band with SBS for a proportion of time larger than

its idle period, i.e., larger than (1-Rw), in order to decrease the effect of inter-

tier interference on the UEs throughput on the licensed band. For example, in

Fig. 4.3, for scenario (a) and Rw=0.9, SBS transmits for 55% of the time on the

unlicensed band when the MBS to SUEs interference level is -60 dBm as compared

to 10% when the MBS to SUEs interference level is -95 dBm. This can also be

noted from Fig. 4.4 where (1-α) is equal to 20% for λMUE= 0.5 (packets/sec) but
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Figure 4.4. Simulation results for the variation of the proportion of time the SBS transmits on

the licensed (β) and unlicensed bands (1 − α) as a function of the WLAN traffic arrival rate

(λWLAN) and for a low and high MUEs traffic arrival rates i.e., λMUE= 0.5 and 2 (packets/sec)

respectively, for a scenario of equal number of MUEs, SUEs and WLAN STAs.

increases to 55% for λMUE= 2 (packets/sec), for λWLAN=1.5.

Third, our proposed traffic balancing scheme allows SBS to transmit on either

one of the two bands or aggregate both bands through CA and thus increasing its

capacity. Given that SBS is muted for the period of α and (1-β) on the unlicensed

and licensed bands respectively, we can deduce that it transmits on both bands

simultaneously for a period of (β − α)T sec, and on one of the two bands for the

remaining duration of the T period i.e., for a period of (1− (β−α))T sec, as per

our proposed transmission mechanism of Section 4.4. For example, in Fig. 4.3,

for scenario (b), Rw=0.5 and MBS to SUEs interference level of -90 dBm, α=0.5

and β=0.75 and thus SBS transmits on both bands simultaneously for 25% of

the T period. This can also be shown in Fig. 4.4 where α=0.6 and β=0.9 for

λWLAN=1 and λMUE=0.5 and hence SBS transmits on both bands simultaneously

for 30% of the T period.

Fourth, for all the considered scenarios of Figs. 4.3 and 4.4, we notice that the

unlicensed band is always utilized by either WLAN or SBS and hence this avoids

its underutilization. In other words, SBS is always transmitting on the unlicensed

band for at least the portion of time that it is not utilized by WLAN i.e., (1-α) is

always greater than or equal to (1-Rw), consistent with constraint (4.11) in the

optimization problem, irrespective of the value of inter-tier interference on the

licensed band. For example, for Rw=0.5 and 0.9, (1-α) is always greater than or

equal to 0.5 and 0.1 respectively.
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Figure 4.5. Simulation results for (i) the optimal value of the transmission ratio of SBS on the

unlicensed band i.e., (1-α) and (ii) the total achieved network throughput as a function of the

MBS traffic arrival rate (λMUE) for our proposed traffic balancing scheme (Our scheme) and the

scheme in [1] (Liu (2014)). For the comparative study, we consider moderate and high WLAN

offered load i.e., Rw=0.5 and 0.9 respectively.

Fifth, for all the studied scenarios, there exists an upper limit for the value of

(1-α) which corresponds to the maximum proportion of time that WLAN would

share its unlicensed band with LTE. This can be observed in the cases of high

inter-cell interference on the licensed band where a minimum airtime portion for

WLAN, that is a function of the number of active UEs and WLAN activity,

is guaranteed and thus allowing a fair LTE-WiFi coexistence. For example, in

Fig. 4.3, for an equal number of SBS and WLAN UEs (i.e. scenario (a)), the

upper limit for (1-α) is approximately 0.5.

Overall, the results demonstrate that our traffic balancing scheme performs

as per expectations by steering SBS traffic from one band to another or using

both bands simultaneously depending on the level of inter-tier interference on the

licensed band, WiFi offered load and number of UEs in each band.

4.5.2 Comparison with existing traffic balancing scheme [1]

In this subsection, we compare the performance of our proposed scheme with that

of [1] which also studies the problem of SBS traffic balancing across licensed and

unlicensed bands. Unlike our scheme that jointly optimizes the muting pattern

on both bands, the work in [1] takes a sequential approach adapting the power

level in the licensed band first followed by adjusting the muting pattern on the
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unlicensed channel. Fig. 4.5 shows simulation results for (i) the value of (1-α) and

(ii) the total network throughput for the two schemes as a function of the MBS

traffic arrival rate for two different values of the WLAN traffic load (Rw=0.5 and

Rw=0.9). We can make the following high-level observations from Fig. 4.5:

Observation 1: Overall, our proposed traffic balancing scheme achieves bet-

ter LTE-WiFi coexistence.

Observation 2: For all the studied network scenarios, our proposed traffic

balancing scheme achieves higher total network throughput.

In what follows, we examine the reasons behind these observations. First,

for scenarios of high WLAN load and when MBS is not in a full buffer state

(i.e. λMUE < 2.5 (packets/sec)), corresponding to candidate solutions 2 or 6,

our proposed scheme provides better LTE-WiFi coexistence while also achieving

higher total network throughput as compared to [1]. This gain is due to the use

of subframe muting instead of power adaptation, optimizing the MBS and SBS

in a coordinated fashion instead of having a fixed level of performance for MBS,

and optimizing the licensed and unlicensed bands in a holistic (joint) manner

instead of adopting a sequential approach (see all aspects for [1] discussed in

Subsection 4.1.1). The gain for solving the problem holistically as compared

to sequentially is characterized separately in Section 4.5.3 where we consider a

variant of our scheme that adopts an independent muting strategy on both bands.

On the other hand, the gain due to the other two differences between our scheme

and that of [1] can be clearly seen from the value of α for candidate solutions 2

or 6 with Nf=1:

α =
Nw(T lf + suf )

suf (Nw + 1)
(4.15)

where T lf is the throughput achieved by SBS on the licensed band and corre-

sponds to β · sLf for our proposed scheme and sLf (P ∗f ) (i.e., a function of the opti-

mal allocated power) for the proposed algorithm of [1]. Therefore, from Equation

(4.15), we can note that higher values of T lf result in higher values for α and

thus less utilization of the unlicensed band. Given that ABS muting achieves

better macro-layer performance at less degradation of the SBS layer performance

as compared to power adaptation, for a specified level of performance for MUEs

(e.g., minimum outage level, minimum interference level from SBSs to MUEs),

ABS muting causes less degradation in the performance of the SBS layer as com-

pared to power control, i.e., β · sLf > sLf (P ∗f ). Following Equation (4.15), our
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proposed scheme results in less utilization of the unlicensed band and thus allows

more WLAN transmission opportunities as compared to [1] while maximizing the

total network performance.

On the other hand, in the case of a full-buffer MBS (i.e. λMUE ≥ 2.5 (pack-

ets/sec)) and at high WLAN load, corresponding to candidate solution 5, we can

notice that the value of (1-α) for our proposed scheme (0.51) is slightly higher

than that of [1] (0.49). This is due to the high interference level on the licensed

band and thus the need to steer more traffic on the unlicensed band in order to

guarantee that the SBS is transmitting on at least one of the two bands at a

given time (see constraint (4.12) in the optimization problem). Note, however,

that (1-α) would converge to its upper limit (i.e., ∼ 0.5 for the studied scenarios)

and thus allowing a fair LTE-WiFi coexistence.

Second, our proposed scheme achieves similar performance on the unlicensed

band as that of [1] for the case of moderate WLAN load (Rw = 0.5) but it results

in a higher total network throughput. For these scenarios, the value of α is limited

by Rw (corresponding to candidate solutions 1, 3 or 4) and thus the increase in the

total network throughput is due to the improvement in the performance on the

licensed band i.e., due to the use of subframe muting instead of power adaptation

and optimizing the MBS and SBS in a coordinated fashion instead of having a

fixed level of performance for MBS (i.e., see aspects (1) and (2) of [1] discussed

in Subsection 4.1.1).

In summary, our proposed scheme achieves better utilization of the available

radio resources compared to [1] (an increase of 28.3% in the total network through-

put for the studied scenarios) while increasing the transmission opportunities for

WiFi on the unlicensed band.

4.5.3 Comparison with alternative approaches

In this subsection, we compare the performance of our proposed traffic balanc-

ing approach with a broad spectrum of alternative approaches. As performance

metrics, we consider throughput and fairness obtained using each of the vari-

ous different approaches. Denote by η(si) the efficiency of a resource allocation

scheme where η(si) is defined as the sum of all the UEs throughput i.e., η(si)=∑N
i=1 si (where i is m, f , or w and N=Nm+Nf+Nw), and its fairness is given by
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the Jain’s index defined below [163]:

J (si) =

(∑N
i=1 si

)2

N ·
∑N

i=1 s
2
i

(4.16)

The value of the Jain’s fairness index lies in [ 1
N

, 1] where the value of ( 1
N

)

corresponds to the least fair allocation in which only one UE attains a non-zero

throughput and the value of (1) corresponds to the most fair allocation in which all

UEs achieve equal rates. Therefore, an efficient allocation of the radio resources

seeks to provide a tradeoff between η(si) and J (si) [163].

We compare the throughput and fairness of our proposed scheme with the

following set of approaches:

• Case 1 - No Muting on Licensed : SBS operates on both bands, however,

considering a PF muting strategy on the unlicensed band only and hence

providing a coexistence technique with WLAN only. On the licensed band,

MBS and SBS transmit simultaneously, and hence inter-tier interference is

not eliminated.

• Case 2 - No Muting on Unlicensed : SBS operates on both bands, however,

considering a PF muting strategy on the licensed band only and hence

providing a coexistence technique with MBS only. On the unlicensed band,

SBS is transmitting all the time, and hence excluding any opportunity for

WiFi transmissions.

• Case 3 - No Transmission on Licensed : SBS operates on the unlicensed

band only and shares the spectrum with WLAN by muting adaptively. This

corresponds to previously suggested approaches such as the work proposed

in [15, 17, 23, 24]. For this case, we specifically consider a muting pattern

based on PF coexistence of SBS and WLAN on the unlicensed band which

is similar to [24].

• Case 4 - No Transmission on Unlicensed : SBS operates on the licensed

band only and shares the spectrum with MBS by muting adaptively. This

corresponds to previously suggested approaches in the area of ICIC such

as the work proposed in [170] based on ABS muting. For this case, we

specifically consider a muting pattern based on PF coexistence of MBS and

SBS on the licensed band.
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Figure 4.6. The aggregate throughput of the WLAN, MBS, SBS and total network for our

proposed traffic balancing scheme in comparison with other approaches.

• Case 5 - Independent Muting : SBS operates on both bands, however, an

independent mechanism is applied on each band for its coexistence with

LTE and WLAN i.e., the coexistence of SBS and MBS on the licensed band

and the coexistence of SBS and WLAN on the unlicensed band are solved

separately. To realize this case, we consider two independent PF coexistence

formulations for the muting of SBS on each of the licensed and unlicensed

bands. In other words, when solving for α, we consider the WLAN and

SBS throughput on the unlicensed band only, and when solving for β, we

consider the MBS and SBS throughput on the licensed band only.

Note that cases 1 and 2, respectively, do not consider coexistence mecha-

nisms on the licensed and unlicensed bands and thus are not practical solutions;

however, we include them in our study for the sake of completeness.

Fig. 4.6 shows the throughput achieved by WLAN, MBS, SBS and the total

network for our proposed scheme as well as the other five studied approaches; the

corresponding Jain’s fairness index J (si) values are given in Table 4.2. We can

make the following observations from these results. First, the WLAN throughput

can be improved when coexisting with LTE-LAA small cells on the unlicensed

band by taking into account the transmission of LTE-LAA small cells on the

licensed and unlicensed bands and considering a holistic approach for the allo-

cation of the radio resources on both bands i.e., optimizing both bands jointly.

This can be observed from Fig. 4.6 by comparing the total achieved throughput

of WLAN for our proposed scheme with that of cases 1, 2, 3 and 5. Similarly,

MBS throughput is higher with our proposed scheme compared to cases 1, 2, 4
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and 5. Note that the WLAN and MBS throughputs will be, respectively, maxi-

mum when they exclusively use the unlicensed (case 4) and licensed bands (case

3), due to the absence of inter-technology interference in the former and lack of

inter-tier interference in the latter. However, the total network throughput is the

lowest for case 4; and case 3 results in a relatively unfair sharing of the radio

resources as compared to our proposed scheme.

Second, considering an independent muting mechanism on the licensed and

unlicensed bands (case 5) leads to performance degradation in terms of through-

put and fairness, indicating that the effectiveness of our proposed traffic balancing

scheme stems from its holistic nature. This is validated from Fig. 4.6 and Ta-

ble 4.2 by comparing the total network throughput and Jain’s fairness index of

our approach to that of case 5 i.e., J (si)=0.82 and 0.57 respectively and 5.5%

improvement in the total network throughput. As another observation, the inde-

pendent muting approach provides very close performance for MBS to case 4 due

to the fact that α=1 and hence the optimization problem would be a function

of the variable β only and would correspond to the sub-problem of the coexis-

tence on the licensed band of case 5. Similar argument applies for the WLAN

throughput of case 5 which is similar to that of case 3 (where β=0).

Third, our proposed traffic balancing scheme utilizes the radio resources in

the most efficient way compared to the other studied schemes as it provides a

better tradeoff between efficiency (throughput) η(si) and fairness J (si). In terms

of efficiency, case 2 provides the maximum total network throughput since SBS

will be transmitting on both bands simultaneously, however, WLAN would not be

given opportunities for transmission and hence this would result in the least value

of J (si) (0.45) as the radio resources are not shared fairly among the different

technologies. Note also that our proposed scheme provides similar throughput

as case 3; the major contribution to overall throughput in case 3 comes from

MBS throughput which is maximum due to its exclusive use of the licensed band.

However, comparing Jain’s index fairness of our approach to that of case 3, we

observe that our scheme allocates the radio resources in a more fair way unlike

case 3 that causes a degradation in the WLAN and SBS throughputs. In terms of

fairness, case 4 provides the most fair allocation of the licensed and the unlicensed

bands as J (si) is the closest to 1 but it comes at the expense of throughput

efficiency; total network throughput is the lowest with case 4. The reason for this

high value of J (si) is because WLAN would have more transmission opportunities
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Table 4.2 Jain’s fairness index for the UEs achieved throughput of our proposed scheme and

the other five cases.

Cases Our scheme (1) (2) (3) (4) (5)

J (si) 0.82 0.55 0.45 0.73 0.92 0.57

and hence its throughput would increase when using the channel exclusively as

compared to sharing it with LTE-LAA SBS. On the other hand, the decrease in

the value of η(si) is due to the difference in the MAC layer throughputs with WiFi

and LTE (65 Mbps and 75 Mbps respectively in our simulation setup) and the

inter-tier interference level on the licensed band which results in the degradation

of the SBS and MBS throughput.

4.6 Summary

In this chapter, we have presented a formulation of the holistic LTE-LAA SBS

traffic balancing across the licensed and unlicensed bands as an optimization prob-

lem that seeks to achieve a proportional fair coexistence of WiFi STAs, SUEs and

MUEs. We have derived a closed form solution for the aforementioned optimiza-

tion problem and proposed a transmission mechanism for the operation of the

LTE-LAA SBS on both bands. Results show that LTE-LAA SBS aided by our

solution would switch between or aggregate the licensed and unlicensed bands

based on the interference/traffic level and number of active UEs in each band.

It also provides a better performance for WLAN when coexisting with LTE and

an efficient utilization of the radio resources compared to alternative approaches

from the literature as it allows a better tradeoff between maximizing the total

network throughput and achieving fairness among all network flows. In what

follows, we briefly discuss a couple of issues that warrant detailed exploration in

future work:

• Multiple channels: Although we consider a single unlicensed channel, the

proposed traffic balancing scheme can be extended to multiple unlicensed

channels, each with a different muting variable {α1, ..., αc}, provided that

the WiFi networks occupy disjoint channels (non-overlapping channels).

Note that in such scenarios, the computational complexity increases due
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to the increase in the number of variables and thus would make it hard

to obtain an online solution. Therefore, one could potentially combine

the proposed approach in this chapter with the channel selection learning

scheme proposed in chapter 3 in a joint framework.

• Hidden terminals: Hidden and exposed terminals are a major problem

in wireless networks and can result in a dramatic throughput degradation,

if not managed. In essence, LTE use of unlicensed bands in the SDL mode

gives rise to hidden terminal situations that need to be handled. In WLAN,

this issue is addressed via the request-to-send/clear-to-send (RTS/CTS)

messages; however, this method cannot be used for LTE-LAA since only

DL transmissions are supported and hence SUEs are not able to transmit

the CTS on the unlicensed spectrum. Therefore, to solve the hidden node

problem, device-assisted enhancements need to be considered along with

other existing mechanisms of the LTE system such as the periodic trans-

mission of UE CSI/interference measurement over the licensed band. On

the unlicensed band, a hidden terminal can be detected if SBS senses a

good channel while the CSI report from the SUE shows a high interference

value. This allows SBS to perform scheduling changes prior and during

its operation on the unlicensed channel i.e., exclude the victim SUE for

scheduling until its channel becomes idle and schedule other SUEs mean-

while. Alternatively, SBS may select another unlicensed channel to operate

on [177].





Chapter 5

Interference Management for

Cellular-Connected UAVs

5.1 Introduction

Cellular-connected UAVs will be an integral component of future wireless net-

works as evidenced by recent interest from academia, industry, and 3GPP stan-

dardizations [26–28,178–180]. As discussed earlier in Chapter 2, providing cellular

connectivity to the UAVs offers several advantages to other current short-range

wireless connections such as WiFi, bluetooth, and radio waves. Consequently,

cellular-connected UAV-UEs will pave the way to new UAV-UE applications such

as real-time video streaming and surveillance. Nevertheless, the ability of UAV-

UEs to establish LoS connectivity to cellular base stations is both a blessing and

a curse. On the one hand, it enables high-speed data access for the UAV-UEs.

On the other hand, it can lead to substantial inter-cell mutual interference among

the UAVs and to the ground users. As such, a wide-scale deployment of UAV-

UEs is only possible if interference management challenges are addressed [26–28].

To this end, in this chapter, we propose an interference-aware path planning

scheme for a network of cellular-connected UAVs. In particular, each UAV aims

at achieving a tradeoff between maximizing energy efficiency and minimizing both

wireless latency and the interference level caused on the ground network along

its path. This in essence is realized by allowing each UAV to learn its optimal

path, transmission power level, and cell association vector at different locations

along its path. The work presented in this chapter has appeared in the Pro-

ceedings of the IEEE International Conference on Communications [36] and an

133
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Table 5.1 Variables and notations.

Notation Description

S Number of ground BSs

Q Number of ground UEs

J Number of cellular-connected UAVs

Ks Number of ground UEs served by BS s

Ns Number of cellular-connected UAVs served by BS s

Cj,s Number of RBs allocated to UAV j

Cq,s Number of RBs allocated to UE q

A Number of discretized unit areas

Bc Bandwidth of resource block c

N0 Noise level over a resource block

ξj,s,a Path loss between UAV j at location a and BS s

ξq,s Path loss between UE q and BS s

P̂j,s,a Total transmit power of UAV j at location a to BS s

Pj,s,c,a Transmit power of UAV j at location a to BS s over RB c

hj,s,c,a Channel gain between UAV j and BS s on RB c at location a

λj,s Average packet arrival rate traversing link (j,s)

Pq,s,c Transmit power of UE q to its serving BS s on RB c

hq,s,c Channel gain between UE q and BS s on RB c

P j Maximum transmission power of UAV j

L Number of interferers

αj,a,b Indicates whether or not a directed link is formed from a towards b for UAV j

βj,s,a Indicates whether or not UAV j is associated with BS s at location a

τj,s,a Latency over the UAV-BS wireless link (j,s)

Γj,s,c,a SINR of UAV j to BS s on RB c at location a

Γj SINR threshold value for UAV j

zj(t) Action taken by UAV j at t

vj(t) Observed network state by UAV j at t

δj,l,a(t) Euclidean distance from UAV j at location a to BS l at t

θj,l,a(t) Orientation angle in the xy-plane from UAV j at location a to BS l at t

θj,dj ,a(t) Orientation angle in the xy-plane from UAV j at location a to its destination dj at t

πj(vj(t)) Behavioral strategy of UAV j at state vj(t)

γ Discount factor for delayed rewards

u Expected long term reward

W
(n)
j,in Input-to-reservoir matrix of UAV j at layer n at t

W
(n)
j Recurrent reservoir weight matrix for UAV j at layer n

W j,out Reservoir-to-output matrix of UAV j for layer n

N
(n)
j,R Number of internal units of the reservoir of UAV j at layer n

Nj,U External input dimension of UAV j

Nj,L Number of layers in the stack for UAV j

ρ
(n)
j Spectral radius of UAV j at layer n

λj Learning rate at UAV j

ω
(n)
j Leaking parameter at layer n

yj(t) Output of the deep ESN at t

e(vj(t)) Error function
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extended journal version has been submitted to IEEE Transactions on Wireless

Communications [37]. Table 5.1 provides a summary for the description of the

main notations used in this chapter. Next, we give an overview on the related

literature and then we present our problem statement and contribution.

5.1.1 Related Work

While some literature has recently studied the use of UAVs as mobile BSs [30–

32,46,181–183], the performance analysis of cellular-connected UAV-UEs (short-

handed hereinafter as UAVs) remains relatively scarce [26–29]. For instance,

in [26], the authors study the impact of UAVs on the UL performance of a

ground LTE network. Meanwhile, the work in [27] uses measurements and ray

tracing simulations to study the airborne connectivity requirements and propa-

gation characteristics of UAVs. The authors in [28] analyze the coverage proba-

bility of the DL of a cellular network that serves both aerial and ground users.

In [29], the authors consider a network consisting of both ground and aerial UEs

and derive closed-form expressions for the coverage probability of the ground

and drone UEs. Nevertheless, this prior art is limited to studying the impact

that cellular-connected UAVs have on the ground network. Indeed, the existing

literature [26–29] does not provide any concrete solution for optimizing the per-

formance of a cellular network that serves both aerial and ground UEs in order

to overcome the interference challenge that arises in this context. UAV trajec-

tory optimization is essential in such scenarios. An online path planning that

accounts for wireless metrics is vital and would, in essence, assist in address-

ing the aforementioned interference challenges along with new improvements in

the design of the network, such as 3D frequency reuse. Such a path planning

scheme allows the UAVs to adapt their movement based on the rate requirements

of both aerial UAV-UEs and ground UEs, thus improving the overall network

performance. The problem of UAV path planning has been studied mainly for

non-UAV-UE applications [30–33] with [34] being the only work considering a

cellular-connected UAV-UE scenario. In [30], the authors propose a distributed

path planning algorithm for multiple UAVs to deliver delay-sensitive information

to different ad-hoc nodes. The authors in [31] optimize a UAV’s trajectory in an

energy-efficient manner. The authors in [32] propose a mobility model that com-

bines area coverage, network connectivity, and UAV energy constraints for path
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planning. In [33], the authors propose a fog-networking-based system architecture

to coordinate a network of UAVs for video services in sports events. However,

despite being interesting, the body of work in [30–32] and [33] is restricted to

UAVs as BSs and does not account for UAV-UEs and their associated interfer-

ence challenges. Hence, the approaches proposed therein cannot readily be used

for cellular-connected UAVs. On the other hand, the authors in [34] propose a

path planning scheme for minimizing the time required by a cellular-connected

UAV to reach its destination. Nevertheless, this work is limited to one UAV and

does not account for the interference that cellular-connected UAVs cause on the

ground network during their mission. Moreover, the work in [34] relies on offline

optimization techniques that cannot adapt to the uncertainty and dynamics of a

cellular network.

5.1.2 Problem Statement and Contribution

The main objective of this chapter is to develop an interference-aware path plan-

ning scheme for a network of cellular-connected UAVs. In essence, providing wire-

less cellular connectivity for UAV-UEs is contingent upon proper management of

their resulting interference which mainly results from the fact that most UAV

communication links are LoS dominated. Consequently, a challenging aspect

in the implementation of the communication links of cellular-connected UAVs

is to maintain high data rate, low delay and reliable network connection while

minimizing the interference level caused on the ground network. As such, an

interference-aware online path planning scheme allows the UAVs to adapt their

paths based on the dynamics of the network instead of seeking their shortest

paths to reach their corresponding destinations. Such a scheme improves the to-

tal network performance and allows both the UAV-UEs and the ground UEs to

achieve higher data rates.

The main contribution of this chapter is therefore a novel deep RL framework

based on ESN cells for optimizing the trajectories of multiple cellular-connected

UAVs in an online manner. This framework will allow cellular-connected UAVs

to minimize the interference they cause on the ground network as well as their

wireless transmission latency. To realize this, we propose a dynamic noncoop-

erative game in which the players are the UAVs and the objective of each UAV

is to autonomously and jointly learn its path, transmit power level, and associa-
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tion vector. For our proposed game, the UAV’s cell association vector, trajectory

optimization, and transmit power level are closely coupled with each other and

their optimal values vary based on the dynamics of the network. Therefore, a

major challenge in this game is the need for each UAV to have full knowledge

of the ground network topology, ground UEs service requirements, and other

UAVs’ locations. Consequently, to solve this game, we propose a deep RL ESN-

based algorithm, using which the UAVs can predict the dynamics of the network

and subsequently determine their optimal paths as well as the allocation of their

radio resources along their paths. Unlike previous studies which are either cen-

tralized or rely on the coordination among UAVs, our approach is based on a

self-organizing path planning and resource allocation scheme. In essence, two

important features of our proposed algorithm are adaptation and generalization.

Indeed, UAVs can take decisions for unseen network states, based on the reward

they got from previous states. This is mainly due to the use of ESN cells which

enable the UAVs to retain their previous memory states. We have shown that

the proposed algorithm reaches a SPNE upon convergence. Moreover, upper and

lower bounds on the UAVs’ altitudes, that guarantee a maximum interference

level on the ground network and a maximum wireless transmission delay for the

UAV, have been derived. Simulation results show that the proposed approach

improves the tradeoff between energy efficiency, wireless latency, and the inter-

ference level caused on the ground network. Results also show that each UAV’s

altitude is a function of the ground network density and the UAV’s objective

function and is an important factor in achieving the UAV’s target.

The rest of this chapter is organized as follows. Section 5.2 presents the system

model. Section 5.3 describes the proposed noncooperative game model. The deep

RL ESN-based algorithm is proposed in Section 5.4. In Section 5.5, simulation

results are analyzed. Finally, a summary is provided in Section 5.6.

5.2 System Model

Consider the UL of a wireless cellular network composed of a set S of S ground

BSs, a set Q of Q ground UEs, and a set J of J cellular-connected UAVs. The

UL is defined as the link from UE q or UAV j to BS s. Each BS s ∈ S serves a

set Ks ⊆ Q of Ks UEs and a set Ns ⊆ J of Ns cellular-connected UAVs. The

total system bandwidth, B, is divided into a set C of C RBs. Each UAV j ∈ Ns
is allocated a set Cj,s ⊆ C of Cj,s RBs and each UE q ∈ Ks is allocated a set
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Cq,s ⊆ C of Cq,s RBs by its serving BS s. At each BS s, a particular RB c ∈ C is

allocated to at most one UAV j ∈ Ns, or UE q ∈ Ks.
An airborne IoT is considered in which the UAVs are equipped with different

IoT devices, such as cameras, sensors, and GPS that can be used for various appli-

cations such as surveillance, monitoring, delivery, and real-time video streaming.

The 3D coordinates of each UAV j ∈ J and each ground user q ∈ Q are, respec-

tively, (xj, yj, hj) and (xq, yq, 0). All UAVs are assumed to fly at a fixed altitude

hj above the ground (as done in [31,34,184,185]) while the horizonal coordinates

(xj, yj) of each UAV j vary in time. Each UAV j needs to move from an initial

location oj to a final destination dj while transmitting online its mission-related

data such as sensor recordings, video streams, and location updates. We assume

that the initial and final locations of each UAV are pre-determined based on its

mission objectives.

For ease of exposition, we consider a virtual grid for the mobility of the UAVs.

We discretize the space into a set A of A equally sized unit areas. The UAVs move

along the center of the areas ca = (xa, ya, za), which yields a finite set of possible

paths pj for each UAV j. The path pj of each UAV j is defined as a sequence of

area units pj = (a1, a2, · · · , al) such that a1 = oj and al = dj. The area size of

the discretized area units (a1, a2, · · · , aA) ∈ A is chosen to be sufficiently small

such that the UAVs’ locations can be assumed to be approximately constant

within each area even at the maximum UAV’s speed, as commonly done in the

literature [184]. We assume a constant speed 0 < Vj ≤ V̂j for each UAV where

V̂j is the maximum speed of UAV j. Therefore, the time required by each UAV

to travel between any two unit areas is constant.

5.2.1 Channel Models

We consider the sub-6 GHz band and the free-space path loss model for the UAV-

BS data link. The path loss between UAV j at location a and BS s, ξj,s,a, is given

by [78]:

ξj,s,a(dB) = 20 log10(dj,s,a) + 20 log10(f̂)− 147.55, (5.1)

where f̂ is the system center frequency and dj,s,a is the Euclidean distance between

UAV j at location a and BS s. We consider a Rician distribution for modeling

the small-scale fading between UAV j and ground BS s thus accounting for the

LoS and multipath scatterers that can be experienced at the BS. In particular,
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adopting the Rician channel model for the UAV-BS link is validated by the fact

that the channel between a given UAV and a ground BS is mainly dominated

by a LoS link [31]. We assume that the Doppler spread due to the mobility

of the UAVs is compensated for based on existing techniques such as frequency

synchronization using a phase-locked loop [186] as done in [31] and [184].

For the terrestrial UE-BS links, we consider a Rayleigh fading channel. For

a carrier frequency, f̂ , of 2 GHz, the path loss between UE q and BS s is given

by [187]:

ζq,s(dB) = 15.3 + 37.6 log10(dq,s), (5.2)

where dq,s is the Euclidean distance between UE q and BS s.

The average SINR, Γj,s,c,a, of the UAV-BS link between UAV j at location a

(a ∈ A) and BS s over RB c will be:

Γj,s,c,a =
Pj,s,c,ahj,s,c,a
Ij,s,c +BcN0

, (5.3)

where Pj,s,c,a = P̂j,s,a/Cj,s is the transmit power of UAV j at location a to BS

s over RB c and P̂j,s,a is the total transmit power of UAV j to BS s at loca-

tion a. Here, the total transmit power of UAV j is assumed to be distributed

uniformly among all of its associated RBs. hj,s,c,a = gj,s,c,a10−ξj,s,a/10 is the chan-

nel gain between UAV j and BS s on RB c at location a where gj,s,c,a is the

Rician fading parameter. N0 is the noise power spectral density and Bc is the

bandwidth of an RB c. Ij,s,c =
∑S

r=1,r 6=s(
∑Kr

k=1 Pk,r,chk,s,c +
∑Nr

n=1 Pn,r,c,a′hn,s,c,a′)

is the total interference power on UAV j at BS s when transmitting over RB

c, where
∑S

r=1,r 6=s
∑Kr

k=1 Pk,r,chk,s,c and
∑S

r=1,r 6=s
∑Nr

n=1 Pn,r,c,a′hn,s,c,a′ correspond,

respectively, to the interference from the Kr UEs and the Nr UAVs (at their

respective locations a′) connected to neighbouring BSs r and transmitting using

the same RB c as UAV j. hk,s,c = mk,s,c10−ζk,s/10 is the channel gain between UE

k and BS s on RB c where mk,s,c is the Rayleigh fading parameter. Therefore, the

achievable data rate of UAV j at location a associated with BS s can be defined

as Rj,s,a =
∑Cj,s

c=1 Bclog2(1 + Γj,s,c,a).

Given the achievable data rate of UAV j, and assuming that each UAV is an

M/D/1 queueing system (a queue with Poisson arrivals, constant service times

and 1 server), the corresponding latency over the UAV-BS wireless link is given

by [188]:

τj,s,a =
λj,s

2µj,s,a(µj,s,a − λj,s)
+

1

µj,s,a
, (5.4)
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where λj,s is the average packet arrival rate (packets/s) traversing link (j, s) and

originating from UAV j. µj,s,a = Rj,s,a/ν is the service rate over link (j, s) at

location a where ν is the packet size. Here, it is important to note that, given

that it is difficult to find the delay under very rapid fading changes, it is reasonable

to assume that the fading is essentially an average fading of the channel that an

arbitrary packet will experience. This provides a tractable way to model the delay.

This assumption (and the delay expression in 6.11) has been commonly adopted

in the literature, such as in [189] Equation 27 and [190] Equation 6. Moreover, it

is important to note that, UAV communication links are mainly LoS dominated.

As such, one can assume that the channel variations are not too rapid between

packets.

On the other hand, the achievable data rate for a ground UE q served by BS

s is given by:

Rq,s =

Cq,s∑
c=1

Bclog2

(
1 +

Pq,s,chq,s,c
Iq,s,c +BcN0

)
, (5.5)

where hq,s,c = mq,s,c10−ζq,s/10 is the channel gain between UE q and BS s on RB

c and mq,s,c is the Rayleigh fading parameter. Pq,s,c = P̂q,s/Cq,s is the transmit

power of UE q to its serving BS s on RB c and P̂q,s is the total transmit power

of UE q. Here, we also consider equal power allocation among the allocated RBs

for the ground UEs. Iq,s,c =
∑S

r=1,r 6=s(
∑Kr

k=1 Pk,r,chk,s,c +
∑Nr

n=1 Pn,r,c,a′hn,s,c,a′)

is the total interference power experienced by UE q at BS s on RB c where∑S
r=1,r 6=s

∑Kr

k=1 Pk,r,chk,s,c and
∑S

r=1,r 6=s
∑Nr

n=1 Pn,r,c,a′hn,s,c,a′ correspond, respec-

tively, to the interference from the Kr UEs and the Nr UAVs (at their respective

locations a′) associated with the neighbouring BSs r and transmitting using the

same RB c as UE q.

5.2.2 Problem Formulation

Our objective is to find the optimal path for each UAV j based on its mission

objectives as well as its interference on the ground network. Thus, we seek to

minimize: a) the interference level that each UAV causes on the ground UEs and

other UAVs, b) the transmission delay over the wireless link, and c) the time

needed to reach the destination. To realize this, we optimize the paths of the

UAVs jointly with the cell association vector and power control at each location

a ∈ A along each UAV’s path. We consider a directed graph Gj = (V , Ej) for
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each UAV j where V is the set of vertices corresponding to the centers of the unit

areas a ∈ A and Ej is the set of edges formed along the path of UAV j. We let

P̂ be the transmission power vector with each element P̂j,s,a ∈ [0, P j] being the

transmission power level of UAV j to its serving BS s at location a where P j is

the maximum transmission power of UAV j. α is the path formation vector with

each element αj,a,b ∈ {0, 1} indicating whether or not a directed link is formed

from area a towards area b for UAV j, i.e., if UAV j moves from a to b along

its path. β is the UAV-BS association vector with each element βj,s,a ∈ {0, 1}
denoting whether or not UAV j is associated with BS s at location a. Next, we

present our optimization problem whose goal is to determine the path of each

UAV along with its cell association vector and its transmit power level at each

location a along its path pj:

min
P̂ ,α,β

ϑ
J∑
j=1

S∑
s=1

Cj,s∑
c=1

A∑
a=1

S∑
r=1,r 6=s

P̂j,s,ahj,r,c,a
Cj,s

+$

J∑
j=1

A∑
a=1

A∑
b=1,b 6=a

αj,a,b

+ φ
J∑
j=1

S∑
s=1

A∑
a=1

βj,s,aτj,s,a, (5.6)

A∑
b=1,b 6=a

αj,b,a ≤ 1 ∀j ∈ J , a ∈ A, (5.7)

A∑
a=1,a6=oj

αj,oj ,a=1 ∀j ∈ J ,
A∑

a=1,a 6=dj

αj,a,dj=1 ∀j ∈ J , (5.8)

A∑
a=1,a6=b

αj,a,b −
A∑

f=1,f 6=b

αj,b,f=0 ∀j ∈ J , b ∈ A (b 6= oj, b 6= dj), (5.9)

P̂j,s,a ≥
A∑

b=1,b 6=a

αj,b,a ∀j ∈ J , s ∈ S, a ∈ A, (5.10)

P̂j,s,a ≥ βj,s,a ∀j ∈ J , s ∈ S, a ∈ A, (5.11)

S∑
s=1

βj,s,a −
A∑

b=1,b 6=a

αj,b,a = 0 ∀j ∈ J , a ∈ A, (5.12)

Cj,s∑
c=1

Γj,s,c,a ≥ βj,s,aΓj ∀j ∈ J , s ∈ S, a ∈ A, (5.13)
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0 ≤ P̂j,s,a ≤ P j ∀j ∈ J ,s ∈ S, a ∈ A, (5.14)

αj,a,b ∈ {0,1}, βj,s,a ∈ {0,1} ∀j ∈ J , s ∈ S, a, b ∈ A. (5.15)

The objective function in (5.6) captures the total interference level that the UAVs

cause on neighbouring BSs along their paths, the length of the paths of the UAVs,

and their wireless transmission delay. ϑ, $ and φ are multi-objective weights used

to control the tradeoff between the three considered metrics. These weights can

be adjusted to meet the requirements of each UAV’s mission. For instance, the

time to reach the destination is critical in search and rescue applications while the

latency is important for online video streaming applications. (5.7) guarantees that

each area a is visited by UAV j at most once along its path pj. (5.8) guarantees

that the trajectory of each UAV j starts at its initial location oj and ends at

its final destination dj. (5.9) guarantees that if UAV j visits area b, it should

also leave from area b (b 6= oj, b 6= dj). (5.10) and (5.11) guarantee that UAV j

transmits to BS s at area a with power P̂j,s,a > 0 only if UAV j visits area a, i.e.,

a ∈ pj and such that j is associated with BS s at location a. (5.12) guarantees

that each UAV j is associated with one BS s at each location a along its path pj.

(5.13) guarantees a lower limit, Γj, for the SINR value Γj,s,c,a of the transmission

link from UAV j to BS s on RB c at each location a, a ∈ pj. This, in turn,

ensures successful decoding of the transmitted packets at the serving BS. The

value of Γj is application and mission specific. Note that the SINR check at each

location a is valid for our problem since we consider small-sized area units. (5.14)

and (5.15) are the feasibility constraints. The formulated optimization problem

is MINLP, which is computationally complex to solve for large networks.

To address this challenge, we adopt a distributed approach in which each

UAV decides autonomously on its next path location along with its corresponding

transmit power and association vector. In fact, a centralized approach requires

control signals to be transmitted to the UAVs at all time. This might incur high

round-trip latencies that are not desirable for real-time applications such as online

video streaming. Further, a centralized approach requires a central entity to have

full knowledge of the current state of the network and the ability to communicate

with all UAVs at all time. However, this might not be feasible in case the UAVs

belong to different operators or in scenarios in which the environment changes

dynamically. Therefore, we next propose a distributed approach for each UAV j

to learn its path pj along with its transmission power level and association vector

at each location a along its path in an autonomous and online manner.
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5.3 Towards a Self-Organizing Network of an Air-

borne Internet of Things

5.3.1 Game-Theoretic Formulation

Our objective is to develop a distributed approach that allows each UAV to

take actions in an autonomous and online manner. For this purpose, we model

the multi-agent path planning problem as a finite dynamic noncooperative game

model G with perfect information [127]. Formally, we define the game as G =

(J , T ,Zj,Vj,Πj, uj) with the set J of UAVs being the agents. T is a finite

set of stages which correspond to the steps required for all UAVs to reach their

sought destinations. Zj is the set of actions that can be taken by UAV j at

each t ∈ T , Vj is the set of all observed network states by UAV j up to stage

T , Πj is a set of probability distributions defined over all zj ∈ Zj, and uj is

the payoff function of UAV j. At each stage t ∈ T , the UAVs take actions

simultaneously. In particular, each UAV j aims at determining its path pj to its

destination along with its optimal transmission power and cell association vector

for each location a ∈ A along its path pj. Therefore, at each t, UAV j chooses

an action zj(t) ∈ Zj composed of the tuple zj(t) = (aj(t), P̂j,s,a(t),βj,s,a(t)),

where aj(t)={left, right, forward, backward, no movement} corresponds to a

fixed step size, ãj, in a given direction. P̂j,s,a(t) = [P̂1, P̂2, · · · , P̂O] corresponds to

O different maximum transmit power levels for each UAV j and βj,s,a(t) is the

UAV-BS association vector.

For each UAV j, let Lj be the set of its Lj nearest BSs. The observed network

state by UAV j at stage t, vj(t) ∈ Vj, is:

vj(t)=

[
{δj,l,a(t),θj,l,a(t)}

Lj

l=1,θj,dj ,a(t),{xj(t),yj(t)}j∈J
]
, (5.16)

where δj,l,a(t) is the Euclidean distance from UAV j at location a to BS l at

stage t, θj,l,a is the orientation angle in the xy-plane from UAV j at location a to

BS l defined as tan−1(∆yj,l/∆xj,l) [191] where ∆yj,l and ∆xj,l correspond to the

difference in the x and y coordinates of UAV j and BS l, θj,dj ,a is the orienta-

tion angle in the xy-plane from UAV j at location a to its destination dj defined

as tan−1(∆yj,dj/∆xj,dj), and {xj(t),yj(t)}j∈J are the horizonal coordinates of all

UAVs at stage t. For our model, we consider different range intervals for map-

ping each of the orientation angle and distance values, respectively, into different
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states.

Moreover, based on the optimization problem defined in (5.6)-(5.15) and by

incorporating the Lagrangian penalty method into the utility function definition

for the SINR constraint (5.13), the resulting utility function for UAV j at stage

t, uj(vj(t), zj(t), z−j(t)), will be given by:

uj(vj(t), zj(t), z−j(t))=


Φ(vj(t),zj(t),z−j(t))+C, if δj,dj ,a(t) < δj,dj ,a′(t− 1),

Φ(vj(t),zj(t),z−j(t)), if δj,dj ,a(t) = δj,dj ,a′(t− 1),

Φ(vj(t),zj(t),z−j(t))-C, if δj,dj ,a(t) > δj,dj ,a′(t− 1),

(5.17)

where Φ(vj(t),zj(t),z−j(t)) is defined as:

Φ(vj(t),zj(t),z−j(t))=−ϑ′
Cj,s(t)∑
c=1

S∑
r=1,r 6=s

P̂j,s,a(vj(t))hj,r,c,a(t)

Cj,s(t)
−φ′τj,s,a(vj(t),zj(t),z−j(t))

− ς(min(0,

Cj,s(t)∑
c=1

Γj,s,c,a(vj(t),zj(t),z−j(t))− Γj))
2, (5.18)

subject to (5.7)-(5.12), (5.14) and (5.15). ς is the penalty coefficient for (5.13)

and C is a constant parameter. a′ and a are the locations of UAV j at (t−1) and

t where δj,dj ,a is the distance between UAV j and its destination dj. It is worth

noting here that the action space of each UAV j and, thus, the complexity of

the proposed game G increases exponentially when updating the 3D coordinates

of the UAVs. Nevertheless, each UAV’s altitude must be bounded in order to

guarantee an SINR threshold for the UAV and a minimum achievable data rate

for the ground UEs. Next, we derive an upper and lower bound for the optimal

altitude of any given UAV j based on the proposed utility function in (5.17). In

essence, such bounds are valid for all values of the multi-objective weights ϑ′, φ′,

and ς.

Theorem 2. For all values of ϑ′, φ′, and ς, a given network state vj(t), and a

particular action zj(t), the upper and lower bounds for the altitude of UAV j

are, respectively, given by:

hmax
j (vj(t),zj(t),z−j(t)) = min(ψ,max(χ, ĥmax

j (vj(t),zj(t),z−j(t)))), (5.19)

hmin
j (vj(t),zj(t),z−j(t)) = min(ψ,max(χ, ĥmin

j (vj(t),zj(t),z−j(t)))), (5.20)



5.3. Towards a Self-Organizing Network of an Airborne Internet of Things 145

where χ and ψ correspond, respectively, to the minimum and maximum altitudes

at which a UAV can fly. ĥmax
j (vj(t),zj(t),z−j(t)) and ĥmin

j (vj(t),zj(t),z−j(t)) are

expressed as:

ĥmax
j (vj(t),zj(t),z−j(t)) =√√√√√ P̂j,s,a(vj(t))

Cj,s(t) · Γj ·
(

4πf̂
ĉ

)2 ·
Cj,s(t)∑
c=1

gj,s,c,a(t)

Ij,s,c(t) +BcN0

− (xj − xs)2 − (yj − ys)2, (5.21)

and

ĥmin
j (vj(t),zj(t),z−j(t)) = max

r
ĥmin
j,r (vj(t),zj(t),z−j(t)), (5.22)

where ĥmin
j,r (vj(t),zj(t),z−j(t)) is the minimum altitude that UAV j should operate

at with respect to a particular neighbouring BS r and is expressed as:

ĥmin
j,r (vj(t),zj(t),z−j(t)) =

√√√√√ P̂j,s,a(vj(t)) ·
∑Cj,s(t)

c=1 gj,r,c,a(t)

Cj,s(t) ·
(

4πf̂
ĉ

)2

·
∑Cj,s(t)

c=1 Īj,r,c,a

− (xj − xr)2 − (yj − yr)2,

(5.23)

Proof. See Appendix A.2.

From the above theorem, we can deduce that the optimal altitude of the UAVs

is a function of their objective function, location of the ground BSs, network

design parameters, and the interference level from other UEs and UAVs in the

network. Therefore, at each time step t, UAV j would adjust its altitude level

based on the values of hmax
j (vj(t),zj(t),z−j(t) and hmin

j (vj(t),zj(t),z−j(t) thus

adapting to the dynamics of the network. In essence, the derived upper and

lower bounds for the optimal altitude of the UAVs allows a reduction of the

action space of game G thus simplifying the process needed for the UAVs to find

a solution, i.e., equilibrium, of the game. Next, we analyze the equilibrium point

of the proposed game G.

5.3.2 Equilibrium Analysis

For our game G, we are interested in studying the SPNE in behavioral strategies.

An SPNE is a profile of strategies which induces a NE on every subgame of the

original game. Moreover, a behavioral strategy allows each UAV to assign indepen-

dent probabilities to the set of actions at each network state that is independent
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across different network states. Here, note that there always exists at least one

SPNE for any finite horizon extensive game with perfect information [Selten’s

Theorem] [192]. Let πj(vj(t)) = (πj,z1(vj(t)), πj,z2(vj(t)), · · · , πj,z|Zj |
(vj(t))) ∈

Πj be the behavioral strategy of UAV j at state vj(t) and let ∆(Z) be the set of

all probability distributions over the action space Z. Next, we define the notion

of an SPNE.

Definition 3. A behavioral strategy (π∗1(vj(t)), · · · ,π∗J(vj(t))) = (π∗j(vj(t)),π
∗
−j(vj(t)))

constitutes a subgame perfect Nash equilibrium if, ∀j ∈ J , ∀t ∈ T and ∀πj(vj(t)) ∈
∆(Z), uj(π

∗
j(vj(t)),π

∗
−j(vj(t))) ≥ uj(πj(vj(t)),π

∗
−j(vj(t))).

Therefore, at each state vj(t) and stage t, the goal of each UAV j is to

maximize its expected sum of discounted rewards, which is computed as the

summation of the immediate reward for a given state along with the expected

discounted utility of the next states:

u(vj(t),πj(vj(t)),π-j(vj(t)))

= Eπj(t)

{
∞∑
l=0

γluj(vj(t+ l),zj(t+ l),z-j(t+ l))|vj,0 = vj

}

=
∑
z∈Z

∞∑
l=0

γluj(vj(t+ l),zj(t+ l),z-j(t+ l))
J∏
j=1

πj,zj(vj(t+ l)), (5.24)

where γl ∈ (0, 1) is a discount factor for delayed rewards and Eπj(vj(t)) denotes an

expectation over trajectories of states and actions, in which actions are selected

according to πj(vj(t)). Here, uj is the short-term reward for being in state vj

and uj is the expected long-term total reward from state vj onwards.

Here, note that the UAV’s cell association vector, trajectory optimization, and

transmit power level are closely coupled with each other and their corresponding

optimal values vary based on the UAVs’ objectives. In a multi-UAV network,

each UAV must have full knowledge of the future reward functions at each infor-

mation set and thus for all future network states in order to find the SPNE. This

in turn necessitates knowledge of all possible future actions of all UAVs in the

network and becomes challenging as the number of UAVs increases. To address

this challenge, we rely on deep RNNs [3]. In essence, RNNs exhibit dynamic

temporal behavior and are characterized by their adaptive memory that enables

them to store necessary previous state information to predict future actions. On

the other hand, deep neural networks are capable of dealing with large datasets.
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Therefore, next, we develop a novel deep RL based on ESNs, a special kind of

RNN, for solving the SPNE of our game G.

5.4 Deep Reinforcement Learning for Online Path

Planning and Resource Management

In this section, we first introduce a deep ESN-based architecture that allows the

UAVs to store previous states whenever needed while being able to learn future

network states. Then, we propose an RL algorithm based on the proposed deep

ESN architecture to learn an SPNE for our proposed game.

5.4.1 Deep ESN Architecture

ESNs are a new type of RNNs with feedback connections that belong to the fam-

ily of reservoir computing [3]. An ESN is composed of an input weight matrix

W in, a recurrent matrix W , and an output weight matrix W out. Because only

the output weights are altered, ESN training is typically quick and computation-

ally efficient compared to training other RNNs. Moreover, multiple non-linear

reservoir layers can be stacked on top of each other resulting in a deep ESN ar-

chitecture. Deep ESNs exploit the advantages of a hierarchical temporal feature

representation at different levels of abstraction while preserving the RC training

efficiency. They can learn data representations at different levels of abstraction,

hence disentangling the difficulties in modeling complex tasks by representing

them in terms of simpler ones hierarchically. Let N
(n)
j,R be the number of internal

units of the reservoir of UAV j at layer n, Nj,U be the external input dimension

of UAV j and Nj,L be the number of layers in the stack for UAV j. Next, we

define the following ESN components:

• vj(t) ∈ RNj,U the external input of UAV j at stage t which effectively

corresponds to the current network state,

• x(n)
j (t) ∈ RN

(n)
j,R as the state of the reservoir of UAV j at layer n at stage t,

• W (n)
j,in as the input-to-reservoir matrix of UAV j at layer n, where W

(n)
j,in ∈

RN
(n)
j,R×Nj,U for n = 1, and W

(n)
j,in ∈ R

N
(n)
j,R×N

(n−1)
j,R for n > 1,
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• W (n)
j ∈ RN

(n)
j,R×N

(n)
j,R as the recurrent reservoir weight matrix for UAV j at

layer n,

• W j,out ∈ R|Zj |×(Nj,U+
∑

nN
(n)
j,R) as the reservoir-to-output matrix of UAV j for

layer n only.

The objective of the deep ESN architecture is to approximate a function F j =

(F 1
j , F

2
j , · · · , F

Nj,L

j ) for learning an SPNE for each UAV j at each stage t. For

each n = 1, 2, · · · , Nj,L, the function F
(n)
j describes the evolution of the state

of the reservoir at layer n, i.e., x
(n)
j (t) = F

(n)
j (vj(t),x

(n)
j (t − 1)) for n = 1 and

x
(n)
j (t) = F

(n)
j (x

(n−1)
j (t),x

(n)
j (t− 1)) for n > 1. W j,out and x

(n)
j (t) are initialized

to zero while W
(n)
j,in and W

(n)
j are randomly generated. Note that although the

dynamic reservoir is initially generated randomly, it is combined later with the

external input, vj(t), in order to store the network states and with the trained

output matrix, W j,out, so that it can approximate the reward function. Moreover,

the spectral radius of W
(n)
j (i.e., the largest eigenvalue in absolute value), ρ

(n)
j ,

must be strictly smaller than 1 to guarantee the stability of the reservoir [125].

In fact, the value of ρ
(n)
j is related to the variable memory length of the reservoir

that enables the proposed deep ESN framework to store necessary previous state

information, with larger values of ρ
(n)
j resulting in longer memory length.

We next define the deep ESN components: the input and reward functions.

For each deep ESN of UAV j, we distinguish between two types of inputs: external

input, vj(t), that is fed to the first layer of the deep ESN and corresponds to the

current state of the network and input that is fed to all other layers for n > 1.

For our proposed deep ESN, the input to any layer n > 1 at stage t corresponds

to the state of the previous layer, x
(n−1)
j (t). Define ũj(vj(t), zj(t), z−j(t)) =

uj(vj(t), zj(t), z−j(t))
∏J

j=1 πj,zj(vj(t)) as the expected value of the instantaneous

utility function uj(vj(t), zj(t), z−j(t)) in (5.17) for UAV j at stage t. Therefore,

the reward that UAV j obtains from action zj at a given network state vj(t):

rj(vj(t), zj(t), z−j(t))=


ũj(vj(t), zj(t), z-j(t)), if UAV j reaches dj,

ũj(vj(t), zj(t), z-j(t))+γmaxzj∈Zj
W j,out(zj(t+1),t+1)

[v′j(t),x
′(1)
j (t),x

′(2)
j (t), · · · ,x′(n)

j (t)], otherwise.

(5.25)

Here, v′j(t + 1) and x
′(n)
j (t), correspond, respectively, to the next network state

and reservoir state of layer (n), at stage (t + 1), upon taking actions zj(t) and
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Figure 5.1. Proposed Deep ESN architecture.

z−j(t) at stage t. Fig. 5.1 shows the proposed reservoir architecture of the deep

ESN consisting of two layers.

5.4.2 Update Rule Based on Deep ESN

We now introduce the deep ESN’s update phase that each UAV uses to store and

estimate the reward function of each path and resource allocation scheme at a

given stage t. In particular, we consider leaky integrator reservoir units [193] for

updating the state transition functions x
(n)
j (t) at stage t. Therefore, the state

transition function of the first layer x
(1)
j (t) will be:

x
(1)
j (t) = (1− ω(1)

j )x
(1)
j (t− 1) + ω

(1)
j tanh(W

(1)
j,invj(t) +W

(1)
j x

(1)
j (t− 1)), (5.26)

where ω
(n)
j ∈ [0, 1] is the leaking parameter at layer n for UAV j which relates to

the speed of the reservoir dynamics in response to the input, with larger values

of ω
(n)
j resulting in a faster response of the corresponding n-th reservoir to the

input. The state transition of UAV j, x
(n)
j (t), for n > 1 is given by:

x
(n)
j (t) = (1− ω(n)

j )x
(n)
j (t− 1) + ω

(n)
j tanh(W

(n)
j,inx

(n−1)
j (t) +W

(n)
j x

(n)
j (t− 1)),

(5.27)

The output yj(t) of the deep ESN at stage t is used to estimate the reward of

each UAV j based on the current adopted action zj(t) and z−j(t) of UAV j and

other UAVs (−j), respectively, for the current network state vj(t) after training

W j,out. It can be computed as:

yj(vj(t), zj(t)) = W j,out(zj(t), t)[vj(t),x
(1)
j (t),x

(2)
j (t), · · · ,x(n)

j (t)]. (5.28)

We adopt a temporal difference RL approach for training the output matrix

Wj,out of the deep ESN architecture. In particular, we employ a linear gradient
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descent approach using the reward error signal, given by the following update

rule [194]:

W j,out(zj(t),t+1)=W j,out(zj(t),t)+λj(rj(vj(t),zj(t),z-j(t))−yj(vj(t),zj(t)))[vj(t),

x
(1)
j (t),x

(2)
j (t), · · · ,x(n)

j (t)]T . (5.29)

Here, note that the objective of each UAV is to minimize the value of the

error function ej(vj(t)) = |rj(vj(t),zj(t),z-j(t))− yj(vj(t),zj(t))|.

5.4.3 Proposed Deep RL Algorithm

Based on the proposed deep ESN architecture and update rule, we next introduce

a multi-agent deep RL framework that the UAVs can use to learn an SPNE in

behavioral strategies for the game G. The algorithm is divided into two phases:

training and testing. In the former, UAVs are trained offline before they become

active in the network using the architecture of Subsection 5.4.1. The testing phase

corresponds to the actual execution of the algorithm after which the weights

of W j,out,∀j ∈ J have been optimized and is implemented on each UAV for

execution during run time.

During the training phase, each UAV aims at optimizing its output weight

matrix W j,out such that the value of the error function ej(vj(t)) at each stage t is

minimized. In particular, the training phase is composed of multiple iterations,

each consisting of multiple rounds, i.e., the number of steps required for all UAVs

to reach their corresponding destinations dj. At each round, UAVs face a tradeoff

between playing the action associated with the highest expected utility, and trying

out all their actions to improve their estimates of the reward function in (5.25).

This in fact corresponds to the exploration and exploitation tradeoff, in which

UAVs need to strike a balance between exploring their environment and exploiting

the knowledge accumulated through such exploration [195]. Therefore, we adopt

the ε-greedy policy in which UAVs choose the action that yields the maximum

utility value with a probability of 1 − ε + ε
|Zj | while exploring randomly other

actions with a probability of ε
|Aj | . The strategy over the action space will be:

πj,zj(vj(t)) =


1− ε+ ε

|Zj | , argmaxzj∈Zj
yj (vj(t), zj(t)) ,

ε
|Zj | , otherwise.

(5.30)
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Algorithm 3: Training phase of the proposed deep RL algorithm

Initialization:

πj,zj (vj(t)) = 1
|Aj |
∀t ∈ T, zj ∈ Zj , yj(vj(t),zj(t)) = 0, W

(n)
j,in, W

(n)
j , W j,out.

for The number of training iterations do

while At least one UAV j has not reached its destination dj , do

for all UAVs j (in a parallel fashion) do

Input: Each UAV j receives an input vj(t) based on (5.16).

Step 1: Action selection

Each UAV j selects a random action zj(t) with probability ε,

Otherwise, UAV j selects zj(t) = argmaxzj∈Zj
yj (vj(t),zj(t)).

Step 2: Location, cell association and transmit power update

Each UAV j updates its location, cell association and transmission power level based on the selected

action zj(t).

Step 3: Reward computation

Each UAV j computes its reward values based on (5.25).

Step 4: Action broadcast

Each UAV j broadcasts its selected action zj(t) to all other UAVs.

Step 5: Deep ESN update

- Each UAV j updates the state transition vector x
(n)
j (t) for each layer (n) of the deep ESN

architecture based on (5.26) and (5.27).

- Each UAV j computes its output yj (vj(t),zj(t)) based on (5.28).

- The weights of the output matrix W j,out of each UAV j are updated based on the linear gradient

descent update rule given in (5.29).

end for

end while

end for

Based on the selected action zj(t), each UAV j updates its location, cell asso-

ciation, and transmission power level and computes its reward function according

to (5.25). To determine the next network state, each UAV j broadcasts its se-

lected action to all other UAVs in the network. Then, each UAV j updates its

state transition vector x
(n)
j (t) for each layer (n) of the deep ESN architecture

according to (5.26) and (5.27). The output yj at stage t is then updated based on

(5.28). Finally, the weights of the output matrix W j,out of each UAV j are up-

dated based on the linear gradient descent update rule given in (5.29). Note that,

a UAV stops taking any actions once it has reached its destination. A summary

of the training phase is given in Algorithm 3.

Meanwhile, the testing phase corresponds to the actual execution of the algo-

rithm. In this phase, each UAV chooses its action greedily for each state vj(t),

i.e., max
zj∈Zj

yj(vj(t), zj(t)), and updates its location, cell association, and transmis-

sion power level accordingly. Each UAV then broadcasts its selected action and

updates its state transition vector x
(n)
j (t) for each layer n of the deep ESN archi-

tecture based on (5.26) and (5.27). A summary of the testing phase is given in
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Algorithm 4: Testing phase of the proposed deep RL algorithm

while At least one UAV j has not reached its destination dj , do

for all UAVs j (in a parallel fashion) do

Input: Each UAV j receives an input vj(t) based on (5.16).

Step 1: Action selection

Each UAV j selects an action zj(t) = argmaxzj∈Zj
yj (vj(t),zj(t)).

Step 2: Location, cell association and transmit power update

Each UAV j updates its location, cell association and transmission power level based on the selected

action zj(t).

Step 3: Action broadcast

Each UAV j broadcasts its selected action zj(t) to all other UAVs.

Step 4: State transition vector update

Each UAV j updates the state transition vector x
(n)
j (t) for each layer (n) of the deep ESN architecture

based on (5.26) and (5.27).

end for

end while

Algorithm 4.

It is important to note that analytically guaranteeing the convergence of the

proposed deep learning algorithm is challenging as it is highly dependent on the

hyperparameters used during the training phase. For instance, using too few

neurons in the hidden layers results in underfitting which could make it hard for

the neural network to detect the signals in a complicated data set. On the other

hand, using too many neurons in the hidden layers can either result in overfitting

or an increase in the training time that could prevent the training of the neural

network. Overfitting corresponds to the case when the model learns the random

fluctuations and noise in the training data set to the extent that it negatively

impacts the model’s ability to generalize when fed with new data. Therefore, in

this work, we limit our analysis of convergence by providing simulation results

(see Section 5.5) to show that, under a reasonable choice of the hyperparameters,

convergence is observed for our proposed game. In such cases, it is important to

study the convergence point and the convergence complexity of our proposed al-

gorithm. Next, we characterize the convergence point of our proposed algorithm.

Proposition 2. If Algorithm 3 converges, then the convergence strategy profile

corresponds to a SPNE of game G.

Proof. An SPNE is a strategy profile that induces a NE on every subgame. There-

fore, at the equilibrium state of each subgame, there is no incentive for any UAV to

deviate after observing any history of joint actions. Moreover, given the fact that

an ESN framework exhibits adaptive memory that enables it to store necessary
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previous state information, UAVs can essentially retain other players’ actions at

each stage t and thus take actions accordingly. To show that our proposed scheme

guarantees convergence to an SPNE, we use the following lemma from [192].

Lemma 3. For our proposed game G, the payoff functions in (5.25) are bounded,

and the number of players, state space and action space is finite. Therefore, G is

a finite game and hence a SPNE exists. This follows from Selten’s theorem which

states that every finite extensive form game with perfect recall possesses an SPNE

where the players use behavioral strategies.

Here, it is important to note that for finite dynamic games of perfect infor-

mation, any backward induction solution is a SPNE [127]. Therefore, given the

fact that, for our proposed game G, each UAV aims at maximizing its expected

sum of discounted rewards at each stage t as given in (5.25), one can guarantee

that the convergence strategy profile corresponds to a SPNE of game G. This

completes the proof.

Moreover, it is important to note that the convergence complexity of the

proposed deep RL algorithm for reaching a SPNE is O(J×A2). Next, we analyze

the computational complexity of the proposed deep RL algorithm for practical

scenarios in which the number of UAVs is relatively small.

Theorem 3. For practical network scenarios, the computational complexity of

the proposed training deep RL algorithm is O(A3) and reduces to O(A2) when

considering a fixed altitude for the UAVs, where A is the number of discretized

unit areas.

Proof. Consider the case in which the UAVs can move with a fixed step size in a

3D space. For such scenarios, the state vector v′j(t) is defined as:

v′j(t)=

[
{δj,l,a(t),θj,l,a(t)}

Lj

l=1,θj,dj ,a(t),{xj(t),yj(t),hj(t)}j∈J
]
, (5.31)

For each state v′j(t), the action of UAV j is a function of the location, trans-

mission power level and cell association vector of all other UAVs in the network.

Nevertheless, the number of possible locations of other UAVs in the network is

much larger than the possible number of transmission power levels and the size of

the cell association vector of those UAVs. Therefore, by the law of large numbers,

one can consider the number of possible locations of other UAVs only when ana-

lyzing the convergence complexity of the proposed training algorithm. Moreover,
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Table 5.2 System parameters.

Parameters Values Parameters Values

UAV max transmit power (P j) 20 dBm SINR threshold (Γj) -3 dB

UE transmit power (P̂q) 20 dBm Learning rate (λj) 0.01

Noise power spectral density (N0) -174 dBm/Hz RB bandwidth (Bc) 180 kHz

Total bandwidth (B) 20 MHz # of interferers (L) 2

Packet arrival rate (λj,s) (0,1) Packet size (ν) 2000 bits

Carrier frequency (f̂) 2 GHz Discount factor (γ) 0.7

# of hidden layers 2 Step size (ãj) 40 m

Leaky parameter/layer (ω
(n)
j ) 0.99, 0.99 ε 0.3

for practical scenarios, the total number of UAVs in a given area is considered

to be relatively small as compared to the number of discretized unit areas i.e.,

J � A 3GPP admission control policy for cellular-connected UAVs [178]). There-

fore, by the law of large numbers and given the fact that the UAVs take actions

in a parallel fashion, the computational complexity of our proposed algorithm is

O(A3) when the UAVs update their x, y and z coordinates and reduces to O(A2)

when considering fixed altitudes for the UAVs. This completes the proof.

From Theorem 3, we can conclude that the convergence speed of the proposed

training algorithm is significantly reduced when considering a fixed altitude for

the UAVs. This in essence is due to the reduction of the state space dimension

when updating the x and y coordinates only. It is important to note here that

there exists a tradeoff between the computational complexity of the proposed

training algorithm and the resulting network performance. In essence, updating

the 3D coordinates of the UAVs at each step t allows the UAVs to better explore

the space thus providing more opportunities for maximizing their corresponding

utility functions. Therefore, from both Theorems 3 and 2, the UAVs can update

their x and y coordinates only during the learning phase while operating within

the upper and lower altitude bounds derived in Theorem 2.

5.5 Simulation Results and Analysis

For our simulations, we consider an 800 m × 800 m square area divided into

40 m × 40 m grid areas, in which we randomly uniformly deploy 15 BSs. All

statistical results are averaged over several independent testing iterations during

which the initial locations and destinations of the UAVs and the locations of the

BSs and the ground UEs are randomized. The maximum transmit power for each

UAV is discretized into 5 equally separated levels. We consider an uncorrelated
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Figure 5.2. The (a) upper bound for the optimal altitude of the UAVs as a function of the SINR

threshold value (Γ̄) and for different transmit power levels and ground network density and (b)

lower bound for the optimal altitude of the UAVs as a function of the interference threshold

value (
∑Cj,s(t)

c=1 Īj,r,c,a) and for different transmit power levels.

Rician fading channel with parameter K̂ = 1.59 [196]. The external input of the

deep ESN architecture, vj(t), is a function of the number of UAVs and thus the

number of hidden nodes per layer, N
(n)
j,R , varies with the number of UAVs. For

instance, N
(n)
j,R = 12 and 6 for n = 1 and 2, respectively, for a network size of 1

and 2 UAVs, and 20 and 10 for a network size of 3, 4, and 5 UAVs. Table 5.2

summarizes the main simulation parameters.

Fig. 5.2 (a) shows the upper bound for the optimal altitude of UAV j as a

function of the SINR threshold value, Γ̄, and for different transmit power levels

and ground network density, based on Theorem 2. On the other hand, Fig. 5.2

(b) shows the lower bound for the optimal altitude of UAV j as a function of the

interference threshold value, (
∑Cj,s(t)

c=1 Īj,r,c,a), and for different transmit power

levels, based on Theorem 2. From Fig. 5.2, we can deduce that the optimal

altitude range of a given UAV is a function of network design parameters, ground
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Figure 5.3. Path of a UAV for our approach and shortest path scheme.

Table 5.3 Performance assessment for one UAV.

# of steps delay (ms) average rate per UE (Mbps)

Proposed approach 32 6.5 0.95

Shortest path 32 12.2 0.76

network data requirements, the density of the ground network, and its action

vj(t). For instance, the upper bound on the UAV’s optimal altitude decreases as

Γ̄ increases while its lower bound decreases as
∑Cj,s(t)

c=1 Īj,r,c,a increases. Moreover,

the maximum altitude of the UAV decreases as the ground network gets denser

while its lower bound increases as the ground network data requirements increase.

Thus, in such scenarios, a UAV should operate at higher altitudes. A UAV should

also operate at higher altitudes when its transmit power level increases due to

the increase in the lower and upper bounds of its optimal altitude.

Fig. 5.3 shows a snapshot of the path of a single UAV resulting from our

approach and from a shortest path scheme. Unlike our proposed scheme which

accounts for other wireless metrics during path planning, the objective of the

UAVs in the shortest path scheme is to reach their destinations with the minimum

number of steps. Table 5.3 presents the performance results for the paths shown

in Fig. 5.3. From Fig. 5.3, we can see that, for our proposed approach, the UAV

selects a path away from the densely deployed area while maintaining proximity

to its serving BS in a way that would minimize the steps required to reach its

destination. This path will minimize the interference level that the UAV causes

on the ground UEs and its wireless latency (Table 5.3). From Table 5.3, we can

see that our proposed approach achieves 25% increase in the average rate per

ground UE and 47% decrease in the wireless latency as compared to the shortest

path, while requiring the same number of steps that the UAV needs to reach the



5.5. Simulation Results and Analysis 157

1 2 3 4 5
Number of UAVs

0

10

20

30

40

50

60

A
ve

ra
ge

 w
ire

le
ss

 la
te

nc
y 

pe
r 

U
A

V
 (

m
s)

(a)

Shortest Path
Proposed Approach

1 2 3 4 5
Number of UAVs

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A
ve

ra
ge

 r
at

e 
pe

r 
gr

ou
nd

 U
E

 (
M

bp
s)

(b)

Shortest Path
Proposed Approach

Figure 5.4. Performance assessment of the proposed approach in terms of average (a) wireless

latency per UAV and (b) rate per ground UE as compared to the shortest path approach, for

different number of UAVs.

Table 5.4 The required number of steps for all UAVs to reach their corresponding

destinations based on our proposed approach and that of the shortest path scheme for

different number of UAVs.

# of steps 1 UAV 2 UAVs 3 UAVs 4 UAVs 5 UAVs

Proposed approach 4 4 6 7 8

Shortest path 4 4 6 6 7

destination.

Fig. 5.4 compares the average values of the (a) wireless latency per UAV and

(b) rate per ground UE resulting from our proposed approach and the baseline

shortest path scheme. Moreover, Table 5.4 compares the number of steps re-

quired by all UAVs to reach their corresponding destinations for the scenarios

presented in Fig. 5.4. From Fig. 5.4 and Table 5.4, we can see that, compared

to the shortest path scheme, our approach achieves a lower wireless latency per

UAV and a higher rate per ground UE for different numbers of UAVs while re-

quiring a number of steps that is comparable to the baseline. In fact, our scheme

provides a better tradeoff between energy efficiency, wireless latency, and ground

UE data rate compared to the shortest path scheme. For instance, for 5 UAVs,

our scheme achieves a 37% increase in the average achievable rate per ground

UE, 62% decrease in the average wireless latency per UAV, and 14% increase in

energy efficiency. Indeed, one can adjust the multi-objective weights of our utility

function based on several parameters such as the rate requirements of the ground

network, the power limitation of the UAVs, and the maximum tolerable wireless
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Figure 5.5. Performance assessment of the proposed approach in terms of average (a) wireless

latency per UAV and (b) rate per ground UE for different utility functions and for different

altitudes of the UAVs.

latency of the UAVs. Moreover, Fig. 5.4 shows that, as the number of UAVs

increases, the average delay per UAV increases and the average rate per ground

UE decreases, for all schemes. This is due to the increase in the interference level

on the ground UEs and other UAVs as a result of the LoS link between the UAVs

and the BSs.

Fig. 5.5 studies the effect of the UAVs’ altitude on the average values of the

(a) wireless latency per UAV and (b) rate per ground UE for different utility

functions. From Fig. 5.5, we can see that, as the altitude of the UAVs increases,

the average wireless latency per UAV increases for all studied utility functions.

This is mainly due to the increase in the distance of the UAVs from their cor-

responding serving BSs which accentuates the path loss effect. Moreover, higher

UAV altitudes result in a higher average data rate per ground UE for all studied

utility functions mainly due to the decrease in the interference level that is caused

from the UAVs on neighbouring BSs. Here, there exists a tradeoff between mini-

mizing the average wireless delay per UAV and maximizing the average data rate

per ground UE. Therefore, alongside the multiobjective weights, the altitude of

the UAVs can be varied such that the ground UE rate requirements is met while

minimizing the wireless latency for each UAV based on its mission objective.

Fig. 5.6 shows the average transmit power level per UAV along its path as

a function of the number of BSs considering two utility functions, one for mini-

mizing the average wireless latency for each UAV and the other for minimizing

the interference level on the ground UEs. From Fig. 5.6, we can see that network

densification has an impact on the transmission power level of the UAVs. For
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Figure 5.6. Effect of the ground network densification on the average transmit power level of

the UAVs along their paths.

instance, when minimizing the wireless latency of each UAV along its path, the

average transmit power level per UAV increases from 0.04 W to 0.06 W as the

number of ground BSs increases from 10 to 30, respectively. In essence, the in-

crease in the transmit power level is the result of the increase in the interference

level from the ground UEs as the ground network becomes denser. As a result,

the UAVs will transmit using a larger transmission power level so as to minimize

their wireless transmission delay. On the other hand, the average transmit power

level per UAV decreases from 0.036 W to 0.029 W in the case of minimizing the

interference level caused on neighbouring BSs. This is due to the fact that as the

number of BSs increases, the interference level caused by each UAV on the ground

network increases thus requiring each UAV to decrease its transmit power level.

Note that, when minimizing the wireless latency, the average transmit power per

UAV is always larger than the case of minimizing the interference level, irrespec-

tive of the number of ground BSs. Therefore, the transmit power level of the

UAVs is a function of their mission objective and the number of ground BSs.

Fig. 5.7 presents the (a) wireless latency per UAV and (b) rate per ground UE

for different utilities as a function of the number of BSs and for a fixed altitude

of 120 m. From this figure, we can see that, as the ground network becomes more

dense, the average wireless latency per UAV increases and the average rate per

ground UE decreases for all considered cases. For instance, when the objective

is to minimize the interference level along with energy efficiency, the average

wireless latency per UAV increases from 13 ms to 47 ms and the average rate

per ground UE decreases from 0.86 Mbps to 0.48 Mbps as the number of BSs

increases from 10 to 30. This is due to the fact that a denser network results in
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Figure 5.7. Effect of the ground network densification on the average (a) wireless latency per

UAV and (b) rate per ground UE for different utility functions and for a fixed altitude of 120m.
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Figure 5.8. Effect of the ground network densification on the average (a) wireless latency per

UAV and (b) rate per ground UE for different utility functions and for various altitudes of the

UAVs.

higher interference on the UAVs as well as other UEs in the network.

Fig. 5.8 investigates the (a) wireless latency per UAV and (b) rate per ground

UE for different values of the UAVs altitude and as a function of the number of

BSs. From this figure, we can see that as the UAV altitude increases and/or the

ground network becomes denser, the average wireless latency per UAV increases.

For instance, the delay increases by 27% as the altitude of the UAVs increases

from 120 to 240 m for a network consisting of 20 BSs and increases by 120% as

the number of BSs increases from 10 to 30 for a fixed altitude of 180 m. This

essentially follows from Theorem 2 and the results in Fig. 5.2 (a) which shows

that the maximum altitude of the UAV decreases as the ground network gets

denser and thus the UAVs should operate at a lower altitude when the number of
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Figure 5.9. The average rate per ground UE as a function of the number of interferer BSs in

the state definition (Lj).

BSs increases from 10 to 30. Moreover, the average rate per ground UE decreases

as the ground network becomes denser due to the increase in the interference

level and increases as the altitude of the UAVs increases. Therefore, the resulting

network performance depends highly on both the UAVs altitude and the number

of BSs in the network. For instance, in case of a dense ground network, the UAVs

need to fly at a lower altitude for applications in which the wireless transmission

latency is more critical and at a higher altitude in scenarios in which a minimum

achievable data rate for the ground UEs is required.

Fig. 5.9 shows the effect of varying the number of nearest BSs (Lj) in the

observed network state of UAV j, vj(t), on the average data rate per ground UE

for different utility functions. From Fig. 5.9, we can see an improvement in the

average rate per ground UE as the number of nearest BSs in the state definition

increases. For instance, in scenarios in which the UAVs aim at minimizing the

interference level they cause on the ground network along their paths, the average

rate per ground UE increases by 28% as the number of BSs in the state definition

increases from 1 to 5. This gain results from the fact that as Lj increases, the

UAVs get a better sense of their surrounding environment and thus can better

select their next location such that the interference level they cause on the ground

network is minimized. It is important to note here, that as Lj increases, the size of

the external input (vj) increases thus requiring a larger number of neurons in each

layer. This in turn increases the number of required iterations for convergence.

Therefore, a tradeoff exists between improving the performance of the ground

UEs and the running complexity of the proposed algorithm.

Fig. 5.10 shows the average of the error function ej(vj(t)) resulting from the
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Figure 5.10. Effect of the learning rate on the convergence of offline training.

offline training phase as a function of a multiple of 20 iterations while consid-

ering different values for the learning rate, λ. The learning rate determines the

step size the algorithm takes to reach the optimal solution and, thus, it impacts

the convergence rate of our proposed framework. From Fig. 5.10, we can see

that small values of the learning rate, i.e., λ = 0.0001, result in a slow speed

of convergence. On the other hand, for large values of the learning rate, such

as λ = 0.1, the error function decays fast for the first few iterations but then

remains constant. Here, λ = 0.1 does not lead to convergence during the testing

phase, but λ = 0.0001 and λ = 0.01 result in convergence, though requiring a

different number of training iterations. In fact, a large learning rate can cause

the algorithm to diverge from the optimal solution. This is because large initial

learning rates will decay the loss function faster and thus make the model get

stuck at a particular region of the optimization space instead of better exploring

it. Clearly, our framework achieves better performance for λ = 0.01, as compared

to smaller and larger values of the learning rate. We also note that the error

function does not reach the value of zero during the training phase. This is due

to the fact that, for our approach, we adopt the early stopping technique to avoid

overfitting which occurs when the training error decreases at the expense of an

increase in the value of the test error [3].

5.6 Summary

In this chapter, we have proposed a novel interference-aware path planning scheme

that allows cellular-connected UAVs to minimize the interference they cause on

a ground network as well as their wireless transmission latency while transmit-
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ting online mission-related data. We have formulated the problem as a dynamic

noncooperative game in which the UAVs are the players. To solve the game, we

have proposed a deep RL algorithm based on ESN cells which is guaranteed to

reach an SPNE, if it converges. The proposed algorithm enables each UAV to

decide on its next location, transmission power level, and cell association vector

in an autonomous manner thus adapting to the changes in the network. Sim-

ulation results have shown that the proposed approach achieves better wireless

latency per UAV and rate per ground UE while requiring a number of steps that

is comparable to the shortest path scheme. The results have also shown that

a UAV’s altitude plays a vital role in minimizing the interference level on the

ground UEs as well as the wireless transmission delay of the UAV. In particular,

we have shown that the altitude of the UAV is a function of the ground network

density, the UAV’s objective and the actions of other UAVs in the network.





Chapter 6

Unmanned Aerial Vehicles for

Multi-hop Wireless Backhauling

6.1 Introduction

As we have discussed earlier in Chapter 2, 5G cellular networks will heavily rely

on ultra-dense networks in order to cope with the increasing traffic demand.

Ultra-dense networks are often HetNets, i.e., multi-layered including legacy high

power macro-cells and very dense small cells with lower power. SBSs are multi-

RAT capable and represent an essential part of ultra-dense networks, which are

considered an imperative 5G solution. Nevertheless, these ultra-dense and heavy

traffic cells should be connected to the core network through the backhaul, often

with extreme requirements in terms of capacity, latency, availability, energy, and

cost efficiency. Therefore, to reap the benefits of SBS deployment, innovative

backhaul solutions are needed, as SBSs may be deployed in adverse locations and

rural areas in which backhaul access is either non-existent or strictly limited in

capacity [38]. As such, in this chapter, we propose a novel backhaul scheme that

relies on UAVs as an on-demand flying network. The proposed scheme enables

the UAVs to form the necessary multi-hop backhaul network in a decentralized

manner thus adapting the backhaul architecture to the dynamics of the network.

Therefore, for scenarios in which high-speed ground backhaul links are either

unavailable or limited in capacity, the UAVs would serve as a bridge among the

SBSs and relay the traffic to a nearby gateway node (with core network access)

or as an intermediate relay point between different backhaul transceivers. The

work presented in this chapter has appeared in the Proceedings of the IEEE

165
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Table 6.1 Variables and notations.

Notation Description

J Number of UAVs

S Number of SBSs

Sj Number of SBSs served by UAV j

n Gateway node

ξj,s Free-space path loss between UAV j and SBS s

ηLoS Attenuation factor for the LoS links

ηNLoS Attenuation factor for the NLoS links

PLoS
j,s Probability of LoS

PNLoS
j,s Probability of NLoS

Lj,s Path loss between UAV j and SBS s

Lj,s Path loss between UAV j and UAV i

Γo,d SINR between an origin node o and a destination node d

Γj,i SNR between UAV j and UAV i

Po,d Transmit power of the origin node o to the destination node d

ho,d Channel gain between o and d

RDL
j (pj , G) Data rate in the DL along path pj over graph G

RUL
j (pj , G) Data rate in the UL along path pj over graph G

PDL
j (pj , G) Number of relayed packets by UAV j in the DL along path pj over graph G

PUL
j (pj , G) Number of relayed packets by UAV j in the UL along path pj over graph G

τDL
j (pj , G) Average delay in the DL along path pj over graph G

τUL
j (pj , G) Average delay in the UL along path pj over graph G

Uj(pj , G) Utility of UAV j along path pj over graph G

dj,i Distance between UAV j and UAV i

dmax
j,i Maximum distance between UAV j and UAV i such that the SNR threshold Γ̂ is guaranteed
−→
F A

j,i Attractive virtual force vector from UAV j towards UAV i
−→
F R1

j,i Repulsive virtual force vector from UAV j towards UAV i upon deletion of link ji
−→
F R2

j,i Repulsive virtual force vector from UAV j towards UAV i for physical collision avoidance
−→
F j Total virtual force exerted from UAV j on UAV i

Global Conference on Communications [46]. Table 6.1 provides a summary for

the description of the main notations used in this chapter. Next, we give an

overview on the related literature and then we present our problem statement

and contribution.

6.1.1 Related Work

Several approaches have been recently proposed for SBS backhauling [38–41].

Such solutions include wired and wireless backhauling to and from core network
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aggregators, cooperation through anchor base stations, and multi-hop over short-

range links [38, 39]. On the one hand, wired backhaul connection can be costly

and does not always exist (e.g., remote/rural areas). On the other hand, wireless

backhaul links are capacity limited. Therefore, existing solutions do not account

for scenarios in which the high-speed ground backhaul is either congested, un-

available, or limited in capacity. In such scenarios, the backhaul connectivity

of SBSs can become a bottleneck thus degrading the performance of the radio

access network. Therefore, a novel paradigm shift of backhaul network design for

5G networks and beyond is needed. One promising solution for such scenarios

is to deploy UAVs for providing backhaul connectivity to the ground SBSs [181]

and [16]. Due to their rapid and flexible deployment capabilities, mobility, ability

to fly above obstacles, and relatively low cost, UAVs have received considerable

interest for different applications in wireless communications, and in particular,

as communication relays [197–199].

In this regard, the authors in [197] consider the formation of a multi-hop relay

system based on UAVs in order to extend the communication range of the ground

network. In [198] and [199], the authors consider a mobile relay network model

in which a UAV serves as a resilient moving relay among the SBSs. In [200],

the authors consider the use of UAVs as relays for backhaul connectivity of high

altitude balloons in case of temporary failed links. Although the use of UAVs as

communication relays has been explored in the literature [197–199], these works

are restricted to ad hoc, rather than cellular networks. On the other hand, the

authors in [41–43] propose a vertical fronthaul/backhaul framework based on

UAVs and free-space optics communication. In [42, 43], the authors propose an

optimization formulation for the association problem of the UAVs and the SBSs

but ignoring the design of the multi-hop links among the UAVs. Therefore, one

challenging area which remains relatively unexplored is the dynamic formation

of the aerial graph that connects UAVs to the core network. Indeed, the existing

prior art does not provide an efficient scheme, in terms of achievable rate and

delay, for the formation of a multi-hop aerial network for SBS backhauling.

6.1.2 Problem Statement and Contribution

The main objective of this chapter is to propose an online framework that allows

the UAVs to form a multi-hop aerial network for SBS backhauling. In essence,
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providing backhaul connection to SBSs could be challenging in scenarios where

the SBSs may be deployed in adverse locations and rural areas in which backhaul

access is either non-existent or strictly limited in capacity. Therefore, the design

of a UAV-based multi-hop backhaul network is essential for such scenarios. In

essence, a multi-hop aerial network enables the extension of the communication

range of the UAVs thus connecting more SBSs to the core network. However,

a challenging aspect for the UAV-based multi-hop backhaul network is the for-

mation of the A2A links among the UAVs as well as the A2G links between the

UAVs and the SBSs and is the main scope of this chapter. Moreover, the UAVs

should be capable of adapting their corresponding link formation based on the

dynamics of the network such as capacity, data rate requirements, and delay.

The main contribution of this chapter is to introduce a novel backhaul frame-

work that utilizes UAVs as an on-demand flying network linking the SBSs and

the core network in scenarios where the ground backhaul is either unavailable

or limited in capacity. The design of the aerial backhaul network is formulated

as a network formation game in which the players are the UAVs. The objective

of the proposed game is to allow the UAVs to autonomously learn which A2A

and A2G links to form in order to guarantee the connectivity of the SBSs to the

core network. In particular, we consider that the UAVs form a multi-hop aerial

network in which each UAV can individually select the path that connects it to

the backhaul gateway node through other UAVs while optimizing its own utility.

To solve this game, we propose a dynamic network formation algorithm that is

guaranteed to reach a pairwise stable network upon convergence. Moreover, to

ensure an efficient backhauling process between the UAVs, we incorporate the

notion of virtual force fields [45] into our dynamic algorithm. In essence, virtual

forces allow the UAVs to adjust their location dynamically based on the links they

want to form. We show that, using the proposed algorithm, the UAVs are able

to self-organize into a stable tree structure rooted at the gateway node. Simula-

tion results show that the proposed approach achieves significant rate and delay

improvements.

The rest of this chapter is organized as follows. In Section 6.2, we present the

system model. Section 6.3 describes the proposed network formation game. The

proposed network formation algorithm is given in Section 6.4. In Section 6.5,

simulation results are analyzed. Finally, a summary is provided in Section 6.6.
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Figure 6.1. Illustration of the system model.

6.2 System Model

Consider a network composed of a set S of S SBSs and a set J of J UAVs.

We consider networks deployed in rural areas, hotspots, or ultra dense cellular

areas in which SBSs are located at adverse locations (e.g., at lamp posts or

street levels), and a ground backhaul network that connects the SBSs to the core

network is either unavailable or limited in capacity. To overcome such bottleneck,

we propose the use of UAVs as a temporary aerial backhaul network for the SBSs.

In particular, the UAVs serve as a bridge among the SBSs that relay their traffic

to a nearby gateway node (with core network access) or as an intermediate relay

between backhaul transceivers. An illustration of the proposed system model is

shown in Fig. 6.1.

In our model, the UAVs are initially located based on the deployment ap-

proach given in [201] and each UAV j serves a set of Sj SBSs. Packet forwarding

is supported for both UL and DL directions via an FDD model thus allowing the

flow of traffic to (from) the SBSs from (to) the core network through a gateway

node. We consider the availability of one gateway node n in a given area and

assume that at least one UAV has access to this gateway node. Given that the

communication range of low-altitude platform UAVs is typically limited to a few

hundred meters, after which the signal quality deteriorates [202], the formation of

a multi-hop aerial network becomes necessary to extend the communication range

of the ground network and provide service to SBSs that are located at distant
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or hard to reach areas where infrastructure does not exist. Consequently, a com-

munication link with the infrastructure is formed through either UAV-to-UAV

multi-hop links or a UAV-to-infrastructure data link.

6.2.1 A2G and A2A channel models

In our proposed model, UAVs transmit over the licensed cellular band for the

A2G and A2A links. We adopt the free-space path loss model, ξ, given by [78]:

ξ(dB) = 20log10(do,d) + 20log10(fc)− 147.55, (6.1)

where fc is the system center frequency (in Hz) and do,d =
∆ho,d
sinθo,d

is the Euclidean

distance between an origin node o and a destination node d (in m); ∆ho,d = zo−zd
is the altitude difference between o and d and θo,d is the elevation angle. The use of

a free space propagation model is validated by the fact that low-altitude platform

UAVs fly at an altitude of ∼100m.

We consider a probabilistic LoS and NLoS links for the A2G propagation

channel as done in [201]. In such a model, NLoS links experience higher atten-

uations due to the shadowing and diffraction loss. Therefore, the adopted path

loss model between UAV j and SBS s, Lj,s, is given by:

Lj,s =


ξj,s + ηLoS, LoS link,

ξj,s + ηNLoS, NLoS link.
(6.2)

where ηLoS and ηNLoS correspond to additional attenuation factors added to the

free space propoagation model for the LoS and NLoS links, respectively. Here, the

probability of a LoS connection depends on the environment, density and height of

buildings, the locations of the UAV and the SBS, and the corresponding elevation

angle. The LoS probability is given by [78]:

P LoS
j,s =

1

1 + Cexp(−D[θj,s − C])
, (6.3)

where C and D are constants which depend on the environment (rural, urban,

dense urban, or others) and θj,s = sin−1(
∆hj,s
dj,s

) is the elevation angle. Clearly,

the probability of NLoS is PNLoS
j,s = 1 − P LoS

j,s . Therefore, the average path loss

between UAV j and SBS s, Lj,s, is given by:

Lj,s = P LoS
j,s · LLoS

j,s + PNLoS
j,s · LNLoS

j,s , (6.4)



6.2. System Model 171

For the A2A links, we consider LoS links between different UAVs that wish

to form a link. Therefore, the path loss between UAV j and UAV i, will be

Lj,i = ξj,i + ηLoS. Based on the given channel model, the average SINR of the

A2G link between an origin node o and a destination node d (which can represent

the link between UAV j and SBS s or UAV j and the gateway node n) in the DL

or UL direction, Γo,d, is given by:

Γo,d =
Po,d · ho,d∑O

q=1,q 6=o Iq,d + σ2
, (6.5)

where Po,d is the transmit power of the origin node o (which can represent UAV j

or SBS s) to the destination node d, ho,d = 1/10Lo,d/10 is the channel gain between

o and d, σ2 is the Gaussian noise and
∑O

q=1,q 6=o Iq,d is the total interference power

at the destination node d from other neighbouring origin nodes q (UAVs in the

DL or SBSs in the UL) that are transmitting over the same channel, where

Iq,d = Pq,d/10Lq,d/10. Therefore, the achievable data rate of the A2G link will be

given by Ro,d = Bolog2(1 + Γo,d), where Bo is the transmission bandwidth of the

origin node o.

For the A2A links, we consider orthogonal channel allocation among all UAVs

and, hence, the signal-to-noise ratio (SNR) between UAVs j and i will be Γj,i =
Pj,i

10Lj,i/10·σ2
. The capacity of the A2A link is Rj,i = Bjlog2(1 + Γj,i), where Bj is

the transmission bandwidth of UAV j.

Therefore, the achievable end-to-end rate, RDL
j (pj), of UAV j along a multi-

hop path pj in the DL direction corresponds to the minimum of the rates achiev-

able over N hops, as given below [203]:

RDL
j (pj) = min

n=1,··· ,N
RDL
jk,jk+1

, (6.6)

where RDL
jk,jk+1

corresponds to the rate over link jkjk+1 in the DL direction. Sim-

ilarly, for RUL
j (pj), the achievable rate in the UL direction along path pj.

6.2.2 Problem formulation

Given this model, our objective is to form an aerial backhaul network that allows

each UAV j to be connected to the gateway node n via at most one path, denoted

as pj, whenever this path exists. To realize this, we consider the formation of a

bidirectional tree structure rooted at the gateway node n. We let β be the UAV-

UAV association vector with each element βj,i = 1 if link ji is formed between
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UAV j and UAV i, and 0, otherwise and α be the UAV-gateway association vector

with each element αj,n = 1 if link jn is formed between UAV j and the gateway

node n, and 0, otherwise. Therefore, the centralized optimization formulation is

given by:

max
α,β

J∑
j=1

φj(pj(αj,n, βj,i)), (6.7)

s.t.
J∑

i=1,i 6=j

βj,i + αj,n ≥ 1 ∀j,
J∑
j=1

αj,n ≥ 1, (6.8)

J∑
j=1

(
αj,n + βj,i

)
= J, (6.9)

αj,n ∈ {0, 1}, βj,i ∈ {0, 1} ∀j, n. (6.10)

where φj(pj(αj,n, βj,i)) corresponds to the utility function of UAV j along its

path pj. (6.8) guarantees the formation of at least one path for each UAV j to

the gateway node n (via direct or multi-hop). The left-most constraint in (6.8)

ensures that UAV j is connected to at least another UAV i in the network or

to the gateway node n. The right-most constraint in (6.8) guarantees that at

least one UAV j is connected to the gateway node n. (6.9) limits the maximum

number of formed edges in the network to J , the number of available UAVs.

Thus, (6.8) and (6.9), avoid the formation of cycles in the network and, hence,

guarantee the formation of a tree structure rooted at the gateway node. Finally,

(6.10) represents the feasibility constraints.

Although a fully centralized approach can be used to form the aerial backhaul

network, the need for a distributed solution is desirable for our problem as it

has several advantages. For instance, a centralized control system suffers from

the single-point failure problem. In contrast, a distributed approach does not

rely on a single controller which, if compromised (due to malicious attacks or

failures), can disrupt the operation of the entire network. Further, a centralized

approach requires the controller to communicate with all UAVs at all times which

is infeasible when the UAVs belong to different operators. Moreover, it can yield

significant overhead and complexity, namely in networks with a rapidly changing

environment due to the mobility of UAVs or incoming traffic load. Given these

reasons, a distributed approach for network formation is needed, as proposed

next.
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6.3 Network Formation Game for UAV Backhauling

Our main objective is to develop a distributed approach that can model the

interactions among UAVs that seek to form an aerial multi-hop backhaul net-

work. For this purpose, we adopt the analytical framework of network formation

games [128, 204] which involves a number of independent decisions makers that

interact in order to form a suited network graph that connects them. For our

proposed game, the players correspond to the set of UAVs and the action space

of each UAV is defined as the set of links which UAV j can delete or form. There-

fore, we consider an undirected graph G(V , E) with V being the set of all vertices

(J UAVs and gateway node n) that will be present in the graph and E the set of

all edges (links) that connect different pairs of nodes. Each undirected link ji ∈ E
between two nodes j and i corresponds to the DL/UL traffic flow between these

nodes. Given any network G(V , E), the path pj from UAV j to the gateway node

n is defined as a sequence of nodes j1, · · · , jK (in V) such that j1 = j, jK = n

and each undirected link jkjk+1 ∈ E for each k ∈ {1, · · · , K − 1}.
Therefore, each UAV j aims at optimizing its own utility by selecting an

appropriate path that connects it to the backhaul gateway node through other

UAVs. Subsequently, the UAVs can act as source nodes transmitting the received

SBSs/gateway node packets to the gateway node/SBSs through one or more hops

in the formed graph. The resulting network graph G is highly dependent on the

goals, objectives, and incentives of each UAV. For instance, the number of hops

can have an impact on the end-to-end delay, scalability, and throughput and

therefore, can affect the performance of the resulting network. Next, we define

the proposed utility function for our game.

6.3.1 Utility function

The utility of each UAV j is function of the network topology and the set of links

formed among different UAVs. To this end, we propose a utility function that

captures key metrics such as rate, delay, and number of relayed packets.

6.3.1.1 Achievable data rate

To maximize the performance of the SBSs, each UAV j aims at maximizing its

end-to-end achievable data rate along its path pj in the DL and UL directions,

denoted as RDL
j (pj, G) and RUL

j (pj, G) respectively.
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6.3.1.2 Number of relayed packets

To provide incentives for UAVs to route each others’ packets, each UAV j is

given a positive utility equivalent to the number of packets it transmits suc-

cessfully to/from the gateway node via DL and UL, PDL
j (pj, G) and PUL

j (pj, G),

respectively. These packets correspond to packets originating from the set Sj of

SBSs connected to UAV j and from all other UAVs connected to UAV j.

6.3.1.3 Delay cost

We assume an M/D/1 queueing system and we define τj(pj, G) as the average

delay over path pj = {j1, . . . , jK} from SBS s connected via UAV j to the core

network (or vice versa). Therefore, τj(pj, G) can be given by [204]:

τj(pj,G)=
∑

(jk,jk+1)∈qj

(
Ψjk,jk+1

2µjk,jk+1
(µjk,jk+1

-Ψjk,jk+1
)
+

1

µjk,jk+1

)
, (6.11)

where Ψjk,jk+1
= Λjk +∆jk is the total packet arrival rate (packets/sec) traversing

link (jk, jk+1) ∈ pj between UAV jk and UAV jk+1 and originating from the set

Sj of SBSs connected to UAV jk and from all other UAVs that are connected to

UAV jk (considering the Kleinrock approximation [205]). Λj =
∑

s∈Sj λs where λs

corresponds to the average arrival rate of the traffic of SBS s and ∆jk =
∑

i∈Ajk
Λi

where Ajk is the set of UAVs that have a link formed with UAV j. µjk,jk+1
=

Rjk,jk+1
/υ is the service rate over link (jk, jk+1) where Rjk,jk+1

is the rate of the

direct transmission between UAV j and UAV j + 1 and υ is the packet length.

According to (6.11), the delay will be infinite when µjk,jk+1
< Ψjk,jk+1

.

6.3.1.4 Total utility

Hence, the utility function Uj(pj, G) of UAV j along path pj for Sj 6= ∅, is defined

as:

Uj(pj, G) =

(
RDL
j (pj, G) +RUL

j (pj, G)

)
+ δj

(
PDL
j (pj, G) + PUL

j (pj, G)

)
− γj

(
τDLj (pj, G) + τULj (pj, G)

)
, (6.12)

where δj and γj are multi-objective weights.

Here, we note that there is no incentive for any UAV j to be disconnected

from the gateway node, otherwise, its delay cost and, subsequently, its utility
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function would be infinite. Therefore, for any network formation algorithm, the

resulting tree graph of our proposed game is always connected.

6.3.2 Pairwise stability

Given the fact that, in network formation games, the consent of two nodes is

required to form a single link, the stability of the outcome can be accurately

characterized by considering bilateral deviations. To satisfy this requirement, we

consider the notion of pairwise stability that was introduced in [128].

Definition 4. A network G is pairwise stable with respect to the proposed utility

function Uj(pj, G) if:

1. for all ji ∈ E , Uj(pj, G) ≥ Uj(pj− ji, G− ji) and Ui(pi, G) ≥ Ui(pi− ji, G−
ji), and

2. for all ji /∈ E , if Uj(pj +ji, G+ji) > Uj(G) then Ui(pi+ji, G+ji) < Ui(G),

where G− ji refers to deleting link ji from G and G+ ji refers to adding link ji

to G.

Definition 5. When a network G is not pairwise stable, it is said to be defeated

by G′ if either G′ = G + ji and 2) is violated for ji, or if G′ = G − ji and 1) is

violated for ji.

Therefore, a given backhaul graph is pairwise stable if there is no incentive

for any UAV j to break a link that is formed with another UAV i (unilateral

deviation) and no pair of UAVs j and i have an incentive to establish a new

link (bilateral deviation). Under pairwise stability, one can ensure that each

UAV j will not change its link formation strategy and therefore guarantee the

promised performance for other UAVs in the network, and more specifically, to

those connected to it or belong to its path pj. Moreover, given that the graph

resulting from our proposed network formation game is always a tree structure,

G is pairwise stable if and only if no pair of UAVs can profitably deviate by

simultaneously breaking one link and forming another. In other words, given

UAVs j and i and any link jk ∈ E , let G′ = G − jk + ji, p′j = pj − jk + ji and

p′i = pi + ji then:

Uj(pj, G) < Uj(p
′
j, G

′)⇒ Ui(pi, G) > Ui(p
′
i, G

′). (6.13)
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Note, however, that pairwise stable networks may not always exist. In partic-

ular, a pairwise stable network does not exist in case each network is defeated by

some adjacent network, and these improving paths form cycles, as defined next.

Definition 6. An improving path is a sequence of networks {G1, G2, · · · , Gk}
where each network Gk is defeated by the subsequent network Gk+1.

Definition 7. A cycle is an improving path {G1, G2, · · · , Gk} such that G1 = Gk.

Consequently, a network is pairwise stable if and only if it has no improving

paths emanating from it. In fact, for any network graph G, there exists either a

pairwise stable network (or more) or a cycle of networks [129]. For network for-

mation games, given that the strategy space is typically discrete, it is customary

to characterize pairwise stable networks using an algorithmic approach, as the

derivation of closed-form equilibrium policies is often infeasible [128]. As such,

next, we propose a dynamic network formation algorithm that is guaranteed to

reach a pairwise stable network upon convergence.

6.4 Distributed Dynamic Network Formation

Our proposed network formation algorithm allows the UAVs to adapt their loca-

tion based on the resulting formed graph thus ensuring an efficient backhauling

process. To realize this, we adopt the notion of virtual (artificial) force field which

is introduced as follows.

6.4.1 Virtual force field

Given the initial locations of the UAVs, the formation of an aerial backhaul

network might not be feasible in case UAVs are located outside each others’

communication range. Therefore, to adjust the locations of the UAVs based on

the links they want to form, a dynamic and self-organizing approach that allows

adaptation to the dynamics of the network, is necessary. In this regard, we adopt

the notion of virtual forces for UAVs [45]. A virtual force field allows a UAV to

adjust its location by exerting forces of attraction and repulsion towards other

UAVs. For our model, we consider the SNR as a metric for updating the value

of the virtual force vector. In particular, to guarantee an efficient backhauling

process, a minimum threshold value of SNR, denoted as Γ̂, should be achieved over
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each of the formed links. This in turn allows the determination of the maximum

distance between UAVs j and i, dmax
j,i .

Remark 2. To guarantee a minimum threshold value of SNR between UAV j

and UAV i, the distance between the two UAVs should not exceed dmax
j,i , which is

defined as:

dmax
j,i =

√
Pj,i

Γ̂ · σ2 · 10ηLoS/10 · (4πfc
c

)2
, (6.14)

where Pj,i is the transmit power from UAV j to UAV i and c is the speed of light.

The derivation of the expression of dmax
j,i follows from the SNR between UAV j

and UAV i, Γj,i.

In fact, a virtual force can be expressed by a polar coordinate notation (r, θ)

where r is its magnitude and θ its orientation angle. It can act as an attractive or

a repulsive force, adapting to the actions of each UAV. For our proposed model,

we consider an attractive virtual force from UAV j towards UAV i, when both

UAVs agree on the formation of link ji but are out of each other’s communication

range. Therefore, the attractive force vector from UAV j towards UAV i,
−→
F A
j,i, is

given by:

−→
F A
j,i =

(
uA · (dj,i − dmax

j,i ), θj,i

)
, (6.15)

where uA corresponds to the virtual force attractive coefficient and dj,i is the

Euclidean distance between UAV j and UAV i. On the other hand, a repulsive

force is exerted from UAV j towards UAV i, in case link ji is deleted and is given

by:

−→
F R1
j,i =

(
uR1 · (dj,i − dmax

j,i ), θj,i + π

)
, (6.16)

where uR1 is the virtual force repulsive coefficient and dj,i is the Euclidean distance

based on initial locations. Moreover, for physical collision avoidance between

different UAVs, we define the following repulsive force from UAV j towards UAV

i:

−→
F R2
j,i =

(
uR2 ·

1

dj,i
, θj,i + π

)
, (6.17)

where uR2 corresponds to the virtual force repulsive coefficient for collision avoid-

ance. Therefore, the total virtual force exerted from UAV j on UAV i can be
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written as:

−→
F j =

J∑
i=1,i 6=j

−→
F A
j,i +

J∑
i=1,i 6=j

−→
F R1
j,i +

J∑
i=1,i 6=j

−→
F R2
j,i , (6.18)

In our model, we consider that UAVs broadcast their initial locations at t = 0

and, hence, they can compute the corresponding virtual force vector even if they

are not within each other’s communication range. Therefore, given the strategies

of each UAV j, its corresponding location is updated as follows:

x′j = xj +
−→
F x
j , y′j = yj +

−→
F y
j , and z′j = zj +

−→
F z
j , (6.19)

where xj and x′j are the initial and updated x-coordinate of UAV j, and
−→
F x
j is

the x-component of
−→
F j. Consequently, this location update procedure improves

the achievable data rate for each UAV along its path and thus ensures an efficient

backhauling process.

6.4.2 Dynamic network formation algorithm

Taking into account the location update of UAVs based on the defined virtual

forces, we propose a myopic dynamic network formation algorithm. In particular,

myopic players update their strategic decisions considering only the current state

of the network without taking into account the future evolution of the network.

To ensure the formation of a tree network architecture, link addition can be seen

as link replacement and thus the strategy space of UAV j can be regarded as

either a delete operation or a replace operation using which UAV j replaces its

previously connected link with its parent node (if it exists) with a new link. Let

W denote the set of possible nodes with which UAV j can possibly form or delete

a link. We refer to w ∈ W as the activated node which corresponds to any of the

other (J − 1) UAVs or the gateway node n. The adopted rules for the formation

of the undirected network graph are:

1. UAV j can add a link with node w if both nodes j and w agree to add this

link i.e., link addition is bilateral. Link jw is formed via a link replacement

strategy if Uj(pj − jl + jw,G− jl + jw) > Uj(pj, G) and Uw(pw + jw,G−
jl+ jw) > Uw(pw, G) where node l corresponds to the parent node of UAV

j (if it exists).

2. UAV j can delete link jw if Uj(pj−jw,G−jw) > Uj(pj, G) i.e., link deletion

can be unilateral.



6.4. Distributed Dynamic Network Formation 179

3. Link replacement or deletion do not occur simultaneously.

Note that the gateway node is considered to be a passive player in our game.

For our network formation dynamics, we consider initially a star topology for

G0. Each iteration of our proposed algorithm consists of J rounds during which

the UAVs engage in the network formation game in an arbitrary but sequential

order. At a given round, UAV j chooses randomly (following a uniform distri-

bution) another node w and takes an action with respect to w. Following the

network formation rules, if link jw exists between the two nodes, then node j can

delete this link if it is beneficial for it. If link jw is deleted, a repulsive force
−→
F R
w,j

is exerted from UAV w towards UAV j thus returning UAV w to its initial loca-

tion, in case of location update during previous iterations. On the other hand, if

link jw does not exist, then UAV j can split from its parent node l and add link

jw, if such a change is beneficial for both UAV j and the activated node w. Here,

both nodes j and w can communicate with each other via a direct temporarily

communication link that is established in order to decide whether link jw should

be formed. Note that an attractive force
−→
F A
j,w is exerted from UAV j towards

node w in case the corresponding two nodes are not within each other’s commu-

nication range. If, at the end of the round, both nodes agree on the formation

of link jw, UAV j updates its location to the current position. Otherwise, a

repulsive force
−→
F R
j,w is exerted from UAV j towards node w, thus returning UAV

j to its initial position at the beginning of this round. Note that
−→
F A
j,w and

−→
F R
j,w

are exerted only when node w is not the gateway node. At the end of each round,

UAV j and the activated node w update their corresponding location and path

and broadcast such information to all other UAVs. After the convergence of the

network formation algorithm, the UAVs are connected through a tree structure

rooted at the gateway node. Consequently, data packets from (to) the SBSs to

(from) the core network can now be transmitted using the resulting formed net-

work tree structure Gfinal. The convergence complexity of our proposed myopic

network formation algorithm is O(J2). A summary and a flow chart illustration

of the proposed algorithm are given, respectively, in Algorithm 5 and Fig. 6.2.

Given the definition of pairwise stability and the proposed network formation

rules, it can be clearly seen that, if the network formation process converges

to a final network G, then G must be pairwise stable. However, proving the

convergence of the network formation rules is challenging. In fact, if a pairwise

stable network does not exist, then the proposed algorithm would involve cycles of
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Algorithm 5: Proposed network formation algorithm.

Initialization:

Consider initially a star network G0 where each UAV J is connected to the gateway node via a direct link.

Myopic network formation:

while G has not yet converged to a stable network, do

In a random but sequential order, the UAVs engage in the network formation game.

Step 1. UAV j activates another node w, in a random fashion but following a uniform distribution.

if jw ∈ E then

Step 2. UAV j deletes link jw if Uj(pj − jw,G− jw) > Uj(pj , G).

if link jw is deleted then

Step 3. A repulsive virtual force
−→
F R

w,j is exerted from UAV w towards UAV j thus returning

UAV w to its initial location.

end if

end if

if jw /∈ E then

if UAV j and node w are not within each other’s communication range then

Step 4. An attractive virtual force
−→
F A

j,w is exerted from UAV j towards node w thus updating

the location of UAV j.

end if

Step 5. UAV j establishes a temporarily communication link with node w.

if Uj(pj − jl+ jw,G− jl+ jw) > Uj(pj , G) and Uw(pw + jw,G− jl+ jw) > Uw(pw, G) where node

l corresponds to the parent node of UAV j (if it exists) then

Step 6. Link jw is formed via a link replacement strategy.

else

Step 7. A repulsive virtual force
−→
F R

j,w is exerted from UAV j towards node w thus returning

UAV j to its initial location, in case of location update at Step 6.

end if

end if

Step 8. UAV j and node w broadcast their updated locations and paths to all other nodes in the

network.

end while

networks which are randomly visited over time [129]. Therefore, using simulation,

we show in the following section that our proposed algorithm will converge.

6.5 Simulation Results and Analysis

For our simulations, we consider a 5 km × 5 km square area in which we randomly

deploy a number of SBSs and UAVs. Table 6.2 summarizes the main simulation

parameters. Note that the bandwidth per UAV is defined as the ratio of the total

channel bandwidth B to the number of UAVs. All statistical results are averaged

over 1000 independent runs.

Fig. 6.3 shows a snapshot of the tree graph resulting from the proposed algo-

rithm for a network with J = 10 randomly deployed UAVs. From Fig. 6.3, we

can see that most of the UAVs that are located far from the gateway engage in a
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Figure 6.2. The flow chart of the proposed network formation algorithm.

Table 6.2 System parameters.

Parameters Values Parameters Values

Max transmit power (Po) 20 dBm ηLoS 5 dB

SNR threshold (Γ̂) -4 dB ηNLoS 20 dB

Speed of light (c) 3× 108 m/s C 11.9

Channel bandwidth (B) 500 MHz D 0.13

Noise variance (σ2) -90 dBm uA 1

Carrier frequency (fc) 2 GHz uR1, uR2 10

Packet arrival rate (λs) (0, 1) Packet size (υ) 2000 bits

multi-hop transmission with other UAVs that are located closer to the gateway

thus extending the communication range of the network. Moreover, from this

snapshot, we can see that the UAVs select their paths not only based on distance

but also on the number of hops and traffic over a given path. For instance, UAV

9 connects to UAV 6, although UAV 7 is closer. This is due to the fact that the

path for UAV 9 along UAV 7 involves 5 hops and is more congested as compared

to 3 hops and less traffic when connected to UAV 6. This in turn decreases the

latency along its path and thus improves its utility. From Fig. 6.3, we can also see

the effect of the virtual force vector on the location of the UAVs. For instance,
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Figure 6.3. Snapshot of a tree graph formed using the proposed algorithm for a network with

J = 10 randomly deployed UAVs. Circles represent target areas having one or multiple SBSs.
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Figure 6.4. Performance assessment of the proposed network formation algorithm in terms of

average (a) rate and (b) delay per UAV as compared to the star network, for different number

of UAVs.

UAVs 3 and 5 adjust their initial location in order to guarantee an efficient com-

munication link with UAV 6. Here, note that one could deploy more UAVs in

case the location update of a particular UAV causes severe degradation in the

A2G link connecting it to its serving SBSs.

Fig. 6.4 shows the average achievable rate and delay per UAV of the resulting

network for our proposed scheme and the direct transmission approach consid-
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Figure 6.5. Average and average maximum number of hops in the final tree structure as a

function of the number of UAVs J in the network.

ering a star topology. From Fig. 6.4, we can see that, at all network sizes, the

proposed network formation algorithm yields significant performance gains in

terms of both rate and delay reaching, respectively, up to 3.8 and 4-fold increase

relative to the star network (for a network with 15 UAVs). The reason for this

gain stems from the fact that multi-hop transmission allows UAVs having bad

channel conditions with the gateway node to form links with other UAVs having

better channel conditions. Here, note that the rate of the A2A links is higher

than that of the A2G links due to the availability of a LoS communication links

between different UAVs as well as the orthogonal channel allocation. Therefore,

although more hops are formed, the average achieved rate over the multi-hop path

is improved as compared to a direct link having weaker channel conditions. This

in turn results in a higher service rate and thus a lower delay over the formed

path. Here, note that the transmission bandwidth of each UAV is a function

of the number of UAVs in the network. This in turn justifies the decrease in

the average rate per UAV for both schemes as the number of UAVs increases.

Fig. 6.4 (b) demonstrates that, although the delay for both schemes increases as

the number of UAVs in the network increases from 5 to 20, the speed at which

the delay increases for our proposed scheme (12.6%) is much smaller compared

to that of the star network (29.3%). This is due to the fact that, for a given UAV

j, the number of possible paths to the gateway node increases as the number of

UAVs increases.

In Fig. 6.5, we show the average and the average maximum number of hops

in the resulting network structure as the number of UAVs increases. Note that
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the number of hops shown in this figure includes both the A2G links and the

A2A links along a given path that connects the SBSs of each target area to the

gateway node. From Fig. 6.5, we can conclude that as the number of UAVs

increases, both the average and the average maximum number of hops in the tree

structure increase. Specifically, the average and the average maximum number

of hops vary, respectively, from 3.5 and 4.7 for J = 5, up to around 5 and 6.7

for J = 20. Note that both the average and average maximum number of hops

increase slowly with the increase in the number of UAVs due to the delay cost

induced for multi-hop transmission. For instance, one can notice that the average

number of hops increases by around 1.5 hops and the average maximum number

of hops increases by around 2 hops when the number of UAVs increases from 5

to 20.

Fig. 6.6 shows the minimum, average, and maximum number of iterations

needed till convergence of our proposed network formation algorithm as the num-

ber of UAVs increases. From Fig. 6.6, we can see that our proposed network

formation algorithm converges after a number of iterations and therefore a stable

graph is reached. Moreover, we can note that as the number of UAVs increases,

the total number of iterations required for the convergence of the algorithm in-

creases. This result is due to the fact that, as J increases, the number of possible

activated nodes w for a particular UAV j increases, and, thus, more actions (i.e.,

iterations) are required prior to convergence. For instance, the minimum, aver-

age and maximum number of iterations vary, respectively, from 4, 7.2, and 23 at

J = 5 UAVs up to 18, 81, and 170 at J = 20 UAVs. Here, it is worth noting

that practical UAV-based backhaul solutions will typically use only a relatively

small number of UAVs, thus the convergence time resulting from our approach is

practically reasonable.

6.6 Summary

In this chapter, we have proposed a novel UAV-based backhaul network design for

wireless networks. We have formulated the problem as a network formation game

in which the UAVs seek to form a multi-hop aerial network that connects SBSs

to the core network. In particular, each UAV can take an individual decision to

optimize its utility by exploiting the possible paths that connects it to the gateway

node. To solve the game, we have proposed a distributed myopic algorithm which
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Figure 6.6. Minimum, average, and maximum number of iterations till convergence as a function

of the number of UAVs J in the network.

is guaranteed to reach a pairwise stable network upon convergence. Simulation

results have shown that the proposed approach yields significant performance

gains in terms of delay and rate.





Chapter 7

Conclusion and Future Work

7.1 Summary and Conclusions

Next-generation wireless cellular networks must support extremely high data

rates and radically new applications. To realize the 5G vision and allow the in-

tegration of a heterogeneous mix of wireless-enabled devices, these devices must

be capable of adapting to the dynamics of the environment in an online and self-

organized manner. Current centralized communication models and corresponding

technologies may not be able to provide such massive connectivity. In essence,

current models are intractable and would yield significant overhead for a net-

work consisting of massive IoT devices. Consequently, there is a need for new

communication models for making the 5G vision come into reality.

In this regard, the main scope of this thesis was to propose novel algorithms

and methodologies that would incorporate self-organizing and intelligent decision

making techniques across various components of future wireless cellular networks.

Such edge intelligence is a key enabler of self-organizing solutions for optimizing

the management of the available radio resources, user association, and data of-

floading. In this thesis, we have mainly focused on spectrum management for 5G

networks, and in particular, the coexistence of LTE and WiFi in the unlicensed

spectrum. We have also addressed some of the challenges that arise in the context

of UAV-enabled wireless networks. Specifically, we have studied the problem of

interference management for cellular-connected UAVs and the use of UAVs for

providing backhaul connectivity to SBSs. The main contributions of this thesis

can be summarized as follows:

• First, we have proposed a proactive resource allocation framework for the

187
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coexistence of LTE-LAA and WiFi in the unlicensed band. We have formu-

lated a game model where each SBS seeks to maximize its rate over a given

time horizon while achieving long-term equal weighted fairness with WLAN

and other LTE-LAA operators transmitting on the same channel. To solve

this problem, we have developed a novel deep learning algorithm based on

LSTM cells. The proposed algorithm enables each SBS to autonomously

update their channel selection and channel access probabilities based on

the traffic of WLAN on each of the unlicensed channels over a given time

window. We have shown that the proposed deep RL algorithm reaches a

mixed-strategy NE upon convergence. Simulation results have shown that

the proposed scheme yields significant rate improvements compared to con-

ventional reactive solutions such as instantaneous equal weighted fairness,

proportional fairness and total network throughput maximization. The

results have also shown that the proposed scheme prevents disruption to

WLAN operation in the case large number of LTE operators selfishly de-

ploy LTE in the unlicensed spectrum.

• Second, we have developed a holistic approach for LTE-LAA small cell traf-

fic balancing by jointly optimizing the use of the licensed and unlicensed

bands. The proposed scheme aims at achieving a proportional fair coexis-

tence of WiFi, small cell and macro cell users by adapting the transmission

probability of the LTE-LAA SBSs in the licensed and unlicensed bands.

We have derived a closed form solution for the aforementioned optimiza-

tion problem and proposed a transmission mechanism for the operation of

the LTE-LAA SBS on both bands. Results have shown that our proposed

scheme provides a better performance for WLAN when coexisting with

LTE and an efficient utilization of the radio resources compared to alter-

native approaches from the literature as it allows a better tradeoff between

maximizing the total network throughput and achieving fairness among all

network flows.

• Third, we have presented an interference-aware path planning scheme for

a network of cellular-connected UAVs. In particular, the proposed scheme

enables each UAV at achieving a tradeoff between maximizing energy ef-

ficiency and minimizing both wireless latency and the interference level

caused on the ground network along its path. We have formulated the prob-
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lem as a dynamic noncooperative game in which the UAVs are the players.

To solve the game, we have proposed a deep RL algorithm based on ESN

cells in order to allow each UAV to decide on its next location, transmis-

sion power level, and cell association vector in an autonomous manner thus

adapting to the dynamics of the network. We have shown that the proposed

algorithm reaches an SPNE upon convergence. We have also derived upper

and lower bounds for the altitude of the UAVs thus reducing the computa-

tional complexity of the proposed algorithm. Simulation results have shown

that the proposed approach achieves better wireless latency per UAV and

rate per ground UE while requiring a number of steps that is comparable

to the shortest path scheme.

• Fourth, we have proposed a novel UAV-based backhaul scheme for linking

the SBSs and the core network in scenarios where the ground backhaul is

either unavailable or limited in capacity. The design of the aerial backhaul

network is formulated as a network formation game in which the players

are the UAVs. To solve the game, we have proposed a dynamic network

formation algorithm that is guaranteed to reach a pairwise stable network

upon convergence. The objective of the proposed network formation algo-

rithm is to allow the UAVs to autonomously learn which A2A and A2G

links to form in order to guarantee the connectivity of the SBSs to the core

network. We have shown that the proposed approach achieves performance

gains in terms of rate and delay reaching, respectively, up to 3.8 and 4-fold

increase compared to the formation of direct communication links with the

gateway node.

Next, we highlight on various challenges that warrant detailed exploration in

future work.

7.2 Future Work

The proposed schemes in this thesis addressed some of the major challenges that

arise in the context of spectrum management and the use of UAVs for wire-

less communications in next-generation cellular networks. In this section, we

elaborate more on the possibility of extending the work presented in this thesis.

Moreover, we overview some of other interesting challenges in the context of fu-
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ture mobile networks that are worth investigating as part of our future work. In

what follows, we summarize these problems:

• Traffic balancing for multi-mode SBSs: Future SBSs would essentially

operate over multiple bands simultaneously such as the sub-6 GHz licensed

band, sub-6 GHz unlicensed band, and the high-frequency mmWave band

(licensed or unlicensed). In this context, it would be essential to design a

traffic balancing scheme for steering the traffic of a multi-mode BS among

the mmWave, the microwave, and the 5 GHz unlicensed band based on

the availability of a LoS link, congestion on the microwave band and the

availability of the 5 GHz unlicensed band. Moreover, it would be interesting

for this framework to incorporate a context-aware scheduling algorithm for

allocating the associated UEs of a multi-mode BS to the different types of

available bands. This can build on some early work in this literature, such

as [52].

• Antenna tilting for efficient communication over the mmWave

band: Transmission over the mmWave band requires a LoS link due to the

sensitivity of the mmWave spectrum to blockages. In this regard, it is es-

sential to investigate machine learning techniques for adjusting the antenna

tilt angle of SBSs operating over the mmWave spectrum. For instance,

DNNs are capable of learning several features of the network environment

and thus predicting the users mobility pattern. This in turn can allow the

SBSs to determine the optimal tilt angle based on the availability of a LoS

link and the UE data rate requirements.

• Coexistence of WiGig and 5G radios: As we mentioned earlier in

Chapter 2, the mmWave spectrum is envisaged to be an important part of

5G multi-RAT ecosystem. In this regard, it is essential to propose novel and

efficient interference mitigation and coexistence mechanisms for spectrum

sharing with other technologies such as WiGig (802.11 ad). Therefore,

one future direction in this context is to investigate a self-organizing beam

scheduling scheme for the coexistence of WiGig and 5G radios in the 60

GHz band.

• Classification of ground and aerial UEs: Field measurements have

shown that the radio propagation environment experienced by UAV-UEs
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differs from that experienced by ground UEs [26]. In that case, network

operators might want to allocate their radio resources differently between

airborne UEs and ground UEs in order to maximize the total network per-

formance. This in turn requires network operators to be able to differentiate

an airborne UE from a ground one. To realize this, it is worthwhile inves-

tigating machine learning techniques, such as classification algorithms, for

distinguishing airborne UEs from ground UEs, based on their wireless sig-

nal.

• Interference mitigation for cellular-connected UAVs: The ability of

UAV-UEs to establish LoS connectivity with multiple cellular BSs can lead

to substantial inter-cell mutual interference among the UAV-UEs and to

the ground users, as discussed in Chapter 5. To address this challenge, one

would need to investigate new improvements in the design of future cellular

networks such as advanced receiver, cell coordination, 3D frequency reuse,

and 3D beamforming. For example, UAVs can be equipped with a direc-

tional antenna whose beamwidth can be adjusted. Here, it is important to

note that our proposed scheme in Chapter 5 can be readily used to accom-

modate to any of the aforementioned changes in the design of the network.

Therefore, it would be interesting to combine the work in Chapter 5 with

these solution methods in order to provide more efficient communication

links for both, ground and aerial, users.

• Admission control for cellular-connected UAVs: Alongside the above

mentioned solutions for interference management for UAV-UEs, a network

operator may need to limit the admission of aerial vehicles in the network so

that the perceived throughput performance of the conventional UEs is not

deteriorated. In this regard, it is interesting to investigate admission control

schemes for cellular-connected UAVs based on the data rate requirements

of the cellular ground network.

• Handover mechanism for cellular-connected UAVs: Cellular-connected

UAVs might face frequent handover and handover to distance cells thus re-

sulting in ping-pong effect and an inefficient handover signalling. This is

the consequence of the fact that UAVs can exhibit LoS links with multi-

ple neighbouring BSs simultaneously which, along with dynamic channel

variations, can result in a fluctuation in the quality of signal with these
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neighbouring BSs. In this context, it is worth investigating ML techniques,

and in particular RNNs, for addressing the issue of handover for cellular-

connected UAVs. In fact, given their capability of dealing with time series

data, RNNs can enhance mobility and handover in highly mobile wireless

environments by learning the optimal mobility patterns of the UAVs thus

decreasing the ping-pong effect among different ground BSs. For instance,

a predictive mobility management framework can address critical handover

issues, including frequent handover, handover failure, and excessive energy

consumption for seamless handover in future wireless cellular networks.
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Appendix

A.1 Possible Combinations for Solution Candidates

of the Optimization Problem in Chapter 4

To derive a closed form solution for the proposed PF coexistence optimization

problem in Chapter 4, we initially compute the solution candidates for a pair of

optimal muting patterns on the licensed and unlicensed bands, (α,β), based on

the Stationarity and the Complementary Slackness conditions of the KKT con-

ditions. The proposed optimization problem involves inequality constraints and

thus inequality Lagrangian multipliers λis. These multipliers can have a value of

NZ or zero, depending on whether they bind at optimality or not, respectively.

Thus, there exists 64 possible combinations for λis and the solution candidates

satisfying the Complementary Slackness equations belong to one of these 64 pos-

sible combinations. However, out of the 64 possible combinations of λis, 8 of

them only satisfying constraints (4.11)-(4.13) simultaneously. In what follows,

we give a discussion about the reduction of the possible combinations of λis from

64 to 8.

If a constraint has finite values of both lower and upper bounds, one would

need to consider the possible combinations when at most one Lagrange multiplier

for that constraint is NZ. This is due to the fact that, at optimality, one or the

other, or both, of the multipliers will always be equal to zero since only one of the

bounds can be active at a time. For a given combination of λis, only one of the

multipliers of either the lower or the upper bounds of the two variables α and β

193



194 Appendix A. Appendix

could be NZ and thus the total number of possible combinations of λis is reduced

from 64 to 36. An alternative way would be to combine the Lagrange multiplier

of the lower bound with that of the upper bound into the same variable and use

the sign of the variable to show which of the bounds is active. In other words, the

value of the multiplier would be negative when the lower bound of a constraint

is active, and positive when the upper bound of that same constraint is active or

vice versa.

Consider the possible combinations when one of the multipliers of either the

lower or the upper bounds of α and β are NZ. In that case, the values of α and β

are deduced directly from the upper and lower bounds constraints as given below:

• The four different combinations, (NZ,NZ,NZ,0,NZ,0), (NZ,0,NZ,0,NZ,0),

(0,NZ,NZ,0,NZ,0) and (0,0,NZ,0,NZ,0) result in (α,β) = (1,1).

• The four different combinations, (NZ,NZ,NZ,0,0,NZ), (NZ,0,NZ,0,0,NZ),

(0,NZ,NZ,0,0,NZ) and (0,0,NZ,0,0,NZ) yield (α,β) = (0,1).

• The four different combinations, (NZ,NZ,0,NZ,NZ,0), (NZ,0,0,NZ,NZ,0),

(0,NZ,0,NZ,NZ,0) and (0,0,0,NZ,NZ,0) result in (α,β) = (1,0).

• The four different combinations, (NZ,NZ,0,NZ,0,NZ), (NZ,0,0,NZ,0,NZ),

(0,NZ,0,NZ,0,NZ) and (0,0,0,NZ,0,NZ) have the value of (0,0) for (α,β).

According to constraint (4.12), α should be less than or equal to β and hence

the four different combinations resulting in (α,β)=(1,0) violate constraint (4.12)

and thus cannot be a possible candidate solution to the optimization problem

defined by (4.10)-(4.13).

For the optimization problem defined by (4.10)-(4.13), α is zero when either

Rw or Nw are zero. However, in our system model, we consider only active users

and assume that there is always at least one active user. Therefore, at optimality,

α cannot be equal to zero and thus the possible combinations for λis resulting

in (α,β) = (0,0) or (α,β) = (0,1) cannot be possible candidate solutions to the

optimization problem defined by (4.10)-(4.13)

Moreover, the different possible combinations resulting in (α,β) = (1,1), i.e.,

(NZ,0,0,NZ,0,NZ) and (0,0,0,NZ,0,NZ), can be ignored. For these 2 possible com-

binations, λ4 and λ6 are NZ and thus the optimal solution lies at the intersection

of the two lines α=1 and β=1. However, λ2 is zero which states that the optimal
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value does not lie on the straight line α = β. This is a contradiction since the

line α = β intersects with the point (1,1) and thus two combinations result in an

infeasible solution. Therefore, the total number of possible combinations of λis

is reduced from 36 to 22.

Following the previous discussion that α cannot be zero, the following combi-

nations of λis can also be ignored since λ3 is NZ for these cases: (NZ,NZ,NZ,0,0,0),

(NZ,0,NZ,0,0,0), (0,NZ,NZ,0,0,0), (0,0,NZ,0,0,0). Moreover, β is equal to zero and

α = β for the combinations (NZ,NZ,0,0,NZ,0) and (0,NZ,0,0,NZ,0). It implies

that α should be zero; however, λ3 is zero. Therefore, this is a contradiction and

thus these two combinations result in an infeasible solution. Therefore, the total

number of possible combinations of λis is reduced from 22 to 16.

Meanwhile, consider the possible combinations (NZ,NZ,0,NZ,0,0) and (0,NZ,0,NZ,0,0)

where λ2 and λ4 are NZ and thus α=1 and α=β. This implies that β = 1, however,

λ6 = 0 and thus there is a contradiction and these 2 possible combinations can be

neglected. Similarly for the combinations (NZ,NZ,0,0,0,NZ) and (0,NZ,0,0,0,NZ)

where λ4 = 0 which also results in a contradiction. Therefore, the total number

of possible combinations of λis is reduced from 16 to 12.

Now, for the possible combinations (NZ,0,0,NZ,0,0) and (0,0,0,NZ,0,0), α = 1.

According to constraint (4.12), α ≤ β and thus β should be 1 so that these com-

binations could be considered as possible candidates for the optimal solution of α

and β. However, λ6 = 0 i.e., this constraint does not bind at optimality and hence

β cannot be equal to 1. Therefore, these 2 cases lead to an infeasible solution.

Moreover, for the possible combinations (NZ,0,0,0,NZ,0) and (0,0,0,0,NZ,0), β is

zero. Following constraint (4.12), α ≤ β and thus α should be 0 for these cases to

be feasible. However, λ3 is 0 and thus the solution of α does not lie on the straight

line α=0 and hence α cannot be zero. Therefore, these 2 combinations lead to

infeasible solutions. Consequently, the total number of possible combinations of

λis is reduced from 12 to 8, 2 of which have the same solution (α∗,β∗)=(1,1).

Consequently, the candidates for a pair of optimal value for (α, β) satisfying

the stationarity and complementary slackness conditions are: (NZ,0,0,0,0,NZ),

(0,0,0,0,0,NZ), (NZ,NZ,0,0,0,0), (NZ,0,0,0,0,0), (0,NZ,0,0,0,0), (0,0,0,0,0,0),
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(NZ,NZ,0,NZ,0,NZ) and (0,NZ,0,NZ,0,NZ).

A.2 Proof of Theorem 2

For a given network state vj(t) and a particular action zj(t), the upper bound

for the altitude of UAV j can be derived when UAV j aims at minimizing its

delay function only, i.e., ϑ′ = 0. For such scenarios, UAV j should guaran-

tee an upper limit, Γj, for the SINR value Γj,s,c,a of the transmission link from

UAV j to BS s on RB c at location a as given in constraint (5.13). Therefore,

ĥmax
j (vj(t),zj(t),z−j(t)) corresponds to the altitude at which UAV j achieves

Γj and beyond which (5.13) is violated. The derivation of the expression of

ĥmax
j (vj(t),zj(t),z−j(t)) is:

Cj,s(t)∑
c=1

Γj,s,c,a = Γj, (A.1)

Cj,s(t)∑
c=1

P̂j,s,a(vj(t))

Cj,s(t)
· gj,s,c,a(t)(

4πf̂dmax
j,s,a

ĉ

)2

· (Ij,s,c(t) +BcN0)

= Γj, (A.2)

P̂j,s,a(vj(t))

Cj,s(t)
· 1(

4πf̂dmax
j,s,a

ĉ

)2 ·
Cj,s(t)∑
c=1

gj,s,c,a(t)

Ij,s,c(t) +BcN0

= Γj, (A.3)

(dmax
j,s,a)

2 =
P̂j,s,a(vj(t))

Cj,s(t)
· 1

Γj ·
(

4πf̂
ĉ

)2 ·
Cj,s(t)∑
c=1

gj,s,c,a(t)

Ij,s,c(t) +BcN0

, (A.4)

where dj,s,a is the Euclidean distance between UAV j and its serving BS s

at location a. Assume that the altitude of BS s is negligible, i.e., zs = 0,

ĥmax
j (vj(t),zj(t),z−j(t)) can be expressed as:

ĥmax
j (vj(t),zj(t),z−j(t)) =√√√√√ P̂j,s,a(vj(t))

Cj,s(t) · Γj ·
(

4πf̂
ĉ

)2 ·
Cj,s(t)∑
c=1

gj,s,c,a(t)

Ij,s,c(t) +BcN0

− (xj − xs)2 − (yj − ys)2, (A.5)
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where xs and ys correspond to the x and y coordinates of the serving BS s and ĉ

is the speed of light.

Meanwhile, for a given network state vj(t) and a particular action zj(t), the

lower bound for the altitude of UAV j can be derived when the objective function

of UAV j is to minimize the interference level it causes on the ground network

only, i.e., φ′ = 0 and ς = 0. For such scenarios, the interference level that UAV j

causes on neighbouring BS r at location a should not exceed a predefined value

given by
∑Cj,s(t)

c=1 Īj,r,c,a
1. Therefore, ĥmin

j (vj(t),zj(t),z−j(t)) corresponds to the

altitude at which UAV j achieves
∑Cj,s(t)

c=1 Īj,r,c,a and below which the level of

interference it causes on BS r exceeds the value of
∑Cj,s(t)

c=1 Īj,r,c,a. The derivation

of the expression of ĥmin
j (vj(t),zj(t),z−j(t)) is given by:

Cj,s(t)∑
c=1

S∑
r=1,r 6=s

P̂j,s,a(vj(t))hj,r,c,a(t)

Cj,s(t)
=

Cj,s(t)∑
c=1

S∑
r=1,r 6=s

Īj,r,c,a, (A.6)

Cj,s(t)∑
c=1

S∑
r=1,r 6=s

P̂j,s,a(vj(t)) · gj,r,c,a(t)

Cj,s(t) ·
(

4πf̂dmin
j,r,a

ĉ

)2 =

Cj,s(t)∑
c=1

S∑
r=1,r 6=s

Īj,r,c,a, (A.7)

To find ĥmin
j (vj(t),zj(t),z−j(t)), we need to solve (A.7) for each neighbouring BS

r separately. Therefore, for a particular neighbouring BS r, (A.7) can be written

as:

Cj,s(t)∑
c=1

P̂j,s,a(vj(t)) · gj,r,c,a(t)

Cj,s(t) ·
(

4πf̂dmin
j,r,a

ĉ

)2 =

Cj,s(t)∑
c=1

Īj,r,c,a, (A.8)

P̂j,s,a(vj(t)) ·
∑Cj,s(t)

c=1 gj,r,c,a(t)

Cj,s(t) ·
(

4πf̂dmin
j,r,a

ĉ

)2 =

Cj,s(t)∑
c=1

Īj,r,c,a, (A.9)

(dmin
j,r,a)

2 =
P̂j,s,a(vj(t)) ·

∑Cj,s(t)
c=1 gj,r,c,a(t)

Cj,s(t) ·
(

4πf̂
ĉ

)2

·
∑Cj,s(t)

c=1 Īj,r,c,a

, (A.10)

1
∑Cj,s(t)

c=1 Īj,r,c,a is a network design parameter that is a function of the ground network
density, number of UAVs in the network and the data rate requirements of the ground UEs.
The value of Īj,r,c,a is in fact part of the admission control policy which limits the number of
UAVs in the network and their corresponding interference level on the ground network [178].
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where dj,r,a is the Euclidean distance between UAV j and its neighbouring BS r

at location a. Assume that the altitude of BS r is negligible, i.e., zr = 0, we have:

ĥmin
j,r (vj(t),zj(t),z−j(t)) =

√√√√√ P̂j,s,a(vj(t)) ·
∑Cj,s(t)

c=1 gj,r,c,a(t)

Cj,s(t) ·
(

4πf̂
ĉ

)2

·
∑Cj,s(t)

c=1 Īj,r,c,a

− (xj − xr)2 − (yj − yr)2,

(A.11)

Therefore, ĥmin
j (vj(t),zj(t),z−j(t)) corresponds to the maximum value of ĥmin

j,r (vj(t),zj(t),z−j(t))

among all neighbouring BSs r and is expressed as:

ĥmin
j (vj(t),zj(t),z−j(t)) = max

r
ĥmin
j,r (vj(t),zj(t),z−j(t)), (A.12)

where xr and yr correspond to the x and y coordinates of other neighbouring BSs

r. This completes the proof.
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