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Abstract 

 

 

Synthetic Aperture Radar (SAR) is an active microwave remote sensing system able to 

acquire high resolution images of the scattering behaviour of an observed scene. The 

contribution of SAR polarimetry (POLSAR) in detection and classification of objects is 

described and found to add valuable information compared to previous approaches. In 

this thesis, a new target detection/classification methodology is developed that makes 

novel use of the polarimetric information of the backscattered field from a target. The 

detector is based on a geometrical perturbation filter which correlates the target of 

interest with its perturbed version. Specifically, the operation is accomplished with a 

polarimetric coherence representing a weighted and normalised inner product between 

the target and its perturbed version, where the weights are extracted from the 

observables. The mathematical formulation is general and can be applied to any 

deterministic (point) target. However, in this thesis the detection is primarily focused on 

multiple reflections and oriented dipoles due to their extensive availability in common 

scenarios. An extensive validation against real data is provided exploiting different 

datasets. They include one airborne system: E-SAR L-band (DLR, German Aerospace 

Centre); and three satellite systems: ALOS-PALSAR L-band (JAXA, Japanese 

Aerospace Exploration Agency), RADARSAT-2 C-band (Canadian Space Agency) and 

TerraSAR-X X-band (DLR). The attained detection masks reveal significant agreement 

with the expected results based on the theoretical description. Additionally, a 

comparison with another widely used detector, the Polarimetric Whitening Filter (PWF) 

is presented. The methodology proposed in this thesis appears to outperform the PWF in 

two significant ways: 1) the detector is based on the polarimetric information rather than 
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the amplitude of the return, hence the detection is not restricted to bright targets; 2) the 

algorithm is able to discriminate among the detected targets (i.e. target recognition). 
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Introduction 

 

 

Surveillance is the monitoring of human activities (or other changing information), 

usually accomplished for military, law enforcement or security reasons. Even though 

the principal interest of surveillance is dedicated to military activities, many vital 

civilian applications (i.e. security) can be listed. Clearly, from the military point of 

view, information about the enemy location has remarkable tactical advantages 

influencing the outcome of a battle. Regarding the benefits for law enforcement and 

security, monitoring illegal activities is essential to prevent crime. For instance, the 

monitoring of costal areas (or generally water regions) remains one of the most complex 

issues. A few examples of illegal activities can be illegal fishing (which impoverish the 

marine flora) or the transport of contraband. Mountainous, forested or desert areas often 

constitute entrance points for contraband and forested areas offer protection for hunted 

criminals or illegal logging (Illegal-Logging.info, Leipnik and Donald, 2003).  In order 

to follow the fast growth of modern technology, surveillance needs to exploit updated 

methodologies. The entire thesis is based on this concept: the development of a new 

system able to perform surveillance on large scale with the minimum effort and the 

maximum performance possible. 

One of the first challenges of surveillance is the need to cover vast areas in a short time. 

In this context, the capability to monitor from a distance (i.e. remote sensing) 

constitutes a large strategic advantage (Campbel, 2007). The latter becomes particularly 

vital when the surveillance by continuous in situ inspections is unfeasible (e.g. oceans, 

deserts or forests). In many cases, the only way to approach the regions under 

examination is by an aircraft. Moreover, a visual inspection is practicable only with 

solar illumination and favourable weather conditions, reducing strongly the reliability of 
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such solutions. Additionally, the single coverage of one flight is relatively small and the 

aircraft has to perform several flights over the same region in order to cover an area 

large enough. On the other hand, a satellite will naturally come back periodically 

(depending on its orbit) to the same area and the coverage of the single acquisition is a 

large strip with width that goes from tens to hundreds of kilometres (the length can be 

longer)(Chuvieco and Huete, 2009). Currently, the repeat pass time of a single satellite 

(here we refer to the radar one, since these will be employed in the validation) is still too 

long for some applications, however if data from several satellite platforms (or using 

different look angles) are acquired, the temporal distance can be reduced to less than 

one day. Recently, several projects have been involved in designing a constellation of 

radar satellites, as will be explained in the following.  

We can conclude that remote sensing is indispensable for large scale coverage. Now, we 

are concerned with the system (or sensor) which best suits our detection requirements. 

In this thesis we decided to use Synthetic Aperture Radar (SAR). SAR is an active 

remote sensing system exploiting the electromagnetic (EM) field in the microwave 

region (Rothwell and Cloud, 2001, Richards, 2009). Compared with less sophisticated 

radar sensors (i.e. scatterometers), the SAR architecture has the remarkable advantage 

of achieving very high sptial resolution reflectivity images of the observed scene. As a 

consequence, it provides enhanced discrimination between targets falling in different 

pixels. After about 30 years of continuous refinements, SAR is nowadays widely 

utilised with several airborne and satellite platforms exclusively dedicated to SAR 

sensors. In particular, a large number of radar satellites have been providing SAR 

images for several decades (i.e. ERS-1, ERS-2, ASAR-LANDSAT, RADARSAT, SIR-

X, SIR-C, etc). With the advancement of hardware, the latest satellites can provide data 

with improved radiometric characteristics and perform polarimetric acquisitions. 

Examples are ALOS-PALSAR (from JAXA: Japanese Space Exploration 

Agency)(ALOS, 2007), RADARSAT-2 (from the Canadian Space Agency)(Slade, 

2009) and TERRASAR-X (from DLR: German Aerospace Agency)(Fritz and Eineder, 

2009, Lee and Pottier, 2009). Recently, several satellite constellations have been 

designed, a few examples of which are already launched or being developed: 

CosmoSkyMed (Agenzia Spaziale Italiana, 2007) composed of 4 X-band satellites and 
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the planned Sentinel-1 (ESA, European Space Agency)(Attema et al., 2007). 

Considering the enormous costs of constructing a satellite and sending it into orbit, the 

large presence of sensors dedicated to SAR is a clear indicator of the significant 

contribution of radar in remote sensing. 

For many applications, the direct competitors of SAR are optical sensors (Campbel, 

2007). In the basic principles, the two technologies reveals several similarities since 

both acquire the electromagnetic wave scattered from objects, although most of the 

optical systems are passive (i.e. they do not transmit but only receive the EM field). 

Except the passive architecture, the main difference consists in the exploitation of 

different frequencies (or wavelengths). The scattering from an illuminated object 

behaves dissimilarly depending on the wavelength (Cloude, 1995a, Rothwell and Cloud, 

2001, Woodhouse, 2006). As a consequence, this diversity demarks the areas of 

applicability of the two techniques. In order to appreciate the advantages of one system 

over the other, the interaction between the EM wave and matter must be understood. In 

general, an EM field interacts with objects having dimensions similar or bigger than the 

wavelength (Stratton, 1941, Rothwell and Cloud, 2001, Cloude, 1995a, Woodhouse, 

2006). Consequently, small objects become rather transparent allowing the EM wave to 

pass through some cluster media with little attenuation. For instance, clouds are 

reasonably transparent at microwaves (especially if low frequencies are considered). 

Therefore, measurements can be performed under almost any weather condition 

(Richards, 2009, Woodhouse, 2006). In some contexts, end users judge this property as 

the most significant benefit of SAR. However, many other advantages of comparable 

importance can be listed. For instance, a forest canopy can be modelled as a cluster 

medium penetrable to some extent by the EM waves (especially where wavelengths are 

greater than about 20cm). Going through tens of metres, the EM field collects 

information about inner forest layers. This makes radar particularly suited for the study 

of vegetation (Campbel, 2007, Woodhouse, 2006, Treuhaft and Siqueria, 2000, Cloude 

S. R. et al., 2004). 

Another noteworthy benefit of microwaves is the possibility of measuring the phase of 

the EM field (i.e. coherent acquisition). With the purpose of explaining the importance 
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of the phase information, two of the most powerful methodologies in radar remote 

sensing can be listed: interferometry and polarimetry (Bamler R. and Hartl P., 1998, 

Cloude S. R., 2009, Papathanassiou K. P. and Cloude S. R., 2001). Please note, optical 

systems can be polarimetric even though they do not acquire the phase. However, they 

generally collect only two polarisations (co- and cross-polar). As will be explained in 

the following, in this way they do not extract the entire polarimetric information of the 

observed target. Without phase measurements, the number of acquisitions needed to 

have a complete polarimetric picture is generally too large and the actual sensors 

become significantly more complex (Cloude S. R., 2009). 

In conclusion, we believe that SAR meets the reliability requirements of any weather 

and beneath-canopy detection. Considering the intrinsic capabilities of polarimetry to 

discriminate between several targets, we decided to exploit it in the development of a 

new detector algorithm. Polarimetry studies the geometrical properties of the EM wave 

propagating in space (Cloude S. R., 2009, Lee and Pottier, 2009, Mott, 2007, Ulaby and 

Elachi, 1990, Zebker H. A. and Van Zyl J. J., 1991). Specifically, it is related to the 

shape that the electric field draws on the plane transverse to the direction of 

propagation. Interestingly, when two different targets are illuminated by the same 

polarised radiation, they are likely to scatter a wave with different polarisation states. 

Therefore, the polarisation state can be exploited to discriminate among observed 

targets. For instance, a metallic wire scatters a field linearly oriented in the same 

orientation as the wire. As a general rule, two objects are expected to have different 

polarimetric behaviour if their shape (considering the parts with dimensions comparable 

to, or bigger than, the wavelength) and material are different. The direct consequence is 

the possibility to describe a target using its polarimetric behaviour. A correspondence 

can be arranged between real and polarimetric targets exploiting vectors in a defined 

algebraic space (Cloude S. R., 1995 , Huynen J. R., 1970, Kennaugh E.M. and Sloan 

R.W, 1952). The complete characterisation of a polarimetric target requires at least four 

acquisitions (which can be reduced to 3 under certain conditions which are common for 

Earth observation). Such datasets are named “quad-polarimetric” or “fully 

polarimetric”. When only two polarisations are acquired the dataset is regarded as 

“dual-polarimetric”. The reason for acquiring only two polarisations is mainly linked 
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with the availability of simpler (lower cost) hardware, the request of higher resolution 

or the need for a smaller amount of data to store  (or transmit). Nowadays, virtually all 

radar sensors (including satellites) are able to acquire quad-polarimetric data, since it 

was demonstrated that several applications can be achieved exclusively by the use of 

polarimetry (Lee and Pottier, 2009).  

Summarising, microwave remote sensing has several advantages compared with other 

systems. Specifically, its penetration capability makes it very suitable for any weather 

measurements (and under canopy detection), while the coherent acquisition allows the 

exploitation of polarimetry which is of remarkable value for the recognition of specific 

targets. For these reasons, we believe that SAR polarimetry is undeniably suited to 

achieve the goal of this thesis, which is target detection in any weather condition and 

under canopy cover, for surveillance purposes. 

The clear strategic advantage of radar polarimetry has led to the development of many 

detectors and classifiers, which at a general level can be classed into those that are 

physically based or those that are statistically based (Chaney R. D. et al., 1990, Novak 

L. M. et al., 1993a). An introduction will be provided in the following chapters, but here 

we just mention the main differences. The physical approach performs the detection by 

exploiting the particular polarimetric signature of the target. This signature is narrowly 

related to the electromagnetic interactions of the scatterers and can allow the retrieval of 

physical parameters. The statistical techniques use the information kept in the stochastic 

nature of the scattering. The drawback of statistical techniques is that the physics behind 

the process is often lost and the retrieval of parameters starting from the statistics is 

particularly challenging.  

The evaluation of the performance of a new algorithm is always complex and several 

strategies can be followed. In our treatment, we want to propose a simple series of 

criteria to be fulfilled. They are essentially based on two probabilities: 

1) Low probability of missing a target on the scene (i.e. missed detection). Specifically, 

two target typologies are exceptionally relevant, since their detection is renowned to be 

particularly difficult: 
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1.1) Targets under foliage cover (Fleischman J. G. et al., 1996). This is noteworthy for 

two main reasons: firstly, forests can be shelter for illegal activities and secondly, 

because patrolling forested areas with ground inspections is highly complicated. To this 

we can add that the inspection is in many cases impracticable with optical systems 

because the tree canopy can represent a barrier for direct optical detection.  

1.2) Small targets. Most detectors are based on the target brightness (i.e. the amount of 

backscattering), consequently small or dielectric targets are easily lost in the image. Our 

concern is to develop an algorithm able to detect this target typology with a 

performance comparable to bright or big targets.  

2) Low probability of positive detection in absence of an actual target (i.e. false alarm). 

False alarms are particularly troublesome since they can trigger alert messages when the 

actual target is absent. This can lead to expensive visits and mistrust regarding the 

system. Specifically, we would like to meet two requirements:   

2.1) Statistical stability. Any algorithm working on real data can be interpreted as a 

statistical entity, since the observables can generally be modelled as random variables 

(in the following, this concept will be explained in more detail). Therefore, the 

algorithm must be robust and stable from the statistical point of view, providing small 

theoretical probabilities to return false positive (Kay, 1998). 

2.1) Robustness against bright natural targets. As mentioned previously, most 

detectors are based on evaluating the points brightness. However, in a SAR scene many 

bright targets are merely the result of geometrical effects (i.e. layover), and they do not 

constitute authentic targets (i.e. they are false alarms). The new algorithm must be able 

to deal with this typology of points, rejecting them from the detection. 

In the following, the content of the chapters is illustrated:  

1) Chapter one will introduce Synthetic Aperture Radar (SAR), providing the basic 

tools and fundamental knowledge for the development of the detector. For the sake of 

brevity, the formulation is kept brief and we decided to introduce only concepts which 

have a direct utilisation in the proposed detector. 



Introduction  7 

  

2) The second chapter is dedicated to radar polarimetry introducing the concepts of 

wave and target polarimetry. This theoretical chapter is particularly significant for the 

purpose of the thesis. Specifically, a fundamental differentiation is drawn between 

single (deterministic or coherent) and partial (statistical) targets.  

3) The third chapter presents the development of the mathematical formulation of the 

detector. Two different approaches are followed: a physical and geometrical one, in 

order to provide a larger picture of the algorithm. The optimisation of the detector 

parameters, interpreted as a mathematical entity, are considered.  

4) The fourth chapter examines the proposed detector as a statistical entity performing 

the optimisations from a statistical point of view. In actual fact, a statistical approach is 

indispensable if we want to characterise quantitatively the performances of the detector. 

Please note, however, that the evaluation of the statistics does not make the final 

algorithm a statistical detector, since it is still intimately based on the scattering physics. 

In particular, the probability density function (pdf) of the detector is analytically 

derived.  

5) The fifth chapter concerns the validation of the detector with real data. In this 

chapter, airborne data (E-SAR, DLR) is utilised since they represent a best scenario for 

the detector providing high resolution and signal to noise ratio (SNR). A comparison 

with other polarimetric detectors is also provided.  

6) The last chapter treats the validation of the detector with satellite data (ALOS-

PALSAR, RADARSAT-2 and TERRASAR-X). They represent a harder scenario for a 

series of reasons, but they are particularly advantageous for coverage purposes.     
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Chapter 1: Synthetic Aperture Radar (SAR) 

 

 

1 Synthetic Aperture Radar (SAR) 

1.1 Radar remote sensing with SAR 

Radar is an active microwave remote sensing system, first developed during the Second 

World War with the purpose of evaluating distances between targets (aircrafts, ships, 

etc) and the antenna used to send and receive an Electromagnetic (EM) pulse 

(Woodhouse, 2006, Brown, 1999). After the war, the technique stopped being exploited 

exclusively for aircrafts/ships ranging and found interesting applications in remote 

sensing of the environment as well. Since its introduction in the remote sensing 

scientific community, radar has experienced a rapid growth, with the proliferation of 

numerous applications/techniques exploiting different features of the coherent 

acquisition of microwaves (Woodhouse, 2006).   

Microwave has some similarity with optical remote sensing since both acquire the 

electromagnetic wave scattered from objects on the scene (the similarity is even closer 

with a LIDAR system). However, the main difference is related to the use of a longer 

wavelength (i.e. lower frequency), which at the same time represents the foremost radar 

advantage (Richards, 2009). A longer wavelength allows the coherent acquisition of the 

EM field (i.e. acquisition of amplitude and phase). The information associated with the 

phase can be exploited with techniques like interferometry and polarimetry which 

cannot be easily obtained with optical systems (here stereoscopy is not considered as on 

interferometric technique since it does not work with interferometric fringes) (Bamler 

R. and Hartl P., 1998, Cloude S. R., 2009, Papathanassiou K. P. and Cloude S. R., 

2001). In general, the EM radiation interacts with objects with similar or bigger 

dimension than the wavelength (Stratton, 1941, Rothwell and Cloud, 2001, Cloude, 
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1995a, Woodhouse, 2006). Consequently, objects that are small (compared with the 

wavelength) appear rather transparent to the radiation, and the wave is able to penetrate 

cluster mediums, composed by collections of particles. For instance, clouds are 

reasonably transparent to microwaves (especially in lower SAR frequencies) providing 

measurements with almost any weather conditions. The forest canopy is another 

example of medium penetrability to some extent by the EM wave. This is one of the 

major advantages of surveying vegetation with radar. Due to the penetration (which can 

be tens of meters), the radiation collects information about the forest inner layers 

(Campbel, 2007, Woodhouse, 2006, Treuhaft and Siqueria, 2000, Cloude S. R. et al., 

2004). 

The Synthetic Aperture Radar (SAR) is an ingenuous radar system which can acquire 

data with very high resolution. In a standard monostatic architecture, the system is 

composed of a platform (i.e. airborne or satellite) with the same antenna for transmitter 

and receiver (Franceschetti G. and Lanari R., 1999, Curlander and McDonough, 1991, 

Massonnet and Souyris, 2008). While the platform passes over the scene, the antenna 

transmits a series of EM pulses. Once the pulse reaches an object, an electrical current is 

exited over the object surface and (generally) generates an EM wave scattered back. 

Part of the radiation backscattered is recollected by the antenna on the platform (Figure 

1.1). Clearly, different arrangements can be considered, such as a bistatic SAR, where 

two different antennas are utilised for transmitter and receiver and they generally fly on 

two different platforms (Cherniakov, 2008, Willis, 2005). In this thesis, the focus is on 

monostatic sensors, although the proposed detector can be generalised to bistatic 

systems (as shown in the following chapters). 

The platform moves along the azimuth direction with the antenna generally focused on a 

direction orthogonal to the azimuth: range (or slant-range). If the direction of 

observation is along the platform nadir (i.e. straight below the platform) the system is 

defined boresight. On the other hand, when the direction is inclined with an angle ϑ  

from the zenith, it is defined side-looking (the angle ϑ  is called look angle). A side-

looking solution is conventionally to be preferred to boresight for the rejection of range 

ambiguities (as will be shown in the following) (Franceschetti G. and Lanari R., 1999). 
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Figure 1.1 SAR acquisition geometry for a monostatic system (Reigber, 2010) 

 

The acquisition process is achieved by transmitting a radio pulse (i.e. narrowband 

signal) and receiving the EM wave backscattered by the targets on the scene. In a 

classical radar system, the time delay from transmission to reception is related to the 

speed of the propagating wave and the distance from antenna to object: 

  
c

r
t

2
=∆ , (1.1) 

where r is the distance between sensor and scatterer and c is the speed of light. 

In this basic arrangement, the resolution in range depends on the length of the pulse. 

Two scatterers can be separated if their distance is bigger than half the duration of the 

pulse, otherwise the two pulses will overlap each other. Hence, if we define with τ  the 

temporal length of the pulse, the resolution will be: 
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where W is the bandwidth of the pulse. Therefore, in order to achieve high resolution 

the bandwidth must increase, leading to very short effective pulses which are generally 

not realisable in the designed bandwidth of the system. With the intention of achieving 

high resolution without decreasing the pulse duration, a frequency modulation was 

introduced (Curlander and McDonough, 1991). The obtained pulse is called a chirp and 
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is a linear frequency modulation of the narrowband pulse. It can be written as: 
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where fπω 2=  is the angular frequency and f is the carrier frequency, rect is the 

rectangular function of duration τ  and α  is the chirp rate related with the bandwidth W 

as Wπατ 2= . With the chirp, the bandwidth can be increased without reducing the 

duration of the pulse τ . In order to retrieve the actual scene information, the return 

must be cleaned from the alteration introduced by the linear phase modulation. This can 

be accomplished with a match filter with the chirp (and is known as range 

compression). 

Regarding the azimuth resolution, the simplest system is a Real Aperture Radar (RAR). 

Here, all the points illuminated by the beam-width are collected together, hence they are 

inseparable. The resolution is dependent on the beam width (or aperture) of the antenna:  

 
L

RxRAR

λ
=∆ , (1.4) 

where R is the distance between sensor and ground, λ  is the wavelength exploited and 

L is the effective dimension of the antenna. In this configuration, the resolution depends 

on the distance to the sensor, making satellite applications suited only as scatterometers 

(Woodhouse, 2006). In order to enhance the resolution the dimensions of the antenna or 

the frequency must increase. However, the frequency is fixed and the antenna cannot be 

excessively big for structural engineering reasons. A different solution had to be 

introduced. 

The basic idea of the Synthetic Aperture Radar (SAR) is that a point on the ground is 

illuminated by the antenna not just with one single pulse but with a sequence of pulses. 

If all the acquisitions for the same point are collected, it will be similar to having 

performed a single acquisition with an antenna array with length (i.e. aperture) equal to 

the footprint X. After data compression the azimuth resolution becomes 
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2

L
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where L is the length of the antenna. Conversely to eq.1.4, the resolution improves 

when the effective dimension of the antenna L is reduced. This seems to contradict 

common sense since a smaller antenna has a larger beam width (hence a larger 

footprint). In actual fact, when L decreases, X increases and with it the synthetic 

antenna. As a consequence the array is larger and the final beam-width is sharper. 

After the compression of the row data, the SAR image presents a map of the reflectivity 

(as a complex value) of the scene, where every pixel represents the coherent sum of the 

returns from the scatterers located in the resolution cell (Oliver and Quegan, 1998). The 

reflectivity can be expressed with ( )xr,ρ , where r and x are respectively the range and 

azimuth of the resolution cells. In any given pixel we have 

 ( ) ( )nn

n

n xxrrxr −−=∑ ,, δρρ ,  (1.6) 

where δ  is the Dirac function and nr  and nx  can move in the resolution cell considered. 

Therefore, the signal after the processing can be interpreted as a two dimensional 

complex signal (Massonnet and Souyris, 2008). 

 

1.2 Geometrical distortions 

A noteworthy divergence between (active) radar and (passive) optical systems is related 

to the acquisition arrangement. Radar was first designed with the purpose of acquiring 

distances between the sensor and the targets on the scene. This attribute is still central in 

the SAR acquisition strategy. The objects on the scene are arranged depending on the 

distances from the sensor rather than the location on the ground. Additionally, a radar 

system needs to be side-looking, where optical systems are often close to nadir. Due to 

this peculiar acquisition arrangement distortions are introduced on the reflectivity image 

and the latter cannot be compared straightforwardly with a map or photograph 

(Woodhouse, 2006, Franceschetti G. and Lanari R., 1999, Campbel, 2007). 
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Radar measures distances between sensor and scene, therefore distances on the ground 

(i.e. the horizontal plane where the scene lies) are not preserved and in near-range 

(region closer to the platform) the range resolution is larger than in far-range (region 

further from the platform). A new parameter can be introduced, regarded as ground-

range, representing the distance measured along the projection of the range (now called 

slant-range) on the horizontal plane. Specifically, the ground range resolution can be 

calculated as 

 
i
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where iϑ  is the local look angle. Figure 1.2 illustrates the concept of ground range 

resolution. 
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Ground range resolution

ρr
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Figure 1.2. Estimation of ground range resolution (courtesy of Iain Woodhouse). 

 

Eq.1.7 states that a boresight system (i.e. 0=ϑ ) has resolution equal to ∞ , since in the 

hypothesis of plane wave any plane parallel to the ground surface lie only in one single 

resolution cell. Clearly, the plane wave hypothesis is unsuited in this case and a 

spherical wave must replace it. The final effect of the variability in ground range 

resolution is a non linear stretch along the range direction (the near range is 

compressed). 

Eq.1.7 states the importance of side-looking architecture for image formation. Figure 

1.3 shows the lines for equi-range and equi-Doppler (Mott, 2007). The only way to 

avoid ambiguities between the two points above and below the gy  axis is simply to 
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focus the antenna only on one side. Although indispensable for image formation, side 

looking is the cause of distortions in a SAR image.  

Figure 1.4 presents the main distortions suffered by a radar image due to the side-

looking architecture. The distortions are (Franceschetti G. and Lanari R., 1999):  

a) Foreshortening: when a slope faces the sensor the illuminated area is compressed in 

less resolution cells. In other words a larger amount of ground lies in the same 

resolution cell since the apparent local look angle (calculated with the normal of the 

surface) is reduced. In a SAR image foreshortening produces a shift of the side of 

mountains (or generally slopes) facing the sensor in the direction of the sensor. 

Moreover, it is generally accompanied by a rising in backscattering since the number of 

scatterers in the same resolution cell increases (the energy of all the scatterers is 

compacted in a smaller area).  

 

Figure 1.3 Constant range and constant Doppler curves. The sensor moves along the gx  axis 

(Mott, 2007), as projected onto the ground surface. 

 

b) Layover: when the steepness of the slope facing the sensor is higher than the look 

angle the return from the top of the object comes before the one from the bottom. If 

compared with an optical image, the layover flips top and bottom. Layover is rather 
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common in SAR imaging, since it affects all the vertical structures with changes in 

height bigger than the resolution cell (i.e. buildings, trees). 

c) Shadowing: this effect is observable on the slopes opposite to the sensor and it can be 

interpreted as the opposite of foreshortening. The areas affected by shadowing are 

enlarged (along the range direction). When the slope is smaller than 2πϑ − , the areas 

become completely dark (in optical shadow).  

 

Radar shadowLayover

True ground range (TGR) image

Slant range image

Optical representation from same viewing geometry

Optical shadow

Lines of equal s
lan

t r
an

ge

Lines of equal look angle

 
Figure 1.4. Distortions suffered by the side looking architecture compared with a optical viewing 

geometry (courtesy of Iain Woodhouse). 
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In general, shadowing areas (i.e. slopes facing away from the sensor) are darker since 

the energy is spread over a larger area or they are not visible at all (additionally the 

surfaces scatter less as predicted by the Bragg model). 

Another cause of distortion in a SAR image is associated with the dissimilar resolutions 

in range and azimuth. In the image formation, the range resolution depends on the 

bandwidth (eq.1.2) while the azimuth one depends on the length of the antenna (eq.1.5). 

As a result, the pixel will not generally be square but rather rectangular on the ground. 

A rectangular pixel stretches the image in the direction where the resolution is higher 

(for satellite applications often this is the azimuth). 

Due to the severe distortions affecting a SAR image, the latter cannot be overlapped 

straightforwardly with a map. As a first step, the image must be geo-coded in order to 

correct the geometric distortions. Subsequently, it must be projected on a coordinate 

system with a geo-location. In the validation of the proposed detector, in the current 

work, geo-location of the images is not performed since the detector works with the 

physics of the backscattering (polarimetry) and this does not change with geo-location 

(as long as the geo-location is well defined) (Campbel, 2007, Wise, 2002). 

 

1.3 Statistical characterisation of targets 

The backscattered field acquired by a SAR system is a product of the interaction 

between objects on the scene and the microwave pulse sent by the transmitter antenna. 

The interaction is generally more consistent when the dimensions of the illuminated 

object are equal or bigger than the wavelength (Stratton, 1941, Rothwell and Cloud, 

2001). In microwave remote sensing, the wavelength is around centimetres (X- or C-

band) or tens of centimetres (S-, L- and P-band) while the resolution cell is around 

meters. For this reason, in the same resolution cell several scatterers contribute to the 

total backscattered field. For the theorem of superimposition of fields, all the EM waves 

coming from the same resolution cell are summed coherently together (generally the 

phases must be taken into account and the total power is not the sum of the power 

contributions) (Oliver and Quegan, 1998, Rothwell and Cloud, 2001). 
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If the return from the i-th scatterer in the cell is ij

ieV
φ  the total return will be:  

 ∑∑∑
===

+===+
N

i

ii

N

i

ii

N

i

j

iimre VjVeVVjVV i

111

sincos φφφ . (1.8) 

The possibility to represent the EM wave with a complex number will be illustrated in 

the next section. Eq.1.8 describes the coherent sum of the contributions in the cell. If 

there is not a single dominant scatterer, the only way to extract information about the 

observed scatterers is to treat the problem with a statistical approach (Oliver and 

Quegan, 1998). In fact, the number of observables (i.e. real and imaginary part of the 

total return) is smaller than the number of unknowns. 

If N is big enough, we can apply the central limit theorem and say that the real and 

imaginary part of the return are normally distributed: ( )2,~ σµNVre  and 

( )2,~ σµNVim . Their probability density functions (pdf) are 
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


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σπσ
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. (1.9) 

The mean is zero, [ ] [ ] 0== imre VEVE , since the average of random real numbers with 

their sign is zero (Gray and Davisson, 2004, Kay, 1998, Papoulis, 1965).  

Furthermore, the real and imaginary parts are independent of each other which makes 

them uncorrelated: 

 [ ] [ ] [ ] 0== imreimre VEVEVVE , (1.10) 

where E[.] stands for expected value. 

The trend of a Gaussian random variable with zero mean and variable standard 

deviation σ  is plotted in Figure 1.5. 
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Figure 1.5. Gaussian distribution with variable mean and standard deviation. 

 

The SAR image displays the reflectivity of a scene and it can be represented as a matrix 

of complex numbers. The amplitude of such complex numbers keeps valuable 

information about the amount of backscattering coming from the resolution cell (since it 

is the square root of the power). Using the pdf of real and imaginary parts, it is possible 

to extract the joint pdf of amplitude and phase of the backscattering  

 ( )













−=

2

2

2 2
exp

2
,

σπσ
φφ

VV
VfV . (1.11) 

Integrating the expression in eq.1.11 on the entire interval of the phase, the pdf of the 

amplitude can be extracted  

 ( ) ( ) 0   ,
2

exp,
2

2

2

2

0
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












−== ∫ V

VV
dVfVf VV

σσ
φφ

π

φ  (1.12) 

The latter corresponds to a Rayleigh distribution defined in [ ]∞,0  and regarded as 

( )σRayleighV ~  (Papoulis, 1965).  
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A quick way to characterise a random variable is using its principal modes. They can be 

obtained by integrating the expression of the pdf as shown in the following: 

 [ ] ( ) σ
π

20
== ∫

∞

dVVVfVE V , (1.13) 

 [ ] ( ) 2

0

22 2σ== ∫
∞

dVVfVVE V , (1.14) 

 [ ] [ ] [ ] 222

2

4
σ

π−
=−= VEVEVVAR . (1.15) 

 

 
Figure 1.6 Rayleigh distribution for variable σ  

 

Figure 1.6 shows the Rayleigh distribution. As expected the probability of negative 

values is zero and the variation becomes bigger when the mean increases. 

The pdf of the phase can be extracted as well and is uniformly distributed in [ ]π2,0 . 

Once the statistical distribution of the amplitude is obtained, we can describe the power 
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distribution of the backscattering, i.e. 2
VW = . After some manipulation the pdf of the 

power is found as 

 ( ) 0   ,
2

exp
2

1
22

≥







−= W

W
WfW

σσ
. (1.16) 

which coincides with an exponential random variable. The latter is generally indicated 

with ( )λExpW ~ , where λ  is linked to the mean. The modes can be estimated: 

 [ ] λσ 12 2 ==WE , (1.17) 

 [ ] 42 8σ=WE , (1.18) 

 [ ] [ ] [ ] 422 4σ=−= WEWEWVAR . (1.19) 

The mean of the exponential is ordinarily indicated with λ1 .  

 

 

Figure 1.7 Exponential distribution for variable λ  

Figure 1.7 presents the Exponential distribution when the mean is varied. As in the case 
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of a Rayleigh distribution, the variability of the Exponential is large and the standard 

deviation increases linearly with the mean (they are actually the same). This huge 

variation can lead to significant estimation errors making the scattering description on 

the basis of a single pixel a challenge. 

In general, to reduce the variability of random variables, the average of independent and 

identically distributed (iid) realisations can be considered (please note, not all random 

variables when averaged reduce their variability).  

If NWW ,...,1  are Exponential distributions, then the variable ∑
=

=
N

i

iW
1

γ  is a Gamma 

distribution indicated as ( )k,~ ϑγ Γ  where k is the shape factor depending on the 

number of elements summed (i.e. k=N) while 221 σλϑ ==  is the scale factor 

depending on the mean of the Exponential variables. The pdf is equal to: 
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And its modes are: 

 [ ] 22 σNWE = , (1.21) 

 [ ] 44σ=WVAR . (1.22) 

Commonly, the sum of Exponential is subsequently normalised by the number of 

samples N in order to achieve the average ∑
=

=
N

i

iW
N

W
1

1
. The resulting random variable 

will be a scaled Γ  distribution, 







Γ k

N
W ,~

ϑ
 and the modes will be: 

 [ ] 22σ=WE , (1.23) 

 [ ]
N

WVAR
44σ

= . (1.24) 
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Figure 1.8 illustrates the Γ  distribution with variable shape and scale factors. 

The variance of the random variable is reduced by increasing the number of 

independent samples averaged. In order to obtain the desired reduction of variability, 

the sum must be performed on independent samples with the same mean (independent 

and identically distributed, iid). There are several methodologies to select independent 

samples in a SAR image. The most common (and the one used in this thesis) considers 

the average over neighbouring pixels with a moving window, but, more complicated 

strategies can be exploited. 

 

 

Figure 1.8. Gamma distribution for variable k and ϑ  

 

1.4 Radar cross section 

The aim of microwave remote sensing is extracting information from the EM wave 

scattered by an object. In particular, the power of the backscattering was the subject of 

extensive studies when phase measurements where not yet feasible. A parameter called 

radar cross section (RCS) [ ]2mσ  was introduced and it represents the area of an 
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equivalent sphere (assumed as a perfect reflector) scattering the same amount of power 

as the target (Franceschetti G. and Lanari R., 1999, Woodhouse, 2006). In a complex 

object, the power backscattered also depends on the angle of view of the target. 

Additionally, the induced currents on the surface of the object radiate in many directions 

and a directivity pattern of the object can be estimated.  

If polar coordinates are introduced, the directions of incident and scattered wave can be 

characterised by the pairs ( )ii ϕϑ ,  and ( )ss ϕϑ ,  respectively. In conclusion, the RCS can 

be described as function of the direction for incident and scattered wave. Integrating 

over all the directions of the scattered wave (for a fixed incident wave), the total 

scattered power can be calculated as (Woodhouse, 2006) 

 ( )
( ) ( )

24

,;,,
,,

r

S
rS ssiiiii

ss
π

ϕϑϕϑσϕϑ
ϕϑ = . (1.25) 

where r is the distance. 

In the case of backscattering, the direction of incident and scattered waves is the same. 

Hence, si ϑϑ =  and si ϕϕ = . 

For some simple shapes the calculation of the RCS is possible analytically (after various 

approximations). Some of these targets are considered in Table 1.1.  

 

Shape Sphere radius d Square plate: 

side d 
Triangular 

trihedral: side d 

Square trihedral: 

side d 

RCS 

[
2

m ] 

2
dπ  

2

4

4
λ

π
d

 
2

4

3

4

λ

π d
 

2

4

12
λ

π
d

 

Table 1.1. RCS for standard shapes (Franceschetti G. and Lanari R., 1999). 

 

The RCS increases relatively fast in the case of corners (with the fourth power of the 

side), since they are able to collect the power of the illuminating wave in a narrow 

beam. The dependence on λ  is related to the increased apparent dimensions of the 
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surfaces. 

The expression of the density of power can be used to estimate the power received by 

the system from an object at distance r: 

 
( ) ( ) 42

2

43

22

42 444 r

PA

r

PG

r

PGA
Pr

πλ

σ

π

σλ

π

σ
=== . (1.26) 

where P is the peak power transmitted, G is the antenna gain and A is the antenna 

effective area. 

It is interesting to note that the power goes down with the fourth power of the distance, 

which is because far from the source it propagates as a spherical wave with a dispersion 

of intensity as the square of the distance. Subsequently, the two way attenuation must be 

taken into account (by multiplying the two attenuations). The estimation of the 

theoretical power received is relevant in SAR image formation since a different power 

compensation for near and far range must be performed in order to have a reliable map 

of the scene reflectivity (Herwig, 1992). 

 

1.5 Polarimetric acquisition: the scattering matrix. 

In this section the principles of radar polarimetric acquisition are introduced, 

specifically the formation of the scattering matrix, while a more complete treatment will 

be provided in the next Chapter.  

 

1.5.1 The scattering matrix. 

For the sake of brevity, the treatment will start from the definition of narrowband 

signals, leaving out the electromagnetism theory that deals with the derivation of the 

wave equations. If the bandwidth of the signal is small compared with the carrier 

frequency, the latter can be ignored and the electric (or magnetic) field can be 

represented with complex scalars. In the monochromatic case, the problem can be 

rigorously treated with fasors (Rothwell and Cloud, 2001). Far from the source, the 
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propagation is accomplished with a spherical wave that can be locally approximated as 

plane wave. The wave front is a plane and the electric and magnetic fields are 

orthogonal to the direction of propagation. Such propagation is equivalently regarded as 

Transverse ElectroMagnetic (TEM) since the fields lie in the transverse plane (Stratton, 

1941).  

Figure 1.9 shows the coordinate system exploited. 

The electric field can be written as 

 
yyxx uEuEE += , (1.27) 

where the propagation is accomplished in the z direction and xE , yE  are complex 

numbers. 

 
Figure 1.9 Coordinate system in agreement with the propagating wave (z direction).  
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Hence, it can be written: 

 xj

xx eEE
φ=  and yj

yy eEE
φ

= . (1.28) 

While the wave moves in space/time, the phase of the electric field changes. This effect 

can be taken into account with 

 ( )xkztj

xx eEE
φω +−=  and ( )ykztj

yy eEE
φω +−

= . (1.29) 

where ω  is the angular frequency fπω 2= , t is the time and k is the wavenumber 

c
k

ω
= , with c speed of light in the medium considered. xφ  and 

y
φ  give an initial phase 

for the two components. 

Once the information about the frequency is reintroduced in eq.1.27, the expression can 

be reconverted in time domain (real numbers) with: 

 ( ){ } ( )
xx

kztj

xx kztEeEe x φωφω +−== +− cosRe , 

 ( ){ } ( )
yy

kztj

yy kztEeEe y φω
φω

+−==
+− cosRe . (1.30) 

The two components of the field (i.e. x and y) interact coherently with each other 

producing a resulting vector that moves on the plane of propagation. The polarisation of 

the EM field is related to the shape that the electric field draws on the transverse plane 

while the time passes. In this brief introduction, only stationary states of polarisation are 

considered. Specifically, if the electric field has a component only in one axis of the 

propagation plane its polarisation is defined to be linear (in general in order to have 

linear polarisations the two components must have the same phase). 

When a target is excited by a wave which is linearly polarised in the x direction, 

x

i

x

i
uEE = , the scattered wave will be (Krogager E., 1993 , Kennaugh E.M. and Sloan 

R.W, 1952, Mott, 2007, Cloude S. R., 2009, Lee and Pottier, 2009) 
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since the reradiated wave has generally a different polarisation from the incident one (as 

will be explained in the next section). Consequently, for any incident wave at least two 

measurements are necessary to characterise the scattered field (i.e. the x and y 

components).  

The final requirement is to be able to describe the target scattering behaviour 

independently of the incident wave employed. Thus, the x component of the incident 

field alone is not sufficient since it is not sufficient to describe all the possible incident 

waves. The orthogonal component y must be considered as well. Therefore, a linear 

polarised field in the y direction can be transmitted and the return collected in the two 

components: 
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In summary, in order to describe completely the polarimetric behaviour of a target four 

acquisitions are needed: two to describe any scattered wave multiplied by two to 

describe any incident wave. The theorem of superposition of fields asserts that the four 

measurements can be done separately (but the target must not change). The four 

measurements can be collected in a matrix as  
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The matrix  

 [ ] 







=

2221

1211

SS

SS
S  (1.34) 

is called the scattering (or Sinclair) matrix. With the scattering matrix any stationary 

target illuminated by a wave with stationary polarisation can be completely 
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characterised (Kennaugh E.M. and Sloan R.W, 1952). The hypothesis of stationarity 

seems to be unavoidable; however in the next section we will see that in the case of 

non-stationary processes we can still characterise a target exploiting its statistics. 

When the scattering matrix is completely acquired in one single flight pass of the 

platform, the system is defined as quad polarimetric. The simultaneous acquisition is 

needed to reconstruct properly the polarimetric characteristic of the target, especially if 

this changes from one acquisition to another. However, in some cases, the sensor is not 

sufficiently complex to acquire [S] in one pass, but only half (for instance one column 

of the scattering matrix). In this scenario, the system is defined as dual polarimetric. 

Unfortunately, the latter is not able to describe completely a polarimetric target (Cloude 

S. R., 2009, Lee and Pottier, 2009). 

 

1.5.2 The coordinate system 

The correct selection of the coordinate system for a scattering problem is often a key 

point, since an advantageous selection can reveal symmetries which simplify drastically 

the treatment of the problem (Cloude S. R., 1995 ).  

The most common choice is to set the coordinate system in agreement with the 

propagating wave (on the plane wave). This strategy takes the name of Forward (anti-

monostatic) Scattering Alignment (FSA), and it is probably the optimum alternative 

when the scattering occurs in any direction (as in the bistatic case). However, in general, 

the transmitter and receiver antennas are the same (i.e. monostatic system). In this 

situation, a coordinate system in agreement with the antenna can be employed since the 

antenna remains fixed. Such a coordinate system is regarded as Back (Bistatic) 

Scattering Alignment (BSA). Figure 1.10 shows the comparison of the two 

arrangements (Boerner W. M., 2004).  

The targets observed in a radar image are commonly reciprocal in the microwave range 

of frequencies. In the case of a monostatic arrangement and reciprocal medium the 

scattering matrix becomes symmetric since for the reciprocal theorem for antennas the 

same antenna behaves equally in transmission and reception (i.e. the scatterer can be 
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interpreted as an antenna itself). Therefore, the two off-diagonal terms of [S] are the 

same. Please note, with the FSA arrangement the symmetry of [S] cannot be exploited. 

This symmetry introduces a significant simplification in the problem since only 3 

complex numbers rather than 4 are necessary to characterise the target (Cloude S. R., 

1995 ). Additionally, a symmetric matrix can be diagonalised with (generally) complex 

eigenvalues. The eigenvectors represent the optimum polarisations for the scattering 

problem, as will be presented in the next chapter (Huynen J. R., 1970, Kennaugh E.M. 

and Sloan R.W, 1952).  

In this thesis, when it is not indicated otherwise, the BSA arrangement will be used, 

since it has been shown to be more advantageous for the study of backscattering 

problems.    

 

 
Figure 1.10 Comparison of FSA and BSA coordinate systems (Boerner W. M., 2004). 
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Chapter 2: Radar Polarimetry 

 

 

Introduction 

The aim of this chapter is to provide the basic concepts and tools for the study of 

polarimetric observations. The literature in this context is vast (especially regarding the 

description of targets) and for the sake of brevity some issues are not covered. Instead, 

this chapter focuses on the tools actually utilised in the formulation of the polarimetric 

detector described in later chapters. For a thorough treatment of polarimetry the reader 

is directed to (Boerner W. M., 2004, Cloude S. R., 2009, Goldstein and Collett, 2003, 

Mott, 2007, Zebker H. A. and Van Zyl J. J., 1991, Lee and Pottier, 2009). 

 

2.1 Wave polarimetry 

This first section is focused on the polarisation of the plane wave, with no connection 

(apparently) with the physical target which has scattered the field. The next section will 

connect the results presented here to the physics of the scattering. 

 

2.1.1 Polarisation ellipse 

An electromagnetic wave far from the source (generally 
λ

2

0 2
D

R ≥  where 0R  is the 

distance from the antenna, D is the aperture-width and λ  is the wavelength) propagates 

as a locally plane wave (Stratton, 1941, Cloude, 1995a). If z is the direction of 

propagation, the electric field can be represented by 



Chapter 2: Radar Polarimetry  31 

  

 
( )














+=+=

− xyx
j

x

y

yx

j

xyyxx e
E

E
uueEEuEuE

φφφ , (2.1) 

where xE  and yE  are the amplitudes of the electric field components and xφ , yφ  its 

phases. Eq 2.1 states that in a plane wave the electric (and magnetic) field is orthogonal 

to the direction of propagation: TEM (Transverse ElectroMagnetic) (Rothwell and 

Cloud, 2001). The two vectors composing the electric field can be used to describe the 

polarisation state of the wave (Azzam and Bashara, 1977, Goldstein and Collett, 2003). 

A widely used parameter is the normalised complex polarisation vector p (Boerner, 

1981): 

 
E

E
p = . (2.2) 

The ratio p is sufficient to describe completely the direction of the electric field on the 

plane transverse to the propagation direction (as long as the polarisation is stationary). 

The ratio p is a complex number, therefore the polarisation of the EM wave can be 

entirely characterised by two real parameters (i.e. real and imaginary part of p). 

Equivalently the two Deschamps parameters α  and φ  (Deschamps, 1951) can be 

exploited:  

 yx φφφ −=  and ( )αtan=
x

y

E

E
. (2.3) 

Please note that the Deschamps parameters are sufficient to characterise the polarisation 

of the EM field but not the total electric field since the absolute phase and amplitude are 

missed. However, the latter are not properties related to the wave polarisation but to the 

radar cross section and the distance of the target. Clearly, the two parameterisations 

describe the same physical entity hence they can be linked to each other by a 

relationship: 
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 ( ) φφ αρ ee
E

E

x

y tan== . (2.4) 

The shape that the tip of the electric vector draws on the transverse plane is generally an 

ellipse and can be described by two angles and one amplitude. The angles are the 

orientation angle ψ  defined in the interval 





−∈

2
,

2

ππ
ψ  and the ellipticity angle χ  

defined in 





−∈

4
,

4

ππ
χ . Conventionally, positive and negative values of χ  represents 

respectively left-handed (anti-clockwise) and right-handed (clockwise) rotations 

(Boerner W. M., 2004, Cloude S. R., 2009, Lee and Pottier, 2009). Figure 2.1 depicts 

the polarisation ellipse in relation to the angles.  

 
Figure 2.1. Polarisation ellipse (Boerner W. M., 2004) 

 

Again a unique link can be found between the ellipse angles and the polarisation ratio: 

 
ψχ

χψχ
ρ

2cos2cos1

2sin2sin2cos

+

+
=

j
. (2.5) 
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While the link with the Deschamps parameters is 

 ψχα 2cos2cos2cos = , 

 
ψ

χ
φ

2sin

2tan
tan = . (2.6) 

 

2.1.2 Jones vectors 

In the previous section the choice of parameters depends on the selected coordinate 

system (in our case horizontal and vertical). In order to generalise the treatment, the 

electric field must be expressed as the coherent superposition of two orthogonal 

components  

 nnmm EuEuE += , (2.7) 

where mu  and nu  are two generic orthogonal unitary vectors on the plane transverse to 

the propagation (Goldstein and Collett, 2003, Beckmann, 1968). The components mE  

and nE  (complex numbers) can be used to define a vector, which is called the Jones 

vector:  

 







=

n

m

mn
E

E
E . (2.8) 

The Jones vector is a two dimensional complex vector, therefore it has four degrees of 

freedom. In order to keep the formulation general, a procedure is needed to modify the 

basis starting from a generic Jones vector. If another basis iu  and ju  is selected the 

vector becomes 

 







=

j

i

ij
E

E
E . (2.9) 

The transformation able to map the vector in the new basis is performed with a unitary 
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2x2 matrix 

 [ ] mnij EUE 2= . (2.10) 

The transformation needs to be unitary since a rotation of the axis does not change the 

vector length (it can be interpreted as a conservation law) (Cloude S. R., 1995 , 

Bebbington, 1992). 

The link of [ ]2U  with the complex polarisation ratio of the initial basis is 

 [ ] 














 −

+
=

i

i

e

e
U

φ

φ

ρ

ρ

ρρ 0

0

1

1

1

1 *

*2 , (2.11) 

where iφ  is a phase factor. Remarkably, this phase (in the following defined as absolute 

phase) can be neglected in the case of single pass polarimetry although it keeps 

information about the observed target (Cloude S. R. and P., 1998, Papathanassiou K. P., 

1999). In conclusion, the complex polarisation ratio ρ  is dependent on the basis 

considered. Table 2.1 presents the values of ρ  for frequently utilised bases. 

 

Polarisation ψ  χ  
HVρ  °°13545ρ  LRρ  

Linear Horizontal 0 0 0 -1 1 

Linear Vertical 0 

2

π
 

∞  1 -1 

45° Linear 0 

4

π
 

1 0 j 

135° Linear 0 

4

π
−  

-1 ∞  -j 

Left handed Circular 

4

π
 

any j j 0 

Right handed circular 

4

π
−  

any -j -j ∞  

Table 2.1. Expression of the complex polarisation ratio ρ  for different bases. 
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2.1.3 Stokes vectors 

In the previous section, the treatment of wave polarimetry assumes an implicit 

hypothesis: stationarity in time. Obviously, the electric field is not stationary since it 

keeps oscillating, tracing the polarisation ellipse. It is the later which remains stationary 

(i.e. the same in time). This does not represent the general scenario where the 

polarisation ellipse is a function of time and changes shape. The aim of this section is to 

introduce the mathematical tools required to describe a non-stationary wave polarisation 

(Beckmann, 1968).  

If the EM wave changes its polarisation in time, it will be regarded as partially 

polarised, in contraposition with the completely or pure polarised one (treated in the 

previous section). When the polarisation changes in time, instantaneous observations 

become insufficient to characterise completely the wave, therefore averaged information 

are required. The Jones vector can be used to calculate means and cross-correlation of 

the two components of the field, providing the statistics characterisation of the 

moments. A wave coherence matrix (or Wolf matrix) is defined as 

 [ ] 







=












==

VVVH

HVHH

VVHV

VHHHT

JJ

JJ

EEEE

EEEE
EEJ

**

**
* ,  (2.12) 

where .  represents the temporal/ensemble averaging (Jones, 1941, Wolf, 2003). [J] is 

positive definite and has Hermitian symmetry. The diagonal terms correspond to the 

components power, hence the sum of the diagonal terms, i.e. [ ]{ }JTrace  is the power of 

the wave. On the other hand, the diagonal terms are the cross-correlations between 

components. If there is no correlation (i.e. 0== VHHV JJ ) the wave is completely 

unpolarised and the power is distributed equally in any two orthogonal axes (in 

particular VVHH JJ = ) (Cloude S. R., 1987, Lüneburg, 1995 ). Physically, a completely 

unpolarised wave has a polarisation which changes so radically in time that statistically 

any polarisation has the same amount of power as any other. In this situation, the wave 

can be represented by only one parameter (i.e. the amplitude of any component). The 

opposite case is when the [ ]( ) 0det =J  or VHHVVVHH JJJJ =  and the wave is completely 
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polarised. This is the stationary case, when the polarisation does not change in time and 

cross terms are exactly equal to the product of the two components. The latter 

expression could be seen as a Cauchy-Schwarz inequality which becomes equality for 

completely correlated components (Strang G., 1988). In general, cross terms increase 

with the polarisation purity of the wave.  

The Stokes parameters are widely used to describe partial polarisations. They are 

initially defined in the case of pure polarisations:  

 




















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
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


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−

+

=



















=

χ

ψχ

ψχ

φ

φ

2sin

2sin2cos

2cos2cos

sin

cos
2

2

2

2

22

22

3

2

1

0

A

A

A

A

EE

EE

EE

EE

q

q

q

q

q

HVVH

HVVH

VH

VH

, (2.13) 

where A, ψ  and χ  are the ellipse parameters (Born and Wolf, 1965, Goldstein and 

Collett, 2003). As can be easily demonstrated the four Stokes parameters are not 

independent of each other, since 2
3

2
2

2
1

2
0 qqqq ++= . The parameters expressed in eq.2.13 

are not sufficient to describe partial polarisations: they need to consider averaged 

components: 

 



















−

+

−

+

=





















−

+

−

+

=



















=

VHHV

VHHV

VVHH

VVHH

HVVH

HVVH

VVHH

VVHH

iJjJ
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EEjEEj

EEEE

EEEE

EEEE

q

q

q

q

q

**

**

**

**

3

2

1

0

. (2.14) 

Eq.2.14 shows that the Stokes vectors can be easily associated with the Jones matrix 

elements (Zebker H. A. and Van Zyl J. J., 1991).  

Two parameters are introduced to measure the polarimetric purity/impurity of the wave: 

a) The degree of coherence µ  

 
VVHH

HV
HV

JJ

J

+
=µ , (2.15) 
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which estimates the importance of the cross terms in the Jones matrix.  

b) The degree of polarisation ρD  

 
[ ]( )
[ ]( ) 0

2
3

2
2

2
1

2

4
1

q

qqq

JTrace

JDet
D

++
=−=ρ , (2.16) 

which takes into account the correlation of the Jones vector components. 

For a completely unpolarised wave 0== ρµ DHV  and for a completely polarised one 

1== ρµ DHV . 

The relationship 2
3

2
2

2
1

2
0 qqqq ++=  found for pure states of polarisation is not fulfilled 

for partial polarisations since 2
3

2
2

2
1

2
0 qqqq ++≥ . Physically, the variation of the 

polarisation ellipse (i.e. ψ  and χ ) reduces the last three elements of the Stokes vector 

but leaves unaffected the first element (related to the total power 2A ). 

The coherence matrix [J] is based on the Jones vector and the unitary matrix (introduced 

previously) can be used with a similarity transformation to perform the change of basis 

(van Zyl et al., 1987): 

 [ ] [ ]( ) [ ]( ) [ ] [ ] [ ][ ][ ] T

mn

TT

ijij

T

ijijij UJUUEEUEUEUJ
*

22
*

2
*

2
*

22 === . (2.17) 

 

2.1.4 Poincaré polarisation sphere 

Considering that polarisation is basically a geometrical property of the plane wave, 

several techniques to visualise the field polarisation were introduced in the literature. 

The Poincaré sphere is one of the most powerful. This is based on a unique 

transformation from the space of the wave (two dimensional complex) to a three 

dimensional real space (coordinate space) (Bebbington, 1992, Lüneburg, 1995 , Ulaby 

and Elachi, 1990). 

Figure 2.2 represents the Poincaré sphere. The linear polarisations are on the equator, 
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the left handed polarisations are on the upper hemisphere and the right handed on the 

lower one. The north and south poles represent respectively left and right circular 

polarisations. Any pure state of polarisation (i.e. 2
3

2
2

2
1

2
0 qqqq ++= ) will be mapped on 

the surface of the sphere. Conversely, a partially polarised wave is inside the sphere (i.e. 

2
3

2
2

2
1

2
0 qqqq ++≥ ). A visual explanation is provided in (Deschamps G. A. and Edward 

P., 1973). The instant wave polarisation can be represented as a point that moves on the 

surface of the sphere. However, during the acquisition several polarisations states are 

averaged together leading to a resulting vector inside the sphere (i.e. the barycentre of 

points distributed on a sphere is inside the sphere).  

 

 
Figure 2.2 Poincaré sphere (Boerner W. M., 2004). 

 

2.1.5 Wave decomposition theorems 

The wave coherence matrix is Hermitian, therefore the Single Value Decomposition 

(SVD) can be applied and it has real positive eigenvalues (Strang G., 1988). In 

particular, the diagonalisation extracts a basis (the eigenvectors) where the 

representation of the matrix is diagonal. 
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ee
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*

2221

1211

2

1

2221

1211

0

0
























=









λ

λ
. (2.18) 

The eigenvalues are 021 ≥≥ λλ , and the eigenvector [ ]Teee 12111 ,= , [ ]Teee 21222 ,=  are 

unitary vectors forming the columns of a unitary (full rank) matrix that performs a 

rotation of [J]. The diagonalisation is a unique procedure and the eigenvalues are 

invariant of [J]. In particular, the SVD has remarkable physical insight since the two 

eigenvectors represent two orthogonal axes where the wave is completely polarised 

(Goldstein and Collett, 2003, Cloude S. R., 2009, Lee and Pottier, 2009).   

 [ ] ( )T
eeJ

*
111 =  and [ ] ( )T

eeJ
*
222 = . (2.19) 

Two equivalent decompositions can be performed: 

a) Two contributions, one completely polarised and one completely unpolarised:  

 [ ] ( )[ ] [ ]22121 IJJ λλλ +−= . (2.20) 

The second component can be interpreted as polarimetric noise, since its two 

eigenvectors are equal. Please note, thermal noise is only an example of polarimetric 

noise and several scatterers have this behaviour.  

b) Two orthogonal, completely polarised contributions: 

 [ ] [ ] [ ]2211 JJJ λλ += . (2.21) 

The two contributions represent pure states of wave polarisation since the matrices [ ]1J  

and [ ]2J  have rank one (i.e. the columns are dependent). Their determinants will vanish 

[ ]( ) [ ]( ) 021 == JDetJDet , leading to the relation found earlier for completely polarised 

waves. 

In conclusion, a plane wave can always be represented by the composition of two 

completely polarised waves. In the case 21 λλ = , the two waves statistically have the 

same power and the total wave is completely unpolarised. On the other hand, if 02 =λ  



40   

we can express the total wave with just one polarised state (i.e. the wave is completely 

polarised). Consequently, the eigenvalues can be used to extract information regarding 

the degree of polarisation of the wave: 

 
21

21

λλ

λλ
ρ

+

−
=D . (2.22) 

As expected, the degree of polarisation (which is a physical property of the wave) can 

be expressed with invariants of the coherence matrix (i.e. the eigenvalues), hence it is an 

invariant itself (Cloude S. R., 2009).  

Another parameter widely utilised to extract information about the polarimetric purity is 

the wave entropy: 

 ( )∑
=

−=
2

1
2log

i

ii PPH , with 
21 λλ

λ

+
= i

iP , (2.23) 

where iP  represents a probability, hence, 121 =+ PP . The wave entropy H varies 

between 0 and 1 and provides information about the randomness of the polarisation 

state. Specifically, when H=1 the two eigenvalues are equal and the wave is completely 

unpolarised. On the other hand, when H=0 the second eigenvalue is zero and the wave 

is completely polarised. 

 

2.2 Target polarimetry: Single targets 

Wave polarimetry builds up the fundaments to describe the polarimetric behaviour of 

objects illuminated by an EM wave. However, one single wave scattered from a target is 

insufficient to characterise completely and uniquely the target. As explained in the 

previous chapter, several measurements must be performed. The starting point of this 

section is the concept of the scattering matrix. 

Similarly to the case of wave polarimetry, we structured the treatment making a 

separation between targets which can be represented completely by a single scattering 

matrix (therefore called single targets) and the rest (i.e. partial targets) (Ulaby and 
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Elachi, 1990). In principle, the use of a unique scattering matrix is feasible if and only if 

the target polarimetric behaviour does not change in time/space (i.e. polarimetric 

stationarity). For instance, a steady object illuminated by a completely polarised wave 

scatters a wave which is completely polarised (i.e. 1=ρD ). Moreover, different 

realisations of the same target have to scatter the same polarisation. For some typologies 

of single targets the hypothesis of polarised illumination can be relaxed, since the 

scattered wave is always completely polarised (therefore they are regarded as 

polarisers)(Born and Wolf, 1965, Goldstein and Collett, 2003).  

The counterparts of single targets are the partial targets. During the acquisition the time 

is fixed (the samples are acquired in a precise timestamp), therefore the variation in 

polarisation states is provided by the spatial difference. A partial target cannot be 

characterised by a single pixel acquisition since for a stochastic process any realisation 

can be different from the others. In order to extract useful information an ensemble 

average must be performed (Oliver and Quegan, 1998). Commonly, partial targets are 

classified as distributed targets, which are composed of several scatterers. The 

equivalence of these two target typologies is frequently verified in real data. However, 

some exceptional distributed targets can be described by a single scattering matrix. For 

instance, the latter can be composed by a collection of equal polarisers (e.g. a Yagi 

antenna)(Collin, 1985). We will come back to this concept during the validation of the 

detector (Chapter 5). 

 

2.2.1 Sinclair matrix and basis transformation 

The derivation of the scattering (Sinclair) matrix is illustrated in the first chapter. The 

scattering (or Sinclair) matrix expressed in linear horizontal and vertical basis is 

 















=








i

V

i

H

VVVH

HVHH

s

V

s

H

E

E

SS

SS

rE

E

24

1

π
. (2.24) 

where s

HE , s

VE  are the scattered and i

HE , i

VE  are the incident waves (Kennaugh E.M. 

and Sloan R.W, 1952, Kostinski A. B. and Boerner W.-M., 1986, Krogager E., 1993 , 
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Sinclair, 1950). Algebraically, the scattering matrix can be interpreted as a 

transformation from an incident to a scattered wave and it is necessary and sufficient to 

characterise the polarimetric behaviour of a single target (Cloude, 1986, Cloude S. R., 

1995 ). In particular, under the hypotheses of (i) monostatic sensor (same transmitter 

and receiver antenna) and (ii) medium reciprocity, the two off-diagonal terms are 

identical VHHV SS =  with the exception of the noise. This property can be seen as an 

extension of the reciprocal theorem for antennas (an antenna has the same behaviour in 

transmission and reception)(Collin, 1985).  

The scattering matrix is dependent on the basis (i.e. coordinates) chosen for the 

acquisition: in our case the linear horizontal and vertical polarisations. However, the 

physical insight cannot vary when rotating the axis used to acquire the measurements. 

As for the wave polarisation counterpart an operation must be introduced to perform the 

change of basis of the scattering matrix: 

 [ ] [ ][ ] [ ]THVij USUS 22= . (2.25)  

where again [ ]2U  is a unitary matrix (Lüneburg, 1995 ). The link between the change of 

basis and the complex polarisation ratio ρ  in the new basis is 

 [ ]VVVHHVHHii SSSSS 2***
*1

1
ρρρ

ρρ
+−−

+
= ,   

 [ ]VVVHHVHHij SSSSS **
*1

1
ρρρρ

ρρ
−−+

+
= , 

 [ ]VVVHHVHHji SSSSS **
*1

1
ρρρρ

ρρ
−+−

+
= , (2.26) 

 [ ]VVVHHVHHjj SSSSS +−+
+

= ρρρ
ρρ

2
*1

1
, 

 
ψχ

χψχ
ρ

2cos2cos1

2sin2sin2cos

+

+
=

j
. 
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In order to extract physical information from [S], we are interested in the invariants of 

the matrix. For instance its determinant 

 [ ]( ) [ ]( )ijHV SDetSDet = . (2.27) 

Please note, the unitary matrix used in the change of basis does not change the 

determinant. 

Additionally, the total power acquired in the polarimetric measurement is invariant as 

well. It can be calculated with the span of the scattering matrix.  

 [ ]( )
22222222

jjjiijiiVVVHHVHH SSSSSSSSSSpan +++=+++= . (2.28) 

 

2.2.2 Scattering features vectors 

The aim of this section is to provide a geometrical representation of the target based on 

a vector rather than a matrix. The reason is that with vectors it is often easier to handle 

algebraic manipulations (Cloude S. R., 1987, Ulaby and Elachi, 1990). A scattering 

features vector was introduced: 

 [ ]{ } [ ]TkkkkSTracek 43214 ,,,
2

1
=Ψ= . (2.29) 

where Ψ  is a complete set of 2x2 complex basis matrices under a Hermitian inner 

product. Considering Ψ  is a complete basis set for the matrix space, all the information 

kept in the scattering matrix are reversed into the scattering vector. Algebraically, the 

procedure can be interpreted as a rearrangement of the polarimetric information through 

linear combinations of the scattering matrix elements. Therefore, the two 

representations are completely equivalent (Strang G., 1988). 

In the literature, two standard basis sets have been utilised (Boerner W. M., 2004, Touzi 

R. et al., 2004): 

a) Lexicographic basis: 
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2L , (2.30) 

where the resulting feature vector is 

 [ ]TVVVHHVHHL SSSSk ,,,4 = . (2.31) 

This representation is advantageous since in some situations it can simplify the 

calculations. Besides, the elements are related to special targets (respectively horizontal 

dipoles, 45 degree oriented dihedral and vertical dipoles). 

b) Pauli basis: 

The spin basis introduced by Pauli and adapted to the BSA coordinate systems (please 

note the Pauli basis has a different expression in the FSA system) are (Cloude S. R., 

1987): 
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
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j

j
P , (2.32) 

and the Pauli scattering vector is 

 ( )[ ]TVHHVVHHVVVHHVVHHP SSjSSSSSSk −+−+= ,,,4 . (2.33) 

The benefit of the Pauli representation is the direct association with physical targets. In 

particular the first element VVHH SS +  represents isotropic scatterers like spheres and 

surfaces (also regarded as odd bounce), VVHH SS −  is related to dihedral with horizontal 

corner line between the two plates (also named even bounce), VHHV SS +   is a dihedral 

with the corner 45 degree oriented and ( )VHHV SSj −  is a non reciprocal target (Cloude 

S. R., 2009, Lee and Pottier, 2009, Ulaby and Elachi, 1990, Zebker H. A. and Van Zyl 

J. J., 1991). Based on the simple physical interpretation, the Pauli scattering vector can 

be used as a coherent decomposition of the observed target.  
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2.2.3 Backscattering case 

As mentioned previously, in the case of (i) monostatic sensor and (ii) reciprocal 

medium, the scattering matrix is symmetric. In physics symmetries are often related to a 

significant simplification of the scattering problem, consequently we want to adopt 

them in our treatment (Cloude S. R., 1995 , Cloude, 1995b). In fact, SAR polarimetric 

acquisitions commonly exploit monostatic sensors (backscattering problem) and at 

microwave radiation observed targets are generally reciprocal. An exception is the 

satellite observations in low frequency, where the ionosphere can be non reciprocal due 

to the presence of plasma (i.e. Faraday rotation) (Freeman, 1992).  

When case (i) and (ii) are fulfilled, the two off-diagonal terms of the scattering matrix 

are equal, VHHV SS =  (with the exception of noise). As a consequence, 3 rather than 4 

complex numbers are necessary to characterise the target. The Pauli and lexicographic 

scattering vectors can be rewriten as 

 [ ]TVVHVHHL SSSk ,2,= ,  

 [ ]THVVVHHVVHHP SSSSSk 2,,
2

1
−+= . (2.34) 

where the factors introduced are necessary to keep the span invariant. Please, note the 

non-reciprocal component in the Pauli scattering vector is removed.  

The scattering vector depends on the basis set used in the feature vector creation. 

Additionally, [S] itself depends on the basis exploited to acquire the polarimetric data.  

The relationship between the Pauli and Lexicographic scattering vector is (Boerner W. 

M. et al., 1997 ): 

 [ ] LP kDk 3= , 

 [ ] PL kDk
1

3
−

= . (2.35) 

[ ]3D  is a transformation where the new basis are represented by its columns:   
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The factor 
2

1
 keeps the span invariant. 

Regarding the basis of [S], the operation is accomplished by multiplying by a unitary 

matrix: 

 ( ) ( )[ ] ( )HVkUABk LLL ρ3= , 

 ( ) ( )[ ] ( )HVkUABk PPP ρ3= . (2.37) 

The complex polarisation ratio ρ  can be used to define the terms of the unitary rotation 
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where [ ]( ) [ ]( ) 133 == PL UDetUDet . 

The change of basis must preserve the span of [S], which is equivalent to the norm of 

the scattering vector: 

 [ ]( ) [ ][ ]( ) 2222*

2

1

2

1
VVVHHVHH SSSSSSTraceSSpank +++=== . (2.39) 

Starting from the scattering feature vector it is possible to derive the scattering 

mechanism which is a normalised vector keeping the polarimatric information: 
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k

k
=ω . (2.40) 

The unitary scattering mechanism can be exploited to extract the projection of the 

polarimetric data over a particular target of interest: 

 ( ) ki
T*

ωω = . (2.41) 

The projection is a complex scalar and can be interpreted as a SAR image. 

Now it is possible to define the normalised cross correlation between projections over 

two different scattering mechanisms (Cloude S. R., 2009). This is named polarimetric 

coherence: 

 
( ) ( )

( ) ( ) ( ) ( )*
22

*
11

*
21

ωωωω

ωω
γ

iiii

ii

⋅⋅

⋅
= . (2.42)   

 

2.2.4 Polarisation Fork 

One fascinating topic in radar polarimetry is the assessment of the polarisations 

providing the maximum return from a given single target (Huynen J. R., 1970, 

Kennaugh E.M. and Sloan R.W, 1952, Kennaugh, 1981). Once the optimum 

polarisation is known, the antenna can be tuned to it in order to improve the detection 

performance. Besides, it is relevant to find the polarisation able to delete completely the 

return coming from a clutter source (for instance clouds in aircraft detection). A series 

of experiments and theoretical work led to the formulation of the Polarisation Nulls 

theory (Agrawal and Boerner, 1989, Boerner W. M. et al., 1981, Boerner, 1981, Huynen 

J. R., 1970, Kennaugh E.M. and Sloan R.W, 1952, Cloude S. R., 1987).  

In particular, four characteristic polarisations were initially identified. 

a) 2 optimum polarisations or Cross-pol Nulls:  

If a target is illuminated by a Cross-pol Null, the backscattering in the cross polarisation 
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vanishes. In particular, the entire energy scattered backward is concentrated in the co-

polarisations. The cross terms of the scattering matrix vanish and this becomes 

diagonal. In other words, the Cross-pol Nulls are the eigenvectors which diagonalise [S] 

while their backscattering are the eigenvalues. Please note, the scattering matrix is 

symmetric, hence it can be diagonalised and the eigenvalues will generally be complex 

numbers. The first eigenvector (the one with highest eigenvalue) represents the 

polarisation with the maximum return from the target.  

Alternative ways to calculate the Cross-pol Nulls consider the diagonalisation of the 

Graves matrix (Graves, 1956) (which will be introduced in the next section) or 

performing an optimisation of the co-polarisations with the Lagrangian approach. These 

polarisations will be regarded in the following as 1X  and 2X . 

b) 2 Co-pol Nulls:  

These are polarisations that when transmitted do not have any return in the co-

polarisation since all the backscattered energy is located in the cross polarisation. If a 

Co-pol Nulls basis is exploited to acquire the scattering matrix, the diagonal terms will 

vanish. There exist several ways to calculate the Co-pol Nulls. The use of the 

Lagrangian over all the possible cross polarisations is the most used approach (Boerner 

W. M. et al., 1981). 

The practical relevance of the Co-pol Nulls is that they can be employed to mask out 

clutter. Unfortunately, the Co-pol Nulls lose significance for partial targets since the 

exact null of the backscattering is never obtained. In the following, these polarisation 

are regarded as 1C  and 2C . 

If Cross-pol Nulls and Co-pol Nulls are displayed on the Poincaré sphere they will lie 

on the same plane shaping a fork as shown in Figure 2.3. The Cross-pol Nulls 1X  and 

2X  are antipodal points on the sphere, since they are orthogonal polarisations (Huynen 

J. R., 1970, Kennaugh E.M. and Sloan R.W, 1952). Regarding the Co-pol Nulls 1C  and 

2C , they have the same angular distance from the maximum Cross-pol Null, γ2  (the 

physical meaning of the angle γ  will be explained in the following). Unfortunately, in 
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the case of partial targets, the 4 characteristic polarisations do not lie on the sphere (or 

even the same plane) and the whole concept of the polarisation fork loses relevance 

since it cannot be rigorously defined (Boerner W.M. et al., 1991, van Zyl J. et al., 1987). 

  

 

 Figure 2.3. Polarisation fork. 

 

Any single target has a unique polarisation fork. In the following, two special cases 

largely used in the validation of the proposed detector are illustrated (Cloude S. R., 

1987, Huynen J. R., 1970): 

 a) Reflections:  

The two eigenvalues of the scattering matrix have the same amplitude. In this instance, 

the two Co-pol Nulls 1C  and 2C  become antipodal on the Poincaré sphere (this can be 

proved with the Huynen parameters presented in the next section). Cross-pol null 

couples are infinite in number and they lie on the circle made by the interception of the 

Poincarè sphere with the plane passing through the centre and the polarisation fork. 
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b) Degenerate: if there is only one eigenvalue different from zero, the eigenproblem is 

degenerate (the rank of the scattering matrix is 1). In this situation the two Co-pol Nulls 

1C  and 2C  will be coincident and antipodal to the first Cross-pol Null 1X . Hence 1C  

and 2C  and 2X  will lie on the same point on the Poincaré sphere. Examples of 

degenerate targets are dipoles.  

After the pioneering work of Kennaugh and Huynen (who first studied the characteristic 

polarisations), other work was carried out on the polarisations able to characterise the 

polarimetric behaviour of targets (Boerner W. M. et al., 1981, Boerner, 1981, Xi and 

Boerner, 1992). 4 other polarisations were added to the previous list: 

c) 2 Cross-pol Maxima: these are polarisations that when transmitted have the 

maximum return for the cross polarisation. They are obtained with a maximisation of 

the cross terms (for instance with a Lagrangian approach). These polarisations lie on the 

plane of the polarisation fork but generally they are different from the Co-pol Nulls. 

They are antipodal to each other and have an angular distance of 90 degrees from the 

Cross-pol Nulls. They are indicated with 1S  and 2S  on Figure 2.3. Cross-pol Maxima 

overlap with Co-pol Nulls in the case of multiple reflections (i.e. when the two 

eigenvalues of the scattering matrix are the same), since the angle between Co-pol Nulls 

and Cross-pol Nulls in this case is 90 degrees. 

d) 2 Cross-pol Saddle points: these points have no strong physical meaning, but 

geometrical meaning on the Poincarè sphere, since they lie on the interception with the 

normal of the polarisation fork passing through the centre. (Please note, for the sake of 

readability in Figure 2.3 the Saddle points are not depicted). 

 

2.2.5 Huynen single target decomposition 

The polarisation fork is particularly advantageous for radar systems designed to focus 

on a particular target, since it is a collection of actual polarisations. On the other hand, 

in this formalism the link with the physics of the scattering could be lost. A 

parameterisation can be helpful to improve this link. In this section, the Huynen 



Chapter 2: Radar Polarimetry  51 

  

parameterisation of the scattering matrix or Huynen coherent decomposition (not to be 

confused with the Huynen incoherent decomposition) is presented (Huynen J. R., 1970, 

Pottier, 1992). As introduced previously, 6 real parameters are needed to completely 

describe the scattering matrix. Huynen developed a representation based on invariants 

of the scattering matrix, as the eigenvectors (i.e. Cross-pol Nulls).  

The expression of the scattering matrix with the Huynen parameters is 

 [ ] ( )[ ] ( )[ ][ ] ( )[ ] ( )[ ]mmdmm RTSTRS ψχχψ −= ,  
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The maximum eigenvector can be represented by four real numbers: the amplitude m, 

the absolute phase ζ , the orientation mψ  and the ellipticity angle mχ . Once the first 

eigenvector is fixed, the second one is obtained as the antipodal polarisation on the 

Poincarè sphere. mψ  has a central role in the representation since it makes the rest of the 

parameters independent of the orientation angle (rotations around the LOS: Line of 

Sight). The last two parameters are related to the amplitude and phase relationship 

between the two eigenvalues. Specifically, γ  is the characteristic angle defining the 

reciprocal weight of the eigenvectors. It controls the target typology, moving from 

multiple reflections for °= 45γ  to degenerate target (e.g. dipole) for °= 0γ . Finally, 

the skip angle υ  is associated with the eigenvalues phase relationship. It is named skip 

angle because in the case of multiple reflections it determines if the number of 

reflections is even or odd (Huynen J. R., 1970).  

The absolute phase ζ  needs a further clarification. This angle contains information 

about a physical property of the target, however in single pass polarimetry it cannot be 
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separated from the phase due to the range distance (i.e. geometrical phase). In other 

words, if the target moves along the range the phase changes even though the target 

remains the same. Therefore, ζ  is generally neglected in single pass polarimetry.  

Regarding the amplitude m, in the case of scattering mechanism this is always equal to 

1 since the vector is normalised. In conclusion, the scattering mechanism has only 4 

degrees of freedom represented by mψ , mχ , γ  and υ . 

 

2.3 Target polarimetry: Partial targets 

A partial target scatters an EM wave with a degree of polarisation smaller than 1. 

Considering that the polarisation state is a function of time/space, partial targets can be 

modelled as random processes. Dealing with random processes, a single realisation is 

not sufficient to describe the process completely, since distinct realisations can be 

drastically different. A statistical description is required, specifically the second order 

moments of the scattering vector components can be estimated (Dong Y. and Forster B., 

1996, Lang, 1981, Oliver and Quegan, 1998). 

 

2.3.1 Muller and Graves matrices 

In the previous section, the Stokes parameters were used to describe a partial state of 

wave polarisation. However, they are not sufficient for partial targets since they are 3 

independent real numbers, while the target has more degrees of freedom (e.g. a single 

target has 5). In other words, more than one Stokes vector is required. The scattering 

process can be interpreted as a transformation between an incident and a scattered wave. 

In the previous section, these two waves were polarised and to a 2x2 scattering matrix. 

On the other hand, partial targets scatter partially polarised waves, hence the Stokes 

vector must be utilised (Beckmann, 1968).  

In conclusion, partial target scattering can be explained as a transformation between an 

incident and a scattered Stokes vector. This transformation can be represented with a 

4x4 real matrix which is regarded as the Muller matrix [M] (Barakat, 1981, Cloude, 
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1986, Kennaugh E.M. and Sloan R.W, 1952, van der Mee and Hovenier, 1992). [M] is 

4x4 with real entries, therefore has 16 real numbers (they are all independent only in 

bistatic case). In the literature, the Muller matrix applied on monostatic and reciprocal 

medium is sometimes called the Kennaugh matrix [K].  

The transformation can be written as: 

 [ ] is
qMq = . (2.44) 

Single targets represent a special case where only 6 of the 16 terms are independent and 

there exists a unique link between [M] and [S]. 

The Muller matrix is not the only technique exploiting the second order statistics of the 

partial target. In the literature, the power matrix or Graves matrix (Graves, 1956) was 

proposed: 
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 [G] is positive semi-definite and diagonalisable. Its eigenvectors are the optimum 

polarisations for the scattering matrix (since the eigenvectors do not change when a 

matrix is squared).  

The Graves matrix leads to an incoherent target decomposition able to separate the 

power terms due to horizontal and vertical components:  
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3.3.2 Covariance matrix 

Another common way to estimate the second order statistics exploits the scattering 
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vector (Cloude S. R., 1987, Lee and Pottier, 2009, Ulaby and Elachi, 1990, Zebker H. 

A. and Van Zyl J. J., 1991):  

 [ ]
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The resulting matrix is a standard covariance matrix, where the random variables have 

zero mean. In the case of a monostatic sensor and reciprocity it becomes: 
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Equivalently, the covariance matrix can be estimated starting from the Pauli scattering 

vector. For brevity only the 3x3 scenario is presented. This is regarded as coherency 

matrix [T]: 
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 (2.49) 

By definition, the covariance matrix [C] can be estimated starting from any basis set. If 

the scattering vector in a generic basis is given by [ ]Tkkkk 321 ,,=  then: 
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In the following the symbol [C] will be used to describe a covariance matrix 

independently of the selected basis.  

The elements on the diagonal are real positive (regarded as powers). The sum of the 

diagonal elements (i.e. Trace of the matrix) is a polarimetric invariant since it represents 

the total power acquired by the system or the span of the scattering matrix:  

 [ ]( ) [ ]( )SSpanCTrace = . (2.51) 

The diagonal terms are the cross-correlations between the components of the scattering 

vector. They provide information about the presence of coherent targets or in general 

the degree of polarisation.  

As for scattering vectors, the basis can be modified with unitary transformations: 
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Obviously, the change of basis does not modify the total power backscattered: 

 ( )[ ]( ) ( )[ ]( )HVCTraceABCTrace = . (2.53) 

Considering the Hermitian symmetry, only 3 real (i.e. the diagonal) and 3 complex (i.e. 

off-diagonal of the upper triangular part) terms are independent of each other. 

Therefore, 9 real parameters are necessary and sufficient to characterise partial targets 

(Cloude S. R., 1995 , Cloude, 1986).  

Starting from the covariance matrix, it is possible to define the polarimetric coherence 

between two scattering mechanisms 1ω  and 2ω  as: 
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Hence, 
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2.3.3 Eigenvalue decomposition (Cloude-Pottier) 

By definition, the covariance matrix is semi-definite positive and Hermitian. Therefore, 

it can be diagonalised and the eigenvalues are real positive (Cloude R. S., 1992, Cloude 

S. R. and Pottier E., 1996, van Zyl, 1992).  

The eigenproblem to solve is (Strang G., 1988): 

 [ ] iii uuT λ=   for 3,2,1=i  (2.56)  

or equivalently   

 [ ]( ) 0][ =− ii uIT λ   for  3,2,1=i  (2.57)  

The three resulting eigenvectors 1u , 2u  and 3u  represent a basis where the components 

are independent of each other. The change of basis which makes [T] diagonal can be 

accomplished with a unitary matrix [ ] [ ]321 ,, uuuU = , with the eigenvectors as columns: 
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where [ ]Σ  is the diagonal matrix of the eigenvalues 1λ , 2λ  and 3λ : 
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Once the eigenvector basis is extracted, [T] can be decomposed into three independent 

contributions: 

 [ ] [ ] ∑∑
==

⋅==
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ii uuTT λλ .  (2.60) 

Each contribution is a target with a coherence matrix of rank one, therefore a single 

target. Remarkably, any coherence matrix is Hermitian and the eigenvalues are 

independent of the basis. As a result, the decomposition can be applied to any partial 

target and it is unique (Cloude R. S., 1992, Cloude, 1995b).  

The diagonalised matrix [ ]Σ  is obtained with a unitary transformation (specifically a 

similarity), consequently, the sum of the eigenvalues is equal to the span of the 

scattering matrix: 

 [ ]( ) [ ]( )SSpanTrace =Σ=++ 321 λλλ . (2.61) 

The eigenvalues are associated with the power scattered by a single target. Once sorted, 

1λ  represents the strongest single target. On the other hand, 3λ  is associated with the 

single target with minimum return (in general this is just an algebraic rather than a real 

target in the scene). When 01 ≠λ  and 32 λλ =  the [T] matrix itself has rank one and 

only one single target is present in the scene. Clearly, the latter occurrence is just 

theoretical since the thermal noise is spread over all the components and [T] will always 

be full rank. On the other hand, when 321 λλλ ==  any single targets in the scene share 
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the same amount of backscattering (this is the counterpart of a completely unpolarised 

wave in target polarimetry).  

It is apparent that the reciprocal weight among the eigenvalues is related to the target 

degree of polarisation. A methodology analogous to the wave entropy can be exploited 

extracting the target entropy H: 

 ( )∑
=

−=
3

1
3log

i

ii PPH ,  (2.62) 

and  
321 λλλ

λ

++
= i

iP . (2.63) 

When there is no dominant single target, the three eigenvalues are comparable and the 

entropy is close to one. On the other hand, if only one eigenvalue is different from zero 

the entropy will be close to zero (Cloude S. R., 2009, Lee and Pottier, 2009).  

As introduced previously the eigenvalues are invariants of the coherence matrix, 

therefore the entropy is invariant as well. Unfortunately, the entropy alone is not 

sufficient to characterise completely the distribution of power among the eigenvalues, 

since at least two ratios are required (i.e. two real parameters). For instance, two single 

targets with comparable power would result in high entropy, however the target in the 

scene is still relatively coherent. Another invariant parameter must be introduced. This 

parameter is called Anisotropy: 

 
32

32

λλ

λλ

+

−
=A .  (2.64) 

This is defined between zero and one and is small when the second and third 

eigenvalues are comparable. A and H contains all the polarimetric information of the 

eigenvalues for exception of total backscattering. Together they are a powerful tool for 

classification (Cloude S. R. and Pottier E., 1997, Ferro-Famil et al., 2002, Lee J. S. et 

al., 1999, Lee et al., 1994a, Lee et al., 2004). 4 parameters can be defined combining A 

and H together: 
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a) (1-H)(1-A) is high when only one single target is dominant. The single target reduces 

the entropy, while the second two eigenvalues are similar and they do not represent 

physical targets (i.e. 032 == λλ ). 

b) H(1-A) can detect random processes, since all the eigenvalues are similar. Hence, the 

entropy is high and the anisotropy is low as for a completely unpolarised target (i.e. 

321 λλλ == ).  

c) HA identifies two single scattering mechanisms with approximately the same 

strength. Hence the entropy will be relatively high as well as the anisotropy since the 

last eigenvalue is much smaller than the second (i.e. 03 =λ ) 

d) (1-H)A is high when two single targets are present but this time they have different 

intensity. As a consequence, the entropy is relatively low (i.e. presence of a dominant 

targets) but the anisotropy is high since the third eigenvalue is close to zero (i.e. 

21 λλ >>  and 03 =λ ). 

 

2.3.4 α  scattering model 

Any eigenvector (or scattering mechanism in general) can be represented as: 

 [ ]Tjj eeu ηε βαβαα ⋅⋅= sinsin,cossin,cos ,   (2.65) 

where α  is the characteristic angle, β  is related to the orientation angle of the target (in 

particular βψ 2= ) and ε , η  are phase angles for the second and third components 

(Cloude S. R., 2009, Lee and Pottier, 2009, Papathanassiou K. P., 1999). As for the 

Huynen parameterisation, the scattering mechanism is characterised by 4 parameters.  

The α  model has an immediate algebraic interpretation (in actual fact it was first 

designed as an algebraic transformation). The vector u spans all the space of targets 

since it can be decomposed into two rotations in a spherical coordinate system (i.e. α  

and β ) and two changes of phase to adjust the phases of the rotated vector. 
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Regarding the physical interpretation, the characteristic angle α  keeps information 

about physical properties of the target. It ranges in 





∈

2
,0
π

α , where the extremes are 

reached by isotropic targets (i.e. intermediate values are for anisotropic targets). 0=α  

represents surfaces or spheres (previously defined odd-bounces), and 
2

π
α =  are 

dihedral (i.e. even bounce). 
4

π
α =  has the maximum anisotropic behaviour 

representing dipoles (in fact, the scattering matrix is of rank one and a rotation around 

the LOS can be considered which concentrates all the power in one linear co-

polarisation). Figure 2.4 depicts the association of α  with some standard targets. 

Please note, in order to represent a real target the phase angles must be constrained as 

well (Cloude S. R., 2009, Lee and Pottier, 2009).  

 

 
Figure 2.4. α  characteristic angle. 

 

The eigenvectors obtained by the diagonalisation of the coherence matrix can be 

represented with the α  model. [T] can be written as: 



Chapter 2: Radar Polarimetry  61 

  

 [ ] [ ] [ ] T
UUT

*

3

2

1

00

00

00

















=

λ

λ

λ

,  (2.66) 

and [U] is the unitary matrix of the eigenvectors employing the α  model: 
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When the entropy is particularly low, the first eigenvector is sufficient to describe the 

observed target, which is approximately single. In the other cases, averaged information 

is required. The idea is to estimate an averaged vector able to represent the partial 

target. The components are obtained modelling a Bernoulli process with independent 

and identical distributed variable (i.e. the parameters will be averaged with the weight 

of their probabilities):  

 ∑
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 [ ]Tjj eeu ηε βαβαα ⋅⋅= sinsin,cossin,cos ,  

   

where iP  is the probability of the corresponding eigenvalue. Eq.2.67 gives averaged 

information about the partial target and in the case of sufficiently low entropy it 

characterises the physical properties of the target (Cloude S. R. and Pottier E., 1996). 

 

2.4 Polarimetric detection 

The detector developed in this thesis exploits physical rather than statistical properties 

of the target, and does not require statistical a priori information. In the literature 
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several polarimetric detector have been proposed (Cloude S. R. et al., 2004, De Grandi 

G.D. et al., 2007, Margarit G. et al., 2007, Novak L. M. et al., 1993a, Novak L. M. et 

al., 1993b, Novak L. M. et al., 1999, Novak et al., 1997, Novak and Hesse, 1993, 

Chaney R. D. et al., 1990). In this section, a brief overview of some of these detectors is 

provided. Both typologies of detectors with and without a priori information will be 

presented. However, a thorough list of statistical detectors would be exceedingly long 

and is beyond the scope of this thesis, since the proposed detector is focused on the 

physics of the scattering. Therefore, only a few significant cases will be presented. The 

last section is dedicated to the Polarimetric Whitening Filter. This was demonstrated to 

be the optimal processing for speckle reduction and it does not require statistical a 

priori information about the target (Chaney R. D. et al., 1990, Novak L. M. et al., 

1993a, Novak and Hesse, 1993). For these reasons it seems to be the best comparison 

for our detector. 

 

2.4.1 Detectors based on statistical approaches 

In the following, a list of widely used detectors is presented (Chaney R. D. et al., 1990, 

Novak L. M. et al., 1993a). 

 

a) Optimal Polarimetric Detector (OPD): 

This is a simple likelihood-ratio-test which considers the complete knowledge about the 

statistics of clutter and target. It can be expressed as: 

 [ ] ( ) [ ] [ ]( ) ( ) TXXXXXX tct

T

tc

T
>−Σ+Σ−−Σ

−− 1*1* , (2.69) 

where tX  is the target mean, tΣ  and cΣ  are the polarimetric covariance matrices for 

target and clutter respectively, and T is the detector threshold. Please note, the detector 

requires a priori information about the mean and covariance matrix of target and clutter. 

These must be adjusted to the different scenarios before any detection (Novak et al., 

1987). 
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b) Identity likelihood-ratio-test (ILR): 

This is a variant of the OPD, where the target covariance matrix is substituted with a 

scaled identity matrix. Furthermore, it assumes 0=tX  (target with zero mean, i.e. non 

deterministic target). The resulting detector is: 

 [ ] ( )( )[ ] [ ] TXIXSpanEX ctc
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>
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



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


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4

1
.   (2.70) 

The algorithm still requires a priori knowledge of clutter covariance matrix plus the 

ratio between target and clutter (DeGraff, 1988). 

 

2.4.2 Detector based on physical approaches 

In this section, we will illustrate some detectors which do not use a statistical approach 

(at least in the first stage). However, in order to improve the detection performances 

they often exploit a subsequent statistical step (which will not be presented here). 

 

 a) Single Channel Detector: 

This is the simplest detector and it makes the assumption that the target to detect has a 

significant cross section (or at least higher than the surrounding clutter). They are based 

on the idea that artificial targets are mainly composed of corners and mirrors with a 

consequent bright backscattering. In the case where only one polarisation is accessible 

and a priori information are not available, a linear co-polarisation (horizontal or 

vertical) seems to be the best choice for detection of odd-bounces and horizontal even-

bounces. The detector can be summarised as 

 THH >
2

. (2.71) 

The average is necessary to reduce the speckle variation (Oliver and Quegan, 1998). For 

instance, the single pixel intensity is affected by a large statistical variation. On the 
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other hand, with averaging, the distribution becomes closer to the mean power 

backscattered (i.e. smaller variance).  

In some scenarios, linear co-polarisations are not the best choice, since the clutter is 

particularly bright with them. If dual polarimetric data are available (only one column of 

the scattering matrix), the cross polarisation can be exploited as well. A classical 

application is ship detection, where rough sea can have bright backscattering in HH and 

VV but not in HV. Hence, the detector would be: 

 THV >
2

. (2.72) 

Note that in the latter situation, we are adding physical a priori information (but not 

statistical). 

The benefit of adopting a one polarisation approach is the relatively low complexity of 

the acquisition system. The drawback is that the performance is rather poor in terms of 

missed detections and false alarms. Missed detection can occur when the polarisation 

selected is a Co-pol Null for the target. As shown previously, any single target has a Co-

pol Null, and if we are unfortunate to have only that polarisation available the target will 

be completely transparent (Kennaugh E.M. and Sloan R.W, 1952). For example, if we 

want to detect a vertical wire and the HH polarisation is chosen, the target backscatter 

will likely be below the clutter return. Evidently, another cause of missed detection is 

the insufficient brightness of the targets (i.e. small cross section). Depending on the 

target typology, this can be a significant limitation. Concerning false alarms, many 

natural targets have bright backscattering, constituting false alarms (e.g. an area in 

layover) (Woodhouse, 2006). 

Considering the simplicity of the detector a subsequent statistical step (sometime 

employing a priori information) is generally performed, in order to improve the poor 

performance of the physical detector alone (Kay, 1998). 

b) Span Detector: 

The idea is to reduce the rate of missed detection due to unfortunate choice of the 
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antenna polarisation (equal or close to a Co-pol Null of the target) by considering the 

total power acquired in the scattering matrix. In other words, the entire scattering matrix 

[S] must be acquired (i.e. quad polarimetric data) and its span is exploited:  

 [ ]( ) TVVHVHHSSpan >++=
222

2 . (2.73) 

As in the previous case, statistical a priori information is not necessary for the 

execution of the algorithm. Unfortunately, we still have problems with missed detection 

of weak targets and false alarms from natural targets. However, better performance than 

the single polarisation is expected. Again a subsequent statistical step can improve the 

performances of the detector. 

 

c) Power Maximisation Synthesis (PMS): 

This detector was developed as an improvement of the span detector and can be 

expressed as 

 

[

( ) .4

2
2

1

2
**

222

222

TVVHVHVHHVVHH

VVHVHH

>



⋅+⋅+−+

+++

 (2.74) 

Again quad polarimetric data are needed and it does not use statistical a priori 

information (Boerner et al., 1988, DeGraff, 1988). 

 

 

2.4.3 Polarimetric Whitening Filter (PWF) 

This technique (first introduced by Novak) constitutes a processing strategy able to 

reduce optimally the speckle (Novak L. M. et al., 1993a, Novak and Hesse, 1993). This 

method is separated from the other two categories since it is an algorithm based on 

statistical signal processing of quad polarimetric data but it does not employ any a 

priori statistical information. Moreover it was demonstrated to have the best 
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performance among algorithms without a priori information. Considering that it seems 

to be the best candidate for comparison with our detector, we decided to provide a more 

extended description.  

PWF is a technique able to reduce the standard deviation of the backscattering intensity 

associated with the speckle effect. It assumes that the speckle-reduced pixels have a 

quadratic form with  

 [ ]uAuw
T*

=  (2.75) 

where [A] is a Hermitian positive definite matrix and u is a generic scattering vector. 

The matrix [A] is chosen to minimise the ratio s/m with s the standard deviation and m 

the mean of the intensity. We introduce the polarimetric coherence matrix [C]. The 

matrix [ ] [ ][ ]ACB =  is still Hermitian (since product of two Hermitian matrix) and its 

eigenvalues, 1λ , 2λ  and 3λ  can be extracted. PWF wants to minimise 
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 . (2.76) 

It can be demonstrated that 
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3

1i

iBTracewE λ  and  
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The minimisation of eq.2.76 is equivalent to the minimisation of 
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. (2.78) 

Using the Lagrangian multiplier β , the minimum solution is: 
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Hence λλλλ === 321 . (2.80)  

If the eigenproblem for [B] is explicated for the minimum solution we have 

 [ ][ ] [ ]IAC λ=  (2.81) 

Finally, in order to have the minimisation of Eq.2.76 the matrix [A] must be chosen as 

  [ ] [ ] 1−
= CA λ  (2.82) 

In order to obtain equal diagonal terms in the covariance matrix, a change of basis can 

be performed. Over the new axis selected, the power will be equally distributed. This is 

the reason for the name Whitening Filter, since it makes the clutter look “white”. 

If the hypothesis of reflection-symmetry is performed the new basis is: 
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The image obtained with the PWF PWFi  has an optimal speckle reduction. Subsequently, 

the detection can be accomplished by setting a threshold on the image intensity (Novak 

L. M. et al., 1993a). 
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The PWF will be tested in the validation chapter as the key competing method to the 

proposed new polarimetric detector. A complete analysis of the PWF performance is 

presented in that chapter, here we just mention the problems of missed detection due to 

weak targets and targets with partially developed speckle (e.g. targets under foliage). 

 

2.4.4 Comparison of detectors 

Figure 2.4 shows a comparison of detectors ROC (Receiving Operative Characteristic) 

performed by Chaney for two different targets, a dihedral with different orientations and 

a trihedral (Chaney R. D. et al., 1990).  

The best performances is achieved with the Optimum Polarimetric Detector (OPD), 

since it exploits a priori information of clutter and target. Clearly, the more the detector 

is provided with additional information, the closer it is to the ideal case (deterministic 

detector). However, the PWF is reasonably close to the OPD results. Moreover, PWF 

shows the best performance compared to other detectors without a priori information. 

The plots obtained in Figure 2.4 will be used in the following to perform a theoretical 

comparison with the proposed detector (Chapter 4). 



Chapter 2: Radar Polarimetry  69 

  

 
Figure 2.5. ROC comparison among several detector. OPD: Optimal Polarimetric Detector, 

PWF: Polarimetric Whitening Filter, ILRT: Identity Likelihood-Ratio-Test, PMS: Power 

Maximisation Synthesis (Chaney R. D. et al., 1990). 
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Chapter 3: Polarimetric Detector 

 

 

Introduction 

After the introduction to polarimetry provided in the previous chapter we are now ready 

to develop the new polarimetric detector. This was already published and presented in 

international conferences: (Marino et al., 2010a, Marino et al., In press, Marino A. et al., 

Marino A. and Woodhouse, 2009). In this chapter, two different derivation approaches 

will be followed: the first is associated with an algebraic manipulation while the second 

follows a target physics operation. We believe that in this way a larger picture of the 

detector will be provided. As a subsequent step, the derived mathematical expression 

will be optimised with the purpose of removing eventual biases and improving the 

performance.  

 

3.1 Derivation using an algebraic approach   

In this section, the detector was developed starting from the algebraic representation of 

a single target and implementing some manipulations through a polarimetric coherence. 

The algebraic point of view is sought, with the purpose of obtaining a clearer and 

mathematically more elegant formulation. On the other hand, next section will deal with 

a derivation, which takes into account the physical process of the detector. 

 

3.1.1 Weighting of vector components 

Any single target can be represented with a complex vector in a three dimensional 

space. Specifically, the algebra is constructed on a three dimensional special unitary 
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group SU(3), applied on the field of complex numbers (Cloude S. R., 1995 , Cloude, 

1986, Bebbington, 1992).  

Given a vector x in such space, it is always possible to write the identity:  

 xxI =][ . (3.1) 

where [I] is the identity matrix. Eq.3.1 is a special case of the general transformations 

 bxA =][ . (3.2) 

In our case [A] is a square 3x3 matrix, but in general can be any Nx3 matrix (this 

expression represents a linear system), since x is a 3 dimensional column vector. [A] is a 

transformation of the vector x in a resulting vector b, which lies in another subspace 

(Strang G., 1988, Hamilton, 1989, Rose, 2002). Two such subspaces exist: 

a) The subspace spanned by the column of [A], also named the column subspace  

b) The null space, which is the orthogonal complement to the column subspace.  

In the case [A] is a matrix of full rank, the column space is the entire 3
C  and the null 

space contains solely the null vector 0. Now, if [A] is a diagonal matrix the columns of 

[A] will always represent a basis for the entire 3
C  space (as long as all the elements of 

the diagonal are different from zero).  

In particular, if [A]=[I] the transformation is from the entire space to the entire space 

using the same ortho-normal basis. Clearly, this transformation leads to b=x. In the case 

[A] is a diagonal matrix with at least one element different from 1, the transformation 

space for the resulting vector is still 3
C , but the basis used is not the coordinate one (the 

axes are not normalised vectors). 

The matrix [A] can be formed as: 

 [ ]
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with 1a , 2a  and 3a  complex numbers. In the following, to express a diagonal matrix we 

will use the formalism: [ ] ),,( 321 aaadiagA = . Furthermore, we identify the column 

vectors of [A] as [ ]Taa 0,0,11 = , [ ]Taa 0,,0 22 =  and [ ]Taa 33 ,0,0= . The column basis is 

orthogonal but not ortho-normal since the basis vectors are not unitary. 

By definition of basis, any vector x in the space can be expressed by the linear 

combination of the basis elements (i.e. the columns of [A]). Hence, 

 332211 axaxaxb ++= . (3.4) 

If the coordinate basis is defined as: [ ]Te 0,0,11 = , [ ]Te 0,1,02 =  and [ ]Te 1,0,03 = , the 

linear combination in eg.3.4 can be rewritten as 

 333222111 exaexaexab ++= . (3.5) 

Therefore, the transformation bxA =][  can be seen as a weighting of the x components 

for the elements on the diagonal of [A]. This weighting clearly will redefine the entire 

metric of the space, where all the vectors will be stretched along a preferential axis 

(Strang G., 1988). 

 

3.2.2 Detector 

The first step of the detector is still the definition of the vectors Tω  and Pω . In order to 

keep the development exclusively algebraic, the perturbation process could be achieved 

using the α  parameterisation where the parameters are interpreted as rotations and 

phase changes (please note, the α  model was born as an algebraic operation on 

scattering mechanisms)(Cloude S. R., 2009, Cloude S. R. and Pottier E., 1996). 

Subsequently, a change of basis that performs [ ]TT 0,0,1=ω  is applied. 

The standard Euclidean inner product between Tω  and Pω  can be written as P

T

T ωω
*  

(Hamilton, 1989). It is always possible to consider the identities TTI ωω =][  and 
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PPI ωω =][  consequently the inner product can be rewritten as 

 ( ) ( )P

T

T II ωω ][][
*

= ( ) ( )P

T

T II ωω ][][*

=  

 = P

T

T I ωω ][* = P

T

T ωω
* . (3.6) 

In the previous section, a procedure to achieve weighting of the components is 

described (i.e. multiplication for a diagonal matrix). The weighting of the scattering 

mechanism components can be accomplished with 

 TT bA =ω][  and PP bA =ω][ . (3.7) 

We can define the weighted inner product as P

T

T bb
*  

 ( ) ( )P

T

T AA ωω ][][
*

= ( ) P

TT

T AA ωω ][][ **  =  

 = P

T

T P ωω ][* )
. (3.8) 

The operation sets a preferential direction in the targets complex space which is 

correspondent to the target actually present in the data. Practically, 

 [ ] ),,( 321 kkkdiagA = ,  (3.9) 

where [ ]Tkkkk 321 ,,= .  

At this point, a clarification on eq.3.9 is required. The inner product cannot be 

calculated pixel by pixel, since the pixel statistical variation (i.e. speckle) can result in 

improper estimation of the actual target (Lee, 1986, López-Martínez C. and Fàbregas 

X., 2003, Oliver and Quegan, 1998, Touzi R. et al., 1999). The average over 

independent realisations is essential to obtain reliable results. For this reason, the 

instantaneous inner product P

T

T bb
*  is substituted with the averaged one P

T

T bb
* : 

 ( ) ( )P

T

T AA ωω ][][
*

= P

TT

T AA ωω ][][ **  = P

T

T P ωω ][* , (3.10) 
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 [ ] ( )2

3

2

2

2

1 ,, kkkdiagP = . (3.11) 

Because [A] is a diagonal matrix, [P] will be diagonal as well and its terms are the 

averaged squared amplitude of the complex numbers on the diagonal of [A], hence [P] 

is positive definite. Please note, the expression of [P] is exactly equivalent to the one 

obtained in the previous section after neglecting the cross terms.  

The last step is the normalisation of the weighted inner product: 
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**
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⋅
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Eq.3.12 represents the same formal expression of the detector. Aim of the next section 

is to obtain the same expression of Eq.3.12 through a physical approach.  

 

3.2 Mathematical Derivation with a physical approach   

3.2.1 Perturbation Analysis and Coherence Detector 

Any (normalized) single target can be uniquely represented in the target space with a 

three dimensional complex vector (Cloude S. R., 1987, Cloude S. R., 1995 , Cloude, 

1986, Cloude, 1995b). In the previous chapter this vector was introduced as the 

scattering mechanism ω . Once a target (i.e. scattering mechanism) is selected its 

backscattering can be determined as 

 ( ) ki
T

⋅=
*

ωω . (3.13) 

From an algebraic point of view, eq.3.13 represents the inner product between the 

scattering vector k and the scattering mechanism ω . Additionally, the operation can be 

interpreted as the projection of the observables (i.e. k) on the selected target (i.e. ω ) 

since any scattering mechanism is unitary (Strang G., 1988). If the target of interest ω  

is one component of the total polarimetric return (as for target decompositions), the 

operation in eq.3.13 extracts the component of interest from the observables (Cameron 
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W. L. and Leung L. K., 1990, Cloude S. R. and Pottier E., 1996, Krogager and Czyz, 

1995). ( )ωi  is a complex number representing the pixel of a single look complex (SLC) 

image displaying the backscattering from the target of interest.  

When two scattering mechanisms, 1ω  and 2ω  are selected (i.e. two single targets), two 

different images can be extracted from the observables ( )1ωi  and ( )2ωi . In the previous 

chapter, the polarimetric coherence was defined as 

 
( ) ( )

( ) ( ) ( ) ( )*
22

*
11

*
21

ωωωω

ωω
γ

iiii

ii

⋅⋅

⋅
= . (3.14) 

It estimates the correlation between the two images (Boerner W. M., 2004, Mott, 2007). 

If these are similar, the amplitude of the polarimetric coherence γ  will be close to 1. 

We want to demonstrate:  

Given a scattering mechanism 1ω  proportional to the target to be detected, and given a 

second scattering mechanism 2ω  close to 1ω  within the target space, the polarimetric 

coherence is high if in the averaging cell the component of interest (proportional to 1ω ) 

is stronger than the other two orthogonal components.  

1) The representation of a single target as a scattering vector is dependent on the basis 

selected to represent the target space (Cloude S. R., 2009). In the following 

demonstration we decided to use the Pauli basis as the starting point, however any other 

basis could be selected leading to exactly the same mathematical result. A given 

scattering vector in Pauli basis can be represented as P
k , while the scattering 

mechanisms for the target of interest is P

Tω .  

The first step in the detector design is a change of basis aimed at overlapping one of the 

axes (of the new basis) with the target of interest P

Tω . This is always possible since any 

single target is uniquely represented by a vector that can constitute one axis of the basis. 

The operation is achievable by multiplying by a unitary matrix [U] (Lee and Pottier, 
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2009),  

 [ ] [ ]TP

TT U 0,0,1== ωω . (3.15) 

In the new basis, the target of interest lies only in one component of the 3 dimensional 

complex vector (since Tω  itself is one axis of the basis). The absolute phase does not 

constitute an exploitable parameter and can be set to zero without lost of generality. 

Following the initial arrangement 1ωω =T . The other two axes must be chosen 

orthogonal to Tω  and will be regarded as 2Cω  and 3Cω  (Hamilton, 1989). Therefore,  

 32 CCT ωωω ⊥⊥ .  (3.16) 

Once the new basis is selected, the scattering vector needs to be expressed in this basis, 

 [ ] [ ]TP
kkkkUk 321 ,,== . (3.17) 

where Ckkk ∈321 ,, . Or equivalently 

 33221 CCT kkkk ωωω ++= . (3.18) 

Finally, the coherency matrix [C] is estimated starting from the obtained k. The 

resulting complex image when the target Tω  is selected is  

 ( ) 1
*

kki
T

TT =⋅= ωω . (3.19) 

In the new basis, when the projection on Tω  is evaluated, the components of the 

scattering vector 2k  and 3k  are deleted completely, since by definition they are 

orthogonal to the direction of Tω . Therefore, the target to detect is solely concentrated 

in the 1k  component. For this reason, 2k  and 3k  can be regarded as clutter. Please note, 

the distinction between target and clutter components can be accomplished exclusively 

in the new basis (for instance in Pauli basis the target of interest generally does not lie in 

only one component). The scalar projection in eq.3.19 can be interpreted as an ideal 

filter for the target of interest, which in general will be different from zero. However, in 
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most cases it represents the target of interest only when the other two components of the 

scattering vector are nearly absent. Some detectors are based on thresholds on the 

amplitude of the projection. Unfortunately, these detectors have two major problems:  

1.a) First, when the operation is accomplished without averaging over several 

representations (i.e. neighbour pixels) the results can be strongly affected by speckle 

(López-Martínez C. and Fàbregas X., 2003, Oliver and Quegan, 1998, Lee, 1986). The 

false alarm rate due to the surrounding partial targets will be unsuitably high. However, 

the straightforward remedy is to average over neighbour pixels before considering the 

threshold. 

1.b) Secondly, the occurrence of a strong component 1k  does not generally assure the 

presence of the target to detect, since different single or partial target can have 

significant projections on the target of interest (Cloude S. R. and Pottier E., 1996). In 

other words, the ratios between components must be considered. 

 

2) In the second step, we need to generate a second scattering mechanism 2ω  similar to 

Tω  in the target space. This new vector will be regarded as “perturbed target”, Pω  (i.e. 

Pωω =2 ). Several approaches can be adopted to obtain Pω  starting from Tω . In the 

following, two of them are listed:  

2.a) Geometrical: random noise 

A random vector (for instance Gaussian) with zero mean called ωd  is generated much 

smaller than Tω . For instance, we could choose 1.0=ωd  (please note, the scattering 

mechanisms are unitary). The perturbed target is given by 

 
ωω

ωω
ω

d

d

T

T
P

+

+
=  (3.20) 

2.b) Physical: Huynen Polarisation Fork 
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The previous methodology is a geometrical rather than physical operation. Fortunately, 

the physical feasibility of the obtained vector Pω  is assured by the completeness of the 

vector space (any unitary 3 dimensional complex vector is a physical feasible scattering 

mechanism) (Bebbington, 1992, Cloude S. R., 1995 , Cloude, 1986). However, the 

perturbation can be directly related to physical changes in the target. For this reason, we 

want to perform the perturbation of Tω  with a more physical approach, utilising a target 

parameterisation. One idea could be to move the entire polarisation fork slightly 

(rotating the characteristic polarisations). In fact, a slightly different polarisation fork 

characterises a slightly different target (Boerner W. M. et al., 1981). The small rotation 

of the characteristic polarizations on the Poincaré sphere can be accomplished with the 

Huynen parameters (Huynen J. R., 1970). In other words, if mψ , mχ , υ  and γ  are the 

parameters used to define the target Tω , the perturbed target Pω  will be obtained by 

substituting  

 mm ψψ ∆± , mm χχ ∆± , υυ ∆±  and γγ ∆± ,  (3.21) 

where mψ∆ , mχ∆ , υ∆  and γ∆  are positive real numbers corresponding to a fraction 

(e.g. a twelfth or a tenth) of the maximum value of the respective variable. The variation 

can be positive or negative in order to keep the final parameter within the allowed 

range. In Appendix 1, we present the proof that a slight change of the Huynen 

parameters generates a slightly different target. Basically, this is due to the continuity of 

the functions employed in the Huynen representation (if the parameters move in the 

allowed range of values).  

The scattering mechanism to detect Tω  in the Huynen representation is (Huynen J. R., 

1970) 

 [ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ]mmdmmT RTSTRS ψχυγχψ −= , ,  
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Hence, the perturbed target can be represented as 

[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ]mmmmdmmmmP RTSTRS ψψχχυυγγχχψψ ∆±−∆±∆±∆±∆±∆±= (,  

 (3.23) 

If the variation is small, then [ ] [ ]TP SS ≈ .  

Similarly, the rotation of the Polarisation Fork can be obtained starting from the α   

parameterisation as (Cloude S. R. and Pottier E., 1997) 

 [ ]Tii

T ee
ηε βαβααω sinsin,cossin,cos=  (3.24) 
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where again α∆ , β∆ , ε∆  and η∆  are a fraction of the maximum value of the 

respective variables (for ε  and η  the maximum value is fixed to π2 ). Again, 

[ ] [ ]TP SS ≈  and TP ωω ≈ .  

The optimisation of this procedure is treated in the following sections. 

At this point, a clarification concerning the basis used is needed. The Huynen 

parameterisation is formulated on the Lexicographic basis while the α  model employs 

the Pauli basis. Therefore, a change of basis on Pω  must be considered after the 

perturbation process.  

After the change of basis, the perturbed target is a unitary 3 dimensional complex vector 

[ ]TP cba ,,=ω , with a, b and c complex numbers. Considering TP ωω ≈ , we must have  
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 1≈a , 0≈b  and 0≈c ,  

 1
222

=++ cba .  (3.26) 

 

3) Once the two scattering mechanisms are defined the polarimetric coherence (in the 

new basis) can be estimated with 
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where: 
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After dividing numerator and denominator by 
2

1ka , the amplitude of the 

polarimetric coherence becomes: 
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We refer to ( )2
ab  and ( )2

ac  as Reduction Ratios (RedR). The perturbed targets are 
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chosen in order to have small RedR. Hence, in the sum the elements multiplied by the 

RedR are lowered. These terms are regarded as clutter terms and are all the elements 

except the ones with the sought component 2

1k  alone (please note after the division 

the latter becomes 1).  

Two typologies of clutter terms can be identified:  

3.a) Cross-correlations terms: *
21 kk ⋅ , *

31 kk ⋅ , ( )*
21

*Re kkab ⋅ , ( )*
31

*Re kkac ⋅  and 

( )*
23

*Re kkcb ⋅ . These are generally small, since for partial targets the components of k 

are partially uncorrelated (Touzi R. et al., 1999). For two completely uncorrelated 

terms, the mean of the products becomes the product of the means, which are 0 since 

they are complex Gaussian zero mean (Oliver and Quegan, 1998, Papoulis, 1965):  

 [ ] [ ] [ ] 0*
21

*
21 == kEkEkkE   (3.31) 

In practical cases, these terms are different from 0 for two reasons. Firstly, the 

components are not completely uncorrelated. Secondly, the ensample average is not 

performed over an infinite number of elements, hence there will be a residual 

correlation due to the insufficient number of samples (Touzi R. et al., 1999). 

3.b) Power terms: 
2

2k  and 
2

3k . They depend on the clutter power. 

Finally, when 2

1k  is higher than the clutter terms, the RedR combined with the 

normalisation for 2

1k  makes the clutter terms negligible in the sum and the 

polarimetric coherence has amplitude close to one. If the component of interest is not 

dominant, the clutter terms influence the final sum more appreciably, lowering the 

coherence amplitude. 

 

4) The amplitude of the polarimetric coherence between target and perturbed target 

changes depending on the dominance of the target to be detected. In conclusion, the 
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coherence amplitude can be used as a detector when a threshold is set. If T is the 

threshold, the detection rule can be   

 
( )

( ) TH
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ωωγ

ωωγ
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,:

1

0  (3.32) 

where 0H  is the hypothesis with target, and 1H  with only clutter (Hippenstiel, 2002, 

Kay, 1998). 

With the purpose of testing the theoretical effectiveness of the detector, the simulation 

of the coherence amplitude estimated as a stochastic process is presented in Figure 3.1. 

The simulation takes into account a deterministic target 1k  (target to be detected) and 

two random variables, complex Gaussian zero mean (i.e. 2k  and 3k ), independent of 

each other (Oliver and Quegan, 1998). Please note, a complete statistical assessment of 

the detector will be accomplished in the next chapter. Here, the performed simulation 

has the simple purpose of giving a visual interpretation of the detector. The plot shows 

the mean value of the coherence (over 250 realizations) confined in the standard 

deviation boundaries. A 5x5 window and ( ) ( ) 25.0
22

=== acabRedR  are 

considered. The Signal to Clutter Ratio (SCR) is defined as:  
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While SCR due to the individual clutter component can be calculated as 
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The plot is obtained increasing simultaneously 2SCR  and 3SCR . This lead to a resulting 

2
2SCR

SCR = .  
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3.2.2 Bias removal: final detector 

The plot in Figure 3.1 is obtained considering the components of the scattering vector k 

to be independent of each other. Under this hypothesis, the cross correlation terms are 

very small. This is an adequate approximation for partial targets with low degrees of 

polarisation, but it cannot be applied to single (coherent) targets (since these in general 

have completely correlated components).  

 

 
Figure 3.1. Coherence amplitude detector: Solid lines: mean inside the standard deviation 

boundaries for uncorrelated target-clutter. Dotted line: mean in the case of positive target-clutter 

correlation. Dashed line: mean in the case of negative target-clutter correlation. SCR: Signal to 

Clutter Ratio. Average over 250 realizations and window size 5x5.  

 

A counterexample is found in considering the detection of horizontal dipoles (the 

scattering matrix has exclusively the HHS  element), when the target present in the cell is 

a 45 degree dipole (Cloude S. R., 2009). In lexicographic basis, Tω  is [ ]TT 0,0,1=ω , 

where the single target on the scene can be represented as [ ]T
Lk 1,2,1κ= , with κ  a 
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complex number. Substituting the value of Tω  and Lk  in the polarimetric coherence 

(eq.3.29) the amplitude obtained is unitary. 

In conclusion, correlation between target and clutter introduces bias in the coherence 

amplitude. In Figure 3.1, the dotted and dashed lines show the case when the coherent 

target is correlated with the two clutter components, respectively in a constructive or 

destructive way. The amplitude of the correlation coefficient between target and clutter 

components is 0.65. 

The aim of this section is to remove the bias due to the correlation between the 

components. Firstly, we recognise that the cross terms do not add constructive 

information in our specific situation. In the case of uncorrelated components they 

merely add noise related to the finite averaging (Touzi R. et al., 1999) (the substitution 

of the expected value E[.] deletes them completely). However, for high values of 

coherence, the bias introduced is not appreciable. On the other hand, when the k 

components are correlated, they introduce bias that results in false alarms or missed 

detections. Consequently, the detector is improved and simplified when they are 

ignored. The possibility to ignore the cross term is linked with the change of basis 

performed which makes the components independent of each other when the target to 

detect is present. Appendix 2 presents the proof of the appropriateness of the operation. 

Regarding the uniqueness of the result, a dominant single target can be completely (and 

uniquely) characterised, since the power terms calculated in the detector are obtained 

from the projections of k on the scattering mechanisms (Cloude, 1986, Rose, 2002).  

With the purpose of neglecting the cross terms, the polarimetric coherence is substituted 

with another operator working on the target power components:  
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The amplitude of the modified coherence in eq.3.37 is regarded as the detector. This is 

dependent only on the power of the components of k and Pω , therefore it is a real 

number. 

The expression obtained in eq.3.37 is still dependent on the basis used to express the 

vectors Tω  and Pω . Here, the target to detect overlaps the first axis, hence it is present 

exclusively in the 1k  component (i.e. 2k , 3k  represent the clutter). If three ortho-normal 

vectors are considered as [ ]Te 0,0,11 = , [ ]Te 0,1,02 =  and [ ]Te 1,0,03 = , the power of target 

and clutter can be written as: 

 
2

1
*

ekP
T

T ⋅= , 
2

2
*

2 ekP
T

C ⋅=  and 
2

3
*

3 ekP
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Consequently, eq.3.37 can be rewritten as: 
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Looking at eq.3.39, the lowering effect played by the RedR is clear. If the clutter power 

is lower than the target power the two terms on the denominator are negligible and 

1
1

1
≈

+
=

ε
γ d

, with 0≈ε . Conversely, if the clutter components are significant, ε  is 

not close to 0 and the denominator is appreciably different from 1, lowering the value of 

the detector. 
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The trend of the detector can be identified in Figure 3.2. Comparing Figure 3.1 and 3.2 

the variance appears strongly reduced for low values of coherence, moreover the two 

means look very close for values higher than 0.6.  

 

 
Figure 3.2. Detector: mean over 250 realisations inside the standard deviation boundaries. 

Window size 5x5.  

 

The difference for lower values is related with the coherence bias due to finite 

averaging. The bias is introduced by the cross terms, thus it disappears when we neglect 

them. For high values of clutter the detector becomes close to 0. The two extremes of 

the detector are achieved for: 

 1
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For uncorrelated components, the presence of cross terms results merely in a higher 
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variance. 

The detection is achieved setting a threshold on eq.3.37. The decision rule is similar to 

the previous one:  
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d

d
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γ

γ
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1

0  (3.41) 

 

3.2.3 Generalised Detector 

The algorithm presented in the previous section is based on two main hypotheses: (i) 

monostatic sensor (same transmitter and receiver antenna) and (ii) reciprocal medium. 

In this occurrence, the two cross terms of the scattering matrix are identical 2112 SS =  

(with the exception of noise). On these assumptions, the problem can be simplified and 

located in a 3 dimensional complex space (rather than a 4 dimensional one) (Cloude S. 

R., 2009, Lee and Pottier, 2009). The hypotheses can fail in two main cases: 

a) Transmitter and receiver antennas are different as in a bistatic system (Cherniakov, 

2008, Willis, 2005). 

b) The medium is not reciprocal. An example is the ionosphere at low frequency (e.g. P-

band) due to the presence of plasma which leads to the phenomenon of Faraday rotation 

(Cloude S. R., 2009, Freeman, 1992). This effect is observed principally in satellite 

radar, and can be corrected to some extent.  

In the case hypotheses (i) and (ii) are not fulfilled, the detector can still be built with a 

procedure analogous to the 3 dimensional case. Now, the scattering mechanism to be 

detected 4Tω  is 4 dimensional complex. Again, a change of basis which makes 

[ ]TT 0,0,0,14 =ω  is performed. However, the perturbed target cannot be generated with 

the Huynen parameterisations, since this is defined for monostatic scenarios. On the 

other hand, the additive noise approach is still fully suitable. Nevertheless, any 

parameterisation developed for bistatic can be exploited (Germond et al., 2000). Finally, 

the perturbed target can be expressed in the new basis as [ ]TP dcba ,,,4 =ω , where  
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 Cdcba ∈,,, ,  (3.42) 

 1≈a , 0≈b , 0≈c , 0≈d ,  

 1
2222

=+++ dcba , 

 ba >> , ca >>  and da >> .   

In 4 dimensions, the scattering vector is [ ]T
kkkkk 43214 ,,,=  and the covariance matrix 

is calculated as [ ] T
kkC

*
444 ⋅= . With the intention of removing the bias due to the 

cross terms, only the elements on the diagonal are utilised: 
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The detector is implemented as 
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Eq.3.45 presents the most general form of the detector, since in the case hypotheses (i) 

and (ii) are fulfilled, it reduces automatically to the previous formula (eq3.37). In the 

following the three dimensional formulation will be employed, but all the results and 

considerations can be adapted in a rather straightforward way to the general detector. 
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3.3 Detector Interpretation 

The aim of this section is to provide an intuitive interpretation of the algorithm, 

describing the algebraic and physical reasons for the detection achievability.  

 

3.3.1 Geometrical interpretation 

The weights used in the inner product between target and perturbed target are extracted 

from the observables. Here, we want to address the following question: why the 

weighted inner product results in a detector?  

From the mathematical point of view, the question finds a simple answer considering 

the clutter effect on the coherence denominator. However, we want to find a 

justification based on the vector representation in the target space. The target of interest 

is the first axis of the basis (i.e. [ ]TT 0,0,1=ω ), while the perturbed target has all the 

components (i.e. [ ]TP cba ,,=ω ). When the standard normalised inner product between 

Tω  and Pω  is estimated, the correlation (which increases the value of the coherence) is 

introduced by the first component solely. The second and third components cannot be 

correlated since Tω  does not have them at all. Being specific, the amplitude of the 

correlation is equal to the cosine of the angle between the two vectors (since they are 

normalised) (Strang G., 1988): 

 aP

T

T == ϕωω cos* , (3.46) 

where ϕ  is the angle between the two vectors. 

However, the detector is based on a weighed and normalised inner product between Tω  

and Pω . Since the first component is the only one bringing correlation, the inner 

product changes depending on the weight allocated to the first component compared to 

the others. Two extremes can be considered: 

a) The observed target is exactly the target of interest:  
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The weighting is performed with [ ] ( )0,0,1kdiagA = . In this particular scenario, [A] has 

rank one, hence it represents a transformation in a one dimensional space (i.e. a 

complex line), the space spanned by the target to detect. Moreover, the product of any 

vector for the matrix [A] will be the projection (plus a scaling) of the vector on this 

complex line (Cloude, 1995b): 

 [ ] TPP akAb ωω 1== ,  (3.47) 

with a the first component of Pω . In other words, the multiplication by [A] deletes the 

second and third component of Pω .  

After the weighting, the coherence will be one (and the target detected), since the 

normalised inner product between two parallel vectors is one (i.e. 10cos = ).  

b) The target of interest is completely absent: 

In this case, [ ] ( )32 ,,0 kkdiagA = , the matrix has [ ]( ) 2=Arank  and the space of the 

columns represents a complex plane, which is perpendicular to the direction of the 

target of interest. The multiplication of a vector by [A] will project (and scale) the vector 

on this complex plane: 

 [ ] 3322 CCPP ckbkAb ωωω +==  (3.48) 

The resulting vector is a combination of the two clutter terms and consequently, it is 

orthogonal to the target of interest. The result of the inner product will be zero (i.e. 

( ) 02cos =π ).  

In an intermediate case, [A] always has full rank (i.e. [ ]( ) 0det ≠A ) due to the 

polarimetrically white noise (e.g. thermal noise), which is spread in all the components. 

Generally, the weighting has two main effects on the scattering mechanisms: a rotation 

and a rescaling (Rose, 2002, Strang G., 1988). The scaling effect can be neglected since 

the inner product is subsequently normalised. On the other hand the rotation has effects 

only on Pω , since Tω  cannot change direction and it will always be along the first 
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component, 

 [ ]A  ∀ ,  [ ] TTT kAb ωω 1== . (3.49) 

Because Tω  has only the first component, the other diagonal elements of [A] have no 

effect on it.  

In conclusion, if the rotation makes the resulting vector Pb  closer to Tb  the angle 

between them will reduce and the coherence increases. Specifically, the angle between 

Tω  and Pω  before the weighting can be calculated as  

 ( )a
1cos−=ϕ .  (3.50) 

The weighting on target and perturbed target works as  

 [ ] T

T

T kkA ωω 11 0,0,][ == ,  

 [ ] 33221321 ,,][ CCT

T

P ckbkakckbkakA ωωωω ++== . (3.51)  

The normalised inner product between the weighted scattering mechanisms is the 

detector, consequently the angle between the vectors becomes ( )dγϑ 1cos−=
)

. The angle 

decreases after the weighting if  

 ( ) ( ) ϕγϑ =<= −−
ad

11 coscos
)

  

 ad >γ  (3.52) 

Geometrically, this is obtained when the observed target has a 1k  component stronger 

than the others. In other words, the correlation increases if Pω  is stretched in a direction 

where the 1k  component is stronger. 

The fact that the angle is reduced is not sufficient to guarantee detection, since the 

detector dγ  is required to be over the threshold as well. 
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3.3.2 Physical interpretation 

The detector can be interpreted as a filter, represented in Figure 3.3 as a simple 

schematic. The vertical bars stand for the power of the scattering vector components. 

After the change of basis, which makes [ ]TT 0,0,1=ω , 1k  represents the target to detect 

and 2k , 3k  are the clutter.    

The final image (as interpreted by the detector) is obtained as the incoherent sum of the 

three components. As explained previously, the image formation (i.e. scalar projection) 

behaves similarly to a filter. The first row of any example (i.e. Tω ) is ideal and deletes 

completely the orthogonal clutter components. 

 

         
 (a) detection achieved (b) no detection achieved 

Figure 3.3. Visual explanation of the filter with target and perturbed target. 

 

The second row (i.e. Pω ) results in a linear combination of the sought component 

(slightly lowered) plus a small amount of the orthogonal ones. In (a) the match between 

the target and perturbed target is high, since the power in the two images is similar. This 

is not true in (b), since the Pω  image has much more power in the orthogonal 

component than the Tω  one, hence the Pω  power significantly lowers the coherence. 

 

3.4 Parameters selection 

The selectivity of the proposed detector is dependent on two main parameters: threshold 
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and RedR. Therefore they must be carefully chosen. The aim of this section is to find a 

rationale for their selection.  

The detector dγ  (as expressed in eq.3.37) is a stochastic process (Gray and Davisson, 

2004, Kay, 1998, Oliver and Quegan, 1998, Papoulis, 1965). This represents a 

complication in the parameters settings, since we do not deal with deterministic 

expressions. The detector randomness is a consequence of the clutter components of the 

scattering vector 2k  and 3k , namely complex Gaussian random variables with zero 

mean (Franceschetti G. and Lanari R., 1999, Oliver and Quegan, 1998). Several 

realisations of the same detector are generally different depending on the statistical 

variability (or variance). In order to take into account the detector variation, a statistical 

characterisation of the detector is required, in particular, the Probability Density 

Function (pdf) must be derived (Papoulis, 1965). The next chapter deals with the 

analytical calculation of the pdf, while here an easier expression is investigated which is 

independent of the statistical realisation. With such an expression, we can achieve an 

easier and more direct insight into the role played by the detector parameters. 

 

3.4.1 Reduction Ratios (RedR) and Threshold 

The statistical variation of dγ  is introduced by the two clutter terms ( 2k  and 3k ) since 

the target 1k  is deterministic in the case of point targets. As explained in the first 

chapter, the amplitude square of the components (complex Gaussians) are Exponential 

random variables (Oliver and Quegan, 1998). Additionally, the average of exponential 

distributions with equal mean reduces the variance of the resulting random variable. In 

particular, the sum of Exponentials is a Gamma ( Γ ) distribution (Gray and Davisson, 

2004, Papoulis, 1965). In the case of independent and identically distributed (iid) 

samples, the variance of the resulting Γ  is divided by the number of samples considered 

in the average. Therefore, if an infinite number of homogeneous and independent 

samples were available, the variance would be zero. This suggests that, in order to 

achieve a deterministic detector, we could substitute the finite average operator .  with 

the expected value E[.] (Papoulis, 1965). In the following, the resulting mathematical 
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expression will be regarded as deterministic detector. Considering the detector works 

with high values of coherence, the latter assumption (i.e. [].. E→ ) is relatively easily 

fulfilled even for a 5x5 window size (as it will be shown in the following) (Touzi et al., 

1999). The expression of the deterministic detector is  
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13 kEkESCRd =  (3.54) 

After the perturbed target Pω  (i.e. a, b and c) is fixed, eq.3.53 is an expression related 

solely to the asymptotic signal to clutter ratios ( dSCR ). 

Figure 3.4 represents the plot of the deterministic detector, where the value of the RedR 

is varied. Please note that the mean curve in Figure 3.2 overlaps almost perfectly with 

the one in Figure 3.4 (for 5.0=ab ), confirming that the detector assembled with the 

power terms is not biased.  

To be precise the two curves do not overlap perfectly, since in Figure 3.2 the average 

curve is calculated as ( )SCRdγ . Assuming that the number of samples is big enough, 

we could say [ ]dd E γγ ≈ . On the other hand, in Figure 3.4, ( ) [ ]( )SCRESCR ddd γγ =  

is calculated. In general,  

 [ ]( ) ( )[ ]xfExEf ≠ , (3.55) 

where x is a general random variable (Papoulis, 1965, Krantz, 1999). 

However, in our special case the function is monotone concave and the Jensen 

inequality can be applied:  

 [ ]( ) ( )[ ]xfExEf ≥  (3.56) 
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The equality is fulfilled when the function f is linear or the distribution x is degenerate 

(e.g. impulsive distribution). The linearity of a function can be related with its 

curvature. Moreover, we can restrict the linearity property locally based on the 

spreading of the random variable x (the smaller the variance, the smaller is the local 

interval).  

 

 

Figure 3.4. Deterministic detector (for different values of ab ). 

 

As is clear from Figure 3.4, after the saturation, the curvature is almost zero and the 

function can be easily approximated as linear. This is not true for the middle part of the 

plot, where the curvature is more consistent. Besides, the second hypothesis about 

degenerate distribution (i.e. with zero variance) can be applied. After the averaging 

process the Γ  distribution obtained has a relatively small variance, making the curve 

look more linear. In order to test this property we simulated two detectors with 

25.0=RedR  and two window sizes of 5x5 and 9x9. The difference between the 

averaged detector and the deterministic one for a SCR=2 is 0.001 for 5x5 and 0.0005 for 

9x9. This demonstrates that the deterministic detector represents a useful tool to analyse 



96   

the parameters. 

In a first attempt, the threshold can be selected using the deterministic detector on the 

base of the SCR to be detected. This is not the optimal solution (as explained in the next 

chapter) and it is only intended to provide a general idea about the threshold selection. 

Figure 3.4 allows some consideration of the RedR as well. The detector increases when 

the ratio is reduced (the clutter terms are lower). Regarding the choice of the ratio, a 

small value reduces the variance (since we work with higher values of modified 

coherence), however the range of discrimination between targets is reduced (the curve 

flattens earlier). 

Regarding the choice of the SCR to detect, the dispersion equation obtained in 

Appendix 2 can be used. If ( ) ( )[ ]TjIjIjI
IIII

eeek 3211
32 ,, ϕϕϕϕ σσσσ ∆∆∆+= ∆+  is a normalised 

scattering vector (the normalisation makes the polarimetric information more apparent) 

after the change of basis, the dispersion equation can be written as: 
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 (3.57) 

This expression combines the effect of threshold T and RedR illustrating the collection 

of targets which will be detected by the algorithm. Eq.3.57 can be used to set the SCR 

of interest. 

Once the RedR is fixed the threshold can be set. For very dominant targets, the detection 

is easier, hence the minimisation of false alarm is the central point. Therefore, a higher 

SCR can be chosen (this leads to a higher threshold). On the other hand, if embedded 

(e.g. foliage penetration FOLPEN)(Fleischman J. G. et al., 1996) or weak targets (with 

low total backscattering) are to be detected, a lower SCR must be selected, consequently 

a lower threshold must be applied (Kay, 1998, Li J. and Zelnio E.G., 1996). The effect 

of the threshold selection will be clearly visible in the validation chapter.  

Related with the detection of weak targets, a relevant property of the algorithm is that 

the detectability is not directly dependent on the total power scattered by the target 
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(span of the scattering matrix or trace of the covariance matrix), but exclusively on the 

reciprocal weight of the scattering components. In order to prove this property, we can 

multiply the matrix [P] by a real positive scalar C. The resulting detector will not 

change: 

 
[ ]

[ ] [ ]

[ ]

[ ] [ ] P
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⋅
=

⋅
= . (3.58) 

The threshold reduction for weak targets is a consequence of the noise effect, which 

disturbs the polarimetric characteristics. In order to prove this property, a simulation 

was performed with absence of clutter and just additive white uncorrelated noise 

considered as complex Gaussian zero mean (Kay, 1998):  

 nkk += 1' , 

 11
'
1 nkk += , 2

'
2 nk =  and 3

'
3 nk = . (3.59) 

The Signal to Noise Ratio ( γSNR ) can be calculated as 

 
2

3

2

2

2

11

nn

nk
SNR

+

+
=γ . (3.60) 

where the first component of the scattering vector is interpreted by the detector as target 

of interest, even if it contains a noise component. As a result, a threshold of 0.98 is 

required in order to detect a target embedded in white noise with γSNR  of about 1dB 

and of 0.88 for -10dB γSNR . The positive performance in detecting weak targets is a 

consequence of the spreading of polarimetrically white noise over all the components. 

Therefore, part of the noise power (statistically a third) contributes to the target of 

interest, making the system more robust. In order to check this property we can compare 

the γSNR  with the classical definition of the Signal to Noise Ratio, SNR. 



98   

 γSNR
nn

nk

nnn

k
SNR =

+

+
≤

++
=

2

3

2

2

2

11

2

3

2

2

2

1

2

1
. (3.61) 

In other words, the apparent SNR is higher. We will come back to the concept of white 

clutter in the next chapter. 

 

3.4.2 Perturbed Target Selection: RedR 

In the previous formulation a tacit hypothesis has been employed: cb = . The aim of 

this section is to evaluate the effects of cb ≠ . The components of Pω  are not 

independent, since 1
222

=++ cba  ( Pω  is a normalised vector). In order to manifest 

the role played by b and c, an example is provided. If the deterministic scattering vector, 

over the entire averaging window, is [ ]0,,' 0bak κ= , the power of the components can 

be calculated as 

 
22222

1 ''' aaak κκκ === , (3.62) 
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2 bbbk κκκ === ,  

 0
2

3 =k , 

where 
2

0 '1 ab −= . 

If the scattering mechanisms for target and perturbed target are chosen as 

 [ ]0,0, caP =ω , [ ]0,0,1=Tω , (3.63) 

where    
2

0 1 ac −= ,  

the detector will be  
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In conclusion, the orthogonality (or in general the geometrical relationship) between the 

clutter components of k  and Pω  can bias the detector. In particular, the projection of k  

and Pω  on the complex plane of the clutter (plane orthogonal to Tω ) can be represented 

by 

 [ ] [ ] 332232

100

010

000

,,0 CC

c

CCc kkkkkkP ωωωω +==

















== , (3.65) 
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where [ ]CP  represents the projection matrix on the complex plane of the clutter (Rose, 

2002, Strang G., 1988). The geometrical relationship between c
k  and c

Pω  influences the 

final coherence since the second part of the denominator can be seen as the inner 

product of these two vectors restricted to the positive quadrant (since all the quantities 

appear as squared amplitude):  
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where  3

2

32

2

2 CC

k
kkC ωω +=  and 3

2

2

2

CC cbC ωω
ω

+= . 

As a result, when they are orthogonal the inner product is zero and the coherence is one 

independently of the value of the target.   

A relationship between b and c is investigated which makes the detector not biased. It 
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can be demonstrated that this choice is cb = . Since k
C  and ω

C  are positive vectors 

the only way to be orthogonal is that they represent the two positive axes of the clutter 

plane. Moreover, the only choice which gives a fair weighting between the two 

components is the one when the two components of c

Pω  are equal. Please note, when we 

have a priori hypothesis about the target to detect we could be interested in lowering 

one component more than the other. For instance, when one clutter component is more 

likely to accompany our target (while the second component is always low), we could 

decide to have cb ≠ . However, in this thesis the more general case of absence of a 

priori hypothesis will be considered.  

Adopting cb = , the detection is unbiased. In order to prove it, we consider a general 

deterministic target as [ ]',',' cbak κ=  (same value over the entire averaging window). 

After algebraic manipulations we have:  

 

( )22

22
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1

cb
aa

b
d

++

=γ  . (3.68) 

Eq.3.68 states that the total (normalized) power of the clutter components is contained 

in 
22

'' cb + , it does not matter which is stronger between b’ and c’, and the bias is 

removed.  

Concerning the physical feasibility of this operation: it is always possible to match 

cb =  with a rotation of the perturbed target around the axis representing the target of 

interest (i.e. a rotation in the clutter complex plane). The transformation does not require 

a change of phase since we are interested in amplitudes and the phases of b and c can be 

arbitrary (Cloude S. R., 1995 , Cloude S. R., 2009). 

Mathematically, if Pω
)

 is the scattering mechanisms obtained by perturbation of Tω , the 

rotation can be performed with the unitary matrix (Hamilton, 1989) 
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where the a component is not modified by the rotation (hence a’=a). 

 

3.5 Algorithm implementation 

In the previous sections the mathematical formulation of the detector has been carried 

out, resulting in a final mathematical expression. However, its practical implementation 

was left out and will be the topic of the current section. As will be detailed in the 

following, the final algorithm is fast (low time consuming) since it is based on a 

relatively small number of multiplications (hence it could be implemented in a real time 

scenario). 

 

3.5.1 Gram-Schmidt ortho-normalisation 

The final expression of the detector in eq.3.37 is dependent on the basis used to 

represent the vectors Tω  and Pω . Specifically, a change of basis making [ ]TT 0,0,1=ω  

was exploited. In this basis, the target to detect is present exclusively in the 1k  

component (i.e. 2k , 3k  are clutter). Subsequently, the final expression of the detector 

was simplified in 
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In a straightforward implementation the change of basis can be derived solving a system 

of 3 complex equations. The operation can be seen as two rigid rotations and a change 

of phase. The change of phase is just one because of the symmetry of the system, since 

after the two rotations only one component is different from zero.  
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In order to make the processing easier, we are looking for an alternative way to find the 

elements of the detector namely TP , 2CP  and 3CP . One solution considers a Gram-

Schmidt ortho-normalisation (Strang G., 1988, Hamilton, 1989, Rose, 2002), which sets 

Tω  as one axis of the new basis of the target space. This new basis will be composed by 

three unitary vectors 
T

u ω=1 , 22 C
u ω=  and 33 C

u ω= , where again 2C
ω  and 3Cω  are 

orthogonal to Tω  and they lie on the clutter complex plane. Subsequently, TP , 2CP  and 

3CP  can be calculated with the averaged squared amplitude of the inner product of the 

observable k on the three vectors of the basis:  

 
2

1ukP
T

T ⋅= , 
2

22 ukP
T

C ⋅=  and 
2

33 ukP
T

C ⋅=  (3.71) 

With this procedure, the process that makes the detector a pure mathematical operator is 

completed.  

Looking at eq.3.71, the feasibility and uniqueness of the single target detection is 

apparent. The power terms are obtained with the projection of the scattering vector on 

the scattering mechanism. When all the 5 parameters of the scattering vector are 

employed, the single target can be completely characterised (Cloude R. S., 1992, 

Cloude S. R., 1995 ). Moreover the averaging operator allows us to take into account 

the partial nature of the clutter. Details on the uniqueness of the detection are presented 

in Appendix 2.  

 

3.5.2 Flow chart 

Figure 3.5 shows the logical flow chart, in a straightforward attempt to implement the 

detector. The first step is the definition of the perturbed target starting from the target to 

detect. Subsequently, target, perturbed target and scattering vector (i.e. observable) are 

represented in the basis that makes [ ]TT 0,0,1=ω . The perturbation analysis can be 

performed with several methodologies. Afterwards, the weighting matrix [A] or 

equivalently the metric matrix [P] is formed starting from the scattering vector in the 

new basis. Then, the weighted inner product between target and perturbed target is 
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estimated and normalised. The result is the detector dγ . A threshold on the detector dγ  

concludes the algorithm. The final mask will be 0 if the detector is below the threshold 

or the values of the coherence dγ  if this is above the threshold. Such a mask is preferred 

to a standard “1-0” mask since the dominance of the target can be appreciated to some 

extent. 

 

 
Figure 3.5. Flow chart used to logically implement the detector algorithm. 

 

In the previous section, a Gram-Schmidt ortho-normalisation was proposed to solve the 

problem of finding the change of basis able to make [ ]TT 0,0,1=ω , simplifying the final 

detector implementation (Rose, 2002, Strang G., 1988). In Figure 3.6 the flow chart of 
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an algorithm employing the ortho-normalisation is illustrated. The main divergence is in 

the first steps. Starting from the expression of the target to detect Tω  in any basis, 

Gram-Schmidt is applied deriving the two orthogonal clutter components 2Cω  and 3Cω . 

The three power terms are estimated projecting the vector k on the three vectors 

resulting of the ortho-normalisation. 

 

 

Figure 3.6.  Flow chart used to practically implement the detector algorithm. 

 

3.6 Target to detect 

The theoretical formulation asserts that the detector can be focused on any single target 
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as long as its representation is known. Several parameterisations can be used to 

characterise the target: Polarization Fork, Huynen coherent decomposition, or α  model 

(Cloude S. R., 2009, Huynen J. R., 1970, Kennaugh E.M. and Sloan R.W, 1952, Lee 

and Pottier, 2009). However, in order to test the algorithm over real data the detection 

must be specialised and aimed at specific targets. Once the scattering mechanism for the 

target to detect is found in the basis employed by the parameterisation, it must be 

converted in the detector basis. As explained before an easier way considers the Gram-

Schmidt ortho-normalisation. 

 

3.6.1 Standard single targets 

By “standard targets” we mean those target typologies widely treated in the literature. 

Generally, their polarimetric description is relatively simple to extract, besides, they are 

rather common on a SAR image. For this reason, they will allow a reasonably broad 

validation in the next chapter. In this section, these polarimetric targets will be 

presented utilising their polarisation fork. A large number of examples of real physical 

targets related to standard targets will be presented in the validation chapters 5 and 6. 

As a first attempt multiple reflections (odd and even bounces) and oriented dipoles 

(horizontally and vertically) will be analysed. Figure 3.7 represents the Poincaré sphere 

with characteristic polarisations for the targets considered. The x symbolises the Cross-

pol Nulls and the circle the Co-pol Nulls or Cross-pol Max. 

As explained in the first chapter, reflecting targets are special targets and this is 

reflected on their Polarisation Fork as well (Cloude S. R., 1987, Huynen J. R., 1970, 

Kennaugh E.M. and Sloan R.W, 1952).  

In particular, the Cross-pol Nulls for odd-bounces are all the linear polarizations 

(Figure 3.7.a). This means that there is an infinite number of Cross -pol Nulls while 

general targets have just two of them. Any linear polarisation incident on an odd-bounce 

(which can be a surface or a sphere) will be reflected with no depolarisation. The Co-pol 

Nulls or Cross-pol Max are the circular polarizations. The equality between Co-pol 

Nulls or Cross-pol Max is a characteristic of the reflections. 
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 (a) (b) 

   
 (c) (d) 
Figure 3.7. Poincare representation of single targets (a) odd-bounce; (b) even-bounce; (c) 

vertical dipole; (d) horizontal dipole. 

 

In Figure 3.7.b, the Cross-pol Nulls for even bounce are the vertically or horizontally 

oriented polarizations from linear to circular (on the Poincaré sphere they represent a 

circle passing through linear H, linear V and circular polarizations). Hence, if a 

horizontal polarisation (the ellipticity does not matter) is incident on a horizontal corner, 

it will be reflected without cross scattering. The Co-pol Nulls or Cross-pol Max are the 

linear polarizations oriented at 45 degrees. When a 45 degree linear polarisation is 
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transmitted the polarisation returning to the sensor will be completely orthogonal, due to 

the change of sign of the horizontal component of the field. 

The horizontal (vertical) dipole has only one Cross-pol Null different from zero, the 

horizontal (vertical) linear polarisation, and the Co-pol Nulls and second Cross-pol Null 

(which has amplitude zero) is the vertical (horizontal) linear polarisation (Figure 3.7.c 

and 3.7.d). Dipoles are degenerate eigenvectors, and one eigenvalue is zero.
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Chapter 4: Polarimetric Detector Statistics 

 

 

Introduction 

In the previous section a physical/geometrical approach was executed to develop the 

polarimetric detector. In order to set preliminary detector parameters a deterministic 

formulation was derived substituting finite with infinite averaging. Unfortunately, the 

previous procedure is unable to provide information about the detector’s statistical 

performance since the variability is removed completely. The aim of this chapter is to 

study the detector as a stochastic process and examine its statistical performance (Kay, 

1998). The complete statistical characterisation of a random variable can be 

accomplished by calculating its pdf (probability density function) analytically. Once the 

detector can be described as a stochastic process it can be easily compared with other 

detectors for theoretical validation (Kay, 1998, Li J. and Zelnio E.G., 1996, Chaney R. 

D. et al., 1990).  

 

4.1 Analytic Detector Probability Density Function 

Any stochastic process can be completely characterised only when information about 

the random variables which generate it are available. In other words, a priori 

hypotheses on target and clutter are required to extract the pdf (Papoulis, 1965, Gray 

and Davisson, 2004). Please note, the algorithm does not need statistical a priori 

information to perform the detection, since the procedure follows a physical rationale. 

On the other hand, they are necessary to extract the pdf which will be used to optimise 

the parameter setting. In the following formulation, the term coloured defines a clutter 

showing some polarimetric dependence, while the term white designates a clutter 
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independent of the polarisation, hence completely depolarised (i.e. the same power 

scattered in any polarisation).   

 

4.1.1 Coloured clutter hypothesis 

If [ ]Tkkkk 321 ,,=  is the scattering vector after the change of basis which makes 

[ ]TT 0,0,1=ω  the 1k  component will represent the target to detect and 2k  and 3k  are the 

clutter components. In this hypothesis, the target to detect is deterministic (e.g. a point 

target) and the two clutter components are random variables, specifically Gaussians zero 

mean (Franceschetti G. and Lanari R., 1999, López-Martínez C. and Fàbregas X., 2003, 

Oliver and Quegan, 1998):  

 ( ) ( ) ( ) ( ) ( )
gNkkkk σ,0~Im  ,Re  ,Im  ,Re 3322 . (4.1) 

Due to the statistical variability of the generators (i.e. clutter components) the detector 

dγ  becomes a random variable defined between zero and one (Touzi R. et al., 1999).  

This is the hypothesis assumed in the last chapter since it provides the best picture of 

the detector where the full power of the clutter contributes in lowering the detector 

value. As will be explained in the following, this is also the worst case scenario. 

The pdf of the detector could be derived with a transformation of the generator 

distributions in the final detector (as presented in eq.3.37) (Papoulis, 1965). 

Specifically, the detector is a function of four Gaussian random variables 

( ) ( ) ( ) ( )( )3322 Im,Re,Im,Re kkkkdγ , therefore the transformation is 14 → . Remarkably, 

the random variables appear in the detector exclusively as averages of powers. If the 

clutter is assumed homogeneous with independent realisations (iid: independent and 

identically distributed), power terms are two rescaled Γ  distributions:  
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where σ  is the mean of the single exponential variable (single pixel intensity) and N is 

the number of samples considered in the averaging window. Furthermore, 2CP  and 3CP  

are independent of each other (Papoulis, 1965, Oliver and Quegan, 1998).  

The transformation is now simplified into a 12 → : 

 ( )32
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2
1

,

1

1
CC

T

C

T

C
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P
RedR

P

P
RedR

=

++
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where RedR represents the reduction ratio. To derive the pdf ( )γΓf , the CDF 

(Cumulative Distribution Function) of γ  must be calculated and subsequently 

differentiated. Considering the complexity of the analytical expression of the clutter 

terms, we choose not to follow this methodology since the derivation can easily lead to 

an unsolvable analytical expression.  

The problem can be further simplified. If the transformation would be 11 →  (one to 

one) the fundamental theorem of transformation of random variables could be used, 

reducing drastically the complexity of the calculations (Gray and Davisson, 2004). In 

the previous chapter, it was shown that the optimum selection for the two RedR is 

21 RedRRedR = . Substituting this, the transformation becomes: 
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The two clutter powers can be merged 

 32 CCC PPP += , (4.5) 

resulting in a simplified 11 →  transformation 
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The fundamental theorem for transformation of random variable states that given 

( )CPg=γ , the pdf of the transformed variable can be calculated as (Papoulis, 1965) 
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where g’ stands for derivative of g 

 ( )
C

c
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Pg =' . (4.8) 

The drawback of this procedure is that it necessitates the calculation of the pdf of CP , 

which is itself a 12 →  transformation. Fortunately, the new random variable CP  can be 

described rather straightforwardly. The single rescaled Γ  distribution represents the 

average of N independent exponential variables (intensity) as  

 ∑∑
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where I stands for pixel intensity and x
k  is any of the two clutter components of the 

scattering vector (i.e. x=2, 3). The pdf of P is 
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where ( ) ( )!1−=Γ nN  is the Γ  function and ! is for factorial. 

In our hypothesis the two variables 2CP  and 3CP  are independent and identically 

distributed (iid). Their sum can be written as 
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Considering the variables are iid and the intensity of any pixel is independent of all the 
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others, 2
k  and 3

k  can be substituted with a unique random variable k. 

The clutter power becomes: 

 ∑
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, (4.12) 

which is a Γ  distribution with different a normalisation factor. Finally, the pdf of the 

clutter components is 

 ( )
( )

σ

σ

Np

N

N

CP ep
N

N
Pf

C

−
−










Γ
= 12

2

2

1
. (4.13) 

Eq.4.13 can be interpreted as the result of a summation property for iid Γ  distributions 

(Papoulis, 1965): 
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The solution of ( )CPg=γ  is 
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The solution is unique since the function is monotone concave. Considering that γ  has 

no solution external to [ ]1,0 , the pdf will be defined only in this interval. 

The derivative of ( )Cpg  is  

 ( )
TT

C

C
P

RedR

P

p
RedRpg

2

3

1
2

1
'

−









+−= . (4.16) 

Substituting the solution 1
Cp  the derivative becomes 
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Finally, the pdf for the detector can be calculated as 
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The obtained pdf is dependent on the amplitude of the target TP  and clutter σ2 , 

consequently it is a function of the SCR:  
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 (a)  (b) 

Figure 4.1. Detector pdf with coloured clutter: (a) SCR=2, (b) SCR=1 

 

Figure 4.1 shows the pdf for two different values of SCR. The parameters used to obtain 

the plots are listed in Table 4.1 (Please note, the threshold parameter will be used in the 

following). 
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SCR Window Size (N) RedR Threshold (T) 

(a) 2  

(b) 1 

25 0.25 0.95 

Table 4.1. Detector Parameters 

 

 

Figure 4.2. Detector pdf ( )γΓf  as function of the SCR. 

 

The pdf presents a “bell-like” trend accumulated in a small range of values with 

consequent modest variability (Papoulis, 1965). A similar result was presented in the 

previous chapter (Figure 3.2) with the plot of a simulated detector contained in the 

standard deviation boundaries. The analytical expression of ( )γΓf  is in agreement with 

the value predicted by the mean detector. The particularly small variance makes the 



Chapter 4: Polarimetric Detector Statistics  115 

  

punctual values of ( )γΓf  higher than 1 (please note the integral is still unitary). 

Increasing the SCR, the pdf seems to move right toward 1, reducing its variability (as 

observed in the previous chapter). In order to test more accurately the dependence on 

the SCR, ( )γΓf  can be plotted as function of the SCR in a 3 dimensional surface 

(Figure 4.2).  

The analytical trend follows the one observed in the previous chapter (Figure 3.2). 

Increasing the SCR, the detector has more probability to be closer to 1 and its statistical 

variability decreases, resulting in an increase of the ( )γΓf  peak. In the limit (Riley et al., 

2006, Mathews and Howell, 2006):   

 ( ) ( )1lim −=Γ
∞→

γδγf
SCR

. (4.20) 

 

4.1.2 White clutter hypothesis 

The coloured clutter hypothesis appears to best characterise the effect of polarimetric 

clutter, since the entire power is collected in the clutter components of the scattering 

vector 2k  and 3k . However, this is not the most general hypothesis. The aim of this 

section is to generalise more the treatment considering clutter equally distributed over 

all the components of the scattering vector. Such clutter can be associated with generic 

thermal noise or completely depolarised scattering (e.g. Random Volume composed of 

spheres) (Fung and Ulaby, 1978, Treuhaft and Siqueria, 2000, Tsang et al., 1985).  

Now, the three random variables which influence the detector are 

 ( )nPk CC ,~1

2

1 σΓ= ,  

 ( )nPk CC ,~2

2

2 σΓ= , (4.21) 

 ( )nPk CC ,~3

2

3 σΓ= . 
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where the scattering vector of the clutter is defined as [ ]TCCCC kkkk 321 ,,= .  

Again they are independent and identically distributed. The transformation can be 

represented as  

 ( )321

2

1

3
22

1

2
1

,,

1

1
CCC

CT

C

CT

C

PPkg

kk

P
RedR

kk

P
RedR

=

+
+

+
+

=γ , (4.22) 

which is a 13 →  transformation. Please note, the power of the target and the first 

component of clutter cannot be separated as for 2CP  and 3CP  since they appear in the 

same component and they sum coherently. Therefore, 

  { }∑
=

⋅++=+
N

i

iCTCTCT kk
N

PPkk
1

*
11

2

1 Re
2

, (4.23) 

where N is the window size and Tk  is deterministic. { }1Re Ck  is a Gaussian zero mean, 

consequently when averaging its variance is divided by N and the term 

{ }∑
=

⋅
N

i

iCT kk
N 1

*
1Re

2
 vanishes for ∞→N  (since it is zero mean). With the purpose of 

simplifying the system we assume that the number of realisations N is large enough 

(e.g. not smaller than 25) to make the cross term negligible in the sum (Riley et al., 

2006). Moreover, we assume that the two RedR are equal. After these hypotheses, the 

resulting function is 

 ( )CC

CT

C

CT

CC

PPg

PP

P
RedR

PP

PP
RedR

,

1

1

1

1
1

11

32

=

+
+

=

+

+
+

=γ , (4.24) 

which is still a 12 →  transformation. The derivation with the CDF is not presented 

since it ends in an expression that is unsolvable analytically. Another approach is 

pursued. The idea is to introduce another random variable of interest and apply the 

transformation theorem with a 22 →  transformation. This second variable is the power 

contained in the target component of the scattering vector, defined as 1CTTC PPP += . 
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The latter can be relevant since now the target can be described statistically. A system 

of equations can be built to contain the two transformations: 

 

( )

( )











=+=

=

+
+

=

=Θ

11

1

1

,

1

1

CCTTC

CC

CT

C

PhPPP

PPg

PP

P
RedR

γ

. (4.25) 

The fundamental theorem for 22 →  transformations states: 

 ( ) ( )
( )( )

( )








Θ

Θ

= ∑Γ  system  theof solutions  ,  with  
,det

,
solution no has  system he         t                    0

,
1

1

11 i

C

i

C

i
i

C

i

C

i

C

i

CPP
TCP pp

ppJ

ppfpf CC
TC

γ  , (4.26) 

where ( )i

C

i

CPP ppf
CC

,11
 is the joint pdf between the two random variables 1CP  and CP  

which are independent (Papoulis, 1965). Therefore, the joint pdf is factorisable as 

 ( ) ( ) ( )i

CP

i

CP

i

C

i

CPP pfpfppf
CCCC 11 11

, = .  (4.27) 

The matrix ( )i

C

i

C ppJ ,1  is the Jacobian and can be calculated as 

 ( )


















∂

∂

∂

∂
∂

∂

∂

∂

=

CC

CC
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p

h

p

h

p

g

p

g

ppJ

1

1
1, . (4.28) 

If the joint pdf is available the individual pdf can always be derived by integrating the 

expression over the entire domain of the other variable.  

The solutions of the system Θ  are  

 








−=









−=

TTCC

TC
C

Ppp

RedR

p
p

1
1

2
1 1

1

γ . (4.29) 

Again the solutions are unique since the two trends are monotonic. 
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Regarding the Jacobian, two of its four elements can be trivially evaluated  

 1
1

=
∂

∂

Cp

h
 and  0=

∂

∂

Cp

h
. (4.30) 

Consequently the Jacobian becomes 

 ( )
















∂

∂

∂

∂

=

01
,

11 CCCC p

g

p

g

ppJ , (4.31) 

and the amplitude of the determinant will simply be 

 ( )( )
CC

CC
pp

g
ppJ

∂

∂
=

∂

∂
=

γ
,det 1 . (4.32) 

The result of the derivative is 

 
1
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3

1
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
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
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∂

∂
−

γ
. (4.33) 

After the substitution of the solution for the system 1
Cp  and 1

1Cp  we have 

 ( ) 31
1

1

2

1
, γ

γ

TC

CC

C p

RedR
pp

p
−=

∂

∂
. (4.34) 

which is formally equivalent to the coloured case when the target power TP  is 

substituted with the actual amount of power in the first component TCP . 

The next step is the definition of the pdf ( )1
11 CP pf

C
 and ( )1

CP pf
C

. 
CPf  was derived in the 

previous section. The new variable to characterise is TCP , which can be seen as a 11 →  

transformation. The derivative is 1 and the pdf is merely obtained by substituting the 

solution in 
1CPf . Hence, 

 ( ) ( )
TTCPTCP Ppfpf

CTC
−=

1
, (4.35) 
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 ( )
( )

( )
( )TTC

TC

Pp
N

N

TTC

N

TCP ePp
N

N
pf

−−−
−









Γ
= σ

σ

11
. (4.36) 

Equivalently, the transformation could be interpreted as a simple translation of the 

random variable from 0 to TP  (Riley et al., 2006). 

Putting all the results together we can evaluate the joint pdf 
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 (4.37) 

In order to extract the individual pdf of γ  ( )γΓf , an integral must be solved 

 ( ) ( )∫
∞

ΓΓ =
T

TCP
TCTCP dppff ,γγ . (4.38) 

Unfortunately, the integral has no analytical solution, however it can be solved 

numerically (Pearson, 1986).  

Starting from the analytical expression the characteristic probabilities of the detector 

can be calculated (in the next section they will be treated more exhaustively). For 

instance, the probability that the detector is higher than a threshold T given a signal to 

clutter ratio (SCR) can be analytically calculated as  

 ( ) ( )∫ ∫
∞

Γ=≥
1

,
T P

TCTCP
T

TC
dpdpfTP γγγ . (4.39) 

Again a numerical solution must be employed. Therefore, the numerical solution is 

generally required to calculate the probabilities in any cases.  
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 (a)  (b) 

Figure 4.3. pdf of the detector ( )γΓf  with white clutter: (a) SCR=2, (b) SCR=1 

 

Figure 4.4. pdf of the detector ( )γΓf  with white clutter as function of the SCR: Hypothesis 

target plus clutter. 



Chapter 4: Polarimetric Detector Statistics  121 

  

The pdf ( )γΓf  after the integration over TCP  is shown in Figure 4.3. The parameters 

used to define ( )γΓf  are the same as Table 4.1. Comparing the pdf of coloured and 

white clutter, it appears that in the case of white clutter the detector is closer to one, 

given the same SCR. In other words, the probability to detect the target is higher since 

the detector is more likely to pass the threshold. Figure 4.4 depicts the dependence of 

( )γΓf  on the SCR. 

The substantial difference when comparing white against coloured clutter is that in the 

white case in the absence of a target (SCR=0) the detector is not zero, since there is 

always power in the target component. Again the pdf peak increases with the SCR. A 

relevant scenario for the calculation of the characteristic probabilities is when the power 

of the deterministic target is zero (i.e. absence of target). Figure 4.5 presents the plot of 

( )γΓf  in absence of target. 

 

Figure 4.5. pdf of the detector ( )γΓf  with white clutter as function of the SCR: Hypothesis only 

clutter. 
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4.1.3 General hypothesis on clutter. 

The previous two hypotheses assume that the clutter is distributed only in the clutter 

components (worst scenario) or equally over all the components. In this section, the 

most general case will be discussed, where the three clutter components are not 

identically distributed and the target is still deterministic.  

The scattering vector for the clutter can be represented as [ ]Tcccc kkkk 321 ,,= . Clearly, 

the component [ ]Tcc kk 0,0,1=  (i.e. without clutter components) cannot be considered 

clutter since from the physical point of view, it is the target of interest (Cloude S. R., 

1995 ). Once again, we would like to stress that this is a statistical evaluation of the 

performance of the detector, but the definition of target and the selection of the SCR 

must be accomplished with a physical approach (as described in Chapter 3 and 

Appendix 2). 

In this hypothesis there are three power components: 

 
2

3

2

2

2

1321 CCCCCCCt kkkPPPP ++=++= . (4.40) 

They are rescaled Γ  distributions with parameters: 
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σ
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


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


Γ n

n
PC ,~ 3

3

σ
. (4.41) 

where again n is the number of samples in the averaging window and 1σ , 2σ  and 3σ  

can be different. Additionally the three components of the clutter are considered 

independent of each other (please note, now they are not identically distributed). 

Again we want to use the fundamental theorem of transformation of random variable 

and calculate the joint pdf (Papoulis, 1965). If 32 CCC PPP +=  the joint pdf of 1CP  and 

CP  is 

 ( ) ( ) ( )i

CP

i

CP

i

C

i

CPP pfpfppf
CCCC 11 11

, = . (4.42) 
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( ) ( )TTCPTCP Ppfpf
CTC

−=
1

 was calculated previously: 
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= 11
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σ
. (4.43) 

Regarding the distribution of CP  this is the sum of two Γ  random variables.  

Two cases will be considered here: 

 

a) σσσ == 32  

The processing is exactly similar to the white clutter case and CP  has a distribution 

 







Γ N

N
PC 2,~

σ
. (4.44) 

Putting all the results together the expression of the joint pdf can be calculated: 
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 (4.45) 

This can be interpreted as the intermediate case between coloured and white clutter. 

Here, we can separate the random influence on target from the one on the clutter 

components, giving much more freedom of choice.  

This hypothesis is particularly relevant to evaluate the performance of the detector with 

coloured clutter and thermal noise (as long as the clutter is significantly stronger than 

the noise). However, this hypothesis is not the most general, since it assumes two 

statistically similar clutter components.  
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b) 32 σσ ≠   

This is the most general scenario. In this condition, the summation theorem of Γ  

distributions is not applicable, since the two distributions are not identically distributed 

and a transformation 32 CCC PPP +=  must be taken into account (i.e. 12 → ). The CDF 

of CP  is equal to (Papoulis, 1965, Gray and Davisson, 2004): 

 ( ) ( ) ( )CCCCCCP pPPPpPPpF
C

≤+=≤= 32 , (4.46) 

where the domain where the transformation is formulated is  

 ( ){ }CCCCCP pppppD
C

≤+ℜ∈= +
32

2
32 ,, . (4.47) 

The domain can be particularised as: 

 { }232 , CCCCP ppppD
C

−≤ℜ∈= + . (4.48) 

By definition the CDF can be seen as the integral of the pdf (Papoulis, 1965): 
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 (4.49) 

To extract the pdf, the CDF expression must be differentiated: 
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Due to the independence of the two random variables the last expression can be written 

as: 

 ( ) ( ) ( ) 222 32 CCCPCPCP dpppfpfpf
CCC ∫

∞

∞−
−= , (4.51) 
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which is a product of convolutions: 

 ( ) ( ) ( )32 32 cPcPcP pfpfpf
CCC

∗= , (4.52) 

where ∗  is the product of convolution (Mathews and Howell, 2006, Riley et al., 2006).  

An easy way to solve the convolution considers the product of Fourier transformations 

(Riley et al., 2006):  

 ( ) ( ) ( ) ( )[ ] ( )[ ][ ]32
1

32 3232 cPcPcPcPcP pfFpfFFpfpfpf
CCCCC

−=∗= . (4.53) 

However, the final anti-transformation is unknown. 

Clearly the numerical solution is always available (Pearson, 1986). The convolution 

integral can be numerically solved substituting the value 1
Cp  and 1

TCp  in 
3CPf , since the 

solutions of the system are known once all the parameters are fixed.  

However, we want to attempt a different methodology based on an approximation. The 

variance of the rescaled 







Γ N

N
P ,~

σ
 distributions is 

 [ ]
N

PVAR
2σ

= , (4.54) 

hence it is reduced by increasing the number of samples considered (i.e. size of the 

window). For 1>>N  and small σ  the Γ  distribution has a trend which can be 

approximated by a Normal Gaussian distribution with the same variance and mean 

(Papoulis, 1965). This concept follows the central limit theorem and, in general, to have 

an accurate approximation the variance must be much smaller than the number of 

samples:  

 1
2

2

<<
N

σ
 or 1<<

N

σ
. (4.55) 
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In this hypothesis, the distribution of P  can be approximated with 







Ν

N
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,~
σ

σ . If 

both the clutter components fulfil the approximation we have: 
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The approximation is revealed convenient since the distribution of the sum of two 

Gaussian random variables is still a Gaussian (or in other words, the convolution of two 

Gaussians is still a Gaussian)(Riley et al., 2006). The resulting variable will have a 

mean that is equal to the sum of the means and its variance equal to the sum of the 

variances: 
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The pdf of CP  can be expressed as (Papoulis, 1965) 
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If this approximation is adopted the joint pdf is 
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(4.59) 

The obtained expression is a good approximation of the detector when the variance is 

small with respect to the number of samples. Considering the expression of Γ  is 
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evaluated in the solution points of the system, we can adapt the general inequality in 

eq.4.55 to our specific case. When the point of solution is substituted the mean of the 

distribution is divided by the power in the target component and the RedR (even though 

it is analytically more complicated to isolate the SCR parameter in the white clutter 

hypothesis). 

In conclusion, in the point of solution of the system ( 1
Cp ) the accuracy of the 

approximation depends on the SCR: 

 ( ) 








⋅⋅
Γ N

PRedRN
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T

CC ,~1 σ
. (4.60) 

In order to approximate this distribution with a Gaussian we need 
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⋅⋅

=
⋅⋅ SCRRedRNPRedRN T

σ
, (4.61) 

which can be interpreted as   

 
RedRN

SCR
⋅

>>
1

. (4.62) 

The latter states that the approximation is better when SCR and N are high. If a 5x5 

moving window is used and RedR=0.25, the limit for the SCR is around 0.8 which is 

relatively small as will be shown in the following. Anyway, if we want to use the 

analytical expression to optimise the algorithm for detection of weaker targets the RedR 

can be adjusted in order to improve the accuracy of the approximation. However, from 

the physical point of view, targets with SCR smaller than 2 are generally not interesting, 

since they allow an excessive dispersion of the target (Appendix 2). 

 

4.1.4 General hypothesis on target and clutter 

In the previous sections, the hypotheses consider the detection of deterministic (point) 

targets. The physical development of the detector revealed the possibility to detect 
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distributed targets as long as their polarimetric behaviour is single, i.e. the covariance 

matrix has rank one (this will be validated on real data as well). Distributed targets 

present speckle variations and they are not deterministic (López-Martínez C. and 

Fàbregas X., 2003, Oliver and Quegan, 1998). In this section we want to introduce the 

expression of the pdf when the latter hypothesis is adopted. 

The scattering vector now will be [ ]TCCCT kkkkk 321 ,,+=  where: 
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The system to solve is identical to Θ . The approximation of neglecting the cross terms 

now is even more effective since Tk  is a zero mean random variable as well. However, 

now the pdf of 1CTTC PPP +=  cannot be calculated as the translation of 
1CPf  and an 

approximation with the Gaussian has to be performed. Again the accuracy of the 

approximation is related on the SCR. The final expression of the pdf is: 
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 (4.64) 

 

4.2 Probabilities  

The ( )γΓf  can be used to calculate the probability that the detector is in a defined range 

of values [ ]10 ,γγ≡ΩΓ  given a fixed 0SCRSCR = : 
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 ( ) ( ) γγγγγ
γ

γ
dSCRfSCRsP ∫ Γ==≤≤

1

0
0010 || , (4.65) 

where s=SCR. 

In the previous equation, the symbol of conditional probability is adopted although the 

quantity is not precisely a conditional probability (Kay, 1998). In fact, the variable s is 

fixed (i.e. deterministic) and it is not a random variable. However, we decided to adopt 

the symbol to make the formalism more familiar.  

The normalisation property of the pdf states that (Papoulis, 1965) 

 ( ) 1|
1

0
=∫ Γ γγ dsf . (4.66) 

Unfortunately, we were not able to extract the analytical expression of the defined 

integral of ( )sf |γΓ . Therefore, all the integrals will be performed numerically (Pearson, 

1986).  

The examination of coloured and white clutter hypotheses are provided separately since 

the probabilities are generally different when different hypotheses are exploited. With 

the intention of keeping the formulation contained, we did not illustrate the results for 

the most general hypothesis. However, the trend is supposed to be in between the two 

extreme cases of coloured and white clutter. 

 

4.2.1 Coloured clutter hypothesis 

The first step in the calculation of the characteristic probabilities is to define the 

working hypotheses for the detection (Kay, 1998). In this series of tests, we intend to 

detect the presence or absence of a deterministic target in a statistic clutter spread 

equally on the clutter components of the scattering vector. In other words, the 

hypotheses can be summarised in: 
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where Tk  represents the target and 2Ck , 3Ck  are the clutter. The hypotheses can be 

converted to an expression dependent on the SCR: 
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 (4.68) 

In particular, when it is not explicitly indicated the SCR of the target is 2. 

The detection is positive when the detector is above the threshold:  

 T≥γ . (4.69) 

In detection theory, three probabilities can be identified as particularly relevant in 

estimating the detector capabilities: 

  

a) Probability of detection DP : 

This is the probability that the target of interest is present and the detection is positive 

(Kay, 1998). Therefore, the probability DP  can be calculated as 

 ( ) ( ) γγγ dSCRfSCRsTP
T

D ∫ Γ==≥
1

00 || . (4.70) 

Clearly, once the threshold is fixed, DP  will be a function of the SCR. This property is 

tested in Figure 4.6 where DP  is plotted against the SCR for two different thresholds. 

Please note, in this thesis the plots of the probabilities depict the SCR in a dB scale, 

since this makes their interpretation more straightforward. However, in the rest of the 

thesis the SCR is always shown in its linear scale (unless indicated). Table 4.2 

illustrates the selected detector parameters. 
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 (a) (b) 

Figure 4.6. Probability of detection DP  against SCR (expressed in dB) for two thresholds. 

Coloured Clutter hypothesis. (a) T=0.95; (b) T=0.98  

 

SCR RedR Threshold Window size 

variable 0.25 (a) 0.95, 

(b) 0.98 

25 

Table 4.2. Detector parameters 

 

When the threshold increases, the probability DP  is reduced, since a more dominant 

target is needed to make the coherence pass the threshold (i.e. higher SCR).  

DP  manifests a peculiar 0-1 (or ON-OFF) trend, where it is approximately 0 till a 

crossing point where it switches to 1 with a particularly high derivative. This result is 

favourable for a detector (as will be shown in the following) and it is due to the small 

variance of ( )sf |γΓ  (Kay, 1998, Papoulis, 1965).  

The crossing point for T=0.95 is a bit after SCR=2, this means that the mean of the 

distribution ( )sf |γΓ  is around SCR=2. The same result was obtained in Figure 4.1 (or 

Figure 3.2). 
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 (a) (b) 

Figure 4.7 Probability of detection DP  against SCR(dB). Coloured Clutter hypothesis. RedR 

and window size are varied (see Table 4.3).  

 

The second test analyses the reduction ratio (RedR) and the window size (Figure 4.7 

and Table 4.3). Increasing the RedR the detector becomes more selective and DP  is 

reduced. Hence, targets must have a higher SCR to be detected (the physical explanation 

of the phenomena is presented in the previous chapter). On the other hand, the effect of 

decreasing the window size is an increasing variance of the pdf (since the pdf of random 

variable generating the detector has higher variance). As a consequence, the probability 

of detection has a less sharp trend, but the crossing point remains around 0.5, since the 

mean of ( )sf |γΓ  is not changed. When the SCR (or the coherence value) is lower than 

the mean, the derivative of DP  increases, while it starts decreasing, when it is higher. In 

other words, DP  has a flex when SCR is equal to the mean. 

 

SCR RedR Threshold Window size 

variable (a) 1 

(b) 0.25 

0.95 (a) 25 

(b) 9 

Table 4.3. Detector parameters 
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b) Probability of missed detection MP : 

This is the probability that the target is present (i.e. 0SCRs = ), but the detector has a 

negative response T<γ . It is also called false negative. 

 ( ) ( ) D

T

M PdSCRfSCRsTP −===< ∫ Γ 1||
0 00 γγγ . (4.71) 

As in the previous case, Figure 4.8 plots MP  as a function of SCR, while the parameters 

are listed in Table 4.2. Initially, the threshold is varied.  

Figure 4.8 clearly displays a property of complementary between DP  and MP  (i.e. 

DM PP −= 1 ) (Kay, 1998). As a consequence both the probabilities must have the same 

crossing point (e.g. SCR=2 for T=0.95).  

 

 
 (a) (b) 

Figure 4.8 Probability of missed detection MP  against SCR(dB) for two thresholds. Coloured 

Clutter hypothesis. (a) T=0.95; (b) T=0.98    

 

Increasing the threshold, MP  increases, since it is more likely to miss targets when they 

are not sufficiently dominant. 
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 (a) (b) 

Figure 4.9 Probability of missed detection MP  against SCR(dB). Coloured Clutter hypothesis. 

RedR and window size are varied (see Table 4.3).  

 

The second experiment (Figure 4.9 and Table 4.3) studies RedR and window size as 

previously verified for DP . With a higher RedR the filter is more selective and the 

probability to miss a target is higher. Regarding the window size, the only difference is 

in the variability of the pdf of generator random variables resulting in a less sharp trend 

of MP . 

 

c) Probability of false alarm FP : 

This is the probability that the target of interest is not present 0=s , but the detector has 

a positive response T≥γ  (Kay, 1998). It is also regarded as false positive. 

 ( )0| =≥ sTPF γ . (4.72) 

The hypothesis of coloured clutter has a strong repercussion on the estimation of this 

probability. In fact, in absence of target the first component of the scattering vector is 

completely zero (unless thermal noise is present). Therefore, the detector is 

deterministically equal to zero, 
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as well as the probability of false alarm. The plots of FP  are not presented since they are 

constantly equal to zero. 

In this section, the thermal noise is not taken into account for the sake of brevity. 

However, in order to optimise the detector for a real scenario with coloured clutter, the 

thermal noise must be added to the treatment. The analytical expression of the pdf was 

presented in eq.4.45. and it considers 321 σσσ =≠ . The information about the Clutter to 

Noise Ratio CNR is required  

 
1

32

σ

σσ +
=CNR . (4.74) 

Additionally, in order to be able to use this formulation we need to have 1>>CNR . 

Moreover, in the case 1<<CNR  the coloured clutter can be neglected and the 

hypothesis of white clutter can be adopted. For brevity, this treatment is not presented 

here. 

 

4.2.2 White clutter hypothesis 

In the case of more general white clutter the working hypotheses are 
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where one of the clutter components is summed to the target. 

In terms of SCR the hypotheses look similar to the one performed previously: 
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However, the SCR observed by the detector and defined as the ratio of the components 

is different. The working hypotheses can be translated in an apparent SCR: 
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a) Probability of detection:  

The probabilities of detection are calculated following the same methodology exploited 

for coloured clutter. In Figure 4.10, DP  is plotted against SCR for two different 

thresholds (the parameters are listed in Table 4.2). Please note, when it is not specified 

the standard SCR will be considered (as for eq.4.76) 

Again, an increment of the threshold reduces DP . In contrast to the coloured 

counterpart, the crossing point is not at SCR=2, but around smaller values. This is due 

to the apparent SCR, since part of the clutter power contributes to the detection.  

The effect of changing the reduction ratio and window size is shown in Figure 4.11 

(Table 4.3). The effects of these two parameters are equivalent to the coloured 

hypothesis. Finally, the only substantial difference between coloured and white clutter 

seems to be the increase in the apparent SCR. 
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 (a)  (b) 

Figure 4.10. Probability of detection DP  against SCR(dB) for two thresholds. White Clutter 

hypothesis. (a) T=0.95; (b) T=0.98  

 

 

 
 (a)  (b) 

Figure 4.11 Probability of detection DP  against SCR(dB). White Clutter hypothesis. RedR and 

window size are varied (see Table 4.3).  
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b) Probability of miss detection: 

MP  has the same definition and estimation procedure of the coloured clutter counterpart. 

Figure 4.12 depicts the results for two different thresholds (Table 4.1).  

 

 
 (a) (b) 

Figure 4.12. Probability of missed detection MP  against SCR(dB) for two thresholds: White 

Clutter hypothesis. (a) T=0.95; (b) T=0.98  

 

 
 (a) (b) 

Figure 4.13 Probability of missed detection  MP  against SCR(dB). White Clutter hypothesis. 

RedR and window size are varied (see Table 4.3).  
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Figure 4.13 shows the plots varying RedR and window size (Table 4.3).   

All the plots appear to be in agreement with the results of the probability of detection, 

and in accordance with the coloured case. 

 

c) Probability of false alarm: 

When the clutter is white polarimetrically, the 0 hypothesis (i.e. absence of target) has a 

correspondent 
3

1
=A

SCR  and the probability of false alarm is different from 0. In the 

absence of a target, A
SCR  is constant against the SCR, therefore the FP  will be constant 

as well. Table 4.4 summarises some examples. 

In all the considered scenarios, FP  is particularly small. One relevant issue in designing 

detectors is to keep FP  small. In this context, the algorithm appears to have promising 

results (the analysis is provided in the next section). 

 

SCR RedR Threshold Window size 
FP  

any 0.25 0.95 25 15102.7 −×  

any 0.25 0.98 25 31108.1 −×  

any 1 0.95 25 39104 −×  

any 0.25 0.95 9 6108 −×  

Table 4.4 Probability of false alarm FP  for different parameters.  

 

In the following, we propose some further comments on the results: 

1) If the threshold increases, FP  reduces. It is less likely that some realisations are 

sufficiently imbalanced to set the detector to the upper the threshold. 
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2) Increasing the RedR, the coherence becomes lower, reducing FP  and only dominant 

targets can be detected (Riley et al., 2006): 
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The effect is similar to pushing the threshold up. 

3) When the number of samples is not sufficient the variability of the clutter amplifies, 

hence the realisation can be more imbalanced, increasing the FP . Fortunately, FP  is still 

low, nevertheless larger windows are generally preferred (Touzi R. et al., 1999, Lee et 

al., 1994b).  

 

4.3. Receiver Operating Characteristic (ROC) 

Once the analytic statistical expression of the detector are derived and tested, the more 

fascinating issue of optimising the detector parameters can be tackled. In general the 

aim of the optimisation is to keep the probability of detection high and the probability of 

false alarms small. The process commonly involves the selection of the threshold (Kay, 

1998). The reciprocal weight between FP  and DP  can be visualised for different 

thresholds providing a direct representation of the detector performances. The latter is 

regarded as Receiver Operative Characteristic (ROC). The relevance of the ROC is that 

it can be exploited to compare the statistics of several detectors with different origins 

(Chaney R. D. et al., 1990, Kay, 1998, Novak L. M. et al., 1993b, Novak L. M. et al., 

1999). The main goal of this section is to generate ROC curves which will be compared 

with the one presented in Chapter 2. 

 

4.3.1 Coloured clutter hypothesis 

In the case of coloured clutter, the ROC has no meaning, since the probability of false 

alarm is always zero. Therefore, the ROC curve appears the same as for a deterministic 

detector. Clearly the real performances will never be deterministic and the presence of 
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thermal noise will allow the calculation of FP . As explained previously the pdf derived 

in eq.4.45 (i.e. 321 CCC kkk =≠ ) can be used if the clutter is significantly stronger than 

the thermal noise. 

 

4.3.2 White clutter hypothesis 

As presented in the previous section, the false alarm probability is particularly small, 

however it is not zero and the ROC can be estimated.  

 

 
 (a) (b) 

Figure 4.14. ROC for SCR=2; (a) linear scale; (b) dB scale. 

 

SCR RedR Threshold Window size 

2 0.25 variable 25 

Table 4.5. Detector parameters for ROC 

 

Figure 4.14 shows the ROC of the detector for a SCR=2 and an average window of 25 

samples (e.g. 5x5). The parameters employed are listed in Table 4.5. In the linear scale, 

the ROC curve is not visible since it is too close to the point [0,1]. The latter is obtained 
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punctually by the deterministic detector, since the probability of detection is always 1 

and the probability of false alarm is always 0. In order to be able to visualise properly 

the ROC, we need to display the version where the probability of false alarm is 

expressed in dB power: 

 F

dB

F PP 10log10= . (4.79) 

In order to obtain DP  sensitively different from 1, FP  must be smaller than 2010− . 

Considering that commonly requirements of 510−=FP  are acceptable, the results appear 

to be superlative (Kay, 1998, Chaney R. D. et al., 1990). 

In actual fact, the performances are so similar to the deterministic detector because the 

algorithm is not a pure statistical detector. Working with the physics of the scattering 

the variability can be constrained in two main ways:  

a) It separates target and clutter in the basis set building up a ratio where the variable 

clutter is normalised to the target. 

b) The averaging reduces the variation of the clutter terms, making them narrower 

around the mean value (López-Martínez C. and Fàbregas X., 2003, Oliver and Quegan, 

1998). A larger window results in an even more deterministic detector. On the other 

hand, a large window degrades the resolution of the system, whereas the resolution 

plays a central role in target detection. In fact, single targets are generally contained in a 

small number of pixels and augmenting the dimension of the window the power of the 

target is spread over a larger area reducing the apparent SCR. In conclusion, a large 

window is to be preferred in the case of rather extended targets, nevertheless care must 

be taken for small targets (Novak L. M. et al., 1999). 

Statistically, the excellent result is due to the sharp variation of the probabilities as 

function of the threshold (Kay, 1998). In Figure 4.15, DP , FP  are plotted against the 

threshold (Table 4.5).  
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 (a) (b) 

Figure 4.15. Probability of detection (a) and false alarm (b) when the threshold is varied  

 

Both the probabilities decrease when the threshold increases (they go from 1 to 0). The 

explanation of these behaviours are: 

a) DP : fixed the SCR, the probability that the coherence is above the threshold is smaller 

for higher thresholds (i.e. an higher SCR is needed).  

b) FP : the probability that an unfortunate clutter realisation is higher than the threshold 

is smaller when the threshold is increased. 

Both the trends appear to be extraordinarily sharp with an almost ON-OFF tendency. 

This creates a region of the plots where DP  is almost one and FP  is almost zero. The 

optimal threshold can be chosen in this region. 

In order to test the detector performances in a more challenging scenario, Figure 4.16 

shows the ROC for a target with SCR=1 (same parameters than Table 4.5). The ROC is 

still excellent with performances several orders of magnitude better than common 

requirements. However, compared with the one calculated for SCR=2 it reveals to be 

lower. Specifically, we have potentially 1≈DP  with 1210−=FP .  
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 (a) (b) 

Figure 4.16. ROC for SCR=1; (a) linear scale; (b) dB scale. 

 

 
 (a) (b) 

Figure 4.17. ROC for RedR=1; (a) linear scale; (b) dB scale. 

 

Figure 4.17 tests the dependence of the ROC on the RedR. The detector parameters are 

the same as listed in Table 4.5 except that now RedR=1. Again there is an optimal 

region for the selection of the threshold and the performances are comparable with the 

one obtained for RedR=0.25. It seems that the change of RedR has no effect on the 

ROC. A change in ROC seems to be equivalent to a change of the threshold (hence not 
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visible in the graph). Once the threshold is adapted in the new optimal region the 

performances of the detector remain the same. In order to prove this speculation, Figure 

4.18 illustrates DP  and FP  for RedR=1. The two curves are shifted leftward, when 

compared with the case RedR=0.25 and there is still a wide region where the threshold 

can be selected optimally. In Appendix 2 a similar argument is presented, where RedR 

and T are linked in a dispersion equation.  

 

 
 (a) (b) 

Figure 4.18. Probability of detection (a) and false alarm (b) when the threshold is varied  

 

The last test concerns the window size (Figure 4.19). In the previous section it was 

demonstrated that a decrease of the number of samples amplifies the pdf variance. 

Therefore, we expect it to have effects on the ROC, making the probability trends less 

sharp. The detection parameters are set as in Table 4.5 except for the window size 

which is 9 (i.e. 3x3). The ROC moves rightward presenting slightly lower 

performances, however we can obtain 1≈DP  with 610−=FP  which is still one orders of 

magnitude better than 510− . 
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 (a) (b) 

Figure 4.19. ROC for window size equal to 9; (a) linear scale; (b) dB scale. 

 

In the last experiment, the performances of the detector are tested in a particularly 

challenging scenario (Figure 4.20). A small window (9 samples) is selected and the 

examined target has SCR=0.5 (Table 4.6). Please note the limit condition for the 

detection is SCR=0.3, since below that white clutter is detected. Clearly, in the absence 

of particular a priori information, this last experiment has more a didactic rather than a 

practical relevance. In fact, a coherent target which has half the power on the 

component of interest will be detected as well (Cloude S. R. and Pottier E., 1996). The 

selection of the SCR must be led by a physical rationale and has to take into account the 

dispersion equation derived in Appendix 2. In this chapter, the algorithm is examined 

exclusively from the statistical point of view, with the purpose of optimising its 

performance. However in the design of the detector, the physical part cannot be 

neglected.  

Specifically, converting the SCR in an angular distance ϕ∆  we can define a cone of 

detected targets (as shown in Appendix 2), we have: 
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 (4.80) 
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SCR RedR Threshold Window size 

0.5 0.25 variable 9 

Table 4.6. Detector parameters for ROC 

 

 
 (a) (b) 

Figure 4.20. ROC for challenging detection; (a) linear scale; (b) dB scale. 

 

An angular distance of 54 degrees is in many cases excessively large. Clearly, it is not 

to exclude the possibility that some peculiar a priori information could allow the 

selection of SCR=0.5 without the problem of physical false alarms. The previous 

calculation of physical dispersion is useful to make some consideration on the 

hypothesis SCR=2 as well. We judge 35=∆ϕ  too large for practical detection and in 

the validation chapter we restrict the angular variation to 15 degrees. On the other hand, 

in this chapter we prefer to illustrate results with SCR=2 since it provides a better 

picture of the statistical detector and in particular of its variations (higher SCR would 

have masked it). 

Now, the ROC curve is visible in the linear plot showing still adequate performances 

(Chaney R. D. et al., 1990): 
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 75.0=DP  with 310−=FP ,  

 85.0=DP  with 210−=FP . (4.81) 

 

4.3.3 Selection of the threshold 

In this section, a practical procedure to select the threshold is proposed. In detection 

theory, several methodologies were designed to optimise the threshold selection. They 

mainly concern with the minimisation of FP  and the maximisation of DP  as the 

Neyman-Pearson or Bayesian methodologies (Kay, 1998).  

Fortunately, the proposed detector has excellent ROC and a straightforward strategy can 

be adopted. The idea is to choose the threshold in the region where 1≈DP  and 0≈FP . 

As shown in the previous section, these regions are relatively wide and the choice can 

be easily made graphically plotting the two probabilities together. Figure 4.21 

illustrates an example of this procedure, where the dotted and dashed lines represent 

respectively FP  and DP  and the red line is the selected threshold. 

 

 
 (a) (b) 

Figure 4.21. Threshold selection for detection of (a) SCR=2 and (b) SCR=1. Dotted line: FP ; 

Dashed line: DP . 
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4.4 Estimation of DF through numerical simulation 

In order to validate the derived analytical expression, we performed a series of 

numerical simulations of the detector starting from the components of the scattering 

vector: complex Gaussian zero mean. In numerical simulation, the exact pdf cannot be 

achieved, but an approximation regarded as a Discrete Probability Function (DF) ( )γΓp  

can be obtained (Pearson, 1986, Gray and Davisson, 2004). As in the previous section, 

we are interested in the ( )γΓp  as a function of the SCR. Hence, ( )SCRsp =Γ |γ  will be 

estimated. As before, the latter is not a conditional probability since the SCR is 

deterministically fixed. 

 

4.4.1 Coloured clutter hypothesis 

The first hypothesis examines coloured clutter. The block diagram for the generation of 

the DF is illustrated in Figure 4.22. The first step defines a set of 250 realisations of the 

detectors given a fixed SCR. The SCR are defined increasing the mean of the original 

random variables used to generate the coherence. In other words, 250 coherences iγ  are 

generated for each SCR. Subsequently, the histogram of the coherences iγ  is calculated 

for any given SCR. This exploits information about the distribution of iγ .  

 

 
Figure 4.22 Block diagram for the detector. 
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Figure 4.23. Detector Discrete probability Function (DF). Simulation: coloured clutter. 

 

The ‘+’ block merges the columns together to form a matrix (i.e. each column is a 

histogram). The last step performs the normalisation for the columns, since they 

represent probabilities.  

The obtained DF for RedR=0.25 and N=25 is plotted in Figure 4.23. For low values of 

coherence the peaks are generally lower showing higher variance of the single column 

distribution. The general DF trend (Figure 4.23) is in agreement with the analytical 

solution (Figure 4.2) showing the appropriateness of the derived analytical expression. 

However, the peak values of the probability in the DF could differ from the pdf since 

the DF is equal to the pdf only in the limit of infinitesimally small intervals and infinite 

realisations (Antoniou, 2005): 
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 pdfDF

N

=
∞→

→∆ 0
lim , (4.82) 

where ∆  is the interval used to calculate the probabilities and N is the number of 

realisations. 

 

 
 (a)  (b) 

 
 (c)  (d) 

Figure 4.24 Simulated probabilities of detection DP  against SCR(dB) for different detector 

parameters: see Table 4.7. 

 

Once the DF is available this can be used to calculate the characteristic probabilities:  
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 ( )0| SCRsTPD =≥γ , ( )0| SCRsTPM =<γ  and ( )0| =≥ sTPF γ . (4.83) 

In Figure 4.24 the trends of the probabilities of detection DP  are presented. Table 4.7 

illustrates the parameters used for the simulations. 

 

 
 (a)  (b) 

 
 (c)  (d) 

Figure 4.25. Simulated probabilities of missed detection MP  against SCR(dB) for different 

detector parameters: see Table 4.7. 

 

Following the same processing the probabilities of missed detection MP  can be 
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estimated (Figure 4.25 and Table 4.7).  

 

 SCR RedR Threshold Window size 

(a) Variable 0.25 0.95 25 

(b) Variable 0.25 0.98 25 

(c) Variable 1 0.95 25 

(d) Variable 0.25 0.95 9 

Table 4.7. Detector parameters. 

 

The comparison of the simulated and the analytical results show extraordinary 

agreement (the plots overlaps each other), confirming once again the suitability of the 

analytical expression. 

 

4.4.2 White clutter hypothesis 

The more general hypothesis of white clutter is assumed. The simulation adopts exactly 

the same processing used for coloured clutter except for the addition of one more clutter 

component summing to the target. Figure 4.26 and Figure 4.27 illustrate the DF as 

function of the SCR for respectively hypothesis 0 (i.e. target plus clutter) and hypothesis 

1 (i.e. only clutter). 

The values are the same of Table 4.1 (but variable SCR). 

The simulated surface overlaps adequately with the analytical one, showing a 

characteristic starting point different from zero. Again the peak values are similar but 

we cannot expect a perfect matching. As for the analytical case, when the target is 

absent the DF is constant against the SCR, although the power of the clutter is 

increasing.  
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Figure 4.26. Detector Discrete probability Function (DF): Hypothesis 0 

 
Figure 4.27. Detector Discrete probability Function (DF): Hypothesis 1 
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The next analysis considers the simulation of the probabilities of detection DP  (Figure 

4.28 and Table 4.6). Again the comparison of simulated and analytic plots reveals great 

agreement (the plots can be overlapped). 

Figure 4.29 presents the probabilities of missed detection MP  (Table 4.6). 

The probability of false alarm FP  presents a particular scenario, since the numerical 

simulation is not able to estimate it properly (or at all). In fact, the probability that some 

realisations set the detector upper the threshold in absence of a target is extremely small 

(Papoulis, 1965, Monahan, 2001). The minimum probability which can be estimated 

numerically is the reciprocal of the number of samples used 

 
N

P
1

min = , (4.84) 

where N is the number of realisations. In these simulations FP  is several orders of 

magnitude smaller than minP , resulting in improper results or zero (Pearson, 1986). The 

only simulation which was able to return an appreciable FP  was the challenging 

scenario with small window and weak target. 

The last experiment concerns the ROC curves. The simulations were carried out using 

the same parameters previously exploited for the analytic treatment. Considering the 

particularly small value of the false alarm, the only ROC which we were able to plot 

was the last one with window size equal to 9 and SCR=0.5 (Figure 4.30 and Table 4.6). 
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 (a)  (b) 

 
 (c)  (d) 

Figure 4.28. Simulated probability of detection DP  with white clutter against SCR for different 

detector parameters: see Table 4.7. 
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 (a)  (b) 

 
 (c)  (d) 

Figure 4.29. Simulated probability of missed detection for white clutter against SCR(dB) for 

different detector parameters: see Table 4.7. 
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 (a)  (b) 

Figure 4.30. Simulated ROC for SCR=0.5 and window size equal to 9. (a) linear scale; (b) dB 

scale. 
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Chapter 5: Validation with airborne data 

 

 

Introduction 

In the previous section, the statistics of the detector were derived to establish its 

theoretical performance. Although the assessment returned promising results, the 

validation on real data is an unavoidable step, since in real scenarios the performance of 

an algorithm can be dramatically degraded by factors which cannot be easily taken into 

account in a theoretical model (Campbel, 2007). 

With the purpose of performing an exhaustive validation, several typologies of targets 

and datasets will be taken into consideration, exploiting airborne and satellite sensors, 

ranging among several frequencies and resolutions. In this thesis, the validation process 

will be divided in two main Chapters. The current one is dedicated to the more 

favourable scenario of airborne data, while the next chapter will treat the more 

challenging scenario of satellite data (Campbel, 2007).  

In the first part of the validation, the presence of standard targets (as explained in the 

previous section) will be investigated. They represent an interesting starting point due to 

their easy association with real targets. In the second part, general targets will be 

explored and the best single target to focus for the detection of the corresponding real 

target will be examined. We want to stress that this thesis does not present an ad hoc 

study for a specific real target (e.g. a specific car with a specific orientation with respect 

to flight direction), since we intend to present a general detector. The detection and 

identification of the backscattering from a particular object goes outside the aim of this 

thesis.  
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5.1 Presentation of the E-SAR data and general considerations 

In this first series of experiments the detector is applied on a quad polarimetric (i.e. HH, 

VV, HV and VH) L-band SAR dataset. L-band is relevant to target detection for its 

ability to penetrate foliage (FOLPEN) (Fleischman J. G. et al., 1996). The datasets were 

acquired by the DLR (German Aerospace Centre) during the SARTOM campaign in 

2006 (Horn R. et al., 2006) with the E-SAR airborne system. A noteworthy 

characteristic of the E-SAR radar sensor is its spatial resolution: 2.2m in range and 0.9m 

in azimuth. As shown in the previous section, the theoretical detection performance 

improves with increasing size of the averaging window employed to estimate the 

coherence. The drawback is the loss of resolution. For this reason, a high resolution 

sensor allows sufficient averaging with adequate final resolution. Considering a 5x5 

moving window is employed, the final averaged cell will be 11x4.5 m which is 

sufficient for vehicles and small buildings (Novak L. M. et al., 1999). 

The SARTOM campaign was designed to put under test the detection capabilities of the 

advanced SAR techniques of tomography and polarimetry. For this purpose, a set of 

artificial targets were deployed in open fields and under canopy cover, making this 

dataset particularly suitable for our experiments (Horn R. et al., 2006).  

Figure 5.1 presents the aerial photograph of the test site (Google Earth), with markers 

for the location of targets in the scene. Figure 5.2 is a colour composite RGB image 

where the three colours are the components of the Pauli vector (Red: HH-VV, Green: 

2HV, Blue: HH+VV) (Cloude S. R., 2009, Lee and Pottier, 2009, Mott, 2007, Ulaby and 

Elachi, 1990, Zebker H. A. and Van Zyl J. J., 1991).  

Comparing the radar image with the aerial photograph, the geometrical distortions 

affecting the radar image are evident. In particular, the radar image is compressed along 

the range direction since the azimuth resolution is higher (Horn R. et al., 2006). 

The brightest regions in our SAR image correspond mainly to forests. The brightness is 

due to the presence of several scatterers (e.g. branches, leaves, etc) with dimensions 

comparable to the wavelength (Attema and Ulaby, 1978, Durden et al., 1999, Fung and 

Ulaby, 1978, Lang, 1981, Treuhaft R.N. and Cloude R. S., 1999, Treuhaft and Siqueria, 
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2000, Tsang et al., 1985, Woodhouse, 2006). The multi scattering generated by the 

elements is consistent and relatively isotropic (i.e. in all the directions), consequently a 

significant fraction of energy is scattered backward (i.e. toward the receiving antenna). 

Polarimetrically, the tree crown can be modelled as a statistical volume composed by 

several oblate particles with or without a preferential orientation (Fung and Ulaby, 

1978, Treuhaft R.N. and Cloude R. S., 1999, Treuhaft and Siqueria, 2000).  

 

 
Figure 5.1. Aerial photograph of the test area (Google Earth). CR: trihedral corner reflector; 

WOLF: jeep; ILTIS: jeep covered by net; LKW: truck with container on the top; PANZER: tanks  



162   

 
Figure 5.2. L-band RGB Pauli composite image of the test area. Red: HH-VV, Green: 2HV, 

Blue: HH+VV. 

 

In the literature, different models were developed to describe volume scattering, one of 

the most common is the Random Volume (RV), which considers particles (i.e. spheres, 

or dipoles) randomly oriented, or the Oriented Volume, where the particles have a 

preferential orientation. 

The backscattering from bare ground is generally less bright. It can be modelled as a 

rough surface (i.e. Bragg scattering) where most of the energy is scattered forward 

(Cloude S. R., 2009). If the roughness is very small compared with the wavelength then 
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most of the energy of the incident wave (which is not absorbed or refracted inside) will 

be reflected in the mirror direction following the Fresnel laws (Stratton, 1941, Rothwell 

and Cloud, 2001). In some limits, the roughness (compared with the wavelength) is 

directly related with the energy scattered back to the sensor. Polarimetrically, bare 

ground behaves like a surface, hence the odd-bounce represented by the first component 

of the Pauli scattering vector (i.e HH+VV) is particularly strong (Cloude S. R., 2009, 

Hajnsek I. et al., 2007). A way to understand the scattering from a rough dielectric 

surface is to consider an ideal surface and start making it progressively less ideal.  

a) An infinite metallic smooth surface scatters only in the foreword direction and HH 

and VV have exactly the same amplitude but opposite phase (as long as the incident 

waves are in phase). This is because the reflection of the vertical component changes 

sign. However with the BSA coordinate system the change in the direction of the 

horizontal axis results in a double change of sign making HH and VV in phase (Cloude 

S. R., 1987, Huynen J. R., 1970).  

b) An infinite dielectric smooth surface will still scatter only in the foreword direction 

but now HH is not equal in amplitude to VV, due to the Brewster angle which will make 

the VV component smaller than the HH one. As in the metallic case, the surface does not 

introduce depolarisation (Cloude S. R., 2009, Rothwell and Cloud, 2001). 

c) The introduction of surface roughness generates spreading of the scattered energy 

away from the foreword direction (covering the backward direction as well). 

Finally, in the case of bare ground, the surface is dielectric and rough. The roughness of 

the surface produces depolarisation, hence HV and VH are not zero anymore, and HH 

and VV are not exactly in phase. For Bragg scattering, in backscattering the balance 

between VV and HH reverses and VV is higher than HH. The effects of the Brewster 

angle on target detection of multiple reflections with the ground surface will be 

presented in more detail in the next section.  

The artificial targets (i.e. corner reflectors, containers, and vehicles) deployed in open 

field are rather evident in Figure 5.2, since they are generally bright. The brightness is 

mainly associated with their geometrical shape which is favourable to the formation of 
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mirrors or corners (Curlander and McDonough, 1991, Li J. and Zelnio E.G., 1996, 

Novak L. M. et al., 1999). Evidently, the intensity of the backscattering depends on the 

dimensions of the corner and its radar cross section can be calculated as shown in the 

first chapter. The connection between artificial targets and metallic corners is the focal 

idea of detectors which set thresholds on the amplitude of the backscattering in the 

linear co-polarisations HH or VV (as presented in the second Chapter). A slightly more 

refined approach considers thresholds on the first two elements of the Pauli scattering 

matrix (namely odd-bounce and even-bounce).  

In Figure 5.2, the features appearing as geometrical shapes in open field are metallic 

nets (please note they are not marked in Figure 5.1).  

Regarding the targets deployed under forest canopy, they are generally not visible and 

separable by the surrounding clutter in the RGB image (Fleischman J. G. et al., 1996, 

Cloude S. R. et al., 2004). This is due to two main reasons:  

a) Microwave radiation is able to penetrate dielectric mediums, with penetration depth 

related to the permittivity of the medium (associated with the density in the case of 

cluster medium) (Rothwell and Cloud, 2001, Stratton, 1941). A tree canopy is 

composed by several particles separated by air gaps (which occupy most of the volume). 

The canopy can be penetrated by the EM radiation in L-band, but it suffers attenuation 

due to particle absorption and dispersion (which scatters the energy in different 

directions). Consequently, the amount of energy able to reach the ground beneath the 

canopy is merely a fraction of the incident one (Fung and Ulaby, 1978, Treuhaft and 

Siqueria, 2000, Tsang et al., 1985). Once reached the target, the wave has to travel back 

toward the sensor along the same canopy path. The two way attenuation of the canopy 

can drastically lower the backscattering from the target. 

b) In a forested area the surrounding clutter is much higher than bare ground, since the 

forest has high backscattering (as explained previously) (Kay, 1998).  

In conclusion, the power backscattered by the target under canopy cover is reduced 

while the power of the surrounding clutter increases. In some instances, this leads to a 

target backscattering lower than the background making unfeasible the detection based 
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solely on the backscattering amplitude.  

In a first experiment, the presence of multiple reflections will be investigated in order to 

detect vehicles and corner reflectors. Additionally, oriented dipoles will be explored in 

order to detect wires. In the second part, general targets will be investigated, with the 

purpose of examining the best single target to use for the detection of the corresponding 

real target.  

 

5.2 Standard target detection 

As mentioned previously, artificial targets are primarily composed of basic shapes and 

corners, which could be selected in a first attempt. In Chapter 3, the polarimetric 

characteristics of standard targets were examined, here, an expected real target will be 

associated with the theoretical one (Cloude S. R., 2009, Lee and Pottier, 2009). The 

detection will be aimed at: 

a) Odd bounce: these are corners with metallic planes where the wave has been reflected 

an odd number of times before being redirected to the sensor. Examples of this typology 

are surfaces facing the sensor and trihedral corners. 

b) Even bounce (horizontal): these are again corners with metallic planes where the 

wave suffers an even number of reflections before reaching the sensor. In particular, the 

horizontal orientation of the corner line is an important specification, since the target is 

not invariant to rotation along the Line of Sight (LOS). Examples of even bounce are 

dihedral corners like walls or vehicles oriented along the azimuth. 

c) Horizontal dipole: a dipole is generated by a line of current. It will scatter a linear 

polarisation (i.e. zero ellipticity) with orientation equal to the wire. Again, the 

orientation of the dipole is an important specification. Examples are wires along the 

azimuth direction and parallel to the ground, but also narrow cylinders, like long thin 

branches.  

d) Vertical dipole: same as horizontal dipole but oriented along the vertical direction. 

By vertical direction we mean any direction on the plane passing through the range 
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direction and orthogonal to the horizontal plane. Although any wire on this plane will be 

interpreted as vertical dipole, the amount of backscattering coming from the target is a 

function of its orientation on this plane (since a dipole is not isotropic along the 

direction of its axis). For instance the return is particularly strong when the wire is 

perpendicular to the range direction. Another occurrence of vertical dipoles is when the 

wire is normal to the horizontal ground plane, since it produces double bounces with the 

ground (as long as the latter is sufficiently smooth and flat). 

Standard targets represent ideal metallic targets, however real targets will generally be 

slightly dissimilar from them. From a geometrical point of view, a real single target can 

still be represented by a vector in the target space since it is deterministic and coherent. 

However, as a consequence of the non-ideal nature of the target, its vector will be 

slightly different from the ideal one (Cloude S. R., 1995 ). This difference can be 

described as an angular distance between the two vectors (Rose, 2002, Strang G., 1988). 

In the detector, when the perturbation of the ideal target Tω  is performed (and the 

threshold is set), the detection is restricted to a defined cone of vectors with the target to 

be detected as the axis (a range of angular distances from the target). If the real target is 

inside the cone of detection it will still be detected, otherwise a different typology of 

single target must be exploited for the real target. In this context, the perturbation (and 

the set of the threshold) is an instrument to adjust the angle variation from the ideal 

target which is assumed as acceptable (as the dispersion equation presented in 

Appendix 2).  

The results of the detection are masks. When a target triggers the detection because the 

coherence between Tω  and Pω  is above the threshold, the mask records the value of the 

coherence scaled linearly between the threshold and one. In this way, a measure of the 

dominance of the target based on the coherence amplitude is assigned (Kay, 1998). The 

mask will be: 

 ( ) 0, =azrgm ,  if Td <γ ,  

 ( ) dazrgm γ=, ,  if Td ≥γ . (5.1) 
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where rg stands for range, az for azimuth, dγ  is the detector as presented in the previous 

chapter and T the threshold. 

Table 5.1 shows the main parameters selected in the detection. A clarification must be 

provided regarding the selection of the two threshold values. In the previous chapter, a 

methodology to select the threshold was developed and tested for SCR=2 and SCR=1. 

These two examples where selected because they present a favourable didactic picture 

of the statistical detector. However, in a practical detection we could be not interested in 

targets with SCR=2 since the dispersion equation shows a relatively large variation of 

the target (35 degrees of angular variation) with possible detection of similar coherent 

targets. For this reason, the thresholds used were optimised for white clutter and SCR=4 

and SCR=6. These two values of SCR were not treated in the statistical evaluation 

(previous chapter) since with them the detector presents a strong deterministic 

behaviour and the variation effects are not clearly visible. 

Moreover, the reason for two different thresholds for reflections and dipoles is related to 

the brightness of multiple reflections in open field. This makes their return particularly 

dominant on the surrounding clutter and a higher threshold is to be preferred in the case 

of high SCR (signal to clutter ratio) since it reduces the false alarm rate. In conclusion, if 

we have a priori information about the typology of scenario (e.g. open field) a more 

clever selection of the threshold can be performed. The dipoles are generally not 

particularly bright, hence a standard threshold (i.e. SCR) must be chosen.  

 

 Window Area size (Rg, Az) T reflections T dipoles RedR 

5x5 250 x 250 pixels 0.97 0.95 0.25 

Table 5.1. Parameters used for the detector 

 

Figure 5.3 presents the results of the detection of multiple reflections and oriented 

dipoles. Besides, Figure 5.4 illustrates the photographs of some detected targets taken 

during a survey of the test area. The L-band RGB Pauli image Figure 5.3.a is given as 
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comparison with markers in order to identify targets of interest (250x250 pixels). A jeep 

is deployed in the middle of the image (Mercedes Benz 250 GD, also named ‘Wolf’) 

and the two bright points above and below the jeep are trihedral corner reflectors 

positioned for calibrations (top 149cm; bottom 70cm).  

 

    
 (a) RGB Pauli image (b) Multiple reflection 

 
 (c) Oriented dipoles 

Figure 5.3. Detection over open field area. (a) L-band RGB Pauli image with markers for some 

targets. Red: HH-VV, Green: 2HV, Blue: HH+VV. (b) RGB mask for multiple reflection. Red: 

Even-bounce, Green: zero, Blue: Odd-bounce; (c) RGB mask for oriented dipole detector. Red: 

horizontal dipole, Green: zero, Blue: vertical dipole. The intensity of the masks is related to the 

detector amplitude. 
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Finally, on the bottom of the image there is a vertical metallic net (they were used to 

delimit areas). The range direction is along the vertical axes (bottom to top) (Horn R. et 

al., 2006). 

Any masks display the information about two different detections gathered together in 

an RGB composite colour image. The masks are: 

a) Multiple reflections (Figure 5.3.b): targets constituted of metallic surfaces and 

corners are represented in the same mask. Red stands for even bounce and Blue for odd 

bounce (as in the Pauli basis convention). 

b) Oriented dipoles (Figure 5.3.c): the wire or narrow cylinders can be visualised on 

this mask. Red represents horizontal and blue vertical dipoles (as in the Lexicographic 

basis convention). 

The algorithm correctly detects the trihedral corner reflectors (CR) as a source of odd-

bounces (blue spots on the mask). The return from the CRs is especially pure and strong 

since the faces are metallic. The diffraction on the edges is a factor which can reduce 

slightly the purity but at L-band this is rather negligible (Rothwell and Cloud, 2001). 

The jeep presents mainly even bounces, presumably due to the double bounce 

reflections between ground and vertical surfaces of the jeep (and vice versa). 

Additionally, some even bounce targets are located on the forest edge, due to the trunk-

ground double bounce which is particularly strong at the forest edge where the trunk 

plane is not shadowed by canopy or other trunks. These typologies of targets (except the 

CRs) are less pure since at least one of the planes (i.e. the ground) is dielectric. 

Furthermore, the planes are rough surfaces, the angle between them can be slightly 

different from normal and the orientation of the corner line could not be exactly 

horizontal (e.g. presence of slopes). In the next section a procedure is described to focus 

the detector more sharply on the real target of interest. 

Regarding the oriented dipole, the targets composed by reflecting surfaces (especially 

the CRs) disappear completely. The metallic net (Figure 5.4.b) is detected as a 

horizontal dipole, since the horizontal wires scatter more compared to the vertical ones 

due to the radar geometry (as explained previously). 
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 (a) Wolf1 (b) Metallic net 

  
 (c) Sparse tree with horizontal branches (d) Bushes with vertical wooden stems 

Figure 5.4. Photographs of some detected targets. 

  

It is interesting to note that the same polarimetric behaviour is shared by all the metallic 

nets present in the dataset, hence horizontal dipoles can be reliably exploited for their 

detection. The isolated tree at the edge of the forest is detected as a horizontal dipole 

due to its long and thin horizontal branches (as visible in Figure 5.4.c). These branches 

are long cylinders with diameter of one or two centimetres, hence they are interpreted as 

narrow cylinders by the 24cm wavelength (Cloude S. R., 2009, Cloude, 1995a).  

Several vertical dipoles are detected on the ground. A survey of the test area revealed 
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the presence of bushes constituted of big wooden vertical stems with height around one 

and half meters (Figure 5.4.d). 

The next detection exercise is aimed to test the algorithm performance in a more 

challenging environment, when the target is deployed beneath canopy cover (Figure 

5.5). In these circumstances both the thresholds for multiple reflections and oriented 

dipoles are set to 0.95, since the targets are not expected to be particularly dominant and 

the rejection of clutter is a primary issue. In general, forest clutter should not amplify 

dramatically the false alarm rate since volume contribution (specially randomly oriented 

particles) is spread over all the target space resulting in confusing the polarimetric 

information (i.e. making the entropy higher) and reducing the probability that the 

detector surpasses the threshold (Tsang et al., 1985).    

The deployed targets are three trihedral corner reflectors (top: 149cm, bottom left: 

70cm, bottom right: 90cm). In the RGB Pauli image (Figure 5.5.a) the CRs are not 

recognisable, since the surrounding clutter (i.e. forest) has a bright return masking them 

out. Conversely, they are easily detected as source of odd bounce in the multiple 

reflections mask (Figure 5.5.b). Additionally, the algorithm is able to detect bare 

ground in the upper part of the image. As mentioned before, the ground return can be 

modelled as a Bragg surface (Cloude S. R., 2009). In this last exercise, we are able to 

detect bare ground because the threshold is lower than before and weak targets can be 

detected.  

Regarding the even bounce, several trunk-ground double bounces can be identified, 

especially in proximity of the forest clearing separating the top and bottom CRs (i.e. 

darker line running along the azimuth). When the forest density is lower, the trunk 

surface has more probability to generate a dihedral with the ground. 

Finally, it is not possible to detect dipoles with marked preferential orientation in the 

forest (Figure 5.5.c). This is in line with the RVoG model for L-band, where the forest 

structures are random and do not present particular orientations (Fung and Ulaby, 1978, 

Treuhaft and Siqueria, 2000, Papathanassiou K. P. and Cloude S. R., 2001). Regarding 

the vertical dipoles, the ground does not present detections anymore, in fact it is 
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detected as single bounce (the field visit confirmed the absence of bushes in that area). 

The photograph image of two of the three corner reflectors (two on the bottom) is 

presented in Figure 5.6. 

 

   
 (a) RGB Pauli image (b) multiple reflection 

 
(c) oriented dipoles 

Figure 5.5. Detection over forested area. (a) L-band RGB Pauli image. Red: HH-VV, Green: 

2HV, Blue: HH+VV. (b) RGB mask for multiple reflection. Red: Even-bounce, Green: zero, Blue: 

Odd-bounce; (c) RGB mask for oriented dipole detector. Red: horizontal dipole, Green: zero, 

Blue: vertical dipole. The intensity of the masks is related to the detector amplitude. 
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In order to offer another example of detection under foliage, Figure 5.7 depicts the 

detections where a different typology of target is investigated: a 20ft steel container was 

deployed on a forest clearing as shown in Figure 5.8.b. The side-looking arrangement 

of the radar makes the container completely under cover of the forest canopy (on the left 

hand side). The photograph also gives an idea about the density of the forest. Figure 

5.7.b reveals clearly the detection of the container as source of even bounces (i.e. a 

metallic wall over a ground surface). In this fortunate case, the backscattering from the 

container is relatively bright, consequently we could use the higher threshold 0.97 for 

multiple reflections. This makes the final mask cleaner, rejecting all the weak and non 

ideal targets (e.g. bare ground or trunks). 

 

 
Figure 5.6. Photograph of two of the three trihedral corner reflectors in the forest. 

 

Regarding the odd bounces, there are two fascinating features detected in proximity of 

the bottom left corner of the forest stand. The stripe shaped is a slope used for training 

tank drivers (Figure 5.8.c). The main slope faces the sensor acting like a mirror (i.e. 

single bounce) although it is not metallic. The other blue spot is a bunker as shown in 
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Figure 5.8.d. Here, the side facing the sensor is the one inside the hole and the frontal 

prominent edge.  

 

   
 (a) RGB Pauli image (b) multiple reflection 

 
(c) oriented dipole 

Figure 5.7. Detection over forested area: container. (a) L-band RGB Pauli image. Red: HH-VV, 

Green: 2HV, Blue: HH+VV. (b) RGB mask for multiple reflection. Red: Even-bounce, Green: 

zero, Blue: Odd-bounce; (c) RGB mask for oriented dipole detector. Red: horizontal dipole, 

Green: zero, Blue: vertical dipole. The intensity of the masks is related to the detector 

amplitude. 
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 (a) military observation tower (b) container in forest 

   
 (c) tank training slope (d) bunker 

Figure 5.8.  Photograph pictures of some detected targets. 

 

As expected, horizontal branches on the forest edge generates horizontal dipoles. 

Regarding the detected point on the lower left corner of the forest stand, they 

correspond to a military observation turret, as shown in Figure 5.8.a. 

The turret is a noteworthy example of a complex target. It is detected as a horizontal 

dipole, hence its HH component (or something close to it) is dominant against all the 

others components. However, the interpretation of the peculiar interaction between the 
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turret and the incident wave cannot be trivially derived from a mere visual inspection of 

the target (Stratton, 1941). This is one of the reasons for the choice to test the detector 

with standard targets, since they generally have an easy physical counterpart (except 

few exceptions, as in this case of the turret). We left out other theoretical targets (e.g. 

helixes) since we expect a more complicated association with real targets based on a 

visual inspection. This would have the consequence of adding ambiguity to the 

validation (Cloude S. R., 2009, Rothwell and Cloud, 2001, Stratton, 1941). Clearly, if 

the exact signature of the target of interest is known the detector can be focused on it 

(since we know that the theoretical target is associated with our real target of interest). 

Finally, there are some vertical dipoles on the ground due to bushes, but not as much as 

in the previous example. 

In the last experiment with E-SAR data, a different typology of targets is under 

examination. The entire mathematical derivation is based on the possibility of 

characterising the polarimetric behaviour of the target with a single scattering vector 

(since it is a single target). In other words, the target must be polarimetrically stable or 

deterministic, which commonly translates into point targets or targets composed of a 

stable compound of objects (with the same polarimetric behaviour) in the resolution 

cell. Single targets are often associated (and sometimes confused) with coherent targets 

which are targets that do not present speckle variation, because they are deterministic. 

As explained in the first chapter, speckle is due to the coherent sum of several scatterers 

in the same resolution cell with different possible combinations. Even though the 

correspondence between single and coherent target is commonly acceptable in practical 

cases, there is a theoretical difference which sometimes can be observed on radar data 

(Dong Y. and Forster B., 1996). The provided example is a target distributed over 

several pixels (i.e. composed by several scatterers) where all the scatterers have exactly 

the same polarimetric response. Such a target can still be characterised with a single 

scattering matrix, even though it is distributed. In other words, if in n neighbour pixels 

the scattering matrix has the same polarimetric information but different overall 

amplitude and phase (due to amount of scatterers and location), after the averaging the 

scattering matrix becomes: 
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In conclusion, the scattering matrix of the total target is unchanged except for a 

multiplicative complex factor (which can be neglected in the polarimetric context). 

Clearly, although the use of the scattering matrix is visually effective it is not formally 

completely correct to prove this property since we should demonstrate it on the 

covariance matrix. In order to have a more rigorous demonstration we present the 

following proof. 

If the covariance matrix is obtained from the Lexicographic scattering vector, the first 

element of the matrix will be: 
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The same procedure can be applied to all the other diagonal terms resulting in 
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 Regarding the cross components, we can write 
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which translates in: 
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Summarising, the operation can be seen as  

 [ ] [ ]sC
n

C
κ

= , (5.7) 

which is the multiplication of the covariance matrix for a complex scalar (which does 

not change the polarimetric characteristics of the target). From the geometrical point of 

view the final covariance matrix can be obtained from the same scattering vector (the 

one of the scatterers), consequently it is of rank one and represents a single target. Such 

a target presents speckle due to its distributed structure but can still be detected due to it 

polarimetrically single nature. 

In order to test the detection for distributed single targets, we focused the algorithm on 

agricultural areas (Figure 5.9). Figure 5.9.d shows the aerial photograph (Google 

Earth) of the area, where the radar scene is contained between the two black lines. Here, 

three fields with stripe shapes are visible between two forest stands. In order to facilitate 

the interpretation, in the detection masks, the lines indicate the edge of the forest 

The mask reveals that the middle field is dominated by double bounces. Additionally, 

weak vertical dipoles are detected on the same area. Considering that the value of the 

backscattering is low (Figure 5.9.a) the target in the cell is expected to have a small 

radar cross section. A likely real target should resemble a collection of small scatterers 

with vertical preferential orientation which are able to generate double bounces with the 

ground. For instance, it could be composed of vertical stems, similar to vertical dipoles 

positioned close to each other in order to generate double bounces with the ground. 

Unfortunately, we do not have any picture of the field during the time of acquisition. 
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 (a) RGB Pauli image (b) multiple reflection 

   
 (c) oriented dipole (d) aerial photograph  

Figure 5.9. Detection over forested area. (a) L-band RGB Pauli composite. Red: HH-VV, Green: 

2HV, Blue: HH+VV. (b) RGB mask for multiple reflection. Red: Even-bounce, Green: zero, Blue: 

Odd-bounce; (c) RGB mask for oriented dipole detector. Red: horizontal dipole, Green: zero, 

Blue: vertical dipole. The lines in the masks represent the edge of the forest. The intensity of the 

masks is related to the detector amplitude. (d) Google aerial photograph of the area.   

 

5.3 Selectable detection 

The previous section was focused on detection of standard single targets, while here the 

complete potentiality of the algorithm will be tested by investigating a wider collection 



180   

of single targets. The exercise is accomplished by modifying the target of interest by 

gradually rotating the scattering mechanism and examining the variation in the detection 

mask for the same scene. Such processing could be interpreted as a sensitivity analysis 

of the real target in polarimetric space. This is aimed to obtain the best single target for 

the detection of the real one.   

In order to rotate the target vector, a parameterisation must be exploited. We opted for 

the same representations introduced previously for the perturbation analysis:  

a) Huynen parameters (Huynen J. R., 1970):  

   [ ] ( )[ ] ( )[ ][ ] ( )[ ] ( )[ ]mmdmm RTSTRS ψττψ −= , (5.7) 
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where mϑ  and mτ  are orientation angle and ellipticity angle of the first eigenvalue 

(Cros-pol Null), and m, υ , γ  and ζ  are respectively, target magnitude, target skip 

angle, characteristic angle and absolute phase. The latter is generally not usable in 

single pass polarimetry since it is not separable from the phase term due to the distance. 

Additionally, we generate scattering mechanisms (i.e. unitary vectors), hence m=1. In 

conclusion, the number of useful Huynen parameters is four. 

b) α  model (Cloude S. R., 2009, Lee and Pottier, 2009):  

The scattering mechanism can be represented as 

 [ ]Tii ee µε βαβααω sinsin,cossin,cos= . (5.8) 
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where α  is the characteristic angle (different from γ ) and β  is twice the target 

orientation angle. Please note, also in this case the scattering mechanism can be 

described by four parameters. 

The sensitivity analysis is carried out by fixing three of the four parameters and letting 

the last vary in its entire range of definition. We decided to perform the detection on an 

area slightly larger (400x400 pixels) and highly populated with artificial targets in order 

to provide a relatively large picture. The results obtained using these parameterisations 

can be compared with the standard targets, examining the consistency of the results. 

In Figure 5.11, a sensitivity analysis is performed with the α  model, where α  is varied 

in the range 





∈

2
,0
π

α , and 0=== µεβ . In term of targets, 0=α  and 0=== µεβ  

represents single reflection or isotropic targets, hence in Figure 5.11.b odd bounces are 

detected, such as corner reflectors and some bare ground. 4πα =  represents dipoles 

and 0=β  establishes they are horizontal, hence the metallic net as well as some 

branches at forest edge are identified. 2πα =  is for even bounce which in the image 

are generated by a truck and a container (Figure 5.10 shows their pictures).  

 

   
 (c) container (d) truck 

Figure 5.10.  Photographs pictures of some detected targets. 
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 (a) RGB Pauli (b) 0=α  

     
 (c) 8πα =  (d) 4πα =  

     
 (e) 83πα =  (f) 2πα =  

Figure 5.11. Selectable detection over open field area. [ ]2,0 πα ∈  and 0=== µεβ  (a) L-

band RGB Pauli composite image with markers for some targets. (b) 0=α ; (c) 8πα = ; 

(d) 4πα = ; (e) 83πα = ; (f) 2πα = . 



Chapter 5: Validation with airborne data  183 

  

     
 (a) RGB Pauli (b) 0=γ  

     
 (c) 8πγ =  (d) 4πγ =  

     
 (e) 83πγ =  (f) 2πγ =  

Figure 5.12. Selectable detection over open field area. [ ]2,0 πγ ∈ , 0== mm τϑ  and 

2πυ =  (a) L-band RGB Pauli image. (b) 0=γ ; (c) 8πγ = ; (d) 4πγ = ; (e) 83πγ = ; (f) 

2πγ = . 
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 (a) RGB Pauli (b) 0=υ  

     
 (c) 8πυ =  (d) 4πυ =  

     
 (e) 83πυ =  (f) 2πυ =  

Figure 5.13. Selectable detection over open field area. [ ]2,0 πυ ∈ , 0== mm τϑ  and 

2πγ =  (a) L-band RGB Pauli image. (b) 0=υ ; (c) 8πυ = ; (d) 4πυ = ; (e) 83πυ = ; (f) 

2πυ = .   
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8πα =  and 83πα =  represents intermediate typologies of targets. This is the first 

experiment where they are considered, therefore it is appropriate to try to describe them 

in more detail. In the sensitivity analysis, 83πα =  seems to be able to detect dihedrals 

constituted of a metallic wall over ground surface better than the standard even bounce. 

For instance, the container is observed by the sensor as a metallic wall which generates 

a dihedral with a dielectric surface (i.e. the ground). The ground introduces the Brewster 

(or pseudo Brewster) angle for the vertical linear polarisation (Rothwell and Cloud, 

2001, Stratton, 1941). Therefore, the backscattering of the VV polarisation is lower than 

in HH. This additional contribution of the HH polarisation can be interpreted as a 

coherent horizontal dipole in phase with the HH component of the even bounce. 

Therefore, the final target will be something in between the ideal even bounce 

( 2πα = ) and the horizontal dipole ( 4πα = ). 

In the literature this typology of target is regarded as narrow dihedral (Cameron, 1996). 

In conclusion, in the case horizontal dihedral with the ground surface are investigated 

the detector should be focused on narrow dihedrals more than ideal dihedrals. 

An equivalent representation to the α  model is the Huynen parameterisation. In Figure 

5.12, an exercise is accomplished varying the characteristic angle γ  in the range 







∈

4
,0
π

γ .  

The characteristic angle is related with the ratio of the two Cross-pol Nulls, where for 

0=γ  only one Cross-pol Null is different from zero (one eigen-value) and for 4πγ =  

the two Cross-pol Nulls are equal (i.e. multiple reflections). The other parameters are: 

0== mm τψ  and 2πυ = . For 0=γ  the target selected is a horizontal dipole (since the 

orientation mψ  and the ellipticity 
mτ  are zero). Please note, Figure 5.12.a presents the 

same detection mask obtained in the previous exercise. On the other hand, for 4πγ =  

the target is a multiple reflection and 2πυ =  states it is an even bounce (the two 

eigenvalues have opposite phase). In Figure 5.12.f shows the expected even bounce 

detection with the container and truck. The intermediate masks detect targets in between 
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the extreme cases. The metallic net seems to be rather persistent in the detections 

appearing in several masks but this could just be related with the non linearity of the 

scattering mechanism dependence. Moreover, again the container and truck seem to be 

better detected when the algorithm is focused on a combination of horizontal dipole and 

ideal dihedral rather than the ideal dihedral alone. 

The last sensitivity analysis in Figure 5.13 considers the variation of the skip angle υ  

in [ ]2,0 πυ ∈ . The latter is related to the phase difference between the two Cross-pol 

Nulls. The parameters set here are 4πγ =  (i.e. multiple reflection) and 0== mm τψ , 

consequently the detection sweeps from odd to even bounce. The images at the extreme 

of the range values seem to be in agreement with the previous detections.  

Several other experiments are possible, which can exploit different representations as 

well, but for the sake of brevity we will only present these four examples. In conclusion, 

in the case of natural targets the sensitivity analysis can help the adjustment process for 

the target to be detected. 

 

5.4 Polarimetric Characterisation  

This section is dedicated to the investigation of the polarimetric properties of the 

detected targets. The detector is based on the concept of scattering vector posing an 

implicit restriction to single targets.  
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(a) multiple reflection 

 
(b) oriented dipole 

Figure 5.14. Detection over entire test area (a) RGB mask for multiple reflection detector. Red: 

Even-bounce, Green: zero, Blue: Odd-bounce (5x5); (b) RGB mask for oriented dipole detector. 

Red: horizontal dipole, Green: zero, Blue: vertical dipole (5x5). The intensity of the masks is 

related to the detector amplitude. Threshold: 0.97. 
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Here, we intend to test the degree of polarisation of the detected points, confirming their 

nature as single targets. 

In the second chapter the entropy was introduced as an estimator of the degree of 

polarisation of the target, or in other words a measure of how close the target is to being 

a single scatterer. A low entropy signifies presence of a single dominant scattering 

mechanism (Cloude S. R. and Pottier E., 1997).  

Figure 5.14 shows the detection masks over the entire test area: 1400x1400 pixels (the 

RGB of the area is presented in Figure 5.2). A noteworthy aspect of the detector, not 

specified previously is its speed of processing. To produce four detection masks on the 

entire test area the detector took less than 5sec using IDL on a standard desktop with 

2GHz RAM (please note the time to load the images as IDL variables is not 

considered). This suggests that the detector could be employed in real time.  

 

  
 (a) total image (b) detected mask 
Figure 5.15. Normalised histogram of the entropy for (a) total image and (b) detected mask. 

 

In order to assess the degree of polarisation, the entropy for all the detected points on 

the mask is estimated. Figure 5.15 shows the histogram of the entropy of the detected 

points (Figure 5.15.b) compared with the entropy of all the points in the scene (Figure 
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5.15.a). The former have entropy generally lower than 0.5, indicating targets with rather 

single behaviour. 

 

5.5 Comparison with another polarimetric detector: PWF 

The issue investigated in this section is the comparison of the developed detector with 

pre-existent polarimetric detectors. In the fourth chapter, the algorithm’s theoretical 

performance was calculated based on the statistical characterisation of the detector (its 

pdf). In particular, the ROC was estimated (Kay, 1998). Additionally, in the second 

chapter the ROC of a few detectors was presented (Chaney R. D. et al., 1990). In order 

to have an easier comparison of the graphs both the figures are shown again in Figure 

5.16. 

The theoretical performance of the proposed detector is several orders of magnitude 

superior to any of the examined detectors (especially if it is considered that we do not 

use statistical a priori information). 

We redirect the reader to Chapter 4 for an exhaustive explanation of these results. 

Briefly, this is related to the reduction of variability of the noisier clutter components 

performed by the selected basis of the polarimetric space and the averaging.  

In Figure 5.16.a, the Polarimetric Whitening Filter PWF (Novak L. M. et al., 1993a, 

Chaney R. D. et al., 1990) seems to have the best performance among detectors without 

statistical a priori information about target and clutter. Moreover, it was demonstrated 

to be the optimum solution for speckle reduction and target detection (Novak and 

Hesse, 1993). Therefore, it appears to be the best candidate for a comparison with the 

proposed detector. Briefly, the PWF uses the polarisation to filter the images, and thus 

reduces (optimally) the speckle. Consequently, all the pixels interpreted as affected by 

speckle are strongly reduced, while the coherent ones are magnified. 
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(a) other detectors 

 
(b) proposed detector 

Figure 5.16. ROC comparison among several detector. (a) OPD: Optimal Polarimetric Detector, 

PWF: Polarimetric Whitening Filter, ILRT: Identity Likelihood-Ratio-Test, PMS: Power 

Maximisation Synthesis (Chaney R. D. et al., 1990). (b) Proposed detector: SCR=2 and 

averaging window 5x5. The Probability of False Alarm is expressed in dB.  
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Figure 5.17 shows the results of the PWF for four areas already presented during the 

analysis of standard targets (from Figure 5.5 to 5.8).  

 

    
 (a) open field: Wolf1 (b) forested area: 3 corner reflectors 

    
 (c) forested area: container (d) vegetated area: small stokes 

Figure 5.17. Polarimetric Whitening Filter: (a) Wolf1 in open field; (b) 3 corner reflector in 

forested area; (c) container in forested area; (d) agricultural field. 

 

In open field, (Figure 5.17.a) the performance is comparable (as long as the 

backscattering from the target is strong enough). Both the techniques detect jeep, net 

and corner reflectors. However, PWF is not able to classify the detected targets, since it 

uses the polarimetric information to reduce the speckle. For instance, it is not possible 
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to separate the jeep from the net or the corner reflectors. 

In a more challenging environment such as detection of targets beneath forest canopy 

(Figure 5.17.b and 5.17.c)(Fleischman J. G. et al., 1996), the PWF fails in detecting one 

CR (bottom left: 70cm).  In fact, an embedded target can present some speckle variation 

due to the surrounding clutter which is strong and speckled. On the other hand, the 

detector proposed in this thesis is not an algorithm for speckle reduction and can detect 

speckled targets, as long as the polarimetric behaviour is still single.  

Regarding targets with weak backscattering (Figure 5.17.d), PWF is based on a 

threshold over the power of the detection image (which is a speckle-reduced replica), 

hence weak targets are completely lost (e.g. bare soil, non metallic targets). Conversely, 

the proposed detector is based on the weight of the target components, hence it can 

detect low backscattering targets, as long as they are polarimetricaly dominant. This is 

particularly evident in the agricultural area illustrated in Figure 5.17.d where the stripe-

like field with small vertical stokes disappears completely in the processed image. The 

same happened to the weak targets in all the other detection images. 
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Chapter 6:  Validation with satellite data 

 

 

Introduction 

The previous chapter was focused on validation with airborne data, while the current is 

specifically assigned to satellite data. This separation was beneficial due to some 

differences between airborne and satellite data. Although the data processing is 

substantially the same, there are significant practical differences making satellite 

detection more challenging (Campbel, 2007, Chuvieco and Huete, 2009). 

One of the main disadvantages is represented by the rather course resolution. The 

resolution (as explained in the first chapter) is apparently independent of the distance 

between antenna and scene, while it is conditional dependent upon the available 

bandwidth (i.e. the range resolution is linked to the chirp bandwidth) and the amount of 

acquirable data per scene (i.e. the dimension of the synthetic antenna). Unfortunately, 

for space applications the bandwidth is limited and there are limitations on the amount 

of data that can be stored and sent down, coarsening the resolution in both the 

dimensions (Chuvieco and Huete, 2009). 

Another drawback is the lower Signal to Noise Ratio (SNR) achievable, since the 

received power goes down with the forth power of the distance since it propagates as a 

spherical wave in a two way trip. Therefore, the amount of energy received is lower for 

a high altitude platform. Additionally, the amount of energy which can be transmitted in 

the single pulse is limited due to an economic use of the satellite batteries (Chuvieco 

and Huete, 2009).  

On the other hand, satellite acquisitions have remarkable advantages compared to an 

airborne sensor, so that applications that are able to exploit satellite data are generally 
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favourable. Satellites are always available (except for short periods of maintenance) 

performing several and periodic passes over the same scene. Airborne systems generally 

cannot offer the same attainability because a new campaign must be organised every 

time an acquisition is required. Additionally, the coverage of a satellite image is 

generally wider than an airborne system since the footprint (in the range direction) is 

much larger. In some applications which require the monitoring of waste areas (i.e. 

ocean surveillance) a larger footprint was revealed to be a winning point (Campbel, 

2007).  

Although, satellite data have relevant practical advantages, they represent a more 

challenging scenario for detection algorithms. This is the reason behind the preference 

of an initial validation with airborne data: using an easier scenario the real potentials of 

the detector were demonstrated. In this chapter, we want to test the feasibility of the 

algorithm for satellite data, nonetheless we expect that the detection of small targets will 

be challenging. An exception is represented by TerraSAR-X which provides higher 

resolution data than usually available. Unfortunately, at the moment of the compilation 

of this thesis, quad polarimetric TerraSAR-X data were still experimental and only one 

scene was distributed to the public. 

The proposed polarimetric detector operates on the full geometric space of single targets 

which can be thoroughly reconstructed only with quad polarimetric data (Cloude S. R., 

2009, Huynen J. R., 1970, Kennaugh E.M. and Sloan R.W, 1952, Lee and Pottier, 2009, 

Mott, 2007, Deschamps G. A. and Edward P., 1973, Ulaby and Elachi, 1990, Zebker H. 

A. and Van Zyl J. J., 1991). Therefore, the validation can be performed only on satellite 

systems able to acquire this class of data. Nowadays, three such satellites are available: 

ALOS PALSAR (L-band)(ALOS, 2007), RADARSAT2 (C-band)(Slade, 2009) and 

TerraSAR-X (X-band)(Fritz and Eineder, 2009). We decided to test the detector with all 

of them. Together, they depict a rather fascinating scenario with different central 

frequencies and resolutions. For this reason, it is expected that they will return a 

reasonably broad picture of the detection capabilities. 
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6.1 ALOS PALSAR 

6.1.1 Description of the data and general considerations 

ALOS-PALSAR is the quad polarimetric radar system of the Japanese Space 

Exploration Agency (JAXA)(ALOS, 2007). The carrier frequency of the pulse is in L-

band (1.270 GHz), with a corresponding wavelength of about 23cm. It shares the same 

band as the E-SAR system, subsequently the physical targets visible on the scene should 

be similar to those observed in the previous chapter. On the other hand, the resolution of 

ALOS is much lower than E-SAR (with 14MHz bandwidth and about 4.5x30m in 

azimuth and ground range). A coarse resolution makes the detection of small targets 

rather challenging, since their return is spread over a larger area with the possibility of 

being submerged by the surrounding clutter. For this reason, we do not expect to detect 

small vehicles, posts, huts, etc. (as in the previous chapter) (Li J. and Zelnio E.G., 1996, 

Novak L. M. et al., 1999).  

The dataset used to test the detector was acquired in the area of Glen Affric 

(Orthographic 57.256; -5.019) in Scotland on the 18th of April 2007. This is a relatively 

uninhabited region, with a few sparse constructions (generally small). Conversely, the 

area is remarkable from an ecological point of view since there is an old Caledonian 

Pine forest (one of the few left in Scotland)(Forestry-Commission, 2010).  

Figure 6.2 shows the RGB Pauli composite image of the entire dataset (Cloude S. R., 

2009, Lee and Pottier, 2009). Again red represents HH-VV (even bounce or even 

number of reflections), blue is HH+VV (odd bounce or odd number of reflections) and 

green is twice HV (45 degree oriented even bounce). The direction of flight is vertical 

from bottom to top (i.e. ascendant orbit). The image presented here was multi-looked in 

the azimuth direction 5 times with the intention of making the pixel approximately 

squared on the ground. As mentioned previously, the ALOS resolution cell is not square 

with the azimuth about 5 times smaller than the ground range (ALOS, 2007). This leads 

to a severe distortion when the radar image is compared to a map making the reflectivity 

image hard to interpret (Franceschetti G. and Lanari R., 1999).  

The multi-look process needs clarification. In order to preserve the polarimetric 

information the multi-look cannot be performed on the scattering matrix since the 
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relative phases would be lost, modifying the final polarimetric target. In this thesis, the 

multi-look was performed on the coherence [T] or covariance [C] matrices, where all 

the matrix elements were multi-looked separately (Lee J.-S. et al., Lee et al., 1993, Lee 

et al., 1994b).  

Figure 6.1 illustrates the aerial photograph of the region (Google Earth) with the 

intention of facilitating the interpretation of the features visible in the RGB image. The 

image is composed by a mosaic of aerial photographs with different resolutions and 

only a small section of the image has high resolution. Although, the multi-look makes 

the radar resolution cell almost squared, we still cannot overlap the radar and the optical 

image without a geo-coding stage (Woodhouse, 2006).  

 

 
Figure 6.1. Google Earth image of the test area. 

 



Chapter 6: Validation with satellite data  197 

  

 
Figure 6.2. RGB Pauli composite image of the entire dataset. Red: HH-VV, Green: 2HV, Blue: 

HH+VV. 
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In Figure 6.2, the lochs are features with a characteristic polarimetric response which 

makes them easily separable from the rest of the scene. In the RGB image they appear 

blue since the water surface can be modelled with a Bragg surface and it is rather 

similar to the ideal surface represented by HH+VV (or odd-bounce). 

The rest of the scene is generally bluish as a consequence of the surface scattering over 

the hills. Note that they are not as blue as the lochs because the hills are generally 

covered with a short layer of vegetation (mainly grass and bushes) which marginally 

perturbs the surface scattering introducing a small component of volume scattering 

(Ulaby and Elachi, 1990, Zebker H. A. and Van Zyl J. J., 1991). Even though the RGB 

image was obtained with a supplementary 3x3 average (over the multi-looked image) 

the overall image seems nosier than the E-SAR data. For instance, the red stripes are 

processing artefacts and they are visible especially where the signal is low (e.g. the 

lochs). 

 

6.1.2 Standard targets detection 

All the detections performed in this chapter are focused on standard targets: odd-

bounce, even-bounce, horizontal and vertical dipoles. As explained more in detail in the 

previous chapter, these are selected for their relative abundance in a radar image. The 

section dedicated to sensitivity analysis starting from a parameterisation is skipped in 

this Chapter. It was an exercise of tuning over the actual target to detect, however now 

we do not have accurate ground truth and the interpretation of the detected targets is 

more challenging with course resolution.  

The detections are performed on portions of the total image in order to provide a closer 

look at the targets in the scene. However, we want to stress that the detection algorithm 

is particularly fast performing the scan of the entire scene in few seconds.  

Figure 6.3 shows the RGB Pauli composite image of the first portion analysed. This 

section represents the Southern part of the total image and has an extension of 

1248x1248 pixels (the total number of pixels in range is 1248). On the ground it covers 

approximately 30 km per side.  
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Figure 6.3. RGB Pauli composite image of Loch Benin. Red: HH-VV, Green: 2HV, Blue: 

HH+VV. 

 

In order to locate the scene geographically, Figure 6.4 presents the aerial photograph 

(Google Earth), where the loch in the middle left is Loch Benevean. Additionally, we 

provided the aerial photograph with labels marking some of the detected targets. 
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Figure 6.4. Google Earth image of area around Loch Benin. 

 

The resulting mask for multiple reflections is illustrated in Figure 6.5. The colour 

coding used by the mask is the same presented in the previous chapter (red: even-

bounce; blue: odd-bounce). As expected, the lochs are detected as surfaces as well as 

several other areas often related to ground in layover (e.g. crests of the hills). The 

normal angle of the surface in layover can be close to the look angle offering a more 

ideal odd bounce return (i.e. mirror).  

As explained in the pervious Chapter, even bounces are targets characterised by an even 

number of reflection suffered by the radiation before this can reach the antenna. In a 

SAR scene, the main targets responsible for even bounces are dihedrals (i.e. double 

bounce). With high resolution data, vehicles, houses and trunks can easily form 

dihedrals, on the other hand, with courser resolution the latter are not visible and only 

large dihedral features can be observed as even bounces. 
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Figure 6.5. Detection of multiple reflections over Loch Beneveian. Red: Even-bounce, Green: 

zero, Blue: Odd-bounce; The intensity of the masks is related to the detector amplitude 

 

In Figure 6.5 the even bounces detected appear in red, and are marked in the RGB 

image with circles. The point close to the upper left corner of the image is a dam in 

Loch Mullardoch, while the one in the middle right is a power plant. Finally, the point 

on the bottom right corner is a rock wall. Unfortunately, the aerial photographs of the 

area have poor resolution and we could not find a counterpart to all the detected points. 
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Figure 6.6. Detection of oriented dipoles over Loch Beneveian. Red: horizontal dipole, Green: 

zero, Blue: vertical dipole; The intensity of the masks is related to the detector amplitude 

 

The oriented dipoles detection is displayed in Figure 6.6, where the horizontal dipoles 

seem to outnumber the vertical ones. Two of the detected points are again the dam and 

the power plant, nevertheless the mask shows several other spots distributed all around 

the hills. As mentioned previously, this region is relatively inhabited, therefore it is 

intriguing to identify the sources of this polarimetric return. In the RGB image (Figure 

6.3) these points appear as purple (mixture of red and blue), revealing the actual 

presence of scatterers different from the surroundings. Therefore, they do not seem to be 
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false alarms due to the detector processing. A closer look at the aerial photographs of 

the mosaic where the resolution is higher provides their identification. Those points are 

fences composed of horizontal wires and oriented along the flight direction (as 

previously observed in the E-SAR dataset). Figure 6.7 and 6.8 illustrate the high 

resolution aerial photographs of two areas where the detector identified horizontal 

dipoles. The two fences are visible as white thin stripes oriented from top to bottom, 

hence parallel to the flight direction. These fences are used to separate field parcels all 

around the area therefore they can be the cause of detections also where the resolution 

of the aerial photograph is to low too test their presence. 

If the detection with ALOS data is compared with the one performed with E-SAR data, 

the amount of detected points will appear significantly reduced (especially considering 

that the area covered by ALOS is wider). 

The cause of the fewer detections are mainly twofold: firstly, the region is less 

populated, with little presence of artificial targets (i.e. buildings), and secondly, the 

resolution is coarser restricting the detection only to sufficiently big targets. Exceptions 

are the odd bounces since they can be detected on extended (or distributed) targets like 

surfaces (Cloude S. R., 2009). The resolution cell after multi-looking is around 30m per 

side and the detector algorithm requires a further averaging through a 3x3 moving 

window (to estimate the polarimetric coherence). Therefore, objects smaller than several 

tens of meters are hardly detected. Even single buildings can be easily missed out if 

their orientation is not fortunate in generating strong double bounces. 
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Figure 6.7. Google Earth image of fence1 around Loch Benin. 

 

 
Figure 6.8. Google Earth image of fence2 around Loch Benin. 
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Figure 6.9. Google Earth image of Loch Fannich. 

 

The aerial photograph (Google) of the second test area is presented in Figure 6.9, while 

Figure 6.10. depicts the RGB Pauli. The whole portion is located in the Northern region 

of the total dataset. The loch in the middle upper part is Loch Fannich, the one in the 

middle right is Loch Luichart and the one at the upper right corner is Loch Glascarnoch. 

The scene is a mix of lochs and hills, hence we expect to detect features similar to the 

previous experiment. The detection for multiple reflections and oriented dipoles are 

displayed respectively in Figure 6.11 and 6.12. 

Lochs as well as areas in layover are again detected as surfaces. Unfortunately, the 

aerial photographs available on Google lacks sufficient resolution to show most of the 

targets. However, we spotted some of the targets from a map and searched for 

photographs of the area. The even bounce detected in the middle of the image overlaps 

with the Achanalt train station (Figure 6.13). 
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Figure 6.10. RGB Pauli composite image of Loch Fannich. Red: HH-VV, Green: 2HV, Blue: 

HH+VV. 

 

This is the agglomerate of just a few buildings but they seem to be properly oriented 

and the dihedral had a strong return in the backward direction. The same station appears 

as horizontal dipole as well perhaps due to the presence of fences around the buildings. 

The bright horizontal dipole close to Loch Fannich is the Fannich dam (also just visible 

in the Google image). 
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Figure 6.11. Detection of multiple reflections around Loch Fannich. Red: Even-bounce, Green: 

zero, Blue: Odd-bounce;  

 

The cluster of horizontal dipoles detected close to Loch A Chroisg (small loch in the 

middle right of the image) is the village, train and petrol station of Archanasheen. 

Figure 6.14 shows the panoramic photo of the Archanasheen train station. 
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Figure 6.12. Detection of oriented dipoles around Loch Fannich. Red: horizontal dipole, Green: 

zero, Blue: vertical dipole;  

 

Regarding the horizontal dipole detected at the left of Loch A Chroisg, we found a 

picture of the valley (Figure 6.15) which reveals the presence of several fences which 

could cause the horizontal dipole return as observed in the E-SAR data. Other 

detections are visible close the river Dalnacreich (bottom right of the image). The point 

on the right hand side was identified as a bridge for a walking path as illustrated in 

Figure 6.16. We also believe that the other two points are related to structures around 

the small river. 
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Figure 6.13. Photograph of Achanalt train station (Google Earth: Panoramio). 

 

 
Figure 6.14. Photograph of Archanasheen train station (Google Earth: Panoramio). 

 

 
Figure 6.15. Photograph of Loch A Chroisg valley (Google Earth: Panoramio). 
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Figure 6.16. Photograph of bridge on river Dalnacreich (Google Earth: Panoramio). 

 

 

6.2 RADRSAT-2 

6.2.1 Description of the data 

RADARSAT2 was launched by the Canadian Space Agency in December 14, 2007 and 

exploits a different frequency from ALOS and E-SAR, the C-band (around 5Ghz or 

5cm wavelength) (Slade, 2009). When an object is illuminated by incident radiation 

with a different frequency, it generally modifies its scattering behaviour (Stratton, 1941, 

Rothwell and Cloud, 2001, Cloude, 1995a). For this reason, the use of a different band 

could reveal new typologies of targets. However, the backscattering from some class of 

targets, as ideal reflections and dipoles is relatively independent of the frequency of the 

incident radiation since after the scaling performed by the change of frequency, surfaces 

and wires remain the same. If real rather than ideal targets are examined, the change in 

frequency can modify the polarimetric behaviour. However, if the frequency does not 

suffer a dramatic variation, the major difference for real reflections is related to the 

amount of backscatter more than the polarimetric characterisation, since at higher 



Chapter 6: Validation with satellite data  211 

  

frequency the surfaces look bigger (and collect more energy). On the other hand, narrow 

dipoles look thicker with possible changes in polarimetric behaviour, since they start to 

resemble surfaces (Cloude S. R., 2009, Rothwell and Cloud, 2001). Clearly, when the 

frequency variation is drastic, the target can transform completely. For instance, the 

reflector planes can cease to be surfaces and a narrow cylinder can become a surface.  

In conclusion, from the mathematical point of view, the algorithm is apparently 

independence on the frequency, since the scattering vector formalism can be applied for 

any frequency (as long as the phase measurements are feasible). However, the scattering 

vector representation of the same real target can be dependent on the frequency. This is 

the main motivation for testing the detector with different frequencies.  

 

 
Figure 6.17. Aerial photograph (Google Earth) of the RADARSAT-2 scene over San Francisco. 

The polygon shows the location of the radar scene 
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The ground resolution of the single look complex (SLC) image is about 5m in azimuth 

and around 10 m in range (i.e. better resolution than ALOS)(Slade, 2009). This should 

increase the amount of targets the algorithm is able to detect. 

The dataset employed represents a freely available scene of San Francisco acquired on 

the 09th of April 2008. Figure 6.17 illustrates an aerial photograph (Google) with a 

polygon showing the location of the scene. 

Figure 6.18 shows the RGB Pauli composite image of the entire scene. In order to 

obtain a pixel approximately square on the ground, the covariance matrix was multi-

looked 2 times along the azimuth. Again the colour coding is the same used previously. 

It is interesting to note that the sea is clearly identifiable in blue (i.e. interpreted as a 

rough surface), while the urban areas are purple (i.e. red plus blue) since the dominant 

scattering mechanisms in such environments are multiple reflections. 

 

6.2.2 Standard targets detection 

Again the detection was performed on a sub-area in order to provide a closer inspection 

of the scene. Figure 6.19 shows the RGB Pauli of the region located in the central and 

most urbanised area of San Francisco, between Bay Bridge and Golden Gate Bridge. 

The image is 1500 x 1500 pixels covering an area approximately of 15 x 15 km. Blocks 

of houses and quarters are identifiable as reddish areas (in general) with a peculiar 

texture. On the other hand, the sea is clearly recognisable in blue and it can be easily 

discriminated from the land region. Some ships can be observed as bright spots in the 

lower right corner of the RGB image. In particular, the Golden Gate Bridge exhibits a 

curious scattering behaviour, where three different returns can be identified 

(Woodhouse, 2006). The flight track of the satellite runs bottom to top (i.e. ascending 

orbit) and the platform was right-looking, consequently the return on the left hand side 

is the closest to the sensor (the range axis grows from left to right). This is due to the 

direct scattering from the bridge structure which is in layover with the ocean surface 

about 200m below.  
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Figure 6.18. RGB Pauli composite image of San Francisco. Red: HH-VV, Green: 2HV, Blue: 

HH+VV. 
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The second return (the one in the middle) is due to double bounces with the ocean 

surface. The extra path travelled by the wave which reflects on the two dihedral planes 

always sum up into the distance of the dihedral corner (this is the reason why all the 

contributions sum coherently concentrating the energy of the incident radiation). The 

third return is a consequence of triple bounces (or more generally triple interactions) 

among the bridge structures and ocean which creates an extra path locating the return 

after the real position of the bridge (Woodhouse, 2006). Regarding the Bay Bridge (on 

the right hand side), it does not present the same particular scattering behaviour because 

its orientation is less favourable to generate dihedrals focused along the range direction 

(therefore only two scattering mechanism are generated, direct and general triple 

interactions). 

The detection masks are presented in Figure 6.20 and 6.21. As expected, the water body 

is largely detected as single bounce since it can be modelled as a Bragg surface. On the 

other hand, most of the building blocks are detected as double bounces, due to the 

dihedral formed between concrete walls and tarmac. The second return from the bridge 

is detected as even-bounce between bridge and ocean surface confirming our 

interpretation. Additionally, some portion of the first return is identified as even-

bounces, due to even reflections among close structures of the bridge (and not the 

ocean). The third return from the bridge is not identified as odd-bounces because in the 

interaction “water-bridge-water” the bridge generally does not present surfaces with the 

right orientation to close the trihedral plates and a general scattering takes place (as for 

the first return). Three ships are also detected in the ocean area. Clearly, in a radar 

image not every ship has a strong double bounce with the sea since this scattering 

mechanism is strongly related to the orientation with respect to the flight direction as 

well as the near instantaneous angle between the ship and the ocean. Hence, in some 

situations the even-bounce does not represent the best ideal target to detect ships. 

Recently, an alternative approach for ship detection was developed by the author, which 

is based on detecting any feature on the sea surface which has a polarimetric response 

different from the sea (Marino et al., 2010c). 
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Figure 6.19. RGB Pauli composite image of San Francisco sub-area. Red: HH-VV, Green: 2HV, 

Blue: HH+VV. 

 

Finally, the mask in Figure 6.20 presents a variant respect all the other masks, since the 

green colour is added to represent a new typology of targets: dihedrals with the corner 

45 degrees oriented with respect to the LOS (Line of Sight). One block of buildings in 

the city conglomerate reveals their presence. In the aerial photograph, that city quarter 

appears to have a different orientation (about 45 degrees with respect to the flight 

direction), and the block is located on a steep slope. Hence, the inclination of the 

buildings plus the tilted ground surface produces a target similar to a 45 degree dihedral. 
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Figure 6.20. Detection of multiple reflections over San Francisco. Red: Even-bounce, Green: 

zero, Blue: Odd-bounce. 

 

 

The latter target is not ideal (giving a not perfect detection) since the steepness of the 

road is not 45 degree, but it is close enough to generate detections when the exploited 

threshold is lower.  

Regarding the oriented dipoles, they are detected in most of the urban areas, perhaps 

due to wires and railings. In order to achieve a detection, the dimension of the target 

generally must be equal or bigger than the resolution cell (i.e. 10 meters). 
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Figure 6.21. Detection of oriented dipoles over San Francisco. Red: horizontal dipole, Green: 

zero, Blue: vertical dipole.  

 

A horizontal wire can easily be tens of meters long while the vertical ones are much 

smaller for clear reasons. More specifically, wires running along the ground range 

direction can be as long as horizontal one, however their return is much weaker due to 

their directivity pattern which does not scatter significantly in the backward direction. 

This is the reason why the detection is densely populated with horizontal dipoles (in the 

urban area) while vertical ones are quite scarce. 
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6.3 TerraSAR-X 

6.3.1 Description of the data 

The last dataset exploited for testing the detector is a quad polarimetric TerraSAR-X 

dataset (Fritz and Eineder, 2009). The latter was launched on June 15th, 2007 by the 

German Aerospace Centre DLR. It is a particularly relevant instrument for two main 

reasons. Firstly, the system is based on X-band, about 9.65GHz or 3.1cm wavelength. 

Again, a different frequency can explore different typologies of targets, although the 

standard targets investigated should not change drastically (except for a backscattering 

factor). Secondly, for its higher resolution (1m in slant range and 6m in azimuth) 

compared with the other two satellite systems. As consequence of the higher resolution 

the detection with TerraSAR-X is expected to improve with respect to ALOS and 

RADARSAT-2. 

Unfortunately, the proposed detector requires quad polarimetric data to reconstruct the 

full polarimetric space. This mode in TerraSAR-X is only experimental and at the time 

of the compilation of this thesis only one quad polarimetric acquisition was made 

available to the scientific community. Although, with the launch of Tandem-X (a twin 

of TerraSAR-X exploited to collect the DSM of the world) the quad polarimetric mode 

should be more available.   

Figure 6.22 shows the RGB image of the entire dataset after a multi-look of 5x5, which 

is actually the window used by the detector. The location of the scene is particularly 

advantageous for researchers working with classification since it represents a mixture of 

several agricultural fields, forests stands, urban areas and water. Moreover the 

topography is particularly flat helping the classification process. 

Most of the fields appear in a bluish colour since the rough surface is the main 

scattering mechanism. It is interesting to note that different fields often have different 

colours in the RGB image, underling a different polarimetric behaviour, dependent on 

the soil roughness and the amount/variety of vegetation.   
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Figure 6.22. RGB Pauli composite image of Deggendorf, Germany. Red: HH-VV, Green: 2HV, 

Blue: HH+VV. 

 

The urban areas are still displayed in purple (i.e. mixture of reflections). The 

corresponding area is illustrated in Figure 6.23 in an aerial photograph (Google Earth) 

with a polygon indicating the acquired portion. The latter is close to the conjunction of 

two rivers, the Donau and the Isar (i.e. the river crossing Munich). The two bigger 

towns in the scene are Doggendorf (upper part) and Plattling (middle part).  
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Figure 6.23. Google Earth image of the TerraSAR-X scene on Deggendorf, Germany. The 

polygon shows the location of the scene 

 

6.3.2 Standard target detection 

As in the previous experiments, the detection is focused on multiple reflections and 

oriented dipoles and portions of the total image are analysed separately in order to 

provide a closer look at the targets detected in the scene.  

Figure 6.24 presents the RGB Pauli of the section located in the conjunction of the 

Donau and Isar rivers. The town of Deggendorf can be identified in the upper part of the 

image. This area was selected with the intention of focusing the detector on the urban 

area of Doggendorf. Moreover, rivers already revealed the presence of targets of 

interest. 
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Figure 6.24. RGB Pauli composite image of Doggendorf and river Donau. Red: HH-VV, Green: 

2HV, Blue: HH+VV. 

 

The detection of multiple reflections is presented in Figure 6.25. Any conglomerate of 

buildings (town and villages) reveals detected points, confirming the effectiveness of X-

band and the higher resolution. As in the previous datasets, the bridges (especially the 

one on the right hand side) are detected as even bounces. Clearly, an individual small 

building can be missed by the detector since the resolution is still greater than ten 

meters and dihedrals are dependent on the inclination of the wall with respect to the 

flight direction.  
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Figure 6.25. Detection of multiple reflections of Doggendorf and river Donau. Red: Even-

bounce, Green: zero, Blue: Odd-bounce. 

 

On the other hand, in a conglomerate of buildings the copious presence of walls and 

corners is generally sufficient to generate even reflections focused in the backward 

direction. 
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Figure 6.26. Detection of oriented dipoles of Doggendorf and river Donau. Red: horizontal 

dipole, Green: zero, Blue: vertical dipole. 

 

Figure 6.26 shows the oriented dipoles mask. Again, most of the detections are located 

in the urban area, where horizontal wires exceed in number the vertical ones. However, 

with the finer resolution of TerraSAR-X, it is possible to identify some vertical dipoles 

as well.  
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Figure 6.27. RGB Pauli composite image of Langenisarhofen. Red: HH-VV, Green: 2HV, Blue: 

HH+VV. 

 

Considering that most of the detections are inside the urban area, it is not necessary to 

bring high resolution aerial photograph to validate them (since we know they 

correspond mainly to buildings). 

As a last experiment, the detection is performed on another area of the dataset. Figure 

6.27 represents the RGB image. 
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Figure 6.28. Detection of multiple reflections of Langenisarhofen. Red: Even-bounce, Green: 

zero, Blue: Odd-bounce 

 

The typology of targets included in the marker (ellipse) will be described in the 

following. The village in the middle right is Langenisarhofen, while the one on the 

middle left is Aholming. 

Figure 6.28 shows the detection of multiple reflections. Again the urban areas reveal 

several detection points. In the mask there is a curious alignment of even bounce targets 

running with an approximate inclination of 45 degree across the image. A closer 

inspection on the high resolution aerial photograph reveals the presence of big electric 
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pylons. In the RGB (Figure 6.27), the line of pillars is marked with a white ellipse and 

after a scrupulous examination the pillars can be identified in the radar image. Figure 

6.29 presents the aerial photograph of the area in the upper left part of the ellipse, 

revealing the pylons. Their height is appreciable from the shadows they produce on the 

ground. 

 

 
Figure 6.29. Google Earth image of the TerraSAR-X scene of Moosmuhle. Electric line pillars. 

 

 

The dipoles detection is presented in Figure 6.30. The detections are mainly associated 

with buildings. In this experiment, the electric wires cannot generate horizontal dipoles 

due to their inclination. 
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Figure 6.30. Detection of oriented dipoles of Langenisarhofen. Red: horizontal dipole, Green: 

zero, Blue: vertical dipole.  



228   

 

Chapter 7: Recent applications of perturbation 

filters 

 

 

Introduction 

As explained in the abstract, the main goal of the thesis was the development of a new 

algebraic procedure for target detection, based on a novel perturbation filter. The 

earliest and most studied application was the single target detector (STD) largely 

described in the previous chapters. However, the algebraic operation underneath the 

STD is more general and powerful and can be adapted to different scenarios (as long as 

the entities under analysis lie within a Euclidean space).  

Very recently, work was published on a version of the algorithm able to detect partial 

(i.e. depolarised) targets. The aim of this Chapter was to present these most recent 

outcomes. Please note that work is still in progress on this partial target detector (PTD). 

The latest results occurred after the compilation of this thesis. Therefore, they could not 

be the main focus of the entire manuscript. However, the author believes that due to 

their significance they could be included, even if briefly, in the present chapter.  

As shown previously, an STD is a powerful tool to detect man-made structures. 

However, this tool is unable to detect partial or depolarised targets. Once a PTD is 

developed, it can be easily exploited as a supervised classifier. In this chapter, the 

derivation of the new algorithm is briefly presented. Subsequently, it will be tested on 

several datasets in order to reveal its performance.  
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7.1 Partial target detector 

7.1.1 Formulation 

As expressed in the introduction chapter on polarimetry, there is a fundamental 

difference between single and partial targets. Specifically, partial targets cannot be 

completely and uniquely characterised by a single scattering matrix [S]. They need the 

formalism called coherence matrix: 
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where [ ]Tkkkk 321 ,,=  is the scattering vector in any basis as presented in Chapter 2 

(Cloude S. R., 2009, Lee and Pottier, 2009). 

In order to extend the detectability of the algorithm to partial targets, a new formalism 

similar to the one used for single targets must first be introduced. To this end, a feature 

partial scattering vector is defined: 
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where Ψ  is a set of 6x6 basis matrices under a Hermitian inner product. t lies in a 

subspace of 6
C  (it is closed for sum and scalar multiplication and includes the zero). In 

particular, the first three components are real positive and the second three complex. To 

have physical feasibility the last three elements must obey the Cauchy–Schwarz (Rose, 

2002) inequality 

 yxyx
T*

≥  : (7.3) 

 421 ttt ≥ , 531 ttt ≥ , 632 ttt ≥ . (7.4) 

Any physically realisable t represents completely and uniquely a partial target. In 
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particular, the partial target to be detected and the perturbed target are regarded as  

 [ ]( ) [ ]( )ΨΨ= TTT CTraceCTracet̂ , 

 [ ]( ) [ ]( )ΨΨ= PPP CTraceCTracet̂ . (7.5) 

The latter could be seen as the equivalent of the scattering mechanisms for partial 

targets. Although the optimisation of the perturbation has mathematical foundations 

(Marino et al., 2009, Marino et al., 2010b, Marino A. and Woodhouse, 2009), physical 

meaning can be attributed to the process. For instance, the covariance matrix for the 

target [ ]TC  can be mapped into a Kennaugh matrix [ ]TK (Cloude S. R., 2009). 

Subsequently, the Huynen transformations can be performed on the Kennaugh matrix 

generating a slightly different target [ ]PK (Huynen J. R., 1970). Finally, the perturbed 

Kennaugh matrix [ ]PK  is mapped back into a covariance matrix [ ]PC  (and the vector 

Pt̂ ). The latter is merely an example of physical perturbation of the partial target and 

any other parameterisation can be exploited. 

Again, a change of basis is performed which makes the target of interest lie only in one 

nonzero component:  

 [ ]TTt 0,0,0,0,0,1ˆ =  and [ ]TP fedcbat ,,,,,ˆ = . (7.6) 

In the case the perturbation is performed without any physical model, Pt̂  must be 

selected preserving the physical feasibility: 

 +ℜ∈cba ,,  , 

 dab ≥ , eac ≥ , fbc ≥ , (7.7) 

 1222222 =+++++ fedcba .  

Additionally, by definition of perturbed target:  

 ba >> , ca >> , da >> , ea >> , fa >> .  (7.8) 
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The elements on the diagonal of [A] are the components of the partial scattering vector t 

after the change of basis which makes [ ]TTt 0,0,0,0,0,1ˆ = . The change of basis can be 

achieved by multiplying by a unitary matrix, where the columns can be derived by 

solving a linear equation system, where the unknowns are 5 rotation angles and 5 phase 

angles.  

A simpler way to generate [A] considers a Gram-Schmidt ortho-normalisation (GS) in 

6
C , where the first axis is the vector Tt̂ . The components of [A] are calculated with the 

inner product of the basis for the observable t. If If Ttu ˆ
1 = , 2u , 3u , 4u , 5u  and 6u  

represent the ortho-normal basis then  
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The detector can be achieved with 
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The partial detector is formally similar to the single one in Eq.3.37 (except for the 

number of terms), consequently all the mathematical optimisations performed for the 

single target detector can be adopted here (Marino et al., 2009, Marino et al., 2010b, 

Marino A. and Woodhouse, 2009). Specifically, in absence of a priori information about 

the clutter, the perturbed target is chosen as 

 fedcb ==== . (7.13) 
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If we define the clutter as 65432 PPPPPPc ++++= , the target as 
TPP =1  and 

( )2
abRedR =   the detector becomes 
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The detector is finalised with a threshold T on dγ . The resulting mask is zero if the 

detector is under the threshold or equal to the detector if it is above the threshold. In 

other words: 
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where m is the image mask, ( )yx,  represents the coordinate of a generic pixel. Using 

this typology of mask (and not a 1 or 0 binary format), we want to preserve information 

about the dominance of the target in the cell. This will be useful for the design of a 

classifier as we show in the following. 

 

7.1.2 Physical feasibility 

In this section, clarifications about the uniqueness and the Gram-Schmidt ortho-

normalisation (GS) are provided. 

The former is guaranteed since, by definition, any partial target can be described by a 

covariance matrix [C] (specifically, 9 real independent parameters). Additionally, all the 

independent elements of [C] are unequally mapped in the feature vector t. In the 

proposed 6 dimensional complex space, any partial target can be uniquely related to a 

single feature vector t, independently on the target degree of polarisation: from pure 

(single targets) to completely unpolarised (random noise). In conclusion, there is a 1 by 

1 relationship between the physically feasible t and any partial target.  

Regarding the GS, generally, the resulting basis does not represent a set of physical 
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feasible targets, except for the first axis, which is calculated starting from a physical 

realisable vector Tt̂ . GS generates a basis for 6C  but not all the vectors of 6C  are 

physically feasible. This does not however represent a limitation of the detector. The 

axes 2u , 3u , 4u , 5u  and 6u , obtained with the GS ortho-normalisation, span a subspace 

of 6C  which is completely orthogonal to the first axis Tt̂  (i.e. the orthogonal 

complement of Tt̂  in 6C ). This means that given a vector  

 6655443322 ucucucucucu ⋅+⋅+⋅+⋅+⋅= ,  (7.16) 

we have 

 utu T ⊥= ˆ
1 , Cccccc ∈∀ 54321 ,,,,  (7.17) 

The first vector of the GS basis 1u  is always physically realisable, since it is equal to Tt̂  

(i.e. the target to be detected). We refer to the orthogonal complement subspace of Tt̂  in 

6C  as Z. Clearly only a portion (i.e. subspace) of Z represents physically feasible 

targets. Moreover, a physically feasible target extracted from the data, will generally 

have a component in the Z subspace, called z. The length of z is independent of the basis 

used to represent Z (since the length is an invariant property of the vector z) (Rose, 

2002, Strang G., 1988). Therefore, we do not require that 2u , 3u , 4u , 5u  and 6u  are 

physically feasible vectors, as long as they represent a basis for Z.  

As Eq.7.17 shows, we are interested in TP , while CP  represent the rest of the power. 

Clearly, equal results are obtained starting from Eq.7.17 and considering TtotC PPP −= , 

where  

 ttP
T

tot

*
=   (7.18) 

is the total power of t in the original basis. The final simplified expression of the 

detector is 
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Summarising, the detector obtained with the projections on the GS basis and the one 

with the total power are entirely equivalent when fedcb ====  (i.e. absence of a 

priori information about clutter) 

 

7.1.3 Parameter selection 

The partial target detector proposed in this paper shares the same mathematical 

formalism of the single target detector in (Marino et al., 2009, Marino et al., 2010b, 

Marino A. and Woodhouse, 2009). As a consequence, all the mathematical 

optimisations can be extended to this case. For the sake of brevity, we only present the 

selection of threshold and RedR. This can be accomplished starting from a dispersion 

equation based on the angular distance between the observed partial target and the one 

of interest. 

After some algebraic manipulation of Eq.7.17 and substituting 

 
SCRP

P

P

P
SCR

T

tot

C

T 1
1 =−⇒= ,  (7.20) 

we can find the dispersion expression: 

  







−≤=≤ 1

111
0

2TRedRSCRP

P

T

C . (7.21) 

The first inequality is consequence of the fact that the power of the clutter cannot be 

bigger than the total power. 

Equation 7.21 exhibits a relationship among Signal to Clutter Ratio (SCR), threshold 

and RedR. Here, the SCR has a slightly different interpretation compared with classical 
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detection. In general, it represents the ratio between the power of target and clutter 

located in the scene. Instead, now it corresponds to a measure of the angular distance 

between the observed vector (i.e. target) and the one of interest. Its selection conforms 

to selectivity requirements of the filter and it can be related to the target properties. In 

general, when the target of interest is expected to be polarimetricaly stable, a higher 

SCR can be utilised, leading to a smaller false alarm rate. With polarimetricaly stable we 

mean that the angular distance of its t vector instances (realisations) is small (i.e. the 

representation of the target is stable over all the scene). However, if the target is 

anticipated to change slightly over the entire scene, a smaller SCR is to be preferred, 

which leads to higher probability of detection. In the following experiments, the SCR 

for detections is chosen equal to 50, since this value seems to provide the best 

compromise between probability of detection and false alarm. However, common 

values can go from 2 to 100.  

Having defined the SCR, two unknowns remain in Eq.7.18. Therefore, one unknown 

can be expressed as function of the other. Equation 7.19 presents one of the two 

possible solutions of Eq.7.21 when the equality sign is substituted: 

 







−= 1

1
2

T
SCRRedR . (7.22) 

The threshold can be freely set. In the following experiments T=0.98, although any 

other values smaller than 1 could be theoretically employed. However, a relatively high 

value of T entails a smaller variance of the polarimetric coherence, which increases the 

statistical performances of the detector. 

Once selected T, the last parameter (i.e. RedR) can be set. In our experiments, 

RedR=1.85. 

 

7.1.4 Dual polarimetric detection 

This final section is dedicated to the use of dual polarimetric data. The proposed 

algorithm is based on a geometrical operation which is theoretically independent of the 
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dimensions of the space considered, as long as it is Euclidean. Consequently, it can be 

exported to any Euclidean vector space. The demand of quad polarimetric data is a 

physical requirement, since the entire scattering matrix is needed to characterise 

uniquely a generic depolarised target. Using dual polarimetric data, only a portion of the 

target space can be explored and the target behaviour in the rest of the space generally 

cannot be retrieved. For this reason, in order to obtain optimal results, it is strongly 

suggested to exploit the detector with quad polarimetric data. However, in the case only 

dual polarimetric data are available, the algorithm can still be executed as we now show.  

The final formal expression of the detector does not suffer significant changes: 
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where the d vector is the dual polarimetric counterpart of t: 

 [ ]( ) [ ] [ ]TT

dd kkkktttCTraced 2
*
1

2

2

2

1321 ,,,, ==Ψ= . (7.24) 

[ ]dC  is a 2x2 coherency matrix calculated starting from the 2 dimensional complex 

scattering vector for dual polarimetric data.  

 

7.2 Classifier 

7.2.1 Formulation 

A classifier can be designed starting from the partial target detector, where any class 

(i.e. partial target) is described by a specific covariance matrix [ ]iC . The proposed 

partial target detector is exploited to generate several masks for the specific classes. If 

only few areas are of interest (e.g. different states of sea ice) a small number of classes 

are sufficient (the extreme scenario is with one single detection mask). Otherwise, 

several covariance matrices must be taken into account. The classification output is 
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similar to the supervised Wishart (Cloude S. R. and Pottier E., 1997, Lee et al., 1994a).  

The detections of the classes are performed in series generating a stack of masks: 
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 (7.25) 

where ni ,...,1=  indicates the respective class. 

The choice of the SCR for the detectors follows the rationales of generating the class of 

unknown targets. In the case they are not required, the threshold of the detectors can be 

set to zero which will lead to a discrimination exclusively on the base of the amplitude 

of dγ . In this context, the selection of SCR is trivial and will not affect the final 

classification mask. 

Subsequently, the mask with the maximum value is selected for each pixel. The 

normalised inner product returning the higher value is the one with the smallest angular 

distance to the regarded class. If nmm ,...,1  are the n obtained masks, a pixel is allocated 

to the class Y  if: 

 { }i
ni

Y mm
,...,1

max
=

= . (7.26) 

In an actual implementation of the classifier, the partial target detector is executed n 

times one after the other. In any execution, the vector representing the specific class is 

selected. The classifier is completed by a simple algorithm which pixel by pixel selects 

the mask presenting the maximum value. The classifier does not require iterations, since 

it converges after the first attempt. 

 

7.2.2 Parameter selection 

A straightforward strategy could be to simply use the same parameters exploited for 

standard detection. However, we believe the selection of SCR=15 reveals a significant 

advantage. As shown by Eq.7.26, the classifier decision rule is based on the comparison 
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of different masks and selection of the maximum. In this way, the algorithm assigns the 

pixel to the class with a characteristic vector closer to the observed one. With a lower 

SCR (i.e. lower selectivity), we are able to detect observed targets presenting some 

slight dissimilarity from the class characteristic vector. For instance, the dense forest 

class should include a relatively large collection of volumes (e.g. clouds of particles 

with different shapes). Clearly, when the difference is too large, a new class must be 

introduced.  

As a general consideration, in the classifier architecture, the use of a detection threshold 

is exclusively related to the rejection of unknown targets. In the case this is not required, 

we could choose SCR=0 (which corresponds to T=0) and the discrimination would be 

performed only by the maximum selection Eq.7.26.  

 

7.2.3 Supervised and Unsupervised versions 

Depending on the strategy exploited to extract the class coherency matrix, the classifier 

can be supervised or unsupervised.  

The supervised version requires the user interaction for the selection of known areas. 

This operation can be easily accomplished on a RGB Pauli composite image. 

The unsupervised version trains the detector exploiting polarimetric scattering models. 

A large assortment of models was developed in the past (Cloude S. R., 2009). 

Considering the proposed algorithm represents a general geometrical operation on 

polarimetric data, any model can be equally exploited. Therefore, it is left to the user to 

select the most appropriate model for the particular application of interest. We present 

examples of both supervised and unsupervised detection and classification in the next 

section. 

 

7.3 Validation of partial target detector 

7.3.1 Datasets employed 

In order to provide a large validation of the detector, several datasets with different 
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settings and scenarios were employed.  

The first quad polarimetric dataset was acquired by the E-SAR airborne system of DLR 

(German Aerospace Agency) during the SARTOM campaign in 2006 (Horn R. et al., 

2006). One aim of the campaign was target detection under foliage, for this reason 

several manmade targets were deployed on open field and under forest Tt̂  canopy 

cover. The frequency band is L and the image has a spatial resolution of 1.1m in 

azimuth and about 2m in range. 

Subsequently, a quad-polarimetric L-band ALOS-PALSAR dataset is exploited for the 

detection of distributed targets. In particular, we consider detection of historical 

firescars based on their depolarisation behaviour. The images were acquired in Canada 

close to the town of Manning, Alberta and present a mix of agricultural and forested 

areas. The pixel size of ALOS quad polarimetric data is around 24m x 4.5m (ground 

range x azimuth). Moreover, another quad-polarimetric L-band ALOS-PALSAR scene 

is exploited for a further investigation of land-use classification. The latter was acquired 

in China in May 2008, close to the city of Taian and the mountain of Culai and 

represents a mixed urban, agricultural and mountain forest site 

The last dataset used is a TerraSAR-X Stripmap dual polarimetric HH/VV acquisition. 

The represented scene is again Taian in China and the data were acquired in March 

2009. The resolution of the sensor is 1.2m x 6.6m (range x azimuth), however the pixel 

dimension is about 0.9m x 2.4m. 

With the intention of testing different modalities of the proposed algorithm, the 

validation is subdivided in separate sections.  

 

7.3.2 Comparison between single and partial target detector 

Firstly, the ability to detect single targets is examined. The new algorithm is compared 

with the single target detector (already validated in (Marino et al., 2009, Marino et al., 

2010b, Marino A. and Woodhouse, 2009)). Single targets represent a subspace of the 

partial targets, described by rank one covariance matrices (Cloude R. S., 1992). 
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Therefore they are also detectable by the new partial target detector. 

In point target detection a high resolution dataset is favourable, therefore the DLR L-

band dataset is employed (Horn R. et al., 2006). Figure 7.1 and 7.2 presents the 

comparison between the single and partial target detectors. The RGB Pauli image is 

presented as comparison (Figure 7.1). In Figure 7.2, the two algorithms perform 

similarly, but the resulting masks are not exactly equal. More information is added in 

the new detector (i.e. the second order statistics of k) hence slightly better outcomes are 

expected (i.e. lower false alarm and missed detection rate). The mask for even-bounces 

(even number of reflections) identifies mainly the jeep in the middle of the scene, since 

it generates a horizontal dihedral with the ground surface. Moreover it is possible to 

recognise some trunk-ground double-bounces, especially on the edge of the forest and 

on a clearing, where the wave attenuation due to the canopy is less significant. The 

masks of odd-bounces (odd number of reflections) reveal the trihedral corner reflectors 

and some weaker points on the bare ground. The metallic nets are rejected since they 

resemble horizontal dipoles (as illustrated in (Marino et al., 2009, Marino et al., 2010b, 

Marino A. and Woodhouse, 2009)).  

 

 

Figure 7.1. RGB Pauli image of the area utilised for comparison of single (STD) and partial 

(PTD) target detector. 
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 (a) STD: bounces (b) PTD: bounces 

    
 (c) STD: dipoles (d) PTD: dipoles 

Figure 7.2. Comparison of detection for single and partial targets. (a) Single target detector for 

bounces (STD); (b) Partial target detector for bounces (PTD); (c) Single target detector for 

dipoles (STD); (d) Partial target detector for dipoles (PTD) 

 

The capability to reject bright targets is an indicator that the discrimination is based on 

the polarimetric information and not the intensity of the return.  

 

7.3.3 Satellite data: historical fire scar (hfs) detection 

This section is concerned with the exploitation of satellite radar data. The latter are 
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particularly important for the scientific community and end users since they provide 

periodical coverage of large areas. 

In this section, a quad polarimetric ALOS-PALSAR dataset will be used. Figure 7.3.a 

and Figure 7.3.b illustrate respectively the first and third components of the Pauli 

scattering vector (i.e. HH+VV and 2*HV) of a scene acquired in Canada and presenting 

a combination of agricultural fields (up left corner) and forests. Considering that the 

rectangular shape of the pixel introduces severe visual distortions in the image, the data 

were multi-looked using an asymmetric window size of 1x5. The multi-look was 

accomplished on the covariance matrix [C] with the intention of preserving the 

polarimetric information (Lee et al., 1997). The detector uses a subsequent window 

average of 9x9 in order to minimise speckle and accurately characterise depolarised 

targets in the scene (Lee et al., 1994b).  

The test area includes a forest region subject to a fire in 2002 (close to the bottom right 

corner). The historical fire scar (hfs) presents structural differences with the old one due 

to the younger age of the trees and the absence of understory. Figure 7.4 depicts the 

detection mask when the algorithm is trained with pixels marked as hfs by the ground 

surveillance. The detector reveals the capability to separate the hfs from the rest of the 

scene, with very low false alarms rate. 

The subsequent step considers the examination of a forest model able to link the 

presence of an hfs with some key parameter. The exploited model is the RVoG (Random 

Volume over Ground) (Cloude S. R. and P., 1998, Treuhaft R.N. and Cloude R. S., 

1999), where the return from the forest is described by random volume scattering plus a 

coherent component. The latter is commonly generated by the ground beneath the 

canopy and is described by a rank one coherency matrix (since it is a single target).  
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 (a) RGB Pauli image  (b) supervised detection 

Figure 7.3. Partial target detector of ancient fire scar. (a) RGB Pauli component; (b) supervised 

detection; (d) unsupervised detection. 
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Figure 7.4. Partial target detector of ancient fire scar: unsupervised detection. 

 

The volume contribution is modelled as scattering from dipoles randomly oriented: 
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where Sm  and Sm  are the magnitude of the two backscattering contributions. Their 

ratio is the ground-to-volume ratio  
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α  is the characteristic angle with the same meaning as in the eigenvector 

decomposition of the coherency matrix [T] (Cloude S. R., 2009). 

In this experiment, we exploited a model in absence of slopes, since the DEM (Digital 

Elevation Model) of the image is particularly flat, however, in the case of relevant 

topography a preliminary slope correction should be accomplished (Lee et al., 2002b). 

In order to find the initial values for the model parameters which fit the hfs, the model 

was inverted on the data. The resulting parameters were found to be: 

 o19=α , dB7.7=ρ  and dB3=ρ . (7.29) 

(similar results, especially regarding α , were found for other hfs in Canada). The 

extracted values were used to reconstruct a [T] matrix to train the detector (Figure 7.4). 

The model seems to approximate adequately the typology of target, since a bad fit 

would not allow a correct reconstruction of [T]. The latter is an example of exploiting a 

model to train the unsupervised detector, however different models can be employed, 

such as the oriented volume over ground (OVoG) or other multi-layer decompositions 

(Cloude S. R., 2009).  
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7.3.4 Satellite data: classification 

In this section the algorithm is evolved into a classifier and tested over a second L-band 

ALOS-PALSAR dataset in China. The city of Taian (upper left corner) and the 

mountain of Culai (lower right corner) are clearly visible in the RGB Pauli composite 

image (Figure 7.5, where 1200x1200 pixels are visualised here).  

 

    

Figure 7.5. Partial target detection on ALOS data (China): RGB Pauli image of the area 

 
 

Figure 7.6 illustrates the Google Earth image of the areas. The classification mask 
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using the proposed classifier is presented in Figure 7.7 while its compared with the 

Wishart supervised (Lee J. S. et al., 1999, Lee et al., 1994a) is illustrated in Figure 7.8. 

The latter is a classifier exploiting an assumed a priori probability distribution of the 

coherency matrix [T] (Cloude S. R., 2009, Lee et al., 1994a, Lee and Pottier, 2009). In 

this comparison, a basic version of the Wishart supervised classifier was utilised. This is 

freely available in the software package POLSARpro.  

We are conscious that more elaborated versions employing supplemental pre-processing 

can result in more accurate classification masks. However, in order to make the 

comparison as fair as possible, the two classifiers had exactly the same pre-processing 

and they both are executed in the most basic version. The absence of corrections or 

further processing should allow us to evaluate anticipated theoretical advantages. 

 
 

 

Figure 7.6. Partial target detection on ALOS data (China):  Google Earth photograph of the 

scene 
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Figure 7.7. Partial target detection on ALOS data (China):  PTD supervised. Red: dense forest; 

Light blu: surfaces; Blue: agricultural; Yellow: villages; Green: urban area. 

 

 

In Figure 7.5, labels identify the training areas. Area1 represents agricultural fields 

(blue), Area2 is surfaces (light blue), Area3 is urban area (green), Area4 is a village 

characterised by small structures and sparse trees (yellow) and Area5 is a dense forest 

(red). The proposed classification has a total of 6 classes, since the black colour is 

reserved to areas not falling in any class (i.e. unknown targets). Performing a 

preliminary detection (setting SCR=15) of the different typologies, the areas are not 

forced to adhere to any class avoiding misclassification. 
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Figure 7.8. Partial target detection on ALOS data (China):  Wishart supervised classifier. (same 

classes as before).  

 

The proposed algorithm seems able to separate the different areas in the scene showing 

significant agreement with the RGB Pauli image the Google Earth photograph. Please 

note, as in the previous case, the coherency matrix is multi-looked 1x5, however the 

pixel is not completely square and a distortion of the radar image is still visible. 

Moreover, the azimuth is not perfectly aligned with the north-south direction. The urban 

area presents an interesting scenario. The classification mask presents a conspicuous 

heterogeneity (due to the natural heterogeneity of the city). Specifically, there are 

several point targets which do not fall in the class and are separated in black. 
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Additionally, the suburban areas resemble more the villages (yellow), rather than the 

dense city area. 

The supervised Wishart classifier (statistical based) (Lee J. S. et al., 1999, Lee et al., 

1994a) seems to have an overall agreement with the proposed algorithm for two classes: 

bare surface and agricultural fields. On the other hand, the other areas present rather 

scarce agreement. Specifically, in Wishart the urban area is much more extended and 

confused with the villages. For instance, the upper right corner is classified as a 

town/village while it is an agricultural area. 

Moreover, the forest on the mountainous area is completely misclassified presenting a 

mix of village and urban areas.  

From this experiment, a major advantage of the proposed classifier is noticeable: the 

independence on the total intensity of the backscattering. Wishart is strongly dependent 

on the Trace of [T] in the calculation of its interclass distance. On the other hand, the 

independence on the overall amplitude focuses our detector exclusively on the 

polarimetric characteristics (relative weight of the matrix elements). Please note, if in 

Eq.7.14 we multiply [C] by a scalar factor the resulting detector does not change. For 

Wishart, two objects can have a small distance if their power backscattered is similar 

even though they present some polarimetric difference.  

However, in the case the overall amplitude keeps essential physical meanings for a 

specific target, its information can be taken into account performing a subsequent 

amplitude analysis over the obtained mask. Nevertheless, the possibility to separate the 

polarimetric and amplitude information is considered the most significant advantage of 

the proposed classifier. Obviously, if the effect of amplitude modulation can be 

corrected with ancillary information (e.g. a DEM) the accuracy of the Wishart 

supervised classification mask is expected to improve, but such corrections are not 

always stable and robust and here we have demonstrated an approach that is not so 

sensitive to errors in topography compensation. 
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7.3.5 Satellite data: dual polarimetric detection 

In this final experiment, the detector is tested with dual polarimetric data. The basic 

difference with quad polarimetric data is the lack of uniqueness in the description of an 

observed target (Cloude R. S., 1992). For this reason, an appropriate use of the 

algorithm should restrict the detection to target typologies which can be represented 

with sufficient accuracy by only two polarisations. An example is the scattering from a 

random volume.  

In this experiment, TerraSAR-X Stripmap dual polarimetric HH/VV data are exploited. 

As for the ALOS dataset, the scene was acquired in China over the city of Taian. 

However, now the scene is slightly more north showing the Choushui Xuneng Reservoir 

(i.e. mountainous area covered by dense forests). 

An initial multi-look of 2x3 (azimuth x range) was performed on the dual polarimetric 

covariance matrix. Subsequently, the detection was achieved employing a 9x9 boxcar 

filter. The detection is aimed at volume scattering composed of randomly oriented 

dipoles. In the case of HH/VV dual polarimetry, we do not have direct access to a cross-

polarised HV channel to detect volume scattering. Instead, the latter can be identified 

through its signature coherency matrix in the HH/VV subspace, expressed as shown in 

Eq.7.30:  
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Figure 7.9 presents the HH reflectivity image compared with the detection mask in 

Figure 7.10. The algorithm seems able to identify the mountainous areas covered by 

dense forest, based on their level of volume scattering. The water reserve, in the middle 

left of the image, is detected since its backscattering is particularly low and close to the 

noise floor. Consequently, it resembles random volume with slightly stronger surface 

component. In order to remove these points, a simple threshold on the amplitude could 

reject areas with backscattering close to the noise floor. Regarding the detected points 

externally to the mountainous area, they mainly correspond to trees in the city, besides 

roads or around fields.  
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Figure 7.9. Dual polarimetric detector (HH/VV) on TerraSAR-X data (China):  HH reflectivity 

image.  

 

Here, they are more apparent than in the ALOS data due to the enhanced resolution and 

the use of X band which is more sensitive to canopy. However, we cannot neglect that 

part of these points are merely false alarm due to the absence of the complete 

polarimetric information. 
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Figure 7.10. Dual polarimetric detector (HH/VV) on TerraSAR-X data (China):  detection mask 

of volume composed of randomly oriented dipoles.  

 

7.4 Final remarks 

In this chapter, a geometric interpretation has been provided for the single target 

detector developed in (Marino et al., 2009, Marino et al., 2010b, Marino A. and 
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Woodhouse, 2009) and based on a perturbation filter. The detector is constituted by a 

weighted (by the observables) and normalised inner product between the target of 

interest and a perturbed version. In order to extend the detection to partial targets, a new 

vector formalism was proposed. The new formalism can describe uniquely the partial 

target space. Finally, the new detector was exploited as first stage of a subsequent 

classifier.  

Validation against airborne (DLR E-SAR, L-band) and satellite data (ALOS-PALSAR 

and TerraSAR-X) is provided showing the capability of the detector to discriminate 

among different single and partial targets. The detector is an algebraic operation on a 

Euclidean space independent of its dimensions. Therefore, a dual polarimetric version 

can be developed, although we expect lower performances due to the loss of physical 

information. Both the supervised and unsupervised detection strategies were exploited. 

The classification mask is compared with a basic Wishart supervised algorithm (freely 

available in the software package POLSARpro), revealing what we believe to be a 

major enhancement: the independence on the overall intensity of the return (i.e. the 

proposed algorithm works solely with the polarimetric information). Therefore, 

misclassifications due to modulations of the amplitude, as for example a consequence of 

layover, are solved, making the new algorithm particularly suited for detection and 

classification in mountainous regions. Clearly, if ancillary information (as a DEM) is 

available and further pre-processing is performed the classification result of the Wishart 

supervised can be significantly improved. 
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Conclusions 

 

 

In the past few decades, radar remote sensing has established itself as an indispensable 

tool for surveillance, particularly in areas where constant in situ inspections are 

impracticable (e.g. oceans, deserts, forests, etc) (Campbel, 2007, Chuvieco and Huete, 

2009). The winning advantage of microwave compared with optical remote sensing is 

its availability at night time and with any weather conditions, and for longer 

wavelengths, the ability to penetrate foliage (Richards, 2009, Woodhouse, 2006). 

Furthermore, by the use of polarimetry the detected target can be recognised, since 

different scatterers have different polarimetric responses (Cloude S. R., 2009, Lee and 

Pottier, 2009, Mott, 2007, Ulaby and Elachi, 1990, Zebker H. A. and Van Zyl J. J., 

1991). The latter is the focal point of this thesis.  

Firstly, the fundamental concepts of radar polarimetry were illustrated. Polarimetry is a 

vast subject ranging from physics to algebra (Born and Wolf, 1965, Cloude S. R., 1995 , 

Cloude S. R., 2009). A thorough treatment of polarimetry was outside the scope of this 

thesis and we decided to include exclusively the concepts directly related to the 

algorithm development. Specifically, the possibility to describe a deterministic target 

with a scattering matrix or equivalently a scattering vector was described. The latter is a 

three dimensional complex vector, therefore any target of interest can be pictured with a 

vector in a three dimensional space. This algebraic abstraction is very powerful and 

represents the basis of the detector developed here (Cloude S. R., 1995 ). 

After a preliminary introduction, the novel polarimetric detector was developed (Marino 

A. et al., Marino A. and Woodhouse, 2009, Marino et al., 2010a). The algorithm is 

based on a polarimetric coherence between the target of interest and its perturbed 
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version (i.e. a slightly rotated vector). The coherence was calculated as a weighted and 

normalised inner product, where the weights are extracted from the data. A threshold on 

the coherence finished the detection algorithm. The mathematical formalism obtained is 

straightforward and the numerical calculations required a remarkably short processing 

time. Starting from the mathematical expression, the detector parameters were 

optimised in order to have unbiased detections, when a priori information about the 

clutter are absent.  

Subsequently, the evaluation of the theoretical detector performance was treated in 

detail exploiting the statistics of the coherence (i.e. detector) interpreted as a random 

variable (Monahan, 2001, Papoulis, 1965). In order to describe completely the statistical 

behaviour, the analytical probability density function (pdf) was calculated. The 

theoretical results, and in particular the Receiver Operating Characteristic (ROC) curves 

revealed that the detector performance is particularly high with an almost deterministic 

behaviour (Kay, 1998). Subsequently, the theoretical performance was compared with 

other detectors. Under similar detection conditions, the ROC of the proposed detector 

appeared to highly outperform other algorithms (e.g. Polarimetric Whitening Filter, 

Optimum Polarimetric Detector, etc) (Chaney R. D. et al., 1990, Novak L. M. et al., 

1993a). The excellent performance is a consequence of the strong reduction of the 

random part of the detector performed by the coherence formalism. Finally, the 

detection performance remains high as long as the polarimetric description of the target 

of interest is accurate (please note, the target description can be attained from a 

theoretical model or extracted from a dataset). Once the statistical description is 

available, the threshold on the coherence can be chosen optimally (Kay, 1998). 

Considering the variance is particularly small the optimisation process is relatively 

straightforward. A simple graphical procedure was proposed in this thesis. 

Finally, the optimised detector was validated on real data. In this thesis, airborne and 

satellite data were treated separately since the former represent an easier detection 

scenario due to enhanced spatial resolution and Signal to Noise Ratio (SNR). 

Specifically, the airborne data (E-SAR from DLR) were collected in the framework of 

the SARTOM project (Horn R. et al., 2006). The latter was designed for target detection 
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under foliage (FOLPEN) with polarimetric and tomographic SAR (Walker et al., 2010). 

Due to the presence of deterministic targets (e.g. corner reflectors, jeeps, containers, etc) 

deployed in open field and under foliage, this dataset represents an ideal scenario for 

target detection. With the purpose of providing a wider validation (not exclusively 

restricted to deployed targets), several pictures of the test site were collected, especially 

in areas where the algorithm was showing positive detections. 

In order to understand if the theoretical improvements indicated by the ROC curves are 

reflected in the actual target detection, the algorithm was compared with a widely used 

detector, the Polarimetric Whitening Filter (PWF). The latter was defined as the best 

signal processing for speckle reduction (Chaney R. D. et al., 1990, Novak L. M. et al., 

1993a, Novak and Hesse, 1993). The proposed new detector was demonstrated to 

outperform the PWF in the established criteria for the evaluation of the algorithm 

performance (as detailed in the following).  

The final chapter concerned the validation with satellite data. Specifically, ALOS-

PALSAR (L-band), RADARSAT-2 (C-band) and TerraSAR-X (X-band) were 

exploited. In this case, we could not utilise accurate ground truth of the test areas, 

therefore to help the validation we compared the masks with aerial and ground 

photographs provided by Google Earth and Panoramio. The algorithm revealed its 

capability to perform detection with satellite data, opening the possibility to constantly 

monitor wide regions without the need for airborne campaigns. 

The wide validation over real data and comparison with other detectors allow a revision 

of the criteria set for the evaluation of the algorithm performance. Specifically, the 

criteria were based on two probabilities:  

1) Low probability of missing a target on the scene (i.e. missed detection). As shown in 

the fourth chapter, in the case of ordinary detection (i.e. SCR>2) the theoretical 

probability of missed detection (i.e. MP ) is extremely small and negligible when the 

threshold is selected with the proposed graphical procedure. For this reason, the 

criterion can be considered largely fulfilled from the theoretical point of view. However, 

we want to provide a clarification in order to identify the limits of the algorithm. The 
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criterion is completely fulfilled as long as the polarimetric signature of the target of 

interest is accurate. Intuitively, a wrong signature can lead to misidentification of the 

target. Two different procedures can be employed to acquire the target signature. The 

first one is model based and is to be preferred in the case the target is relatively easy to 

model. The second one considers the extraction (or training) from another dataset (but 

with same characteristics). In order to mitigate the effects of errors in the target 

signature, the algorithm can detect real targets slightly different from the one of interest. 

Mathematically, this is expressed by a dispersion equation where the limits can be set 

by the user. 

Two main targets typologies were identified as particularly interesting: 

1.1) Targets under foliage cover. Detection under foliage (FOLPEN) is a topic of 

remarkable interest for military and civilian surveillance since patrolling forested areas 

with ground inspections is highly difficult (Fleischman J. G. et al., 1996). Furthermore, 

the inspection is particularly complicated with optical systems because the tree canopy 

generally represents a barrier for optical sensors, while microwave can partially 

penetrate providing information about targets on the ground. The enhanced performance 

of the new method (compared with PWF) is due to the different use of the polarimetric 

information. PWF assumes that artificial targets do not present speckle variation, hence 

speckled points are rejected (Novak L. M. et al., 1993a). On the other hand, the 

proposed detector is concerned with the exact polarimetric signature of the target (it 

does not consider the variance of the observables). In foliage penetration, the canopy 

can introduce speckle in the return from the area where the target is located.  

1.2) Small targets. The detector is based on a polarimetric coherence (normalised 

operator) rather than the amplitude of the backscattering (or Trace of the coherency 

matrix). This represents a significant advantage in detection of targets with a small radar 

cross section (low backscattering), outperforming algorithms based on thresholds on the 

amplitude (Chaney R. D. et al., 1990, Li J. and Zelnio E.G., 1996). Clearly, the target 

still has to be stronger than the background (or the noise level) to be detected (otherwise 

we would detect random noise, unless we have a priori information about the clutter).  



Conclusions  259 

  

2) Low probability of positive detection in absence of an actual target (i.e. false alarm):  

2.1) Statistical stability. The theoretical results obtained in Chapter 4 clearly revealed 

that in the case of ordinary detection (i.e. SCR>2) the probability of false alarm (i.e. FP ) 

is negligible. Furthermore, the proposed algorithm largely outperformed all the other 

detectors considered in the comparison (Chaney R. D. et al., 1990). Therefore, we 

consider this point strongly fulfilled.  

2.1) Robustness against bright natural targets. Another advantage of neglecting the 

amplitude is when there exist several natural targets with strong backscatter. In some 

cases, a big radar cross section can be completely unrelated to the target itself but 

merely due to the acquisition geometry. Areas in layover (the side of a mountain or the 

edge of a forest) can have an extraordinary strong return that can trigger an amplitude 

based detector. On the other hand, the polarimetric information remains quite stable in 

the presence of layover. In any case, a simple correction can be performed as pre-

processing on the data which takes into account possible changes of polarimetric 

characteristics due to slopes (Lee et al., 2002a). Please note, the correction does not 

require any a priori information (e.g. DEM) and does not change the total amplitude of 

the return. Finally, we can consider the criterion fulfilled. 

A final advantage of the proposed detector not included in the initial criteria is the 

simplicity of the final mathematical expression. This allows particularly fast processing. 

The algorithm was able to execute the detection over all the dataset (about 2 million 

pixels) in few seconds, making it feasible for near real time processing of the data 

(given suitable optimisation).   

As future work, the single target detector will be converted to a partial target detector. 

In this context, a formalism utilising the coherence matrix is necessary, since the 

scattering matrix alone is not sufficient to completely describe a partial target. The new 

algorithm will be built with the same perturbation filter procedure. With a partial target 

detector it will be possible to detect any polarimetric target with large advantages in 

classification for land use monitoring more than surveillance.  
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Appendix I: Geometrical Perturbation with the 

Huynen parameters 

 

 

In the development of the polarimetric detector, the geometrical perturbation imposed to 

the target vector plays a fundamental role. In Chapter 3, the procedure was generally 

described introducing three equivalent approaches. In this appendix, a more rigorous 

formulation will be provided exploiting the Huynen parameterisation (this is preferred 

for its narrow link with phenomenological properties of the target) (Huynen J. R., 

1970). Please note, the same results can be obtained using the α  model (or any 

parameterisation based on continuous functions) (Cloude S. R., 2009, Cloude S. R. and 

Pottier E., 1997).  

A generic target can be described by the Huynen parameters as 

 [ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ]mmdmmT RTSTRS ψχυγχψ −= , , 
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In eq.I.1, the value of m is set to 1 since we are generating a scattering mechanism, and 

the absolute phase is neglected (or 0=ζ ). Starting from a normalised scattering matrix, 

the scattering mechanism can be obtained in the classical way (Lee and Pottier, 2009):  

 ( ) [ ]( )Ψ= TmmT STrace
2

1
,,, γυχψω .  (I.2) 

The geometrical perturbation is performed by changing slightly the value of the Huynen 

parameters representing the target of interest. The perturbed target is 

 ( )γγυυττψψω ∆±∆±∆±∆± ,,, mmmmP , (I.3)  

where mψ∆ , mτ∆ , υ∆  and γ∆  are the real positive variations of the parameters. They 

correspond to a fraction of the respective parameter variation range (i.e. [ ]πψ ,0∈m , 

[ ]4,4 ππτ −∈m , [ ]4,0 πγ ∈  and [ ]2,2 ππυ −∈ ).  

We want to demonstrate:  

if the variations mψ∆ , mτ∆ , υ∆  and γ∆  are small (compared with the total range of 

variation) then TP ωω ≈ .  

1) First it will be demonstrated:  

if the Huynen parameters are changed slightly, the scattering matrix changes slightly.  

All the functions exploited in the Huynen parameterisation are continuous in the given 

intervals. Therefore, it is always possible to examine a small interval where the function 

is approximately linear (Riley et al., 2006). For small variations we can write: 

 ( ) ( ) msmmm c ψψψψ ∆±≈∆± sinsin , (I.4) 

where ( ) 10 ≤≤ msc ψ  is a real factor equal to the derivative of ( )mψsin : 

 ( ) ( ) ( )mm

m
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d
c ψψ

ψ
ψ cossin == . (I.5) 
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Remarkably, msc ψ∆  is always not bigger than mψ∆  since sc  is always not bigger than 

1. Please note, the derivative can be positive or negative, therefore the final sign of the 

variation depends on the sign of the local derivative.  

Regarding the cosine: 

 ( ) ( ) mcmmm c ψψψψ ∆±≈∆± coscos  , (I.6) 

where  ( ) 10 ≤≤ mcc ψ , 

 ( ) ( ) ( )mm

m

mc
d

d
c ψψ

ψ
ψ sincos −== . (I.7) 

Finally, for the tangent function we can write: 

 ( ) ( ) γγγγ ∆±≈∆± tctantan , (I.8) 

where  ( ) 21 ≤≤ γtc , 

  ( ) ( )
( )γ

γ
γ

γ
2cos

1
tan ==

d

d
ct , (I.9) 

because 40 πγ ≤≤  and the derivative varies between one and two. In the worst 

scenario, the value of γ∆  can be doubled (depending on the local derivative), however 

it remains constrained and does not amplify excessively.  

Once the variation of the Huynen parameters is performed, the perturbed target can be 

expressed as 

 [ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ])(, mmmmdmmmmT RTSTRS ψψχχυυγγχχψψ ∆+−∆+∆+∆+∆+∆+=

 (I.10) 

Next step evaluates how the single matrices change when the new parameters are 

substituted (Riley et al., 2006). 
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If the value of υ∆  is small enough we can approximate the exponential with the first 

order of the Taylor series (Riley et al., 2006, Mathews and Howell, 2006):  

 xe
x +≈ 1 . (I.14) 
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After these passages, the matrices of the perturbed target can be expressed as the 

superposition of a non-perturbed matrix (i.e. the target of interest) and another matrix 

linearly dependent on the variation (Pearson, 1986, Riley et al., 2006):  

 [ ] [ ] [ ]∆+= BBB TP , (I.16) 

where [B] represents any matrix in the parameterisation. [ ]PB  is the perturbed matrix, 

[ ]TB  is the original matrix (non-perturbed) and [ ]∆B  is the variation matrix (linearly 

dependent on the variation).  

The matrices dependent on the variations vanishes (they are equal to the Null matrix), 

when the variations are null (Hamilton, 1989, Rose, 2002, Strang G., 1988). In other 

words, if 0=∆=∆=∆=∆ γυτφ mm , then 

 ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( ) ]0[,,,,, =





∆∆=∆=∆=∆=∆ υυγυγυυγψχ dddmm SSSRT , (I.17) 

where the null matrix is defined as:  

 [ ] 



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


=

00

00
0 . (I.18) 

This proves that the derived expression collapses into the target of interest when the 

variations are zero. 

Coming back to the total expression of the perturbed target: 
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The product generates several terms, each of them is composed by the multiplication of 

5 matrices. The distributive property of the matrix multiplication can be employed to 

calculate the final expression (Strang G., 1988): 

 [ ] [ ]( )[ ] [ ][ ] [ ][ ]CBCACBA +=+ . (I.20) 

The final result can be summarised in  

 [ ] [ ] [ ] [ ] [ ] [ ] [ ]54321 AAAAASS TP +++++= , (I.21) 

where ][ 1A , ][ 2A , ][ 3A , ][ 4A  and ][ 5A  are matrices obtained summing up matrices 

where there are respectively 1, 2, 3, 4 and 5 variation matrices (hence they vanish when 

0=∆ ). Please note, the [A] matrices are the sum of several matrices, where only ][ 5A  is 

composed exclusively of one addend. The term which has the biggest effect in changing 

the perturbed target is ][ 1A , while the others can be interpreted as second order 

contributions (Mathews and Howell, 2006, Riley et al., 2006).  

As introduced before when 0=∆=∆=∆=∆ γυχψ mm  then we have 

  ]0[][][][][][ 54321 ===== AAAAA . (I.22) 

When mψ∆ , mχ∆ , υ∆  and γ∆  are small, the ][ 1A , ][ 2A , ][ 3A , ][ 4A  and ][ 5A  matrices 

(especially ][ 1A ) start to be different from the null matrix, thus changing the value of 

[ ]PS . Considering the linear dependence of the variation matrices [ ]∆B  on the respective 

variations, they can be close as we like to the null matrices. Therefore, the perturbed 

matrix can be close as we like to the target of interest. 
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2) The detector formulation is based on the scattering vector formalism and employs a 

change of basis which makes [ ]T

T 0,0,1=ω . In this second section we want to 

demonstrate: 

if the perturbation is applied on the basis which makes [ ]T

T 0,0,1=ω , the first component 

(i.e. target) of the perturbed target is slightly reduced and the other two (i.e. clutters) 

are increased, leading to a final expression [ ]T
T

cba ,,=ω  with a, b and c complex 

numbers and ba >> , ca >> . 

In order to obtain [ ]T
T

0,0,1=ω , we can perform two real rotations and one change of 

phase (please note only one change of phase is required because the target vector has 

only one component) (Cloude S. R., 1995 , Strang G., 1988). The first rotation deletes 

one component (or locates the vector on a complex plane orthogonal to one component), 

and the second overlap the vector on one axis. The change of phase erases the phase of 

the vector and makes it a real number. Furthermore, the last change of phase can be 

neglected in this context since it can be assimilated to the final absolute phase (and in 

any case it does not change the weights of a , b  and c ).  

The rotations can be accomplished left multiplying the vector for a unitary matrix 

(Rose, 2002). If Tb  is the given scattering mechanism of the target to detect (expressed 

in any basis): 

 [ ] TTbU ω= , (I.23) 

where [U] is a unitary matrix computed as: 
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Hence, 
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In order to calculate the appropriate rotation angles the following system of equations 

must be solved 
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The solutions are: 
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Substituting the values of ϕ  and σ  in the expression of [U] the desired change of basis 

is achieved.  

The same change of basis must be applied on the perturbed target [ ]TP cbab '','',''= :  

 [ ] TPbU ω=  , (I.28) 

where 

 








=++−

=−+

=+

ccba

bcba

aca

ϕσσϕσ

ϕσσϕσ

ϕϕ

coscos''sin''sincos''

cossin''cos''cossin''

sin''cos''

 (I.29) 

',',''','','' cbacba ≠  since the perturbed target is different from the target of interest in 

any basis (hence, in the starting basis). On the other side the values for ϕ  and σ  are the 
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same used previously, consequently the triplet a, b, c cannot be 1, 0, 0. However, 

considering the system is linear, if the change is small enough [ ]Tcba '','',''  will not be 

very different from [ ]Tcba ',','  in the starting basis (as demonstrated in the first part) and 

1≈a , 0≈b , 0≈c . 

Finally, we have demonstrated that for small changes of the variation parameters mψ∆ , 

mχ∆ , υ∆  and γ∆ , the perturbed target remains similar to the one of interest in any 

basis and in particular in the basis which makes [ ]T
T

0,0,1=ω . 

 

The entire proof can be summarised in two equations: 

 ( )[ ] [ ]( ) [ ]TmmTT STraceU 0,0,1),,,(,,
2

1
=Ψ= υγχψδσϕω , (I.30)  

where the brackets show the dependence on the Huynen parameters. Again, the 

perturbed target is obtained changing slightly the Huynen parameters: 

 
( )[ ] [ ]( )

[ ]Tmmmmmm

mmmmP

cba

STraceU

),,,(),,,,(),,,,(

),,,(,,
2

1

υγχψυγχψυγχψ

υυγγχχψψδσϕω

∆∆∆∆∆∆∆∆∆∆∆∆=

=Ψ∆+∆+∆+∆+=
 (I.31) 

If the variation is zero the perturbed target is exactly the target to detect: 

  PTmm ωωγυχψ =⇔=∆=∆=∆=∆ 0 . (I.32)  

On the other hand, if the variations are small the two scattering mechanisms start to be 

different, introducing the required distance: 

   PTmm ωωγυχψ ≈⇔≈∆≈∆≈∆≈∆ 0 . (I.33) 

Geometrically the change of the Huynen parameters results in a small rotation of the 

perturbed scattering mechanism, introducing an angular distance between them. 

Considering the target of interest is present only in the first component, this rotation 
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introduces two clutter terms in the perturbed scattering mechanism. As demonstrated in 

Chapter 3, the possibility to adjust properly the weight between target and these two 

clutter terms is an essential aspect in the detection algorithm.   
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Appendix II: Neglecting the cross terms 

 

 

The polarimetric detector developed in this thesis is constructed with a weighted and 

normalised inner product between the vector representing the target to detect Tω  and a 

perturbed replica Pω . The weights are derived from the observables (scattering vector). 

Specifically, the matrix representing the weights is defined as:  

 [ ]
















=

3

2

1

00

00

00

k

k

k

A , (II.1) 

where the scattering vector is [ ]Tkkkk 321 ,,=  (Cloude S. R., 2009, Lee and Pottier, 

2009). The inner product can be calculated as  

 [ ] T

T

T P ωω
* , (II.2) 

where the [P] matrix can be calculated with the Hermitian product of [A]: 

 [ ] [ ] [ ]


















==

2

3

2

2

2

1

*

00

00

00

k

k

k

AAP
T . (II.3) 

As explained in Chapter 3, the [A] matrix (which keeps the same information of k) 

performs the weighting of the two vectors Tω  and Pω  separately.  

When the formulation follows a physical approach, the [P] matrix is derived by the 

covariance matrix (Boerner W. M., 2004, Cloude S. R., 1987, Zebker H. A. and Van 
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Zyl J. J., 1991) expressed in the basis which makes [ ]TT 0,0,1=ω : 

 [ ]


















=⋅=

2

3
*
23

*
13

*
32

2

2
*
12

*
31

*
21

2

1

*

kkkkk

kkkkk

kkkkk

kkC
T . (II.4) 

The mathematical justification of deleting the off-diagonal terms is associated with the 

bias removal for the polarimetric coherence estimation. In fact, correlation between 

target and clutter can bias the detector leading to false alarms and missed detections.  

In both algebraic and physical approaches the detector exploits the diagonal matrix [P] 

where the off-diagonal (or cross) terms are neglected. The aim of this appendix is to 

prove that the operation is proper and useful information is not lost (in the context of 

single target detection). The main concern against neglecting the off-diagonal terms 

could be that without the second order statistics (i.e. cross terms) a partial target cannot 

be completely characterised (Cloude R. S., 1992). Therefore, a partial target could not 

be separated by a single target constituting false alarms.  

The demonstration will be divided in two parts. Firstly, we want to prove that the cross 

terms of [C] are not needed to detect a single target and secondly that the algorithm 

developed can deal with partial target clutter. Instead than providing a single proof we 

preferred to collect several proofs exploiting different aspects of the problem, in order to 

present different points of view.  

 

II.2 Uniqueness for single target detection 

The doubt regarding the uniqueness raises since the detector appears to be constructed 

with three power terms. The latter are merely three real numbers, while a single target 

has five degrees of freedom (five real numbers). As it will be proven shortly, this is 

deceptive since the required parameters are hidden inside the final formulation.  

To summarise we want to demonstrate:  
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the algorithm is able to detect uniquely any single target.  

The thesis could be articulated more in details: 

excluding the off-diagonal (cross) terms, the three diagonal (power) terms are sufficient 

to grant uniqueness to the detection of single targets unless a small dispersion in the 

geometrical target space. 

 

II.2.1 Number of degrees of freedom exploited 

In the new basis the scattering mechanisms for target and perturbed target are 

respectively [ ]TT 0,0,1=ω  and [ ]TP cba ,,=ω , while the scattering vector is 

[ ]Tkkkk 321 ,,= . The final detector as derived in Chapter 3 is 

  

T

C

T

C

d

P

P

a

c

P

P

a

b
3

2

2

2
2

2

1

1

++

=γ , (II.5) 

where the power terms are calculated as 
2

1kPT = , 
2

22 kPC =  and 
2

33 kPC = . 

An easy way to estimate the power terms is by the Gram-Schmidt ortho-normalization 

(Strang G., 1988, Hamilton, 1989, Rose, 2002), which sets Tω  as one axis of the new 

basis of the target space. The new basis will be composed of three unitary vectors 

T
u ω=1 , 22 C

u ω=  and 33 C
u ω= , where again 2C

ω  and 3Cω  are two components 

orthogonal to Tω  (lying on the clutter complex plane which is orthogonal to the target 

complex line). Hence, TP , 2CP  and 3CP  can be calculated with the squared amplitude of 

the inner products (i.e. projections) between the observables k  and the three axes of the 

basis  

 
2

T

T

T kP ω⋅= , 
2

22 C

T

C kP ω⋅=  and 
2

33 C

T

C kP ω⋅= . (II.6) 

Any scattering mechanism can be represented by 4 parameters (e.g. Huynen or α  
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model) (Cloude S. R. and Pottier E., 1997, Huynen J. R., 1970). If the dependence on 

the Huynen parameters is explicated the powers will be written as 

 ( ) ( )
2

,,,,,, υγτφωυγτφ mmT

T

mmT kP ⋅= , 

  ( ) ( )
2

22 ,,,,,, υγτφωυγτφ mmC

T

mmC kP ⋅= , (II.7) 

 ( ) ( )
2

33 ,,,,,, υγτφωυγτφ mmC

T

mmC kP ⋅= . 

The detector is based on the power terms estimated starting from the scattering vector 

and mechanisms which were demonstrated to be necessary and sufficient to characterise 

any single target. The power terms are the result of the projections of the scattering 

vector and not the starting point. In other words, we use all the information contained in 

the scattering vector to estimate the power terms (i.e. five parameters instead than 

three).  

 

II.2.2 Rank of the covariance matrix 

Any single target can be interpreted as lying on a subspace of the entire partial target 

space (Cloude, 1986, Cloude, 1995b). Specifically, a partial target with pure 

polarisation is by definition regarded as single. However, single and partial target are 

frequently treated separately, as they would be two completely different entities.  

In order to show the narrow link between single and partial targets, the incoherent 

eigenvalue decomposition (Cloude S. R., 1987, Cloude R. S., 1992, Cloude S. R. and 

Pottier E., 1996) could be considered. When a single target is present in the averaging 

cell, only one eigenvalue differs from zero. The diagonal matrix has rank one: 

 [ ]
















=Σ

000

000

001λ

. (II.8) 
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Clearly, also the covariance matrix [C] has rank one, since it can be represented as the 

product of the same (or parallel) scattering vectors over the entire cell, hence its 

columns are dependent on each other. 

In general, any single target constitutes a subspace with covariance matrix of rank one. 

Consequently, in order to characterise uniquely a single target, a rank one covariance 

matrix is necessary and sufficient. In [ ]Σ , the cross terms are clearly zero (as well as the 

other two diagonal terms), therefore in the basis which diagonalise the covariance 

matrix they are not needed to characterise uniquely the single target. The diagonal 

expression [ ]Σ  for the covariance matrix is obtained only after a change of basis where 

the single target represents one axis (the first one). This change of basis is achieved with 

a similarity transformation, i.e. left and right multiplication for a unitary matrix 

composed of the eigenvectors (Cloude R. S., 1992).  

In the proposed algorithm, the change of basis is imposed in the first step, subsequently 

the obtained covariance matrix is made diagonal. The algorithm can be interpreted as a 

test for the fit of the imposed diagonal matrix with the data. Clearly, if in the data there 

is only the sought single target, the changes of basis for diagonalisation and detector 

will generate the same diagonal matrix. In the latter case the match will be high and the 

target will be detected. 

In conclusion, a diagonal matrix (specifically of rank one) is necessary and sufficient to 

characterise a single target after an appropriate change of basis (Cloude R. S., 1992). 

 

II.2.3 Test of uniqueness and target dispersion 

The span of the scattering matrix can be calculated with the Trace of the covariance 

matrix (i.e. sum of the diagonal terms). It represents the total power acquired by the 

receiving antenna in a quad polarimetric mode (Mott, 2007, Ulaby and Elachi, 1990). It 

represents a physical property of the target, therefore it is invariant on changes of basis. 

In other words, [ ]{ }CTrace  will remain the same independently on the basis used to 

express [C]. Therefore, the basis which makes [ ]TT 0,0,1=ω  can be taken into account.  
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Additionally, it is apparent that 

 [ ]{ } [ ]{ }PTraceCTrace = , (II.9) 

since off diagonal terms do not contribute in the Trace. 

After the change of basis the span can be expressed as 

 32 CCT PPPSP ++= , (II.10) 

where SP is the span.  

In order to prove the uniqueness, we will consider two different targets 1Tk  (target of 

interest) and 2Tk  (test target) and demonstrate that the targets can be detected 

simultaneously if and only if they are the same, unless a small dispersion.  

Starting from the expression of the coherence 
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 (II.11) 

In the last expression, the left inequality is true because the span is always (equal or) 

higher than the power scattered by a target.  
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The final expression is dependent on the ratio between target and clutter: SCR.  
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After the change of basis, a single target of interest can be expressed as 

[ ]Tj

T ek 0,0,1
1

ϕσ= . This is different from the scattering mechanism which is 

[ ]TT 0,0,1=ω , moreover the phase 1ϕ  can be arbitrary since it cannot be used to 

characterise the target (Cloude S. R., 2009). It is always possible to express a scattering 

vector as  

 ( ) ( )[ ]TjIjIjI

T

IIII

eeek 3211
322 ,, ϕϕϕϕ σσσσ ∆∆∆+= ∆+ . (II.14) 

2Tk  represents the test target in our proof. 

The detectors for target and test targets are: 

 
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The target 1Tk  will be always detected since its signal to clutter ratio is ∞ . 

As shown by the last set of equations, the only way for the two targets to have exactly 

the same detector is to have the same SCR: 

 210 SCRSCR == , 

 
( ) ( )

( )
( ) ( ) 0

0 2

3

2
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2

2

2
=∆+∆⇒
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= II
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II

σσ
σσ

σσ

σ
. (II.17) 

In other words, the clutter components of the test target must be zero and the test target 

can be expressed in the polarimetric space with a vector parallel to the target (i.e. they 

are the same single target).  

However in Eq.II.16 an inequality is considered, therefore a dispersion of the test target 
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which still allows its detection is quantified. Any target falling in the dispersion 

equation will be detected. In order to have a more direct picture of the polarimetric 

information of the detectable targets, a normalisation of the scattering vector is 

performed. In actual fact, the detector is not dependent on the norm of the scattering 

vector, hence we do not lose generality restricting our analysis to normalised targets.  

A normalised vector has unitary length: 

 ( ) ( ) ( ) 1
2

3

2

2

2
=∆+∆+∆+ III σσσσ . (II.18) 

For the test target we have: 
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where x is a positive real number.  
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Now, we want to find a simplified expression for 
x

x

+1
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Substituting the found expression the dispersion equation becomes: 
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where clearly, T and RedR are positive.  

The final expression defines the maximum spreading of the clutter components of a 

target to be still detected. In other words, any normalised target with clutter components 

smaller than the dispersion boundaries is detected.  

The dispersion equation is determined by the threshold and the RedR. In order to have a 

deeper understanding of the relation between dispersion and parameters, the limits can 

be calculated (Riley et al., 2006): 
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. (II.25) 

Hence an extremely restrictive threshold (i.e. T=1) will reduce the dispersion to zero. 
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An extremely low threshold (i.e. T=0) allows the detection of any target even when the 

target component is inexistent. Please note, 1 is the maximum value for the clutter 

components since the vector is normalised. 
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When the RedR is zero and the clutter terms are infinitely reduced, the dispersion 

becomes maximum and any target can be detected. Considering, 2

2

a

b
RedR =  and the 

scattering mechanism is unitary, the only way to have RedR=0 is with 0=b  and 

1=a , hence PT ωω = . In other words, we are considering the normalised inner product 

of a vector for itself, which is always unitary.  

The last limit is: 
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∞→ RedRT

T
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. (II.28) 

In order to have ∞=RedR  the perturbed target must have only clutter components (it 

must be on a complex plane orthogonal to the target of interest). Hence, 

 [ ]TPT cb,,0=⊥ ωω  (II.29) 

and the normalised inner product of two orthogonal vectors is always zero (Strang G., 

1988). 

In conclusion, the higher is the value for the RedR, the more restrictive is the filter. 

Regarding the best choice for the parameters, in order to perform detection on real data, 

the dispersion must be small but not zero, since the observed targets do not fulfil 

perfectly the models (at least for the thermal noise introduced by the instrument). 

Additionally, the presence of surrounding clutter must be included in the dispersion, and 

a SCR of interest must be chosen.  

To have an idea about the amount of dispersion allowed in a practical detection, we can 

substitute the values of RedR and tr which were used in the validation chapter. If 

RedR=0.25 and T=0.97 we have ( ) ( ) 20.0
2

2

2

2 <∆+∆ IIII σσ . This means that the first 

component is around 0.8. In term of angles distances in the power space, the dispersion 

allows detection of targets 14 degrees far from the target axis. We regard this variation 

sufficiently small, however in the case a more selective filter is required the value of 

RedR and T can be adjusted as appropriate. 

 

II.3 Detection in scenario populated by partial targets 

With the collection of proofs provided in the previous section, we demonstrated that the 

detection of a single target is unique and we can neglect the off diagonal terms of [C] 

(after the change of basis). Additionally, a dispersion equation was extracted starting 

from the threshold and the Reduction Ratio. 
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In this section, we want to prove: 

when the detection is applied on a real scenario (i.e. in presence of partial targets), the 

off diagonal (cross) terms of [C] can still be neglected without decreasing the detection 

performances. 

Geometrically, the proof is rather straightforward. Conversely than a single target, a 

partial target cannot be described with a rank one covariance matrix (Cloude R. S., 

1992). The operation of neglecting the cross terms (without changing the diagonal 

terms) is not a similarity and it generally can modify the rank of the matrix. However, if 

the initial matrix is a covariance matrix, the diagonal matrix [P] will not reduce its rank 

Please note, the rank can increase but in presence of the target the matrix will already be 

diagonal (with only the first element different from zero) and it will not be affected. In 

order to prove this last property we can consider by absurd a covariance matrix in any 

basis (for instance the basis which makes [ ]TT 0,0,1=ω ) expressed as: 
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The [ ]C
~

 matrix has generally rank 3 (since its determinant is generally different from 

zero) however the reduced diagonal matrix [P] has rank one. Therefore, if such matrix 

would exist, to neglect the off diagonal terms would lead to false alarm since some 

partial target would be interpret as single. Evidently, [ ]C
~

 does not represent a physically 

realisable target (Cloude, 1986, Mathews and Howell, 2006, Riley et al., 2006). The 

only way to have diagonal terms equal to zero: 0
2

22 == kPC  and  0
2

33 == kPC  is 

for 032 == kk  over the entire averaging cell. However, this would lead to 

0*
32

*
31

*
21 === kkkkkk . The latter relationship can be seen as a consequence of the 

Cauchy-Schwarz inequality (Strang G., 1988) where  

 *
jiji kkkk ⋅≥ . (II.31) 
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Moreover, it is not positive semi-definite (Rose, 2002, Strang G., 1988). The only way 

for a covariance matrix to have two zeros on the diagonal (i.e. all the minors constructed 

using those columns will be zero) is to be rank one. In this situation, there exists a basis 

where the projection of the partial target power over two axes is zero. The two axes will 

span a complex plane where the partial target must be always zero. Therefore, in this 

basis the target power will be present only on one axis, which is the definition of single 

target. Generalising, partial targets cannot be always zero over any complex plane in the 

single target space SU(3) (Cloude, 1986). This can be related to the presence of a 

pedestal representing the unpolarised component which spreads all over the target 

space.  

 

In conclusion, neglecting the cross terms, we do not lose information regarding the 

partial nature of the target, since the partial target will always have the other two 

diagonal elements. Clearly, the detector is not able to discriminate between two partial 

targets since it cannot characterise completely partial targets. However, the algorithm is 

able to understand when a target is partial and discard it. 
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Estimating Above-Ground Biomass Of Savanna Woodlands In Belize, IGARSS’08, 

Boston, USA, July 2008. 
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• ARMANDO MARINO, SHANE R. CLOUDE & IAIN H. WOODHOUSE (2009), 

Polarimetric target detector by the use of the polarisation fork, Proceedings on 

POLinSAR’09, Frascati, Roma, 2009. 

• IAIN H. WOODHOUSE, ARMANDO MARINO & IAIN CAMERON (in press), 

A Standard Index of Spatial Resolution for Distributed Targets in Synthetic 

Aperture Radar Imagery, International Journal of Remote Sensing. 

• RALF HORN, ARMANDO MARINO, MATTEO NANNINI, NICK WALKER & 

IAIN WOODHOUSE (2009), The SARTOM Project, tomography and polarimetry 

for enhanced target detection for foliage penetrating airborne SAR, EMRS-DTC 

2008, 6
th

 Annual Technical Conference 7
th

-8
th

, Edinburgh, UK, July 2009. 

• KARIN M. VIERGEVER, IAIN H. WOODHOUSE, ARMANDO MARINO, 

MATTHEW BROLLEY & NEIL STUART (2009), Backscatter and Interferometry 

for Estimating above-ground Biomass of Sparse Woodland: a Case Study in Belize, 

Proceedings on IGARSS’09, Cape Town, South Africa, July 2009. 

• ARMANDO MARINO, SHANE R. CLOUDE & IAIN H. WOODHOUSE (2009), 

Selectable target detector using the polarisation fork, Proceedings on IGARSS’09, 

Cape Town, South Africa, July 2009. 

• ARMANDO MARINO, SHANE R. CLOUDE & IAIN H. WOODHOUSE (2010), 

A Polarimetric Target Detector Using the Huynen Fork, IEEE Transaction on 

Geoscience and Remote Sensing, 48, 2357 - 2366. 

• ARMANDO MARINO, NICK WALKER & IAIN H. WOODHOUSE (2010), Ship 

Detection using SAR Polarimetry. The Development of a New Algorithm Designed 

to Exploit New Satellite SAR Capabilities for Maritime Surveillance, Proceedings 

on SEASAR’10, Frascati, Italy, January 2010. 

• ARMANDO MARINO & SHANE R. CLOUDE (2010), Detecting Depolarizing 

Targets using a New Geometrical Perturbation Filter, Proceedings on EUSAR’10, 

Aachen, Germany, June 2010. 
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• ARMANDO MARINO, SHANE R. CLOUDE & IAIN H. WOODHOUSE (2010), 

New classification technique based on depolarised target detection, Proceedings on 

EUSAR’10, Aachen, Germany, June 2010. 

• NICK WALKER, RALF HORN, ARMANDO MARINO, MATTEO NANNINI & 

IAIN H. WOODHOUSE (2010), The SARTOM Project:  Tomography and 

polarimetry for enhanced target detection for foliage penetrating airborne P-band 

and L-band SAR, EMRS-DTC 2010, 6
th

 Annual Technical Conference 13
th

-14
th

, 

Edinburgh, UK, July 2010. 

• ARMANDO MARINO, SHANE R. CLOUDE & IAIN H. WOODHOUSE (2010), 

Detecting Depolarizing Targets with Satellite Data: a New Geometrical Perturbation 

Filter, Proceedings on IGARSS’10, Honolulu, Hawaii, July 2010. 

• ARMANDO MARINO, NICHOLAS WALKER & IAIN H. WOODHOUSE 

(2010), Ship detection with SAR data using a Notch filter based on perturbation 

analysis, Proceedings on IGARSS’10, Honolulu, Hawaii, July 2010. 

• SHANE CLOUDE, ARMANDO MARINO, DAVID GOODENOUGH, HAO 

CHEN, ASHLIN RICHARDSON & BELAID MOA (2010), Radar polarimetry for 

forestry applications: ALOS and RADARSAT-2 studies in Canada, Proceedings on 

ForestSAT’10, Lugo, Spain, September 2010. 

• ARMANDO MARINO, SHANE R. CLOUDE & IAIN H. WOODHOUSE (2010), 

Detecting Depolarizing Targets using a New Geometrical Perturbation Filter, IEEE 

Transaction on Geoscience and Remote Sensing, in review. 

 

III.2 List of Conferences attended 

• Annual Student Meeting ASM'07 RSPsoc, March 2007, The University of 

Edinburgh, Edinburgh, UK 

• ESA Advanced Training Course on Land Remote Sensing, ISEGI-UNL, Lisbon, 

Portugal, 2nd – 7th  Sep 2007 
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• 5th International Symposium on Retrieval of Bio- and Geophysical Parameters from 

SAR Data for Land Applications, 25th – 28th Sep 2007, Bari, Italy 

• Electro Magnetic Remote Sensing Defence Technology Centre, EMRS-DTC’08, 

24th-25th June 2008, Edinburgh, UK 

• Annual Student Meeting ASM'08 RSPsoc, 10-11 March 2008, Lyndhurst, New 

Forest, UK: the candidate won the best poster prize. 

• 7th European Conference on Synthetic Aperture Radar, EUSAR’08, 2nd-5th June 

2008, Fredericstraffen, Germany 

• International Workshop on Science and Applications of SAR Polarimetry and 

Polarimetric Interferometry, POLinSAR’09, 26-30 Jan 2009, Frascati, Rome, Italy 

• Airborne measurements and remote sensing for validation and up-scaling models of 

ecological processes from experimental sites to geographic regions, 12-13th March 

2009, Edinburgh 

• DRAGON-2 Symposium, 22 – 26 June, 2009, Barcelona, Spain 

• Electro Magnetic Remote Sensing Defence Technology Centre, EMRS-DTC 2009, 

24th-25th June 2009, Edinburgh, UK: the candidate won the best paper prize. 

• IEEE International Geoscience & Remote Sensing Symposium, IGARSS’09, 12 – 

17 July, 2009, Cape Town, South.  

• Kruger Workshop, Dynamics of African Savanna Woodlands: Enhancing the Utility 

and Application of Satellite Observations”, 19th - 22nd July 2009, Kruger Park, 

South Africa. 

• SEASAR 2010, “Advances in SAR Oceanography from ENVISAT, ERS and ESA 

third party missions”, 25th to 29th January 2010. 

• Dragon-2 Symposium, 17th – 21st May 2010, Guilin, China 
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• 8th European Conference on Synthetic Aperture Radar, EUSAR’10, 7th-10th June 

2010, Aachen, Germany 

• IEEE International Geoscience & Remote Sensing Symposium, IGARSS’10, 25 – 

30 July, 2010, Honolulu, Hawaii.  

• ForestSAT’10, Operational tools in forestry using remote sensing techniques, 7 - 10 

September, 2010, Lugo, Spain. 

 

III.3 List of awards won 

• Best poster: ASM'08 RSPsoc, 10-11 March 2008, Lyndhurst, New Forest, UK 

• Best paper: Electro Magnetic Remote Sensing Defence Technology Centre, EMRS-

DTC’09, 24th-25th June 2009, Edinburgh, UK. 

• Best student paper (category Methods), Dragon-2 Symposium, 17th-21st May 

2010, Guilin, China 

• Best paper: Electro Magnetic Remote Sensing Defence Technology Centre, EMRS-

DTC’10, 13th-14th July 2010, Edinburgh, UK. 

• Finalist for best student paper: IEEE International Geoscience & Remote Sensing 

Symposium, IGARSS’10, 25 – 30 July, 2010, Honolulu, Hawaii. 

 

III.4 Copy of journal paper attached to this thesis 

• ARMANDO MARINO, SHANE R. CLOUDE & IAIN H. WOODHOUSE (2010), 

A Polarimetric Target Detector Using the Huynen Fork, IEEE Transaction on 

Geoscience and Remote Sensing, 48, 2357 - 2366. 
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