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Chapter 1

A discussion of approximate methods for

hurricane boundary layer calculations.



ABSTRACT

This chapter is basically a review and assessment of various
4

approximate methods which have been developed in order to calculate

the flow in the surface boundary layer of a hurricane. In

particular we are concerned with two vertically integrated

treatments the momentum integral method of Smith and the Galerkin

method of George. Also discussed in some detail, are the modified

Oseen method of Carrier and the related work of Belcher, Burggraf

and Stewartson, who investigate boundary layer flow oh a flat disk
V

under an imposed vortex. . >

It is demonstrated that there are certain basic defects in

both the Galerkin and Ose'en methods,, which make them unsuitable
I .

for the treatment of hurricane boundary layers. By means of a
*

regular perturbation analysis in the- region of low Rossby number,

support is lent to the use of the mo integral

method, although it is concluded that further work may be needed

answer to the Question of its overall

applicability. !
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1. Introduction '■
• »

The principal aim of the work presented in this chapter is to
I

investigate various methods which have appeared in the literature,

frictions! surface "boundary
%

hurricane particular
« t

consider in some detail, two different methods which are.essentially.
« f

*

vertically integrated treatments of the problem. The first is the
i

4

momentum integral method of Smith (1968), which we shall henceforth
I

0

denote by S, while the second is the method of weighted residuals,
4

or Galerkin's method, introduced by Carrier and his co-workers

(e.g., George 1970). .The motive behind the development of the

latter treatment is that its authors believed it would be a more
4.

t

4

accurate approximate method for solving the boundary layer equations
« »

0

ft

*

associated with the flow, than the previously-mentioned momentuj
\

integral method, which uses Ekman velocity profiles to model the
)

vertical structure of the boundary layer flow
♦

importance of the boundary layer in the overall

hurricane-like flows has long been recognised, and

by a great many authors In order, to understand more fultythe processes
r »

involved,.we must firstly outline the basic features of a hurricane
\

as a whole. Figure 1 is a schematical picture (as used in S) of the
x

principal regions of a mature hurricane. The region which we shall

be considering in detail is the narrow inflow region-where the effect
4

*

0 4

of friction are important, and whose height is of the order of a
4

^

kilometre. The main vortex region where the.swirling velocities
4

are largest, has a height of the order of 10km, a radial extent of
*

the order of 100km, and is a region of intense cumulus convection.
\

\



3 -

Other features include the well known eye, which is.a comparatively

calm, cloudless region around the axis of the storm where there is a

slight downflow Near the tropopause is the outflow

region from the main vortex. . Naturally the system is much more

complicated than this simple picture would a more

comprehensive description may be found in various publications, for
Yanai (196U). Gray (1966) and Palmen and Newton

(1969).

For purposes pf the present study, we assume that the hurricane
4

vortex can be represented by a steady axisymmetric inviscid vortex
a

in the rotating frame of the earth, with the swirl (az'imuthal)

velocity as the-sole horizontal velocity component. We.refer to

this as the outer flow. assumption of an axisymmetric

vortex', we have neglected implicitly two basic properties of
♦ ♦

4

hurricanes: fitstly, the Coriolis parameter f is assumed constant, '
%

whereas over the extent of the hurricane, f will vary considerably,

asymmetry in the vortex secondly
1 s

stationary,, yet in fact the hurric

part-of a much larger-scale atmospheric system, an

unifor important in producing asymmetry
♦ I

Nevertheless, it is believed that, the stationary odel,
k

importanc
\

(V

necessary for the present study
O

In the main, vortex, under the above assumptions, there is.a

balance between the pressure-gradient and the centrifugal and
4 J

4 «

Coriolis forces. This balance"can be represented mathematically
% •

'0

*

* . »

sV » »
f? » >

• t •

4 •



u n

4 4

by the gradient wind'equation, which has the for:

V(R) =-r +>[<Rf\2 R dP
2 p dR

(1)

4 I

1 *

where :V is the swirl velocity, R is the radial coordinate,! p is
"

... . •
4 • • • • V

the density of air (as sumed constant), P is the pressure and f, the
• • *

4

4 • •

Coriolis'parameter is equal to 2ft sin 0, ft being the angular rotation
•

• •

*

rate of the earth'and 0 the local, latitude. This flow is a solution
4

•
♦

of the Euler.equations in.a rotating frame for" a system with no
'

*

•

radial component of velocity and where the Vertical velocity is
« • • ' • *

a function- of radius-only. However this balance situation is altered
, *

\ •

as we approach'the ground/sea surface, and the effect of friction'
• ■ • • •

• •
> .

4

becomes important.

4

In the frictional layer, the Coriolis and centrifugal forces* are
• p • ♦

<. • « • . •

reduced, whereas the. pressure field of the outer flow is. transmitted
'

• r
, • •

«

virtually unchanged across the layer. Consequently there is a net
• n

pressure force in the boundary layer, and this drives an inflow,
| | *

t

«

thereby inducing a meridional circulation in the vortex itself. In

P

fact, this process is just the familiar "tea cup effect", so named,

.because as tea is stirred, it is observed that the leaves concentrate
»

» • •

at the bottom of the cup around what might be imagined-as the axis
4

« • •

•
»

of rotation, having been transported towards the axis in an exactly.-.'
t

analogous .way to the above flow system.
4 4

9 t

It is clear that the surface boundary layer of a hurricane
4

#

plays an essential role in the dynamics of the vortex, not only

during ature stage, but also in the -growth

systems. account

4 •

\



of the mechanisms involved in the growth of a hurricane depression
*

*

ft
ft

in the context of the theory of "conditional instability of the

and
v •

• • « •
• . * '

A simplified version' of Charney's description is as follows.' * ft

4

Firstly, hurricanes tend to form over the tropical oceans which
4

-
. - ' ■

'

act.as a source of moisture, this moisture in turn acting as .a
4 4

convective driving mechanism through the.release of latent heat of
■ t '

■

condensation. ' Nov it is observed that the main driving of the -
4 ♦

>
4

convective. motion in the.storm occurs in the large cumulus cloud'
9

bands associated with the main vortex core. However, the\scale of

such motions'is of the order of only 10 km, whereas that for the
♦

hurricane as a whole is of the order of 1000 km, and it is proposed
♦ 4

9

I
hat it is in fact the surface boundary- layer which provides the .

♦ ■ ■ • , » ,

link between these two dissimilar but obviously strongly coupled •

•
. ^ ' - - •'

.flow systems. * In particular,.the pattern of the secondary'
1 t '

eridional circulation can be characterised'by. the vertical motion
4

(

either into or out of the boundary layer. If we consider firstly
6

n

the flow in the*outer radial regions " of the hurricane, we expect

the inertial effects to play a minor role, and- in the limit of
4 4

Ekmah type

which the vertical velocity at the
9

proportional to the vertical compo

boundary
ft ft

of the outer flow (Lighthill 1966). Thus in the case of an outer

flow with cyclonic vorticity, there is mass convergence and consequent
/

$

upflow of (moist) air from the boundary layer into the main vortex,

and the release of latent heat.of condensation from this moist air
9 I

increases the convective activity within the cumulus clouds. On

N

\



\

the other hand, when the outer flow is anti-cyclonic, there will be
4

downflow of dryer air from above the boundary layer. This subsiding
I

air is warmed adiabatically and the relative humidity decreased,
9

4

thus inhibiting any tendency towards cumulus convection in these
„ •

regions. Also, as pointed out by Charney, the release of latent heat

of condensation in the cyclonic region will cause a lowering of the

pressure there and a subsequent intensification of the vortex. Thus
0

there exists a mechanism for the spontaneous growth of hurricane

depressions over warm oceans, a njechanism which clearly, is strongly

dependent on the behaviour of the surface.boundary-layer. The theory
*

_rw

as presented by Charney (1971), considers the boundary layer to act

as a simple Ekman layer when obtaining estimates of the intensification

produced. However, in the inner radial region of the storm, the
* •

N
9

region where the upflow- is observed to occur, it is the inertial
♦

terms which are-dominant, and therefore the use of Ekman theory
*

%
t

►

seems unlikely to provide realistic enough estimates of the subsequent
t

I

i

convection resulting from the transport of moisture via the "boundary
' I $

*

I

layer into the main vortex. Thus there is considerable interest in
9

obtaining a more accurate.description of hurricane boundary layer flow,
*

*

t

and this is the principal aim of the various methods which we intend

to discuss in this Chapter. Ooyama (1969) has reported calculations
9

_

0

■

for an extensive numerical model of a developing hurricane in which
%

the-boundary layer is also assumed to have a constant thickness.
0

%

In the present' discussion of the various mathematical models used
t

9

in the treatment of hurricane boundary layers, we consider only the
0

t

x
\ •

• 9 »

simple idealised case of a constant eddy viscosity to model the
9

t 9

turbulent structure within the boundary layer. However, we note
%



that treatments such as those of the momentum integral method of S,

models

boundary layer structure, as for instance in the work of the

following chapter. should be stressed, that in exaj

interaction between the hurricane vortex and the boundary layer,

we are assuming for the purposes of the model that a particular
fc

steady-state outer flow has been imposed, and that this will then

drive motion within the boundary layer. From this, we proceed to
%

m

calculate quantities which we have seen to play an important part

in the overall description of the hurricane, such as the radial

inflow, the boundary layer thickness and the vertical velocity

boundary In the more interesting case of

■ (
a developing hurricane system, the CISK theory makes it clear that

I «

we cannot realistically expect such a decoupling of the outer flow

and the boundary layer. . However it is anticipated that in an
» '

• *

extended model, ve can use the boundary layer equations as a diagnostic
» • •

*

system to provide bottom boundary conditions for the outer flow.

Charney .(l970),has shown by dimensional arguments that the response
• • • » »

time of the boundary layer flow is an order of magnitude less than
• *

4
r

• 4

\ ■

that of the outer flow, and hence a steady treatment Of the boundary
» |
• 4 %

■

layer is justified, since effectively it reacts instantaneously to'
4

% '

Cany;chhriges in the outer .flow driving it. In this context, there
• • • • • ' \ *■ *

%

are interesting laboratory experiments reported by Hide' et at, (1968) ■
4 4

t ■ , • ' B '•
*

« 1 •
^

which show the vital role the boundary layer plays in determining ',

the resultant structure of the main vortex.

■ Earlier attempts at a mathematical treatment of. the hurricane
4 <

I I

,■ boundary layer problem were made by Haurwitz (1935) and later by
.4

<

4 \
« •

• V
I

I t

# 4

•a

\
1 • \ • • ...

... •' • "■ .*
* « • *



0

Rosenthal (1962) and Miller (1965). Their methods all involve
I

a linearisation of the boundary layer equations, hut as shown in
»

t
4

S by a simple order of magnitude analysis using the continuity
m 4

equation, certain terms which these authors--considered negligible,
ft

9 m
m

are in fact of" the same order as other terms retained in their"" ~"~

final equations. The inadequacies of this line of approach led

to the model developed in S and later extended by Leslie and Smith

(1970). -This particular momentum integral method is based on

the assumption that for the purposes of describing the overall '

features of the boundary layer flow, Ekman velocity profiles provide
\

:a sufficiently realistic representation of the vertical structure
0

9

i

over the entire radial extent, except of course at very small radii,
• •

where the boundary layer equations themselves no longer apply.
0

Related work has been" carried out by Kuo (1971) where despite some

obvious errors and the use of a non-rotating frame, the basic
4

.

equations he obtains are those of S. Power-law velocity profiles
b

are also applied by Kuo to model the case of the turbulent boundary
» I

I

layer, this second approach being also adopted by Chi et at.(1969).

However the use by Kuo of the radial,scale functions of the flow
, *

obtained from the momentum integral equations to calculate more
• ¥

|

detailed velocity profiles, seems hardly likely to produce further
" \

V

information, and would appear to be completely outside the scope

of momentum .integral methods. The work of Barcilon (1968) is also
\

closely related to^that of S.
» * f #

♦

4

The method proposed by Smith and Smith (1965) is an expansion
'

♦ *
\
* 0

procedure in terms of a small parameter e, representing the ratio of
b '

N 9 • • P

the boundary layer thickness -to the effective radius of the vortex.



However ^ a- number of basic defects in their method,- both in the. actual
• «

expansion and in the boundary conditions, have been detailed by
*

• • ' '
• «

. • ' ' .

. Morton (1966). In fact, there have been a large number of works
I . «

published in which the authors have alluded, in rather general terms,
•. * - •
• N •

1 * *
m » ^ •

to similarities between hurricanes and their particular flow systems. -

Most of these are investigations of: the boundary layer flow under
• - - • • • *

1
, • - •

an imposed vortex, and it is interesting to note the extent to which •
■ " •.

. ■ * . * .
• 1 1 ' •

certain authors attribute properties of.geophysical interest, to the
» *

• I •
• 1 ' 4

flows they happen to be studying, with often little thought towards
4

4

A

the justification for doing so.

As mentioned previously, an alternative approach to the problem-,
♦ ' # ' • \

t « *

♦ '

was suggested by Carrier, who believed that the results obtained •

/by the above-mentioned authors by means.of the momentum integral
• •

4

# 4

method, were not sufficiently accurate. In a series of papers "by

and Hammond

George 1971; Dergarabedian and Fendell 1972a,b) it was proposed .
i*

*

that the method of weighted residuals (Galerkin's method) furnishes
ftt

J

a more accurate description of motion in the hurricane boundary
| |

« 4

layer. However,, we shall show that the approach adopted by these

authors has certain inherent defects, and that if these could be

suits obtained with the Galerkin

A

would differ very little from those of the simple and more mathematically
*

tractable momentum integral method. .

•
.

Soon after the development of this Galerkin procedure, Carrier

(1971a,b) concluded, although for reasons different from those which

we shall give, that the method" fails to provide an adequate treatment

\
\



•

- 10 -

incorporated tethod,

further work along this line being conducted by McWilliams (1971)

In these papers, contrary to ther view of Charney (1970) given
I

above, Carrier also came to the conclusion that a time-dependent
0

analysis of the boundary layer is required in the treatment of a
« %

laturing hurricane, and proceeded to develop analysis along these
9

« «

lines. .

A different line of approach has been adopted by Stewartson,

Burggraf and Belcher (Burggraf Belcher et al. 1972).

These authors use r profiles to represent the outer flow) With

range calculate numerical
1 i

the steady and time-dependent boundary layer equations for, the flow

I
over a non-rotating flat disk. Certain interesting flow features

are obtained, and we shall make further comment on their results
\

in a later section.

!
9

One important point which needs to .be investigated if possible
I

when discussing the momentum integral method of S, is the actual
9

■validity of using Ekman velocity profiles over the entire radial

! extent of the flow. This assumption is made on the grounds thatI
\
Ekman profiles with appropriate scaling factors, provide perhaps*'

V

*

the only physically realistic model of the vertical structure in \
>

the boundary layer of constant eddy viscosity, accompanied by the
• n »

relative simplicity of the mathematical treatment which follows.
(

However, it would appear that this is still the principal objection
I

raised by various workers in the field, who feel that one should
/ •

J

attempt solutions to the problem which provide more information than
•

~

the radial scales of the motion obtained by the momentum integral
fc |

\

\

\
\

r



method. Accordingly, we have attempted "by means of a perturbation .

*

analysis of the equations of motion for significantly different
>

*

• V •

outer flows, to verify whether or not Ekman profiles are indeed
• ►

» ;

a good assumption, at least in the outer radial regions of the
H •

hurricane system. Finally, we also consider slightly different
#

■
' *

. -
•

,

formulations of the momentum integral method, which can arise-when
* . •

« i

■the nature of the boundary'layer equations derived in S are

investigated at the ground. « • .

Since .we shall be considering a number of different approaches
1 ' -

» * » •

to the problem.in'this chapter, we shall.present firstly the discussion
'

and theory relevant to these methods in Various sections* and then
• w

finally present collectively the results

in a single section. - • w 9

• 4

4 9

• * I

!• | »

< 4

\

2.
4

The boundary layer equations

To describe the motion in the surface boundary layer of a hurricane

we define a cylindrical coordinate system (R, 0, Z) fixed in the frame
* 4

• ♦

4

of the rotating earth, , with corresponding velocity components (U,V,W).
4 4

earth
• •

constant and the flow in the boundary
* 0

is steady and axisymmetric, being-driven from above by a steady, two-

vortex assumptions, the full

boundary layer momentum equations, valid except for smaill values of
0

the radius, have the following form in the rotating reference frame



2 2

e SO 3U Vtx " T
3R 3Z R

% (I

1
■ 2

+ -f(V_ - V) = K-^4 ,
^ 3Z

2

= K2-? ,

3Z

»

together with the equation of continuity,
f

4

i

i 1=. (RUy + m.
R 3R ^ * 3Z

= 0.

As is well- known, these equations are derived from the Navier-Stokes

equations in a rotating frame,under the assumption, that

3
2

3R

13.
R 3R

3
2

3Z

and that the "pressure P is transmitted unchanged from the outer flow
m

•

across the extent of the boundary layer. Here, the outer flow

various forms of which will be discussed is represented by

V (R) and K is the constant coefficient of eddy viscosity.
gr

At large values of the radius we expect the flow to be approximately
■S,

geostrophic; that is, the magnitude of inertial forces is negligible
i

compared with the Coriolis and pressure-gradient forces, or alternatively
ft

A

*

the Rossby. number is effectively zero. We can therefore fix a radial
• •

scale R , the 'geostrophic radius' of the order of 1000 km, at which V
g «

has the value V . The value of R is chosen such that the local
g g

Rossby number is sufficiently small for the Ekman, solution to be a

actual there. The

natural vertical scale at R is the Ekman thickness Z . = (K/f) .
g g

c *

ft

If we now non-dimensionalise the variables as 'follows:

V =V v , U=V u , V=V v , R=R r ., Z=Z z
gr g gr g ' g g g

*
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and W = (V Z /R )v, where the scaling for W can he seen to arise in
8 8 8

a natural manner from the equation of continuity, the above equations

assume the for:

2
2 2

V — V
_ , 3u L 3u L gr \ ^ / \ d u /0\Bo (u ^ + w -JJ + —as-j ) + (t - t) = -T , (2)

3z

2
_ , 3v ^ 3v L uv » 3 vEc,<u37'fw3i' + 7")4'u 2 »

dz
(3)

1 3 / v . 3w7a7(ru) + 77 o , (it)

where Ro = V_/(fR_) is a Rossby number defined by the scales at the6. ,6 v

geostrophic radius.

As representative vertical boundary conditions, we,apply no-slip

conditions at the earth's surface and match the flow at the top of
« " • '

•

t

the boundary layer to the outer flow. That- is
«

*

• t,

Z=0 2 U=V = W=0
/

3u 3v .

z=<» ; u=o,v=v , w=w , t— = -r— = 0' gr' gr' 3z • 3z

(5)

4 4

9

In the following chapter, we shall show that these boundary, conditions.
i, • •• " « ,

can "be relaxed to provide a more realistic termination of the

boundary"layer at the ground.or sea surface. Also, the boundary
*

• •
'

• • 4 * '

4 • " '
conditions at infinity- are clearly not all independent, the zero

» • " ' * »

( M

» C. "
,

stress, situation (3u/3z = .3v/3z = 0) arising automatically, since

»

4 4

u and v are independent of z there.
• ► «. • <

The two. momentum equations above can be modified to a forfb

e •

9

more suitable for approximate integral treatments, by adding each to
'

. «/ o - *
• • • • g •"

the continuity equation (U) multiplied by' Ro.u and Ro.v respectively,



to obtain
2

i o Ro ^ — (ru ) + (uw) +
r 3r 9z

2
2

+ (v - v) = **4r ,(6)gr 3z

Ro I -2 33r (r2uv) + Iz (vw) J + u

— ^ * 2
3 v

,(7)
3z

2.1'- The Ekman solution

This veil known exact solution of-the equations of motion applies
*

for conditions of (approximate) geostrophy; that is, the. Rosshy

equations (2) and Using the
>

boundary conditions (5)» we obtain the solution
0

, v / -z/i^2, . z(u,v) = (-e sin
n ■-z//2 z1-e ■ cos

/s
).

&

In solving the boundary layer equations, we shall employ the Ekman
0

fl

%

solution as the outer boundary condition at r=l, the geostrophic
\1

radius.

The vertical velocity at the top of the boundary layer can be

readily obtained by -vertically integrating the equation of continuity
4

*
«

(U) to obtain \
w

we(r) w(r,'<*>) = -
1 d
r dr (r/ u dz),

w

which, when the above Ekman profile for u is substituted, leads to
(f

w =
e

1 d (rv )
SZr dr gr

V

X (8)

{/' of

xt-

\
\
%



1

This'expression states'that the upflow is proportional to the relative

vorticity of the outer flow. Physically we have the situation that

if the outer flow is cyclonic, say, the vertical component of vorticity
« •

•
.

above the boundary layer is greater than f, the local background

vorticity. However, because of the no slip boundary condition, this
• •

value is reduced to f at z=o, and hence vorticity is being diffused

into the ground. 'Yet if the flow is steady, this diffusion must
'

I

necessarily be compensated for by stretching of the vortex lines in
-

,

the boundary layer through the vertical upflow velocity given above.

\

2.2 Solution for large z

A further solution to equations (2) and (3) has been^obtained

by Carrier et at, (1971), who considered the asymptotic behaviour

for large z.
\

A /

If we let z-*», then umi , (v -v)->v and w-Kw +w), where all'gr gr

quantities denoted by ( ) are assumed small with respect to unity and
* »

w ^(r) = w(r,«°) is of order unity. On linearising equations (2) and

( 3), we obtain

Ro(w ■ + fie ; j +; .. =i!u,gr 3z r ' ■^ 9
3z

2*A
uv

„ 5v gr \ * _—- a VRo^u v - w — + ' j + u r ,
gr gr 3z r

where the dash denotes differentiation with respect to r. To simplify,
« •

A A

substitute p = ru, q = rv, e = Ro w , d = 1+2 Ro v /r and
gr gr'

I ^

3 = l+Ro(rv ) to obtain from the above two equations
gr . -
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e + aq. = r-$ »dz
3z

2

3z

Eliminating q, say, yields, the characteristic equation
2 2

X (X-e) * + y = 0,

■with y .= oi0, which has the solutions

X =
± Je ■ ±Ui±Ui/y

2

If the small quantity e of order Ro is neglected with respect to
k

y,we have X = - y and the resulting boundary .layer profiles c a

are of the general form e
-Xz (cos Xz, sin Xz), leading to a boundary
■ #

layer thickness scale (at targe z) of

\ ^x ="T
v ■Mi

Ro v

1 + 2 M. 1 + Ro
(r v )

i

(9)

#

This is equivalent to the result deduced by Carrier et dl. whose

expression'for p with different scaling (see Section U) is
¥

\

VI = (l + -)(l + ¥ ).
X I X

\

3.
9

The momentum integral method

As stated earlier, the particular momentum integral method which
|

will be considered here, was introduced by Smith (1968) - denoted by

S - in order to provide a relatively simple but also physically

realistic method of determining the scales of flow within the hurricane

. >
N
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»

boundary layer, "by taking into consideration all the nonlinear terms.

This is accomplished hy assuming that for the purposes of determining
0

the overall scales of the motion, the vertical structure of the
horizontal velocity components in the boundary layer can be represented

with sufficient accuracy by suitably scaled Ekman profiles.
'

« %

If we neglect' the influence of the small inertial effects at the
0

• # >

geostrophic radius (r=l), the exact velocity profiles there are the ■

lan profiles of Section 2.1. where, in the non-dimensional of the
* •

equations, v2 is the vertical scale thickness of the boundary.layer.
I « «

• *

At values of the radius smaller than unity, we might expect that-.* ■ • \4 %

because of the increasingly important contribution from the inertial
9 0

v

terms, this scaie height of i/jfwill change, and also that the Ekman
» 0

/

#
a a

suction will differ' from that of the classical relationship (8).•
* * *

•.

• • i »

Because of this, the scale of the radial inflow velocity will differ
0

• from its geostrophic value of unity*- whereas-on the other hand, it is

reasonable to assume•that the swirl velocity in the boundary layer
• • 4 •

' t

remains in scale with the imposed swirl v (r).
8r

%

In other words, we
• ♦

.can introduce a"boundary layer scale thickness 6(r) and an amplitude

coefficient E(r)i for the radial velocity component, with boundary
» •

■

,

conditions of 6=/2~ and E=1 at r=l to satisfy the (approximately)

0 0

» • 1

geostrophic flow which applies there. \

I* V

• •

The flow in hurricane boundary layers is characterised by a
9

9

horizontal/vertical length scale ratio of the order of a thousand,
A

in which case we can expect a slow variation of the boundary layer
*

scales with radius. In such situations., with a suitable choice
0 > I

of velocity profiles, the momentum integral method should provide
00

an adequate description of the overall quantitative characteristics
I 9

♦ %
ft 0

I 9

\
\
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9 9

I 6 '

of the motion. On the other hand, its value in the treatment of

the boundary layers of narrow vortices such as tornadoes (where-
%

the'horizontal and'vertical length scales are comparable), as for
4 9

♦ 9 ♦
0

instance by Rott and Lewellen (1966) and Chi et at. (1969) is
I |

'9 4

indeed questionable. The simplest profiles suggested are clearly
• 4

the Ekman profiles as used in S
0 0

♦ « 9

0 ♦

The use of this representation, particularly at small values.
» 9 9 9 .

I #

of the radius,has been questioned by a number of authors, yet it has
«

0 i

I

more to justify itself than mere mathematical convenience. Extensive
, #

easure:

laminar boundary layer associated with a concentrated draining vortex
*

. ' »

■ ' ' •

are shown to resemble very closely scaled Ekman profiles which are
1

t
9

also presented. Similar measurements • have been reported by Ying
0 »

0 0 •
^

and Chang (1970), except that the boundary layer is in this case

• 0

turbulent and has a similar structure to that obtained by Cham and
0

Head .(1969).. In the latter paper, the authors treat both ■
0

n 4

#

•theoretically and experimentally the case of a turbulent boundary
J

layer on a rotating disk. Their theory,, which is in fact a
• >

momentum integral treatment, shows close agreement with the experimental

results. The turbulent velocity profiles of Cham and Head differ
0

4

very little from those obtained by Smith (1969) or by the author in-'
9 9

9

the following chapter. In the latter work, the characteristics' of

the flow in the frictional sublayer near the ground are inco
9

9

by matching a logarithmic wind profile to an Ekman profile.
i t

p

numerical computations by Deardorff (1972) also appear to be

Extensive

consistent with the above view, but we shall defer any further
I

1

quantitative investigation of the validity of the method until
i

Section 6.



.In line with the above discussion, we now assume velocity
*

profiles in the boundary layer as in S, following Mack (1962), of

the for]

u(r,n)=v (r) E(r) f(n) ,
gr

o
(10)

v(r,n)=v (r) g(n) ,

M

I #

where n = z/6 and f and g are the Ekman profiles of Section 2.1:

f(n) = - e n sin n

g(n) = 1 - e n cos n

(11)
\

On substituting these profiles into equations (6) and (7),
I

4

integrating vertically across the boundary layer, and using the
| ♦

|

« I

boundary conditions (5)', we obtain the following pair of ordinary
• 1

\
differential equations for E and 6:

«>' II - Sgr + r V t
2.2., 2

Ro I (r v E
ST

f
^

r v

E f».(0),

I

r» 2 2 2
R° [(r V grE5) 1 14 " rVgr(rVgrE5) 'l5 J + r "V E5Is

2
r v \

s s'(°).
4

with the vertical velocity at the top of the boundary layer being
0

♦

obtained by integration of the continuity equation:

Is,
V •

%

\

\

\

\



The dash denotes ordinary differentiation with respect to r, while

the momentum integrals are

oo
2 00 2

ii = / f dn = | , l2 = / (i-g )dn = | 9

o 0

00 00

13 = / (l-g)dn = \ , i* = / fg dri = - I , }' (12)0*0

I = / f dri = - 1
5 o 2

The above three equations for E, 6 and w can be converted to
gr

a form more suitable for numerical treatment, where the dependent
2 2 . %

variables are E , E6 and w , namely.gr»

1
(E ) = - |j (rv ) - S2 v(rv) J -

2
Si S

E rv E \ v

2Sg 2(83+84)
+

^ ~ 'vT~7
v v E6

(13)

/ ^ \ * l' r / *1 * 1(E6 ) ■ = •' -^7 ^ (rv ) - 3 S2 v(rv) J1_
2

E6 rv

1 Si s5
+ =-v I +

E N r v

f|

3Sg S3 + 3S4
1 + V

v v ES
(1U)

I5 ( 2 f (i-S2) ^ , -1 )
V =-E6~rj S"+E6 [ — (")'-S6]J , (15)

^ •

with v = Ro v and
gr

g

J

I2 f (0)
S1 T7 » s2 " T _ T_ • S3 - "

♦ >

o

ii ' . 14 -i5 ' 3 ii
j • ♦) L

i3 -15

•1 9

®5~ T- > " T ■ — T _
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J *

The flexibility of this method permits immediate extension to

cases where K is a function of both r. and z and where the momentu]

• I |

integrals themselves are functions, of the radius, as well.as to'a
• i * • ,

•
.

I . ' • • y •

variety of vertical velocity profiles and surface boundary conditions.

|

A slight adjustment to the given values of E and 6 at r=l • .

« «
g

9 •

*(E=1, 6=v^2) must be calculated .to allow for the small but finite*

•=
. ' .•••.-

■

effect of ~ageostrophy. This is accomplished by requiring that the
I 1 « t '« 4

2 2
radial derivatives of E ■ and E5 in equations (1-3) and (lU) be zero

♦ , m

I

at r=l for a given outer flow v (r), and ensures subsequent stability
gr

g*
g • •

9 g

•of. the numerical integration,-the method us.ed being the familiar
» *9

9 g
►

«

*
•

Runge-Kutta-Gill routine.

g •

U. ■ The Galerkin method
I |

4 9

> »♦ I g

\ 4 4

As stated' in the • Introduction,• the use of the method of
A ♦

weighted residuals, or Galerkin's method, was suggested by Carrier
f 1

as an • improvement on momentum integral techniques for the hurricane
g

g

9

k
%

boundary layer problem, t The -mathematical development of the method
I

involves considerable work and we shall.merely outline the procedure,

« .

t Part of the motivation for their study was claimed to be the
unsatisfactory results, obtained by Anderson (1966) for flow in
a Ranque-Hilsch tube using the momentum integral method. However,
Anderson in fact claims (see e.g., xv and p. j6) that his use of the
momentum integral method provides a reasonably accurate description

g

of the overall flow characteristics when compared with the results
obtained from full finite-difference calculations.

t M

\

\
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vl

.details of which can be found in the thesis of George (1970). It

would be possible to derive Galerkin equations analogous to those

obtained by George from (6) and (7)» but for convenience we shall
■ 1

adopt his scaling. Here the following non-dimensional variables
0 •

/

are introduced:

RV
Y = ^ =

RV
¥

o

* =
RU

*o '

w =
W

(Kf)
T
S

X

2

R_f
2¥

where V is a characteristic dimensional circulation
o

flow, for example = Rj V (R^) where Ri is the radius of maximu]
i

• •

swirl velocity. In this non-dimensional form, the boundary layer
• K

equations equation of continuity

4>4> + w<|> + 77YYx Yz 2x

2 2 2
(¥'■ * - * ) + (V - t|>) = zz

(16)
S f

M + W</> + <|>
JV «

A

$ »Yzz * (17)

+ w♦x ■ -z - - ,
= 0 (18)

with subscripts denoting partial differentiation.
A

An unusual feature of this particular scaling is that it
0

results in all terms in the equations being of order one, in contrast

with the for equations (2) and (3) Where the importance

the Rossby number is apparent, and which also suggests a perturbation
4

w

scheme with Ro as the expansion parameter. Furthermore, the use
ir

of the.variable 'x' as the new radial coordinate effectively



concentrates.the new coordinate system near the origin. From the
•

. • ' • '
• • , ' • • • •

numerical point of view, this increases the possibility .of '
ft t

ft ft)

• ft

» 9

instabilities developing, since it is near the origin that the radial

gradients of the governing terms in the equations are

The Galerkin method involves basically the expansion of the

unknown functions <j>(r,z) and ij/(r,z) in terms of a complete orthonormal
• ft

»

ft

J
%

set of functions. The properties of these base functions are then
I 0 9 III

>

< •
• ft

used to reduce the original partial differential equations, to a set .

ft ft

• *4

of coupled ordinary differential equations. The'method has been
4 »

used by several authors to treat boundary layer problems, for

instance Finlayson and Scriven ,(1966), Bethel (1968) and MacDonald
ft

(1970), all of whom have emphasized the importance of - a judicious
choice of base functions.

s

Following George, we let

«ji = Z an(x) a>n(x,z),
n=l

V

i|i = v[l-e cos A(x)z}+ i|>
f

(19a)

where iJi = fL b (x) u (x,z) ,n=l n n

and from the continuity equation (18),

w(z) = -

z

/ a (x)w (x,c)d5i n=l n. n *
o

imations

terms at which the series are judged to have converged. In order
ft

4

to satisfy the boundary conditions at z=o and the limiting conditions
v

0 >

(5) as z-*», as well as to be consistent with the physical situation,

the following set of base functions was proposed by George:

ft
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*

0)n(x,z) = Z g^ e sin [kx(x)z], (n=l,2,...,N)
k=l

(19b)
the normalising condition "being

u.oo H 6
, n mn

oj oj dz =
n X(x)

vhere 6 is the Kronecker delta and the normalising

gn1c and Hr are given by George (1970).

t

ft

The function X(x) has been earlier introduced in Section 2.2,
ft

I
ft

where it was obtained as the asymptotic scale height of the boundary
* ft

layer, for large z. Dergarabedian and Fendell (1972b) in fact
*

ft

suggest the two possible forms,

X = [p(x)] 2 (p=o or 1) ' (19c)

in the expression for the base functions. With p=o, we have the

simple Ekman case in which the scale height is /2t while for p=l,

for the type of outer flows we shall be considering (see Section'. 7)»
♦

the effect is to reduce this scale height as x+0. ■ In other words,

George's method involves specifying a priori a particular form of
ft

the boundary layer thickness, this form being obtained from a
ft

linearised analysis of the equations of motion for large z, and

dependent only upon the characteristics of the outer flow, without
0

reference to the equations themselves. On the contrary, we can
#

% 4 V

expect this approach to have limited applicability, since it is

the inertial terms in the boundary layer equations which will be
0 0

0

the dominating effect at small values of the radius.

The physical meaning of the particular expansions above, used
.4

%

V »
ft

S
♦



f

by George for the functions <j> and can now be seen. Firstly, the
*

function ip provides a measure of the variation of the azimuthal
«

velocity component from the Ekman form; <j> and ip are expressed as

weighted combinations of Ekman-like profiles, the scale heights of
ll

which have been predetermined as /F/(nu ) (n=0,l,2,...; p=0 or l)
*

By contrast, in the momentum integral method of S, the azimuthal
f

velocity component is assumed to be Ekman-like; that is, =0.
9

Furthermore, even if this assumption is made here, it appears to be
*

impossible to introduce the analogous concept of a combination of

boundary layer thicknesses, to'be determined from the equations, since

the Galerkin method depends upon the linear for] expansions
T

for <|> and in terms of .the .unknown coefficients a and b • . .
n n

•>

These simple observations suggest that difficulties may arise

in the computations, but for the present we shall discuss the remaining
<

details in the development of the method. Further consideration of

the choice "of profiles, is deferred until Section 6.
9 t

» »

V

The two boundary layer equations (l6) and (17) can be written
9 9

•in the'shorthand .'.form L. (<p,tp,w. ; x,z)=0, with i=l or 2.•1
The

• S 9 0

principle of the Galerkin technique is to minimise the residuals .

i

obtained when the. series for <|> and !p are substituted into the •
4

• * •

equations; this can be shown to be equivalent to requiring
* •

4 9

w * •

/ LUjipjW,; x,z) wn(x,z),dz = 0, (i=l,2; n=l,2,...,W) -

'
4

with the properties of the orthonormal base functions co being

used to simplify the 2N equations obtained. The resulting details.

are comparatively straightforward, but involve extremely large amounts



manipulation final set of ordinary differential

equations derived by George (1970) for the coefficients afl and bR
is, in matrix form,

Pa = U, Qb = V - Ra , (20)

where the dot denotes differentation with respect to x, a and b are

column vectors of length N representing the unknown aR and bn» Two

typical are

(15)
PD = a.'E. 03a i ia3

(1) (16) (2)
u

3
= -X a. E_. - -r a.a. E. .„ + — (a.a.+b.b.) E..X ij ij3 2x i j lj " "i 3i ij3

(8)\W «/ (T) w y/ *(l) W
+ (1 + x)b8H8 " x bi EiS " (1 + x>2 E61+ ES

where the Einstein summation convention has been employed.* The

E-quantities are detailed in George's thesis, a typical example being

(2) n

E
mnp

= 2 tk
i=l

P ■.(2)
E g . E g,. T.... ,

0-1 110 k-1 T* Jlk
where

(2) 00

T
nip

e (n+Z+p)c •sin n£ sin It, sin p? d?

V

*There is a slight error in the form of UQ in George's thesis, where3 9- / O \(8)
V (8) 9 9

9

the term involving Eg has been written as Eg instead of as above.
9

However a number of numerical.calculations with various outer flows

have shown that the- effect of the error in this term is minimal..
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1
8

+n-I- p-n+Z ■ ptn-Z 1

_p +n +Z~+2pn p +n +Z +2pZ p +n +Z2+2nZ p+n+l

The numerical solution of the above equations, given a particular
•

«

outer flow V(x) is in many respects similar to-that used in the

momentum integral method. At the 'outer edge' of the vortex, Ekman

flow specifies the boundary conditions, i.e., aj = - V and a =b =0r 8
t

(r>l, s>.l). As;-.in the momentum integral"method, these values must be

adjusted slightly to allow for small ageostrophic effects and the~
a

I

equations are then integrated radially inwards by a. Runge-Kutta-Gill

routine.
\

5.' Other approaches to the proble: 1

}

Mthough.it is our*intention to concentrate on the two methods
i

outlined in Sections 3 and k9 there.are a number of different approaches
i .

*

which have been pursued in the literature, and we shall comment
%

i

briefly on two'of the more, notable of these, as well as show how

application of a constraint on the.momentum integral equations of S,

can lead to a slightly different formulation of the problem.

5.1 The work of Stewartson et al. *

In two. papers by Stewartson, Belcher and Burggraf (Burggraf
*

et al. 1971i Belcher et al. 1972), a different line of approach
4

9

from that of previously mentioned work is adopted, with only general

inferences being drawn about applicability to hurricane—like .

flows. These authors investigate the flow in the viscous boundary
4

'

layer of a flat disk, above-which.is imposed an outer* circulation.

\
\

\
\
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The method involves transforming the boundary layer equations to a
•

«

9

new coordinate system, based on.certain similarity solutions which
I 4

4 •
4 f

had been previously obtained, and a full finite-difference treatment
l I

*

of the resulting equations.is then used to determine the flow * ♦

4 9

M

structure under the vortex. The 'generalised vortex' which they
♦

.employ to represent the outer flow, has the swirl velocity V
4 0

4 9

4 4

A A j ■

proportional.to a power"of the.radius; specifically, V(r)=r . .
'

' ' ■

The first .paper deals with the steady potential vortex (n=l),■
i 4

t

» 1 1 '
» e *

» • ,

while in the second, four values of n in the range |n|<l, (n=-l,0,£,l)
4

are investigated. Except-for the potential vortex, where the flow
c • •

direction is everywhere inwards,, flow reversal is experienced within
•

. ♦ »
*

✓

the boundary.layer, and to cope with this, a,time-dependent approach •

necessary in order to overcome the numerical difficulties

• l| ,

m 4

In the case
t »

and

9

unusual features are revealed. For small radius, a two-level
I
%

boundary layer structure is apparent. The inner layer, whose

thickness is proportional to r, is dominated by viscosity. At

the outer edge of this layer, in the limit r-K), the radial inflow
9

4 4 9 9

velocity u, is equal to V, while the azimuthal velocity remains
« 4

4 i
1

small. Above this inner layer, the flow is effectively inviscid, '
• •

.

with v adjusting to the flow.in the outer vortex and u tending

rapidly to zero. This two-level structure means that for the
9

4

potential vortex, there is no similarity solution valid at small r.
A

ft

For the. cases of n=-l (solid body rotation) and n=0 (V=l) it is
#

found that the boundary layer has a single thickness, in line with

successful similarity solutions which have been previously obtained.

I

c
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In fact, it is proposed in the second paper, that there is a number

n =0.1217, such that similarity solutions exist only if n<n.. When
o o

n=i, the boundary layer exhibits a most unusual extension of the

potential vortex behaviour, consisting of an infinite number of
#

9

inviscid layers, each pair of vhich is separated by a comparatively

thin shear layer in which viscous effects are important. Furthermore,
0

in the outer regions of the boundary layer, the radial velocity

very ground

shape of the profiles is largely" independent of r. This clearly
%

suggests the influence of the particular.form of the outer flow on
\

\

the resulting boundary layer velocity profiles, and is relevant to

our discussion of Section 6.

/
/

It is evident that a considerable number of interesting and
0

relevant results have emerged from these two papers. However, in
9

.

attempting to assess this work within the context of hurricane

boundary layers, it should be noted (i) that the motion is in a
I ' v

non-rotating frame, (ii) that it is clearly an oversimplification

to represent a hurricane vortex by a simple flow such as V=r
-n

and (iii) that their solutions are started at the edge of the disk
»

(r=l) from similarity profiles derived previously by Stewartson and
4 9

not from Ekman profiles. Therefore, notwithstanding the value
t

. *

of-the results obtained, one should be.cautious in interpreting
0

9

the flows as being of direct geophysical interest.

I 9

/
9 t

W

5.2 • The'modified Oseen method
9 »

li
% 9

► 4

4 ♦

ft 9

Shortly after the .appearance of • the paper by Carrier et at, (1971)
9

& 4 I
4 ' 4 9

r \ \

9

9

•. y •. •
. \



in which the Galerkin technique was presented, a further two works ■
•

%

9

were published by Carrier (l971a,b), in which a new method was
0

introduced. In the opinion of Carrier, the Galerkin method of

George (1970) is considered unsatisfactory except for large radius,

the principal reason being that for small radiusi the base functions

used by George are unable to resolve the type of structure found by

Stewartson et at., discussed' above in Section 5.1 (see Dergarabedian

and Fendell 1972a,b, for a. more detailed version .of this criticism).
%

»

4

In Section U above, we also express the opinion that the Galerkin
■

• i ♦

ethod is suitable only for. large, radius - in our view however it
\

is the method itself and apt the particular profiles used which
*

0

account for this, since there is no possible way in which the relevant

boundary layer thickness scale can be predicted.
I

I

/■
/

In Carrier (1971a) the modified Oseen method is presented for
- . \

two .very simple swirl'profiles above the boundary layer. The method
>

* *

has the advantage that it involves very little"computational effort,
' « _

at. least for the outer flows discussed by Carrier. McWilliams (i97l)
0 0

\

is reported to have extended the. method to a wider yange of outer flows,
t

I

but to date we have been unable to procure a copy of his work. Basically,

the method involves neglecting the vertical convective terms in th

3u
boundary layer equations; for instance, the term wr— is assumed

dZ
0

negligible with respect to uf^. The remaining inertial terms are
* or

then linearised in the manner of Oseen's method (see Carrier 1965
0

0

/
for a more detailed'account).,

-
'

* t

0

The assumptions made by Carrier are indeed rather far reaching

if they were to apply to.hurricane boundary layers in general, as is
* «

#

suggested. However, a simple dimensional analysis via the continuity

• ' \
•

.

\

%



equation, casts considerable doubt on the validity of.such an

approach, since the terms- and ur^ can be shown9z 3r

order of magnitude. We have also performed a simple calculation

to be discussed in Section 7» which we believe shows clearly that

these two convective terms are of the same order of magnitude for the
9

entire radial extent' of the boundary•layer. Carrier (1971b) also

describes a time-dependent formulation for' the boundary layer of a
I

developing hurricane; see Introduction.

5.3 Variations on the momentum integral method
%

\

In this section we shall "be investigating certain features of
9

the momentum integral method of S which we feel are worthy of

/attention. The problem arises when we investigate the behaviour
*

of the boundary layer equations (2) and (3) at z=0, when the velocity
\

profiles (10) are substituted for u and v. At z=0, we'have

u=v=w=0, f"(0).= 2 and g"(0) = 0. Equation (3) can be seen to-be

satisfied identically, whereas from equation (2) we obtain
2

v v E
Ro + V

gr 6 f"(0)

Thus it -would appear that for the- radial velocity profile to be

compatible with the' radial totion, at least at z=0, we

require

E =
6

2 l

V

2 (l + Ro ). (21)

Clearly-this relationship now reduces'the number of parameters from

two to one, whereas we still have .the two boundary layer equations

(2) and (3). This

\
\ \

•
•



- 32 -

•but firstly we shall proceed with the present situation.

ilar example of this type of over-rspecification arises in
|

»

integrated equations for plume models (Morton 1971)» and the same

type of behaviour has been reported by Mack (1963) for boundary layer

flow over a flat disk. In a sense it can be considered as arising

from the assumption of separable solutions (10) without any real

athematieal justification, the main motivation for the momentui
4

integral method being its relative simplicity,' while the integrated
»

velocity profiles are meant to provide a physically realistic, not
• '

4

an exact description of the scales of motion. One of thevobjections
fr '

raised by Carrier (personal communication) to the momentum.integral

method of.. S (as well as to the Galerkin method) was that the maximum

radial inflow velocity it orediets at certain

swirl velocity above the boundary•layer, a situation which he
\

believed to be'physically unrealistic. In this context however, it
4

is interesting to note that in. the limit r->0, an asymptotic solution

obtained by Belcher et al. .(1972) for the case V=r , does in fact
1 #

permit the magnitude of u to exceed V. In the light of the relationship
« ►

(21) one is led to believe that the original formulation of S may well •
4

be too loosely constrained,- allowing the development of excessive
• *

V P

radial velocities.
4 »

i 4

#•

k •

« I

« * •
4 ,

At this stage we shall merely develop the modified momentum
•

,

*. *
integral'equations, and reserve any conclusions for Sections 7 and 8.

a

k

✓

u(r,n) =

a, by way of equation•(21) above,
,

6 -v • / v
gr / . •_ 1 : 1 \ \

2
1 + Ro ) • ■

% *

» •

v(r,.n) '= v r g(n).gr

(22)
4

♦ 4

I f 4 •

I %
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Since E is now a function of 6, the relationship (21) having been

obtained from the radial momentTim equation (2), we employ the

azimuthal equation to solve for 6. As in Section 3, we substitute

the profiles (22) into equation (7) and integrate across the boundary

layer from z=0 to ». boundary conditions (5) and

values of the' integrals (12), the following equations for 6 and w
« •

are obtained:

gr

d6
• dr

3RoF6 X

*

•» (23)

w
gr

1 (rfi3x)'Ur (2k)
\

I

where X=(l+Ro v /r) and r=r v is the dimensionliss circulation of
gr gr j

the outer flow. Equation (23) is" of the form 6. =r(r,6) and hence
* 4

9

as before, it can be solved numerically by the Runge-Kutta-Gill routine,

subject to the/boundary conditions of 5 « /2 at r = 1. '
/

In the above discussion, the number-of parameters is effectively

reduced from two to one. A different approach .can be made however,

by introducing distinct boundary layer thickness scales for the
I 1 ^ ^ ^ •

radial and azimuthal velocity profiles. Cooke (1952)"has adopted

this method for solving the flow in a vortex chamber, while in the
4

present context, at least some support is lent by the work of

Stewartson et at., cited in Section 5.1, who observe such a two-level

behaviour in certain of their numerical solutions. .The concept
9

» »

has also been employed by MacDonald (1966) to obtain entry profiles
\

in a rotating pipe. In the present case, application of the
i

compatibility condition (21) results in two jfarameters to be calculated

from the two integrated equations of motion. As boundary layer

\

\
* *
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profiles, we now have

u(r,z) = vgt(r)E(r)f(-|) ,

v(r,z) = ▼ (r)g(^) ,

where 6(r) and A(r) are the radial and azimuthal boundary

thicknesses respectively. From (2l), we can write
; 2

6 v v

u(r,n) = —2^" (l+Rcr-^-) f (n) ,

(25)

v(r.,.£) = vsrs(i)
where rt-z/S and £=z/A. The velocity profiles f and g are those

*

used previously, hut with their respective vertical scalings, namely

! f(n) = -e n sin n ,

g(0 - l-e ? cos £.
\

For convenience, we introduce the parameter ic(r), defined by 6=kA,
k

and therefore 5=<n, the azimuthal velocity profile being written now

4

v(r ,n ,k) = v g(i<n).
S1 (25')

Thus the momentum integrals involving g are functions of k:
2

T ■ _ 1 T 5_ 1_ T _ K(1+ic+IC ) T _ 1.
, I, - 8 . I, - 8k . I, - 2k . I, " ^ • x« " 2 •

which, as they must, reduce to those of S - equation (12) -when

k=1, i.e., A=6.

m

Using the values of these intergrals, we obtain'the following

two simultaneous momentum integral equations for 6 and <:

• |

*

%
*

ft

*

4
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dfi
dr
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•
-. v • .

• •
* -

[MkX-1)-5Ro v
if 2 2,

<6 Ro(rv X )

5K 6 Ro r v X
gr

= F(r,6,<), (26)

3
d<

_ 6 Ro
dr

<5 RorXP
(27)

t 9

where

♦ =
1

(l+(c)(l+K )

2 2 ■ 2
, P = (1+2k+3ic )/♦ ,ij;=(l-K(l+»c+K ))/<(>'

I 9

4 •

Here, w, is calculated dgain from equation (2l+).
gr

Runge

boundary conditions at r=l, of 6=/2
• k=1, that is, equal boundary layer thicknesses-at the geostrophic

^radius, consistent with the Ekman flow assumed. I

/

6. Examination of boundary layer -profiles

In this section, we shall attempt to, assess the validity of
b

I 1

assuming Ekman velocity profiles for the vertical structure of the
\

boundary layer, in momentum integral calculations. In effect, what
I

1

we' are concerned with here is an investigation of the basic formulation
■

«

, of such momentum integral methods, using the idealised situation of
1 t

day ian For, this
\

case we obtain a regular perturbation solution in the region of low
4

Rossby number, that is, in the outer radial regions of the flow. In

spite of the fact that normal .hurricane boundary layers progress

through .regions of small, order one and finally large Rossby numbers
9

as we advance radially inwards, it is felt nevertheless, that
I

*

•considerable information can be obtained from the present approach.

\
*



In Chapter 2 we go on to extend the momentum integral method

to one using velocity profiles which are believed provide a more

realistic representation of the flow structure, than.the case of
ft

constant eddy viscosity envisaged here. But "before doing this,
ft

*

it is clearly advantageous to investigate just how well the method
C

can cope with the.present more simple situation.

6.1 Possible effect of outer flow on profiles

We have noted earlier that a number of authors have had

m

misgivings about the use of Ekman profiles in S, and indeed the

following simple example, although necessarily speculative) "should

serve to illustrate that even in regions of low Rossby numbers

/
expect the Ekman

the velocity profiles may well be affected to a marked extent by

the properties,of the outer flow.
•a

Consider the situation as illustrated in the sketch below,

in which we have a dimensionless outer (inviscid) flow V=V(r),
• \ * • . ■

»
4

4

arising from the balance between the radial pressure-gradient' and
*•

t 9

the centrifugal (and Coriolis in a rotating frame) forces.
*• • a

9

9
9

Disruption of this balance by the'no slip condition at the ground

motion in the surface'boundary
a a

and

• «

(r2>rl) as shown, above the effective region-of influence of the
49

4

boundary layer.

• •

1
• I

• \
-

I



zA
Outer flow

V=V(r)

Surface
0

boundary •

layer

rl r2

The respective circulations ,of these parcels are Tj(rj)=riVi(rj)
/

9

and r2(r2)=r2V2(r2). In the hurricane boundary layer context it is

reasonable to expect that under Ekman suctionV~parcel--2 .could be

drawn, into the boundary layer and thence transported inward to

radial
ft . ft

If we assume for the moment that it ,is only

the outer, effectively invis'cid region of the boundary layer which
/
is affected by this process, then angular momentum is approximately

^ •

•conserved, very, little being lost to^ the boundary by viscous
' /

dissipation. Thus )=r2(r2), or alternatively, V2(ri)=r2V2(r2)/ri
i

1 2
The outward centrifigal acceleration on 1 is Bj = Vl (r^)/r^, which

t

under balance conditions, equals the negative radial pressure gradient.
0

0

*

The outwards acceleration on 2 at ri is
>

B2 =
ri

2 2

r2 V2 (r2)
3

*1
\

\and this leads therefore to the following possible cases, first
>

derived by Rayleigh (1916): • „

/
4 «

t

w *

2 2
Stable 2 tends to return to r2 if 02 > 01 J i.e., r2 > Tj ;

2 2
Neutral-; 2 tends to remain at rj if 02 = 0i ; i've;■\ Fj2 = Tj ;

2 2
Unstable:. 2 tends to accelerate inward if 02 < 0i ; i.e., f2 < f2
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# • > P t
| ♦ • |

example
2

with r, and if V>0, this is equivalent to T >0. In a rotating frame,

and treasured

frames respectively. Hence

r(r) = rV
2

T f
= rV + ,

4

I

and to model the various types of outer flow.we set (rV) =e, a

small number

respective cases of stability, neutrality arid instability. If as
*

in previous sections, we scale velocity .such that V(l)=l, this
\

leads to the outer flow

4

V(r) = e- +
l-e+f/2

_ _rf
2 (28)

— 5
Since .f is taken to be 5x10 , the actual difference between the

I#

V profiles in the rotating and non-rotating frames is negligible.
/

<

Physically, what' we might anticipate on the basis of the Rayleigh

criterion, is that in the case of stability (e>0), say, the fluid

particles experience a restoring force, acting against the overall
s

V

tendency of inward radial .-motion in the boundary, layer. Accordingly,
4 »

it is conceivable that the velocity profiles may become distorted

to the extent that Ekman profiles will in fact be a poor representation

of the actual vertical structure,of the boundary layer flow. Further
>

*

support to this simple contention is given by the results of Belcher
4

et at. (1972) discussed in Section 5.1. Their generalised vortices,

except for the potential vortex which has neutral stability, are all
*

« 1

stable outer flows, and the radial velocity profiles exhibit often
•

.

I

considerable overshoots. These occur however, only in the outer

\
%
4
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region of the boundary layer, the flow near the ground appearing
J

4

to be effectively insensitive to the form of the imposed vortex.

It is the investigation of the possibility of this type of

behaviour, which may have an important bearing on the range of
4

✓

applicability of momentum integral methods, that will concern

us subsequently in this section.

It must be stressed here, that we are looking to the momentum
Q

integral method to provide realistic overall scales of the motion

in the hurricane boundary layer, namely for the radial inflow
0

velocity and the boundary layer thickness; nowhere is it asserted

that these Ekman profiles reproduce the flow details with any

great accuracy. Indeed, both from the results of Belcher et al.
4

*

0
I

(1972) and the heuristic reasoning associated with the Rayleigh
0

stability criterion, it may well be rather unrealistic to do so.
9 %

6.2 The perturbation equations

• .

We use here the scaling of Section 2, which immediately
9

transforms the boundary layer equations to a form suitable fpr a
94

expansion boundary layer equations

together-with the continuity equation are, from Section 2,

■Ro
3u
3r

4 •

. • • 3u+ W3? ♦^ ,+ <V-T>
2

9 u

3z

Ro
3v
3r-

+ w jhr
3z

+
uv

2
3 v

3z
|i

1 3/ \ 3w— —(ru)-+ -r—
r 3r . 3z

= 0,

v

I

*
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4
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flow
♦ t

The velocity components are
'

. » V •

expanded in a power .series of the (small) Rosshy.number Ro^ as'
* |

4 I

u = (u,v,w) = u + Ro-Uj' + ... (29)

On substituting for u in the'above equations and equating terms
t

with equal powers of Ro, a system of regular perturbation equations

is obtained. The zeroth order equations are clearly those for
♦

zero Rossby number, in other words, the Ekman equations:

V v

2
3 uo
3z

u

2
3 v

o
—T~ »

3z

where the boundary conditions are

V

\

u = V
o

= o,
c9

z—<» u = 0, vQ = V.

The solution for uQ and vq is well known, and has been already
11

discussed in Section 2.1. To obtain it, we set W « u +iv and9
0 0 0.

2
W =U+iV=iV, where i =-1 and U, the radial component of the outer

S
9

flow, is zero. The solution obtained, which satisfies the above

boundary conditions, is

W = iV ^1-
/1+ix)z
/2

or uq = Vf(e), vq = Vg(e), where f and g are the Ekman profiles
(11):

f(c) - -e ? sin X ,

g(?) = l-e~* cos X ,

6



Ul •

ft

//2. Also by integration

zeroth order continuity equation, we find
I

w - - Jz p (c) ,
o r o * *

1
where Fq = - — (g-f). Therefore, we have the familiar Ekman
result boundary

/ \ (rV)
v (r,») = A-J-

v2r

equations, obtained by equating

of Ro, are

2
3 Uj

• 3z
+ VI = V ,

4

/ 2
3 v2

3z

- U! = " U ,

\

where

' 3v 3v u v
o • o o o

- U = u -r—- + w -r—- +
o o 9r O OZ

2 2
i 3u 3u V -v1 o o o

V = u —— + w -— +
o o 3r o 3z r

and the boundary conditions are
4

\

ul = vi = 0 at z=0 and as z-x*»;

ft

The solution is obtained in an identical manner to the zero order

case, - and we arrive at

Wi = ui + ivi
f 0

U + rr ,(c)l + i ("v - V
or I or [i-*u)]].

\

>



where from above, it can be shown that

fS + \ (s-f)k
V

2
i

V 2
f + (e-f)f + fd-g )

the dot denoting differentiation with respect to For later

convenience, we express the first order expansions as

U' = Uq + Rojix = Vf^(s),

v = vQ + Ro.V! = Vg#(e),

where it is clear that
\

/

f„ = f + Ro
V

*
(rV)

+
2 (S"f) g] j

I

.g* = g + Ro j v'f2 + (g-f)f + ? g(l-g)

!

(30)

\

The expansion (29) is valid for small Rossby numbers only, and

hence we need to ensure that the local Rossby number, equal to RoV/r,
lb

ft

i

remains small.- The typical• value assumed here for Ro is 0.05 and

thus for a potential vortex (which will remain a reasonable approximation
♦ c *

to the outer flows (28) as'e is varied), the local Rossby number

\ increases from 0.05 at r=l to only 0.2'at r=£. However this value

is increasing quadratically, and hence the expansion scheme ultimately
• s

becomes invalid.

> I

6.3 Comparison with momentum integral procedure

We have stated above that we wish to compare the perturbation
► *

♦ « »

analysis with the momentum integral-method of S, as a means of
ft ft

I e

« i t
• '

i » *'
} «

» (

\ •
N

ftft
4 %

Ift

4 • 9

» •

\ .
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determining the viability of employing Ekman profiles for hurricane

boundary layer calculations. To this end, we can form integrals

such as

,°° 2
11 # = / f# (z) dz.

If we wish to use these integrals to make meaningful comparisons,

we clearly need to extract quantities E# and analogous to the

radial velocity and boundary layer thickness scales defined by (10)
P

With this in mind, it is naturai to set

I 1*

00 2
= /2 / f#(c) dc

2
\

i

/

12*

I 3*

♦ •

=

2

g* (C)i

00

dC

» V oo

• = /2/ f.fc.Jg.Cc) d?

= 6#J2 >

= V2/ . [l-g*U) ] dc " = 6#J3 ,
A- f \

* •

= E#6#J^ ,

(31)

» %

•« 9

♦ I

. Is*

00

= /2-S f*U) dc
O '

- E#6#J5 ,

where Ji to Jc. are meant to correspond to the constant momentum^ r ^
4 ' 4

4 «

I ^
*

integrals Ij to I5 defined in (12).:' The calculation of. the above

integrals is detailed in the Appendix.
\

» %

.

However, it is only the integrals I1# to I5# which we can

obtain here, not the more relevant quantities E#,'6# and to J5.
, 8 * *

0

t

%

Nevertheless, if the momentum integral-formulation of (10), (ll) and
*

, * . • .

» • f • •

«
• *

• » • •

(12) can "be accurately expressed by (31)> then there are certain ■

\
%
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quantities which should (hopefully) he natural invariants: • The :

simplest of these are

■ ^3* I4* 1
01 " 12. " °2 " IS, ' 3 ' "• II, li.

^-5* i

, C,, = x3 I 1* I3* , (32)'
> |

0 •

and from (l2), the appropriate Ekman values', for these 1 invariants'-
it ' •

* ♦

are 0.8, 0.75s 0.6 and 1.0 respectively. •

» *

0

0

Furthermore, should these quantities Cj to can be found
0

to be approximately constant, both with radius and the stability

parameter, e, we can then obtain meaningful measures of E# and

For example, we can define \
| |

If

E(?> =-Ml/Is, , E(2) --I5./I3. .*

/

E (3) = - h.
* ),-L5j E (M< _

* ~

(33)

SIi,,/!

\
W

and so on. With quantities such as these, we are in a position to
9

make a direct comparison between the momentum integral and
1

]
4

perturbation solutions, provided of course that we are iable to
1

demonstrate via (32) that there is originally real justification in
r
i

applying the former method.

Details of the relevant calculations■follow in-Section 7.

7. Results

In the following discussion, we present details of certain calculations

arising from the various techniques which have been outlined in this
* 0

i

chapter. Table 1 provides a' convenient summary of the cases which

have been treated, together with the corresponding nomenclature used
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• g

| A •

9

in the diagrams.
% g

♦ V

b 9

9 9

w ♦

In the calculations which- have.-.been performed,' we have used for
• g

the form of the swirling flow above the hurricane boundary layer,
« » » • « *

• ♦ •

• ' ' '
•

the profile obtained in S, together with two of the profiles presented
• • c .

• • • , •

by George (1970).

The profile of S is a solution of the gradient wind equation (l) %

g ' 9 • *
g • g g 9

and is obtained by assuming- that', the pressure in the hurricane vortex .'
, • l M

i 9 >

v

♦
.

is given by -'

P(R) = P + (P - P )e
c g c

x(b-R /R)

where PQ and Pg are the pressures at the centre and the geostrophic
i

radius respectively, and x is chosen so that the maximum velocity

occurs at ;R=R , with b=R /R .m* m' g
g '

profile • ' •

♦
•

Specifically, this leads to the
\\
1 4 »

v = -
r

2
rL\2 . mxb xb(1-r *)(2} + T~e

It
o - t'

• g

(3k)

where = (P.-Pc)/(pHgV). According to the scaling of Section

2, v = 1 at r=l, and hence from (3*0 r
Sr

Ro = - ^ + (^ + mxb) (35)
V

and x can be shown to satisfy the equation

2 x(h-l) 2 V;

ix(x-l) e - (2-x)b■ = 0 (l<x<2).

The particular physical parameters used to represent the hurricane

vortex, are P = 9^0 mb, P = 1000 mb, R = 1000 km, R = Uo km,
c g " g m *

V

•S V
1
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> »
- U6 -

-s -l
\ »

p - 0.0012 gm/cc and f =' 5x10 sec • , with the constant eddy • |

'

<+ 2

viscosity K = 5x10 cm
-1

The dimensional form of this
i • i

0 »
• *

• 4

I i

• #

I —

0 •

t

profile (3^) is sketched in Figure 2(a); the flow is effectively
% M 40

0

solid "body, rotation near the .centre with the velocity rising to a

maximum value of approximately ^3 m/sec at R=Rm, falling to about
4 m/sec at R=R . The Rossby number Ro, calculated from (35)»

s

approximately 0.0776.

4 V

Two of the swirling profiles of George (1970) which are also
0 0

0 0

used in the present calculations, were obtained on much more of
s * >

an ad hoc basis than that used in S.

0

0

0 4

With reference to \the

scaling of Section U, they can be written as

J
I

¥ =

and

k (r )§ "
X 1

1
*

\

X <x<x =Ux
l o

0<x<x
(36)

-x
ovl

1

X>1

¥ =

Ax0,1 + Bx + Cx 0<x<l
(37)
V

where the constants A, 3 and C are Obtained by imposing continuity
2 2

of ¥, d¥/dx and d ¥/dx at x=l If we scale according to the

vortex of S, then we can set ¥ = R V and hence x, in equation
g g J-

« %

(36), which corresponds to the geostrophic radius, is equal to l/(2Ro)

Profiles of V corresponding to the above ¥ profiles are presented
Sr

in Figure 2(b).
V

r
0

As far as the physics of the situation is concerned, these
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two profiles are rather less satisfactory than that of S, since
4

they exhibit no core structure near the centre. Furthermore,
0

profile I which is the principal one used by George, tends to zero
*

4

at the geostrophic radius. Accordingly, although extensive
• •

calculations were also performed with George's profiles, we have
A

judged it preferable to use the profile of S - Figure 2(a) - in
9

presenting the results which follow.

Figure 3 shows the variation with radius of the boundary layer
• Hi

thicknesses predicted by the momentum integral method of S and the

two modified methods of Section 5.3. One noticeable feature is

that in the case of two boundary layer- thicknesses (S3), the radial
«

boundary layer.is seen to 'erupt' near the centre, as must happen
• I

*

/in the real situation. However," this behaviour may be merely an
I '

4

4

artifact of the method used and we are unable to make any further
4 i

9

comment at this stage. In this same figure, we also plot the

function and (19c) withp=l, for
r 4 •

the swirling profile of Figure 2(a).- We see.that it has roughly
* . •

the form of the boundary layer thicknesses predicted.by the momentu
e 4

integral methods, thus fortuitpusl'y providing the base functions .
9

(19b) used in the Galerkin method with a realistic thickness scale.

. It can be seen that in the outer, half of the vortex, these boundary
I. »

» •

• * ' • • , • »

layer thicknesses remain effectively constant near the Ekman value ■■

• * • < < •• •

of , and hence .it can be expected that Ekman flowwill provide a
«

, 4 ,
• i «

* ' "
• ,4

.reasonable approximation of the overall flow details in this region
•1

In Figure U, the variations of themaxi radial velocity
| |

component U =E(r)V (r)f' 'with radius, are given for the three* max grN max . ■

\
\

' ' s

• I

'

> '
I

N
*« »

« • «

»
,

• ♦« »|
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momentum integral methods, together with the Ekman result, V f .
maxt

Here, f is the maximum magnitude of the radial Ekman profile (ll)
max

which equals e ■"'"/JS. In Figures 5(a) to (d), we show the profiles

of w , the dimensionless outflow from the boundary layer for Ekman

calculations

with the Galerkin method.

As a result of Figures U and 5 we can now make several general
fc

observations. Firstly, as expected from Figure 3, the classical

Ekman results for U and w agree quite closely with the momentum
max

integral calculations in the outer half of the vortex. The results

obtained for w from the Galerkin method, are rather less consistent,
gr » *

both in this outer region, and also closer to the centre. In the

*

outer region - Figure 5(b) - it is" the Galerkin method with N=3,p=0
|

9
•

g

(G2) which agrees closely with the method of S. In this particular
t »

case, we have three terms in the expansions (19a), in which the
*
y

♦ *
*

9

thickness scales of the base functions are constant with radius,
i

being equal to ^2, ^2/2 and /2/3. However it can. be seen in Figure

further, approached, the real problems

apparent Curve

scale thicknesses of the base functions are multiples of 1/X^ is
4 •

.

, • » .

* » *
%

« A I

seen to be well behaved for all. radii, although at small r it does
^ I, • • • i ' •

• • :
« » • •

predict a w- considerably.smaller than SI. This behavious is not ,

gr
. - * '

altogether surprising, since we have seen in Figure 3, that the
• * 9

function l/X calculated directly from the swirling velocity above
#

* I > |

4

the boundary layer, exhibits the same overall behaviour•as the -6's
• * - ♦ •

4

calculated from the various momentum integral method - approximately
| #

%

/2 for large r, followed- by a rapid decrease as. the centre is
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approached functions have a constant

scale thickness (Gl, G2), the calculations become unstable at

small r and the situation is merely worsened if more terms are

included in the expansions (19a): the point at which the

singularity occurs changes from r=0.022 for N=l, to r=0.096 for

N=3.

Further details of the Galerkin solutions which"may help

to explain the situation, are presented in Figure 6, where we
I

ft

show the variation with radius of the expansion coefficients
'

aj and &2 for the cases G2 and G3, together with the form\of V
corresponding to the swirl profile of S - Figure 2(a). At

'large radius the Ekman solution holds approximately; that is,
f I

4

I

f - - V, a^^)(i>l). Now if we consider the expansions (19a)
i

For

to be meaningful, then we expect a.2 to remain small with :
. ■ i 1

to ajj". but as f seen from Figure 6, thissis not the case.
«

case G2, a2 >|aj at Small radius, and this is followed by
• •

. >

instability as r is further decreased. We presume therefore that
ft

i

the system is singular at small r but this has not been investigated,
I >

_

since we believe it is because the Galerkin method is basically
1 •

\ inconsistent with the physics of the boundary layer that the
0

w

above problems arise. Firstly, the assumption of a constant4.
%

. . thickness scale of ■/2A especially at small radius, is at variance

results integral (Figure

and those of Stewartson et at. discussed in Section 5«1« Secondly,
4

1

although it leads to a well behaved system of equations* the
» \

\

alternative assumption of the 1/X scale, arising as it does fro:
f I

. a linear analysis at large z, cannot.possibly be considered as

\

\ \
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Vi

representative of the overall description of the motion in the

boundary layer.t Thus, "although the Galerkin method does at
b

9
^

first appear to offer an improved treatment of the hurricane
%

boundary layer, it is clear from the above discussion, that at most,

it can be applied only in regions where Ekman flow itself is a good
9

%

approximation•

« •

In Section 5.2 we discussed the modified Oseen method of
* 1

Carrier (1971a) and deduced simply by examination of the continuity
*

equation, that the basic assumption of neglecting the term wr~ with
oZ

Du
respect to ur^, could not be justified. In Figure 7, we show the6T y

m

ratio of the maximum magnitudes of these two terms as obtained fro:

the momentum integral method SI, and which clearly supports our

original criticism.

In Figures 8 and 9» we present certain results from the first

order perturbation analysis of the boundary layer equations, as

discussed in Section 6. In Figure 8 are shown the curves of the

functions C^(e,r) defined by (32), the values of the stability
parameter e being 0, + URo and - URo. These curves give to some

«
«

extent, an indication of the applicability of the momentum integral

would
• •

assume, if Ekman profiles were an exact representation of the structure

tOne practical disadvantage of the method is the amount of computation
necessary: the computer time for N=1 is roughly twice that of the
momentum integral method SI, while increasing N by one, leads to an
order of magnitude increase in the time required!

/



of the boundary layer. In the region considered, the Rossby
A

number ranges from 0.05 at r=l to 0.220 and 0.27^. at r=0.^5
ft

for the plus and minus curves respectively, and it is somewhat
9

p

.encouraging to note that in one instance (C^), it is the curve
9

with the lower Rossby number which differs the most from the constant

Ekman value. Figure 9 gives the functions E^ to E^ defined
i

by (33) with e=0. These are analogous to the radial velocity

amplitude coefficient E(r) associated with the' momentum integral
♦ f

methods, and which are also shown for comparison.
"

•
, '

ft

|

*

As a result of the calculations detailed above, we are now
\

%

in a position to make an.overall assessment of the various methods
ft

discussed in this chapter. Firstly, we have demonstrated that
t

X * §

neither the Galerkin method nor the modified Oseen method is
/

^

capable of providing a realistic description of the motion. f This
therefore leaves the momentum integral method as being still the

only practical method applicable to hurricane boundary layer flows,
%

4

with some additional justification being provided by Figure 8. On
%

the other hand, it is also doubtful as to-whether any real advantage
ft

has been gained by the introduction of the alternative momentum

integral methods of Section 5.3 It was believed that use of the

constraint (21) would lead to a formulation predicting smaller \
• \

radial velocities in the boundary layer. However, it can be seen

from Figure U, that although this is effected for case S2, the values
9

obtained for.the second case S3 are larger than those obtained from

the original momentum integral method SI. In fact the results of
4

the perturbation analysis in Figure 9, suggest that the radial

velocities obtained from the momentum integral methods may in all
4

$

cases be too low.
%

V
w

K
♦

l
\

\
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8. Conclusions

The results of the work performed in this chapter suggest
i 9 »

that at present, the momentum integral method is the only really
♦ ♦

9

•practical and efficient method for treating the hurricane

boundary By contrast, the methods introduced by Carrier
9

and his co-workers contain obvious and vital defects, in their .

basic.formulation.
. ♦* •

Nevertheless it is also felt that a more •.

.extensive study is needed should it be thought necessary to obtain
. ' .• ... .•

9 * %

'
.

.more stringent tests of the applicability of the momentum integral
+ ♦

♦ •

method. This suggests that calculations similar to those of
•

. \
. • • • •

Stewartson et aii of Section 5.1 be performed, but modelling
9

a system more directly applicable to geophysical flows.
♦ *

Provided Ekman velocity'profiles are suitable for this simple
• - -

•
. •

• • •

case of constant eddy viscosity (and we believe.that•they are),/
. *

it opens the way for a nui
$

ignificant extensions
9

♦ 9

more realistic! boundary layer parameterisations, such as the one'

can

the entire radial range of the vortex. Secondly, we can use
*

.

• ♦ •

the momentum integral method as a diagnostic in more comprehensive
*

numerical models of developing hurricanes, as discussed in the i

take into account

the three-dimensional nature of the outer flow.
4 ♦

4 4

%
\

t
4
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APPENDIX

ft ft

As the simplest example of the integrals (31) associated with
ft

i o 1

the perturbation solution of Section 6, we calculate Isft, where from
ft

• i

(30) and (31),

I5*

/2

ft

- J f* Ct) dc

ft ft

ft

ft

ft#

ft

(1+RoJ)/ f 'dC - Ro / [fg+|(g-f)g] d? '

= (1+Ror) (~ \) ~ Ro. r ,d r

t

(-.!■+'i1 8 2
3
U >■

ft ft .

i.e., I5# = - .,
^ ft

ft %

s J

where.X = 1 + RoV/r. In similar fashion, we find

I l*

l2«

= V2 1 2 (rV)
qX + Rox-^

= /2

I

Ro
60

22 (rV)
r

13
U80

Ro

t 2

+ 9V
Ro
2h0 2v.');

9 ft •

■ •
'c

I3*
= /2 rBc-^U • r

7f

3
v _ Ro Y

8 x Uo 2 (rV) +
V

U0 r 8

2
(rV) /(rV)
r I 12r

ft ft

V

«©

'j
►
< •



Case

E

r •»

SI

S2

S3

G1

G2

G3

Method

Classical Ekman results

Momentum integral method - Smith

|

Modified momentum-integral method

one independent parameter (6)

Modified momentum integral method

two independent parameters (6 ,A)

N=1,p=0

Equations

Galerkin method-- George(l970): N=3,p=0

N=3,p=l

8,11

13,lU,15

23,2b

26,27

9,19,20
\

fI •

iTable 1. Details of the methods used in the boundary layer

calculations discussed, together with the shorthand notation which
\

»

denotes these cases in the -.diagrams.

Figure 1

I

Figure Captions

features of the mature

hurricane - after Smith (1968).

Figure 2 Profiles of V_^ representing the flow in the hurricane
E?

9

vortex above the boundary layer: (a) obtained by Smith

(1968) - equation (3U); (b) obtained by George (1970)
- equations (36), (37).

• |

0 0

• |

\



Figure 3. Profiles of 6(r), the non-dimensional "boundary

layer thickness for the cases E,S1,S2 and S3

"boundary cale

lA> used in the Galerkin method of George (1970)

Figure .
Profiles of U , representing the maximum radial

iriax
4 * 0

velocity attained in the "boundary layer, for the

. * . '

'Figure 6.

Figure 7

cases E,S1,S2 and S3
| 4

9

Figure5. Profiles of .w. , thegr'
dimensionless outflow .from.

■■ •

the,top of the boundary layer for the cases
%

9

/

9

E,S1,S2,S3>G1,G2 and G3. ' .

♦ |

Radial variation of'the ratio of the maximum

9u
magnitudes of u~ and

9r

3u
• 9

3z ®
calculated from the

momentum integral method SI.

jThe coefficients a! and a2 obtained from the
0

• ♦

• •
9

.solution of the Galerkin equations, together
« 9

4 4
• /

4

with the ^-profile corresponding to Figure 2(a).

Figure 8 Variation with radius r and stability parameter
0 *

» 0

e of the functions to C4. defined by (32)
4

The values of e are 0, + U Ro and - U Ro, as '

indicated by the plus and minus signs. The

constant Ekman values for Ro=0 are indicated'

at r=l.

0

The functions E^ to E^' defined by .(33)with
9

Comparison curves of the functions E(r) from
» 0

the momentum, integral methods are also shown. .

>
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Chapt er 2

A parameterisation of the neutral atmospheric
#

boundary layer, with application to momentum

integral calculations.

(
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ABSTRACT

The work in this chapter consists of two sections. In

ft

Section A, a relatively simple two-layer parameterisation of the
4

neutral atmospheric .boundary layer is developed. It comprises

the well known logarithmic sublayer near the surface, matched to an

Ekman layer which adjusts to the geostrophic wind.V . The model
■-

-

_ 6
i

i

is self-consistent, requiring only the specification of the universal
•

ft

relationship between the surface Rossby number V /(fZ ) and the
I Q O

^eostrophic drag coefficient U„/V , where . f' is the Coriolis
g

parameter, ZQ is a length scale characterising the physical roughness
%

of either the land or sea surface, and U# is the friction velocity:
%

ft

two such relationships are investigated. Thus for a given V and f,
g

the system is completely defined by specification of the surface
# *

ft

roughness length Zq.., In spite .of the simplicity of the model, it
predicts results which compare- favourably with the more sophisticated

model of Lettau, for the Leipzig and Scilly wind profiles.

In Section B, the velocity profiles obtained from the first

section are incorporated in a momentum integral method to determine

the- flow in the surface boundary layer of an idealised hurricane. The

particularly simple analytic form of these profiles makes them ideal

for such a treatment. It is shown that the effective.role of the

frictional sublayer is to provide bottom boundary conditions for the
%

ft

Ekman layer in such calculations. Also investigated are the effects
ft

f

of various refinements to the momentum integral method.

\
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Introduction

r

The work to he discussed in this chapter falls into two distinct

ections. In Section A we develop a relatively simple, hut also

physically significant parameterisation of the neutral atmospheric
m

boundary layer (henceforth referred to,as the ABL). In Section

B, the velocity profiles and the turbulent structure of the ABL

obtained from this model, are used to study the properties of the

boundary layer of a hurricane by means % •

I

integral method developed by Smith (1968), henceforth denoted by S.'

\

Attempts to model the turbulent structure of the ABL by means
0 «

of an eddy viscosity-distribution K (Z), have been made by many
• *

authors beginning with Taylor (1915). Recent- reviews -Which
I ► «•

cover, this work include those of Zilitinkevich, Laikhtmann and
» 9

9 9

Monin (1967), Hanna (1969) and Monin (1970). In Section A we

*

propose-to show that an eddy.viscosity of the form

K (Z) = 4 kU*Z Z<H
t

(1)
• *

kU#H ' Z>H

first suggested by Yudin .and Shvets (19^0), provides a satisfactory
• ' * •

t « •

description- for many purposes of the structure of turbulence, in
, • •

model studies. ■ Strong -vortical flows- for example-, such as large-

scale hurricanes will tend to strongly constrain the flow in the
w •

s

boundary layer. • Furthermore, the dominating effect of.the shear- .

* 4 • 9

« 4

induced turbulent mixing over that of corivective processes in such •

motions, make the assumpt

Karman and U„. known*

'friction velocity' surface and

9 «

1

I «

4 i
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ft ft

density p, by

= pU
2

tt

ft 9
I «

f i

The value of the intermediate altitude H in equation (l) is riot' ftft
9 9

#

I •

specified a priori^ but is found from the model itself.

known experi
9 ft

♦ 9 9 « ft
4 • ft

conditions, the mean•velocity profile in the..thin sublayer of theV
« C «

ft

ABL extending
% »

etres is logarithmic (see

e.g., Priestley (1959), Ch. 3). In this layer the stress has the

value t ■ and

height. These-conditions shown

eddy viscosity proportional to height, namely

K = kU#Z.
ft 0

♦ *

ft #

ft 9

Above this sublayer the behaviour of the eddy-viscosity is ■
j

less certain: in fact the use of K at all has been questioned
ft

9

rather critically by Kraus (1968). However it is generally accepted
9

%

that above the sublayer, K increases more slowly to a maximum value

height of the order of a few hundred

very gradually , to a residual 'Austausch', not necessarily zero,-, of the
ft

I
ft

ft

free atmosphere at the so-called gradient wind level. This type
« ••

of behaviour was first proposed by Mildner (1932) in his analysis
♦ t

s

of the famous Leipzig wind profile. Similar conclusions were

reached by Bujatti and Blackadar (1957), from their numerical model
•

ft

ft

of diurnal wind variations...

Single-layer numerical models of K which have reproduced this
AAA

ft

behaviour most accurately include those of Blackadar (1962) and



Lettau ,(1962)...- The models of both these authors use an appropriate
..

. . ; . ....

rixing length involving a universal* constant which they are required
« %

♦ 4

• 4 • ♦ ♦

to specify a priori. The form of the eddy viscosity proposed hy

Blackadar, is
♦ %

« ♦

K (Z) =
m

.kZ

1 + kZ/X
# >

2
9 U*

9Z
2

+

2
9 V

2
* 4

9Z
♦ 4

Models .very .similar to Blackadar1s are those of Wagner (1966) and
♦ ♦

•
.

4 ♦

Estoque (1967). Here U and V are the horizontal velocity components
% ^ ♦

•: • • •
4

and X is the empirically determined parameter, related to the

magnitude V of the geostrophic wind above the ABL, and the Coriolis
S ' \

4

parameter f, by X = 0.00027V /f. . A model whose results agree •'
"6

4 ♦

• •

closely with those of Lettau (1962) is that of Ohmstede and Appleby
+ 4

(196I1). Both express K as the product of a mixing length (determined
> MB

'from the Leipzig wind profile) and U#. The form, obtained by Lettau

is

K-(Z) =
kU.tZ

1 + M| ) 5/*
where the parameter Xi is called the height of the boundary

layer' and is of the order of several hundred metres Its form is

deduced by an analogy of the ABL flow with turbulent flow in
X

straight ducts. Certain results of the present model will be

compared with Blackadar's and Lettau's. - However both these models,

because of their inherent non-linearity, require considerable _

4

numerical computation for each set of dynamical parameters specified.

■unwieldy in the case of hurricane boundary
• •

layer calculations for example, where such a parameterisation must

many times in the course of integrating boundary



layer equations numerically. The main purpose of Section A is .to

show that the simple model proposed there for K , yields results inHI

quite good agreement with those of Blackadar and Lettau, yet that the

amount of computation required is comparatively minimal.
4

0

0

9

• ^

0

A significant advance in the study of the turbulent structure

of the ABL was made by Rossby and Montgomery (1935) in their well
0

known paper, where they formulated a two-layer model. In the

frictional sublayer., Z <.H, they adopt the condition of constant *

stress leading to the non-spiralling logarithmic profile; this

is combined with a second profile for Z >_ H, the theory for which
9 •

had been developed in an earlier paper by Rpssby (1932). Here
2

zhe mixing length I (with K proportional to I ) decreases linearly.
I

4
9

from its value at H, to zero at the gradient wind level,H1, the
0

0
$

0

resultant wind profile being a logarithmic spiral with constant
0

#

9

* ♦

shear. However, in order to obtain more acceptable agreement
V •

0 < • tf 9 ♦
9 4 1 ♦

with observed behaviour» it is found necessary to postulate a
. . • • • • - » *

-„ -1 -1residual Austausch at Hj of 50 gm cm: sec . Their theory agrees
9

" '

9 * 0

well with available experimental measurements and in order to close
0

• ♦
> 9

the system, an additional empirical constant equal to O.O65 is
• ► , • » «

«
• » • •

specified. .■
Ji 0 ♦ 9

•
0

, 9
9

9*4 '
9

*

0

The particular eddy .viscosity-model used in. the-present work
... .

0

was proposed initially by Yudin' and Shvets (19^0) and is reviewed
, ■ •

0

in Chapter 2.6 of the book by Laikhtmann (l96U): This model
.

comprises a constant stress sublayer,' which is 'patched' to a
0 •

9
0

0

constant eddy viscosity 'Ekman layer at-some intermediate height H,
0

• • » •

.

• • •

to be determined by the model.. Thus in the sublayer the .velocity-.
0

0 4

profile is logarithmic, and this is matched at Z = H to an Ekman .
0



spiral, by requiring that velocity and stress be continuous there.1
ft

ft

The actual details of the model of Yudin and Shvets differ from

the present in that they solved the equations of motion in the
4

sublaver (with K = klLZ) to obtain Hankel function solutions
ft

Ellison 1956). The form of K used in the present model has a

similar structure to that proposed by Smith (1969)» namely
ft ft

ft ft

K (Z) = K(l-e~aZ) , with a = kU„/K

ft

Here, for small Z, Km is approximately kU#Z, while for"large Z it
tends to the constant value K. However, obtaining the velocity

ft

profiles involves.rather laborious manipulation of hypergeometrifc. -
«•

« «

«• •

•What might be considered the most obvious deficiency of the
ft 4

present model'is the fact that K is constant above the sublayer,* 01
9

contrary to the generally accepted .behaviour discussed above. It
'

• 1 ♦ • •
( # *

has been claimed, for instance- by O'Brien (1970), that in formulating
» *

• • 1

a model-it is necessary for the residual value of K- at the gradient '
ft ft

wind level to be small (or zero), in order to 'insulate' the ABL
ft

from the free atmosphere above it. .However we .contend that this
ft

0 '

'

^ i

condition imposes an unnecessarily strong'constraint'on the system
ftft

% «

« ft

« ft

the Ekman profiles obtained for the region of constant K above'

the sublayer are such that -the wind stress tends rapidly to zero,'
• •

.

% 1

and within only a few Ekman scale heights, we attain the

geostrophic motion of the free atmosphere. In fact the particular

description proposed by O'Brien, although having the advantage of
ft

L <

ft ft

mathematical simplicity is too loosely constrained, requiring the

specification offowc parameters for. closure. , Moreover, there'
ft ft

ft ft

ft!



number nodel, the principal one

being that the system is parameterised so that we require just one
t

relationship to be specified a priori. This is the universal

relationship between the 'geostrophic drag coefficient' C, = U.x/V& §
0

and the surface Rossby number Rs = V^/(fZQ), introduced by Rossby
and Montgomery (1935), where the quantity Zq, whose significance

^ % I
will be discussed later, is known as the 'surface roughness length.'

A number of authors have investigated the derivation of a formula

linking these two dimensionless quantities, and in the survey by

Hanna (1969), several such,works are discussed. In the present
I

study we use firstly.the relationship derived by Blackadar (1962)
t

0

0

for neutral stability. Also used is the semi-empirical formula
|

of Kazanskii and Monin (1961), with the experimentally determined
> %

constants A and B being, taken from the recent and very extensive %
*

9 •

measurements of Clarke (1970). In the' latter case we can tentatively

extend the analysis to non-neutral conditions. A further advantage

amount

required to solve the system, given a set of dynamical parameters.-
4

0

In contrast with the model of, for example Blackadar, who is
« «

fr

0

required to solve a pair of coupled differential equations, we are
4

V

required to solve a single transcendental equation, a simple matter
4 *

4 1 «

. * •

numerically. Also, the velocity profiles can be .expressed in a

.; concise- analytical form and hence-are- immediately applicable to -'
- • •

*

0

momentum integral Calculations.

» . •

These momentum integral calculations form Section B of.the
► .

'

present work. -They are used to obtain the gross structure of ..the
• i

*
4 ♦

boundary layer -of an idealised hurricane, in which the turbulent



structure of the boundary layer has been obtained from the

parameterisation of Section A. A discussion of hurricane boundary
t

layer calculations and the use and justification of the particular

momentum integral method employed, is presented in the previous

chapter.

O
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A - PARAMETERISATION

1. The equations of motion'

We consider motion in the ABL under the usual assumptions that

the mean flow is steady and horizontal, and that the density of the
ft

air is constant with height. In a Cartesian coordinate system

(X,Y,Z), the equations which we obtain from the Wavier Stokes

equations under the above assumptions, are

-f(V-V )
g

_ d .(K $£)
dZ m dZ

f(U-U )
g

£-fK &■)dZ1 m dZ

(2)

ft

where f is the Coriolis parameter (f = 2Q sin 0, fi being the
i

$

'

angular rate of rotation of the Earth about its axis and 0 the
i

$

latitude), Z is the vertical coordinate, (U(Z), V(z)) are the
*

ft

v

horizontal wind velocity components in the ABL, (U', V ) is the
£ S

* •

t

(constant) geostrophic wind above the boundary layer^and K is the

coefficient of eddy viscosity. A derivation of equations (2)
ft

#

may be found in most standard meteorological texts (e.g. Haltiner

Mart The convention we adopt for
I

representing physical variables is that dimensional quantities are

denoted by block letters and non-dimensional quantities by lower

case script. .»

«'

We introduce the complex velocity representation•for equations
ft

(2) by setting

W = U+iV and W = U +iV
g g g



to obtain the single equation

if(W-W ') = —(K —)g; ,dZv m dZ-
(3)

< | *
•

*

4
4 »

4 »

I 4

2. The frictional sublayer

As stated in the Introduction, the complex velocity profile
4

4

4 i |
• 1 • •

I

in th,e frictior.il sublayer' (Z<H) will have the well known and

exnenmen
4

ly confirmed logarithmic

Ch.3),
4 9

■ ' ' iY IL t .\ll = e _* • ln(
k

Z ) (U)-

where Y is the angle which the surface wind makes with the X-axis,
4 4

*

♦ « »

and the other quantities have been previously defined. The roughnes
» ¥ 4 4

4 • 4

length Zq is actually a constant of integration obtained from the
4

derivation of (U). The size of Z& is generally an order of
y

magnitude less than the actual physical roughness elements at the

significance as a length

scale for the eddies produced by these roughness elements. The

.value of Karman's constant k, has long been accepted as approximately
4

9

O.H, although recent derailed analysis by Tennekes (1968) and
* 4

Businger ei al. (1971) question the use of this value arid suggest- .
4 >

4
*

k = 0.3^ and 0.35 respectively. However it is felt that in order
»

to link the present work with the many other models of .the ABL, we
• i

lust continue to use the value of O.k.

By assuming the shear stress to be constant, the left side of
• «

jequation (3) is neglected. It can be seen, however, that this is
{legitimate provided that fV H « UsV2, and it is found that this
condition is satisfied by the numerical parameters introduced on

page 69.



In the Ekman layer (Z>H) where K has the constant value
— m

K=kU;{H, we obtain the relevant velocity profiles by solving

equation (3). If we further specify the Y-axis to be in the

direction of "Che isobars, then we require the geostrophic wind

to have no X-comnonent. Thus the upper boundary condition is

W -> iV as Z ».
g

A

The solution of equation (3) undfer this condition is a generalised

Ekman sniral of the form

W2 = iV < 1 - P exn I - I \ r- + ictsl i v
Z

(5)

sc

where Z - (K/f) is the Ekman scale thickness. . P and a are

constants for a particular set of dynamical conditions.

it. The patching nrocess

The two wind profiles and W2 thus obtained are matched at

the intermediate altitude H, by requiring continuity of velocity

and stress there. At Z=H, the following two conditions hold

for the velocity profile Wj and its vertical derivative:

dWi
o —=■ = Wj

dZ
(6a)

K dWi
dZ

( 4

= u» , (6b)
9 4

*0

9 4

H
where a = H ln(~). On applying equation (6a) to the Ekman profile

LA
• O 0
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¥2 at Z=H, we obtain after some simplification,

, cr iirA \ T /l+i\ H„
Zg6 ) GXP L \S2 / Zg

+ ia J = 1 (7)

To simplify this further let

1 + f- ^/h = «eiB ,
g

the inverse relationships being clearly

Q = £(<?+>/2Zg)2 + a2] * /(>^Zg) ,

g = tan
-1

a+/2 Z
g

Therefore, in terms of P and g, equation (7) is

(8)

\

|

P.Q. exp [-H/(i/2Z )] .exp [i(a + g - H/(v/2Z ))] =1.
S ' s

9

Taking'the modulus and argument respectively of this equation

leads to

P =

exp H/(/2Z )
g_

Q

(9)

H
a -

S2Z
g

- g (10) ./

It is also a simple matter- to show from equations (k) and (6a)

that the angle Y1 which the surface wind makes with the isobars

(i.e. the Y-axis), since y* = ir/2 - y, is

y' = g - irA (ll)

Furthermore the cross-isobaric volume flux F may be obtained

from equation (2) thus:

» 4



00 / 00

F = / U dZ = i? ( / (W-W)dZ
7, \ Z sZ \ Z.

o * o

= -i?
iK *TT 1m aw

f dZ
I

z
o

Thus,
2

U» sin y

• F = -—f—

i •

ft •

(12)
ft

• «
" •

,

I |

ft

where i?( ) denotes the real part of a complex expression.

9

Thus it is seen, that given 'the appropriate set of dynamical
ft

ft

parameters (V ,f,U»,Z ) for'a particular-physical situation, the
6 ° \

quantities P,a,Y' and F may be calculated immediately from equations

functions make

i

matching This yields,

when applied to the profile W2 at Z = H,

kH
_ U« 11

Z v ^
g g

Squaring this and substituting for Q from (8) gives

2 / U* \ 2 r r- 2 2
2(kH) = ( — J |^(a + /2Zg) + cr

We now introduce the surface Rossby number Rs and the geostrophic drag

coefficient C^, which were defined in the Introduction, and for \
*

s

convenience, let 0 = ln(H/Z ). As a result of these substitutions,
ft

|

the above equation can be'written as

v \2 -A -A I 2

g-j = k.Rs.Cd.e + (2k.Rs.Cd.e )s 0 + 0 (13)



0

It is now a relatively simple matter to solve this equation

numerically - in our case "by the Newtcn-Raphson method' - to

yield 6 and hence H. This value of H is a function of Rs and

C,, that is, a function of the given dynamical parameters
a.

♦
I

V ,f,U.x., and Z . Finally, through the various relations 9. to 12gj • 0
0

we obtain P,a,y and from these the velocity profiles of equations

(4) and (5)•

5. The relationship, = C^(fis)

As mentioned in the Introduction, the present model still

requires the specification of one a pmorv relationship, namely
0

the functional dependence of (=U#/V ) on Rs (=V /(fZQ)'). The
0

0

idea that-the parameters V ,f,U# and Z are not all independent, wasg ^

first suggested by Rossby and Montgomery (1935).- Indeed it is

reasonable to expect that the magnitude of the surface stress

(and hence Ux. = (|xl/p) ) will be related to the surface
w

roughness characteristics represented by Zq.

For the present model we employ two such relationships, the

first being that derived by Blackadar (1962) in his single-layer
4

model of the structure of the ABL. This is represented graphically

by curve I of Figure 1. The second such functional form of
9

C, = C^Rs) is the semi-empirical implicit expression,
a, a. «

» *

ln(Rs) = B - ln(Cd) + TfeV " A2 ] * (lU)
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The ahove equation has recently "been the subject of attention 1

by a number of workers. Kazanskii and Monin (1961) were the first

to'derive this expression from the equations of motion. Blackadar
0

and co-workers employ what they call the principle of 'Rossby
p. ••

*

number similarity' to link the frictional sublayer with the Ekman.

regime by asymptotic analysis, to obtain equation (lb) - Blackadar

and Tennekes (1968), Blackadar and Panofsky (1969). A.similar

technique is used also by Csanady (1967, 1972),

Following the derivation of'equation (1*0, much interest has

been focussed on obtaining accurate measurements of the parameters
■ v

A and B, but on the whole, there is little consistency amongst the
0

|

*

various values reported (see e.g. Table 2 of Zilitinkevich et'at.,
0

1

1967). The most detailed and entensive measurements which have
4

been carried out to date are .those reported by Clarke (1970). The
|

0

values obtained for. A and B in conditions of neutral stability are
*

$

b.6 and 1.0 respectively, although measurements of B are subject
«
4

to considerable experimental scatter.1 The parameters A and B are

in fact, universal'functions of the stability of. the ABL; that is,

A=A(y) and B=B(y), where y is a suitable stability parameter defined

•x •Obhukov lensth (Monin and Obhukov

195*0. The corresponding plot of as a function of Rs, is given

as curve II in Figure 1.

Therefore we have the possibility that the analysis can be
|

*

extended immediately to conditions other than those of neutral

stability. However caution must be exercised in- doing this since
0

t

I

(i) the velocity profile in the frictional sublayer contains a
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linear term logarithmic

move, away from neutral conditions (L=°°); and

assumption of

is justified Condition (i)
I 1

• •' I

» # | |

could be quite easily incorporated, and from a brief survey of
• *

P ' • 1
f 1

the .literature it would appear that (ii) is also justifiable. For

example, various Russian experiments as reported by Zilitinke.vich
| |

6 • 9

et al. (1967) as well as .the work of Tennekes (1970) and Clarke';'
0

w

(1970) indicate for all classes of stability, the existence of •
• •

1 «

at least a rudimentary Ekman-spiral. This is also confirmed in
9

• ♦ «

\
the extensive three-dimensional, time-dependent numerical simulations

turbulent ABL

Deardorff (1972), for both'neutral and unstable cases

f
0 «

6. Results. \
• I

« 0

0 .

The profiles of U and V are presented in Figures 3 and U

respectively. They are compared with the simple Ekman profiles

and those obtained bv the narameterisation of Smith The
I

dynamical parameters used in the calculation of these profiles are

-1 -S
U#=0.3 m sec , Z = 1 cm, f=5xl0 .

-1
and V =10

g
MA

sec *, and

the value of Karman's constant is O.H. As expected, the U and V

profiles for the present model are very similar to those of Smith
4

0

It can be seen, that in contrast with the Ekman profiles, both

models predict significant inflow

ground, yet the total inflow over the entire boundary layer is
» «

little more than one half that of the Ekman layer. The ratios

\
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of the cross-isobaric volume fluxes, F (present model) given by
o

equation (12), F (Smith) and F (Ekman) are
S 6

F/F » 1.016 and F/F - 0.586.
S 6

The respective cross-isobaric angles of the surface wind for the
4

particular dynamical'parameters used in this case are

Y' = 15.3 , Y: = 19.5 , Y: = ^5
Si

o

The results of these calculations demonstrate the similarities in
%

the wind structure of the present model and that of Smith (1969).
s

9

Hbwever, the latter has the disadvantage that the calculations

involve the use of hypergeometfic fvinetions, which make this

particular parameterisation rather unwieldy if used repeatedly, as
1. 0

%

for instance in conjunction with the momentum integral method of

the following section.

\

In Figure 2 we detail the curves for the variation of y'» the
%

^ %

cross-isobaric angle of the surface wind, as a function of the
J ^

surface Rossby number. These are calculated using the (C, •, Rs)--
a • .

V

curves in Figure 1 of both Blackadar (Kj) and Clarke (Kjj), and
>

0

as expected, the two results are in close agreement over most of

the range. These -cases, are compared with corresponding results .

obtained by the two-layer model of Rossby and Montgomery (1935) and

with the single-layer models of • Blackadar (1962) and Lettau (1962),
(J

as well as .the one value found by Smith (1969).

, * ' '
♦ 4

Lettau (1962)'has used certain experimental observations as
•«

• *

a test-of the validity of his single-layer model. The particular
4 *

♦ «

observations he vised are those of the 'Leipzig* and 'Scilly' wind
* V



profiles, the dynamical parameters measured at these two locations

being:

-4
Leipzig (Oct 20, 1931): - 17.51 m sec , f=l.lUxlO

s

I

-i

estimated Z = 30 cm (over land);

Scilly Isles (Jan U, 1951): V = 12.19
8

estimated Z = 0.03 cm (over ocean).
o

-1 -k
, f=1.11x10

The value of k used by Lettau is 0.U, and his theoretical and
ft

6

experimental results are presented in Table 1 alpng with the results
I

ft

calculated from the present model, using drag curve I of Figure 1.

As can be seen from the table, the present two-layer model^exhibits
ft

*

good agreement between theory and observation and compares very
Q

favourably with the theoretical calculations of Lettau. . Moreover,

little computational effort has been, involved in these present
ft

ft

v*
s

calculations, unlike the case of the more complicated numerical

model vised by Lettau.

0

■)

I



B - MOMENTUM INTEGRAL TREATMENT

1. The integrated uations

The momentum integral treatment which we adopt in this section,
f

for the problem of motion in the boundary layer of an idealised
#

hurricane, is essentially the method developed in S and extended to
9

a wider class of problems by Leslie and Smith (1970). The velocity
4

profiles obtained from the parameterisation of the ABL in Section A,

are suitable for such a treatment, since they are expressed in an

analytical form, such that .the momentum integrals which arise are
s

*

convergent. However it is apparent from Section A, that these
✓

velocity profiles are dependent on V (in the present context, the
S

9

swirling velocity above the boundary layer) in such a way"that the
*<

resulting momentum integrals are not in general constant. This is

in contrast with both the above — mentioned treatments which ignore
%

A
Q

radial variations in, the momentum integrals. Only a brief
1 M

explanatory outline of the method is- given below; a more comprehensive

discussion can be found in Chapter 1.

I '

The eddy viscosity K is both radially and vertically dependent,

and to this end we set

K = K .i<(r,z),
m g *

where K ' = kU„H, evaluated at the geostrophic radius R .
g g

After

non-dimensionalisation of the various physical variables with
'

♦ •

respect to their relevant scales at- R^, the boundary layer equations,
combined with the equation of continuity, have the form given by

•

, " ' *

equations (6) and (7) of Chapter 1.. .
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• «

In obtaining the integrated equations of motion appropriate

to the present model, care must be exercised in the choice of the

lover limit of integration. In the method of S, as outlined, in

chapter, this limit is the ground

condition of no slip vhich applies there, to be used to simplify
a

the integrated equations. However in the present case, the

frictional

on a semi-empirical basis, vith the matched upper Ekman profile
0

being a solution of the zero Rossby number equations which hold
0

approximately at the geostrophic radius. To illustrate the result
\

of this procedure, consider the integrated radial, sayt Ekman
0

equation, which can be expressed in dimensional terms from equation

(2), as
i

f /.. (V-VJ dZ
zi g

fr t

= K
dU
dZ ] Z=ZX

• \

f
i

The term on the.right is tj/p, where tj is the radial stress

component at Zf Zj. Now we know from Section A, that this is
2

constant in the,sublayer, having the value U# cos y from Z = Z
9

to Z = H, whereas' the integral on the left will clearly vary

Over this range. Thus it is evident that we must specify this
* A

lower limit Z^ to be H, not Z , and this arises simply because x°
\

0

the logarithmic profile in the sublayer is not in fact consistent
A

0

0

with the Ekman equations. ' We see therefore, that the role of
• 1

the frictional- sublayer is effectively to provide bottom boundary
• •

«
. 'i • I •

"W

«

conditions at Z = H for the Ekman layer, the stress at the bottom
« 4 % • •

« " * *

of the. layer, being equal to the constant value below'this

height.1', Since these boundary conditions are now not as simple
V

• J
t

• t

V 4
• t

• •

i 0

:
- • • X

X
4
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4 ' I

condition
9

Z=0, the momentum integral equation
w

v .y

will consequently contain several terms not present in the original

formulation of S.

Upon integrating the boundary layer.equations (6) and (7) of
t 9

4

Chapter 1, from z=h to °° in the normal manner, we obtain
0

Ro
d
dr(r/ u dz) + r fhwl + (v

2

Ifr h h gr
v )dz

» ►

to

+ r/ (v - v)dz
h ** ->b Su

32 1
z=h '

(15)

Ro
d 2 2

dr (r / uv dz) +:f . |vw °°
h L J h

2
+~r /

h

■ i

J. 2 I 3VS -Y* I |£
9z z=h (16)

where Ro=V /(fR_) is ;'the appropriate Rossby number for the flow at
S *"

the geostrophic radius R , V is the (dimensional) geostrophic
s s

radial
t

and a&imuthdl velocity components in the axisymmetric

system (r,z),- arid v (r) is the dimensionless swirling flow imposed
gr

0

above the boundary layer.

* (r) =-; 1gr r or
r / «u dz (17)

is the dimensionless vertical velocity at the top of the boundary layer
4

integration of the continuity equation As the

C

dimensional scales of r,z,u,v^w and v , we have taken R ,Z ,V ,V ,* ' '
gr g g g g

l
Z V /R -and V respectively, where Z = (K /f). is the Ekman scale

g g g g g g
%

thickness of the boundary layer at the geostrophic radius.
O

-J 0

%

s

o

V L ©

!
5

*

Q •

0
a %

O Vs
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Following S, we assume boundary layer velocity profiles of the ,

for:

u(r,z) = v (r) E(r) f(n)^
gr

v(r,z) = v (r) g(n),
gi

(18)

where n = 3/6(r), 6 being a non-dimensional variable which characterises

boundary layer thickness amplitude

of the radial velocity. They,vertical structure of the boundary

layer velocity components is given by f(n) and g(n)» which in the
I

present case are obtained from the parameterisation of the boundary

layer in Section A. \

In the first instance, we assume that the momentum integrals are
%

► «

1

radially independent, whereupon, if the profiles (l8) are substituted
♦ ♦

J
• y

ft

into (15),(16) and (17)» we obtain the following three equations for

E, 6 and w
»

\
gr

J

Ro 1 fe(rvgr e26)I1 + * E vgr d?(rvgr^6)l* + v2612
*

+ r v 6 li =-lim .

i n-h/2

K(r,/2n) rv E f'(n)
»

6

(19)

Ro i(r2Vgr E6)l- - *V(I5 + (1 ' 8)l*)|?(r Vgr E5)
1

2
+ r v E 6 Ic=-lim

gr n-h^

;^n)r
2

6

g'(n) (20)

w
gr

(I5+I*)
&*■ves>

/

(21)
i 4

* t •4

M \ ■

/
< 4

V

ft

ft ft
ft

•\

N

V
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where II = / f2dn , l2 = J(i-g2)dn , I3 « /(l-g)dn

#

i 4

\ « ♦

Ii» = / fg dn , I5 / f dn
(22a)

the limits of integration being n ■ h//2 to ». The dash denotes

differentiation with respect,to n We -also define

I
h//2
r

z /Jz
f dn (22h)

and

two layers* For convenience, ye set

I6 = f I , I7 = IS + (l-g)l* ( )
*

\

2 2
On choosing E , E6 and V

gr
as the dependent variables, equations

(19) to (21) reduce after considerable manipulation, to a. form more

^suitable for numerical solution:

!

1

E
J-(E2)dr I

-

rv L

d
rv ) (S2-S7)v f^(rv) 1 S

E

+ 1§\
^ I
v /

I

. t

+
S6

•
_

v

!

(i+M
1

\

(23)

\

• 1
t

E6
!^2> vr^>-

rv L
(3S2-S7)v 5i + s

r . v

v; S6
+

v

(34S.)>» S3 + SitQ+Sft)
* *
vE6

(2k)

W
gf

= _ d5+ij Si| + E6
2

(25)

• I

/

V
I



a.
where v = R v , and

o gr

Si =12. , s2
I 1

= I? - 2Iu p _ lim <(r.^n) f'(n) ,
* 3 " n+h^

I7 " I I 1

S4 =
lim

h//2
Kir g'tn)

I7 " !•»
, S5 = ii , S6 =

I 5

I 1 I7 " I it

S _ 16 S7 = S* I.» %>

I 1
I7 - I tf

In deriving (23) to (25), we use the expression (21) to obtain
f

w ; that is, we take into account the contribution to w arising
gr gr

from the logarithmic sublayer as well as from the matched Ekman

layer, whereas we have seen that the derivation of the momentui

integral equations must necessarily involve only the Ekman layer.
I

•Since w is obtained diagnostically, there is no inconsistency here

If the contribution from the sublayer is in fact neglected (i.e.,
t t

* \ .

I# = 0, and hence S6, S7 and S# are1 all identically zero), the

equations reduce to the form derived by Leslie and Smith (1970) -
• • •

i '

I •
.see Chapter 1, Section 3*

f

9

The second situation arises when we take into consideration the

• «

radial variation of the momentum integrals. In this.case it can be
*

.
|

fc

shown that the relevant equations, analogous to (2-3), (2^) and (25),
• « \

# •

| |

1

E

d
dr

rv L

2 j

(ry ) ■- (S2-S7) dr
2

1

E

S
%

/
% -

di A « «*V/
■ V •

*\j
vE6

SgCl+S^) I
J \

(23')
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1

E6

» a

) - (3S2-
rv L . . .

M^C-l +
1

E
*\j I

r . v- /

*

+
Ss
'V
v

(3+SH) + SajMffifcl + S8 - S9 (3+S#),
A 6V

(2k')
' o

vE6

. = _ (Is+Lt)
gr

S^+ES
2

Ro 6

#

^^7^ |^(rv)+S6+v(Sjo-S9) (25')

where the extra terms which have- been introduced, are

dl + I6)
I

(I? " In)
f

o

t

s8 =
I

Sg =
1

o * —
* blo ~

I? - Ii, I5+I*

9 4
9 J

For convenience, as well as for purposes of comparison, the for:
» *

which we use for v , representing the swirling flow in the hurricane
'/

V

• <

1 boundary layer, is that obtained in S, and also

discussed in Section 7 of the previous chapter, namely

<Vi
v(r) = -j +

I
(t>

2 _jxb xb (1-r 1)
+ — e

r
(26)

9 a

2 2
? where m = (P -P)/(pR f ).

g c g
Here P and P are the pressures at

eg
>

the vortex centre and geostrophic radius respectively, p is the
*

a

(constant) air density, b=R-i/R and x, chosen so that the maximum
g

boundary layer occurs at R=R , satisfies

the equation

ix(x-l) e*^ ^ ~ (2-x)b = 0

The physical parameters which scale the hurricane are also identical
9

to those of Chapter 1, namely P =9^0 mb, P =1000® 8
ib, R =1000 km, R =*+<»

g » m
-3 -5

p=0.0012 gm cm and f=$xl0
-1

As a result, Ro is

and a plot of V as a function of R is shown
gr

\\

Figure



- 79 -

2. The velocity ■profiles \\

As stated previously, the profiles f(n) and g(n) which we use

momentum integrals

atmospheric boundary layer. We

have, therefore

z h
f 1 Cn) , z^z^h, i.e., _o. ^ ^ < i

f(n) =

h
?2(n) , z>h, i.e., n >,

&

v

and similarly for the g - profiles gj and g2* Hence the integrals (22)
\

can "be expressed in the form
oo 2 h/^2

Ii = / f2 (n) dn ' , I# = / fi(n) dn ,
h/Sz zjJz

*

4

etc-., where o.n non-dimensionalising equations (U) and (5) with'respect
, •

to the scales at the geostrophic radius, we have
« I

4

.f.(„) = «, C°3V in #1] ,
e u

k v Zo
gr

V2n. / x u„ sinv . . vi;n.g.i(n) = * , ' .In (—) ,

k v . . zo •

gr

f2(h) .= Pe ' • gr sin(-5~ - a) ,

(27)
» >

Zgr
n/z

g2(n) = l-Pe & cos (^— - a).
gr

4 v

The parameter in' the profiles above, arises because the eddy
*

viscosity (and hence the local Ekman scale thickness) is. radially

dependent: 4 «•
• •

z
z =

„

gr Z g

V ♦

,\
0
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The calculation of the momentum integrals (22) from the profiles

(27) is mathematically straightforward, hut also rather tedious,

and the details are given in the Appendix.

3. The numerical solution

The differential equations (23) and (2U) are integrated radially

inwards from r=l using a standard fourth order Runge-Kutta-Gill
2 2

routine to obtain E and ES , and hence E,6 and w at each radial* '
gi¬

step
4

As described in Chapter 1, the Ekman•starting values of
4

and 6=1/2 at the geostrophic radius (r=l) are adjusted\slightly

so that their derivatives are exactly zero. That is, we prescribe

starting
/

/ necessary

fro inertial

mot ion.

At each radial step, using the\ given values of Z and f, we
o

calculate v from (26), and hence the surface Rossby number
gr .

Rs = V v /(fZ ). From the value of this parameter,, we obtain the
• g gr • o —

geostrophic "drag coefficient C_, either from the graphical-relationship
a.

v

4

of Blackadar (1962)'or from equation (lU) using Clarke's (1970)

values for the parameters A and B. We can now effect the boundary
*

4

layer parameterisation of Section A at this particular radius, to
fr /

obtain the velocity profiles (b) and (5), and finally the momentvu
4 •

integrals (22) needed to solve the.two differential equations.

« 9

Thus 1 it can he seen, that as veil as requiring that the
/

r \

\
\
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parameterisation procedure "be physically realistic, it is also
«

« ■

preferable that it should involve as little computation as possible,
4

owing to the large number of times it must be repeated. This
4

9 ♦

I 4 I#

requirement would be even more essential should one wish to
*

extend the present boundary layer technique to time-dependent flows,
4

and therefore tends to rule out the use of finite-difference numerical

ABL. such as those of Blackadar (1962) and

4

It. Results

I

In Figures 5 to 8 we present.the results of various calculations
%

arising out of this section. In all of these calculations, we have

a choice of using curves I or II in Figure 1, which are the graphs
9

✓
% *

of = (^(Rs) obtained by Blackadar (1962) euid Clarke (1970)d

respectively. However, as anticipated, these two relationships
\

give.very similar results (less than' 1% variation for all radii),
»

I

and for the purpose of graphical representation, it has been decided
\ ^

• »

(arbitrarily) to use the relationship I of Blackadar,

Figures 5(a)- and (b) give the profiles of wgr» the vertical
ity through the top. of the boundary layer, as a function of

situations One

immediately obvious, is the effect of taking account

of the terms S8, Sg and Sj0 in the equations. With Zq constant at
0.1 cm, the maximum upflow for case A, in which the radial derivatives

mo: integrals (1.e., Sg, Sg, SjQ—0), xs

51.06 c
-1

km tot case B

(Sg,Sg,S}q ^0). This difference is most apparent at small radius

t

\
\
\

\
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where the convective terms are dominant. On the 'other hand, the w

region of slow downflow in the outer extent of the vortex extends

inwards to 397 km for case A, whereas in B, the upflow is delayed
I

I s

until R=28U km. Also.considered is the case, of allowing Z to
*

to vary in some way as a function of the swirl velocity, to model,

although naively, the increased roughness of the sea surface in
0

regions of high wind speed. As can be seen when we set Z =0.1 v (
° gr

cm for case A, there is considerable enhancement of the upflow
*

velocity, particularly at small radius.

. We have shown earlier, that in deriving the momentum integral
*

#

equations, the effective role of the frictional sublayer is to

provide bottom boundary conditions for the matched Ekman layer.
fl

> n

ii
e

However we do incorporate the contribution of the sublayer to the
0

vertical velocity via the integral I# ~ equation (22b). In Figure

5(b), we see by setting I = 0, that this contribution, although
(W

negligible for R>200 km, clearly affects the scales of the motion
i -

at small radius,* The final curve in Figure 5(b), drawn

principally for purposes of comparison, is W ' for the situation
gr

* *

modelled in S of a constant eddy viscosity throughout the boundary

layer, equal to 5x10
«f 2 -1

1

Figure 6 shows the variation of the maximum radial inflow
P.

fj

as a function of radius. • From (l8), U = EV fVelocity U WWW U A VU*W WAV** A UIMA MO • A A V^U ^W/ • W J-l * A ,
max ' max gr max*

s

i

f being the magnitude of the maximum value of f2(n), the *iax ■ v-

vertical -profile of the radial curves drawn

Z =0.1 "cm (cases A and B) and Z =0.1 v cm (case A), together witho o gr v
s

that for constant eddy .viscosity. It can be seen that one result
► f

i

%%
w

*• •

s
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v

s

of the present parameterisation is to reduce substantially the
» • 9 V * 0

« i

magnitude of the inflow velocities below the values obtained
#

9 - < «
9

« |

for constant eddy viscosity, which are considerably higher than
9 >

f

observed in hurricanes (Miller 1965)* In Figure 7, the profiles
• «

of the boundary layer scale thickness 6, for Zq = 0.1 cm (
4

o

A and B) are presented, together with the result for constant eddy

viscosity.
t 9

% %

In.Figure 8, the radial dependence of K , the constant
max

t *

value of the eddy viscosity in tile Ekman region above the sublayer ■

. ,

is shown. This emphasises' one. of the principal advantages; of
V

v

•
.

the model, namely its ability to determine the turbulent structure
• 6

*
I

of the boundary layer itself, given the relevant parameters
I

(V. .Z ,f) for a particular physical situation. Unlike the results
! 5 ° ■

. ~ .

obtained by Leslie and Smith.(1970) with the somewhat similar
»

parameterisation of-Smith (1969) - sbe Introduction - 5 does not
1

... >
at first increase rapidly as we advance radially inwards. This is

1 I
due to our use of the parameter1 z which takes account of thef gr

t

increase in K (Figure 8), and thus keeps 6 in scale.
4

k

From the above resultswe see that the maximum inflow
t

\
\velocities are considerably smaller than those obtained using

* t

Ekman profiles with a constant eddy viscosity. In this context

-we refer to Section A, where it is seen'that although the profiles

ground

the actual radial volume flux is little more than half that of the

%

full Ekman layer. The results of Figures 5 and 6 further indicate
\

* ►

that the radial inflow velocity is much less sensitive to radial

variations in the boundary layer structure than the vertical upflow,

in accord with the results of Leslie and Smith (1970). \
\
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4 4

Conclusions
9
9

We have presented in this chapter a simple two-layer parameterisation

of the atmospheric boundary layer, which depends only upon the
'

*

s

universal relationship C^C^tRs) between the surface Rossby number
• 4

and the geostrophic drag coefficient. In spite of its relative

nature shown
4 4

in that it reproduces the main atmospheric features and compares
4

4

favourably with the predictions of more sophisticated parameterisations
t

The main benefit of this model lies in the analytic nature' of
\

the velocity profiles, allowing it to be incorporated into a
0

momentum integral method to determine the flow in the boundary layer
.

of a hurricane. The profiles are similar to those used by Leslie
f

and Smith.(1970) but involve.elementary functions only, so that the

resulting momentum integrals can be. calculated analytically
t

than by the more approxi
'

, '
|

found, in agreement with Leslie and

necessary It is

the momentum integral method -are sensitive to radial variations in

the surface roughness length Zq, but apart from this, we are unable
to directly compare our results with theirs since they were obliged

.prescribe an eddy viscosity distribution. , However by our use here
a

of the relationship C^=C^(Rs), the eddy viscosity can be calculated
I

from the model itself.

It has also been demonstrated that allowance should be made

for the radial variation in the momentum integrals themselves. This
9 *

\

effect, together with that for Changes in ZQ»are most noticeable
* /

in the profiles of W •>, the vertical outflow.from the boundary layer,
CP*

S 1 —

N
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and hence must he taken into account if possible, since it is W

which provides a measure of the mass transfer from the boundary

gr

•layer into the main vortex. The values obtained for appear

to be lower than the approximate 1/m/sec measured by Gray (1966)

On the other hand we have noted how critically this depends oh Zq ,

about which very little information has actually been obtained in

the regions of intense wind speeds.

query which should

using the (C^,Rs) curves for high wind speeds, even though they
• »

cover the range of surface Rossby numbers encountered. For instance

suggested that there may complete

of the boundary layer at such high wind speeds due to violent
I •

surface motions, and where the spray itself may also play an active
V

role in the momentum transfer processes. On the whole however,

the model has been shown to be both realistic and capable of
I

observational data, should become

advance

*

in the treatment of such problems. ■

I

» 4

V

%

I

P ^

• ,

♦ 1#

• 4
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APPENDIX THE MOMENTUM ■ INTEGRALS.

As the simplest examples, ve consider

Is

where

00

f2(n) dn
h /V2

fi(n)

f2(n)

and I = / fi(n) dn
z H2

U# cos y
In ✓in

k v
gr

n/z
= -Pe gr sin (■?— - a)

gr

Thus,
00

15 = ~P /
-n/z

gr

h//2
sin (^— - 0) dn

Zgr
\

n

Pz
-fl

2 £eos(n-a)+ sin(D-a)J,
t J

— ^ «

and

I* =
u# cos y K//2< v

lnt-^-l dn
k v

gr Zq//2
• Z

u# cos y

r/Zk. V
gr

h(ln ~ - l) + z
z« 0o

where for convenience we have set fi = h/(»^J z ). In a similar
gr

anner we calculate the integrals Ij.to Ii,, to ohtaih
2

P Z

I 1 =
-2n

8 £ 2+sin [2(fi-a)] - cos [2(fi-a)]J,
I2 = Pz e

gr
* ^

*

£cos(n-a)-sin(n,-a)J -
O

P

- sin [2(n-ot)]J

2
P z

-2Q

8
2+cos [2(ft-a)]

\

fi



Pz
• 13- = 2

-Q
e i cos (fl-a) - sin (fl-a)J j

Pz
r.

-n

2

■ » ,

jcos (fi-a) +s in (fl-a )J
2

P z • «

8
-2ft

e ico [2(fl-t*)] +sin [2(n-a)]j
9

As expected, these expressions reduce to those obtained in I, if -
9

we vise the variables corresponding to the case of a single Ekman layer

extending to the ground:- P=z = 1, a=h = z =0.
Sr ®

Also,

S 3 ~

S

lim
n-*h//2

. li
n-*h//2

iM =

cos y

I 1

I7 - 11^

K v Ii
g gr A

• ■ *

_ 2
V Z /2 u, sin Y\
_S g 2 -

K v (I7 - 10g gr

I i

/

In evaluating the variables Sg, S9 and Si0.of Section B, we

require the radial derivatives of several of the above integrals.
f

However, this operation which would involve much tedious calculation
1

1 •

can be avoided, simply by using finite - difference approximations
%

to these derivatives.
V

For example, )

dl2(r)

dr

1
dr

Ar Ar
- 1,1. - 2

, 2with accuracy of the order of (Ar) , 'Ar being the radial increment used
%

' *

in the numerical solution of equations (23) and (2U). Since the*

method used (Runge-Kutta-Gill) already required the values of the
9

integrals in increments of Ar/2, very little additional effort "is
g

•
•

need to incorporate, this device into the computer program.

t

t

\
\



Comparison of certain theoretical results of the present
■>

% %

lodel with both, theoretical and experimenta.1 results
• « 4 4 «

presented by.L.ettau (1962), for thie Leipzig and Scilly ;;
J "

* -

wind profiles. * «

*

:ure Cautions

\

0

The curves used.to obtain the geostrophic drag
4 «

coefficient C,, as a. function of the surface RossbyCL '
» y

V
•

0

number Rs. Curve I is taken from Blackadar (1962);
J

II is obtained from equation (l.li)» the constants-A

•1 and B being those measured by Clarke (1970).

Calculate values of y'» the cross-isobar angle of
A

*)

surface wind, as a function

model using the curves I
C

(Kjj) in'Figure 1. These are compared with the
0

v

relationships of Rossby and Montgomery (1935) ~ R»
!»♦

*

, ' *

Blackadar (1962) - B, and Lettau (1962) - L, together
• O

g

✓
4

with a single value'calculated by Smith (1969) - *•

Vertical velocity profiles of U, for the Ekman layer

and
v\

-1
model (K). The parameters used are V =10 m sec f

s

5x10 Ssec 1. U* = 0.3
-1

and Z =1 cm.
o

The

'v *



value of k is assumed to be 0<U.

9 i

Vertical velocity profiles of V;- legend as for Figure

3.

Profiles of . the vertical velocity through the
0

top of the boundary layer as a function of radius

a) (i) ZQ = 0.1 cm, J = °
(ii) Zq = 0.1 cm, (S8,S9,Slo) f 0

(iii) Zq = 0.1 vgr(r) cm, J = 0

b) (i) Zq = o.l cm, \

(ii) ZQ = 0.1 cm, I#=0 ) (S8,S9,Slo)=0
2 _1

(iii) " K = const = 5x10 m sec / jTTI I

Profiles of the maximum radial inflow velocity
• \

*

(i),'(ii), (iii) - As in Figure 5(a).

(iv) ■- As in Figure 5(b),«(iii).

Profiles of 6, the non-dimensional scale thickness of

the Ekman layer.

(i), (ii) - As in Figure 5(a)

(iii) - As in Figure 5(b), (iii)

• •

The eddy viscosity K.(r) = kU#H, the constant value

in the Ekman region of the boundary layer, for
I*

9

o 9

Z =0.1 cm (S8=S9=Sio=0), as a function of the radialo

position. For reference, the value Km=5kl0 , used
\

I

for, comparison results, is depicted.



Table1.

0

-Quantity

4

4

Leizeig(overland)

Scilly(over
0

ocean)

Observed
Lettau(1962)

•

Presentwork
,Observed1 1

Lettau(1962)Presentwork

9

■y'(deg.)=anglebetween surfacewindandisobars tq(dynescm2) =surfacestress
0

26.1 5.31.

-27.7
•

5.65

0

23.9 5.09*

1

13.9 .0.92.

0

17.3 4

1.13 4

0

0

0

t

•

13.7.

0

0

0

1.07*

•

w

Z(m.)=heightatwhich •̂
eddyviscosityismaximum

235

223

»

0

4

0

•Z>6U

0

100

• 0
0

•

102
-•,

91
1

0I
Z>38

1 1

2,
K(cmsec)max

=maximumeddyviscosity
lltU,700

205,000
III

•

171,000
9

0

0

28,000

1+1,000

1 i

<1

1

U7,000. 41
1 1

«1

Z(m.)=levelofmaximumy 4

cross-isobarwindcomponent
250

27U

0

0

293.
0

0

■70
c

0

4

0

75

t

*

1 1 1 ■

.115

1 ■ ■

Z(m)=levelatwhichcross- g

■

4 4 4

0

0

•

1 1 S

isobaricwindfirstequals zero

1,070
m

t

1,200
I

l.ito .-
•1

1 1 1

OO

0

\

0

.53U" 4

4

9 4

<

57^

■
1 ■

Use

curveIinFigure



s-%0 *0-j.o
\OQ\0

e»0

1.0

3,0

&
•o 30

s

NO

1-0
.

&o •

\o9NO

0
so

v



Altitude(km)

I

(O

frf

H-

<S

4-

n>-

CO

N

Altitude

(km)

*1

v.

OP

n

(D



60 ^

o

&
E

40 -

3?
20 -

0

R (km)

Figure 5(a)

60 -

I
40 -

V)

E
u

$
Ol

20 -

0

R (km)
Figure 5(b)



 



6

/

500
R(km)

1000

Figure8



*

Chapter 3

On "boundary effects in models of
4

concentrated vortices - a numerical study
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ABSTRACT

In recent years, considerable interest has been focussed on the
9

9
4

modelling of flows with concentrated vorticity, as a means to a

possible greater understanding of tornadoes"and■waterspouts. Much

of this effort has been involved with the development of realistic
*

4

experimental, and to some extent, numerical models of such systems,

but progress has been hampered by the almost complete lack of

consideration given to the effects on the flow of boundary constraints

In such models there are both physical, and non-physical,(artificially
*

imposed)boundaries. By the former, we mean the bottom boundary, with

which we would like to model the effect of the earth or ocean surface.

Examples of the latter are the side of a rotating tank or the
P

boundary of a computational domainboth of which place on the
9

I
flow constraints that are'■clearly not present in the case of

atmospheric vor4tices.
I

\

i

The of the work in the present chaptert i evaluate
i

types of boundaries, and to this end, a number
i

of numerical experi
t

I '

extension of that initiated by Leslie, and

This study is an

experimental model of Turner and Lilly, in which a vortex is

produced in a rotating tank of water, by means of gas bubbles
\

released along the axis of. rotation# The results clearly indicate

the extent to which these boundaries govern the flow, and point to

the importance of such-considerations (which to date have been
%

«

largely neglected) in the development of concentrated vortex models
\

9

tPreliminary results wefe.presented to the Euromech Hi- Conference,
University of East Anglia, 18-21 September, 1973#
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1. Introduction

During recent years, particularly in the past decade or so, there

has been considerable interest in modelling flows with concentrated

vorticity,as a means to a possible greater understanding of the
t

mechanisms involved in convective atmospheric vortices such as
«

*

|1 9
4 ♦ t •

*

■tornadoes, waterspouts, end to some, extent, dust devils.. These
/ • "

• i, • • ■ •
• • 1

4 V

investigations 'are both.mathematical (either by analytical or numerical
9 C

. methods)' and experimental. Unfortunately, one of the principal
* 9^ ^

.shortcomings of this work is due .to the lack of consideration given
'

to boundary effects, and the way in which such boundaries affect the' •

• .

#

development and.structure of the vortices generated.
• ♦ .

> *

. In: both the numerical, and experimental models, these boundaries
9 9

M 9 « ^ 9

ay be either physical .(such as the bottom boundary meant to
• 9

simulate.the earth or ocean surface) or artificially.imposed, non-
\ •

V

physical boundaries. In numerical models, the latter arise since
9

9
4

• ^ «
%

we are required to solve, the equations of motion in a finite .region,'
' .1 • ' n , .

f 9

a vastly different situation'from that enjoyed by the atmosphere'. '"

ft 9

9 % 9 I

4

Laboratory simulations tend also to suffer from this defect, although
r '

models which use air as the medium can be made considerably less
i

9
• 9

constrained than those in which the vortices are generated in water,
9

by permitting flow through the boundaries. Thus, in developing
9

4

• numerical models of concentrated vortices (and also those in the
* < • 9

9

laboratory), we should endeavour to consider two aspects in the
a »

treatment of boundary effects: firstly, we would like information on
9 9

i 9 9

9

the effect of the physically significant boundaries, such as the
4

9

different constraints imposed on fully developed atmospheric vortices

.0 '

\
4

*
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"by various bottom boundary conditions; secondly, we should attempt

to assess the effect of the non-physical boundaries on the flow,
i

and to minimise these effects if possible.

4
^

The work to be discussed in this chapter concerns the simulation
• I

of concentrated tornado-like vortices by numerical integration of

the Navier-Stokes equations in a rotating cylindrical coordinate
, » •

system. It extends the study initiated by Leslie (1971) - henceforth

denoted by L". physical upon which this model is based,

is principally the laboratory experiments reported by Turner and

Lilly (1963) and later by Turner (1966), Here, fluid in\a rotating
4

cylinder is convectively driven from an initial

rotation, in a meridional .circulation teans
i

> body-

released

1

1

on the axis, in the upper third of the cylinder;, these gas bubbles
«

are either carbon dioxide released by nucleation from soda water
1

1

\ :
contained in the cylinder,<or else are air bubbles released from a

'1 •

. 1

pipe on the axis into!the water. Under certain conditions, it is
1
'

. ' *
found that a narrow axial vortex can be produced, in which the

angular lany times that of the rotating

tank. In the numerical' studies of L, the drag force of the gas

I
\ '

circulation is simulated by means of an
4'

body-force distribution along the upper third of'the axis The \

vortices
I . •

although some guidance in resol.ving this problem is obtained~from
I

, /

theoretical results of Morton .(1969).

The principal interest in the numerical.model of,,L was to

determine such a combination of the relevant parameters - the

1



0

driving force and the "background rotation - which would result
)

0

in vortex formation. The vortex obtained •grows' downwards fro
•

i •
• • »

0

the driven region towards the bottom Of'the tank, whereupon it
• ' • > . •

/ •
• • « • i •

• • •

interacts with the bottom boundary.and further amplification of '••• • 0

• 4

the vortex is observed. In L, a comparison is made between two
0

. *
0

boundary conditions, these being no slip and zero stress, imposed
0 •

at.the upper boundary of the tank; Amplifications'(the ratio of
' • J

. ♦

the maximum angular velocity of the fluid to that of the cylinder) •
♦ *

0

*

l 1 4 *
* 4

of 29 and 22 respectively are found... Whereas the main motive in
t 0

this particular study was to show that such vortex motions could .
• •

\

be simulated numerically, the present study concentrates on the
0 *

0
• *

,
0

effects that the imposed boundaries have on these flows, as-well'
4 • *

>

0

v

as on a more detailed examination of the characteristics of the

flow fields obtained. • «

\
A considerable' volume of work has been published on concentrated

0 '

0

0

vortex motions, the principal.reason being as mentioned above, the
i

interest shown in analogous meteorological phenomena. The more
« •

notable of such treatments are discussed below. The experimental
0

models of Turner and Lilly (1963). and Turner (1966), outlined above,
1 V

have certain features in common with tornadoes.and waterspouts:
0

both are rapidly rotating flows driven convectively from above
ft

9

•" • '

(by Cumulus convection in the tornado and waterspout), and both draw

on the background vorticity of the rotating coordinate system,
0

0 •

although in the case"of atmospheric vortices, some mechanism is
0

f

also required for a pre-concentration of the background vorticity
r *

• * «

in order for them to be physically capable of forming in the
0

T
I I

time-scale observed (see e.g., Morton (1966), Lilly (1969) and Gray

\

r *

\
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ft

(1969) for relevant details). Furthermore, in both systems,

grow downwards

evidenced by the descent of the characteristic funnel cloud
ft

✓

associated with both tornadoes and waterspouts.t

We have yet to consider the importance of the bottom boundary

md the interaction between it and the vortex core region. However

•
•

for the moment, we defer any further discussion on this point and .
ft

*

concentrate on the literature relevant to the flow in the vortex

For an earlier, more comprehensive review of the mechanisms
4

involved in geophysical vortices, see Morton (1966) and also Kessler

(1970). ?

• A particular class of solutions to the Navier-Stokes 'equations
s ^

in an axisymmetric cylindrical coordinate system was obtained by

Burgerss(19^8). The system has circulation r =
00

li (2 ir r v)
a

imposed at large radius. An exact solution is obtained through the
ft

<1

• • *

\l

assumption of constant vertical divergence D, leading to horizontal
4

and vertical velocities proportional, to,radius and height respectively.

The zonal (swirling) velocity profile has the form v(r) =•
r

2-rrr
-(r/o)

2

1.

where the constant a=2(v/D)5, v being the kinematic viscosity.

ft#

In

t • J

the steady-state represented by this solution, there is a balance between
ft ft

amplification of vorticity by vertical stretching and the loss to
ft »

ft ft ft

the, boundaries by radial diffusion of. the vortex lines. The

characteristic radial length scale of the vortex core a, is a function
ft

ft

ft

ft

ft ft

ft •

tThis funnel-.cloud is no more than an isobaric surface; it is formed
of water droplets which condense out when the dynamic pressure in the
intensifying .vortex' falls below the saturated vapour pressure of the
surrounding environment.

ft ft

t s1 ft

4

- •• v .♦ V » ♦ • • • C

I - ' •

4
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of D and v and provides a measure of the relative strengths of
4

these two opposing effects. This profile for v(r) has the form of

solid body rotation
f

ition, v - I ~—
\ 2iro

1 J»r at small r, and the form of a
roo

potential vortex, v = 77— as r tends to infinity. It is therefore
dirr ■ - .

*
• • * »

« ♦ - <

I

similar to the Rankine combined vortex which has been frequently
4

used in simplified tornado treatment
4

Dergarabedian and
9 4

Fendell 1970).
4 «

Burgers

by Rott (1958, 1959) who extended the analysis to ti
%

4 ♦

flows and also calculated pressure and temperature profiles. . Quite
• 4

naturally, there are a number of problems which arise in such a
e

v s %

simplified treatment: the radial and vertical, velocity fields are
• . • ' •

*

unbounded at large distances anymore, importantly, the zoned velocity

(

4

field has no vertical dependence. • ■ Hence,- only invieaid boundary
, • - •

conditions can be satisfied at the ground, whereas in the real
4 *

situation, the /vortex lines must terminate in the boundary layer
|

4

. •

adjacent to the ground and not in the ground, itself.
!
1 S

The Burgers vortex can be called a 'one-celled' solution since

there are no separation streamlines in the interior of the flow. A

'two-celled' solution of similar form has been presented by Sullivan
4 ' ♦

(1959) and by Donaldson and Sullivan (i960). Here, there is a cell

of reversed circulation adjacent to the axis, and the model is
4

t
4

proposed as being more representative of the flow in an atmospheric

4 «

body of evidence

axial downflow

an inherent property

Mor eover,

, according

to measurements by/Golden (1973). This solution suffers from the

same basic defects as those noted above for the Burgers vortex.

« •

•

*
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H

Extensions of the results of Donaldson and Sullivan to multi-celled

vortices are calculated by Bellamy-Knights (1970,1971)* but this

line of approach cannot really be taken as providing a more realistic
*

model of tornadoes and waterspouts.
0

Considerable impetus to the study of concentrated vortices on

the laboratory scale was provided by the experiments of Long (1956), in
which fluid is withdrawn axially from a hole in the bottom of a

»

rotating cylinder of water. For a given sink strength, the resulting
I

flow is found to depend,..strongly on £2, the angular velocity of

rotation of the tank. At small values of £2, the flow is\largely
0

%

unaffected by the background rotation and varies only slightly
from the potential sink flow observed for zero rotation,, Howeveri

s

as-£2 is progressively increased, the flow towards the sink is
0

drawn from an ever decreasing region around the vertical axis of
\

the cylinder,/until eventually this region consists of a narrow»

I

vortex core in which large zonal velocities are observed. Two
1 \

.further papers by Long (1958, 196l) are concerned with an examination
1

of this vortex flow obtained. In the subsequent experimental setup,
*

I

the fluid is withdrawn from the top of the rotating cylinder and

replaced at the outer wall. The observed conical shape of the
*

■ '

vortex obtained led Long to seek a similarity solution in the variable

x = r/z, with the circulation at large radius and the 'flow force't

tThis is the name given to the integrated quantity F«= 2ir/ (p+pw )r dr.
Morton (1969) shows that F is conserved for strongly 0
r.otating core flows, and is therefore' a more significant quantity than the
flux of axial momentum. This is due to the strong pressure-coupling '

f j

of the axial and zonal velocity fields.
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£

♦

as constants of the motion. A significant property of the solution

is that zonal and axial velocity scales are of comparable magnitude
A 0

in the core region, while radial inflow there is much smaller.

However, as pointed out by Long, this similarity solution is
w

incapable of representing the observed flow except at large distances
0

from the ground; further difficulties regarding the relevance of
0

Long's solution are noted by Morton (1969).
e

t

Extensions of the experimental work initiated by Long have
f

been reported by Shih and Pao (1971) and by Pao and Shih (1973).
V

4

T*,-iir study is mainly concerned with the selective withdrawal

phenomenon first demonstrated by Long (1956) and not so much with the
*

m

%

more extreme case leading to the formation of concentrated vortices.
f •

'In the first of these two papers they describe experiments in which

three' successive stages in the time evolution of the selective
\

withdrawal process are observed: (i) a short period of potential
%

4 r

flow towards the sink, followed by (ii) selective withdrawal in
I

>

!

which the flow characteristics are primarily inviscid until
$

(iii) the region of withdrawal extends to the bottom boundary, at which
*

point viscous effects are judged to influence more strongly the flow
0

«

in the axial core region. The second paper is basically concerned
0

with developing an inviscid theory of the second stage (selective

withdrawal) in terms of a blocking wave propagated upstream from the
0

|

sink. Theoretical extensions of Long's similarity solution are due

to Pao and Long (1966) for the case of a magnetohydrodynamically

driven vortex, and to Pao and Kao (1969). However, the solution
' >

*
* 0

obtained by Pao and Kao clearly corresponds to a low Rossby number
%

(i.e., rotationally dominated) system, and therefore is not
4 * •

»
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0

0

appropriate to the present discussion: the crucial role of the
f

fc a

Rossby number will be clarified in due course. Their final system

of equations, obtained via Os^en and boundary layer approximations,

neglects the contribution of the centrifugal terms, whereas it can

be shown by dimensional analysis (e.g., Morton 1969), that these
*

terms are essential to strongly rotating core flows. This leads
♦ A

Pao and Kao to seek a similarity solution resembling that of

Herbert (1965) for a weak jet along the axis of a strongly rotating
•

.

fluid, in which the core radius varies as (vz/n)1^.
I

The flow development 'observed by Shih and Pao (l97l) above,
1 \ .

parallels that reported in L. The initial.motion is inflow
s

0

0

towards the bottom of the forcing region, followed by the
I

establishment of an approximate centrifugal/pressure-gradient
4

4

balance, provided the values of the body-force and background

rotation are compatible. This balance tends to inhibit further

radial entrainment in this region, and hence the flow is constrained
\
I *

*

to develop axially until it interacts with the bottom boundary.

At the ground^ the boundary conditions in a real situation• «

disrupt this .dynamical-balance, inducing large- radial inflow velocities

in the boundary layer adjacent to the ground. The basic processes

involved in the formation of this type of concentrated vortex are
•

-

0

now apparent, the foremost requirement being that the parameters
4

governing the system must be suitable for the initial vortex

development along the axis. Radial convergence, most of which
0

0

occurs in the boundary layer adjacent to the ground in the mature
4

0

state, entrains fluid radially inwards, and in so doing the fluid
*

rotates faster. At the axis, the flow becomes principally vertical,
'

4

' \

\
1
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ft >

with the local vertical.component of vorticity being.intensified
•

S • '• ^ • I
%

. •

through vertical "stretching of vortex lines by the divergent '
ft

.velocity field. | |

4i

f V

growth of concentrated vortices
9 9

require firstly a suitable criterion for the existence of such
■ ' • » '

• • «

1
. • .

• •

flows, and secondly, we need also to determine the role played by
4 •

»

4

•

, •

the bottom boundary. .For a flow such as that of Long (1958),;
ft •

the two essential flow parameters are the Rossby number measuring
» 4

4 s

the ratio of inertial to Coriolis forces, and the Reynolds
• • 4

number measuring the ration of inertial to viscous forces.\ Long

found that the type of flow obtained could be described in terms
3

. of a Rossby number, e = Q/(2-rrftb ), where Q is the volume flux of theI
•

i

0

/ sink, b is the radius of the tank and is its angular velocity. .1 ' ...

I" Vortex flows were observed for e less than 0.02. However, such
\

a low value would suggest that this vortex is completely dominated'
4

9 9 *
ft ^ 4

by the effects, of rotation, but as pointed out; by Morton (1969),
' 1

ft
0

the appropriate length scale for vortex core flows is not b, but
'

the sink radius t»o, and therefore it appears that Long's critical
*

0

Rossby number could be three, or even feur orders of magnitude

; larger than the value given. Thus, these vortices are..in fact

high Rossby number flows: the background

the source of vorticity, but has little influence on the resulting
ft

9
0 9

structure. In the paper by Morton (1969), two relationships are
|

shown to be necessary for the formation of concentrated sink

vortices. Firstly, the flow force (defined earlier in a footnote)

is required to be of the same order as the background circulation,

and secondly the Reynolds number, with length scale based on the
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core radius, must be large. This second criterion states that

although the Rossby number may be appropriate for concentrated vortex

flows, the vertical stretching .of vortex lines must not be dominated
I

by radial diffusion. Two criteria for vortex formation are also
V

proposed by Dergarabedian and Fendell (1967), but these conditions
. /

both ultimately concern the second question of the balance of

vertical stretching and radial diffusion. In the experiments of
w

Turner and Lilly (1963) and Turner (1966), the effect of rotation

return flow occurs

cylinder and is not controlled by the boundaries. This has led

Morton (1966) to suggest that'the Rossby number of these experiments
%

may well be too low for realistic simulation of convective

atmospheric vortices. However the situation in these experiments

/„•differs notably from those.of Long (1958), since in the latter, the

fluid is removed at the sink and then replaced at the walls, whereas
\

>

in the Turner/Lilly Experiments, no such external control is

exerted. I

With respect to the second question' of the influence of the

bottom boundary on the structure of such vortices, there is indeed

very little published work in.this area, and it is one of the aims
4 •

of this, chapter to examine the vortex flow resulting from various

bottom boundary conditions. This bottom boundary condition can
4

in general be formulated in "terms of a drag coefficient C,, in whichCL
*

the stress at the surface is equal to C, times the square of thed
*

1

velocity there. ' This permits us to range from a no slip condition
J

J % *

(C, = 00) such as would apply in the laminar laboratory model of
CL

* •

Turner (1966), to an idealised stress-free situation (C, = 0) whichd

\
\

>
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is associated for example, with the Burgers vortex.- We also expect
4 •

this formulation to extend to atmospheric vortices, with a large drag

turbulent boundary-

surface

associated with the waterspout.

With respect to the question of the influence of the botto

boundary on the vortex, Brooks (1951) advanced the opinion that

surface frictional effects act in a purely dissipative lanner, in

stating that'it is the atmospheric conditions above and not boundary
* *

lhyer friction which is a chief factor in determining the relative
\

*

strengths of tornadoes and. waterspouts, since otherwise, waterspouts
i

0

would be the stronger, contrary to. observed behaviour. He illustrates

/
this by noting that waterspouts usually disapper when they pass over

0

land. •• Golden (1971) also refers to some of his observations, in

which a waterspout which reached the shore- was soon reduced to a

large dust devil. The view of Brooks is further supported by
I
I

| , t

laboratory experiments of Dessens (1969,1972) who observed that
0

A

increased friction- in the bottom boundary layer (provided by
«

0

%

• * *

physical roughness elements) led to a reduction in the intensity of
9 i

*

the vortex obtained,. On the other hand, it may be argued that a
.

9

no. slip bottom boundary condition, by virtue of the enhanced
• • i ,

» • •
• •

convergence, it induces in the boundary layer, may .in fact have the.
' » •

« _ • • .

I »

opposite- effect, since this added radial convergence results in
. • » «

•
•

correspondingly- greater vertical divergence along the axis, leading
t t

to further stretching of vortex: lines, and hence intensification
. • .

«
9 • I » *

#| «

% # # 4

of•the vortex produced.. -Numerical experiments of Davies-Jones and
•

.
t 't

Vickers (1971) .appear nevertheless to be in accord with Brooks'
0 i

4 4

4*

\

V



- 100 -

argument, rather than with the alternative mechanism. Their syste:

driving

buoyancy forces, rather than an applied body-force distribution.

I

For a number of years,.considerable effort has been made by
•

•

4

Chang and his co-workers at the Catholic University of America, into
i

principally experimental studies of tornado-like vortices. Their

/

experimental setup, as reported by Chang (1969) and by Ying and
J

Chang (1970), has certain basic similarities to that of Long (1958).
%

Fluid is withdrawn from a narrow sink on the axis at the top of a
*

cylindrical tank; the working fluid in their case is air, and the
s

T

radial constraint is reduced) by drawing the air radially into

the main chamber through a gauze screen.- The source of vorticity
»

: 1 '
is.provided by rotation of this screen at radial distance b, which

v

imposes a given tangential velocity on the injected air. At the
I

operating Reynolds-numbers of the experiments, the flow is observed to have

turbulent development in the boundary Detailed

Leasurements with hot-wire anemometzy

who examine the flow at two different Rossby numbers, arguing that

the flow depends only upon scales determined by the sink strength Q,

the sink radius b , and r , the outer circulation induced by the
0 ' 00

screen. If we calculate their Rossby numbers in terms of Long's
3 2

odified definition, e = Q/(27rftb^ ) with (I = r./(2Trb ), we find values

of approximately 191.6 and 8.5 respectively for the two cases they'

discuss. In the first, they obtain-a single-celled vortex coupled
I

. strongly to the bottom boundary, and which they are able to compare

-favourably with measurements by Hoecker (i960) of observed tornadoes.

In the second case at the lower Rossby number, the effect of background

\
%



- 101 -

rotation is much more predominant* and the flow is confined largely to
a

a region near, the axis, with a cell of reversed axial flow being

observed.

t

Experiments performed by Ward (1972) have certain similarities

to those of Chang et at. noted above. . Ward, however, sought to

remove the constraint introduced by a fixed sink width, by imposing
fc

the upflow over a large radial extent, the air being withdrawn by
|

a fan through a fine mesh screen at the top of the chamber. This
I

screen is used in order to 'decouple' the vortex flow from the fan

convection, although the fact that this now imposes zero swirling
4

I

velocity at large height could well mean that atmospheric conditions
*

are not in fact simulated.to the extent claimed. The apparent

occurrence of tornado

phenomena such as multiple vortices and suction spots. Crawford
\

(1971) also reports experiments similar to those of Long cited
4

1

above for a rotating cylinder of water. However in the case of
I J

Crawford, the bottom boundary is not permitted to rotate with the
4

%

J

tank (a property.also of the experiments of Chang et at. and
|

I *•

Ward) and under certain conditions, the flow exhibits turbulence
• 9

%

in the-bottom boundary layer. This phenomenon has also been
• 4

• fc ' ■

observed in the'laboratory by.Turner (personal communication ) ,

« 4

who found that flows in which the bottom boundary is inhibited from
# f

' '
t X ' •

• 4 •
» •

4
• '

> ♦ *

rotating-with the tank are much more likely to develop' instabilities
• •

•

than in; the case of a .rotating boundary, in which only laminar flow

is observed.t
- '

0 '• 4
-

• 1
• • *

4 '

tVery recently reported experimental vortex studies are those of
Fitzjarrald (1973) and Kaiser (1973).
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Because of the complicated nature of these vortex flows, in
I

which the equations, of motion have to describe a number of important
4

1

flow regions with widely differing properties (vortex core,

Lnating boundary layer, outer flow region), it is not surprising
9 $

that there.has been a proliferation of similarity solutions, in

equations nanageable Both
s

Gutman (1957) and Kuo (1966) present similarity solutions in which
»

the vortex is driven by buoyancy forces Kuo obtains both one-

and two-celled solutions, while that of Gutman is two-celled. Both9 »

Morton (1966) and Lilly (19.69) point out a number of defects in the

systems proposed by these two authors, noting that their solutions '
♦ J

*

are similar to the Burgers vortex, and that the existence of a cold
%

downdraft in the two-celled solutions can be precluded on iphysical

grounds; Kuo (1967) attempts to overcome.some of these problems

calculating modified are bounded

In the 19.66 paper, the vortex, obtained by Kuo, which satisfies
i

inviscid bottom boundary conditions, is matched to a boundary layer
' • \

at the ground. However it needs to be emphasised that in this
1

situation, the boundary layer is not able to interact with the vortex,
♦ 1
I

being merely driven passively by it, and hence this approach can in
'

♦
*

1

no way provide information as to the effect of the bottom boundary

on the vortex core.

0

Following an approach developed by Gol'dshtik (i960), Serrin
* ' «

t

(1972) has proposed a similarity solution in which the bottom no
*

slip boundary condition is incorporated. Certain interesting flow

solutions are demonstrated to be possible, and these solutions are

compared with the flow .observed near the bottom of tornado and
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waterspout cores. However, we "believe there are a number of
%

important difficulties which arise in comparing, Serrin's model with
4%

actual tornadoes and waterspouts: (i) The flow is not driven
c

•
•

convectively in any meridional circulation pattern as atmospheric

4 <

4 4

vortices- are, but is generated by imposing a line vortex of strength

ground

slip at the ground which is then able to set up the secondary
%

circulation. (ii) In using a model -such as this, we encounter
%
9

the added problem, that any flow system based on a line vortex has

energy, infinite angular importantly
i

V
in this particular instance infinite flow force F (defined in the

c

footnote on p.'9U). This last condition arises, since it is shown

that the pressure is given by
t

?

£ =

P:
n

+ const, and II
1 2

- as r . 0.

swirling

core flows,

V
W

r
00

1
5

F
(= n, say), (1)

L Pv
r ♦

and for strong vortices, "V'vW;- that is, n^l. Here, V and W are
ft

the respective scales of the swirling and axial velocities, T is
v

a

• «

the circulation outside the core region, and the symbol indicates
i

quantities of the same order of magnitude. In Serrin's model,
4

r is finite, but F is infinite. Hence n=0, implying that the

solution represents a weak vortex, with no coupling between the

velocity

it is observed that near the axis, the isobars are apparently
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vertical. However in general, vortex core flows exhibit
*

*

progressive radial spread due to viscous (or turbulent) diffusion.

Associated with this process is an adverse axial pressure gradient,

not evident in Serrin's solution, tending to oppose the convective
m

driving;, it is this mechanism which can lead to the formation of

an axial stagnation point, and ultimately, axial flow reversal...
9

(v) There is no evidence of the characteristic thin inflow boundary

layer adjacent to the ground, as found in tornadoes, (vi) Serrin's
4

vortex has in fact no natural radial length scale, and thus it
*

cannot hope to represent the flow in the viscous core adjacent
$

to the axis. Furthermore, it is evident that the velocity^fields
are unbounded at the axis, and thus to obtain a meaningful solution,

Serrin's vortex would have to be matched to an inner solution

capable of representing-the flow in the core region.

d

A buoyancy^ driven' vortex solution has been also proposed by
Fendell and Coats (1967)» in which the model is largely based on

*
, *

.

that of a laminar plume. However their similarity solution requires
4

the background angular momentum to increase as the square, root of
*

4 •

the height, a condition which is too great a constraint for their model to
♦ # «

♦ w
4

4

have any real physical applicability. A much earlier, well known
.

study is that of Einstein arid Li (1955) 'who obtained simple vortex
» » * « « t.

4

solutions by specifying the axial yelocity to be either zero or very
. ' * ... • '

• 1
< # ' * ' ' • 4

•i # « w g -

small. , However their study has no real relevance to concentrated
'•

• ■■ ■ * '
. /

vortices, since it has been demonstrated by a number of authors (e.g.,
. • • •

H
. 1 - ' #

Morton 1966, 1969; ' Turner (1966) and L) that strong axial flow.
'

. - » .

is an' essential feature .of such phenomena. . -
• » ♦ •_

\ .

4

V
• I



- 105 -

very nature

most able to represent a single feature of the flow, for example
r

the vortex core. In this particular case, the solution then suffers

"by "being unable to cope with the interaction between the core and
w

the boundary layer. Other similarity solutions invariably suffer

from similar such defects, in spite of the frequent claims made
f

that good representations of convective 'atmospheric vortices are
• * *

provided. One work which does attempt a more comprehensive
i

treatment is that of Barcilon (l-967a,b), who models a dust devil

by dividing the flow into a number of regions - surface boundary
A

\
corner region and

g

vortex - to be subsequently matched. The syste driven

/
heated bottom boundary, accompanying experiments being also
* ' *

A •

performed. Unfortunately, the author is unable to suec'essfully

MF5itch these regions, and hence no further progress can be made with
• \ -

this potentially promising approach.

*

I 1

One other area apart from geophysical vortices, which has
\

prompted work in the field of narrow concentrated vortices is that
*

*

4

of flow in.vortex chambers. Here the fluid is injected tangentially
%

at the outer wall of the cylinder and expelled axially, much as in
• « •

the case of Chang's work cited above. Lewellen (1962) approaches

this problem via a perturbation expansion in terms of a small Rossby
%

number, his method therefore being particularly valid for cases in

circulation exerts

vortex procedure

driven vortex bv Turner latches

this vortex solution to" the
. boundary layer solution of Rogers and
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Lance (i960) for flow on a rotating disk, the aim "being to
i

• •

demonstrate the close coupling between the two flow regimes. Lewellen'
• *+ 4

♦

method is also.used by Rosenzweig, Lewellen and Ross (196U)

tenturn integral treatment of the surface

boundary layer, but unfortunately they appear unable to obtain
»

close agreement with accompanying experiments. Granger (1966)

develops an' expansion procedure in terms of an inverse radial
4

Reynolds number for the vortex core, yet notes various defects
9

f

of this approach in a second pa^er (Granger 1972) in which the

method proposed is a generalised similarity solution. There are

disadvantages in this approach also, since apart from neglecting
9

#

the terminating boundary layer, the assumption is made that the

measured

/of maximum'zonal velocity) is constant,' and furthermore, this

particular constant must be determined experimentally! However
\

we have already shown in connection with Serrin's solution, that
t

j
this property is not typical of strongly rotating viscous core

1

flows. .

\

Except fort the work of L and that of Davies-Jones and Vickers

(l97l)»there are few fully numerical models of concentrated
'

- « •
4

vortices reported. Wilkins, Sasaki and Schauss (1971) attempt

to simulate an atmospheric vortex by the release of a thermal
)

(or two successive thermals) from the ground in a rotating frame.

Inviscid bottom boundary conditions only, can be specified in
| t

/

their model and hence they are unable to obtain the characteristic

ground Chaussee (1972)

claims to have produced thermally driven vortices numerically, but

\

*. I

/ J
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the flov he obtains is characterised by weak vertical motions,

already typical

of concentrated vortices. Wipperman, Berkofsky and Szilinsky
*

I

(1969) present numerical studies in which a tornado-like vortex
0

0

9

is generated in a cylinder with a rotating lid. Unfortunately,

there is a serious defect in their numerical procedure, as noted
4 •

1 ♦ i
0

by Leslie, Morton and Smith (1970), in that the vertical vorticity
9 *

*

9 €
94 >

"component -is generated falsely," by their imposition of .the
2

condition of strong rotation (3p/3r = pv /r) at all time,
' • f

0 *

'.-resulting in a steady state being reached in a time less than the

period of rotation of their lid! Textor, Lick and Farris (1969)
...

■

attempt to obtain steady, numerical solutions to a vortex chamber
4

0 •
0

problem, but the shortcomings of their numerical method prevents

/.them from examining all but low Reynolds number'flows. Harlow
.

(personal communication) has reported numerical work corresponding to
9 0

( ^ ' ■ ■
the experiments of Wan and Chang (1972) and Ward (1972), but to

» •

date we have yet to receive details of this work.
I i

From analysis of the measurements of Hoecker (i960) for a

real tornado,t and those of Chang (1969) for a laboratory vortex,
✓

• •
»

.

4

Lilly (1969) argues the use of an alternative radial length scale
*

for tornado-like vortices. Instead of the Burgers scale discussed

above: a = 2(v/D) , Lilly proposes a scale proportional to
. 1

(T /D) . He then develops an inviscid treatment of the vortex
0

0

flow, satisfactory results being claimed except for the region in
+ 4

tit has been noted by Morton (1966) that considerable caution must
be exercised in assessing the results of Hoecker (i960), owing to
certain questionable features'in the methods employed to obtain wind
velocities, such as the neglect of centrifugal effects on the large

.debris used as markers of the flow field.
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immediate vicinity of the axis, where friction is expected

to play an important role. that

of observed vortex motions suggests that earlier theories, in

which the vortex is considered as principally a balance between
t

vertical flow divergence and radial diffusion, are inconsistent
0

with observed behaviour and it is in fact the boundary layer

drag which is the factor of prime importance. This is indeed one
0

of the main points which we propose to consider in the present

study.

From the above discussion, it is clear that there are many

aspects of tornado-like vortices which remain to be considered

in a more comprehensive manner. In a large number of the
I

•treatments reviewed in this section, the analysis has been incomplet
0

4

and in some cases of little relevance to the actual flows under

investigation. The question of the influence of the bottom"
I

*

boundary has received scant attention, in spite of the vital role
! i

it obviously plays in coupling the narrow axial vortex region to
9

the outer flow. On the other hand, it is also apparent that the

problems involved in resolving the more important features of the
*

vortex flows are indeed of considerable magnitude, and therefore
f

4

it is often more feasible to concentrate on only a few of the mdny
0

4

relevant aspects of this system. . To this end, we hope in the
9 0

present study to be able to clarify to some extent, the role of
. »

■ 4

the bottom boundary and to investigate the importance of the
% •

•constraints which are associated with the imposition of boundaries
*

I • >» *

in the flow regime.
• *

\ .

/ *

m #

I

0 0

4 I
b <

v,
v

0
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2. Equations of motion

In Figure 1(a) we present the essential features of the

system under study. It consists of a right circular cylinder
0

0

%

of radius R# and height Z# which rotates about its vertical axis
with angular velocity'fti , A cylindrical coordinate syste

4

(R,0,Z) is fixed in the rotating cylinder as shown, with

corresponding velocity components (U.,V,W). The flow is driven

body lagnitude

and of radial extent R . Axisymmetry of the flow is assumed,c
*

a sketch of the relevant features in the (R,Z) plane being given
\

0

4

in Figure 1(b).

The Navier-Stokes equations for time-dependent, axisymmetric
0

#
%

incompressible flow in a rotating cylindrical coordinate syste:

with an imposed vertical body-for
0 * •

4

*

continuity equation, have the for:
V

0 0

3U
9T

• «

« 4 '<
• >1

« * • a.
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+
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3
3R (EU) + k m =0>

•
• 4 * %

where p is the fluid density, v the kinematic" viscosity, both '
V

9
0

4
•

.
^ .

assumed constant, and T is the time. The dynamic pressure P.is
4

related to the total pressure- P# by
f * 4

94
4 4

• 9

1 2 2
P = P# + pgZ gPR ft .

>
0 *
9

\

Y
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Equations (2) to (5) are non-dimensionalised.as follows.
• «

^

As the length scale we choose R , the radial extent of the appliedc

"body-force distribution, following Morton (1969) and Wan and Chang

(1972). A representative velocity scale can he incorporated by
1
5

, and as the natural time scale we have
c' J

We thus define the following dimensionless variable

denoting them by lower case letters:

(U,V,W) = W#(u,v,w) , (R,Z) = Rc(r,z)

T = T#t
2

P = PW#"P,
(6)

and in non-dimensional terms, the tank dimensions are given by

= R*/P and z# = Z#/R , with the dimensionless radius of the

4

/

driven region being r =1. In dimensionless form, equationsc %
s
4

(2) to (5) can "be expressed as

3u 3u 3u
3t ^ "57

\ 2

e r>= -i?+ 1

R
^ 3 I 1 3 t ^+ — I — — (ru)3r r 3r (7)

%
t

3v
3t

3v
3r 3z v e r

1
R

2
3 v

+ J_/IJL(rT)
3z

3r r 3r (8)

3w
3t

3w
3r

+
3w
3z

=f-|£ +
3z

1

R

2

3z
+ I i__ / 32)

r 3r v 3r; (9)

h(ru) + h(rw) =0» (10)

where the applied body-force, after noft-dimensionalisation is f, of

unit two dimensionless parameters

above equations are the Rossby number \

W
*

e =
■ . (ID

2QR
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• ► » $

and the radial Reynolds number
t

4 \

9 0

W„R
R =

*

v
(12)

We now reduce the number of equations from four to three, and
#

by doing so, obtain equations which are more suitable for numerical
9

treatment. The stream function \p is defined by

1 81 1 W1] s TT s — *
• r 3z » • r 3r (13)

ensuring that continuity (10) is satisfied identically. The zonal
0

vorticity component is

C =
3u
3z

3w
3r (1U)

0

Equations (7) and (9) are cross-differentiated to eliminate
9

pressure, and the three momentum equations for u, v and w reduce
0

0

to two prediction•equations for £ and v, together with a diagnostic
4

equation for ij/, obtained from the definitions (13) and (lU), thus:

2

3t 3r 3z \ e

2v
r

1

R 3z

^ d I I3 / ~\

3r I r 3r (15)

09

2
1 1
r 3z \ e

1
R

■3 / i a , ,
+ a?l x 3? (rv) (16)

2

L./1 lit \
3r \ r 3r /

= - C ,

3z
(17)

where j/a\ JjJi 39v ; ~ 3r 3z 3z 3r (18)

is the Jacobian shorthand notation for the.connective terms, 0.being
0

a typical flow variable. If required, the pressure p can be~-

recovered from the Poisson equation,
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9

2

IL L i£.\ , 3 P 3f
r \ 3r. ) 7^ 3zr 3r

2
3z

3u 3w
3-z 3r

3u 3w
3r 3z

- (7 fl ir
r 3r

1
+ X)r /

9

obtained by taking the divergence of the momentum equations
» I

» ♦
• «

3. Boundary conditions

We shall consider in turn the conditions imposed on the four.
4 •

9

4 » •

boundaries of the computational domain, depicted in Figure l(b).

• » •

(i) r=0: Symmetry at the axis' of rotation implies that
4

•
■ u=v= jty = =0, and'in terms of c, v and \ji, we have3r 3r '

. ■ ' \

x, = v = \jj = 0.' .'. (19)

«

(ii); z=0: Three different boundary conditions can be specified
0

9

i

(A) one of no slip, (B) a yielding surface with non-zero
0

stress and (C) a stress-free1surface; in all cases this

.bottom boundary is assumed flat. The boundary condition
4

4

at z=0 can be expressed in a general form involving the-
&

0

plrag coefficient C,, where if the velocity at this.CL
9

boundary is u = (u »v ,0), we have in dimensionless form

3u

3z
= R C^iu iu . (20)

Cases A, B and C correspond to infinite, finite and

zero respectively. boundary

conditions in the various cases are

A

2

C = -
1 3U , V= \|> = 0;

3z
(21a)

B

C:

C = Rcjuju , .

C =

d

3v
3z

o

3v
3z

= RC
d

u v

= ^ = 0.

^=0; (21b)

(21c)
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For case B, the boundary condition (2lb) is discussed in more
| *

detail in Section U(d).

boundaries
9

envisaged - one in which the. flow is entirely contained within a
*

rotating cylinder, and the second in which we attempt to provide

a more realistic model of the atmospheric situation by removal of

the constraints imposed by these boundaries; this is accomplished
$

by allowing the fluid to flow freely through the boundaries-of the
t

*

computational region.

In the first case, the relevant boundary conditions at r=r#
%

are no slip, while at the upper surface we can model either a
*

no slip lid or a free surface (assumed horizontal).' These cases

are labelled a and B respectively." In preliminary numerical
»

experiments, the effect of an imposed boundary, particularly at

the upper surface, was clearly apparent in the computed fields.
*

Physically, the model simulates a narrow rotating jet of fluid

convected along the axis, which interacts with a fixed upper

surface. It is this situation which is found to lead to the

appearance of "oscillations near the upper surface, notably in the

vorticity and radial velocity fields, and particularly at large

Reynolds numbers type of boundary

by assuming that the height z# of the computational region is
sufficient for the flow there to be effectively vertical. The

advantages of this stratagem are twofold: firstly, the oscillatory

motion is removed, and perhaps importantly is more

realistic as far as comparisons with atmospheric vortices are

concerned This case is denoted by y. At the side boundary

\
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r=r# we can impose either a no slip condition or one in which the
«

boundary constraint is removed, corresponding to radial flow only;

these are denoted by a and b respectively. Hence, the appropriate
• - •

boundary conditions are . .

(iii) r=r* •

2

a , V = ^ = 0; (22a)
r

3r

b . .& = iX = = o*

3r 3r 3r '
(22b)

(iv) z=z^
2 \

a : ~ , v _= 0 = 0; (23a)r
3z

0 : c = |S = 0; (23b)
,4

Y • l£L = IX _ M" = o. (23c)Y * 3z 3z 3z U'
\
\

I

We also specify the cases of a non-rotating and a rotating
1

a

tank, denoting them by the indices 1 'and 2 respectively. Thus,
4

for example, a rotating tank with no slip on all boundaries
%

be specified by Aaa2, and so on.

\

h. Numerical method

Following L,.we obtain firstly the finite-difference analogues
9

• «

of the differential equations (15) to (17), whereupon the difference

equations corresponding to the two prediction equations (15) and
*

9

I

(16) are solved by the explicit leapfrog scheme. The diagnostic
9

equation resulting from (17) is solved by a direct Fourier method
9

n »

» J.

\
)

X \
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9

in contrast with Successive Overrelaxation used in L

(a) Finite-difference operations. The difference equations

are solved on a square mesh defined in the (r,z) plane with equal

grid spacing h in "both coordinate directions. The number of mesh
0

points in the radial and vertical directions are 1+1 and J+l

respectively, and hence the region of integration is specified by

r. = ih
1 .

(1=0,1,2 1),

z. = jh
J

(j—0,1,2,... • ,j),
(21*)

\

/

where h = r#/I = z^/J, as denoted in Figure 2. The position

coordinates of the flow variables axe denoted by a pair of" subscript

and their time development by a superscript. For example,
• «

v^ j represents the finite-difference approximation to the zonal

velocity field at the point (r.,z.) defined above in (2H), at^ J

time nAt, where At is the time increment used in integrating the
1

<

prediction equations (n=0,l,2,...).

The simplest finite-difference formulation, that of a constant

mesh spacing in both coordinate directions is chosen here.
V

since we are considering flows whose structure is expected to be

concentrated more in the regions adjacent to the boundaries of the
0

computational domain (in- particular the axial core and bottom
%

boundary layer), there is a case for use of a non-uniform mesh
*

distribution as formulated for example by Davies-Jones and Vickers

lally driven Unfortunately

there are a number of unresolved problems associated with the use
)

\
\
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m #

•
• 1

» 9

»
I

of non-uniform grids for time-dependent problems. ' Indeed an ' » »

. examination of the. flow, fields calculated by Davies-Jones and
•« "

♦

•Vickers .indicates the existence of a number of physically spurious ■
'

• «

»• ' «

* interactions which have.occurred in the course of their computations.
4 »

4 «

• •

(b) . The difference equations. In the notation of Lilly (1965)» we'
• k •

define the averaging operator B 'and the difference operator
A 9

6 0 for a given flow variable 0, where x can be any of r, z or t.
X

4 *

whose mesh spacing is Ax:

6X = ■! •(*+>> + 6(x-|S)
'(25) .

M = ii •(«♦!»).- su-l5)
9 • •

• 4

•

. . t

Using these operators, we express equations (15) to (17) in their
/ ' '
. corresponding finite-difference form:

(27)

-C =61-6 ij, ) + — 6 \l>i r » r r / r zz
. (28)

where the particular form of the Jacobian is now discussed.

\

\

(c) Stability requirements.
n

(i) Conservative difference schemes: In theory, the problem of
*

solving the above system (26) to (28) numerically, is comparatively
• •

straightforward. However, when such equations.were first being
*

considered' in the initial development of numerical weather prediction
4 •

t

models, it was observed that instabilities developed in the computed
It

4

\

s v *
v < ' *
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fields (Phillips 1959). This difficulty arises "because the usual
0

difference form of the Jacohiari (18),

Jl(e) = 6 !jJr.6 ez - <S ljJZ.6 0r ,1 r z z r 9
0

0

is unable to conserve certain integral constraints such as mean
0

and mean-squared vorticity and the meridional and zonal kinetic

energies, necessary in the real fluid (assuming dissipation is
0

neglected). The source of these instabilities is the inability of

the finite-difference mesh to resolve disturbances longer than a
»

certain critical wavelength (Haltiner 1971); these disturbances
0

then interact with other waves to produce a cascade of energy into
s

the smaller wavelengths. This process, called 'aliasing' continues
\

with ever-increasing amplification until the computations,become
4

unstable.
♦ •

t

One way to overcome this problem is to use a dissipative
V

V

difference scheme which damps out the troublesome wavelengths. But
0

0

Arakawa^(1966) has pointed out that this becomes unnecessary if
*

one uses difference approximations to the Jacobians which conserve

the necessary integral constraints, thus ensuring computational
i

0

stability. Arakawa introduced three forms of the Jacobian,
9

0

(defined above), J2 and J3, which are equivalent for an incompressible

fluid:
0

%

0

0

4 •

r z

J2(.B) = « (^/) - 6UsJr) ,r z, z r
9

6

c ... 0 "... ,
Q

* ♦ •

T Z

'j3(e)'=-S (86 ijjz) ' +■ 5 (06 ^) ." .r z • z r v- ■
% •

. *
, < »

•.. , . »
- ■

.

* . -
• • .

•
, «

. . • .>
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shown that these three

2

<0>, <0 > and <6ip>, where < > denotes an integrated average over

a given area.

When 0 is the vorticity. for example, the three

conserve mean vorticity, mean-squared vorticity and meridional

energy Various combinations of Jj, J2 and

J3 can'he employed, the properties of which have been examined
$

numerically by Arakawa (1970). In the present work we use

1
JA ~ ^(Jl + J2 + J3)»

\

which obeys all three constraints (Arakawa 1966). In L, was'

proposed for the vorticity equation and = 2^1 + ^2)» which
4

I
conserves mean zonal kinetic energy, for the zonal velocity equation

<4 4

#

However, there is in fact no additional effort involved in using
» •

JA for both equations, and numerical tests reveal effectively
f

identical results from both schemes.

(ii) Time differencing: In its simplest form, the leapfrog scheme
ft «

can be expressed

+ 0^ - 0?-^ijf =t 2At
= f? . (29)

where f. . is a specified function of the 0 field at the grid1 > J
I

(i,j), at time nAt. Clearly 0. . can be found explicitly fr
1> J

9

knowledge of the fields at times (n-l)At and nAt, and in this

tanner the solutions can be integrated forwards

initial conditions, the accuracy
2

However there are a number of stability problems associated with this
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scheme which require consideration.

Firstly, if (29) is a diffusion equation, the resulting

difference scheme is unconditionally unstable (Richtmyer and Morton

1967). We use a device of Platzman (1963). to overcome this
ft

difficulty: this involves calculating the diffusive terms in

(26) and (27) at time (n-l)At instead of nAt - hence the use of
ft

the subscript 'lag'. Thus the diffusive contributions to the
ft

|

difference equations are in fact simple forward differences froi
I

9
c

time (n-l)At to (n+l)At. We th'en have the well known restriction

on At (Richtmyer and Morton 1967):
\

At <
Rh

8

2

(30)

/

I

Alternatively, we could use the stable DuFort-Frankel Scheme which
ft » 'ft

ft

ft

has been employed'in the vortex model of Chaussee (1972).

% •

A linear analysis of (29) when.f represents the contribution
9 I '

of the. c'o'nvective terms, yields the second restriction on At for •"'
•« ' •

two- space .variables: .

• >

» •

1. •
'

. At <
h-

WIT « 1 (31)
lax-

• ft

where u maximuj
k I

velocity attained in the interior of •

• ft

the computational region^ which, if our scaling for W^ is
• | 1

ft ft

• ft •

representative- of the maximum velocities attained, will be of.

order unity.' It is this second condition (31) which is the

governing restriction, for the type of highly convective flows we
ft

ft

are"considering.
ft

ft

ft ft

ft*«
• « • 4

< 4
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There is also a weak instability which arises in connection
t i

nature

it is to represent first order time derivatives. In this
ft

computational mode, two separate' solutions appear at alternate
4

time steps, the difference between the two gradually increasing with

time until the'computations become unstable (Lilly 1965). This

behaviour known as 'time splitting*, can be suppressed by periodic

averaging of the fields (every Up time steps is found suitable in

the present case), in the following manner:

0= e'11 . = 7(9?"^ + 26? . + 0" * ) ,
, 4 1,J 1,0 i,J v

the computations being restarted from the new (dashed) fields.

(d) Formulation of boundary conditions. We now obtain the
ft

boundary conditions (19) to (23) in finite-difference form. Firstly

for illustrative purposes, we derive the expression for the

vorticity at the bottom boundary, assuming no slip and no flux
*

through this surface. Thus at z=0, we have from (13), (1*0 and

(21a),

.. 3u 1 3jb _ 1 ajh . ' .

c=5j = -r-f , u=-?J = o, *=0.
dz

Expansion of vertically in a Taylor series yields

2 2

<l>(h) = 1|>(0) + h|^"(0) + ~ -*mf(0) + 0(h ),
3z

which with application of the ahove conditions, leads to

C(0) = - „,(h) + o(h). (32)
rh

*
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An ostensibly more accurate expression for the boundary

vorticity involving both \J>(h) and i|>(2h) can be obtained (see

Pearson 1965) and this was done in L. Notwithstanding the
2

apparent increase in accuracy from 0(h) to 0(h ), it has been

demonstrated by Beardsley (1971)» who compared his finite-difference
4

calculations with a known exact solution, that Pearson's method

gives resulting inferior to those obtained by using (32).

In terms of finite-differences, the boundary conditions (19) to

(23) are:

Ci) i=0 (r=0) £ . = V . = . = 0
0,J o,j vo,j

"
(33)

(ii) j=0 (z=0) :

A :
/ 2_\

i»'° = "\r.h2 ) *i'1' Vi'° = " °5 (3Ua)

B : (£. , v. ) - see Appendix, =0; (3^b)
1,0' 1,0 1,0

C : £. = 0, v.
1,0 ' 1,0

Vi.l
h \l>. _ = 0. (3Uc)

1,0

(iii) i=I (r=r#):

a: C
1,3

2

■r*h
*1-1,j ' VI,j " *I,j = Q; (35a)

b: 5i,j = ci-i,j» vi,j
=

vi-i4j- *1+1,3; = < • (35b)1-1,3

| »

0 »

♦

I 4

U
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(iv) j=J (z=z#) :

a: 5

0

= *l•« ' " 'J = *i•J =0!' (36a)

6 : S . r = \l>. - = 0. v. . = v. _ ;i,J *i,J . » i,o .i,J-l (36b)

Y ' «i,j * vi,J = vi,J-i, *i,J+i "*i.j-ir(3M
0

The fictitious points (I+l,j) and (i,J+l) outside the computational
o

4
4

4 •
9

region, and introduced above in "(35b) and (36c), are used to represent
9 9

the normal derivatives of tl>' in the numerical solution of the. Poisson
4 ^ H <* * # < * % » •

99

*

4

9 *

equation, when Neumann boundary conditions are specified. In the
* O

Appendix to this chapter, we. outline the method for the numerical
^

V * 4 I f

treatment of the nonlinear boundary condition (21b)..
•i

//'

(e) Steady state. From the given initial state of solid body
* *

• « »

• 9
4

<

rotation, .the vortex flow continues to.develop until such time as
*

♦ V
♦ • f

c > *

•the rate of viscous dissipation is balanced by the rate at which
9

9 C +

4 «
w '

energy is added to the system via the body-force. It is found
> * *

.
1 | •

fl
4

advantageous to partition the total kinetic energy, into its zonal
• 4

\

%

and meridional contributions, E and E_. From Lamb.(1932, §l62)2

we have *9
• 9 %

>9 • m

#
♦ i

9 4

E = itp// v r dr dz ',z
(37a)

0

E = irp// dr dz (37b)

where the region of integration is over the (r,z) cross-section
a •

e ♦
«

(O^r<r,0<z<_z#). Steady state is assumed to have been attained
* <3 •

</ #
o

when the finite-difference'analogues of (37a) and (37b) remain 9 '

44
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constant to within 1$ over a specified number of time steps

(f)
, *

Solution of Poisson equation (28). The method described

below, dates from the introduction of algorithms designed to speed

the calculation of finite Fourier^ series by use of the symmetry
9

properties of trigonometric functions (Cooley and Tukey 1965).
m ^

This method of direct solution, due to its high speed and accuracy,
*

is gaining increasing favour over iterative • methods for the

numerical solution of elliptic differential equations (see e.g.,

Hockney 1966 for comparisons).

The diagnostic aquation for \p in terms* of £ at a given time
1

nAt, has been previously given (28) in finite-difference form as

6 (-6 ij>) + -5 ip =
r r r r zz

From (2U), this is equivalent to

ri r±
h vvi+l,j vi,j'

i 2ri 2

2
— -) + (^- -.. -)=-r.fc u.h ijJ+1 i i

4

(i—1,2,.••,I-1j j—1,2,o..,J—1).

simplicity in which \p
• •

9

is zero on all boundaries. This incorporates the.cases
9 i

♦ •
4

9 #
«

(A,B',C; a; a,8; 1,2) defined in Section 3. These boundary conditions

permit an expansion of the \p (and consequently the 5) fields as

Fourier
I

exact representations of the discrete fields); . we also define
i 2

C. . = r.h £. .:*i,j. l si,j
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I •

J

ij/. . = A. . sinV1,0 i,k J
(39)

(, Is5! j —1

J

?i j= ]C Bi,J k=0 * *
k 8111 -J

m

The inverse transformation of (HO) is

B. '
i»k

2 v-> ' .17

j p0 Vj Sin "j (Ul)

On substituting (39) and (UO) into (38) and equating

coefficients, we obtain a second order linear difference equation
, •

linking the A. . and B. . :

«A • « . !}• «A • • ^ c*A« « « B • *

i x+l,k i,k i,k i i-l,k i,k
(h2)

■ r \
Trk

where a. = —^-r* * c. = ■ ■ . , b> , = a. +c. +2(l-cos ~)
l ■ h *

.VI
i h *

ri 2
i,k l l J (U3)

calculated, the constant (U3) are stored in
\

n

the program for use at each subsequent time step. The solution of
i

the tridiagonal system Thomas

algorithm (see Appendix of Ch.U) to obtain the unknown A. ,. Thus,
X )A

given the interior-t. .field, we find the B. , from (Ul)4 and on
1) j X jK

♦ •
I I i • * •

solving (k2) for the A. . , the [p. . field is recovered
. 9 ^

through

Fourier synthesis
> J

The expansions in terms of finite Fourier series facilitate
J *

* ►

4 • 4 4

a decoupling of the radial and vertical contributions in equation. '
» i.

♦ *

(28), and hence this-is equivalent to separation of variables. The
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9 9

mathematical "basis of the method is that the expansion (39) for
4 *

the . field is expressed as a linear combination, of the
i.J

9

complete set of eigenfunctions of the difference operator 6^^
(Ogura 1969).

• to

• •

to
4 * to «

The procedure outlined above can be modified to treat the
•

•

. •
9 » ■

,

other boundary conditions of Section U(d). In the preliminary
0

numerical work, the method described here was used, but in
, • » « »

the final, production version, a generalised routine POIS of
«

• «
• ♦ •

1

Sweet (1973), capable of treating all the different boundary

conditions within a single' code, was incorporated.
•

. ■ • \

(g) The overall procedure.. Starting from the initial conditions
« • * ■ •

• I
4

s

9
• « » $

of solid-body rotation at time t=0 (i.e., n=0) the body-force
*

to

9

♦ I ^
♦ ♦

is applied, and the equations (26) to (28) are integrated until
| 9 tt

to 9

a steady solution is attained. This process involves three
'

. ! ' *
% ' '

distinct operations,'which are repeated consecutively at each time
1 • ■

step. Firstly, the interior 5. . and v. . fields (i=l,2.,.,1-1;
X»J ijG

4

j=l,2,...,J-1) at time (n+l)At are obtained from the fields of
4 4

C, v and 1J1 at the two previous time steps, (n-l)At and nAt; the
|
< to

simple This
• to

to

is.followed "by calculation of the \l> field using the direct method
* * '1 •

4 «

described immediately above. Finally, by way of (19) to (23) the
* 4

* »

to to

boundary values on ?, v and \l> are calculated. The integration

next

Values of certain variables at the axis, for instance c/r
m

A

required for the Jacobian in (26), can be calculated by L'Hopi

Rule. The overall accuracy of the difference solutio
|

9

'second order in both the spatial' and time coordinates.
1

%
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5. Results

In this section we specify firstly the dimensions of the

rotating tank, and then consider in turn the influence of the

various "boundary conditions and other relevant parameters.

5.1 Selection of flow parameters. It is clear from the work

discussed in the Introduction (e.g.-, the experiments of Long,

■the numerical studies of L and the order of magnitude analysis of
w

$

Morton) that concentrated vortices are capable of forming only

.over a narrow range of physical parameters. Firstly, the Rossby
\

s

number e must be suitable for vortex formation; in the present-
0

case, this demands that the values of the driving force and the
I

background rotation be 'compatible'. Secondly, the Reynolds
0

number. R must be sufficiently large in order that the vertical

stretching of vortex lines is.not dominated by radial diffusion
t

As the physical dimensions of the tank itself, we choose
b

R* = 7.5 c and Z# = 30 cm, with the value of R being set at 1.'5 cmc

After a number of preliminary numerical experiments, where guidance

' was provided by the analysis of Morton (1969), the following values

of F, 0 and v were chosen: F=l*5 c
2 -1

~ ~ , -1
, 0=0.1 sec and

v=2.5vq, where vq is the kinematic viscosity of water equal to
-? 2

1.008x10 cm
-1

These values were found to lead to a vortex

flow which exhibits large amplification of the background rotation

and also in which the region of radial inflow grows downwards fro

the driven region towards the bottom boundary. Hence W*
= (F.Rc)5

-1
1.5 cm sec , and we can now calculate the Reynolds and Rossby
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numbers from (ll) and (12) as .R = 89.3 and e = 5.0. Also r# '=• 5»
*

I

= 20 and T# = 1.
9

9
9

In all the numerical experiments performed, the forcing is •
9

m

specified along one third of the extent of the axis of rotation.

Unlike the case of L which modelled the experiments of Turner and
9

9

Lilly where the force was applied to the top third, the driven
9

9

9

region in the present case is situated halfway up the axis, much
|

m 9 I

as indicated in Figure 1(h). This is done in order to minimise
*

%

as far as possible,the direct influence of the forcing in the vicinity
9

of both the top and bottom boundaries. The dimensions chosen for the

finite-difference mesh as described in Section U(a), are 1=15, J=60
%

and hence h=r#/I = i/3. That is, r , the radial extent of theC i

^forcing, is three grid lengths. A triangular profile for f is used
9

over this region as shown in Figure 3, where we also indicate the

specification of the term 3f/3r, required in equation (26). A

suitable dimensionless time step, ensuring computational stability
I

i

is. found to be At=0.05 and steady-state is judged to have been reached
%

after 2500 time steps, corresponding to a total elapsed time of
9

I

t

125 sec. The one minor exception to the above is in the case

Aboi2# in which we set I=l6, J=6U and hence r =3.2h. Here the time%7 7 c
t

step is chosen as At=0.0U and an equivalent total time is attained

by running the integrations out to 3125 time steps. Details of the
4

9

. various cases considered are presented in Table 1.
9

»

9

9

• > 9

5.2 The bottom boundary. As previously indicated, the principal

reason for considering this boundary is to determine"more fully

the influence of different surface conditions in atmospheric vortices.
9

I •

%

4

%



- 128 -
t

4
4

9

• ' *

This is carried out hy testing the two cases, Aay2 and Cay2 which
f

are identical apart from the bottom boundary, which is one of no slip
►

,

and zero stress (inviscid) respectively.

In Figure 6, we show the contours of v, u and w for case
\

Aay2 after 500 time steps, still.a comparatively early stage in the
9

i

development of the vortex. As can be seen, the flow is
9

'growing' downwards towards the bottom of the tank but there is yet
9

no noticeable interaction with the no slip boundary there. However
I

at steady-state (n=2500) as seen from Figure 7, this situation.has
4

9

altered considerably. The .vortex has continued to develop until it

has begun to interact with the bottom boundary. At this point the
0

disruption of the approximate centrifugal/pressure-gradient balance
4

,'by the no slip condition, induces the large radial inflow velocities

near the boundary as shown most clearly in (c,). The inflow
9

4

boundary layer"is seen in (a) to extend along the bottom of the
*

tank and (b) shows the zonal velocity field in the mature state,
♦ »

with the vortex lines,-terminating in the bottom boundary layer.

Figure 6(b) exhibits a region of negative zonal velocity near the

top, which by steady-state has been carried out of the computational

region. The velocities in this region are negative in the frame

of the rotating tank, but are (necessarily) positive in the inertial
•

»

frame. At steady-state, the maximum amplification of the zonal
%

• ^

velocity field for this case is 39.1.
9

In Figure 8, we show the steady-state contours for case Cay2,

the vortex obtained with the idealised inviscid bottom boundary.

The contours at 500 time stepss(not presented here) are very similar
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ft

to those of-Figure 6, since at this point there is' no effective
ft

ft

interaction with the bottom boundary. However this picture has

altered noticeably, as expected, by the time that steady-state.
* 4

is attained. Because of the .inviscid boundary, the centrifugal/

pressure-gradient .balance is maintained right to the bottom of the
J .

«

ft

tank. Hence there is no strong radial inflow layer and the-..
9 9

vortex lines terminate in the boundary itself.
» ♦

In Figure h, we show the variation of w along the axis and
i

ft

near the bottom boundary for these two cases. Below the driven
$

region, the profile for the inviscid boundary is effectively linear,

in line with the Burgers vortex,. However in case ha.y2j the active

boundary

Considerable disruption of the w.'fi'eld is observed near the botto
ft

#
. 4

ft
ft

ft

in the region of boundary layer eruption, but above this, the
I

profile is also seen to be linear. In Figure 5, we show contours of
I

v at height z = 10/3, which is within the linear w region of Figure
I

1* for both these cases. These curves are best least-squares fits

Burgers

The two works with which we-can compare the results of this
ft ft

ft

particular study, are the laboratory experiments of Dessens (1969,

19T2) and the numerical studies -of Davies-Jones and Vickers (1971).,
*

both of whom consider the problem of the influence of boundary

friction on the structure of a concentrated vortex. • Dessens

'lished this by Using actual physical roughness elements on

z'uq bottom boundary of his experimental setup,- while Davies-Jones
I V

and Vickers incorporate the same boundary conditions as in the present
ft

case. The results which we obtain are in good qualitative
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agreement with those of Dessens. The inviscid boundary results
0

in a considerably stronger vortex, with a maximum amplification

of 55.0 as against 39.1 for the no slip case. Because of the
0

enhanced.-radial converge induced near the boundary by the no slip
0

»

condition, the vertical velocities in Figure U are noticeably

stronger in this case, as also found by Dessens. Furthermore, in

agreement with'him, the zonal velocities in Aay2, as well as being
• • ♦

considerably weaker, have also a more diffuse core structure than

in Cay2, as seen from the fitted'curves of Figure 5. Here, the

Burgers core thicknesses are a (dimensionless) equal to 0.38 and
4

\
e

0.27 respectively. The numerical vortices obtained by Davies-Jones
#

0

0

and Vickers appear to be much more strongly influenced by the
1

bottom boundary than those of the present study, the ratio of the
/.
maximum amplifications obtained being almost 5 for the inviscid

and no slip conditions. • However it is' noticeable that their

vortex for the no slip case, is not joined to the bottom boundary
*

by a strong inflow boundary layer, suggesting that their choice of

parameters may not be ideal. Indeed, their streamline contours ;0 0

0

show that there is even a cell of reversed circulation adjacent to
« ♦ 9

#

the rigid boundaryI

From the above' discussion, we deduce that so far as the strength
• • • •

• \ *

of the resulting vortex is concerned, the no slip bottom boundary -

■■

appears .to act in a purely dissipative mariner, and in this we are in
• ■ •

•• * * * •
. ■ ■

agreement with both Dessens and Davies-Jones and Vickers, as well as
4

• i

the arguments of Brooks -(1951). In the present work we have not
►4

. < . • I
• ♦

• « *.

attempted .to treat the intermediate, boundary condition.B, defined in
4 * • f

(20b), but as indicated in the Appendix, no difficulties are foreseen
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0

in incorporating this at a later date. In connection with actual

atmospheric vortices, we have the case reported by Golden (1971),

land

water, inflicting severe damage on boats which were moored in this

area. However, there are no estimates available of the change

in strength of this vortex due to these two surface conditions.
i »

5.3 Influence of Rotation and Diffusion. For purposes of

comparison, we have also performed the calculations.at rather

different Rossby and Reynolds numbers from the cases discussed
< ♦

9 «

above. In Figure 9j we show t.he steady-state contours of, 0 and w

for case Cayl, which is identical, to Cay2 except for the rotation

suiting in. an
■ m

0 4

value of 5. Here we can see that, as expected
$

grqwth.of the flow In

early numerical experiments, it was found

apparently strqng vortices could be formed at Rossby numbers
• •

considerably greater than 5, but that a closer examination revealed

a streamline•pattern much as in Figure 9(a). Here the forcing

was tending to dominate the effect of rotation, and although large
" t ■

zonal velocities were obtained in the driven region, there was •'
1 i ft

negligible vortex growth, and hence no possible interaction with the

bottom boundary. . This behaviour is also seen in. Figure

vertical

Morton. (1969) for the

Reynolds number

otherwise radial diffusion

♦

dominate vertical stretching to the extent
< f

f
A »

rapidly swirling vortex. To this end,
I

*

)
/
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♦ * 4

# •

f

we have considered the case denoted by Aay2 , which is identical
0 4

in all respects to Aay2 except for the viscosity.v, which is
»

r

4

I

equal to 10vq instead of 2.5vq as in the latter. In Figure 10
steacly-s.tate contours of ill and Since

value of the Rosshy number e is still equal

fields have developed downwards with considerable inflow occurring
44

s •

adjacent to. the bottom no slip boundary. However as seen in
X

*
♦

Figures 5 and 9(b), the zonal velocity field is much weaker and
s

%

more diffuse than the case of Aay2, with a maximum amplification
•

9

4

equal to 8.9 and a equal to 1.05. These can be compared with the
\

values of 39.1 and 0.38 found in-the higher Reynolds number case.
t «

In Figure 4 the vertical velocity on the axis is seen to resemble

the profile for case Aay2, but with only a comparatively minor

disruption in the vicinity .of the bottom boundary.

5.U The 'nan boundaries In-the Introduction, we laid

experimental

numerical studies which have been performed to date, very little

consideration has been;/,given to the effect of imposed boundaries

on the flow,-in models which attempt to make meaningful comparisons
0

*

with atmospheric vortices. Thus in this section, we wish to-

examine more closely the flow resulting from different conditions
%

imposed at the outer boundaries,- r=r# and z=z#.

In all the cases which have been discussed above, the same

boundaries

slip on r=r# and free flow through the boundary at z=z*, as
%

#

represented by (22a) and (23c) respectively. It was decided

therefore, to examine the further case in which these boundary

V •
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4

*

\

conditions were reversed, by applying a no slip rigid lid and with
> »

free flow being permitted through the side boundary. Apart from

this, the bottom boundary is one of no slip, while e and R are
\

maintained at the values selected in Section 5.1, this case being
4

4

ft

denoted by Aba2.
#

i

In Figure 11, we present contours of (a) zonal velocity and
t

•(b) stream function, showing the time development of this case
t

• y
4

from the initial state' of solid body rotation,' to the situation at time
I

lOOO&t; How in the Introduction we mentioned that in preliminary
«

experiments, it was found that the presence of a rigid lid led.
ft

to oscillations appearing in the flow fields, and it was this problem

which was one of the reasons for removing this constraint at the

/upper surface,by allowing free flow through the boundary of the
ft

computational domain. As can be seen in Figure 11, these oscillations
•. •

have become apparent after 250 time steps, by which point the flow
ft

|

has begun to interact with the upper boundary. There are two
i

possible explanations for the existence of this oscillation. The
ft

*

ft

first is simply that the finite-difference mesh in the region of
¥

\

\
• ¥

lid nay not be capable of resolving the flow, which consists
A

essentially of a strong narrow jet which comes into abrupt contact
¥

with a rigid boundary. The second is a physical mode, which has
ft

been observed in conjunction with confined concentrated vortices

in the laboratory, by Turner (1966) and Pritchard (1970). This

feature has the appearance of a solitary wave supported by the

rigid boundaries, and which oscillates back and forwards along the
« «

axis much in the manner of longitudinal vibrations of a spring.
»

4

This problem has also recently been considered theoretically by.
4

*
¥

?

)

« ♦

\ '
9 l
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Leibovich and Randall (1972).

9

In order to determine if it is the second mechanism « 4

exclusively which causes the. appearance of these oscillations, the'
4

same case but with zero rotation (Abal) was run out to 500 time
r

steps, but no'appreciable attenuation of these waves was observed.
« - •

4

However regardless of the exact mechanism which.causes.them in
* 4

association with a rigid lid, we have seen that this problem can-
Ml • • ••

*
i

4 • « •

•be removed hy allowing the flow to pass out of the. top of the container
•• " • ■

.as in the other cases which have been calculated. If it is the

first mechanism that is the cause, then removal of the lid means .
'

*

. ^
% ' .

that the .vertical'core flow is not suddenly, constrained to form a
•

t

*

•

*
• ♦

radial outflow region as shown in Figure 11(b). On -the other-hand, .
'

»
• 4.

if the inertial oscillations are also affecting .the system, they
■

9

can no longer be supported, once the lid is removed.. Furthermore,
*

. •

♦ *

this leads to a steady, well-behaved situation, 'and one that is also
9

much-more realistic so far as comparisons with atmospheric vortices

*
d •

< <

are concerned. We have not attempted at this stage',to ascertain

if the height is sufficiently far above the driven region to
4 %

9

justify the assumption.of no radial flow, and it- can be seen from the
f

radial velocity contours of Figures 6, 7 and 8 that there is in

9 4

fact not a completely smooth transition to zero at.this upper boundary
9

9

In the numerical study of L in which a rigid lid was applied, these
9

9
9

9

oscillations were removed by periodic smoothing of the flow fields,
9

* 4

l • c

whereas we have seen in the present work, that this mode can be
9 •

simple change in the upper boundary
• 4

9

conditions. The third.possible boundary condition, that of zero
f

stress - equation (23b) - has not been considered in the present study

V

\

9

4

f
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... The !effeet of removing the side boundary • constraint can also "be
« « «

»

In the early stages of development, the fluid tends to pass

unconstrained
m i

4 0

that the value of the Rossby number is sufficiently small to constrain

most of the return flow within the boundaries of .the region. Consequently

a cell of reversed circulation'is set up as seen in Figure ll(b). In

»

Figure 5, we show the calculated values of v(r,z ) after 250 time steps,
4

i

and the corresponding fit of a Burgers profile. The agreement between
*

the two is very good at this point, although at later stages the
#

4

situation is altered to some extent, due to the effect of the circulating
\

i

flow of the overall system, particularly at the rather, low Rossby

number of the present vortex. Nevertheless, it is em interesting
4

i

result, and agrees with the measurements of Golden (1971) taken in an
/
i

a

actual .waterspout. The maximum amplification found for. this case,

Aba2, is 32.2;

6. Conclusions

In this chapter, we have demonstrated by means of a number of
g

numerical experiments, the role played by the boundaries in the overall
♦ I

%

structure of concentrated, convectively-driven vortices. One point
4 •

which is immediately obvious as the ease with which the various cases

can be simulated numerically, in contrast with the difficulties wh
4

are involved in the laboratory situation. As well as this, it is
4

a simple matter to specify any,required combination of-the Rossby

and Reynolds numbers in these numerical simulations. In detailed

experiments which have been performed, such as those of Crawford

and Chang (1972), it appears simple

tatter to generate the vortex itself, but^a prodigious number of
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>

measurements is needed to determine the overall flow details.

The present approach differs substantially from the line adopted
I

in many earlier works. In these, a particular model is usually

proposed as being representative per se3 of a typical tornado or
*

» I

*

waterspout. Here, we make no such strong claims; the main emphasis

has been centred on obtaining information as to how different constraints

at the boundaries and different physical parameters can affect the
%

strength and structure of the resulting vortex. The use of different
%

I

bottom boundary conditions has clearly demonstrated the active role
$

of boundary friction on the resultant vortex, jand thus the many
|

models which neglect this interaction, cannot hope to provide a

realistic treatment of such flows. The removal of the upper
I

boundary constraint has been shown to lead to situation which avoids
»

i

the problems caused by the imposition of an upper surface, with the
|

resulting solution being steady and also providing an improved model

of atmospheric vortices, . w

The fact that a genuine steady-state flow is apparently

attainable, may point to considerably more work which can be performed

in this area. In the following chapter, we develop a numerical
'

method for steady two-dimensional flow which should adapt quite

readily to the equations governing the present three-dimensional

axisymmetric case. One of the difficulties of the approach we
✓

have used here, is the extremely large amounts of computation required

in integrating out the flow from the initial conditions of solid

body rotation to the final steady-state. On the other hand, since

it is the steady solution which is of most interest, then the

I

*

S %
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advantages of a rapid solution of the steady equations of motion

further

into concentrated vortices can he carried out along these lines.
)

To date we have yet to consider the effect of removing the

boundary constraints on both an^- z=z* this is one case which
I ft

future Also fuller

and

Reynolds numbers have on the flow,since we have demonstrated here to
41

9

some extent just how critical these parameters are .in. a correct

modelling of these vortices, . One further point which wasvnot .
, • ' . , - ... 4

- « • •
«

ft ♦

ft

investigated, is the effect of grid resolution on the finite-difference*
• • • * «

.

t »

solutions obtained. .This is clearly a most important consideration,
% ft

4 ft

ft '

■ yet.it was felt that, in the present context., it would be preferable-

to concentrate .for-the moment, solely on the boundary effects'."" •
, « » »

One

•• *

other interesting,, and as yet unexplained feature was .observed in the.

preliminary experiments. When the Reynolds number was increased
•

• •••••'•• '
. ., •

much above, the value of 89.3 used in all the cases apart from Aay2 ,

• ■

an instability in the computed fields was observed near the bottom .

♦
•

» ■

'
« .

of the tank. Since this is not the region of the largest velocities,
• • «

it is not likely to .be simple numerical instability., and further, the.
• ft

upper constraint was removed so that the waves could not..be generated
ft

•
ft

there. One possibility is that we were observing the initial stages

of vortex breakdown, but it would be unwise at this stage to speculate
•

|

ft

any further along these-lines.

9

The work which we have reported in this chapter has. revealed a
« ft

number of important features of vortex flows, particularly the effect
9)

,of the imposed boundaries. It makes it clear that in future
» »

• «

« •

*
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numerical and experimental studies, there is a much greater need
0

9

than has been common in the past, to take, account of the active
ft

%

role that these boundaries play, particularly when analogies (or
#

direct comparisons!) are being made with tornadoes and waterspouts

Much more work is still necessary in order to gain a fuller

vmderstanding of these flows, and we have indicated a number of

approaches that it is hoped will be productive in this respect.
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APPENDIX

The boundary conditions (21b), with A= RC,, are&

= A u . u. .

1,0 ■—'i,o 1,0' (A.l)

f =A{u|. v. . (A. 2)
\3z/r,o. 1»° 1»°

In terms of one-sided differences at the boundary, u. is a known
*

function of the interior ^ field; from (I3)»,we obtain

U- • £■1.0 r.*h9
1

(A. 3)

and for the normal derivative of v,

3v
3z )v. , - v.h

1,0
U.b)

Thus the two equations (A.l) and (A.2) for 5. and v. ,
1jO X jO

are specified in terms of the known quantities A, h, r.,
2 21

\l>. ■ and v. Now uK = (u. + v. ) , and thus from1,1 i,l '1,0 1,0 1,0 *

(A.4),

C. = A u. (u. + v. )5, (A.l')
1)0 1^0 1 j, O 1)0

(v. . - v. ) = (Ahv. .. ) (u. + v. ). (A.2')
1)1 1)0 1)0 19o 1,0

X

<•

Since u. is known from (A.3), we can solve (A.2') for
1,0 "

v. by simple functional iteration such as Newton's method, with
1,0

the value obtained at the previous time step furnishing a good

initial estimate. From the value obtained for v. , £. is1,0s *1,0
calculated directly from (A.l').



Case

BottomUpperSidê, "boundary"boundary"boundaryo
Aa"Y2NoslipNolidNoslip0.12.5 CaY2Stress-freeNolidNoslip0.12.5 CaYlStress-freeNolidNoslip02.5 AaY2NoslipNolidNoslip0.110.0 Aba2NoslipNoslipNoside0.12.5 Table

1.

Detailsandresultsofvarious
Re

GridMaximtu SizeAmplificationmax computed.
89.35l6x6l.39-13.37 89.35l6x6l55.02.87 89.3»16x61-3.19 22.3516x618.92.Ul 89.3517x6532.23.33
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Figure Captions

Figure 1(a)

(b)

Sketch of the rotating'tank and the coordinate

system'used.
4

* |

4

Corresponding cross-section in t.he (R,Z) plane

Figure 2.

Figure 3.

9

■ The (r, z) finite-difference mesh
i %

Formulation of the forcing term in equation (26),
when f is distributed over two mesh spacings.

Figure

Figure 5

Figure 6.

Variation with height of the vertical velocity along
I

the axis for cases Aay2, Cay2, Cayl and Aay2 .

Radial variation of the zonal velocity v with radius
I ^

at height z =10/3, and fitted "by least-squares

Burgers profiles. Crosses indicate calculated

values at time 250At for case Aba2; remainder
|

4

are steady-state profiles.

Contours of (a) stream function, (b) zonal velocity,
(c)"radial velocity, (d) vertical velocity. The

contours are equidistant, with maximum and minimum
values being denoted by an overbar and underbar

4

respectively: case Aay2, n=500.

Figure 7. As for Figure 6: case Aay2, steady-state.

Figure 8
4

As for Figure 6: case Cay2, steady-state.

Figure 9 Contours of (a) stream function, (b) vertical velocity
case Cayl, steady-state.

Figure 10 Contours stream function zonal velocity
i

steady

Figure 11 Contours of (a) zonal velocity (b) stream function
case Aba2, times as indicated.
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A numerical method for the steady two - dimensional

Navier - Stokes equations.
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. ABSTRACT

f

A method is developed for the numerical solution- of the
*

steady, two-dimensional Navier-Stokes eqtiations, "by considering

the flow in a square cavity. The stream function/vorticity
ft

%

approach is used, and the finite-difference equations are solved

by an inner and outer iterative process. The form of both
4

ft 1

the stream function and vorticity difference equations permits

the application of an alternating direction implicit method,
ft

and this is "believed tobe a novel approach'to this type of
\

problem. It is shown that only when the finite-difference Jacobian
4

representing the convective*>terms, is formulated in a conservative
g

c

f

manner, can rapid solutions be obtained for the case of high

Reynolds number flows.

1
%

The motivation for this study arises from the- work of the

steady

flows are obtained by numerical integration of the time-dependent
4

ft

Navier-Stokes equations. However, this process is most time-
ft

consuming when compared with the method developed in the present
|

chapter, and it is anticipated that considerable advantage will

result, from the use.of this method in future examination of these

more complicated flows.
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1. Introduction

Over the last few years there has "been considerable interest
9

9

in the problem of the numerical solution of the steady-state Havier-

Stokes equations, particularly for the case of flow in a two-

dimensional square cavity. While it - could not be claimed that
*

this particular problem is in itself of great practical interest,
0

nevertheless, it is perhaps the simplest non-trivial example of

fluid flow in a confined region. It is felt therefore, that if
A

one is able to develop a- satisfactory numerical approach to the
•

.
*

* »

solution of this relatively simple problem, there is then some
V

> 0

justification, in attempting to extend the method to more complicated

examples.
% 9 t 0

0 * * ' • 4

In the present context,' there was s.ome external motivation for
9

4
4

" • ,

• . •

considering the problem, other than merely an interest in developing
• • •

, «

a'new numerical method for .two-rdimensional, steady, viscous,
0 ^ T » 1

» » •

.

incompressible flows. In the previous chapter, the problem being
•

. . ♦ • - . '
9

5
0

considered ultimately concerned the. steady-state numerical
• .

9

4

...

solution of the Ravier-Stokes equations for three-dimensional •
0 ♦ •

* • • 4
» » 0 9 4

*

9

axisymmetric 'flow in a- rotating frame,-and this was accomplished by

solving the time-dependent equations as an initial-value problem and
• » • •

» •

countinuing until a steady-state was attained. However, it can
0

be seen there, .that this approach is most time-consuming, since

effectively, the computational effort per'time step varies as "the
4 4

cube of the grid resolution,' and with such flows where the Reynolds
•

.

*
« ♦

number is large, it is most important to have good resolution.

Row the steady version of the equations in the previous chapter
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•
- > | 9

♦
4

» •

can in fact "be expressed in a form suitable'for solution by the . ' "
.

• * • •

• «

f . ♦

method which we shall develop here, and therefore it was felt that'

.

. ' -
*

. • •

the present problem of steady flow in a square cavity was indeed
► f

4

9

worthy of attention, and furthermore, could be considered within
« I I ^ •

» I «

i

the overall aims of this thesis.
♦ >

*

9

The numerical methods which will be described here, are
*

9

essentially similar in many respects to.the work of several other
9

4
I « < I 1 I

4 •

authors. The well known stream function/vorticity representation
»

9
•" 6

t

'

| * <

is 'used, in which the Wavier - Stokes equations for steady,"
§

incompressible two-dimensional flow, together with the continuity

equation, can be reduced to a pair of coupled partial differential

equations. The method of inner and outer iterations is used to
i

4

-solve these two equations; the inner-iteration for each equation
9

9

is a -single Peaceman - Rachford alternating direction implicit
9

cycle, while the outer iterative process is of the relaxation
• >

4
L

type.
*

4

ft

»

The numerical solution of steady two-dimensional flows by' means

of a stream function/vorticity approach has been attempted as far
I

back as 1933 by Thorn, who treated the flow around a cylinder at

low Reynolds numbers. His calculations were performed completely

by hand, and it is only since the' advent of the high speed electronic
|

computer, that interest in such problems has increased considerably.
•

.

Kawaguti (1961) obtained"certain solutions for the cavity problem,

but these were of low resolution and for rather low Reynolds

numbers only. The fast computational speeds and large memory
* •

r

capacities of modern computers'can now overcome the first defect,
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tut as first noted by Greenspan (1968), for high Reynolds numbers,'

the convective terms must be formulated in terms of one-sided

differences, for the problem to be a well posed one at arbitrary

Reynolds number and grid spacing.

Extensive analytical- and numerical work for the problem has

been presented by Burggraf (1966), but he was unable to obtain

solutions for Reynolds numbers larger than 1+00 for the- reason

just mentioned above. The problem has also been considered by
4

4

Spalding and his co-workers (see e.g., Gosman et at. (1969),'
•

•

Runchal and Wolfshtein (1969) and Runchal (1972))', who have

obtained large Reynolds number flows by use o.f the .one-sided
1

4

•
•

formulation. The steady-state' cavity flows have also been obtained
4 i

as- large-time solutions to the time-dependent Navier - Stokes
• • »

M ■

equations, as carried out for instance, by Fort in, Peyret and'
. •

■ •
, • •

Teman (.1971), Torrance et at. .(1973), Leal (1973) and by Marshall
» 4 I

* '

*
•

.

and Van-Spiegel (1973)'; the equations solved by Fortin et at. have

pressure
4 •

m

common stream function and vorticitv. Numerous

4 «

references to other works considering the present problem may be
4 #

, ♦ •

found in the papers cited above. ■ Laboratory experiments to
•; * ; .

4

simulate such motions have been reported by Pan' and Acrivos (19'67).

. •

As stated above, the principal motivation;in considering the .
. . I '•

• 4*4 4

•
. . •

• - .

, •

present problem, is'ultimately to employ it as a basis -for- ■ • 4

4 4

extending the method to more complicated and physically significant
» « •

flows.^ One class of such problems is that of steady two-dimensional

shown

Keller (1969) •> the use of a conformal transformation reduces it to
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%

>

*

a rectangular cavity flow, with the far-field solution being used

to provide some of the boundary conditions. Gosman et at.' (1969)
0

present a number of examples of other idealised two-dimensional

flows. As stated above, an immediate extension can generally be
f

made to treat steady three-dimensional axisymmetric flows such as
* 0

those considered by Rasmussen (1969), Textor, Lick and Farris (1969)
*

*
0

and by Gosman and Spalding (1971). The vector potential method as
*

0

outlined by Aziz and Heliums (1967), suggest the possibility of

obtaining solutions to fully three-dimensional cavity flows by

methods very similar to those which we shall describe, such as'the

scheme formulated by Douglas (1962).
4

0

0

Apart from the interest in using the square cavity problem
«

♦

/ as a prototype to develop a general numerical method for steady

flows-, one could als.o use this example to investigate the viscous

corner eddies of Moffatt (196U) and the flow that is obtained at

very high Reynolds numbers, the theory for which has been presented
«

by-Batchelor (1956). Burggraf (1966) for example, gives quite an
4

extensive discussion of both these aspects, within the context of
0

0

square cavity flows.

+The interest in such flows is considerable, as can be seen from
the number of papers treating them in Supplement II, Physics of
Fluids 12 (1969)9 and in the Proceedings of the Second International
Conference on Numerical Methods in Fluid Dynamics, University of
California, Berkeley, 1970 (Springer - Verlag 1971# b62 pp.).
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2. The equations of motion

V

We consider motion in an idealised two-dimensional square
ft

ft

cavity in a Cartesian coordinate system (X,Y)with corresponding
ft

9

velocity components (U,V) as depicted in Figure 1. The length

of a side of the cavity is L, and the lid is moved in the negative

X-direction with speed Z7, thus setting up a principally anti¬

clockwise circulation within the cavity. The Navier - Stokes

incompressible

flow in this situation, have the form

2 ■ 2
3U . _.SU _ 1 3P . . ,8 U ^ 3 U v . /,^

2 2
9V

^ irSV _ 1 3PX / 3 V 3 V s+ V"av 7 "5T + v (—1 + —T ) > (2)SY P 3Y ax 3Y - . •

■12 +2V =0,3X 3Y 9 (3)

where p is the density of the fluid, P is the pressure and v the
ft

kinematic viscosity.

The. boundary conditions for the flow are clearly

X = 0,L ; Y = 0 : U = V = 0.

Y = L : U = -i/,V=0.

The equations are now non-dimensionalised in the natural

namely

respectively. Thus we define

X Y U. V P
x=_5y=_sU = _sV=_jP

P U
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4

4 .

4 4 •
• I

f 9

a «

*

In terms of these dimensionless variables, the continuity \\

equation (3) is unchanged in form, and in the normal' manner,
*

4

we define the Stokes stream function ip so that (3) is satisfied

u =
dip
3y '

v =
3ip
3x * (4a)

and also the vorticity component ?, hy

C =
3v
3x

3u

3y *

9 •

(4h)

Clearly, we have

2
7 ip = - C, (5) 'V

2
where V is the two-dimensional Cartesian Laplacian operator If

momentum

to eliminate the pressure, we obtain in terms of the dimensionless

variables,
t

2
V c + i?.JU) = o, C 6)

where i? = Z/L/v is the appropriate Reynolds number for the flow.

J is the Jacohian operator, used as a shorthand notation for
9

representing the convective terms. For a given flow variable A,

J (A) =
3ip 3A
3x 3y

3± 3A
3y 3x

expressed as

1)

It can be seen that the boundary conditions can now be

x = 0,1 ijj = £■<>
y = o $ = o.

ay (7)

y = i ip =
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With some manipulation, the non-dimensional pressure p can
0

be obtained as the solution to the following Poisson equation:

2
V p = 2

2

v 3x3y '

2

with appropriate Neumann "boundary conditions.

3. The finite-difference equations

In this section, we shall -discuss the setting up of the finite
0

difference mesh, and then-obtain the difference equations
\

corresponding to equations (5) and (6) for the stream function and

vorticity. We shall also obtain difference expressions for the
*

boundary conditions, and consider the necessity, of a one-sided

formulation, as mentioned above, for the convective terms.

On.the square cavity, whose sides in dimensionless units are

of unit length, we superimpose a square mesh with grid spacing

h = 1/N, where N is a predetermined positive integer. If we let

A(x,y) be any continuous function defined on the cavity region,

then we approximate this function by A. ., its corresponding
i > J

discrete representation, defined at the'mesh points (i,j), where

x=ih and y=jh (i,j =0,1,2,..., K). as represented diagramatically

in Figure 2. In- the usual manner, we define the following first
a •

order difference operators:

<5 A. .

x i,j
(A., . - A, .),h l+l,j i,j"

9 9

9 S

5-A. . = ± (A. . - A. . .),x i,o h i,o l-l,J
1 / ' \

S*A- •
„ (A. - - — A- n .)5

x 1,0 2h 1+1,0 . 1-1,J ?
9 ♦ •

• *

9 4

9

4 4 $

A M 4 9
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all of which are finite - difference representations at the mesh
*

• ft

point (i,j), of the derivative 3A/3x, and have discretisation
.2

errors of the order of h,h and h respectively. The above

operators are usually referred to as the forward, backward and
ft

centred differences respectively. In a similar fashion,

exp

equations (5) and (6) to second order

centred difference form, we arrive at the following equations

2 2
V i/j. . = h £. .

i.J
(8)

2
-

~Z U, • - U* ip. .)(«* c, .) + (fi* *. .) (6- ?i .)=0, (9)
^ ■ x y y i9j x x9j

where z - l/R and V . is the second order finite - difference

analogue of the Laplacian,..namely
%

2 2
7 A. . = h (6 _ + 6 -) A. .

1,0 • xx yy i.,-o

= (A. , . + A. n . + A. . .• + A. . . - 1+A. .).1+1,0 l-l,j 1,0+1 1-.J-1 1.0

The above two equations (8) and (9) were deduced by Kawaguti
ft

« ft

(l96l) and Burggraf (1966), amongst others-, as being the obvious

forms of the difference equations to use; yet these authors found
ft

ft

that above a certain Reynolds number (for a given h), no solution
t

could be obtained. Soon afterwards, it .was realised by Greenspan

(1968), that the actual nature of the finite - difference equations
ft

is altered for large R under this formulation. In order for

there to be a unique solution to the set of difference equations,

it can be shown (see e.g., Forsythe and Wasow i960) that they must
ft

necessarily be of positive type. With respect to the present
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equations, this condition is violated in a centred difference
4

4

formulation., once the contribution from the convective terms
► *

9

(in terms of the. finite-- differences) exceeds that arising from'
9

the diffusive terms anywhere within the computational region. :
9 9

1

In order.to overcome this problem, we resort to the use of

one-sided or 'upstream' differencing for the convective. terms of
-

« « * 9 * 4 4

.'equation' (6). Physically,, what is meant "by upstream differencing
1

► I # ♦

N

*

.at.a mesh-point (i,j), is that the derivatives of the vorticity
9 9

are calculated in such a way as .to ensure that vorticity is always

convected towards the point (i-,j). For instance, if 3\|>/3y (=u)>0
* > V sss

• • • *
« • • •

* '

•

at the'point (i,j)-, then we use the points (i,j) and .(i-l,j) which
% J

9
4

4

.is clearly .upstream of (i,j) (since u>0), to evaluate.(3c/3x). ..
—

• •
•

,

as (?. . - n •• )/h in the vorticity equation. Alternatively,
i,j ■ i-l,J

4

if u<0, the.upstream point is now'(i+l,j), and .similarly for'the
4

second convective term.

4

A paper by Dorr (1970) who treats the one-dimensional version'

»
» «

*

of equations (5) and (6), dearly illustrates the' nature of the •
9

9

• 9

problem. As an analogue of the vorticity equation,.he considered
4

' I • I

4

the equation
9

2
d v

. / \ dv _ n£ -z- + eW to -
dx

4

with appropriate boundary conditions. -In accordance with the
9 9

4
4

above, we can represent the term dv/dx by a one-sided difference
4+

expression, depending on the sign of g(x), and in so doing,"we
► *

4*

ensure that the matrix

becomes diagonally dominant and positive (see Forsythe and Wasow
i
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i960 for definitions). That is,

« 9

(*<*>•£)» _ I g(x.)6 v.
x XI

g (x.) S -v.
x xx

gCx^)^ 0

g(xi)< 0.

Dorr showed that if one used a centred difference representation

instead, there would he a solution to the equations, only if

the condition

2e '
h

> max g(xi)
was satisfied, and clearly for high Reynolds numbers (small e),

the mesh spacing h would have to be prohibitively small in order

to obtain a solution. Numerical experiments of Runchal (1972)

illustrate dramatically the nature of this cutoff criterion.

19

Hence we must rewrite equation (9) so that it-is of positive
» *

A

type. At each interior mesh point (i,j), let

a = h6* ij). . and 8 = h6* .

x x,j y x,j (10)

The new form'of equation (9) will now depend on the signs of
A

►

a and g9 and can be written as:

2
(-e .? • - a 6

(
2

"*

a 6
2

V
l

E* •

>

1! O \9 (a,3^0),

y
+ II O (a>.0,3<0),

y
+

0%OII (a<0,3>0),

y
+ e«x) II O V* (a,3<0).

This may be written in the following single form in which the

nature

illustrated: i
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. - eE- . -
i.J i»J a'5i,j+J *" 'el?i+i,j = 0, (11)

where $ = he-+ la B.

1,0 1+1,j *1-1, J 1,J+1 isJ-1!

J = sgn (a), 1= -sgn (g) ,

and the function sgn is defined by

sgn(x) =
-

+1
1

x>p,
x<0.

Equations (8) and (ll) are now our difference analogues of

and

following section. Although we now have difference equations
ft

< ft

9

which should theoretically have a solution for all Reynolds numbers
ft i

«
ft

there are nevertheless some disadvantages arising from the use of
f

one-sided differences. * Firstly the discretisation error in the
2

convective terms is increased from h , to h, and also there is a
* w

ft 9

computational diffusive effect which is introduced, but'for, the . •
'

. • ' ' ' "
' ft ft ft 9

' '

moment we will defer any discussion of .these effects.

9 ft •

To".date, we have, yet to discuss the incorporation of the
•

« « 5
• * ' ' .

ft i ft

"boundary.conditions (7) into the finite-difference scheme. ' In

the original formulation of the equations of motion9 the boundary
» »

► •

w
9

•
•

conditions (7) were pre-specified values of the stream, function .
. • ■

. ' • •♦
. . •

\jj and its'-normal .derivative on the boundaries, but we are'now
4 ft

required to solve two second order ■ equations for lj> and the

•vorticity

9 ft

ft M
ft « f ft

» 4



p

4

• 4

The. ."boundary condition for <J> in the .difference scheme, is
•

. »
o «•

obviously
c ►

• i

. = 0 at all boundary mesh points (i,j) (12)
.-1 »J

• -

• »

The boundary condition's "we shall use for the &. - field were"
t

* «

first formulated by Thom (1933) and have since been-used widely in
-

•

P • v
^ w

many similar problems.- We shall consider the boundary' y=l, where
V v ♦ *

the boundary conditions (7) are

. • ip = 0 ■ and ■ =t-1.
• ay

•
0

*
ft

4

The situation as it occurs "in the finite difference formulation
• • • «

is depicted in Figure 3S where from above, we have that.
♦ p

= 0 and . = -1. (13)
2h '

9
»

Here the fictitious point A has been introduced so that we may use
*

p

4

4

a centred difference approximation to the derivatives at the
*

*

boundary. We now proceed to eliminate A so that it does not
•

ft •
%

P
ft

appear in the difference scheme itself. If we'apply-equation • (8)
P

at the boundary point B, we obtain after a little manipulation,
PP

- (ii/A + + d/-)
^ = VB VVA VC . Vjj S/g/
a ~ -

2
h

Since the points D and E are also on the boundary, = ^ = 0, and
by use of (12), we obtain from the above-equation,

r - JL 2
?B h

h

r>

In a similar fashion, we apply this procedure to the other
• •

boundaries, and with the inclusion of condition (12), we thus have
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as the boundary conditions in finite-difference form,

<!»-•
1,0

?i,o

Ci,Ef

C
o,J

N,j

=

h

i,N
2 .

2 'J'--

= 0

1,1

h ^ ~ h ^i,W-l^

1!> . = \p.T . = 0
°,J N,J

2

h *1,0
2

h N-l.j

(i=l,2...,N-l)

(j—1,2,..•>N-l)

(1*0

4

where we note that the four corner points do not enter, physically

into the finite-difference calculations.

k The.method of solution

s

4

The procedure which we shall adopt for the solution of equations• v

(8) and (ll) under the boundary conditions (lU), is known as the

method of inner and outer iterations! Different variations on this
► •

0 • « •

method, have been used to obtain solutions to the cavity flow problem* * 1 •

0 *1

by, for-.example, Burggraf (1966), Greenspan (1968, 1969) and Gosman

et at. (1969).
« 4

« 9

I . ♦ 9 9

4 4

4 I

-(h)''

Firsltly5 we define a sequence of 'outer- iterates"' iji. . and
♦ x * • f

♦ ♦ •

?, and a similar sequence of 'inner iterates'. and where
9 J ^ J J

'

. " * •

the superscript n denotes the number of outer iterations "which have'
4*

4 •

4 * •

been performed! For convenience we write equation (ll) in the -.

shorthand form
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♦

• •)! C- - + WP". '•
•4 vi,J • J vi,j . *i,j

* 4

= o ,

• . •

where L and M are finite-difference operators.' .The. first term .•
4

C ' C

indicates the contribution of the . field to the vorticity equation
^ 9 J

• *

via the .convective terms, while the second term represents the

contribution of the boundary vorticity, which, as can be seen from
4 4

4

(lU), is defined in terms of-.the interior stream function

J *

We now define the inner and outer iteration scheme to be used,

in the -following manner:

(l^!11?) 1 ■= °.
«

9

4

4

c!n+1) = o)2 + (i-o)2)?-n- » d5b)
i.J Z i.o * 1.0

= h2 ■
1.0 1.0

• ♦

(15c)

^(n-KL) _ . (n+l) \-r(n) hc,vl(j. . 0)1^ . - + (1"~031) ^ • • j ' (15^)
1,J 1 9 J lj J

where

^'(n) _ ^(n) . \y(n-l) ,^c vi|/. . = oi2 <K • + (l-u)2))|>. ^ j(I5e)1jJ 1 9 J 1 9 J

The numerical solution of-(15a) and (15c) is known as the inner

iterative process, and we shall defer discussion on the method which

we are proposing for this step until the following section. The

outer iterative process is described by (15b), (I5c0 and (l5e), and

is that used by Greenspan (1968), being basically a global

relaxation process (or 'filtering' as it is called by him).

The steps involved in one overall iteration are as follows: We

begin with two initial fields (= ^°.) and these specified
1,J. 1,J 1,J
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initial fields "being either arbitrary values'(usually zero) or else,

a linear interpolation of the solution to the equations at a different

value of H or h. Using the values of and 5^°^,
X ) J X 9 J

C1)

we solve. .

equation (15a) for the next inner iterate i which is then combined
x,j

♦
•

with the field through equation (15b) to obtain.?^ In a
a.,J " itJ

~ ( )
similar fashion, we then solve (15c) and (l5d) for ij>. . using the1 »'J •

-(o) -C1)
values of . and .. The boundary

. i.J
4 J U

> 4 ®

from the previous outer iterate of the stream function by means- of
• i *

i • ♦
-

•
I *

(lU), but are then filtered again via equation (l5e), as though
• *

# ■
0 #

they were, in fact actual vorticity values. . This two-step filtering
•,

used by Greenspanhas been found to be essential for convergence
•• . •

. • '
•

V

of the iterations. The above steps'complete the first iteration
•

... -
• 4

and the whole process is repeated until the.outer iterates are
«. • . • •

.

judged to have converged. The convergence criterion which we have

found to be suitable, is that.the following two conditions are

satisfied: « 4

1i.1

r(n+l)
.ax i \l>. .

i.J

i < El ,

>
» 4

4 ♦ »

(l6a)

r(n+l) -c!»>
huL

-(n+l)
iax 11,. .

i.J

< e2 »

(i,j=l,2, ,N-1)

(16b)

where ej and are prescribed small (in some meaningful sense)'
* * 4

positive numbers. Checks are also made to ensure that the individual

and
9

are satisfied by the final
► 4
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»

In work such as this, there is unfortunately almost no theoretical

found

general, so-called 'numerical experiments' in order to find optimum
9

values of the filtering parameters a>i and 012 f°r particular values
#

*
9

I

of R and h. The problems which are encountered in obtaining

convergence would appear to be at least partly caused by the changing

values of the boundary vorticity (which depend on the interior stream

function field) as we proceed from one iteration to the next. This

is not .unlike' the problem encountered in the numerical solution of

parabolic systems with tinterdependent boundary conditions, if we

cpnsider the advance from one iteration to the next as analogous

to a time step. In such cases, just as in the present, it has been
9

found necessary to weight the values of the boundary vorticity with

the values at the previous time step in order to prevent the growth

of instabilities (Pearson 1965). Without the filtering of (ljb),
r

t

(l5d) and(l_5e), the iterates rapidly diverge except at very small

Reynolds numbers.

The problem of solving numerically the biharmonic equation (to

which our equations (5) and (6) together reduce for zero Reynolds

number) as a pair of coupled elliptic equations, has been considered

theoretically by Smith (1968, 1970) and by Ehrlich (1971)5 both of

whom use the concept of inner and outer iterations, with the outer
9

0

process being similar, but not identical to that used in the present

work. However, the rates of convergence which they are able to
*

predict for the outer iterations, are not appreciably smaller than
J

0

unity except for the case of large h, which is of no practical

interest. In spite of the fact that some small theoretical progress

C
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i| q

has been made by these authors in the simple case of R=0, it is'
ft 1

ft ft

» ft

clear .that a satisfactory treatment for the nonlinear Navier -
♦ •

• I '

ft

Stokes equations poses many'more difficulties, and that numerical
ft

ft

* •

:

experiments, are the -sole effective.method presently available. '
* ft

• »

• •
» ft

ft

'5. The inner■iterations
ft ft

.

< ♦

. Other authors who have treated the steady cavity flow problem,
• ■ * • •

«

'
•

•

and who have used methods similar to those so far described here
ft

'

■
.

. . ' "

(Burggraf, Greenspan", Gosman et al.) have all solved equations (8)
• » , • • •

. • *

■ '

- ' * *.

and (ll)- in the same manner for the inner iterations; that' is,.
i ft «

•
. ft

'

Successive Overrelaxatiori for (8). and Gauss-Seidel for (ll).*
9

However, none appear to have considered the generally more powerful "...
w ft

ft

« ft

alternating direction implicit (ADI) methods, and therefore it., seemed

an ADI method could
ft «

» ft

employed profitably to solve these two difference equations.
ft ft

ft

We shall present a brief outline below of the principles o'f

the method; a more detailed description may be found for instance,

in the-comprehensive review article by Birkhoff, Varga and Young
#

>

ft

(1962).

If we consider the difference equation (8), for example, it may

be written in the block matrix form

Az = k (17)

»A very recent paper by Bozeman and Dalton (1973) is a notable
exception. *



- 158-

2 2
where A is the (N-l) x (N-l) block matrix representing the

fN

2
difference operator -V :

A =

L
I

O

X
L I

I L
I

O

I
L

Here L is. an (N-l) x (N-l) matrix, and I is the unit matrix of the

same order, with
I,

4

9

' L =

>♦ «

r- 9

k
-l

O

-l
k

.-l

• 4

-i

% 9

k
'

9

-l

4 9

'» »

O

-l
k

*4

4 4

4 4

The column matrices z_ and k represent
2

and the given field h . respectively.
i3j .

the unknown field \

# <

The basis of all ADI

• • *

methods for solving a sparse matrix system such as the above, is'
4

that- one can decompose A into

Az = (H+V)z" = k , • (IT') :
• W4

4 4

9

where the matrix H is the (horizontal) difference operator, given-

by

Hz. .

2
h C z. .

4

z • . • + 2z. • — z
1+1,J X,J.

• II •

1-1, J
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which is the finite-difference analogue' of the expression
2 2 2

-h (3 z/3:i ). ..

i.J
9

we.have

Similarly for the (vertical) difference operator,

4 4

4

Vz .- •
• 1,0

94

-z

9

• •
» n ^ 2 Z • • * Z * • V

1,0+1 .. 1,0-1
99

In.what follows, we shall employ the following convention:
• • •

#
.

' '

the operators in the \Jj - equation- (8) > will he denoted by a
. • ' ■ ■

• \

subscript 1, and'those for the £ - equation (ll) by a subscript •

2. Thus, we have
« 9

Vih,o

9 9 A
I

= - \li. . + 2ili. . - i/i. .

1,0+1 ■ 1,0 • I,J-i

(18)

while .for the vorticity equation, it can be seen from (ll) that
¥ 9 •

the horizontal and vertical operators have the form
9 4

H2Ci,0 = £("Ci+l,0 + " ?i-l,j)"'Bl(ci+I,j "

^2?^ • "j.-i ■*" 2?. . ~~ . -)™|ot|(5- C-i i)IjJ — j J • -L ^ * J 2-jJl j J ' ^ > J

040
0 9

(19)

where as previciv-;ly defined, J = sgn(a) and I = -sgn(3).

• 0 9

The matrix operators Vi» and Hg*' V2 which we have defined
6

9 ■

» 9

above, can be seen to possess the following properties:
0 9

(i) The matrix A=H + V is non-singular.
4

*

0

(ii) For any p>o, the matrices H + pi and V + pi are
non-singular

9

(iii) The matrices H and V are tridiagonal, or are
permutationally similar to tridiagonal matrices
By this, we mean that if the-mesh points are
numbered consecutively by rows, Hi and H2 are
tridiagonal, but if numbered by columns, Vj.,, and
V2 are.

• 9

4 9
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(iv)
> V

The matrices H and V are diagonally dominant and
positive definite (see Birkhoff, Varga and Young
1962).

/

Property (i) is clearly essential for the solution of the

original equation (if), while it will soon be apparent that (ii)
4

is necessary for a solution to be obtained by the ADI method used.
0

Property (iii) is in fact not essential for a solution, but the
0

efficiency of ADI methods, as will be seen below, depends on
m

4

finding rapid solutions to linear equations in which the matrices
✓

I

H + pi and V + pi are required to be inverted. Property (iv) is
0

«

0

also essential to the ADI method; equation (8) for the stream

function has this property inherently and it arises in equation

(ll) for the vorticity, through the necessary use of a one-sided
<

I

formulation of the convective terms. The particular ADI we shall
4

use to solve (if) is the well known Peaceman - Rachford (P-R) method
• 4

(see Birkhoff,?Varga and Young for variations on this procedure).

The P-R method is defined by the following two-step procedure:

(H + p .,l)z 1 = k - (V - p A_l)zn+1 -n+5 — n+1 (20)

(v ♦ P I)s " <h-Pb+1I)JL., (21)

Here the Pn+^ (n>0) constitute a finite sequence of positive
parameters, designed to accelerate the convergence of the iterations

procedure is started with an , and it can be

seen that both of the above equations are equivalent to (if) in

the limit of convergence, where z = z•^+5 = "Tl+l" The method

:onsists of two essentially identical steps: in the first, we
9

0

iolve (20) implicitly for z i along the rows,, using the prev"n+g
ri 0

0 0

V

N



- i6l -

iterate z and the inverse of the matrix (H + p L, I); in then+1

second, these operations are performed along the columns to

obtain the subsequent iterate ' On the first double-sweep

we use Pj as the acceleration parameter, on the second, p2, and -
9

so on up to the final parameter, this sequence being known as a

cycle. If further iterations are necessary, we perform

additional cycles. The various methods of choosing the p's
t

I -

and deciding the optimum number of sweeps per cycle in solving
r ' • 1

* #

such an elliptic system numerically',' mky be found in Birkhoff,
9

Varga and Young (1962). . "-The solution for z is required, only
\

as an intermediate result and is not retained from one iteration

to the-next. ' *

I

The tridiagonal natur.e of the" matrices (H .+ Pn^l) .and
(V + p ,,l), rioted in (ii.i) above, permits us to use the. efficientn+JL

i • *

• ' *

Thomas algorithm to invert them. ..'This algorithm is.outlined in•
• •

9

» i .* , *

♦ * *4 * ' *

. the Appendix.., By subtracting equation (20) from (21) we obtain» .
. •

• • 1 4

a different, but equivalent form of the latter-, which saves a
I

• * • ■ ■ * 5

number of operations each sweep, since the matrix. (V - pn+i^--
* >

has been previously calculated in solving (20):

(V + "n-H1'5 " (V " pn+lI)?- + 20 —n+3
(21') r ;• •

• i

• It now remains for'us to calculate the acceleration parameters
:

i »

Pn. As stated above in (iv), the matrices H and V are positive
* «

definite, and thus each has a spectrum of positive eigenvalues.
• I

/

Let a be the min of the greatest lower bounds of the eigenvalues
9

9
9

«

9

of H and V, and b be the corresponding max of the least upper. •

bounds.
9

t

k' • ..

♦f

\
*

1

\
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For an ADI cycle of just one double-sweep, it can be shown
ft

(see Birkhoff, Varga and Young) that the optimum value for a

single acceleration parameter, is

P - (ab)
1
2 (22)

If a cycle of m double-sweeps is used, then the mos
|

involves the so-called Wachspress parameters:

,;p. = b(|).(l"l)/(nrl) (i=l,2,..., m;. m>l)

common

9

Thus we are presented with two problems: the first is to
9

calculate the range of the eigenvalues for both the ij> and t,

difference operators, while the second is to decide the number of
6

ft

ADI cycles and the number of sweeps per cycle during one iteration
I

on each equation. • As there is no -theory to-guide us in considering/
r • ■

%

this second point, we shall have to resort to numerical experiments
%

to provide the, answer,1 and thus we defer the relevant discussion

until the following section where the results are presented.
t

\

In considering the first problem, this is no real difficulty
>

with the 11> - equation, since the matrices Hj and Vj, given by (l8)
<

are constant, arising from the Laplacian operator. The resulting

calculation of the eigenvalues, and hence the acceleration parameters
I I

very exercise. However, in the £ -

equation, as can be seen from (19), the operators H2 and V2 are not

constant, but are functions of .-both ; e(= i/j?) and of the magnitudes

of the quantities a and B, which in turn represent the gradients

of the stream function field. On appealing

problem, we anticipate that the largest stream function gradients
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0

(i.e., the largest velocities), will occur in the vicinity of the

moving boundary y=l. Here, we know from (7)» that 3ij//3y = -1, and

hence from (10), the maximum possible magnitudes of a and 3 will
*

be h. Clearly, their minimum possible magnitudes will arise
*

• •

from regions where there is no contribution from the convective

terms, and thus these values are zero.

Use of Gerschgorin's Theorem calculate

b for H and V of both equations, as the maximu: sum

moduli of the matrix elements along any ,row or column. From what
I •

has been discussed above, and from (l8) and (l9)» we arrive at
%

bi = h , b2 = 2(2e + h), (23)

• •

where as before, the subscripts 1 and 2 refer to the ip - dnd 5 -
*

V

equations respectively; The lower. • bounds a, are also immediately
9

obtained by use of a result of Varga (1962), namely that the
1 t ^

t ■

greatest lower bound of the eigenvalues of an (N-l)x(N-l) matrix

of the for;
I

2k
-k

0

\
-k

, 2k
... I

0 »

♦ •

-k-':.

rk-'

« ♦

2k
-k

9

O

+

%

-k
2k

0 0

0 _

40
• •

\

IS

#

0

A 4

A

0 *

a- = 2k(l - cos —.) > 0.
N.

4 *

\
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Thus, in the present case we. obtain, since h = l/N,

aj = 2(l »- cos irh), &2 ~ 2e(l - cos irh). (210

*

In works such as those of Burggraf (1966),. Greenspan (1968, 1969)

md Gosman et at. (1969), relaxation methods were the procedure

adopted for the inner iterations. In the case of the > - equation,
9

Successive Overrelaxation was used "by these authors, since the
1

optimum overrelation factor for the Laplacian is a standard result

(Varga 1962). However, for the £ - equation the above authors

were obliged to resort to the Gauss-Seidel iterative method, since

no such opt imui could be calculated Yet we

4

have shown here that it is a relatively simple matter" to obtain the

eigenvalue bounds which are required when both equations are treated

by an ADI. method.

\

6. Results

i
• I

As stated in the previous section, the first problem to be
*

considered is the number of sweeps per cycle and the number of cycles
t

4

required for each inner iteration. That is, we are required to

determine the necessary accuracy of the inner iterations for each
4

%

outer iteration", a familiar problem in numerical methods of this

type.

-Heuristically, one can imagine that if the 0. .* field, say, is
/ i, j

• •

known to any great'degree of accuracy, then there is unlikely to be

any advantage in calculating the t,. . fieldi'from this, \|» < ■ through
i»j * J-jJ

/

\
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equation (ll), with much accuracy. In fact, it is more likely
4

to he disadvantageous in terms of computer time. On the other

hand, when \p. ■ and t,. . have almost converged, then one will

also require only a small number of inner iterations to obtain
a

the desired accuracy. This point is made for example, by

Osborne (1967), who used an inner/outer iterative process to solve

equation t a problem in

hydrodynamic stability. Accordingly, one would expect

optimum

convergence

With respect to the relevant literature, the works cited

earlier of Smith (1968, 1970) and Ehrlich (1971), who treat the
0

• ♦

I
0

inner/outer problem theoretically, give no indication of the
i

•
•

procedure one should adopt here. The authors who deal specifically
*

0

with the numerical solution of the steady cavity problem, adopt
i

quite different approaches: Greenspan (1968, 1969) solves for-
i
I ~ * *

his inner iterates to the same precision as the outer iterates;
0 0

Burggraf (1966) performs just one inner iteration on each of the
*

two equations per outer iteration, while Gosman et at. (1969)
0 0

If

in fact present no information at all on* the procedure they used

In order to resolve this problem,.it was necessary to perform
' I

0 • » I

numerical experiments, most.of.which used a Reynolds number of-200,.
-

0

0

9

0

in which it was. found that the optimum method involved taking just
• 4

one double ADI .sweep pn each-equation per outer iteration. Not
f *

only did increasing the number of sweeps'within an-inner' iteration
. * *

" '
#

naturally increase, the computer time, hut perhaps surprisingly,
.. •

0

" w h

< •
• 4

.it was found in all the cases tested, that this actually increased -
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4 <

the number of outer iterations required for/convergence!

The remaining problem is to find suitable values of the

filtering parameters k>i and <i>2 used in the outer iterations, as
✓

functions of R and h. These were obtained by performing several
♦ 4

outer iterations with a number.of pairs (u},^), and from the
*

4 9
p

A

♦

► «• •

resulting rates of convergence, a suitable pair giving approximately

optimum convergence could be selected* In order to calculate the

position of the vortex centre and the values tji and £ of the streamc c
I

function and vorticitv at this noint. a further routine was added

0

to the program. This selected several "points near the centre (the

point at which \p takes its maximum value) which were then fitted

squares value of which was

.chosen to be . The coordinates" (x ,y ) of this maximum were
c c - c

9

thus also immediately available, and from these, the value £ could
0

I 1

be found by interpolation of the calculated vorticity field. A
► ' «

i ►

-1+
value of 10 was in most cases .found to be suitable for ej.and

♦

defined by (l6a,b).

The calculations were performed at values of R equal to 10, 50,
I

100, 200, 500, 1000 and 2000, the details of which are presented in

Table 1. In all cases except R =1000 and 2000, the fields were

calculated for h = 1/10,1/20 and 1/1+0. With h=l/10, the initial
>

fields were set to zero, and in this case it was .found that slightly

faster convergence was obtained if the first two iterates of the

and ? fields were combined in a single Aitken del-squared step,

followed by filtering for the remaining outer iterations. For

calculated

for h = 1/10 and 1/20 respectively, the values at the intermediate

>
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V

grid points being obtained by linear interpolation. The quantity
ft

in Table 1 called the 'eddy size1 is defined as the y-coordinate
y

m

on the .axis x = o where the separation streamline of the main

Moffatt eddy meets the wall. This has been measured experimentally
ft

*

0

as a function of R by Pan and Acrivos (1967). The time taken for
-U 2

a complete inner/outer step was approximately 7.3 x 10 /h seconds
A

on an IBM 370/155.
ft

ft

♦
ft

|

0

• It can be seen from Table l that for Reynolds numbers up to
• I

200, relatively few iterations are required for convergence, and
ft

i

the filtering parameters and 012 vary quite regularly with R and

h. However this situation alters as R is further increased, and

many more iterations become necessary. This behaviour is by no
I

means unexpected, since physically,- as the Reynolds number is
#

»

increased, the diminishing effect of viscous damping means that

the time for steady-state flow to be reached from given inital
%

ft

conditions will be correspondingly increased. The present method
I
• .

used to find steady solutions to the Navier - Stokes equations, is
ft

in fact analogous to an accelerated solution of the time-dependent

equations, and thus we can expect the computational time to increase

with R. Furthermore, with h = 1/U0, it was found that in order to

improve the convergence rates at R = 200 and 500, wj and <i)2 had "to

be altered after a certain number of iterations; as indicated in
0

Table 1. -
<»

ft

ft

. - • •

In Figures 4 to 8, we present contours of the stream function

and vorticity fields for i? = 10, 50, 100, 200 and 500 respectively,
ft

with h = 1/U0. At R = 10, the fields of and £ are seen to be
ft

approximately symmetrical about x = since here the equations are
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approaching those of Stokes flow. further

effect of the convective terms becomes more important and the position
0

9

of the vortex centre moves downstream. At R = 500, convection is
%

4

dominating the flow, except in the thin boundary layers at the
*

§

$

walls of the cavity. The position of the vortex centre has now

moved in the direction of the centre of the cavity and the situation
9

|

«

is more closely approaching that envisaged by Batchelor (1956), in
1

*

which at high Reynolds numbers, the flow, except in the boundary
\

layers is an effectively inviscid core of constant vorticity,

calculated by Burggraf

infinite Ri
\

The accuracy of the finite-difference solutions obtained can be
4

i
• •

assessed for example, from the value of ijT"T and it can be seen from
/ • c

i % m
^

Table 1 that for R <. 200, h:= 1/U6 affords sufficient resolution.

However as R is increasedj the velocity gradients in the boundary
• i

1
0

layers increase and hence more grid points are needed to resolve
4

the flow details there.

2

Unfortunately, since the computing time

varies as l/h '(and the total number of iterations is also considerably
- 4

t

increased), it is evident that there hre a number of difficulties
9

0

involved in obtaining steady solutions numerically for high Reynolds
• $

number flows, and hence there is a need for improved methods to

be further developed

Greenspan (1968, 1969) has approached this problem by taking
t

the first interior/grid point as the boundary in solving (5), and

claims to have obtained solutions up to R - 10^ with h = i/20.
%

9

However, this method effectively ignores the structure of the

boundary layer region across which- vorticity is transferred between

\
v
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to

the walls and the interior flow, and thus it is difficult to gauge

the value of these solutions. Furthermore, it is scarcely

conceivable that steady

values of i?; Pan and

will physically exist at such large

Acrivos (1967) report that in their

experiments, turbulence has already set in at R = UOOO.

An alternative approach lies in the use of a non-uniform finite
r

difference mesh as employed for instance by Gosman et at. (1969)
4

for the present problem, where the distribution of the grid points
I

is concentrated near the walls and is relatively sparse in the
»

interior. There are no inherent difficulties in formulating this
to

problem, since by use of the 'integral method' (e.g., Varga 1962),

equations (5) and (6) can.be converted to a finite-difference for
I

to
v

suitable for the application of the present ADI method. This in
*

fact has been carried out as a preliminary case, for R - 200, with

10 and
1

*

Table 1, a certain improvement is apparent in the value of
i 1
I 1

Nevertheless, it can be seen from Table 1, that the method as
0

to

presented, while giving excellent restilts for low to moderate Reynolds

numbers, is not nearly so satisfactory as R is increased. For

example, at R = 1000, the fields at h=l/20 are converging very

slowly in an oscillatory manner However an alternative approach

Gosman and

• « 1

type of conservative difference scheme for the vorticity equation,
• # ♦ «

I *

and satisfactory results for large R using a similar approach have
to 9

94

also recently been reported'by Bozeman'and Dalton (1973)•.
• •

« •
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Instead of the vorticity equation (6), we can combine this

equation with the continuity equation to obtain the 'flux' for

2
V C - V . (u c) = o, (25)

where u is the velocity vector (u,v). In centred difference form,
s

the-Jacobian for equation (6), the 'advective' form, is

Ji = (5" il>. -)(6a X,. .) - (6" \li. .)(6" X>. .),1 x *i,j/x y *i,j' y x i,o
V

while that for the above equation (25) can be seen to.be

j, = 6 «■-( c. . 6 *• ill. .) ~ 6 -' (£. • 6 ~ iji. • .)*
y i,o * i,o * i,o y i,o'

\i •

Now it has been shown theoretically,, and in accompanying numerical
4

studies (Arakawa. 1966, 1970), that J2 conserves mean kinetic energy

in time-dependent calculations, assuming dissipation is neglected,

while Jj fails to do so. Since, as we have previously noted, there
%

are analogies between the present method and time-dependent treatments,
0

» 4 *

*

4

it can be realistically expected that use of J2"instead of jy, will
fl

s

4

lead to more reliable results. Both and J2 fail to conserve

mean-square vorticity, although Bozeman and Dalton (1973)
4

incorrectly claim this as a property of their difference scheme.
i

0

third form of the Jacobian has been shown by Arakawa (1966) to,
4

conserve mean-square vorticity, but its particular difference
f I

formulation prevents it being split into horizontal and vertical

A

V

operators, as required here for the ADI formulation.

0

It is a relatively simple matter to incorporate J2 (with
'

upstream differencing) instead of Jj, into the numerical scheme,
,

4

particularly since the eigenvalue bounds (23) and (2U) will be

unaltered. In Table 2 we list results for the flux form with
* *

\
't
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R = 200, 500 and 1000, and in Figure 9 we present contours of ill and'

? at h = 1/U0 for R = 1000. The results of these calculations are

*

most encouraging, and clearly show that through the use of J2, the
I'

number of outer iterations required for' large R is not substantially
»

greater than that for values of R an order of magnitude or so lower.
f

The values of z, obtained with Jfc are considerably small than thosec

of Jj, and this is consistent with the conservative properties of

the former.
» n

Since the main interest of the work in this chapter lies in the
• »

development of a specific numerical method, rather than in the study
\

of the square cavity problem itself, other results of .interest,

such as the velocity profiles across the cavity have not been
|

I

detailed. Also, no effort has been made to increase grid resolution

above h = 1/U0, although an'interesting outcome of such a step could
9

be the possible appearance of further nested viscous corner eddies

as predicted by Moffatt (196U). The numerical solutions can be
( •
I

seen to exhibit the behaviour determined experimentally by Pan and
<>

♦

Acrivos (1967)i where the eddy size is seen to increase with R to

gradually

become less important.

7. Conclusions

9

In this chapter we have presented a method for the solution of
• « »

« « I

9
9

the steady two-dimensional Navier - Stokes equations, which differs

from previously published methods through its use of the Peaceman-
i « t

Rachford alternating direction implicit method for both the streai
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function and vorticity equations. The method can be seen to be

enough to be extended to cases of steady

axisymmetric uniform

finite-difference meshes Indeed, no conceptual difficulties are

foreseen in extending the method to fully three-dimensional problems

although considerations of computer ti

such a. calculation would tend to place considerable restrictions
4

I

on the Viability of such an approach.

In particular, the use of the flux form J2 has been shown to ,

give rapidly converging solutions at high resolution (h = lAo) for

the more interesting and difficult case of high Reynolds number

would

i
flux uniform mesh distribution thus

benefitting from the resulting faster convergence and the improved
\

resolution of the boundary layers. Following Greenspan (1968),
I

upstream differencing in the convective terms has been used so that
0

4

a solution to the difference equations is theoretically attainable.

However it should be noted that the use of upstream differencing
|

<

does lead to a false diffusive effect (Molenkamp 1968) whose
P

♦

4

magnitude is proportional to the mesh size h, and hence this point
» i

iust also be taken into account when assessing the worth of a
t 9

4 4

particular solution;
|

I 4

The calculations performed, and the results presented, are by.
: ' • *

no means•extensive,.since the main interest was in the overall
0 •

numerical method.- Nevertheless, the results obtained indicate
« 0

• 0

that the method itself has considerable promise, and is sufficiently
1 ' ' «

* • •

Versatile .to be worthy of further attention at a later.date.
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APPENDIX

We discuss here the method, usually known as the Thomas

to solve the tridiagonal system of equations

Ax = k, (A.l)

where A is an (n-l)x(n-l) matrix of the general form

A =

*1

-a2

-Cl

b2

O

-c2

-a
n-2

h

O -a

n-2

n-1

-c

b
n-2

n-1

\

t

which in- our case has arisen in the numerical solution of an elliptic
\

equation through ? reduction,- either by an alternating direction

implicit, or a direct Fourier method. A method for the.solution of
k
I »

the above equation is given!by Varga (1962), the basic idea being to

utilise the particular properties of the tridiagonal matrix A to
#

greatly reduce the' number of operations required.
J'

%

Alternatively, we can write the above system as the equivalent

second order difference equation

-a.x. . + b.x. - c.x.= k.
1 l-l 1 .1 1 l+l 1

(A.2)

where i=l,2,...,n-l and we are assuming the simplest boundary

conditions

x = x = 0
o n

(A.3)
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♦ ft

• • ft

■ The method we shall employ'to solve equations (A.2) and (A.3)

• has "been presented "by Richtmyer and Morton (1967), and is as follows.
# ^ *

- •
% »

Firstly, we assume that the solution, can he written in the for

x. ■.= E. x.,, '+ D.
l ■ l a+1• l

■(A.U)

# y

Now, if the boundary conditions (A.3) are to. be consistent
4 *

<

with this form, we must have that
| ft

E = D = 0
o o

(A.5). '

4 i

• 4
. » I
• «• • ,

ft « «

From (A.U) we can set x. , = E. . x. + D. and on-l-l l-l i i-l*
< ft

substituting this in equation (A.2) and rearranging, we obtain

c • ,• ^ k. + a. D. - /,

xi = 1 xi+i i i i-l (A.6)
b. - a.E. , b. - a. E. . »l l irl i i i-l

*0

I

If equation (A.6) is to be consistent with the assumed form.

of the solution' (A.U), . it means we require that ft ft

ft 4
)

ft ft

E. = Ci I '

1

b. - a. E. ,
l l l-l

(A.7)

ft

and
_ k. + a. D. .

D. - l l i-l
i

(A.8)'
' b. - a. E. ,i l l-l

I 4

for i >. 1. ' Thus, using the boundary conditions (A.5), we can use the

recurrence relations (A.7) and (A.8) to calculate the E. and D. for

i>JL. From (A.3) we have the other boundary condition that x =0
ft

and therefore we can calculate the x.(i = n-1, n-2,...,2,l)
1

backwards, using the values of the E. and D. just obtained., A count

3
of operations involved shows this is of order N, as against N for

normal Gaussian elimination
%

i

\
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Details of the numerical

Corresponding results to
obtained vith difference

form.

solutions.

those of Table 1 but
c

equations in flux

I

V

Figure Captions s

Dimensional sketch of cavity.

Sketch of finite-difference mesh.

Region involved in "the formulation of the
a

boundary, vorticity values - equation (lU).

Stream, function and vorticity contours, with
contour values depicted for h = 1/UO. R = 10.

Caption as for Figure 4. R = 50, 100 , 200,
4

•

500 respectively.
*

s

Caption as for Figure 4 but with fields obtained
fro

equation

flux (25) of the vorticity
R = 1000.

4*
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Table!•

Rk*el„e2wiw2Iterations —1+-Ij.

101010,10I0.900.7522 2010110*.0.950.502kto10100.950.30-30 II*
501010~.10~.0.900.80..22 2010,10.0.950.5020to10,100.950.30■to -k-k

1001010J;10r 2010-_llo:Jto1010
2001010~i10~l 10*10-10:I2010_;10_Jto1010 —li—li

5001010J;10J;2010.J10- to10.10
0.85

0.50

38

0.95

0.60

.30

0.95

0.30
*

60

0.85

0.50

2k

0.925

0.30'

86

0.95

0.30

58

0.96

0.15

50

0.96

0.10

80

0.85

>

0.60

-38

0.92

0.30

100

0.95

0.05

300

0.97

0.02

120

/)

/

130

(k20

X

y

-Eddy

0.U7520.75960.09783.0726 O.U831■0.76280.09983.1822 O.U836O.76M0.10023.2025
0 0.071 0.08U

0.U2220.7612 0.k2kj0.7592
0.0952 0.100U

2.91U8 3.2058

0.to620.7593o.ioilt3.2M5
0 0.096 0.105

0.37380.76390.085U2.7637 0.38570^7556"0.09863.195U 0.:3861t.0.7^630.102.̂3.2112
0 0.126 0.1

0.33990.77300.07812.6018 0.32620.79120.08383.0870 0.35290.752U0.09183.0307 + _

O.370U0.71670.10132.90^7
0.120 0.118 0.230 0.256

•»

0.28500.79230.058U2.3633 0.31610.76910.07272.7355 0.38090.69850.08932.5108
0.231 0.U16 0*

* 0.>17 *«
r'

4}



Table1.(cont.)

R

h"1

el

£2

Iterations
X

c

yc

i>„cCC

•Eddysize

1000

g

4

10 20

10-U10H

io-i10

0.85 0.98

0.70 0.01

-38 700+

ft 0.2387 0.2^9^

0.8150 0.8276

0.0UU22.6518 0.06l83.^810
4

ft 0.308 0

2000

10

10-"

10-"

.0.90 ft

0.80

-78—

0.1727

0.8598

0.030U2.8291
0.352

*Non-uniformfinite-differencemesh;tSolutionoscillatingwithveryslowconvergence Table2

1.

Iterations

Eddysize

200

10
20

1»0

♦4

-h.

10-U

i°:;S-"

'ft*•

0.15 0.05 o.ou

0.50- 0.70 0.85

28

kk

115

0.3823 O.3698 0.3782
4

0.7217 0.7322 0.7107

0.0729 0.08U9 0.0939
1.9075 2.2916 2.5108

•

0 0.15k 0.207

t

500
%

'10
20

10t10

10-k
10

0.15 0.05

0.U0 .0.75

28

4 0.3563 0.3757

0.6796 0.6658

0.0568 0.0723 ft

1.1U86 1.6083

0 0.213

1000

♦• io
20 Uo

10-h

10-U

0.15 0.05 0.03

•0.30 0.80 0.80

32 60

105

0.3708 0.3917 0.U37U.
0.6236 0.60U1 -0.5838

0.0U67 0.061U 0.0761
0.9698 1.1U85 1.37^8

0 0.173 0.320
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