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Abstract

This thesis presents new simulation techniques designed tospeed up the simulation

of microprocessor systems. The advanced simulation techniques may be applied to

the simulator class which employs dynamic binary translation as its underlying tech-

nology. This research supports the hypothesis that faster simulation speeds can be

realized by translating larger sections of the target program at runtime. The primary

motivation for this research was to help facilitate comprehensive design-space explo-

ration and hardware/software co-design of novel processorarchitectures by reducing

the time required to run simulations.

Instruction set simulators are used to design and to verify new system architectures,

and to develop software in parallel with hardware. However,compromises must often

be made when performing these tasks due to time constraints.This is particularly true

in the embedded systems domain where there is a short time-to-market. The processing

demands placed on simulation platforms are exacerbated further by the need to simu-

late the increasingly complex, multi-core processors of tomorrow. High speed simula-

tors are therefore essential to reducing the time required to design and test advanced

microprocessors, enabling new systems to be released aheadof the competition.

Dynamic binary translation based simulators typically translate small sections of the

target program at runtime. This research considers the translation of larger units of

code in order to increase simulation speed. The new simulation techniques identify

large sections of program code suitable for translation after analyzing a profile of the

target program’s execution path built-up during simulation.

The average instruction level simulation speed for the EEMBC benchmark suite is

shown to be at least 63% faster for the new simulation techniques than for basic block

dynamic binary translation based simulation and 14.8 timesfaster than interpretive

simulation. The average cycle-approximate simulation speed is shown to be at least

32% faster for the new simulation techniques than for basic block dynamic binary

translation based simulation and 8.37 times faster than cycle-accurate interpretive sim-

ulation.
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Chapter 1

Introduction

The research presented in this thesis investigates some novel, high speed simulation

techniques which were developed to help facilitate comprehensive design-space explo-

ration (DSE) and hardware/software co-design of microprocessor architectures. Thor-

ough exploration of the design-space is often not performedin situations where a new

system must be designed within a limited period of time. As a consequence sub-

optimal system designs may be selected for manufacture. This problem is particularly

acute in the embedded processor domain where companies workwithin tight sched-

ules to release new systems to market. Faster simulators allow the design-space to be

explored in more detail within the time available. They are therefore very important in

the microprocessor design process as they enable the best system architectures to be

discovered.

Simulators are used to accurately predict the performance characteristics, such as speed

and power consumption, of new processor architectures so that the most efficient de-

sign can be selected for fabrication. Simulators are also used to test experimental

instructions set architectures (ISAs), for hardware/software co-design and verification,

and in the development and debugging of new compilers and applications. Simulation

platforms are vital to industry because they enable the engineering tasks involved in

the development of a new microprocessor to be performed in parallel, thus reducing

the time to release.

The design-space for a new microprocessor architecture is typically very large. Its size

will depend on a number of different factors such as the ISA, pipeline design, register

1



Chapter 1. Introduction 2

file size, functional unit type and quantity, number of processor cores, on-chip network,

cache hierarchy and configuration, and application domain.In most embedded system

research and design groups, not only are the design goals very exact, in terms of the

performance criteria that must be met, there is also limitedtime available in which to

design, test and fabricate a system. Time constraints may necessitate a reduction in the

size of the design-space in order that a new system can be released on schedule. System

designers may be required to make assumptions about individual micro-architecture

parameters or to chose less representative applications with which to test the system.

However, a reduced design-space is less likely to contain the best design point.

The design-space may be reduced by decreasing the number of micro-architecture pa-

rameters and configuration values to be explored for the target system. Whilst this will

cut the overall simulation time it may result in the selection of a sub-optimal design.

The design-space may also be reduced by decreasing the number and size of the pro-

grams simulated. Small benchmarks may be run instead of real-world programs in an

attempt to replicate real application behaviour and at the same time reduce the overall

simulation time. However, benchmarks can not imitate real-world programs perfectly

and this may also result in the selection of a sub-optimal system design.

The need to model new, advanced system designs has increasedthe processing de-

mands placed on simulators. In addition to accurately modelling increasingly com-

plex, multi-core systems, simulators must also maintain statistics on a range of system

indicators. The degree of modelling detail, accuracy and instrumentation may also be

reduced in order to speed up simulation, but this will generate less reliable data from

which to select the best design.

Comprehensive design-space exploration therefore involves testing every design point

with the simulation of real-world programs. However, rigorous design-space explo-

ration conflicts with the manufacturers natural desire to ship leading-edge systems

ahead of the competition. As outlined, simulators play an important role in determining

the optimal system design. The simulation speed directly affects the time required to

design and to test new system designs and hence it indirectlyaffects the accuracy of the

predicted performance results. For this reason, state-of-the-art high speed simulation

techniques remain an active field of research.

In order to perform comprehensive design-space exploration and verification a sim-
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ulator needs not only to be fast, it must also satisfy the requirements of a research

simulator. This means that the simulator be flexible in both its configuration and op-

eration. It should be capable of modelling any target systemarchitecture and offer a

number of different simulation modes.

A flexible research simulator should fulfil the following criteria:

• High Speed Simulation. The design-space needs to be comprehen-

sively explored if the optimal system design is to be found. Alinear

increase in the number of micro-architecture design parameters results

in exponential expansion of the design-space. Vast design spaces, cou-

pled with the need to accurately model complex systems and the desire

to run real-world programs demands a lot of processing power. There-

fore, high speed simulators are required to explore the design-space as

thoroughly as possible, in as short a time as possible.

• Accurate Modelling. The simulator must be capable of modelling the

target system at the required level of abstraction and with the desired

degree of accuracy in order to confidently predict the behaviour of the

real system. It should incorporate instruction level and cycle-accurate

modes of operation to facilitate high and low level DSE.

• Instrumentation . The performance of the target system can only be

evaluated if the simulator is instrumented to return statistics on the

system indicators of interest. For example, the simulator may be in-

strumented to provide instruction counts, program execution cycles, in-

struction execution profiles, L1 hits and misses, and power consumption

figures.

• State Observability. The ability to capture all architecturally-visible

CPU state changes at instruction commit is necessary in order to support

hardware/software co-design and verification.

• System Simulation. To accurately model the target system’s behaviour,

the simulation environment should be setup to precisely mirror that an-

ticipated for the real system. A research simulator should therefore pos-
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sess the ability to simulate standalone applications and full operating

systems (OSs) or embedded system runtimes. User level simulation

requires emulation of all system calls, whilst system levelsimulation

requires comprehensive modelling of the system’s hardwareand I/O

devices.

• Simulation Flexibility . Simulators which possess a variety of simula-

tion modes offer greater flexibility for performing DSE. Theappropriate

level of abstraction, speed and accuracy of simulation may be chosen by

designers so as to satisfy the optimal exploration strategyfor a particu-

lar project. Exploration may be focused on specific regions of code that

are of interest by employing a mixture of fast-forwarding and sampling.

• Target System Configuration. To be of use, the simulator must be ca-

pable of modelling all of the target systems present in the design-space.

It should possess a straightforward method of building complex system

models and facilitate detailed configuration of all micro-architecture pa-

rameters.

• Retargetable. The simulator needs to support different target ISAs and

the extension of ISAs so that the benefits of experimental ISAs can be

investigated. It should employ a standardized means of defining the

target instruction set and the pipeline model.

Instruction set simulators (ISSs) are important software tools which are used to design

the advanced processor architectures of tomorrow. They enable the trade-offs between

different micro-architecture models to be explored so thatthe best system design can

be selected for production. They also facilitate the development, verification and de-

bugging of hardware and software.

The new simulation techniques detailed in this thesis are applicable to Dynamic Bi-

nary Translation (DBT) based simulators. Dynamic binary translation is a high speed

emulation technique [Altm 00, Altm 01] which has applications across many domains.

Dynamic binary translation based simulators typically runprograms up to four times

faster than the corresponding field-programmable gate array (FPGA) setup.
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This research is concerned with high speed research simulators which can be used to

carry out DSE and hardware/software co-design and verification of novel processor ar-

chitectures. In order to perform these tasks the simulator must be capable of high speed

instruction level and cycle-accurate simulation, and support observable modelling of

the processor state. A glossary of the main simulation termsused throughout this thesis

are listed in appendix A.

1.1 The High Speed Simulation Problem

Intense competition amongst embedded system designers hasled to more leading-edge

processors being released to market more frequently. Modern processors incorporate

many novel technologies which are designed to increase execution speed and to reduce

the power consumption and thermal output. As the complexityand number of cores

in future systems increase, the time necessary to run simulations of such systems also

increases, at the same time deadlines are becoming tighter.

Superscalar processors incorporate a number of advanced micro-architecture technolo-

gies which increase performance. Processors may employ long pipelines, wide instruc-

tion issue, out-of-order processing, speculative execution or a trace cache. A simulator

must model all of these novel components in addition to emulating complex events

such as interrupts and exceptions. Even embedded processors incorporate Memory

Management Units (MMUs) to support multi-tasking operating systems.

Chip Multi-Processors (CMPs) are rapidly becoming the preferred processor model as

manufacturers strive to make the most effective use out of the ever increasing silicon

area available to them [Oluk 96]. Dual-core (AMD Athlon X2; IBM POWER6; Intel

Itanium, Core 2 Duo) and quad-core (AMD Phenom X4, Opteron; Intel Core 2 Quad,

Core i7) processors are already in mainstream use and the number of on-chip cores

is set to increase many fold in the near future. A CMP may contain heterogeneous

or homogeneous cores. IBM’s CELL processor [Kahl 05] is a heterogeneous CMP

designed for the games market and consists of a single general-purpose PowerPC core

and 8 special-purpose digital signal processing cores.

Sun Microsystems’ UltraSPARC T1 processor [Kong 05] is a homogeneous Chip Multi-
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Threaded (CMT) processor which has 8 cores, each of which is 4-way multi-threaded,

providing a total of 32 hardware thread contexts or logical processors. The processing

demand on simulators rises dramatically as the number of processor cores is increased.

Simulators will soon be required to emulate systems with hundreds - if not thousands -

of cores as well as model the associated on-chip network, cache hierarchy, coherency

protocols and I/O.

In order to discover the optimal system design, the effect ofall interesting micro-

architecture parameters should be evaluated during DSE. However, the consideration

of a large number of parameters increases the size of the design-space and thus requires

significantly more time to explore. To accurately predict the behaviour of the real sys-

tem, the simulation environment must be setup to reflect the real system environment.

This may involve running real-world programs and operatingsystems which also take

time to simulate.

Table 1.1 provides definitions of the main simulator classes. Most interpretive simula-

tors achieve modelling accuracy by operating at the register transfer level (RTL), but

such simulators are very slow. However, compiled simulators, which are many orders

of magnitude faster than interpretive simulators, do not provide processor state observ-

ability. They can also only be used in situations where the binary code to be simulated

is known in advance and are therefore unable to emulate self-modifying code. Sam-

pling simulators on the other hand can perform cycle-accurate simulation at speed, but

their functional simulation speed is similar to that of interpretive simulators.

Dynamic binary translation based simulators, which perform a mixture of interpreta-

tion and compilation at runtime, are both fast and flexible. Dynamic binary translation

is the process of translating source code, which performs a specific task, into the equiv-

alent binary code which runs on the host machine. When executed, the translated code

performs the same task but at much greater speed. Dynamic binary translation based

simulators are also capable of simulating self-modifying programs and support observ-

ability of the processor state.

Dynamic binary translation based systems are very flexible as they enable extensive

runtime control over program modification. They are able to react to unforeseen events

by generating code which is translated on-the-fly to deal with a new situation. Software

employing DBT technology is used across many different application domains such as
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Simulator Class Definition High
Speed

Self-
modif.

State
Observ.

Interpretive The target program is simulated by re-
peatedly fetching, decoding and emulat-
ing the next instruction in the execution
stream. Interpretive simulators are flexible
and support the running of self-modifying
code. Decode caches are used to reduce
the overhead of instruction decoding, but
interpretive simulators are still compara-
tively slow.

No Yes Yes

Compiled A statically compiled simulator is gener-
ated by translating the target binary into
an executable which when run simulates
the target program. This class of simulator
is optimized for speed but lacks flexibility
and typically can not run self-modifying
code.

Yes No No

DBT The simulator switches between interpre-
tive simulation and ‘translated’ simulation
in which host code functions are called to
emulate sections of the target program at
high speed. Whilst interpreting instruc-
tions, sections of the program are iden-
tified for translation into host code func-
tions. If the simulator detects that code has
been modified it discards the correspond-
ing translations. Dynamic binary trans-
lation based simulators are both fast and
flexible.

Yes Yes Yes

Sampling Sampling is used to perform fast cycle-
approximate simulation. The simulator
alternates between functional simulation
and cycle-accurate simulation. Cycle-
approximate simulation is fast when the
fast-forwarding interval is many times
larger than the sampling interval. The data
gathered in each sampling interval is used
to generate the simulation statistics. How-
ever, state observability is typically not
maintained during the fast-forwarding in-
tervals.

No Yes No

Table 1.1 Simulator Classes. This table lists the main simulator classes and shows whether
they feature high speed instruction level simulation, emulation of self-modifying code and state
observability.
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resource virtualisation, system resilience, network security, dynamic code patching

and optimization, and system emulation.

Dynamic binary translation based simulation is a high speedsimulation technique in

which target instructions, or more typically blocks of instructions, are translated at

runtime into equivalent host code functions (translated functions). The translated func-

tions are then called to emulated the basic blocks at high speed within the simulated

microprocessor model. In most simulations, the overhead ofperforming translation is

more than offset by the time saved through faster simulation. Figure 1.1 provides an

overview of the tasks involved in DBT based simulation.

T F e x i s t s f o rn e x t b l o c k ?I n t e r p r e tb a s i c b l o c k
C a l l T Fy e sn o

S t a r t

E n d o f s i m u l a t i o ne p o c h ?T r a n s l a t e h o tb l o c k s T F : T r a n s l a t e d F u n c t i o ny e sn o

Figure 1.1 DBT Simulation Overview. Basic blocks are interpreted for a defined period
(simulation epoch). At the end of each simulation epoch the frequently executed blocks are
translated into host code functions (translated functions). If the next block to be simulated
has previously been translated, the translated function for the block is called, else the block is
interpreted as usual.

High speed cycle-accurate simulation is required in order to perform low level design-

space exploration. However, because DBT based simulators perform instruction level

simulation very efficiently, there exists little scope for increasing the speed of cycle-
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accurate simulation through optimizations in areas other than cycle-accurate mod-

elling. Therefore significant speed-ups in DBT based cycle-accurate simulation may

only be realized by deploying simplified models of target system components.

There are limitations associated with all of the main simulation techniques. Whilst

interpretive simulators are flexible, they are also slow. Compiled simulators on the

other hand are fast but place restrictions on the type of programs that may be simu-

lated. Sampling simulators can perform cycle-approximatesimulation at high speed

but do not provide state observability. Dynamic binary translation based simulators

feature high speed instruction level simulation, emulation of self-modifying code and

processor state observability.

High speed ISSs contribute towards reducing the time neededto carry out DSE. As out-

lined previously, the time required to perform DSE is dictated by the size of the design-

space, the complexity of the system to be modelled, the need to simulate real-world

programs and the scheduled system release date. The processing demands placed on

simulators are set to increase substantially in the near future as designers seek to model

advanced new multi-core CPUs. The central challenge for today’s system designers,

of achieving high speed simulation whilst retaining absolute modelling accuracy, is

therefore becoming increasingly difficult to satisfy.

The main simulation issues which are addressed in this thesis are:

• High Speed Instruction Level Simulation. Simulators must be ca-

pable of performing high speed instruction-level simulation in order to

facilitate comprehensive high level DSE.

• High Speed Cycle Accurate Simulation. Simulators must be capable

of performing high speed cycle-accurate simulation in order to facili-

tate comprehensive low level DSE. Cycle-approximate models of the

target system are typically used to speed-up simulation at the expense

of introducing small degrees of error into the simulation results.

• State Observability. The processor state must be accessible at all ob-

servation points so that high and low level hardware/software co-design

and verification can be performed. The hardware model is validated
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against the golden reference model using the simulator’s co-simulation

API.

• Realistic Simulation. Simulators must be capable of running real-

world programs within a realistic simulation environment if they are

to accurately predict system behaviour. This implies that the simulator

should support the running of stand-alone applications, self-modifying

programs and operating systems.

1.2 Large Translation Unit Solution

This thesis proposes that the simulation speed of DBT based simulators can be in-

creased by identifying large translation units at runtime.By profiling the target pro-

gram’s execution path during simulation it is possible to identify large sections of code

which span multiple basic blocks and which are suitable for translation. If the transla-

tor has a larger section of target code to analyze it will be better able to optimize the

translated code produced for speed of execution.

Large translation units not only contain more target instructions they also have more

branches and jumps to instructions within the same translation unit. Indeed, entire

loops, even nested loops may be contained within a single translation unit. This means

that more instructions will be simulated per translated function call and control will be

returned to the main simulation loop less frequently. This results in an overall increase

in simulation speed as less time is spent in the slower main loop.

This thesis investigates the performance benefits of translating three different types of

large translation unit, or LTU. The different LTUs are basedon the standard computer

software objects listed below.

SCC : Strongly Connected Component

CFG : Control Flow Graph

Page : Physical Page
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The DBT simulation process is divided into a number of simulation epochs. During

each simulation epoch the simulator builds up a profile of thetarget program’s execu-

tion path. At the end of each epoch the execution path profile is analyzed to identify

the LTUs and to determine which LTUs should be translated. Insubsequent epochs,

large sections of the target program may be simulated at highspeed by calling the

corresponding translated function.

1.3 Research Contributions

The Edinburgh High Speed (EHS) simulator, developed at the University of Edinburgh,

is a high speed DBT based simulator and is the platform on which all of the simulations

were performed for the research presented in this thesis.

This thesis contributes to the knowledge of high speed DBT based simulation as fol-

lows:

• Novel High Speed Simulation Techniques

This thesis shows that LTUs can be deployed to increase the simulation

speed of DBT based simulators. The techniques used to profiletarget

programs and to identify and translate LTUs at runtime are unique to

the Edinburgh High Speed simulator and are outlined in chapter 6.

The EHS simulator was designed as a research simulator suitable for

performing DSE and hardware/software co-design of novel micropro-

cessor architectures. The processor state is updated aftereach instruc-

tion is emulated and is observable at every translation unitboundary.

The simulator also incorporates advanced management of translations

so that self-modifying code can be simulated.

• Quantitative Analysis of Simulation Techniques

The performance of the different LTU DBT simulation modes are ana-

lyzed in chapters 7 and 8 and provide an insight into their effectiveness

and future potential as high speed simulation techniques. Many aspects

of LTU DBT based simulation are investigated in detail, including anal-

ysis of the number of instructions emulated by translationson the first
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and second simulation runs; the time spent performing the different sim-

ulation tasks; the size and number of translation units generated; the size

and frequency of the translated functions called; the factors which cause

translation unit fragmentation and the effects of varying the size of the

simulation epoch.

• Instruction Level Performance Analysis

The instruction level simulation performance of the different LTU DBT

simulation modes are compared in chapter 7. The results showthat all

of the LTU DBT simulation modes are on average at least 1.63 times

faster than basic block DBT based simulation.

• Cycle Approximate Performance and Accuracy Analysis

The cycle-approximate simulation performance of the different LTU

DBT simulation modes are compared in chapter 8. The results -us-

ing simplified models for the target pipeline and memory sub-system -

show that all of the LTU DBT simulation modes are on average atleast

1.32 times faster than basic block DBT based simulation. Thesimpli-

fied system model is shown to introduce an average error of 2.4% into

the cycle count.

• Comparison with State-of-the-Art Simulators

Chapter 7 demonstrates that, in addition to being a flexible research

simulator, the EHS simulator is capable of performing instruction level

simulation at speeds comparable with other state-of-the-art simulators

which were designed purely for speed. The EHS simulator completed

simulation of a set of benchmarks on average 1.07 times quicker than

Simit-ARM and 1.26 times slower than QEMU (ARM).

1.4 Thesis Outline

This thesis is divided into nine chapters. Chapter 2 provides an overview of the main

simulation techniques used in simulating microprocessor systems. Chapter 3 summa-

rizes related work in the field of static and dynamic binary translation based simulators
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and Chapter 4 describes the design and operation of the Edinburgh High Speed simu-

lator used in this research.

Chapter 5 outlines the benchmarking methodology used to asses the performance of

the different DBT simulation modes and Chapter 6 describes the different types of

Large Translation Unit and details how they are identified and translated at runtime.

Chapters 7 and 8 analyze the performance of the instruction level and cycle-accurate

simulation modes respectively. The simulation speed of each LTU DBT mode is pre-

sented and compared with that of basic block DBT based simulation. Chapter 7 also

analyzes the characteristics of the different LTUs generated and compares the perfor-

mance of the EHS simulator with two start-of-the-art functional simulators. Finally,

chapter 9 presents the conclusions and outlines future workwhich naturally follows on

from this research.



Chapter 2

Simulation Techniques

This chapter describes the simulation techniques employedin instruction set simula-

tors which can be used to perform design-space exploration of microprocessor sys-

tems. The different simulation techniques used define a simulator’s strengths and

weaknesses, and therefore its application domain. Whilst slower simulators tend to

provide flexibility of operation, the fastest simulators are restricted in their use. Hybrid

simulators on the other hand, which employ a combination of simulation techniques,

have the potential to be both fast and flexible and are therefore ideal for carrying out

research.

2.1 Overview

Simulators simulate programs by emulating each target instruction within a model of

the target system running on the host machine. The simulation environment must

model all of the lower-level components present in the target program’s native exe-

cution environment. Therefore, all simulators form a virtualisation layer [Gold 73,

Pope 74, Smit 05a, Smit 05b] between the simulated application and the host platform.

The two types of virtualisation layer are shown in figure 2.1.Process virtualisation

supports the execution of a single process, or single-threaded application, by abstract-

ing the Application Binary Interface (ABI). Process virtual machines (VMs) emulate

user-level instructions and operating system calls, and are initiated when a process is

14
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created and destroyed when the process terminates. System virtualisation provides a

complete system environment which supports the running of operating systems and

their processes by abstracting the ISA interface. System VMs map a virtual guest sys-

tem onto a real host system by emulating hardware componentssuch as processors,

memory and I/O devices.

ABI   ---

Virtualization 

layer

Application

OS

Hardware

Application

Process

VM

(a) Process VMA p p l i c a t i o n sO S
H a r d w a r e

A p p l i c a t i o n s
S y s t e mV MO SI S A - - - V i r t u a l i z a t i o nl a y e r

(b) System VM

Figure 2.1 Virtual Machines The two figures show the virtualisation layers used to simulate
a) a process and b) an entire system.

2.2 Interpretation

Traditional interpretive simulators, such as SimpleScalar [Burg 96, Burg 97, Aust 02]

and Bochs [Lawt 96], start by loading the target binary into simulated target memory.

The simulator then fetches, decodes and emulates the next instruction in the execution
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path [Half 94]. The fetching, decoding and execution tasks are usually performed in

a monolithic function. After fetching and decoding the nextinstruction opcode from

memory, the simulator calls an instruction specific function which emulates the instruc-

tion’s behaviour. The function carries out the instructionoperation within the processor

model, updating the processor state, general purpose registers and main memory as re-

quired. Instrumentation functions may also be called to gather data on indicators such

as the instruction count, total execution cycles and power usage statistics.

Figure 2.2 shows how a basic interpretive simulator might beimplemented in C code.

The main simulation loop is represented by thewhile statement, with theswitch

statement directing control to the next instruction to be emulated. The next instruction

opcode is fetched and decoded by calling thedecode opcode function. This function

will search a decode cache in order to return previously decoded instructions as quickly

as possible. The decoded instruction is then matched with the correspondingcase

statement which emulates the instruction and updates the program counter (PC). The

break statement marks the end of each instruction and transfers control back to the

main simulation loop.

Hardware decoders are fast, but instruction opcode decoding in software is a very time

consuming process. This is because each opcode must be bit tested in order to ascer-

tain the instruction operation, addressing mode, source and destination operands, data

size (16/32 bit), indexing mode and any conditional execution flags to be tested. In-

terpretive simulators typically execute between 10 and 100host instructions per target

instruction [May 87]. However, interpretive simulation isflexible and enables accurate

modelling of the target processor, albeit at relatively slow speeds.

2.3 Binary Translation

Binary translation [Cifu 96] is a technique used to convert binary code (target), which

has been compiled [Aho 86, Torc 07] to run on one processor architecture, into binary

code (host) which can be run on a different - or the same - processor architecture. When

executed, the host binary reproduces the behaviour of the target binary within the sim-

ulated target environment. The host binary generated is capable of emulating the target
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while (!end_of_simulation) {

inst = decode_opcode(PC);

switch (inst) {
case ADD:

*a = *b + *c;
PC++;
cycles++;
stats[ADD]++;
break;

case MPY:
*a = *b x *c;
PC++;
cycles+=2;
stats[MPY]++;
break;

case J:
PC = *c;
cycles++;
stats[J]++;
break;

...
}

}

Figure 2.2 Interpretive Simulator Code. The next target instruction is fetched from memory
address PC and decoded by calling the decode opcode function within the main simulation
loop. The decoded instruction opcode is then matched with an instruction case statement
which emulates the instruction by updating the simulation environment. Variables a,b and c are
pointers to general purpose registers which are assigned at instruction decode. The execution
cycle count is maintained in the cycles variable and instruction profiling is achieved using the
stats variable.

program up to 11 times faster than is possible with interpretive simulation. Chapter 3

covers the work carried out by others into binary translation based simulation.

There a two main types of binary translation: static binary translation and dynamic

binary translation.

• Static Binary Translation (Compiled). The target binary is parsed by

a translator which analyzes it to discover all possible execution paths

and then generates the simulator executable. The simulatoris then run

on the host machine to simulate the target program at high speed. Some
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compiled simulators incorporate a fallback interpreter todeal with in-

structions which were not identified during compilation.

• Dynamic Binary Translation . The target binary opcodes are fetched,

decoded, emulated and profiled by the simulator. Frequentlyemulated

sections of the target binary are then translated at runtimeinto host code

functions. The host code functions are then called to emulate the same

sections of program code at high speed. Although not as fast as static

binary translation based simulators, DBT based simulatorsare capable

of simulating any target program including self-modifyingapplications.

Simulators which employ binary translation have been used to port legacy applications

across to new systems with minimal effort. This has enabled individuals to continue to

benefit from their software investment. Rebuilding or possibly rewriting applications

can be very time consuming and may require in-depth knowledge of the compilation

process, assuming one even has access to the source code. However, whilst binary

translation based simulators are many times faster than interpretive simulators, native

compilation of the source code remains the fastest way to runa program. This is

primarily because the native compiler can view the target program in its entirety and at

a higher level of abstraction. This enables the compiler to better optimize the program

executable for speed.

2.3.1 Static Binary Translation

The processes involved in static binary translation are shown in figure 2.3. The front-

end is responsible for loading and decoding the target binary. The decoded instructions

are then translated into an optimized intermediate representation (IR) which is com-

puter and operating system independent. The back-end compiles the intermediate code

to generate the simulator executable. The simulator produced is a self-contained exe-

cutable which when run simulates the target binary.

A compiled instruction set simulator spends most of its timeemulating target instruc-

tions and is consequently much faster than an interpretive simulator. One straight-

forward compiled simulator design uses in-line macro expansion [Mill 91] present in
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Figure 2.3 Processes involved in Static Binary Translation Static binary translation is per-
formed prior to simulation.

many programming languages such as C. The target target binary is statically translated

into a host binary which is then run directly.

A macro is created for each target assembly language instruction. The macro defines

the high-level emulation function for each target instruction. For example, macros for

the add (ADD), branch on equal to zero (BEQ) and jump (J) instructions may be defined

as:

#define ADD(a,b,c) (a) = (b) + (c); cycles++; stats[ADD]++;
#define BEQ(disp) PC += (disp); cycles++; stats[BEQ]++;
#define J(target) PC = (target); cycles++; stats[J]++;

Control instructions, such as direct branches and jumps, with destination addresses that

can be computed statically may be modelled usingGOTO statements and address labels

placed before the target instructions. However, control instructions with destination

addresses which are computed at runtime can not use such a method. Indirect branch

and jump instructions, as well as returns from subroutine calls fall into this category. A

switch statement can be used to model the execution path at runtime if each instruction

macro is defined as acase statement, where thecase statement value is equal to the
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instruction address. The example instruction macros now look as follows:

#define ADD(addr,a,b,c) case (addr): (a) = (b) + (c); \
cycles++; \
stats[ADD]++;

#define BEQ(addr,disp) case (addr): cycles++; \
stats[BEQ]++; \
if (status_flag(ZERO)) { \

PC = (addr) + ((disp); \
break; \

}

#define J(addr,target) case (addr): PC = (target); \
cycles++; \
stats[J]++; \
break;

Figure 2.4 shows example C code for a statically compiled simulator. Each target

instruction is represented by an instruction macro placed within the main simulation

loop (while statement). Theswitch statement controls the next instruction to be

emulated based on the value of the PC. The figure shows that thefirst instruction in

the target program is anADD instruction at address 0x1000 which adds together source

registersr2 andr3, and places the result in destination registerr1.

while (!end_of_simulation) {
switch (PC) {

ADD(0x1000,r1,r2,r3);
ADD(0x1004,r5,r4,r1);
BEQ(0x1008,0x0008);
MPY(0x100C,r7,r5,r6);
ADD(0x1010,r5,r1,r7);
J(0x1014,r5);
...

}
}

Figure 2.4 Compiled Simulator Code. This figure shows the target instruction macros
placed within the switch statement.

After a non-control instruction, simulation passes on to the next sequential instruction

(following case statement) as non-control instructions do not end with abreak state-
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ment. The PC is updated with the target address for control instructions which are

taken, abreak statement then forces control back to the main simulation loop. The PC

is not incremented after non-control instructions, or not taken control instructions, in

order to increase the simulation speed. Theswitch statement is compiled bygcc into

a set of indexed indirect jumps (jump table) which point to the differentcase state-

ments. This is an efficient way to reference target instructions and enables changes in

the control flow to be simulated at speed.

It is possible for large target programs to exceed the maximum code size (compiler

dependent limit) allowed within aswitch statement. If this is the case. the target

program can be broken up into smaller sections, with each section being placed within

a separateswitch statement as shown in Figure 2.5.

while (!end_of_simulation) {
switch (PC) {

ADD(0x1000,r1,r2,r3);
...
PC = 0x1234;
default: break;

}
switch (PC) {

MPY(0x100C,r7,r5,r6);
...
PC = 0x2FDC;
default: break;

}
switch (PC) {

ADD(0x1010,r5,r1,r7);
...
HALT;
default: break;

}
}

Figure 2.5 Compiled Simulator Code for Large Programs. Multiple switch statements are
used to overcome compiler dependent switch size limits. The last instruction within a switch
statement sets the PC value to equal the instruction address of the next consecutive instruction
(first instruction within the following switch statement).

The PC is set to the next instruction address after the last instruction within aswitch

statement has been emulated. If the previous instruction was a non-control instruc-

tion, simulation continues with the first instruction in thefollowing switch statement.
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Control instructions are emulated as before, although theymay now have to traverse

a number of switch blocks before finding a matching target address. The overhead of

searching acrossswitch blocks for a target address increases with program size, but

the associated performance degradation is negligible.

If the same target program is to be simulated many times, which is often the case, then

compiled simulation is much faster than interpretive simulation. The initial cost of

translating the target program is more than offset by the increased simulation speed.

However, compiled simulators do not normally model a processor’s internal state, in-

cluding the PC, as accurately as an interpretive simulator for performance reasons.

Compiled simulators can only be used if all of the program code to be simulated can

be identified at the time translation is performed. In other words, the target program

code must be statically discoverable in order for it to be successfully simulated. This

pre-condition excludes simulation of target programs which are self-modifying. Multi-

tasking OSs can not be simulated as different processes may occupy the same address

space. Operating system simulation is further complicatedby the need to model asyn-

chronous events such as interrupts.

Most embedded systems rely on some form of OS to schedule workloads across mul-

tiple processor cores and to control peripheral devices. Although compiled instruction

set simulators are much faster than interpretive simulators, their use is restricted to

stand-alone programs, which is not sufficient to model the complex hardware/software

interfaces present in modern embedded systems.

The process of static binary translation is complicated by the existence of instructions

and data within the same address space, and by the presence ofindirect branches.

Control-flow and register analysis are issues which static binary translation based sim-

ulators have to address in much the same way as disassemblersand compilers. The

initial parsing of a target executable may not be able to resolve all instructions and

data during translation. Hybrid static binary translationbased simulators overcome

any restrictions by calling a fallback interpreter to emulate target instructions, which

for whatever reason, were not previously identified during translation or have been

modified.
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2.3.2 Dynamic Binary Translation

The processes involved in dynamic binary translation are shown in figure 2.6. The

front-end is invoked at runtime to decode regions of target code which have not pre-

viously been translated. The decoded code is then optimizedand translated into an

intermediate representation. The back-end compiles the intermediate code into host

code functions which are called to emulate the code sections. It may be discovered

during emulation that certain host code functions lie on a critical path. In this case,

the corresponding sections of code may be re-translated using a more aggressive opti-

mization policy. T a r g e t b i n a r yD e c o d e b i n a r yc o d e s e c t i o n

H o s t b i n a r y
G e n e r a t eo p t i m i z e d I RC o m p i l e I R

Figure 2.6 Processes involved in Dynamic Binary Translatio n Dynamic binary translation
is performed at runtime.

Simulators which employ dynamic binary translation can emulate any type of applica-

tion, including full operating systems, and are almost as fast as static binary translation

based simulators. A DBT based simulator translates frequently executed sections of

the target code - typically basic blocks - into code which when executed on the host ma-

chine emulates the same instructions within the simulationenvironment. High speed

simulation is achieved by combining DBT with translation caching. If self-modifying

code is detected at runtime, any translations which emulatethe modified program re-
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gion are discarded. Binary translation is a processor intensive task which can slow

down simulation significantly on the first simulation run. Toreduce the translation

overhead some simulators perform emulation and translation in parallel.

Figure 2.7 shows a basic implementation of the main simulation loop for a DBT based

simulator. The simulator calls thefetch translation function which searches the

translation cache to see whether a translation exists for a basic block with start ad-

dress equal to the PC. If a translation exists, the pointer tothe translated function

(trans func) is returned to the main loop. The translated function is then called to

emulate the block at high speed. A pointer to the processor state is passed to the trans-

lated function so that it can update any status flags and registers whilst emulating the

instructions within the block.

while (!end_of_simulation) {

trans_func = fetch_translation(cpu_state->PC);

if (trans_func)
(*trans_func)(cpu_state);

else
interpret_block(cpu_state);

if (end_of_epoch)
perform_translation();

}

Figure 2.7 DBT Simulator Code. This figure shows the C code skeleton for the main loop of
a basic block DBT based simulator.

If a translation does not exist for the basic block, thefetch translation function

returns aNULL pointer. The simulator then calls theinterpret block function which

interprets the basic block and maintains a profile of how manytimes the block has been

emulated. The simulator continues emulating consecutive basic blocks in this manner

for a fixed number of blocks - the simulation epoch. At the end of each simulation

epoch, theperform translation function is called which scans the basic block pro-

files to identify those blocks which were frequently executed. After translating the hot

blocks, the function then adds the newly created translatedfunctions to the translation
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cache.

A DBT based simulator can also gather profiling information (control-flow, register

contents) on the target program whilst simulating it, something which is not possible

with a static binary translation based simulator. This means that frequently executed

code regions may be sent for highly optimized translation. Dynamic binary translation

is lazy. This is an advantage as it guards against translating sections of the target binary

which are never executed or which contain only data.

2.4 Sampling

Sampling is a technique which is used to speed up cycle-accurate simulation. A sam-

pling based simulator collects accurate simulation data for a small subset (sample) of

the entire benchmark simulation period (population), fast-forwarding through the re-

mainder of the benchmark. Statistical analysis is then performed on the data collected

to produce approximate figures for the simulation. During fast-forwarding, full ob-

servability is typically not supported, therefore sampling is not suitable for performing

hardware/software co-design.

The Sampling Microarchitecture Simulation (SMARTS) framework [Wund 03] uses

statistical sampling. It has been shown to speed up the simulation of 8-way and 16-

way out-of-order processors by a factor of 35 and 60 times respectively compared to

full cycle-accurate simulation. SMARTS can calculate the clock cycles per instruc-

tion (CPI) to within±3% for 41 of the SPEC2000 benchmarks. SMARTS applies

statistical sampling theory to work out the optimal sampling strategy that will capture

a programs’ variability and produce results with the required degree of accuracy. The

sampling strategy requires taking a large number of small samples from the population.

By selecting a minimal, but representative sample, the nature of a particular benchmark

can be accurately modelled.

SMARTS samples a tiny fraction of a benchmark’s execution stream using detailed

cycle-accurate simulation. The rest of the time it fast-forwards through the benchmark

using functional simulation. The desired micro-architectural data is collected during

sampling, whereas only the program-visible architecturalstate is updated during fast-
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forwarding. Systematic sampling is used where the samples,which consist of a rela-

tively small number of consecutive instructions, are separated by sampling intervals,

which consist of a large number of consecutive instructions.

Whilst SMARTS maintains the processor state between samples with functional sim-

ulation, the state of the system micro-architecture is leftto become stale. If the micro-

architecture state is not up-to-date prior to sampling thenlarge errors appear in the

detailed data collected. To combat this, the micro-architecture state is updated by the

inclusion of a cycle-accurate warm-up period just prior to sampling. However, it is

difficult to know how long to make the warm-up phase as some micro-architecture

states may require many simulation cycles before they are representative of the true

cycle-accurate states.

Another sampling technique, SimPoint [Sher 02], can summarize the large-scale be-

haviour of programs relatively quickly. It achieves this byoffline analysis of the ba-

sic blocks within large representative sample traces - 100 million instructions - taken

from the program trace. The assumption is that samples with matching dynamic ba-

sic block profiles exhibit similar behaviours. However, SimPoint does not provide a

formal method for quantifying the accuracy of the results returned.

2.5 Summary

This chapter outlines the main simulation techniques used in instruction level and

cycle-accurate simulation of microprocessor systems. Whilst interpretive simulation

is flexible, in that it provides observability and can simulate any target binary, it is

very slow at performing instruction level simulation compared to the different binary

translation based simulation techniques. Dynamic binary translation is the best simu-

lation technique for performing instruction level simulation as it is not only very fast,

it also provides state observability and can simulate self-modifying programs. This

makes DBT based simulation ideal for carrying out high levelDSE and for performing

hardware/software co-design and verification.

Sampling based simulation techniques are superior for performing cycle-approximate

simulation. Sampling based simulation is many times fasterthan interpretive or binary
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translation based simulation techniques as it fast forwards through the majority of the

simulation, needing only to simulate very small sections ofthe target program in de-

tail. The inaccuracies introduced are small and can in some cases be quantified which

makes sampling ideal for carrying out low level DSE in situations where there is a

very large design-space. However, DBT based simulation remains the best simulation

technique for performing cycle-accurate hardware/software co-design and verification

of microprocessor architectures.



Chapter 3

Related Work

This chapter describes the simulation techniques used in previous work which are rel-

evant to the field of high speed binary translation based simulation.

3.1 Binary Translation Simulators

This section looks at the translation techniques employed in static and dynamic binary

translation based simulators [Cifu 96].

3.1.1 Static Binary Translation

The first static binary translation simulators were used to port legacy software across

to newer, faster RISC based systems [Patt 85, Stal 90]. Static translators operate like

compilers, translating the target binary into an equivalent host code binary image.

Compiled simulators spend most of their time emulating target instructions and are

consequently much faster than interpretive simulators. Interpretive simulators are slow

because they spend most of their time, in the main simulationloop, fetching and de-

coding each instruction. Even if interpretive simulators employ a decode cache, the

emulation of instructions is still slow.

28
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3.1.1.1 HP Object Code Translator

When Hewlett Packard released its MPE XL operating system for its new HP Preci-

sion Architecture (RISC) series of computers it incorporated a Compatibility Mode

(CM) environment [Berg 87]. The CM environment enabled program binaries from

the previous family of HP 3000 computers (stack-orientatedCISC, MPE V operating

system) to run on the Precision Architecture platform. The CM environment uses two

subsystems: the HP 3000 emulator and the static binary translator, called the HP 3000

Object Code Translator (OCT).

The emulator is capable of running HP 3000 binary code on HP Precision Architecture

platforms without modification. However, the OCT first translates the HP 3000 binary

code into native code which is then executed. The OCT binary translator can simulate

HP 3000 programs up to five times faster than the emulator.

The OCT translates HP 3000 binary code segments into native code modules. The

translator also tries to discover all of the node points within the program code and

creates a node mapping table. The node mapping table holds the translated code ad-

dresses, within the modules, which correspond to the node addresses within the code

segments. When a branch target address can not be staticallydetermined it is looked up

at runtime in the node mapping table. If a target address is not found within the node

mapping table the emulator is invoked until the PC value equals a module entry-point

at which point execution is returned to the translated code.

3.1.1.2 Hunter Systems DOS to Unix Translator

Hunter Systems used object code translation to port MS-DOS binaries (8086) into ex-

ecutable files which run on UNIX systems [Hunt 89, Wirb 88]. A number of different

translator back-ends made translation to different host architectures possible. How-

ever, the program analyser required manual intervention inorder to deal with complex

code, such as self-modifying code, and to compute indirect jump target addresses.
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3.1.1.3 Tandem Accelerator Object Code Translator

Tandem wanted an easy way to migrate software from its proprietary TNS CISC ma-

chines to its new TNS/R RISC machines based on the MIPS processor. The OCT

developed by Tandem, called the Accelerator [Andr 92], enabled all existing TNS soft-

ware to be run immediately and at high speed on the TNS/R machines. The Accelerator

was also used to translate Tandem’s Guardian 90 operating system and produce the first

RISC release. This contributed to bringing Tandem’s new RISC machines to market

many years earlier than would otherwise have been possible.

The Accelerator emulates TNS CISC binary programs on TNS/R RISC machines by

using a combination of translation and interpretation. It augments the target binary

with translated code sections and a PMap table, which is a mapof CISC to RISC in-

struction addresses, in advance of simulation. The Accelerator acts like any optimizing

compiler except that it tightly controls TNS/R register andstack frame usage so that it

can easily switch between accelerated and interpreted simulation modes.

After disassembling the CISC (TNS) target binary the Accelerator performs static

control-flow analysis in which it attempts to identify all ofthe branch paths. Jumps

through pointer variables or calculated addresses are explicitly marked and if the target

address is unknown at runtime - not found in a PMap table - a switch is made to the in-

terpreter. The Accelerator translates the CISC instructions within each basic block, on

a per CISC subroutine basis, into a preliminary sequence of RISC instructions. CISC

subroutine calls lookup the target address in a jump table which is replaced by a direct

jump into translated RISC code. Returns back to the caller must also be looked up in

the PMap table. Standard optimization techniques are then applied to the translated

code within and across the basic blocks, including reordering the instructions within

each block to minimize pipeline stalls.

Four different programs (TAL compiler, TAL-coded Dhrystone, Axcel and ET1) were

used as benchmarks to measure the performance of the Accelerator. The benchmarks

were run natively on a NonStop Cyclone, 22.3MHz superscalarCISC machine and

compared with OCT emulation of the same benchmarks on a NonStop Cyclone/R,

25 MHz machine. The average benchmark simulation speed was 78% of the average

native execution speed, and the simulation speed for the Axcel benchmark was 8%
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faster than native execution.

It was shown that translated code ran 5 to 8 times faster than interpretation and that in-

terpretation accounted for less than 1% of the emulation time. On average, the number

of RISC instructions generated per CISC instruction was 1.6, and the accelerated code

file (CISC binary plus translated code plus PMap) was 5 times larger than the original

CISC binary.

3.1.1.4 Digital VEST Binary Translator

In 1988, Digital wanted to run legacy code which had previously been executed on its

VAX machines [Brun 91] on its latest Alpha AXP processor [Site 93a, Site 95], but it

was not simply a case of recompiling the applications for thenew architecture. Large

and complex applications typically rely on a spectrum of different OS libraries and ser-

vices, and the time required to rebuild everything from scratch would have been pro-

hibitive. It was therefore necessary to run as much as possible in the old environment,

with system calls being redirected to the newly ported OpenVMS AXP [Kron 93] op-

erating system. The Alpha AXP team decided to use static binary translation to enable

not just their existing VAX code base, but also their MIPS code [Kane 88] code base,

to be run on the Alpha processor.

Digital developed the VAX Environment Software Translator(VEST) binary transla-

tor to translate an OpenVMS VAX binary image into a OpenVMS AXP binary im-

age [Site 93b]. VEST disassembles the VAX code starting at standard entry points,

such as global sub-routines, and traces the program building-up a control-flow graph

of basic blocks. After analysing the CFG, VEST generates an optimized host binary.

The mapping between architectures is simplified by the fact that the AXP processor

has more registers than the VAX processor. VAX condition codes, which are not im-

plemented in the AXP processor, are mapped on to spare AXP registers. Each VAX

instruction gets translated into zero or more AXP instructions.

VEST inserts jump instructions within the host binary to emulate direct branches and

jumps. However, in order to emulate branches and subroutinecalls to unknown target

addresses, VEST inserts calls to a runtime look-up routine.The routine uses a look-

up table which maps VAX instruction addresses to the corresponding translated Alpha
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AXP instruction addresses. If the destination address is found in the look-up table

then control is passed to the corresponding address in the host code. If it is not found,

control is passed back to the runtime environment.

The Translated Image Environment (TIE) is the runtime environment which executes

the translated image. The TIE employs open-ended translation and emulates the Open-

VMS VAX environment by using wrappers to map library and system calls to the cor-

responding OpenVMS AXP calls. Target binary instructions which were either not

discovered, or which did not exist at translation (self-modifying code), are caught and

then simulated by TIE’s built-in interpreter.

Digital used binary translation as an interim solution to enable users to run existing

VAX/MIPS binaries on the Alpha processor with minimal effort. Over time, all legacy

applications and dependent libraries were ported over to the new platform. By utiliz-

ing binary translation, Digital were able to run translatedapplications on Alpha AXP

systems as fast, or faster, than the original applications ran on VAX systems.

3.1.1.5 Digital FreePort Translator

FreePort Express [Free 95] is a free program developed at Digital Research which

translates SunOS 4.1.x user-mode binaries into executablefiles which can be run on

DEC Unix 3.0 and later systems. It was the first translator from Digital which con-

verted binaries from a non-Digital OS platform. FreePort Express translates the target

binary prior to execution and incorporates a fallback interpreter. It was first demon-

strated at SunWorld ’95 where translated SunOS applications were shown to run as

fast, or faster, on an AlphaStation 400 4/233 system than natively on a SPARC 20/71

system.

3.1.1.6 Digital FX!32 Emulator

Digital developed the FX!32 emulator [Thom 96, Hook 97a, Cher 98] in order to in-

crease the popularity of its Alpha RISC platform by ensuringthat a large number of

applications would be available to run on it. FX!32 enabled all x86 32-bit Windows

NT 4.0 programs to be run on the Alpha Windows NT 4.0 system. The FX!32 was the

first emulator to use a combination of interpretation and profile-directed translation to
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provide fast simulation [Hook 97b] of x86 programs on the Alpha platform. The trans-

lation of x86 code into native Alpha code is performed in the background. Parallel

translation means that the translated code can be optimizedfor speed without affecting

the simulation speed.

The FX!32 runtime is started automatically whenever an x86 executable is run. The

runtime loads the x86 image into memory and then calls the emulator which interprets

the whole program the first time it is run. At the same time the emulator generates

profile data on CALL instruction target addresses, and source and target address pairs

for indirect jumps, which it stores in a database for use later by the translator.

The translator uses the execution profile information gathered during emulation to

translate the target binary into a collection of native codeimages. The unit of transla-

tion is the assembly code routine. The translator divides the target image into separate

routines that have entry points at each call target address.The routines are created

using the control-flow profile information which includes known target addresses for

indirect jumps. A routine is a collection of one or more regions which consist of a

contiguous set of instructions. Direct entry is permitted to any region within a routine.

A hash table is generated which maps target binary addressesto entry points within the

translated routines. If the emulator finds that the next instruction address is mapped

to an entry point, the corresponding translated routine is called. As it is generally

impossible to statically analyse all program execution paths, the emulator is invoked

as a backup when no translated routine mapping exists for a target address.

Digital’s FX!32 emulator transparently emulates x86 binaries on the Alpha platform at

high speed. The performance of a set of x86 benchmarks running on a 200MHz Intel

Pentium Pro and a 500MHz Alpha system under FX!32 were compared. The results

showed that the x86 applications ran as fast on the Alpha (second emulation run) as

they did on the Intel machine.

3.1.1.7 Ultra-fast Instruction Set Simulator

A number of research groups are now developing retargetableinstruction set simula-

tors. The Ultra-fast Instruction Set Simulator [Zhu 99, Zhu02] improves the perfor-

mance of statically compiled simulation by aggressively utilizing low level machine
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resources to take full advantage of the host architecture. The low level simulation

techniques were shown to increase the simulation speed by a factor of 2.7 on average

over traditional compiled simulation techniques which generate C code.

3.1.1.8 Static Scheduling Simulator

The static scheduling simulation technique [Brau 01] applies static compilation to in-

struction decoding and instruction scheduling in retargetable simulators. Whilst static

instruction scheduling increases the simulation speed of cycle-accurate simulators it

also restricts flexibility of operation. Compiled simulators were generated from model

descriptions of TI’s TMS320C54x processor (cycle accuratemodel) and the ARM7

processor (functional model). A FIR filter was used to benchmark both processor mod-

els running on an 800MHz Athlon PC. The simulation results for the TMS320C54X

processor, showed that static scheduling led to an increasein speed by almost a factor

of 4 compared to dynamically scheduled simulation. Static scheduling resulted in a

speed-up by a factor of 7 for the ARM7 processor, from 5 MIPS to35.5 MIPS.

3.1.1.9 JIT-CCS Simulator

Just-In-Time Cache Compiled Simulation (JIT-CCS) [Nohl 02, Brau 04] can be used

to create retargetable functional and cycle-accurate simulators. The JIT-CCS simulator

references an array of built-in, pre-compiled instructionfunctions which emulate the

behaviour of the different target instructions. When a target instruction is decoded a

reference to the corresponding compiled instruction function is stored in the translation

cache. If the simulator finds a matching translation cache entry for the next target in-

struction it calls the corresponding instruction function. If the simulator detects that an

instruction has been modified, it decodes it and then calls the corresponding compiled

instruction function.

Simulation results for cycle-accurate simulation of an ARM7 processor showed that

JIT-CCS simulation is four time faster than interpretive simulation and only 5% slower

than compiled simulation. The simulation performance results for the jpeg200 codec

benchmark were: compiled simulation 7.2 MIPS; JIT-CCS simulation 7.0 MIPS; in-

terpretive simulation 1.8 MIPS.
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3.1.1.10 IS-CS Simulator

The Instruction Set Compiled Simulation (IS-CS) simulator[Resh 03, Resh 09] was

developed as a fast and flexible functional simulator. In order to achieve high speed

simulation, the time consuming instruction decode processis performed during the

static compilation stage. The simulation engine checks to see whether the next in-

struction is valid before it calls the corresponding translated instruction function. If

an instruction has been modified the binary code at the PC address is decoded and the

instruction interpreted by a generic emulation function. As the number of instructions

modified in most simulations is very small the slowdown in simulation speed is min-

imal. Performance is further increased by a technique called instruction abstraction

which produces aggressively optimized decoded instructions.

Simulations of the adpcm and jpeg benchmarks were run on a model of the ARM7

processor. IS-CS was able to simulate adpcm and jpeg at speeds of 11.2 MIPS when

running on a 1GHz P3 host machine.

3.1.2 Dynamic Binary Translation

The poor performance of interpretive simulators and the lack of flexibility inherent in

compiled simulators has led to active research in the field ofDBT based simulation.

Dynamic binary translation based simulation takes advantage of the fact that programs

typically spend 90% of their execution time in only 10% of thecode. This means that

the cost of compilation can be amortized over the duration ofa simulation - even on

the first run - by caching the translations. The latest DBT emulation techniques are

outlined in the following sections.

3.1.2.1 MIMIC Simulator

The MIMIC simulator [May 87] simulates IBM System/370 instructions on the IBM

RT PC RISC machine. The MIMIC simulator was developed so thatimportant pro-

grams, written mainly in System/370 assembly, could be run on an RT PC worksta-

tion with minimal effort. A process VM was created on the RT PCto emulate the

System/370 application environment. To increase performance all system calls are
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mapped to native OS calls. However, instructions which invoke OS services directly,

such as the Supervisor Call, are translated to call a host code wrapper which then calls

the equivalent native OS service.

MIMIC takes a group of target instructions, called a code block, and translate them

as a unit. A code block consists of one or more connected basicblocks which may

be contiguous or disjoint. If the code block is larger than a basic block, complex flow

control analysis may be necessary. Each code block is analysed and translated just

before it is executed.

The MIMIC translator works in two stages. The first stage analyses each target code

block and the second stage generates the RT PC host code for the code block. MIMIC

utilizes three different data structures during simulation. The S/370 binary is loaded

into the Source Memory data structure and the translated host code blocks are stored in

the Target Memory data structure. The Intermediate Memory data structure maintains

a mapping between the target program addresses in Source Memory and the corre-

sponding translated code blocks in Target Memory. Each Intermediate Memory ad-

dress therefore passes simulation control over to the associated translated code block

or to the translator when no translated code exists.

Each translated code block consists of one or more prologs, amain body and an epilog.

A prolog exists at the entry point to a code block, This enables control to be transferred

to the next target instruction within the translated code block. The epilog exits the code

block and jumps to the pointer target in Intermediate Memoryfor the next instruction

address. This will either call the next translated code block or the translator.

Performance results for MIMIC are from the simulation of twolarge S/370 programs,

EXEC 2 and CIPHER. The quality of the translated code was judged by the expansion

factor, which was 4.25 for EXEC 2 and 2.7 for CIPHER.

3.1.2.2 Shade Simulator

Shade [Cmel 94, Hsu 89] is a fast instruction set simulation tool which includes a

flexible trace generation facility for the analysis, designand tuning of hardware and

software systems. Whilst statically translated code can simulate and trace programs at

high speed, it is incapable of tracing self-modifying or dynamically linked code. Shade
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achieves both high performance and comprehensive tracing by dynamically translating

code which simulates and instruments the target programs. Shade runs on Sun SPARC

systems and can simulate SPARC (V8 and V9) and MIPS I ISAs.

Shade dynamically translates target instructions up to thenext control instruction. The

host code fragments generated emulate the target block and perform any profiling when

called. The translated code fragments are chained together(direct branches only) so

that control can pass from one block directly to the next without needing to return to

the main simulation loop. Any memory references are replaced with calls to the target

memory model.

Each target instruction address is mapped to the corresponding translated code frag-

ment by a Translation Look-aside Buffer (TLB). The simulator performs a lookup, first

in a fast partial TLB, and then in the full TLB to see whether a translated fragment ex-

ists for a current PC address. If both lookups fail, the translator is invoked to create a

translated fragment for the current block which is then stored in the translation cache.

If the tracing strategy is changed, or the program code modified during simulation, the

TLB and translation cache are flushed.

The performance figures presented are for a subset of the SPEC89 benchmark suite

running on a SunOS 4.x, SPARC V8 platform. On average, Shade simulates V8 integer

and floating-point binaries 6.2 and 2.3 times slower respectively than they run natively.

SPARC V9 integer and floating-point binaries were simulated12.2 and 4 times slower

respectively than they run natively.

3.1.2.3 Embra Simulator

Embra [Witc 96], which runs as a subsystem in the SimOS [Rose 95] simulation envi-

ronment, accurately models MIPS R3000 and R4000 uni-processor and multiprocessor

systems. Embra is a flexible high speed simulator which can beused for research and

development into operating systems and computer architectures. It deploys DBT to

generate code sequences which simulate the workload, modelsystem components and

gather simulation statistics.

Embra translates each basic block it encounters into a host code segment which it then

executes to emulate the target instructions within the block. New host code segments
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are stored in a translation cache and references to them maintained in a hash table.

If the next PC address hits in the hash table, the corresponding host code function is

called to emulate the block. If the next PC address misses, the translator is invoked

to translate the target block. Consecutive basic blocks arechained together to avoid

returning to the main simulation loop. Embra supports self-modifying code by flushing

the translation cache and hash table on detecting a write to apreviously translated page.

Embra can customize the translated code generated to model different machines (mem-

ory configurations). The detail and type of profiling information captured may be

changed during simulation. This enables fast-forwarding through uninteresting parts

of the workload and is useful when simulating large applications.

Embra is a system simulator which models the R3000’s MMU usedto translate virtual

addresses to physical addresses. It supports multiple virtual address spaces so that

operating systems and multiple processes may be simulated.Embra can be operated

in one of three different simulation modes: Base mode is the fastest mode and uses

6000 cycle processor interleaving; Cache mode accurately models the target memory

hierarchy and uses 80 cycle processor interleaving; Parallel mode simulates each target

processor on a different host processor.

An SGI Challenge, 150MHz four processor (MIPS R4400) machine running IRIX 5.3

was used to evaluate the performance of Embra. A subset of theSPEC92 [Dixi 92]

benchmark suite running under IRIX 5.3 was simulated to ascertain the uni-processor

simulation performance. The average slowdown in simulation, compared to native

execution, was 5.8 for Base mode and 11.4 for Cache mode. In Base mode, the simu-

lation speeds ranged from 11.1 to 20 MIPS, with floating-point benchmarks executing

faster than integer benchmarks. A subset of the SPLASH-2 [Woo 95] benchmark suite

running under IRIX 5.3 was used to ascertain the simulation speed of a four proces-

sor, shared memory, multiprocessor system. The average slowdown in simulation,

compared to native execution, was 13 for Base mode, 99.2 for Cache mode and 6 for

Parallel mode.
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3.1.2.4 Simics Simulator

Simics [Magn 98, Magn 02] is a commercial, user level and fullsystem simulator. It is

capable of modelling target system behaviour at two levels of abstraction, functional

and timing approximate. Timing approximate simulation is achieved by interfacing

Simics with more detailed hardware models [Wall 05]. Simicssupports the develop-

ment and testing of both hardware systems and software. The target system is defined

using objects to represent components such as processors, memory, network cards,

graphics cards and disks. The system state can be inspected by single stepping through

the simulation or by setting breakpoints. Simics can also model a range of different

multi-processors, including out-of-order cores, and run anumber of different operating

systems.

A range of different operating systems were booted-up underSimics - running on an

Intel P-III, 933 MHz host platform - to test its performance.The simulation speeds

ranged from 2.1 MIPS for the boot-up of Windows XP running on an x86 P-II target

system, to 9.3 MIPS for booting-up Linux running on a PowerPC-750 target system.

Simulations were also performed for a multi-processor target system with Simics run-

ning on an UltraSparc III, 750 MHz host platform. The resultsfor the boot-up of

Solaris 8 on an Ultra II Enterprise server target system showthat the MIPS/CPU de-

creased from 6.62 for a single processor down to 1.25 for a 30 processor system.

3.1.2.5 QEMU Simulator

QEMU [Bell 05, Bart 06] is a fast, instruction level simulator which can model a range

of different target processors and perform system and process level simulation. QEMU

is straightforward to port between different host machinesas all necessary compilation

is performed at the time the simulator is built. The simulator forms a translated block

for each basic block it encounters and places it in a 16MB translation cache which

is simply flushed when full. It maintains a page cache which records which physical

pages are write-protected. This enables QEMU to simulate self-modifying code. On

detecting a write to a read-only page, QEMU invalidates all translations for the page

and enables write access.

QEMU uses an original dynamic translator. Each target instruction is divided into a
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simple sequence of micro operations which are implemented in C code. The set of

micro operations are pre-compiled bygcc offline - at build time - and then placed

into an object file. During simulation, the code generator accesses the object file and

concatenates micro operations to form a host function. Whencalled, the host code

function emulates the target instructions within the block. To increase the simulation

speed, translated blocks which are known to follow one another are directly linked

together. However, these links must be reset when the MMU address mappings change.

User level simulation of the Linux BYTEmark benchmarks resulted in a slowdown by

a factor of 4 for integer code and by a factor of 10 for floating point code over native

execution. System level simulation resulted in a slowdown by a factor of 2.

3.1.2.6 Simit-ARM Simulator

Simit-ARM [Qin 06, DErr 06] is a fast, instruction level DBT based simulator which

distributes the tasks associated with translation across multiple processors. The sim-

ulator offloads the translation process to the other cores and continues to emulate the

application interpretively. This means that no delays are experienced when running

interactive applications such as operating systems.

Whilst interpreting target instructions the simulator identifies frequently executed pages

for translation. A page is defined as a contiguous block of 512words. When the simu-

lation count for a page exceeds a predefined threshold, the program code for the page

is translated into a C++ page function. The page function is then compiled bygcc

into a shared library and linked with the simulation engine at runtime. If the next PC

address is within the address range of a translated page, thecorresponding host page

function is called with the PC passed as an argument. The hostpage function emu-

lates the target instructions within the page starting at the PC address. Simulation is

controlled within a page function via aswitch statement until the execution flow exits

the page. A host page function may emulate many thousands of target instructions in

a single call. Simit-ARM can perform process and system level simulation as well as

emulate self-modifying code.

Simulation Results for the SPEC CINT2000 benchmark suite, running on a four pro-

cessor, 2.8GHz P4 machine, show an average simulation speedof 197 MIPS for the
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MIPS32 ISA (Simit-MIPS simulator) and 133 MIPS for the ARM v4ISA (Simit-ARM

simulator).

3.2 Summary

Most of the simulation techniques covered in this chapter translate either small sections

of the target program (typically individual instructions or blocks of instructions) dy-

namically or larger sections statically. In addition, veryfew simulators support cycle-

accurate simulation which is needed to perform low level DSE. Whilst Simics and

Embra DBT based simulators can be used to perform DSE of hardware systems, they

are relatively slow simulators.

Simit-ARM uses a page as its translation unit with entry being permitted to any instruc-

tion address within a host page function. This means that thecompiler is restricted in

the optimizations that it can perform across basic blocks. Also, pages which contain

mostly data, or in which only a small region of code is executed, may get translated.

QEMU, Shade and Embra chain together translated basic blocks which they know

follow one another. However, the basic blocks are still translated separately and the

compiler is not presented with the opportunity to optimize the code generated for speed

across multiple blocks. In the case of QEMU, the code produced is not even optimized

across a single block as the instruction micro operations are pre-compiled and then

combined at runtime.

The research presented in later chapters looks at techniques which identify and trans-

late larger sections of the target program at runtime in order to increase the simulation

speed.
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Edinburgh High Speed Simulator

This chapter presents the Edinburgh High Speed simulator and details its modes of

operation, capabilities and performance enhancing structures. The advanced LTU DBT

simulation techniques investigated in this research and incorporated into the simulator

are described in later chapters.

4.1 Overview

The Edinburgh High Speed (EHS) simulator [Toph 07] is a high performance research

simulator developed at the Institute for Computing SystemsArchitecture at the Uni-

versity of Edinburgh. The simulator can perform user-level(emulated system calls)

and system-level simulation. It can be run in either instruction level or cycle-accurate

simulation modes and is capable of switching between these two simulation modes

at runtime. The simulator is target-adaptable and currently models the ARC 700TM

processor which implements the ARCompact instruction set architecture [ARCo].

The simulator operates in either interpretive or DBT based simulation modes. Dy-

namic binary translation based simulation is a hybrid form of simulation in which the

simulator alternates between performing interpretation and DBT based simulation. In-

terpretive simulation provides precise observability of the processor state after each

instruction and DBT based simulation provides precise observability at translation unit

boundaries.

42
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The EHS simulator models a complete computer system including the processor, its

memory sub-system and sufficient interrupt-driven peripherals to simulate the boot-

up and interactive operation of a Linux based operating system. In contrast to other

high speed instruction level simulators a precise view of the target processor state is

maintained. This allows the simulator to be used as a software development platform

as well as a tool for functional verification of customized processors derived from the

ARC 700 baseline processor.

In common with conventional interpretive simulators, suchas SimpleScalar, the in-

terpretive simulation mode repeatedly fetches, decodes and then emulates successive

instructions in the execution path. Registers, memory and the context of I/O devices

are updated as instructions commit in order to maintain a precise view of the target

system.

The DBT simulation mode combines the speed of compiled simulation with the flex-

ibility of interpretive simulation. This means that all binaries can be simulated and at

high speed. When running in this mode the simulator initially operates interpretively,

discovering and profiling basic blocks as they are emulated.The simulator periodi-

cally examines the target program’s execution profile looking for frequently executed

basic blocks which are then marked for binary translation. Once a basic block has

been translated, it will from that moment on be emulated by calling the corresponding

translation.

The underlying simulator components which handle memory access, I/O, interrupts

and exceptions are the same whether the simulator is operating in interpretive or DBT

based simulation mode. This facilitates seamless switching between the different sim-

ulation modes at runtime. Dynamic binary translation basedemulation of a basic block

may be terminated on any instruction and simulation restarted at the current program

counter. This enables translated blocks to raise exceptions part-way through, after

which the remaining instructions in the block will be interpreted.

The EHS simulator is written in C and C++ and incorporates a number of standard

performance enhancing structures such as instruction decode and translation caches.

The simulator can retain the translations generated duringsimulation of a given binary

for reuse when simulating the same executable. The maximum simulation speed is

observed when all target instructions emulated have been translated in previous sim-
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ulation runs. Persistent translations enable a library of application translations to be

built up for future use.

4.2 Simulator Features

The EHS simulator was designed for the purpose of researching novel micro-processor

architectures. In order to be able to perform design-space exploration and verification

effectively, the simulator must not only be fast, it must also provide flexibility of oper-

ation.

The key features of the simulator which make it suitable for design-space exploration

are outlined below:

• Fast Simulation. The EHS simulator is capable of high speed instruc-

tion level simulation. Running in DBT simulation mode the simulator

is as fast as other state-of-the-art simulators designed purely for speed.

Faster simulation reduces the time scales for software and hardware de-

sign, testing and verification.

• Instruction Level Simulation . In instruction level simulation mode the

simulator emulates programs at high speed and returns the instruction

count. The simulator also incorporates an interface to connect it to hard-

ware description language (HDL) generated simulators in order to carry

out co-simulation.

• Cycle-accurate Simulation. In cycle-accurate mode the simulator re-

turns the instruction count, the number of execution cyclesand the num-

ber of hits and misses for each level of the memory hierarchy.This in-

formation is required to map the design space when searchingfor the

most efficient processor and memory sub-system designs. Thesimula-

tor is able to switch dynamically between instruction leveland cycle-

accurate simulation. This flexibility of operation enablesdifferent tech-

niques, such as fast-forwarding and sampling (cycle-approximate), to
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be used to collect data during simulation. Testing new processor de-

signs using cycle-approximate simulation reduces the timerequired to

run individual simulations which facilitates detailed exploration of large

design spaces.

• Application and System VMs. The simulator is capable of providing

application and system level simulation. Applications canbe run stand-

alone with the simulator emulating Linux system calls, or anoperating

system can be run with the simulator modelling the standard hardware

peripherals. System simulation enables realistic testingof embedded

applications which typically run on top of some form of cut-down op-

erating system.

• State Observability. The simulator maintains processor state observ-

ability enabling it to support hardware/software co-design, verification

and debugging tasks. The state of the processor is updated aseach in-

struction is emulated.

• Target System Definition. The simulator provides for comprehensive

definition of the target system architecture. Target systemconfiguration

parameters include the core processor type; system clock speed; main

memory and closely coupled memory address ranges; type, level, size,

block size, associativity and replacement policy for caches; memory,

closely coupled memory, cache and cpu data path widths and latencies;

and branch predictor unit type.

• ISA Configuration . The number of cycles required to execute each

target instruction can be configured in an ISA file. The simulator also

provides for extension of the ISA through the addition of newinstruc-

tions loaded in shared libraries.

• Target Adaptable. The modular design of the simulator means that it

is relatively straightforward to swap one ISA for another.

• Command Line Interface. The simulator incorporates a command line

interface which allows a simulation to be paused so that breakpoints can
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be set, instruction tracing activated, simulation check points created or

the processor state displayed.

4.3 Normal Simulation Mode

In ‘normal’ interpretive simulation mode, the EHS simulator’s main loop fetches the

next instruction opcode from memory, decodes it and then emulates the instruction

updating the processor state. The average instruction level simulation speed is 30

MIPS and the average cycle-accurate speed is 12.5 MIPS (2.66GHz Intel Core 2 Duo).

Figure 4.1 outlines the operation of the EHS simulator’s interpretive simulation loop.

DC - Decode Cache

PC address

yes Emulate 

instruction

Hit in

DC? 

no

Decode 

instruction

Update DC 

with decoded 

instruction

Figure 4.1 Interpretive Simulation Loop. This flow chart shows the EHS simulator’s inter-
pretive simulation loop.

After each instruction is fetched it must be decoded so that its operation can be em-

ulated. The overhead of instruction decoding is high accounting for over 90% of the

total simulation time. This is due to the complex instruction encoding schemes em-

ployed in modern processors which are designed to hold a range of information. An

instruction opcode may have encoded the instruction size (16/32-bit), instruction op-

eration, instruction operands, address mode, data size andsign and whether another
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fetch is required to load immediate data. In order to streamline instruction decoding

the EHS simulator checks each opcode fetched against the most frequently executed

instructions first in an attempt to perform decoding as fast as possible.

Decode caches are widely deployed in simulators to minimizethe cost of instruction

decoding by storing previously decoded instruction information. Decode caches in-

crease the simulation speed significantly as most programs are highly repetitive in

nature during execution.

The EHS simulator also sets pointers within the decoded instruction object which di-

rectly references the instruction operands so that they canbe accessed at speed when

emulating the instruction. For example, the decoded information for the instruction

ADD r0,r30,r31 includes three pointers, two for the source operands (r30, r31) and

one for the destination operand (r0). On decoding an instruction the pointers for each

operand are set to reference the corresponding registers inthe model of the processor

register file. When the instruction is emulated the values ofits operands can obtained

and updated quickly by simply dereferencing the operand pointers (*r0 = *r30 +

*r31).

4.3.1 The Decode Cache

When an instruction is decoded, the information (includingany long immediate operand

values) is stored in the decode cache. The decode cache in theEHS simulator is con-

figurable in size (number of decoded entries) and associativity. By default the EHS

decode cache is configured as a 2-way, 8K entry cache.

Before fetching the next instruction from memory the instruction address is looked-up

in the decode cache. If the next PC address hits in the decode cache the previously

decoded instruction information is returned with minimal delay. If the next PC address

misses in the decode cache the instruction is fetched and decoded in the usual manner

and the decoded instruction information stored in the decode cache. If the simulator

detects self-modifying code all of the data stored in the decode cache is simply in-

validated. The EHS simulator’s decode cache typically experiences a hit rate above

98%.
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4.4 Fast Simulation Mode

The EHS simulator may also be operated in one of its high performance or ‘fast’ DBT

based simulation modes. Frequently executed groups of target instructions are trans-

lated into native code functions which when called emulate the same instructions at

high speed. Dynamic binary translation based instruction level simulation is typically

more than 10 times faster than interpretive simulation. Thedefault unit of translation

for the EHS simulator is the basic block. However, it may be configured to use larger

translation units consisting of multiple basic blocks. LTUs and their implementation

within the EHS simulator are described in detailed in chapter 6.

Figure 4.2 outlines the operation of basic block DBT based simulation as implemented

in the EHS simulator. The simulator interprets a fixed numberof blocks (1000 blocks

by default) at the same time building up a profile of which blocks were executed and the

number of times they were emulated. At the end of this period,called the simulation

epoch, the block profile is analyzed in order to ascertain those blocks which were

frequently executed. Blocks which were emulated more timesthan the translation

threshold, a fixed number beyond which a block is considered hot, are marked for

translation.

The hot blocks discovered are then translated into host codefunctions which can be

executed directly on the host machine. The EHS simulator first generates C code

functions to emulate the instructions within each of the hotblocks. It then invokesgcc

to compile the C code functions and create a shared library containing the host code

functions which it loads. All of these actions are performedduring actual simulation

of the target program.

Before the simulator starts to emulate the next block it checks to see whether it has

previously been translated. If it has, the simulator simplycalls the corresponding trans-

lated function which emulates the block directly. If not, the block is interpreted and

profiled as normal. Whilst the cost of dynamic binary translation is substantial, it is

amortized through the use of a translation cache which stores and then returns previ-

ously translated functions at high speed.
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Figure 4.2 DBT Simulation Loop. This flow chart shows a simplified version of the EHS
simulator’s DBT simulation loop.

4.4.1 The Translation Cache

In order to emulate the next basic block, the corresponding translated function needs

to be found, if one exists. However, as it would be very time consuming to search

of all the translations within the shared libraries lookingfor a match, all DBT based

simulators incorporate some form of translation cache. A translation cache is used to

locate the translated function for a given block with minimum delay. By default the

EHS translation cache is configured as a direct, 8K entry cache.

Before checking the decode cache for the next instruction, the next PC address is

looked-up in the translation cache. If the next PC address hits in the translation cache,

the previously translated function for the basic block withthat start address is returned
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to the simulator and then called. If the next PC address misses in the translation cache,

the basic block is interpreted as normal. If the simulator detects self-modifying code

all of the entries stored in the translation cache are flushedand the translations af-

fected discarded. The EHS simulator’s translation cache typically experiences a hit

rate greater than 99%.

4.5 Instruction Level Simulation

The instruction level and cycle-accurate simulation models have been developed as

separate components within the EHS simulator. This facilitates switching between

these two modes at runtime. The instruction level simulation mode emulates programs

at high speed and returns the instruction count.

4.6 Cycle Accurate Simulation

Cycle-accurate simulation models the processor pipeline [Henn 96] and memory sub-

system in detail returning the execution cycles and cache hit and miss statistics.

4.6.1 The Pipeline Model

The EHS simulator currently models a 7-stage pipeline basedon the ARC 700 32-bit

processor as shown in figure 4.3. The pipeline model is calledafter emulating each

instruction and it updates the cycle time of all the pipelinestages at this point.W r i t e - B a c kM e m o r yE x e c u t eR e g i s t e r F i l eD e c o d eA l i g nF e t c h
Figure 4.3 Processor Pipeline. This figure shows the 7 stages of the ARC 700 based pro-
cessor pipeline.

The processor’s pipeline consists of the following stages:
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1. Fetch

Fetches the next 32-bit word into the instruction buffer from memory.

May stall the pipeline whilst fetching data.

2. Align

Extracts the next instruction word (instructions are aligned on 16-bit

boundaries) and performs some pre-decoding of register operand ad-

dresses and instruction size.

3. Decode

Decodes the instruction opcode, identifying the instruction operation

and any operands.

4. Register File

Returns any register values used by the instruction from theregister file.

May stall the pipeline whilst updating source register values.

5. Execute

Performs the instruction operation updating the processorstate and any

destination register values. The pipeline may be stalled during instruc-

tion execution.

6. Memory

Performs load or store of register values from/to a memory address.

May stall the pipeline whilst loading data from memory.

7. Write-Back

Instruction commit.

4.6.2 The Memory Model

The cycle-accurate memory model returns the number of cycles taken for each instruc-

tion fetch and data load from memory. The memory model also returns the number

of hits and misses for all levels of the memory hierarchy. In order to speed up cycle-

accurate simulation the memory model incorporates a L1 front-end cache.
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4.6.2.1 L1 Front-End Cache

The L1 front-end cache is a small software cache which is placed in front of the cycle-

accurate L1 target cache [Hand 98] models (see figure 4.4) in order to speed up the sim-

ulation of instruction fetches and data accesses to and frommemory. Cycle-accurate

simulation of read and write requests involves a significantamount of processing,

which has a negative effect on the simulation speed. This is because L1 caches are

fairly complex to model, involving searching for specific blocks of data. The L1 front-

end cache is a simple structure which reduces the overhead ofmodelling the L1 target

cache/s by returning cycle-accurate information at greater speed. The L1 front-end

cache typically provides a speed-up of 1.16 for interpretive simulation and 1.32 for

DBT based simulation.

F r o n t - e n dC a c h eF r o n t - e n dC a c h eL 1 $ I L 2 L 1 $ D
Figure 4.4 L1 Front-End Cache. Figure shows the logical placement of the L1 front-end
caches between models for the target processor and L1 caches.

A cycle-accurate simulator must model all of the data accesses in detail, updating the

hit and miss statistics for all caches and calculating the latencies of all read and write

operations between the different memory levels. It has to take into account the cache

block size, associativity, replacement policy and write strategy (write-through or copy-

back) at every level.
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As programs exhibit a high degree of memory locality during execution the hit rate

observed for L1 caches is typically very high. Most of the time spent performing

cycle-accurate simulation of the memory hierarchy will be devoted to emulating L1

data accesses. Therefore, increasing the speed of the L1 cache models will result in

faster simulation overall. The L1 front-end cache is designed to speed up return of L1

read/write latencies and updating of L1 hit statistics. In other words, front-end caches

speed up the emulation of hits in the L1 target cache/s.

The front-end caches sit in front of the L1 target cache models and intercept the read

and write requests from the CPU. Hits in the front-end cache are processed locally,

whereas requests that miss are forwarded on to the L1 cache model. The front-end

caches are small, direct-mapped, inclusive caches which operate at speed. The flow-

charts in figure 4.5 show how read and write requests are processed by the front-end

cache.

All read requests made by the CPU are intercepted and the datablock address is looked

up in the front-end cache. If there is a hit, the cycle-accurate model returns the read

latency (cycles) and updates the number of L1 read hits. If the read request misses in

the front-end cache, the request is passed on to the underlying L1 target cache model.

If the read request hits in the L1 cache its block address is added to the front-end cache

and the read latency returned.

If the read request misses in the L1 cache, it is forwarded on to the next lower memory

level which processes it as usual. Once the request has been fulfilled with a block from

a lower memory level it is stored in the L1 cache. Any block which is evicted from the

L1 cache by the new block is also invalidated in the front-endcache. The new block

address is then added to the front-end cache and the read latency returned.

All write requests made by the CPU are intercepted and the data block address is

looked up in the front-end cache. If there is a ‘dirty hit’, inwhich there is a match for

the PC block address and the block’s dirty bit is set, the cycle-accurate model returns

the write latency and updates the number of L1 write hits. If the write request misses in

the front-end cache, the request is passed on to the underlying L1 target cache model.

If the write request hits in the L1 cache the dirty bit is set, if not already set, and its

block address is added to the front-end cache, the dirty bit set and the write latency

returned.
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Figure 4.5 L1 Front-End Cache Operation. The flow charts above show how Read and
Write requests are processed respectively by the front-end cache.

If the write request misses in the L1 cache, it is forwarded onto the next lower memory

level which processes it as usual. Once the request has been fulfilled with a block from

a lower memory level it is stored in the L1 cache with its dirtybit set. Any block

which is evicted from the L1 cache by the new block is also invalidated in the front-

end cache. The new block address is then added to the front-end cache, its dirty bit set

and the write latency returned.
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4.7 System Simulation

The EHS simulator supports full system simulation by modelling the underlying hard-

ware so that operating systems can be emulated. Modelling memory access for systems

which incorporate an MMU (Memory Management Unit) [Henn 02]is a processor in-

tensive task which slows down simulation. Memoization techniques are therefore em-

ployed to speed up simulation of read and write requests whilst accurately modelling

system memory. All memory exceptions: misalignment errors, memory access vio-

lations and TLB misses, must occur in the same manner and at the same point in the

simulated program as they would in the real system.

The translation lookaside buffer (TLB) translates a targetvirtual address to the cor-

responding target physical address or it raises a TLB miss. The EHS simulator de-

ploys Page Translation Caches (PTCs) to cache target virtual page to host physical

page address mappings which in turn model the target physical pages. Three different

direct-mapped PTC caches indicate whether a page accepts Read, Write and Execute

accesses. The PTCs speed up MMU simulation by bypassing TLB translation and by

directly referencing the data in the host physical pages. Figure 4.6 shows the PTCs

location within the MMU.

Each entry within a PTC holds the host physical page address mapping for a given

target virtual page address and is valid if and only if:

• The target virtual page address is currently mapped in the TLB.

• The current process has permission to access the page.

• The target physical page is in normal external memory with noread or

write side effects.

The read PTC enables the simulator to trap writes requests toread-only pages at the

same time allowing full speed read and execute accesses to read-only pages. Self-

modifying code is also trapped by identifying write requests to target physical pages

referenced in the fetch PTC. On detecting self-modifying code the entry in the fetch

PTC is removed and the decode and translation caches are flushed. Fetch requests

to target physical pages referenced in the write PTC are alsotrapped and their entries
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Figure 4.6 MMU Page Translation Caches. This figure shows the read, write and fetch PTCs
within the MMU model. A hit in a PTC provides direct access to the data in host memory (host
physical address), whereas a hit in the TLB returns the target physical address which is then
used in a call to the memory model.

removed from the write PTC. This enables processes with different privileges to access

the same physical page and avoid virtual aliasing.

4.8 Future Development

The EHS simulator will continue to be developed to increase its speed and effectiveness

as a tool for design-space exploration.

Development is planned in the following areas:

• Parallel Translation. The simulator currently waits for the translation

process to finish before continuing to simulate the target binary. The

simulator will be updated so that translation is performed in parallel to

simulation. This will result in faster simulation speeds onfirst runs,
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noticeably reducing the latencies experienced when running interactive

applications for the first time.

• CMP Simulation. The simulator will be developed to support high

speed simulation of processors incorporating multiple cores as inten-

sive research is ongoing in this area. It must be capable of modelling

homogeneous and heterogeneous processors as well as any on-chip net-

works and coherence protocols.

• Retargetable. In order to test new processor architectures and ISAs the

simulator will be made fully retargetable. This will require implemen-

tation of an architecture description language (ADL) whichis capable

of defining instruction semantics and the architectural model.

• Power Model. The power consumption of new systems is of utmost im-

portance to manufacturers, particularly in the embedded market where

battery life is vital. A power model will be integrated into the simulator

to provide detailed power performance figures for system components.

4.9 Summary

This chapter details the design and operation of the Edinburgh High Speed simulator.

It outlines the internal components which make it a fast and flexible simulator suitable

for performing research into computing system architectures. The EHS simulator can

be used for both high and low level design-space exploration. However, increasing

the instruction level and cycle-accurate simulation speedof the simulator remains a

priority so that it can better fulfil its DSE role.



Chapter 5

Evaluation Methodology

This chapter describes the benchmarking infrastructure and the methodology used to

evaluate the performance of the novel DBT simulation techniques presented in this

thesis.

5.1 Target System

The target system used for this research is based on the ARC 700TM processor and

configured as shown in table 5.1. The results from running a subset of the EEMBC

benchmark suite [EEMB] on the EHS simulator operating in basic block DBT mode

were used as a baseline measure of the simulator’s performance. The simulation results

for the new LTU DBT simulation modes researched in this thesis were then compared

with those for basic block DBT based simulation. This enabled any increases or de-

creases in the simulation speed from deployment of the new simulation techniques to

be scientifically quantified.

The 20 EEMBC lite benchmarks simulated are listed in table 5.2, four benchmarks

were selected from each of the five categories. All benchmarks were compiled for

the ARC 700 architecture usinggcc version 4.2.1 with-O2 optimization and linked

againstuClibc. The EEMBC lite benchmarks were run for the default number ofiter-

ations and the simulator operated in user-level mode to eliminate the non-deterministic

behaviour of a simulated operating system.

58
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Component Configuration

Processor ARC 700 uni-processor

L1 inst. cache 8KB
2-way set associative
16 Byte cache block
Random replacement policy

L1 data cache 8KB
2-way set associative
16 Byte cache block
Random replacement policy

Table 5.1 Target System Architecture

Category Benchmark Iterations

Automotive aifftr01 200
bitmnp01 3000
idctrn01 1500
matrix01 110

Consumer cjpeg 1000
djpeg 1000
rgbhpg01 100
rgbyiq01 100

Networking ospf 100
pktflowb4m 100
pktflowb512k 100
routelookup 100

Office bezier01fixed 1000
dither01 1000
rotate01 1000
text01 1000

Telecoms autcor00data 3 5000
fbital00data 2 5000
fft00data 1 1000
viterb00data 3 3000

Table 5.2 EEMBC Lite Default Iterations
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5.2 Simulation Environment

All simulations were performed on a 2.66 GHz Intel Core 2 Duo workstation (see

table 5.3) running Fedora Core 7 (kernel 2.6.23) under conditions of minimal system

load. The EHS simulator was configured to use a simulation epoch of 1000 blocks

and a translation threshold of 1 (see table 5.4). The EHS simulator was compiled,

and the translated functions dynamically compiled, withgcc version 4.1.2 and-O3

optimization.

Entity Description

Model Dell OptiPlex

Processor 1 x Intel Core 2 Duo 6700

CPU frequency 2.66 GHz

L1 caches 32KB I & D caches

L2 cache 4MB per dual-core

FSB frequency 1066 MHz

RAM 2GB, 800MHz, DDRII

OS Fedora Core 7

Table 5.3 Simulation Host Machine

Entity Configuration

Simulation epoch 1000 blocks

Translation threshold 1

Decode cache 8K entry
2-way set associative

Translation cache 8K entry
Direct-mapped cache

Physical page 8KB

Table 5.4 EHS Simulator Configuration
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5.3 Performance Metrics

The EHS simulator was used to simulate each EEMBC benchmark (excluding test har-

ness) and then return the simulation speed in MIPS. All of thebenchmarks were sim-

ulated on the EHS simulator running in both instruction level and cycle-approximate

simulation modes and operating in each of the different DBT simulation modes.

The simulator maintains a count of the instructions simulated and the real simulation

time was calculated from readings taken from the host machine’s hardware clock. In

order to minimize the effect of any variation in the simulation time - caused by the

underlying OS and hardware - each benchmark was simulated 10times and the average

simulation speed calculated1.

The geometric mean speed-up in simulation speed was calculated for each of the new

LTU DBT simulation modes relative to basic block DBT based simulation so that the

performance of each of the LTU DBT modes could be compared with one another.

The geometric standard deviation in the geometric mean speed-up results provides an

indication of the variation in the speed-up across all of thebenchmarks.

TheGeometric Mean is defined as:

µg = n
√

x1x2 . . .xn

wherexi represents the value of elementi in setX of speed-up values for each bench-

mark.

TheGeometric Standard Deviationis defined as:

σg = exp

(√

1
n

n

∑
i=1

(lnxi − lnµg)2

)

The relative mean absolute error (RMAE) in the cycle count was calculated to measure

the cycle count accuracy of the timing-approximate simulator modes relative to cycle-

accurate simulation. The standard deviation in the RMAE provides an indication of

the spread of cycle count errors across all of the benchmarks.

1The average speed for a benchmark is calculated by dividing the total instruction count for all
simulation runs by the total simulation time.
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TheRelative Mean Absolute Error is defined as:

RMAE =
1
n

n

∑
i=1

( | fi −yi |
yi

)

where fi represents the value of elementi in setF of cycle-approximate values,

and yi represents the value of elementi in setY of cycle-accurate values for each

benchmark.

TheMean is defined as:

µa =
1
n

n

∑
i=1

xi

wherexi represents the value of elementi in setX.

TheStandard Deviation is defined as:

σa =

√

1
n

n

∑
i=1

(xi −µa)2



Chapter 6

Large Translation Units

This chapter presents the new simulation techniques which were developed during

the course of this research. These innovative techniques for the generation of large

translation units were designed with the goal of speeding upDBT based simulation.

The methods used to profile the target program, identify the LTUs and to perform

binary translation at runtime are covered in detail.

6.1 Overview

In DBT based simulation, sections of the target program are discovered at runtime

and considered as possible candidates for translation. Thetranslator then translates

the sections of code which have been frequently emulated into host code functions.

When executed the host code functions emulate the corresponding target instructions

within the simulated processor model at much higher speeds than is possible with

interpretation.

In DBT based simulators the unit of translation is typicallyeither a target instruction or

a basic block [Hech 77]. This thesis explores the hypothesisthat significant increases

in the simulation speed can be achieved by identifying larger units for translation at

runtime.

If this hypothesis is correct, the increase in simulation speed will be attributable to two

main factors. Firstly, LTUs provide the translator with greater scope for optimization

63
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for speed because they are larger, consisting of multiple blocks rather than just a single

basic block. And secondly, larger sections of the target program will on average be

emulated within each translated function (TF), where a TF isthe translated host code

function which when called emulates the target instructions in a translation unit. This

results in fewer returns to the outer simulation loop in order to seek the next TF to call.

6.2 Translation Unit Types

This research investigates three different types of LTU [Jone 09], in addition to the

basic block translation unit. An LTU, in the context of program simulation, is a group

of target basic blocks which are connected by control-flow arcs and which may have

one or more entry and exit points. The LTUs selected for use inthis research are

based on standard objects which have traditionally been used by computer scientists to

understand the structure and behaviour of programs.

This research investigates four different ways of constructing translation units based

on the following object types:

BB : Basic Block translation unit

SCC : Strongly Connected Component LTU

CFG : Control Flow Graph LTU

Page : Physical Page LTU

In contrast to most other DBT based simulators, the EHS simulator profiles the target

program’s execution in order to discover hot paths rather than to identify hot blocks

or pages, parts of which may be infrequently executed or which may contain mostly

data. The target program is profiled and the translation units created on a per physical

page (target) basis. Grouping translations by physical page aids the simulator in its

translation management tasks. All of the translations for aphysical page are simply

discarded when the simulator detects changes to the data within the page. This can be

as a result of self-modifying code or page swapping.
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Figure 6.1 Translation Units. The figures above show an example target-program CFG
divided into BB, SCC, CFG and Page based translation units respectively. Dotted lines outline
the different translation units and the thick-edged circles indicate the possible entry points (basic
blocks).

Figure 6.1 shows the different translation unit types and the associated entry points.

The example program CFGs have been divided into separate translation units in accor-

dance with the DBT mode. The entry points to blocks within thetranslation units are

dependent upon the DBT mode. Entry is always to the first instruction within a basic

block.
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In BB based DBT, basic blocks which are frequently executed at simulation time

are identified and scheduled for binary translation. When the PC value subsequently

matches the start address of a previously translated basic block, the translated code

associated with that basic block is called to emulate the block at high speed.

In SCC based DBT, the program execution path is analysed at runtime in order to dis-

cover SCC (strongly connected blocks) and linear block region LTUs. The frequently

executed SCC, and linear region, LTUs are then marked for translation. When the

PC value subsequently matches the root block address of a previously translated SCC

LTU, the translated code associated with that SCC is called.

In CFG based DBT, the program execution path is analysed at runtime in order to

discover CFG LTUs. The frequently executed CFG LTUs are thenmarked for transla-

tion. When the PC value subsequently matches the root block address of a previously

translated CFG LTU, the translated code associated with that CFG is called.

In Page based DBT, the program execution path is analysed at runtime in order to

discover all of the CFGs within the physical page. The Page LTU is then translated

as a whole. When the PC value subsequently matches the start address of any block

within a previously translated Page LTU, the translated code associated with that block

within the Page LTU is called.

6.3 Runtime Profiling

Simulation time is partitioned into epochs, where each epoch is defined as the interval

between two successive binary translations. The simulatorgenerates a profile of the

target program’s execution path for those basic blocks interpreted in the current sim-

ulation epoch. The end of a simulation epoch is reached when the number of basic

blocks interpreted equals the translation threshold, a predefined value. During each

simulation epoch, new translation units may be interpreted; previously seen but not

translated translation-units may be re-interpreted; translated translation-units may be

discarded (e.g. self-modifying code); and translated translation-units may be executed.

In each simulation epoch, execution path profiles for the target program are built-up

for each physical page. For BB DBT, this involves simply maintaining a count of the
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number of times individual basic blocks have been interpreted. In LTU DBT (SCC,

CFG or Page) based simulation, a page-CFG [Much 97] is generated for each physical

page. Execution path profiles are built-up by adding the nextblock interpreted in a

page to the page-CFG, in addition to incrementing the block’s execution count. The

EHS simulator models a default physical page size of 8KB.

Figure 6.2 shows examples of the different types of page-CFGthat may be created

during simulation. A page-CFG may consist of a single CFG or multiple CFGs, in

which case they may be separate, combined or a mixture of bothtypes. In order to

prevent the generation of ‘broken’ page-CFGs caused by interrupts and exceptions,

block sequences for the different processor interrupt levels are independently traced.

(a) Separate (b) Combined (c) Mixed

Figure 6.2 Page-CFG Configurations. A page-CFG may contain any number of (a) separate
CFGs, (b) combined CFGs or (c) a mixture of both.

At the end of each simulation epoch the page-CFGs are analysed in order to retrieve

the constituent translation units. In the case of SCC DBT, Tarjan’s algorithm [Tarj 72]

is applied to each CFG in order to extract the SCC translationunits. Regions of linear

basic blocks are also identified as another translation unit. In CFG DBT, the translation

units are extracted by tracing the CFG paths starting at eachof the root nodes. No

further processing is required for Page DBT as the translation unit is the page-CFG

itself.
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6.4 Program Simulation

The main simulation loop of the EHS simulator is outlined in the flow chart of fig-

ure 6.3. The simulator looks up the next instruction to be emulated in the Translation

Cache (TC) which is used to return translations at speed. TheTC, which is indexed

by target instruction address, contains a pointer to the Translated Function (TF) of the

corresponding translation unit.

If the next PC address hits in the TC, the corresponding TF (host code function) is

called which emulates the target instructions within the translation unit at high speed.

If the next PC address misses in the TC, the target instruction is looked up in the

Translation Map (TM). The TM contains an entry for every translation unit which has

previously been translated. The TM is indexed by target instruction physical-address

and contains a pointer to the TF of the corresponding translation unit. If the instruction

address hits in the TM the corresponding TF pointer is cachedin the TC and the TF

called.

If the next instruction address misses in the TM, this indicates that a TF with this entry

address has not yet been generated. The basic block startingat the next PC address

must therefore be interpreted and profiled in the usual manner. In the case of BB DBT,

an entry for the basic block is cached in the Epoch Block Cache(EBC) which records

the blocks interpreted during the current epoch. In the caseof LTU DBT, the basic

block is added to the Epoch CFG Cache (ECC) which is used to create a page-CFG for

the target program for the current epoch. Instances of the EBC and ECC caches exist

for each physical page.

At the end of each simulation epoch a profiling analysis phaseis initiated prior to bi-

nary translation. In the case of BB DBT, the EBCs are scanned for frequently executed

blocks. In SCC and CFG DBT, the page-CFGs cached in the ECCs are searched for

frequently executed LTUs. Page DBT does not require any profiling analysis as Page

LTUs are always translated.
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Figure 6.3 LTU DBT Simulation Loop. This flow chart shows the EHS simulator’s LTU DBT
simulation loop.

6.4.1 Dynamic Binary Translation

Those translation units which were interpreted at least as many times as the translation

threshold during the previous simulation epoch are marked for translation. The metric

used to determine whether a translation unit is considered hot depends on the DBT

simulation mode as follows:
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BB : Number of executions.

SCC : Number of root node executions.

CFG : Number of root node executions.

Page : Always translate.

After all the hot translation units have been identified, thebinary translation phase

begins. The hot translation units are translated in batchesconsisting of translation

units belonging to the same physical page.

The translation units are first converted into C code functions which emulate the target

instructions within the processor model. The C code functions are then compiled using

gcc [Stal 01] into shared libraries which are loaded by the dynamic linker. Finally, the

TM is updated with pointers to the newly generated TFs. If thenext instruction to

be simulated corresponds to an entry point in a recently translated TF, its instruction

address will hit in the TM, a pointer to the TF will also be added to the TC and the TF

called.

Each target instruction within a basic block is translated into C code which emulates

the target instruction’s operation within the processor model. The simulated processor

state is updated during emulation of each instruction with the exception of the PC

which is updated at the end of each block or on encountering anexception. Translated

functions exit immediately on detecting an exception or at the end of the current basic

block if pending interrupts exist. Control is returned to the main simulation loop where

the exception or interrupts can be serviced. The edges connecting basic blocks are

recorded in the page-CFGs during profiling so that the control flow can be replicated

within the C code functions usingGOTO statements.

Figure 6.4 shows an example CFG translation unit and the corresponding outline C

code function. The C code functions for Page DBT based simulation contain a jump

table at the beginning which enables emulation to commence from any block within

the translation unit.
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A

B

C

.

(a) CFG LTU

void L_00010098 (cpuState *s)
{

Block_0x00010098:

/* C code to emulate
target instructions
within block A */

s->pc = next_pc;

if (pending_interrupts) return;

/* Unconditional Direct Control Transfer */
goto Block_0x000100c4;

Block_0x000100bc:

/* C code to emulate
target instructions
within block B */

s->pc = next_pc;

if (pending_interrupts) return;

/* Conditional Direct Control Transfer */
if (s->pc == 0x00010098) goto Block_0x00010098;
goto Block_0x000100c4;

Block_0x000100c4:

/* C code to emulate
target instructions
within block C */

s->pc = next_pc;

if (pending_interrupts) return;

/* Indirect Control Transfer */
if (s->pc == 0x00010098) goto Block_0x00010098;
if (s->pc == 0x000100bc) goto Block_0x000100bc;
if (s->pc == 0x000100c4) goto Block_0x000100c4;
return;

}

(b) C Code Function

Figure 6.4 LTU Translated Function. When the TF is called execution starts at the root node
(block A, start address 0x00010098). All target instructions within the block are emulated before
the PC is updated. A check is then performed to see if any interrupts need servicing before
simulating the next block or exiting the TF.



Chapter 6. Large Translation Units 72

6.5 Cycle Accurate Simulation

Large translation unit based DBT can be applied to instruction level and cycle-accurate

simulation of microprocessor systems. However, because a high proportion of the over-

all simulation time is spent performing cycle-accurate modelling in a DBT based sim-

ulator, the scope for speeding up cycle-accurate simulation using LTU DBT is greatly

reduced.

If DBT techniques are to realize significant increases in cycle-accurate simulation

speeds, the amount of time spent accurately modelling the system must be reduced.

The application of DBT simulation techniques will therefore prove to be much more

effective when applied to a cycle-approximate simulator. Chapters 7 and 8 provide

quantitative evaluation of these new techniques when applied to instruction level and

cycle-approximate simulation respectively.



Chapter 7

Instruction Level Simulation

This chapter investigates high speed DBT based instructionlevel simulation and eval-

uates the research hypothesis by comparing the simulation speeds of the novel LTU

DBT simulation techniques. The simulation performance andthe characteristics of the

translation units generated and the translated functions called are analyzed for each

LTU DBT mode. The simulation speed of the EHS simulator is also compared with

two state-of-the-art functional DBT based simulators.

7.1 Overview

Instruction level simulators enable target programs to be simulated at high speed as

they need only model the order of the processor state changesaccurately and not the

precise moments in time at which they occur. They support high level DSE, hard-

ware/software co-design, verification and debugging. Theyalso play an important role

in the development of software and compilers for new systemswhich are being devel-

oped in parallel.

When operated in instruction level simulation mode the EHS simulator updates the

target processor state after each instruction is emulated.However, when the simulator

is running in fast (DBT based simulation) mode, the PC is updated at the end of each

basic block and the instruction count updated on exiting each TF in order to maximize

performance.
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7.2 Instruction Level Simulation Analysis

In order to test the research hypothesis the same set of benchmarks were run on the

simulator operating in each of the different DBT simulationmodes. This enabled the

instruction level simulation performance for the three LTUDBT modes and for the

basic block DBT mode to be quantitatively compared with eachother. This section

presents the results from simulating a subset of the EEMBC benchmark suite [EEMB]

on the Edinburgh High Speed simulator. The simulation speeds reported are in native

MIPS: millions of target instructions simulated per real-time (host) second. Unless

explicitly stated otherwise, the simulation epoch was set at 1000 blocks and the trans-

lation threshold set to 1.

7.2.1 Performance

Figure 7.1 shows the simulation speed and the proportion of the total simulation time

spent performing translation when the simulator is operated in BB, SCC, CFG and

Page DBT simulation modes. Each benchmark was simulated twice, with the second

simulation run loading the translations generated by the first simulation run. The sim-

ulation speeds were calculated using the overall simulation time which includes the

time spent performing translation and the time spent loading translations, in addition

to the time taken to emulate the target instructions (interpretively or using TFs).

The results show a large jump in simulation speed from the first to the second simula-

tion run for most of the benchmarks in all DBT based simulation modes. For example,

the simulation speed for the bezierfixed benchmark goes from98 MIPS on the first run,

to 710 MIPS on the second run when the simulator is operating in Page DBT mode.

The second simulation run represents the maximum simulation speed attainable for a

given benchmark using a particular DBT simulation mode. No translation is performed

on the second run as all of the target instructions are emulated by TFs which were

generated on the first run. As many of the benchmarks run for short periods of time, the

proportion of the total simulation time spent performing translation can be significant

on the first run. For benchmarks which exhibit longer simulation times, the amount

of time spent performing translation will tend towards zeroon the first run. If binary
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Figure 7.1 Instruction Level Simulation Profile. The figures show the simulation speed
and the proportion of total simulation time spent performing translation (outlined bars) for two
consecutive runs of each benchmark in each of the DBT modes.
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translation were performed in parallel to simulation, the minimum simulation speed

experienced would be equal to that of interpretive simulation.

Overall, the three LTU DBT simulation modes perform significantly better than the

BB DBT simulation mode. Figure 7.2 shows the simulation speed for each benchmark

running on the simulator operating in each of the different DBT simulation modes. A

summary of the simulation performance statistics is provided in table 7.1. The LTU

DBT simulation speeds range from a low of 233 MIPS for the rotate benchmark in SCC

mode, to a high of 826 MIPS for the rgbhpg benchmark in Page mode. For BB DBT,

the slowest simulation speed is 124 MIPS for the ospf benchmark and the fastest is 660

MIPS for the rgbhpg benchmark. The average simulation speedacross all benchmarks

is 283 MIPS for BB DBT based simulation, 460 MIPS for SCC DBT, 455 MIPS for

CFG DBT and 466 MIPS for Page DBT.

Interpretive BB SCC CFG Page

SPEED (MIPS)

Slowest 24 124 233 270 259
Fastest 33 660 706 705 826
Median 29 278 446 445 461
Average 30 283 460 455 466

SPEED-UP

Geo. Mean 0.11 1 1.63 1.64 1.67
Geo. S.D. 0.046 0 0.397 0.376 0.336

Table 7.1 Instruction Level Simulation Performance Summar y. The geometric mean
speed-up for each DBT simulation mode is relative to the basic block DBT simulation speed.

The increase in simulation speed for each benchmark and LTU DBT mode, compared

to BB DBT based simulation, is shown in figure 7.3. LTU DBT simulation outperforms

BB DBT based simulation for all benchmarks with the exception of the bezierfixed

benchmark, where BB DBT simulation outperforms SCC DBT simulation by a small

margin. Overall, the LTU DBT simulation modes exhibit a meanspeed-up of at least

1.63 compared to BB DBT based simulation. The smallest and largest simulation

speed-ups were observed when the simulator was running in SCC DBT mode. The

smallest speed-up was 0.95 for the bezierfixed benchmark andthe fastest speed-up

was 2.32 for the bitmnp benchmark. Page DBT based simulationperforms the best



Chapter 7. Instruction Level Simulation 77

across all benchmarks with a mean speed-up of 1.67 and standard deviation of 0.336.

However, SCC DBT simulation exhibits the fastest simulation speed in 9 out of 20 of

the benchmarks, compared to 7 out of 20 for Page DBT.

7.2.2 Instruction Emulation

The proportion of instructions simulated by TFs (‘translated’ simulation) is greater

than 99% on the first simulation run for all benchmarks and DBTmodes. The bench-

marks and DBT simulation modes which exhibit the highest degree of interpretation

on the first run are, aifftr with 0.17% of instructions interpreted when running in BB

and Page DBT mode, and pktflowb512k with 0.52% of instructions interpreted in SCC

DBT mode and 0.40% in CFG DBT mode. The proportion of total simulated instruc-

tions emulated by TFs is dependent primarily on the application behaviour.

The results demonstrate the repetitive nature of the benchmarks and the manner in

which of all the DBT simulation modes benefit from this, even when benchmark run

times are very short. All of the DBT simulation modes performsimilarly with just

under 100% of instructions being emulated by TFs on the first run, increasing to 100%

on the second run.

7.2.3 Dynamic Binary Translation

The proportion of the total simulation time spent performing translation is depen-

dent upon the simulation period, benchmark behaviour, simulation epoch, translation

threshold, simulation run and the DBT simulation mode (see figure 7.1). A significant

proportion of the simulation time is spent performing translation on the first run with

no translation taking part on the second run for all benchmarks and all DBT modes. All

of the target instructions are translated on the first simulation run with no translation

occurring on successive runs. Further translation only occurs on successive runs if the

program execution path changes between simulation runs (SCC and CFG DBT modes

only) or if the code is self-modifying.

The proportion of time spent performing translation follows a similar pattern for all

DBT simulation modes with three-quarters or more of the benchmarks spending over
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Figure 7.2 DBT Instruction Level Speed. These figures show the simulation speed for each
benchmark using DBT simulation modes. The simulation speeds presented are for the main
simulation loop. The speeds shown are the average of 10 simulation runs in which all target
instructions had previously been translated.
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Figure 7.3 LTU DBT Instruction Level Speedup. These figures show the simulation speed-
ups for each benchmark for each LTU DBT mode relative to basic block DBT based simulation.
The speed-ups shown are calculated from the average of 10 simulation runs in which all target
instructions had previously been translated.
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70% of the time performing translation on the first run. The proportion of the total sim-

ulation time spent performing translation for BB DBT based simulation ranges from

99%, for benchmarks such as ospf and pktflowb512k down to 23% for cjpeg. The pro-

portion of time spent performing translation for SCC DBT based simulation is slightly

higher than for BB DBT simulation, ranging from 99% for ospf and pktflowb512k

down to 38% for cjpeg. And the proportion of time spent performing translation for

CFG DBT based simulation is slightly higher than for SCC DBT simulation, rang-

ing from 99% for ospf and pktflowb512k down to 46% for cjpeg. Page DBT based

simulation is very similar to SCC DBT simulation, with the proportion of time spent

performing translation ranging from 99% for ospf and pktflowb512k benchmarks down

to 34% for cjpeg.

The simulation times for the benchmarks ospf, pktflowb4m, pktflowb512k and routelookup

(EEMBC networking category) are the shortest. This explains why these benchmarks

spend a high proportion of the total simulation time performing translation on the first

run for all DBT modes. Conversely, the cjpeg and djpeg benchmarks have the longest

simulation times and therefore spend a much smaller proportion of the simulation time

performing translation on the first run for all DBT modes.

The proportion of the total simulation time spent performing translation on the first

run for each benchmark is very similar across all DBT simulation modes. In general,

the percentage of time spent performing translation is slightly higher for SCC DBT

than for BB DBT, and slightly higher for CFG DBT than for SCC DBT, whilst that for

Page DBT is very similar to SCC DBT. The differences in the percentage of simulation

time spent translating across DBT modes reflects the number and size of the translation

units which are translated, with larger translation units taking longer to construct and

to compile. These results reflect the fact that CFG LTUs are larger than SCC LTUs

which are in turn larger than BB LTUs.

7.2.4 Simulator Tasks

This section investigates what proportion of the overall simulation time is spent per-

forming each of the main simulator tasks. It therefore highlights those tasks which

have a predominant affect on the simulation speed during each run.
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The EHS simulator performs five main simulator tasks:

• Main Simulation Loop : function which emulates target program in-

structions either interpretively or by calling TFs.

• Loading Libraries : function which loads the shared libraries contain-

ing the TFs.

• Program Profiling : function which adds interpreted blocks to the page-

CFG target program execution profile (LTU DBT modes only).

• Profile Analysis: function which analyzes the page-CFGs in the ECCs,

or blocks in the EBCs, in order to identify hot translation units.

• Translation: function which translates the hot translation units creating

shared libraries which hold the TFs.

The proportion of the total simulation time spent performing each task for each DBT

mode is shown for five benchmarks in figure 7.4. Each benchmarkwas simulated

twice, with the second simulation using the translations generated by the first simu-

lation. The figure shows that a high proportion of the total simulation time is spent

performing translation during the first run which is reducedto zero by the second run.

The precise pattern depends on the benchmark and on the DBT simulation mode.

On the first run, 78% - 99% of the total simulation time is spentperforming transla-

tion for 4 out of 5 of the benchmarks (bitmnp, ospf, bezierfixed, viterb). The cjpeg

benchmark is the exception which spends between 22% and 46% of the time perform-

ing translation. This is because the cjpeg benchmark runs for a much longer period of

time than the other benchmarks and consequently spends a much smaller proportion of

the overall time performing translation. CFG DBT based simulation spends the largest

proportion of simulation time performing translation followed by SCC DBT and Page

DBT simulation and lastly BB DBT based simulation. The majority of the remaining

simulation time is spent in the main simulation loop emulating target instructions.

On the second run, just under 100% of the total simulation time is spent within the

main simulation loop for 4 out of 5 of the benchmarks. The timespent performing
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Figure 7.4 EHS Simulation Tasks. These figures show the proportion of the total simulation
time spent performing each of the main simulation tasks. One benchmark from each EEMBC
category was simulated for two runs using different DBT simulation modes.
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other tasks is largely insignificant. The exception is the ospf benchmark where the

proportion of time spent loading the dynamic libraries varies from 8% for BB DBT

based simulation to 24% for CFG DBT based simulation. This isbecause the ospf

benchmark runs for a very short period of time compared to theother benchmarks

and the proportion of the overall simulation time spent loading libraries is therefore

markedly higher.

Basic block DBT based simulation outperforms SCC DBT based simulation when

emulating the bezierfixed benchmark. This confirmed in the bar charts for bezierfixed

which show that less time is spent in the main simulation loopfor SCC DBT based

simulation than for BB DBT based simulation. On average BB DBT based simulation

spent 1.19 seconds in the main simulation loop whereas SCC DBT based simulation

spent 1.22 seconds. Although one might expect SCC DBT to perform better than

BB DBT, this result highlights the complex interactions which take place between

benchmark, simulator and host hardware.

7.2.5 Translated Functions

Table 7.2 shows the average and largest, static and dynamic,TF block sizes broken

down by benchmark and LTU DBT simulation mode. The static size of a TF is equal

to the number of target blocks contained within the TF, whilst the dynamic size of a

TF is equal to the number of target blocks emulated by a TF whenit is called, this may

vary for a given TF each time it is called.

During each simulation epoch, the simulator profiles a fixed number of basic blocks

(interpreted). The size of the TFs generated will be depend on both the size of the sim-

ulation epoch and the type of translation unit used. As expected, the average number

of blocks within a TF is greater for Page DBT than for CFG DBT, which is in turn

greater than for SCC DBT, across all benchmarks.

The average dynamic TF size provides an indication of the overhead which the simu-

lator experiences from returning to the main simulation loop. The larger the average

dynamic TF size, the fewer the number of times the simulator had to return to the

slow main loop in order to search for the next TF to call. An increase in the average

dynamic TF size should therefore correspond with an increase in simulation speed as
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Benchmark Avg TF Size Avg Dynamic TF Size Largest TF Largest Dynamic TF

SCC CFG Page SCC CFG Page SCC CFG Page SCC CFG Page

aifftr 3.4 7.4 16.4 4.4 6.0 5.1 87 126 134 240127 240129 5120

bitmnp 5.0 10.6 33.1 10.3 14.4 10.8 54 79 116 10111 10113 10113

idctrn 3.0 12.9 25.4 11.5 123.9 9.2 34 97 114 8193 8801 8193

matrix 3.5 6.5 28.7 5.7 11.8 9.3 45 97 174 3419 3419 3419

cjpeg 3.6 6.5 20.8 12.6 42.1 40.5 51 72 108 69129 69129 69129

djpeg 3.7 6.2 20.0 48.8 80.5 77.4 43 94 121 64327 64327 64327

rgbhpg 3.7 6.3 25.3 39.7 59.4 26.5 43 87 125 75921 75925 75925

rgbyiq 3.9 6.6 31.0 3612.9 4921.7 4272.4 43 97 133 4607999 4608002 4608002

ospf 4.4 8.7 26.0 426.3 484.6 497.3 64 105 148 189599 189602 189602

pktflowb4m 4.4 7.4 31.3 2485.1 17.8 17.8 39 90 149 1171544 1171548 1171548

pktflowb512k 4.4 7.6 31.7 325.9 397.5 17.3 39 90 149 154794 154798 154798

routelookup 4.3 7.5 27.7 667.6 712.8 37.0 41 105 105 56453 56457 56457

bezierfixed 4.0 7.2 26.2 1029.9 7163.2 1057.4 43 105 135 187799 187802 187802

dither 4.0 6.0 28.6 33.6 30332.6 33.6 44 97 130 163838 290986 163841

rotate 8.3 16.5 34.5 34.5 121.9 4.7 100 105 134 16644 16648 16648

text 4.3 10.4 28.1 4.3 10.2 9.4 43 105 136 2590 3523 2605

autcor 3.4 7.2 29.6 4350.9 5323.8 4518.1 41 86 127 15567 15573 15573

fbital 4.0 9.5 25.7 148.1 508.4 508.0 34 73 111 10752 10754 10754

fft 3.8 7.9 31.3 32.8 102.0 69.6 41 99 123 10495 10498 10498

viterb 4.3 10.7 22.1 1498.2 2617.6 1520.5 34 77 108 22475 22511 22511

Average 4.2 8.5 27.2 739.1 2652.6 637.1 48.2 94.3 128.9 354088.8 360527.3 342343.3

Table 7.2 Static and Dynamic Translated Functions. This table shows the average and largest, static and dynamic TF block sizes for each
benchmark for the different LTU DBT simulation modes.
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more instructions are emulated per TF call. For most benchmarks, the average number

of blocks simulated per TF call is greatest for CFG DBT, followed by Page DBT and

then SCC DBT.

Figure 7.5 shows graphs of the average dynamic TF size and themaximum simulation

speed for all benchmarks and LTU DBT simulation modes. The dynamic TF size for

each benchmark follows a similar pattern across the different LTU DBT modes with

the largest dynamic TF sizes corresponding to higher than average simulation speeds.

One exception however is the rgbhpg benchmark which exhibits the fastest simulation

speed across all DBT modes whilst possessing a small averagedynamic TF size.

Figure 7.6 shows the distribution of static TFs for the pktflowb4m benchmark. The

average static TF size for Page DBT based simulation is greater than for CFG DBT

which is in turn greater than for SCC DBT. The graphs show thatboth CFG and SCC

DBT based simulation generate a lot of TFs (53 and 79 respectively) which contain

only a single block, whereas Page DBT based simulation generates just two 2 TFs

containing 2 blocks. Page DBT based simulation identified the largest translated unit

(149 blocks) followed CFG DBT (90 blocks) and lastly SCC DBT (39 blocks). In total

Page DBT based simulation discovered 28 TFs, CFG DBT 210 TFs and SCC DBT 237

TFs.

Figure 7.7 shows the distribution of dynamic TF calls for thepktflowb4m benchmark.

SCC DBT based simulation exhibits a higher average dynamic TF size than either

CFG or Page DBT based simulation. This is due to the large number of TFs called

in both CFG and Page DBT based simulation which simulate onlya small number of

basic blocks. It can be observed that SCC DBT based simulation called only 1,182

TFs which executed a single block, where as CFG DBT simulation called 283,038 TFs

which executed a single block and Page DBT simulation called282,816 TFs which

executed three blocks. In addition, SCC DBT based simulation called TFs which em-

ulated 87545 blocks 100 times, the same number of times as thedefault number of

iterations for the benchmark. In the case of the pktflowb4m benchmark, the LTU DBT

mode which exhibits the highest average dynamic TF size (SCCDBT) also simulates

the benchmark the fastest (443 MIPS).

Basic blocks which are emulated by TFs cease to be profiled in all DBT simulation

modes. This is an issue for LTU DBT based simulation as it prevents accurate genera-
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Figure 7.5 LTU Dynamic TF Size and Simulation Speed. The figures show the average
dynamic TF size and simulation speed for each benchmark for SCC, CFG and Page DBT based
simulation.
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Figure 7.6 Static TF Distribution. The figures show the number of static TFs of a given size
generated for the pktflowb4m benchmark for SCC, CFG and Page DBT based simulation.
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tion of page-CFGs. It may cause individual blocks, or small groups of blocks, which

lie on the execution path to be profiled as isolated code segments. This results in the

formation of fragmented translation units (refer to section 7.5). Severe translation unit

fragmentation is in evidence during CFG and SCC DBT based simulation of the pkt-

flowb4m benchmark in which large numbers of static TFs are generated consisting of

just one block.

Changes in a program’s execution path (phase change) may also affect simulation per-

formance. Target program execution path information is only gathered during the cur-

rent simulation epoch and only for blocks which are interpreted. Profiling information

for a section of code may therefore be incomplete as the simulator has no future (or

past epoch) knowledge of indirect branches between or within translation units. If

there is a change in the program path (new hot path), it could be that the blocks which

lie on the new path are contained within different TFs. The simulator must therefore

call multiple TFs in order to simulate the instructions in the current path.

Translation unit fragmentation lowers the average dynamicTF size and explains why

the average dynamic TF size for Page DBT based simulation is less than that for CFG

DBT based simulation (except for the ospf benchmark) even though it exhibits a higher

average static TF size. This can be observed in Page DBT basedsimulation of the pk-

tflowb4m benchmark in which the smallest static TF size is 2, but where there are

over 1,000 calls to dynamic TFs of size 1. Translation unit fragmentation and pro-

gram phase changes lower the average dynamic TF size resulting in slower simulation

speeds.

For a given benchmark and LTU DBT simulation mode there exists a TF, or multiple

TFs, which represent the the simulation of the target program’s main loop, or part

thereof. In the case of the rgbhpg benchmark, TFs with a dynamic block size of 75,921

blocks were called a total of 100 times, the same number of times as the default number

of iterations for the benchmark. This is true for all of the LTU DBT simulation modes,

suggesting that the main loop, or part thereof, of the rgbhpgbenchmark is contained

within a strongly connected component.

Whilst those simulations which exhibit very large average dynamic TF sizes do expe-

rience faster than average simulation speeds, the average dynamic TF size does not on

its own explain the simulation speeds achieved relative to other benchmarks or DBT
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simulation modes. For example, whilst CFG DBT based simulation of the bezierfixed

benchmark exhibits the largest average dynamic TF size (7163 blocks compared to

1057 blocks for Page and 1029 blocks for SCC DBT) by a factor of6 or more, it

possesses the slowest simulation speed (467 MIPS), slower even than BB DBT based

simulation.

7.3 Translation Cache Size

Whilst the size of the translation cache has an affect on simulation performance it does

not favour one DBT simulation mode over another as it holds a fixed number of TFs.

Increasing the size of the translation cache may in theory improve performance as a

larger number of TFs should be accessible at greater speed. However, it is the size of

the L1 cache on the host machine which has an overriding affect on simulation speed.

Maximum simulation speed will be attained if the translation cache, or the hot part of

it, fits into the L1 cache.

7.4 Workload Sensitivity

It was observed that translation is only performed on the first simulation run for all

DBT simulation modes when simulating the EEMBC benchmarks.This shows that the

translations generated in the first run provide all of the TFsnecessary to emulate the

complete benchmark on consecutive simulation runs. However, it should be remem-

bered that this is only the case if the benchmarks are rerun with the same workload.

If the same benchmark is run with a different workload then changes to the program’s

execution path, and possibly to the program code itself (self-modifying), are likely to

occur.

If the program execution path changes with different workloads then new translations

may be generated on consecutive simulation runs. This can affect the performance of

SCC and CFG DBT based simulation as entry to each TF is only permitted via the

root node and new translations may therefore need to be generated. Changes to the

workload will not initiate further translation in BB and Page DBT based simulation
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as both modes allow direct entry to any block within a TF. It will however adversely

affect the performance of Page DBT based simulation as a change to the program path

will very likely straddle many more TFs.

7.5 Translation Unit Fragmentation

Translation unit fragmentation is the generation of multiple, smaller translation units

resulting from disruption to the profiling process during simulation. Incomplete profil-

ing of the target program path is caused by a number of factorsincluding the physical

page size, the simulation epoch and translated functions.

The target program’s execution path is profiled at runtime inorder to discover the trans-

lation units. However, only those blocks which are interpreted are profiled, blocks em-

ulated by TFs (previously translated translation units) donot get profiled. No profiling

is performed within TFs so that sections of the target program can be emulated at as

fast a speed as possible. Adding profiling code to TFs would slow down the overall

simulation speed considerably.

Figure 7.8 shows how fragmented translation units are formed for CFG DBT based

simulation. Figure 7.8a shows the control flow graph for an example target program

and figure 7.8b shows the segment simulated during the first simulation epoch (shown

in orange). The translation unit (CFG DBT mode) which might normally be identified

at the end of the first simulation epoch is shown to the right inblack.

Figure 7.8c shows what actually happens during the first simulation epoch. Any phys-

ical page boundaries disrupt the profiling process as the translation units are created

on a per physical page basis and so any control arcs going fromone page to another

are lost (dashed orange lines). The boundaries between simulation epochs also disrupt

profiling as the control arc leading to the next block to be simulated in the following

simulation epoch will be lost. The result is that two smallertranslation units (shown

to the right in black) are formed at the end of the first simulation epoch instead of the

single translation unit previously shown.

Figure 7.8d shows the program segment simulated during the second simulation epoch

(shown in orange) and the corresponding translation unit normally identified to the
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Figure 7.8 Translation Unit Fragmentation. These figures show the control flow graph for
an example target program, the CFG LTUs identified in each simulation epoch and how they
become fragmented. Orange lines show the program segments emulated in each simulation
epoch and the dashed orange lines show the control arcs lost during profiling.
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right (shown in black). However, profiling of the target program is further disrupted

in the second simulation epoch now that TFs exist. Figure 7.8e shows that those sec-

tions of the program emulated by TFs (shown in light orange) divide potential trans-

lation units as they do not perform any profiling themselves.The result is the two

small translation units shown on the right in black, insteadof the single translation unit

shown before. Translation unit fragmentation, as a consequence of existing TFs, has

the potential to affect Page DBT based simulation more severely than SCC or CFG

DBT simulation as Page based TFs are called to emulate any basic block which they

contain, not just the root block.

Figure 7.8f shows the situation after two simulation epochsin which five control arcs

have been lost (shown in orange) and the control flow graph forthe target program

has been divided into four small translation units. Translation unit fragmentation is

affected by:

• Physical Page Boundaries

• Existing Translated Functions

• Simulation Epoch Size

• Translation Threshold

• Program Phase Changes

Translation unit fragmentation results in a larger number of smaller TFs which has

a negative effect on simulation performance. Fewer basic blocks will be emulated

within a given TF, requiring the simulator to return to the main simulation loop more

frequently in order to find the next TF to call. More time spentsearching for TFs in

the main simulation loop results in slower simulation speeds.

Figure 7.9 outlines two different dynamic profiling techniques: interpretive and con-

tinuous profiling. Figure 7.9b shows the translation units identified using interpretive

profiling which only profiles interpreted blocks. This is themethod used by the EHS

simulator and which is described above. Figure 7.9c shows the translation units identi-

fied using continuous profiling which profiles all basic blocks, whether they are inter-

preted or emulated by a TF. The continuous profiling technique can be used with any

LTU DBT mode to reduce the effect of translation unit fragmentation.
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Figure 7.9 Translation Unit Profiling Techniques. Shows the (a) control flow graph for an
example target program and the CFG LTUs identified by (b) interpretive only profiling and by (c)
continuous profiling (interpretive and TF). The translation units identified in the first simulation
epoch are shown in blue and those identified in the second simulation epoch are shown in green.

After two simulation epochs, the interpretive profiling technique identifies four trans-

lation units, the largest of which contains three blocks. The continuous profiling tech-

nique identifies three translation units, the largest of which contains five blocks. This

demonstrates that continuous profiling is more immune to translation unit fragmenta-

tion than interpretive profiling. However, physical page and simulation epoch bound-

aries will still cause fragmentation. It may be that the overhead involved in contin-

uously profiling the target program is less costly than the performance degradation

resulting from translation unit fragmentation. An additional advantage of continuous

profiling would be the ability to continuously monitor program behaviour and to re-

spond to events such as phase changes.

7.6 Simulation Epoch Size

The effect of varying the size of the simulation epoch (interval between translations) on

the average simulation speed and on the average static and dynamic TF sizes is shown
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in figure 7.10. The average performance statistics, for all of the benchmarks, were

calculated using data obtained from the second simulation run in which all instructions

are emulated by TFs.

As expected, figure 7.10a shows that the average simulation speed for BB DBT based

simulation is significantly below that of the LTU DBT simulation modes. The mean

simulation speed for BB DBT remains constant at 283 MIPS for all simulation epochs.

For SCC DBT based simulation, the simulation speed increases from 371 MIPS at

10 blocks to 478 MIPS at 10,000 blocks and then slowly decreases to 452 MIPS at

1000,000 blocks. In CFG DBT based simulation, the simulation speed increases from

373 at 10 blocks to 474 MIPS at 1,000,000 blocks. In Page DBT based simulation,

the simulation speed increases from 358 MIPS at 10 blocks to 482 MIPS at 100,000

blocks and above.

In general, for simulation epochs between 100 to 1,000,000 blocks, Page DBT based

simulation is slightly faster than CFG DBT based simulation, which is in turn faster

than SCC DBT based simulation. However there are a few exceptions, SCC DBT

based simulation is slightly faster than CFG DBT based simulation at 1000 and 10,000

blocks. It is worth noting that the simulation speed for SCC DBT based simulation

decreases slightly as the simulation epoch increases beyond 10,000 blocks.

Figure 7.10b shows that the average static TF size (number ofbasic blocks in a TF)

increases for all LTU DBT modes as the size of the simulation epoch increases - the

static size of BB TFs is always 1. The average static TF size for Page DBT based

simulation increases from 4.5 at a simulation epoch of 10 blocks to 79.7 at a simu-

lation epoch of 1,000,000 blocks. This demonstrates the ability of Page DBT based

simulation to benefit from larger simulation epochs. Page DBT based simulation will

continue to identify larger translation units until they contain whole physical pages.

The average static TF size for CFG DBT based simulation increases slowly from an

average of 2.9 at a simulation epoch of 10 blocks to 12.7 at a simulation epoch of

100,000 blocks. On average larger static TFs are generated as the simulation epoch

is increased up to 100,000 blocks. However, increasing the simulation epoch beyond

100,000 blocks results in a slight decrease in the average static TF size, indicating that

all of the CFGs that can be identified have been identified. Themaximum average

static TF size for CFG DBT based simulation is capped at 12.7 blocks.
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Figure 7.10 Simulation Speed and TF Profiles. The graphs above show the mean (a) simu-
lation speed, (b) static TF size and (c) dynamic TF size for the EEMBC benchmarks for varying
simulation epochs.
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The average static TF size for SCC DBT based simulation also increases very slowly

from an average of 2.7 at a simulation epoch of 10 blocks to 4.6at a simulation epoch

of 100,000 blocks. The graph shows that increasing the simulation epoch beyond

100,000 blocks does not result in a larger average static TF size, indicating that all of

the SCCs have been identified. The maximum average static TF size for SCC DBT

based simulation is capped at 4.6 blocks.

Figure 7.10c shows that the average dynamic TF size (number of basic blocks emulated

by a TF) increases substantially for all LTU DBT modes as the size of the simulation

epoch increases - the dynamic size of BB TFs is always 1. The average dynamic TF

size for CFG DBT based simulation increases from 24 at a simulation epoch of 10

blocks to 18,071 at a simulation epoch of 1,000,000 blocks. The average dynamic TF

size increases from 18 to 15,809 for Page DBT based simulation and from 17 to 11,512

for SCC DBT based simulation.

Whilst Page DBT based simulation exhibits the highest average static TF size (fol-

lowed by CFG DBT) at all simulation epoch sizes, it is CFG DBT based simulation

which exhibits the highest average dynamic TF size at all epochs followed by Page

DBT based simulation. A high degree of translation unit fragmentation must therefore

be occurring in Page DBT based simulation for this to be the case.

Although CFG DBT based simulation exhibits the highest average dynamic TF size, it

is none the less Page DBT based simulation which displays thebest average simulation

speeds for simulation epochs greater than 100 blocks. SCC DBT based simulation also

performs well in so much as it emulates more benchmarks faster than any other DBT

simulation mode. These results further illustrate the complex interactions which take

place during simulation. The main factors affecting the speed of simulation are:

• Program Behaviour: The execution path of a target program may

favour one DBT simulation mode over another. Translation unit frag-

mentation makes it difficult to predict which LTU DBT mode will per-

form the best given a particular benchmark.

• Dynamic TF Size: The greater the number of basic blocks emulated

within TFs the faster, in theory, the simulation speed. The key is to

keep emulation of the target program confined to as few TFs as possible
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as they have been optimized for speed of execution. This alsoreduces

the number of times that control has to be passed back to the main sim-

ulation loop.

• Host Hardware: The system hardware, in particular the cache config-

uration, may benefit a particular DBT simulation mode more than the

others.

In general, the average simulation speed for all LTU DBT simulation modes increases

as the average dynamic TF size increases. However, the average simulation speed

hits a ceiling of 480 MIPS as the simulation epoch is increased beyond 10,000 blocks

(100,000 blocks for Page DBT). This upper limit in the average speed most likely

reflects the physical restrictions imposed by the host platform as the dynamic TF size,

which has a positive affect on simulation speed, is shown to increase as the epoch

size is increased beyond 10,000 blocks. It is therefore reasonable to assume that faster

simulation speeds are attainable with a more capable host machine.

7.7 Comparison with State-of-the-Art Simulators

The EHS simulator was compared with two state-of-the-art functional DBT based sim-

ulators, Simit-Arm and QEMU. Further details of both simulators, which model the

ARM processor [ARMv], can be found in chapter 3. Figures 7.11and 7.12 show the

simulation speed and the time to completion for each benchmark respectively, running

on the three different simulators. Table 7.3 provides a summary of the results. The

EHS simulator was configured to run in one of its fastest setups for the host platform.

The simulation speeds (MIPS) for Simit-ARM and QEMU can not be directly com-

pared with the EHS simulator as they simulate different ISAs. Not only do the number

of instructions emulated using different ISAs differ, the instruction sets and the com-

plexity of each instruction which must be modelled also differ.

The time taken to simulate each benchmark shows that QEMU is the fastest simulator

overall. QEMU takes on average 650 milliseconds to emulate abenchmark, followed

by the EHS simulator which takes 820 milliseconds, with Simit-ARM last taking 880
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Figure 7.11 EHS, Simit-ARM and QEMU Simulation Speeds. This chart shows the func-
tional simulation speeds of selected EEMBC benchmarks running on the EHS (Page DBT),
Simit-ARM and QEMU simulators.

123
4

Si mul ati onTi me( secs) E H SS i m i t A R MQ E M U
0 123
4

Si mul ati onTi me( secs) E H SS i m i t A R MQ E M U

Figure 7.12 EHS, Simit-ARM and QEMU Simulation Times. This chart shows the functional
simulation times of selected EEMBC benchmarks running on the EHS (Page DBT), Simit-ARM
and QEMU simulators.
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EHS Simit-ARM QEMU

SPEED (MIPS)

Slowest 244 358 398
Fastest 833 810 905
Median 462 443 627
Average 483 477 651

TIME (msecs)

Shortest 20 150 13
Longest 3010 3610 2852
Median 330 4450 356
Average 820 880 650

INSTRUCTIONS

Average 2008M 2176M 2176M

Table 7.3 EHS, Simit-ARM and QEMU Performance Summary. Simulation speed, real-time
to complete execution and instruction count summary for a subset of the EEMBC benchmark
suite running on the EHS, Simit-ARM and QEMU simulators. The EHS simulator was run in
Page DBT mode with a 100,000 block simulation epoch and a translation threshold equal to 1.

milliseconds. QEMU simulates 12 out of the 18 benchmarks thefastest, followed

by the EHS simulator which simulates 6 benchmarks the fastest. Simit-ARM does not

simulate any of the benchmarks the fastest. Simit-ARM emulates 13 of the benchmarks

the slowest, followed by the EHS simulator which simulates 5of the benchmarks the

slowest. The QEMU simulator does not simulate any of the benchmarks the slowest.

It is evident from these results that the simulation speed ofthe EHS simulator is com-

parable with best in class. The EHS simulator completes simulation of the benchmarks

on average 1.07 times faster than Simit-ARM and 1.26 times slower than QEMU. This

is impressive considering that the EHS simulator was developed as a flexible research

simulator suitable for performing design-space exploration, unlike Simit-ARM and

QEMU simulators which were designed purely for functional simulation speed.

7.8 Summary

The results for instruction level simulation across all benchmarks show that the LTU

DBT simulation modes are on average at least 1.63 times faster than BB DBT based
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simulation (using a 1000 block simulation epoch). However,BB DBT based simula-

tion of the bezierfixed benchmark is slightly faster than SCCDBT based simulation.

Page DBT based simulation performed the best overall with a mean speed-up of 1.67

and SCC DBT based simulation simulated 9 out of the 20 benchmarks the fastest.

The combination of profiling the target programs’ executionpath at runtime and dy-

namic binary translation is shown to be an effective technique for high speed simulation

of microprocessor systems. In all DBT simulation modes, less than 1% of the instruc-

tions simulated are interpreted on the first run (the rest areemulated by TFs) with all

of the instructions being emulated by TFs on the second run.

The relationship between the average static TF size, the average dynamic TF size and

the average simulation speed was investigated. It was observed, for all LTU DBT

simulation modes, that the average dynamic TF size increased as the size of the sim-

ulation epoch increased. This research demonstrates that faster simulation speeds can

be attained by increasing the number of instructions emulated on each TF call.



Chapter 8

Cycle Timing Simulation

This chapter investigates high speed DBT based cycle-accurate simulation and eval-

uates the research hypothesis by comparing the simulation speeds of the novel LTU

DBT simulation techniques. Three cycle-approximate simulators designed to increase

simulation speed are also explored. The simplified target models used in the cycle-

approximate simulators are described in detail and their simulation speed and accuracy

analyzed.

8.1 Overview

Cycle-accurate simulators not only emulate the target program, they model the sys-

tem in sufficient detail so that the execution time of a program can be calculated in

clock cycles. Cycle-accurate simulators facilitate low-level design space exploration,

enabling a large number of different architectures to be tested with real-world applica-

tions. The information returned by a cycle-accurate simulator allows the performance

of different system designs to be properly assessed and compared with one another.

The system which best fulfils the design criteria can then be selected for fabrication.

Cycle accurate simulation involves modelling the precise behaviour of all system com-

ponents in simulated time. For a microprocessor system thismeans accurately mod-

elling the operation of at least the processor pipeline and memory sub-system. The

memory latencies for instruction fetches and data reads andwrites must be calculated

101
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and then inserted into the pipeline at the correct stage. Each stage of the pipeline must

also be modelled, maintaining any inter-dependencies between pipeline stages.

Cycle-accurate simulators model the timing events within asystem in detail and are

therefore slow. Cycle-approximate simulators however, model a system less precisely

which means that whilst they are many times faster than cycle-accurate simulators,

they also introduce a greater degree of error into the data returned. Three different

cycle-approximate versions of the EHS simulator are investigated. The first employs

a simplified model of the processor pipeline, the second a simplified model of the

memory sub-system and the third incorporates both of these simplified models. Cycle-

approximate simulators are often used to test new system designs when the time avail-

able is limited.

In order to evaluate the research hypothesis the same set of benchmarks were run on the

simulator operating in each of the different DBT simulationmodes. The performance

of the different DBT modes could then be quantitatively compared for cycle-accurate

and cycle-approximate simulation. The following sectionspresent the results from

simulating a subset of the EEMBC benchmark suite [EEMB] on the Edinburgh High

Speed simulator. The simulation speeds reported are in native MIPS: millions of target

instructions simulated per real-time (host) second. Unless explicitly stated otherwise,

the simulation epoch was set at 1000 blocks and the translation threshold set to 1.

8.2 Cycle Accurate Simulation Analysis

The cycle-accurate version of the EHS simulator models the 7-stage pipeline of the

ARC 700 based processor which is detailed in figure 8.1. It shows the inter-stage de-

pendencies and the points at which pipeline stalls can occur. The processor pipeline

may stall as a result of memory latencies, experienced when fetching instructions and

loading data, instruction execution latencies or source operand dependencies, expe-

rienced when waiting for the value of a source operand to be updated by a previous

instruction. The pipeline and processor states are updatedafter each target instruction

is simulated. The performance figures obtained from cycle-accurate simulation are

used as a baseline to compare the relative performances of the new cycle-approximate

models.
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// Fetch Stage
pipeline[FETCH] += inst_fetch_cycles;
if (pipeline[FETCH] < pipeline[ALIGN])

pipeline[FETCH] = pipeline[ALIGN];

// Align Stage
pipeline[ALIGN] = pipeline[FETCH] + 1;
if (pipeline[ALIGN] < pipeline[DECODE])

pipeline[ALIGN] = pipeline[DECODE];

// Decode Stage
pipeline[DECODE] = pipeline[ALIGN] + 1;
if (pipeline[DECODE] < pipeline[REGISTER])

pipeline[DECODE] = pipeline[REGISTER];

// Register File Stage
pipeline[REGISTER] = pipeline[DECODE] + 1;
pipeline[REGISTER] = max(REGISTER, reg_cycle[src_op1], reg_cycle[src_op2]);
if (pipeline[REGISTER] < pipeline[EXECUTE])

pipeline[REGISTER] = pipeline[EXECUTE];

// Execute Stage
pipeline[EXECUTE] = pipeline[REGISTER] + inst_exe_cycles;
reg_cycle[dst_op1] = pipeline[EXECUTE];
if (pipeline[EXECUTE] < pipeline[MEMORY])

pipeline[EXECUTE] = pipeline[MEMORY];

// Memory Stage
pipeline[MEMORY] = pipeline[EXECUTE] + memory_load_cycles;
reg_cycles[dst_op2] = pipeline[MEMORY];
if (pipeline[MEMORY] < pipeline[WRITEBACK])

pipeline[MEMORY] = pipeline[WRITEBACK];

// Write-Back Stage
pipeline[WRITEBACK] = pipeline[MEMORY] + 1;

Figure 8.1 Cycle Accurate Pipeline Model. This figure shows the cycle-accurate pipeline
model for both interpretive and DBT based simulation modes. The processor and pipeline
states are updated after each instruction has been emulated. The pipeline structure holds
the current state (instruction cycle) for each pipeline stage and the reg cycle structure holds
the availability (cycle) for each register.

The results of two consecutive simulation runs for each benchmark and DBT simula-

tion mode are shown in figure 8.2. The simulation speeds for the second run range

from 10 to 30 MIPS.

The increase in simulation speed from the first to the second simulation run is small

for most benchmarks and all DBT simulation modes. For example, the simulation

speed for the dither benchmark goes from 18 MIPS on the first run, to 19 MIPS on the

second run when the simulator is operating in the CFG DBT simulation mode. This

is in contrast to instruction level DBT based simulation which experiences a much

bigger jump in speed from the first to the second run. The minimal speed increase on
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Figure 8.2 Cycle Accurate Simulation Profile. The figures show the simulation speed and
the proportion of total simulation time spent performing translation (outlined bars) for two con-
secutive runs of each benchmark in each of the DBT modes.
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the second simulation run can be attributed to the large overhead involved in modelling

the cycle-accurate behaviour of the system. The pattern of simulation speeds across all

benchmarks is similar for each DBT simulation mode and similar to that of instruction

level DBT based simulation, albeit at much slower speeds.

As with instruction level DBT based simulation, the proportion of the overall simula-

tion time spent performing translation during the first run is high. The proportion of

time spent performing translation is more than 70% for 11 benchmarks running in BB

DBT simulation mode, for 13 benchmarks in SCC DBT mode, for 17benchmarks in

CFG DBT mode and for 15 benchmarks in Page DBT simulation mode. The propor-

tion of time spent performing translation for each benchmark is slightly higher in SCC

DBT mode than in BB DBT mode, and slightly higher in CFG DBT mode than in SCC

DBT mode, with figures for Page DBT mode very similar to SCC DBTmode. This is

the same picture which emerged from instruction level DBT based simulation of the

benchmarks.

The proportion of the total simulation time spent performing translation is significant

for benchmarks which run for short time periods, and markedly less for those bench-

marks which run for longer periods. As expected, no translation is performed on the

second simulation run as all of the target instructions are translated on the first run.

More than 99% of the instructions simulated on the first run are emulated by TFs, with

all instructions being emulated by TFs on the second run.

Figure 8.3 shows the maximum cycle-accurate simulation speeds for the different DBT

simulation modes and compares them with the interpretive simulation speeds. The

corresponding speed-ups for each DBT mode, relative to interpretive simulation, are

shown in figure 8.4. The interpretive cycle-accurate simulation speed for each bench-

mark remains pretty constant at about 12.5 MIPS. All of the benchmarks run faster

when the simulator operates in one of the DBT simulation modes, with the exception

of the rotate benchmark which runs slightly slower in SCC DBTsimulation mode than

it does interpretively.

Overall, the DBT simulation modes exhibit a mean speed-up ofat least 1.45 over

interpretive cycle-accurate simulation as summarized in table 8.1. Page DBT based

simulation performs the best with a mean speed-up of 1.56, followed by SCC DBT

simulation, then CFG DBT simulation and lastly BB DBT based simulation. Page
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Figure 8.3 Cycle Accurate Simulation Speed. This figure shows the simulation speed for
each benchmark using interpretive and DBT based simulation modes. The simulation speeds
presented are for the main simulation loop. The speeds shown are the average of 10 simulation
runs in which all target instructions had previously been translated.
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Figure 8.4 Cycle Accurate Simulation Speedup. This figure shows the simulation speed-
ups for each benchmark for each DBT mode relative to interpretive simulation.
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DBT based simulation is 1.08 times faster than BB DBT based simulation. Page DBT

based simulation simulated 12 of the benchmarks fastest, followed by CFG DBT based

simulation which simulated 4 of the benchmarks the fastest.

Interpretive BB SCC CFG Page

SPEED (MIPS)

Slowest 11.6 12.1 11.3 13.0 14.5
Fastest 13.4 29.3 28.2 28.2 29.1
Median 12.3 18.4 18.9 18.2 19.8
Average 12.5 18.3 19.1 18.7 19.6

SPEED-UP

Geo. Mean 1 1.45 1.52 1.49 1.56
Goe S.D. 0 0.29 0.26 0.25 0.22

Table 8.1 Cycle Accurate Performance Summary. The geometric mean speed-up for each
DBT mode is relative to interpretive simulation.

Figure 8.5 shows to what degree cycle-accurate modelling ofthe different system com-

ponents contribute to the overall simulation time. In all simulation modes the amount

of time spent modelling the memory sub-system is less than that required to model the

pipeline. The proportion of simulation time spent modelling the pipeline is 30% for

interpretive simulation and approximately 51% for all of the DBT simulation modes.

The proportion of time required to model the memory hierarchy is 28% for interpretive

simulation, 42% for BB DBT based simulation and approximately 44% for the LTU

DBT simulation modes. In all simulation modes, approximately 14% of the time re-

quired to model the memory hierarchy is spent modelling dataaccesses, the remaining

86% is spent modelling instruction fetches.

The proportion of total simulation time devoted to cycle-accurate modelling is 58% for

interpretive simulation, 94% for BB DBT based simulation and 96% for all of the LTU

DBT simulation modes. As the time spent modelling the cycle-accurate operation

of the system accounts for the vast majority of the simulation time in DBT based

simulators, the best opportunities for increasing the simulation speed lie in optimizing

the cycle-accurate models. Also, cycle-accurate modelling of the memory sub-system

takes up almost as much time as modelling the pipeline, therefore reducing the time

required to model both will result in significant increases in performance. This may be
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Figure 8.5 Cycle Accurate Pipeline and Memory Models. This graph shows the propor-
tion of the total simulation time spent performing cycle-accurate modelling of the memory sub-
system and processor pipeline. The results shown are averages for simulation of the EEMBC
benchmark suite on the EHS simulator.

achieved by simplifying the target models for the pipeline and memory sub-system.

8.3 Cycle Approximate Simulation Analysis

This section introduces three new cycle-approximate simulation models designed to

provide high-speed simulation and to generate statistics with minimal error. The first

uses a simplified model for the processor pipeline, the second uses a simplified model

for the memory sub-system and the third combines both of these cycle-approximate

models.

8.3.1 The Pipeline Model

The cycle-approximate model for the ARC based processor pipeline is detailed in fig-

ure 8.6. The simplified pipeline models the inter-dependencies between the stages in

which stalls may be initiated, namely the fetch, execute andmemory stages. However,

it does not model stalls caused by source register dependencies resulting from instruc-

tion execution, as the latencies involved are typically very small compared to those of
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instruction fetches and data loads from memory. As with the cycle-accurate pipeline

model, the pipeline and processor states are updated after each target instruction is

emulated.

// Fetch Stage
pipeline[FETCH] += inst_fetch_cycles;
if (pipeline[FETCH] < pipeline[EXECUTE] - 3)

pipeline[FETCH] = pipeline[EXECUTE] - 3;

// Execute Stage
pipeline[EXECUTE] = pipeline[FETCH] + 3 + inst_exe_cycles;
if (pipeline[EXECUTE] < pipeline[MEMORY])

pipeline[EXECUTE] = pipeline[MEMORY];

// Memory Stage
pipeline[MEMORY] = pipeline[EXECUTE] + memory_load_cycles;

Figure 8.6 Cycle Approximate Pipeline Model. This figure shows the cycle-approximate
pipeline model. It is a simplified version of the pipeline which models the Fetch, Execute and
Memory pipeline stages and ignores instruction register availability. The processor state is
updated after each instruction has been emulated.

The simulation results for each DBT simulation mode are shown in figure 8.7 and

summarized in table 8.2.

Interpretive BB SCC CFG Page

SPEED (MIPS)

Slowest 11.6 14.2 12.3 15.6 19.4
Fastest 13.4 49.0 53.8 54.3 54.5
Median 12.3 34.1 36.9 39.6 39.9
Average 12.5 34.1 36.8 37.2 38.3

SPEED-UP

Geo. Mean 1 2.57 2.76 2.81 2.94
Geo. S.D. 0 0.79 0.90 0.87 0.75

Table 8.2 Cycle Approximate Pipeline Performance Summary. The geometric mean
speed-up for each DBT mode is relative to the interpretive simulation speed.

Page DBT based simulation performs the best overall with a mean speed-up of 2.94

across all benchmarks (compared to cycle-accurate interpretive simulation) followed

by CFG DBT based simulation then SCC DBT based simulation andlastly BB DBT

based simulation. Page DBT based simulation simulated 14 benchmarks the fastest



Chapter 8. Cycle Timing Simulation 110

followed by SCC DBT based simulation which simulated 4 benchmarks the fastest.

The relative mean absolute error (RMAE) in the cycle count for all of the benchmarks

was 0.019 with standard deviation (RMAE SD) of 0.028.
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Figure 8.7 Cycle Approximate Pipeline Speedup. This figure shows the simulation speed-
ups for each benchmark for each DBT mode relative to interpretive simulation.

8.3.2 The Memory Model

The cycle-approximate model for the memory sub-system usesa fixed number of cy-

cles for each instruction fetch and data read from memory. The model performs a form

of sampling, gathering cycle-accurate data for those instructions interpreted within

each simulation epoch. The simulator maintains running totals for the number of clock

cycles consumed by instruction fetches and data loads for each instruction. At the end

of each simulation epoch, the average number of cycles (rounded integer) used to fetch

and to load data are calculated for each instruction and theninserted into the cycle-

approximate model of the pipeline prior to translation. As with the cycle-accurate

pipeline model, the pipeline and processor states are updated after each instruction is

emulated. Note that if the memory configuration for the target system is changed, all

of the translations must be regenerated as the memory latencies are hard-coded into

the TFs.

The simulation results for each DBT based simulation mode are shown in figure 8.8

and summarized in table 8.3. CFG DBT based simulation performs the best overall

with a mean speed-up of 2.06 across all benchmarks (comparedto cycle-accurate in-
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terpretive simulation) followed by SCC DBT based simulation then Page DBT based

simulation and lastly BB DBT based simulation. Page DBT and CFG DBT based

simulation both simulated 7 benchmarks the fastest followed by SCC DBT which sim-

ulated 4 benchmarks the fastest.

Interpretive BB SCC CFG Page

SPEED (MIPS)

Slowest 11.6 13.4 11.5 11.9 16.5
Fastest 13.4 41.2 43.7 44.2 42.6
Median 12.3 25.5 26.2 27.1 25.8
Average 12.5 25.4 26.8 26.9 26.0

SPEED-UP

Geo. Mean 1 1.95 2.04 2.06 2.03
Geo. S.D. 0 0.52 0.60 0.61 0.46

Table 8.3 Cycle Approximate Memory Performance Summary. The geometric mean
speed-up for each DBT mode is relative to the interpretive simulation speed.
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Figure 8.8 Cycle Approximate Memory Speedup. This figure shows the simulation speed-
ups for each benchmark for each DBT mode relative to interpretive simulation.

Figure 8.9 shows the relative mean absolute error in the cycle count for different sim-

ulation epochs. Not surprisingly, the average error in the cycle count decreases as the

size of the simulation epoch is increased. The RMAE is shown to jump from 0.142

with a simulation epoch of 1000 blocks down to 0.012 at 100,000 blocks (RMAE SD

= 0.015).
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Figure 8.9 Cycle Approximate Memory Cycle Count Error. This figure shows the rela-
tive mean absolute error (RMAE) in the cycle count for the benchmarks for varying simulation
epochs.

8.3.3 The System Model

The system cycle-approximate model combines the cycle-approximate models for the

pipeline and memory sub-system described in the previous sections. The speeds for

the different modes of simulation are shown in figure 8.10 andthe speed-ups shown in

figure 8.11. Table 8.4 provides a summary of the performance results.

Interpretive BB SCC CFG Page

SPEED (MIPS)

Slowest 11.6 29.3 55.1 56.4 57.1
Fastest 13.4 125.7 137.5 136.1 133.8
Median 12.3 85.9 109.0 112.6 115.8
Average 12.5 83.7 107.4 107.8 109.3

SPEED-UP

Geo. Mean 1 6.33 8.37 8.40 8.51
Geo. S.D. 0 1.88 1.66 1.68 1.78

Table 8.4 Cycle Approximate System Performance Summary. The geometric mean
speed-up for each DBT mode is relative to the interpretive simulation speed. Results are from
simulation using a 100,000 block simulation epoch.
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Figure 8.10 Cycle Approximate System Simulation Speed. This figure shows the simu-
lation speed for each benchmark for all DBT based simulation modes. The simulation speeds
presented are for the main simulation loop. The speeds shown are the average of 10 simulation
runs in which all target instructions had previously been translated. Results are from simulation
using a 100,000 block simulation epoch.
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Figure 8.11 Cycle Approximate System Speedup. This figure shows the simulation speed-
ups for each benchmark for each DBT mode relative to interpretive simulation. Results are from
simulation using a 100,000 block simulation epoch.
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The simulations were carried out using a simulation epoch of100,000 blocks and a

translation threshold of 1. The size of the simulation epochwas chosen to minimize

the cycle count error introduced by the cycle-approximate memory model.

The LTU DBT based cycle-approximate simulation speeds ranged from 55.1 MIPS

for the rotate benchmark in SCC DBT simulation mode up to 137.5 MIPS for the

rgbhpg benchmark also in SCC DBT simulation mode. Page DBT based simulation

performs the best overall with a mean speed-up of 8.51 and standard deviation of 1.78,

followed by CFG DBT based simulation then SCC DBT based simulation and lastly

BB DBT based simulation. Page DBT based simulation simulated 9 benchmarks the

fastest followed by CFG DBT based simulation which simulated 6 benchmarks the

fastest. Page DBT based simulation is on average 1.34 times faster than BB DBT

based simulation and 8.51 times faster than interpretive simulation.

The errors in the cycle count for each benchmark are shown figure 8.12. The cy-

cle count errors range from 8.76% for the rgbyiq benchmark to-8.08% for the ospf

benchmark. The RMAE in the cycle count for all benchmarks is 0.024 with standard

deviation of 0.026. It is impossible to work out what proportion of the cycle count

error is attributable to which of the cycle-approximate models. This is because inter-

dependencies still exist between the simplified pipeline and memory models.

- 6- 4- 2024 681 0
C ycl eC ountE rror( %)

- 1 0- 8- 6- 4- 2024 681 0
C ycl eC ountE rror( %)

Figure 8.12 Cycle Approximate System Cycle Count Errors. This graph shows the cycle
count errors for each benchmark. Results are from simulation using a 100,000 block simulation
epoch.
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8.3.4 Comparison with Sampling

One of the requirements for a research simulator is that it supports hardware/software

co-design and verification of microprocessor systems. Whilst sampling based simu-

lators are very good for performing low level DSE, because they can perform cycle-

approximate simulation at speeds many times faster than DBTbased simulators, they

do not provide state observability. Dynamic binary translation based simulators on

the other hand do support observability which is a pre-requisite for hardware/software

co-design and verification.

8.4 Summary

The results for cycle-accurate simulation show that the DBTbased simulation modes

(1000 block simulation epoch) are on average at least 1.45 times faster than interpre-

tive cycle-accurate simulation. Page DBT based simulationis the fastest and is 1.56

time faster than interpretive simulation and 1.08 times faster than BB DBT based sim-

ulation. The sole exception is the rotate benchmark which runs slightly slower in SCC

DBT simulation mode than it does when simulated interpretively.

The results for cycle-approximate simulation, using simplified models of the proces-

sor pipeline and memory sub-system, show that the LTU DBT based simulation modes

(100,000 block simulation epoch) are on average at least 8.37 times faster than inter-

pretive cycle-accurate simulation. Page DBT based simulation is the fastest and is 8.51

times faster than interpretive simulation and 1.34 times faster than BB DBT based sim-

ulation. The average error in the cycle count was shown to be 2.4%.



Chapter 9

Conclusion

This thesis presents new techniques to speed up instructionlevel and cycle-approximate

DBT based simulation of microprocessor systems. The research hypothesis states that

faster simulation speeds can be realized by identifying andtranslating larger sections

of the target program at runtime. This is accomplished by discovering LTUs within

control-flow graphs generated for the target program duringsimulation. This research

shows that the new LTU DBT simulation techniques provide significant increases in

simulation speed over that attainable using basic block DBTbased simulation.

The application of DBT techniques to cycle-accurate simulation is shown to provide

only moderate increases in the simulation speed. However, this thesis describes how

simplified timing models can be deployed to achieve significant speed-ups in cycle-

approximate DBT based simulation. Simplified models of the target processor pipeline

and memory sub-system are shown to result in high speed simulation across all DBT

simulation modes whilst maintaining a high degree of accuracy.

This chapter summarizes the main contributions to research, provides a critical analysis

of the work and outlines future research.

9.1 Contributions to Research

The contributions to the field of high speed DBT based simulation are outlined in the

following sub-sections.
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9.1.1 High Speed Simulation Techniques

This thesis proposed LTUs as a means of increasing the simulation speed of DBT

based research simulators. Large translation units, whichare described in chapter 6,

are based on standard computer software objects and consistof one or more basic

blocks. The techniques used to profile the target program andto identify and translate

LTUs at runtime are unique to the Edinburgh High Speed simulator.

The EHS simulator was developed as a research simulator for the purpose of perform-

ing high speed design-space exploration and hardware/software co-design of novel

processor architectures. The processor state is updated after each instruction is emu-

lated and is observable at every translation unit boundary.The simulator can perform

both process and system level simulation, and incorporatesadvanced management of

cached translations to support the emulation of self-modifying code.

Three different types of LTU were investigated. The LTUs consisted of either strongly

connected components, control-flow graphs or physical pages. Target programs are

initially interpreted during which time a profile of the program’s execution path is

built-up. At the end of each simulation epoch the program’s path profile is analyzed

in order to extract the translation units prior to translation. Large translation units are

identified and stored on a per physical page basis to facilitate the simulation of complex

software including operating systems.

Increasing the size of the translation unit provides the translator with greater scope

to optimize the binary code generated for speed. It also means that more target in-

structions are emulated per translated function call. As a result the simulator returns

to the main simulation loop on fewer occasions, spending less time searching for the

next translated function to call. Both of these factors contribute towards increasing the

overall simulation speed.

9.1.2 Analysis of Simulation Techniques

The simulation characteristics of the different LTU DBT modes are analyzed in order

to provide an insight into their effectiveness and future potential as high speed simula-

tion techniques. Many aspects of LTU DBT based simulation are investigated in detail
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in chapters 7 and 8, including analysis of the number of instructions emulated by a

translated function on the first and second simulation runs;the time spent performing

the different simulation tasks; the size and number of translation units generated; the

size and frequency of the translated functions called; the factors which cause transla-

tion unit fragmentation and the effects of varying the size of the simulation epoch.

During instruction level and cycle-accurate simulation ofthe EEMBC benchmark suite,

less than 1% of all instructions emulated are interpreted onthe first run for all bench-

marks. However on the second run, all of the instructions areemulated by translated

functions which highlights the efficiency of DBT based simulation. For the majority

of benchmarks, 70% or more of total simulation time is spent performing translation

on the first run for all DBT simulation modes. This demonstrates that LTU DBT based

simulation is almost as efficient as basic block DBT based simulation in terms of the

translation overhead incurred. The proportion of the overall simulation time spent per-

forming translation is primarily dependent upon DBT mode, benchmark behaviour and

simulation duration.

Whilst the average static translated function size is shownto increase for all LTU DBT

simulation modes as the size of the simulation epoch is increased, the average dynamic

translated function size only increases significantly for Page based DBT. The distribu-

tion of dynamic translated function sizes indicates that a high degree of translation unit

fragmentation is occurring across all the DBT simulation modes. However, the sim-

ulation speed is shown to increase as the dynamic, and static, translated function size

increases. It is likely that faster simulation speeds can beattained - particularly if using

a larger simulation epoch - by employing a more capable host machine. If continuous

profiling were implemented this would prevent translation unit fragmentation from oc-

curring. The larger static and dynamic translated functions generated as a result should

produce a corresponding increase in the simulation speed.

9.1.3 Instruction Level Performance

The instruction level simulation performance of the different LTU DBT modes are

compared in chapter 7. The results, for simulation of a subset of the EEMBC bench-

mark suite, show that all of the LTU DBT simulation modes are at least 1.63 times



Chapter 9. Conclusion 119

faster on average than basic block DBT based simulation. Page DBT based simulation

performs the best overall with an average speed-up of 1.67, followed by CFG DBT

with a speed-up of 1.64, then SCC DBT with a speed-up of 1.63. Page DBT based

simulation is also shown to be 14.8 times faster on average than interpretive simula-

tion.

9.1.4 Cycle Approximate Performance and Accuracy

The cycle-approximate simulation performance of the different LTU DBT modes are

compared in chapter 8. The results, for simulation of benchmarks running on a sim-

plified model of the target system (pipeline and memory sub-system), show that all of

the LTU DBT simulation modes are at least 1.32 times faster onaverage than basic

block DBT based simulation. Page DBT based simulation performs the best overall

with a speed-up of 1.34, followed by CFG DBT with a speed-up of1.33, then SCC

DBT with a speed-up of 1.32. Page DBT based simulation is alsoshown to be 8.51

times faster than interpretive cycle-accurate simulation. It is worth noting that much

faster simulation speeds could be achieved by updating the cycle-approximate models

on exiting the translated functions, rather than after eachinstruction.

The simplified models of the target pipeline and memory sub-system introduce small

errors into the cycle count. The average cycle count error introduced by the simplified

pipeline model is shown to be 1.9%. The cycle count error introduced by the simplified

memory model is shown to decrease dramatically as the simulation epoch increases,

from an average of 14% at 1000 blocks down to 1.2% at 1,000,000blocks. The average

cycle count error introduced by both simplified models is 2.4% when using a 100,000

block simulation epoch.

9.1.5 Comparison with State-of-the-Art Simulators

In addition to being a flexible research simulator, the EHS simulator is capable of per-

forming instruction level simulation at speeds comparablewith other state-of-the-art

simulators that have been designed purely for speed (see chapter 7). The real-times

taken to simulate a set of benchmarks were compared with Simit-ARM and QEMU,
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two functional simulators which model the ARM processor. The results show that the

EHS simulator completed simulation of the benchmarks on average 1.07 times quicker

than Simit-ARM and 1.26 times slower than QEMU. The QEMU simulator completed

two-thirds of the benchmarks the quickest with the EHS simulator completing the re-

maining benchmarks the quickest.

9.2 Critical Analysis

All of the simulations were performed on a host machine running the Linux operating

system. Whilst the host machine was running minimal system services during simula-

tion, the non-deterministic effects of the operating system and the computer hardware

introduce small errors into the simulation times recorded for each benchmark. In order

to minimize such timing variations every simulation was repeated 10 times and the

average simulation time calculated.

All of the research results were calculated from data generated by the Edinburgh High

Speed simulator. Any errors in the cycle-accurate models ofthe target processor or

memory sub-system are insignificant as they affect all of theDBT simulation modes

equally. The simulator was used primarily to compare the relative performance of the

different LTU DBT simulation modes.

9.3 Future Research

A number of questions arise from this research which may be followed up with further

work. The most interesting areas for investigation are detailed in the following sub-

sections.

9.3.1 Runtime Profiling

The ability to continuously monitor the target program’s execution path has a number

of advantages. Continuous profiling prevents LTU fragmentation from occurring as it

supports profiling within translated functions. This results in the generation of larger
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translation units which in turn increases the average dynamic translated function block

size. Larger LTUs provide greater scope for optimization during translation and enable

larger sections of the target program to be emulated within asingle translated function

call. If the increase in speed outweighs the additional overhead of performing profiling

within translated functions then faster simulation speedswill be realized. Even if this

is not the case two versions of each translated function could be generated, a fast

version which performs no profiling and a slower profiling version. Once the simulator

recognizes that no more instructions are being interpretedit can switch from calling

profiling translated functions to calling fast translated functions. If the simulator finds

itself interpreting instructions again, indicating a change in the program execution path,

it can switch back to calling the profiling translated functions so that the new paths can

be traced.

Continuous profiling would enable the simulator to respond to changes in the target

program’s execution pattern. The simulator could be alerted to program phase changes

and decide to identify the new hot paths by calling the profiling versions of the trans-

lated functions. Once the the new hot paths had been discovered the simulator could

then discard the existing translated functions and generate new ones containing the hot

paths.

9.3.2 Cycle Approximate Simulation

The results presented for cycle-approximate simulation were obtained using simplified

models of the processor pipeline and memory sub-system which are called after each

instruction is emulated. Calling the cycle-approximate models frequently involves a

lot of processing which slows down simulation. With LTU DBT based simulation the

opportunity arises to update the cycle-approximate modelsat the end of each basic

block or on exiting translated functions, possibly after having emulated many thou-

sands of target instructions. Reducing the number of times that the cycle-approximate

models are called would increase the simulation speed significantly. The main chal-

lenge is to separate the pipeline and memory models whilst maintaining a high degree

of accuracy.

Although sampling based simulators do not support hardware/software co-design they
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can perform cycle-approximate simulation many times faster than DBT based simula-

tors. This is why sampling based simulators are more suited to performing low level

DSE in which the design-space to be explored is very large.

9.3.3 Simulation Characterization

In order to obtain a deeper understanding as to why individual benchmarks run faster

when the simulator is operating in a particular DBT simulation mode it would be in-

structive to quantify the interaction between the host machine, program behaviour and

the DBT mode. The configuration of the host machine’s L1 cachecan for example

have a significant impact on the simulation speed, being dependent on how much of

the translation cache fits into it. The LTU DBT simulation modes are also sensitive to

program phase changes and to changes in workload which can adversely affect simu-

lation speeds.

Processor cycles need to be attributed to processes and hardware events during simula-

tion in order to ascertain where and why cycles are being consumed. Armed with this

knowledge a simulator could intelligently switch between the different DBT modes

at runtime in response to changes in program behaviour so as to maintain the fastest

possible simulation speed.



Appendix A

Glossary

Basic Block A basic block is a maximal sequence of instructions
such that none except the first is a branch target, and
none except the last is a branch.

Cycle Accurate Cycle-accurate simulation emulates a target pro-
gram’s behaviour in the same manner as an instruc-
tion level simulator. In addition, it accurately mod-
els the state and timing of the target system’s micro-
architecture. This feature is required in order to sup-
port low level DSE.

Cycle Approximate Cycle-approximate simulation is very similar to
cycle-accurate simulation except that it uses simpli-
fied models for components of the target system.
Whilst this increases the simulation speed, the sim-
ulation statistics generated are typically less accurate.

Design Space The design space is the set of all micro-architecture
designs, compiler optimizations and benchmarks to
be explored.

DSE Design space exploration.

Functional See instruction level simulation.

Host Machine The hardware platform on which the simulator is run.
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Instruction Level Instruction level simulation emulates a target program
by carrying out the instruction operations within the
simulation environment. The simulator need only
model the target processor in enough detail to ensure
that each instruction is emulated correctly. This fea-
ture is required in order to support high level DSE.

LTU A large translation unit consists of one or more basic
blocks and is based on a standard software object.

Simulator The executable which simulates the running of the tar-
get program on a model of the target system.

State Observability State observability enables the state of the target sys-
tem to be ascertained at precise moments in simulated
time. This feature is required in order to support hard-
ware/software co-design and verification.

Statically Discoverable A statically discoverable program is one in which
all possible execution paths can be identified through
static analysis of the target binary. Programs which
are self-modifying or which use shared libraries are
not statically discoverable.

Target Binary The executable to be emulated by the simulator.

Target System The hardware system modelled by the simulator on
which the target program is emulated.

Translated Function A host code function which when called emulates the
instructions in the corresponding target code section.

Translation Unit The target program code objects which are identified
at runtime for translation.

Translator The simulator component which translates target code
sections into translated functions.
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