High Speed Simulation of Microprocessor Systems
using

LTU Dynamic Binary Translation

Daniel Jones

Doctor of Philosophy
Institute for Computing Systems Architecture
School of Informatics
University of Edinburgh

2010

Abstract

This thesis presents new simulation techniques designsgeded up the simulation
of microprocessor systems. The advanced simulation tqaksimay be applied to
the simulator class which employs dynamic binary transfatis its underlying tech-
nology. This research supports the hypothesis that fasterlation speeds can be
realized by translating larger sections of the target poygat runtime. The primary
motivation for this research was to help facilitate comgretive design-space explo-
ration and hardware/software co-design of novel proceasdritectures by reducing
the time required to run simulations.

Instruction set simulators are used to design and to vesfy aystem architectures,
and to develop software in parallel with hardware. Howegempromises must often
be made when performing these tasks due to time constrdinisis particularly true
in the embedded systems domain where there is a short timmeatket. The processing
demands placed on simulation platforms are exacerbatétefuny the need to simu-
late the increasingly complex, multi-core processors nfdoow. High speed simula-
tors are therefore essential to reducing the time requedesign and test advanced
microprocessors, enabling new systems to be released ah#gesscompetition.

Dynamic binary translation based simulators typicallywglate small sections of the
target program at runtime. This research considers theslaion of larger units of

code in order to increase simulation speed. The new sinonlaéchniques identify

large sections of program code suitable for translatioarafhalyzing a profile of the
target program’s execution path built-up during simulatio

The average instruction level simulation speed for the EEMiEnchmark suite is
shown to be at least 63% faster for the new simulation teclesdhan for basic block
dynamic binary translation based simulation and 14.8 tifaster than interpretive
simulation. The average cycle-approximate simulatioredge shown to be at least
32% faster for the new simulation techniques than for bakckodynamic binary
translation based simulation and 8.37 times faster thale-@acurate interpretive sim-
ulation.

Acknowledgements

I wish to thank my adviser Professor Nigel Topham for his sarpand advice, and for
sharing his knowledge of microprocessor architecturegaguny research.

| would also like to thank all my colleagues within the Insté for Computing Sys-
tems Architecture at the University of Edinburgh for theipport and encouragement,
especially Dr Bjorn Franke, Professor Mike O’'Boyle and Daidelo Cintra.

Declaration

| declare that this thesis was composed by myself, that thv& wantained herein is
my own except where explicitly stated otherwise in the terg that this work has not
been submitted for any other degree or professional quediific. Some of the material
presented in this thesis has been published in the follopapgrs:

D. Jones and N. Topham, “High Speed CPU Simulation using LYddmic Bi-
nary Translation”, irHIPEAC '09: Proceedings of the 4th International Confer-
ence on High Performance and Embedded Architectures anchiBas) Paphos,
Cyprus, 20089.

N. Topham and D. Jones, “High Speed CPU Simulation using Warg Transla-

tion”, in MoBS '07: Proceedings of the 3rd AnnualWorkshop on ModeBegmch-
marking and SimulationSan Diego, CA, USA, 2007.

Table of Contents

1 Introduction 1
1.1 The High Speed Simulation Problem 5
1.2 Large Translation Unit Solution 10
1.3 Research Contributions, 11
1.4 ThesisOutline. 12
2 Simulation Techniques 14
21 OVeIVIEW 14
2.2 Interpretation 15
2.3 Binary Translation 16
2.3.1 StaticBinary Translation 18
2.3.2 DynamicBinary Translation 23
24 Sampling 25
25 Summary ... e 26
3 Related Work 28
3.1 Binary Translation Simulators 28
3.1.1 Static Binary Translation 28
3.1.2 Dynamic Binary Translation 35
3.2 Summary ... e e e e e 41
4 Edinburgh High Speed Simulator 42
41 OVEIVIEW o 42
4.2 SimulatorFeatures 44
4.3 Normal SimulationMode L. 46
431 TheDecodeCache 47

4.4 FastSimulationMode 48

441 TheTranslatonCache 49
4.5 Instruction Level Simulation 50
4.6 Cycle Accurate Simulation 50
46.1 ThePipelineModel 50
46.2 TheMemoryModel 51
4.7 System Simulation o 55
4.8 Future Development 56
4.9 SUMMAary e 57
Evaluation Methodology 58
5.1 TargetSystem 58
5.2 Simulation Environment 60
5.3 Performance Metrics 61
Large Translation Units 63
6.1 OVerview e 63
6.2 TranslationUnitTypes 64
6.3 RuntimeProfiling 66
6.4 Program Simulation oo 67
6.4.1 Dynamic Binary Translation 69
6.5 Cycle Accurate Simulation 70
Instruction Level Simulation 73
7.1 OVEeIVIEW o 73
7.2 Instruction Level Simulation Analysis 74
7.21 Performance 74
7.2.2 Instruction Emulation oL 77
7.2.3 Dynamic Binary Translation 77
7.24 SimulatorTasks. L. 79
7.2.5 Translated Functions L. 82
7.3 TranslationCache Size, 89
7.4 Workload Sensitivity 89
7.5 Translation Unit Fragmentation 90

7.6 SimulationEpochSize 93

7.7 Comparison with State-of-the-Art Simulators 97
7.8 Summary ... e 99
8 Cycle Timing Simulation 101
8.1 Overview e 101
8.2 Cycle Accurate Simulation Analysis 102
8.3 Cycle Approximate Simulation Analysis 108
8.3.1 ThePipelineModel 108
8.3.2 TheMemoryModel 110
8.3.3 TheSystemModel 112
8.3.4 Comparisonwith Sampling 115
8.4 Summary 115
9 Conclusion 116
9.1 ContributionstoResearch. 161
9.1.1 High Speed Simulation Techniques 117
9.1.2 Analysis of Simulation Techniques 711
9.1.3 Instruction Level Performance 811
9.1.4 Cycle Approximate Performance and Accuracy 119
9.1.5 Comparison with State-of-the-Art Simulators 119
9.2 Ciritical Analysis e 120
9.3 FutureResearch 120
9.3.1 RuntimeProfiling. 120
9.3.2 Cycle Approximate Simulation 121
9.3.3 Simulation Characterization 212
A Glossary 123
Bibliography 125

Vi

List of Figures

11

2.1
2.2
2.3
2.4
2.5
2.6
2.7

4.1
4.2
4.3
4.4
4.5
4.6

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4
7.5

DBT Simulation Overview. 8
Virtual Machines 15
Interpretive SimulatorCode., 17
Processes involved in Static Binary Translation 19
Compiled SimulatorCode. 20
Compiled Simulator Code for Large Programs. 21
Processes involved in Dynamic Binary Translation 23
DBT SimulatorCode. 24
Interpretive SimulationLoop. 46
DBT SimulationLoop. 49
Processor Pipeline. 50
L1 Front-End Cache. 52
L1 Front-End Cache Operation. 54
MMU Page Translation Caches. 56
Translation Units. o 65
Page-CFG Configurations. 67
LTU DBT SimulationLoop. 68
LTU Translated Function. 71
Instruction Level Simulation Profile. 75
DBT Instruction Level Speed. 78
LTU DBT Instruction Level Speedup. 87
EHS Simulation Tasks. 81
LTU Dynamic TF Size and Simulation Speed. 85

Vii

7.6
7.7
7.8
7.9
7.10
7.11
7.12

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12

Static TF Distribution.
Dynamic TF Distribution.
Translation Unit Fragmentation.
Translation Unit Profiling Techniques.
Simulation Speed and TF Profiles.
EHS, Simit-ARM and QEMU Simulation Speeds.
EHS, Simit-ARM and QEMU Simulation Times.

Cycle Accurate PipelineModel.
Cycle Accurate Simulation Profile.
Cycle Accurate Simulation Speed.
Cycle Accurate Simulation Speedup.
Cycle Accurate Pipeline and Memory Models.,
Cycle Approximate PipelineModel.
Cycle Approximate Pipeline Speedup.
Cycle Approximate Memory Speedup.
Cycle Approximate Memory Cycle CountError.
Cycle Approximate System Simulation Speed.
Cycle Approximate System Speedup.
Cycle Approximate System Cycle Count Errors.

viii

93
.95

. 98

98

031

106

108

109
110

111

112
113

114

List of Tables

1.1 SimulatorClasses.. 7
5.1 Target System Architecture 95
5.2 EEMBC Lite DefaultIterations 95
5.3 Simulation Host Machine 60
5.4 EHS Simulator Configuration 60
7.1 Instruction Level Simulation Performance Summary. 76
7.2 Static and Dynamic Translated Functions. 83
7.3 EHS, Simit-ARM and QEMU Performance Summary. 9 9
8.1 Cycle Accurate Performance Summary. 107
8.2 Cycle Approximate Pipeline Performance Summary. 109
8.3 Cycle Approximate Memory Performance Summary. 111
8.4 Cycle Approximate System Performance Summary. 112

Chapter 1

Introduction

The research presented in this thesis investigates soned, iogh speed simulation
techniques which were developed to help facilitate comgmelve design-space explo-
ration (DSE) and hardware/software co-design of microgssor architectures. Thor-
ough exploration of the design-space is often not performeituations where a new
system must be designed within a limited period of time. Asoasequence sub-
optimal system designs may be selected for manufacturs. grbblem is particularly
acute in the embedded processor domain where companieswitbiik tight sched-
ules to release new systems to market. Faster simulators #Hie design-space to be
explored in more detail within the time available. They drerefore very important in
the microprocessor design process as they enable the Isshsgrchitectures to be
discovered.

Simulators are used to accurately predict the performanagacteristics, such as speed
and power consumption, of new processor architecturesatdtie most efficient de-
sign can be selected for fabrication. Simulators are alsul us test experimental
instructions set architectures (ISAs), for hardwareisafe co-design and verification,
and in the development and debugging of new compilers ankitagipns. Simulation
platforms are vital to industry because they enable thernsmging tasks involved in
the development of a new microprocessor to be performednallph thus reducing
the time to release.

The design-space for a new microprocessor architectuypisdlly very large. Its size
will depend on a number of different factors such as the ISpelne design, register

1

Chapter 1. Introduction 2

file size, functional unit type and quantity, number of pies@ cores, on-chip network,
cache hierarchy and configuration, and application domaimost embedded system
research and design groups, not only are the design goalexact, in terms of the
performance criteria that must be met, there is also limite@ available in which to
design, test and fabricate a system. Time constraints magssiate a reduction in the
size of the design-space in order that a new system can lasegl®n schedule. System
designers may be required to make assumptions about individicro-architecture
parameters or to chose less representative applicatidhswhiich to test the system.
However, a reduced design-space is less likely to contaithést design point.

The design-space may be reduced by decreasing the numberotanchitecture pa-
rameters and configuration values to be explored for thetaygstem. Whilst this will
cut the overall simulation time it may result in the selectaf a sub-optimal design.
The design-space may also be reduced by decreasing the nantbsize of the pro-
grams simulated. Small benchmarks may be run instead ofveddl programs in an
attempt to replicate real application behaviour and at #mestime reduce the overall
simulation time. However, benchmarks can not imitate vealld programs perfectly
and this may also result in the selection of a sub-optimaksysiesign.

The need to model new, advanced system designs has incr@spdocessing de-
mands placed on simulators. In addition to accurately miodeincreasingly com-
plex, multi-core systems, simulators must also maintatigics on a range of system
indicators. The degree of modelling detail, accuracy astiimentation may also be
reduced in order to speed up simulation, but this will geteelass reliable data from
which to select the best design.

Comprehensive design-space exploration therefore iegdisting every design point
with the simulation of real-world programs. However, rigas design-space explo-
ration conflicts with the manufacturers natural desire tip $bading-edge systems
ahead of the competition. As outlined, simulators play goartant role in determining

the optimal system design. The simulation speed directctd the time required to

design and to test new system designs and hence it indiedtelgts the accuracy of the
predicted performance results. For this reason, statbesfirt high speed simulation
technigues remain an active field of research.

In order to perform comprehensive design-space exploraiml verification a sim-

Chapter 1. Introduction 3

ulator needs not only to be fast, it must also satisfy the ireqments of a research
simulator. This means that the simulator be flexible in b&glconfiguration and op-
eration. It should be capable of modelling any target systechitecture and offer a
number of different simulation modes.

A flexible research simulator should fulfil the following t@ria:

e High Speed Simulation The design-space needs to be comprehen-
sively explored if the optimal system design is to be foundlingar
increase in the number of micro-architecture design pararseesults
in exponential expansion of the design-space. Vast depaces, cou-
pled with the need to accurately model complex systems anddhire
to run real-world programs demands a lot of processing poWeere-
fore, high speed simulators are required to explore thegdespace as
thoroughly as possible, in as short a time as possible.

e Accurate Modelling. The simulator must be capable of modelling the
target system at the required level of abstraction and viéhdesired
degree of accuracy in order to confidently predict the behawof the
real system. It should incorporate instruction level andieyaccurate
modes of operation to facilitate high and low level DSE.

e Instrumentation. The performance of the target system can only be
evaluated if the simulator is instrumented to return stiagson the
system indicators of interest. For example, the simulatay ioe in-
strumented to provide instruction counts, program exeautycles, in-
struction execution profiles, L1 hits and misses, and powescmption
figures.

e State Observability. The ability to capture all architecturally-visible
CPU state changes at instruction commit is necessary im tordepport
hardware/software co-design and verification.

e System Simulation To accurately model the target system’s behaviour,
the simulation environment should be setup to preciselyanthat an-
ticipated for the real system. A research simulator shcwdddfore pos-

Chapter 1. Introduction 4

sess the ability to simulate standalone applications ahaperating
systems (OSs) or embedded system runtimes. User level atioml
requires emulation of all system calls, whilst system lesiglulation
requires comprehensive modelling of the system’s hardwa I/O
devices.

e Simulation Flexibility . Simulators which possess a variety of simula-
tion modes offer greater flexibility for performing DSE. Tappropriate
level of abstraction, speed and accuracy of simulation nesghiosen by
designers so as to satisfy the optimal exploration straftega particu-
lar project. Exploration may be focused on specific regidreode that
are of interest by employing a mixture of fast-forwardinglaampling.

e Target System Configuration To be of use, the simulator must be ca-
pable of modelling all of the target systems present in tisggihespace.
It should possess a straightforward method of building demgystem
models and facilitate detailed configuration of all microkatecture pa-
rameters.

¢ Retargetable The simulator needs to support different target ISAs and
the extension of ISAs so that the benefits of experimentak|&a#n be
investigated. It should employ a standardized means of idgfithe
target instruction set and the pipeline model.

Instruction set simulators (ISSs) are important softwactst which are used to design
the advanced processor architectures of tomorrow. Thelylenlae trade-offs between

different micro-architecture models to be explored so thatbest system design can
be selected for production. They also facilitate the dgwalent, verification and de-

bugging of hardware and software.

The new simulation techniques detailed in this thesis aptiGgble to Dynamic Bi-
nary Translation (DBT) based simulators. Dynamic binaan$iation is a high speed
emulation technique [Altm 00, Altm 01] which has applicascacross many domains.
Dynamic binary translation based simulators typically pagrams up to four times
faster than the corresponding field-programmable gatg §FRAGA) setup.

Chapter 1. Introduction 5

This research is concerned with high speed research sionsilahich can be used to
carry out DSE and hardware/software co-design and veiidicatf novel processor ar-
chitectures. In order to perform these tasks the simulatetine capable of high speed
instruction level and cycle-accurate simulation, and suppbservable modelling of
the processor state. A glossary of the main simulation teised throughout this thesis
are listed in appendix A.

1.1 The High Speed Simulation Problem

Intense competition amongst embedded system designdedhtasnore leading-edge
processors being released to market more frequently. Moplercessors incorporate
many novel technologies which are designed to increaseigespeed and to reduce
the power consumption and thermal output. As the complexity number of cores
in future systems increase, the time necessary to run simouogaof such systems also
increases, at the same time deadlines are becoming tighter.

Superscalar processors incorporate a number of advan@ed-architecture technolo-
gies which increase performance. Processors may emplgylipelines, wide instruc-

tion issue, out-of-order processing, speculative exeaudr a trace cache. A simulator
must model all of these novel components in addition to etmgacomplex events

such as interrupts and exceptions. Even embedded prosdssorporate Memory

Management Units (MMUS) to support multi-tasking opergtsystems.

Chip Multi-Processors (CMPs) are rapidly becoming thegmredd processor model as
manufacturers strive to make the most effective use outettler increasing silicon
area available to them [Oluk 96]. Dual-core (AMD Athlon XBM POWEREG6; Intel
Itanium, Core 2 Duo) and quad-core (AMD Phenom X4, OpterotelICore 2 Quad,
Core i7) processors are already in mainstream use and theerumh on-chip cores
is set to increase many fold in the near future. A CMP may dortieterogeneous
or homogeneous cores. IBM’s CELL processor [Kahl 05] is atogeneous CMP
designed for the games market and consists of a single demerose PowerPC core
and 8 special-purpose digital signal processing cores.

Sun Microsystems’ UltraSPARC T1 processor [Kong 05] is a bgameous Chip Multi-

Chapter 1. Introduction 6

Threaded (CMT) processor which has 8 cores, each of whiclwiaydmulti-threaded,
providing a total of 32 hardware thread contexts or logicakpssors. The processing
demand on simulators rises dramatically as the number agsor cores is increased.
Simulators will soon be required to emulate systems withdneds - if not thousands -
of cores as well as model the associated on-chip networkecherarchy, coherency
protocols and 1/O.

In order to discover the optimal system design, the effecalbfnteresting micro-
architecture parameters should be evaluated during DStelAer, the consideration
of a large number of parameters increases the size of thgrdepace and thus requires
significantly more time to explore. To accurately predia behaviour of the real sys-
tem, the simulation environment must be setup to reflectehkbsystem environment.
This may involve running real-world programs and operasggtems which also take
time to simulate.

Table 1.1 provides definitions of the main simulator class&sst interpretive simula-
tors achieve modelling accuracy by operating at the regista@sfer level (RTL), but
such simulators are very slow. However, compiled simutgtahich are many orders
of magnitude faster than interpretive simulators, do novte processor state observ-
ability. They can also only be used in situations where tinaifyi code to be simulated
is known in advance and are therefore unable to emulatarsaliifying code. Sam-
pling simulators on the other hand can perform cycle-adewsmnulation at speed, but
their functional simulation speed is similar to that of imestive simulators.

Dynamic binary translation based simulators, which penfar mixture of interpreta-
tion and compilation at runtime, are both fast and flexiblgn&mic binary translation
is the process of translating source code, which perfornpgeaific task, into the equiv-
alent binary code which runs on the host machine. When egdctlie translated code
performs the same task but at much greater speed. Dynanagylinanslation based
simulators are also capable of simulating self-modifyinggoams and support observ-
ability of the processor state.

Dynamic binary translation based systems are very flexiblthay enable extensive
runtime control over program modification. They are ablesi@at to unforeseen events
by generating code which is translated on-the-fly to dedi eitew situation. Software
employing DBT technology is used across many differentiappbn domains such as

Chapter 1. Introduction

Simulator Class

Definition High Self-
Speed modif.

State
Observ.

Interpretive

Compiled

DBT

Sampling

The target program is simulated by r No Yes
peatedly fetching, decoding and emul:

ing the next instruction in the executic

stream. Interpretive simulators are flexib

and support the running of self-modifyin

code. Decode caches are used to red

the overhead of instruction decoding, b

interpretive simulators are still compar:

tively slow.

A statically compiled simulator is gener-Yes No
ated by translating the target binary into

an executable which when run simulates

the target program. This class of simulator

is optimized for speed but lacks flexibility

and typically can not run self-modifying

code.

The simulator switches between interpr Yes Yes
tive simulation and ‘translated’ simulatio
in which host code functions are called
emulate sections of the target program
high speed. Whilst interpreting instruc
tions, sections of the program are ide
tified for translation into host code func
tions. If the simulator detects that code h
been modified it discards the correspor
ing translations. Dynamic binary tran:
lation based simulators are both fast a
flexible.

Sampling is used to perform fast cycleNo Yes
approximate simulation. The simulator
alternates between functional simulation
and cycle-accurate simulation. Cycle-
approximate simulation is fast when the
fast-forwarding interval is many times
larger than the sampling interval. The data
gathered in each sampling interval is used
to generate the simulation statistics. How-
ever, state observability is typically not
maintained during the fast-forwarding in-
tervals.

Yes

No

Yes

No

Table 1.1 Simulator Classes.

This table lists the main simulator classes and shows whether

they feature high speed instruction level simulation, emulation of self-modifying code and state

observability.

Chapter 1. Introduction 8

resource virtualisation, system resilience, network sgcudynamic code patching
and optimization, and system emulation.

Dynamic binary translation based simulation is a high speedilation technique in

which target instructions, or more typically blocks of ingttions, are translated at
runtime into equivalent host code functions (translatedtfions). The translated func-
tions are then called to emulated the basic blocks at higadspéthin the simulated

microprocessor model. In most simulations, the overhegmkdbrming translation is

more than offset by the time saved through faster simulatifogure 1.1 provides an
overview of the tasks involved in DBT based simulation.

A 4

TF exists for yes
next block?

Call TF

4

no

A 4

Interpret
basic block

A 4

no End of simulation
epoch?

yes

TF: Translated Function
A 4

Translate hot
blocks

Figure 1.1 DBT Simulation Overview. Basic blocks are interpreted for a defined period
(simulation epoch). At the end of each simulation epoch the frequently executed blocks are
translated into host code functions (translated functions). If the next block to be simulated
has previously been translated, the translated function for the block is called, else the block is
interpreted as usual.

High speed cycle-accurate simulation is required in ordgretrform low level design-
space exploration. However, because DBT based simulagofsrp instruction level
simulation very efficiently, there exists little scope focreasing the speed of cycle-

Chapter 1. Introduction 9

accurate simulation through optimizations in areas othantcycle-accurate mod-
elling. Therefore significant speed-ups in DBT based cydedrate simulation may
only be realized by deploying simplified models of targettegscomponents.

There are limitations associated with all of the main sirtialatechniques. Whilst
interpretive simulators are flexible, they are also slow.mpded simulators on the
other hand are fast but place restrictions on the type ofrarog that may be simu-
lated. Sampling simulators can perform cycle-approxinsateulation at high speed
but do not provide state observability. Dynamic binary slation based simulators
feature high speed instruction level simulation, emutatb self-modifying code and
processor state observability.

High speed ISSs contribute towards reducing the time netedsadry out DSE. As out-
lined previously, the time required to perform DSE is diethby the size of the design-
space, the complexity of the system to be modelled, the reesarulate real-world
programs and the scheduled system release date. The pngcdemands placed on
simulators are set to increase substantially in the neardwts designers seek to model
advanced new multi-core CPUs. The central challenge faaytsdsystem designers,
of achieving high speed simulation whilst retaining absolonodelling accuracy, is
therefore becoming increasingly difficult to satisfy.

The main simulation issues which are addressed in thisslaesi

e High Speed Instruction Level Simulation Simulators must be ca-
pable of performing high speed instruction-level simwatin order to
facilitate comprehensive high level DSE.

¢ High Speed Cycle Accurate Simulation Simulators must be capable
of performing high speed cycle-accurate simulation in otdefacili-
tate comprehensive low level DSE. Cycle-approximate nsdélthe
target system are typically used to speed-up simulatioheaekpense
of introducing small degrees of error into the simulatiosui¢s.

e State Observability. The processor state must be accessible at all ob-
servation points so that high and low level hardware/sa#vea-design
and verification can be performed. The hardware model isiatdd

Chapter 1. Introduction 10

against the golden reference model using the simulatorsmaillation
API.

e Realistic Simulation. Simulators must be capable of running real-
world programs within a realistic simulation environmehthey are
to accurately predict system behaviour. This implies thatdimulator
should support the running of stand-alone application§nsedifying
programs and operating systems.

1.2 Large Translation Unit Solution

This thesis proposes that the simulation speed of DBT baseadlators can be in-

creased by identifying large translation units at runtirBg. profiling the target pro-

gram’s execution path during simulation it is possible tentify large sections of code
which span multiple basic blocks and which are suitablerfamglation. If the transla-
tor has a larger section of target code to analyze it will bigeb@ble to optimize the
translated code produced for speed of execution.

Large translation units not only contain more target indians they also have more
branches and jumps to instructions within the same traoslatnit. Indeed, entire
loops, even nested loops may be contained within a singislaon unit. This means
that more instructions will be simulated per translatectfion call and control will be
returned to the main simulation loop less frequently. Th&ufts in an overall increase
in simulation speed as less time is spent in the slower maijn. lo

This thesis investigates the performance benefits of @tinglthree different types of
large translation unit, or LTU. The different LTUs are basedthe standard computer
software objects listed below.

SCC : Strongly Connected Component
CFG : Control Flow Graph

Page: Physical Page

Chapter 1. Introduction 11

The DBT simulation process is divided into a number of sifiafaepochs. During

each simulation epoch the simulator builds up a profile ot#nget program’s execu-
tion path. At the end of each epoch the execution path prafisnalyzed to identify

the LTUs and to determine which LTUs should be translatedsulbsequent epochs,
large sections of the target program may be simulated at $pged by calling the

corresponding translated function.

1.3 Research Contributions

The Edinburgh High Speed (EHS) simulator, developed at tiieddsity of Edinburgh,
is a high speed DBT based simulator and is the platform ontwddi®f the simulations
were performed for the research presented in this thesis.

This thesis contributes to the knowledge of high speed DBSebaimulation as fol-
lows:

¢ Novel High Speed Simulation Techniques
This thesis shows that LTUs can be deployed to increaserindaion
speed of DBT based simulators. The techniques used to ptafget
programs and to identify and translate LTUs at runtime argusnto
the Edinburgh High Speed simulator and are outlined in arapt

The EHS simulator was designed as a research simulatobkuiiar
performing DSE and hardware/software co-design of noveropiro-
cessor architectures. The processor state is updatedeattarinstruc-
tion is emulated and is observable at every translation hmiindary.
The simulator also incorporates advanced managementrofiatéons
so that self-modifying code can be simulated.

¢ Quantitative Analysis of Simulation Techniques
The performance of the different LTU DBT simulation modes ana-
lyzed in chapters 7 and 8 and provide an insight into theeativeness
and future potential as high speed simulation techniquesiyMispects
of LTU DBT based simulation are investigated in detail, utthg anal-
ysis of the number of instructions emulated by translatiomshe first

Chapter 1. Introduction 12

and second simulation runs; the time spent performing tiierdnt sim-
ulation tasks; the size and number of translation units geed; the size
and frequency of the translated functions called; the faattich cause
translation unit fragmentation and the effects of varying size of the
simulation epoch.

e Instruction Level Performance Analysis
The instruction level simulation performance of the diéfierLTU DBT
simulation modes are compared in chapter 7. The results #havall
of the LTU DBT simulation modes are on average at least 11684i
faster than basic block DBT based simulation.

e Cycle Approximate Performance and Accuracy Analysis

The cycle-approximate simulation performance of the dsife LTU
DBT simulation modes are compared in chapter 8. The results -
ing simplified models for the target pipeline and memory sybtem -
show that all of the LTU DBT simulation modes are on averadeast
1.32 times faster than basic block DBT based simulation. Sitmpli-
fied system model is shown to introduce an average error b 2o
the cycle count.

e Comparison with State-of-the-Art Simulators
Chapter 7 demonstrates that, in addition to being a flexiegearch
simulator, the EHS simulator is capable of performing instion level
simulation at speeds comparable with other state-of-theHaulators
which were designed purely for speed. The EHS simulator ¢etegp
simulation of a set of benchmarks on average 1.07 times quitian
Simit-ARM and 1.26 times slower than QEMU (ARM).

1.4 Thesis Outline

This thesis is divided into nine chapters. Chapter 2 pravate overview of the main
simulation technigues used in simulating microprocesgstesns. Chapter 3 summa-
rizes related work in the field of static and dynamic binaanslation based simulators

Chapter 1. Introduction 13

and Chapter 4 describes the design and operation of the &Edimibligh Speed simu-
lator used in this research.

Chapter 5 outlines the benchmarking methodology used &sabe performance of
the different DBT simulation modes and Chapter 6 describesdifferent types of
Large Translation Unit and details how they are identified aanslated at runtime.

Chapters 7 and 8 analyze the performance of the instruatiel bnd cycle-accurate
simulation modes respectively. The simulation speed dfi €adt) DBT mode is pre-
sented and compared with that of basic block DBT based stionlaChapter 7 also
analyzes the characteristics of the different LTUs gererand compares the perfor-
mance of the EHS simulator with two start-of-the-art fuanal simulators. Finally,
chapter 9 presents the conclusions and outlines future whigh naturally follows on
from this research.

Chapter 2

Simulation Techniques

This chapter describes the simulation techniques employetstruction set simula-
tors which can be used to perform design-space explorafioniaoprocessor sys-
tems. The different simulation techniques used define alabtons strengths and
weaknesses, and therefore its application domain. WHdstes simulators tend to
provide flexibility of operation, the fastest simulatore aestricted in their use. Hybrid
simulators on the other hand, which employ a combinationmotigation techniques,
have the potential to be both fast and flexible and are thexefi@al for carrying out
research.

2.1 Overview

Simulators simulate programs by emulating each targetuason within a model of
the target system running on the host machine. The simulaiwironment must
model all of the lower-level components present in the tapgyegram’s native exe-
cution environment. Therefore, all simulators form a \atisation layer [Gold 73,
Pope 74, Smit 05a, Smit 05b] between the simulated appicatid the host platform.

The two types of virtualisation layer are shown in figure 2Process virtualisation
supports the execution of a single process, or single-tle@application, by abstract-
ing the Application Binary Interface (ABI). Process virtumachines (VMs) emulate
user-level instructions and operating system calls, andratiated when a process is

14

Chapter 2. Simulation Techniques 15

created and destroyed when the process terminates. Systealisation provides a

complete system environment which supports the runningpefating systems and
their processes by abstracting the ISA interface. Systens Yidp a virtual guest sys-
tem onto a real host system by emulating hardware composentsas processors,
memory and 1/O devices.

Application Application

Virtualization

layer
ABI ---
Process

0s VM
Hardware
(a) Process VM
Applications Applications
0s 0s
=
Virtualization
ISA layer Sy\sx\:m
Hardware
(b) System VM

Figure 2.1 Virtual Machines The two figures show the virtualisation layers used to simulate
a) a process and b) an entire system.

2.2 Interpretation

Traditional interpretive simulators, such as SimpleSciarg 96, Burg 97, Aust 02]
and Bochs [Lawt 96], start by loading the target binary iritowdated target memory.
The simulator then fetches, decodes and emulates the rsidtion in the execution

Chapter 2. Simulation Techniques 16

path [Half 94]. The fetching, decoding and execution tasksusually performed in
a monolithic function. After fetching and decoding the nmdtruction opcode from
memory, the simulator calls an instruction specific funtirhich emulates the instruc-
tion’s behaviour. The function carries out the instructigeration within the processor
model, updating the processor state, general purposdeegaid main memory as re-
quired. Instrumentation functions may also be called tbgatlata on indicators such
as the instruction count, total execution cycles and powaga statistics.

Figure 2.2 shows how a basic interpretive simulator mighintg@emented in C code.
The main simulation loop is represented by the | e statement, with thewi t ch
statement directing control to the next instruction to beilted. The next instruction
opcode is fetched and decoded by callingdbeode_opcode function. This function
will search a decode cache in order to return previously dedanstructions as quickly
as possible. The decoded instruction is then matched wéltcdrespondingase
statement which emulates the instruction and updates tigggm counter (PC). The
break statement marks the end of each instruction and transfersatdack to the
main simulation loop.

Hardware decoders are fast, but instruction opcode degodisoftware is a very time
consuming process. This is because each opcode must bstbd te order to ascer-
tain the instruction operation, addressing mode, sourdedastination operands, data
size (16/32 bit), indexing mode and any conditional exexuflags to be tested. In-
terpretive simulators typically execute between 10 andHdX} instructions per target
instruction [May 87]. However, interpretive simulatiorfiexible and enables accurate
modelling of the target processor, albeit at relativelystpeeds.

2.3 Binary Translation

Binary translation [Cifu 96] is a technique used to convémiby code (target), which
has been compiled [Aho 86, Torc 07] to run on one processaitaature, into binary
code (host) which can be run on a different - or the same - ggmarchitecture. When
executed, the host binary reproduces the behaviour of tgettainary within the sim-
ulated target environment. The host binary generated sldemf emulating the target

Chapter 2. Simulation Techniques

while (!end_of _simulation) {

inst = decode_opcode(PC);

switch (inst) {
case ADD:

*g = *ph + *C;
PC++;

cycl es++;

st at s[ADD] ++;
break;

case MY:

case J:

*a = *h x *c;
PC++;

cycl es+=2;

st at s[MPY] ++;
br eak;

PC = *c;
cycl es++;
stats[J] ++;
br eak;

17

Figure 2.2 Interpretive Simulator Code.

The next target instruction is fetched from memory

address PC and decoded by calling the decode_opcode function within the main simulation
loop. The decoded instruction opcode is then matched with an instruction case statement
which emulates the instruction by updating the simulation environment. Variables a,b and ¢ are
pointers to general purpose registers which are assigned at instruction decode. The execution
cycle count is maintained in the cycl es variable and instruction profiling is achieved using the

st at s variable.

program up to 11 times faster than is possible with interpeegimulation. Chapter 3

covers the work carried out by others into binary transtatased simulation.

There a two main types of binary translation: static binaanslation and dynamic

binary translation.

e Static Binary Translation (Compiled). The target binary is parsed by
a translator which analyzes it to discover all possible akea paths
and then generates the simulator executable. The simusatioen run
on the host machine to simulate the target program at highosfgome

Chapter 2. Simulation Techniques 18

compiled simulators incorporate a fallback interpretedéal with in-
structions which were not identified during compilation.

e Dynamic Binary Translation. The target binary opcodes are fetched,
decoded, emulated and profiled by the simulator. Frequemtiylated
sections of the target binary are then translated at runtitoéhost code
functions. The host code functions are then called to emaule same
sections of program code at high speed. Although not as $astagic
binary translation based simulators, DBT based simulam¥apable
of simulating any target program including self-modifyiagplications.

Simulators which employ binary translation have been usgubtt legacy applications
across to new systems with minimal effort. This has enalsidviduals to continue to
benefit from their software investment. Rebuilding or pblsrewriting applications
can be very time consuming and may require in-depth knovdeddghe compilation
process, assuming one even has access to the source codevddowhilst binary
translation based simulators are many times faster tharnprgtive simulators, native
compilation of the source code remains the fastest way toargmnogram. This is
primarily because the native compiler can view the targegm in its entirety and at
a higher level of abstraction. This enables the compileetibe optimize the program

executable for speed.

2.3.1 Static Binary Translation

The processes involved in static binary translation arevsha figure 2.3. The front-
end is responsible for loading and decoding the target pifdre decoded instructions
are then translated into an optimized intermediate reptasen (IR) which is com-
puter and operating system independent. The back-end teswipe intermediate code
to generate the simulator executable. The simulator prediisa self-contained exe-
cutable which when run simulates the target binary.

A compiled instruction set simulator spends most of its tenaulating target instruc-
tions and is consequently much faster than an interpretivellator. One straight-
forward compiled simulator design uses in-line macro espan[Mill 91] present in

Chapter 2. Simulation Techniques 19

Target binary

l

Decode binary

v
Generate
optimized IR

v

Compile IR

l

Simulator binary

Figure 2.3 Processes involved in Static Binary Translation Static binary translation is per-
formed prior to simulation.

many programming languages such as C. The target targeylsrsiatically translated
into a host binary which is then run directly.

A macro is created for each target assembly language instrnucrhe macro defines
the high-level emulation function for each target instimict For example, macros for
the add ADD), branch on equal to zer8EQ) and jump {) instructions may be defined
as:

#define ADD(a,b,c) (a) = (b) + (c); cycles++; stats[ADD] ++;
#defi ne BEQ di sp) PC += (disp); cycl es++; stats[BEQ ++;
#define J(target) PC = (target); cycl es++; stats[J] ++;

Control instructions, such as direct branches and jumgh,dgstination addresses that
can be computed statically may be modelled u€@t0 statements and address labels
placed before the target instructions. However, contrstructions with destination
addresses which are computed at runtime can not use sucthadnémdirect branch
and jump instructions, as well as returns from subroutiie &l into this category. A
swi t ch statement can be used to model the execution path at ruritgaeti instruction
macro is defined as @se statement, where thease statement value is equal to the

Chapter 2. Simulation Techniques 20

instruction address. The example instruction macros nok &s follows:

#define ADD(addr,a,b,c) case (addr): (a) = (b) + (c); \
cycl es++; \
st at s[ADD] ++;

#define BEQ addr, di sp) case (addr): cycles++ \
stats[BEQ ++; \
if (status_flag(ZERQ) { \
PC = (addr) + ((disp); \
break; \
}

#define J(addr,target) case (addr): PC = (target); \
cycl es++; \
stats[J] ++; \
break;

Figure 2.4 shows example C code for a statically compilecukator. Each target
instruction is represented by an instruction macro placetimvthe main simulation
loop (hil e statement). Thewi t ch statement controls the next instruction to be
emulated based on the value of the PC. The figure shows thétghastruction in

the target program is a&DD instruction at address 0x1000 which adds together source
registers 2 andr 3, and places the result in destination register

while (!'end_of simulation) {
switch (PO {

ADD(0x1000,r11,r2,r3);
ADD(0x1004,r5,r4,rl);
BEQ(0x1008, 0x0008) ;
MPY(0x100C, r7,r5,r6);
ADD(0x1010,r5,r1,r7);
J(0x1014,r5);

Figure 2.4 Compiled Simulator Code. This figure shows the target instruction macros
placed within the swi t ch statement.

After a non-control instruction, simulation passes on ®ilext sequential instruction
(following case statement) as non-control instructions do not end witheak state-

Chapter 2. Simulation Techniques 21

ment. The PC is updated with the target address for contsttuntions which are
taken, ar eak statement then forces control back to the main simulatiop.|dhe PC

is not incremented after non-control instructions, or raein control instructions, in
order to increase the simulation speed. $het ch statement is compiled lycc into

a set of indexed indirect jumps (jump table) which point te thfferentcase state-
ments. This is an efficient way to reference target instamgiand enables changes in
the control flow to be simulated at speed.

It is possible for large target programs to exceed the mawincode size (compiler
dependent limit) allowed within aw t ch statement. If this is the case. the target
program can be broken up into smaller sections, with eadiioseloeing placed within

a separatew t ch statement as shown in Figure 2.5.

while (!'end_of simulation) {
switch (PO {
ADD(0x1000,r11,r2,r3);

PC = 0x1234;
defaul t: break;
}
switch (PC) {
MPY(0x100C, r7,r5,r6);

PC = 0x2FDC;
defaul t: break;
}
switch (PC) {
ADD(0x1010,r5,r1,r7);

HALT;
defaul t: break;
}
}
Figure 2.5 Compiled Simulator Code for Large Programs. Multiple swi t ch statements are

used to overcome compiler dependent swi t ch size limits. The last instruction within a swi t ch
statement sets the PC value to equal the instruction address of the next consecutive instruction
(first instruction within the following swi t ch statement).

The PC is set to the next instruction address after the lagtiction within aswi t ch
statement has been emulated. If the previous instructicamvaon-control instruc-
tion, simulation continues with the first instruction in ttelowing swi t ch statement.

Chapter 2. Simulation Techniques 22

Control instructions are emulated as before, although thay now have to traverse

a number of switch blocks before finding a matching targeteskl The overhead of
searching acrossa t ch blocks for a target address increases with program size, but
the associated performance degradation is negligible.

If the same target program is to be simulated many times,wikioften the case, then
compiled simulation is much faster than interpretive sitioin. The initial cost of
translating the target program is more than offset by theemeed simulation speed.
However, compiled simulators do not normally model a preo€s internal state, in-
cluding the PC, as accurately as an interpretive simulatopérformance reasons.

Compiled simulators can only be used if all of the programectabe simulated can
be identified at the time translation is performed. In otherdg, the target program
code must be statically discoverable in order for it to becessfully simulated. This
pre-condition excludes simulation of target programs Wlaie self-modifying. Multi-
tasking OSs can not be simulated as different processes ccapythe same address
space. Operating system simulation is further complichtethe need to model asyn-
chronous events such as interrupts.

Most embedded systems rely on some form of OS to scheduldeaaik across mul-
tiple processor cores and to control peripheral devicethodigh compiled instruction
set simulators are much faster than interpretive simuattbreir use is restricted to
stand-alone programs, which is not sufficient to model thelex hardware/software
interfaces present in modern embedded systems.

The process of static binary translation is complicatednigyexistence of instructions
and data within the same address space, and by the presenugirett branches.

Control-flow and register analysis are issues which statiary translation based sim-
ulators have to address in much the same way as disasserabterompilers. The

initial parsing of a target executable may not be able tolvesall instructions and

data during translation. Hybrid static binary translatimased simulators overcome
any restrictions by calling a fallback interpreter to enteltarget instructions, which

for whatever reason, were not previously identified duriranslation or have been
modified.

Chapter 2. Simulation Techniques 23

2.3.2 Dynamic Binary Translation

The processes involved in dynamic binary translation amvshin figure 2.6. The

front-end is invoked at runtime to decode regions of targetecwhich have not pre-
viously been translated. The decoded code is then optinarddiranslated into an
intermediate representation. The back-end compiles tleenmediate code into host
code functions which are called to emulate the code sectitinsay be discovered
during emulation that certain host code functions lie oniacat path. In this case,

the corresponding sections of code may be re-translated asmore aggressive opti-
mization policy.

Target binary

|

Decode binary
code section

v
Generate
optimized IR

A 4

— Compile IR

l

Host binary

Figure 2.6 Processes involved in Dynamic Binary Translatio n Dynamic binary translation
is performed at runtime.

Simulators which employ dynamic binary translation can kteuany type of applica-
tion, including full operating systems, and are almost atda static binary translation
based simulators. A DBT based simulator translates freyuerecuted sections of
the target code - typically basic blocks - into code which werecuted on the host ma-
chine emulates the same instructions within the simulagimrironment. High speed
simulation is achieved by combining DBT with translatiorcieimg. If self-modifying
code is detected at runtime, any translations which emtitetenodified program re-

Chapter 2. Simulation Techniques 24

gion are discarded. Binary translation is a processor sientask which can slow
down simulation significantly on the first simulation run. feduce the translation
overhead some simulators perform emulation and translatiparallel.

Figure 2.7 shows a basic implementation of the main simaidbop for a DBT based
simulator. The simulator calls thfeet ch_t ransl ati on function which searches the
translation cache to see whether a translation exists fasecblock with start ad-
dress equal to the PC. If a translation exists, the pointehéotranslated function
(trans_func) is returned to the main loop. The translated function istballed to
emulate the block at high speed. A pointer to the procesate & passed to the trans-
lated function so that it can update any status flags andteegiwhilst emulating the
instructions within the block.

while (!'end_of simulation) {
trans_func = fetch_translation(cpu_state->PC);

if (trans_func)
(*trans_func) (cpu_state);

el se
interpret_block(cpu_state);

if (end_of epoch)
performtranslation();

Figure 2.7 DBT Simulator Code. This figure shows the C code skeleton for the main loop of
a basic block DBT based simulator.

If a translation does not exist for the basic block, fle¢ch_transl ati on function
returns aNULL pointer. The simulator then calls tihet er pr et _bl ock function which
interprets the basic block and maintains a profile of how niangs the block has been
emulated. The simulator continues emulating consecutigechblocks in this manner
for a fixed number of blocks - the simulation epoch. At the eheéaxrh simulation
epoch, theper f or mt ransl at i on function is called which scans the basic block pro-
files to identify those blocks which were frequently exedut&fter translating the hot
blocks, the function then adds the newly created transfatactions to the translation

Chapter 2. Simulation Techniques 25

cache.

A DBT based simulator can also gather profiling informaticortrol-flow, register
contents) on the target program whilst simulating it, sdnmegf which is not possible
with a static binary translation based simulator. This nsetat frequently executed
code regions may be sent for highly optimized translatioyndmic binary translation
is lazy. Thisis an advantage as it guards against tranglaéiations of the target binary
which are never executed or which contain only data.

2.4 Sampling

Sampling is a technique which is used to speed up cycle-atcsimulation. A sam-
pling based simulator collects accurate simulation datafemall subset (sample) of
the entire benchmark simulation period (population),-fastvarding through the re-
mainder of the benchmark. Statistical analysis is thengpered on the data collected
to produce approximate figures for the simulation. Duringt-farwarding, full ob-
servability is typically not supported, therefore samglis not suitable for performing
hardware/software co-design.

The Sampling Microarchitecture Simulation (SMARTS) framoek [Wund 03] uses
statistical sampling. It has been shown to speed up the atranlof 8-way and 16-
way out-of-order processors by a factor of 35 and 60 timegaets/ely compared to
full cycle-accurate simulation. SMARTS can calculate theck cycles per instruc-
tion (CPI) to within£3% for 41 of the SPEC2000 benchmarks. SMARTS applies
statistical sampling theory to work out the optimal samglktrategy that will capture

a programs’ variability and produce results with the regdidegree of accuracy. The
sampling strategy requires taking a large number of smaijdas from the population.
By selecting a minimal, but representative sample, thereatia particular benchmark
can be accurately modelled.

SMARTS samples a tiny fraction of a benchmark’s executioeash using detailed
cycle-accurate simulation. The rest of the time it fastvanrds through the benchmark
using functional simulation. The desired micro-architeat data is collected during
sampling, whereas only the program-visible architectatate is updated during fast-

Chapter 2. Simulation Techniques 26

forwarding. Systematic sampling is used where the samplegh consist of a rela-
tively small number of consecutive instructions, are safgal by sampling intervals,
which consist of a large number of consecutive instructions

Whilst SMARTS maintains the processor state between samyté functional sim-
ulation, the state of the system micro-architecture isttefiecome stale. If the micro-
architecture state is not up-to-date prior to sampling tlaege errors appear in the
detailed data collected. To combat this, the micro-archite state is updated by the
inclusion of a cycle-accurate warm-up period just prior &amngling. However, it is
difficult to know how long to make the warm-up phase as someavacchitecture
states may require many simulation cycles before they amesentative of the true
cycle-accurate states.

Another sampling technique, SimPoint [Sher 02], can surireahe large-scale be-
haviour of programs relatively quickly. It achieves this dfifline analysis of the ba-
sic blocks within large representative sample traces - 10idominstructions - taken

from the program trace. The assumption is that samples wattimmng dynamic ba-
sic block profiles exhibit similar behaviours. However, $iont does not provide a
formal method for quantifying the accuracy of the resultsmeed.

2.5 Summary

This chapter outlines the main simulation techniques useihstruction level and

cycle-accurate simulation of microprocessor systems. |S¥mterpretive simulation

is flexible, in that it provides observability and can sintalany target binary, it is

very slow at performing instruction level simulation comgé to the different binary

translation based simulation techniques. Dynamic binanysiation is the best simu-
lation technique for performing instruction level simudat as it is not only very fast,

it also provides state observability and can simulate s@difying programs. This

makes DBT based simulation ideal for carrying out high I&8E and for performing

hardware/software co-design and verification.

Sampling based simulation techniques are superior fooparhg cycle-approximate
simulation. Sampling based simulation is many times fasi@n interpretive or binary

Chapter 2. Simulation Techniques 27

translation based simulation techniques as it fast foravéincdbugh the majority of the
simulation, needing only to simulate very small sectionsheftarget program in de-
tail. The inaccuracies introduced are small and can in sasexbe quantified which
makes sampling ideal for carrying out low level DSE in sitoas where there is a
very large design-space. However, DBT based simulatiomnesithe best simulation
technique for performing cycle-accurate hardware/saftvea-design and verification
of microprocessor architectures.

Chapter 3

Related Work

This chapter describes the simulation techniques usedeingars work which are rel-
evant to the field of high speed binary translation based Isitioun.

3.1 Binary Translation Simulators

This section looks at the translation techniques emplogestitic and dynamic binary
translation based simulators [Cifu 96].

3.1.1 Static Binary Translation

The first static binary translation simulators were useddud [egacy software across
to newer, faster RISC based systems [Patt 85, Stal 90].cStatislators operate like
compilers, translating the target binary into an equivaleost code binary image.

Compiled simulators spend most of their time emulatinggarigstructions and are

consequently much faster than interpretive simulatoterpmetive simulators are slow
because they spend most of their time, in the main simuldtiop, fetching and de-

coding each instruction. Even if interpretive simulatonspdoy a decode cache, the
emulation of instructions is still slow.

28

Chapter 3. Related Work 29

3.1.1.1 HP Object Code Translator

When Hewlett Packard released its MPE XL operating systantsmew HP Preci-
sion Architecture (RISC) series of computers it incorpedat Compatibility Mode
(CM) environment [Berg 87]. The CM environment enabled paog binaries from
the previous family of HP 3000 computers (stack-orient&3&8C, MPE V operating
system) to run on the Precision Architecture platform. T €vironment uses two
subsystems: the HP 3000 emulator and the static binarnjatanscalled the HP 3000
Object Code Translator (OCT).

The emulator is capable of running HP 3000 binary code on HRi§lon Architecture
platforms without modification. However, the OCT first triates the HP 3000 binary
code into native code which is then executed. The OCT bimranstator can simulate
HP 3000 programs up to five times faster than the emulator.

The OCT translates HP 3000 binary code segments into nabisle modules. The
translator also tries to discover all of the node points mitthe program code and
creates a node mapping table. The node mapping table ha@dsatislated code ad-
dresses, within the modules, which correspond to the nodeeases within the code
segments. When a branch target address can not be statietdlynined it is looked up
at runtime in the node mapping table. If a target addresstisonmd within the node

mapping table the emulator is invoked until the PC value Egaanodule entry-point
at which point execution is returned to the translated code.

3.1.1.2 Hunter Systems DOS to Unix Translator

Hunter Systems used object code translation to port MS-Di@& ks (8086) into ex-
ecutable files which run on UNIX systems [Hunt 89, Wirb 88]. énmber of different

translator back-ends made translation to different hastitectures possible. How-
ever, the program analyser required manual interventiander to deal with complex
code, such as self-modifying code, and to compute inditenpjtarget addresses.

Chapter 3. Related Work 30

3.1.1.3 Tandem Accelerator Object Code Translator

Tandem wanted an easy way to migrate software from its petgost TNS CISC ma-
chines to its new TNS/R RISC machines based on the MIPS moce3he OCT
developed by Tandem, called the Accelerator [Andr 92], &dhhll existing TNS soft-
ware to be run immediately and at high speed on the TNS/R mashiThe Accelerator
was also used to translate Tandem’s Guardian 90 operatstgreyand produce the first
RISC release. This contributed to bringing Tandem’s new@Rigachines to market
many years earlier than would otherwise have been possible.

The Accelerator emulates TNS CISC binary programs on TNS&CRnachines by
using a combination of translation and interpretation. ugg@ents the target binary
with translated code sections and a PMap table, which is ach@pSC to RISC in-
struction addresses, in advance of simulation. The Acatdeacts like any optimizing
compiler except that it tightly controls TNS/R register atdck frame usage so that it
can easily switch between accelerated and interpretedaion modes.

After disassembling the CISC (TNS) target binary the Aot performs static
control-flow analysis in which it attempts to identify all tfe branch paths. Jumps
through pointer variables or calculated addresses arécéipimarked and if the target
address is unknown at runtime - not found in a PMap table - &chws made to the in-
terpreter. The Accelerator translates the CISC instrastwithin each basic block, on
a per CISC subroutine basis, into a preliminary sequencd ®CRnstructions. CISC
subroutine calls lookup the target address in a jump tabletwik replaced by a direct
jump into translated RISC code. Returns back to the callestralso be looked up in
the PMap table. Standard optimization techniques are thphea to the translated
code within and across the basic blocks, including reongetine instructions within
each block to minimize pipeline stalls.

Four different programs (TAL compiler, TAL-coded Dhrysmmxcel and ET1) were
used as benchmarks to measure the performance of the AatceleFhe benchmarks
were run natively on a NonStop Cyclone, 22.3MHz supersdal&C machine and
compared with OCT emulation of the same benchmarks on a MpnSyclone/R,

25 MHz machine. The average benchmark simulation speed 8%sof the average
native execution speed, and the simulation speed for thelA@nchmark was 8%

Chapter 3. Related Work 31

faster than native execution.

It was shown that translated code ran 5 to 8 times faster titarpretation and that in-
terpretation accounted for less than 1% of the emulatior.ti@n average, the number
of RISC instructions generated per CISC instruction wasdn@ the accelerated code
file (CISC binary plus translated code plus PMap) was 5 tiragger than the original
CISC binary.

3.1.1.4 Digital VEST Binary Translator

In 1988, Digital wanted to run legacy code which had prevpbgsen executed on its
VAX machines [Brun 91] on its latest Alpha AXP processor §38a, Site 95], but it
was not simply a case of recompiling the applications forrteée architecture. Large
and complex applications typically rely on a spectrum ofestént OS libraries and ser-
vices, and the time required to rebuild everything from stravould have been pro-
hibitive. It was therefore necessary to run as much as plessilthe old environment,
with system calls being redirected to the newly ported Opd&\AXP [Kron 93] op-
erating system. The Alpha AXP team decided to use statiaypinanslation to enable
not just their existing VAX code base, but also their MIPS efidane 88] code base,
to be run on the Alpha processor.

Digital developed the VAX Environment Software TranslafgEST) binary transla-
tor to translate an OpenVMS VAX binary image into a OpenVMSAKinary im-
age [Site 93b]. VEST disassembles the VAX code startingaatdstrd entry points,
such as global sub-routines, and traces the program bgtaiina control-flow graph
of basic blocks. After analysing the CFG, VEST generatespimized host binary.
The mapping between architectures is simplified by the faat the AXP processor
has more registers than the VAX processor. VAX conditionexydvhich are not im-
plemented in the AXP processor, are mapped on to spare AXBteegg Each VAX
instruction gets translated into zero or more AXP instimasi.

VEST inserts jump instructions within the host binary to éate direct branches and
jumps. However, in order to emulate branches and subroaéihe to unknown target
addresses, VEST inserts calls to a runtime look-up routirte routine uses a look-
up table which maps VAX instruction addresses to the cooedimng translated Alpha

Chapter 3. Related Work 32

AXP instruction addresses. If the destination addressusdan the look-up table
then control is passed to the corresponding address in stechde. If it is not found,
control is passed back to the runtime environment.

The Translated Image Environment (TIE) is the runtime emvinent which executes
the translated image. The TIE employs open-ended traoslatid emulates the Open-
VMS VAX environment by using wrappers to map library and systcalls to the cor-
responding OpenVMS AXP calls. Target binary instructiortsch were either not
discovered, or which did not exist at translation (self-ifygdg code), are caught and
then simulated by TIE’s built-in interpreter.

Digital used binary translation as an interim solution t@lgle users to run existing
VAX/MIPS binaries on the Alpha processor with minimal etid@ver time, all legacy
applications and dependent libraries were ported overgméw platform. By utiliz-
ing binary translation, Digital were able to run translagggplications on Alpha AXP
systems as fast, or faster, than the original applicatian®©n VAX systems.

3.1.1.5 Digital FreePort Translator

FreePort Express [Free 95] is a free program developed atabigesearch which
translates SunOS 4.1.x user-mode binaries into execufiéddenhich can be run on
DEC Unix 3.0 and later systems. It was the first translatomfidigital which con-
verted binaries from a non-Digital OS platform. FreePorpiess translates the target
binary prior to execution and incorporates a fallback ipteter. It was first demon-
strated at SunWorld '95 where translated SunOS applicatwere shown to run as
fast, or faster, on an AlphaStation 400 4/233 system thametaton a SPARC 20/71
system.

3.1.1.6 Digital FX!32 Emulator

Digital developed the FX!32 emulator [Thom 96, Hook 97a, & in order to in-
crease the popularity of its Alpha RISC platform by ensutiingt a large number of
applications would be available to run on it. FX!32 enabl#k&6 32-bit Windows
NT 4.0 programs to be run on the Alpha Windows NT 4.0 systene FX!32 was the
first emulator to use a combination of interpretation andifgralirected translation to

Chapter 3. Related Work 33

provide fast simulation [Hook 97b] of x86 programs on the Wdpplatform. The trans-
lation of x86 code into native Alpha code is performed in tlaekground. Parallel
translation means that the translated code can be optirfozegeed without affecting
the simulation speed.

The FX!32 runtime is started automatically whenever an x8&catable is run. The
runtime loads the x86 image into memory and then calls thdaoruwhich interprets
the whole program the first time it is run. At the same time theukator generates
profile data on CALL instruction target addresses, and soard target address pairs
for indirect jumps, which it stores in a database for use layethe translator.

The translator uses the execution profile information gattheluring emulation to
translate the target binary into a collection of native codages. The unit of transla-
tion is the assembly code routine. The translator divideddiget image into separate
routines that have entry points at each call target addréks. routines are created
using the control-flow profile information which includesdwn target addresses for
indirect jumps. A routine is a collection of one or more reggavhich consist of a
contiguous set of instructions. Direct entry is permitteciy region within a routine.

A hash table is generated which maps target binary addreseesry points within the
translated routines. If the emulator finds that the nexturcsion address is mapped
to an entry point, the corresponding translated routineaifed. As it is generally
impossible to statically analyse all program executiorhpathe emulator is invoked
as a backup when no translated routine mapping exists fogattaddress.

Digital's FX!32 emulator transparently emulates x86 biaawon the Alpha platform at
high speed. The performance of a set of x86 benchmarks rgramra 200MHz Intel
Pentium Pro and a 500MHz Alpha system under FX!32 were coaaparhe results
showed that the x86 applications ran as fast on the Alpha(geemulation run) as
they did on the Intel machine.

3.1.1.7 Ultra-fast Instruction Set Simulator

A number of research groups are now developing retargetabtaiction set simula-
tors. The Ultra-fast Instruction Set Simulator [Zhu 99, A1) improves the perfor-
mance of statically compiled simulation by aggressivelliziig low level machine

Chapter 3. Related Work 34

resources to take full advantage of the host architecturiee [dw level simulation
techniques were shown to increase the simulation speeddustar fof 2.7 on average
over traditional compiled simulation techniques whichgeie C code.

3.1.1.8 Static Scheduling Simulator

The static scheduling simulation technique [Brau 01] aasp$itatic compilation to in-
struction decoding and instruction scheduling in retaafks simulators. Whilst static
instruction scheduling increases the simulation speed/ceeaccurate simulators it
also restricts flexibility of operation. Compiled simulegavere generated from model
descriptions of TI's TMS320C54x processor (cycle accuratelel) and the ARM7
processor (functional model). A FIR filter was used to benatkboth processor mod-
els running on an 800MHz Athlon PC. The simulation resultstifie TMS320C54X
processor, showed that static scheduling led to an incieageeed by almost a factor
of 4 compared to dynamically scheduled simulation. Statleduling resulted in a
speed-up by a factor of 7 for the ARM7 processor, from 5 MIPS3& MIPS.

3.1.1.9 JIT-CCS Simulator

Just-In-Time Cache Compiled Simulation (JIT-CCS) [Nohl B2au 04] can be used
to create retargetable functional and cycle-accuratelsiions. The JIT-CCS simulator
references an array of built-in, pre-compiled instructionctions which emulate the
behaviour of the different target instructions. When aeaigstruction is decoded a
reference to the corresponding compiled instruction fiemds stored in the translation
cache. If the simulator finds a matching translation cachey éor the next target in-
struction it calls the corresponding instruction functitithe simulator detects that an
instruction has been modified, it decodes it and then cati€tiresponding compiled
instruction function.

Simulation results for cycle-accurate simulation of an ARprocessor showed that
JIT-CCS simulation is four time faster than interpretivaslation and only 5% slower
than compiled simulation. The simulation performance lisdor the jpeg200 codec
benchmark were: compiled simulation 7.2 MIPS; JIT-CCS $ation 7.0 MIPS; in-
terpretive simulation 1.8 MIPS.

Chapter 3. Related Work 35

3.1.1.10 IS-CS Simulator

The Instruction Set Compiled Simulation (IS-CS) simuld®esh 03, Resh 09] was
developed as a fast and flexible functional simulator. Ireotd achieve high speed
simulation, the time consuming instruction decode progéggeerformed during the

static compilation stage. The simulation engine checkstowhether the next in-

struction is valid before it calls the corresponding tratestl instruction function. If

an instruction has been modified the binary code at the PCGeasdds decoded and the
instruction interpreted by a generic emulation functiors. the number of instructions
modified in most simulations is very small the slowdown in giation speed is min-

imal. Performance is further increased by a technique @atistruction abstraction

which produces aggressively optimized decoded instrastio

Simulations of the adpcm and jpeg benchmarks were run on a&huddhe ARM7
processor. IS-CS was able to simulate adpcm and jpeg atspédd.2 MIPS when
running on a 1GHz P3 host machine.

3.1.2 Dynamic Binary Translation

The poor performance of interpretive simulators and th& tEdlexibility inherent in
compiled simulators has led to active research in the fiel@BT based simulation.
Dynamic binary translation based simulation takes adgntd the fact that programs
typically spend 90% of their execution time in only 10% of ttuwele. This means that
the cost of compilation can be amortized over the duratioa simulation - even on
the first run - by caching the translations. The latest DBT latien techniques are
outlined in the following sections.

3.1.2.1 MIMIC Simulator

The MIMIC simulator [May 87] simulates IBM System/370 ingttions on the IBM
RT PC RISC machine. The MIMIC simulator was developed so ithabrtant pro-
grams, written mainly in System/370 assembly, could be mimao RT PC worksta-
tion with minimal effort. A process VM was created on the RT BCemulate the
System/370 application environment. To increase perfageall system calls are

Chapter 3. Related Work 36

mapped to native OS calls. However, instructions which kev@S services directly,
such as the Supervisor Call, are translated to call a hogt woapper which then calls
the equivalent native OS service.

MIMIC takes a group of target instructions, called a codeckjand translate them
as a unit. A code block consists of one or more connected Idsoks which may

be contiguous or disjoint. If the code block is larger tharaaib block, complex flow

control analysis may be necessary. Each code block is athlysd translated just
before it is executed.

The MIMIC translator works in two stages. The first stage gses each target code
block and the second stage generates the RT PC host code fwydk block. MIMIC
utilizes three different data structures during simulatidhe S/370 binary is loaded
into the Source Memory data structure and the translatettlbde blocks are stored in
the Target Memory data structure. The Intermediate Mematg dtructure maintains
a mapping between the target program addresses in Sourcelyi@nd the corre-
sponding translated code blocks in Target Memory. Eachrimgdiate Memory ad-
dress therefore passes simulation control over to the egeddranslated code block
or to the translator when no translated code exists.

Each translated code block consists of one or more prolagsjiabody and an epilog.
A prolog exists at the entry point to a code block, This ensbtentrol to be transferred
to the next target instruction within the translated codekl The epilog exits the code
block and jumps to the pointer target in Intermediate Menforythe next instruction
address. This will either call the next translated code blwthe translator.

Performance results for MIMIC are from the simulation of timege S/370 programs,
EXEC 2 and CIPHER. The quality of the translated code wasgddiy the expansion
factor, which was 4.25 for EXEC 2 and 2.7 for CIPHER.

3.1.2.2 Shade Simulator

Shade [Cmel 94, Hsu 89] is a fast instruction set simulatemi which includes a

flexible trace generation facility for the analysis, desgd tuning of hardware and
software systems. Whilst statically translated code canukite and trace programs at
high speed, it is incapable of tracing self-modifying or dymcally linked code. Shade

Chapter 3. Related Work 37

achieves both high performance and comprehensive tragidgrtmmically translating
code which simulates and instruments the target prograhesdésruns on Sun SPARC
systems and can simulate SPARC (V8 and V9) and MIPS | ISAs.

Shade dynamically translates target instructions up toéxé control instruction. The
host code fragments generated emulate the target blockaafaim any profiling when

called. The translated code fragments are chained togéthect branches only) so
that control can pass from one block directly to the next withneeding to return to
the main simulation loop. Any memory references are replacieh calls to the target
memory model.

Each target instruction address is mapped to the correspphicinslated code frag-
ment by a Translation Look-aside Buffer (TLB). The simufggerforms a lookup, first

in a fast partial TLB, and then in the full TLB to see whetheramslated fragment ex-
ists for a current PC address. If both lookups fail, the t@tos is invoked to create a
translated fragment for the current block which is thenestian the translation cache.
If the tracing strategy is changed, or the program code nemtiduring simulation, the

TLB and translation cache are flushed.

The performance figures presented are for a subset of the 8PB€hchmark suite
running on a SunOS 4.x, SPARC V8 platform. On average, Shaddates V8 integer
and floating-point binaries 6.2 and 2.3 times slower resgagtithan they run natively.
SPARC V9 integer and floating-point binaries were simuldi2@® and 4 times slower
respectively than they run natively.

3.1.2.3 Embra Simulator

Embra [Witc 96], which runs as a subsystem in the SimOS [R&$sithulation envi-
ronment, accurately models MIPS R3000 and R4000 uni-psoc@snd multiprocessor
systems. Embra is a flexible high speed simulator which causbd for research and
development into operating systems and computer archrest It deploys DBT to
generate code sequences which simulate the workload, rmgstelm components and
gather simulation statistics.

Embra translates each basic block it encounters into a ledst ®egment which it then
executes to emulate the target instructions within thekbldéew host code segments

Chapter 3. Related Work 38

are stored in a translation cache and references to themtamreed in a hash table.
If the next PC address hits in the hash table, the correspgridist code function is
called to emulate the block. If the next PC address missestraéimslator is invoked
to translate the target block. Consecutive basic blockshated together to avoid
returning to the main simulation loop. Embra supports saidifying code by flushing
the translation cache and hash table on detecting a writpr@v#ously translated page.

Embra can customize the translated code generated to médetat machines (mem-
ory configurations). The detail and type of profiling infortioa captured may be
changed during simulation. This enables fast-forwardhrgugh uninteresting parts
of the workload and is useful when simulating large appicre.

Embra is a system simulator which models the R3000’'s MMU tsédhnslate virtual
addresses to physical addresses. It supports multipleavigddress spaces so that
operating systems and multiple processes may be simul&i®thra can be operated
in one of three different simulation modes: Base mode is #is¢ebt mode and uses
6000 cycle processor interleaving; Cache mode accuratetjefa the target memory
hierarchy and uses 80 cycle processor interleaving; Rhrathde simulates each target
processor on a different host processor.

An SGI Challenge, 150MHz four processor (MIPS R4400) maehimning IRIX 5.3
was used to evaluate the performance of Embra. A subset @GREC92 [Dixi 92]
benchmark suite running under IRIX 5.3 was simulated torgaicethe uni-processor
simulation performance. The average slowdown in simutatmmpared to native
execution, was 5.8 for Base mode and 11.4 for Cache mode.de Bade, the simu-
lation speeds ranged from 11.1 to 20 MIPS, with floating-pbenchmarks executing
faster than integer benchmarks. A subset of the SPLASH-2[9%) benchmark suite
running under IRIX 5.3 was used to ascertain the simulatpeed of a four proces-
sor, shared memory, multiprocessor system. The averagelsion in simulation,
compared to native execution, was 13 for Base mode, 99.2doh€ mode and 6 for
Parallel mode.

Chapter 3. Related Work 39

3.1.2.4 Simics Simulator

Simics [Magn 98, Magn 02] is a commercial, user level anddyditem simulator. It is
capable of modelling target system behaviour at two levelbstraction, functional
and timing approximate. Timing approximate simulation e¢hiaved by interfacing
Simics with more detailed hardware models [Wall 05]. Singsopports the develop-
ment and testing of both hardware systems and software.argettsystem is defined
using objects to represent components such as processensony) network cards,
graphics cards and disks. The system state can be inspgcsathbe stepping through
the simulation or by setting breakpoints. Simics can alsaleha range of different
multi-processors, including out-of-order cores, and rinumber of different operating
systems.

A range of different operating systems were booted-up ufd@ics - running on an
Intel P-1ll, 933 MHz host platform - to test its performancéhe simulation speeds
ranged from 2.1 MIPS for the boot-up of Windows XP running arx86 P-II target

system, to 9.3 MIPS for booting-up Linux running on a PoweifA0 target system.
Simulations were also performed for a multi-processorgagystem with Simics run-
ning on an UltraSparc Ill, 750 MHz host platform. The resutis the boot-up of

Solaris 8 on an Ultra Il Enterprise server target system sti@at/the MIPS/CPU de-
creased from 6.62 for a single processor down to 1.25 for a@fagsor system.

3.1.2.5 QEMU Simulator

QEMU [Bell 05, Bart 06] is a fast, instruction level simulatehich can model a range
of different target processors and perform system and psoesel simulation. QEMU
is straightforward to port between different host machiaall necessary compilation
is performed at the time the simulator is built. The simuldtoms a translated block
for each basic block it encounters and places it in a 16MBstedion cache which
is simply flushed when full. It maintains a page cache whicorgs which physical
pages are write-protected. This enables QEMU to simuldterselifying code. On
detecting a write to a read-only page, QEMU invalidatesrath¢lations for the page
and enables write access.

QEMU uses an original dynamic translator. Each target usion is divided into a

Chapter 3. Related Work 40

simple sequence of micro operations which are implememed code. The set of
micro operations are pre-compiled lggc offline - at build time - and then placed
into an object file. During simulation, the code generatmesses the object file and
concatenates micro operations to form a host function. Wdaed, the host code
function emulates the target instructions within the blo€k increase the simulation
speed, translated blocks which are known to follow one aroéine directly linked

together. However, these links must be reset when the MMUesddnappings change.

User level simulation of the Linux BYTEmark benchmarks tesaiin a slowdown by
a factor of 4 for integer code and by a factor of 10 for floatirugnh code over native
execution. System level simulation resulted in a slowdowa lactor of 2.

3.1.2.6 Simit-ARM Simulator

Simit-ARM [Qin 06, DErr 06] is a fast, instruction level DBTabed simulator which
distributes the tasks associated with translation acradspte processors. The sim-
ulator offloads the translation process to the other cordscantinues to emulate the
application interpretively. This means that no delays aqgedenced when running
interactive applications such as operating systems.

Whilst interpreting target instructions the simulatomtiées frequently executed pages
for translation. A page is defined as a contiguous block ofea&ls. When the simu-
lation count for a page exceeds a predefined threshold, tg¥gn code for the page
is translated into a C++ page function. The page functiomés tcompiled bygcc
into a shared library and linked with the simulation engiheuatime. If the next PC
address is within the address range of a translated pagepthesponding host page
function is called with the PC passed as an argument. Thepags function emu-
lates the target instructions within the page starting atRK address. Simulation is
controlled within a page function viasav t ch statement until the execution flow exits
the page. A host page function may emulate many thousanasgattinstructions in
a single call. Simit-ARM can perform process and systemllsweulation as well as
emulate self-modifying code.

Simulation Results for the SPEC CINT2000 benchmark suitening on a four pro-
cessor, 2.8GHz P4 machine, show an average simulation sppd&x¥ MIPS for the

Chapter 3. Related Work 41

MIPS32 ISA (Simit-MIPS simulator) and 133 MIPS for the ARM MBA (Simit-ARM
simulator).

3.2 Summary

Most of the simulation techniques covered in this chaptardiate either small sections
of the target program (typically individual instructions lslocks of instructions) dy-
namically or larger sections statically. In addition, véey simulators support cycle-
accurate simulation which is needed to perform low level D8Hilst Simics and
Embra DBT based simulators can be used to perform DSE of leaedsystems, they
are relatively slow simulators.

Simit-ARM uses a page as its translation unit with entry gegiarmitted to any instruc-
tion address within a host page function. This means thatahepiler is restricted in
the optimizations that it can perform across basic blockisoApages which contain
mostly data, or in which only a small region of code is exeduteay get translated.

QEMU, Shade and Embra chain together translated basic dlatkch they know
follow one another. However, the basic blocks are still $tated separately and the
compiler is not presented with the opportunity to optimize tode generated for speed
across multiple blocks. In the case of QEMU, the code prodigaot even optimized
across a single block as the instruction micro operatiosspae-compiled and then
combined at runtime.

The research presented in later chapters looks at tectsnghieh identify and trans-
late larger sections of the target program at runtime in otalécrease the simulation
speed.

Chapter 4

Edinburgh High Speed Simulator

This chapter presents the Edinburgh High Speed simulaidatails its modes of
operation, capabilities and performance enhancing strest The advanced LTU DBT
simulation techniques investigated in this research aoorporated into the simulator
are described in later chapters.

4.1 Overview

The Edinburgh High Speed (EHS) simulator [Toph 07] is a higtigrmance research
simulator developed at the Institute for Computing Systé&rthitecture at the Uni-
versity of Edinburgh. The simulator can perform user-lefgghulated system calls)
and system-level simulation. It can be run in either ingtarclevel or cycle-accurate
simulation modes and is capable of switching between th@sesimulation modes
at runtime. The simulator is target-adaptable and cuilyenthdels the ARC 700!
processor which implements the ARCompact instruction setitecture [ARCo].

The simulator operates in either interpretive or DBT basetutation modes. Dy-
namic binary translation based simulation is a hybrid fofrsimulation in which the
simulator alternates between performing interpretatioch @BT based simulation. In-
terpretive simulation provides precise observability loé fprocessor state after each
instruction and DBT based simulation provides precise nfadxlity at translation unit
boundaries.

42

Chapter 4. Edinburgh High Speed Simulator 43

The EHS simulator models a complete computer system inafuthie processor, its

memory sub-system and sufficient interrupt-driven peniplseto simulate the boot-

up and interactive operation of a Linux based operatingesystin contrast to other

high speed instruction level simulators a precise view eftdrget processor state is
maintained. This allows the simulator to be used as a soft@avelopment platform

as well as a tool for functional verification of customizedgessors derived from the
ARC 700 baseline processor.

In common with conventional interpretive simulators, sashSimpleScalar, the in-
terpretive simulation mode repeatedly fetches, decodddlean emulates successive
instructions in the execution path. Registers, memory aedcontext of 1/O devices
are updated as instructions commit in order to maintain aipeeview of the target
system.

The DBT simulation mode combines the speed of compiled sitiwul with the flex-
ibility of interpretive simulation. This means that all lames can be simulated and at
high speed. When running in this mode the simulator initiafperates interpretively,
discovering and profiling basic blocks as they are emulaf#te simulator periodi-
cally examines the target program’s execution profile lagkor frequently executed
basic blocks which are then marked for binary translatiomc®a basic block has
been translated, it will from that moment on be emulated Ibyncpthe corresponding
translation.

The underlying simulator components which handle memopess, 1/0O, interrupts
and exceptions are the same whether the simulator is opeiatinterpretive or DBT
based simulation mode. This facilitates seamless swigdh@tween the different sim-
ulation modes at runtime. Dynamic binary translation basedlation of a basic block
may be terminated on any instruction and simulation restiaat the current program
counter. This enables translated blocks to raise exceptant-way through, after
which the remaining instructions in the block will be intezted.

The EHS simulator is written in C and C++ and incorporates mlmer of standard
performance enhancing structures such as instructionddeand translation caches.
The simulator can retain the translations generated dsiimglation of a given binary
for reuse when simulating the same executable. The maxinmnulaion speed is
observed when all target instructions emulated have bemslated in previous sim-

Chapter 4. Edinburgh High Speed Simulator 44

ulation runs. Persistent translations enable a libraryppliiaation translations to be
built up for future use.

4.2 Simulator Features

The EHS simulator was designed for the purpose of reseayciumel micro-processor
architectures. In order to be able to perform design-spapmtion and verification
effectively, the simulator must not only be fast, it musogtsovide flexibility of oper-
ation.

The key features of the simulator which make it suitable ®sign-space exploration
are outlined below:

e Fast Simulation. The EHS simulator is capable of high speed instruc-
tion level simulation. Running in DBT simulation mode thensiator
is as fast as other state-of-the-art simulators designeslypfor speed.
Faster simulation reduces the time scales for software artivare de-
sign, testing and verification.

¢ Instruction Level Simulation. In instruction level simulation mode the
simulator emulates programs at high speed and returns stiei@tion
count. The simulator also incorporates an interface to eotihto hard-
ware description language (HDL) generated simulatorsdieioto carry
out co-simulation.

e Cycle-accurate Simulation In cycle-accurate mode the simulator re-
turns the instruction count, the number of execution cyatesthe num-
ber of hits and misses for each level of the memory hierarghys in-
formation is required to map the design space when seardbimbe
most efficient processor and memory sub-system designssiifhéda-
tor is able to switch dynamically between instruction leart cycle-
accurate simulation. This flexibility of operation enabdiggerent tech-
niques, such as fast-forwarding and sampling (cycle-apprate), to

Chapter 4. Edinburgh High Speed Simulator 45

be used to collect data during simulation. Testing new Bscede-
signs using cycle-approximate simulation reduces the temeired to
run individual simulations which facilitates detailed éqation of large
design spaces.

e Application and System VMs. The simulator is capable of providing
application and system level simulation. Applications barrun stand-
alone with the simulator emulating Linux system calls, ooaerating
system can be run with the simulator modelling the standardvare
peripherals. System simulation enables realistic testingmbedded
applications which typically run on top of some form of cuiweh op-
erating system.

e State Observability. The simulator maintains processor state observ-
ability enabling it to support hardware/software co-dasigerification
and debugging tasks. The state of the processor is updatathsn-
struction is emulated.

e Target System Definition The simulator provides for comprehensive
definition of the target system architecture. Target systenfiguration
parameters include the core processor type; system clasdspnain
memory and closely coupled memory address ranges; typs, Kre,
block size, associativity and replacement policy for cachmemory,
closely coupled memory, cache and cpu data path widths éernties;
and branch predictor unit type.

e ISA Configuration. The number of cycles required to execute each
target instruction can be configured in an ISA file. The sirtarlalso
provides for extension of the ISA through the addition of riestruc-
tions loaded in shared libraries.

e Target Adaptable. The modular design of the simulator means that it
is relatively straightforward to swap one ISA for another.

e Command Line Interface. The simulator incorporates a command line
interface which allows a simulation to be paused so thatdp@ats can

Chapter 4. Edinburgh High Speed Simulator 46

be set, instruction tracing activated, simulation checksocreated or
the processor state displayed.

4.3 Normal Simulation Mode

In ‘normal’ interpretive simulation mode, the EHS simuléganain loop fetches the
next instruction opcode from memory, decodes it and thenl&®si the instruction
updating the processor state. The average instruction seweilation speed is 30
MIPS and the average cycle-accurate speed is 12.5 MIPS@GH&antel Core 2 Duo).
Figure 4.1 outlines the operation of the EHS simulator’siiptetive simulation loop.

PC address
yes Emulate
instruction
A
no
Decode
instruction
\ 4
Update DC
Witf, decoded DC - Decode Cache
instruction

Figure 4.1 Interpretive Simulation Loop. This flow chart shows the EHS simulator’s inter-
pretive simulation loop.

After each instruction is fetched it must be decoded so tisabperation can be em-
ulated. The overhead of instruction decoding is high actingrior over 90% of the
total simulation time. This is due to the complex instrusteEncoding schemes em-
ployed in modern processors which are designed to hold aerahinformation. An
instruction opcode may have encoded the instruction si@82tbit), instruction op-
eration, instruction operands, address mode, data sizsigncand whether another

Chapter 4. Edinburgh High Speed Simulator a7

fetch is required to load immediate data. In order to str@aemhstruction decoding
the EHS simulator checks each opcode fetched against thefragsently executed
instructions first in an attempt to perform decoding as fagi@ssible.

Decode caches are widely deployed in simulators to minirtiizecost of instruction
decoding by storing previously decoded instruction infatimn. Decode caches in-
crease the simulation speed significantly as most programsighly repetitive in
nature during execution.

The EHS simulator also sets pointers within the decodeduatsbn object which di-
rectly references the instruction operands so that theybeasccessed at speed when
emulating the instruction. For example, the decoded in&tiom for the instruction
ADD r 0, r 30, r 31 includes three pointers, two for the source operand8,(r 31) and
one for the destination operand)]. On decoding an instruction the pointers for each
operand are set to reference the corresponding registéng imodel of the processor
register file. When the instruction is emulated the valuessafperands can obtained
and updated quickly by simply dereferencing the operanaitpos ¢r0 = *r30 +
*r31).

4.3.1 The Decode Cache

When an instruction is decoded, the information (including long immediate operand
values) is stored in the decode cache. The decode cache EHBesimulator is con-
figurable in size (number of decoded entries) and assoitjatiBy default the EHS
decode cache is configured as a 2-way, 8K entry cache.

Before fetching the next instruction from memory the instion address is looked-up
in the decode cache. If the next PC address hits in the deaudhe ¢he previously
decoded instruction information is returned with minimelal,. If the next PC address
misses in the decode cache the instruction is fetched aratlddan the usual manner
and the decoded instruction information stored in the deamthe. If the simulator
detects self-modifying code all of the data stored in theodeccache is simply in-
validated. The EHS simulator’'s decode cache typically egpees a hit rate above
98%.

Chapter 4. Edinburgh High Speed Simulator 48

4.4 Fast Simulation Mode

The EHS simulator may also be operated in one of its high padace or ‘fast’ DBT
based simulation modes. Frequently executed groups ddttargtructions are trans-
lated into native code functions which when called emulagedame instructions at
high speed. Dynamic binary translation based instruceoellsimulation is typically
more than 10 times faster than interpretive simulation. d@éult unit of translation
for the EHS simulator is the basic block. However, it may befigured to use larger
translation units consisting of multiple basic blocks. LSahnd their implementation
within the EHS simulator are described in detailed in chapte

Figure 4.2 outlines the operation of basic block DBT baseuifation as implemented
in the EHS simulator. The simulator interprets a fixed nundfdslocks (1000 blocks
by default) at the same time building up a profile of which Blowere executed and the
number of times they were emulated. At the end of this pegatled the simulation
epoch, the block profile is analyzed in order to ascertairse¢hlolocks which were
frequently executed. Blocks which were emulated more tithes the translation
threshold, a fixed number beyond which a block is considerd dre marked for
translation.

The hot blocks discovered are then translated into host tmtigions which can be
executed directly on the host machine. The EHS simulatar geserates C code
functions to emulate the instructions within each of theliiotks. It then invokegcc
to compile the C code functions and create a shared libramyagang the host code
functions which it loads. All of these actions are perfornaesling actual simulation
of the target program.

Before the simulator starts to emulate the next block it kkdo see whether it has
previously been translated. If it has, the simulator singalys the corresponding trans-
lated function which emulates the block directly. If notethlock is interpreted and
profiled as normal. Whilst the cost of dynamic binary tratislais substantial, it is

amortized through the use of a translation cache which stane then returns previ-
ously translated functions at high speed.

Chapter 4. Edinburgh High Speed Simulator 49

PC address

Call TF

Interpret basic
block &
update block
profile

TF - Translated Function
TC - Translation Cache

Compile hot
blocks & load
libraries

v

Update TC
with address
of TFs

N

Figure 4.2 DBT Simulation Loop. This flow chart shows a simplified version of the EHS
simulator’'s DBT simulation loop.

4.4.1 The Translation Cache

In order to emulate the next basic block, the correspondaugstated function needs
to be found, if one exists. However, as it would be very timastoning to search

of all the translations within the shared libraries lookilog a match, all DBT based

simulators incorporate some form of translation cache.afvgtation cache is used to
locate the translated function for a given block with minimdelay. By default the

EHS translation cache is configured as a direct, 8K entryecach

Before checking the decode cache for the next instructioa,next PC address is
looked-up in the translation cache. If the next PC addrdgssrthe translation cache,
the previously translated function for the basic block viitat start address is returned

Chapter 4. Edinburgh High Speed Simulator 50

to the simulator and then called. If the next PC address misg@e translation cache,
the basic block is interpreted as normal. If the simulatdedis self-modifying code
all of the entries stored in the translation cache are flusretithe translations af-
fected discarded. The EHS simulator’s translation cacpe#jly experiences a hit
rate greater than 99%.

4.5 Instruction Level Simulation

The instruction level and cycle-accurate simulation medelve been developed as
separate components within the EHS simulator. This fatdg switching between

these two modes at runtime. The instruction level simutatimde emulates programs
at high speed and returns the instruction count.

4.6 Cycle Accurate Simulation

Cycle-accurate simulation models the processor pipelfenp 96] and memory sub-
system in detail returning the execution cycles and cachaniol miss statistics.

4.6.1 The Pipeline Model

The EHS simulator currently models a 7-stage pipeline basetthe ARC 700 32-bit
processor as shown in figure 4.3. The pipeline model is cafeat emulating each
instruction and it updates the cycle time of all the pipebtages at this point.

Fetch Align Decode Register File Execute Memory Write-Back

Figure 4.3 Processor Pipeline. This figure shows the 7 stages of the ARC 700 based pro-
cessor pipeline.

The processor’s pipeline consists of the following stages:

Chapter 4. Edinburgh High Speed Simulator 51

1. Fetch
Fetches the next 32-bit word into the instruction buffemirsnemory.
May stall the pipeline whilst fetching data.

2. Align
Extracts the next instruction word (instructions are a#idron 16-bit
boundaries) and performs some pre-decoding of registeraodead-
dresses and instruction size.

3. Decode
Decodes the instruction opcode, identifying the instauttoperation
and any operands.

4. Register File
Returns any register values used by the instruction fromdgester file.
May stall the pipeline whilst updating source register eslu

5. Execute
Performs the instruction operation updating the procestsde and any
destination register values. The pipeline may be stalleoshdunstruc-
tion execution.

6. Memory
Performs load or store of register values from/to a memomresks.
May stall the pipeline whilst loading data from memory.

7. Write-Back
Instruction commit.

4.6.2 The Memory Model

The cycle-accurate memory model returns the number of syalken for each instruc-
tion fetch and data load from memory. The memory model alsarme the number
of hits and misses for all levels of the memory hierarchy. fideo to speed up cycle-
accurate simulation the memory model incorporates a L1tfemal cache.

Chapter 4. Edinburgh High Speed Simulator 52

4.6.2.1 L1 Front-End Cache

The L1 front-end cache is a small software cache which isgalaac front of the cycle-
accurate L1 target cache [Hand 98] models (see figure 4.43ar to speed up the sim-
ulation of instruction fetches and data accesses to and fnemory. Cycle-accurate
simulation of read and write requests involves a signifiambunt of processing,
which has a negative effect on the simulation speed. Thigdsise L1 caches are
fairly complex to model, involving searching for specifiobks of data. The L1 front-
end cache is a simple structure which reduces the overhead@é¢lling the L1 target
cache/s by returning cycle-accurate information at gregppeed. The L1 front-end
cache typically provides a speed-up of 1.16 for interpeesimulation and 1.32 for
DBT based simulation.

CPU
A A
\ 4
Front-end Front-end
Cache Cache
Y Y
A
L1SI L1SD
[}
!
L2

Figure 4.4 L1 Front-End Cache. Figure shows the logical placement of the L1 front-end
caches between models for the target processor and L1 caches.

A cycle-accurate simulator must model all of the data aa®ssdetail, updating the
hit and miss statistics for all caches and calculating thenlaes of all read and write
operations between the different memory levels. It haske tato account the cache
block size, associativity, replacement policy and writatglgy (write-through or copy-
back) at every level.

Chapter 4. Edinburgh High Speed Simulator 53

As programs exhibit a high degree of memory locality durizkgaition the hit rate

observed for L1 caches is typically very high. Most of thedispent performing

cycle-accurate simulation of the memory hierarchy will lvated to emulating L1

data accesses. Therefore, increasing the speed of the b& camdels will result in

faster simulation overall. The L1 front-end cache is desdyto speed up return of L1
read/write latencies and updating of L1 hit statistics. timeo words, front-end caches
speed up the emulation of hits in the L1 target cache/s.

The front-end caches sit in front of the L1 target cache n®dal intercept the read
and write requests from the CPU. Hits in the front-end cadkeepaocessed locally,
whereas requests that miss are forwarded on to the L1 cacdelm®he front-end

caches are small, direct-mapped, inclusive caches whiehatgpat speed. The flow-
charts in figure 4.5 show how read and write requests are pseceby the front-end
cache.

All read requests made by the CPU are intercepted and thdkbataaddress is looked
up in the front-end cache. If there is a hit, the cycle-ademumodel returns the read
latency (cycles) and updates the number of L1 read hits.elf¢lad request misses in
the front-end cache, the request is passed on to the unugilyi target cache model.
If the read request hits in the L1 cache its block addressdsa@tb the front-end cache
and the read latency returned.

If the read request misses in the L1 cache, it is forwarde@ dhne next lower memory
level which processes it as usual. Once the request has bié#ed with a block from
a lower memory level it is stored in the L1 cache. Any block evhis evicted from the
L1 cache by the new block is also invalidated in the front-eadhe. The new block
address is then added to the front-end cache and the readya#turned.

All write requests made by the CPU are intercepted and the blaick address is
looked up in the front-end cache. If there is a ‘dirty hit’,which there is a match for
the PC block address and the block’s dirty bit is set, theespadcurate model returns
the write latency and updates the number of L1 write hitshéfwrite request misses in
the front-end cache, the request is passed on to the unalgilyli target cache model.
If the write request hits in the L1 cache the dirty bit is séfat already set, and its
block address is added to the front-end cache, the dirtyebiasd the write latency
returned.

Chapter 4. Edinburgh High Speed Simulator

Read
address

Add block
address to >
FC
A 4
Replace L1 -
block with |n§-(L1 :’eald hits
block from calculate
read latency

lower level

I

Invalidate any
evicted L1
block in FC

!

Add new L1
block address
to FC

!

Inc. L1 read
misses &
calculate read
latency

A 4

Return read
latency

(a) Read Request

54

Write
address

Add dirty
block q
address to d
FC
A 4

Replace L1 Inc. L1 write
block with hits &
block from calculate write
lower level latency

I

Invalidate any
evicted L1
block in FC

!

Add new dirty
L1 block
address to FC

}

Inc. L1 write
misses &
calculate write
latency

A 4

Return write
latency

(b) Write Request

Figure 4.5 L1 Front-End Cache Operation.

The flow charts above show how Read and

Write requests are processed respectively by the front-end cache.

If the write request misses in the L1 cache, itis forwardetbdhe next lower memory

level which processes it as usual. Once the request has bi&#ad with a block from
a lower memory level it is stored in the L1 cache with its dibiy set. Any block
which is evicted from the L1 cache by the new block is alsolideded in the front-
end cache. The new block address is then added to the frartashe, its dirty bit set

and the write latency returned.

Chapter 4. Edinburgh High Speed Simulator 55
4.7 System Simulation

The EHS simulator supports full system simulation by madglthe underlying hard-

ware so that operating systems can be emulated. Modellingaryeaccess for systems
which incorporate an MMU (Memory Management Unit) [Henn B24 processor in-

tensive task which slows down simulation. Memoization teghes are therefore em-
ployed to speed up simulation of read and write requestssivadcurately modelling

system memory. All memory exceptions: misalignment efraremory access Vio-

lations and TLB misses, must occur in the same manner ane &aiie point in the

simulated program as they would in the real system.

The translation lookaside buffer (TLB) translates a tangeatal address to the cor-
responding target physical address or it raises a TLB migse HHS simulator de-

ploys Page Translation Caches (PTCs) to cache target vpage to host physical
page address mappings which in turn model the target pHysages. Three different
direct-mapped PTC caches indicate whether a page accepts R&ite and Execute
accesses. The PTCs speed up MMU simulation by bypassing fEnBlation and by

directly referencing the data in the host physical pagegurei 4.6 shows the PTCs
location within the MMU.

Each entry within a PTC holds the host physical page addreggpimg for a given
target virtual page address and is valid if and only if:

e The target virtual page address is currently mapped in th. TL
e The current process has permission to access the page.

e The target physical page is in normal external memory withesal or
write side effects.

The read PTC enables the simulator to trap writes requestsatbonly pages at the
same time allowing full speed read and execute accessesdeordy pages. Self-
modifying code is also trapped by identifying write requeetst target physical pages
referenced in the fetch PTC. On detecting self-modifyindecthe entry in the fetch
PTC is removed and the decode and translation caches aredlustetch requests
to target physical pages referenced in the write PTC aretedpped and their entries

Chapter 4. Edinburgh High Speed Simulator 56

Target virtual address Memory exception
4
\ 4 ‘
PTC Lookup | TLB Lookup
miIss
> TLB
hit
hit
v v
Host physical address Target physical address

Figure 4.6 MMU Page Translation Caches. This figure shows the read, write and fetch PTCs
within the MMU model. A hit in a PTC provides direct access to the data in host memory (host
physical address), whereas a hit in the TLB returns the target physical address which is then
used in a call to the memory model.

removed from the write PTC. This enables processes witkreifft privileges to access
the same physical page and avoid virtual aliasing.

4.8 Future Development

The EHS simulator will continue to be developed to incretsspeed and effectiveness
as a tool for design-space exploration.

Development is planned in the following areas:

e Parallel Translation. The simulator currently waits for the translation
process to finish before continuing to simulate the targeamyi The
simulator will be updated so that translation is performegarallel to
simulation. This will result in faster simulation speeds fost runs,

Chapter 4. Edinburgh High Speed Simulator 57

noticeably reducing the latencies experienced when rgniniteractive
applications for the first time.

e CMP Simulation. The simulator will be developed to support high
speed simulation of processors incorporating multipleesas inten-
sive research is ongoing in this area. It must be capable dlethog
homogeneous and heterogeneous processors as well as ahiparet-
works and coherence protocols.

e Retargetable In order to test new processor architectures and ISAs the
simulator will be made fully retargetable. This will regairmplemen-
tation of an architecture description language (ADL) whigltapable
of defining instruction semantics and the architectural ehod

e Power Model. The power consumption of new systems is of utmostim-
portance to manufacturers, particularly in the embeddedketavhere
battery life is vital. A power model will be integrated intog simulator
to provide detailed power performance figures for systempaments.

4.9 Summary

This chapter details the design and operation of the Edgtbbligh Speed simulator.
It outlines the internal components which make it a fast aedifle simulator suitable
for performing research into computing system architexguiThe EHS simulator can
be used for both high and low level design-space exploratidawever, increasing
the instruction level and cycle-accurate simulation spefethe simulator remains a
priority so that it can better fulfil its DSE role.

Chapter 5

Evaluation Methodology

This chapter describes the benchmarking infrastructudeth@ methodology used to
evaluate the performance of the novel DBT simulation tegh@s presented in this
thesis.

5.1 Target System

The target system used for this research is based on the ARE'Ffrocessor and
configured as shown in table 5.1. The results from runninglsetuof the EEMBC
benchmark suite [EEMB] on the EHS simulator operating indakck DBT mode
were used as a baseline measure of the simulator’s perf@asmaine simulation results
for the new LTU DBT simulation modes researched in this thesre then compared
with those for basic block DBT based simulation. This endlaey increases or de-
creases in the simulation speed from deployment of the newlation techniques to
be scientifically quantified.

The 20 EEMBC lite benchmarks simulated are listed in tab® fur benchmarks
were selected from each of the five categories. All benchshaudre compiled for
the ARC 700 architecture usirggc version 4.2.1 withh @2 optimization and linked
againsud i bc. The EEMBC lite benchmarks were run for the default numbetest
ations and the simulator operated in user-level mode tawdita the non-deterministic
behaviour of a simulated operating system.

58

Chapter 5. Evaluation Methodology

Component Configuration

Processor ARC 700 uni-processor

L1 inst. cache 8KB
2-way set associative
16 Byte cache block
Random replacement policy

L1 data cache 8KB
2-way set associative
16 Byte cache block
Random replacement policy

Table 5.1 Target System Architecture

Category Benchmark Iterations
Automotive aifftr01 200
bi t mp01 3000
i dctrn01 1500
mat ri x01 110
Consumer cj peg 1000
dj peg 1000
r gbhpg01 100
rgbyi q01 100
Networking ospf 100
pkt f I owb4m 100
pkt f | owb512k 100
rout el ookup 100
Office bezi er 01fi xed 1000
di t her01 1000
rotate0l 1000
text01 1000
Telecoms aut cor 00dat a_3 5000
fbital 00data_2 5000
fft00data_1 1000
vi t erb00dat a_3 3000

Table 5.2 EEMBC Lite Default lterations

Chapter 5. Evaluation Methodology 60
5.2 Simulation Environment

All simulations were performed on a 2.66 GHz Intel Core 2 Duarkstation (see
table 5.3) running Fedora Core 7 (kernel 2.6.23) under ¢mrdi of minimal system
load. The EHS simulator was configured to use a simulatiorcte@d 1000 blocks
and a translation threshold of 1 (see table 5.4). The EHSlatoruwas compiled,
and the translated functions dynamically compiled, vgtie version 4.1.2 and 3

optimization.

Entity Description

Model Dell OptiPlex

Processor 1 x Intel Core 2 Duo 6700
CPU frequency 2.66 GHz

L1 caches 32KB | & D caches

L2 cache 4MB per dual-core

FSB frequency 1066 MHz

RAM 2GB, 800MHz, DDRII
oS Fedora Core 7

Table 5.3 Simulation Host Machine

Entity Configuration

Simulation epoch 1000 blocks
Translation threshold 1

Decode cache 8K entry
2-way set associative

Translation cache 8K entry
Direct-mapped cache

Physical page 8KB

Table 5.4 EHS Simulator Configuration

Chapter 5. Evaluation Methodology 61

5.3 Performance Metrics

The EHS simulator was used to simulate each EEMBC benchreackuding test har-
ness) and then return the simulation speed in MIPS. All obigneachmarks were sim-
ulated on the EHS simulator running in both instruction lew&d cycle-approximate
simulation modes and operating in each of the different DBTutation modes.

The simulator maintains a count of the instructions sinedaind the real simulation
time was calculated from readings taken from the host mahimardware clock. In

order to minimize the effect of any variation in the simubatitime - caused by the
underlying OS and hardware - each benchmark was simulateoh&® and the average
simulation speed calculated

The geometric mean speed-up in simulation speed was cedduiar each of the new
LTU DBT simulation modes relative to basic block DBT baseadwdation so that the
performance of each of the LTU DBT modes could be compared wie another.
The geometric standard deviation in the geometric meandsppeesults provides an
indication of the variation in the speed-up across all ofdbechmarks.

The Geometric Meanis defined as:
Hg = vV/X1X2... Xn

wherex; represents the value of elememt setX of speed-up values for each bench-
mark.

The Geometric Standard Deviationis defined as:

Og = exp<\/% _i(lnxi —Inpg)2>

The relative mean absolute error (RMAE) in the cycle courd ealculated to measure

the cycle count accuracy of the timing-approximate sinalatodes relative to cycle-
accurate simulation. The standard deviation in the RMAE/igies an indication of
the spread of cycle count errors across all of the benchmarks

1The average speed for a benchmark is calculated by dividiegdtal instruction count for all
simulation runs by the total simulation time.

Chapter 5. Evaluation Methodology 62

TheRelative Mean Absolute Error is defined as:

n . \}
ni: Yi

wheref; represents the value of elemein setF of cycle-approximate values,
andy; represents the value of elemadnin setY of cycle-accurate values for each
benchmark.

TheMean is defined as:
pa —

Sl

n

2 X
i=1
wherex; represents the value of elemem setX.

The Standard Deviationis defined as:

Oa = \/% ii(Xa—ua)z

Chapter 6

Large Translation Units

This chapter presents the new simulation techniques whiete wleveloped during
the course of this research. These innovative techniguethégeneration of large
translation units were designed with the goal of speedin®@Bp based simulation.
The methods used to profile the target program, identify theld. and to perform
binary translation at runtime are covered in detail.

6.1 Overview

In DBT based simulation, sections of the target program &eogtered at runtime

and considered as possible candidates for translation. tréhslator then translates
the sections of code which have been frequently emulatedhast code functions.
When executed the host code functions emulate the corrdsgptarget instructions

within the simulated processor model at much higher speeals is possible with

interpretation.

In DBT based simulators the unit of translation is typic&ither a target instruction or
a basic block [Hech 77]. This thesis explores the hypothésissignificant increases
in the simulation speed can be achieved by identifying laugsts for translation at

runtime.

If this hypothesis is correct, the increase in simulatioeespwill be attributable to two
main factors. Firstly, LTUs provide the translator with grer scope for optimization

63

Chapter 6. Large Translation Units 64

for speed because they are larger, consisting of multigeis rather than just a single
basic block. And secondly, larger sections of the targegmm will on average be
emulated within each translated function (TF), where a Tihéstranslated host code
function which when called emulates the target instrudimna translation unit. This
results in fewer returns to the outer simulation loop in otdeseek the next TF to call.

6.2 Translation Unit Types

This research investigates three different types of LTUhEJB9], in addition to the
basic block translation unit. An LTU, in the context of pragr simulation, is a group
of target basic blocks which are connected by control-flogg @nd which may have
one or more entry and exit points. The LTUs selected for usthisresearch are
based on standard objects which have traditionally beeth lngeomputer scientists to
understand the structure and behaviour of programs.

This research investigates four different ways of consingctranslation units based
on the following object types:

BB : Basic Block translation unit
SCC : Strongly Connected Component LTU
CFG : Control Flow Graph LTU

Page: Physical Page LTU

In contrast to most other DBT based simulators, the EHS sitauprofiles the target

program’s execution in order to discover hot paths rathantto identify hot blocks

or pages, parts of which may be infrequently executed or vmeay contain mostly

data. The target program is profiled and the translatiorsuangated on a per physical
page (target) basis. Grouping translations by physicaéads the simulator in its

translation management tasks. All of the translations fphgsical page are simply
discarded when the simulator detects changes to the ddtanhe page. This can be
as a result of self-modifying code or page swapping.

Chapter 6. Large Translation Units

65

Linear %

() ®
_© _©
(c) CFG (d) Page

Figure 6.1 Translation Units. The figures above show an example target-program CFG

divided into BB, SCC, CFG and Page based translation units respectively. Dotted lines outline
the different translation units and the thick-edged circles indicate the possible entry points (basic
blocks).

Figure 6.1 shows the different translation unit types arelalsociated entry points.
The example program CFGs have been divided into separatgatesn units in accor-
dance with the DBT mode. The entry points to blocks withinttla@slation units are
dependent upon the DBT mode. Entry is always to the firstuotibn within a basic
block.

Chapter 6. Large Translation Units 66

In BB based DBT, basic blocks which are frequently executediraulation time
are identified and scheduled for binary translation. WhenRE value subsequently
matches the start address of a previously translated b&si&,lthe translated code
associated with that basic block is called to emulate thekxd high speed.

In SCC based DBT, the program execution path is analysedatre in order to dis-
cover SCC (strongly connected blocks) and linear blockared¢iiTUs. The frequently
executed SCC, and linear region, LTUs are then marked fosskaéion. When the
PC value subsequently matches the root block address of/mpsty translated SCC
LTU, the translated code associated with that SCC is called.

In CFG based DBT, the program execution path is analysedrainra in order to

discover CFG LTUs. The frequently executed CFG LTUs are tharked for transla-
tion. When the PC value subsequently matches the root bliaieas of a previously
translated CFG LTU, the translated code associated wittGR& is called.

In Page based DBT, the program execution path is analysegh@itne in order to
discover all of the CFGs within the physical page. The Pagé Lsthen translated
as a whole. When the PC value subsequently matches the dtiaeisa of any block
within a previously translated Page LTU, the translatececagsociated with that block
within the Page LTU is called.

6.3 Runtime Profiling

Simulation time is partitioned into epochs, where each bpedefined as the interval
between two successive binary translations. The simubdoerates a profile of the
target program’s execution path for those basic blockgpnéted in the current sim-

ulation epoch. The end of a simulation epoch is reached wihemamber of basic

blocks interpreted equals the translation threshold, dedneed value. During each
simulation epoch, new translation units may be interprepedviously seen but not
translated translation-units may be re-interpreted;diegted translation-units may be
discarded (e.g. self-modifying code); and translatedslegtion-units may be executed.

In each simulation epoch, execution path profiles for thgeiaprogram are built-up
for each physical page. For BB DBT, this involves simply ntaiming a count of the

Chapter 6. Large Translation Units 67

number of times individual basic blocks have been integatetin LTU DBT (SCC,
CFG or Page) based simulation, a page-CFG [Much 97] is getefar each physical
page. Execution path profiles are built-up by adding the bédk interpreted in a
page to the page-CFG, in addition to incrementing the bkekecution count. The
EHS simulator models a default physical page size of 8KB.

Figure 6.2 shows examples of the different types of page-@tE may be created
during simulation. A page-CFG may consist of a single CFG attiple CFGs, in
which case they may be separate, combined or a mixture oftgp#s. In order to
prevent the generation of ‘broken’ page-CFGs caused byrupes and exceptions,
block sequences for the different processor interrupti$e&ee independently traced.

¢y ¢

(a) Separate (b) Combined (c) Mixed

Figure 6.2 Page-CFG Configurations. A page-CFG may contain any number of (a) separate
CFGs, (b) combined CFGs or (c) a mixture of both.

At the end of each simulation epoch the page-CFGs are amkigseder to retrieve
the constituent translation units. In the case of SCC DBTjamé& algorithm [Tarj 72]

is applied to each CFG in order to extract the SCC translatiots. Regions of linear
basic blocks are also identified as another translation LIn€FG DBT, the translation
units are extracted by tracing the CFG paths starting at eathe root nodes. No
further processing is required for Page DBT as the tramsiatinit is the page-CFG
itself.

Chapter 6. Large Translation Units 68
6.4 Program Simulation

The main simulation loop of the EHS simulator is outlined e flow chart of fig-

ure 6.3. The simulator looks up the next instruction to be lated in the Translation
Cache (TC) which is used to return translations at speed. Tthewhich is indexed
by target instruction address, contains a pointer to theslaged Function (TF) of the
corresponding translation unit.

If the next PC address hits in the TC, the corresponding TKt(bode function) is
called which emulates the target instructions within tleastation unit at high speed.
If the next PC address misses in the TC, the target instnuetidooked up in the
Translation Map (TM). The TM contains an entry for every skation unit which has
previously been translated. The TM is indexed by targetuasibn physical-address
and contains a pointer to the TF of the corresponding tréonslanit. If the instruction
address hits in the TM the corresponding TF pointer is cacheéde TC and the TF
called.

If the next instruction address misses in the TM, this indisdhat a TF with this entry
address has not yet been generated. The basic block stattthg next PC address
must therefore be interpreted and profiled in the usual maiméhe case of BB DBT,
an entry for the basic block is cached in the Epoch Block C4EB£) which records
the blocks interpreted during the current epoch. In the cdddU DBT, the basic
block is added to the Epoch CFG Cache (ECC) which is used &beceepage-CFG for
the target program for the current epoch. Instances of thé &Bd ECC caches exist
for each physical page.

At the end of each simulation epoch a profiling analysis plsagatiated prior to bi-
nary translation. In the case of BB DBT, the EBCs are scanoefidquently executed
blocks. In SCC and CFG DBT, the page-CFGs cached in the EGCsearched for
frequently executed LTUs. Page DBT does not require anylprgfanalysis as Page
LTUs are always translated.

Chapter 6. Large Translation Units 69

PC address
v
\ Call TF
Hitin yes A

»

TC?

Update TC
with address =
of TF

Add block
to EBCor
ECC

Interpret basic
block & inc.
block counter

TF - Translated Function
TC -Translation Cache
TM - Translation Map
EBC - Epoch Block Cache
ECC - Epoch CFG Cache

Execution
profiling
analysis

Compile hot
translation-units
& load libraries

A
Update TM
with address
of TFs

I

Figure 6.3 LTU DBT Simulation Loop. This flow chart shows the EHS simulator’s LTU DBT
simulation loop.

6.4.1 Dynamic Binary Translation

Those translation units which were interpreted at leastasyrtimes as the translation
threshold during the previous simulation epoch are marketranslation. The metric
used to determine whether a translation unit is consideatdiépends on the DBT

simulation mode as follows:

Chapter 6. Large Translation Units 70

BB : Number of executions.
SCC : Number of root node executions.
CFG : Number of root node executions.

Page: Always translate.

After all the hot translation units have been identified, tiveary translation phase
begins. The hot translation units are translated in batclhesisting of translation
units belonging to the same physical page.

The translation units are first converted into C code fumsiehich emulate the target
instructions within the processor model. The C code fumstiare then compiled using
gcc [Stal 01] into shared libraries which are loaded by the dyidimker. Finally, the
TM is updated with pointers to the newly generated TFs. Ifrib&t instruction to
be simulated corresponds to an entry point in a recentlysteé@d TF, its instruction
address will hit in the TM, a pointer to the TF will also be adde the TC and the TF
called.

Each target instruction within a basic block is translated iIC code which emulates
the target instruction’s operation within the processodeioThe simulated processor
state is updated during emulation of each instruction wlhid ¢éxception of the PC
which is updated at the end of each block or on encounterirexeaption. Translated
functions exit immediately on detecting an exception ohaténd of the current basic
block if pending interrupts exist. Control is returned te thain simulation loop where
the exception or interrupts can be serviced. The edges ctingebasic blocks are
recorded in the page-CFGs during profiling so that the cofiber can be replicated
within the C code functions usingprO statements.

Figure 6.4 shows an example CFG translation unit and theegsponding outline C
code function. The C code functions for Page DBT based stmunlaontain a jump
table at the beginning which enables emulation to commemee any block within
the translation unit.

Chapter 6. Large Translation Units 71

o
()
(J

(a) CFG LTU

void L_00010098 (cpuState *s)
{

Bl ock_0x00010098:

/[* Ccode to enulate
target instructions
within block A */

s->pc = next_pc;

if (pending_interrupts) return;

/* Unconditional Direct Control Transfer */
got o Bl ock_0x000100c4;

Bl ock_0x000100bc:
[* Ccode to enul ate
target instructions
within block B */
s->pc = next_pc;
if (pending_interrupts) return;
/* Conditional Direct Control Transfer */
if (s->pc == 0x00010098) goto Bl ock_0x00010098;
got o Bl ock_0x000100c4;
Bl ock_0x000100c4:
[* Ccode to enul ate
target instructions
within block C*/
s->pc = next_pc;
if (pending_interrupts) return;
/* Indirect Control Transfer */
if (s->pc == 0x00010098) goto Bl ock_0x00010098;
if (s->pc == 0x000100bc) goto Bl ock_0x000100bc;

if (s->pc == 0x000100c4) goto Bl ock_0x000100c4;
return;

(b) C Code Function

Figure 6.4 LTU Translated Function. When the TF is called execution starts at the root node
(block A, start address 0x00010098). All target instructions within the block are emulated before
the PC is updated. A check is then performed to see if any interrupts need servicing before
simulating the next block or exiting the TF.

Chapter 6. Large Translation Units 72
6.5 Cycle Accurate Simulation

Large translation unit based DBT can be applied to instomdevel and cycle-accurate
simulation of microprocessor systems. However, becaugghginoportion of the over-
all simulation time is spent performing cycle-accurate eibdg in a DBT based sim-
ulator, the scope for speeding up cycle-accurate simulatsing LTU DBT is greatly
reduced.

If DBT techniques are to realize significant increases inleeaccurate simulation
speeds, the amount of time spent accurately modelling teeisymust be reduced.
The application of DBT simulation techniques will theredgrove to be much more
effective when applied to a cycle-approximate simulatohagers 7 and 8 provide
guantitative evaluation of these new techniques when egpd instruction level and
cycle-approximate simulation respectively.

Chapter 7

Instruction Level Simulation

This chapter investigates high speed DBT based instrutgia simulation and eval-
uates the research hypothesis by comparing the simulgbeeds of the novel LTU
DBT simulation techniques. The simulation performancethedharacteristics of the
translation units generated and the translated functiaileccare analyzed for each
LTU DBT mode. The simulation speed of the EHS simulator i® alsmpared with
two state-of-the-art functional DBT based simulators.

7.1 Overview

Instruction level simulators enable target programs toibrikated at high speed as
they need only model the order of the processor state chagpesately and not the
precise moments in time at which they occur. They suppott hegel DSE, hard-
ware/software co-design, verification and debugging. Tdieg play an important role
in the development of software and compilers for new systwish are being devel-
oped in parallel.

When operated in instruction level simulation mode the El&ukator updates the
target processor state after each instruction is emul&tediever, when the simulator
is running in fast (DBT based simulation) mode, the PC is tguilat the end of each
basic block and the instruction count updated on exitingpdd€in order to maximize
performance.

73

Chapter 7. Instruction Level Simulation 74
7.2 Instruction Level Simulation Analysis

In order to test the research hypothesis the same set of emkk were run on the
simulator operating in each of the different DBT simulatioodes. This enabled the
instruction level simulation performance for the three LDBT modes and for the
basic block DBT mode to be quantitatively compared with eaitter. This section
presents the results from simulating a subset of the EEMBCHiaark suite [EEMB]
on the Edinburgh High Speed simulator. The simulation speeplorted are in native
MIPS: millions of target instructions simulated per reiah@ (host) second. Unless
explicitly stated otherwise, the simulation epoch was £&080 blocks and the trans-
lation threshold set to 1.

7.2.1 Performance

Figure 7.1 shows the simulation speed and the proportioheofdtal simulation time
spent performing translation when the simulator is operateBB, SCC, CFG and
Page DBT simulation modes. Each benchmark was simulateg twith the second
simulation run loading the translations generated by tlsé simulation run. The sim-
ulation speeds were calculated using the overall simulairme which includes the
time spent performing translation and the time spent laathianslations, in addition
to the time taken to emulate the target instructions (imegtiyely or using TFs).

The results show a large jump in simulation speed from thetbrthe second simula-
tion run for most of the benchmarks in all DBT based simulatitodes. For example,
the simulation speed for the bezierfixed benchmark goes @®MIPS on the first run,
to 710 MIPS on the second run when the simulator is operatifage DBT mode.

The second simulation run represents the maximum simulafeed attainable for a
given benchmark using a particular DBT simulation mode. fdoglation is performed
on the second run as all of the target instructions are eedilay TFs which were
generated on the first run. As many of the benchmarks run fot pleriods of time, the
proportion of the total simulation time spent performingrtslation can be significant
on the first run. For benchmarks which exhibit longer simolatimes, the amount
of time spent performing translation will tend towards zerothe first run. If binary

Chapter 7. Instruction Level Simulation 75

700 — —— 100
90
600
80 T
—~ 500 0 @
g £
2 100 60 =
° 0§
b4 2
3 300 0 ®
& 2
200 -} 30 §
o
Ly F
100
10
0 ‘ ‘ ‘ ‘ ‘ 0 1st
Q\’ QN 0\’ Q’y Qg’ Q/Q’ Q\’ Q\’ $ <& ’i" QQ zb Q\’ D\’ Q’\ % §1 ”
& L & F FFEE ST Y S S R R
& & & & & @g‘& & \&\os & o@o \z@x S E T FESFSS m2nd
T PSS & & i\@‘
(a) BB
800 | — _—— - 100
700 - - M — —r %0
80 ¥
600 — M M o f:—
wv
& 500 60 £
s [
S 400 s0 &
[} 40 ®
2 300 =
©n 30 0§
200 =
20
100 10
0 : : : : : : 0 15t
S & S
& & & F® & &8 & &
& & S & 2nd
&
800 (= — — = — 100
700 M M - — 0
M 80 T
600 s
m 70 g
< 500 =
H e E
° 400 0§
=]
@ 0 ®
2 300 “
30
200 [
20 F
100 L 10
o = L LI L : e e R = S B e e e = S = | 1st
& Qs\/ (9& \+°N QQ,% 3 Qe% @N \&N X S (,;\'/1\}. X @"‘b z‘& -@6y §N 7 @7 2/
&£ & &L F & F S EE T FFF 2nd
> & F L S & &o \oql & ?}0 & S S & & &
& & & S & € &
N o SR &
(c) CFG
900 — — —_— — 100
800 M — 9%
700 . 80 ¥
I] ¥ g
& 600 70 £
S 60 =
= 500 2R ol | <
° 50 ©
S 400 =
-4 40 Lm\’
@» 300 0 &
o
200 - H H A1 T A e F
100 L 10
o L= L= LR L= L L AU L L AU LR 1st
S T I I I T I N T SR S S)
& @(\Q & & & & & S & & \06@’ \f\dg/ & & F P F 2nd
KNS Q &S & f & & & 3 S & & §&
© ¢ & & & F S ©
N Ad AR &
K
(d) Page
Figure 7.1 Instruction Level Simulation Profile. The figures show the simulation speed

and the proportion of total simulation time spent performing translation (outlined bars) for two
consecutive runs of each benchmark in each of the DBT modes.

Chapter 7. Instruction Level Simulation 76

translation were performed in parallel to simulation, thmimum simulation speed
experienced would be equal to that of interpretive simafati

Overall, the three LTU DBT simulation modes perform sigrafidy better than the
BB DBT simulation mode. Figure 7.2 shows the simulation gfeeeach benchmark
running on the simulator operating in each of the differeB{flDsimulation modes. A
summary of the simulation performance statistics is predith table 7.1. The LTU
DBT simulation speeds range from a low of 233 MIPS for thetebenchmark in SCC
mode, to a high of 826 MIPS for the rgbhpg benchmark in Pageembdr BB DBT,
the slowest simulation speed is 124 MIPS for the ospf bendharal the fastest is 660
MIPS for the rgbhpg benchmark. The average simulation sperass all benchmarks
is 283 MIPS for BB DBT based simulation, 460 MIPS for SCC DB35MIPS for
CFG DBT and 466 MIPS for Page DBT.

Interpretive BB SCC CFG Page

SPEED (uips)

Slowest 24 124 233 270 259
Fastest 33 660 706 705 826
Median 29 278 446 445 461
Average 30 283 460 455 466
SPEED-UP

Geo. Mean 0.11 1 163 164 1.67
Geo. S.D. 0.046 0 0.397 0.376 0.336

Table 7.1 Instruction Level Simulation Performance Summar y. The geometric mean
speed-up for each DBT simulation mode is relative to the basic block DBT simulation speed.

The increase in simulation speed for each benchmark and LBU mode, compared
to BB DBT based simulation, is shown in figure 7.3. LTU DBT slation outperforms
BB DBT based simulation for all benchmarks with the exceapid the bezierfixed
benchmark, where BB DBT simulation outperforms SCC DBT datian by a small
margin. Overall, the LTU DBT simulation modes exhibit a meapeed-up of at least
1.63 compared to BB DBT based simulation. The smallest argeda simulation
speed-ups were observed when the simulator was running @ 3BT mode. The
smallest speed-up was 0.95 for the bezierfixed benchmarklrenthstest speed-up
was 2.32 for the bitmnp benchmark. Page DBT based simulggoforms the best

Chapter 7. Instruction Level Simulation 77

across all benchmarks with a mean speed-up of 1.67 and sthelaation of 0.336.
However, SCC DBT simulation exhibits the fastest simulaspeed in 9 out of 20 of
the benchmarks, compared to 7 out of 20 for Page DBT.

7.2.2 Instruction Emulation

The proportion of instructions simulated by TFs (‘transiitsimulation) is greater
than 99% on the first simulation run for all benchmarks and DBddes. The bench-
marks and DBT simulation modes which exhibit the highestrele@f interpretation

on the first run are, aifftr with 0.17% of instructions intezped when running in BB
and Page DBT mode, and pktflowb512k with 0.52% of instructioterpreted in SCC
DBT mode and 0.40% in CFG DBT mode. The proportion of totaldated instruc-

tions emulated by TFs is dependent primarily on the apptodiehaviour.

The results demonstrate the repetitive nature of the beadtsrand the manner in
which of all the DBT simulation modes benefit from this, evelmew benchmark run
times are very short. All of the DBT simulation modes perfosmmilarly with just
under 100% of instructions being emulated by TFs on the firstincreasing to 100%
on the second run.

7.2.3 Dynamic Binary Translation

The proportion of the total simulation time spent perforgimanslation is depen-
dent upon the simulation period, benchmark behaviour, kitin epoch, translation
threshold, simulation run and the DBT simulation mode (sgeré 7.1). A significant
proportion of the simulation time is spent performing tratisn on the first run with
no translation taking part on the second run for all benclkhand all DBT modes. All
of the target instructions are translated on the first sithuderun with no translation
occurring on successive runs. Further translation onlyimcon successive runs if the
program execution path changes between simulation run€ €@ CFG DBT modes
only) or if the code is self-modifying.

The proportion of time spent performing translation folkowa similar pattern for all
DBT simulation modes with three-quarters or more of the bemarks spending over

Chapter 7. Instruction Level Simulation 78

mBB
mSCC
m CFG
M Page

Speed (mips)

Figure 7.2 DBT Instruction Level Speed. These figures show the simulation speed for each
benchmark using DBT simulation modes. The simulation speeds presented are for the main
simulation loop. The speeds shown are the average of 10 simulation runs in which all target

instructions had previously been translated.

Speedup

Figure 7.3 LTU DBT Instruction Level Speedup. These figures show the simulation speed-
ups for each benchmark for each LTU DBT mode relative to basic block DBT based simulation.
The speed-ups shown are calculated from the average of 10 simulation runs in which all target

instructions had previously been translated.

Chapter 7. Instruction Level Simulation 79

70% of the time performing translation on the first run. Thegortion of the total sim-
ulation time spent performing translation for BB DBT basédwdation ranges from
99%, for benchmarks such as ospf and pktflowb512k down to 28%jeg. The pro-
portion of time spent performing translation for SCC DBT édsimulation is slightly
higher than for BB DBT simulation, ranging from 99% for ospfdapktflowb512k
down to 38% for cjpeg. And the proportion of time spent parforg translation for
CFG DBT based simulation is slightly higher than for SCC DBimdation, rang-
ing from 99% for ospf and pktflowb512k down to 46% for cjpeg.gP®dBT based
simulation is very similar to SCC DBT simulation, with theoportion of time spent
performing translation ranging from 99% for ospf and pktfit 2k benchmarks down
to 34% for cjpeg.

The simulation times for the benchmarks ospf, pktflowb4ntflpkb512k and routelookup
(EEMBC networking category) are the shortest. This exglavhy these benchmarks
spend a high proportion of the total simulation time perforgriranslation on the first
run for all DBT modes. Conversely, the cjpeg and djpeg beraskshave the longest
simulation times and therefore spend a much smaller primpoof the simulation time
performing translation on the first run for all DBT modes.

The proportion of the total simulation time spent perforghinansiation on the first
run for each benchmark is very similar across all DBT simalamodes. In general,
the percentage of time spent performing translation ishdiyghigher for SCC DBT
than for BB DBT, and slightly higher for CFG DBT than for SCC DBvhilst that for
Page DBT is very similar to SCC DBT. The differences in thecpatage of simulation
time spent translating across DBT modes reflects the nunmoksiae of the translation
units which are translated, with larger translation uradsinng longer to construct and
to compile. These results reflect the fact that CFG LTUs aigetathan SCC LTUs
which are in turn larger than BB LTUs.

7.2.4 Simulator Tasks

This section investigates what proportion of the overatiidation time is spent per-
forming each of the main simulator tasks. It therefore higttls those tasks which
have a predominant affect on the simulation speed duriniy eac

Chapter 7. Instruction Level Simulation 80
The EHS simulator performs five main simulator tasks:

e Main Simulation Loop: function which emulates target program in-
structions either interpretively or by calling TFs.

e Loading Libraries: function which loads the shared libraries contain-
ing the TFs.

e Program Profiling: function which adds interpreted blocks to the page-
CFG target program execution profile (LTU DBT modes only).

¢ Profile Analysis: function which analyzes the page-CFGs in the ECCs,
or blocks in the EBCs, in order to identify hot translationtan

e Translation: function which translates the hot translation units areat
shared libraries which hold the TFs.

The proportion of the total simulation time spent perforgngach task for each DBT
mode is shown for five benchmarks in figure 7.4. Each benchmask simulated

twice, with the second simulation using the translationsegated by the first simu-
lation. The figure shows that a high proportion of the totahdation time is spent
performing translation during the first run which is redut¢edero by the second run.
The precise pattern depends on the benchmark and on the DRilasion mode.

On the first run, 78% - 99% of the total simulation time is spestforming transla-
tion for 4 out of 5 of the benchmarks (bitmnp, ospf, beziedixeiterb). The cjpeg
benchmark is the exception which spends between 22% and #86% tme perform-
ing translation. This is because the cjpeg benchmark rure fouch longer period of
time than the other benchmarks and consequently spendstasmadler proportion of
the overall time performing translation. CFG DBT based datian spends the largest
proportion of simulation time performing translation f@med by SCC DBT and Page
DBT simulation and lastly BB DBT based simulation. The miyoof the remaining
simulation time is spent in the main simulation loop emulgtiarget instructions.

On the second run, just under 100% of the total simulatiore tismspent within the
main simulation loop for 4 out of 5 of the benchmarks. The tspent performing

Chapter 7. Instruction Level Simulation 81

100%
90% Translation
80% | Profile Analysis
m Program Profilin,
ué 70% Program Profiling
E 60% B Loading Libs
= Main Loo
2 so% P
=]
o
S 40%
g 30%
[
20% -
10%
0%
BB BB SCC Nes CFG CFG Page Page
1st 2nd 1st 2nd 1st 2nd 1st 2nd
(a) bitmnp
100% 100%
90% | 90% -
80% 80%
(] (]
£ 70% - £ 70% —
= eo% = oeo%
c c
2 so% - 2 so%
- -
i) iy "
S 40% - S 4%
§ 30% E 30%
7] (7]
20% - 20%
10% - 10%
0% T T T T T T T l 0% T T T T T T T
BB BB SCC SCC CFG CFG Page Page BB BB SCC SCC CFG CFG Page Page
1st 2nd Ist 2nd 1st 2nd 1st 2nd st 2nd 1st 2nd 1st 2nd Ist 2nd
(b) cipeg (c) ospf
100% 100%
90% 90%
80% 80%
(] 1]
g 70% g 70%
= 6% = eo%
c =
2 s0% 2 so%
- -
o o
S 40% S 40%
g 30% .g 30%
w0 n
20% 20%
10% 10%
0% 0% -+ . T
BB BB SCC SCC CFG CFG Page Page BB BB Nee Neo CFG CFG Page Page
1st 2nd Ist 2nd 1st 2nd 1st 2nd 1st 2nd Ist 2nd 1st 2nd st 2nd
(d) bezierfixed (e) viterb

Figure 7.4 EHS Simulation Tasks. These figures show the proportion of the total simulation
time spent performing each of the main simulation tasks. One benchmark from each EEMBC
category was simulated for two runs using different DBT simulation modes.

Chapter 7. Instruction Level Simulation 82

other tasks is largely insignificant. The exception is thpfdsenchmark where the
proportion of time spent loading the dynamic libraries garirom 8% for BB DBT
based simulation to 24% for CFG DBT based simulation. Thisesause the ospf
benchmark runs for a very short period of time compared toatter benchmarks
and the proportion of the overall simulation time spent logdibraries is therefore
markedly higher.

Basic block DBT based simulation outperforms SCC DBT basedilation when
emulating the bezierfixed benchmark. This confirmed in thecharts for bezierfixed
which show that less time is spent in the main simulation lepSCC DBT based
simulation than for BB DBT based simulation. On average BBIiased simulation
spent 1.19 seconds in the main simulation loop whereas SCTH2Bed simulation
spent 1.22 seconds. Although one might expect SCC DBT taparbetter than
BB DBT, this result highlights the complex interactions wlinitake place between
benchmark, simulator and host hardware.

7.2.5 Translated Functions

Table 7.2 shows the average and largest, static and dynaifibJock sizes broken
down by benchmark and LTU DBT simulation mode. The statie siza TF is equal
to the number of target blocks contained within the TF, whhe dynamic size of a
TF is equal to the number of target blocks emulated by a TF wthecalled, this may
vary for a given TF each time it is called.

During each simulation epoch, the simulator profiles a fixethber of basic blocks
(interpreted). The size of the TFs generated will be depéenioodh the size of the sim-
ulation epoch and the type of translation unit used. As ebgokd¢he average number
of blocks within a TF is greater for Page DBT than for CFG DBhieh is in turn
greater than for SCC DBT, across all benchmarks.

The average dynamic TF size provides an indication of thehaael which the simu-
lator experiences from returning to the main simulationplod he larger the average
dynamic TF size, the fewer the number of times the simulagat to return to the
slow main loop in order to search for the next TF to call. Anrease in the average
dynamic TF size should therefore correspond with an ineé@asimulation speed as

Benchmark Avg TF Size Avg Dynamic TF Size Largest TF Largegt@mic TF

SCC CFG Page SCC CFG Page SCC CFG Page SCC CFG Page
aifftr 34 7.4 164 4.4 6.0 5.1 87 126 134 240127 240129 5120
bi t mp 50 10.6 33.1 10.3 14.4 10.8 54 79 116 10111 10113 10113
idctrn 3.0 129 254 11.5 123.9 9.2 34 97 114 8193 8801 8193
matrix 35 6.5 287 5.7 11.8 9.3 45 97 174 3419 3419 3419
Cj peg 36 65 208 12.6 42.1 40.5 51 72 108 69129 69129 69129
dj peg 3.7 6.2 20.0 48.8 80.5 77.4 43 94 121 64327 64327 64327
rgbhpg 37 63 253 39.7 59.4 265 43 87 125 75921 75925 75925
rghyiq 3.9 6.6 31.0 36129 4921.7 4272.4 43 97 133 4607999 460800208002
ospf 44 87 26.0 426.3 484.6 497.3 64 105 148 189599 189602 189602

pkt f | owb4m 4.4 7.4 31.3 2485.1 17.8 17.8 39 90 149 1171544 1171548 187154
pkt f | owb512k 44 7.6 31.7 3259 397.5 17.3 39 90 149 154794 154798 154798
rout el ookup 4.3 75 277 667.6 712.8 37.0 41 105 105 56453 56457 56457
bezierfi xed 40 7.2 26.2 10299 7163.2 10574 43 105 135 187799 187802 187802

di t her 4.0 6.0 28.6 33.6 30332.6 33.6 44 97 130 163838 290986 163841
rotate 8.3 16.5 345 34.5 121.9 4.7 100 105 134 16644 16648 16648

text 43 104 281 4.3 10.2 9.4 43 105 136 2590 3523 2605
aut cor 34 7.2 29.6 43509 5323.8 4518.1 41 86 127 15567 15573 15573
fhital 4.0 9.5 257 148.1 508.4 508.0 34 73 111 10752 10754 10754
fft 38 79 313 32.8 102.0 69.6 41 99 123 10495 10498 10498
viterb 43 10.7 221 1498.2 2617.6 15205 34 77 108 22475 22511 22511
Average 4.2 85 272 739.1 2652.6 637.1 48.2 94.3 128.9 354088.8 28685 342343.3

Table 7.2 Static and Dynamic Translated Functions. This table shows the average and largest, static and dynamic TF block sizes for each
benchmark for the different LTU DBT simulation modes.

') 1e1deyd

uoITRINWIS [9A87 UONONIISU|

€8

Chapter 7. Instruction Level Simulation 84

more instructions are emulated per TF call. For most benckenthe average number
of blocks simulated per TF call is greatest for CFG DBT, faléal by Page DBT and
then SCC DBT.

Figure 7.5 shows graphs of the average dynamic TF size anddalkenum simulation
speed for all benchmarks and LTU DBT simulation modes. Theadyic TF size for
each benchmark follows a similar pattern across the diffek& U DBT modes with
the largest dynamic TF sizes corresponding to higher tharege simulation speeds.
One exception however is the rgbhpg benchmark which exhiibé fastest simulation
speed across all DBT modes whilst possessing a small avdyagenic TF size.

Figure 7.6 shows the distribution of static TFs for the pkiftdm benchmark. The
average static TF size for Page DBT based simulation is gyrélaan for CFG DBT
which is in turn greater than for SCC DBT. The graphs show lidih CFG and SCC
DBT based simulation generate a lot of TFs (53 and 79 resgdgtiwhich contain
only a single block, whereas Page DBT based simulation g&sejust two 2 TFs
containing 2 blocks. Page DBT based simulation identifiedidingest translated unit
(149 blocks) followed CFG DBT (90 blocks) and lastly SCC DEB® plocks). In total
Page DBT based simulation discovered 28 TFs, CFG DBT 210 i&S&C DBT 237
TFs.

Figure 7.7 shows the distribution of dynamic TF calls for gk&flowb4m benchmark.
SCC DBT based simulation exhibits a higher average dynarkisiZe than either
CFG or Page DBT based simulation. This is due to the large euormbTFs called
in both CFG and Page DBT based simulation which simulate asignall number of
basic blocks. It can be observed that SCC DBT based simaolatfled only 1,182
TFs which executed a single block, where as CFG DBT simulaiadled 283,038 TFs
which executed a single block and Page DBT simulation c&#&21816 TFs which
executed three blocks. In addition, SCC DBT based simulatadled TFs which em-
ulated 87545 blocks 100 times, the same number of times adetfa@lt number of
iterations for the benchmark. In the case of the pktflowb4nchenark, the LTU DBT
mode which exhibits the highest average dynamic TF size (BBT) also simulates
the benchmark the fastest (443 MIPS).

Basic blocks which are emulated by TFs cease to be profiledl DB simulation
modes. This is an issue for LTU DBT based simulation as itgmévaccurate genera-

Chapter 7. Instruction Level Simulation

85

8000 800
— + - 700
£ +
8 6000 + . 600
+ —
ﬂ + &
n . 4 - 500 s
= * <
o 4000 - Lt 400 o
€ o
g 300 v
>
8 2000 200
[
>
< 100
0 | | = I 0
»58‘&\, o& é“& @‘9\/ &?@% 6@6% Q@N A&\’ ~ &b‘@ ”& &5 «‘5‘+®b & 'B@Q\l & g e@? @@’} m@> @4’? WTFSize
RO S & &9 \G‘go \{l@\Q & & T s \006 S s + Speed
& & A & @ N
< &(— < «02 ’b\).éa &’ &Qa
(a) SCC
8000
N
m
=
@ 6000 +
& z
i + + =
(= +
Q 4000 + g
— + —+ + (]
£ o
g . 5
>
9 000
g
<
0 T - T T T :
N QQ’\, & \-&\' QQ’% »QQ’% o?\/ & & Vv@ NS (\@\" ?,@'\’ .@9’\' 4@'» 27 @ ,@'J’ @3’ W TF Size
P SRS § ¢ S FF T FF
* & § &\o K\oq\ 5 & I 0,530 & & + Speed
T F ¢ ¢ @&0 & 3@
(b) CFG
8000 900
+
- 800
2 + - 700
& 6000 5
g . N L6000 Z
el + + * =3
N 500
Y 4000 ot 3
= - 400 v
£ o4 + o
g ’ + ’ * ' 300 <
> 4 [
a
ub 2000 - 200
>
< I I - 100
' S BN B E— n_ 0
& & & & %o Lo & SIS N Q > N4 N4 N4 ” v N) .
é&@ &(\QQ g (},59 ’#;\9 & vq& &\& R o“pb(q@(,;\'} ¥ 3 8\5*@ &Q}Q 0@3@6 ‘5.9 Qb@/gbéb/gb&'b/gb”@/ W TF Size
& S
SRS &% o8 R e &« . \@g & é°° + Speed

Figure 7.5 LTU Dynamic TF Size and Simulation Speed.

The figures show the average

dynamic TF size and simulation speed for each benchmark for SCC, CFG and Page DBT based

simulation.

Chapter 7. Instruction Level Simulation 86

80

70 -
60 |
= 50
(]
£
£ a0
2
30
20 |
10
0’
8 m v w0 ~ @ o g g 8 F 89 55 % 9 28 8§ % 48 2 8 3
Static TF Size (Blks)
(a) Scc
60
50 |
40 |
=
[T}
t
S 30
2
20 |
10 -
0,
- N &M & N O N 00 O O +H N M & N W N 0 O «H N & N N M VW O N 0 O N o
S 2 ¥4 23 ¥ 8N ¥R I ANIARRNI 8 AILT IR YR
Static TF Size (Blks)
(b) CFG
4
3
£
[T}
Ko}
£ >
=]
2
1
0
N m o+ e 9~ @& @« o @ @ @ &8 s w 5 @ @a ~ @
¥ ¥ &8 & B8 ¢ ¥ g 5 & 8 & g

StaticTF Size (Blks)
(c) Page

Figure 7.6 Static TF Distribution. The figures show the number of static TFs of a given size
generated for the pktflowb4m benchmark for SCC, CFG and Page DBT based simulation.

Chapter 7. Instruction Level Simulation 87

6
5
w0
8
w 4
o
™
5
mw
=3
2
o
ON
) _ __
) bl by 1, I 1 1 L1
o | _ _ _ _ _ I _ __._ _,_,_, | ._ AN ___ [-
e v~ e ZmomonN % g8 KRR N B YN R B R B SR YOS
S8 23
g3
Dynamic TF Size (Blks) =
(a) SCC
6
5
»
8
w 4
o
S
5
m 3
=3
2
[-T+]
ON
—
1
o HLLELLELEE L __ ;_,__, 1 __z___,___,_,____ imas _,_,_, 1T T |
"M g R3S 82T RTERANRSTERREEILELIESTSTEIEEEY
g
Dynamic TF Size (Blks) b=t
(b) CFG
6
5
»
8
[4
o
£ Sy
Q
Ke)
m 3
=3
2
WoN
—
1
o LLLELELELEL ;5;_;_,_,_,,_,__,_,_,_,,_,,,,____;5_,_,_;_,_;; Ll ol
Cme N e g NARIREAARYRBATERLRERIIAIT TR Y
Dynamic TF Size (Blks) 3

(c) Page

Figure 7.7 Dynamic TF Distribution. The figures show the number of times that dynamic
TFs of a given size were called for the pktflowb4m benchmark for SCC, CFG and Page DBT
based simulation.

Chapter 7. Instruction Level Simulation 88

tion of page-CFGs. It may cause individual blocks, or smedugs of blocks, which
lie on the execution path to be profiled as isolated code segmé&his results in the
formation of fragmented translation units (refer to set{fo5). Severe translation unit
fragmentation is in evidence during CFG and SCC DBT basedlsiion of the pkt-
flowb4m benchmark in which large numbers of static TFs areeggrad consisting of
just one block.

Changes in a program’s execution path (phase change) nagfédst simulation per-
formance. Target program execution path information iy giathered during the cur-
rent simulation epoch and only for blocks which are intetgde Profiling information

for a section of code may therefore be incomplete as the sitmuhas no future (or
past epoch) knowledge of indirect branches between or nvitfainslation units. If

there is a change in the program path (new hot path), it coaildhat the blocks which
lie on the new path are contained within different TFs. Timewdator must therefore
call multiple TFs in order to simulate the instructions ie tturrent path.

Translation unit fragmentation lowers the average dynarkisize and explains why
the average dynamic TF size for Page DBT based simulati@sssthan that for CFG
DBT based simulation (except for the ospf benchmark) eveagh it exhibits a higher
average static TF size. This can be observed in Page DBT aseathtion of the pk-

tflowb4m benchmark in which the smallest static TF size is &, where there are
over 1,000 calls to dynamic TFs of size 1. Translation uragmentation and pro-
gram phase changes lower the average dynamic TF size ngsuitslower simulation

speeds.

For a given benchmark and LTU DBT simulation mode there sxastF, or multiple
TFs, which represent the the simulation of the target pm¢gamain loop, or part
thereof. In the case of the rgbhpg benchmark, TFs with a dymblock size of 75,921
blocks were called a total of 100 times, the same number @&gias the default number
of iterations for the benchmark. This is true for all of thel ' DBT simulation modes,
suggesting that the main loop, or part thereof, of the rghigagchmark is contained
within a strongly connected component.

Whilst those simulations which exhibit very large averageaimic TF sizes do expe-
rience faster than average simulation speeds, the aveyagenic TF size does not on
its own explain the simulation speeds achieved relativethherdboenchmarks or DBT

Chapter 7. Instruction Level Simulation 89

simulation modes. For example, whilst CFG DBT based sinaraif the bezierfixed
benchmark exhibits the largest average dynamic TF size3(blécks compared to
1057 blocks for Page and 1029 blocks for SCC DBT) by a facto8 of more, it

possesses the slowest simulation speed (467 MIPS), slewprtkan BB DBT based
simulation.

7.3 Translation Cache Size

Whilst the size of the translation cache has an affect onlsition performance it does
not favour one DBT simulation mode over another as it holdgedfnumber of TFs.

Increasing the size of the translation cache may in theoprowe performance as a
larger number of TFs should be accessible at greater spemae\tr, it is the size of

the L1 cache on the host machine which has an overridingtadfesimulation speed.

Maximum simulation speed will be attained if the translataache, or the hot part of
it, fits into the L1 cache.

7.4 Workload Sensitivity

It was observed that translation is only performed on the &rsulation run for all
DBT simulation modes when simulating the EEMBC benchmarkss shows that the
translations generated in the first run provide all of the mEsessary to emulate the
complete benchmark on consecutive simulation runs. Horvévehould be remem-
bered that this is only the case if the benchmarks are rertim ttwve same workload.
If the same benchmark is run with a different workload theardes to the program’s
execution path, and possibly to the program code itself-(aedifying), are likely to
occur.

If the program execution path changes with different woskl® then new translations
may be generated on consecutive simulation runs. This ¢aatdiie performance of
SCC and CFG DBT based simulation as entry to each TF is onlyiged via the

root node and new translations may therefore need to be gieader Changes to the
workload will not initiate further translation in BB and RadPBT based simulation

Chapter 7. Instruction Level Simulation 90

as both modes allow direct entry to any block within a TF. Il Wowever adversely
affect the performance of Page DBT based simulation as agehtarthe program path
will very likely straddle many more TFs.

7.5 Translation Unit Fragmentation

Translation unit fragmentation is the generation of midgismaller translation units
resulting from disruption to the profiling process durinmsiation. Incomplete profil-
ing of the target program path is caused by a number of fagtahsding the physical
page size, the simulation epoch and translated functions.

The target program’s execution path is profiled at runtimerder to discover the trans-
lation units. However, only those blocks which are intetpdeare profiled, blocks em-
ulated by TFs (previously translated translation unitshdbget profiled. No profiling
is performed within TFs so that sections of the target pnogcan be emulated at as
fast a speed as possible. Adding profiling code to TFs woua slown the overall
simulation speed considerably.

Figure 7.8 shows how fragmented translation units are fdrfoe CFG DBT based
simulation. Figure 7.8a shows the control flow graph for aanegle target program
and figure 7.8b shows the segment simulated during the firatlation epoch (shown
in orange). The translation unit (CFG DBT mode) which mightmally be identified
at the end of the first simulation epoch is shown to the rigiuiack.

Figure 7.8c shows what actually happens during the firstlsiian epoch. Any phys-
ical page boundaries disrupt the profiling process as thmsta#on units are created
on a per physical page basis and so any control arcs goingdrapage to another
are lost (dashed orange lines). The boundaries betweemagioruepochs also disrupt
profiling as the control arc leading to the next block to bewdated in the following
simulation epoch will be lost. The result is that two smattanslation units (shown
to the right in black) are formed at the end of the first simolaepoch instead of the
single translation unit previously shown.

Figure 7.8d shows the program segment simulated duringsitensl simulation epoch
(shown in orange) and the corresponding translation unitnadly identified to the

Chapter 7. Instruction Level Simulation 91

Program CFG

Q)

Program CFG Program CFG Page-CFGs

b
3

1t simulation epoch

Physical
page

End of

epoch

1t simulation epoch

(b) ©

Program CFG Page-CFGs Program CFG Page-CFGs Page-CFGs

b b
3 3

: 5o

1% simulation epoch 2 simulation epoch

Previously
translated

1t simulation epoch 27 simulation epoch

(d) (e)

Program CFG Page-CFGs

5
SIS

Two simulation epochs

®

Figure 7.8 Translation Unit Fragmentation. These figures show the control flow graph for
an example target program, the CFG LTUs identified in each simulation epoch and how they
become fragmented. Orange lines show the program segments emulated in each simulation
epoch and the dashed orange lines show the control arcs lost during profiling.

Chapter 7. Instruction Level Simulation 92

right (shown in black). However, profiling of the target pram is further disrupted
in the second simulation epoch now that TFs exist. Figure 3®ws that those sec-
tions of the program emulated by TFs (shown in light oranged potential trans-
lation units as they do not perform any profiling themselvése result is the two
small translation units shown on the right in black, insteathe single translation unit
shown before. Translation unit fragmentation, as a corsecpiof existing TFs, has
the potential to affect Page DBT based simulation more sévéinan SCC or CFG
DBT simulation as Page based TFs are called to emulate aiytdask which they
contain, not just the root block.

Figure 7.8f shows the situation after two simulation epachshich five control arcs
have been lost (shown in orange) and the control flow graphh®rtarget program
has been divided into four small translation units. Trat@haunit fragmentation is
affected by:

Physical Page Boundaries

Existing Translated Functions

Simulation Epoch Size

Translation Threshold

Program Phase Changes

Translation unit fragmentation results in a larger numbesmaller TFs which has
a negative effect on simulation performance. Fewer bascks will be emulated
within a given TF, requiring the simulator to return to theimaimulation loop more
frequently in order to find the next TF to call. More time speaarching for TFs in
the main simulation loop results in slower simulation sgeed

Figure 7.9 outlines two different dynamic profiling technés: interpretive and con-
tinuous profiling. Figure 7.9b shows the translation urdesnitified using interpretive
profiling which only profiles interpreted blocks. This is theethod used by the EHS
simulator and which is described above. Figure 7.9c shoevg#imslation units identi-
fied using continuous profiling which profiles all basic blectwhether they are inter-
preted or emulated by a TF. The continuous profiling techmican be used with any
LTU DBT mode to reduce the effect of translation unit fragnagion.

Chapter 7. Instruction Level Simulation 93

Program CFG Page-CFGs Page-CFGs

b &
:

page

End of

15t epoch O O
Interpretive Profiling Continuous Profiling
(a) (b) (©)
Figure 7.9 Translation Unit Profiling Techniques. Shows the (a) control flow graph for an

example target program and the CFG LTUs identified by (b) interpretive only profiling and by (c)
continuous profiling (interpretive and TF). The translation units identified in the first simulation
epoch are shown in blue and those identified in the second simulation epoch are shown in green.

After two simulation epochs, the interpretive profiling aeque identifies four trans-

lation units, the largest of which contains three blockse Tantinuous profiling tech-

nique identifies three translation units, the largest ofohtgontains five blocks. This
demonstrates that continuous profiling is more immune tastedion unit fragmenta-

tion than interpretive profiling. However, physical page amulation epoch bound-
aries will still cause fragmentation. It may be that the ¢=d involved in contin-

uously profiling the target program is less costly than thdgsmance degradation
resulting from translation unit fragmentation. An additad advantage of continuous
profiling would be the ability to continuously monitor pr@gn behaviour and to re-
spond to events such as phase changes.

7.6 Simulation Epoch Size

The effect of varying the size of the simulation epoch (indbetween translations) on
the average simulation speed and on the average static aathity TF sizes is shown

Chapter 7. Instruction Level Simulation 94

in figure 7.10. The average performance statistics, for fathe benchmarks, were
calculated using data obtained from the second simulatiomrwhich all instructions
are emulated by TFs.

As expected, figure 7.10a shows that the average simulgiredsior BB DBT based
simulation is significantly below that of the LTU DBT simulat modes. The mean
simulation speed for BB DBT remains constant at 283 MIPS faimulation epochs.

For SCC DBT based simulation, the simulation speed inceeieen 371 MIPS at

10 blocks to 478 MIPS at 10,000 blocks and then slowly deeeés 452 MIPS at

1000,000 blocks. In CFG DBT based simulation, the simutesipeed increases from
373 at 10 blocks to 474 MIPS at 1,000,000 blocks. In Page DBEdaimulation,

the simulation speed increases from 358 MIPS at 10 block820MIPS at 100,000

blocks and above.

In general, for simulation epochs between 100 to 1,000,08¢kb, Page DBT based
simulation is slightly faster than CFG DBT based simulatiahich is in turn faster
than SCC DBT based simulation. However there are a few exuteptSCC DBT
based simulation is slightly faster than CFG DBT based satmuh at 1000 and 10,000
blocks. It is worth noting that the simulation speed for SCBTCbased simulation
decreases slightly as the simulation epoch increases Hey®000 blocks.

Figure 7.10b shows that the average static TF size (humbleagit blocks in a TF)

increases for all LTU DBT modes as the size of the simulatjpocé increases - the
static size of BB TFs is always 1. The average static TF sizd*&ge DBT based
simulation increases from 4.5 at a simulation epoch of 1@kddo 79.7 at a simu-
lation epoch of 1,000,000 blocks. This demonstrates thigyabf Page DBT based
simulation to benefit from larger simulation epochs. Pagd bBsed simulation will

continue to identify larger translation units until theyn¢ain whole physical pages.

The average static TF size for CFG DBT based simulation asge slowly from an
average of 2.9 at a simulation epoch of 10 blocks to 12.7 amalation epoch of
100,000 blocks. On average larger static TFs are generatéaeasimulation epoch
is increased up to 100,000 blocks. However, increasingithalation epoch beyond
100,000 blocks results in a slight decrease in the averagje 3t size, indicating that
all of the CFGs that can be identified have been identified. mhgimum average
static TF size for CFG DBT based simulation is capped at 1@akis.

Chapter 7. Instruction Level Simulation 95
500
—_
g —+—BB
S 400
2 -8-5CC
- [
@ CFG
Q
Q.
w —=Page
¥ 30
<
200 : :
10 100 1000 10000 100000 1000000
Simulation Epoch (Blks)
(a) Simulation Speed
80
—_
L
= ——-BB
8 -
o -m-5CC
N
b CFG
t —<Page
o 40
£
[y}
L
w
@
Z
0 ' ' ' '
10 100 1000 10000 100000 1000000
Simulation Epoch (Blks)
(b) Static TF Size
20000
—_
w
=
a
-g 15000
wv
[T
[
.g ,/.
£ 10000
5]
g —+-BB
= -m-5CC
§° 5000 CFG
<
—=Page
0 < <
10 100 1000 10000 100000 1000000

Simulation Epoch (Blks)
(c) Dynamic TF Size

Figure 7.10 Simulation Speed and TF Profiles.

The graphs above show the mean (a) simu-

lation speed, (b) static TF size and (c) dynamic TF size for the EEMBC benchmarks for varying

simulation epochs.

Chapter 7. Instruction Level Simulation 96

The average static TF size for SCC DBT based simulation als@ases very slowly
from an average of 2.7 at a simulation epoch of 10 blocks t@#asimulation epoch
of 100,000 blocks. The graph shows that increasing the sitioul epoch beyond
100,000 blocks does not result in a larger average statiaze; mdicating that all of
the SCCs have been identified. The maximum average staticz€Ra SCC DBT
based simulation is capped at 4.6 blocks.

Figure 7.10c shows that the average dynamic TF size (nunfibassa blocks emulated
by a TF) increases substantially for all LTU DBT modes as the ef the simulation

epoch increases - the dynamic size of BB TFs is always 1. Tamge dynamic TF

size for CFG DBT based simulation increases from 24 at a sitid epoch of 10

blocks to 18,071 at a simulation epoch of 1,000,000 blocke dverage dynamic TF
size increases from 18 to 15,809 for Page DBT based simalatid from 17 to 11,512
for SCC DBT based simulation.

Whilst Page DBT based simulation exhibits the highest ayestatic TF size (fol-
lowed by CFG DBT) at all simulation epoch sizes, it is CFG DBAséd simulation
which exhibits the highest average dynamic TF size at alckpdollowed by Page
DBT based simulation. A high degree of translation unit inggtation must therefore
be occurring in Page DBT based simulation for this to be tlseca

Although CFG DBT based simulation exhibits the highestagerdynamic TF size, it
is none the less Page DBT based simulation which displaysa$teaverage simulation
speeds for simulation epochs greater than 100 blocks. SCTHaBed simulation also
performs well in so much as it emulates more benchmarksrfdsta any other DBT

simulation mode. These results further illustrate the demmteractions which take
place during simulation. The main factors affecting theespef simulation are:

e Program Behaviour. The execution path of a target program may
favour one DBT simulation mode over another. Translatioi fsag-
mentation makes it difficult to predict which LTU DBT mode ipler-
form the best given a particular benchmark.

e Dynamic TF Size The greater the number of basic blocks emulated
within TFs the faster, in theory, the simulation speed. Thg is to
keep emulation of the target program confined to as few TFesSiiple

Chapter 7. Instruction Level Simulation 97

as they have been optimized for speed of execution. Thisrathaces
the number of times that control has to be passed back to thesma-
ulation loop.

e Host Hardware: The system hardware, in particular the cache config-
uration, may benefit a particular DBT simulation mode momntkhe
others.

In general, the average simulation speed for all LTU DBT dation modes increases
as the average dynamic TF size increases. However, thegavenaulation speed
hits a ceiling of 480 MIPS as the simulation epoch is incrddssyond 10,000 blocks
(100,000 blocks for Page DBT). This upper limit in the averagpeed most likely
reflects the physical restrictions imposed by the host @iatfas the dynamic TF size,
which has a positive affect on simulation speed, is showmtoease as the epoch
size is increased beyond 10,000 blocks. It is thereforeorestse to assume that faster
simulation speeds are attainable with a more capable hagtimea

7.7 Comparison with State-of-the-Art Simulators

The EHS simulator was compared with two state-of-the-artfiwnal DBT based sim-
ulators, Simit-Arm and QEMU. Further details of both sintolg, which model the
ARM processor [ARMv], can be found in chapter 3. Figures 7ahdl 7.12 show the
simulation speed and the time to completion for each bendhreapectively, running
on the three different simulators. Table 7.3 provides a samgmof the results. The
EHS simulator was configured to run in one of its fastest setapthe host platform.

The simulation speed$/(PS) for Simit-ARM and QEMU can not be directly com-
pared with the EHS simulator as they simulate different 1S4st only do the number

of instructions emulated using different ISAs differ, tmstruction sets and the com-
plexity of each instruction which must be modelled alsoetiff

The time taken to simulate each benchmark shows that QEMh&ifastest simulator
overall. QEMU takes on average 650 milliseconds to emuldterechmark, followed
by the EHS simulator which takes 820 milliseconds, with $IARM last taking 880

Chapter 7. Instruction Level Simulation 98

1000
= mEHS
% 800 SimitARM
= m QEMU
-8 600
o
o
n
c
o 400 -
2
o
>
£ 200 -
5
0 -
N2 N2 2 4 » N2 < S L > 2 4 4
S & & & 8 $ I AN
& & & FEF S ‘598 & & P&
P & F 8 ¥ & & & TS & & & &
D & & & S & &
Q N R &

Figure 7.11 EHS, Simit-ARM and QEMU Simulation Speeds. This chart shows the func-
tional simulation speeds of selected EEMBC benchmarks running on the EHS (Page DBT),
Simit-ARM and QEMU simulators.

4
B EHS

3 SimitARM
uQEMU

Simulation Time (secs)
N

0
> > S S & - R > & > S % y 5
& Q \) Q
& T & FFE I F S e

& ¥ & $ O N T & ¢ & & & &
S N & K P & ¢S < IS IS $

& L o & s & ©

< © & N &

Figure 7.12 EHS, Simit-ARM and QEMU Simulation Times. This chart shows the functional
simulation times of selected EEMBC benchmarks running on the EHS (Page DBT), Simit-ARM
and QEMU simulators.

Chapter 7. Instruction Level Simulation 99

EHS Simit-ARM QEMU

SPEED (uips)

Slowest 244 358 398
Fastest 833 810 905
Median 462 443 627
Average 483 477 651
TIME (msecs)

Shortest 20 150 13
Longest 3010 3610 2852
Median 330 4450 356
Average 820 880 650
INSTRUCTIONS

Average 2008V 217eM 2176

Table 7.3 EHS, Simit-ARM and QEMU Performance Summary. Simulation speed, real-time
to complete execution and instruction count summary for a subset of the EEMBC benchmark
suite running on the EHS, Simit-ARM and QEMU simulators. The EHS simulator was run in
Page DBT mode with a 100,000 block simulation epoch and a translation threshold equal to 1.

milliseconds. QEMU simulates 12 out of the 18 benchmarksfélséest, followed
by the EHS simulator which simulates 6 benchmarks the fass@®it-ARM does not
simulate any of the benchmarks the fastest. Simit-ARM etesala3 of the benchmarks
the slowest, followed by the EHS simulator which simulatex $ne benchmarks the
slowest. The QEMU simulator does not simulate any of the beracks the slowest.

It is evident from these results that the simulation speati®@EHS simulator is com-
parable with best in class. The EHS simulator completeslsion of the benchmarks
on average 1.07 times faster than Simit-ARM and 1.26 timasesl than QEMU. This
Is impressive considering that the EHS simulator was d@ezglas a flexible research
simulator suitable for performing design-space exploratiunlike Simit-ARM and
QEMU simulators which were designed purely for functionatgation speed.

7.8 Summary

The results for instruction level simulation across all ttemarks show that the LTU
DBT simulation modes are on average at least 1.63 times fdste BB DBT based

Chapter 7. Instruction Level Simulation 100

simulation (using a 1000 block simulation epoch). Howei&,DBT based simula-
tion of the bezierfixed benchmark is slightly faster than SOET based simulation.
Page DBT based simulation performed the best overall witleamspeed-up of 1.67
and SCC DBT based simulation simulated 9 out of the 20 bendtantiae fastest.

The combination of profiling the target programs’ executpath at runtime and dy-
namic binary translation is shown to be an effective techaigr high speed simulation
of microprocessor systems. In all DBT simulation modess than 1% of the instruc-
tions simulated are interpreted on the first run (the reseanalated by TFs) with all
of the instructions being emulated by TFs on the second run.

The relationship between the average static TF size, thegeelynamic TF size and
the average simulation speed was investigated. It was wixbefor all LTU DBT
simulation modes, that the average dynamic TF size incdeasé¢he size of the sim-
ulation epoch increased. This research demonstratesattat simulation speeds can
be attained by increasing the number of instructions eradlah each TF call.

Chapter 8

Cycle Timing Simulation

This chapter investigates high speed DBT based cycle-atesimulation and eval-
uates the research hypothesis by comparing the simulgbeeds of the novel LTU
DBT simulation techniques. Three cycle-approximate satask designed to increase
simulation speed are also explored. The simplified targedetsoused in the cycle-
approximate simulators are described in detail and theiukition speed and accuracy
analyzed.

8.1 Overview

Cycle-accurate simulators not only emulate the target narog they model the sys-
tem in sufficient detail so that the execution time of a pragi@an be calculated in
clock cycles. Cycle-accurate simulators facilitate l@vel design space exploration,
enabling a large number of different architectures to beetewith real-world applica-
tions. The information returned by a cycle-accurate sinaulallows the performance
of different system designs to be properly assessed andamechpvith one another.
The system which best fulfils the design criteria can thendbecsed for fabrication.

Cycle accurate simulation involves modelling the precisiedviour of all system com-
ponents in simulated time. For a microprocessor systemntie@ns accurately mod-
elling the operation of at least the processor pipeline aethory sub-system. The
memory latencies for instruction fetches and data reads\aites must be calculated

101

Chapter 8. Cycle Timing Simulation 102

and then inserted into the pipeline at the correct stageh Biage of the pipeline must
also be modelled, maintaining any inter-dependenciesdetwpipeline stages.

Cycle-accurate simulators model the timing events withgystem in detail and are
therefore slow. Cycle-approximate simulators howeverdel@a system less precisely
which means that whilst they are many times faster than eycteirate simulators,
they also introduce a greater degree of error into the ddtaned. Three different
cycle-approximate versions of the EHS simulator are ingagtd. The first employs
a simplified model of the processor pipeline, the second aldied model of the
memory sub-system and the third incorporates both of thegdified models. Cycle-
approximate simulators are often used to test new systeigrdeshen the time avail-
able is limited.

In order to evaluate the research hypothesis the same semofitmarks were run on the
simulator operating in each of the different DBT simulatrondes. The performance
of the different DBT modes could then be quantitatively canggl for cycle-accurate
and cycle-approximate simulation. The following secti@mesent the results from
simulating a subset of the EEMBC benchmark suite [EEMB] anElinburgh High
Speed simulator. The simulation speeds reported are welsltiPS: millions of target
instructions simulated per real-time (host) second. Unéeglicitly stated otherwise,
the simulation epoch was set at 1000 blocks and the traoslttreshold set to 1.

8.2 Cycle Accurate Simulation Analysis

The cycle-accurate version of the EHS simulator models ts&age pipeline of the
ARC 700 based processor which is detailed in figure 8.1. hvshibe inter-stage de-
pendencies and the points at which pipeline stalls can oddue processor pipeline
may stall as a result of memory latencies, experienced wéiehihg instructions and
loading data, instruction execution latencies or sourcerapd dependencies, expe-
rienced when waiting for the value of a source operand to laatgal by a previous
instruction. The pipeline and processor states are upadtedeach target instruction
is simulated. The performance figures obtained from cycta+emte simulation are
used as a baseline to compare the relative performancee okth cycle-approximate
models.

Chapter 8. Cycle Timing Simulation 103

/'l Fetch Stage

pi pel i ne[FETCH += inst_fetch_cycles;

if (pipeline[FETCH < pipeline[ALIGN])
pi pel i ne[FETCH = pi pel i ne[ALIGN;

/1 Align Stage

pi peline[ALIG\] = pipeline[FETCH + 1,

if (pipeline[ALIGN] < pipeline[DECODE])
pi pel ine[ALI G\N] = pi pel i ne[DECODE] ;

/| Decode Stage

pi pel i ne[DECODE] = pipeline[ALIGN + 1;

if (pipeline[DECODE] < pipeline[REG STER])
pi pel i ne[DECODE] = pi pel i ne[REG STER] ;

Il Register File Stage
pi pel i ne[REG STER] = pi pel i ne[DECCDE] + 1;
pi pel i ne[REG STER] = max(REG STER reg_cycle[src_opl], reg_cycle[src_op2?]);
if (pipeline[REG STER] < pi pel i ne[EXECUTE])
pi pel i ne[REG STER] = pi pel i ne[EXECUTE] ;

/] Execute Stage
pi pel i ne[EXECUTE] = pi pel i ne[REG STER] + inst_exe_cycles;
reg_cycl e[dst_opl] = pipeline[EXECUTE];
if (pipeline[EXECUTE] < pi peline[MEMORY])
pi pel i ne[EXECUTE] = pi pel i ne[MEMORY] ;

/1 Menory Stage
pi pel i ne[MEMORY] = pi pel i ne[EXECUTE] + nmenory_| oad_cycl es;
reg_cycl es[dst_op2] = pipel i ne[MEMORY] ;
i f (pipeline[MEMORY] < pipeline[WRI TEBACK])
pi pel i ne[MEMORY] = pi pel i ne[WRI TEBACK] ;

/] Wite-Back Stage
pi pel i ne[WRI TEBACK] = pi pel i ne[MEMCRY] + 1;

Figure 8.1 Cycle Accurate Pipeline Model. This figure shows the cycle-accurate pipeline
model for both interpretive and DBT based simulation modes. The processor and pipeline
states are updated after each instruction has been emulated. The pi pel i ne structure holds
the current state (instruction cycle) for each pipeline stage and the reg_cycl e structure holds
the availability (cycle) for each register.

The results of two consecutive simulation runs for each beragck and DBT simula-
tion mode are shown in figure 8.2. The simulation speeds fersétond run range
from 10 to 30 MIPS.

The increase in simulation speed from the first to the secondlation run is small
for most benchmarks and all DBT simulation modes. For examible simulation
speed for the dither benchmark goes from 18 MIPS on the firsttaul9 MIPS on the
second run when the simulator is operating in the CFG DBT kittan mode. This
is in contrast to instruction level DBT based simulation ethexperiences a much
bigger jump in speed from the first to the second run. The mahspeed increase on

Chapter 8. Cycle Timing Simulation 104

30 - 100
— _ M 90
% 8 R
_ i 2
2 20 0 E
s 60
2 <
g 15 50 g
] w0 =
2 10 c
" 30 O
[=
s | - 20
10
0+ 0 1st
> N4 N\ >) % N4 N\ - Q > > N\ > » 1V N »
ST GG T I T o e
» & F & &8 RO O RS S NN N, = 2nd
& N <& & § \S& S o‘§ 4@ N 0@) ,I}Q ‘8& &Q
A S &
(a) BB
30 — - —_— — 100
_ 90
25 _ .
- _ -8 ¥
—_ [L 70)
g 2 £
s L60 =
— c
T 15 50 &
£
g_ 40 %
0o -H HH o = A1 oy 7 =e 2
] 30 &
s 0 F
I ﬂ o
0 e : : : : 0 1st
S S o DD
S &FIFTFFEEEES
T E e & & 2nd
30 — — — 100
M - _ L 90
25 - - - 0
—_ — ﬂ-’
g 2 °E
s - 60 [
= s
15 50
ki B
] w0 =
e 10 4 H H - B N) N N . S I (N B c
L] F3 @
5 20 i
10
0 . - u — : U : e 0 1st
S & & & & PP LSS %
& @‘\Q & @&‘\+ ¥ F ©® T & Q’\}d‘ & & F RN AN N 2nd
A ¢ & F & @&« F & &S
& J O e
T ¢ © ¢ @5& ®<~ A\@
(c) CFG
30 — — —_ — 100
[] - 90
25 M | 8 X
—_ _ _ _ - °
g Wil E
s 60
2 c
> 151 e + = 1 || s &
[®
Q 0 5
o c
wv 30 ©
=
s L 20
” - 10
[V - - - = = = = e L = L e - 0 1st
34 > N\ 2 3 5 34 34 < N L > > > 2 » Vv N k)
& & &Q & &SI @&Q @‘§ & 2nd
RIS g & ¢ & TS S & & § n
© ¢ F & ¢ S & &L
Q © S &

Figure 8.2 Cycle Accurate Simulation Profile. The figures show the simulation speed and
the proportion of total simulation time spent performing translation (outlined bars) for two con-
secutive runs of each benchmark in each of the DBT modes.

Chapter 8. Cycle Timing Simulation 105

the second simulation run can be attributed to the largeh@aat involved in modelling
the cycle-accurate behaviour of the system. The patterimafiation speeds across all
benchmarks is similar for each DBT simulation mode and sintd that of instruction
level DBT based simulation, albeit at much slower speeds.

As with instruction level DBT based simulation, the propamtof the overall simula-
tion time spent performing translation during the first rgrhigh. The proportion of
time spent performing translation is more than 70% for 11chemarks running in BB
DBT simulation mode, for 13 benchmarks in SCC DBT mode, fob&Achmarks in
CFG DBT mode and for 15 benchmarks in Page DBT simulation mdte propor-
tion of time spent performing translation for each benchoisslightly higher in SCC
DBT mode than in BB DBT mode, and slightly higher in CFG DBT raddan in SCC
DBT mode, with figures for Page DBT mode very similar to SCC DBdde. This is
the same picture which emerged from instruction level DB$dubasimulation of the
benchmarks.

The proportion of the total simulation time spent perforgitranslation is significant
for benchmarks which run for short time periods, and markées for those bench-
marks which run for longer periods. As expected, no trarshat performed on the
second simulation run as all of the target instructions eaaslated on the first run.
More than 99% of the instructions simulated on the first rienaanulated by TFs, with
all instructions being emulated by TFs on the second run.

Figure 8.3 shows the maximum cycle-accurate simulatioadpéor the different DBT

simulation modes and compares them with the interpretineilsition speeds. The
corresponding speed-ups for each DBT mode, relative topreégve simulation, are

shown in figure 8.4. The interpretive cycle-accurate simaitespeed for each bench-
mark remains pretty constant at about 12.5 MIPS. All of thedhenarks run faster

when the simulator operates in one of the DBT simulation rspddth the exception

of the rotate benchmark which runs slightly slower in SCC Ddghulation mode than

it does interpretively.

Overall, the DBT simulation modes exhibit a mean speed-uptdéast 1.45 over
interpretive cycle-accurate simulation as summarizedbiet 8.1. Page DBT based
simulation performs the best with a mean speed-up of 1.3&wed by SCC DBT
simulation, then CFG DBT simulation and lastly BB DBT basedusation. Page

Chapter 8. Cycle Timing Simulation 106

30

 Interp
= BB
mSCC
m CFG
M Page

Speed (Mmips)

Figure 8.3 Cycle Accurate Simulation Speed. This figure shows the simulation speed for
each benchmark using interpretive and DBT based simulation modes. The simulation speeds
presented are for the main simulation loop. The speeds shown are the average of 10 simulation

runs in which all target instructions had previously been translated.

2.4
m BB

22
|

2.0

| SCC
m CFG

M Page

1.8

Speedup

Figure 8.4 Cycle Accurate Simulation Speedup. This figure shows the simulation speed-

ups for each benchmark for each DBT mode relative to interpretive simulation.

Chapter 8. Cycle Timing Simulation 107

DBT based simulation is 1.08 times faster than BB DBT basedilsition. Page DBT
based simulation simulated 12 of the benchmarks fastéeiwied by CFG DBT based
simulation which simulated 4 of the benchmarks the fastest.

Interpretive BB SCC CFG Page

SPEED (uips)

Slowest 116 121 11.3 13.0 145
Fastest 13.4 29.3 28.2 28.2 29.1
Median 12.3 184 189 18.2 19.8
Average 125 18.3 19.1 18.7 19.6
SPEED-UP

Geo. Mean 1 145 152 149 1.56
Goe S.D. 0 029 026 025 0.22

Table 8.1 Cycle Accurate Performance Summary. The geometric mean speed-up for each
DBT mode is relative to interpretive simulation.

Figure 8.5 shows to what degree cycle-accurate modellitigeodiifferent system com-
ponents contribute to the overall simulation time. In athslation modes the amount
of time spent modelling the memory sub-system is less thairréguired to model the
pipeline. The proportion of simulation time spent mode]lihe pipeline is 30% for
interpretive simulation and approximately 51% for all o€tBBT simulation modes.
The proportion of time required to model the memory hierginst28% for interpretive
simulation, 42% for BB DBT based simulation and approxiye#l% for the LTU
DBT simulation modes. In all simulation modes, approximaiel% of the time re-
quired to model the memory hierarchy is spent modelling dataesses, the remaining
86% is spent modelling instruction fetches.

The proportion of total simulation time devoted to cycleaate modelling is 58% for
interpretive simulation, 94% for BB DBT based simulatiorn &% for all of the LTU
DBT simulation modes. As the time spent modelling the cyadeurate operation
of the system accounts for the vast majority of the simufatime in DBT based
simulators, the best opportunities for increasing the &atmn speed lie in optimizing
the cycle-accurate models. Also, cycle-accurate modgtirthe memory sub-system
takes up almost as much time as modelling the pipeline, fimereeducing the time
required to model both will result in significant increaseperformance. This may be

Chapter 8. Cycle Timing Simulation 108

60

50

40

30 B Memory - Data
B Memory - Inst
H Pipeline

20

Avg. Simulation Time (%)

10

Interp BB SCC CFG Page

Figure 8.5 Cycle Accurate Pipeline and Memory Models. This graph shows the propor-
tion of the total simulation time spent performing cycle-accurate modelling of the memory sub-
system and processor pipeline. The results shown are averages for simulation of the EEMBC
benchmark suite on the EHS simulator.

achieved by simplifying the target models for the pipelind anemory sub-system.

8.3 Cycle Approximate Simulation Analysis

This section introduces three new cycle-approximate satmi models designed to
provide high-speed simulation and to generate statistitts winimal error. The first
uses a simplified model for the processor pipeline, the stases a simplified model
for the memory sub-system and the third combines both ofktlogsle-approximate
models.

8.3.1 The Pipeline Model

The cycle-approximate model for the ARC based process@lipgis detailed in fig-
ure 8.6. The simplified pipeline models the inter-depend=nibetween the stages in
which stalls may be initiated, namely the fetch, executerarthory stages. However,
it does not model stalls caused by source register depemsamsulting from instruc-
tion execution, as the latencies involved are typicallyy\anall compared to those of

Chapter 8. Cycle Timing Simulation 109

instruction fetches and data loads from memory. As with ywezaccurate pipeline
model, the pipeline and processor states are updated aftértarget instruction is
emulated.

/] Fetch Stage

pi pel i ne[FETCH += inst_fetch_cycles;

if (pipeline[FETCH < pipeline[EXECUTE] - 3)
pi pel i ne[FETCH = pi pel i ne[EXECUTE] - 3;

/] Execute Stage
pi pel i ne[EXECUTE] = pipel ine[FETCH + 3 + inst_exe_cycles;
if (pipeline[EXECUTE] < pipeline[MEMORY])

pi pel i ne[EXECUTE] = pi pel i ne[MEMORY] ;

/1 Menory Stage
pi pel i ne[MEMORY] = pi pel i ne[EXECUTE] + nenory_| oad_cycl es;

Figure 8.6 Cycle Approximate Pipeline Model. This figure shows the cycle-approximate
pipeline model. It is a simplified version of the pipeline which models the Fetch, Execute and
Memory pipeline stages and ignores instruction register availability. The processor state is
updated after each instruction has been emulated.

The simulation results for each DBT simulation mode are shawfigure 8.7 and
summarized in table 8.2.

Interpretive BB SCC CFG Page

SPEED (uips)
Slowest 11.6 142 123 156 194
Fastest 13.4 49.0 53.8 543 545
Median 123 34.1 36.9 39.6 39.9
Average 125 341 36.8 37.2 38.3
SPEED-UP
Geo. Mean 1 257 276 281 294
Geo. S.D. 0 079 090 0.87 0.75
Table 8.2 Cycle Approximate Pipeline Performance Summary. The geometric mean

speed-up for each DBT mode is relative to the interpretive simulation speed.

Page DBT based simulation performs the best overall with amspeed-up of 2.94
across all benchmarks (compared to cycle-accurate imvprsimulation) followed
by CFG DBT based simulation then SCC DBT based simulationiastty BB DBT
based simulation. Page DBT based simulation simulated hdhpearks the fastest

Chapter 8. Cycle Timing Simulation 110

followed by SCC DBT based simulation which simulated 4 bematks the fastest.
The relative mean absolute error (RMAE) in the cycle countfbof the benchmarks
was 0.019 with standard deviation (RMAE SD) of 0.028.

4.5
m BB

4.0 F————
m SCC

35 1 I CFG

m Page
3.0 —

25

Speedup

20

15

1.0

Figure 8.7 Cycle Approximate Pipeline Speedup. This figure shows the simulation speed-
ups for each benchmark for each DBT mode relative to interpretive simulation.

8.3.2 The Memory Model

The cycle-approximate model for the memory sub-system ase®d number of cy-

cles for each instruction fetch and data read from memorg. mbdel performs a form
of sampling, gathering cycle-accurate data for those ucsiins interpreted within

each simulation epoch. The simulator maintains runnirglsdor the number of clock
cycles consumed by instruction fetches and data loads &br i@atruction. At the end
of each simulation epoch, the average number of cycles @¢@adimteger) used to fetch
and to load data are calculated for each instruction and itiesrted into the cycle-
approximate model of the pipeline prior to translation. Ashwhe cycle-accurate
pipeline model, the pipeline and processor states are egadter each instruction is
emulated. Note that if the memory configuration for the tagystem is changed, all
of the translations must be regenerated as the memory lateare hard-coded into
the TFs.

The simulation results for each DBT based simulation modesaown in figure 8.8
and summarized in table 8.3. CFG DBT based simulation pagdhe best overall
with a mean speed-up of 2.06 across all benchmarks (compa®gatle-accurate in-

Chapter 8. Cycle Timing Simulation 111

terpretive simulation) followed by SCC DBT based simulatiben Page DBT based
simulation and lastly BB DBT based simulation. Page DBT afd>MBT based
simulation both simulated 7 benchmarks the fastest foltblyeSCC DBT which sim-
ulated 4 benchmarks the fastest.

Interpretive BB SCC CFG Page

SPEED (uips)
Slowest 11.6 134 115 119 165
Fastest 13.4 41.2 43.7 442 42.6
Median 12.3 255 26.2 27.1 25.8
Average 125 254 26.8 26.9 26.0
SPEED-UP
Geo. Mean 1 195 204 206 203
Geo. S.D. 0 052 060 0.61 0.46
Table 8.3 Cycle Approximate Memory Performance Summary. The geometric mean

speed-up for each DBT mode is relative to the interpretive simulation speed.

35
m BB

| SCC
CFG

3.0

25 - M Page

Speedup

Figure 8.8 Cycle Approximate Memory Speedup. This figure shows the simulation speed-
ups for each benchmark for each DBT mode relative to interpretive simulation.

Figure 8.9 shows the relative mean absolute error in theeay@lint for different sim-
ulation epochs. Not surprisingly, the average error in tyhaeccount decreases as the
size of the simulation epoch is increased. The RMAE is shawjurnp from 0.142
with a simulation epoch of 1000 blocks down to 0.012 at 100 8ldcks (RMAE SD

= 0.015).

Chapter 8. Cycle Timing Simulation 112

0.16

0.14
w 0.12
<
E 0.10
€
S 008
o]
o
@ 006
I3
O 0.04
0.02 ~~—
0.00
1000 10000 100000 1000000
Simulation Epoch (Biks)
Figure 8.9 Cycle Approximate Memory Cycle Count Error. This figure shows the rela-

tive mean absolute error (RMAE) in the cycle count for the benchmarks for varying simulation
epochs.

8.3.3 The System Model

The system cycle-approximate model combines the cyclesappate models for the
pipeline and memory sub-system described in the previocisoss. The speeds for
the different modes of simulation are shown in figure 8.10 thwecspeed-ups shown in
figure 8.11. Table 8.4 provides a summary of the performaeselts.

Interpretive BB SCC CFG Page

SPEED (uips)
Slowest 116 293 551 6564 57.1
Fastest 13.4 125.7 137.5 136.1 133.8
Median 12.3 85.9 109.0 112.6 115.8
Average 125 83.7 107.4 107.8 109.3
SPEED-UP
Geo. Mean 1 633 837 840 851
Geo. S.D. 0O 188 166 168 1.78
Table 8.4 Cycle Approximate System Performance Summary. The geometric mean

speed-up for each DBT mode is relative to the interpretive simulation speed. Results are from
simulation using a 100,000 block simulation epoch.

Chapter 8. Cycle Timing Simulation 113

m BB
mSCC

mCFG

W Page

Speed (mips)

Figure 8.10 Cycle Approximate System Simulation Speed. This figure shows the simu-
lation speed for each benchmark for all DBT based simulation modes. The simulation speeds
presented are for the main simulation loop. The speeds shown are the average of 10 simulation
runs in which all target instructions had previously been translated. Results are from simulation

using a 100,000 block simulation epoch.

=
S)

mSCC

m CFG
W Page

Speedup

BN WA U1 N 0 ©
T S R T R N

7

Figure 8.11 Cycle Approximate System Speedup. This figure shows the simulation speed-
ups for each benchmark for each DBT mode relative to interpretive simulation. Results are from

simulation using a 100,000 block simulation epoch.

Chapter 8. Cycle Timing Simulation 114

The simulations were carried out using a simulation epochQ8f,000 blocks and a
translation threshold of 1. The size of the simulation epoels chosen to minimize
the cycle count error introduced by the cycle-approximagenory model.

The LTU DBT based cycle-approximate simulation speedseadrfgom 55.1 MIPS
for the rotate benchmark in SCC DBT simulation mode up to @3MIPS for the

rgbhpg benchmark also in SCC DBT simulation mode. Page DBEdaimulation
performs the best overall with a mean speed-up of 8.51 amdatd deviation of 1.78,
followed by CFG DBT based simulation then SCC DBT based st and lastly
BB DBT based simulation. Page DBT based simulation simdl@tbenchmarks the
fastest followed by CFG DBT based simulation which simwdaéebenchmarks the
fastest. Page DBT based simulation is on average 1.34 tiastsrfthan BB DBT
based simulation and 8.51 times faster than interpretiveilsition.

The errors in the cycle count for each benchmark are shownmefi§ul2. The cy-

cle count errors range from 8.76% for the rgbyiq benchmark8t68% for the ospf

benchmark. The RMAE in the cycle count for all benchmarks.@28 with standard

deviation of 0.026. It is impossible to work out what propamt of the cycle count

error is attributable to which of the cycle-approximate ralsd This is because inter-
dependencies still exist between the simplified pipelirceraemory models.

=
o

Cycle Count Error (%)
o & A N o N M o ®
| |
1
||
||
||

N
o

N2 2 N2 N2
& & & .8
S .
& &) & 9@*

Figure 8.12 Cycle Approximate System Cycle Count Errors. This graph shows the cycle
count errors for each benchmark. Results are from simulation using a 100,000 block simulation
epoch.

Chapter 8. Cycle Timing Simulation 115

8.3.4 Comparison with Sampling

One of the requirements for a research simulator is thatgpstts hardware/software
co-design and verification of microprocessor systems. $Vis&mpling based simu-
lators are very good for performing low level DSE, becaussytban perform cycle-
approximate simulation at speeds many times faster than RE€d simulators, they
do not provide state observability. Dynamic binary trahetabased simulators on
the other hand do support observability which is a pre-ratgifor hardware/software
co-design and verification.

8.4 Summary

The results for cycle-accurate simulation show that the A3ed simulation modes
(1000 block simulation epoch) are on average at least lrdé&stifaster than interpre-
tive cycle-accurate simulation. Page DBT based simulasdhe fastest and is 1.56
time faster than interpretive simulation and 1.08 timesegfiathan BB DBT based sim-
ulation. The sole exception is the rotate benchmark whials slightly slower in SCC
DBT simulation mode than it does when simulated interpediv

The results for cycle-approximate simulation, using sifiredd models of the proces-
sor pipeline and memory sub-system, show that the LTU DBE&¢basnulation modes
(100,000 block simulation epoch) are on average at lea3tt#&s faster than inter-
pretive cycle-accurate simulation. Page DBT based sinomad the fastest and is 8.51
times faster than interpretive simulation and 1.34 timetgiathan BB DBT based sim-
ulation. The average error in the cycle count was shown to.4#%2

Chapter 9

Conclusion

This thesis presents new techniques to speed up instruetieland cycle-approximate
DBT based simulation of microprocessor systems. The rekdaipothesis states that
faster simulation speeds can be realized by identifyingteantslating larger sections
of the target program at runtime. This is accomplished bgalisring LTUs within
control-flow graphs generated for the target program dusingulation. This research
shows that the new LTU DBT simulation techniques provideni$icant increases in
simulation speed over that attainable using basic block D&3ed simulation.

The application of DBT techniques to cycle-accurate sitmtais shown to provide

only moderate increases in the simulation speed. Howewerthesis describes how
simplified timing models can be deployed to achieve signiticgeed-ups in cycle-
approximate DBT based simulation. Simplified models of #rgét processor pipeline
and memory sub-system are shown to result in high speed &limlacross all DBT

simulation modes whilst maintaining a high degree of acyura

This chapter summarizes the main contributions to reseprolides a critical analysis
of the work and outlines future research.

9.1 Contributions to Research

The contributions to the field of high speed DBT based siniadre outlined in the
following sub-sections.

116

Chapter 9. Conclusion 117

9.1.1 High Speed Simulation Techniques

This thesis proposed LTUs as a means of increasing the diowlspeed of DBT

based research simulators. Large translation units, wéuieldescribed in chapter 6,
are based on standard computer software objects and comsisie or more basic
blocks. The techniques used to profile the target progrant@itentify and translate
LTUs at runtime are unique to the Edinburgh High Speed sitoula

The EHS simulator was developed as a research simulatdrégrurpose of perform-

ing high speed design-space exploration and hardwaressatco-design of novel

processor architectures. The processor state is updaerdeath instruction is emu-

lated and is observable at every translation unit boundBmg simulator can perform

both process and system level simulation, and incorpoeateanced management of
cached translations to support the emulation of self-nyaalif code.

Three different types of LTU were investigated. The LTUssisted of either strongly
connected components, control-flow graphs or physical pagarget programs are
initially interpreted during which time a profile of the pm@gn’s execution path is
built-up. At the end of each simulation epoch the progranathpprofile is analyzed
in order to extract the translation units prior to trangati Large translation units are
identified and stored on a per physical page basis to faeilikee simulation of complex
software including operating systems.

Increasing the size of the translation unit provides thadi@or with greater scope
to optimize the binary code generated for speed. It also mdzat more target in-
structions are emulated per translated function call. Assalt the simulator returns
to the main simulation loop on fewer occasions, spending tiese searching for the
next translated function to call. Both of these factors gbaote towards increasing the
overall simulation speed.

9.1.2 Analysis of Simulation Techniques

The simulation characteristics of the different LTU DBT negdare analyzed in order
to provide an insight into their effectiveness and futureeptial as high speed simula-
tion techniques. Many aspects of LTU DBT based simulatierrarestigated in detail

Chapter 9. Conclusion 118

in chapters 7 and 8, including analysis of the number of utsions emulated by a
translated function on the first and second simulation rthestime spent performing
the different simulation tasks; the size and number of tediz units generated; the
size and frequency of the translated functions called; alegofs which cause transla-
tion unit fragmentation and the effects of varying the sikzéhe simulation epoch.

During instruction level and cycle-accurate simulatiothef EEMBC benchmark suite,
less than 1% of all instructions emulated are interpretetherfirst run for all bench-

marks. However on the second run, all of the instructionsanelated by translated
functions which highlights the efficiency of DBT based siatidn. For the majority

of benchmarks, 70% or more of total simulation time is sparfggming translation

on the first run for all DBT simulation modes. This demongsathat LTU DBT based
simulation is almost as efficient as basic block DBT basedikition in terms of the

translation overhead incurred. The proportion of the oemmulation time spent per-
forming translation is primarily dependent upon DBT moden@hmark behaviour and
simulation duration.

Whilst the average static translated function size is shimancrease for all LTU DBT
simulation modes as the size of the simulation epoch is asa@, the average dynamic
translated function size only increases significantly fag€based DBT. The distribu-
tion of dynamic translated function sizes indicates thaga degree of translation unit
fragmentation is occurring across all the DBT simulationde® However, the sim-
ulation speed is shown to increase as the dynamic, and,dtatnslated function size
increases. Itis likely that faster simulation speeds caattaéned - particularly if using
a larger simulation epoch - by employing a more capable hashme. If continuous
profiling were implemented this would prevent translatioit ragmentation from oc-
curring. The larger static and dynamic translated funciganerated as a result should
produce a corresponding increase in the simulation speed.

9.1.3 Instruction Level Performance

The instruction level simulation performance of the diffiet LTU DBT modes are
compared in chapter 7. The results, for simulation of a sutisthe EEMBC bench-
mark suite, show that all of the LTU DBT simulation modes atréeast 1.63 times

Chapter 9. Conclusion 119

faster on average than basic block DBT based simulatiore B&J based simulation
performs the best overall with an average speed-up of 1@lowed by CFG DBT

with a speed-up of 1.64, then SCC DBT with a speed-up of 1.68eBT based
simulation is also shown to be 14.8 times faster on average ititerpretive simula-
tion.

9.1.4 Cycle Approximate Performance and Accuracy

The cycle-approximate simulation performance of the d#ffie LTU DBT modes are
compared in chapter 8. The results, for simulation of beratkshrunning on a sim-
plified model of the target system (pipeline and memory stgiesn), show that all of
the LTU DBT simulation modes are at least 1.32 times fasteawwrage than basic
block DBT based simulation. Page DBT based simulation pei$ahe best overall
with a speed-up of 1.34, followed by CFG DBT with a speed-ugd.88, then SCC
DBT with a speed-up of 1.32. Page DBT based simulation is sti®wvn to be 8.51
times faster than interpretive cycle-accurate simulatibms worth noting that much
faster simulation speeds could be achieved by updatingyttle-approximate models
on exiting the translated functions, rather than after eastiuction.

The simplified models of the target pipeline and memory stdiesn introduce small
errors into the cycle count. The average cycle count ertooduced by the simplified
pipeline model is shown to be 1.9%. The cycle count erropuhiced by the simplified
memory model is shown to decrease dramatically as the siionlepoch increases,
from an average of 14% at 1000 blocks down to 1.2% at 1,00(@@ks. The average
cycle count error introduced by both simplified models is22 when using a 100,000
block simulation epoch.

9.1.5 Comparison with State-of-the-Art Simulators

In addition to being a flexible research simulator, the EHfuator is capable of per-
forming instruction level simulation at speeds comparafilé other state-of-the-art
simulators that have been designed purely for speed (sq#erhg). The real-times
taken to simulate a set of benchmarks were compared witht-iRIM and QEMU,

Chapter 9. Conclusion 120

two functional simulators which model the ARM processoreTasults show that the
EHS simulator completed simulation of the benchmarks oreaee1.07 times quicker
than Simit-ARM and 1.26 times slower than QEMU. The QEMU deiar completed
two-thirds of the benchmarks the quickest with the EHS satarlcompleting the re-
maining benchmarks the quickest.

9.2 Ciritical Analysis

All of the simulations were performed on a host machine rogrihe Linux operating
system. Whilst the host machine was running minimal sysemwices during simula-
tion, the non-deterministic effects of the operating systand the computer hardware
introduce small errors into the simulation times recordaefaich benchmark. In order
to minimize such timing variations every simulation wasaafed 10 times and the
average simulation time calculated.

All of the research results were calculated from data geadray the Edinburgh High

Speed simulator. Any errors in the cycle-accurate modekh®ftarget processor or
memory sub-system are insignificant as they affect all o@B& simulation modes

equally. The simulator was used primarily to compare thatned performance of the
different LTU DBT simulation modes.

9.3 Future Research

A number of questions arise from this research which may bevied up with further
work. The most interesting areas for investigation are itkgtan the following sub-
sections.

9.3.1 Runtime Profiling

The ability to continuously monitor the target program’®extion path has a number
of advantages. Continuous profiling prevents LTU fragmigoiafrom occurring as it
supports profiling within translated functions. This résuh the generation of larger

Chapter 9. Conclusion 121

translation units which in turn increases the average dynaamslated function block
size. Larger LTUs provide greater scope for optimizationmytranslation and enable
larger sections of the target program to be emulated wittsimgle translated function
call. If the increase in speed outweighs the additionalloead of performing profiling
within translated functions then faster simulation spegilde realized. Even if this
is not the case two versions of each translated functiondcbal generated, a fast
version which performs no profiling and a slower profilingsien. Once the simulator
recognizes that no more instructions are being interprié¢tean switch from calling
profiling translated functions to calling fast translateddtions. If the simulator finds
itself interpreting instructions again, indicating a charn the program execution path,
it can switch back to calling the profiling translated fuocis so that the new paths can
be traced.

Continuous profiling would enable the simulator to respamdtianges in the target
program’s execution pattern. The simulator could be adeidgprogram phase changes
and decide to identify the new hot paths by calling the pradifversions of the trans-
lated functions. Once the the new hot paths had been dismbtiee simulator could
then discard the existing translated functions and gea@&ew ones containing the hot
paths.

9.3.2 Cycle Approximate Simulation

The results presented for cycle-approximate simulatiorewétained using simplified
models of the processor pipeline and memory sub-systemhvri called after each
instruction is emulated. Calling the cycle-approximatedels frequently involves a
lot of processing which slows down simulation. With LTU DB&ded simulation the
opportunity arises to update the cycle-approximate modetbe end of each basic
block or on exiting translated functions, possibly aftevihg emulated many thou-
sands of target instructions. Reducing the number of tifasthe cycle-approximate
models are called would increase the simulation speedfsignily. The main chal-

lenge is to separate the pipeline and memory models whilsttenaing a high degree
of accuracy.

Although sampling based simulators do not support hardisaftsvare co-design they

Chapter 9. Conclusion 122

can perform cycle-approximate simulation many times fastan DBT based simula-
tors. This is why sampling based simulators are more sudgzetforming low level
DSE in which the design-space to be explored is very large.

9.3.3 Simulation Characterization

In order to obtain a deeper understanding as to why individeachmarks run faster
when the simulator is operating in a particular DBT simwatmode it would be in-

structive to quantify the interaction between the host nreglprogram behaviour and
the DBT mode. The configuration of the host machine’s L1 cardrefor example

have a significant impact on the simulation speed, beingrikgp®d on how much of

the translation cache fits into it. The LTU DBT simulation resdare also sensitive to
program phase changes and to changes in workload which eansaty affect simu-

lation speeds.

Processor cycles need to be attributed to processes anddrardvents during simula-
tion in order to ascertain where and why cycles are beinguoesl. Armed with this

knowledge a simulator could intelligently switch betwede different DBT modes
at runtime in response to changes in program behaviour so msintain the fastest
possible simulation speed.

Appendix A

Glossary

Basic Block

Cycle Accurate

Cycle Approximate

Design Space

DSE
Functional

Host Machine

A basic block is a maximal sequence of instructions
such that none except the first is a branch target, and
none except the last is a branch.

Cycle-accurate simulation emulates a target pro-
gram’s behaviour in the same manner as an instruc-
tion level simulator. In addition, it accurately mod-
els the state and timing of the target system’s micro-
architecture. This feature is required in order to sup-
port low level DSE.

Cycle-approximate simulation is very similar to

cycle-accurate simulation except that it uses simpli-
fied models for components of the target system.
Whilst this increases the simulation speed, the sim-
ulation statistics generated are typically less accurate.

The design space is the set of all micro-architecture
designs, compiler optimizations and benchmarks to
be explored.

Design space exploration.
See instruction level simulation.

The hardware platform on which the simulator is run.

123

Appendix A. Glossary

Instruction Level

LTU

Simulator

State Observability

Statically Discoverable

Target Binary
Target System

Translated Function

Translation Unit

Translator

124

Instruction level simulation emulates a target program
by carrying out the instruction operations within the
simulation environment. The simulator need only
model the target processor in enough detail to ensure
that each instruction is emulated correctly. This fea-
ture is required in order to support high level DSE.

A large translation unit consists of one or more basic
blocks and is based on a standard software object.

The executable which simulates the running of the tar-
get program on a model of the target system.

State observability enables the state of the target sys-
tem to be ascertained at precise moments in simulated
time. This feature is required in order to support hard-
ware/software co-design and verification.

A statically discoverable program is one in which
all possible execution paths can be identified through
static analysis of the target binary. Programs which
are self-modifying or which use shared libraries are
not statically discoverable.

The executable to be emulated by the simulator.

The hardware system modelled by the simulator on
which the target program is emulated.

A host code function which when called emulates the
instructions in the corresponding target code section.

The target program code objects which are identified
at runtime for translation.

The simulator component which translates target code
sections into translated functions.

Bibliography

[Aho 86]

[Altm 00]

[Altm 01]

[Andr 92]

[ARCO]

[ARMV]

[Aust 02]

[Bart 06]

[Bell 05]

[Berg 87]

A. V. Aho, R. Sethi, and J. D. Ullmar€ompilers: principles, techniques,
and tools Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1986.

E. R. Altman, D. Kaeli, and Y. Sheffer. “Guest Editd Introduction:
Welcome to the Opportunities of Binary Translatio@omputer \Vol. 33,
No. 3, pp. 40-45, 2000.

E. R. Altman, K. Ebcioglu, K. E. glu, M. Gschwind, $ember, and
S. Sathaye. “Advances and Future Challenges in Binary Taaos And
Optimization”. In:Proc. of the IEEEpp. 1710-1722, 2001.

K. Andrews and D. Sand. “Migrating a CISC computmily onto RISC
via object code translation”. IASPLOS-V: Proceedings of the fifth inter-
national conference on Architectural support for programgilanguages
and operating systemgp. 213-222, ACM Press, New York, NY, USA,
1992.

ARCompactM Instruction Set Architecture ARC International, 2025
Gateway Place, Suite 140, San Jose, CA 95110, USA.

ARMvVEM Architecture Reference Manual ARM Ltd, 110 Fulbourn
Road, Cambridge, England.

T. Austin, E. Larson, and D. Ernst. “SimpleScalan Infrastructure for
Computer System ModelingComputerVol. 35, No. 2, pp. 59-67, 2002.

D. Bartholomew. “QEMU: a multihost, multitargetnailator”. Linux J,
Vol. 2006, No. 145, p. 3, 2006.

F. Bellard. “QEMU, a fast and portable dynamic tséator”. In: ATEC
'05: Proceedings of the annual conference on USENIX Anneciiical
Conferencepp. 41-41, USENIX Association, Berkeley, CA, USA, 2005.

A. B. Bergh, K. Keilman, D. J. Magenheimer, and J.Miller. “HP
3000 Emulation on HP Precision Architecture Computer$iEWLETT-
PACKARD-JVol. 38, No. 11, pp. 87-89, Dec. 1987.

125

Bibliography 126

[Brau 01] G. Braun, A. Hoffmann, A. Nohl, and H. Meyr. “Usintaic scheduling
techniques for the retargeting of high speed, compiled kitats for em-
bedded processors from an abstract machine description1SES '01:
Proceedings of the 14th international symposium on Syssymthesis
pp. 57-62, ACM Press, New York, NY, USA, 2001.

[Brau 04] G. Braun, A. Nohl, A. Hoffmann, O. Schliebusch, Reupers, and
H. Meyr. “A universal technique for fast and flexible instion-set ar-
chitecture simulation”.IEEE Trans. on CAD of Integrated Circuits and
Systemgs\vol. 23, No. 12, pp. 1625-1639, 2004.

[Brun 91] R. A. Brunner, EdAVAX architecture reference manual (2nd edjgital
Press, Newton, MA, USA, 1991.

[Burg 96] D. Burger, T. M. Austin, and S. Bennett. “Evaluaifuture Microproces-
sors: The SimpleScalar Tool Set”. Tech. Rep. CS-TR-199#8,1 3996.

[Burg 97] D. Burger and T. M. Austin. “The SimpleScalar toeisversion 2.0".
SIGARCH Comput. Archit. Newgol. 25, No. 3, pp. 13-25, 1997.

[Cher 98] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rub. Tye, S. B.
Yadavalli, and J. Yates. “FX!32: A Profile-Directed Binaryahslator”.
IEEE Micro, Vol. 18, No. 2, pp. 56-64, 1998.

[Cifu96] C. Cifuentes and V. M. Malhotra. “Binary Translati: Static, Dynamic,
Retargetable?”. In1CSM '96: Proceedings of the 1996 International
Conference on Software Maintenanpg. 340-349, IEEE Computer So-
ciety, Washington, DC, USA, 1996.

[Cmel 94] B. Cmelik and D. Keppel. “Shade: a fast instructgmt simulator for
execution profiling”. In: SIGMETRICS '94: Proceedings of the 1994
ACM SIGMETRICS conference on Measurement and modelingnof co
puter systemgp. 128-137, ACM Press, New York, NY, USA, 1994.

[DErr 06] J. D’Errico and W. Qin. “Constructing portable cpited instruction-set
simulators: an ADL-driven approach”. IDATE '06: Proceedings of
the conference on Design, automation and test in Eyrppe112-117,
European Design and Automation Association, 3001 LeuvegiBm,
Belgium, 2006.

[Dixi 92] K. M. Dixit. “New CPU benchmark suites from SPECn:ICOMPCON
'92: Proceedings of the thirty-seventh international caehce on COM-
PCON pp. 305-310, IEEE Computer Society Press, Los Alamitos, CA
USA, 1992.

[EEMB] EEMBC Benchmark SuiteThe Embedded Microprocessor Benchmark
Consortium.

Bibliography 127

[Free 95] FreePort ExpressDigital EqQuipment Corporation, 1995.

[Gold 73] R. P. Goldberg. “Architecture of virtual machiriedn: Proceedings of
the workshop on virtual computer systems. 74-112, ACM, New York,
NY, USA, 1973.

[Half 94] T. R. Halfhill. “Emulation: RISC’s Secret Weapon”BYTE Vol. 19,
No. 4, pp. 119-130, 1994.

[Hand 98] J. HandyThe cache memory book (2nd ed.): the authoritative referenc
on cache designAcademic Press, Inc., Orlando, FL, USA, 1998.

[Hech 77] M. S. Hecht.Flow Analysis of Computer ProgramsElsevier Science
Inc., New York, NY, USA, 1977.

[Henn 02] J.L.Hennessy and D. A. PattersGomputer architecture: a quantitative
approach Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2002.

[Henn 96] J. L. Hennessy and D. A. Patters@omputer architecture (2nd ed.): a
guantitative approachMorgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1996.

[Hook 97a] R. Hookway. “DIGITAL FXI32: Running 32-Bit x86 Apications on
Alpha NT”. Computer Conference, IEEE Internationaol. 0, p. 37,
1997.

[Hook 97b] R. J. Hookway and M. A. Herdeg. “DIGITAL FX!32: Cdyming Emu-
lation and Binary Translation”Digital Technical JournalVol. 9, No. 1,
1997.

[Hsu 89] P. Hsulntroduction to ShadowSun Microsystems Inc., 1989.

[Hunt 89] C. Hunter and J. Banning. “DOS at RISCBYTE \ol. 14, No. 12,
pp. 361-368, 1989.

[Jone 09] D. Jones and N. Topham. “High Speed CPU Simulasomgu_TU Dy-
namic Binary Translation”. In:HIPEAC ’'09: Proceedings of the 4th
International Conference on High Performance and Embedtletiitec-
tures and CompilersPaphos, Cyprus, 2009.

[Kahl 05] J.Kahle. “The Cell Processor Architecture”. MICRO 38: Proceedings
of the 38th annual IEEE/ACM International Symposium on bacchi-
tecture p. 3, IEEE Computer Society, Washington, DC, USA, 2005.

[Kane 88] G. Kane.MIPS RISC Architectute Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1988.

Bibliography 128

[Kong 05] P. Kongetira, K. Aingaran, and K. Olukotun. “NiagaA 32-Way Multi-
threaded Sparc ProcessolEEE Micro, Vol. 25, No. 2, pp. 21-29, 2005.

[Kron 93] N. Kronenberg, T. R. Benson, W. M. Cardoza, R. Jagéman, and B. J.
Thomas. “Porting OpenVMS from VAX to Alpha AXPCommun. ACM
\ol. 36, No. 2, pp. 45-53, 1993.

[Lawt 96] K. P. Lawton. “Bochs: A Portable PC Emulator for WM. Linux J,
p. 7, 1996.

[Magn 02] P. S. Magnusson, M. Christensson, J. Eskilsondisdfen, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. “Simig=ull
System Simulation Platform'Computey\Vol. 35, No. 2, pp. 50-58, 2002.

[Magn 98] P. S. Magnusson, F. Larsson, A. Moestedt, B. WerkReiDahlgren,
M. Karlsson, F. Lundholm, J. Nilsson, P. Stenstrom, and ih@. “Sim-
ICS/sundm: A Virtual Workstation”. pp. 119-130, 1998.

[May 87] C. May. “Mimic: a fast system/370 simulator”. IBIGPLAN '87: Papers
of the Symposium on Interpreters and interpretive techesqop. 1-13,
ACM Press, New York, NY, USA, 1987.

[Mill91] C. Mills, S. C. Ahalt, and J. Fowler. “Compiled Ingtction Set Simula-
tion”. Software, Practice and Experiencéol. 21, No. 8, pp. 877-889,
1991.

[Much 97] S. S. MuchnickAdvanced compiler design and implementatiblorgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[Nohl 02] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H.yWleand A. Hoff-
mann. “A universal technique for fast and flexible instrantiset archi-
tecture simulation”. INDAC '02: Proceedings of the 39th conference on
Design automatioypp. 22-27, ACM Press, New York, NY, USA, 2002.

[Oluk 96] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, @K. Chang.
“The case for a single-chip multiprocessor”. IASPLOS-VII: Proceed-
ings of the seventh international conference on Architattsupport for
programming languages and operating systepis 2-11, ACM Press,
New York, NY, USA, 1996.

[Patt 85] D. A. Patterson. “Reduced instruction set compstiteCommun. ACM
Vol. 28, No. 1, pp. 8-21, 1985.

[Pope 74] G. J. Popek and R. P. Goldberg. “Formal requiresnfamtvirtualizable
third generation architecturesCommun. ACMVol. 17, No. 7, pp. 412—
421, 1974.

Bibliography

[Qin 06]

[Resh 03]

[Resh 09]

[Rose 95]

[Sher 02]

[Site 934a]

[Site 93b]

[Site 95]

[Smit 05a]

[Smit 05b]

[Stal 01]

[Stal 90]

129

W. Qin, J. D’Errico, and X. Zhu. “A multiprocessingpproach to accel-
erate retargetable and portable dynamic-compiled instmrset simula-
tion”. In: CODES+ISSS '06: Proceedings of the 4th international cenfe
ence on Hardware/software codesign and system synfigsi$93-198,
ACM, New York, NY, USA, 2006.

M. Reshadi, P. Mishra, and N. Dutt. “Instructioncsenpiled simulation:
a technique for fast and flexible instruction set simuldtidn: DAC "03:
Proceedings of the 40th conference on Design automapipn758—763,
ACM Press, New York, NY, USA, 2003.

M. Reshadi, P. Mishra, and N. Dutt. “Hybrid-coregisimulation: An ef-
ficient technique for instruction-set architecture sintiola’. ACM Trans.
Embed. Comput. Systol. 8, No. 3, pp. 1-27, 2009.

M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupf@omplete Com-
puter System Simulation: The SImOS ApproaclEEE Parallel Distrib.
Technol, Vol. 3, No. 4, pp. 34—43, 1995.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calt®sutomatically
characterizing large scale program behavior”. AKEPLOS-X: Proceed-
ings of the 10th international conference on Architectstgbport for pro-
gramming languages and operating systepps 45-57, ACM Press, New
York, NY, USA, 2002.

R. L. Sites. “Alpha AXP architectureCommun. ACMVol. 36, No. 2,
pp. 33-44, 1993.

R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Marks, @rs. G. Robinson.
“Binary translation”.Commun. ACMVol. 36, No. 2, pp. 69-81, 1993.

R. L. Sites and R. T. WitekAlpha AXP architecture reference manual
(2nd ed.) Digital Press, Newton, MA, USA, 1995.

J. E. Smith and R. Nair. “The Architecture of VatuMachines”. Com-
puter, Vol. 38, No. 5, pp. 32-38, 2005.

J. Smith and R. NaiNirtual Machines: Versatile Platforms for Systems
and Processes (The Morgan Kaufmann Series in Computertécthie
and Design) Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2005.

R. Stallman. “Using and Porting the GNU Compiledl€ction”. M.L.T.
Artificial Intelligence Laboratory2001.

W. Stallings.Reduced Instruction Set ComputetEEE Computer Soci-
ety Press, Los Alamitos, CA, USA, 1990.

Bibliography 130

[Tarj 72] R. Tarjan. “Depth-First Search and Linear Graplg@&ithms”. SIAM
Journal on Computingvol. 1, No. 2, pp. 146-160, 1972.

[Thom 96] T. Thompson. “An Alphain PC ClothingBYTE Vol. 19, No. 2, pp. 195-
196, 1996.

[Toph 07] N. Topham and D. Jones. “High Speed CPU SimulatgngJIT Binary
Translation”. In:MoBS '07: Proceedings of the 3rd Annual Workshop on
Modeling, Benchmarking and Simulatiddan Diego, CA, USA, 2007.

[Torc07] L. Torczon and K. CoopeEngineering A CompilerMorgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2007.

[Wall 05] D. Wallin, H. Zeffer, M. Karlsson, and E. Hagerstefi/asa: A Simula-
tor Infrastructure with Adjustable Fidelity”. InProceedings of the 17th
IASTED International Conference on Parallel and DistriediComputing
and Systems (PDCS 200Phoenix, Arizona, USA, Nov. 2005.

[Wirb 88] L. Wirbel. “DOS-to-Unix Compiler”. Electronic Engineering Times
\ol. 14, p. 83, 1988.

[Witc 96] E. Witchel and M. Rosenblum. “Embra: fast and fldgimachine simu-
lation”. In: SIGMETRICS '96: Proceedings of the 1996 ACM SIGMET-
RICS international conference on Measurement and modelncpm-
puter system9p. 68—79, ACM Press, New York, NY, USA, 1996.

[Woo 95] S.C.Woo, M. Ohara, E. Torrie, J. P. Singh, and A. @upthe SPLASH-
2 programs: characterization and methodological conatasrs”. In:
ISCA '95: Proceedings of the 22nd annual international sgswpm on
Computer architecturgpp. 24—-36, ACM, New York, NY, USA, 1995.

[Wund 03] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and HGe. “SMARTS: ac-
celerating microarchitecture simulation via rigoroudistacal sampling”.
In: ISCA '03: Proceedings of the 30th annual international sgsipm
on Computer architecturgp. 84—97, ACM Press, New York, NY, USA,
2003.

[Zhu 02] J. Zhu and D. D. Gajski. “An ultra-fast instructioatsimulator”. IEEE
Trans. Very Large Scale Integr. Sysfol. 10, No. 3, pp. 363—-373, 2002.

[Zhu 99] J. Zhu and D. D. Gajski. “A retargetable, ultra-fanstruction set simula-
tor”. In: DATE '99: Proceedings of the conference on Design, autamati
and test in Europgp. 62, ACM Press, New York, NY, USA, 1999.

