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Abstract 

This thesis considers graphical models that are represented by families of proha-

hi ii ty distributions having sets of conditional independence constraints specified 
by an influence diagram. 

Chapter 1 introduces the notion of a directed acyclic graph, a particular type 

of independence graph, which is used to define the influence diagram. Examples 

of such structures are given, and of how they are used in building a graphical 

model. Models may contain discrete or continuous variables, or both. Local 

computational schemes using exact probabilistic methods on these models are 
then reviewed. 

Chapter 2 presents a review of the use of graphical models in legal reasoning 

literature. The use of likelihood ratios to propagate probabilities through an 

influence diagram is investigated in this chapter, and a method for calculating 

LRs in graphical models is presented. 

The notion of recovering the structure of a graphical model from observed data 

is studied in Chapter 3. An established method on discrete data is described, 

and extended to include continuous variables. Kernel methods are introduced 

and applied to the probability estimation needed in these methods. 

Chapters 4 and 5 describe the use of stochastic simulation on mixed graphical 

association models. Simulation methods, in particular the Gibbs sampler, can 

be used on a wider range of models than exact probabilistic methods. Also, 

estimates of marginal density functions of continuous variables can be obtained 

by using kernel estimates on the simulated values; exact methods generally only 

provide the marginal means and variances of continuous variables. 

A standard mixed graphical association model is introduced in Chapter 4—

this has Normal conditional density functions defined for continuous variables, 

where the mean is a linear function of certain other continuous variables. Gibbs 

sampling applied here is straightforward. For non-standard models (Chapter 5) 

this is not so, and other Markov Chain Monte Carlo (MCMC) methods must 

be used in addition to the Gibbs sampler. It is shown that the use of MCMC 

methods enables a very wide choice of model. 
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Summary 

This thesis considers graphical models that are represented by families of proba-

bility distributions having sets of conditional independence constraints specified 

by an influence diagram. Graphical models are gaining more and more impor-

tance in statistics, and this work will hopefully be a useful addition to the growing 

literature on the subject. 

Chapter 1 introduces the notion of a directed acyclic graph (DAG), a partic-

ular type of independence graph, which is used to define the influence diagram. 

Examples of such structures are given, and of how they are used in building a 

graphical model. Models may contain discrete or continuous variables, or both. 

Local computational schemes using exact probabilistic methods on these models 

are then described. 

Chapter 2 presents a review of the use of graphical models in legal reasoning 

literature. The use of likelihood ratios (LRs) to propagate probabilities through 

an influence diagram is also investigated in that chapter, and an algorithm for 

calculating LRs in graphical models is presented. 

The problem of estimating the structure of an influence diagram from ob-

served data is described in chapter 3; a standard method for recovering skeleton 

tree structure and (partial) directionality using sample frequencies is compared 

with another using kernel functions. The method is extended to include contin-

uous variables, and finally some ideas are presented for recovering networks that 

contain (undirected) loops. 
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Summary 

Chapters 4 and 5 describe the use of stochastic simulation on mixed graphical 

association models. Simulation methods, in particular the Gibbs sampler, can 

be used on a wider range of models than exact probabilistic methods. Also, 

estimates of marginal density functions of continuous variables can be obtained 

by using kernel estimates on the simulated values. Exact methods generally only 

provide the marginal means and variances of continuous variables. 

A standard mixed graphical association model is introduced—this has Normal 

conditional density functions defined for continuous variables, where the mean 

is a linear function of certain other continuous variables—in Chapter 4. Gibbs 

sampling applied here is straightforward. For non-standard models, which appear 

in Chapter 5, this is not so, and other Markov Chain Monte Carlo (MCMC) 

methods must be used in addition to the Gibbs sampler. It is shown that the use 

of MCMC methods enables a very wide choice of model. 

Finally some conclusions and suggestions for future research are presented. 



Chapter 1 

Introduction to Graphical Models 

1.1 Purpose 

The objective of this thesis is to develop the theory of graphical models that form 

a basis for expert systems. Lauritzen and Spiegeihalter (1988) broadly define an 

expert system as "a computer program intended to make reasoned judgments or 

give assistance in a complex area in which human skills are fallible or scarce". In 

addition to reviewing the recent literature on the development of computational 

schemes for expert systems, a wide range of examples is presented, with special 

focus in Chapter 2 on the use of graphical models in legal reasoning. 

The use of graphical representations for probabilistic information goes back 

as far as Sewal Wright (1921), a geneticist who developed path analysis. His 

work was however shunned by statisticians—see Niles (1922), for example. This 

outlook changed in the 1960s, beginning with the early work of Birch (1963,1964) 

on contingency tables. The likes of Goodman (1970) and Haberman (1974) re-

alised that some conditional independence properties of log-linear models could 

be illustrated by a graph. More references can he found in Kiiveri and Speed 

(1982). 

7 
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Whilst there has been a considerable amount of work concentrating on ma-

nipulating a given model, the construction of the model itself has been somewhat 

neglected. A method for recovering structure from observed data is thus de-

scribed. 

Another main concern of this thesis is to extend the range of models that 

can he defined. Models which have discrete variables only have been catered for 

well enough—see Lauritzen and Spiegelhalter (1988) or Pearl (1988) for example. 

Lauritzen and Wermuth (1984,1989), Wermuth and Lauritzen (1990), Lauritzen 

(1992) include continuous variables by introducing the conditional Gaussian (CC) 

family of distributions. It is shown here that stochastic simulation, using a Gibbs 

sampler, can provide more information about a CC model than exact probabilis-

tic methods. Furthermore, simulation methods remove the necessity to use CC 

distributions, so that, theoretically, any conditional distribution, as the model 

might require, can be defined. There is also no compulsion to have simple linear 

relationships between variables and parameters—again any relationship should 

be feasible. 

This chapter first introduces some graph theory and related concepts. The 

computational schemes of Lauritzen and Spiegeihalter (1988), Pearl (1988) and 

Lauritzen (1992) are then sketched, and illustrated with examples. These schemes 

can therefore be contrasted with the simulation procedures of Chapters 4 and 5. 



Chapter 1. Introduction to Graphical Models 

1.2 Terminology 

A graphical model is described by Whittaker (1990) as "a family of probability 

density functions that incorporates a specific set of conditional independence 

constraints listed in an independence graph". In this work, the independence 

graph takes the form of a directed acyclic graph (see below). 

The explanations that follow are largely taken from Whittaker (1990) and 

Lauritzen (1992). 

A graph G is a mathematical object consisting of two sets—a set of nodes (or 

vertices) V and a set of edges E. The set E consists of distinct pairs of elements 

of V. A directed edge exists between nodes i and j in V if the pair (i,j) occurs 

in the set E. Node i is then defined to be a parent of j, and j is similarly a child 

of i. A root node has no parents; a leaf node has no children. An undirected edge 

occurs when both (i, J) and (j, i) reside in the set E. 

A graph can have two kinds of node—nodes which represent discrete variables 

in the model (and are termed discrete nodes), and nodes which represent con-

tinuous variables (continuous nodes). The set of nodes V is partitioned into two 

groups: 

V = A U F. 

The set A represents discrete nodes, and the set F continuous nodes. A graph is 

pure if it has only one type of node. 

Nodes are represented pictorially as circles or ellipses; in non-pure graphs, 

discrete nodes are shaded, while continuous nodes are not. An edge is shown by 

a line from one node to another, with an arrow pointing from i to j if i is a parent 
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of j. Thus the graph with V = {1,2,3,4} and E = {(1,3),(1,4),(2,4)} has the 

diagram 

If there is an edge between i and j then they are said to he neighbours, and 

are adjacent to each other. A path of length in, is a sequence of distinct nodes 

71,Z2,. . .,im for which (i1, i11) is in E for each 1 = 1,2,... ,m —1. A path is a 

cycle if i1  = m A cycle is chordless if no other than successive pairs of nodes in 

the cycle have an edge between them. An undirected graph is triangulated if and 

only if every chordless cycle in the graph contains no more than 3 nodes. 

A subset of nodes C separates two nodes i and j if every path joining i and 

j has at least one node in C. 

A tree is an undirected graph with a unique path between any two nodes. A 

poiytree is a tree that has some directed edges. 

A graph is acyclic if it has no directed cycles. This thesis is mainly concerned 

with directed acyclic graphs. 

A graph is complete if each node has an edge with each other node. The 

induced suhgraph Cc of C (where C c V) is the graph obtained by deleting all 

the nodes in V \ C and the associated edges from E. The subgraph Gc is a clique 

if it is complete and the addition of a node in V \ C (and edges) would render 

the new graph incomplete; that is, a clique is maximally complete. 

The boundary of a subset C, written bd(C), is defined as the set of nodes in 

V \ C that have an edge with a node in C. 

A pure linear structure is a sequence of nodes XI,  X2 ,. . . X where an edge 

joins X 1  to Xi  for i = 2,3, . . . n, and there exist no other edges in the graph. 

Note the distinction with a "pure graph" above. 
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1.3 Independence Graphs 

Let X = (X1,X2 ,. . . ,X) denote the random variables in a model, and 

V = (1, 2,. .. , k) the associated set of nodes. The graph for the model is an 

independence graph (or more correctly a conditional independence graph) if there 

is no edge between two nodes when the corresponding variables are independent 

given the remaining variables. For two such variables Xi  and X, the shorthand 

notation iij I V \ {i,j} is used for Xi -Lxj I X \ {X, X3}. 

1.3.1 Markov Properties of Undirected Graphs 

Consider an undirected graph CU = (V, EU).  This graph has several Markov 

properties: 

The pairwise Markov property, that for all nodes i and j where no edge 

(i,j) or (j,i) exists in Eu,  

XjiXjIXc, 	where C=V\{i,j}. 

The global Markov property, that, for all disjoint subsets A, B and C of V, 

whenever A and B are separated by C in the graph, then 

XBJLXA I XC. 

The local Markov property, that, for every node i, if C = bd(i) is its 

boundary set and B the set of remaining nodes, then 

XiJLXBIXC, 	where B=V\({i}UC). 

Whittaker (1990) shows that these properties are equivalent. 
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1.3.2 Directed Acyclic Independence Graphs 

A directed graph G = (V, E) can be used to display a notion such as "X effects 

Y", giving the diagram 

which together with a conditional probability distribution fyix  is a natural object 

of study for the statistical modeller. 

If directed cycles were allowed, for example as in 

1 	 2 

3 

then the desired joint density function would look something like f312f211f113,  but 

this is generally not a well defined probability density function. Hence, directed 

cycles are forbidden. 

A consequence of excluding directed cycles is that the nodes can be completely 

ordered, that is there exists a relation -< on the elements of V such that for all i 

and j in 1/, (i) either i -< j or j - i, (ii) - is irrefiexive, and (iii) -.< is transitive, 

such that if i - j and j -< 1, then i - 1. It will be helpful to assume that 

1 - 2 - ... -< k in V, and to consider that each variable has a "past" and a 

"future"; for example X1  precedes X2 . 

Definition 1 The directed independence graph of X is the directed graph G = 

(V,E), where V = {1,2,...,k}, V(j) = {1,2,...,j} and the edge (i,j), with 

i - 	j, is not in the edge set E if and only if iii I V(j) \ {i,j}. 

The conditional densities f1v()\{}  (for i = 1,2, . .. , k) contain enough infor-

mation to define the joint distribution as a consequence of the recursive factori-

sation identity: 

f12...k = fklv(k)\{k}fk-1Iv(k-1)\{k-1} . . . f2I1fl. 
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In fact, due to the conditional independencies inherent in the graph, for a 

variable X, where node i has the set of parents pa(i), 

fIv()\{} = fipa(i). 

It is true that pa(i) c V(i) \ {i} since the nodes are assumed to be completely 

ordered. 

To be able to comment on the Markov properties of directed graphs, the 

following definition is required: 

Definition 2 The moral graph of the directed graph C = (V, E) is the undirected 

graph Ctm = (V, Em) on the same set of nodes, and (i) directed edges replaced by 

undirected edges, (ii) an edge added between any two nodes (not already joined) 

with a common child in G. 

Whittaker (1990) proves the following theorem: 

Theorem 1 (Markov Theorem for Directed Graphs) The directed indepen-

deuce graph G possesses the Markov properties of its associated moral graph, Gm 

Thus it is now possible to define a pure discrete graphical model. The prob-

ability distributions fi1pa(i)  are specified simply as numerical probabilities in this 

case. There is, however, a need to he able to manipulate defined models; if a 

variable has its value observed (or hypothesised) the effect on the remaining vari-

ables is of interest. Two propagation schemes for updating a model are presented 

in the next section. A similar procedure for mixed models follows in section 1.6. 

1.4 Propagation in Pure Discrete Models 

The two schemes that follow are due to Lauritzen and Spiegelhalter (1988) and 

Pearl (1988). They use exact probabilistic methods to distribute the information 

supplied by an observed variable around a graph. This is known as propagation. 
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Figure 1-1: Dyspnoea example—the capital letters in brackets are the ahbre-

via ted node names. 

1.4.1 Lauritzen and Spiegeihalter's Method 

A brief sketch of this method is presented. The example from Lauritzen and 

Spiegeihalter (1988) is first described and then worked through. 

Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung 

cancer or bronchitis, or none of them, or more than one of them. A 

recent visit to Asia increases the chance of tuberculosis, while smoking 

is known to be a risk factor for both lung cancer and bronchitis. The 

results of a single chest X-ray do not discriminate between lung cancer 

and tuberculosis, as neither does the presence or absence of dyspnoea. 

This situation is represented by eight binary discrete variables with graph as 

in Figure 1-1. For this example, the variables are denoted by capital letters—e.g. 

A represents the answer to the question "visit to Asia?". The yes/no responses for 

each variable are denoted by lower-case letters: A = a means "yes" (the patient 

has visited Asia), A = means "no"; and so on for the remaining variables. 

Note here that a node is given the same name as its corresponding variable. The 
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p(a) = .01 E: 	p(ejl,t) = 1 
p(el,7) =1 

T: 	p(ta) = .05 p(cl,t) = 1 
p(ij) =01 p(e7,) =0 

8: 	p(s) = .50 X: 	p(x e) = .98 
p(x) =05 

L: 	p(fls) =.10 
= .01 D: 	p(dje,b) = .90 

p(dIe)) =.70 
p(bs) = .60 p(d,b) = .80 
p(b) = .30 p(d,) = .10 

Table 1-1: Conditional probabilities for dyspnoea example. 

shorthand form p(a) is used in place of Pr(A = a). Assessments of the relevant 

conditional probabilities are given in Table 1-1. These probabilities are, however, 

fictitious. 

A doctor, equipped with this model, might want to consider such questions 

as: given that a patient has dyspnoea and has recently visited Asia, what are the 

chances of each of the diseases being present? 

From the graph, it is clear to see that the belief is that the joint distribution 

p(A, T, X, E, D, L, B, S) can be expressed as 

p(A)p(T I A)p(X I E)p(E I T, L)p(D I E, B)p(L I S)p(B I S)p(S). 	(1.1) 

To calculate the probability p(x I a, d) of a positive X-ray for the patient 

with dyspnoea who has been to Asia, the simple way would be to use expres-

sion (1.1), get the 28 = 256 joint probabilities and perform summations to get 

p(x,a,d)/p(a,d). This is clearly very inefficient; a better method of obtaining 

p(x, a, d) is to use the summation 

p(A) p(TIa) [P(xE) [PET  L) [P(dE B) [P(LS)P(B8)P(8)]]]]. 

(1.2) 
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visit to Asia? 
	 smoking? 

- (A) 
	

(S) 

tuberculosis? 
	

lung cancer? 
	

bronchitis? 
(T) 
	

(L) 
	

(B) 

either tub. or 
lung cancer? (j 

dyspnoea? 
positive X-ray? 
	

(D) 

Figure 1-2: Moral graph of the dyspnoea example. 

The following approach exploits an adapted topology of the graph to perform 

expressions such as (1.2). 

It is possible to work with proportionality; the calculation of normalising 

constants can he left until needed. Here, when the states of particular nodes 

are revealed, the observed states can be inserted into (1.1) to give an expression 

(correct up to a normalising factor) for the conditional probability of states at 

remaining nodes given the observed. Terms in (1.1) can no longer be thought of 

as probabilities, however. Instead, it is regarded as a less structured expression 

by introducing evidence potentials, denoted by 0. Hence (1.1) becomes 

'b(A)b(T, A)b(X, E)b(E, T, L)çb(D, E, B)'çb(L, S)b(B, S)b(S) 	(1.3) 

where, initially, 0 (A) = p(A), ?1(T,  A) = p(T I A), and so on. 

The graph of Figure 1-1 is now converted to its corresponding moral graph—

see Figure 1-2. This means that (1.3) now involves functions of sets of nodes 

which are complete (in the moral graph). 

Note that summing out S in (1.2) would result in the creation of a function 

of L and B, which are not joined in the graph—thus we would have a function of 
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Figure 1-3: Triangulated moral graph of the dyspnoea example. 

a set of nodes which is not complete. To be able to perform all such summations 

(after finding a suitable ordering) without creating functions of nodes not joined 

in the graph, the graph is "filled in" so that it becomes triangulated. In this 

example, an edge between L and B is added to cut the cycle (S, L, E, B)1—see 

Figure 1-3. 

For convenience, a representation of the joint distribution p is adopted whose 

/' functions are defined on the cliques of the filled-in graph: 

p cx (A, T)(T, L, E)'b(L, E, B)ib(L, B, S)b(E, B, D)b(E, X) 	(1.4) 

The potentials are obtained by matching with terms in (1.1): b(E, X) =p(X I E), 

'çb(A, T)=p(A)p(T A), 0 (T, L, E)=p(E I T, L), 0 (L, B, S)=p(L I S)p(B I S)p(S), 

L'(E, B, D) = p(D E, B). L'(L, E, B) is not yet defined, and may be assumed to 

take any non-zero constant value-1, say. The other potentials can be calculated 

from Table 1-1, and are displayed in Table 1-2, third column. 

'An edge between E and S could have been added instead. 
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Original 
clique 
order 

Configuration Potentials from 
conditional 

probability tables 

Potentials from 
set chain 

Clique 
marginals 

Potentials 
after 

absorbing a, d 

{p(A,T)} 
= 	A, T) at .0005 .0005 .0005 

at .0095 .0095 .0095 
IT, t .0099 .0099 .0099 

.9801 .9801 .9801 

{p(L,E I T)} 
02 = {T,L,E} tie 1 .0550 .00057 .000028 

0 .0 .0 .0 
tIe 1 .9450 .00983 .000473 

0 .0 .0 .0 
tIe 1 .0550 .05443 .000523 

0 .0 .0 .0 
t,I,e 0 .0 .0 .0 
t,1,Z 1 .9450 .9352 .008978 

{p(B I L, E)} 
03  = -L,E,B} i,e,b 1 .5727 .03150 .5154 

I, e, 1 1 .4273 .02350 .2991 
1 .5727 .0 .4582 
1 .4273 .0 .0427 
1 .4429 .00435 .3986 

1, rb 1 .5571 .00548 .3899 
I, IT, b 1 .4429 .4142 .3543 

1 .5571 .5210 .0557 

{p(S I L, B)) 
04  = {L,B,S} l,b,s .0300 .9524 .0300 .9524 

.0015 .0476 .0015 .0476 
s .0200 .8511 .0200 .8511 

.0035 .1489 .0035 .1489 
lbs .2700 .6452 .2700 .6452 
I,b,IT .1485 .3548 .1486 .3548 
l,b,s .1800 .3419 .1800 .3419 

.3465 .6581 .3464 .6581 

p(D I E, B)) 
= {E,B,D} e,b,d .9 .9 .03227 

e, b, d .1 .1 .00359 
e,b,d .7 .7 .02029 
e,b,d .3 .3 .00869 
IT, 5, d .8 .8 .3314 

.2 .2 .08284 
IT,b,d .1 .1 .05210 

.9 .9 .4689 

{p(X IE)} 
06 = {E, X} e,x .98 .98 .06354 .98 

.02 .02 .00130 .02 
IT, x .05 .05 .04676 .05 
IT, 7 .95 .95 .8884 .95 

Table 1-2: Stages in calculating clique marginals before and after absorption of 

evidence. 
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A bonus of using cliques on a triangulated graph in this way is that the joint 

distribution can be expressed as a simple function of the individual marginal 

distributions on the cliques. The joint probability can, in fact, be written as 

p(A, T)p(T, L, E)p(L, E, B)p(L, B, S)p(E, B, D)p(E, X) 

p(T)p(L, E)p(L, B)p(E, B)p(E) 
(1.5) 

Probabilities of single nodes can be calculated easily from stored clique marginals, 

simply by summing out the other variables in a particular clique. The expressions 

(1. 1), (1.4) and (1.5) are different local representations of the joint distribution—

that is, they separate the set of nodes into "local" (defined by the topology of 

the graph) subsets. The method of Lauritzen and Spiegelhalter (1988) is based 

upon moving between these representations. 

To obtain the clique marginals, the system must first be initialised, where the 

potentials take the form of conditional probability tables on a chain of sets of 

nodes. This set chain exploits the properties of triangulated graphs. 

The nodes are ordered using maximum cardinality search (see Lauritzen and 

Spiegeihalter, 1986). One such ordering is shown in Figure 1-4. Next, the cliques 

are ordered too, ranking according to the earliest labelled node in each clique 

(see Table 1-3), and this forms the set chain. Obtaining the set chain in this 

way ensures the cliques have the running intersection property, that is the nodes 

of a clique Ci  also contained in previous cliques C1 ,. . . , C_1  are all members 

of one previous clique, called a parent clique. For example, from Table 1-3, 

C4  fl (Cl U C2  U C3) = { L, B} is contained in C3. These separating nodes are 

denoted as Si = Ci  fl (C1  U ... U C_1), and the residual C \ Si  as R. 

The running intersection property ensures that the joint probability can be 

written as 

p(A, T)p(L, E  T)p(B I L, E)p(S I L, B)p(D I E, B)p(X, E) 	(1.6) 

directly from (1.5). Expression (1.6) is yet another potential representation of p, 

but it allows clique marginals to be obtained more easily. The problem is to get 
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Figure 1-4: Triangulated moral graph, showing possible ordering of nodes and 

initial node marginals. 

i Cliques Residuals Separators Possible parent 
sj 	cliques 

1 A,T A,T 0 
2 T,L,E L,E T 1 
3 L,E,B B L,E 2 
4 L,B,S S L,B 3 
5 E,B,D D E,B 3 
6 E,X X E 2,3,5 

Table 1-3: Initial set chain of triangulated moral graph. 
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from (1.4) to (1.6). The running intersection property allows a simple algorithm 

to obtain (1.6) term by term. For example, 

p(X I E) = p(R6 I  S6 ) = ( X,
/ X 

(X, E) 

so that the last term in (1.6) is obtained directly from the potentials on C6 . 

Furthermore, the potential representation on all nodes except X is unchanged 

except that O(C5) =5(E, B, D) becomes 5(E, B, D) E X  4'(X, E). In this case, 

x i/'(X, E) = 1, but in general, when i cliques remain, 5(C) is transformed to 

p(R S) = (C)/ 
	

(C), 

then the potentials of a parent clique of C2  are multiplied by >R•  b(C)—see 

Table 1-2, fourth column. 

Having obtained (1.6), the clique marginals can be derived. From p(Ci ) = 

p(A, T), p(S2) = p(T) is obtained by marginalisation. Then, multiplication gives 

P(C2) = p(R2 I  S2) = p(L, E I T)p(T). Working back through the chain in this way 

gives the clique marginals displayed in Table 1-2, column five. The marginals on 

individual nodes are shown in Figure 1-4. The system has now been initialised. 

Suppose now evidence has been gathered; namely, a patient has dyspnoea and 

has recently visited Asia, i.e. A = a and D = d. Thus the required conditional 

distribution is, from (1.4), 

p(T, L, E, B, 8, X I a, d) x p(a, T, L, E, B)  8, d, X) 

oc 	ib(a, T)ib(T, L, E)b(L, E, B)'çb(L, B, S)b(E, B, d)b(E, X). 	(1.7) 

Figure 1-5 shows the updated graph. A potential representation of the cliques of 

this new graph, 

l/,*(T L,  E)b*(L,  E,  B)*(L,  B,  S),*(E,  X), 	 (1.8) 

is obtained by matching terms in (1.7): 
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08,1 

	.182 

 

dyspnoea 

Figure 1-5: Updated graph after absorbing evidence. 

*(TLE) = b(T,L,E)b(a,T), 	*(L,B,S) = 

*(LEB) = /'(L,E,B)b(E,B,d), 	b*(E,X) = b(E,X). 

Essentially, evidence is absorbed by projecting potentials either onto a new, 

reduced clique, or, if a clique can be removed, onto another clique. Using 

the set chain potentials of Table 1-2, fourth column, the conditional potentials 

of (1.8) are shown in Table 1-2, sixth column. 	For example, 

/,*(leb) = /,(l,e,b)b(e,b,d) = 0.5727 >< 0.9 = 0.5154. 

The new marginal distributions on the the cliques can now be found in the 

same manner as the original system was initialised earlier. Maximum cardinality 

search again provides a node ordering (see Figure 1-5), with clique ordering 

C1  = IT, L,E}, C2  = { L,E,B}, C3 = { L,B,S}, C4 = { E,X}. 

The conditionals 

p(R4 I  S4) = p(X I E), 	p(R3 I  83) = p(S I L, B) 

in the set chain are the same as before, but p(R2  S2) = p(B I L, E) is affected by 

the revised potential on {L, E, B}. When the clique marginals have been found, 

the updated node marginals can be obtained—see Figure 1-5. It can be seen 
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that the evidence has increased the disease probabilities, nearly nine times for 

tuberculosis. The dyspnoea has resulted in a raised expectation of the patient 

being a smoker, and the chance of a positive X-ray has doubled. 

1.4.2 Pearl's Method 

Pearl's method of propagating evidence (Pearl, 1988) begins by developing an 

algorithm for polytrees, and then using conditioning to include general directed 

acyclic graphs. The exposition that follows is due to Luo (1992). The notation 

here is different from that in §1.4.1 for consistency with Pearl (1988) and Luo 

(1992). 

Consider a node j in a polytree, representing a variable X3. The posterior 

probability of V j  given evidence E (a set of observed variables) can be written 

as Pr(X E); this probability is called a belief function by Pearl, and is denoted 

Bel(X3 ). The evidence E can be divided into two parts: 

The subset of variables of E in the polytree rooted at j; and 

The subset E \ EJ. 

The probability Pr(X I E) can then be written 

Pr(XE) = Pr(XE,Efl 	Pr(Xj,E1,Efl 
Pr(EJ, Et) 

= Pr(E) Pr(X Et) Pr(E1  X3 , Efl 

Pr(E.i,Efl 

Using the conditional independence inherent in the structure of the polytree, 

Pr(E IX,Efl = Pr(ET X), so that 

Pr(Et )    
Pr(X E) 

= Pr(Ei,Efl 
Pr(X EflPr(E I X), 
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Pr 1 E 
where 	- 	is a normalising constant and is denoted by c. Next two Pr(E ,E+ ) 
mssagcs for Xj  are defined: 7r(X) = Pr(X I E) and \(X) = Pr(E; I X), so 

that 

Pr(X E) = Bel(X) = r(X)\(X). 	 (1.9) 

Thus r(X) represents a message from the parents of j, and \(X) a message 

from the children of j. 

Two assumptions are made at this stage: firstly, for any root node k, having 

E empty, 7r(Xk) = Pr(Xk  0) = Pr(Xk ); and secondly, for any leaf node 1, 

having El  empty )(X1 ) = Pr(O I X1 ) = 1. 

Pearl's algorithm follows from this. Assume now, for illustrative purposes, 

that node j has two parents f and g, and two children c and d. If X3  has not yet 

been observed, the set El  can be partitioned further into El  and E, whereby 

El =ElUEc7 

Thus the message (X) can be expressed 

= Pr(ElXj) = 	Ed  I 

= Pr(ElX3)Pr(EXj,El) 

= Pr(ElI X) Pr(ElI  Xi). 

Letting )(X) = Pr(ElI X) and Ad(X 3 ) = Pr(E Xi), it is seen that 

= )(X3 ).Ad (X). 	 (1.10) 

Consider now the calculation of, for example, )(X). Using the conditional 

independence properties as before and conditioning on the possible states of X, 

= Pr(EljX) 

= 	Pr(El Xj,X)Pr(X IX) 
xc 

= 	Pr(El X)Pr(XX) 
xc 

= 	.\(X)Pr(XjX).  
xc 
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Thus the message )(X) is calculated using c's \ message and the conditional 

probability of Xc  given X3 . 

In a similar way, the message -x(X) can be found from its parents: 

7r(X) = Pr(XE) 

= Pr(X j  X j,X9, Et) Pr(X j,X9  
x f,xg  

' X 'E Pr(X X, X9 ) Pr(X f , X31 i(f)'  E 
x f ,xg  

= Pr(X j  X1, X9 ) Pr(X j  I E f)) Pr(X9  
x f ,xg  

where E 9)  (for example) stands for the evidence contained in the subgraph on 

the tail side of the directed edge from g to j—i.e. in the opposite direction of the 

arrow. 

The message 7r f (X j ) is defined as ir j(X) = Pr(X f 	so that 

ir(X) = E Pr(X I X f ,X9 )7r f (X)7r9(X), 	 (1.12) 
X f ,Xg  

(with 7r9 (X) defined similarly) where the message sent by i's parent f is calcu-

lated using 

= Pr(X j  I E f)) = a Pr(X I Efl Pr({E7 \ E7} 

where E7 )  represents the evidence contained in the subgraph on the head side 

of the directed edge from f to j—i.e. in the direction of the arrow. So the set 

{E7 \ E7 ) } refers to the children of f other than J. Denoting these r children 

off byi,i=1,2,...,r,then 

7r f (X) = cPr(X f IEflPr({UE}IX f ) 

= ciPr(X j  jEflfJPr(E Xf) 
	

(by conditional independence) 

= 	r(Xf)llXj(Xf). 
	 (1.13) 
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The calculations required for this method are local in that messages are passed 

between neighbouring nodes. It can be shown that initially, before any variables 

have been observed, the ) message for each node is the unit vector. The ir 

messages alone determine the initial marginal probability of each variable. 

When information is acquired, the effects of observed evidence are propagated 

through the polytree. Messages on nodes will change when the corresponding 

variables are observed; the following algorithm is used to absorb evidence—note 

that when expressions (1.9) through (1.13) are referred to, they may have to 

he replaced by the obvious generalisations'. So, if a variable Y (taking values 

{ y1 , y 2,. . . ,yfl}) is found to have value y, then this procedure is carried out: 

BEGIN 

set Bel(y) = (y) = (y) = 1, 

and for 9 =~ 0 set Bel(y8) 	= ir(y°) = 0 

send new ) messages to Y's parents by expression (1.11) 

send new 7r messages to Y's children by expression (1.13) 

END 

Having entered the evidence into the system, the following algorithm performs 

the propagation: 

BEGIN 

WHILE not all nodes are updated DO 

BEGIN 

IF a variable B receives a new ) message from a child 

AND B is not already observed 

THEN 

'These expressions were described using the two parent/two children case. 
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BEGIN 

compute new value of )(B) by (1.10) 

compute new value of Bel(B) by (1.9) 

send new A messages to B's parents by (1.11) 

send new 7r messages to B's other children by (1.13) 

END 

IF a variable B receives a new 7 message from a parent 

AND B is not already observed 

THEN 

BEGIN 

compute new value of 7r (B) by (1.12) 

compute new value of Bel(B) by (1.9) 

send new A messages to B's other parents by (1.11) 

send new 7r messages to B's children by (1.13) 

END 

END 

This algorithm however only applies to polytrees. In order to extend the 

method to general directed acyclic graphs, i.e. graphs where there may be more 

than one directed path between two nodes, conditioning is employed. The idea 

is to split the graph into a number of polytrees upon which the algorithm can be 

applied. 

The task is to find a set of loop cut nodes, so that when the nodes in this 

set are assumed observed and removed from the graph, the resulting structure 

is a polytree. If all possible combinations of values of the loop cut nodes are 

considered then the results of independent applications of the algorithm can be 

combined using the conditional probability of the loop cut set nodes. So, given a 
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loop cut set L and evidence E, 

Bel(X) = Pr(X3  I E) = 	Pr(X3  I F, L) Pr(L I E) 
L 

where each Pr(Xj  I F, L) is obtained from the algorithm, and 

Pr(LE) = cPr(EL)Pr(L), 

o being a normalising constant. Pr(L I E) is termed a mixing weight. Pr(E I L) 

and Pr(L) can be found using the algorithm on the respective polytrees. 

Clearly this method relies on finding a loop cut set small enough so that the 

number of polytrees to be considered does not become unmanageable. 

Pearl (1988) presents the following example, originally due to Cooper (1984): 

Metastatic cancer is a possible cause of a brain tumour and is also 

an explanation for increased total serum calcium. In turn, either of 

these could explain a patient falling into a coma. Severe headaches 

are also possibly associated with a brain tumour. 

There are five variables: 

Metastatic cancer. Denoted by A; A = a implies the presence, and A = the 

absence, of the cancer. 

Increased total serum calcium. Denoted by B; B = b implies an increase in 

calcium, while B = b implies no increase. 

Brain tumour. Denoted by C; C = c implies the presence, and C = the 

absence, of a brain tumour. 

Coma. Denoted by D; D = d implies that a patient "occasionally lapses into a 

coma", while D = 3 implies not. 
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Metastatic cancer 
(A) 

f 	Brain tumour 
(B) 

Increased ca1ciu) 	
(C) 

Coma 	\ 	QVere headaches 
(D) 	 (E) 

Figure 1-6: Graph of Pearl's metastatic cancer example. 
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Pr(A): 
Pr(B A): 
Pr(CA): 
Pr(D B, C): 

Pr(EC) 

Pr(a) = 0.20 
Pr(b a) = 0.80 
Pr(c a) = 0.20 
Pr(d b, c) = 0.80 
Pr(d b,) = 0.80 
Pr(e c) = 0.80 

Pr (b 	= 0.20 
Pr(c) = 0.05 
Pr(d 	c) = 0.80 
Pr(d 0.05 0.05 
Pr(e) = 0.60 

Table 1-4: Conditional probabilities for Pearl's metastatic cancer example. 

Severe headaches. Denoted by E; E = e implies that a patient suffers from 

severe headaches, while E = implies the absence of such headaches. 

The structure of this model is represented by Figure 1-6, and the numerical 

assessments of the conditional probabilities are shown in Table 1-4. 

Assume now that evidence has been declared, namely a patient is suffering 

from severe headaches (E = e) but has not fallen into a coma (D = ). The 

task is to compute the updated posterior probabilities of that patient having the 

cancer or a brain tumour. 

Firstly, the initial belief distributions for B, C, D and E are calculated 
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Metastatic cancer 
absent 	

(Metastatic cancer 
absent 

i' 	Brain tumour 
(B) 

	

Increased ca1ciu) 	
(C) 

Coma vere headaches 
(D) —') Q (E) 

Metastatic cance 
present 	) 	(1etastatic cancer 

~11 present 

n tumour 

	

Increased caIci) 	
(C) (B) 	

,' Brai 
 

Coma vere headaches 
(D) --')Q (E) 

Figure 1-7: The graph of Pearl's example becomes two polytrees. 

under the two assumptions A = a and A = a—the loop cut set here is thus 

{A}. The graph now becomes two polytrees, displayed in Figure 1-7. Messages, 

belief functions and normalising constants associated with each polytree are given 

superscripts: "1" for A = a, and "0" for A = 

From Table 1-4, for A = a, 

ir m (b) = Pr(b a) = 0.80 

71(e) = Pr(ca) = 0.20, 
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so that Bel'(b) = u7r 1  (b)A1  (b), and since the \ messages are all unit vectors at 

this stage, Bell (b) = 0.80. Similarly Be11 (c) = 0.20. 

From equation (1.12) 

Be11(d) = 7r 1 (d) = 	Pr(dB,C)7r 1(B)7r 1(C) 
B ,C 

= [0.80 >< 0.80 x 0.20 + 0.80 x 0.20 >< 0.20 + 

0.80 x 0.80 )< 0.80 + 0.05 x 0.20 x 0.20] 

and Be11 (e) = 7r1(e) = EC  Pr(e I C)7r 1(C) = 0.80 x 0.20 + 0.60 x 0.80 = 0.64. 

Correspondingly, for A = 

7 0(b) = Pr(b ) = 0.20 

7r°(c) = Pr(c) = 0.05. 

As with Bell , 

Belo(d) = 70 (d) = 	Pr(d I B, C)7r°(B)71°(C) 
B,C 

= [0.80 x 0.20 x 0.05 + 0.80 x 0.80 x 0.05 + 

0.80 x 0.20 x 0.95 + 0.05 x 0.80 x 0.95] 

= 0.23, 

and Belo(e) =7r°(e) = >c Pr(e I C)ir°(C) = 0.80 x 0.05 + 0.60 x 0.95 = 0.61. 

Each node stores its two belief functions Bel' and Belo, calculated above, 

along with the initial mixing weights: 0 = Pr(a) = 0.20 and w0  = Pr() = 0.80. 

The initial marginal probabilities can be calculated at this stage. For example 

Pr(b) = Bel(b) = w'Be11 (b) + w°Bel°(b) = 0.20 x 0.80 + 0.80 x 0.20 = 0.32. Also, 

Pr(c) = Bel(c) = 0.08. 

Evidence E = e is observed at this point. Node E sends new mixing weights 

to the other nodes: 
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=Pr(a I e) = a Pr(e I a) Pr(a) 

= cBel1(e) x w1  

= cx0.64x0.20 

so that when WE  is considered the same way, c can be found, giving w = 0.208 

and w = 0.792. 

Simultaneously, node E sends A messages to C, namely (since Pr(E I C, A) = 

Pr(EIC)), 

= AO  (c) = Pr(e I c) = 0.80 

= A() = Pr(e ) 	0.60. 

Next, node C sends ir messages to D, for example: 

ir(c) = Be11(c) = c 17r'(c)A1(c) = c 1  x 0.20 x 0.80, 

and in fact 7r(c) = 0.25, 7r() = 0.7  5, 7r' (c) = 0.066 and 7r() = 0.934. The 

belief functions for D thus become 

Bel'(d) = 	Pr(d B, C)7r1(B)7r'(C) 	0.6875 
B ,C 

Bel'(d) = > Pr(d B, C)7r°(B)7r°(C) = 0.24 
B,C 

with Bel'(d) = 0.3125 and Belo(3) = 0.76. 

The next piece of evidence, D = , is now introduced. Again, new mixing 

weights are computed: 

W,D 	= Pr(a I e, ) = c Pr(i I a, e) Pr(a I e) 

= QBe1'(3) x wl  = a x 0.3125 x 0.208 

so that WD = 0.0975 and WE,D = 0.9025. 
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Next, node D sends ) messages to B and C: 

= PrrflB,c)ir(B) 
B 

= (0.2 x 0.8 + 0.2 x 0.2) = 0.20, 

together with )() = 0.35, 	(c) = 0.20, 	() = 0.80, A' (b) = 0.20, )) = 

0.76, )(b) =0.20 and .A9(b) = 0.90. 

Now the belief functions can be computed for B and C, using expressions 

(1.9) and (1.10): 

Be11 (b) = 	 = c'(0.8 x 0.2) 

so that Be11 (b) = 0.512. It can also he found that Belo(b) = 0.053, Be11 (c) = 0.16 

and Belo(c) = 0.017. 

Finally, the combined belief functions can be recovered using the mixing 

weights: 

Bel(b) = w DBel1 (b) + w ,DBel°(b) = 0.096 

Bel(c) = wEDBel(c) + w DBe1°(c) = 0.031. 

Bel(a) is, of course, equal to WED,  i.e. Bel(a) = 0.0975. 

It is seen that the declared evidence D = ci and E = e has reduced the 

marginal probabilities of nodes A, B and C; that is, the evidence causes us to 

infer reduced probabilities of the patient having metastatic cancer (from 0.20 

initially down to 0.0975), increased total serum calcium (from 0.32 to 0.096) or 

a brain tumour (from 0.08 to 0.031). 

Pearl's method relies on being able to find a suitable loop cut set within 

a graph. The speed of the algorithm is thus affected by the number of separate 

polytrees formed by the observation of loop cut nodes. The speed of the Lauritzen 

and Spiegeihalter method however is mainly due to the clique sizes; larger cliques 

will slow down the algorithm, so this method is expected to perform well on sparse 
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graphs, i.e. graphs where the edge-to-node ratio is low. Such is the efficiency of 

both methods, the problem of choosing between them only becomes a serious 

matter when dealing with very large graphs. For a fuller comparison see Luo 

(1992). 

In situations where neither work well, stochastic simulation may provide a 

solution—see Chapters 4 and 5. 

Having presented methods for pure discrete models, mixed models are now 

introduced. 

1.5 Mixed Graphical Association Models 

In this section, models containing both discrete and continuous variables are 

considered. These models are based upon directed Markov fields of conditional 

Gaussian (CC) distributions. The CG distributions, introduced in Lauritzen 

and Wermuth (1989), have the property that the conditional distribution of the 

continuous variables, given the discrete variables, is multivariate Gaussian. What 

follows is taken from Lauritzen (1992). 

The set of variables V is partitioned as V = AUr, where A is the set of discrete 

variables, and F the continuous. An element of the state space X = I x )) is 

denoted as x or as (i, y), where i represents the values of the discrete variables, 

and y the values of the continuous variables. The joint distribution of all variables 

has density f such that 

f(x) = f(i, ) = x(i) exp{g(i) + h(i)'y - y'K(i)y/2}, 

where x(i) E {O, 11 indicates whether f is positive at i. The variable X is then 

said to have a CC distribution, i.e. 

I XA = 0 = NjF1((i), (i)) 	whenever 	p(i) = Pr(XA  = 0 > 0 



Chapter 1. Introduction to Graphical Models 	 35 

where Xi-  and XA  represent the continuous and discrete variables respectively, 

and (i) = K(i)'h(i), (i) = K(i) 1 , the latter being positive definite. 

The triple (g, h, K) (defined only for x(i) > 0) constitutes the canonical char-

acteristics of the model, and (p, e ) the moment characteristics. The notion of 

a CC distribution is extended to that of a CC potential, which is a function /' of 

the form 

(x) = 0 (1, y) = x(i)exp{g(i) + h(i)'y - y'K(i)y/2}, 

where K(i) is now only assumed to be a symmetric matrix, so that i/' may not 

be a density. The triple (g, h, K) is used here also, with 	(g, h, K). The 

moment characteristics are well-defined only when K is positive definite for all i 

with x(i) > 0. In this case, E and are defined as before, but 

p(i) oc {det E (i)} exp{g(i) +  

If the moment characteristics (p, , ) are given, the canonical characteristics 

can he calculated: 

J'(i) = ()1, 	h(i) = K(i)(i) 

and 

g(i) = log p(i) + {log det R'(i) - 1171 log(27r) - 

The joint distribution of x is assumed to satisfy the directed Markov property, 

i.e. the density is is equal to the product of the conditional densities of the vari-

ables corresponding to each node, given the values of parent nodes—see Kiiveni 

et al. (1984). 

In order for the properties of CC distributions to be exploited, it is necessary 

to assume that no continuous nodes have discrete children. Thus discrete nodes 

can only have discrete parents, and conditional probabilities are defined for them 

as usual. For a continuous node A, with associated variable XA, the conditional 

distribution is of the type 

£(XA I pa(A)) = N((i) + 0 (i)'z, -y (0) 
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and so a separate Gaussian distribution emerges for each i, that is for each com-

bination of values of A's discrete parents (represented by i), there is a different 

Gaussian distribution for XA. Here: pa(A) is the set of parents of A; -y(i) is the 

variance of XA  when A's discrete parents take the set of values i; the (i) are 

real-valued constants; z is the vector of values of A's continuous parents; and (i) 

is a vector of multiplicative constants for z. 

Thus the mean of £ is a linear function of the values of A's continuous parents, 

with the form of the linear function chosen by the values of discrete parents. The 

variance depends on discrete parents, but not continuous ones. 

So £ corresponds to a CG potential OA (gA,hA,KA) with 

aW ( 1 
gA(i) = - ____ 

___ 
____ - {log(2'ry(i))}/2, 	hA(i) 

 
97 (1) 

and 

1 (  
1iA(i) =  I. (i)  

This set-up is illustrated by the following example, taken from Lauritzen 

(1992), which is concerned with control of emissions of heavy metals from a 

waste incinerator. 

The emission from a waste incinerator differs because of compo-

sitional differences in incoming waste. Another important factor is 

the waste burning regime which can be monitored by measuring the 

concentration of CO2  in the emission. The filter efficiency depends on 

the technical state of the electrofilter and the composition of waste. 

The emission of heavy metal depends both on the concentration of 

metal in the incoming waste and the emission of dust in general. The 

emission of dust is monitored through measuring the penetrability of 

light. 
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Filter state 
F 

Burning regime 

B 

Type of waste 
W 

CO2  in emission 
C 

Filter efficiency 
E 

Metal in waste 

Light peii,firibdidir' ' i'l 	 ion o 	 Emission of metal f dust 

Figure 1-8: Lauritzen 's waste incinerator example. 

Note that the time aspect of this problem is ignored. 

The graph relating to this description is shown in Figure 1-8; as it represents 

a mixed model, the discrete nodes are shaded. The distributions of the variables 

are defined thus: 

Burning regime (Discrete) Denoted by B. Let 

Pr(B = b = stable) = 0.85 = 1 - Pr(B = b = unstable). 

Filter state (Discrete) Denoted by F. Let 

Pr(F = f = intact) = 0.95 = 1 - Pr(F = f = defective). 

Type of waste (Discrete) Denoted by W. Let 

Pr(W = w = industrial) = 2/7 = 1 - Pr(W = UT = household). 

Filter efficiency (Continuous) Denoted on a logarithmic scale by E. Assume 

the relation 

waste0 t = wastein X 
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and so 

log waste0t = log wastein  + log p. 

Then let E = log p (admitting filter inefficiency might be a better name 

for E) and specify 

= N(-3.2,0.00002) 

= N(-0.5,0.0001) 

f, w) = N(-3.9,0.00002) 

£(Ef,w) = N(-0.4,0.0001) 

which correspond to filter efficiencies 1 - p of about 96%, 39%, 98% and 

33% respectively. 

Emission of dust (Continuous) Denoted on a logarithmic scale by D. Let 

w, e) = 	N(6.5 + e, 0.03) 

b, 11Y, e) = 	N(6.0 + e, 0.04) 

b, w, e) = 	N(7.5 + e, 0.1) 

£(D 	b,iJ,e) = 	N(7.0 + e,0.1) 

So on a day when household waste is burned under a stable regime with an 

intact filter, the mean concentration will be exp(6.0 - 3.2) = 16.4mg/Nm3. 

Concentration of CO2  (Continuous) Denoted on a logarithmic scale by C. Let 

b) = N(-2, 0.1) 	and 	£(C I b) = N(-1)  0.3). 

Thus concentration of CO2  is usually around 14% under a stable regime, 

and 37% when things are unstable. 

Penetrability of light (Continuous) Denoted on a logarithmic scale by L. Let 

d) = I\T(3 - d/2, 0.25) 
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which corresponds to the penetrability being roughly inversely proportional 

to the square root of the dust concentration. 

Metal in waste (Continuous) Denoted on a logarithmic scale by M. Let 

w) = N(0.5, 0.01) 	and 	£(M J) = N(-0.5, 0.005) 

which correspond to industrial waste concentration of heavy metal being 

about three times that of household waste. 

Emission of metal (Continuous) Denoted on a logarithmic scale by M0. Let 

d, m) = N(d + m, 0.002) 

which simply assumes that the concentration of emitted heavy metal is 

about the same as in the original waste. 

This example will he analysed in the next section by Lauritzen's exact method, 

and in Chapter 4 by stochastic simulation. 

1.6 Propagation in Mixed Models 

Lauritzen (1992) presents a propagation scheme for mixed graphical association 

models. For continuous variables, only means and variances are computed. 

As in section 1.4.1, the directed graph of Figure 1-8 is converted to a trian-

gulated moral graph. However, one further step is necessary—the graph must be 

made decomposable. 

Definition 3 An undirected graph is decomposable if and only if it is triangulated 

and does not contain any path. (j,i1,i2,. . .,i ) k) between two non-adjacent dis-

crete nodes passing through continuous nodes only, i.e. with i E F for 1 < x < n 

and no edge between j and k. 
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Filter state 
F 

Burning regime 

B 

Type of waste 
W 

CO2  in emission 

- 	C 	- 

Filter efficiency 
E 

Metal in waste 

11111111 	

Emission of metal Q=,  ( 
Figure 1-9: Decomposable graph for waste incinerator example. 

The decomposable graph for the current example is shown in Figure 1-9. Note 

that an edge between B and F has been added; there would otherwise have been 

a forbidden path (B, F, F) with B and F non-adjacent. 

Lauritzen's mixed algorithm works on cliques in much the same way as the 

method of section 1.4.1. Here, the cliques are placed in a junction tree—a tree 

of subsets of V satisfying the condition that if A and B are subsets in the tree, 

A fl B is a subset of all sets on the path between A and B (see Jensen et al. 

(1990)). 

A final condition is required for the propagation scheme; a strong root is 

required. 

Definition 4 A subset R in a junction tree is a strong root if any pair A, B of 

neighbours in the tree with A closer to R than B satisfies 

(B \ A) c F 	or 	(B fl A) c A. 

Statement iii)' of Theorem 2' of Leimer (1989) ensures that a junction tree with a 

strong root can be formed from the cliques of a decomposable graph. Figure 1-10 
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Figure 1-10: Junction tree for waste incinerator example; • for discrete nodes, 

o for continuous nodes. 
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shows a junction tree for the waste incinerator example. The clique {B, F, E, W} 

is a strong root, since whenever a separator set is not purely discrete, the clique 

furthest away has only continuous vertices beyond those in the separator. For 

example {W,D,M} has only Mi  beyond separator {W,D}. 

The propagation scheme relies on the following set of basic operations on CC 

potentials. 

Extension: If (g, h, K) are the characteristics of a CC potential 0 defined on 

X = I x Y , the extension q defined on W = (I x J)  x  (Y x Z) is 

(i,j,y,z) = (Z' Y) 

with characteristics 

(i,j) = g(i), 
/i(i) 

0 \ 
I, 
) 

- 	(K(i) 0 
It'(i,j) I 

't\ 0 	0 

Multiplication and division: Multiplication is defined in the obvious way: 

(çb' X 2)(X) = 1(X)2(X) 

after extension has been carried out as above. The canonical characteristics 

become 

(g1, hi , K1) x (92,h2,K2) = (91 +g2,h1  +h2,K1  +K2). 

For division, care has to be taken in case of dividing by zero: 

0 	 ifq i(x)=0 

(01/2)(X) = 	(1(X)/2(X)) if 2(X) 	0 

undefined 	otherwise. 

Marginalisation: Addition is not defined in general, since adding two CC po-

tentials typically results in a function with a different structure. There are 

several cases to consider; firstly marginalisation over continuous variables. 

Let 

(y1) 	

h=(h1), 	K= 	
K22) 

(K '12 

Y2 	 h2 
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with yi  having dimension p and Y2  dimension q. The integral f q(i, y, y2)dyi  

is then finite if and only if K11  is positive definite, in which case the new 

CG potential ç has canonical characteristics 

(i) = g(i) + {plog(2) -log det K11(i) + h1(i)K11(i)_1h1(i)1/2 

h(i) = h2(i) - K21  (i)A'11(i)-1hi  (i) 

K(i) = K22(Z') - K21 (Z') K, I  (i) -'K12  (0 - 

Secondly, there is marginalisation over discrete variables; if h(i,j) and 

K(i,j) do not depend on j, 

(i) = log 	exp{g(i,j)}, 	(i) = h(i,j), 	I?(i) = K(i,j). 
j :(i,j) = 1 

If however there is dependence on j, the following procedure is followed, 

although it is only well-defined for K(i,j) positive definite. It is best to 

use moment characteristics here; the marginal has characteristics (, , ) 

where 

and 

(i) = 	(i,j)p(i,j)/(i) + 	(i,j) - (i))'((i,j) - 

Finally, there is marginalisation over both continuous and discrete variables; 

in this case, the above procedures are carried out, marginalising first over 

the continuous variables and then over the discrete. 

Once a model has been specified, the algorithm acts on the junction tree rep-

resentation. The set of cliques is denoted C, and the intersections of neighbouring 

cliques in the tree are called separators; the set of these is denoted S. Both cliques 

and separators have CG potentials attached to them. The joint system belief is 

written as 

1JVEC V cbu = 
USES S 

(1.14) 
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and is proportional to the joint density of all the variables. Since the potentials 

involved are CG potentials, the joint density will be a CC density itself. 

The junction tree with its strong root must be initialised. Firstly each node 

A is assigned to a clique V in the tree, such that the union of A and A's parents 

is a subset of V. Then cv is declared to be the product of all the (extensions of) 

potentials OA  for nodes assigned to each clique V. For the separators 8, Os 	1, 

i.e. the potential with canonical characteristics (0,0,0). This same potential is 

given to cliques not assigned nodes. With this initialisation, expression (1.14) 

will he a correct representation of the joint system belief. 

For the waste incinerator example, the nodes could be assigned thus: B, C to 

clique {B,C}; F,I'V,E to {B,F,W,E}; D to {B,W,E,D}; L to {L,D}; Ali  to 

{W,D,M}; and M0  to {D,M,M0 }. Example potentials include 

g{B,c}(stable) = —19.930 

hB,c}(stable) = —20 

R{B,c}(stable) = 10 

and 

g{B,c}(unstable) = —3.881 

h{B,c}(unstable) = —3.333 

K{B,c}(instable) = 3.333 

as well as 

(12 \ 
h{L,D} 

= (\ 6 ) (
Kf L,D) = 

) . 

Now the structure has been established, the propagation procedure is de-

scribed. The cliques carry information in the form of potentials and the separa- 

tors act as communication channels between the cliques. Incoming evidence is 

divided up into items of evidence, which can be either of the following: 
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a function xw(iw) e {0, 11, where I'V is a set of discrete variables that is a 

subset of some clique V in the junction tree; or 

a statement that YA = y for a continuous node A. 

Discrete evidence is entered simply by multiplying xw onto the potential Ov. 

Continuous evidence is entered by modifying the potentials of all cliques and 

separators containing A. If a potential q  has canonical characteristics (g, h, K) 

with 

(

Z.hi (i) \ 	 K11(i)R1A( 
K 	

) ), 	(i)=I 

	

hA(i) 	 K 1 (i) KAA(i)) 

then the modified potential fK  will have characteristics (g*,  h*,  K*) as 

J*(j) = Kii (i) 

	

= 	h1  (i) - Yt'A1 (i) 

g*(j) = g(i) + llA(i)y - ItAA(i)(YA)/2. 

In the example, assume now that industrial waste has been burned, the light 

penetration has been found to be 1.1, and the CO 2  concentration —0.9 (on loga-

rithmic scales). The type of waste information is entered as function xw: 

w(industrial) = 1 	xw(household) = 0. 

The potentials for the continuous evidence become, for example, 

g{B}(stable) = —19.930+18 -4.050 = —5.980 

g{B}(unstable) = —3.881 + 3 - 1.350 = —2.231 

as well as 

	

= 6 - 1.1 x 12 = —7.2, 	KD} = 1. 

The most important stage now follows: the effects of evidence are propagated 

through the junction tree. Consider such a tree with cliques C and separators S. 
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Let V E C and 1471 , W2 , . . . , Wm  be neighbours of V with separators Si , S2,. .. , Sm 

respectively. The clique V is said to absorb from Wi , W2,. . . , Wm if the following 

calculations are performed: 

St  
= 	E q5w 	(fori = 1,2,... ,m) 

W \V 

OV = OV x (/s,)  x 	x (O'S— /Os,.)- /Sm ) 

Dividing Dividing both sides of expression (1.15) by Os, x 	xOs.) shows that the joint 

system belief is not changed by absorption. 

The propagation scheme is then based on this operation. Each V E C is 

given the action COLLECTEVIDENCE: when COLLECTEVIDENCE in V is called from a 

neighbour W, then V calls COLLECTEVIDENCE in all its other neighbours. When 

they have finished their COLLECTEVIDENCE, V absorbs from them. 

Next, each V E C is given the action DISTRIBUTEEVIDENCE: when DISTRIB-

UTEEVIDENCE is called in V from a neighbour W, V absorbs from W and calls 

DISTRIBUTEEVIDENCE in all its other neighbours. 

Note that the joint system belief is unchanged under both COLLECTEVIDENCE 

and DISTRIBUTEEVIDENCE. In practice, once evidence has been entered, evoking 

first COLLECTEVIDENCE and then DISTRIBUTEEVIDENCE from a strong root performs 

the propagation correctly. Marginals for each node can then be obtained by 

marginalising within the cliques of the junction tree. This scheme thus supplies 

the correct updated probabilities of states at discrete nodes, and the correct 

means and variances at continuous nodes. 

Figure 1-11 shows the initial and updated marginal probabilities, means and 

variances at each node. The logarithmic value for node C of —0.9 implies a 

concentration of CO2  of 41% in the emission, which as expected considerably 

increases the probability of an unstable burning regime. The evidence assumed 

has resulted in the expected emission of heavy metal increasing by a factor of 

exp(1.3) 3.7. 
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Figure 1-11: Initial (top) and updated marginal probabilities, means and vari-

ances for each node of the waste incinerator example. 
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Lauritzen (1992) states that the computation of the marginal densities can be 

"forbiddingly complex". In Chapter 4 a method of estimating these densities is 

discussed. 

In this chapter graphical models have been introduced and propagation 

schemes for analysing them have been described. The next chapter considers 

a particular application of graphical models: legal networks. 



Chapter 2 

Legal Networks 

2.1 Introduction 

The use of graphs in a legal context can be traced as far back as Wigmore (1913). 

He introduced a method of organising evidence and facts arising in any particular 

legal case into charts. This method was expanded in Wigmore (1937), and it is 

clear that his charts can be seen as directed acyclic graphs, where nodes represent 

propositions, and directed edges represent probative (inferential) force. 

Following an appearance of probabilistic arguments' in the "Collins case" 

(see, for example, Edwards, 1991), Tribe (1971) launched a full-scale attack on 

what he described as "trial by mathematics." Finkelstein and Fairley (1970) had 

proposed that Bayes' Theorem be used in criminal trials, making the simplifying 

assumption that "factual questions such as the identity of the person who is the 

source of pertinent evidence (such as fingerprints) are decisive on the issue of 

the guilt or innocence of a given defendant." Tribe criticised this assumption 

and claimed that Bayesian analysis becomes unduly complicated without it; he 

'Which turned out to have serious flaws—see section 2.3.1. 

49 
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argued that even taking into account the possibility of a defendant having been 

framed "strain[s] the [Bayesian] system beyond its breaking point." 

Tribe had good reason to criticise; the logical structure of criminal cases can 

be very complex. Wigmore's Chart Method had shown that it is feasible to 

break down a case into its constituent parts for analysis; Morgan (1961) also 

used a graphical representation to illustrate the "stages" of inference. As early 

as 1971, David Schum was working on the "Bayesian analysis of criminal trials", 

resulting in Schum (1987), a massive two-volume study of the structure and theory 

of evidence—the crucial point here being that Schum incorporated probabilities 

into the evidence structure. Koehler (1991) provided an excellent counterattack 

to Tribe's arguments. 

This chapter starts by looking at Wigmore's charts in section 2.2. The ideas of 

Morgan (196 1) and Schum (1987) follow, along with an example of a probabilistic 

legal network from Edwards (1991), in §2.3. 

Forensic science problems are closely related to the legal cases, and one such 

example (from Aitken and Cammerman, 1989) is described in section §2.4. 

The remainder of the chapter is concerned with likelihood ratios, which may 

prove easier for juries to understand than probabilities. Martin (1980) developed 

an algorithm for efficient calculation of likelihood ratios in a network; in a legal 

context it is useful to discover the relative value of a particular piece of evidence. 

Finally, the notion of using likelihood ratios (instead of probabilities) as input to 

an expert system is explored. 
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2.2 Wigmore's Chart Method 

Wigmore (1937) proposed a method for analysing the myriad of facts and evidence 

which can arise during preparation of a case for trial. A lawyer must construct 

persuasive arguments without leaving weaknesses to be exploited by the opposite 

side. Wigrnore's aim was to introduce a logical, or scientific, approach for doing 

this. 

In Wigmore (1937) it is stated that the chart method is a "logical (or psycho-

logical) process" for combining many ideas into rather fewer ". .. until the number 

and kind is such that the mind can consciously juxtapose them with due attention 

to each." 

The process involves designing a key-list, that is a list of evidence items, 

propositions, and so on. The entries in the key-list are represented pictorially 

by a chart resembling a directed acyclic graph. This chart is intended to enable 

facts and evidence, and the links between them, to be exhibited concisely and 

transparently. Keeping track of all information in the mind is a very difficult task 

in other than the simplest cases. 

Rather than simply use a circle or ellipse for each node, Wigmore uses a 

number of different symbols to represent different types of evidence—see Figure 

2-1. The edges between the "nodes" mostly have arrows on them, but other 

marks are made too—see Figure 2-2. The "nodes" are numbered to tally with 

the entries in the key-list. 

It is important to note at this point that Wigmore does not make numerical 

assessments of probabilities in his charts 2 ; these are merely hinted at by the use of 

ciphers. For example, placing a circle (o) inside a node signifies that the evidence 

2For example, of the probability of one piece of evidence given another. 
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1 	2 	3 	4 	5 	6 

LI1 fl O flI> < > <i 
a b a b a b c d 	 a b 

Key: 

Testimonial evidence: (a) affirmatovy (e.g. testimony that the defendant had 

the knife); (b) negatory (e.g. the defendant did not have the knife). 

Circumstantial evidence: (a) affirmatory (e.g. knife was found near defendant, 

hence defendant had it); (b) negatory (e.g. knife was found elsewhere, hence 

defendant did not have it). 

Same four types of evidence as (1) and (2) when offered by the defendant in 

a case. 

Explanatory evidence: for circumstantial evidence, explaining away the effect 

(e.g. knife may have been dropped by a third person); for testimonial evidence, 

discrediting it (e.g. witness was too excited to see who picked up the knife). 

Corroborative evidence : for circumstantial evidence, closing up possible ex-

planations (e.g. no third person around when knife was found); for testimonial 

evidence, supporting testimony (e.g. witness was stood close by and was calm). 

Same types of evidence as (4) and (5) when offered by the defendant. 

Figure 2-1: Wigmore's symbols for "nodes". 
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Key: 

Provisional force given to an inference from affirmatory evidence is shown by 

adding an arrow-head to the edge. 

Provisional force given to negatory evidence is shown by adding an arrow-head 

and a, small circle to the edge. 

Stronger force given to evidence is represented by doubling the arrow-

head. For example, several witnesses making the same testimony might result 

in stronger force. 

A small question mark by an edge signifies doubt as to the probative effect 

of the evidence. 

If a single explanatory fact detracts from the force of the desired inference 

(e.g. if it discredits the assertion of a witness), this is signified by an arrow-head 

as shown. 

If a single corroborative fact is believed, a cross is placed on the edge. 

(Note that doubling an arrow-head or a cross from (5) or (6) also increases the 

intensity of the effect;) 

Determining the overall effect of facts on one particular fact; if this fact is (a) 

corroborated then a cross is placed on the edge above it; and (b) explained then 

a short horizontal line is placed on the edge above it. 

Figure 2-2: Wigmore's symbols on edges. 
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OEI>< 
Key: 

A question mark inside a symbol signifies a mental balance; the item is neither 

believed nor disbelieved. 

A dot inside a symbol signifies belief in the item. 

A small circle inside a symbol signifies disbelief in the item. 

Doubling the mark inside a symbol increases the effect; for example two circles 

signifies strong disbelief in the evidence or fact. 

Figure 2-3: Wigmore's ciphers representing belief or otherwise. 

or fact is disbelieved; a dot (.) implies belief for that node—see Figure 2-3 for 

more examples. 

The positioning of the symbols in relation to each other is important. A 

supposed fact tending to prove or disprove another is placed below it. A supposed 

explanatory or corroborative fact tending to lessen or increase the force of another 

is placed to the left or right of it, respectively. When a fact is judicially admitted 

or observed by the court (such as the presentation of "Exhibit A") the symbols 

(¶, co) respectively are placed below the "node". 

Wigmore's treatise describes how a chart and key-list should be constructed. 

Each piece of evidence must be analysed; it must be classified as to its type, and 

its inferences considered. For a human act, motives must be made distinct, and a 

separate node reserved for each. Similarly, explanatory facts should be separated 

as far as possible into individual items. The ultimate leaf node, represented 

in Wigmore's charts as the top-most node, generally refers to the matter to be 

proven, e.g. the guilt or innocence of the defendant. 

Consider then the example of Figure 2-4, which is a small section of a chart. 

(The reader is referred to Wigmore (1937) for fuller examples 3.) 
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1,z 

0-0 

Figure 2-4: A small section of a Wigmore chart. 

A witness has offered affirmatory circumstantial evidence in a trial. Node 17 

represents the witness's testimony of the evidence (node 16). Suppose the witness 

is thought to have some bias against the defendant. Let node 18 be the supposed 

general fact of bias, with nodes 19 and 20 signifying the two circumstances that 

might cause it. Node 19 represents the witness's relation to the defendant as a 

discharged employee; a second witness's testimony to this is shown by node 21. 

Note that node 19 here is supported by node 19d, the supposed general truth 

that discharged employees have some hostility towards their erstwhile employers. 

Node 20 displays the first witness's strong air of bias while on the stand. 

Figure 2-4 also shows the total probative effect of this small group of nodes; 

the witness's evidence (16) has been rejected since the fact of bias is believed. 

This small example illustrates how a Wigmore chart can be used to represent 

the structure of argument in law, and to consider the net effect of all the evidence. 

Wigmore's work can aid the design of an influence diagram for a legal case; the 

following section is concerned with incorporating probabilities into a chart. 

3A full example of a chart and key-list for a real case would take up too much room 

in this thesis. Indeed, Schum (1989a) refers to a chart discussed in Twining (1984) that 

measures 37 feet in length.. 
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Figure 2-5: Morgan's multistage inference diagram of a murder case. 

2.3 Probabilistic Legal Networks 

This section considers the development of expert systems for legal cases. 

The first point to make is that in probabilistic legal networks, nodes and 

edges are represented as in §1.2; while Wigmore's multitude of symbols should 

prove useful to a legal analyst, they are not required here. The dot (.) and the 

circle (o) are not needed since they refer to degrees of belief or disbelief in a 

proposition—something perhaps better quantified by probabilities. The symbols 

¶ and =c imply acceptance of a proposition; in a graphical model the relevant 

variable would have its state or value fixed, the probabilities would be updated 

and the node removed from the graph. 

Morgan (1961) portrayed the inferences involved in a murder case as in Fig-

ure 2-5. The evidence is a love letter written by the defendant to the murder 

victim's wife and the question is whether the person who wrote the letter killed 

the husband of the female addressee. Apart from A, which represents the love 

letter itself, the letters in the chart stand for various factual inferences and cer-

tain supporting generalisations. For example, B represents the defendant's love 

of the victim's wife; C, the defendant's desire for exclusive possession (sic) of the 

victim's wife; and M, the generalisation "A man who loves a woman probably 

desires her for himself alone." Also D stands for the defendant's desire to get rid 
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of the victim and 0 the generalisation "a man who loves a married woman and 

desires her for himself alone desires to get rid of her husband." 

Morgan's diagrams of inference are always chains; that is, they consist of a 

single thread running between single pieces of evidence and single facts in issue. 

This attempt to create a formal logical inferential structure for a legal case is 

appealing; Professor David Schum, as well as working on the theory of evidence 

(see, for example, Schum, 1987), has also investigated such inferences. Schum 

favoured more a Wigmore-style network, believing that "such charts are rich 

enough to reconstruct and mimic the sort of thinking that people are actually 

inclined to use when they face complex real-world problems." Tillers and Schum 

(1988) concentrated on making Wigmore's methods easier to implement. 

Figure 2-6 is a simple example of the kind of chart Schum designed. Here, 

two pieces of evidence (represented by the filled boxes) lead (eventually) to the 

same factual statement (statements represented by unfilled boxes). Note that 

Schum's networks, since they are derived from Wigmore charts, have the arrows 

on some of the edges pointing in the opposite way to what might be expected; 

for example, although box A points to H, the probabilities Pr(A I H) must be 

defined. Of course, Pr(H I A) is ultimately of interest. Eyewitness and testimony 

boxes however (C and D in this example) point to their relevant "facts" in the 

expected way. Here, box C points to box B, and so Pr(B I C) must be defined. 

The "H" at the top stands for the point to be proven. For example, box 

C might represent a report that a defendant escaped from jail; box B would 

then represent "defendant escaped from jail." Also, box A is interpreted as the 

defendant's belief in his own guilt, with D then as the defendant's evidence "I 

did it." Finally, H would represent the defendant's guilt or otherwise. 

Schum (1989a) contained descriptions of different types and combinations of 

evidence, and of how they might be incorporated into the graph of a case: for 

example, hearsay evidence, corroborative and contradictory evidence. 
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Figure 2-6: A Schum legal network. 

The next important step is to introduce the "probabilistic" element into the 

models; consider again Wigmore's symbols. Note that on edges between symbols 

representing evidence, double arrow-heads are allowed, implying "stronger force"; 

this might relate to a higher (or lower, if the evidence is negatory) conditional 

probability between two items. Similarly, a question mark placed by an edge (see 

Figure 2-2) would mean that one fact or piece of evidence has little effect on the 

outcome of the other. 

In Wigmore charts, ciphers are placed inside evidence symbols to represent 

belief or otherwise in the evidence or fact; the scale (see Figure 2-3) running from 

oo to relates to strong disbelief through strong belief. A question mark implies 

a "mental balance" and thus perhaps a probability of 0.5 on the evidence. Normal 

belief and disbelief could be represented by probabilities of 0.6 and 0.4 respec-

tively; then strong belief and strong disbelief by 0.8 and 0.2. In this way, what 

are essentially quantitative ideas from Wigmore can be converted into numerical 

assessments. 

For example, in Figure 2-6, consider boxes B and C. Given a report that the 

defendant escaped from jail (C = c), this would naturally affect our belief in B, 
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the fact of the defendant having escaped from jail. So we might let Pr(b I c) = 0.8 

(i.e. strong belief that the defendant escaped from jail given a report stating so) 

and Pr(b ) = 0.4 (i.e. normal (only) disbelief that the defendant escaped given 

a lack of a report stating so). 

The Collins case (Edwards, 1991) is now presented, first with the prosecution 

argument, and then with Edwards' analysis. 

2.3.1 The Collins Case—The Prosecution Argument 

This case concerned Janet and Malcolm Collins, who were convicted in Los An-

geles of second-degree robbery. The details that follow are taken from Edwards 

(1991). 

Malcolm Collins appealed to the Supreme Court of California, his main com-

plaint being "that the introduction of evidence pertaining to the mathematical 

theory of probability and the use of the same by the prosecution during the trial 

was error prejudicial to the defendant." The Supreme Court agreed and the 

conviction was reversed. The court's description of the case was as follows: 

On June 18, 1964, about 11:30 AM Mrs. Juanita Brooks, who had 

been shopping, was walking home along an alley in the San Pedro 

area of the City of Los Angeles. . . As she stooped down to pick up an 

empty carton, she was suddenly pushed to the ground by a person 

whom she neither saw nor heard approach. . . She managed to look up 

and saw a young woman running from the scene. According to Mrs. 

Brooks the latter appeared to weigh about 145 pounds, was wearing 

"something dark," and had her hair "between a dark blond and a light 

blond,"... [H]er purse, containing between $35 and $40, was missing. 

About the same time..., John Bass, who lived on the street at 

the end of the alley,. . . [heard] "a lot of crying and screaming" coming 

from the alley. As he looked in that direction, he saw a woman run 
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Characteristic Probability 

Partly yellow car 0.1 
Man with moustache 0.25 
Girl with ponytail 0.1 
Girl with blonde hair 0.333 
Black man with beard 0.1 
Interracial couple in car 0.001 

Table 2-1: Probabilities used by the prosecution in the Collins case. 

out of the alley and enter a yellow automobile parked across the street 

from him... The car. . . passed within six feet of Bass... [I]t was being 

driven by a male negro, wearing a mustache and beard... 

Bass described the woman who ran from the alley as a Cau-

casian, slightly over five feet tall, of ordinary build, with her hair in a 

dark blond ponytail, and wearing dark clothing. 

The defense did not challenge greatly the descriptions of the couple. The 

main complaint was about expert testimony on the product rule for independent 

events. The prosecutor had introduced hypothesised probabilities of the reported 

characteristics of the perpetrators if the crime were committed by some couple 

other than Janet and Malcolm Collins. These probabilities are shown in Table 

2-1. The prosecutor then multiplied these numbers together and came up with a 

probability of 1/12, 000, 000 of another couple having the same characteristics. 

There has been much criticism of Table 2-1 and the prosecutor's argument 

in legal literature—see Finkelstein and Fairley (1970) for example. Both the 

court and Tribe (1971) complained that no evidence was presented to support 

the probability estimates. Further, the events are not independent; a blonde girl 

and a black man seem very likely to be an interracial couple. 

Fairley and Mosteller (1974) have since corrected the details of the probabil- 
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ities for the features of a couple such as the Collinses. Edwards (1991) presents 

an analysis of the case using an influence diagram, and this analysis follows. 

2.3.2 The Collins Case—Edwards' Analysis 

A major error in the prosecution's analysis was that all the events (in Table 2-1) 

were assumed independent. Edwards (1991) structures his events more carefully, 

using an influence diagram to display the conditional independence structure of 

his model. His description of how he set about creating the graph is similar to 

Wigmore's ideas. 

One device Edwards used was the notion of imputed stipulations. The idea 

is that if neither side in a case disputed a particular proposition, then it can 

be assumed that both sides accepted it; that is the proposition is regarded as a 

truth. The imputed stipulations that Edwards' used for the Collins case were: 

The mugging occurred. 

The mugging was committed by a Caucasian woman. 

The getaway vehicle was a car that waited for the woman outside the alley. 

The driver of that car, also waiting outside the alley, was male. 

The Collinses were together at the time of the crime. 

The Collinses had no alibi. (They testified to being elsewhere, but no other 

evidence was offered.) 

Admittedly, stipulations such as these become clearer after a trial, but a legal 

analyst could certainly use such a method to organise his thoughts. 

Figure 2-7 shows the network Edwards designed for the Collins case. The 

network illustrates, for example, the assumed conditional independence of skin 
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1. Brooks is mugged 4. Driver of car 
by Caucasian fema1e  is black 

2. Mugger has londe ~) 	3. ~Getaway car 	 5. Driver facial Is yel low 

Figure 2-7: Edwards' influence diagram for the Collins case. 

colour of the driver and car colour, and the lack of such independence of skin 

colour and facial foliage. 

Additional evidence would be incorporated into Figure 2-7 by including more 

nodes; if, for example, evidence was presented on the credibility or otherwise 

of the eyewitness, nodes would be added and linked to the nodes representing 

issues upon which the eyewitness testified. (Schum (1989b) presents an analysis 

of witness credibility issues.) 

The related conditional probabilities are displayed in Table 2-2, and represent 

subjective judgements by the prosecution in the Collins case and by Edwards 

himself. Those coming from Edwards reflect such judgements as if the mugger 

was Janet Collins and the driver of the getaway car was black, then he was 

virtually certain to have a moustache and beard, since he was virtually certain 

to be Malcolm Collins. 

Now that the model has been specified, it can be analysed. The target node 

is number 1, the identity of the mugger. The prior probability of Janet Collins 

being the attacker is 0.0001, from Table 2-2. Now consider that evidence has 

been presented in court, and that this evidence relates to one or more of the 

variables in the model. A propagation scheme, such as that by Lauritzen and 

Spiegelhalter (1988) described in section 1.4.1, can then be used to calculate the 

posterior probability of Janet Collins being guilty. Some possible testimonies, 
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Node 1: Brooks is mugged by a Caucasian female 

Outcome Probability 

Yes, Janet Collins 
Other Caucasian female 

0.0001 
0.9999 

Node 2: Mugger has blonde ponytail 

Condition of node 1 

Outcomes 

Yes Blonde, no 
ponytail 

Ponytail, 
not blonde 

Neither 

Yes, Janet Collins 
Other Caucasian female 

1.000 
0.033 

0.000 
0.500 

0.000 
0.150 

0.000 
0.317 

Node 3: Getaway car is yellow 

Condition of node 1 

Outcomes 

Yes No 

Yes, Janet Collins 
Other Caucasian female 

0.999 
0.100 

0.001 
0.900 

Node 4: Driver of car is black 

Condition of node 1 

Outcomes 

Yes No 

Yes, Janet Collins 
Other Caucasian female 

0.999 
0.001 

0.001 
0.999 

Node 5: Driver facial foliage 

If node 1 is "Yes, Janet 
Collins" and node 4 is... 

Outcomes 

Beard and 
moustache 

Moustache 
no beard 

Beard, no 
moustache 

No beard or 
moustache 

Yes (driver black) 
No (driver not black) 

0.999 
0.025 

0.000 
0.300 

0.000 
0.010 

0.001 
0.665 

If node 1 is "Other 
Caucasian female" and node 4 is... 

Yes (driver black) 
No (driver not black) 

0.025 
0.025 

0.600 
0.300 

0.010 
0.010 

0.365 
0.665 

Table 2-2: Conditional probabilities for Edwards' network of the Collins case. 
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Evidence Posterior probability 

Blonde with ponytail 0.0030 
Yellow car 0.0010 
Black with moustache and beard 0.7997 

All three together 0.9992 
Blackness alone 0.0908 
Facial foliage alone 0.0040 

Table 2-3: Posterior probabilities of the mugger being Janet Collins for various 

possible testimonies. 

such as eyewitness evidence that the getaway car was yellow, and their effect on 

node 1 are shown in Table 2-3. For example, the posterior probability of Janet 

Collins being the mugger given that the mugger had a blonde ponytail is 0.003. If 

the variables 2 to 5 are assumed to take values indicating that the mugger had a 

blonde ponytail, the getaway car was yellow, and the driver of the car was black 

and had a moustache and beard, then the posterior probability of Janet's guilt 

becomes 0.9992. 

Once the posterior probabilities of guilt given evidence have been obtained, 

the problem remains of what to do with them; should a suspect be imprisoned 

for assault and robbery on a 0.9992 probability? The conditional probabilities 

defining the model are mostly subjective, after all. Certainly, however, the prose-

cution in the Collins case should be able to argue that Janet Collins seems highly 

likely to be the mugger, given the evidence, although whether the jury would 

appreciate the statistics is another matter. Likelihood ratios may present a more 

intuitive and acceptable alternative to probabilities—see section 2.5. 
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2.4 A Forensic Science Application 

Forensic science has a very important role in criminal legal cases. The methods 

of the previous section work well with forensic data, since this data may supply 

reliable estimates for conditional probabilities required for the model, reducing 

the need for subjective judgements to be made. 

Aitken and Gammerman (1989) present a forensic science example of an expert 

system. The (fictional) case is described thus: 

A murder has been committed. There are two suspects, X and 

Y, who are associates and who say they met the victim V some time 

before the commission of the crime. If there were an eyewitness to 

this meeting it would be interesting to know from that witness if the 

meeting had been cordial or not and, in particular, if there had been a 

fight. The reliability of the eyewitness is also of interest. Since X and 

are associates, it is feasible that Y may pick up something from X 

and then deposit it at the scene of the crime. For example, fibres from 

a jacket of X may be picked up by some garment of Y and then be 

left at the crime scene by Y, thus incriminating X who may, in fact, 

be perfectly innocent. Such transfer from X to Y may take place if, 

say, Y drives X's car frequently. 

The graph of Figure 2-8 shows the structure linking the following variables: 

A: X committed the murder; 

B: Y committed the murder; 

E: Eyewitness evidence given of a fight between X, Y and the victim 

sometime before the commission of the crime; 
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Eyewitness 
evidence (E) 

Row between X, Y 
and victim (R) 

Y drives X's car 
	

X committed the 
	

Y committed the 
regularly (H) 
	

murder (A) 
	 murder (B) 

picks up fibres from 
-_X's jacket (T).-' 

Jacket fibres found at 
crime scene (F) _,- 

Figure 2-8: Influence diagram for forensic science example. 

R: A fight occurred between X, Y and the victim; 

F: Fibres from a jacket similar to the one found in the possession of X are 

found at the crime scene; 

H: Y drives X's car regularly; and 

T: Y picks up fibres from X's jacket. 

These variables are binary, and take the values "true" or "false". For example, 

if A = a then X did commit the murder, but if A = then X did not kill the 

victim. Table 2-4 shows the suggested conditional probabilities for the model, 

along with an interpretation of the numbers. 

Given the model, it is possible to apply an algorithm from section 1.4 to 

obtain posterior probabilities of variables after accepting pieces of evidence. The 

important variables here are A and B, the guilt or innocence of X and Y. 

Initially, Pr(A = a) = Pr(B = b) = 0.053, i.e. for example the probability 

of X committing the murder is 0.053, before acceptance of evidence. If the fibre 
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Probability Interpretation in influence diagram 

Pr(e) = 0.05 Eyewitness evidence of row between X and Y is unlikely. 

Pr(r 	e) = 0.80 Row likely given eyewitness account; 
Pr(r = 0.05 Pr(r I e) 	1 since eyewitness may be lying/mistaken. 

Pr(a r) = 0.50 X and Y are unlikely to commit the crime a priori 
Pr(a = 0.01 but possibly might have, given row. 
Pr(b r) = 0.50 
Pr(b = 0.01 

P 	(/i) = 0.70 It is quite likely that Y drives X's car. 

Pr(t 	h) = 0.20 If Y often drives X's car, there is a possibility that Y will 
Pr(t = 0.01 pick up fibres from X's jacket; otherwise it is unlikely. 

Pr(f I a, b, t) = 0.80 Fibres from X's jacket are quite likely to be found if X 
Pr(f I a, b, 	) = 0.70 committed the crime, regardless of whether Y was 
Pr(f I a, b, t) = 0.70 involved or not. If Y did not pick up fibres from X's 
Pr(f I a, b, 	= 0.70 jacket and X did not commit the crime, it is unlikely 
Pr(f I ?i, b, t) = 0.20 that fibres from X's jacket will be found at the scene. 
Pr(f 	i, b,7) = 0.03 
Pr(f I ZT, b, t) = 0.01 
Pr(f 	,b,7) = 0.01 

Table 2-4: Suggested probability values for forensic science example. 
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evidence is accepted (F f) then the posterior probabilities are Pr(A = a I f) 
0.888 and Pr(B = b f) = 0.090; thus the chance of X being involved in the 

murder has increased to over three-quarters, which makes sense since it was his 

jacket fibres that were found at the scene of the crime. The probability of Y 

being involved has also increased, though not as much as for X, since there is a 

possibility of fibre transfer. 

2.4.1 Uncertain evidence 

In a forensic or legal context, there may be a variable in a model relating to 

evidence which is not totally reliable for a number of reasons; the witness might 

he lying, or mistaken. In this case, evidence will need to be accepted (if it is 

presented) but with an element of uncertainty—this is achieved in the following 

way. 

Assume that evidence has been presented to the court relating to whether or 

not Y drives X's car regularly, but that the witness is not wholly reliable, and 

that there is a 20% chance that the witness is lying. A node H' is added to the 

influence diagram to give Figure 2-9. Letting, for example, 

Pr(H = h, H' = h') = 0.28, Pr(h, W') = 0.42, 

Pr(h, hl) = 0.07 and Pr(h,]) = 0.20 

ensures that Pr(h) = 0.70 and Pr(h I h') = 0.80. So in order to accept uncertain 

evidence, H' is set to take value h' and the effect is propagated through the 

graph. The posterior probability for H = h is obviously 0.80. The probability 

of fibre transfer (T = t) becomes Pr(t I h') = 0.162, whereas before accepting the 

"uncertain" evidence it was Pr(t) = 0.143. 
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Eyewitness 
evidence (E) 

Extra node 
(H') 	

Row between X, Y 
and victim (R 

	

Y drives X's car 
	

X committed the 
	 Y committed the 

	

regularly (H) - 	 murder (A) 
	 murder (B) 

Y picks up fibres fron 
jacket (T)_....-' 

Jacket fibres found at 
crime scene (F) _ 

Figure 2-9: Forensic science example with extra node for uncertain evidence. 

2.5 Likelihood Ratios 

In section 2.3 it was mentioned that likelihood ratios may be useful in legal 

inference of the kind discussed in this chapter. 

Witnesses and investigators in criminal trials might well feel happier providing 

statements of the form 

Event X is q times more likely to occur if event Y were true than if 

Y were false, 

than of the form 

The probability of event X, given event Y is true, is 0, while the 

probability of X, given Y is false, is 0. 

Edwards et al. (1990) claimed that "[a]s several decades of research in psy-

chophysics has shown, people are much better at making relative judgements 

than at making absolute judgements." 
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Figure 2-10: Typical structure of model analysed by PIP 

This section then is concerned with the use of likelihood ratios in expert 

systems. 

2.5.1 PIP and CASPRO 

In the 1960's, Ward Edwards, David Schum and others worked on a computational 

reasoning system known as Probabilistic Information Processing (PIP)—see, for 

example, Edwards (1962), Edwards et al. (1968). 

In PIP, people were required to assess probabilities and likelihood ratios to 

enable a computer program to calculate posterior probabilities or odds. The 

initial idea was for people to assess prior odds on certain hypotheses of interest, 

and then to judge probabilities or likelihood ratios for each new evidence item 

the system would be required to process. The hypotheses, in "expert systems" 

terms, were represented by a node connected to child nodes denoting the evidence 

items. These child nodes had no children of their own, nor were they joined to 

any node other than the hypotheses node; thus the model had a single-stage, 

non-hierarchical structure. Figure 2-10 shows a possible influence diagram for 

such a model with four evidence nodes. 

Schum, after discovering Wigmore's work, decided that the single-stage struc-

ture of the models used by PIP did not faithfully represent human inference—see 

Schum (1989a). PIP did not achieve great success, partly because of the burden 
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{G, I} 

{A,A} {D,D} 

{E, E} 

I * __ 
E. 	D* 

Figure 2-11: Example influence diagram for CASPRO, 

of having to give assessments of conditional probabilities (as opposed to purely 

likelihood ratios—see Edwards et al., 1990), and partly because work on the 

hierarchical' (multistage) nature of inference was in its infancy in this context. 

Such work was carried out by David Schum in the years following, and this led 

to the program CASPRO', developed by Martin (1980). This program resembled 

many of the expert system programs today, in that the structure of a network and 

conditional probabilities are entered into the system. The program was quite a 

basic one however; it did not calculate marginal probabilities for the variables in 

a model, but likelihood ratios. The type of likelihood ratios output by CASPRO 

are illustrated by the following example from Martin (1980). 

The influence diagram for this example is shown in Figure 2-11. The node 

A* represents a report given by a witness in a case; the report is the testimony 

4Schum, Martin, Edwards et i1. use the term cascaded. 

50ddlv, no reference is made in Martin (1980) to the phrase for which CASPRO is an 

acronym; "CAS" clearly refers to "cascaded", but "PRO" could be any of "probability", 

"propagation", or "prototype"—the latter word is used frequently in the paper. 
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that event A occurred while A did not. Similarly B*  is the report of a second 

witness that event B has occurred, and again for E*  and event E. The node 

represents a report that event D occurred. The top node contains the two 

hypotheses of interest, the guilt (G) or innocence (I) of a suspect. 

CASPRO concentrates on the reports that events occurred; it calculates how 

much more likely a report is if the suspect is guilty than if he/she is innocent—

that is, it calculates for example, 

AA 
- 

- P

r(A* G) 

Pr(A* I) 

in the case of report A*.  Since the report B*  depends on A*  the likelihood ratio  

will also depend on A*,  so that 

AB 'IA* 
- 

- 

Pr(B*A*,G) 

Pr(B*A*,I) 

The conditional probabilities given for this example by Martin (1980) are 

shown in Table 2-5. The resulting likelihood ratios (which can he checked with 

a routine from section 1.4) are: 

AA* = 	8.349 

AB*IA. = 	1.267 

AE* = 	1.090 

A*IE. = 	0.858. 

Martin (1980) also considered pure linear inference, as displayed in Figure 

2-12 with the case where there are three intermediate steps between the report 

(D*) and the ultimate hypotheses (D0  and 	In Figure 5 of that paper, the 

expression for the likelihood ratio for this pure linear case was shown—see Figure 

'The arrows are the "wrong" way round on this network; probabilities such as 

Pr(B* I A*,  B) must be defined. 
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Pr(A G) = 0.50 
Pr(A I) = 0.05 

Pr(B C, A) = 0.70 
Pr(B G, q) = 0.40 

Pr(B* A*,  B) - 0.90 
Pr(B* A*, P) 0.01 

Pr(E G, D) = 0.80 
Pr(E C,) = 0.00 

Pr(E* I E) = 0.50 
Pr(E* T) = 0.40 

Pr(A* I A) = 0.90 
Pr(A*) = 0.01 

Pr(B I, A) = 0.60 
Pr(B I, A) = 0.30 

Pr(D C) = 1.00 
Pr(D I) = 0.01 

Pr(E I, D) = 0.75 
Pr(E 	I,) = 0.40 

Pr( D* E*,  D) = 0.60 
Pr(* 	E*,) = 0.70 

Table 2-5: Conditional probability values for CASPRO example. 

{D0, D0 } 

{D1,D1 } 

12} 

D3 } 

I 
Figure 2-12: Pure linear inference—four stages. 
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Pr(Di Do) + 

Pr(D 	ID3) 
 

Pr(D3  ID2)+ 
Pr(D1D3) - Pr(D2  ID1 )+ __________ 

Pr(D3I)+ 	Pr(DID3) 
Pr(D 	ID3) 

Pr(D3ID2)+ IPr(D*1D3) 

 

_ 
Pr(D2  IFI)+ 

_ 1 
Pr(D3I)+ 	

Pr(DID) 

Fr(Dl) 

31D2)+ [Pr(D*1D3)Pr(D 

 

Pr(D2ID,)+ ________ Pr(D1D3)  

Pr(D3I)+ [Pr(D1D3) 

[Fr(D1D3) 

Pr(D31D2)+ FPT(DID3) -1 

________ Pr(DJ) 

Pr(D3I)+ [1D3) 
[Pr(DI) 

Pr(Di Do) + 

Pr(D*Do) - 

Pr (D*Do) - 

Figure 2-13: Martin's expression for a pure linear likelihood ratio. 

2-13 here. Schurn (1989a) described the expression as "picturesque"; however, a 

more compact formula using likelihood ratios (such as Pr(D3  I D2)/ Pr(D3  

is derived in section 2.5.2. 

2.5.2 Likelihood Ratios as Input to Expert Systems 

Edwards et al. (1990) claimed that "[when analysing a probabilistic network] 

we can no longer get by with just likelihoods or likelihood ratios; we need exact 

conditional probabilities." 

My comment about this statement is that it depends what likelihood ratios 

you are prepared to define. 

Pure Linear Structure 

Consider the following segment of the network of Figure 2-8. Take the three 

(binary) nodes, H, T, and F: 

H: Y drives X's car regularly; 
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Y drives X's car 
regularly (H) 

Jacket fibres found at Y picks up fibres from' 
X's jacket 	 scene ( 

Figure 2-14: Segment of forensic science example—pure linear. 

T: Y picks up fibres from X's jacket; and 

F: Fibres from a jacket similar to the one found in the possession of X are 

found at the crime scene. 

These three nodes in isolation have a pure linear structure, as displayed in Figure 

2-14. Usually the four probabilities Pr(T = t I II = Ii), Pr( Ii), Pr(f I t) and 

Pr(f I 7) would need to be defined. 

Suppose the information given is in the form of likelihood ratios P1, q,  P2 and 

q2  such that 
Pr(t ii) 

= Pr(t T)' 

Pr(f) 
P2= 	 and 

Pr(f7) 

From (2.1) it is straightforward to show that 

	

Pr(flh) 	
(2.1) 

= Pr(7)' 

	

qij 
= Pr(f I t) 	

(2.2) 

Pr(t I h) = 	
—1) 	

and 	Pr(t ) =
(q,-1), 	

(2.3) 

	

(qi - pi) 	 (qi - pi) 

so that either p' < 1 < q or P1 > 1 > q in order to satisfy the axioms of 

probability. The case Pi =q,= 1 from (2.1) corresponds to independence of H 

and T, and need not concern us. 

Similarly, from (2.2) it can be shown that 

Pr(f It) - 
- p2(q 	 and 	Pr(f 1 7)= 

—1) 	 (q —1) 
(2.4) 

	

(q - p2) 	 (q2 - p2) 

The likelihood ratio Pr(f I h)/ Pr(f I ]) is of interest here. Now, 
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Figure 2-15: Pure linear structure for (n + 1) events. 

Pr(f I h) = Pr( h.) Pr(f I t, h) + Pr(i I h) Pr(f I i, h) 

= 	Pr(t I h) Pr(f I t) + Pr(i I Ii) Pr(.f ) 	(conditional independence) 

p1p2(ql - 1)(q2 -1) +ql(q2 - 1)(1 -p1) 

(qi - pi)(q - P2) 

and similarly 

Pr(f IT) = p2(ql - 1)(q2  - 1) + (q - 1)(1 - pi) 

(ql- pi)  (q2-p2) 

so that the likelihood ratio is 

Pr(f I ii) - P1P2(1 - 1)(q2  - 1) + qi(q - 1)(1 - p1) 
Pr(fh) - p(qi - 1)(q2  -1) + (q - 1)(1 -P1) 

Having obtained a formula for two-stage pure linear inference, an extension 

to n-stage (involving (n + 1) events) is desired. 

Consider the general case of (n. + 1) nodes in pure linear form as illustrated 

by Figure 2-15. In order to compare results with the formula of Figure 2-13, 

the node names are the same, except for D*  in Figure 2-12. The name D is 

more general than D*,  which refers specifically to a report on the next node in 

the "chain". The usual notation (for this thesis) will be used, such that Di  will 

refer to the node/variable name, with states Di  = di  or A = , until a direct 

comparison with Martin's (1980) formula is required. 

Define p, qj, i = 1, 2,. . . , n, such that 

Pi= 	 an 
Pr(d1  d_1) 	

d 	q 	
Pr(d2 

Pr(d i) 	 Pr(d2  

where either m < 1 < qj or pi  > 1 > qj for each i. 
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From this definition, and in a similar manner to the derivation of (2.3) and 

(2.4), 

Pr(d, d2 _ 1 ) 	 Pr(d 
- pi(qi - 1) 	 (qi - 1) 

(2.5) 
- (qi — pi) , 	 (qi — pi)' 

q(1 - p) 	 (1 - p) - 
Pr( 	d_1 ) 	 and Pr(djd j_i ) = ______ (2.6) 

- (qi - pi) 	 (qi - )• 

Now introduce new notation such that 

d(1) 	di 	and 	di  (0) 	for i = 0,1,2,...,n, 	(2.7) 

so the expressions at (2.6) can be written generally (for i = 1, 2,. . . , n) as 

Pr(d(j) d_ 1  (j_i)) = p' q1th_a  (1 - p)1 	(qi - 1) (qi - p 1 	(2.8) 

where j,j_1 = 0, 1. 

We require a general formula for 

Pr(d d0 ) - Pr(d(1) d0(1)) 
Pr(ddo ) - Pr(d(1) do(0)) 

in order to compare with the case where n = 4 as in Figure 2-13. Note that the 

method of Martin (1980) does not enable such a likelihood ratio to be expressed 

compactly as a formula for the general n-stage pure linear structure, although 

the pattern is clear. 

For any i = 1,2,... 

Pr(dJdo) = Pr(d(1) Ido(1)) 

= Pr(d(1) d i (1),do(1))Pr(d_i (1) d0(1)) + 

Pr(d(1) ld_i (0),do(1))Pr(di _i (0) d0(1)) 

= 	Pr(d(1) d_1(1)) Pr(d_i (1) d0(1)) + 

Pr(d(1) jd_1(0))Pr(d_i (0) d0(1)) 

(by conditional independence) 

= 	Pr(d(1) d 1(j))Pr(d 1 (j) d0(1)). 	(2.9) 
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By analogy with the two-stage case, and by repeated application of expression 

(2.9), Pr(d(1) I d0(1)) can be calculated: 

Pr(d(1) d0(1)) = 	Pr(d(1) dni(jn))Pr(dni(jn) d0(1)) 
j, -i=0 

= 	{Pi.(d(1)d1(i)) 
in 1=0 

(by (2.9)) 

Pr(d i (j i ) d 2 (j 2 )) Pr(d 2 (j 2 ) do(1))} 
in-2=0 

= 	 {r n i d 1 (j)) X 

.ln - 0 J-2O 

Pr(d i (j 1 ) I d 2(j 2 )) Pr(d,,-2 ()*,,-2  )1 d0(1))} 

= 	 X 

Jn-F° Jn-2° 

Pr(d 2 (1* 2 ) I d 3 (1 3)) Pr(d 3(j 3) I d0(1))} 
J_3O 

and so on until 

Pr(d(1) d0(1)) = 

{r n i d 1(j)) Pr(d i ( j 1 ) I  d 2 ()' 2 )) X 

3n-1°3n-2° 	ii =0 

Pr(di (j1 ) 1 do(1))} 

ft Pr(d(j) I d_1(j_1 )) 	where JO  = 1, jTh = 1. 
Jn-1°Jn-2° 	j1 0i1 

Note that from (2.8) the term (qj - p) 1  occurs for each Pr(d(j) 

and does not depend on 

Finally, define the function Z where 

Z(i, JO ,In) = Pr(d(j) I d_1  (j_1 )) x (qi - p) 

(1 - p)l_J (qi - 

(by (2.8)) for t = 1,2,... ,n; jo  and  in are included in the inputs to function Z 

since they are not summed out, and ultimately cause the difference between, say, 
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Pr(d(1)do (1)) and Pr(d(1) I d0(0)). Hence we have 

Pr(d(1) I d0 (1)) = 	 •.. 	ft {Z(i, 1,1) x (qi - 

	

3n-1 =0  Jr-2=0 	11=02=1 

For Pr(d(1) I d0(0)), the working will he the same as above with Pr(di (ji ) 

d0 (0)) replacing Pr(di (ji ) I d0 (1)). Thus 

Pr(d71 (1) 1 d0 (0)) = 	 ft {Z(i, 1,0) x (q - Pi)'}, 

	

J_1OJ_2=0 	hO2r1 

so that the (qj p) 1  terms can be cancelled, giving the required likelihood ratio 

1 	1 	1 	n 

...fJz(i,1,1) 
Pr(d d0) = §=oj,=o 	jl=O i=l 	

. 	 (2.10) 
Pr(d,1  d0 ) 	 ... 

E ft Z(i, 1,0) 
Jn-1=0 Jr-20 	ji=Oi=1 

When ii = 4, as in Figure 2-13, and using Martin's (1980) notation of capital 

letters for states plus letting D* = D4  = d4, expression (2.10) becomes 

	

1 	1 	1 	4 

fJZ(j,1,1) 
Pr(D*Do) - 33 =032=0jj =0i=1 

 

	

1 	1 	1 	4 pr(D*) 	
flz(,1,0) 

j3=0 32=0 ji=0 i=1 

Clearly expression (2.11) is a far more compact formula than that in Figure 2-

13, and involves only one form of input, i.e. likelihood ratios. Martin's expression 

needs a mixture of likelihood ratios and conditional probabilities. 

Bifurcation 

The word bifurcation is used here to describe the structure in a network rep-

resenting the case where one variable is conditional on the values of two other 

variables. Consider three events taken from the forensic science example—A, B 

and F, as illustrated in Figure 2-16. The nodes represent: 
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X committed the  
mu 

Jacket fibres found at 
crime scene  

Y committed the 
murder (B) 

Figure 2-16: Segment of forensic science example—bifurcation. 

A: X committed the murder; 

• 	B: Y committed the murder; and 

F: Fibres from a jacket similar to the one found in the possession of X are 

found at the crime scene. 

Given this subnetwork, the following likelihood ratios can be defined: 

Pr(f a, b) 	 Pr 	a, b) 
(2.12) P1 	Pr(f,b)' 	qi = 

Prf,b)' 

Pr(f,b) and q2_PrCL) 
P2 

= Pr(fa,) 	 Pr(Ja, 	
(2.13) 

 

The interpretation of these likelihood ratios is perhaps less clear than those for the 

pure linear case; consider for example P1.  This can be considered as the answer 

to the question "given that Y was involved in the murder, how much more likely 

is it that fibres from X's jacket were found at the scene of the crime if X was 

involved in the murder than if X was not involved?" 

Ratios of this kind may be easier quantities to define than conditional proba-

bilities such as those arising from the question "what is the probability of fibres 

from X's jacket being found at the scene of the crime given that Y was involved 

in the murder while X was not?" 
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These definitions allow calculation of the conditional probabilities: 

- 

	

Pi (q,  —1) 	 (q2 - 1) 
Pr(f a,b) Pr(fa,) =  

- (qi - p) ' 	 (q - p2) 

Pr(f I Zi,b) = 	and Pr(f i, b (qi - 1) 	
-) = p2(q2 - 

1) 

	

(qi — pi) 	 (q2 — p2) 

From these, other likelihood ratios follow, such as 

Pr(f I a, b) - pi  (q, - 1)(q2 - P2) 

Pr(f I a,) - (qi - pl)(q2 —1) 

As an example suppose that an expert has defined the likelihood ratios re-

quired above as Pi = 12, q1  = 3/10, P2 = 1/7 and q2  = 3. This gives the 

conditional probabilities 

	

Pr(f I a, b) = 0.718, 	Pr(fa,b) = 0.700, 

	

Pr(f  id, b) = 0.060, 	Pr(f,) = 0.100; 

other likelihood ratios can be calculated directly from the ratios: 

Pr(f I a, b) - 12 x (0.3 - 1) x (3 - ) 	—24 - 	- 
1.026. 

Pr(f a,) - (0.3-12) x (3-1) - —23.4 - 

Extensions to Bifurcation 

The results for bifurcation can be extended to the case where an event is condi-

tional on ii other events, as illustrated by Figure 2-17. 

Note that from this diagram, it would appear that any pair of variables Ai  and 

A3  are conditionally independent given B. This is true if Figure 2-17 represents a 

complete influence diagram for a model; however, taking it only as part of a larger 

network, Ai  and A3  cannot generally be assumed conditionally independent given 

B. In fact, there may even be an arc connecting Ai  and Aj  directly, indicating 

they are dependent on each other. 

Given that all variables are binary, it is clear that there will be 2' different 

conditional probabilities of the form Pr(b I ai (j1 ),a2(j2),. .. ,a,(j L,)), where ji = 
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A1  

Figure 2-17: One event conditioned on v other events. 

0,1 for i = 1,2,... ,z', and the a j(j j ) notation is used for ai  and 	as at (2.7). 

Hence 2' likelihood ratios will need to be defined-2' pairs of "p"s and 'V's, 

similar to those at (2.12) and (2.13). 

Let A be the set of all permutations of one from each pair (a(0), a(1)) for 

i = 1, 2,. . . , v. This set will have 2  elements, denoted ak  for k = 1,2,... , 2'. 

Consider two elements of A, al and c say, that are used to define p3  and q3, i.e. 

	

Pr(b al ) 	 - Pr(Lai ) 

	

PS 
= Pr(b m) 	

and 	q8  

- Pr(b lam) 

In the same way as for bifurcation, it can be shown that 

	

Pr(b I al)= 
p8(q8  —1) 	 (q. —1) 

and 	Pr(b lam )= 

	

(q3 —p) 	 (q3—p8) 

Given further elements of A such as a and a, with likelihood ratios 

	

Pr(b a,) 	 - Pr(blcx) 

	

Pr = Pr(b ay) 	
and 	q 

- Pr(b la)' 

similar working enables calculation of, for example, 

Pr(b a) - p3(q5 - 1)(qr - Pr) 
Pr(b a) - pr(qs - p3)(q - 1) 

It is worth at this stage making some observations on the definition of likeli-

hood ratios needed as input here. Note that there must be 2L_1  definitions of p 



Chapter 2. Legal Networks 	 83 

and corresponding qj. These likelihood ratios need two conditional probabilities 

each, and these pairs can be ordered in many ways. The object will be to arrange 

the pairs of conditional probabilities so that the evaluation of the likelihood ratios 

(often subjective) can be made as clear and as simple as possible. The ratios can 

he defined so that for each one, only one of the conditioning variables changes 

between the numerator and the denominator. In other words, take al and a, as 

above, for example; the state indicators Ji at each aj(j j ) will be the same for a 

as for am  for all i except one. 

Furthermore, given a structure such as that in Figure 2-17, it can be arranged 

that the "one different" conditioning variable is the same for each likelihood ratio, 

for any v. This can be shown by a simple proof by induction: 

Take the set A as above, with ii = 1. Thus A has 2 = 2 elements, 

al = a1 (1) and a2  = ai (0). 	The likelihood ratio p equals 

Pr(bai(1))/Pr(ba1 (0)), and so the required arrangement can be found 

for ii = 1. 

Assume a suitable arrangement holds for ii conditioning variables. There 

exist 2 permutations ck in A, and 2L_1  likelihood ratios 

Ps = Pr(b I ak1 )/ Pr(b I ak2 ). Now consider the addition of a new condition-

ing variable, A+1. Let A*  be the set of all permutations of one from each 

pair (a(0), a(1)) for i = 1,2,... , v+1, so that A*  has 2' elements a. For 

each of the 2" required likelihood ratiosp = Pr(b a, )/ Pr(b a 2 ), take a 

separate ak E A, and define a, = {ak,a+1(1)} and a 2  = {ak,a+1(0)}. 

Thus each ratio has only one conditioning variable differing in state between 

top and bottom, and the a clearly are all the necessary permutations. 

The required arrangement is thus possible for any v = 1,2..... 
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Figure 2-18: Analyse this structure as two pure linear cases. 

General Structure 

The above methods for dealing with likelihood ratios can be combined for more 

general structures. Some examples are given here. 

Consider the structure of the subnetwork in Figure 2-18. This can be treated 

as two separate pure linear structures; A -* B -* C and A -p B - D. 

Likelihood ratios such as Pr(dla)-  can thus be calculated using the methods Pr(da) 
described above. 

The structure in Figure 2-19, taken as a subnetwork of the forensic science 

example, gives rise to defined likelihood ratios 

Pr(a r) Pr( 	r) Pr(b r) Pr(b r) 
Pr(a)' Pa qb q 	

= Pr()' Pb 	Pr(b)' 	= Pr(b)' 

Pr(f I a, b) Pr(f I a, b) Pr(f 	, b) Pr(J 	, b) 

= P1= Pr(fa,)' 	i Pr(Ja,)' 	P2 = 	
and 

Pr(f,) q Pr(J, 

The idea of analysing more general structures, such as that of Figure 2-19, is 

to build up from the basic forms, i.e. pure linear, bifurcation and so on. Here, 

consider two pure linear segments R -p A and B -f B and the bifurcation 

between A, B and F. The ratio of interest here is Pr(f I 	this can be written Pr(f lr) 
in terms of likelihood ratios,—take Pr(f I r) for example: 
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Figure 2-19: Subnetwork of forensic science example. 

Pr(f I r) = {Pr(a I r) x Pr(f I a, r)} + {Pr( r) x Pr(f , r)} 

= {Pr(a I r) x Pr(b I r) x Pr(f I a, b)} + {Pr(a I r) x Pr(b I r) x Pr(f I a, L)) + 

{Pr( I r) x Pr(b I r) x Pr(f I ?i, b)} + {Pr( r) x Pr( r) x Pr(f 

where conditional independence ensures Pr(f I a, b, r) = Pr(f I a, b) and so on. 

Each term in the last expression above follows from earlier results, so that even-

tually 

Pr(f I 7') 
= 	1 	{Pa (a - 1)(q i  - 1) 	

piq - 1) + q(l - Pb)] + 
(q - pa)(qb - Pb) 	(qi - p1) 

q. (I - p.) (q2  -1) 
bp2(qb -1) + qb(1 _Pb)]} 

(q - P2) 

and a similar expression is gained for Pr(f I ), enabling calculation of the desired 

likelihood ratio. 

Naturally enough there is no simple expression for a likelihood ratio in the 

general case, but note that even the expression for Pr(f I r) above is a summation 

of simple fractions, and does not display the "expanding out" tendency of that in 

Figure 2-13. CASPRO (Martin, 1980) will correctly calculate a likelihood ratio, 

but if an expression is required, writing it in terms of other likelihood ratios seems 

a more feasible prospect. 
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There is also a programming benefit. The CASPRO algorithm requires an 

unknown number of nested loops. While this can be done without too much 

difficulty, the above procedure avoids this problem altogether. 



Chapter 3 

Structure Learning 

3.1 Introduction 

Elsewhere in this thesis, it is assumed that a graphical model has been defined 

fully enough for analysis to proceed. That is, given a model, the other chapters 

deal with the task of drawing inferences from it. 

This chapter deals with problem of recovering a conditional independence 

graph directly from empirical observations. This is often the job of an expert 

designing an expert system (a process known as knowledge acquisition), and can 

be somewhat subjective. The automatic recovery of the structure of a model is 

termed structure learning. 

Chow and Liu (1968) developed a method, described in section 3.2, of recov-

ering a (skeleton) tree structure from a data set of discrete variables. The section 

also looks at using kernel methods to estimate probabilities rather than sample 

frequencies, and presents a comparison. 

Section 3.3 studies structure learning with continuous variables, and compares 

a kernel method with the use of correlation coefficients. 

87 
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George Rebane extended the Chow and Liu algorithm to polytrees, that is 

trees with arrows on some or all of the edges, in Rehane and Pearl (1987)—see 

§3.4. 

Finally, recovering general network structure (to allow undirected loops) is 

more difficult, but some ideas are given in §3.5. 

3.2 Recovering tree structures 

Chow and Liu (1968)1  showed that a joint distribution can be optimally approx-

imated by a tree-dependent distribution obtained from the marginal probabilities 

of pairs of variables. 

Definition 5 A distribution Prt (x) is said to be tree-dependent relative to the 

tree t if it can be written as product of pair-wise conditional probability distribu-

tions 
n 

pi.t(x) = fl Pr(x Xpa(i)), 
i=1 

where Xpa(i) is the parent of Xi  in some orientation of the tree. The root X1 , for 

which Pr(xi  I x0) = Pr(xi ), can be chosen arbitrarily. 

With a large enough sample, the probabilities Pr(x x) can be estimated well 

from the data, so that Prt(x)  can be obtained. The question of interest is, given 

an estimated distribution Pr(x), what is the tree-dependent distribution Prt(x) 

that "best" approximates Pr(x)? 

'Their work was in the area of character recognition, and was concerned with re-

ducing storage space of joint distributions. 
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Chow and Liu (1968) chose the Kuilback-Liebler cross entropy measure (Kull-

back and Liebler, 1951) as the "distance" between the two distributions, that is 

D(Pr,Pr) = 	Pr(x) log Pr(x) 
Prt (x) 

This measure is nonnegative and becomes zero when the two distributions are 

the same. 

Chow and Liu (1968) then show that the tree-dependent distribution Prt(x)  is 

an optimal approximation to Pr(x) if and only if the tree t has maximum weight, 

where the weight on the branch (X, X) is defined by the mutual information 

measure 

I(X,X) = 	
Pr(x, x3) >0. 
	(3.1) 

Pr(x,x)1og Pr(x) Pr(x) - Xi ,s3  

For an optimal Pr', the tree t is known as a maximum weight spanning tree 

(MWST) 

The MWST for n variables can be found using the following algorithm, by 

Chow and Liu (1968): 

From the observed data, estimate the distributions Pr(x, x) for all variable 

pairs. 

Using the probabilities from step 1, compute all possible branch weights 

and order them by magnitude. 

Assign the two branches with largest weights to the tree t. 

Examine the next largest branch, and add it to the tree unless it forms a 

loop, in which case discard it and examine the next largest. 

Repeat step 4 until n - 1 branches have been selected; the spanning tree 

has now been constructed. 
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It might arise that two branches have equal weights, while only one of them can 

be chosen (since taking both would create a loop). Ties like this can he broken 

arbitrarily, and the resulting tree will still be a MWST. It would be advisable 

however to consider all MWSTs resulting from such ties. 

This algorithm uses only second order statistics, which are estimated easily 

from the observations, and the tree is recovered in 0(n) steps. 

If the conditional probabilities along the branches of the tree are also esti-

mated from the data, then the distribution and structure of the tree recovered by 

the MWST algorithm converges with probability 1 to the true underlying distri-

bution, if that distribution is tree-dependent--see Chow and Wagner (1973). 

Step 1 of the algorithm requires the estimation of probabilities from the data. 

A straightforward way to do this is to use the sample frequencies for each pair 

of variables, a method used by Chow and Liu (1968), Pearl (1988), Gammerman 

(1990) and Gammerman and Luo (1991). Another possibility is to use kernel 

methods. The subsection that follows explains how to use a kernel function to 

estimate the required probabilities, and §3.2.2 compares the results for kernels 

with those obtained using sample frequencies. The use of bivariate smoothing 

parameters is proposed in §3.2.3 and examined in §3.2.4. 

3.2.1 Estimating Probabilities from Data with a Kernel 

Function 

The process of structure learning involves the calculation of information measures 

as at (3.1). If the joint probability Pr(x1, x) equals zero for some combination of 

values of Xi  and X, then the contribution to the information measure by that 

combination will also be zero. If the data set is small, however, it may be that 

the actual probability of the combination is non-zero, but by chance it has not 

occurred yet. The use of sample frequencies will set the probability to zero; a 

method that takes into account the size of the data set might therefore be useful. 
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Kernel probability distribution estimation is one such method. For a general 

review of kernel methods see Silverman (1986). 

Kernel-type estimators are defined as estimators of the form 

1 
m RI 

f(x) nhE \ h m  

where fm() is the estimate of the true distribution f(x), Xi, X2,. . . , Xm  is a 

random sample of size rn from f(x), K is a suitable density function, and h 1  is 

the smoothing parameter (or bandwidth), with hm  -p 0 as rn - 	. 

Aitken (1979) defines the following kernel function for a discrete variable X3  

with c + 1 unordered categories, Xj  - 
.k 	ifu=x 

= { 	if u 

for j = 1)  2,. .. ,p, where p is the number of variables, u2  and xj  are particular 

values of variable X, and Aj  is the smoothing parameter for X3 . 

In order for K j  to be a density function, it is necessary that 

l>\> 1 
	

\/j. 
c + 1 

The function for an instantiation u = (u1 , u2 ,. . . , u7 )' of a vector of possible 

outcomes x = (x1, x 2,. . . , x)', given a vector of smoothing parameters A, is 

K(ux,A) = flK j(uxj,) 

p 	 1 {)tl_ ( x,u,) 	). 

(_ 

 

	 } 

where 
0 ifx3 =u3  

if 

Thus the probability of u given a data set D is 

Pr(u I D) = 	K(u I D, A), 
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and the probability of a particular variable Xj  taking a specified value x j  can be 

obtained by summing all Pr(u I D) for which u j  = x. 

For a binary-valued variable Xj, the kernel function becomes 

if Uj = Xj  
(3.2) 

ifu3 =j 

(where x j  is one of 0 or 1 and Ty is the opposite) so that in the case where all the 

variables are binary-valued (see Aitchison and Aitken (1976) for example), 

with 

p 

It'(u x, A) = fJ {Aj - )u)} 	 (3.3) 
j=1  

1 
l>A> 	Vi. 

For the rest of this chapter, all discrete variables will be assumed binary-valued. 

As stated previously, the motivation for using kernel estimates of probability 

here is to try and lessen the effect of a combination of values of two variables not 

occurring in the data set. 

It is the case that the kernel estimate of the probability of a particular value 

of a single variable turns out to be non-zero (unless the smoothing parameter 

equals 1) even when that value does not occur in the data, unlike with sample 

frequency estimates. However, this non-zero probability actually cancels out in 

the information measure calculation at (3.1), causing J() to be zero (which is 

intuitively obvious, in any case), as will now be demonstrated. 

Consider a data set D, with p variables and observations x 1, x 2,.. , 

i = 1,2,... ,rn, where w.l.o.g. x 1  is always equal to 1 and never 0. Define 

an instantiation u which has u1  = 0, but is otherwise arbitrary. Thus from (3.2) 

X1, ') = (1 - A1 ) 	 Vi. 

Hence by summing (3.3) over V_i , the state space of X2,X3,. . . , X,, 

P Pr(Xi  = 0 1 D, A) = E -M(1 - A1) fl 	- 

V_, 	z=1 
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1mp 
(1 - ) E - E j-j 

1_(x,u) - 

V_1 	i=1 j=2 

= 	(1— j)Pr(X2,X3,... '  X 'DA) 
v_I 

= (1—) 

since the total probability for all possible values of X2,X3,.. . , X must be 1. 

Note that Pr(Xi  = 1 I D, A) = ) by a similar calculation. 

Now suppose, again w.l.o.g., that it is desired to calculate the information 

measure I(X1, X 2). Then the probabilities Pr(Xi , X2  I D, A) and Pr(X2  I D, A) 

are also required. For X1 	0, with V_ 1,2  the state space of X3, X4 ,. . . , X, 

Pr(Xi = 0,X2 I D, A) = 	 - 	x 1_(xt2u2)(1 - 
in j1 

MI 

P 

i) 	{I 	A2 	H 1_(x t13 u3 ) (1 - J )(xi13u3) 

	

V_1,2 
in 	21 =1=3 

12 P 

+ (1 - 2) 	H 1_(sI23u3) (1 - 
J 

rn1 P 
= (1 - 	12 	II 1_(x t1J uJ ) (1 - 

V_1,2  ii=1 j=3 

M2 P 

	

+ (1 - 2) 	H 1_(x 2J uJ ) ( 1 - 	) xt23u3) 

V_1,2i2=133 	 J 

Pr(X3,X4 ,...,XD,A) 
M 

+(1 — \2) E Pr(X3,X4,...,XD,A) 
V_ 1 , 2  

)i { 2m1  + (1 - 2)m2} 
M 

(3.4) 

where u2 = x 2  on m1 occasions and u2 x 2  on rn2 occasions, with m1+rn2 = m. 

Following similar calculations to the above, it can also be seen that 

Pr(Xi  = 1, X2  I D, A) 	 + (1 - 2 )m2 }, 	and 
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Pr(X2  I D, A) = 	+ (1 - 2)m2 }. 

So now these probabilities can be put into (3.1): 

I(X1,X2) = > Pr(Xi,X DA) log 1.(1 
Pr(X1,X2  D, A) 

D,A)Pr(X2  D,A) x1  ,x2  

	

Pr(Xi  = 0, X2  D, A) 	
(35) 

X2  
= 	Pr(Xi  = 0,X2  { 	 D,A)log Pr(X

i  =0D,A)Pr(X2 D,A) 

+Pr(Xi 	
Pr(Xi=1,X2D,A) 	1 

The first log expression at (3.5) becomes 

log (1 - A1 )-1-{ 2m1  + (1 - 2)7n2} 
fll 

(1 - i) x {2m1 + (1— 2)m2} 
- log 1 	0, 

and the second also 

i-1-{\ 2rn1  + (1 - A2 )7712 } 
fl2 	

= log  = 0, log 	
1{ 2 m1  + (1 - 2)7722} 

so that I(X1,X2) = 0 as required. 

It should be clear from the above that the reason the information measure is 

zero is because the (1 - )) term can be taken out of all summations, and thus 

cancels in the log expressions. If, however, two variables (w.l.o.g. X1  and X2 ) both 

take the values 0 and 1 individually but the combination X1  = 0, X2  = 0 (for 

example) never occurs in the data set D, then the information measure I(X1, X2 ) 

will not necessarily be zero. This is because the (1—.\) term (nor indeed a (1-.) 2 ) 

term) cannot be taken out of the summations, and will not therefore cancel in 

the log expression. A simple numerical counter-example would also show this. 

The smoothing parameters are estimated using pseudo-maximum likelihood. 

Each parameter Aj, j = 1,2,... ,p is estimated by finding 

max m 

(3.6) 

where D is the data set and xij  is an element of the data set, observation i of 

variable j. 
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Figure 3-1: Test structure for comparing sample frequencies and kernels ap-

proaches. 

3.2.2 Example 

The performance of both the sample frequencies and the kernels approaches to 

structure learning will now be compared. 

The Chow and Liu (1968) MWST algorithm applies for tree-dependent struc-

tures. Such structures are however very limited in their applications; only one 

variable is permitted to be a root. Section 3.4 will consider polytrees, trees that 

can contain more than one root variable (and hence allow a variable to have more 

than one parent). The test model in this section is a polytree, however; this is to 

allow the recovery of the MWST to be studied now, and the method of recovering 

the directionality of the edges to be studied in §3.4 with the same test example. 

That the MWST algorithm will recover the skeleton of a polytree is confirmed by 

Theorem 3 of Pearl and Dechter (1989), called Theorem 2 here and seen in §3.4. 

The test model has its structure displayed in Figure 3-1, and its probability 

distributions shown in Table 3-1. The model is defined so that for a small number 

of simulated observations, it is likely that not all combinations of pairs of variables 

will occur. For example, Pr(,b) = 0.9253, and the remaining combinations of 

A and B have probabilities less than 0.03. Thus it is hoped that the kernels 

approach will perform better than the sample frequency approach, since it will 

not automatically assign the value zero to estimated probabilities of combinations 

that do not occur in the data. 

The resulting skeleton trees (or parts of trees) from the structure learning 
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Pr(a) = 0.05 

Pr(c) = 0.40 

Pr(b!a,c) = 0.85 
Pr(ba,) = 0.20 
Pr(b ii, c) = 0.05 

Pr(d) = 0.25 

Pr(g e) = 0.80 
Pr(g) = 0.50 

Pr(f I e) = 0.02 
Pr(f) = 0.10 

Pr(b , ) = 0.01 Pr(h I b, f) = 0.04 
Pr(h b, Y) = 0.08 

Pr(e d) = 0.95 Pr(h , f) = 0.25 
Pr(e I 	= 0.85 Pr(h b, f) = 0.40 

Table 3-1: Table of distributions for model used to compare sample frequencies 

and kernels approaches. 

process are shown in Figure 3-2. Clearly the results are very similar; both meth-

ods score the same number of correct links at each stage. Note that some of 

the graphs have less than 7 links—this is because a number of the information 

measures were zero. Even though the Chow and Liu algorithm suggests that ties 

should be broken at random, doing so when the variable pairs in question have 

zero-valued information measures seems inappropriate. 

Both methods have only 3 correct links for 50 observations; in the test sample, 

variables A and B take the value 0 throughout, so it is not surprising that the 

information measures with those as one of the pair should all be zero. 

The only difference of any kind occurs for the 100 observation set. While 

the two methods give the same correct links, they disagree on the choice of one 

incorrect link. Sample frequencies chose C-F, whereas kernels chose C-H. It 

might be argued that C is "closer" to H in the original tree, and hence that 

the kernels method has performed slightly better, but this is debatable. The 

combination (A = a, G = ) did not not occur in the sample of size 100 (while all 

other pairwise combinations of A and G did), so it was hoped that while sample 
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(1) 
	

(2) 

\\• 	

'Ti i.___----- - 
(2) 

(c) 

(1) 
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(d) 

(1) 
	

(2) 

Figure 3-2: The results of structure learning using (1) sample frequencies and 

(2) kernels. The numbers of observations were (a) 50, (b) 100, (c) 1000 and (d) 

2000. The solid lines represent correct links, while the dotted lines are incorrect 

links. The graphs at (a) have less than 7 links shown; this is due to information 

measures of zero. 
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frequencies included the erroneous A—C link, the kernels approach might not. 

Figure 3-2 shows this not to be the case. 

Both methods returned exactly the same tree for the larger sample sizes. 

This is to be expected, since the estimated smoothing parameters tend to 1 as 

the sample size tends to infinity2. If the smoothing parameters are all equal to 

1, then the kernels method will be exactly equivalent to the sample frequencies 

method. 

In conclusion, the kernels method does not seem to have performed very much 

better than the sample frequencies method. The results shown here are very 

typical of other examples considered; the kernels approach never performed worse 

in practice, yet it didn't select correct links that the sample frequencies missed. 

Given the extra time and effort needed for the kernels (including estimating the 

smoothing parameters), my experiments seem to show that the method using 

sample frequencies is perfectly adequate. 

3.2.3 Bivariate Smoothing Parameters 

Since the Chow and Liu algorithm involves pairwise joint probabilities, it might 

be instructive to consider the use of bivariate smoothing parameters. The sin-

gle variable marginal probabilities will be estimated as before, but the pairwise 

probabilities will be estimated using smoothing parameters based upon both of 

the variables in question. 

Previously the joint probability of two variables X1  and X2  was estimated by  

2The expression to be maximised at (3.6) tends to zero as n tends to infinity for 

A 54 1. 

3Derived using similar calculations to (3.4). 
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Pr(Xi ,X2  I D, A,, 2) = 	{ i2mi  + (1 - 

+ (1 - j)2?-n3 + (I - )(1 - 2 )rn4 } 

where rn.1  is the number of observations in D where both the particular X1  and 

X2  match x 1  and x 2  respectively; rn 2  is the number where X1  matches and X2  

doesn't; rn 3  where X2  matches and X1  doesn't; and m4 where neither match. 

The smoothing parameters ) and A2  in this pairwise probability calculation 

can be replaced by )'12;  this seems reasonable since a pairwise Aik  can be estimated 

by 
max 

\jk fl Pr(x, Xk I D 	xij , Xk}, jk), 

and this parameter is estimated by the observations on the pair of variables for 

which we are trying to find the joint probabilities. 

3.2.4 Example 

Applying the Chow and Liu algorithm to the example of section 3.2.2 gives the 

MWSTs in Figure 3-3. 

It can he noted that the trees for 1000 and 2000 observations here are the 

same as those discovered before bivariate smoothing parameters were introduced. 

The tree produced for the 50 observation data set however is different from either 

the sample frequencies or univariate smoothing parameter trees. These methods 

(compared in section 3.2.2) each gave only (the same) five non-zero information 

measures, and hence only five links each. However, the use of bivariate smoothing 

parameters gave all but one of the information measures non-zero values 4. Hence 

'Unfortunately, since there is a link A-B, I(A, B) = 0; this is the case since A = ZT 

and B = b for the whole data set. 
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(1) 

(3) 	 (4) 

Figure 3-3: The results of structure learning using bivariate smoothing param-

eters for (1) 50, (2) 100, (3) 1000 and (4) 2000 observations. 

the MWST here, at (1) in Figure 3-3, has a full seven links. The two extra links 

are however incorrect links. 

The tree recovered for 100 observations is equivalent to the tree recovered by 

the sample frequencies method. There is nothing too significant in this; for other 

data sets, the bivariate smoothing parameter method more closely resembled the 

other kernel approach. 

In §3.2.2 it was noted that the extra effort required for the univariate smooth-

ing parameter kernel approach did not seem to be justified, since there was little 

or no evidence of an improvement in performance. For the bivariate smoothing 

parameter case, the same reasoning applies to an extent, especially if the sample 

size is not small. For a network with p variables, ip(p - 1) bivariate smoothing 

parameters must be estimated, along with the p univariate parameters. With 

large p, and large sample size rn, the parameters can take a considerable amount 

of time to estimate—and even then they are likely to all be very close to 1, and 

hence the method will be nearly equivalent to the sample frequencies approach. 

The only worthwhile point about the use of bivariate smoothing parameters 
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seems to be the fact that it recovers many more non-zero information measures 

than the other methods. This results in a tree with more links, even though 

they have tended (with other data sets as well) to he incorrect joins. Thus 

this apparent benefit of using bivariate smoothing parameters should be viewed 

somewhat sceptically. 

3.3 Continuous Variables 

The Chow and Liu algorithm can be altered slightly to apply to a set of continuous 

variables. The discrete kernel function of the last section can be replaced by a 

choice of continuous kernels, and this will enable a comparison of the MWST 

algorithm with a similar routine using not information measures, but sample 

correlation coefficients. 

The information measure for two continuous variables Y1  and Y2  is defined as 

00 03 

I(Y1,Y2 ) = fJf(y i,y2)log f( 
f(y )f(1,y2) 

) d 1d 2  >_ 0 	(3.7) 

where the function f is the p.d.f. of Y1  and Y2 . 

The algorithm to find the MWST t with optimal tree-dependent distribution 

ft for n continuous variables, analogous to the discrete version, is: 

Compute all possible branch weights and order them by magnitude. 

Assign the two branches with the largest weights to the tree t. 

Examine the next largest branch, and add it to the tree unless it forms a 

loop, in which case discard it and examine the next largest. 

Repeat step 3 until n - 1 branches have been selected; the spanning tree 

has now been constructed. 
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The calculation of information measures for continuous variables is more com-

plicated than for discrete variables, since the summation at (3.1) becomes a double 

integration, which in practice must he done numerically. 

At step 1 of the algorithm, the branch weights must be calculated using an 

estimate of f, based on a data set D with in observations. Let the conditional ker-

nel g(yi, Y2 I D, A, , \2)  be a kernel estimate of f(yi, Y2), and g(yj I D, )) estimates 

for f(yj). 

The function g is given the forms 

lm 
9(y1,y2 D, i , 2) = 

	

	 and 
in 

g(yJD,k) = 
	L(y j  I D, 	for i = 1, 2. 

For ease of reading, conditioning on D, A, and \2  will be dropped from function 

g. There are a number of choices for the kernel function L (Silverman, 1986); 

consider initially the Normal kernel, so that 

for k=1,2, ... ,n, i=1,2, 

where dk is the k-th observation of variable Y. The calculation of the expression 

in the log function at (3.7) can be written: 

9(Y1, Y2) - 

	

	— L(yi  I D, i ) L(y2  I D, 2 ) 

9(yl)g(y2) - {

L(y'D
1)} {L( 2 I  D, 2 ) 

M k=1 

mf  1 	(-1 	

2)  1 

	(_1 
M > 	ex 

	

x 	exp -( 
- 	k=1l1V 	

p(y 
 2A  2l  — dlk ) 	27r2  (Y2 	

)2) 

- m 1 	7—i 	\\m(  
{

kE Ti 
	exp((yl _ dlk )2 ) 	 exp 

I) k=1 I 	
(y2 - d2k )2) 

f m:L exp ( - (Yi - dik)2 - j(y2 - d2k ) 2
2A  2

) 

= m 
exp 	(yi - dlk )2) 	exp (Y2 - d2k ) 2) 

k=1 ( I 
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The denominator above can be rewritten as 

exp (Yi - dlk)2 - 	(y2 - d2k)2
Il i 	 2A 2 

 

mm 	1—i 	 1 
+ 	exp 	- d1)2 - 	(y2 - 

d2q )2

2A 2

).  

P=l q1 
pq 

Now let 

	

I/— i 	 1 
ak(yl, y2) = exp 	- dlk)2 - 	(y2 - d2k)2), k = 1,2,. .. , m, and 

	

2A1 	
2A2 

1 
apq(yj,y2) = exp 	- d1)2 - 	(y2 - d2q)2), p,q = 1,2,... ,m; p 

2A2

so that 

g(y1,y2) = 

g(y1)g(y2) 

772 Y,Uk(y1,y2) 

	

m 	 m m 

a(y1, y2) + E i: apq(yi, y2) 

	

k=1 	 p=l q1 
pq 

M m 

apq(y1,y2) 
p=1 q=1 	

I 
= rn[i± M 	 I 

	

ak(y1,y2) 	
I k=1 	

I 
Taking logs gives 

{ 	

m 

M m 

apq(y1,y2) I 

pl q=1 	 I 
9(Y1, Y2) - log 

rn_log '+ 	

pq 	 I log()() - 

	 ak(y1,y2) 	I 

k=1 	 J 
Putting this expression into the definition of the information measure (3.7), we 

get 

M m 

apq(y1,y2 ) II 
p=1 q=1 	 I 

I(1,Y2) = f foo 
9(Y1, Y2) 109 777 

	

- log 1 + M 	 dy1dy2 

	

ak(y1,y2) 	I 
k=1 	 Jj 
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M m 

apq(y1,y2) I 
pl q=1 

pq 

	

m 	 dyidy, 

ak(y1,y2) I 

	

k=1 	
J 

M m 

>apq(y1,y2) 

cc r 

	

m 	 ( 	P=1 q=1 

= log m— m 

	

k1 	
ak(y1,y2) 

	

2m7rAl2  fcc 	
ak(yl, Y2) 109 	+ 	 dyi dy, 

k=1 	
J 

since g is a density function, and 

9(Y1, Y2) = 	ak(y1,y2) x (2m i2)' 

This form of the information measure can aid calculation, but note the double 

integration required. This is computationally expensive, and has to be done for 

each combination of 2 from the n variables. In §3.3.1, this approach is compared 

with a similar method for structure learning which uses correlation coefficients. 

An alternative to the Normal kernel is Epanechnikov's quadratic kernel (see 

Silverman, 1986), defined thus: 

	

J(y j  I D,\) 	
3 {i1(Yi_dzk)}

2 	

for k=1,2,...,n, i=1,2, = 

when jyj - d k  I < 	and 0 otherwise. The information measure I(Y1 ,Y2) in 

this case is equal to the expression 
M rn 

apq(y1,y2 ) I 
9 	cc 	 [ 	p=1 q=1 	 I 

	

__________ 	 pq 

	

80 	

I 

	

m )1)2 	J-cc k=1 	
ak(yl, y2) 	I 

logm— 	 / / ak(y1,y2)log11+ m 	 dyidy2 

k=1 	
J 

where 

ak(yl,y2) = (1_(Y1 _d1k)2) x  (1_ 12  (Y2 _d2k)2) 	and 
5A1 	 5AI  

/ 	1 
apq(yl,y2) = 	1 - 	(y' - d1)2) X (i - 	(Y2 	

d2q)2). 

fcc 
= Iogm—K

J  9
(y1 ,y2) -109 1-f 

-cc 
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Figure 3-4: Tree for test of continuous variable structure learning. 

3.3.1 Example 

This section applies the information measures algorithm to an example for com-

parison and a similar method using correlation coefficients. The tree of Figure 

3-4 represents nine continuous variables, with conditional Gaussian distributions 

defined as follows: 

A -- N(10,4), 	B 	N(8, 9), 	C 	N(15,16), 

D 	N(7 + a - b/2,4), 	E—N(3+c,4), 	F'N(0,1), 

C 	N(3 - d+ e,4), 	HN(7 +f,16), 	I-N(2g—h,4). 

The trees recovered by the structure learning process are shown in Figure 3-5, 

for a data set of 100 simulations for each variable. The correlation algorithm is 

the same as that for information measures, but with product-moment correlation 

coefficients replacing the weights. 

As is seen at first glance, the algorithm using information measures performs 

very poorly indeed, while the correlation coefficients tree is perfect. Both infor- 

mation measures trees show the same wildly incorrect structure. The information 
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Figure 3-5: Trees recovered by the structure learning process on continuous 

data, using: (a) information measures with a Normal kernel function; (b) infor-

mation measures with a quadratic kernel; and (c) correlation coefficients. 

measures programs also take vastly more time to run than the correlation pro-

grams, due to the double integrations of kernel functions involved. Hence I would 

certainly recommend the correlation approach over information measures. 
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3.4 Recovering Polytrees 

Once the structure of the (skeleton) tree has been ascertained, the next step is to 

attempt to recover the directions of arrows on the edges, i.e. to form a polytree, 

by examining the properties of Pr(x). 

If the graphical structure of the true underlying model can be represented by 

a polytree, then Pr(x) has the form 

n 

Pr(x) = fi Pr(xi  ixpal (i), Xpa2 (i),. . . X pa (j)), 	 (3.8) 
i=1 

where the a Pak  (i), for k = 1, 2,. .. , r, are the parents of xi  in the polytree. The 

variable xi  may, of course, have no parents. Also, the parents of each variable are 

mutually independent, i.e. 

r 

Pr (Xi I Xpa1 (i), X p (),. . . Xpa(i)) = fl Pr(x pa3(i) ) 	 for all i. 
k=1 

The following theorem, adapted from Pearl and Dechter (1989), is a consequence 

of this: 

Theorem 2 If the conditional independencies of a model can be represented by 

a polytree, then the MWST algorithm of Chow and Liu (1968) unambiguously 

recovers the skeleton of the polytree. 

Unfortunately, it is not always possible to recover a single unique polytree 

from Pr(x). Consider three nodes, X, Y and Z, with tree structure 

[0 0 
which give rise to the following three possible combinations of arrows: 

X — Y --- Z, or X*—Y4--Z, 

X4—Y--Z, 
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3. X—Y4---Z. 

Type 1 and type 2 are indistinguishable in terms of independence structure, but 

type 3 can he identified since X and Z are marginally independent. Hence it 

is possible to only partially identify the directions of arrows on a skeleton tree. 

Note that a positive test for independence of X and Z implies that type 3 should 

supply the directions of the arrows. 

The polytree recovery algorithm originated in Rebane and Pearl (1987), and 

consists of these steps: 

Generate a MWST using the procedure in §3.2. 

Search the internal nodes (i.e. nodes with more than one neighbour) of 

the skeleton, beginning with the outermost layer and working inward, until 

a multi-parent node (such as Y in type 3 above) is found by a test for 

independence. 

When a multi-parent node is found, determine the direction of arrows on 

its edges by the independence test. 

For each node having at least one incoming arrow, find the directions of its 

remaining edges again using the independence test. 

Repeat steps 2 to 4 until no further arrows can be added to the edges. 

Any edges that remain undirected will require analysis beyond the scope of 

the data itself. 

From Pr(x) compute the conditional probabilities of equation (3.8). 

Kuilback (1959) gives a test for independence of two categorical variables with 

m observations using an information measure. For variables X (with r categories) 

and Z (with c categories), we can test the two hypotheses 
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Ho : Two variables X and Z are pairwise independent, and 

H1 : Two variables X and Z are not pairwise independent, 

with (where the s jj  are the cell counts, i = 1)21. . . , r, j = 1,2,. .. , c) 

21(H0, H1 ) = 2slog 
(,-ns,, 	 (3.9) 

z=1 j=1 

which has the x2  distribution with (r - 1)(c - 1) degrees of freedom. Replacing 

the cell counts at (3.9) with probabilities gives 

21(H0 , H1 ) 	= 	2 	mpjj  log 
/ rnXn2pj 

i=1 j=1 

= 	2n2plog ( 
	

Pij  
i=1 j=1 

= 	277z1(X,Z). 

Pearl (1988) states that "probabilistic analysis is indeed sensitive only to co-

variations, so it can never distinguish genuine causal dependencies from spurious 

correlations". While Chow and Liu's MWST algorithm will find a best approx-

imation to Pr(x), no such guarantee applies for polytrees. For these reasons, 

automatic structure learning should not be relied upon on its own, but should 

serve as an aid to expert opinion. 

3.4.1 Example 

The polytree recovery mechanism is now applied to the test example of section 

3.2.2. The x2  95% point for 1 degree of freedom is 3.841, and this is used for 

every test (3.9). Note that I am not considering the implications of performing 

multiple hypothesis tests for this very exploratory study. 

The x2  statistics for any relevant pairs of nodes are shown in Table 3-2; where 

a pair of variables has a statistic greater than 3.841, they are marked with a * for 

clarity. The resulting attempts at polytrees appear in Figure 3-6. Some edges are 
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shown with two conflicting arrows; this is because different tests between pairs of 

variables can contradict each other when applying the algorithm. 

As can be seen from Figure 3-6, the polytree recovery process seems to require 

a fairly large number of observations. By the 2000 observation data set, the 

process has correctly placed arrows on three arcs of the tree: A -p B; C -i B; 

and D -p E. The remaining edges have conflicting opposite arrows—this may 

due, in part at least, to the erroneous link H-C included in the MWST. 

Again, there seems to be little, if any, difference between the sample frequen-

cies and kernel methods. 

Clearly then, while the structure learning process can aid the discovery of 

the directions of arrows within a tree, the final polytree will probably need to be 

decided upon by "experts". Pearl (1988) refers to polytrees as causal polytrees, 

and suggests that a consideration of the nature of the causality of the events 

behind the variables is necessary in order to fully understand and define a polytree 

and its related distributions. 
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Sample Frequencies Kernels 

Observations Nodes x2  Nodes x2  
50 C D 0.2740 C D 0.1643 

C C 0.7180 C C 0.4401 
C F 0.6617 C F 0.3438 
D F 1.0171 D F 1.3381 
D C 0.2740 D C 0.1643 
F C * 5.9809 F C 2.7436 
E H 0.0198 E H 0.0107 

100 C E 0.3291 C D 0.4477 
E H 0.0874 C F 1.0550 
C H 1.4743 D F 1.1138 
D F 1.7700 E H 0.0749 
B F 0.1856 B H 0.4257 
A C 0.2207 A C 0.1144 
B C 0.6499 B C 0.4499 

1000 D F * 5.1142 D F * 4.8451 
D C 0.1761 D G 0.1714 
F G 1.4743 F C 1.4156 
C E 0.0042 C E 0.0040 
B G 0.7463 B C 0.7181 
A C * 5.2579 A C * 4.9008 
A H * 6.3594 A H * 5.8552 
C H 3.2672 C H 2.9882 

2000 D F 1.0828 D F 1.0584 
D C 1.5504 D C 1.5260 
F C * 5.2290 F C * 5.1302 
E H 0.0113 E H 0.0110 
B C 0.1133 B C 0.1112 
A H * 4.9652 A H * 4.7839 
C H 2.3826 C H 2.2536 
A C 0.0206 A C 0.0197 

Table 3-2: x2  statistics for polvtree recovery example. 
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(a) 

(1) 
	

(2) 

(b) 

(2) 

(c) 

(1) 
	

(2) 

(d) 

(1) 
	

(2) 

Figure 3-6: Polytrees recovered by (1) sample frequencies and (2) kernels for 

(a) 50, (b) 100, (c) 1000, and (d) 2000 observations. 
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Figure 3-7: An over-simplistic method could add a bogus link between X and 

Y. 

3.5 Recovering General Structure 

The previous sections of this chapter showed how a tree structure can be drawn 

from a set of data, given that the data has a tree-dependent distribution. 

Recovering a general graph structure from data is more complicated. Note 

that an apparently straightforward method would be to produce the same list 

of pairwise information measures as for trees, and use some sort of significance 

test (such as that at (3.9)) to decide whether or not to include an edge. There 

would be no checking for undirected loops; just directed loops would be excluded. 

This approach is too simplistic—consider the dependency structure of Figure 3-7, 

for example. Under certain circumstances (for instance, if X and Y have very 

similar conditional distributions given U), the pairwise information measures can 

produce many spurious edges based on mere correlations, and in this case X and 

Y might be joined. The tree recovery algorithm will most likely reject the X—Y 

link, having already joined X—U and Y—U. 

Pearl (personal communication) proposes a different method. Essentially the 

idea is to determine for each pair of variables X and Y a subset Sxy that "shields" 

X from Y. If no such subset exists, then an edge is added between X and Y. 

An arrow points from X to Y if there exists a variable Z linked to Y but not X, 

such that it is not true to say that X is independent of Z given Sy U Y—see 

Pearl (1988), §8.2.3, for motivation. 
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Pearl recommends identifying for each pair X and Y the set of four or less vari-

ables SX1, that gives the lowest mutual information measure Imin (X,Y I Sxy). 

If 'mill is below some threshold, do not connect X and Y, but if not, do connect 

them. 

If the number of variables is not too large however, and the number of obser-

vations in the data set is large enough by comparison, then there seems in theory 

at least no reason not to look beyond four variables for S'y. Clearly however, 

there may be problems with time of computation for large models. 

A possible algorithm for recovering general graph structure is thus: 

I. Choose a pair of variables X and Y. 

Compute I(X, Y I Sxy) for all possible subsets SXy of variables other than 

X or Y, and determine Imin(X, Y I Sxy). 

Test 2mIj against the x 2 distribution with (r - 1)(c - 1) degrees of 

freedom, where r and c are the number of values that X and Y can take 

respectively. If 2rnlinin is above the x 2 value (at an appropriate level) then 

draw an edge between X and Y. 

Repeat steps 1 to 3 for all pairs of variables. 

From Pearl (1988), it can be seen that 

I(X, Y 	 Pr(x,yIs) 
Sxy) = > Pr(x, y, s) 

log Pr(x s) Pr(y X,Y,Sxy 

Thus now, unlike the MWST algorithm, we have more than second-order calcu-

lations to carry out. Indeed for a data set with a large number of variables, we 

will definitely need a limit on the size of Sxy. The following example has five 

variables, so that S~yy has a natural size limit of three in any case. 
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(a' 

(c 

Figure 3-8: Test example and results for general structure recovery: (a) is 

the original structure of the example from Pearl (1988); the remainder are the 

recovered structures for (b) 50, (c) 100, and (d) 1000 observations. 

3.5.1 Example 

To test the general structure recovery algorithm, observations were generated for 

Pearl's metastatic cancer example (Pearl, 1988, and this thesis, section 1.4.2). 

Figure 3-8 shows the original influence diagram of the example and the recovered 

graphs from data sets of size 50, 100 and 1000. Table 3-3 shows the relevant x2  
statistics for each pair of variables for each data set; once again significant results 

have been marked with an asterisk. 

The probabilities needed for the calculations in the above algorithm were 

calculated using sample frequencies, given the comments in section 3.2. 

The 95% point of the x2  distribution is 3.841, and so if the information mea-

sure is greater than this value for a particular pair of variables, then an edge is 

added between them. The general structure algorithm seems to work well; the 

data sets of size 50 and 100 give rise to structures that are only one edge away 
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Variables x2  statistic for 

50 ohsns 	100 obSnS 	1000 obsns 

A 	B * 10.5297 * 6.6572 * 123.2624 
A 	C * 7.3858 * 11.7502 * 19.2709 
A 	D 1.0357 0.5353 2.7400 
A 	E 0.1186 0.0001 0.1404 
B 	C 0.5289 0.7463 1.5271 
B 	D * 21.9315 * 39.3421 * 397.7299 
B 	E 1.5464 0.8062 1.0268 
C 	D 2.2100 * 4.6584 * 34.1915 
C 	E * 5.4144 * 5.3281 * 8.2746 
D 	E 0.6973 2.2889 0.1976 

Table 3-3: x2  statistics for the pairs of variables with the general structure 

recovery example. 

from being perfect, while the graph recovered from the 1000 observation set is 

entirely correct. 

3.6 Conclusions 

This chapter has studied the process of recovering structure from data. 

In section 3.2, the use of kernel probability estimates in place of sample fre-

quencies within the Chow and Liu algorithm did not prove too successful, even 

when bivariate smoothing parameters were considered. The kernel methods also 

consumed a large amount of computing time, relative to the sample frequencies; 

hence the latter method seems preferable. 

Similar comments can be made for the continuous kernels of section 3.3. A 

far simpler tree recovery program which calculated product-moment correlation 

coefficients was very much faster, and performed very much better. 
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Recovering directions for the edges was shown to be a rather more difficult 

task in section 3.4. Only for the larger sample sizes did the algorithm begin to 

produce "successful" results. 

Finally, the general structure recovery algorithm described in section 3.5 per-

formed very well on the metastatic cancer example. For relatively few observa-

tions, the structure recovered was nearly fully correct. 



Chapter 4 

Stochastic Simulation in Standard 

Mixed Graphical Models 

4.1 Introduction 

This purpose of this chapter is to extend the stochastic simulation scheme of 

Pearl (1988) to models with both discrete and continuous variables. 

Pearl's stochastic simulation procedure is an alternative to the exact compu-

tation methods of Chapter 1 for models containing only discrete variables. Given 

a graphical model, with defined directed acyclic graph and conditional probability 

tables, the method uses random experiments to draw inferences on the marginal 

probability distributions of discrete variables. 

The current chapter extends this discrete scheme to include continuous vari-

ables within the model, and these are given conditional Gaussian distributions—

as with the example from Lauritzen (1992) described in section 1.5. Such an ex-

tended model is termed a standard model. Chapter 5 will deal with non-Gaussian 

distributions and non-standard models. 

The computational scheme of Lauritzen (1992) enables calculation of marginal 

probabilities, means and variances of the variables. Normand (1993) commented 

118 
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that only propagating means and variances for mixed models is unsatisfactory. 

Unfortunately, exact computation of the marginal density functions of continuous 

variables is generally forbiddingly complex. 

The stochastic simulation scheme however allows us to obtain estimates of 

the marginal densities from simulated values. Unlike the exact methods, strong 

triangulation of the graph is not necessary. The computations themselves (for the 

standard model) are straightforward, and consideration of each node in a network 

involves only its neighbours and its childrens' parents. Kernel methods can then 

be applied to obtain estimates of the probability density functions. 

Section 4.2 describes the stochastic simulation routine of Pearl (1988). The 

routine in fact uses a Gibbs sampler, but this is not mentioned by Pearl. The 

corresponding procedure for mixed (standard) models follows in section 4.3. 

For some models, analysis by stochastic simulation will require the process to 

be split into separate runs, called chains here. Section 4.4 discusses this matter. 

Section 4.5 applies the methods of §4.3 and §4.4 to the waste incinerator example 

from Lauritzen (1992). 

Mixed models as in Lauritzen (1992) do not allow discrete variables to have 

continuous variables as parents in the influence diagram. Finally in this chapter, 

section 4.6 discusses a possible method of including such cases in the stochastic 

simulation procedure. 

Neither this nor Chapter 5 will consider in detail stopping procedures and 

convergence for the simulation. These topics are currently the subject of much 

debate. For example, see: Ritter and Tanner (1992); Smith and Roberts (1993), 

Besag and Green (1993) and discussion; Gelman and Rubin (1992), Geyer (1992) 

and comments/rejoinders. 
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4.2 Discrete Models 

Pearl (1988) shows how an influence diagram and associated probabilities repre-

senting a graphical model with (only) discrete variables can be used to generate 

random samples of combinations of events. These samples are governed by the 

structure of the diagram and by the conditional probabilities given. The marginal 

probability of each event can then estimated by the percentage of samples in which 

the event takes each value. The discrete variables discussed from this point will 

be binary, but extensions to variables with greater than two categories should he 

obvious. 

Henrion (1986) introduced a scheme, called logic sampling, where random 

values are assigned to the variables by passing through the influence diagram in 

a "top-down" fashion. The procedure first assigns values to variables represented 

by root nodes—that is, nodes with no parents. A value is generated for a non-root 

variable once values have been assigned to all its parents. Once new values have 

been generated for all of the variables, the procedure goes back to the "top" and 

starts again. 

Although this scheme operates in a pleasing, logical way through the net-

work, there is no way to account for variables that have already had their values 

observed. If the simulated value for an observed variable does not match the 

observed value, then that simulation run must be discarded. Hence this method 

can prove very inefficient. 

A better approach therefore would be to clamp the appropriate variables to 

their observed values, and to conduct a simulation on the remaining variables. 

This is how Pearl's stochastic simulation scheme works. 

Assume we have a graph containing rn nodes representing in (binary) discrete 

variables. For each variable S, i = 1,2,... ,rn, we wish to calculate Pr(sRs1), 
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where Rsi  is a realisation of the set of all the variables bar S. We can say 

Pr(sRs) = 
Pr(s,Rs) - Pr(sj ,s2,. 

- 
Pr(Rs) 	Pr(Rs) 

Since Pr(Rs)  is independent of the value of S, we can write 

Pr(sRs ) = &Pr(si,s2,. ..,Sm) 

= flPr(sdUs) 

-y 
= aPr(siUs:) [f Pr(eUc,)  H Pr(gkUG) 

j=1 	 k=1 

where c is a normalising constant, Ux is the set of variables whose corresponding 

nodes are parents of a node X, Cj  is one of 0 variables whose corresponding nodes 

are children of the node for S, and Gk is one of -y variables whose corresponding 

nodes are not children of the Si node, nor the Si node itself. Note that (for 

example) the dependence of qi  on i has been suppressed from the notation. 

Clearly H Pr(gk UG ) is also independent of the value of S. Finally, as can 

be seen as Theorem 1 in Pearl (1988), 

Pr(sRsJ = cPr(sUs) II Pr(cUc,). 	 (4.1) 

We can then calculate Pr(sRs ) by solving for c. 

Initially, we need to assign values to unobserved variables. The choice of 

values here can be arbitrary and will only affect the rate of convergence. 

Stochastic simulation then proceeds according to the following algorithm, 

adapted from Pearl (1987): 

Compute Pr(sRsj for an S. 

Generate a random number r from a Uniform distribution between 0 and 

1. 

Compare r with Pr(sRsj. If r < Pr(sRs1 ) then let Si = 1; else let 

Si = 0. 
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Record the state of S. 

Repeat steps 1-4 for each Si  in the model. Note that the order of the Si 's 

is not important. This has now completed a simulation run. 

Repeat steps 1-5 for a specified number of simulation runs. 

Use the recorded values to estimate the marginal probabilities of the vari-

ables S. 

There is an alternative method of calculating the estimates of marginal prob-

abilities; see Gelfand and Smith (1990). Rather than merely averaging the sim-

ulated values, we can take the mean of the conditional probabilities Pr(sRs). 

This latter method should give slightly faster convergence. 

As stated earlier, this is essentially Gibbs sampling, with Pr(sRs) as the 

Gibbs sampler. For a formal definition of Gibbs sampling, due originally to 

Geman and Geman (1984), see section 5.2. 

4.3 Standard Models 

This section defines the standard mixed graphical model and describes a stochas-

tic simulation for such a model. 

For a standard mixed graphical model: the distribution for a discrete variable 

(for now assuming its node has parental nodes' that are all representing discrete 

'Such parents will be referred to as discrete parents; similarly if (for example) a 

variable Z is referred to as having "parents" X and Y then this will mean that the 

node representing Z has the nodes representing X and Y as parents in the influence 

diagram; X and Y will be termed parent variables. A similar comment can be made 

regarding "children". 
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variables) is defined by a probability (or a set of prohablities for a discrete variate 

with more than two states) conditional on the values taken by its parent variables. 

A continuous variable has a different conditional Gaussian distribution for each 

combination of values of any discrete parent variables, where the variance is fixed 

for each combination and the mean is a linear function of the values of any 

continuous parent variables2. 

Again assume we have a graph with m nodes representing the variables {S}, 

i = 1,... ,m. Variables can now be either discrete or continuous. When consid-

ering each Si in turn, there are now two possibilities: if Si is discrete we need 

Pr(sRsj, and if Si is continuous we need the conditional probability density 

function f(si lRsj. 

This density can be written 

f(s, Rs) 

f(sRs) = f(Rsj = 
P si, 8 2, . . . 3m) 

f(R82 ) 

Since our directed graph is acyclic, we can use the conditional independence 

assumptions inherent in the graphical structure to order the nodes, and hence 

the underlying variables, such that 

M 

f( 31,82, ..., Sm) = JJf(3dUSi), 
1=1 

where Ux is the set of parents of X. This is a consequence of the recursive 

factorisation identity (Whittaker, 1990). 

This enables the joint density to be written as 

-y 

f(s1,s2,. . .,Sm) = f (Si Usj IT f(cUc)  H f(gkUG), 
j=1 	k=1 

where again Cj  is one of /3 child variables of S, and Gk is one of y  variables which 

are not child variables of S, nor the variable Si itself. 

2Models which include non-Gaussian distributions and non-linear mean functions 

are studied in Chapter 5. 
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Note that f(Rsj will have a similar form, but without f(sUsj. Note also 

that the random variables C1, . . . , G^, are conditionally independent of Si  because 

of the assumptions in the construction of the graph, so that f(gkI(Ic) terms will 

he independent of S, and can be cancelled, giving 

f(sRs) = 

13 

f (Si Us) H f(cUc3) 
.i=1 

13 

J f(sUs) II f(cUc,)ds 
j=1 

(4.2) 

Expanding the integral in the expression at (4.2), we get: 

13 

	

f f(sUs) Hf(cRbc3 )ds i 	 (4.3) 
j=1 

2 

exp 
{ — 	

H 

	

1 / 	— 	
2' 13 	1 	f 1 (sc — hG3) 

} 

ds2, 
) 	

exp1— \ 

where o i  is the standard deviation of S, and may depend on values taken by 

discrete parent variables but is assumed to be independent of values taken by 

continuous parent variables; and pi  is the mean function of S. The values sc,, I-ic3  

and ac, are the value, the mean function and the standard deviation respectively 

of the j-th child variable of Si (j = 1, 2,. .. , 3). 

Calculation of this integral is complicated by the fact that Siis part of each 

of the mean functions ,tic,, i.e. 

I-Ic3  = ucs + vc, 	 (4.4) 

where uC3  is the coefficient of Si in the mean function of the child variable C3  

of S, and vC3  is the remainder of the mean function, composed of terms not 

involving S. 

Putting (4.4) into (4.3) and integrating, we get 
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I f(sIUs)0 flf(cUc3 )ds = 

1 	1 	1 	

(1U 

C3  

+>-) 
(27r/2 i 1 ac, 	 §=l aC3  

{ 1 1(12)-i 
(; + 	

u 3  (so, — 
VC') 

	

2 	/ 2 	(so3  — v3 )2 \ 1 
exp —I —+ 

2  L a 	j 
	2 	 2

=i a03 	a 	ji 	a3 	
) — 

	+ 	
Cr ) I ? 

J=1 	3 

Similarly, the numerator on the right hand side of (4.2) is equal to 

3 

f(sIUs)flf(cIUc3) = 
31 

	

1 	 (S,-[L'\2 	

a3 

	

ex 	
2 	a ) 	

p 

 {- ( 	
c• )

2 

} } 

	
exp 

1 803  /iO3  
x 

1 	1 	1 

(2ir) 3+1 	17i 	ac 

-1 	 2 

	

f 1 

[2 	
(FW2- 

u 	+ ) 	(±uc3ci_ 
VC,  

)] 

} 

exp 1— [ —+—- s— 
a 03 	 a03 	a? j=1 01  Ci 

2 	'2 (so3  — v03 )2  

1' 1( 
1 	2)_1( 

+c sc3 _vc3 ) — 	

a 	
)]} 

exp < — I —b-  + 	.   
2 
 [ 

a 	31 

 

	

Cr 	 3 	 i 	j=i 	3 

Putting these results into (4.2), the Gibbs sampler f(sR8 ) becomes 

1 
f(sRs

( La +)x 

j  
	

t U4  \ja 	j=ioo7 

1 	 2 

f 1 H1 	
(\0,12 

1 + Ci ). 
(;+ 	

c38c3_vc3)] 

} 

exp 	[ -- + 	T — 
	7 j1 	 i 3=1 1 a0 . 

	

— 	3 3 

which is a Gaussian probability density function. 

This leads to the following result (which is a particular case of a general result 

on conditional distributions for a multivariate Normal distribution), which first 

appeared in Brewer et al. (1992): 
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Result 1 The distribution of each continuous variable Si in a standard mixed 

graphical association model, conditional on the state of all other variables, is 

Normal with mean 

( ?LL 	 uc (sc, - vc) 

i 	aCj 
(+ 	

), 

- 
§=l 	 j=1 2 	 Cj 

and variance 

/i 

j=lcxc3 / 

where 0 is the number of child variables of S, 5c,  is the state of child variable 

C3  of S, pi  is the mean function of S, /-c, = ucs+vc is the mean function of 

child variable 	of S, o is the variance of S, and a is the variance of child 

variable Cj  of Si . 

Note that for a continuous variable with no discrete parents, the variance in 

Result 1 will be constant. For a continuous variable with p discrete parents, there 

could he up to 2" different values of the variance, because there will be (up to) 

2" different conditional Gaussian distributions (assuming discrete variables are 

binary). This fact can be used to reduce computation time. 

The expression for Pr(s R5 ) (Si discrete) will change with the introduction 

of continuous variables. Adapting (4.1) to allow Si to have continuous child 

variables, the equivalent version of (4.2), where Si has 0 discrete child variables 

C3  and 6 continuous child variables Ck,  is 

8 

Pr(sUs) H Pr(cUc,)  fl f(cjcUc,c ) 

Pr(sRs ) = 
	 j=1 	 k=1 

f Pr(sjUsjH Pr(cIUc3 ) rj f(cU) 

Since the denominator here is independent of S, it can be replaced with a constant 

to give the following result: 

Result 2 The probability distribution of each discrete variable Si in a standard 

mixed graphical association model, conditional on the state of all other variables, 
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zs 
6 

Pr(sRs) =a Pr(sUs) HPr(cUc,) H f(ckUck ) 	 (4.5) 
j=1 	 k=1 

where oz is a normalising constant, R8  is a realisation of the set of all vari-

ables except S, Usi  is the set of parent variables of S; there are 3 discrete child 

variables Cj  of Si and 6 continuous child variables Ck of S. 

Thus for a mixed standard model, the stochastic simulation algorithm be-

comes: 

Choose a variable S; if Si  is discrete, then calculate Pr(sRsJ. If Si  is 

continuous, calculate the mean and variance of the Gaussian distribution 

for SiR5 , as per Result 1. 

If Si is discrete, generate a random number r from a Uniform distribution 

between 0 and 1. Compare r with Pr(sRs). If r < Pr(sRs) then let 

Si = 1; else let Si = 0. 

If Si is continuous, generate a value from the appropriate Gaussian distri-

bution for the continuous S. 

Record the state of Si. 

Repeat steps 1-4 for each Si in the model. 

Repeat steps 1-5 for a specified number of simulation runs. 

Use the recorded values to estimate the marginal probabilities of discrete S, 

and the marginal means and variances of continuous S.  Also, if required, 

use kernel function estimation to obtain estimates of the probability density 

functions of the continuous variables from the simulated values. 

An example using (a version of) this algorithm will appear in section 4.5. 
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4.3.1 Observed Variables 

The exact computational algorithms described in Chapter 1 deal with observed 

values by propagating the effect of the observation through the structure of the 

network. The stochastic simulation procedure however requires a different ap-

proach: 

Discrete variable observed : If a discrete variable X is observed as having 

the value X = x (where x = 0 or x = 1) then Pr(x Ux)  will be set equal 

to 1, and Pr(, I Ux)  will be set to 0. 

Continuous variable observed : If a continuous variable Y is observed as 

taking the value y, then f( y Uy) becomes merely a function of the values 

of the parents of Y. 

Variables X and Y would themselves be omitted in the simulation runs; 

Pr (X I U) and f ( y I Uy) would be used when generating a value for a parent 

variable of X and Y respectively. The simulation otherwise proceeds as normal, 

and the correct results are obtained. 

4.4 Chains 

It has been well documented in recent Gibbs sampling literature that it can 

be extremely important, especially when examining a new problem, to perform 

separate simulation runs from several starting points—see Gelman and Rubin 

(1992), for example. 

This section will illustrate, by means of two very simple examples, that inves 

tigative use of multiple simulation runs is relevant to the stochastic simulation 

procedures, and will provide an adapted version of the algorithm of section 4.3 

for multiple runs. These simulations runs are referred to as chains here. 
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Figure 4-1: Influence diagram for probabilities of 0 or 1 example. 

Pr(p) = 0.2 	 Pr(q) = 0.4 

Pr(ep,q) = 1 	Pr(ep,) = 1 	Pr(e5,q) = 1 	Pr(e5,) 	0 

Table 4-1: Conditional probabilities for probabilities of 0 or 1 example. 

4.4.1 Conditional Probabilities Defined as 0 or 1 

In a model where some of the defined conditional probabilities take the values 0 

or 1, a single run of the simulation can get "stuck"; that is, certain combinations 

of values of variables, while possible in themselves, may be impossible to reach 

from other combinations via the simulation procedure. To see this, here is a simple 

example. 

Figure 4-1 shows 3 nodes representing the variables E, P and Q, and the 

associated probabilities are in Table 4-1. The variables take binary values denoted 

e and , for example. 	Note that combinations (q,p,), 	 and 

(, j5, e) are logically impossible in the simulation process. For example, if nodes 

Q and P are in states q and p respectively, then E will be in state e since 

Pr(ep,q) = 1. 

Suppose 	is chosen initially. Then from equation (4.1) it is clear that 

the state of each node will never change during simulation (since Pr(e,) = 

0). Similarly, if one of (q,p, e), (q,, e) and (,p,  e) is chosen, the system can 

move between them but it will never reach 	Thus the system is in two 

isolated chains of combinations of states; if the nodes have states in a combination 
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Figure 4-2: Simple two-node graph to show need for chains in a mixed model. 

belonging to one chain, then they will never be in a combination belonging to the 

other chain. 

A single run of the simulation therefore may not produce the correct marginal 

probabilities. 

4.4.2 Values of Conditional Densities Close to 0 

To see that a similar problem can occur with mixed graphical models, con-

sider the following example, with influence diagram in Figure 4-2. The con- 

ditional distributions are defined by Pr(a) = 0.8; B I a 	N(-1, 0.0064); and 

B I zi 	N(0.5,0.0025). To conduct stochastic simulation on this artificial net- 

work, suppose initially we set A = a and B = -1.1. To generate a value for node 

A, we need the conditional probabilities given by 

Pr(alb) = a Pr(a)f(b a) 

and 

Pr(-ia b) = a Pr(a)f(b -ia) 

The problem is that 

- 0.5\ 
f(b -la) = 	

/0.0o25 	

= (-1. 6 

 0.05) = 

which is effectively zero3. Since f(b I a) = 0.054, node A will definitely take state 

a in the first simulation run. Obtaining an (effectively) non-zero value for f(b I -'a) 

is an extremely unlikely event. When generating a value for B, the same problem 

31n fact, 0(-32) = e 512//, which is effectively zero on most computers. 
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exists; the marginal distribution for B is a mixture of two Gaussian distributions, 

and these are disconnected, in that the simulation cannot move from one mode 

to the other. The simulation will remain stuck at A = a. 

4.4.3 Multiple Chains 

Multiple chains can be used to solve the problem of a locked system. The variables 

must be split into two sets: D, the set of discrete variables; and C, the set of 

continuous variables. A chain Hi  is defined for each member of the state space of 

D. The stochastic simulation procedure is then applied to the variables in C for 

each chain, with the results weighted by the probability of each chain. In order 

to obtain a true set of observations of the model, we can simply run different 

numbers of simulations for each chain, in proportion to Pr(H.1 ). 

An algorithm for the multiple chains is as follows: 

Identify the chains H2  by considering the state space of D. 

Choose a particular chain. 

Apply the stochastic simulation for mixed models procedure to the contin-

uous variables, C. 

Record the means and variances for the chain. 

Repeat steps 2-4 until all the chains have been processed. 

Calculate the marginal means and variances, using the Pr(H2 ) if necessary. 

Note that this method requires calculation of the marginal probabilities of the 

discrete variables, but this is usually a simple matter. 
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4.4.4 Observed Variables with Multiple Chains 

If a model requires use of the multiple chain algorithm, then dealing with observed 

variables poses a slight problem. The probabilities of the chains will change, and 

there is no way to calculate these correctly by the stochastic simulation method. 

In this case, the exact propagation procedure of Lauritzen (1992) must be 

used in order to obtain updated information on the variables in D, from which 

the new Pr(H) can he calculated. The algorithm of §4.4.3 can then be applied 

to C. 

Even though an exact computational procedure must be used here, the simu-

lation process still has the benefit of providing observations from which estimates 

of the marginal densities can be obtained. 

4.5 Example 

This section will apply stochastic simulation to the example from Lauritzen 

(1992). Since this example has been presented already in Chapter 1 of this thesis, 

only a brief summary of the model is given here, for ease of reading. 

The influence diagram is shown in Figure 4-3, and the variables are defined 

thus: 

Burning regime (Discrete) Pr(B = b) = 0.85. 

Filter state (Discrete) Pr(F = f) = 0.95. 

Type of waste (Discrete) Pr(W = w) = 2/7. 

Filter efficiency (Continuous) 

N(-3.2,0.00002) 
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= N(-0.5,0.0001) 

= N(-3.9,0.00002) 

= N(-0.4,0.0001). 

Emission of dust (Continuous) 

£(D b,w,c) 

£(D b,IiJ,e) 

£(Db,w,e) 

£(D 

Concentration of CO2  (Continuous) 

b) = N(-2, 0.1) 

= 	N(6.5 + e, 0.03) 

= 	N(6.0 + e, 0.04) 

= N(7.5 + e,0.1) 

= N(7.0+e,0.1). 

and 	£(CIL) =N(-1,0.3). 

Penetrability of light (Continuous) £(L I d) = N(3 - d/2,0.25). 

Metal in waste (Continuous) 

w) = N(0.5, 0.01) 	and 	(M ) = N(-0.5,0.005). 

Emission of metal (Continuous) £(M0  I d, m) = N(d + rn, 0.002). 

Analysis of this example by stochastic simulation will fail unless the multiple 

chains algorithm is used. To see this, consider a subset of the model—variables 

F, J4/  and E. Assume initial values for simulation F = f, W = 12J and E = —3.2. 

Then 

- (-3.9)\ 
Pr(W = iii) = (2/7) x 	

0.00002 	
) = (2/7) x 

and hence effectively zero. It should be clear then that W will never be set to TIT 

from the given starting points; similarly F will never reach f. Hence the system 

is locked, and multiple chains are needed. 

This example contains three binary variables, and hence the state space of D 

has 2 = 8 elements. A separate chain of the simulation will be run for each. 
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Filter state 
F 

Burning regime 
B 

Type of waste 
W 

CO2 in emission 
C 

Filter efficiency 
E 	- 

Metal in waste 
M 

Light peiielilihd1i 11, 	̀11~ajjg 	 Emission of metal Emission of dust 

Figure 4-3: Lauritzen 's waste incinerator example. 

Chains States of Variables Pr(Ht ) 

H1 b f w 646/2800 

H2 b 	T 1615/2800 

113 b  34/2800 

H4 b 	T 85/2800 

H5 L f  114/2800 

H6 bf13J 285/2800 

H7 bfw 6/2800 

H8 bfl35 15/2800 

Table 4-2: Probabilities of chains for the Lauritzen (1992) example. 
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Node 2800 

Simulation Runs 

5600 	11200 22400 

Correct 

Values 

It a2  t a2  a2  a2  P a2  

E -3.254 0.503 -3.254 0.502 -3.254 0.502 -3.254 0.503 -3.25 0.50 
D 3.042 0.629 3.079 0.588 3.043 0.599 3.040 0.596 3.04 0.59 
C -1.850 0.261 -1.850 0.249 -1.850 0.254 -1.850 0.258 -1.85 0.26 
L 1.479 0.424 1.460 0.387 1.479 0.399 1.480 0.404 1.48 0.40 

M -0.212 0.214 -0.210 0.213 -0.211 0.211 -0.214 0.211 -0.21 0.21 
M0  2.830 0.789 2.870 0.716 2.832 0.740 2.826 0.745 2.83 0.74 

Table 4-3: Results of simulation for the Lauritzen (1992) example. 

The elements of D and the probabilities of the respective chains Hi  are shown in 

Table 4-2. Note the common denominator of 2800 with the Pr(H); this means 

that if the overall number of simulation runs is a multiple of 2800, then the chains 

can be run with numbers in proportion to the Pr(H), and hence the simulated 

values will represent a true set of observations from the model. 

The results of the simulation are shown in Table 4-3. The 22400 simulation 

takes around a minute with a C program using NAG C subroutines on a Sequent 

Symmetry Unix mainframe. As can be seen from the table, good results are 

obtained even for such a short time. 

Figures 4-4 and 4-5 show plots of the estimated marginal density functions 

for the six continuous variables. Kernel methods, using Gaussian kernel function 

(since the data was generated using Gaussian distributions in the first place), 

were used to obtain these estimates. 

The structure of some of the marginal densities is easy to see; for example, the 

densities of E and Mi  are mixtures of four and two Gaussian densities respectively. 

By inspection of the model as defined in addition to the kernel plots, it can be 

seen that C and D also have Gaussian mixture densities, while L and Al, have 

marginal density functions which are convolutions of Gaussian densities. 
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Figure 4-4: Kernel density estimates for variables E, D, C and L for simulated 

values obtained by stochastic simulation. 
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Figure 4-5: Kernel density estimates for variables Mi  and M0  for simulated 

values obtained by stochastic simulation. 
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Chains States of Variables Pr(H) 

H1  f w 49/200 
H2  f T 147/200 
H3  fw 1/200 
H4  3/200 

Table 4-4: Updated probabilities of chains for the Lauritzen (1992) example 

with observed variables. 

4.5.1 Observed Variables 

The above analysis could have been done by logic sampling; the use of the Gibbs 

sampler is necessary when variables have their values observed. For the Lauritzen 

(1992) example, assume now that two variables have been observed; the burning 

regime is stable (B = b) and the log light penetrability is L = 1.1. 

As stated in section 4.4.4, the exact propagation routine of Lauritzen (1992) 

must be used to obtain the updated marginal probabilities of the remaining 

discrete variables, F and W in this case; it turns out that Pr(f) = 0.98 and 

Pr(w) = 0.25. There are now only 4 chains; they and their respective probabili-

ties are shown in Table 4-4. 

The common denominator of 200 for the Pr(H) means that the number of 

simulation runs should be a multiple of 200 in order to obtain a genuine sample 

from the model as a whole. However since Pr(H3 ) = 1/200, for example, and 

also given that 200 is a rather low number in any case for simulation such as this, 

performing well over 200 would seem sensible. 

The results of the simulation, along with the updated marginals, appear in 

Table 4-5. The corresponding kernel density estimates for the five remaining 

continuous variables are shown in Figures 4-6 and 4-7. 



ra 

Chapter 4. Stochastic Simulation in Standard Mixed Graphical Models 	139 

OJiL1 V-JU-JUU 	 - U U 7j  U V U LI '.1 U U 

(P)1 
	

(!-w) 

w 

  

Jo 

IRI 

 

 

) 

H 	 FLL? 	 I 
91. 01. 90 00 	80 90 VU 'O 00 

(e) 	 (o) 

Figure 4-6: Kernel density estimates for variables E, D, C and Mi  after ob-

serving values for B and L. 
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Nodes 

Simulation Runs 

20000 	40000 

Correct 

Values 

/1 01  a2 

E -3.322 0.238 -3.317 0.239 -3.32 0.24 
D 2.846 0.181 2.845 0.194 2.84 0.17 
C -2.002 0.100 -2.000 0.100 -2.00 0.10 
M, -0.251 0.191 -0.251 0.194 -0.25 0.19 
Alo  2.595 0.298 2.592 0.289 2.58 0.28 

Table 4-5: Results of simulation on the Lauritzen (1992) example after observ-

ing values for B and L. 

Figure 4-7: Kernel density estimates for variable M0  after observing values for 

B and L. 
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4.6 Discrete Nodes with Continuous Parents 

Thus far in this thesis, discrete variables have not been allowed to have continuous 

parents in the influence diagram. Lauritzen (1992) does suggest a way of dealing 

with such cases, but this is just an approximation. A method of incorporating 

these into the stochastic simulation is now suggested here. The proposed approach 

is, admittedly, not very realistic in terms of modelling, and may be very difficult 

to apply in practice; it is however a very simple way of dealing with the current 

problem. 

Consider a discrete node T with one or more continuous parents (and any 

number of discrete parents). We define a Gaussian distribution for J conditional 

on the values of its parents as usual. For each value of J generated, we then 

calculate Pr(TRT) from 

Pr(T =1RT)= 
expj 

+ exp 
(4.6) 

1 	j 

and generate a value for variable T using this probability. This would enable us 

to estimate the marginal probability Pr(T) in the usual way. 

The determination of Pr(T) by exact methods requires the determination of 

the mean of Pr(TRT) which is 

(I+ 

expj \ 
E{Pr(TRT)} = / 

J - 

where g(j) is the marginal density function of J. If we know g(j) exactly, then we 

could estimate this integral using numerical integration. However, it is not always 

feasible to calculate g(j) exactly; so this scheme with the dummy continuous 

variable is not generally applicable to exact methods. 

While the inclusion of an extra step in the simulation process may seem odd, 

it does allow the type of situation in question here to be included within the 

current framework in a very straightforward manner. 
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Severity of Winter 
S 

Disease Level 	 Frost Level 
r 	 C F 

Spring Crop 
C 

Yield 
A 

Figure 4-8: Influence diagram for crop forecast example. 

4.6.1 Example 

The following example is adapted from Aitken and Gammerman (1990) and con-

cerns prediction of the yield of a certain crop. This example is artificial, and so 

not too much meaning should he read into the choice of mean functions. 

The adjustment to the forecast of the yield of an autumn sown 

crop depends 011 disease levels and frost damage, which both in turn 

depend on the severity of the winter. It is possible to sow again with 

a spring crop, dependent on the amount of frost damage. This second 

crop would also affect the yield forecast. 

This situation is illustrated by the directed acyclic graph in Figure 4-8. 

We wish to be able to answer such questions as: suppose the winter was very 

severe; by how much should the predicted yield be adjusted? 

The model is defined by an agricultural expert thus: 

Severity of the winter (Continuous) Denoted by S. We let S N(5,4), rep-

resenting the average daily temperature in °C. 



Chapter 4. Stochastic Simulation in Standard Mixed Graphical Models 	143 

Node 50 

Simulation Runs (000's) 

100 	 200 

Correct 

Values 

[t a2 .2  a2 

S 4.946 3.981 5.040 4.082 5.011 4.021 5.0 4 
D 14.925 12.735 15.075 13.357 14.995 13.127 15.0 13 
F 3.153 13.280 2.906 13.363 2.949 13.200 3.0 13 
J 6.317 57.235 5.795 57.796 5.893 56.750 6.0 56 
A -11.246 39.011 -11.682 40.959 -11.548 39.153 -11.5 39 

Table 4-6: Simulation for crop forecasting example 

Disease level (Continuous) Denoted by D. We let D I s c'-' N(10 + s,9), repre-

senting the level of parasites. 

Frost level (Continuous) Denoted by F. We let F I s N(8-s, 9), representing 

the number of days with frost. 

Spring crop (Discrete) There are two states-sow or not sow. Let 0 be the 

probability of sowing the spring crop, i.e. Pr(C = c). Define 

JfN(2f,4), 

and hence C using the procedure at equation (4.6) above with C replacing 

T. 

Yield (Continuous) Denoted by A. We let A I d, f, 3' N(0.5 - d - f +3*, 1). 

Table 4-6 shows the results of simulation on the model. The numbers of sim-

ulation runs are large because the variances are large, and hence convergence is 

slow. Even so, the C program took only three minutes for the 200,000 simula-

tions. The estimates for 9 were 0.791, 0.766 and 0.776 for the 50,000, 100,000 and 

200,000 simulation runs respectively, compared with a value obtained by numeri-

cal integration of 0.759; note that in this example, the marginal density function 

assigned to J is Gaussian. 
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4.7 Conclusions 

This chapter has described the use of a stochastic simulation algorithm for infer-

ence on marginal distributions in mixed graphical models. It has been shown that 

the simulation, via a Gibbs sampler, can be performed in a relatively straightfor-

ward manner. 

The use of a simulation method enables estimation of the marginal density 

distributions by kernel methods; an estimate of this kind can be important, since 

(from Lauritzen, 1992) "[i]n general both the density itself and the problem of its 

computation can he forbiddingly complex." 

Lauritzen (1992) says of his approximate method for dealing with discrete 

variables that have continuous parents that "...the error of approximation is 

negligible compared to the general uncertainty involved in the model building 

itself." This claim certainly relates to the simulation algorithms presented here, 

although admittedly the word "negligible" may be a bit strong. 



Chapter 5 

Stochastic Simulation in 

Non-Standard Mixed Graphical 

Models 

5.1 Introduction 

This chapter presents a study of stochastic simulation on non-standard models—

that is, graphical models which are not limited to conditional Gaussian distribu-

tions and linear mean functions. 

The simulation scheme for non-standard models is not as straightforward as 

the scheme for standard models; in Chapter 4 it was shown that generating a new 

value for a continuous variable in a standard model meant simply generating a 

value from a particular Gaussian distribution. 

For non-standard models, the probability density function for generating a 

new value will most likely not be Gaussian. As will be demonstrated, it will 

probably not be a common density function at all, and may only be (practically) 

known to a factor of an unknown constant; because of this it can be necessary 

145 
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to use a further Markov chain Monte Carlo (MCMC) technique to obtain a new 

value. 

Note that this MCMC step occurs within the Gibbs sampling process that 

drives the simulation. Such a combination of MCMC methods was termed by 

Smith and Roberts (1993) a hybrid strategy. 

The choice of MCMC technique is discussed in section 5.2, and also Gibbs 

sampling, used in this and the previous chapter, is formally defined. Section 5.3 

presents some examples. The first two are very simple and just show how the 

methodology can he applied. The third is a serious example based on forecasting 

energy demand. 

5.2 Hybrid Strategies 

This section discusses the procedures required for stochastic simulation on non-

standard graphical models. It begins by formally defining Gibbs sampling, and 

then describes the additional MCMC methods needed in this chapter, also justi-

fying their use. 

5.2.1 Gibbs Sampling 

A systematic form of the Gibbs sampling algorithm, adapted from Smith and 

Roberts (1993), follows: 

Let 7r(x) = 7(xi , x 2,. . . , xk) be an unknown joint density, and for i = 1,2,... , k 

let T(xi I x-i) denote defined full conditional densities for each x, where 

'Since Gibbs sampling is a MCMC method. 
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Choose arbitrary starting values x°  = (x, x, . . . , x). Then generate succes-

sive values from the full conditional distributions as so: 

XI from 7r(x 1 x° 1) 

X' from 7r(x 2  x, x, x, . . . , x) 

X from 

x from 7r(xkx1 1 ). 

This has completed a transition from x°  to x1. Repeating this cycle produces 

a sequence x0, x, x2,. 	xi,... which is a realisation of a Markov chain. 

The key feature of this algorithm is that inferences can be made on the joint 

density 7r(x) by sampling only from the conditional densities ir(x 

For the mixed graphical models studied here, the conditionals 7r(x x_) used 

to draw new values are the Gibbs samplers Pr(si I Rs) and f (si  I Rs); as was 

shown in Chapter 4, these can be calculated from the given information on a 

model—the distributions of variables conditional on the values of parent vari-

ables. Clearly then, the stochastic simulation procedure is an application of 

Gibbs sampling. 

5.2.2 Non-Standard Graphical Models 

With standard graphical models, generating new values from the Gaussian con-

ditional densities f (si  I Rsj  is straightforward; with a non-standard model, sam-

pling new values is not as simple in general. 

Consider a non-standard model, where the conditional density functions de-

fined for each continuous variable are denoted 

fsjs i I U5j, 
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and the mean functions are specified as 

gs, (Us,), 

where U5  is the set of parents of S, and the functions fsi  and gs,  are specific 

to variable S; a model can contain a mixture of different types of conditional 

distribution and mean function. 

An equivalent version of Result 2 for non-standard models is: 

Result 3 The probability distribution of each discrete variable Si in a non-stand-

ard mixed graphical association model, conditional on the state of all other van-

abies, is 
3 	 S 

Pr(sRs) = aPr(sUs,) fi Pr(cUc3)  fJ .fck (ckRlck) 
j=1 	 k=1 

where Q is a normalising constant, R5  is a realisation of the set of all nodes 

except S, Usi  is the set of parents of S; there are 0 discrete children Cj  of S 

and 6 continuous children Ck of S; and the conditional density defined for a child 

Ck is fck. 

There is no equivalent result of Result 1 for non-standard models. The ex- 

pression at (4.2) becomes 

f(sRsj = 

fs(sUs,) 11 fc(cUc1) 
,7=1 

f fs(sdUs, 
)0 
11 fc,  (cUc3 ) dsi  

With a model in which the fs1  are all conditional Gaussian distributions, calcu-

lation of the integral proves simple; there is however no such general expression 

for other definitions. The integral can be evaluated numerically, but this is com-

putationally very expensive, and it does not necessarily mean that the resulting 

f(s1  Rsj will be easy to sample from. Thus it will be necessary to regard the 

integral as an unknown constant. This leads to 

f(sR5 ) = afs1(sdUs1) fJ fc3 (cUc,) 	 (5.1) 
j=1 
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where the integral has been replaced by 

It is worth noting at this point that when analysing a non-standard model, 

Result 1 does apply to a continuous variable if: (a) the variable has a conditional 

Gaussian distribution and linear mean function; and (b) the variable has no chil-

dren with non-Gaussian conditional distributions or non-linear mean functions. 

Also, if a continuous variable has no children then a value can he generated for it 

directly from its conditional distribution (if possible) since (5.1) merely becomes 

f(sjjRs) = fs(sUsj. 

There are various candidates for sampling from f(sRs). Using ordinary 

rejection sampling (Ripley, 1987) is generally not feasible, as this method requires 

the determination of the maximum value of the ratio of two density functions 

at each Gibbs step and this is forbiddingly expensive. An alternative form of 

rejection sampling, Adaptive Rejection Metropolis Sampling (ARMS) (Gilks et 

al., 1992), which removes the necessity for the calculation of the maximum value 

by creating its own "envelope", was tried on some test non-standard models; 

while initially the method seemed promising, once a variable was introduced with 

continuous parents and children, ARMS failed, unfortunately in contradiction to 

the comments in Brewer and Aitken (1993). 

Two methods did however prove successful; the Metropolis-Hastings (M-H) 

algorithm and the auxiliary variables method. Sections 5.2.3 and 5.2.4 will now 

define these procedures. 

5.2.3 Metropolis-Hastings 

At each step of the simulation, the Metropolis-Hastings algorithm is used to 

obtain one sample from the Gibbs sampler. The following description has been 

adapted from Smith and Roberts (1993). 
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Suppose we wish to generate a sample from a density 7r(x). The M-H algo-

rithm works by constructing a Markov chain with equilibrium distribution 7r(x) 

and transition probability p(x, x') of moving from the current state x to the pro-

posed new state x', which is drawn from a generating distribution q(x,x')—for 

the moment an arbitrary transition function. With probability a(x, x'), x' is ac-

cepted, or else the next step in the Markov chain is set to the current value x. 

The transition probabilities are given by: 

p(x,x' 	
q(x, x')a(x, x') 	 if x' 	x 

) 
= { 1 - 	q(x, x")a(x, x") if x' = x 

and 
[rr(x')q(x', x) 

a(x,x') = { 
mm L 

(X) 	X') 
, i} if 7 (x)q(x,x') > 0 

1 	 if 7r(x)q(x,x') = 0. 

The choice of generating distribution q is not necessarily straightforward. 

Smith and Roberts (1993) note that "[i]nsight from general importance sam-

pling methodology suggests that Student t- or split Student t-forms with small 

degrees of freedom are likely to be good candidates." 

Translating this description to the terminology of mixed graphical models, 

consider the generation of a new value for S. The target distribution 7r(x) is the 

Gibbs sampler f(sRsj. A proposed new value s is drawn from q, and then 

a(s, s) is compared with a random number generator to see if Si is set to s or 

the current value .s. After deciding on a value for S, the next variable in the 

simulation run is considered. 

5.2.4 Auxiliary Variables 

The following description of the auxiliary variables method has been adapted 

from Besag and Green (1993). 

The method involves augmenting a variable x with one or more additional 

variables u = {uj, j = 1,2,...,k ;k > 11, which, given x, are conditionally 
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independent. The joint distribution of x and the {tt} is defined by taking 7r(x) 

as the marginal for x and specifying 7r(uJx). A Markov chain is then constructed: 

first the u3  are drawn from ir(ux); then x' is generated given the u3  and the 

current state x. Besag and Green (1993) show that choosing a suitable transition 

function (e.g. 7r(x'!u))  preserves 7r(x) as the equilibrium distribution. 

Besag and Green (1993) go on to consider the case when 7r(x) can be written 

in the form 

7r(x) = a7ro(x)fJb3 (x), 	 (5.2) 

where it is straightforward to sample from 7r0(x). Introducing an auxiliary van-

able u j  for each term b(x) and defining 7r(ux) to be the uniform distribution 

on [Ob(x)] gives 

7r(x, u) = 2r(x) H 7(ujx) 	(using conditional independence) 

= a o(x)flb(x){I[O < u j  <b(x)]b(x)'} 	 (5.3) 

= a7o(x)I[fl{O < u j  <b(x)}J 

where I [ ] is the indicator function. Sampling from ir(x,u) now just involves 

sampling from iro(x) and imposing the constraints {b(x) > uj} by rejection. 

Note that the constant a can be incorporated into one of the product terms: it 

cancels out with b(x)b(x)' at (5.3). Also consider sampling u 	au j  from 

[0, ab3 (x)]; this is the same as sampling u j  from [0, b3  (x)], and a also cancels in 

the rejection test ab3(x) 	= azi j. Thus we can write 

ir(x,u) = 7ro(x)I[fl{0 

Now consider a non-standard graphical model. Note that (5.2) is in the same 

form as (5.1) with ir(x) = f(sRsj, 7o  (x) = fs(sUs) and b(x) = 

To sample from f(sRs ) therefore, first generate the / auxiliary variables n 3.  

from U[0, fc,(cUc3)]  (using the current value si  to calculate fc,(cUc3)),  and 

then get s from the density fs(.sUs).  The rejection tests are performed, and 
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s is only accepted if fc3 (cUc3 ) > u j  (using s) for each j = 1,... ,/3. If it is 

rejected, the procedure is repeated until a proposed s is accepted, and then the 

next variable in the simulation run is considered. 

5.3 Examples 

The examples in this section consider two types of "non-standard variable": 

A variable that has a conditional Gaussian distribution, but with a quadratic 

mean function; that is, a variable Si with c continuous parents F1, P2,. . . ,P 

has a mean function gs,  of the form 

gs(p1,p2,. .. ,p) = + 	Otpt + OtPt 

A variable Si that has a conditional Gamma distribution Ga(a, /3), which 

has mean a/3 and variance ci'/32, i.e. 

fs(sdUs) = 

A (linear) mean function l's,  and variance 0,2  are defined for this variable; 

the parameters a and /9 can then be calculated as 

1t i  
a=— and 

a2 	 P St 

Note that during the simulation, when generating a value for S, new values 

of a and /9 must he calculated for each iteration, since the state of parent 

variables, and hence the value of the mean function, may have changed. 

The first two examples that now follow have very simple graphical structures, 

and are very small. This is so that the exact marginal means and variances can be 

calculated, and compared with the results obtained from simulation. The third 

is a more serious application of the methodology described in this chapter. 
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Figure 5-1: Structure for quadratic relationship and conditional Gamma ex-

amples. 

5.3.1 Quadratic Relationship Example 

This example has the influence diagram shown in Figure 5-1, and four variables 

are defined as follows, some having quadratic mean functions: 

X 	N(4, 1); 

Wx N(l+x+x2,1); Yx N(3-x-x2,O.5); Zx N(7+x+2x2,1); 

This example has been analysed using both the Metropolis-Hastings and the 

auxiliary variables approaches. Note that generating values for variables W, Y 

and Z merely involves sampling from their defined conditional Gaussian distri-

butions with the current value of variable X put into the relevant mean function. 

For the M-H algorithm, the Student t-distribution with 5 degrees of freedom 

was used as the generating distribution q, as this appeared to give good results. 

The t-distribution was centred on the current value of the variable in question; 

the M-H method generally produces a rather "slow moving" chain, so this is a 

not unreasonable tactic. 

For the auxiliary variables, the function 7r0(x) of equation (5.2) in this case is 

simply a Gaussian probability density function. 

The simulation results are shown, along with the correct marginal means 

and variances, in Table 5-1. The numbers of simulation runs needed here were 
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Simulation Runs (000's) Correct 

Node 100 1 	1000 2000 Values 

(M-H) j a2  Pa2  Ya2  i a2  

X 3.82 0.49 4.33 0.87 3.95 0.90 4 1.0 

W 19.95 39.53 24.95 77.83 21.44 71.76 22 84.0 

Y 14.29 23.66 18.29 48.37 15.54 43.27 16 51.5 

Z 41.06 138.18 50.57 276.66 43.93 253.32 45 298.0 

(Aux.) .i a2 1ILa2  Ya2  

X 3.79 0.85 3.96 0.96 4.00 0.98 4 1.0 

W 20.12 70.10 21.56 78.23 22.00 83.37 22 84.0 

Y 14.54 41.49 15.65 47.55 16.00 51.25 16 51.5 

Z 41.46 246.72 44.16 276.88 45.00 295.85 45 298.0 

Table 5-1: Marginal means and variances for quadratic relationship model using 

both M-H and auxiliary variables approaches. 

very large; the quadratic relationships "magnify" the variances. Whilst for a 

given number of simulation runs the auxiliary variable method seems to perform 

slightly better, the rejection tests mean that the M-H version runs faster. 

Using a C program on a Sequent Computer Systems model S81 under a Unix 

operating system, and using NAG C random number generators, the 100,000 runs 

for M-H took around 4 CPU minutes, and for auxiliary variables about 5 CPU 

minutes. There was very little problem with implementation in this case; for 

example, with the M-H, although q was chosen to be the t5-distribution, other 

numbers of degrees of freedom seemed to work equally well. 

5.3.2 Conditional Gamma Example 

This example has variables given a conditional Gamma distribution. The struc- 

ture of the influence diagram is the same as for the previous example, and thus 
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is also illustrated by Figure 5-1. The (conditional) means and variances for the 

variables are defined as follows: 

X: mean 2, variance 2; 

W: mean (2 + x), variance (2 + x); 

mean x, variance x; 

mean (1 + x), variance (1 + x). 

Note that in this case, since the means and variances are equal for each variable, 

the value for 3 with each Gamma distribution will be 1. The corresponding 

distributions for the variables are 

X - Ga(2, 1); 

W!xGa(2 +x, 1); 	YxGa(x,1); 	Zx'Ga(1+x,1). 

Note that when performing stochastic simulation on this model, values for W, Y 

and Z are generated by sampling directly from the relevant Gamma density. As 

in section 5.3.1, one of the M-H or auxiliary variables methods must be used for 

X. 

For the auxiliary variables method, here the function iro(x) of equation (5.2) is 

a Gamma probability density function; routines exist for sampling from Gamma 

distributions (see Ripley, 1987, for example), so this should not prove a problem. 

The choice of generating distribution q for the Metropolis-Hastings algorithm 

was more difficult. The t-distribution (centred on the current value as before) 

with various numbers of degrees of freedom was tried, along with a Gaussian 

distribution with a selection of variances. None of these proved successful; even 

for very large numbers of simulation runs, the marginal means and variances 

were incorrect. In fact, it seemed as though the simulation was converging to 

marginal means and variances different from the correct values, obtained by direct 

calculation (possible with this very simple example). 
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Simulation Runs (000's) Correct 

Node 10 20 50 Values 

(M-H) p a2 2 I_t  0,2 'U  Or 2 

X 1.93 1.73 1.97 2.09 1.98 1.94 2 2 

W 3.90 5.58 3.97 6.09 3.98 5.90 4 6 

Y 1.92 3.67 1.98 4.19 1.99 3.91 2 4 

Z 2.92 4.73 2.98 5.04 2.99 4.98 3 5 

(Aux.) p g2 t  al  a2 

X 1.91 1.68 1.97 1.95 2.00 1.97 2 2 

W 3.87 5.55 3.95 5.82 3.99 5.96 4 6 

Y 1.92 3.58 1.96 3.90 2.00 3.95 2 4 

Z 2.92 4.62 2.96 4.90 3.00 4.97 3 5 

Table 5-2: Marginal means and variances for conditional Gamma model using 

both M-H and auxiliary variables approaches. 

This problem was solved by taking q to be a Gamma distribution, with a and 

/9 equal to the current value of the mean and variance (if necessary, calculated 

as functions of continuous parent variables) respectively; in this case, a = 2 and 

/9 = 1 for variable X. 

The resulting marginal means and variances obtained are shown in Table 5-

2. For this example, it can be seen that in terms of number of simulation runs, 

M-H and auxiliary variables perform quite similarly, but the auxiliary variables 

approach still has the edge on this basis. The respective times for 50,000 runs 

are also close: 2 CPU minutes for M-H, and a shade over 2 CPU minutes for 

auxiliary variables. 

It should be noted at this stage that while the implementation of the auxiliary 

variables approach proved very straightforward for this example, that for the 

Metropolis-Hastings was not so; it took many hours of programming until a 

successful q was found. 
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Figure 5-2: Influence diagram for energy forecasting example. 

5.3.3 Energy Demand Example 

This example incorporates both of the variable types studied in sections 5.3.1 and 

5.3.2, and concerns the forecasting of energy demand. The influence diagram is 

illustrated in Figure 5-2. 

A forecaster of national energy requirements sees energy demand 

being driven by changes in gross domestic production (GDP), be-

cause energy is a necessary input for production, and by price. The 

forecaster also believes that events which trigger large price increases 

also stimulate extra research on energy-efficient technology leading 

to reduction in GDP elasticity. The discrete variable "technical effi-

ciency" has two possible levels —efficiency does or does not improve. 

The other discrete variable (considered important by the forecaster), 

carbon taxes, also has two levels—the taxes may or may not be intro-

duced and their introduction will affect prices and may also directly 

stimulate improvements in efficiency. 

The variables within the system are defined by the energy expert thus: 
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Carbon tax (Discrete) Denoted by C, taking values c = taxes introduced and 

= taxes not introduced, with Pr(C c) = 0.10. 

Technical efficiency (Discrete) Denoted by T, taking values t = some change 

in technical efficiency and T = no change in technical efficiency, with 

Pr(t I c) = 0.20 and Pr(t ) = 0.01. 

Energy price (Continuous) Denoted by P, with distributions: 

P I C = c '-'-i  N(5.836, 0.2) 	P I C = 	'-S' N(5.558,0.2). 

Gross Domestic Product (Continuous) Denoted by C, and given a Gamma 

distribution. C I T = t has mean 2.334 and variance 0.04, giving 

Ga(136.2, 0.01714); G I T = T has mean 2.266 and variance 0.04, giving 

Ga(128.4, 0.01765). 

Energy demand (Continuous) Denoted by D, with distributions: 

D I T = t,p,g 	N(1.091 - 0.115p + 0.40g + 0.017g2, 0.05) 

D I T = ,p,g ' N(1.091 - 0.115p + 0.45g + 0.015g2,0.05). 

The simulation procedure for this example will be studied in detail. The Gibbs 

sampler for the two discrete variables are (taking Rx to mean the set of all the 

variables except X) 

Pr(C I Rc) = a Pr(C) Pr(t I C)fp(p I C) 

and 

Pr(TIRT) = a2 Pr(Tc)f G(gT)f D(d IT, p,g). 

where are a1  and a2  are the appropriate constants. Note that since fG  is a 

Gamma density, calculating f(g  T) for T = t and T = It requires the evaluation 

of a Gamma integral, which is clearly computationally expensive. However, since 
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for this particular example there are only two possible values of the Gamma 

parameter a, it will only be necessary to calculate the integral twice. The NAG 

C subroutine library contains a function for evaluating Gamma integrals. 

The generation of new values for variable D is straightforward, since it has 

no children. The relevant mean is calculated for the current values of T, P and 

G and then the new D is sampled from the Gaussian distribution. 

Variables P and G are of interest to us. They have "non-standard" children, 

and will need the hybrid strategies. The Gibbs samplers for these variables are 

f(P I Rp) = a3 fp(P I c)fD(d  I t, P, g) 

and 

f(G I RG) = a4fG(G I  t)fD(d I t, p, G). 

Thus for the auxiliary variables method, the function 2r0(x) of equation (5.2) 

is a Gaussian density for P and a Gamma density for C. Values are sampled 

from these distributions, and constraints from variable D (via fD)  are imposed 

by rejection as described in section 5.2.4. 

The generating functions q for the Metropolis-Hastings are: the Student t-

distribution with 5 degrees of freedom for P; and either Ga(136.2,0.01714) or 

Ga(128.4, 0.01765) for C, when T = t or T = i respectively. These are chosen as 

a consequence of the exploratory studies described in §5.3.1 and §5.3.2. 

With a non-standard model, it may not be possible to calculate the marginal 

means and variances exactly 2. However, it is possible to obtain good estimates 

(for models with as yet no variables observed) using logic sampling (Henrion, 

1986), as described in section 4.2, with very many simulation runs. Table 5-3 

'After all, this is one of the main reasons for using stochastic simulation in the first 

place. 
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Method Node Marginal 1 

Simulation Runs (000's) 

5 	10 	20 50 

Logic 

Sampling 

Auxiliary C Prob. 0.102 0.103 0.101 0.100 0.100 0.100 

variables T Prob. 0.033 0.030 0.030 0.029 0.029 0.029 

P ,a 5.589 5.596 5.587 5.587 5.584 5.586 
a2  0.210 0.207 0.204 0.211 0.208 0.212 

C ft 2.282 2.270 2.265 2.267 2.267 2.268 
a2  0.038 0.040 0.040 0.040 0.039 0.040 

D t 1.556 1.544 1.538 1.545 1.543 1.544 
a2  0.071 0.062 0.065 0.064 0.063 0.064 

Metropolis C Prob. 0.094 0.101 0.101 0.099 0.100 0.100 

-Hastings T Prob. 0.029 0.029 0.028 0.029 0.029 0.029 

P y 5.566 5.579 5.587 5.588 5.586 5.586 
a2  0.212 0.216 0.211 0.217 0.213 0.212 

G t 2.278 2.265 2.268 2.267 2.266 2.268 
a2  0.038 0.039 0.039 0.039 0.041 0.040 

D t 1.550 1.538 1.543 1.540 1.542 1.544 
a2  0.063 0.062 0.064 0.063 0.064 0.064 

Table 5-3: Simulation for energy demand example using both auxiliary variables 

and Metropolis-Hastings. 

shows the results of simulation for the M-H and auxiliary variables approaches, 

and compares these with the results obtained with logic sampling. 

Here we see that in terms of number of simulation runs, the two approaches 

have a similar performance level. Table 5-4 displays the time taken for the C 

programs performing the simulation (again using NAG C subroutines) in CPU 

seconds. The times taken are clearly very similar as well. 

Another useful comparison is to consider the percentages of proposed new 

values that are actually accepted by the two methods. The comparison is not 

straightforward, since the M-H keeps the old value if the rejection test fails, 

while the auxiliary variables method suggests new values until one is accepted. 
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Simulation Runs (000's) 

Method 1 	5 	10 	20 	50 

Auxiliary variables 5.1 	24.6 	52.3 	115.6 	205.1 

Metropolis-Hastings 4.4 	24.1 	44.9 	104.6 	203.5 

Table 5-4: Times to run for both methods in CPU seconds (each entry an 

average of 5 runs). 

For 50,000 simulation runs, the auxiliary variables procedure accepted 54% of 

proposed values for P and 35% for C, while the M-H accepted 50% for P and 

80% for G. While this suggests that the M-H is doing a lot better, the relative 

simplicity of the rejection tests with auxiliary variables cancels out the time that 

might be saved here. 

Figures 5-3 to 5-5 display plots of the kernel density estimates for the con-

tinuous variables P, C and D. Figure 5-3 shows the estimates using simulated 

observations from logic sampling; Figure 5-4 shows the estimates for Metropolis-

Hastings; and Figure 5-5 shows those for the auxiliary variables approach. The 

kernel density estimation does not clearly reveal the fact that for C and P, the 

marginal densities are just mixtures of two Gamma and two Gaussian densities 

respectively. This is because the two distributions in each case are very close to-

gether; making the window-width smaller simply increases the noise level in the 

plots, and hence any genuine "bimodal" characteristics become indecipherable. 

Also note that there seems to be very little (if any) difference in the plots between 

the three methods. 

There seems little to choose between the two methods with these experiments. 

It is certainly the case that once the procedures have been set up appropriately, 

Metropolis-Hastings and auxiliary variables perform equally well. However, the 

M-H took far longer to set up; the choice of generating distribution q was the 

sticking point. 
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Figure 5-3: Kernel density estimates for variables P, G and D from simulated 

values obtained by logic sampling. 
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Figure 5-4: Kernel density estimates for variables F, G and D from simulated 

values obtained by the Metropolis-Hastings method. 
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Figure 5-5: Kernel density estimates for variables F, G and D from simulated 

values obtained by the auxiliary variables method. 
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Finding a suitable q for M-H is not obvious in general, whereas with the auxil-

iary variables the "generating distribution" 7r0(x) falls directly out of the relevant 

formula. For this reason, and given comparable performances by both meth-

ods, the auxiliary variables approach is preferred over the Metropolis-Hastings 

for analysing mixed graphical association models. 

5.4 Conclusions 

This chapter has extended the methods of stochastic simulation for mixed graph-

ical association models. Use of the Metropolis-Hastings algorithm and an auxil-

iary variables method for the Gibbs sampling has enabled analysis of models that 

contain non-Gaussian conditional distributions and non-linear mean functions. 

The Metropolis-Hastings and auxiliary variables methods showed comparable 

levels of performance once implemented. However, it is in the implementation 

itself that a real difference between the two became clear. While the generating 

distribution required for auxiliary variables appears as a natural consequence of 

equation (5.2), that for M-H requires a significant degree of research. 

For this reason, the auxiliary variables approach is recommended as a reliable 

method for analysing non-standard models. 



Chapter 6 

Conclusions 

This thesis has studied aspects of graphical models. Chapter 1 described the 

notation and properties of such models, and summarised recent developments in 

their analysis. 

Chapter 2 presented a review of the use of graphical models in legal reasoning 

(and related) literature. It was seen that the use of "graphs" in this context can 

be traced as far hack as 1913; some suggestions were made for converting "degrees 

of belief" into probabilities to be used in a graphical model. 

The use of likelihood ratios is important in legal reasoning, as they may be 

easier for juries to understand than probabilities. It was shown in section 2.5 

that likelihood ratios can be used as input to simple propagation procedures, 

with certain computational and formulaic advantages over similar work using 

probabilities as input. 

The problem of recovering graphical structure from a data set was the subject 

of Chapter 3. Kernel methods were applied to the tree structure learning pro-

cess, but these had very limited (if any) advantages over the far simpler sample 

frequencies (for discrete variables) and correlation coefficient (for continuous vari-

ables) approaches. The kernel methods were, on the whole, rejected due to the 

much greater time needed for the programs to run. This was especially true for 

166 
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the continuous case, where the kernel methods, needing a number of numerical 

double integrations of kernel functions, performed very badly indeed. 

The recovery of polytrees for discrete models was also not greatly improved 

by a kernel method. A new algorithm for recovering more general graph structure 

(to allow undirected loops) was analysed, and proved reasonably successful. 

The main work of this thesis was covered in Chapters 4 and 5. In Chapter 4 a 

stochastic simulation procedure for estimating marginals of variables in graphical 

models using a Gibbs sampler was described, and extended to cover continuous 

variables with conditional Gaussian distributions. This procedure was shown to 

be successful, and to be efficient computationally. The simulated observations 

allow the application of a non-parametric density estimation method to estimate 

the marginal probability density functions, something quite difficult to do under 

the exact computation framework of Chapter 1. A procedure for allowing discrete 

variables to have continuous parents within the graphical structure in such models 

was also discussed. A certain problem associated with Gibbs sampling, namely 

it's occasional inability to move from one mode to another, was shown to be 

surmountable with a slight adaptation of the stochastic simulation algorithm. 

Chapter 5 extended the stochastic simulation scheme further to include vari-

ables with non-Gaussian conditional distributions and non-linear mean functions. 

This scheme needed the inclusion of a further Markov chain Monte Carlo routine 

to generate a value from the Gibbs sampler; my preference for an approach based 

on auxiliary variables was noted. 

It has been shown therefore that stochastic simulation is a valid and viable 

method of analysing graphical models, and that further, it allows extensions to 

the set of models that can be defined. 
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