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Abstract

The pervasion of machine learning in a vast number of applications has given rise to an in-

creasing demand for the e�ective processing of complex, diverse and variable datasets. One

representative case of data diversity can be found in multi-view datasets, which contain in-

put originating from more than one source or having multiple aspects or facets. Examples

include, but are not restricted to, multimodal datasets, where data may consist of audio, im-

age and/or text.

The nature of multi-view datasets calls for special treatment in terms of representation. A

subsequent fundamental problem is that of combining information from potentially inco-

herent sources; a problem commonly referred to as view fusion. Quite often, the heuristic

solution of early fusion is applied to this problem: aggregating representations from di�er-

ent views using a simple function (concatenation, summation or mean pooling). However,

early fusion can cause over�tting in the case of small training samples and also, it may result

in speci�c statistical properties of each view being lost in the learning process.

A plethora of multi-view representation learning methods has been proposed in the liter-

ature, with a large portion of them being based on the idea of maximising the correlation

between available views. Commonly, such techniques are evaluated on synthetic datasets or

strictly de�ned benchmark setups; a role that, within Natural Language Processing, is of-

ten assumed by the multimodal sentiment analysis problem. This thesis argues that more

complex downstream applications could bene�t from such representations and describes a

multi-view contemplation of a range of tasks, from static, two-view, unimodal to dynamic,

three-view, trimodal applications.

More speci�cally, we experiment with document summarisation, framing it as a multi-view

problem where documents and summaries are considered two separate, textual views. More-

over, we present a multi-view inference algorithm for the bimodal problem of image cap-

tioning. Delving more into multimodal setups, we develop a set of multi-view models for

applications pertaining to videos, including tagging and text generation tasks. Finally, we

introduce narration generation, a new text generation task from movie videos, that requires

inference on the storyline level and temporal context-based reasoning.

The main argument of the thesis is that, due to their performance, multi-view representa-

tion learning tools warrant serious consideration by the researchers and practitioners of the

Natural Language Processing community. Exploring the limits of multi-view representa-

tions, we investigate their �tness for Natural Language Processing tasks and show that they
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are able to hold information required for complex problems, while being a good alternative

to the early fusion paradigm.
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Lay Summary

The core function of machine learning algorithms is to build (“learn”) models from data,

called training data; models that are able to make predictions or decisions on other data,

without being explicitly programmed to do so. Given the importance of training data in

that process, a large part of the development of machine learning systems is devoted to the

input and the way it can be represented and communicated to the algorithms. E�ectively

encoding and combining characteristics of the input is a complex and challenging problem.

The last decades have seen a shift from the manual enumeration of input characteristics to

casting representation as a learning problem itself, where the goal is to create a model that

can describe inputs with minimal human intervention.

The popularity of machine learning in a vast number of applications has given rise to an

increasing demand for the e�ective representation of complex, diverse and variable inputs.

An example of data variabilty comes from multimodal data, which consist of more than one

modalities (e.g. image, audio, text) and pose a challenge for representation learning. Al-

though there are popular and established techniques to generate representations for each of

the modalities separately, the problem of combining representations from di�erent modali-

ties is less explored. The set of techniques devised to combine representations from multiple

sources (views) of the data is the objective of multi-view learning.

A plethora of multi-view representation learning methods has been proposed in the liter-

ature. Commonly, such techniques are evaluated on synthetic datasets or strictly de�ned

benchmark setups; a role that, within Natural Language Processing, is often assumed by the

multimodal sentiment analysis problem. This thesis argues that more complex downstream

applications could bene�t from such representations and describes a multi-view contempla-

tion of a range of tasks, from static, two-view, unimodal to dynamic, three-view, trimodal

applications.

More speci�cally, we experiment with document summarisation, framing it as a multi-view

problem where documents and summaries are considered two separate, textual views. More-

over, we present a multi-view algorithm for the problem of image captioning. Delving more

into multimodal setups, we develop a set of multi-view models for applications pertaining

to videos. Finally, we introduce narration generation, a new text generation task from movie

videos, that requires inference on the storyline level and temporal context-based reasoning.

The main argument of the thesis is that, due to their performance, multi-view representation

learning tools warrant serious consideration by the researchers and practitioners of the Nat-
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ural Language Processing community. Exploring the limits of multi-view representations,

we investigate their �tness for Natural Language Processing tasks and show that they are able

to hold information required for complex problems, such as image captioning, while being

a good alternative to the early fusion paradigm.
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Chapter 1

Introduction

The last decades have seen the growth of Natural Language Processing (NLP) to a vibrant re-

search �eld. The ubiquity of text or speech data makes NLP research relevant and appealing

to numerous applications, unfolding an unprecedented potential for interdisciplinary re-

search. Consequently, ties have been strengthened between the NLP community and other

communities, either related to arti�cial intelligence, such as Computer Vision (CV) or less

related to computer science, such as social sciences and arts.

The fact that communities used to or still may work in isolation, is not entirely justi�ed from

their long-term goals or technological outcomes. A glowing example of an application spawn

out of the convergence of speech and language technology communities is speech-enabled

personal assistants, a technology that has been popularised with commercial products such

as Siri, Alexa, Google Home and others. Instead of adopting a holistic view, such systems

commonly follow a pipeline approach, wherein modules developed by each community are

combined. A typical usage scenario is the following: a user’s speech signal is transcribed by a

speech-to-text module, language understanding modules operate on the generated text and

provide the needed information for the response, while, �nally, a speech synthesis module

utters the responses to the user. Each module can be created separately, without having to

interact with the others before the �nal deployment.

A pipeline paradigm allows for decoupled investigation of the di�erent modules, but it does

not come without limitations. Each of the modules is developed in an isolated environment,

using module-speci�c objectives that may be arti�cial to some extent. This issue extends to

performance metrics, too, since the �nal system is evaluated in a hugely di�erent manner

than each of the modules. In a related note, pipeline architectures su�er from error propa-

1



2 Chapter 1. Introduction

gation, that is errors in early stages being responsible for more serious than expected errors

in subsequent modules. Finally, in a pipeline, each of the modules simpli�es and normalises

the input as needed, depriving the next modules of potentially useful information.

Data simpli�cation and normalisation is considered standard practice, even in models that

are not part of a pipeline. Data in the wild (Ang et al., 2013) come in all types, shapes and

sizes, while datasets compiled for training machine learning models usually contain more

information than what is used (or is absolutely necessary) for the task for which they were

collated. For instance, news articles, a data domain of choice for several natural language

processing applications, consist of more than just a body of text. Either in print or digital

format, they may include a title, interim section headings or one or more accompanying im-

ages. Articles on web news portals may go further to employ videos, links to other articles,

reader comments or relevant social media posts. Regardless of their types, all these extra in-

formation complement the knowledge distilled in the article. This is also the case for other,

more diverse types of datasets that have started to gain interest by the NLP community lately.

Electronic health records may consist of a mix of structured (such as prescriptions) and un-

structured text (physician reports), images, videos or sound recordings from medical tests or

demographic data (Birkhead et al., 2015). Another example is social media posts which can

include text, images, videos, recordings, hyperlinks, or combinations thereof.

Typically, the application of machine learning techniques implies a simpli�cation of datasets,

performed as a preprocessing step. This way, data are massaged into a format appropriate and

focused to the question that algorithms are developed to tackle. One of the �rst steps of such

preprocessing for NLP datasets is stripping data of any formatting (stress in form of boldface

or italics typeface, titles etc.) and any non-textual information. Recent works which have

undertaken major simpli�cation to convert modern news portal webpages to simple, easy to

manipulate texts, are the CNN/Daily Mail (Hermann et al., 2015) and NewsQA (Trischler

et al., 2017) datasets.

This type of simpli�cation is of utmost importance in dissimilar and inconsistent datasets,

since operating on complex and variable inputs may obscure the results and unnecessarily

complicate the process. Focusing on simpli�ed data, of one modality or one type of input

isolates the problems to be solved. This strategic decision is not unique in machine learning

or natural language processing; it is inherent in the scienti�c method. Another core rea-

son why stripping datasets of particular kinds of information is necessary, is that doing so,

makes up for a smooth approach to input representation, which is indispensable in machine

learning applications. Machine learning algorithms operate on representations of input data
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points in vector spaces, which can be sets of hand-crafted features, calculated features or

learnt representations. The type of features or selected representation has proven to be of

great signi�cance over the course of machine learning history. Especially before the advent

of distributed representations, when the selection of features was manually performed by

domain experts or knowledge engineers, the opinion that “features determine much of the

success of a machine learning application” (Flach, 2012) was prevalent. The importance of

representations has led to the development of the �eld of representation learning, an active

area of research, with popular approaches being constantly re-evaluated and new techniques

proposed (Devlin et al., 2019; Peters et al., 2018).

Generating e�ective and informative input representations is a complex and challenging

problem. The variability of data often brings out additional representational challenges,

which can be directly tackled or circumvented by simpli�cation. For instance, multimodal

setups, where data come from more than one modalities, each of which can be represented

using a large number of techniques, have to also face the additional burden of combining all

those representations to one. Representation combination, commonly referred to as repre-

sentation fusion, is an open research problem. Several approaches have been proposed and

there has been no consensus on one, best all-around framework. Selecting a speci�c method

for fusion, either arbitrarily or based on empirical data, amounts to an assumption for the

problem at hand.

However, the more the assumptions about the input, the further the model is from real-

world situations. It seems that humans do not �nd it particularly challenging to combine

information coming from several modality sources: a reader of a news portal can e�ortlessly

combine information from the text of an article, its accompanying images and videos. A

trained physician is able to paint a good picture of the status of a patient (to the best of their

ability) relying on information from all di�erent formats of medical tests or prescriptions.

Interestingly, there is evidence of modality integration rooted in human cognition; humans

integrate audio-visual information in speech processing (“McGurk e�ect”). The McGurk

e�ect (McGurk and MacDonald, 1976) describes, for example, the perception of a /da/ syl-

lable by human subjects, when a visual /ga/ and a voiced /ba/ stimuli are provided at the same

time.

The problem of fusion is not unique in multimodal setups, though. In purely unimodal

settings, a fairly straightforward quality of input data that is often overlooked by both re-

searchers and practitioners is the fact they they can be perceived, either physically or concep-

tually, as having multiple aspects or facets. Consider for example, the problem of represent-
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Figure 1.1: An example of data where a multi-view approach is intuitively meaningful. A

3D object (chair) is represented by a set of 2D images taken from di�erent angles around

it. Some photographs may include (or hide) information not present (or present) in others.

Image adapted from the work of Su et al. (2015).

ing a simple three-dimensional (3D) object, such as the chair shown in Figure 1.1. Assuming

that a modelling decision to represent 3D objects by using 2D photographs has been made,

an e�cient way to combine information from multiple 2D photographs is vital.

The need to take into account multiple viewpoints of the input is obvious in the example

of the 3D chair: the viewpoint of the observer (photographer) plays an important role to

the representation. Di�erent angles can give vastly di�erent perceived images, each of them

including (or hiding) details that may not be present in others. Importantly, some of those

angles may hide features of the object that are fundamental: for example, a plan (a view

of the chair seen from above) does not reveal the fact that there is a surface designed for

a person’s back, the same way that a �oor plan does not specify the height of a building’s

walls. Representing a 3D object may bene�t from a more elaborate approach: considering

more than one viewpoints (by taking photographs from di�erent angles) and combining the

photographs in one vector, that can represent the chair object. Following this approach, the

initial representation problem is transformed to one that has to take into account multiple

views of the input.
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Figure 1.2: A second example of data where a multi-view approach is intuitively meaningful.

Using information from di�erent languages, coherent and informative word representations

can be created.

A more representative example of multi-view nature can be found in multilingual NLP.

Keeping in mind that the ultimate goal of generating word representations is to include the

semantics of each word and sense in one vector, translations of words in di�erent languages

can be exploited. From an abstract point of view, translations of the same words in di�erent

languages can be thought of as di�erent views of the word meaning, as shown in Figure 1.2.

This is an example of multi-view setup that is not multimodal, since words in all languages

belong to the same textual modality.

All multi-view setups, including the examples mentioned above, face the problem of repre-

sentation fusion. The set of machine learning techniques that combine information from

several input views to one, common representation is the object of multi-view representation

learning. These techniques assume the presence and observation of two or more views of the

data, which are fused into one. There are several bene�ts from adopting such an approach:

• The fact that one considers more than one views may enrich the information consid-

ered from the input space. For instance, in an emotion recognition task where the

audio signal and the text transcript of a speech excerpt are given, using information

from the audio can reveal sentiment cues, even if the content of the words does not

imply it. For example, a person saying “I didn’t like this movie” can say it with an in-

di�erent or angry voice; without considering the audio signal and simply focusing on

the text, the emotion cannot be retrieved.

• Creating a common representation instead of simply aggregating representations from

available views, results in reduced size of both the representations and the models op-
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erating on them.

• The created representations may be devoid of redundant information. The fact that

each view is (or is treated as) separate, does not imply that all information from it is

unique. In our previous example of emotion recognition, the content of the speech

is present in both the audio channel and text transcription of the signal. Combining

the two views (text and audio) e�ciently may reduce the amount of duplication in

the �nal representation.

• Assuming that the available views are observed variables which have a common latent

characteristic, the combined representation may be closer to the original, latent piece

of information.

• In the process of creating shared representations, one can take into account cross-view

interactions, that would go unnoticed otherwise. The combination of a phrase with

seemingly neutral connotation (e.g. “It was OK, I guess.”) with audio cues implying

frustration, may indicate disappointment.

• Combining information from available modalities is intuitive and can be justi�ed as

being close to human behaviour.

Multi-view approaches are justi�ably �t or applicable in a wide range of problems and data-

sets; they can be used to model input from di�erent poses for face recognition (Gross et al.,

2008), from photos and sketches (Wang and Tang, 2008), colour and texture from images

(Tzortzis and Likas, 2012), words and topics of documents (Gupta et al., 2019) or information

from multiple sensors in time series classi�cation (Xu et al., 2018).

Indeed, multi-view representation learning techniques have been extensively studied within

computer vision problems, ranging from facial expression recognition (Zheng et al., 2006)

to image clustering (Cai et al., 2013). They have also been researched in multimodal setups,

such as cross-modal retrieval (Quadrianto and Lampert, 2011), audio-visual correspondence

(Arandjelovic and Zisserman, 2017), audio-visual emotion recognition (Tian et al., 2001) and

cross-view retrieval tasks (Holzenberger et al., 2019). Despite NLP research being mostly

concerned with text-only problems, multimodal problems with a textual component, such

as opinion mining (Somasundaran et al., 2006), subjectivity analysis (Raaijmakers et al.,

2008) or sentiment analysis (Morency et al., 2011) have gained attention lately.

Research on multimodal and multi-view methods is, more often than not, parallel. Their

di�erence is one of scope: multi-view algorithms can operate on data that can be seen by dif-
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(a) Input (b) CCA (c) Deep CCA

Figure 1.3: t-SNE projection of multi-view representations, generated by di�erent methods

for a noisy version of the MNIST dataset. The techniques shown are CCA (Hotelling, 1935)

and Deep CCA (Andrew et al., 2013), both unsupervised. Each color refers to a di�erent

digit. Image from the work of Wang et al. (2015a).

ferent aspects (or views), while multimodal applications are mostly concerned with datasets

that include di�erent modalities (for example, image, audio and text). While the term multi-

view does not always refer to multimodal settings, ideas from multi-view representation learn-

ing research are especially compelling for multimodal applications.

Despite evidence suggesting that the choice of representation plays an important role to

downstream tasks, advances in representation learning are not always being brought into

the spotlight. There are practical reasons for that, with the main argument being that simple

heuristics give good enough performance, so that the use of complex representation meth-

ods is not justi�ed. Even for fundamentally multimodal NLP problems, such as multimodal

grounding or multimodal translation, multi-view representation learning techniques are not

quite popular. Representation of multimodal inputs is commonly achieved by simple ag-

gregation of representations of each modality. Examples of multi-view multimodal NLP-

related work are limited to tagging short videos, such as the work of Zadeh et al. (2018a) on

emotion recognition. Another reason why complex representation tools are not preferred is

that intrinsic evaluation of representations is notoriously fuzzy. Although in some cases it

can provide useful observations, as do, for example, the plots of Figure 1.3, most often, repre-

sentation e�ectiveness is evaluated in an extrinsic manner, by gauging the empirical impact

they have to a downstream task.

This thesis describes a multi-view contemplation of several NLP problems, both multimodal

and non-multimodal in nature. The main argument put forward is that multi-view learn-

ing o�ers powerful representation learning tools that increase the performance of models

on downstream tasks; hence they can and should be seriously considered by researchers and
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practitioners of the NLP community. In short, we set out to explore the limits of the seem-

ing applicability of multi-view representations to a range of tasks, from static, two-view,

unimodal to dynamic, three-view, trimodal applications, rooted on structured prediction

and text generation. In exploring the limits of multi-view representations, multimodality

is approached from di�erent angles. On the one hand, we set out to investigate whether

multi-view representations can hold all the information required for complex multimodal

problems, such as image captioning, while on the other hand, we explore whether multi-

view representations are a good alternative to simple aggregation of representations. In most

cases, carefully selecting a multi-view representation technique or employing a multi-view

framework proves bene�cial for the problem at hand.

1.1 Contributions

The present thesis investigates correlational multi-view learning techniques for Natural Lan-

guage Processing applications. Speci�cally, the contributions made are the following:

• multi-view summarisation: we develop a multi-view framework for the problem of

automatic document summarisation. The underlying idea is that, from an abstract

point of view, a document and its summary constitute two views of the same latent se-

mantics. We experiment with abstractive and extractive summarisation, demonstrat-

ing that correlational multi-view learning can be used for complex, downstream NLP

applications that are not necessarily multimodal in nature.

• multi-view image captioning: we present a multi-view approach for image captioning.

The core of this method is the construction of a joint multimodal space, describing

both the images and captions. A novel algorithm makes use of this multimodal, multi-

view space to infer text captions from images.

• multi-view sequential inference for movies: we develop a multi-view model for content-

based video tagging. Our work places particular importance to the temporal nature

of videos, which gives rise to a dual mode of analysis: incremental inference (models

that mimic a human viewer watching a movie for the �rst time, thus having no knowl-

edge about the future) and non-incremental inference (models that have look-ahead

capabilities).

• taking a more abstract approach, we de�ne shallow movie understanding as a set of

problems revolving around content-based processing of movie and television series
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videos. To this end, we introduce two novel tagging tasks for an existing movie dataset.

• we introduce narration generation, a new task for text generation from movie videos.

We believe that the introduction of this task will challenge existing techniques for text

generation from videos as it requires inference on the storyline of movies videos and

temporal context-based reasoning. We collect a dataset for this task, and report re-

sults on several models on it, establishing a baseline and comparing it with multi-view

models.

1.2 Overview

This thesis is organised as follows:

• Chapter 2 introduces the concepts and necessary background in representation learn-

ing and multi-view learning and discusses several relevant approaches that have been

proposed in the literature.

• The main premise of multi-view learning does not preclude its application to setups

with non-multimodal data. In Chapter 3, we explore such a direction and present a

multi-view framework for the problem of document summarisation.

• Multi-view techniques are particularly appealing for multimodal applications. Chap-

ter 4 outlines our work on image captioning. We propose a novel algorithm for gen-

erating sentences from a multimodal space, where both captions and images are pro-

jected. Experiments show that this approach can outperform previously proposed

algorithms in generating captions for abstract images.

• Chapter 5 discusses work on three tagging/segmentation tasks, that contribute to the

broad agenda of movie understanding. For all three tasks, we propose a neural ar-

chitecture paired with a novel training objective, designed for incremental inference

over multi-view data. Thorough experiments con�rm that multi-view representation

learning is of crucial importance for movie-related tasks.

• In Chapter 6, we introduce narration generation, a novel text generation task from

movie data. We formalise the task of narration generation, describe the process of

collecting an appropriate dataset, and present a set of baselines and multi-view models

on it.

• Chapter 7 summarises the main �ndings of this thesis, discusses limitations and points
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to future research directions.

1.3 Published Work

Parts of this thesis have been published as peer-reviewed papers. The work on Canonical

Correlation inference and image captioning described in Chapter 4 was done in collabora-

tion with Helen Jiang and Shay Cohen, who both carried out some of the experiments and

contributed parts of a write-up that was later presented in the AAAI Conference on Arti�cial

Intelligence (Papasarantopoulos et al., 2018). The work on multi-view movie understanding

which is described in Chapter 5 was published in the Conference in Empirical Methods in

Natural Language Processing (Papasarantopoulos et al., 2019). It was based on the dataset

and implementation of Frermann et al. (2018).



Chapter 2

Background

Features determine much of the success of a machine learning application, because
a model is only as good as its features.

(Flach, 2012)

A machine learning algorithm, from an abstract point of view, strives to �nd a relationship

between an input space X and an output space Y. A huge amount of research work has been

devoted in exploring ways to discover a function that maps from X to Y in various setups,

contexts and datasets; the question of representation, though, that is how the space X is

de�ned, is equally important.

Commonly, machine learning algorithms operate on representations of input data points,

where each data point is represented by a set of features. The selected features and the way

they are encoded in the learning process are pivotal to the success or failure of machine learn-

ing systems. The importance of representation is also stressed by the fact that most problems

include, in one way or another, some type of feature engineering, which, especially before

the popularity of neural network techniques, could very frequently end up being labour-

intensive, expensive, or calling for expert knowledge.

Speci�cally, it is generally admitted that the di�culty of a task varies with respect to the way

information is presented (Goodfellow et al., 2016). The choice of a good representation de-

pends not only on the task at hand or the model developed, but also on the data itself. Since

representation evaluation can be fuzzy, more often than not, a good representation is consid-

ered one that makes the subsequent task easier to learn or solve, for a speci�c dataset. Even in

simple setups, poor choice of representation can make the task di�cult or impossible. A rep-

resentative example is the task of building a simple linear classi�er for the two-dimensional

11
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Figure 2.1: Example of di�erent representations of the same 2-dimensional data. Evidently,

considering the task of linear separation of the two clusters, representing data using polar

coordinates makes the task not only possible (as opposed to cartesian coordinates), but also

quite easy to solve.

data of Figure 2.1. The choice to express the input in polar coordinates (right) rather than

cartesian (left) is crucial for the task at hand.

2.1 Representation Learning

Representation learning refers to the set of techniques devised to learn meaningful represen-

tations for the input of machine learning algorithms. Although in several �elds and appli-

cations there has been a transposition of interest more to architecture engineering (Elsken

et al., 2018), representation learning has grown to become a �eld itself with representation

in leading community workshops and conferences, such as Neural Information Processing

Systems (NeurIPS)
1
, International Conference on Machine Learning (ICML)

2
and Inter-

national Conference on Learning Representations (ICLR)
3
.

Advances in representation learning for NLP have been propelled with the introduction of

distributed representations (Hinton, 1986) and subsequent work in neural language mod-

elling (Bengio, 2008), that resulted in techniques able to create diverse word representations,

1https://nips.cc/
2https://icml.cc/
3https://iclr.cc/

https://nips.cc/
https://icml.cc/
https://iclr.cc/
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which are now referred to as word embeddings. Distributed representations have been so

successful, that, on a permanent basis, practitioners and researchers make use of pre-trained

word embeddings
4

as a sole input representation for textual data.

Nowadays, there seems to be a huge variety of ways to create representations for any gran-

ularity of textual information, owing to the collective wisdom of the community that has

experimented with various combinations of models and tasks. Combining distributed rep-

resentations with neural network architectures has really pushed the limits of representation

learning in NLP. Recurrent Neural Networks (RNN; Elman 1990), Convolutional Neural

Networks (CNN; LeCun et al. 1998) and subsequent architectures, have paved the way for

frameworks able to generate representations for words, phrases (Socher et al., 2013), sentences

(Kim, 2014; Collobert et al., 2011) and whole documents (Le and Mikolov, 2014), starting

from words or even characters.

Regardless of their core idea or the data they operate on, most representation learning prob-

lems “face a trade-o� between preserving as much information about the input as possible

and attaining nice properties of it” (Goodfellow et al., 2016). In unsupervised setups, attain-

ing input properties can be an indicator of good quality of the representations. An example

is shown in Figure 2.2, where di�erent unsupervised techniques learn representations that

make the subsequent classi�cation task easier (as is the case with DCCA and DCCAE) as

opposed to harder (as is the case with LLE).

The set of representation learning ideas that are referred to as multi-view learning capitalise

on such a quality of the input data: the fact that it can be perceived, either physically or con-

ceptually as having multiple aspects or facets. The plots of Figure 2.2 highlight this fact: they

were generated in an unsupervised way by multi-view methods operating on digit images

split in two parts (a left and a right).

2.2 Multi-view Learning

Machine learning algorithms usually treat all the characteristics of the training examples as

features describing the input. The multi-view paradigm refers to settings where input data

come from more than one, clearly distinct, source. The sources can be di�erent modalities,

as is the case with audiovisual or multimodal signals, or to the same modality, as is the case

with parallel texts. Multi-view learning encompasses techniques designed to accommodate

4
Popular choices include models such as word2vec (Mikolov et al., 2013a), GloVe (Pennington et al., 2014)

or ElMo (Peters et al., 2018).
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(a) Input (b) LLE (c) SplitAE

(d) CorrAE (e) DistAE (f) CCA

(g) FKCC (h) NKCCA (i) DCCA

(j) DCCAE

Figure 2.2: t-SNE projection of multi-view representations generated by di�erent methods

for a noisy version of the MNIST dataset. Each color refers to a di�erent digit. The meth-

ods used are (b) Locally Linear Embedding (Roweis and Saul, 2000), (c) Split Autoencoders

(Ngiam et al., 2011), (d) Correlational Autoencoders (Wang et al., 2015a), (e) Minimum Dis-

tance Autoencoders (Wang et al., 2015a), (f) Canonical Correlation Analysis (Hotelling,

1935), (g) Kernel CCA using random Fourier features (Lopez-Paz et al., 2014), (h) Kernel

CCA using Nyström aproximation (Williams and Seeger, 2001), (i) Deep CCA (Andrew

et al., 2013), (j) Deep Canonically Correlated Autoencoders (Wang et al., 2015a). Neither of

the feature algorithms use class information, but it is clear how di�erent representations can

help the task of classi�cation to digits. Image from the work of Wang et al. (2015a).
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more than one views in the learning setup. Such techniques are particularly attractive and

interesting for intuitive reasons, especially for multimodal models, where modeling inter-

modal (inter-view) interactions can be crucial to their predictions. Multi-view approaches

are also attractive for theoretical reasons. Anandkumar et al. (2014) show that certain latent

variable models, such as Markov Models, Gaussian Mixture Models and Latent Dirichlet

Allocation Models can be optimally learnt with multi-view spectral algorithms.

Examining a large number of multi-view learning ideas, Xu et al. (2013) observe that there

are two signi�cant principles that underline them:

• the consensus principle states that the learning process aims to maximise the agreement

on multiple distinct views. Supposing two independent hypotheses f(1) and f(2) on

two di�erent viewsX(1)
andX(2)

and their corresponding error rates P
(1)
err,P

(2)
err, Das-

gupta et al. (2002) show that, under the cotraining assumption (Blum and Mitchell,

1998), it holds that

P(f(1) 6= f(2))> max {P(1)err,P
(2)
err}, (2.1)

where P(f(1) 6= f(2)) is the probability of disagreement of the two hypotheses. This

leads to the conclusion that minimising the disagreement rate of the two hypotheses

will result in the error rate of each hypothesis to be minimised.

• the complementarity principle states that in a multi-view setting, each view of the data

contains some knowledge that other views do not have. Di�erent views should be

able to contribute to the overall representation, meaning that they should clearly be

di�erent views and not just a random subset of the available features of the input.

The large number of multi-view techniques in the literature can be categorised as belonging

to one of three groups (Xu et al., 2013):

• co-training (Blum and Mitchell, 1998) is a technique proposed for setups with small

amount of labelled and large amounts of unlabeled data. Assuming two views (feature

sets) of the data, a classi�er is trained for each of the views on the labeled data and the

most con�dent of the two is used to label some of the unlabelled data. Training is done

alternately, ensuring the maximisation of the mutual agreement of the two views.

• multiple kernel learning is a technique to combine a prede�ned set of kernels. It was

originally developed as a way to control the search space capacity of possible kernel ma-

trices, but has been widely applied to problems involving data from multiple sources.

• subspace learning is the most widely used group of techniques and the group in which
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the present thesis belongs. The core idea of such approaches is that there is a latent

subspace from which the di�erent views of data are generated. The objective of the

learning process is to obtain such a shared subspace, commonly one with lower di-

mensionality than that of any of the spaces of the views.

Multi-view representation learning is almost exclusively concerned with subspace learning

and it often surfaces as a tool for view fusion, that is a tool to create representations in this

latent space, using the available multiple view representations. Generally, there are three

alternatives when it comes to view fusion (Atrey et al., 2010):

• early fusion refers to a simple aggregation of representations at the feature level (com-

monly concatenation, but can also be summation, mean pooling or other). Early fu-

sion can cause over�tting in the case of a small training sample (since the input would

be described in a high dimensional space). Moreover, it is not intuitive, since repre-

senting each view separately may result in poor cross-view modelling. An abstract

sketch of the function of early fusion can be seen in Figure 2.3(a).

• late fusion is the integration of outputs of di�erent modality-speci�c modules. In-

stead of applying one model to the multi-view input, several models or components

tailored to each of the available views are used. The output of those components is

aggregated (by a simple aggregation function or a voting mechanism) to produce the

�nal output. Figure 2.3(b) presents an abstract sketch of the function of late fusion.

• hybrid fusion refers to any technique that aims to extend early fusion, by creating so-

phisticated representations in which all available views are fused. For these approaches,

representation learning is part of the overall machine learning model, as shown in Fig-

ure 2.3(c). This is the only group of techniques that involves actually learning rep-

resentations instead of aggregating them. In this process, each view can act as regu-

lariser, constraining possible representations, thus generalising better than one view.

Usually, a big part of hybrid methods is devoted to feature mapping. In order to use

representations from diverse vector spaces to describe the input, functions that map

those spaces to a common feature space are needed. Feature mapping is not restricted

to representation learning, though; creating a shared space to describe di�erent inputs

(or inputs and outputs) has been a cornerstone of retrieval problems. For example, in

multimodal retrieval setups, where the goal is to retrieve images or videos correspond-

ing to text snippets, projecting (mapping) text features and image (or video) features

to a common space, makes retrieval possible. Finally, projection functions can also be
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Figure 2.3: The three modes of view fusion: early, late and hybrid. In all �gures, the grey

boxes represent machine learning models. In early fusion, representations from the available

views are aggregated before going through the model, while in late fusion there is a speci�c

model for each of the views and the outputs of those models are aggregated. Hybrid fusion

employs a middle ground approach, where fusion is part of the model.

useful in missing data setups; that is cases where in test time there is only a subset of

the views available.

The present thesis, along with a plethora of works on the �eld of multi-view representation

learning, attests that representations created by hybrid fusion methods are more likely to cap-

ture meaningful information and variation than those created with early or late fusion. The

following sections enumerate and describe multi-view fusion techniques, following a practi-

cal division into correlational or non-correlational. Correlational techniques involve the cal-

culation and/or maximisation of the correlation between views and are at large inspired by

the classical statistical technique of Canonical Correlation Analysis (CCA; Hotelling 1935).

Since this thesis clearly falls in this category, there is a heavier focus on relevant approaches.

2.2.1 Non-correlational approaches to multi-view learning

By non-correlational, we refer to techniques that do not involve the calculation of correlation

between available views at any stage. From a severely abstract point of view, approaches that
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perform early or late fusion can be also deemed as non-correlational. However, there are

several ideas, mainly introduced for multimodal applications, that perform hybrid fusion

without having a correlation orientation.

For example, the work of Zadeh et al. (2017) proposes a Tensor Fusion Network, wherein

representations from three views (modalities) are fused in a way that accounts not only for

trimodal, but also all possible combinations of bimodal and unimodal interactions. The

work of Tsai et al. (2019) introduces a model that factorises representations into multimodal

discriminative and modality-speci�c generative factors, by using a joint generative and dis-

criminative objective, where the former part models modality interactions, while the latter

accounts for noisy inputs and inferring missing modalities at test time. Finally, Multi-View

Convolutional Neural Networks (MV-CNN; Su et al. 2015) are worth mentioning, which

use view pooling to integrate information from more than one 2D images.

Earlier, non-correlational graphical models were designed for multi-view environments, with

examples including multi-view sparse coding (Jia et al., 2010; Liu et al., 2014), multi-view la-

tent space Markov networks (Chen et al., 2010) and multimodal Deep Boltzmann Machines

(Srivastava and Salakhutdinov, 2012).

2.2.2 Correlational approaches to multi-view learning

Correlational multi-view learning refers to multi-view representation learning techniques

that involve the calculation and maximisation of the correlation of available views in one way

or another. The largest part of the work described in this thesis relies on such techniques.

2.2.2.1 Canonical Correlation Analysis

Canonical correlation analysis (CCA; Hotelling, 1935) is a multivariate analysis technique,

typically used in statistics to investigate commonalities between two variables. This is done

by inferring linear combinations of the two variables that have maximum correlation with

each other.

Considering two random vectorsX∈Rd
and Y ∈Rd ′

, in a nutshell, CCA seeks projection

functionsu and v of the two variables to a shared space Rm
(u : Rd→Rm

and v : Rd ′→
Rm

) that are maximally correlated. Speci�cally, CCA seeks projection matrices a ∈Rm×d

and b ∈ Rm×d ′
, so that the projections aX> and bY> are maximally correlated at each

coordinate. Moreover, we assume that m < min(d,d ′), so that the projection is feasible

and also acts as a dimensionality reduction process.
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Formally, CCA solves the following optimisation problem:

argmax
aj,bj

corr(ajX>,bjY>), (2.2)

where j ∈ {1,2, ...,m} are the coordinates of the projection matrices and corr is the Pearson

correlation between the pairwise elements of the two vectors, which is de�ned as

corr(X,Y) =
CXY
σXσY

, (2.3)

whereCXY is the covariance and σX and σY the standard deviations ofX and Y respectively.

The �rst pair of variables that maximise this quantity, if it exists, is called the first pair of

canonical variables. Subsequent pairs of canonical (maximally correlated) variables can be

calculated by making sure that they are uncorrelated with the already calculated pairs. Con-

sequently, in order to �nd thek-th pair of canonical variables, one needs to ensure that Equa-

tion 2.2 holds, and at the same time

corr(ajX>,akX>) = 0, k < j

corr(bjY>,bkY>) = 0, k < j.
(2.4)

Finding canonical variables involves the calculation of the cross-covariance matrix CXY of

X and Y. Starting from Pearson correlation between the two variables X and Y, which is

de�ned as

corr(X,Y) =
CXY
σXσY

, (2.5)

and setting CXX and CYY the covariance of X and Y respectively, and CXY , the correlation

between the projections aX> and bY> is de�ned as

corr(aX>,bY>) =
a>CXYb√

a>CXXa
√
b>CYYb.

(2.6)

In practice, the empirical covariances are used to estimate CXY ,CXX and CYY . Correlation

is then de�ned as

n∑
i=1

(xi − x)(yi − y)√
n∑
i=1

(xi − x)
n∑
i=1

(yi − y)

, (2.7)
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where xi and yi, i ∈ {1,2, ...,n} are observations of X and Y, and x and y are mean values

of xi and yi respectively.

Maximising the quantity of Equation 2.6 is equivalent to maximising the numerator with

the constraint of the denominator being equal to 1. After a change of basis:

Ω= C
−1/2
XX CXYC

−1/2
YY

c= C
1/2
XXa

d= C
1/2
YY b,

(2.8)

Equation 2.2 is equivalent to

argmax
c,d:||c||2=||d||2=1

c>Ωd. (2.9)

The solution to Equation 2.9 can be computed by applying Singular Value Decomposition

(SVD) onΩ:

Ω= C
−1/2
XX CXYC

−1/2
YY ≈UΣV>. (2.10)

Often, only diagonal elements of those matrices are used, since the calculation of this ver-

sion of CCA may contain the inversion of potentially large (d× d, d ′ × d ′) matrices. The

outputs of CCA are projection functionsu and v, for which the matrices a=C
−1/2
YY U and

b= C
−1/2
YY V are returned.

CCA has been used as a representation learning tool in a variety of NLP problems, with

applications in generating word embeddings (Dhillon et al., 2015; Osborne et al., 2016), mul-

tilingual applications (Haghighi et al., 2008; Faruqui and Dyer, 2014; Lu et al., 2015), seman-

tic analysis (Vinokourov et al., 2002) and dimensionality reduction of multi-view text data

(Rastogi et al., 2015). It is also an important sub-routine in the family of spectral algorithms

for estimating structured models such as latent-variable PCFGs and HMMs (Cohen et al.,

2012; Stratos et al., 2016) or �nding word clusters (Stratos et al., 2014). Interestingly, CCA

has also a probabilistic interpretation as a latent variable model for two Gaussian random

vectors (Bach and Jordan, 2005).

While �nding projection functions, CCA also accomplishes dimensionality reduction, since

the dimensionality of the projected space is smaller than the smaller dimensionality of the

two input spaces. In fact, the number of canonical correlations kept can be regarded as a
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hyperparameter for learning problems. In Section 3.3.3.5, we measure the e�ect of dimen-

sionality in the output of a summarisation system.

Despite its usefulness and elegance, CCA has two major limitations that may make it un�t

for modern machine learning applications:

• it supports only two views, and there is not an obvious way to extend it to more.

• it can learn only linear mappings to the shared space.

Several CCA-inspired techniques have been proposed in the past to overcome those limita-

tions:

• Kernel CCA (Hardoon et al., 2004) is an extension of CCA, which addresses the

linearity problem by �nding maximally correlated nonlinear projections, restricted to

reproducing kernel Hilbert spaces with corresponding kernels.

• Generalised CCA (Horst, 1961) addresses the limitation on the number of views. It

solves the optimisation problem of �nding a shared representation for more than two

views, by minimising the sum of the reconstruction error for each view. Generalised

CCA does not only learn projections or transformations on each of the views, but

also a view-independent representation that best reconstructs all of the view-speci-�c

representations simultaneously.

• Neural models that make use of CCA itself or correlation objectives that can over-

come the limitation of linearity by passing each of the input views through stacked

non-linear transformation layers. The following sections describe such architectures

in detail.

2.2.2.2 Deep Canonical Correlation Analysis

Deep Canonical Correlation Analysis (DCCA; Andrew et al., 2013) is a neural-network-

inspired extension of the Canonical Correlation Analysis method. Following the success

of neural network-based methods in representation learning, DCCA operates in two stages:

it computes representations of two views by passing them through multiple stacked layers

of non-linear transformations, which in turn are given as input to Canonical Correlation

Analysis. The whole neural architecture is trained by maximising the correlation between

the outputs of the layers of non-linear transformations.

The operation of the DCCA network is outlined in Figure 2.4. From a blackbox point of

view, it learns projection functionsu and v from the input spaces X and Y to a shared space,
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X Y
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Figure 2.4: Overview of the architecture of Deep Canonical Correlation Analysis.

just like CCA. What makes DDCA distinct is that u and v are realised as composite func-

tions: u= u1(f1(x)) and v= v1(f2(y)), where f1,f2 are the transformations learnt by the

neural network andu1 and v1 the projections learnt by CCA. While the CCA layer operates

exactly by the algorithm described in the previous section, the rest of the network needs an

objective to be trained. The role of the objective is ful�lled by the correlation between the

projected vectors in the CCA layer.

Formally, DCCA solves the following optimisation problem for two sets of parameters θ1

and θ2:

argmax
θ1,θ2

corr(f1(x;θ1),f2(y;θ2)), (2.11)

Setting H1 = f1(x) and H2 = f2(y), the total correlation of the top k components is the

sum of the k singular values of the matrixΩ=C
−1/2
XX CXYC

−1/2
YY calculated forH1 andH2.

This is exactly the matrix trace norm ofΩ, or

corr(H1,H2) = ||Ω||tr = tr(Ω
′Ω)1/2. (2.12)

Training the network to optimise for correlation is not straightforward, since backpropaga-

tion would need the calculation of its gradient. To compute the gradient of the correlation
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with respect to the parameteres of the network, one can compute its gradient with respect

toH1 andH2 and then use backpropagation. Then, the gradient with respect toH1 is cal-

culated as follows:

∂corr(H1,H2)

∂H1
=

1
n− 1

(2∇11H1 +∇12H2), (2.13)

whereH stands for centered data matrices (H=H− 1
nH1). Using singular value decompo-

sition (Ω≈UΣV>), Andrew et al. (2013) derive

∇12 = C
−1/2
11 UV>C

−1/2
22 (2.14)

∇11 =−
1
2
C
−1/2
11 UΣU>C

−1/2
11 . (2.15)

Similarly,
∂corr(H1,H2)

∂H2 has a symmetric expression.

The calculation of correlation is of pivotal importance to the operation of DCCA, since

the optimisation process is guided by its value. Since the correlation is essentially a func-

tion of the entire training set and does not decompose into a sum over data points, there is

no straightforward way to apply Stochastic Gradient Descent. This is the reason why the

original proposal of Andrew et al. (2013) was that the model should be trained by full-batch

optimisation using the L-BFGS second-order method. The intuition is that mini-batch tech-

niques would fail to calculate correlations adequately. Moreover, the authors back up this

intuition by mentioning conducting experiments with mini-batches of various sizes, failing

to obtain satisfactory results.

The experiments conducted in support of Deep CCA make use of the MNIST dataset (Le-

Cun et al., 1998), where images are split vertically, providing two views for digit classi�cation.

Moreover, the authors experiment with articulatory speech classi�cation using the Wiscon-

sin X-Ray Microbeam Database (XRMB; Westbury 1994) of simultaneous acoustic and ar-

ticulatory recordings. The experiments show that Deep CCA outperforms CCA and Kernel

CCA on both tasks.

While the DCCA algorithm brilliantly overcomes the linearity limitations of CCA, it does

so at the expense of high computational cost, which derives from the full-batch optimisation

constraint. Such a training paradigm, reallistically, allows for DCCA to be applied only to

small datasets, such as the MNIST or the XRMB. On the other hand, most modern neural
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X Y

L2SDL1 SDL2

Figure 2.5: Overview of the architecture of Deep Canonical Correlation Analysis with

Stochastic Decorrelation Loss.

network techniques use stochastic optimisation, enjoying fast training capabilities courtesy

of hardware advancements related to Graphics Processing Units (GPUs).

2.2.2.3 Deep Canonical Correlation Analysis with Stochastic Decorrelation Loss

In the DCCA formulation of Andrew et al. (2013) and subsequent deep CCA works (Wang

et al., 2015b; Yan and Mikolajczyk, 2015; Wang et al., 2015c), the representations created by the

neural network f1(x) and f2(y) are decorrelated by forcing their correlation matrices over

the training batch to be identity matrices. In order to do that, inversion of large matrices is

required in each training step, which can be expensive.

The work of Chang et al. (2018) presents an alternative approach that allows for e�cient

computation, by relaxing the correlation objective. The proposed architecture is quite sim-

ilar to the one of DCCA: two di�erent networks encode the two views, and their output

is used to calculate the loss and backpropagate the errors. Instead of relying to a full-batch

covariance matrixCXY , an incremental approximation of it is calculated, by collecting statis-

tics from every mini-batch. Subsequently, instead of forcing a hard-decorrelation (forcing

the o�-diagonal elements ofCXY to be zero), decorellation of each view is part of the model

loss and training proceeds with the aim of minimising it along with any other losses of the

model.

More speci�cally, in this approach, the full-batch covariance matrix is incrementally approx-
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imated at each timestep, using an accumulative covariance matrixCaccu and a normalising

factor c, as

C
(t)
apprx =

C
(t)
accu

c(t)
. (2.16)

The accumulative covariance matrix is updated in each time step as follows:

C
(t)
accu = αC

(t−1)
accu +C

(t)
mini, (2.17)

whereC
(t)
mini is the covariance matrix of the mini-batch the model consults at timestep t and

α ∈ (0,1] is a decay rate acting as a hyperparameter. This incremental stochastic learning

setup is initialised with an all-zero matrixC
(0)
accu.

Instead of enforcing exact decorrelation (forcing the o�-diagonal elements of Capprx to be

zero), the authors propose calulating a l1 loss on them:

LSDL =

k∑
i=1

k∑
j 6=i

|φ
(t)
ij |, (2.18)

whereφ
(t)
ij is the (i, j) element ofC

(t)
apprx. This loss is referred to as Stochastic Decorrelation

Loss (SDL).

The gradient of this soft decorrelation loss can be calculated as

∂LSDL
∂Z

=
1
ct

1
n− 1

Z · S, (2.19)

whereZ is the current mini-batch and S is a sign matrix

S(i, j) =


1, φ

(t)
ij > 0

0, i= j or φ(t)
ij = 0

−1, φ
(t)
ij < 0.

(2.20)

The idea of stochastic decorrelation loss was initially proposed as a general framework to

accommodate various models, but one obvious testbed was the implementation of DCCA.



26 Chapter 2. Background

An overview of DCCA implementation with stochastic decorrelation loss can be found in

Figure 2.5. In this �gure, three loss terms are calculated: the decorrelation loss of each view

and the l2 loss between the projected outputs. The use of the l2 loss is justi�ed by the intu-

ition that while decorrelating, a deep CCA model would like to reduce the distance between

the projections of the two views at the same time.

The described formulation of the problem overcomes scalability issues that come up with the

need to train in one large batch, as is the case with DCCA or other approaches that need to

calculate a full CCA step for every (large-sized) mini-batch (Wang et al., 2015b). Moreover,

the simple form of the loss makes this approach ideal for exploiting various deep learning

frameworks, without having to result to complex coding and con�guration issues. Using

the stochastic decorrelation loss, one is able to enjoy the representational powers of the deep

CCA paradigm using large datasets, while minimising scalability issues. Interestingly, Chang

et al. (2018) demonstrate that a deep CCA model with that loss is able to reach a higher

correlation strength than a DCCA model in cross-view digit recognition task on the MNIST

dataset. They also report higher correlation than DCCA in a experiment with Multi-PIE

(Gross et al., 2008), a substantially larger than MNIST dataset containing images of faces of

people. We make use of the DCCA with Stochastic Decorrelation Loss in experiments with

document summarisation (for details, see Chapter 3).

2.2.2.4 Deep Generalised Canonical Correlation Analysis

As outlined in Section 2.2.2.1, one of the major limitations of Canonical Correlation Analy-

sis is its inability to accommodate setups with more than two views. Generalised Canonical

Correlation Analysis (GCCA) is an extension of CCA that �lls this void, albeit calculating

only linear transformations of the input. Inspired both by Deep CCA and GCCA, the tech-

nique of Deep Generalised Canonical Correlation Analysis (DGCCA; Benton et al. 2019)

accommodates setups with more than two views while using non-linear transformations.

DGCCA passes representations of each view through multiple layers of non-linear trans-

formations, in a manner analogous to DCCA. At the same time, it follows the objective of

GCCA: it strives to �nd a shared representation of the di�erent views, by not only learning a

projection for each view, but also a view-independent representation that best reconstructs

all of the view-speci�c representations simultaneously.

The authors derive a calculation for the gradient of the GCCA objective and learn repre-

sentations using Stochastic Gradient Descent. They perform experiments on a restricted

synthetic dataset and on the XRMB dataset, where they empirically show that DGCCA out-



2.2. Multi-view Learning 27

performs DCCA (using acoustic and articulatory data) and GCCA (using the former two

views and also phoneme labels as a third view). Moreover, they show that DGCCA is able

to outperform PCA (Pearson, 1901), GCCA and a discriminative view weighting GCCA

variant on a hashtag recommendation task (Benton et al., 2016).

2.2.2.5 Correlational Neural Networks

Chandar et al. (2016) design a multi-view representation learning neural network with three

main features: any single view must be able to be reconstructed from the common repre-

sentation, a view must be able to be predicted from the representations of other views and

representations must be correlated. Their proposed model, Correlational Neural Network

(CorrNN) has the overall structure of an autoencoder for two views.

More speci�cally, considering data z= (x,y) consisting of two views x ∈ X and y ∈ Y, the

model learns a projection from X and Y respectively to the shared space:

h(z) = f(Wx+ Vy+ b), (2.21)

withW,V and b learnable parameters and f any activation function. Moreover, it attempts

to reconstruct the original views from the shared representation, generating data in spaces

X ′ and Y ′:

z ′ = g(W ′h(z) + V ′h(z) + b ′), (2.22)

withW ′,V ′ and b ′ also learnable parameters and g any activation function. The architec-

ture of the Correlational Neural Network can be seen in Figure 2.6.

The CorrNN uses the following objective:

L=

L∑
i=1

(Lrec +L
(X)
rec +L

(Y)
rec) − λcorr(h(X,0),h(0,Y)), (2.23)

whereh(X,0),h(0,Y) refer to projected representations based on a single view, Lrec stands

for a self-reconstruction error (minimising the error in reconstructingxi fromxi),L
(X)
rec is the

reconstruction error from the �rst view (reconstructingyi fromxi),L
(Y)
rec the reconstruction

error from the second view (reconstructing xi from yi), corr is the correlation between the

projections of the two views and λ is a hyperparameter weighing the contribution of corr.
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Figure 2.6: Overview of the architecture of the Correlational Neural Network.

Correlational Neural Networks have been tested in the task of digit classi�cation with ver-

tically split images, where they achieve higher correlation than DCCA. Interestingly, the

authors do not engage in the issue of calculating correlations within a minibatch instead of

the whole dataset, or any related scalability issues. They decided to compute the correlation

term separately for each mini-batch.

2.2.2.6 Correlational Autoencoders

Correlational autoencoders make up a large section of correlational models. These models

adopt the functionality of autoencoders, where the objective is to learn a compact represen-

tation that best reconstructs inputs. In order to �t to the multi-view paradigm, these models

take two views as inputs and learn to reconstruct both of them, in a fashion similar to Split

Autoencoders (Ngiam et al., 2011). Additionally, they use a correlation loss term to enforce

correlation between the views.

An overview of the architecture of correlational autoencoders can be seen in Figure 2.7.

Examples of such models are the Deep Canonically Correlated Autoencoder (DCCAE),

the Correlated Autoencoder (CorrAE) and Minimum Distance Autoencoders (DistAE),

all presented in the work of Wang et al. (2015a). These models use the same framework,

but slightly di�erent objectives, each with di�erent levels of relaxation to decorrelation con-

straints. The authors highlight the e�ectiveness of the proposed models by experimenting

with the MNIST and XRMB datasets, as well as with learning word embeddings from mul-

tilingual data.

It is clear from the description of the correlational multi-view approaches mentioned in the

previous sections that multi-view representation learning ideas are commonly tested on syn-

thetic datasets or carefully restricted benchmark setups. Within NLP, the role of such a

benchmark is often assumed by the multimodal sentiment analysis problem. While care-

ful evaluation on established datasets is really important to highlight their di�erences and



2.3. Multi-view sequence learning 29

X Y

corr

P Q

Figure 2.7: Overview of the architecture of Correlational Autoencoders.

their performance, in this thesis, we experiment with multi-view representation learning

techniques in more complex, downstream, NLP applications.

2.3 Multi-view sequence learning

The approaches described in the previous sections mostly accommodate monolithic data

points, and are not directly applicable to sequences. An abundance of practical applications

rely on the e�cient processing of sequential data, such as time series, temporal sequences

(e.g. videos) or DNA sequences. The very nature of sequential data calls for particular mod-

eling approaches. The main reason for that is that the data points are not independent and

identically distributed (i.i.d.), but each is dependent on the previous (in the sequence) data

points.

Natural Language Processing is interwoven with the use of sequence models, partially due

to the view of language as a sequence of elements (phonemes, syllables, words, sentences).

Sequential models, in one form or another, have been used in both speech and language

applications. Following the popularity of Hidden Markov Models (HMM; Baum and Petrie

1966) and Conditional Random Fields (CRF; La�erty et al. 2001) in language applications,

neural sequence models have proven invaluable in NLP tasks, such as language modelling.

They enjoy popularity as stand-alone models (as is the case with generative models), or as

parts of more complex architectures (they are often a model of choice for sentence encoders).
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(b) An unrolled Recurrent Neural Network.

Figure 2.8: Recurrent Neural Network.

2.3.1 Sequence Models

Neural sequence models, especially before the advent of Transformer models (Vaswani et al.,

2017), often follow the framework of Recurrent Neural Networks (RNN; Elman 1990; Med-

sker and Jain 1999). An RNN is a neural network with a loop that allows for information to

�ow along a temporal sequence. Such a network iterates over elements of sequences, main-

taining a state vector about the sequence and emitting an output vector at each time step.

Figure 2.8(a) shows an RNN cell, that is the basic structural unit that is repeatedly applied

to the elements of sequences. Figure 2.8(b) shows the same network, unrolled over time, so

that the �ow of information is clearer. At each timestep, the model takes as input the current

sequence element xi and the previous internal state of itself. Subsequently, it produces an

output hi and updates its internal state, which is in turn used in the next step.

Depending on the context, an RNN can be used either as a discriminative or a generative

model. Applications range from sequence labelling to sequence generation, or, simply en-

coding. In the case of sequence labelling, the emitted vector is used to infer a label for each of

the elements of the sequence. Similarly, for generation, the emitted vector is used to infer a

symbol. In the case of encoding, usually, the emitted vectors are not used; the RNN is rather

used to process and create a single representation for a full sequence. Commonly, the �nal

hidden representation of the model is used as the sequence embedding.

The element-by-element (step-by-step) processing has the intuitive implication of dividing

the sequence to three parts: the past, the present and the future. In the generative paradigm,

information from the past and the present is used to generate a prediction that will serve as

the future. This is exactly the question of language modeling: after going through a sequence

of tokens, a token that should follow those tokens is predicted. This process can be repeated

multiple times to generate a full sentence or more than one sentences.

In the case of encoding, the sequence model is entrusted with the task of creating a repre-
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sentation for the whole sequence or parts thereof. As such, and subject to data availability,

it may have access to the full sequence and be able to use information from the past, the

present and the future at each time step. A straightforward way to accomplish that is by us-

ing bidirectional networks (Schuster and Paliwal, 1997), that is, at each timestep, combining

representations created by two separate sequence models: one processing the sequence from

the beginning to the end and one operating the opposite way.

While the main idea of RNNs is elegant, it turns out that training simple RNNs is quite

di�cult, since they are prone to the exploding/vanishing gradient problem and are not par-

ticularly able to account for long term dependencies (Bengio et al., 1994); disqualifying short-

comings for language applications. To this end, gated models speci�cally designed to address

these issues have been proposed. Perhaps the most popular gated model is the Long Short

Term Memory (LSTM; Hochreiter and Schmidhuber 1997).

Broadly, an LSTM uses the RNN framework: it maintains a representation (state) for the

whole sequence and as it iterates through the sequence elements, the state gets updated ac-

cordingly with the new information that comes to light. The strong point of the LSTM is

that it relies on the use of gates that control the amount of information getting in the state,

thus allowing for �exibility and control to forget parts deemed unimportant or stress impor-

tant parts. The LSTM consists of a group of calculations that implement three gates: input,

forget and output gate. The role of the forget gate is to calculate how much of the previous

state should be forgotten, gauging the amount of information collected about the sequence

so far that should remain in the state. The input gate controls what information carried by

the current element should remain in the cell’s state, while the output gate decides what the

model will output.

More speci�cally, an LSTM maintains a cell state ct and a hidden state ht. The forget and

output gates are de�ned by the following equations:

ft =σg(Wfxt +Ufht−1 + bf)

it =σg(Wixt +Uiht−1 + bi),
(2.24)

whereσg is an activation function,ht−1 the hidden state of the previous stepWf,Wi,Uf,Ui
weights and bf and bi are biases. Clearly, the outputs of both gates are based on both the

input and the model’s hidden state.

After visiting the current element, the LSTM updates its state, by combining information
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from the forget and input gates:

c̃t =σc(Wcxt +Ucht−1 + bc)

ct =ft ◦ ct−1 + it ◦ c̃t
ot =σo(Woxt +Uoht−1 + bo)

ht =ot ◦ σh(ct).

(2.25)

In the above equations ◦ is the Hadamard (element-wise) product andσg,σh,σo are activa-

tion functions. Commonly, the sigmoid function is used asσg, while the hyperbolic tangent

(tanh) is used for σc and σh. A schematic depiction of the LSTM cell can be seen in Figure

2.9.
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Figure 2.9: Architecture of an LSTM cell.

Several modi�cations of the LSTM have been proposed in the literature, in the quest of re-

�ning or simplifying the core gate calculations. Variants may use other activation functions

(Gers and Schmidhuber, 2001), peepholes (Gers and Schmidhuber, 2000), or modi�ed ar-

chitectures (Krause et al., 2017). Empirical comparisons between LSTM variants, such as the

works of Gre� et al. (2016) and Jozefowicz et al. (2015), do not conclusively �nd signi�cant

di�erences between them.

Perhaps the most notable variant of the LSTM is the Gated Recurrent Unit (GRU; Cho

et al. 2014). The architecture of a GRU cell can be seen in Figure 2.10. Its main di�erences

from the LSTM are that it drops the forget and input gates and uses one update gate.
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Figure 2.10: Architecture of a GRU cell.

Formally, the de�ning equations of the GRU are:

zt =σg(Wzxt +Uzht−1 + bz)

rt =σg(Wrxt +Urht−1 + br)

h̃t =σh(Whxt +Uh(rt ◦ ht−1) + bh)

ht =(1 − zt) ◦ ht−1 + zt ◦ h̃t.

(2.26)

Similarly to the LSTM, σg,σh are activation functions (sigmoid and hyperbolic tangent

respectively) and ◦ is the Hadamard product.

The GRU was proposed as an alternative to the LSTM for an encoder-decoder architecture,

its main asset being that it could replace the latter while having less parameters to learn. Al-

though the GRU is reported to have some limitations (Weiss et al., 2018) and there is some

evidence that in LSTMs perform better in encoders used for machine translation (Britz et al.,

2017), there is also empirical work that reports no substantial di�erences between the two

(Chung et al., 2014). While the issue of superiority seems to be application and dataset spe-

ci�c, especially in practical applications where training time is important, GRUs and LSTMs

may be used interchangrably.

2.3.2 Multi-view Sequence Models

The aforementioned sequence models accept a single input from the sequence at each time.

Given this restriction, their applicability to multi-view or multimodal setups boils down to
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Figure 2.11: General unfolded overview of a multi-view sequence model for an examplex∈X
with three views. At each time step t∈ {0,1, ...,T }, representationsx

(k)
t for eachk∈ {1,2,3}

views are fed to a cell. The cell outputs a joint representation ht for all the views.

modi�cations pertaining to early fusion. For example, they may operate on inputs consist-

ing of the aggregation of representations coming from di�erent sources. Indeed, owing to

its simplicity, and, sometimes, acceptable performance, this way is taken in many applica-

tions. Moreover, since multi-view fusion is an open research question, the use of this early

fusion is imperative to enable comparison between models that do not di�er in the fusion

method. For instance, a novel model designed for the problem of emotion identi�cation is

more directly comparable to other models proposed for the same problem if they use the

same fusion method.

Arguably all the points in favour of view fusion discussed in the Introduction and the previ-

ous sections hold true for sequential input as well. Thus, models utilizing the RNN frame-

work and borrowing ideas from common models such as the LSTM or GRU have been

proposed to account for multi-view inputs. From a blackbox point of view, such models op-

erate on data points x ∈ X consisting of elements x
(k)
t , for each timestep t ∈ {0,1,2, ...,T }

and view k ∈ {1,2, ...,K}. A general overview of such a model is given in Figure 2.11.

2.3.3 Non-correlational multi-view sequential approaches

A large set of multi-view sequence models does not have a correlational orientation; they

incorporate information from several sources in di�erent ways. The relevant techniques fall

broadly in two main categories: external, that is mechanisms built around sequence models,

and internal, that is approaches that propose fundamental changes in the sequence model

cells to add multi-view functionality.

In the external domain, the multi-view functionality can be entrusted to layers previous to

the sequence model. For example, the work of Cui et al. (2018a) proposes feeding an LSTM

with fused representations created by an autoencoder. In a similar fashion, multimodal em-
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beddings constructed in a way that the main modality (for example, text) does not get down-

graded by other noisy modalities (image or acoustic), can be fed to a sequence model. This

approach is taken in the work of Chen et al. (2017), where a Gated Multimodal Embedding

is constructed at the word level and subsequently fed to an LSTM.

External approaches also include attention mechanisms operating on the output of sequence

models. The work of Zadeh et al. (2018a) employs an attention mechanism that fuses rep-

resentations from three di�erent sequence models. Similarly, Zadeh et al. (2018b) employ

an attention mechanism (Multimodal State Memory) informed by representations created

from the output of three di�erent LSTMs (one for each of the modalities present in the

problem) which are fused by the novel fusion method of the Dynamic Fusion Graph.

Approaches belonging to the internal domain mostly focus on devising modi�cations to

either the LSTM or the GRU. Speci�cally, considering the de�ning equations of the LSTM

(Equations 2.24 through 2.25), the simplest multi-view variant would be to employ a separate

LSTM for each of the available views. Such a model would be described by the following

equations:
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(2.27)

with k iterating through the views. Note how in these equations everything is view-speci�c

(weights, biases, inputs). Slightly relaxing this constraint gives rise to view-centric represen-

tations, that are nonetheless informed by the rest of the views. This is the case with the

Multimodal LSTM proposed by Ren et al. (2016). In order to create a multi-view model,

they force weight sharing across views for U
(k)
f ,U(k)

i ,U(k)
c and U

(k)
o , thus replacing those

weights with the common for all viewsUf,Ui,Uc anUo.

In their work, Rajagopalan et al. (2016) introduce multi-view LSTM (MV-LSTM), a multi-

view variant of LSTM and at the same time present a framework to build multi-view se-

quential models with a degree of �exibility. Essentially, the MV-LSTM cell incorporates a

separate LSTM for each of the views, in the gates of which, some information from the
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other views is passed on. The degree of reliance to the other views is controlled by two hy-

perparameters α and β, taking values between 0 and 1, which account for the amount of

information that should be view-speci�c and input-oriented respectively. For example, a

value of (α,β) = (1/3,1/3) indicates that the memory should contain view-speci�c, input-

oriented and coupled cells, while a value of (α,β) = (1,0) results in a fully view-speci�c

model: each view interacts with previous representations of the same view only. Finally, a

value of (α,β) = (0,1) results in a coupled model: each view interacts with previous repre-

sentations of other views only. The values of the hyperparameters are incorporated into the

LSTM equations through matricesA and B:

Aij =

1, i= j, i6 α

0, otherwise

Bij =

1, i= j, i> (1 −β)

0, otherwise.

(2.28)

Figure 2.12 presents the architecture of the MV-LSTM cell. It is worth noting that although

there is an interaction between views in the memory cell, the core functionality revolves

around separate representations for each of the views. The MV-LSTM for a set V of views,

is described by the following equations:
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Ultimately, there are methods that do not strictly fall in neither of the two categories. The
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Figure 2.12: Architecture of a Multi-view LSTM (MV-LSTM) cell.
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work of Liang et al. (2018), although not presented as such, is more relevant to the internal

domain than the external. It uses a mechanism that is interjected between consecutive runs

of a sequence model and alters the representations carried to the next step. This mechanism,

called Multistage Fusion Process uses three di�erent modules (HIGHLIGHT, FUSE and

SUMMARIZE) that repeatedly identify and locally fuse subsets of multimodal signals. The

fusion process can be thought of as being integrated in one, multi-view cell, thus corrobo-

rating the internal nature of this model.

2.3.4 Correlational multi-view sequential approaches

One predominantly correlational sequence model is the correlational Gated Recurrent Unit

(corrGRU; Yang et al. 2017); a multi-view extension of the GRU. In theory, the simplest

multi-view GRU would be one that uses a separate GRU cell for each view. Similarly to the

simple multi-view LSTM (Equations 2.27) and with respect to the structural equations of a

GRU (Equations 2.26), such a model would be described by the following equations:

z
(k)
t = σg(W

(k)
z x

(k)
t +U

(k)
z h

(k)
t−1 + b

(k)
z )

r
(k)
t = σg(W

(k)
r x

(k)
t +U

(k)
r h

(k)
t−1 + b

(k)
r )

h̃
(k)
t = σh(W

(k)
h x

(k)
t +U

(k)
h (r

(k)
t ◦ h

(k)
t−1) + b

(k)
h )

h
(k)
t = (1 − z

(k)
t ) ◦ h(k)t−1 + z

(k)
t ◦ h̃

(k)
t ,

(2.30)

with k iterating through the views.

The corrGRU takes a slightly di�erent approach: it creates and uses a single hidden state for

all modalities. This is made possible by fusing representations within the cell. To achieve

that, it �rst employs a simple GRU for each of the views, wherein the common hidden rep-

resentation from the previous step is used:
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(2.31)

and, subsequently, implements multi-view gates by using a weighted sum of the view-speci�c
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representations:
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with k iterating over the set V of views.
5

The weights w
(k)
t are generated by a dynamic

weighting module (DW), which outputs weights for each time step by considering its co-

herence with the fused representation of the previous time step. Consequently, the model is

able to focus more on modalities that carry informative signal that is consistent with previ-

ous timesteps, as opposed to, for example, modalities corrupted by noise. As such, dynamic

weighting can be regarded as a loose form of attention. More speci�cally, coherence scores

αt for each view k and time step t are calculated as

α
(k)
t = x

(k)
t Akh

>
t−1, (2.33)

whereAk are parameters learnt and the weights are then obtained by applying Laplace smooth-

ing:

w
(k)
t =

1 + exp(αkt )

2 +
∑
m exp(α(m)

t )
, (2.34)

withk iterating through the views. Dynamic weighting is reported to have signi�cant impact

in multimodal fusion in the work of Yang et al. (2017); a claim consistent with our experi-

ments (see Chapter 5).

A comprehensive diagram of the architecture of the corrGRU can be seen in Figure 2.13.

What makes the corrGRU actually correlational, is the fact that it encapsulates a correlation

term in its objective, thus forcing the maximisation of the correlation between the represen-

tations for each view. Formally, assuming just two views, in each step the Pearson correlation

5
In the paper of Yang et al. (2017), only two views are considered (|V| = 2), but here we present a more

general form of the equations.
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between them is calculated as
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where i spans over the L elements of each mini-batch, h
(k)
it is the hidden state calculated by

the view-speci�c GRU for the example i, viewk, at timestep t. Moreover,H
(k)
t = 1

L

L∑
i=1
h
(k)
it .

The correlation term is then de�ned as

Lcorr =
1
|T |

∑
t∈T
ct, (2.36)

that is the average of the loss calculated for every time step t. Generalising to more than two

views, one can calculate the total correlation as the sum of the correlation between all pairs

of elements of V. The network is consequently trained by adding the correlation loss term

to any other loss terms used. Formally,

L= Lother − λLcorr, (2.37)

where λ is a hyperparameter weighing the contribution of Lcorr to the total loss. The nega-

tive sum is used because we would like the correlation to be maximised, while normally losses

express quantities to be minimised. A general overview of the corrGRU model is shown in

Figure 2.13.

Yang et al. (2017) report experiments with corrGRU on action classi�cation with video sen-

sor data with the ISI dataset (Kumar et al., 2015) and audio-visual speech classi�cation with

AVLetters (Matthews et al., 2002) and CUAVE (Patterson et al., 2002) datasets. We experi-

ment with using corrGRU for multimodal applications that include a strong language com-

ponent and more than two modalities (Chapters 5 and 6).
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Figure 2.13: Architecture of the correlational GRU (corrGRU) cell. The numbers in circles

correspond to the order in which the calculations are performed: �rst, each view is fed to a

simple GRU cell, then the output of those cells is used to calculate the weight scores (Dy-

namic Weighting module; DW) and the correlation between the views (correlation module;

corr mod). Lastly, a joint representation is calculated for all views, which will be fed to the

next timestep. In the �gure, for clarity, several links are omitted, but the labels of the arrows

de�ne where the links should be. For example, after the �rst step, the valuesh
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Chapter 3

Multi-view Document Summarisation

Information overload is a state in which a decision maker faces a set of informa-
tion [...] comprising the accumulation of individual informational cues of dif-
fering size and complexity that inhibit the decision maker’s ability to optimally
determine the best possible decision.

(Roetzel, 2018)

Information overload is a state a�ecting not only decision makers in the strict political sense,

but also each user of media, newspapers, web portals or social media. Although there is no

universally acceptable de�nition of information overload, the technology available to any

“decision maker” or user plays an important role when establishing its existence. This has

lead in con�icting opinions on the issue: one that views information overload as a problem

(Dean and Webb, 2011) and one viewing it as an opportunity to inspire technological ad-

vances (Blair, 2012). Search engines are an example of technological product that has boosted

the ability of users to cope with massive amounts of information and caused a shift in the

perception of information overload.

The abundance of textual information online has brought about a growing demand for NLP

expertise. Automatic summarisation systems are just one example of technological product

that relies heavily on language technology and can help users navigate through the informa-

tion overload they face in a daily basis. Speci�cally, using an automatic summariser, a user

can quickly and e�ortlessly digest documents, spotting major events, entities’ involvement

in events or emerging trends in the media, without having to spend a substantial amount

of time reading. The NLP community has been actively trying to �ll this user need, by re-

searching and developing automatic summarisation methods and techniques.

Naturally, the need for automatic summarisation is not constrained to personal usage. News

43
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agencies such as the British Broadcasting Corporation (BBC) employ monitoring agencies

(BBC Monitoring division) that track television, internet and social media sources on a daily

basis, with the goal of detecting trends or changes in media outlets, or spot and �ag breaking

news events quickly and accurately (Liepins et al., 2017). Analysts in such agencies are faced

with the problem of ingesting massive amounts of information in short time, from diverse

and multilingual sources. The same is also true for internal consumption of news items in

large news broadcasters, such as the Deutsche Welle (DW). From this point of view, the need

for summarisation systems that can accommodate more than one languages and domains of

text is imperative.

Commonly, news consumers are presented with multifarious and multimodal information

when accessing a news portal. Although paper-based media still are in existence and publi-

cation, it is apparent that there has been a shift towards websites and social media, especially

for younger audiences.
1

Articles employ a mixture of text, images, videos, diagrams, links to

other articles, reader comments or social media posts that are relevant to the article. Con-

sequently, a multi-view approach, where all or some of this side information is exploited to

enrich NLP models, is appealing. Indeed, using extra information has been shown to bene�t

summarisation systems (Narayan et al., 2018a), even outside a multi-view environment.

In this chapter, we describe a multi-view take on document summarisation, that of regard-

ing an article and its summary as two views of the same input. The underlying assumption is

that there is a latent meaning in the article (a meaning that conveys the semantics of the text),

whose observed variables are the text and the summary. This assumption leads to the use of

multi-view techniques, such as Canonical Correlation Analysis to attack the problems of ex-

tractive and abstractive summarisation. Most of the work described in this chapter does not

use any other modalities or other extra information or metadata surrounding articles, apart

from the text of the documents and the summaries. Thus, the described work constitutes a

solid example of work using multi-view techniques, without having a multimodal motive.

3.1 Document Summarisation

The process of distilling the knowledge of a text passage in a shorter, paraphrased text is

a fundamental element of reading and writing skills of humans. Its importance relies on

the utility of the product, since a summary is easier and quicker to read than a full text.

Moreover, it also relies on the e�ects of the process; it has been suggested that summarising

1
For trends in the U.S.A., consult the report of Mitchell et al. (2016).
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is an e�ective way to learn from text (Kissner, 2006). Interestingly, summarisation is a hard

task, even for humans (Hill, 1991).

Within the NLP community, automatic document summarisation is a quite popular and ex-

tensively studied problem. Partly due to the extreme di�culty of the problem and partly due

to the insurmountable obstacle of not being able to have a concrete, exactly right solution

to look up on while training summarisation models, there have been several simpli�cation

attempts to the problem of automatic summarisation. The most popular simpli�cation is

the introduction of extractive summarisation; a proxy problem suggesting that a summary

can be created by selecting a handful of sentences from the original text passage, instead of

creating a novel summary. Extractive summarisation stands on the opposite side of what is

called abstractive summarisation, which is the more natural or intuitive way of summarising,

involving the generation of a new synopsis that paraphrases the original input’s words, from

scratch.

Automatic summarisation is broad, and can include tasks that agreeably should not be treated

as equal or, even, similar. Single document summarisation refers to generating a summary

from one text passage, regardless of its size: a twenty sentence article and a twenty page re-

port are, in essence, one document each. Moreover, depending on the application, generated

summaries can be general-purpose (including the main ideas or events of the text) or query-

based (focused on a speci�c query that comes from a user). All the work that is described

in the present chapter concerns the generation of single-document, general-purpose sum-

maries.

3.1.1 Extractive Summarisation

Extractive summarisation refers to casting summarisation as a selection problem. Speci�-

cally, for a document that consists of n ∈N+
sentences, the extractive summarisation pro-

cess will select k < n,k ∈N+
sentences which are the most representative of the text. The

output of the extractive summarisation system is the concatenation of the extracted sen-

tences. An example of an extractive summary can be seen in Figure 3.1.

Extractive summarisation has been thoroughly investigated, and as such, to date, extractive

systems are able to produce output of good or acceptable quality. A reason for the guaranteed

quality of an extractive summariser stems from the fact that it selects sentences from the

document, thus ensuring that the summary will consist of sentences that are as grammatical

and well-formed as the input. At the same time though, the output text may be incoherent,
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since the extractive framework does not necessarily account for joining the sentences in an

elegant way, or ensuring that two or more sentences do not contain the same information.

Extractive systems for various tasks (single- document or multi- document, general or query-

based summarisation) may rely on manually engineered features or shallow text features,

such as the length and position of sentences (Radev et al., 2004), the presence of speci�c im-

portant cue words, title words or word frequencies (Nenkova et al., 2006). Some works also

attempt deep understanding of documents before summarising, incorporating discourse

features (Osborne, 2002) or even event information (Filatova and Hatzivassiloglou, 2004).

The selection framework varies from greedy techniques (for example, the work of Wan et al.

2007) and graph techniques (Erkan and Radev, 2004) to constraint optimisation (such as

the work of Alguliev et al. 2011).

Recent advances in neural models have propelled the creation of data-driven systems that

do not require great amount of feature engineering (examples include the works of Yin and

Pei 2015; Nallapati et al. 2016a; Narayan et al. 2018a). Although the recent resurgence in

interest for summarisation has risen the bar for state-of-the-art performance of extractive

summarisers, oracle experiments show that there is still room for improvement (Hirao et al.,

2017).

3.1.2 Abstractive Summarisation

Although there is no consensus on an absolutely correct way to summarise texts,
2

it is ap-

parent that humans summarise in a profoundly di�erent way from extractive summarisers.

A human subject asked to summarise a text passage, will, most probably try to paraphrase

the original story in their own words, while trying to work on an abstract level. The gener-

ated summary will include some, but not all, the details conveyed in the text passage, while

some may be mentioned brie�y (for example, explicit numbers such as “2.5 million people

from a country with a 5 million population” may end up being mentioned as “50% of the

country’s population”, “half of the country’s population” and so on). This way of creating

summaries, by paraphrasing the original text is called abstractive summarisation, emphasis-

ing on the fact that the generated summary will contain the abstract idea of the document.

An abstractive summary seldom includes verbatim sentences from the document and since

it is created with the goal of being a self-contained text, it is in principle coherent and does

not contain redundant information.

2
There are some sets of guidelines that can be taught to students, though (Brown et al., 1981).
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Figure 3.1 shows an example of an article from the news portal of Cable News Network

(CNN), along with three di�erent summaries. The summaries listed are:

• LEAD-3: a summary constructed by concatenating the three �rst sentences of the ar-

ticle.

• extractive: the output of an extractive summarisation system (SideNet; Narayan et al.

2018a), consisting of three sentences of the article.

• abstractive: the summary taken from the CNN website, which has been generated by

human reporters. The CNN website,
3

for a period of time, used to include highlights

in the form of bullet points that summarise the main contents of articles. Highlights

were listed on the top of the article’s webpage to aid users who would like to be in-

formed without going through the article in detail. While this speci�c highlight for-

mat does not account for a coherent text, the term “abstractive” about the summary

is justi�ed by the fact that highlight sentences are original (not copied from the docu-

ment).

While the task of automatic abstractive summarisation has been standarised in he DUC-

2003 and DUC-2004 challenges,
4

it has seen a resurgence in interest lately, partially fueled

by advances on neural sequence models (Rush et al., 2015; Nallapati et al., 2016b). Proposed

approaches on abstractive summarisation have been quite diverse, with techniques relying

on machine translation frameworks, either phrase-based (such as the work of Banko et al.

2000) or sequence-to-sequence (seq2seq) models (for example, the work of Hu et al. 2015),

compression-based approaches using weighted tree-transformation rules (Cohn and Lapata,

2008) and quasi-synchronous grammar approaches (Woodsend et al., 2010). Neural abstrac-

tive summarisers are usually developed around the seq2seq framework, but do not fail to

include several sophisticated modules, such as attention (Rush et al., 2015) or copying mech-

anisms (Nallapati et al., 2016b).

Mosquito-borne virus chikungunya worries CDC

A debilitating, mosquito-borne virus called chikungunya has made its way to North

Carolina, health o�cials say. It’s the state’s �rst reported case of the virus.

The patient was likely infected in the Caribbean, according to the Forsyth County

Department of Public Health. Chikungunya is primarily found in Africa, East Asia

and the Caribbean islands, but the Centers for Disease Control and Prevention has

been watching the virus, for fear that it could take hold in the United States – much

3https://edition.cnn.com/
4http://duc.nist.gov/

https://edition.cnn.com/
http://duc.nist.gov/
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like West Nile did more than a decade ago.

The virus, which can cause joint pain and arthritis-like symptoms, has been on the

U.S. public health radar for some time. About 25 to 28 infected travelers bring it to

the United States each year, said Roger Nasci, chief of the CDC’s Arboviral Disease

Branch in the Division of Vector-Borne Diseases.

"We haven’t had any locally transmitted cases in the U.S. thus far," Nasci said.

But a major outbreak in the Caribbean this year – with more than 100,000 cases re-

ported – has health o�cials concerned. Experts say American tourists are bringing

chikungunya back home, and it’s just a matter of time before it starts to spread within

the United States.

After all, the Caribbean is a popular one with American tourists, and summer is fast

approaching.

"So far this year we’ve recorded eight travel-associated cases, and seven of them have

come from countries in the Caribbean where we know the virus is being transmitted,"

Nasci said.

Other states have also reported cases of chikungunya. The Tennessee Department of

Health said the state has had multiple cases of the virus in people who have traveled

to the Caribbean.

The virus is not deadly, but it can be painful, with symptoms lasting for weeks. Those

with weak immune systems, such as the elderly, are more likely to su�er from the

virus’ side e�ects than those who are healthier.

The good news, said Dr. William Sha�ner, an infectious disease expert with Vander-

bilt University in Nashville, is that the United States is more sophisticated when it

comes to controlling mosquitoes than many other nations.

"We live in a largely air-conditioned environment, and we have a lot of screening (win-

dow screens, porch screens)," Sha�ner said. "So we can separate the humans from the

mosquito population, but we cannot be completely be isolated."

Chikungunya was originally identi�ed in East Africa in the 1950s. The ecological

makeup of the United States supports the spread of an illness such as this, especially

in the tropical areas of Florida and other Southern states, according to the CDC.

The other concern is the type of mosquito that carries the illness. Unlike most

mosquitoes that breed and prosper outside from dusk to dawn, the chikungunya virus

is most often spread to people by Aedes aegypti and Aedes albopictus mosquitoes.

These are the same mosquitoes that transmit the virus that causes dengue fever. They

bite mostly during the daytime. The disease is transmitted from mosquito to human,

human to mosquito and so forth. A female mosquito of this type lives three to four

weeks and can bite someone every three to four days.

Sha�ner and other health experts recommend people remember the mosquito- con-

trol basics:

• Use bug spray if you are going out, especially in tropical, or wooded areas near

water.

• Get rid of standing water, empty plastic pools, �ower pots and pet dishes, so

mosquitoes don’t breed.

• Dress appropriately, with long sleeves and pants.

LEAD summary

• A debilitating , mosquito-borne virus called chikungunya has made its way to
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North Carolina , health o�cials say.

• It ’s the state ’s �rst reported case of the virus.

• The patient was likely infected in the Caribbean, according to the Forsyth

County Department of Public Health.

Extractive summary

• A debilitating , mosquito-borne virus called chikungunya has made its way to

North Carolina, health o�cials say.

• Chikungunya is primarily found in Africa, East Asia and the Caribbean islands,

but the Centers for Disease Control and Prevention has been watching the

virus, for fear that it could take hold in the United States – much like West

Nile did more than a decade ago.

• About 25 to 28 infected travelers bring it to the United States each year, said

Roger Nasci, chief of the CDC’s Arboviral Disease Branch in the Division of

Vector-Borne Diseases.

Human-generated (abstractive) summary

• North Carolina reports �rst case of mosquito-borne virus called Chikungunya.

• Chikungunya is primarily found in Africa, East Asia and the Caribbean islands.

• Virus is not deadly, but it can be painful, with symptoms lasting for weeks.

Figure 3.1: An article from the CNN website (https://edition.cnn.com/2014/06/

12/health/virus-chikungunya/, accessed March 10, 2019.), with three summaries: the

LEAD-3 summary, the output of an extractive summarisation system (SideNet) and the orig-

inal summary it is paired with in the CNN website. All summaries are presented as lists

because none of them was written as a coherent text.

3.1.3 Evaluation

Commonly, the output of summarisation systems is compared with that from a simple base-

line, called the LEAD baseline. The LEAD-kbaseline generates summaries by concatenating

the �rst k sentences of the document. The intuition behind this baseline is that the very �rst

sentences of a document contain important information, possibly the most important of

the whole document. Although this is empirical observation, it can be traced back to writ-

ing strategies (as newspaper editors say “don’t bury the lede”, meaning “put the important

things �rst”; Pinker 2015) or to standard journalistic practice (the �rst sentences are read by

more people than the whole article). It turns out that the LEAD baseline is strong, suggesting

that a large amount of important information indeed lies at the beginning of the document.

While deciding on the value of k may involve some �exibility and is also domain- or task-

dependent, research work in news articles usually uses a value of 3, possibly due to the size of

https://edition.cnn.com/2014/06/12/health/virus-chikungunya/
https://edition.cnn.com/2014/06/12/health/virus-chikungunya/
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the generated summary (a two-sentence summary may be quite short, while a four-sentence

long, considering the average length of an article). Moreover, popular news portals such as

the CNN
5

and DailyMail
6

seem to use (or have used) three-sentence summaries (or high-

lights).

3.1.3.1 Automatic Evaluation

E�cient and easily available evaluation is of utmost importance for NLP and machine learn-

ing tasks. Their existence makes development of new methods easier, as they provide a ro-

bust way to compare between variants of models, pointing to promising directions or guid-

ing hyperparmeter tuning. However, automatic evaluation of NLP tasks, especially those

involving a text generation or selection part, is not straightforward.

Recall-Oriented Understudy for Gisting Evaluation (ROUGE; Lin 2004) proposes a set

of metrics that can be easily calculated and are tailored to the problem of summarisation.

ROUGE scores rely on the amount of common language units (n-grams) between a sum-

mary that has been generated by a system (“system summary”) and a correct (“reference”)

summary. The ROUGE framework also provides a way to compare a generated summary to

more than one reference summaries, to countermeasure the fact that for a given text passage,

there can be more than one, equally good or adequate summaries.

Speci�cally, ROUGE includes the following metrics:

• ROUGE-N refers to a set of co-occurrence based metrics. The value ofN determines

the type of language unit considered (ROUGE-1 operates on unigrams, ROUGE-2

on bigrams and so on). Formally, the ROUGE-N score between a system summary S

and a set of reference summaries R is de�ned as:

ROUGE-N=

∑
s ′∈R

∑
uN∈s ′

M(uN,S)∑
s ′∈R

∑
uN∈s ′

C(uN)
, (3.1)

whereC denotes the count function andM a function returning 1 if the unituN oc-

curs in summary S and 0 otherwise. Varying the value ofN changes the informativity

of the metric accordingly. For example, since ROUGE-1 simply counts co-ocurrence

of unigrams, it may not be too indicative of the quality of the generated summary (it

is equivalent to bag-of-words intersection between the system and the reference sum-

mary). On the other hand, ROUGE-4, which counts co-ocurrence of four-grams,

5https://edition.cnn.com/
6https://www.dailymail.co.uk/

https://edition.cnn.com/
https://www.dailymail.co.uk/
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may be too speci�c and, consequently, di�cult to achieve high values. Commonly,

summarisation works mention at least ROUGE-1 and ROUGE-2 scores.

• ROUGE-L accounts for the longest common subsequence between the generated

summary and a reference summary. Contrary to ROUGE-N, ROUGE-L considers

co-occurrence of language units, but only in-sequence, albeit not necessarily consecu-

tive. Given two sequences of tokens X and Y with lengths |X| and |Y| respectively, we

can calculate the following:

rL =
LCS(X,X ′)

|X|
(3.2)

pL =
LCS(X,X ′)

|X ′|
(3.3)

fL =
(1 +β2)rLpL
rL +β2pL

, (3.4)

where rL is recall,pL precision, fL the corresponding f-βmeasure andLCS the longest

common subsequence. The same scores calculated for reference summary S consist-

ing of |S| tokens and u sentences and system summary S ′ with |S ′| tokens, are calcu-

lated as follows:

rL =

u∑
i=1
LCS∪(Si,S ′)

|S|
(3.5)

pL =

u∑
i=1
LCS∪(Si,S ′)

|S ′|
, (3.6)

where LCS∪ denotes the union longest common subsequence. To illustrate the cal-

culation of LCS∪, consider the following example: given a reference sentence ri =

[w1w2w3w4w5] and a system summary with two sentencesc1 = [w1w2w6w7w8]

and c2 = [w1 w3 w8 w9 w5], with wj being tokens, the longest common subse-

quence between ri and c1 is [w1w2] and between ri and c2, [w1w3w5]. The union

longest common subsequence considers the union of the two: [w1 w2 w3 w5], thus

LCS∪(ri,C) = 4.

• the ROUGE suite also includes other metrics, such as ROUGE-S (co-ocurrence of

skip-bigrams, i.e. pairs of words in their sentence order, allowing for arbitrary gaps),
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ROUGE-SU (ROUGE-S variant that takes also unigrams into consideration) and

ROUGE-W (ROUGE-L variant where the number of common subsequences that

consist of consecutive elements is considered).

The software package released for the ROUGE suite
7

is able to calculate and report all the

above scores. Moreover, it provides an option to generate scores for speci�c summary lengths.

Partially consulting summaries leads to normalised evaluation that does not unfairly favor

longer summaries over shorter ones. This is especially useful for the evaluation of extrac-

tive summarisers, that have no inherent way to restrict the length of the generated summary.

Commonly, evaluation is performed for full length (no length limit), 275 bytes (the �rst 275

bytes of the summary are taken into consideration) and 75 bytes (roughly one sentence).

Importantly, in the literature for extractive summarisation, recall metrics are reported, since,

in the extractive setup, sentences are copied verbatim from the output and there is no way for

the summariser to control for precision. In abstractive summarisation, though, all of recall,

precision and F scores are reported, since the summariser has more degrees of freedom and

absolute control over the output. Additionally, natural language generation metrics, such as

METEOR (Denkowski and Lavie, 2014) have been reported for abstractive summarisation

(See et al., 2017), although the use of ROUGE is prevalent in the literature.

3.1.3.2 Human Evaluation

Despite their convenience, automatic metrics have limited capacity. Traditionally, metrics

themselves are evaluated by calculating the correlation between their score values and hu-

man judgments. The problem of creating the “best” metric, or selecting one of the available

metrics that behaves the best, is an open problem. Although ROUGE has been adopted in

large by the NLP community, there have been several re-assessments of its soundness and

suitability for summarisation evaluation (Lin and Och, 2004; Dorr et al., 2005; Graham,

2015).

Evaluation of the output of summarisers by human subjects can ensure that the variability

and fallibility of automatic metrics can be overcome. Despite the high cost it may incur

(both in time and money), human evaluation has been included in several summarisation

works (such as the work of Cheng and Lapata 2016 and that of Narayan et al. 2018b), as a

more �ne-grained evaluation than automatic metrics or as a sanity check to state-of-the-art

results.

7
Available from https://github.com/andersjo/pyrouge/tree/master/tools/ROUGE-1.5.5.

https://github.com/andersjo/pyrouge/tree/master/tools/ROUGE-1.5.5
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Learning module (§3.2.1)

Extractive Decoder (§3.3)

Abstractive Decoder (§3.4)

CorES

CorAS

Figure 3.2: Overview of the proposed summarisation systems. The learning module is used

by both the extractive summariser (CorES) and the abstractive summariser (CorAS).

Potential shortcomings of human evaluation include poor evaluation standards, such as

small sample (justi�ed by the cost constraints of conducting human evaluation) or the ab-

sence of community-wide standards (if human evaluations are not conducted in a similar

way, or using di�erent criteria to rank summaries, their output may not be comparable to

other works).

3.2 Multi-view Representation Learning for Document

Summarisation

The present chapter describes a multi-view approach for single-document summarisation.

The proposed approach relies on two main components: a learning module and a decoding

module. The former is responsible for creating multi-view representations for documents

and summaries and can be used for both extractive and abstractive summarisation systems.

The decoding components for extractive and abstractive summarisation are substantially dif-

ferent and are described in separate sections. A schematic overview of our summarisation

system can be found in Figure 3.2. We call the resulting systems Correlational Extractive

Summariser (CorES) and Correlational Abstractive Summariser (CorAS) respectively. In

the following sections, several variants of CorrES and CorAS are described and evaluated.
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3.2.1 Learning Module

The main idea that we explore is that documents and summaries are two views of the same

pieces of information. More speci�cally, we assume that both are views of the same latent

semantics. Given that the de�nition of a view is quite broad, it is meaningful to consider two

pieces of text with substantial di�erences as two views of the same input. Assuming that

the core information contained in a document and its summary are the same, their main

di�erence lies in their length: a summary is a restricted view of the latent information, while

the document is full-length, unrestricted version of it.

Elaborating on the multi-view idea, we attempt to construct representations for documents

and summaries, that will be close to the latent information. We assume that the input is de-

scribed using two feature spaces,X andY, with dimensionalitiesd andd ′ respectively. With-

out loss of generality, we use X to describe documents, while Y is the summary space. The

objective is to learn two functions, u : X→Rm
and v : Y→Rm

that project vectors from

X and Y to the common space Rm
. Furthermore, we assume that the projection of vectors

from the two input spaces will also act as a dimensionality reduction step:m<min(d,d ′).

Learning the projection functionsu andv can be accomplished using Canonical Correlation

Analysis (see Section 2.2.2.1 for details) or Deep Canonical Correlation Analysis (see Section

2.2.2.2 for details). The overall operation of the learning process can be seen in Figure 3.3. The

main feature of creating this kind of representation lies on the fact that the projected vectors

for a speci�c document and its summary will be close in the shared space. For the experiments

reported in the next sections, we mostly use DCCA with Stochastic Decorrelation Loss (refer

to Section 2.2.2.3 for more details) to create the multi-view space.

3.3 Application on Extractive Document Summarisation

Extractive summarisation is essentially a classi�cation problem, wherein each sentence of

a document is labeled accordingly, based on whether it should be part of the summary or

not. It is worth noting though, that training a classi�er to act as a summariser is not always

easy: the training process of a classi�er relies on the availability of classi�cation training data,

which, in the case of extractive summarisation, would have to be in the form of (sik, lik),

where sik refers to thek-th sentence of the i-th document and lik to the corresponding label

of this sentence (0 denoting it should not be part of the summary, 1 otherwise).

Given that extractive summarisation is an arti�cial task and news articles or other documents
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X

◦

Y

•

Rm

◦

•

u v

Figure 3.3: Overview of the learning module involved in multi-view document summarisa-

tion. The learning process outputs two functions, u and v that project points from X and

Y respectively to the shared space Rm
.

often used do not usually come with annotations about important or summary-worthy sen-

tences, creating such a dataset is neither an easy not an inexpensive task. DUC datasets that

were speci�cally designed and developed for training and evaluation of extractive summaris-

ers are of limited usability and size.
8

On the other hand, datasets collected by crawling web-

pages, such as the CNN/DailyMail dataset (Hermann et al., 2015), contain documents paired

with summaries from the original news website (human-generated, abstractive summaries).

Facing limited data availability, most works make use of the available abstractive summaries

and create extractive models that aim to construct summaries similar to them. Another so-

lution to the data problem is to automatically generate annotated data. Assigning correct

labels to sentences that will be used to train a model is referred to as creating an “oracle”: a

model that always knows the correct answer to the problem at hand. We experiment with

both approaches: a variant of our model that includes a classi�er trained on oracle data and

others that simply consult the abstractive summaries.

8
DUC-2001 and DUC-2002 datasets contain “extracts” (sentences from the articles that are related to a

human-generated summary), but only for the multi-document summarisation task. Speci�cally for this dataset

and this task, the training data consists of 30 document sets, each containing 10 documents; a prohibitively

small size for training several types of models.
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3.3.1 Summarisation Module

Assuming that a representation for documents and summaries has been learnt, as described

in Section 3.2, each document can be represented by a vector p, while each of its sentences,

with a vector qi, i ∈ {1,2,3, ...,K}. Then, extractive summarisation boils down to selecting

M sentences to include in the summary. We distinguish and describe two ways to perform

sentence selection:

• classification. A classi�er is used to label each sentence as being part of the summary

or not. Training the classi�er requires the oracle annotations of the dataset. We call

this variant of our model CorES-C.

• representation-driven, where the selection of the sentences relies only on the repre-

sentations qi. This variant is called CorES-R. While this approach is quite simple, it

can be seen as a case of using representations learnt in an unsupervised way to solve a

downstream application.

3.3.1.1 Representation-driven Selection

Representation-driven selection operates by assigning a score to each sentence, based on how

similar the sentence is to the original document. A feature of the multi-view representation

is that the projected vectors of a document and its summary will be close to each other. As

such, we calculate a similarity score between each sentence and the document and rank the

sentences accordingly.

As measures of similarity we use:

• cosine similarity, which is a popular measure for similarity in vector spaces. The

cosine similarity between two vectors x and y is de�ned as

simcos(x,y) =
x · y
‖x‖‖y‖

. (3.7)

• the dot product of the two vectors:

simdot(x,y) =x · y. (3.8)

• the Pearson Correlation Coe�cient. Pearson correlation between two variables x
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and y, for which we have samples xi,yi, i= {0,1,2,3, ...,n} is de�ned as

simρ(x,y) =

n∑
i=1

(xi − x)(yi − y)√
n∑
i=1

(xi − x)2

√
n∑
i=1

(yi − y)2

. (3.9)

• the Geometric Mean of Euclidean and Sigmoid Product (GESD), proposed for

the task of Question Answer Selection (Feng et al., 2015) as a measure of similarity that

combines the L2-norm and inner product. GESD is de�ned as follows:

GESD(x,y) =
1

||x− y||
· 1

1 + exp(−γ(xyT + c))
, (3.10)

whereγ and c are hyperparameters, with common values in the range from 0.5 to 1.0

for γ and 1.0 for c.

• the Arithmetic Mean of Euclidean and Sigmoid Product (AESD), which is de-

�ned similarly to GESD:

AESD(x,y) =
1

||x− y||
+

1
1 + exp(−γ(xyT + c))

. (3.11)

3.3.1.2 Selection by Classi�cation

Multi-view models are able to produce a representation that incorporates information from

all the available views. This is re�ected on the objective that these models use, which prompts

the maximisation of the correlation between given views; an objective that may not be enough

as a loss function on its own to solve a complex problem such as document summarisation.

For this reason, multi-view representations are often used as input in subsequent models,

which are trained with an objective tailored to speci�c tasks or setups (such as, for example,

cross-entropy loss in a supervised setup).

Selection by classi�cation refers to a setup, where the multi-view representations are fed to

a classi�er acting as a �nal judge on which sentences should be included in the summary.

Such an architecture learns a classi�er using representations learnt by a general unsupervised

model. Learning general representations in an unsupervised or semi-supervised way has been

extensively studied in the past decades (Brown et al., 1992; Ando and Zhang, 2005; Mikolov

et al., 2013b; Pennington et al., 2014). More recently, contextualised word embeddings, such

as those produced by ElMo (Peters et al., 2018) or OpenAI GPT (Ratford et al., 2018) have
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provided neural models with high quality representations, giving rise to sucessful models in

a wide range of NLP tasks.

The e�ectiveness of contextualised word embeddings has been exempli�ed by a two step

training scheme: a pre-training step usually done with a general objective, such as language

modelling, followed by a downstream supervised step. This approach is used in models like

BERT (Devlin et al., 2019), which have pushed the state-of-the-art in several NLP tasks. Gen-

erally speaking, our architecture also consists of an unsupervised pre-training step which

learns general representations using DCCA and a supervised downstream step, implemented

by the classi�er. While this broadly resembles the aforementioned two-step training scheme,

there is a notable di�erence between the two: our architecture is a pipeline of two di�erent

architectures, while BERT employs two training strategies using the same architecture.

Arguably, the representation learning step has a totally di�erent purpose from the true ob-

jective of a classi�er, which is to minimise classi�cation errors. Moreover, the structure and

operation of correlational models is such that expects only positive results. Indeed, such

models do not embrace the notion of negative examples, which are of pivotal importance to

the training of a classi�er. This is the reason why, in order to use selection by classi�cation,

we resolve to the pipeline paradigm: the representation learning component and the classi-

�er are trained disjointly. Finally, this setup needs annotated data, which we construct for

our dataset.

3.3.2 Experimental Setup

Dataset We train and evaluate on the CNN/Daily Mail (CNN/DM) corpus, which has

been compiled relatively recently to be used in the context of machine reading comprehen-

sion. This dataset consists of articles taken from the web editions of CNN and Daily Mail

news websites. The two newsgroups are not equally represented in the dataset (118,497

articles from CNN vs 208,045 from DailyMail). This di�erence reportedly causes trained

models to operate di�erent on the two subsets of the dataset (Narayan et al., 2018a; Cheng

and Lapata, 2016). The CNN/DM corpus is ideal for training and testing large-scale docu-

ment summarisation techniques, since they include a set of highlights in a bullet-list format

for each article.

Alignment The core function of an extractive summariser is deciding whether a sentence

belongs to the summary or not. Hence, in our multi-view framework, space Y should be a

space of sentences and not a space of summaries. Conveniently, the CNN/DM dataset uses
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the concept of highlights, making the space Y the space of highlights. In the correlational

framework though, the learning process minimises the distance between matching x ∈ X

and y ∈ Y, while maximising it for mismatching points. Consequently, in order not to con-

fuse our model, we would like to avoid presenting exactly the same x for multiple y points.

To this end, we transform the training data by heuristically aligning every highlight with a

subset of sentences of the article. The alignment procedure is described in detail in Algo-

rithm 3.1. In this algorithm, PT is the set of POS tags we consult in order to calculate the

match between two sentences. Our aim was to focus only on content words, that is why we

consider the set PT = [‘RB’, ‘RBR’, ‘VB’, ‘VBD’, ‘VBG’, ‘VBN’, ‘VBP’, ‘VBZ’, ‘JJ’, ‘JJR’,

‘JJS’, ‘NN’, ‘NNS’, ‘NNP’, ‘NNPS’]. The heuristic described in this algorithm pairs high-

lights with sentences (not necessarily consecutive) that have at least some common words

(vocabulary match was carried out after stemming the words). This process is done using

three threshold values: if there are sentences that have a high match with a highlight sen-

tence, they are used; otherwise, the threshold for matching sentence and highlight vocabu-

laries is lowered. While assigning “source" sentences to corresponding highlights resembles

a lot the problem of summarisation itself, it appears that a quite simple heuristic approach

is adequate to generate an alignment �t for the purposes of training our model.

Oracle As mentioned earlier, in order to train a classi�er on the large CNN/DM corpus, sen-

tence labels are needed. A relatively inexpensive way to do that is to build an oracle: for each

document, all subsets (of a speci�c length) of sentences are created and the one which has

the best ROUGE score when compared to the abstractive summary, is kept as gold extrac-

tive summary. Since calculating oracle scores for all the possible combinations of sentences

is computationally expensive, we adopt a greedy approach: we add one sentence at a time to

the summary, only if it raises the ROUGE score (with respect to the gold summary). We stop

adding new sentences when none of the remaining sentences improve the ROUGE score or

the maximum number of sentences in the summary is reached. This approach is inspired

by related work that includes converting abstractive summaries to extractive ground truth

(Svore et al., 2007; Nallapati et al., 2016a; Cao et al., 2016).

Summary Length To generate the output summary, we select three sentences from every

article. The reason for selecting three sentences is two-fold: �rst, in the CNN/DM corpus,

each article is paired with three highlights on average. Second, three-sentence output has

been used in past literature, thus making our summariser comparable with related work. For

the sake of complete evaluation, though, we report ROUGE scores not only for full length

summaries, but also for 275 and 75 byte summaries. All the experiments outlined in this sec-



60 Chapter 3. Multi-view Document Summarisation

Algorithm 3.1 Training data alignment

Input:

xi . text of i-th article: array of sentences

yi . highlights of i-th article: array of sentences

PT . array of POS tags to consider for vocabulary

1: procedure alignSet(xi, yi)

2: alignments is a len(yi) size array

3: for y in yi do

4: for threshold in [len(Si)/2,1,0] do

5: highlight_alignments=ALIGN(xi,y,threshold)

6: if highlight_alignments 6= ∅ then break

7: alignments[i]← highlight_alignments

8: procedure align(xi, y, threshold)

9: highlight_vocab← VOCABULARY(y)

10: aligned_sentences← [ ]

11: for sentence in xi do

12: sentence_vocab← VOCABULARY(sentence)

13: if len(sentence_vocab∩ highlight_vocab)> threshold then

14: append sentence to aligned_sentences

15: return aligned_sentences

16: procedure vocabulary(x)

17: tokens← TOKENISE(x)

18: vocab← {y : pos_tag(y) ∈ PT }
19: return vocab

tion were conducted in on the anonymised (entity mentions are replaced with special tokens)

CNN part of the corpus, for e�ciency purposes. However, ROUGE scores are calculated

in non-anonymised summaries (after extracting the summary, we replace each sentence with

its non-anonymised counterpart).

3.3.3 Experiment: Learning Representations with DCCA

This section reports experiments on our proposed extractive summariser, where the multi-

view representations are learnt using the DeepCCA algorithm. We call this variant of our
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summariser Deep Correlational Extractive Summariser (DCorES). We present a series of

ablation experiments that thoroughly investigate each of the decisions involved in the design

of DCorES.

3.3.3.1 Input Space and Architecture

In order to assess the importance of the original representation of the documents and the

summaries, we experiment with several input spaces. Speci�cally, the following setups were

tested:

• ngram: The input is ngram features from the text and the summaries. We use uni-

grams and bi-grams, capping the size of the vocabulary to the 20,000 more common

ones.

• average embedding: The input is the average word embedding of the text. We use

pre-trained word2vec word embeddings,
9

without tuning them any further.

• weighted embedding: The input is a weighted sum of word embeddings of the text.

Speci�cally, the �nal text embedding is calculated using inverse document frequency

(idf) of each term as weight. The inverse document frequency is a measure of whether

a term is common or rare among documents. For a term ti and a set of documents D

that contains |D| documents, idf is de�ned as:

idf(ti,D) = log
|D|

1 + |{d ∈D : ti ∈ d}|
(3.12)

and the weighted embedding would be calculated as

t=
1
n

n∑
i

w(ti)idf(ti,D), (3.13)

wherew(ti) is the word embedding for ti.

The idea of creating a representation for a text passage by calculating the idf-weighted

sum of all its word embeddings has been used in the past, in applications ranging from

question answering (Feng et al., 2015) to information retrieval (Brokos et al., 2016). We

use pre-trained word2vec embedding for this variant, too.

• encoder: Instead of simply aggregating word embeddings, we also experiment with

generating text representation using Convolutional Neural Networks (CNNs) and se-

quence models. We employ a hierarchical architecture wherein sentence embeddings

9
Available from https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/


62 Chapter 3. Multi-view Document Summarisation

are created using convolutional encoder, and text passage embeddings are created by

feeding sentence embeddings to a bidirectional Long-Short Term Memory (LSTM).

The generated text passage embeddings are in turn fed to the Deep CCA module and

the rest of the process is similar to that of the previous input modes. The whole net-

work is trained with the correlation objective of Deep CCA. A schematic view of this

architecture is shown in Figure 3.4. Detailed implementation information for this

model can be found in Appendix A.1.

For these experiments, we �x the DCCA architecture: the lengths of its layers were set to

[300,800,800,300]10 on both sides and the output dimensionality to 300. Sentences for

the summary are selected on a “�rst” basis, meaning that the model selects the �rst three sen-

tences of a document that score more than the average similarity between the documents

embedding and the embeddings of its sentences. Similarity is measured using cosine similar-

ity for this study. Table 3.1 brie�y outlines the results for each of the aforementioned input

spaces/architectures. Despite its simplicity, ngram input provides the best results across all

metrics and lengths.

input ROUGE-1 R ROUGE-2 R ROUGE-L R

DCorES-ngram 50.16 19.80 34.29

DCorES-avg_emb 42.98 15.25 29.04

DCorES-weighted_emb 42.43 14.93 28.80

f
u

l
l

l
e
n

g
t
h

DCorES-encoder 39.76 12.14 26.67

DCorES-ngram 38.14 13.83 26.00

DCorES-avg_emb 34.80 11.66 23.90

DCorES-weighted_emb 34.21 11.38 23.44

2
7

5
b

y
t
e
s

DCorES-encoder 33.57 10.48 22.91

DCorES-ngram 17.81 6.26 15.58

DCorES-avg_emb 16.46 5.65 14.60

DCorES-weighted_emb 16.91 5.91 14.90

7
5

b
y

t
e
s

DCorES-encoder 16.59 5.79 14.60

Table 3.1: Assessing di�erent input setups and architectures for use with the DES sum-

mariser, on the CNN part of the dataset. ROUGE recall scores are reported for full length,

275 byte and 75 byte summaries.

10
except when using the ngram input space, where the input dimensionality is equal to the vocabulary size

of the ngram dictionary
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Figure 3.4: Schematic of the encoder-dcca model.
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3.3.3.2 Is a separate classi�er necessary?

As argued in Section 3.3.1.2, the idea of a classi�er that explicitly groups sentences to two

groups is natural for the task of extractive summarisation. In order to answer the question

of whether a classi�er is actually bene�cial, given our architecture, we train such a classi�er

and compare its output to that of a summariser that does not use it.

The classi�er is a multi-layer perceptron (MLP).
11

Speci�cally, it has the following character-

istics:

• features: the classi�er is trained on the output of Deep CCA with dimensionality

500. The training examples of the classi�er are of the form (pi,qji, lij), where pi is

the projected vector of the document, qij the projected vector of each document’s

sentence and lij the boolean label of the corresponding sentence.

• architecture: The �rst layer of the classi�er calculates a bilinear form usingpi andqi

with output dimensionality 500. Subsequent layers have lengths [400,200,2]. The

model uses ReLU activation units.

• selection: the three top-scoring sentences are selected as each document’s summary.

• optimisation: is done using Stochastic Gradient Descent, with a learning rate of

0.001 and momentum 0.9.

For this experiment, we use the data of the oracle. We create negative examples to our dataset

by adding (di,hij) pairs for which highlight hij does not belong to the summary of docu-

ment di according to the oracle. This choice is in principle counter-intuitive, since we are

providing the DCCA model with multiple instances of the same di paired with di�erenthi

vectors, one for every highlight, but it is one that is consistent with the classi�cation frame-

work. The rest of the setup of the experiment is left the same as in the avg_emb run of the

previous section: the input space is the ngram space, the lengths of the DCCA model lay-

ers are set to [300, 800, 800, 300] and the output dimensionality to 300. We conduct this

experiment using the avg_emb setup for computational e�ciency.

The results of this experiment are shown in Table 3.2, where DCorES-C refers to the clas-

si�cation setup, and DCorES-R to the selection by representation setup. Surprisingly, the

classi�cation setup lacks behind the selection by representation one. One reason for this

could be the aforementioned counter-intuitive use of the DCCA model.

11
The model was implemented in PyTorch,

12
version 0.2.0. .
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mode ROUGE-1 R ROUGE-2 R ROUGE-L R

DCorES-R 42.98 15.25 29.04
full length

DCorES-C 39.94 10.94 30.53

DCorES-R 34.80 11.66 23.90
275 bytes

DCorES-C 27.34 6.47 21.55

DCorES-R 16.46 5.65 14.60
75 bytes

DCorES-C 12.12 2.18 10.47

Table 3.2: Comparing selection by classi�cation and selection by representation, on the

CNN part of the dataset. ROUGE recall scores are reported for full length, 275 byte and

75 byte summaries. DCorES-R refers to selection by representation, while DCorES-C to

the classi�cation setup.

3.3.3.3 Choosing a metric

By now, we have established that the most successful model is the one that uses ngram input

representation and selects sentences solely by using the representations. The present section

focuses on the choice of cosine similarity as a similarity metric to perform selection by rep-

resentation.

To this end, we experiment with using di�erent similarity metrics (dot product, euclidean

distance, pearson correlation, GESD, AESD). Speci�cally, we test the �ve metrics in two

di�erent setups:

• first, where the model selects the �rst three sentences of a document that score more

than the average similarity between the the document’s projected embedding and the

projected embedding of its sentences. As such, these runs use not only the similarity

of the sentences to the document, but they also indirectly use the order of sentences

in the document.

• best, where the model selects the three top-scoring sentences of the document. This

section of the table investigates whether similarity in the shared space alone is a good

way for selecting sentences for the �nal summary.

In general, it seems that the first setup (choosing the �rst sentences over a threshold) results

to signi�cantly better results. It would be fair to conclude that the representation alone is

not enough to rank the sentences according to their usefulness for a summary; instead, a

second bit of information, the order of the sentences in the document, can boost the results.
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system ROUGE-1 R ROUGE-2 R ROUGE-L R

DCorES-R-�rst-cosine 50.16 19.80 34.29

DCorES-R-�rst-gesd 48.30 18.92 32.94

DCorES-R-�rst-aesd 48.00 18.73 32.69

DCorES-R-�rst-dot 50.28 19.87 34.44

DCorES-R-�rst-eucl 48.12 18.88 33.05
F
i
r
s
t

DCorES-R-�rst-corr 50.19 19.78 34.28

DCorES-R-best-cosine 44.90 15.09 29.53

DCorES-R-best-gesd 42.62 14.23 28.20

DCorES-R-best-aesd 42.70 14.22 28.22

DCorES-R-best-dot 44.87 15.04 29.40

DCorES-R-best-eucl 44.87 15.04 29.40

f
u

l
l

l
e
n

g
t
h

B
e
s
t

DCorES-R-best-corr 44.98 15.16 29.60

DCorES-R-�rst-cosine 38.14 13.83 26.00

DCorES-R-�rst-gesd 37.15 13.46 25.37

DCorES-R-�rst-aesd 37.03 13.36 25.22

DCorES-R-�rst-dot 38.11 13.86 25.98

DCorES-R-�rst-eucl 37.05 13.35 25.39

F
i
r
s
t

DCorES-R-�rst-corr 38.12 13.82 25.97

DCorES-R-best-cosine 33.63 10.16 22.41

DCorES-R-best-gesd 32.22 9.54 21.56

DCorES-R-best-aesd 32.26 9.52 21.57

DCorES-R-best-dot 33.58 10.19 22.48

DCorES-R-best-eucl 31.91 9.49 21.36

2
7

5
b

y
t
e
s

B
e
s
t

DCorES-R-best-corr 33.68 10.16 22.44

DCorES-R-�rst-cosine 17.81 6.26 15.58

DCorES-R-�rst-gesd 17.38 6.19 15.28

DCorES-R-�rst-aesd 17.28 6.17 15.19

DCorES-R-�rst-dot 17.80 6.32 15.58

DCorES-R-�rst-eucl 17.42 6.04 15.25

F
i
r
s
t

DCorES-R-�rst-corr 17.79 6.25 15.56

DCorES-R-best-cosine 16.27 4.35 14.03

DCorES-R-best-gesd 15.28 3.77 13.12

DCorES-R-best-aesd 15.27 3.76 13.12

DCorES-R-best-dot 16.06 4.17 13.87

DCorES-R-best-eucl 15.15 3.75 13.02

7
5

b
y

t
e
s

B
e
s
t

DCorES-R-best-corr 16.34 4.37 14.09

Table 3.3: Impact of di�erent metrics on the performance of DCorES-R. For details on the

metrics, refer to Section 3.3.1.1. Scores on italics are the best for each length and mode (top/-

�rst) group, while scores in boldface are the best scores for each length group.
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In terms of the metrics themselves, while changing metrics within the same setup leads to

consistent results, evidently, cosine similarity gives best results across all lengths.

3.3.3.4 Choosing a threshold

All systems that employ the first selection setup pick sentences that have a score larger than

the per document average similarity. To investigate whether this decision holds merit, we

experiment with the use of a �xed threshold for the whole dataset, testing threshold values

in the range [0,0.3] with a step of 0.002. For this experiment, we use the correlation metric.

The performance of the resulting systems is plotted in Figure 3.5, where the x axis represents

the threshold value and the y axis ROUGE-1 recall values. The maximum value is 50.18 (for

a threshold value of 0.156). This score does not di�er signi�cantly from the scores we get

from using the per document average score, considering that we get a score of 50.19 using

the correlation metric.

Figure 3.5: ROUGE-1 recall values for di�erent values of threshold in [0,0.3] with step of

0.002. The evaluation was carried out using the correlation metric. The maximum value is

50.18.

3.3.3.5 Choosing output dimensionality

Most representation learning algorithms introduce one extra hyperparameter to the learn-

ing problem: the output dimensionality. In order to explore the e�ect of di�erent output

dimensionalities on the performance of DCorES-R, we freeze the rest of our architecture

and change the length of the output: the network’s lengths are set to [300,800,800, out],
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dim ROUGE-1 R ROUGE-2 R ROUGE-L R

100 48.17 18.55 32.80

500 49.34 19.52 33.83full length

1000 49.03 19.15 33.55

100 37.61 13.56 25.60

500 37.98 13.88 25.99275 bytes

1000 37.83 13.82 25.93

100 17.74 6.24 15.60

500 18.20 6.61 16.0275 bytes

1000 17.86 6.16 15.63

Table 3.4: Impact of di�erent output dimensionalities on the performance of DCorES-R.

sentences are selected by using the "�rst" setup and cosine similarity is used as the similarity

metric. The corresponding results are shown in Table 3.4. It can be seen that a dimensionality

of 100 is quite low and does not result to informative representations, while a dimesnionality

of 1000 is quite large and we start seeing a degradation in performance.

3.3.3.6 Choosing views

DeepCCA and DCCA with Stochastic Decorrelation Loss are proposed for two-view se-

tups, but are fairly straightforward to extend to work for setups with more than two views.

For the DCorES system, this can be achieved by modifying the objective and the sentence

scoring mechanism. Assuming more than two views, during training, the objective should

account for the correlation between all pairs of available views. Moreover, during testing,

scores for each sentence can be calculated as the sum of the scores comparing the document,

the summary and any other view.

Speci�cally, in a three-view setup, where we have multi-view representations v1,v2 and v3

for the document, a sentence from the document and a third view respectively, the score can

be calculated as

score= sim(v1,v2) + sim(v3,v2). (3.14)

In the present section, we experiment with using information from several views of the

dataset:
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• article title: one could think of the title of an article as a one-sentence summary of

it. The rationale for using it as a view for summarisation is that the title, the sum-

mary and the document are three di�erent versions of the article with di�erent length

limitations, with each one being the summary of the other.

• related questions: The recently proposed dataset NewsQA (Trischler et al., 2017) is a

question answering dataset constructed by generating questions for CNN articles.

The articles were selected by randomly choosing 12,744 articles from the 90,266

CNN articles of the CNN/DM dataset. Crowdworkers were presented with the title

and the summary of an article and were instructed to formulate questions on the arti-

cle. One could regard those questions as a separate view of the news articles, treating

them as another source of related information. In order to run experiments utilising

this extra view, we extracted the subset of the questions that can actually be answered

by the article text.
13

• image captions: the captions of images that accompany articles can be a good source of

information for summarisers. As shown in the work of Narayan et al. (2018a), captions

and title can aid a summarisation system in producing better quality summaries.

We �x the rest of the details of the setup across all runs: the output dimensionality is set

to 300 and sentences are selected by using the first setup using cosine similarity. Scoring

works as described in Equation 3.14. Brief experimentation with weighting di�erent views

di�erently did not result in signi�cant gains, although clearly, some views have larger impact

than others.

Table 3.5 presents full length results for di�erent types of views. The runs annotated with

tra,b use information from views a and b during training, while the runs ta,b consider

the projected vectors of views a and b during test time. For example, the run DCorES-

R-�rst+trq is trained on text, summary and question views, but on test time, the question

view is not considered (we suppose that we have no available questions for the articles of the

test set). Similarly, DCorES-R-�rst+trq+tq considers questions during both training and

test time. The essential views (text and summary) are not mentioned in the Table, since they

are common in all runs.

In general, the results do not suggest any signi�cant gain by using more than two views.

However, it seems that the title view adds some more information than other views, resulting

in slightly better results. Interestingly, we do not observe any loss in performance as we add

13
This is not the case for all the questions, since some of them cannot be answered by reading the article text.
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more views.

Missing views The runs which consider a speci�c view during training, but not while test-

ing can be referred to as missing view setups. Such setups are a common application of multi-

view representation learning techniques (Xu et al., 2015a), where the multi-view representa-

tions are able to partly recover missing information in such setups. Speci�cally, since part

of learning the representation relies on creating correlated projections, projecting one view

results in a representation that is close to the one that would be created if all input represen-

tations were available. This behaviour is particularly useful in situations with limited data,

for example where data from one view are expensive to obtain for the whole dataset, are cor-

rupted, or simply not present (they were never gathered).

Interestingly, in our experiments, missing view runs have results really close to the ones that

consider the corresponding views at test time. Such a result is evidence for the quality of the

generated representations, in the sense that the vectors produced in missing view setups are

close to or have similar e�ect to the ones that would be generated if all views are considered.

3.3.3.7 Discussion

In this section, we compare the best performing variant of DCorES with several extractive

summarisation systems. The comparison, which can be seen in Table 3.6 takes into account

the following models:

• LEAD-3 is the LEAD baseline that selects the �rst three sentences of every document.

• Deep-Cls is the best scoring system of the work of Nallapati et al. (2016a). It uses Re-

current Neural Networks (RNNs) and takes into account the order of the sentences

in the original document.

• NN-SE is the best scoring system of the work of Cheng and Lapata (2016), which is a

neural sentence extraction model.

• SideNet is the best performing system of the work of Narayan et al. (2018a), a neural

model which considers side information, such as title and image captions apart from

the document text and summary.

It becomes clear from this comparison, that our proposed system lacks signi�cantly behind

state-of-the-art summarisers. However, it can be seen that it is able to outperform the admit-

tedly not-easy-to-beat LEAD baseline just by learning a good representation for summaries

and documents.
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dim ROUGE-1 R ROUGE-2 R ROUGE-L R

DCorES-R-�rst+trq 48.10 18.72 32.58

DCorES-R-�rst+trq+tq 47.55 18.18 32.19

DCorES-R-�rst+trt 48.44 18.47 32.76

DCorES-R-�rst+trt+tt 48.56 18.77 32.91

DCorES-R-�rst+trc 48.10 18.72 32.58t
h

r
e
e

v
i
e
w

s

DCorES-R-�rst+trc+tc 47.91 18.51 32.63

DCorES-R-�rst+trt,c 48.10 18.72 32.58

DCorES-R-�rst+trt,c+tt 47.36 18.09 32.29

DCorES-R-�rst+trt,c+tc 47.36 18.09 32.29

DCorES-R-�rst+trt,c+tt,c 47.36 18.09 32.29

DCorES-R-�rst+trq,t 47.36 18.09 32.29

DCorES-R-�rst+trq,t+tt 47.36 18.09 32.29

DCorES-R-�rst+trq,t+tq 47.47 18.23 32.51

f
o

u
r

v
i
e
w

s

DCorES-R-�rst+trq,t+tq,t 47.47 18.23 32.51

DCorES-R-�rst+trq,t,c 47.28 18.00 31.87

DCorES-R-�rst+trq,t,c+tt 47.45 18.26 32.24

DCorES-R-�rst+trq,t,c+tq 47.20 18.00 31.86

DCorES-R-�rst+trq,t,c+tq,t 47.45 18.26 32.24

DCorES-R-�rst+trq,t,c+tt,c 47.20 18.00 31.86

DCorES-R-�rst+trq,t,c+tq,c 47.54 18.41 32.30

�
v
e

v
i
e
w

s

DCorES-R-�rst+trq,t,c+tq,t,c 47.20 18.00 31.86

Table 3.5: Full length ROUGE results on using di�erent views. In subscripts, the t stands

for title, q for questions and c for captions (of photos). Scores on italics are the best for each

group of views (three, four, �ve views), while scores in boldface are the best across all runs.

3.3.4 Experiment: Learning Representations with CCA

We also explore the e�ect of a CCA training algorithm on the task of extractive summarisa-

tion.

3.3.4.1 Input Space

We experiment with two di�erent types of features for the input data:

• ngram features: we calculate word bigrams for all article texts and highlights.
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system ROUGE-1 R ROUGE-2 R ROUGE-L R

LEAD-3 47.57 18.79 32.24

NN-SE 51.70 19.70 45.70

SideNet 54.20 21.60 48.10

f
u

l
l

l
e
n

g
t
h

DCorES-R-�rst-dot 50.28 19.87 34.44

LEAD-3 37.07 13.53 25.21

NN-SE 38.60 13.90 34.3

SideNet 39.70 14.70 35.20

2
7

5
b

y
t
e
s

DCorES-R-�rst-dot 38.11 13.86 25.98

LEAD-3 21.90 7.20 11.60

NN-SE 20.30 7.20 14.80

SideNet 20.20 7.10 14.60

7
5

b
y

t
e
s

DCorES-R-�rst-dot 17.80 6.32 15.58

Table 3.6: Comparing the best performing variant of DCorES (DCorES-R-�rst-dot) with

other summarisers on the CNN part of the test corpus.

• masked ngrams: before calculating word bigram features, we mask the input by re-

placing every token with a tuple (p,b), where p is the part of speech tag and b is the

Brown cluster the token belongs to. To this end, we use pre-calculated Brown clusters

from the work of Stratos et al. (2014). Masking is aimed to be performed on content

words; thus, tokens that are annotated as conjunctions, determiners, modals, pro-

nouns, interjections and wh-words, are not masked. One can think of this masking

as a �rst step in lowering the dimension of the input space: the space of the bigrams

generated from the masked versions is substantially lower-dimensional.

Results for di�erent input spaces can be seen in Table 3.7 for the DailyMail part of the dataset.

In general, masked variants of our model seem to perform better than the ones operating on

ngrams. This justi�es our choice to mask the input with part of speech tags and Brown

clusters.

3.3.4.2 Selection Setup

As in previous experiments, we select three sentences from every article to generate a sum-

mary. For the selection process, we explore two di�erent approaches, the “�rst” (select the

�rst sentences of the document that have a similarity score larger than a prede�ned threshold
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DailyMail

system ROUGE-1 R ROUGE-2 R ROUGE-L R

CorES-�rst-ngrams 55.46 24.32 34.68

CorES-best-ngrams 56.55 22.67 35.74

CorES-�rst-masked 55.02 24.13 34.42
f
u

l
l

l
e
n

g
t
h

CorES-best-masked 57.02 22.92 36.05

CorES-�rst-ngrams 40.99 16.45 25.84

CorES-best-ngrams 37.10 13.93 24.40

CorES-�rst-masked 41.09 16.60 25.94

2
7

5
b

y
t
e
s

CorES-best-masked 36.42 13.73 24.00

CorES-�rst-ngrams 22.35 8.46 19.80

CorES-best-ngrams 22.02 8.70 19.63

CorES-�rst-masked 22.62 8.66 20.06

7
5

b
y

t
e
s

CorES-best-masked 21.62 8.57 19.29

Table 3.7: Ablation for di�erent inputs and selection setups, on the DailyMail part of the

test corpus.

value) and “best” (top scoring sentences). At places where those constraints fail to generate

a three-sentence summary, one with less that three sentences is given as output.

Results for di�erent selection setups can be seen in Table 3.7 for the DailyMail part of the

dataset. In this case, the “best” variants seem to perform better, suggesting that the cosine

similarity is indeed an indicator for informative sentences for summarisation.

3.3.4.3 Discussion

In this section, we compare the two best performing variants of CorES with several extractive

summarisation systems. We present a comparison only on the DailyMail part of the dataset,

since this is what most works evaluate on. The comparison, which can be seen in Table 3.8

takes into account the following models:

• LEAD-3 is the LEAD baseline that selects the �rst three sentences of every document.

• Deep-Cls is the best scoring system of the work of Nallapati et al. (2016a). It uses Re-

current Neural Networks (RNNs) and takes into account the order of the sentences

in the original document.
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DailyMail

system ROUGE-1 R ROUGE-2 R ROUGE-L R

LEAD-3 47.57 18.79 32.24

NN-SE 56.00 24.90 50.20

CorES-best-ngrams 56.55 22.67 35.74

f
u

l
l

l
e
n

g
t
h

CorES-�rst-masked 55.02 24.13 34.42

LEAD-3 37.07 13.53 25.21

Deep-Cls 42.20 16.80 35.00

NN-SE 42.20 17.30 34.80

CorES-best-ngrams 37.10 13.93 24.402
7

5
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y
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s

CorES-�rst-masked 41.09 16.60 25.94

LEAD-3 21.90 7.20 11.60

Deep-Cls 26.20 10.70 14.40

CorES-best-ngrams 22.02 8.70 19.637
5
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CorES-�rst-masked 22.62 8.66 20.06

Table 3.8: Comparing the best performing variants of CorES (CorES-best-ngrams and

CorES-�rst-masked) with other summarisers on the DailyMail part of the test corpus.

• NN-SE is the best scoring system of the work of Cheng and Lapata (2016), which is a

neural sentence extraction model.

• SideNet is the best performing system of the work of Narayan et al. (2018a); a neural

model which considers side information, such as title and image captions apart from

the document text and summary.

It can be seen that, using CCA to generate representations for the task of extractive sum-

marisation, leads to a system that can outperform the LEAD baseline, as is the case with

our DCorES summariser. However, our system is not able to outperform state-of-the-art

summarisation systems.

Interestingly, the performance of CorES is consistently higher than that of our DCorES sys-

tem. While this may be counter-intuitive given the improved capabilities Deep CCA comes

with, it seems, that for the task of extractive summarisation the way we formulate it, the

linear transformations of CCA work better.
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3.4 Application on Abstractive Document Summarisation

Our multi-view framework includes a learning module that can be of use in both extractive

and abstractive summarisation. In order to expand our framework to accommodate the task

of abstractive summarisation, we need a text generation mechanism. We call the abstractive

summariser consisting of the learning module and the decoder described in the next section

Correlational Abstractive Summariser (CorAS).

3.4.1 Decoding Module

For the task of abstractive summarisation, we propose a decoder based on a Markov Chain

Monte Carlo (MCMC) sampler. The decoder is expected to output a highlight y given an

article x, and the projection functions u and v learnt from the CCA training. Its main goal

is to output sentences whose projected vector v(y) will be as close to the projected vector of

the document u(x) as possible in the shared space.

The output space Y ⊆ Λ∗ of the decoder is the set of strings over some alphabet Λ. For

example, Y could be the set of all n-gram chains possible over some n-gram set or the set

of possible composition of atomic phrases, similar to phrase tables in phrase-based machine

translation (Koehn et al., 2007). Our proposed approximate decoding algorithm makes use

of such a phrase tableP such that everyy can be decomposed into a sequence of consecutive

phrases p1,p2, ...,pr ∈ P.

We implement a Metropolis-Hastings (MH) algorithm that assumes the existence of a black-

box sampler q(y|y ′) – the proposal distribution. The sampler randomly chooses two end-

points k and l in y ′ and, if possible, replaces all the words in between these two words

(y ′k, ...,y ′l) with a phrase p such that in the training data, there is an occurrence of the new

phrase p after the word y ′k−1 and before the word y ′l+1. As such, we are required to create

a probabilistic table of the formQ :Λ×P×Λ→R that maps a pair of wordsw,w ′ ∈Λ
and a phrase p ∈ P to the probability Q(p|w,w ′). We construct such a phrase table by

scanning the training part of the corpus and using relative frequency count to estimateQ:

we count the number of times each phrase p appears between the context words y and y ′

and normalise.

Since we are interested in maximising the cosine similarity between v(y) and u(x), after

each sampling step, we check whether the cosine similarity of the new y is higher (regardless

of whether it is being accepted or rejected by the MH algorithm) than that of any y so far.

We return the best y sampled. The “true” unnormalised distribution we use in the accept-
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rejection step is the exponentiated value of the cosine similarity between u(x) and v(y).

This means that for a given x, the MH algorithm implicitly samples from the following dis-

tribution P:

P(y|x) =
exp( 〈u(x),v(y)〉

||u(x)||·||v(y)||)

Z(x)
, (3.15)

where

Z(x) =
∑
y ′∈Y

exp(
〈u(x),v(y ′)〉

||u(x)|| · ||v(y ′)||
). (3.16)

The probability distribution P has a strong relationship to the von Mises-Fisher distribu-

tion, which is de�ned over vectors of unit vector. The von Mises-Fisher distribution has a

parametric density function f(z;µ) which is proportional to the exponentiated dot prod-

uct between the unit vector z and some other unit vector µ which serves as the parameter

for the distribution. The main di�erence between the von Mises-Fisher distribution and the

distribution de�ned in Equation 3.15 is that we do not allow any unit vector to be used as

v(y)

||v(y)||
;only those which originate in some output structure y. As such, the distribution in

Equation 3.15 is a re-normalised version of the von-Mises distribution, after elements from

its support are removed.

Controlling for length The decoder in its vanilla form tends to generate small sentences.

For this reason, we modify it so that it maximises a score for each sentence, which is not only

based on the cosine similarity between the projected vectors, but also takes into account also

the length of the generated sentence. Speci�cally, the score for a given sentence s is calculated

as follows:

score(s) = simcos + λ(min(LC, |s|) − (|s|− LC)) (3.17)

where |s| is the sentence length (number of tokens), λ a parameter which we tune over the

validation set and LC a maximum length which we set to 20. LC serves as a cap in length, so

that the sentence scores do not keep increasing uncontrollably with the sentence size.

Simulated Annealing Since we are not interested in sampling from the distributionP(y|x),

but actually �nd its mode, we use simulated annealing with our MH sampler. This means

that we exponentiate by a
1
t term the unnormalised distribution we sample from, and de-

crease this temperature t as the sampler advances. We start with a temperature T = 10,000,

and multiply t by τ = 0.995 at each step. As such, the sampler starts with an exploratory

phase where it jumps from di�erent parts of the search space to others, and as the tempera-

ture decreases, it makes smaller jumps.
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The algorithm of our proposed decoder is shown in Algorithm 3.2. A variant of this decoder

is also used in our work on image captioning (see Chapter 4).

Algorithm 3.2 MCMC Decoder for Abstractive Summarisation

Input:

x . an input example

ρ . a similarity metric

u,v . two projection functions

Q . a probabilistic phrase table

η> 0 . a constant

τ ∈ (0,1) . a constant

T . a starting temperature

score . the scoring function of Equation 3.17

1: procedure cca_decoder

2: Let y∗ be an arbitrary point in the output space.

3: y ′← y∗.

4: t← T .

5: while temperature t is below a given value do

6: uniformly choose two di�erent integers i and j, between 1 and |y ′|

7: choose randomly a phrase p fromQ(p | y ′i−1,y ′j+1)

8: y← y ′1 · · ·y
′
i−1py

′
j+1 · · ·y

′
|y ′|

9: if scores(y)> scores(y∗) then

10: y∗← y

11: α0←
exp

(1
t
score(y)

)

exp

(1
t
score(y ′)

)

12: α1←
|y|2Q(y ′i···y

′
j|y
′
i−1,y ′j+1)

|y ′|2Q(yi···yj|yi−1,yj+1)

13: α← {1,α0 ·α1}

14: uniformly sample a number k from [0,1]

15: if k < α then

16: y ′← y

17: t← τt
return y∗
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3.4.2 Experimental Setup

For each article, we generate three highlights. We experimented with di�erent setups:

• decoding by using the vector of the whole article.

• decoding by using the vectors of the �rst sentences.

• decoding by using the vector resulting from adding the whole text vector to the vector

of each sentence.

Masked phrase table and copying Usually, summaries of document contain terms and

phrases that are not frequent in the general sense and could not be easily predicted by a lan-

guage model. This happens mainly because there are parts of the summary, such as entity

mentions or speci�c action mentions that may not be common or existent at all in the train-

ing set. In order for a summariser to be able to construct more meaningful summaries, a

copying mechanism that can copy parts of the original document to the summary is required.

In our model, the masking step described in Section 3.3.4.1 provides a way to deal with copy-

ing in a very shallow way.

We construct a phrase table with n-gram chains of masked tokens. Consequently, the sam-

pler instead of generating normal, readable sentences, outputs masked sentences. We fur-

ther process the output of the sampler by substituting each masked token with a token from

the original document that has the same mask. In cases where more than one tokens with

the same mask exist, the �rst one (by order of appearance on the document) is selected. It

is worth noting that this copying mechanism is by no means context-aware. However, it is

seems that the Brown cluster part of the mask operates as a good criterion on selecting useful,

summary-worthy tokens for copying. Tokens with masks that are not present in the original

document are substituted by common tokens with the same mask.

3.4.3 Discussion

We use ROUGE score to assess informativeness and �uency of the generated summaries.

Contrary to extractive summarisation, for this task, precision and F scores are important, as

the summaries are not just selected from the original document, but generated. Our best-

performing setup is the one that generates one highlight from each of the �rst three sen-

tences, which achieved a 31.01 ROUGE-1 F1 score, whereas the state-of-the-art model (See

et al., 2017) was able to achieve 39.53 in the same dataset. Results for CorAS are not encour-

aging, suggesting that substantial improvements should be made in the generation part.
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A small benchmark carried out to evaluate the unmasking process, showed that given the

correct masked output, a 80% of the original highlight can be retrieved. This leads us to

believe that the generation part has to be improved and that the unmasking procedure is not

the main reason for the low scores.

3.5 Conclusions

In this chapter, we present extractive and abstractive summarisation models aiming to gener-

ate and use good representations for news texts and summaries. This summarisation work is

motivated by the idea that using multi-view representations could result in good quality au-

tomatic summaries. Extensive experimentation on a large-scale dataset using the techniques

of Canonical Correlation Analysis and Deep Canonical Correlation Analysis, exploiting

more than two views and using several setups, has shown, that the described models are not

enough to produce summaries whose quality can outperform state-of-the-art models.

However, the fact that, by using CCA or Deep CCA alone, a system can outperform the rel-

atively hard-to-beat LEAD baseline, highlights the quality of the learnt representations. The

e�ectiveness of complementing state-of-the-art models with such representations, thus get-

ting the best of both worlds, is yet to be fully explored. Moreover, it would be interesting to

test the applicability of multi-view document and summary representations in non-arti�cial

missing data setups, where missing views are an actual issue, either due to availability or due

to computational e�ciency restrictions.





Chapter 4

Canonical Correlation Inference for

Image Captioning

... humans can understand a real-world scene quickly and accurately, saccading
many times per second while scanning a complex scene. Each of these glances car-
ries considerable information.

(Fei-Fei et al., 2007)

Image understanding, a �eld of interest of Computer Vision (CV), includes techniques and

methods that allow computational models to exhibit intelligent behaviour in regards to im-

ages and visual content. The CV community has introduced a number of tasks in order to

encourage and monitor the performance of vision systems, the most fundamentally chal-

lenging of which are, probably, the tasks of object recognition and object detection (Szeliski,

2011).

In order to get a better understanding of the goals of those tasks, an example from the MS-

COCO object recognition dataset (Lin et al., 2014) is shown in Figure 4.1. Object recognition

refers to classifying an image as containing a speci�c object from a pre-de�ned set of objects.

Given that real-life photographs may depict complex scenes, this is naturally a multi-way clas-

si�cation problem: the image of the example contains seven di�erent objects from the pre-

de�ned set. Object detection is the task of localising an object in an image and subsequently

drawing a bounding box around it. In the example image, such a box is drawn around all

objects (person, bottle, doughnut, chair, dining table, teddy bear) identifying their limits.

A more complex task that includes a text component is that of Visual Question Answering

(VQA; see Wu et al. 2017b for a survey). In VQA, the goal is to give accurate responses to

81
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1. a boy seated at the table with stu�

teddy bear drinking milk and eating a

doughnut.

2. a little boy is drinking chocolate milk

with his teddybear.

3. a young boy drinking chocolate milk

with his teddy bear.

4. a small boy with a drink a donut and a

teddy bear

5. a child drinking chocolate milk and

eating a donut

Figure 4.1: An example photo from the MS-COCO dataset, along with annotations and

captions. The right side shows the photo from the left, but with visible annotations on

objects. Each of the objects (person, bottle, doughnut, chair, dining table, teddy bear) has

a bounding box drawn around it. This �gure showcases three tasks pertaining to images:

object detection (�nding the bounding boxes), object recognition (classifying the objects in

one of a number of categories) and image captioning.

questions regarding an image. An example from the VQA dataset (Antol et al., 2015) can be

seen in Figure 4.2. Despite criticism claiming that systems can perform adequately without

even having to consult the images on this dataset (Agrawal et al., 2016), it is apparent that

a balanced and fair version of the task would require a certain level of image understanding

and inference over the processed image.

Although hard to measure, a person’s perception of a scene is usually judged by their re-

ported description of it, in both academic and real-life setups. Indeed, this is in part a reason

for the heavy focus on automatic image description by both researchers and practitioners.

Owing to advances in CV and NLP, image captioning has been a point of convergence of

the two communities and a testbed for multimodal applications.

In this chapter, we extend our exploration of multi-view learning to the bimodal problem of

image description generation. More speci�cally, we investigate the idea of using Canonical
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Figure 4.2: Example photos from the VQA dataset (Antol et al., 2015) and corresponding

questions.

Correlation Analysis to represent images and their descriptions and propose an algorithm

to create novel captions for images.

4.1 Image Captioning

Automatic image captioning or automatic image description generation is the task of au-

tomatically assigning textual descriptions to images. A model able to successfully generate

image descriptions gives the impression of visual and contextual understanding, although

understanding is not the only prerequisite for description (Bernardi et al., 2016). Despite the

recent success of image captioning systems, captioning is admittedly far from being solved.

A captioning system should be able to overcome several di�culties, since image descriptions

are expected to be accurate, but at the same time structured, coherent and well-formed sen-

tences or phrases. The linguistic constraint of well-formedness, which is not trivial to achieve

while maintaining high accuracy, is what calls for joint e�orts of the CV and NLP commu-

nities in this task.

Image captioning has a number of applications, including image retrieval. The task of identi-

fying one or more images ful�lling an informational need is becoming increasingly harder as

the amount of images people produce and interact with increases. Successful image descrip-

tion generators can create a middle ground between the complex domains of images and

users, by providing a mapping from the former to text, where information retrieval tech-

niques have been proven to give adequate results. Moreover, image descriptions or content-

based image keywords and phrases can aid in the construction of interfaces for visually im-

paired people.

Image description generation has been thoroughly studied in various setups and variances.
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In an e�ort to simplify the task and not account for the complexity of natural language gen-

eration systems, early approaches cast image description as a retrieval task. As such, the prob-

lem is reduced to learning a similarity metric between images and for every new, unseen im-

age, a set of similar images is retrieved and generation proceeds using the descriptions of those

images. Queries for similar images can be posed against a visual space (Ordonez et al., 2011;

Mason and Charniak, 2014) or a multimodal space, where images and descriptions have been

projected (Farhadi et al., 2010; Hodosh et al., 2013).

Non-retrieval approaches to image description generation have for a long time relied on a set

of prede�ned sentence templates (Kulkarni et al., 2011; Elliott and Keller, 2013; Yang et al.,

2011) or used syntactic trees (Mitchell et al., 2012), while more recently, methods that use

neural models (examples include Kiros et al. 2014; Vinyals et al. 2015) have appeared, that

avoid the use of any kind of prede�ned pattern and often follow the paradigm of end-to-end

optimisation.

The seminal work of Xu et al. (2015b) introduced the most popular framework for neural

image captioning; that of encoder-decoder with attention over images. Their architecture,

which mainly consists of a CNN encoder for the image part and an RNN decoder that gen-

erates captions, has inspired a large portion of the subsequent captioning literature. Exam-

ples include several types of attention mechanisms, such as top-down and bottom-up at-

tention (Anderson et al., 2018) and adaptive attention (Lu et al., 2017) and also models that

incorporate high-level concepts and external information (Wu et al., 2017a) or entities iden-

ti�ed by object detectors (Lu et al., 2018). Moreover, the increased performance that image

captioning systems achieved has led to the introduction of new tasks (for example, entity-

aware captioning Biten et al. 2019), and new, larger and more challenging datasets, such as

the Conceptual Captions dataset (Sharma et al., 2018). More recently, given the prevalence of

Transformer models (Vaswani et al., 2017) in several NLP tasks, there has been a shift of im-

age captioning systems from the CNN-RNN encoder-decoder framework to Transformer

encoder-decoders (Zhu et al., 2018; Yu et al., 2019; Li et al., 2019).

While, usually, captioning methods treat images as sets of objects identi�ed in them (bags

of regions), there has also been work that uses structural image cues or relations. An excel-

lent example of such cues are visual dependency representations (Elliott and Keller, 2013),

which can be used to outline what can be described as the visual counterpart of dependency

trees. Another example, which has lately started to gain popularity as an image represen-

tation formalism, is scene graphs (Johnson et al., 2015), that encode objects, attributes and

relationships between objects in an image.
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Figure 4.3: The set of objects and cliparts used in the Abstract Scenes Dataset. Some of these

objects can have di�erent manifestations (for example, the girl can be sad).

4.1.1 Abstract Scenes

While computer vision advances have given an unprecedented potential to image description

generation, performance on image understanding tasks a�ects the caption generation pro-

cess, as those two problems are commonly solved together in a pipeline or a joint fashion. To

countermeasure that, Zitnick and Parikh (2013) introduced the notion of “abstract scenes”,

that is abstract images generated by stitching together clipart images. Their intuition is that

working on abstract scenes can allow for a more clean and isolated evaluation of caption gen-

erators and also lead to relatively easy construction of datasets of images with semantically

similar content.

To this end, they introduced and released the Abstract Scenes Dataset,
1

which contains a

total of 10,020 scenes. Each scene is represented as a set of clipart objects (see Figure 4.3 for

a full list) placed in di�erent positions and sizes in a background image (grassy area and sky).

Cliparts can appear in di�erent ways, for example, the boy and the girl (cliparts 18 and 19)

can be depicted as being sad, angry, sitting or running. Finally, each scene has up to eight

di�erent descriptions, collected through crowdsourcing. An example image of this dataset

along with corresponding descriptions can be seen in Figure 4.4.

1https://vision.ece.vt.edu/clipart/

https://vision.ece.vt.edu/clipart/
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1. mike is kicking the soccer ball

2. mike is sitting on the cat

3. jenny is standing next to the dog

4. jenny is kicking the soccer ball

5. the sun is behind jenny

6. the soccer ball is under the sun

Figure 4.4: An image with six descriptions (captions) from the Abstract Scenes Dataset.

The Abstract Scenes Dataset has been used for description generation (Ortiz et al., 2015),

sentence-to-scene generation (Zitnick et al., 2013) and object dynamics prediction (Fouhey

and Zitnick, 2014). The importance of this dataset and the work around it is twofold: �rstly,

it evaluates the e�ect of perfect image recognition and semantic image information on cor-

responding tasks. Secondly, it sets an example in favour of dissecting and thoroughly in-

vestigating problems and subproblems, contradicting the common practice of unjusti�ably

applying end-to-end architectures.

4.1.2 Evaluation

The evaluation of image description generation is fundamentally challenging and fuzzy (Re-

iter and Belz, 2009). This inherent di�culty stems from the fact that there is no universal

standard on what constitutes a good (or a good enough) caption. Apart from the obvious

features of grammatical correctness and text coherence that a caption must possess, the vari-

ability in acceptable content leads to a large number of potential captions per image. Cap-

tions describing just a part of the image (such as Caption 2 of Figure 4.1, which mentions

the boy and the teddy bear, but fails to include the doughnut) or stating a correct but not

central to the scene fact (Caption 6 in Figure 4.4 focuses on an aspect of the image that is

not particularly interesting) cannot be eagerly dismissed as “wrong”, but are admittedly not

as good as more complete ones. This makes any evaluation that compares automatically gen-

erated captions against gold captions from a dataset, unidirectional: high accuracy implies

good performance, while low accuracy cannot provide any insight about the quality of the
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output (it can be either bad, or not similar to the captions in the dataset).

4.1.2.1 Automatic Evaluation

Being essentially a Natural Language Generation (NLG) task, image description generation

is automatically evaluated by metrics that rely on the similarity between system-generated

and “correct” captions. The similarity is gauged by calculating co-occurrence statistics be-

tween the two captions.

The most popular metric for image captioning is BiLingual Evaluation Understudy (BLEU;

Papineni et al. 2001) which was initially introduced to evaluate Machine Translation. BLEU

is a corpus-wide metric, which relies on the concept of modified n-gram precision. Assum-

ing a set C of generated outputs (candidates) and a set R of correct (reference) outputs, the

modi�ed n-gram precision is

pn =

∑
G∈C

∑
un∈G

Cclip(un)∑
G ′∈C

∑
u ′n∈G ′

C(u ′n)
, (4.1)

where uN is a text unit (n-gram),C denotes the count function that counts common units

between the reference and the candidate andCclip returns the minimum between the count

and the maximum reference count of a unit, thus ensuring that each unit’s count is capped at

the its largest count in all references. Depending on the sizeN of the largest unit considered

in the evaluation (unigrams, bigrams, trigrams etc.), a di�erent BLEU score is returned. The

value of N characterises the metric: BLEU-2 refers to the metric that uses unigrams and

bigrams, while BLEU-3 uses unigrams, bigrams and trigrams. Formally, the BLEU-N score

is de�ned as

BLEU-N= BP · exp

(
N∑
n=1

wn logpn

)
, (4.2)

where BP denotes a brevity penalty. The calculation of the brevity penalty involves the

length of each candidate output |G| and the e�ective reference length r. The e�ective refer-

ence length is the sum of the best match lengths (the length of the candidate set that is closest

to the “correct” length) for each candidate sentence in the corpus. TheBP is then calculated

as follows:
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BP =

1, |G|> r

e1−r/|G|, |G|6 r.
(4.3)

Apart from BLEU, which is traditionally included in most image description evaluations,

other metrics are also used:

• Metric for Evaluation of Translation with Explicit ORdering (METEOR; Baner-

jee and Lavie 2005) was introduced as a language speci�c metric for Machine Transla-

tion. It uses linguistic resources and uses a set of parameters learnt by human judge-

ments in several translation pairs. It is based on precision, recall and F1 scores, cal-

culated over the number of common units between aligned reference and candidate

pairs.

Formally, METEOR is de�ned as

METEOR= Fm · (1 − p), (4.4)

where Fm = 10PR
R+9P , with P denoting precision and R recall. Also, p is a length penalty

calculated as follows

p= 0.5
(
ch
um

)3

. (4.5)

In the above equation, ch refers to the number of common consecutive unigrams,

and um to the number of matched unigrams between the reference and the system

sentence.

• ROUGE, the metric proposeed for the evaluation of summarisation systems, is also

used as a text generation metric. For a detailed description, see Section 3.1.3.1.

• Consensus-based Image Description Evaluation (CIDEr; Vedantam et al. 2015)

was speci�cally developed for the task of image captioning. CIDEr encodes the can-

didate and reference descriptions using TF-IDF vectors and in turn calculates the

average cosine similarity between the vectors of a candidate and each of the refer-

ences. CIDEr combines scores for n-grams with n > 1, by averaging scores for each

value of n. Formally, for a candidate sentence ci and a set of k reference sentences
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Si = {sij}, j ∈ {1,2,3, ...,k}, CIDEr is de�ned as

CIDEr(ci,Si) =
N∑
n=1

wnCIDErn(ci,Si), (4.6)

wherewn are weights andCIDErn is de�ned as

CIDErn(ci,Si) =
10
m

∑
j

e
−(l(ci)−l(sij))

2

2σ2
min(gn(ci),gn(sij)) · gn(sij)

||gn(ci)||||gn(sij)||
, (4.7)

where gn is a function that returns a TF-IDF n-gram representation for each of the

inputs, l is the length function and σ= 6.

• Semantic Propositional Image Caption Evaluation (SPICE; Anderson et al. 2016)

mostly evaluates the content of captions, hence it follows a di�erent approach. From

each reference and candidate caption, a scene graph is extracted; one that could poten-

tially serve as the scene graph of the described image. The �nal SPICE score is the F1

score calculated using precision and recall of co-occurring objects and relationships

between the graphs. The nature of SPICE makes it more relevant as a criterion for

accuracy in caption, and less for syntactic or linguistic quality.

4.1.2.2 Human Evaluation

The problem of crafting a perfect metric for image captioning is an open research question

(Kilickaya et al., 2017). The correlation between metric values and human judgments has

been an object of controversy (Elliott and Keller, 2014), despite the encouraging data pre-

sented by the authors of each of the aforementioned metrics. Moreover, it is known that

image captioning metrics have blind spots that are relatively easy to game (Cui et al., 2018b).

For that reason, following a recent trend in many tasks, human evaluation is often employed

to measure the quality of the the output of image captioning systems. Human experiments

strive to determine the quality of captions based on one or more of the following criteria:

• whether the description is accurate.

• whether the description is grammatically correct.

• whether the description is relevant for the image.

• whether the description is creative.
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• whether the description is better than those generated by other systems/sources.

Human experiments are invaluable, since they address the fallibility of automatic metrics

and can reveal information not clearly re�ected in the metric values. However, they may

have shortcomings, as discussed in Section 3.1.3.2.

4.2 Multi-view Representation Learning for Image Cap-

tioning

The present chapter discusses a multi-view approach for image captioning. Our learning

module is based on Canonical Correlation Analysis (see Section 2.2.2.1 for a detailed descrip-

tion of the method). This component operates by projecting the inputs and outputs of the

training set to a low-dimensional space. The projection ensures that inputs and outputs

corresponding to each other are projected to close points in that low-dimensional space,

in which decoding happens. As such, our training algorithm builds on previous work by

Udupa and Khapra (2010) and Jagarlamudi and Daumé III (2012) who used CCA for translit-

eration. Our approach of Canonical Correlation Inference is simple to implement and does

not require complex engineering tailored to the task. It mainly needs two feature functions,

one for the input values and one for the output values and does not require features com-

bining the two. We also propose a simple decoding algorithm when the output space is text.

The method discussed is similar to the one we employ for abstractive summarisation (Section

3.4).

We test our learning algorithm on the domain of language and vision. We use the Abstract

Scenes dataset of Zitnick and Parikh (2013), with the goal of mapping images (in the form of

clipart abstract scenes) to their corresponding image descriptions. This problem has a strong

relationship to recent work in language and vision that has used neural networks or other

computer vision techniques to solve a similar problem for real images. Our work is most

closely related to the work by Ortiz et al. (2015) who used phrase-based machine translation

to translate images to corresponding descriptions.

4.2.1 Learning

We assume two structured spaces, an input space X and an output space Y. As usual in the

supervised setting, we are given a set of instances (x1,y1), . . . ,(xn,yn) ∈ X× Y, and the

goal is to learn a decoder dec : X→ Y such that dec(x) is the “correct” output as learnt
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based on the training examples.

The basic idea in our learning procedure is to learn two projection functions u : X→Rm

and v : Y→ Rm
for some low-dimensionalm (relatively to d and d ′). In addition, we as-

sume the existence of a similarity measure ρ : Rm ×Rm → R such that for any x and y,

the better y “matches” the x according to the training data, the larger ρ(u(x),v(y)) is. The

decoder dec(x) is then de�ned as:

dec(x) = argmax
y∈Y

ρ(u(x),v(y)). (4.8)

Our key observation is that one can use Canonical Correlation Analysis to learn the two

projections u and v. The learning algorithm assumes the existence of two feature functions

φ : X→ Rd×1
and ψ : Y→ Rd ′×1

, where d and d ′ could potentially be large, and the

feature functions could potentially lead to sparse vectors.

We then apply a modi�ed version of Canonical Correlation Analysis on the two “views:” one

view corresponds to the input feature function and the other view corresponds to the output

feature function. This means we calculate the following three matricesD1 ∈ Rd×d,D2 ∈
Rd ′×d ′

andΩ ∈Rd×d ′
:

D1 = diag

(
1
n

n∑
i=1

φ(xi)(φ(xi))
>

)

D2 = diag

(
1
n

n∑
i=1

ψ(yi)(ψ(yi))
>

)

Ω=
1
n

n∑
i=1

φ(xi)(ψ(yi))
>

(4.9)

where diag(A) for a square matrixA is a diagonal matrix with the diagonal copied fromA.

We then apply thin singular value decomposition onD
−1/2
1 ΩD

−1/2
2 so that

D
−1/2
1 ΩD

−1/2
2 ≈UΣV>, (4.10)

withU ∈Rd×m
, Σ ∈Rm×m

is a diagonal matrix of singular values and V ∈Rd ′×m
. The
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θ

Jenny is holding an owl.

Figure 4.5: Demonstration of CCA inference. An object from the input space X (the image

on the left x) is mapped to a unit vector. Then, we �nd the closest unit vector which has

an embodiment in the output space, Y. That embodiment is the text on the right, y. It also

holds that ρ(u(x),v(y)) = cosθ.

value ofm should be relatively small compared to d and d ′. We then choose u and v to be:

u(x) = (D
− 1

2
1 U)>φ(x),

v(y) = (D
− 1

2
2 V)>ψ(y),

(4.11)

which we use as projection functions.

Osborne et al. (2016) showed that CCA maximises the following objective:

∑
i,j

dij −n

n∑
i=1

d2
ii, (4.12)

where

dij =

√√√√1
2

(
m∑
k=1

(u(xi) − v(yj))
2

)
. (4.13)

This objective is maximised with respect to the projections that CCA �nds, u and v. This

means that CCA �nds projections such that the Euclidean distance betweenu(x) and v(y)

for matching x and y is minimised, while it is maximised for x and y that have a mismatch

between them.

As such, it is well-motivated to use a similarity metricρ(u(x),v(y))which is inversely mono-

tone with respect to the Euclidean distance between u(x) and v(y). We choose cosine sim-

ilarity as a similarity metric:
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ρ(z,z ′) =
∑m
i=1 ziz

′
i√∑m

i=1 z
2
i

√∑m
i=1(z

′
i)

2
(4.14)

=
〈z,z ′〉

||z|| · ||z ′||
. (4.15)

It is worth noting that for any two vectors z (denoting u(x)) and z ′ (denoting v(y)), by

simple algebraic manipulation, it holds that

−〈z,z ′〉= 1
2

(
||z− z ′||2 − ||z||2 − ||z ′||2

)
. (4.16)

Consequently, if the norms of z and z ′ are constant, maximizing the cosine similarity be-

tween z and z ′ is e�ectively the same as minimising the Euclidean distance between z and

z ′. In our case, the norms ofu(x) and v(y) are not constant, but we �nd that our algorithm

is much more stable when the cosine similarity instead of Euclidean distance is used.

Figure 4.5 shows an outline of our CCA inference algorithm and Algorithm 4.1 presents it

in detail.

4.2.2 Decoding

While the described approach to map from an input space to an output space through CCA

is rather abstract and general, decoding is not always trivial. This is regardless of X – once x

is given, it is mapped using u(x) to a vector in Rm
, and at this point this is the information

we use to further decode into y – the structure of X before this transformation does not

change much the complexity of the problem.

In order to generate image captions we use a decoder similar to the one presented in Sec-

tion 3.4.1 for abstractive summarisatin. Concretely, this decoder is a Metropolis Hasting al-

gorithm that iteratively re�nes a caption, while ensuring that generated captions have high

cosine similarity with the generated representation of the image. For reference, we present

the algorithm of the decoder in Listing 4.2.

In a set of preliminary experiments, we found that while our algorithm gives adequate de-

scriptions to the images, it is not unusual for it to give short descriptions that just mention

a single object in the image. This relates to the adequacy-�uency tension that exists in ma-

chine translation problems. To overcome this issue, we add to the cosine similarity a term
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Algorithm 4.1 The CCA learning algorithm.

Input:

(xi,yi) ∈ X× Y . set ofN examples: i ∈ {1, . . . ,N}

m . an integer

φ(x) andψ(y) . two feature functions

1: procedure cca_learning

2: calculateΩ ∈Rd×d ′

Ωij =

n∑
k=1

[φ(xk)]i[ψ(yk)]j

3: calculateD1 ∈Rd×d
such that (D1)ij = 0 for i 6= j and

(D1)ii =

n∑
k=1

[φ(xk)]i[φ(xk)]i

4: calculateD2 ∈Rd ′×d ′
such that (D2)ij = 0 for i 6= j and

(D2)ii =

n∑
k=1

[ψ(yk)]i[ψ(yk)]i

5: calculatem-rank thin SVD onD
− 1

2
1 ΩD

− 1
2

2 :D
− 1

2
1 ΩD

− 1
2

2 ≈UΣV>

6: u(x) = (D
− 1

2
1 U)>φ(x)

7: v(y) = (D
− 1

2
2 V)>ψ(y)

8: return u(x),v(y)

η|y|whereη is some positive constant tuned on a development set and |y| is the length of the

sampled sentence. This pushes the decoding algorithm to prefer textual descriptions which

are longer, e�ectively avoiding the brevity penalty of automatic metrics, while making sure

that the output is not overly trivial (e.g. one-word captions). This scoring method is slightly

di�erent than the one used for abstractive summarisation and which is described in Equation

3.17.

4.3 Experiments

This section presents our experiments on generating descriptions for abstract scenes using

our proposed method.
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Algorithm 4.2 The CCA decoding algorithm.

Input:

x . an input example

ρ . a similarity metric

u,v . two projection functions

Q . a probabilistic phrase table

η> 0 . a constant

τ ∈ (0,1) . a constant

T . a starting temperature

1: procedure cca_decoder

2: Let y∗ be an arbitrary point in the output space.

3: y ′← y∗.

4: t← T .

5: while temperature t is below a given value do

6: uniformly choose two di�erent integers i and j, between 1 and |y ′|

7: choose randomly a phrase p fromQ(p | y ′i−1,y ′j+1)

8: y← y ′1 · · ·y
′
i−1py

′
j+1 · · ·y

′
|y ′|

9: if ρ(u(x),v(y)) + η|y|> ρ(u(x),v(y∗)) + η|y ′| then

10: y∗← y

11: α0←
exp

(1
t
ρ(u(x),v(y)) + η|y|

)

exp

(1
t
ρ(u(x),v(y ′)) + η|y ′|

)

12: α1←
|y|2Q(y ′i···y

′
j|y
′
i−1,y ′j+1)

|y ′|2Q(yi···yj|yi−1,yj+1)

13: α← {1,α0 ·α1}

14: uniformly sample a number k from [0,1]

15: if k < α then

16: y ′← y

17: t← τt
return y∗

4.3.1 Experimental Setup

We use the same data split as Ortiz et al. (2015), with 7,014 of the scenes as a training set,

1,002 as a development set and 2,004 as a test set.
2

Each scene is labeled with at most eight

2
Our dataset splits and other information can be found in http://cohort.inf.ed.ac.uk/

canonical-correlation-inference.html.

http://cohort.inf.ed.ac.uk/canonical-correlation-inference.html
http://cohort.inf.ed.ac.uk/canonical-correlation-inference.html
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y p y ′ probability

waiting to get 1.000

with the bucket. 0.750

pizza on the 0.343

trying to get away from jenny 0.050

baseball with the 0.033

is playing near the swings. 0.011

〈 begin 〉 jenny is playing with a colorful 0.008

is surprised by the owl 0.006

mike and the bear are standing 0.002

Table 4.1: Example of phrases and their learnt probabilities for the function Q(p | y,y ′).

The marker 〈 begin 〉marks the beginning of a sentence.

short captions. We use all of these captions in the training set, leading to a total of 42,276

training instances.

Input Spaces The feature function φ(x) for an image is based on the “visual features”

that come with the abstract scene dataset. More speci�cally, these are binary features that

�re for 11 object categories, 58 speci�c objects, co-occurrence of object category pairs, co-

occurrence of object instance pairs, absolute location of object categories and instances, ab-

solute depth, relative location of objects, relative location with directionality the object is

facing, a feature indicating whether an object is near a child’s hand or a child’s head and at-

tributes of the children (pose and facial expression). The total number of features for this

function is 7,149.

We de�ne the feature functionψ(y) for image description as one returning one-hot repre-

sentations for all phrases from the phrase table P that �re in the image. We use the phrase

table of Ortiz et al. (2015), which was obtained through the Moses toolkit (Koehn et al., 2007)

and contains 30,911 phrases. The size of the domain ofQ (the size of the phrase table with

context words) is 120,019. Table 4.1 gives a few example phrases and their corresponding

probabilities.

Output Dimensionality For the CCA learning algorithm, we also need to decide on the

output dimensionality. We varied values between 30 and 300 (in steps of 10) and tuned on
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the development set by maximizing BLEU score against the set of references.
3

Interestingly,

the BLEU scores did not change much (they usually were within one point of each other for

su�ciently large values), pointing to a stability of the algorithm with respect to the number

of dimensions used.

4.3.2 Results

We compare the performance of our model with that of several baselines and systems from

the work of Ortiz et al. (2015), reporting BLEU and METEOR scores. More speci�cally, we

consult the following systems:

• LBL is a log-bilinear language model trained on the image captions only.

• MLBL is mutlimodal log-bilinear model, implementation of Kiros et al. (2014).

• Image Retrieval refers to a system that for every test image, queries the set of training

images for the most similar one, and returns a random description of that training

example.

• CCA Retrieval. We report scores of a retrieval baseline based on representations

learnt by our learning module. Similarly to Image Retrieval, for each test image, we

search for the most similar caption from the training set, with similarity calculated on

the shared learnt space.

• Keyword is a system that annotates every image with keywords that most probably

describe it and then do a search query against all training data descriptions, return-

ing the description that is closest (in terms of TF-IDF similarity) to the keywords.

Keyword assignment is accomplished using logistic regression and features based on

clipart objects and text information (POS tags, objects, dependency roles).

• Template uses templates inferred from dependency parses of the training data de-

scriptions. A set of templates is discovered and a classi�er that associates images with

templates is trained. At test time, a template is assigned to every image and the slots

of the templates are �lled by the model for keyword assignment described in the Key-

word system.

• SMT is the Statistical Machine Translation (SMT) system of Ortiz et al. (2015). It �rst

selects pairs of clipart objects that are important enough to be described by solving

an integer linear programming problem and creates a “visual encoding” using a visual

3
We use the multeval package from https://github.com/jhclark/multeval.

https://github.com/jhclark/multeval
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dependency grammar (Elliott and Keller, 2013). Finally, it translates the latter to a

sentence, using a phrase-based SMT engine.

The scores of all systems are given in Table 4.2. Note that we also experimented with a

sequence-to-sequence neural model,
4

which turned out to perform poorly, giving a BLEU

score of 10.20 and a METEOR score of 15.20 and largely inappropriate captions. We con-

ject that sequence-to-sequence models are un�t for this dataset, probably due to its size; Ras-

togi et al. (2016) also report similar results. While our CCA system scores better than most

of the baselines, it does not achieve as high scores as the machine translation system.

While interpreting the results of the experiments, it is important to keep in mind that the

captions in the dataset, as well as those generated by the di�erent systems, are not complete.

Each of them describes a speci�c aspect of each scene, as discussed previously and shown in

the captions of Figure 4.8. As such, the use of machine translation metrics such as BLEU

and METEOR, or any word overlap metric for that matter, is not necessarily the best way

to identify the correctness of a textual description. To demonstrate this point, we measure

BLEU scores of one of the reference sentences while comparing it to the other references in

the set. We did that for each of the eight batches of references available in the training set. The

average reference BLEU score is 24.1 and the average METEOR score is 20.0, a signi�cant

drop compared to the SMT system. We conclude that the SMT system is not “creatively”

mapping images to corresponding descriptions. Instead, it relies heavily on the training set

captions, and learns how to map images to sentences in a manner which does not generalise

very well outside of the training set.

An indication that our system creates a more diverse set of captions is that the number of

unique captions it generates for the test set is signi�cantly larger than that of the SMT system.

The latter generates 359 unique captions (out of 2,004 instances in the test set), while our

CCA system generates 496 captions, an increase of 38.1%.

4.3.3 Human Evaluation

To test our hypothesis about caption diversity and quality, we conducted the following hu-

man experiment. We asked 12 subjects to rate the captions of 300 abstract scenes.
5

Each

rater was presented with three captions: a reference caption (selected randomly from the

4
We used a modi�ed version of the sequence-to-sequence Tensor�ow model: https://github.com/

tensorflow/nmt.

5
The ratings can be found on http://cohort.inf.ed.ac.uk/

canonical-correlation-inference.html.

https://github.com/tensorflow/nmt
https://github.com/tensorflow/nmt
http://cohort.inf.ed.ac.uk/canonical-correlation-inference.html
http://cohort.inf.ed.ac.uk/canonical-correlation-inference.html
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system BLEU METEOR

LBL 7.3 17.7

MLBL 12.3 20.4

Image 12.8 21.7

CCA retrieval 13.0 20.1

Keyword 14.7 26.6

Template 40.3 30.4

O
r
t
i
z

e
t

a
l
.

SMT 43.7 35.6

CCA 26.1 25.6

Table 4.2: Scene description evaluation results on the test set, comparing the systems from

Ortiz et al. to our CCA inference algorithm (the �rst six results are reported from the Ortiz

et al. paper). The CCA result uses m = 120 and η = 0.05, selected after tuning on the

development set.

gold-standard captions), an SMT caption and a caption from our system (presented in a

random order) and was asked to rate the captions on adequacy (using a scale of 1 to 5).

The instructions given to raters are shown below. The rankers were introduced to the task

by a webpage stating the following text and presenting the examples shown in Figure 4.6.

Welcome!

Once you read the following instructions, click [here] to start ranking scenes!

In this task you will look at a series of images and image descriptions (captions)
created by a computer program. At every step, you will be presented with images
and three (3) descriptions for each image. You will be asked to judge whether the
descriptions are relevant (accurate and informative) to the image.

You will rate every description in 1-5 rating scale, where 5 is the highest possible
rating and 1 is the lowest. Please keep in mind that:

• There are no correct answers, feel free to choose the rating that feels most
appropriate - it is a valid response.

• The objective of the rating is not to mark the best possible description. You
can give high score to more than one description if they are accurate
and informative.

Thank you for your participation.

Most images were rated exactly twice, with a few images getting three raters. A score of 1 or

2 means that the caption likely does not adequately describe the scene. A score of 3 usually
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Examples

Mike and Jenny are

playing ball.

This description will get

a high rating (4 or 5), since

it is accurate and captures

a signi�cant aspect of the

image.

Mike is in the sandbox.

This isn’t a good description,

as it only marginally relates

with the image.

Mike is holding a

hamburger.

While the description is

accurate and relevant to the

image, it fails to capture the

most interesting or central as-

pect of the image. Therefore,

it should be given a medium

rating (around 3).

Figure 4.6: Examples shown to annotators for image captioning human evaluation.

means that the caption describes some salient component in the scene, but perhaps not the

most important one. Scores of 4 and 5 usually denote good captions that adequately describe

the corresponding scenes. This experiment is similar to the one done by Ortiz et al. (2015).

The ranking results are given in Table 4.3. The results show that our system tends to score

higher for images which are highly ranked (by both the SMT system and CCA), but tends

to score lower for images which are lower ranked.

In addition, we checked the scores for highly ranked captions both for SMT and CCA (rank-

ing larger than 4). For SMT, the BLEU scores are 49.70 (METEOR 40.10) and for CCA it

is 41.80 (METEOR 33.10). This is not the result of images in SMT being ranked higher, as

the average ranking among these images is 4.18 for the SMT system and 4.25 for CCA. The

lower score for CCA indicates that our system generates captions which are not necessarily

aligned with the references, but correct nevertheless.

This observation also highlights and perpetuates the controversy around using machine trans-

lation evaluation metrics for this dataset and problem. To further support this point, in

Figure 4.7 a scatterplot of BLEU versus human rating is provided. It can be seen that the
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slice rc < 3 rc > 3

S: 1.77 S: 1.92
rs < 3

C: 1.64 C: 3.71

S: 3.42 S: 3.46
rs > 3

C: 1.47 C: 3.54

Table 4.3: Average ranking by human judges for cases in which the caption has an average

rank of 3 or higher and when its average rank is lower than 3, for both CCA and SMT.

Here, rS stands for SMT rating, rC for CCA rating, “S” for SMT average rank and “C” for

CCA average rank. The shaded areas (top left and bottom right) show scores for examples

where both systems score low and high respectively.

Figure 4.7: Scatter plot of BLEU scores versus human ratings, for both CCA and SMT meth-

ods.

correlation between BLEU scores and human ranking is not high; speci�cally, the correla-

tion between the x-axis (ranking) andy-axis (BLEU scores) for CCA is 0.3 and for the SMT

system 0.31. Following work on evaluation for image captioning (Hodosh et al., 2013; Elliott

and Keller, 2014; Vedantam et al., 2015), we use sentence-level BLEU scores, although BLEU

is generally regarded as a corpus-level metric, especially when used to evaluate machine trans-

lation.

Figure 4.8 presents six examples of generated outputs. The �rst row includes examples for

which the human judges rated the SMT system highly and the CCA system poorly, while

the second row presents the reverse case (CCA output ranked high, SMT ranked low).
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4.4 Conclusions

We describe a technique to predict structures from complex input spaces to complex out-

put spaces based on Canonical Correlation Analysis. Our approach projects the input space

into a low-dimensional representation, and then converts it back into an instance in the out-

put space. We demonstrate the use of our method on the structured prediction problem of

attaching textual captions to abstract scenes. Human evaluation of these captions demon-

strates that our approach is promising for generating text from images.

S: jenny is waving at mike

C: mike and jenny are

camping

S: jenny is wearing a baseball

C: mike is holding a bat

S: jenny is holding a frisbee

C: jenny is throwing the

frisbee

S: jenny is kicking the soccer

ball

C: mike is kicking a blass

S: jenny is holding a hot dog

C: jenny wants the bear

S: jenny is holding a

hamburger

C: the rocket is behind mike

Figure 4.8: Examples of outputs from the SMT system (S) and CCA inference (C). The top

three images give examples where the CCA inference outputs were rated highly by human

evaluators (4 or 5), and the machine translation ones were rated poorly (1 or 2). The bottom

three pictures show the reverse case.



Chapter 5

Multi-view Inference for Movie

Understanding

The world is generating and consuming an enormous amount of video content.
Currently on YouTube, people watch over 1 billion hours of video every single day.

(The 2nd YouTube-8M Video Understanding Challenge Kaggle Description)1

The consumption of videos has become a common part of the everyday activities of millions

of users, either as a form of communication (via mobile devices and social media), a market-

ing tool (advertisements) or an entertainment tool (streaming services). It is estimated that

by 2022, online videos will make up more than 82% of all consumer internet tra�c (Cisco,

2019). The unprecedented ease with which video content is generated, posted and shared

has brought about the need for e�cient and intelligent multimedia processing. Information

overload (the state of facing such an amount of information that makes organisation or rea-

soning di�cult; see Chapter 3 for details) and the methods and algorithms devised to tackle

it apply equally to textual and multimedia data.

Videos in particular pose a highly complex representational problem for machine learning

algorithms. This is not only due to their multimodal nature (combination of image and

audio), but also due to the large amount of information they carry. Videos fundamentally

consist of several images (frames) played one after another at a high rate. A commonly ac-

cepted frame rate and one used in the majority of cinemas is 24 frames per second (fps);

high de�nition equipment has made possible the recording and playback of videos in rates

as high as 120 fps, though. Consequently, the amount of information in video �les makes

1https://www.kaggle.com/c/youtube8m-2018, accessed June 10, 2019.
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their processing exceptionally data hungry.

Moreover, the temporal nature of videos introduces an extra level of complexity for repre-

sentation learning. Based on the fact that video is composed of consecutive frames, video

processing essentially relies on the extraction of snapshots and the combination of informa-

tion from them. Several representational issues arise from this type of modelling: what is

the best way to select frames to operate on? Which frames are more important? What kind

of information should be extracted from each of the frames? How is information from dif-

ferent modalities combined to create a coherent representation? How is information from

di�erent timestamps combined for inference?

Most of those questions do not have trivial answers. Furthermore, there are substantial dif-

ferences in purpose and content between communication and entertainment videos, that

call for particular treatment of each of them. Movies and series
2

normally follow an elab-

orate plot, making automatic understanding quite challenging. In this chapter, we present

a set of tasks that can be thought of as belonging to the class of shallow movie understand-

ing; that is tagging tasks that require inference over the episodes of a series. Speci�cally, we

use the CSI dataset (Frermann et al., 2018), which consists of episodes of the Crime Series

Investigation (CSI) television series and allows for the modelling of three tagging tasks on

three di�erent levels: structural level (enumerating and detecting crime cases), dialogue level

(�guring out speaker information) and plot level (identifying perpetrators).

Most existing multi-view representation learning approaches are tested in an unsupervised

setup where the representations are learnt separately from the task, and are designed to ac-

commodate the learning of representations for monolithic (albeit multi-view) data points,

not sequences (see Wang et al. 2015a for a survey). In this chapter, we propose a neural archi-

tecture coupled with a novel training objective that integrates multi-view information for se-

quence prediction problems. Our model creates a multimodal embedding for every element

of a sequence and makes token-level predictions based on those embeddings. Our training

objective combines a supervision-guided term (cross-entropy) with a multi-view correlation

objective on the available modalities.

Our work extends the set of multi-view counterparts of popular sequence models, many of

which have been already mentioned in Section 2.3. Our proposed model enforces correlation

between the representations of the available modalities; a technique that has been studied

also for non-sequential neural models (Wang et al. 2015a; Chang et al. 2018; also Section 2.2.1).

2
We use the term “series” to refer to episodic shows, broadcast via television or other channels.
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Our model bears similarities to the work of Rajagopalan et al. (2016), who propose a general

architecture that provides a degree of �exibility in designing di�erent multi-view LSTM cells

according to the application at hand, the work of Ren et al. (2016), who propose a multi-

modal variant of LSTM and apply it to the task of speaker identi�cation and that of Zadeh

et al. (2018a), who use an attention module and a multi-view gated memory to capture and

summarise inter-modality interactions (see Section 2.3.2 for a detailed account of sequential

multi-view models).

The contributions of this chapter are the following:

• We propose a multi-view sequential inference neural architecture and use a novel train-

ing objective for training an RNN consisting of correlational GRU cells.

• We highlight the importance of multi-view fusion for multimodal applications, by

comparing our model with a non-multi-view variant that employs multi-head super-

vised attention to make use of both the sentence-level and the token-level perpetrator

annotations of the dataset.

• We introduce two novel tasks pertaining to shallow movie understanding that can be

tackled in the context of television series data. We empirically show the e�ectiveness

of our architecture and training objective on the perpetrator mention identi�cation

and the two newly introduced tasks, by using the Crime Scene Investigation (CSI)

television series dataset. Notably, for the perpetrator identi�cation task, our model

signi�cantly outperforms previous work (Frermann et al., 2018).

5.1 Movie Understanding

Video understanding is primarily a domain of interest of Computer Vision. Examples of

tasks that can be applied to videos include automatically identifying and/or following objects

(Wu et al., 2015; Caelles et al., 2019), people (Zheng et al., 2016) or identifying actions (Wang

et al., 2016), events (Monfort et al., 2019) or emotion (Zadeh et al., 2018b). The presence

of speech in many videos though makes video datasets attractive to the NLP community,

too. Drawing parallels from speech processing, and incorporating image and audio features,

NLP methods can be applied to videos that contain a substantial amount of speech.

Conversely, even though many NLP problems concern exclusively textual or speech data, it

has been shown that integrating multimodal information (such as images, video or audio)

is bene�cial for a variety of tasks. For example, visual information has been used in a�ect
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analysis (Kahou et al., 2016), sentiment analysis (Morency et al., 2011) and machine transla-

tion (Calixto et al., 2017; Lala and Specia, 2018). This is also the case for problems which are

sequential in nature, such as video summarisation (Smith and Kanade, 1998), continuous

prediction of a�ect (Nicolaou et al., 2011) or engagement level prediction (Rehg et al., 2013).

Lately, work on video understanding has expanded to cover not only simple, short-length

videos, but also long videos with an, often, complex plot, created for entertainment pur-

poses. Given their popularity and consequent expansion in number, series video data can

bene�t multimodal machine learning research and applications. Series commonly span many

episodes (organised in loosely or tightly connected seasons), providing a large amount of data

that data-hungry models can take advantage of. The sheer volume of data gives rise to sev-

eral practical problems that machine learning models can tackle, such as the segmentation of

continuous video streams to semantically coherent fragments (Del Fabro and Böszörmenyi,

2013) and speaker diarisation (Miró et al., 2012; Bredin et al., 2014).

Work on movie and series analysis can be classi�ed into three broad categories:

• Deep semantic understanding includes tasks that require thorough content analysis

and reasoning, for example movie question answering (Tapaswi et al., 2016; Kim et al.,

2017), movie description (Rohrbach et al., 2016) or overview generation (Gorinski and

Lapata, 2018).

• External understanding refers to tasks whose end goal is not the analysis of the video

content itself, but meta-information extraction relevant to preferences and recom-

mendations for consumers of the videos (Bennett et al., 2007; Shi et al., 2013; Yang

et al., 2012).

• Shallow understanding refers to tasks that operate on the content level and extract

content-related information, albeit without requiring complex reasoning. Their out-

put is more tailored to structured prediction. Example tasks include speaker identi-

�cation (Knyazeva et al., 2015), movie segmentation (Liu et al., 2013) and perpetrator

mention identi�cation (Frermann et al., 2018). While these tasks are not trivial, their

tagging nature makes them less demanding than those listed under deep understand-

ing.

We choose to tackle three problems of shallow understanding, namely a crime case sequence

tagging problem, a speaker type sequence tagging problem and the problem of perpetrator

mention identi�cation. Inference on multimodal sequences can take the form of inferring

a label for a whole sequence, or a label for each of the parts of it; since all three problems
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refer to tagging sequence elements, we employ a multi-view, multimodal, sequential infer-

ence framework for them. We demonstrate the e�ectiveness of our model in an incremental

inference setup, wherein it makes predictions on the �y, without encoding the sequence in

full, following a realistic scenario of interacting with data. This is a critical feature for online

applications such as simultaneous translation (interpretation) and also a desirable behaviour

for movie processing models that mimic a human viewer watching a movie for the �rst time.

5.2 Multi-view Sequential Inference

Taking together the idea of multi-view learning with incremental sequence labeling, we for-

mulate our problem as follows.

We assume a set X of M examples. Every Xj ∈ X, j ∈ {1, . . . ,M}, consists of T elements,

which form a sequenceXj = [xj1 xj2 ...xjT ]. Sequences with less than T elements are padded

to be of length T . Each of the elements in the sequence is paired with a label from a set Y

(binary or multi-class), which is the desired output. Lastly, for every xjt, information from

a set V of di�erent views is available.

More speci�cally, we consider a dataset where each Xj is a video and we model three di�er-

ent views/modalities: image, audio and text (from aligned script or subtitles, if available).

Each video Xj is represented as a sequence of short, semantically coherent snippets xjt (for

instance, snippets may correspond to subtitle sentences). For each sequence element and for

each of the views V = {image, audio, text} we have a feature vector x
(k)
jt , with k ∈ {1,2,3}

indexing the di�erent views. In addition, we have labels yjt. The problem is to infer the

correct labelyjt for each xjt at the time it presents itself: data points appear sequentially in a

time series and the label prediction should be done using information from the past and the

present elements only.

We use a sequence model for incremental modeling of sequential multi-view data. The over-

all architecture of such a system is that of a RNN. A general time-unfolded overview of the

architecture for a single example x ∈X is shown in Figure 5.1. Input segments x
(k)
t of di�er-

ent views are fed to a cell at every time step, and a single vector ht combining information

from all views is generated. This embedding is fed to an output layer, which in turn outputs

a prediction.

One of the most important and distinguishing features of multi-view models is the frame-

work it uses for the fusion of the di�erent views. We use a multimodal GRU cell, the corre-
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Figure 5.1: General unfolded overview of a multi-view sequence model for an example x ∈X
with three views. At each time step t∈ {0,1, ...,T }, representationsx

(k)
t for eachk∈ {1,2,3}

views are fed to a cell. The cell outputs a joint representationht for all the views which is fed

to a softmax layer that generates a prediction yt.

lational GRU (corrGRU; Yang et al. 2017) as a base for experimentation. The cell takes em-

beddings x
(k)
t for each view k and time step t and after passing each view from a designated

GRU cell, it calculates a multi-view embedding for the time step by passing information of

all views through the gates of a separate GRU. The output of the view-speci�c GRUs is used

to calculate the Pearson correlation between the di�erent views; the output of this calcula-

tion is added as a separate term to be maximised in the total loss. In conclusion, view fusion

is achieved not only by the design of the multimodal GRU cell itself (weighted sum of view

representations and one common hidden representation), but also by the maximisation of

correlation between the views. Section 2.3.4 contains a detailed description of the corrGRU,

while Figure 2.13 presents the architecture of the corrGRU cell.

Since correlation can be calculated only for a pair of variables, we generalise the model to

more than two views by calculating the total correlation loss as the sum of the correlation

losses between all pairs of elements of V. Formally, in each step t, the correlation between

the views is calculated as

ct =
∑
k,`∈V
k 6=`

L∑
i=1

(h
(k)
it −H

(k)
t )(h

(`)
it −H

(`)
t )√

L∑
i=1

(h
(k)
it −H

(k)
t )

L∑
i=0

(h
(`)
it −H

(`)
t )

, (5.1)

where i spans over the L elements of each mini-batch, h
(k)
it is the hidden state calculated by

the view-speci�c GRU for the example i, viewk, at timestep t. Moreover,H
(k)
t = 1

L

L∑
i=1
h
(k)
it .
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The correlation term is then de�ned as

Lcorr =−
1
|T |

∑
t∈T
ct, (5.2)

that is the average of the loss calculated for every time step t. In order to maximise correlation,

the negative sum is used.

Using the correlation loss term, we train our network by jointly minimizing the following

objective

L= LCE + λLcorr, (5.3)

where LCE stands for cross-entropy loss, Lcorr is the correlation loss term, and λ weights

the contribution of Lcorr to the total loss. This compound objective function is one of the

distinctive features of our approach. It enables the model to take advantage of the labels

available from the dataset, and at the same time optimise for the correlation between the

available views. The underlying idea is that the constraint of the correlation will push the

model to create more informative embeddings than those it would create if the cross-entropy

loss was used alone.

Multi-head Attention Attention mechanisms (Bahdanau et al., 2015), in various forms,

have been used in several multimodal applications, such as sentiment analysis, speaker trait

recognition and emotion recognition (Zadeh et al., 2018c), machine translation (Caglayan

et al., 2016), image (Xu et al., 2015b) and video description (Hori et al., 2017). Broadly, an

attention mechanism modi�es the output of a sequence representation, based on the coher-

ence of each of the elements (“tokens”) of the sequence to a speci�c “query”. Information

learnt by the attention mechanism may have a distinct conceptual importance (e.g. align-

ments in machine translation) or simply indicate which elements of the input contribute

more to the �nal output representation.

Attention mechanisms can be trained in an unsupervised way along with the rest of the net-

work in an end-to-end fashion, or can be explicitly supervised by providing the model with

pre-calculated attention scores. Supervised attention has been shown to boost the perfor-

mance of models for machine translation (Mi et al., 2016), constituency parsing (Kamigaito

et al., 2017), event detection (Liu et al., 2017b) and aspect-based sentiment analysis (Cheng

et al., 2017). Furthermore, image attention mechanisms guided by weak or direct supervision
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have been proposed for the tasks of image (Liu et al., 2017a) and video captioning (Yu et al.,

2017).

Multi-head attention mechanisms (Vaswani et al., 2017) employ more than one, indepen-

dent, attention mechanisms, boasting multiple areas of focus on the input sequence. The

main idea behind them is that a single attention head may not prove adequate to capture all

the di�erent types and positions of information that are important to the end task. We ex-

periment with an attentive model variant that uses supervised multi-head attention to take

advantage of annotations in two levels of granularity.

In the model outlined above, each episode is assumed to be divided to snippets, and the

sequence model operates and makes predictions on the snippet level. At this level, the input

is trimodal: text from the subtitles, audio and video. However, the text modality for each

timestep may contain a variable number of tokens. We assume the presence of a text encoder

that creates a �xed-length text representation for the text of each snippet. The role of such an

encoder can be played by a convolutional sentence encoder (Kim, 2014) or an RNN encoder.

In order to take advantage of attention mechanisms, we conduct a set of experiments us-

ing an RNN text encoder, wherein the encoded text representation for each text snippet is

weighted by attention scores calculated over its tokens. In our setup, the “query” and “to-

ken” representations come from the same sequence, making our mechanism a self-attention

one (Yang et al., 2016).

More speci�cally, our attention mechanism works by using the dot product to calculate the

attention scores (dot product attention; Luong et al. 2015):

score(sti,x
(1)
t ) = x

(1)
t

>
sti, (5.4)

where sti refers ti the output of the token-level RNN at timestep t, word i, i ∈ {1,2, ...,k}

and x
(1)
t the �nal encoded state of the textual modality at timestep t. Given those scores,

alignment vectors, which are used as weights to calculate the �nal representation are calcu-

lated as

at(s) =
exp(score(stm,x(1)t ))∑

m ′ exp(stm ′ ,x
(1)
t )

. (5.5)

The CSI dataset includes two levels of annotation for perpetrator mentions: a token level and

a sentence level. The two levels of annotation in the dataset follow a compositional structure:

the presence of at least one token annotated with 1, results in the whole sentence annotated

with 1. In order to train our supervised attention model, we use the token-level annotations,
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which we split conceptually to three di�erent types (�rst person pronoun tokens, pronoun

tokens, other type of tokens). Using this split, we are able to train three di�erent attention

heads, each focusing on a di�erent type of annotation. Using multiple attention heads leads

to multiple sentence representations for the text modality; we use mean pooling to create the

�nal representation that is in turn fed to the utterance-level, multi-view model.

While the architecture of the three heads is identical, we use each of them to model a dif-

ferent type of annotation. For each head, the score generated for each token, is supervised

by annotation values of each of the types of annotation. For sentences with more than one

tokens are annotated with 1, we equally divide the annotation value between the tokens. As

such, we need to modify our learning objective, so that it includes a loss term for each of the

heads. We choose the mean squared error:

Latta =
∑
t

∑
i

(ŷ(t) − y(t))2, (5.6)

and the overall objective of the model becomes

L= LCE + λLcorr + λ1Latta + λ2Lattb + λ3Lattc , (5.7)

where Latta ,Lattb and Lattc are the loss terms for heads a,b and c respectively and the

parameters λ1,λ2 and λ3 weigh the contributions of each attention head to the overall loss.

The multi-head attention component of our model bears similarities in spirit to the recent

work of Strubell et al. (2018), where an attention head is replaced by a model trained to pre-

dict syntactic dependencies (Dozat and Manning, 2017). In contrast, our model uses explicit

supervision for all self-attention heads and is trained to predict the correct attention scores

in a multi-task fashion. A schematic depiction of this model can be seen in Figure 5.2 and

the corresponding experiments in paragraph 5.3.2 (Supervised Multi-head Attention).

Inference on multimodal sequences can take the form of inferring a label for a whole se-

quence or a label for each of the parts of it. The multimodal LSTM of Ren et al. (2016) bears

similarities to our work and although it is applied in a sequential inference setting, it does

not produce a joint representation for all modalities, but rather, di�erent (albeit informed

about each other) modality representations are used for inference.

Our approach is more related to that of Yang et al. (2017), where a multimodal encoder-

decoder model for representation learning of temporal data is described. Our method uses

their corrGRU cell with a distinct architecture and loss function: �rst, their network is used

as an unsupervised sequence representation learning tool trained to generate an embedding
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Figure 5.2: Hierarchical multi-view recurrent model with multi-head attention. Each sen-

tence is encoded with an RNN and three attention heads (a, b and c) calculate attention

scores for each of the tokenswti of the t-th sentence of the script.

for a whole sequence, which in turn is used for classi�cation tasks, while our model outputs

embeddings and makes predictions at the token-level (for every element of a sequence). Sec-

ondly, they use a decoder which reconstructs the original representations of each view, while

our model does not include an autoencoding part.

Casting correlation maximisation between three or more variables as the maximisation of

the sum of the correlation between all pairs of available variables has been previously used

in extensions of CCA for more than two views (Benton et al., 2019), or other multi-view

learning works (Kumar et al., 2011). Yang et al. (2017) mention it in their paper, although

they do not experiment with it.

5.3 Experiments

The following section describes experiments conducted in support of the proposed archi-

tecture. We use the CSI dataset (Frermann et al., 2018), which consists of 39 episodes of

the television series CSI: Crime Scene Investigation. In each episode, a team of detectives

undertake the solution of one (in 51% of the episodes) or two (49%) crime cases. The three
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modalities included are text scripts (dialogue subtitles and background scene descriptions),

image snapshots from the video and audio segments. Each sentence of the script is aligned

with image and audio
3

excerpts. Also, sentences are annotated with the case they belong to

(binary label), perpetrator mention labels (binary) and the name of the speaker that uttered

them (“None” for scene descriptions). Each speaker belongs to one of the types detective,

perpetrator, suspect, extra (“None” for scene descriptions). To facilitate tagging, we convert

the case and speaker annotations of the dataset to annotations employing the BIOU (Be-

ginning, Inside, Outside, Unit)
4

format, derived from the BIO scheme proposed for text

chunking (Ramshaw and Marcus, 1999) and heavily used in the CoNLL shared tasks
5

for

sentence tagging. An annotated example excerpt is shown in Figure 5.3.

5.3.1 Experimental Setup

For all experiments, we adopted an experimental setup similar to that of Frermann et al.

(2018). For text, we use 50-dimensional pre-trained GloVe vectors (Pennington et al., 2014)

and a convolutional text encoder with maxpooling (�lters of sizes 3, 4 and 5, each return-

ing a 75-dimensional output). Image features are generated by the �nal hidden layer of the

inception-v4 model (Szegedy et al., 2017) with dimensionality of 1,546. Audio features

are constructed by concatenating �ve 13-dimensional Mel-Frequency Cepstral Coe�cient

(MFCC) feature vectors for each interval. For perpetrator mention identi�cation, we use

the case level splits, whereas the speaker and case experiments are performed on the episode

level. All LSTM and GRU variants have one layer of length 128 and a dropout probability of

0.5 is used. We set the value of parameters λ= 0.001,λa = 0.001,λb = 0.001,λc = 0.001

and train for 150 epochs with the Adam optimiser (Kingma and Ba, 2014), setting the initial

learning rate at 0.001.

5.3.2 Perpetrator Mention Identi�cation

In order to investigate the e�ectiveness of our model in the sequential multimodal inference

setup, we conduct the following set of experiments on the task of perpetrator mention iden-

ti�cation.

3
Dialogues have been stripped from the audio track, leaving it only with audio e�ects and music, so that

the text modality will not be deemed redundant and the dataset does not contain overlapping information.

4
The BIOU is a subset of the BILOU tagging format (Ratinov and Roth, 2009). In the BIOU format, each

of the elements of a sequence is tagged with a label that indicates the type of chunk it belongs to and its position

within the chunk. Speci�cally, B: Beginning (marks the beginning of a chunk), I: Inside (denotes an element

that is inside a chunk), O: Outside (the element does not belong to any chunk) and U: Unit (the element is the

�rst and last element of a chunk).

5http://www.conll.org/previous-tasks

http://www.conll.org/previous-tasks
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None Grissom

Grissom doesn’t look worried. He takes

his gloves o� and puts them on the table.

You ever been to the theater, Peter?

Case: 1 Case: 1

Perp: 0 Perp: 1

Case Tag: B-1 Case Tag: I-1

Speaker Type Tag: O Speaker Type Tag: B-D

Figure 5.3: An excerpt of the CSI dataset, where the image and text modalities and annota-

tions are shown. The case and speaker tags use the BIOU (Beginning, Inside, Outside, Unit)

format. In this case, "Peter" is the name of the perpetrator (Perp: 1). Both snapshots belong

to the �rst case. The �rst snapshot does not have a speaker (screenplay description; speaker

“None” and speaker type tag “O”) and starts a chunk of utterances belonging to the �rst

case (B-1). The second snapshot continues in the �rst case (I-1) and starts a chunk where the

speaker is a detective (B-D).

Multi-view Model The e�ectiveness of di�erent architectures is shown in the �rst section

of Table 5.1. The multi-view model (using corrGRU) is compared to early fusion models

(using LSTM and GRU cells ), for which the input is the concatenation of the feature vectors

of the three modalities, passed through a ReLU activation. It can be seen that the multi-view

model outperforms all other models.

Contribution of cell components The correlational GRU cell includes a set of distinc-

tive components: (a) a dynamic weighting module and (b) a correlation loss term. In order

to assess the contribution of each of those features, we conduct an ablation experiment: we

train our model by removing the correlation term from the loss (setting λ to 0), by remov-

ing the dynamic weighting module (setting all the weights to 1) and by removing both. The

results of this ablation are outlined in Table 5.2. We conclude that both the weighting and

correlation modules are important for the �nal prediction.
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Incremental Inference Incremental sequence labeling refers to making predictions on an

incoming sequence as it is “streamed” in an online fashion. For example, if the sequence is a

sentence, we are not allowed to encode the whole sentence �rst, but instead have to output

a relevant label for each word as it arrives in the sequence. Incrementality underlies funda-

mental human cognition and is essential for scaling systems to large datasets and real-time in-

ference, necessary, for example, in simultaneous translation (interpretation; Bangalore et al.

2012; Yarmohammadi et al. 2013; Cho and Esipova 2016).

In order to assess the e�ectiveness of the incremental inference capabilities of our model,

we contrast the output of incremental models (forward-pass unidirectional) to that of sim-

ilar models that do not perform incremental inference (bidirectional), in Table 5.1. Both

multi-view and non-multi-view bidirectional models look ahead in the sequence, gathering

information that is potentially useful for temporal inference. The bidirectional correlational

model was trained with an extra correlation loss term, calculated exactly as Lcorr, with data

from the backward pass. The bidirectional multi-view model does not score as high as the

unidirectional multi-view one, though it balances better between precision and recall. In-

terestingly, results suggest that the incremental multi-view model outperforms early fusion

bidirectional models (biLSTM and biGRU).

model pr re F1

EF (LSTM) 42.8 51.2 46.6

EF (GRU) 39.4 60.4 47.7

U
n
i
-
D
i
r

MV (corrGRU) 41.3 63.4 50.0

EF (biLSTM) 40.0 62.7 48.8

EF (biGRU) 43.6 58.1 49.8

B
i
-
D
i
r

MV (biCorrGRU) 49.6 49.4 49.5

Table 5.1: Comparing unidirectional and bidirectional variants of early fusion models and

our multi-view model. Precision (pr), recall (re) and F1 scores for detecting the minority class

(perpetrator mentioned) are reported on the held-out dataset. EF stands for early-fusion,

while MV for our multi-view model. The �rst section of the table reports scores for unidi-

rectional (incremental) models and the second for bidirectional (non-incremental) models.

The result for the simple unidirectional LSTM model is the one reported by Frermann et al.

(2018).
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model pr re F1

full model 41.3 63.4 50.0

no DW 38.9 58.3 46.7

λ= 0 39.0 59.2 47.0

λ= 0, no DW 37.5 58.3 45.6

Table 5.2: Assessing the contribution of the components of our model. Precision (pr), recall

(re) and F1 scores for detecting the minority class (perpetrator mentioned) are reported on

the held-out part of the dataset. The setups compared are: the full model, the model without

the dynamic weighting (DW) module, the model without the correlation loss term (λ = 0)

and the model without both the dynamic weighting and the correlation loss.

Contribution of the di�erent modalities We conduct an ablation experiment assessing

the contribution of each modality to the �nal prediction. The results of this experiment can

be found in Table 5.3. Evidently, all three modalities contribute to the good performance of

the multi-view model. We note that the text modality is the most informative; models taking

text into account score consistently better, in both multi-view and single view setups. Re-

sults of the single-view video model suggest that the image modality alone provides very little

information about the perpetrator’s identity. It is possible that the general nature of the fea-

tures used are partially responsible for that, since the inception model is trained on object

recognition and not a face recognition task. Results on audio only are not reported, since the

audio modality contains only music and audio e�ects and is not expected to generate useful

representations by itself.

Supervised Multi-head Attention The CSI dataset includes token-level perpetrator men-

tion annotations: every token of the script sentences is tagged as being a mention of the per-

petrator or not. An example can be found in Figure 5.3 (right), where “Peter” is tagged as be-

ing a reference to the perpetrator (boldface). The sentence-level annotations used through-

out the previous experimental section and throughout the work of Frermann et al. (2018) are

generated by aggregating token-level annotations; the token-level annotations are not used

in their work though.

We distinguish three types of perpetrator token mentions in the dataset:

• first person pronoun tokens: the perpetrator is the speaker and speaks in �rst person.

• pronoun tokens: other characters refer to the perpetrator by using pronouns.
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modality

T I A

pr re F1

Three X X X 41.3 63.4 50.0

X X 41.4 49.6 45.1

X X 39.6 50.4 44.3Two

X X 38.7 5.1 9.0

X 41.9 47.3 44.4
One

X 28.4 6.7 10.8

Table 5.3: Ablation experiment assessing the contribution of each modality in our multi-view

model. Precision (pr), recall (re) and F1 scores for detecting the minority class (perpetrator

mentioned) on the held-out part of the dataset are reported. The modalities are denoted by

T (text), I (image) and A (audio). For single-view setups, we report results only using the

Image and Text modalities, since the Audio modality is not quite informative on its own.

• other type of tokens: perpetrator is mentioned by their name or other attributes.

We replace the original binary token-level annotation with three binary annotation streams

re�ecting the three di�erent types (�rst person pronoun mention, other person pronoun,

other type of mention).

We replace the convolutional encoder of the previous experimental setup with an LSTM

and three attention heads and run experiments comparing attentive architectures with non-

attentive ones. The results can be found in Table 5.4. Unsurprisingly, models that make use

of the extra information in the form of attention supervision score better than their counter-

part that does not take token-level annotations into account. Interestingly, the complexity

and diversity of token-level annotations is re�ected in the results of single-head attention

models: the supervised single-head model scores lower than the one that is free to learn any

attention scores. Ultimately, the choice to split the annotations to three streams and use

more than one attention heads, each focusing on di�erent types of mentions, leads to better

performance.

However, even the multi-head supervised attentive model, does not score as well as the multi-

view (non-attentive) model. This result highlights the, sometimes disregarded, importance

of modality fusion: creating a fused representation out of the available modalities led to a

model that outperforms one with signi�cantly more information in its disposal.
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model pr re F1

EF 42.8 51.2 46.6

MV 41.3 63.4 50.0

EF+Att 39.95 58.70 47.32

EF+SupAtt 40.72 56.11 47.15

EF+MultiHead 40.25 59.19 47.88

Table 5.4: Comparing the performance of early fusion (EF) and multi-view (MV) models

with attentive early fusion models. Three di�erent attention schemes are compared: simple

attention (Att), supervised attention (SupAtt) where the network’s loss includes an error

term for the attention scores with respect to the token-level annotations, and multi-head

supervised attention (MultiHead) where the token-level annotations are divided concep-

tually into three groups and each head is supervised by the scores of one of the groups.

5.3.3 Episode Structure Tagging

Extracting knowledge about a movie by relying on simpli�ed tasks can be challenging and

may require assumptions about the input. Speci�cally, casting the task of perpetrator identi-

�cation as a binary classi�cation task, is based on the premise that there is, for every input, at

most one perpetrator. This assumption does not always hold, since, some episodes contain

two cases and consequently, two perpetrators. Moreover, new perpetrators are introduced in

every episode and data sparsity makes multi-class classi�cation di�cult. For the experiments

described in the previous sections, we alleviate this obstacle by performing binary inference

on the case level, using the annotated case splits of the dataset.

In order to enable more robust movie understanding, we investigate the automatic segmen-

tation of episodes to coherent chunks by experimenting with tagging utterances with tags of

two levels of granularity: case and speaker type. The former refers to associating each utter-

ance with the crime case it belongs to, while the latter to labeling each utterance as coming

from one type of speaker (detectives, perpetrators, suspects, extras) or none (for scene de-

scriptions).

The two tagging tasks are closely related, since a shift from a speaker type (e.g. a conversation

between detectives) to another (e.g. a conversation between extras) may indicate a shift in

the focus of the episode, hinting a case change. The presence of more than one related tasks

makes our setup ideal for testing our model in a multi-task setting. Sharing representations

between tasks is justi�ed by the notion that information from similar tasks can aid in solving
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SPEAKER TYPE CASE

model

acc pr re F1 acc pr re F1

EF 50.55 20.28 24.18 20.66 61.00 0.01 0.01 0.01

MV 57.66 19.87 35.95 25.29 61.65 0.03 2.86 0.05

EF+CRF 49.70 15.70 14.22 14.48 62.75 3.10 15.21 4.97

MV+CRF 51.27 14.89 16.71 14.96 73.53 11.72 27.75 11.24

multi-task (speaker+case)

EF 45.07 19.83 27.53 21.82 61.75 0.00 0.00 0.00

MV 46.11 18.17 22.36 19.09 61.02 0.06 0.08 0.06

EF+CRF 47.04 22.02 17.42 18.60 73.95 1.09 1.52 1.11

MV+CRF 60.07 21.36 39.25 27.61 79.49 8.29 44.17 13.72

Table 5.5: Performance of early fusion (EF) and multi-view (MV) model variants on speaker

type and case tagging. Macro-average scores for accuracy (acc), precision (pr), recall (re) and

F1 scores are reported. The top section of the table refers to the single-task setup, while the

bottom on the multi-task setup (training jointly on speaker type and case tagging).

the task at hand faster and more accurately (Caruana, 1997).

We modify the architecture of our model, so that the output of the sequence model cell is fed

to di�erent output layers, one for each task. Training proceeds by summing the loss terms for

both tasks. In the case of our multi-view model, the loss consists of two cross-entropy terms

and one correlation term. Moreover, we experiment with adding a Conditional Random

Field (CRF) on top of the sequence models, based on recent work that achieves state-of-the-

art performance in tagging tasks, such as Named Entity Recognition (Lample et al., 2016).

The results for speaker type tagging can be found in Table 5.5, where our model (MV) is com-

pared with an LSTM early fusion model. We use a variant of the evaluation script used for

the CoNLL shared tasks
6

and report average scores. It can be seen that our multi-view model

consistently outperforms early fusion models. Interestingly, the multi-task MV+CRF model

exhibits the best performance, suggesting that jointly solving the two tasks improves the ca-

pabilities of the model.

6https://github.com/spyysalo/conlleval.py

https://github.com/spyysalo/conlleval.py
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5.4 Conclusions

In this chapter, we describe a neural multi-view sequential architecture, paired with a novel

objective that takes advantage of supervision, while at the same time, maximises the correla-

tion between views. We test our approach on the task of perpetrator mention identi�cation

of the CSI dataset, on which we show that it outperforms state of the art. Also, we intro-

duce two shallow movie understanding tasks, crime case and speaker type tagging, and show

that our model yields consistently better results than early fusion models, highlighting the

importance of careful fusion of modalities in sequential inference.



Chapter 6

Narration Generation from Video

Input

we pose the question: “Is photorealism necessary for the study of semantic under-
standing?” [...] cartoons or comics are highly e�ective at conveying semantic in-
formation without portraying a photorealistic scene.

(Zitnick and Parikh, 2013)

Text generation from visual or multimodal inputs has been an overarching goal and a point

of convergence of the Computer Vision and Natural Language Processing communities

(Gatt and Krahmer, 2018). Research in this direction has been propelled by the proposal

and study of several tasks, with examples including image caption generation (see Bernardi

et al. 2016 for a survey), visual question generation (Mostafazadeh et al., 2016), caption ex-

planation (Hendricks et al., 2016), visual question answering explanation (Li et al., 2018)

and multimodal machine translation (Calixto et al., 2017; Lala and Specia, 2018). Progress in

corresponding video tasks, such as video description, video question answering (Zeng et al.,

2017; Xu et al., 2017; Tapaswi et al., 2016) and video overview generation (Gorinski and Lap-

ata, 2018) has been slower, probably due to the extra challenge posed by the temporal nature

of videos. In this chapter, we present narration generation, a new text generation task from

movie videos. We believe that the introduction of this task will challenge existing techniques

for text generation from videos as it requires temporal contextual reasoning and inference

on storylines.

A narration is a commentary commonly used in movies, series or books. It can be delivered

by a story character, a non-personal voice or the author of a book and may communicate

a story that is parallel to the plot, �ll in details that are not directly perceivable, or help in

121
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(1a)

01:19 – 01:20

Mommy Pig: Goodnight, George.

(1b)

01:24 – 01:27

Narrator: When George goes to bed, Mr

Dinosaur is tucked up with him.

(2a)

03:29 – 03:31

Peppa Pig: See, that’s where it is.

(2b)

03:32 – 03:34

Narrator: Mr Dinosaur is not in George’s

bed.

(3a)

01:20 – 01:26

Peppa Pig: George, if you jump in muddy

puddles, you must wear your boots.

(3b)

01:29 - 01:34

Narrator: Peppa likes to look after her

little brother, George.

Figure 6.1: An excerpt of the Peppa Pig dataset. The �rst two examples (rows) are from

Episode 2: Mr Dinosaur is lost, while the last from Episode 1: Muddy Puddles. For each sub-

title, a representative snapshot (image) is shown. It can be seen that the narrations may or

may not be descriptive of the image (or short clip) which they accompany.
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guiding the viewers/readers through the plot. Narration generation refers to the task of au-

tomatically generating the text of such narrations. Our focus is on video data, especially

videos that are part of episodic broadcasts, such as television series.

To facilitate research in the direction of automatic narration generation, we create a new

narration dataset. Following the spirit of previous work on image captioning from abstract

scenes (Zitnick and Parikh, 2013) and cartoon video question answering (Kim et al., 2016),

we collect videos from the animated series Peppa Pig. We posit that abstracting away from

related, but nonetheless hard problems, such as processing real-life photographs and videos

and understanding complex, real-life dialogue between adults, will make for clean and iso-

lated evaluation of the text generation techniques themselves.

Narration generation in the way we set it up, is a new task, distinct from video description

in certain aspects. Compared to descriptions, narrations provide high-level, less grounded

information on events taking place in videos. In general, they do not articulate objects or

actions that can be directly seen in the images and even in cases where they do, the descrip-

tion is quite speci�c and tied to the context of the overall story. For example, the scene of

Figure 6.1(1b), could be accurately described by “a pig in a bed, with a toy tucked up with it".

The narration, however is context-aware: it refers to the pig as “George" and the toy as “Mr

Dinosaur".

Moreover, a narration may refer to events or objects that cannot be seen in the image. Image

captioning algorithms face striking challenges when it comes to objects absent from query

images, which can be easily inferred by humans (Bernardi et al., 2016), such as the “bus” in the

caption of an image showing people waiting for a bus on a bench. Narrations may include

contextual mentions to absent objects, such as the reference to “Mr Dinosaur” in Figure

6.1(2b); something that a viewer not familiar with the storyline could not have guessed. Fi-

nally, narrations may convey information less related to their accompanying video and more

to the overall plot: Figure 6.1(3b), for example, makes a remark on Peppa looking after her

brother, while the image just shows Peppa near a puddle.

Video narration generation bears resemblance to the task of automatic generation of sports

broadcasts, known as sportscasts (Chen and Mooney, 2008). While sportscasts can have nar-

rative structure (Herman et al., 2010), they are generated on the �y, and contain information

related to what has been shown in the video up to the point of their utterance. Conversely,

the narrations of our dataset are third-person omniscient narrations: the narrator knows ev-

erything related to the storyline and may use information that is being shown to the viewers
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Figure 6.2: A snapshot from a news summary video which includes a form of narration

(text shown between video excerpts to �ll in gaps in the story). From the New York Times

website.
1

while the narration is uttered or use forward references to events that are to unfold later in

the video. In terms of content, sports commentary that does not simply describe the game,

known as “color commentary" (Lee et al., 2014) is more relevant to movie narrations.

Our work is a step towards the direction of narrative content generation and serves as a proxy

problem for several applications. Examples include not only sports commentary, but also

other types of commentary (such as director’s commentary in movies) or content for news

summary videos (see Figure 6.2).

The contributions of this chapter are as follows:

• We introduce and formalise the task of narration generation from videos.

• We develop a new cartoon video dataset for the task of narration generation.

• We present several models for narration generation and report results on the newly

introduced dataset.

6.1 The Peppa Pig Dataset

Peppa Pig is a popular British animated television series targeting preschool children. The

episodes follow Peppa, a young female pig, in everyday social, family, and school activities.

Main characters also include Peppa’s younger brother (George), their mother (Mommy Pig),

1https://www.nytimes.com/2019/05/01/us/politics/william-barr-testimony.html, ac-

cessed 2 May 2019, 14:30.

https://www.nytimes.com/2019/05/01/us/politics/william-barr-testimony.html
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episodes 209

total time 1045 min

time excluding intro & outro 927 min

narrations 1803

dialogue length (avg) 56.9 tokens

narration length (avg) 10.7 tokens

narration vocabulary 1771 words

narration unique vocabulary 257 words

Table 6.1: Statistics of the Peppa Pig dataset.

father (Daddy Pig) and various friends and relatives. All the friends of Peppa’s family belong

to di�erent animal species than pigs. Although all the characters of the show are animals,

most of them exhibit human traits and lead human-like lives (they speak human languages,

wear clothes, live in houses, drive etc.). At the same time, they keep some animal features,

such as the distinctive sound of their species (pigs, for example, snort during conversations).

The simplicity of images, dialogues and storylines of Peppa Pig, make it an ideal testbed for

movie understanding experimentation. The small scale of the vocabulary and topics alleviate

sparsity challenges that can potentially arise in, relatively small but diverse, movie datasets.

Finally, the fact that the storyline of each episode includes a narrator, makes the task of elic-

iting narration data relatively easy.

The series �rst aired on 2014 and as of the end of 2018, 264 episodes have been created. Our

dataset consists of 209 episodes, for which we were able to �nd subtitles online.
2

A full list

of the episodes used for the dataset can be found in Appendix B.1. For each episode, we

collect the video �le, subtitles and metadata (title, plot summary, air date). Some descriptive

statistics of our dataset can be found in Table 6.1, while Figure 6.1 lists three example scenes

taken from the �rst two episodes of the series. More details about narration and dialogue

lengths, number and positions in episodes can be found in Figure 6.3.

A preprocessing step was carried out to make sure that all the videos are stripped out of

unnecessary parts (each episode starts with the main character introducing herself and her

family and usually ends with a song), subtitles are synchronised with the video, subtitle text

is normalised, and each token of the text is aligned with a corresponding timeframe (a pro-

cess called “forced alignment”). The resulting dataset is aligned at the token level, for image,

2
We make our dataset available online: https://github.com/papagandalf/peppa_pig_data.

https://github.com/papagandalf/peppa_pig_data
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Figure 6.3: Histograms of characteristics of Peppa Pig narrations. The length of narrations

in sentences and tokens, the start time position within the episode and the number of nar-

rations per episode are listed.

audio and text modalities. Detailed account of the preprocessing steps can be found in Ap-

pendix B.2.

Features For each episode, we calculate feature vectors for the image and audio modalities,

as follows. For image frames, we use ResNet-50 (Residual Networks; He et al. 2016) and

VGG-19 (from the the work of Visual Geometry Group; Simonyan and Zisserman 2015)

to get object recognition features. For audio excerpts, after stripping the dialogues from the

audio track,
3

we calculate Mel-Frequency Cepstral Coe�cients (MFCC; Mermelstein 1976),

commonly used as features in speech (Gupta et al., 2018) and music (Jensen et al., 2006) signal

3
Information on the content of the dialogues is already present in the text modality. Even after stripping

speech out, audio can be informative since it contains sound e�ects and music.
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dataset domain task videos

avg

length

(sec)

vocab

length

(min)

MSVD (Chen and Dolan, 2011) open description 1,970 10 13,010 318

MPII Cooking (Rohrbach et al., 2012) cooking description 44 600 - 480

YouCook (Das et al., 2013) cooking description 88 - 2,711 138

TACoS (Regneri et al., 2013) cooking description 127 360 28,292 954

TACoS-ML (Rohrbach et al., 2014) cooking description 185 360 - 1,626

MPII-MD (Rohrbach et al., 2015) movie description 94 3.9 24,549 4,416

M-VAD (Torabi et al., 2015) movie description 92 6.2 17,609 5,076

MovieQA (Tapaswi et al., 2016) movie QA 408 7,200 - -

PororoQA (Kim et al., 2016) cartoon QA 171 432 3,729 1,230

Peppa Pig cartoon narration 209 300 1,771 1,045

Table 6.2: Multimodal datasets for tasks related to text generation from videos.

applications. Additionally, we calculate VGGish
4

features (Hershey et al., 2017; Gemmeke

et al., 2017), which are reported to produce state-of-the-art results in audio classi�cation and

have also been used for video description (Hori et al., 2018).

Comparison with Other Datasets Our dataset adds to the set of existing datasets for

multimodal video understanding. Table 6.2 lists features of several datasets pertaining to

text generation from videos, such as video description and video question answering. The

Peppa Pig dataset is the �rst dataset on narration generation.

6.1.1 Narration as Video Summary

Besides their apparent purpose in books and videos, narrations can also serve as a form of

video summary. Consider for example, narrations from two episodes of Peppa Pig along with

their corresponding plot summaries (from IMDb)
5

and plot sentences (from Wikipedia),
6

shown in Figure 6.4. Clearly narrations are more elaborate than plot summaries, but do not

fail to convey the main events taking place during the episode. Narrations and plot sum-

maries can both be regarded summaries of the video, in di�erent layers of abstraction.

4
This is the name of the pre-trained model we used, available fromhttps://github.com/tensorflow/

models/tree/master/research/audioset.

5www.imdb.com
6en.wikipedia.org/wiki/List_of_Peppa_Pig_episodes, not available for all episodes.

https://github.com/tensorflow/models/tree/master/research/audioset
https://github.com/tensorflow/models/tree/master/research/audioset
www.imdb.com
en.wikipedia.org/wiki/List_of_Peppa_Pig_episodes
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narration narration

It is raining today, so Peppa and George can-

not play outside.

Peppa loves jumping in muddy puddles.

George likes to jump in muddy puddles, too.

Peppa likes to look after her little brother,

George.

Peppa and George are having a lot of fun.

Peppa has found a little puddle.

George has found a big puddle.

George wants to jump into the big puddle

�rst.

Peppa and George love jumping in muddy

puddles.

Peppa and George are wearing their boots.

Mummy and Daddy are wearing their boots.

Peppa loved jumping up and down in muddy

puddles.

Everyone loves jumping up and down in

muddy puddles.

Mommy Pig is working on her computer.

Daddy Pig is making soup for lunch.

Mommy Pig has a lot of important work to

do.

Peppa and George love to watch Mommy

work on the computer.

Oh, dear, the computer is not meant to do

that.

Daddy Pig is going to mend the computer.

Daddy Pig has mended the computer.

plot summary plot summary

It is raining and Peppa is sad because she can-

not go outside. When the rain stops, Peppa

and George get to play one of their favourite

games - jumping in muddy puddles. Things

get very muddy indeed when Mummy and

Daddy Pig join in.

Peppa and George accidentally break

Mummy Pig’s computer, so Daddy Pig tries

to �x it.

plot plot

Peppa and George get very muddy after play-

ing their favourite game - Muddy Puddles.

Peppa breaks Mummy Pig’s computer while

she is working.

Figure 6.4: Narrations and plot summaries from two episodes, Episode 1: Muddy Puddles

and Episode 7: Mummy Pig at Work.
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75 bytes full length

metric prec rec F1 prec rec F1

ROUGE-1 19.98 19.40 19.65 31.74 11.88 16.42

ROUGE-2 5.61 5.48 5.53 6.27 2.37 3.23

ROUGE-L 15.32 17.87 16.47 28.22 10.55 14.58

Table 6.3: ROUGE scores (precision, recall and F1) comparing the plot summaries to the

corresponding narration sentences of each episode.

To further explore this direction, we automatically compare (using ROUGE; Lin 2004) plot

summaries and narrations of the episodes of our dataset, in order to assess the capabilities of

an oracle narrator model as a summariser. Table 6.3 reports ROUGE scores for full length

summaries and limited length summaries (at 75 bytes).
7

Interestingly, the limited length

scores are relatively high, pointing to the fact that the �rst narration sentence of each episode

contains important information for its summary. However, the overall low scores demon-

strate that narration generation is quite a distinct task from summarisation, and points to

the value of a dataset for this problem.

6.2 Narration Generation

We formalise the task of automatic narration generation as follows. Assuming a set of M

videos, for whichNmodalities are available, we regard each video as a sequence ofT elements

xkji, j∈ {1,2, ...,M}, i∈ {1,2, ...,T },k∈ {1,2, ..,N}, wherek indexes the available modalities.

The task is to identify which elements should belong to narration and generate appropriate

text for them.

The segmentation in T elements can be done in three di�erent levels: dialogue-narration

(D/N), token, and time. The �rst type splits the video in points where the dialogue ends and

the narration begins and vice versa.
8

The second type splits the video in every token of the

dialogue, and the third is a time scale, meaning that the video can be split in any timestamp.

We divide the task of narration generation in two separate tasks, timing and content genera-

tion, each solving a particular challenge related to it.

7
The evaluation was done using pyrouge, available in https://github.com/bheinzerling/

pyrouge.

8
We refer to the non-narration parts of the video as dialogues, even if they do not necessarily contain dia-

logues.

https://github.com/bheinzerling/pyrouge
https://github.com/bheinzerling/pyrouge
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6.2.1 Narration Timing

Narration timing refers to the task of �guring when to place narrations in a video. Depending

on the type of input data, a narration may interrupt the �ow of speech in the video (as is the

case with Peppa Pig: while the narrator speaks, the characters do not engage in dialogue) or it

may be superimposed to the rest of the speech (in sportscasts, narrations overlap with other

video sounds). In the former case, �nding the timing can be regarded as an easier task, since

a pause in dialogue can pinpoint the beginning of a narration.

We model and experiment with the more general of the two, this is the reason why we cast the

problem of narration timing as an incremental tagging task, where each time step is tagged

with a label indicating whether narration follows in the sequence. Incremental sequential

models are models that do not have look-ahead capability, that is, they make predictions at

each time step using information only from the previous and the current time steps. This

is a common setup not only in language modeling, but also in real-time (Cho and Esipova,

2016) or multimodal reasoning applications (Frermann et al., 2018). The constraint of in-

crementality, which can be satis�ed using a simple, unidirectional sequence model, such as

a simple LSTM, is important, since a look-ahead model will allow information �ow from

future nodes, hinting the existence of narration.

Speci�cally, for this task, we use the token-level segmentation of the dataset and feed an

incremental sequential model with multimodal representations (tokens along with corre-

sponding image and audio features). Each token is annotated with a binary label, indicating

whether there is at least one narration token in a window of n tokens right after it. The ob-

vious choice is n = 1, where each tag indicates whether the immediate next token belongs

to narration. Additionally, inspired by work on speech dialogue turn-taking (Skantze, 2017),

where n > 1 is used, we create annotations with n = 5. We refer to the two annotation

schemes as Timing@1 and Timing@5. Figure 6.5 contains an annotation example from the

Peppa Pig dataset.

Predicting the presence of narration in upcoming time steps is in fact a proxy of the timing

problem, hence o�ering an upper bound on it. The reason for that is that all the aforemen-

tioned timing models operate on sequences de�ned by a pre-calculated quantisation of the

video stream on token limits. In the more general case, where the narration part is not given,

a more arbitrary chunking of the video has to be used (e.g. every 5 ms). Using the actual nar-

ration text (and consequently the correct tokenisation, which provides correct o�sets when

extracting images and audio excerpts to feed to the model) may make the job of the model
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puddles, youToken must wear your boots. Peppa ... brother, George

Time

0Timing@1 0 0 0 0 1 1 1 0

0Timing@5 1 1 1 1 1 1 1 0

DialogueD/N Narration

Figure 6.5: An excerpt of an episode of the Peppa Pig dataset, where all the levels of seg-

mentation and tagging schemes for narration timing are shown. Timing@n refers to the

annotation scheme, where binary labels indicate whether narration is present in a n-token

window right after each token.

easier than it actually is in the general case.

6.2.2 Content Generation

Content Generation refers to the task of �guring what to include in the narrations. In order

to deal with content generation, we assume that timing is already solved and that videos are

correctly segmented into chunks of dialogue and narration.

We hypothesise that a human assigned with the task of coming up with a good narration for

a speci�c part of a video would need to have access to information from several sources. The

content of the dialogue preceding the narration is of utmost importance. Equally important

are the actions or events taking place in the part of the video that is to be narrated. A narration

generator model should have access to the same information, hence we propose a model with

the following features:

• takes into account the output of a multimodal dialogue encoder, which encodes di-

alogue data. We instantiate an LSTM encoder at the token level, which combines

information from text, image and audio.

• takes into account the output of a video encoder, which encodes the part of the video

to be narrated. Since the corresponding text is the desired output of our decoder, this

is a video only (image and audio) decoder. Note that this encoder in principle does not

have access to the narration tokenisation, so it should not use the token segmentation,

but a time segmentation (e.g. segment every 5ms).



132 Chapter 6. Narration Generation from Video Input

A schematic overview of our proposed narrator model can be seen in Figure 6.6(a). We call

this model Dialogue Video Narrator (DiViNa).

Multimodal representation E�cient fusion of representations from di�erent modali-

ties in one, multimodal representation is an open research problem. The choice of fusion

method is reported to have signi�cant impact on performance on downstream applications

(Baltrušaitis et al., 2019). Broadly, fusion techniques can be categorised as early (concatena-

tion of representations at the feature level), late (concatenation of the output of di�erent

modality-speci�c modules) and hybrid fusion methods (Atrey et al., 2010). In order to estab-

lish baselines, we experiment with simple early fusion models. Moreover, we report results

for multi-view variants of our models, that use the correlational GRU cell (Yang et al. 2017;

for a detailed description, see Section 2.3.4) instead of simple LSTMs.

6.3 Experiments

This section describes our experiments for both narration timing and content generation.

This being a new task, we present a set of baseline models and report their e�ectiveness.

6.3.1 Experimental Setup

For all models described, we use a similar experimental setup. LSTMs with one layer of hid-

den size 500 are used in places where sequence models are needed. We use pre-trained GloVe

embeddings (Pennington et al., 2014) of size 300 for the text modality. The input of multi-

modal modules is the concatenation of the representations of the di�erent modalities, passed

through a linear layer and a ReLU activation. The output size of this linear layer is 300.

We train the models using the Adam optimiser (Kingma and Ba, 2014), setting the initial

learning rate to 0.001. During narration content generation training, we use teacher forc-

ing (Williams and Zipser, 1989) with probability 0.5. Generation is performed using a beam

search decoder, with beam size of 3.

All multimodal models for which scores are reported, use the ResNet-50 features for image

and the concatenation of VGG-ish and MFCC features for audio. We decided on this par-

ticular combination after preliminary examination of all combinations of the features of the

dataset.
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... ...

video encoderdialogue encoder

... ...

decoder

(a) Dialogue Video Narrator (DiViNa) model.

... ... ...

video encoderdialogue encoder future dialogue encoder

...

decoder

(b) Dialogue Video Narrator model with future dialogue encoder (Di
2

ViNa).

Figure 6.6: Dialogue Video Narrator (DiViNa) and Dialogue Video Narrator with future

dialogue encoding (Di
2

ViNa) models. Red nodes operate on dialogue, while yellow ones on

the part of the video to be narrated. The input to the previous and future dialogue encoders is

trimodal (text, audio, image), hence the three arrows, while the input to the video encoder is

bimodal (image and audio only). The outputs of the two or three encoders are concatenated

and used to initialise the decoder. The output of the decoder is the narration text.
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6.3.2 Experiments on Narration Timing

We conduct experiments on timing by training an incremental sequence tagging model, us-

ing the Timing@1 and Timing@5 annotations. We experiment with one unimodal (where

only the text is given) and two multimodal (text, audio and video) models, one that uses

early fusion, and one multi-view model. The evaluation of the output of timing models is

done using precision, recall and F1, as is appropriate for a tagging task. We train until the

performance on the validation set stops increasing and report results on the test set.

Implementation details For our experiments we use the following setup:

• All modalities are passed through a linear layer that yields embeddings of size 300.

• For the multi-view models, the 300 dimensional vectors are passed to the sequence

model. For the early fusion model, the representations are concatenated; consequently,

the input to the sequence model is of size 900.

• The hidden size of the LSTM is 500.

• We use one-layer sequence models for all experiments.

• Optimisation is done using the Adam optimiser (Kingma and Ba, 2014), with an initial

learning rate of 0.001.

• Training proceeds for 100 epochs.

• The model was implemented in PyTorch
9

version 0.4.1, using Python 3.6.
10

The corresponding results can be seen in Table 6.4. It appears that our models exhibit ad-

equate performance on identifying whether narration follows in the next time steps. Inter-

estingly, for both the Timing@1 and the Timing@5 schemes, the multimodal variants out-

performs the unimodal one, with our multi-view model scoring best for both setups.

6.3.3 Experiments on Content Generation

We experiment with several variations of the model described in Section 6.2 and some sim-

pler, text-only retrieval baselines. Note that the models described in this section are trained

and evaluated in dialogue/narration pairs; a di�erent split than that used for narration tim-

ing. Moreover, for the experiments described in this section, we assume that timing infor-

mation is given by an oracle.

9http://pytorch.org/
10https://www.python.org/

http://pytorch.org/
https://www.python.org/
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model pr rec f1

T@1, text-only 52.8 71.9 60.9

T@1, multimodal 58.8 69.4 63.6

T@1, multimodal, MV 62.5 69.3 65.8

T@5, text-only 48.7 63.9 55.3

T@5, multimodal 55.3 61.0 58.0

T@5, multimodal, MV 56.3 61.1 59.0

Table 6.4: Results for narration timing, using the Timing@1 (T@1) and Timing@5 (T@5)

annotations. Multimodal variants use information from image, audio and text modalities.

MV stands for our multi-view model.

The retrieval baselines work as follows: for each dialogue of the test split, instead of generat-

ing a narration from scratch, they select one from the training set, by identifying the dialogue

from the training set that is closer to it. All presented retrieval methods use cosine similarity

as a similarity metric. Four retrieval baselines are tested:

• Retrieval-avg represents both narrations and dialogues by the mean of the word em-

beddings of their tokens.

• Retrieval-t�df uses Term Frequency - Inverse Document Frequency (TF-IDF) rep-

resentation for dialogues and narrations.

• Retrieval-BERT makes use of Bidirectional Encoder Representations from Trans-

formers (BERT; Devlin et al. 2019) from a pre-trained model to represent both narra-

tions and dialogues.
11

• Retrieval-CCA uses Canonical Correlation Analysis (CCA; Hotelling 1935) to project

the dialogue and narration spaces to a shared space. At test time, dialogue representa-

tions are projected to the shared space and the narrations whose projections are closest

to them are selected. For this baseline, TF-IDF vectors are used for both dialogues and

narrations. The CCA dimensionality is 300.
12

We compare the output of the baselines with that of several variants of the DiViNa model:

• DiViNa is the model depicted on Figure 6.6(a), which makes use of text, audio and

11
We used bert-as-a-service (https://github.com/hanxiao/bert-as-service) with the

BERT-Base, Uncased pre-trained model.

12
We also experimented with 100, 500 and 1000; all yielded lower performance.

https://github.com/hanxiao/bert-as-service
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model B-1 B-2 B-3 R-L METEOR CIDEr

Retrieval-avg 14.59 7.45 4.38 13.60 6.89 21.94

Retrieval-t�df 17.73 10.37 6.18 16.43 9.16 30.84

Retrieval-BERT 14.83 7.81 4.70 13.98 7.16 19.41T
e
x
t

Retrieval-CCA 13.45 7.45 4.74 12.77 6.39 21.20

DiNa+att 8.19 3.88 2.34 12.00 4.84 4.36

DiViNa 17.35 9.65 6.22 15.25 7.99 24.02

DiViNa+att 15.70 8.59 5.82 13.71 6.88 25.42

DiViNa, MV 21.22 13.60 10.22 18.08 9.52 48.40

Di
2

ViNa 17.67 10.26 6.76 15.23 8.17 23.61

Di
2

ViNa+att 18.45 9.88 5.94 15.54 7.82 22.04

Di
2

ViNa, MV 19.37 10.85 6.95 16.70 8.08 16.70

DiViNa+mmd 23.20 13.71 8.95 20.51 11.15 49.29

DiViNa+att+mmd 20.43 12.03 7.86 17.71 9.22 40.82

DiViNa+mmd, MV 24.15 14.39 9.30 21.73 12.24 56.35

Di
2

ViNa+mmd 24.57 15.90 11.72 21.70 12.06 67.24

Di
2

ViNa+att+mmd 22.93 14.79 10.36 19.96 10.74 52.93

M
u
l
t
i
m
o
d
a
l

Di
2

ViNa+mmd, MV 23.78 14.94 10.82 21.29 11.06 64.86

Table 6.5: Results for narration content generation. BLEU-1 (B-1), BLEU-2 (B-2), BLEU-3

(B-3), ROUGE-L (R-L), METEOR and CIDEr metrics are reported. The �rst section of the

table refers to baselines that use only textual information, while the rest of the table refers to

multimodal models. The third section includes results for models that use the multimodal

decoder (mmd), thus having information about the desired length of the narration. The

models in the second section of the table do not have access to this information. The highest

values are in bolface, while the best results for models that do not use the mmd are in italics.

image information from the dialogue before the narration and also encodes the video

(image and audio information) of the narration part. The output of the two encoders

is concatenated and passed through a linear layer to reduce its size, before it is fed to

the decoder.

• DiViNa+att is the DiViNa model equipped with an attention mechanism over the

states of the dialogue encoder. For this and other attentive variants, we make use of

dot product attention (Luong et al., 2015), where the attention scores are calculated
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as follows:

score(st,hi) = s>t hi,

for each hidden state of encoder hi and decoder hidden state st.

• DiNa+att is a variant of the DiViNa+att model, where there is no video encoder:

the narration is generated based on the preceding dialogue only.

• Di
2
ViNa, Di

2
ViNa+att: Motivated by the omniscience of the narrator in the dataset,

these models make use of the dialogue that follows the video to be narrated. This is

achieved by encoding the dialogue that follows the narration using a separate dialogue

encoder and feeding the future dialogue vector to the decoder. A schematic depiction

of this model can be found in Figure 6.6(b).

• DiViNa+mmd, Di
2
ViNa+mmd: The decoder we have described so far makes use

of audiovisual information only on its initialisation step. In order to be able to use the

audio and image representations of the narration part, we experiment with a multi-

modal decoder (mmd). The basic function of such a decoder is shown in Figure 6.7.

During training, the fusion of image, audio and text representations is given to the

decoder at each time step. Even when not using teacher forcing (i.e. when feeding

the predictions of the previous step to the next step), the input of the decoder is the

concatenation of the “correct" audiovisual representations and the word embedding

of the token generated by the previous step. Since representations for image and au-

dio are given in the dataset and not generated by the model, at test time, decoding

proceeds for as many steps as the number of audiovisual representations available. We

experiment with using the multimodal decoder on both DiViNa and Di2ViNa.

• multi-view (MV) variants: We also experiment with a multi-view variant of our

model, that uses the correlational GRU, instead of an LSTM for the dialogue narra-

tion part.
13

An obvious limitation of the multimodal decoder of the above model is that it cannot gen-

erate narrations of arbitrary length. This is not necessarily a constraint though, since some

narration setups call for narrations of speci�c prede�ned length, as is the case for the Peppa

Pig dataset. Since multimodal information is necessary, quantisation of the video chunk to

be narrated should be done before the start of the decoding process. The known quanti-

sation assumption is quite fair, since an estimation of the length of the narration will most

13
We also experimented with using corrGRU cells in other encoders of our architecture, but using a multi-

view model for the dialogue encoder yields the best performance.
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... ...

T T

(a) Text-only Decoder.

... ...

ATI ATI

(b) Multimodal Decoder.

Figure 6.7: Multimodal Decoder used in DiViNa+mmd and Di2ViNa+mmd models and

comparison with Text-only Decoder. At each timestep, audio (A) and image (I) represen-

tations are fed to the decoder, along with the word embedding of the corresponding token

(T). In this particular case, teacher forcing is not used: the word embedding of the previously

generated token is fused with the “correct" audiovisual vectors.

likely be available in all situations (for example, it can be calculated by dividing the time of

the gap between two dialogues with the mean time it takes a narrator to utter a word). In our

experiments, we exploited the known tokenisation of narrations to extract the multimodal

representations needed to feed the decoder. As such, this model variant has access to more

information than its counterparts.

In all models that contain a video encoder for the narration part, we made the simplifying

choice to use the correct tokenisation of the narration, which is given in the dataset, despite

the fact that, normally, a narrator model will not have access to that information.

Implementation Details For our experiments we used the following settings:

• All modalities are passed through a linear layer that yields embeddings of size 300.

• For the multi-view models, the 300 dimensional vectors are passed to the sequence

model. For the early fusion model, the representations are concatenated; consequently,

the input to the sequence model is of size 900.

• The hidden size of all the LSTMs, in the encoders and the decoder is 500.

• The output of more than one encoders is concatenated and passed through a bridge

layer with output dimensionality of 500 before being fed to the decoder.

• We use one-layer sequence models for all experiments.
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• Optimisation is done using the Adam optimiser, with an initial learning rate of 0.001.

• Training proceeds for 100 epochs.

• The model was implemented in PyTorch version 0.4.1, using Python 3.6.

Narration generation is a natural language generation (NLG) task, and as such, its evalu-

ation is not straightforward. Automatic evaluation of NLG systems is an open problem

and widely used metrics are under heavy criticism by the community (Callison-Burch et al.,

2006; Liu et al., 2016). Following previous work on NLG, ranging from image captioning

(Xu et al., 2015b) to summarization (See et al., 2017), we report a set of word overlap met-

rics, complemetary to each other.
14

While these metrics have been used extensively in the

context of image and video captioning, their nature allows for their use in text generation se-

tups that do not necessarily have an image component. In the case of narration generation,

they compare narrations from the dataset with narrations generated by our systems, without

considering the video. The scores for all models can be seen in Table 6.5.

The generally low scores of the retrieval models suggest that the task of narration generation

is not a trivial one and highlights the need for more sophisticated generative models. Quite

interestingly though, the simple TF-IDF retrieval baseline not only outperforms the other

text-only retrieval baselines, but also yields performance on par with that of some of the

simplest generation multimodal models.

The signi�cantly lower performance of DiNa+att suggests that encoding the video of the

part to be narrated (that is what di�erentiates DiNa from DiViNa) is of high importance.

Equally important is encoding the upcoming dialogue, as suggested by the generally higher

scores of the Di
2

ViNa variants. The attentive variants of all models seem to perform lower

than their non-attentive counterparts. A reason for that may be that they base their pre-

dictions more on the preceding dialogue (since they attend to it), while the contributions

of the other encoders are downgraded. These results highlight a distinctive quality of the

task of narration generation: the signi�cance of e�ective combination of information from

the past (preceding dialogue), the present (video to be narrated), and the future (upcoming

dialogue).

Moreover, it can be seen that, in most setups, the multi-view variants of the narration genera-

tion models are able to outperform their non-multi-view counterparts. The fact that variants

that use the multimodal decoder (mmd) outperform all other variants does not come as a sur-

prise, since they have access to the audiovisual information at the time of decoding and also

14
We used nlg-eval, available in https://github.com/Maluuba/nlg-eval.

https://github.com/Maluuba/nlg-eval
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generate narrations of the right length, by design. Some examples of generated narrations

are shown in Figure 6.8.

Model: Peppa and jumping up and down in muddy puddles. Everyone loves jumping up.

Ground Truth: Everyone in the whole world loves jumping up and down in muddy

puddles.

Model: Suzy sheep has come to play on the.

Ground Truth: Peppa has come to play with Suzy sheep.

Model: It is bedtime for Peppa and George are very sleepy.

Ground Truth: It is nighttime. Peppa and George are going to bed.

Figure 6.8: Examples of the output of Di
2

ViNa+mmd model, paired with respective ground

truth narrations.

6.4 Conclusions

In this chapter, we introduce and formalise the task of narration generation from videos.

Narration generation refers to the task of accompanying videos with text snippets in several

places; text that is meant to be uttered by a speaker and become part of the �nal video. The

task of narration generation adds to the set of research tasks related to text generation from

multimodal input. The problem includes a timing (�guring out when to narrate) and a con-

tent generation (�guring out what to include in the narration) part. Due to this dual nature

of the problem, along with the fact that the content of narrations is, in general, context-

aware and not particularly descriptive of the images shown in the video, we believe that this

is a new and challenging task.

To facilitate research in the direction of automatic narration generation, we create a car-

toon video dataset from the animated television series Peppa Pig, whose episodes include

narration. We propose neural models to tackle both the problems of narration timing and

narration content generation and report the �rst results on the newly introduced task and

dataset.
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Conclusions

Multi-view learning algorithms are powerful representation learning tools, often exploited

in the context of multimodal problems. This thesis discusses the applicability and perfor-

mance of correlational multi-view representation learning techniques to a variety of prob-

lems related to NLP. We suggest that multi-view representation learning techniques should

be seriously considered and used by researchers and practitioners of the NLP community.

Especially for multimodal applications, research around multi-view representation learning

can strengthen the relationship between communities (e.g. between the CV and NLP com-

munities). The process of investigating common representations for multimodal data brings

together ideas and researchers from the two communities, as opposed to the isolated ap-

proach of using CV or NLP modules as blackbox feature generators.

Although there is large amount of work on representation learning for multi-view data, com-

monly, related techniques are tested on synthetic datasets or strictly limited benchmarks.

Arguably, such thorough examination of new techniques in well-researched and established

datasets and setups is good practice, since it allows for clean and isolated evaluation. How-

ever, the full potential of new ideas is not realised unless they prove their ability to scale to the

size, complexity and requirements of downstream tasks. We experiment with a wide range of

applications, showing that representations created using such techniques can increase per-

formance in various problems and setups.

Multi-view representations proved quite informative in the task of document summarisa-

tion, despite the unimodal nature of data. For abstract image captioning, using multi-view

representations, we were able to generate captions of higher quality and diversity than those

generated by non-multi-view setups. Moreover, a large part of the work of this thesis focuses

141
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on video data; a type of dataset that is not yet fully explored by the Computer Vision and

Natural Language Processing communities. We provide evidence on the bene�ts of adopting

a multi-view framework while working with videos, as opposed to the early fusion paradigm.

Shallow tasks, such as the structural, dialogue and plot tagging tasks that we examine using

television series data, as well as text generation tasks, such as narration generation, bene�t

from a multi-view contemplation.

7.1 Future Work

There are several avenues for future research, based on the work presented in this thesis. The

purpose of this section is to specify and comment on some of those directions.

7.1.1 Applications of Multi-view Representation Learning

In the task of document summarisation (see Chapter 3) we show that correlational multi-

view representations are informative and yield adequate performance on the downstream

task. However, the simple sentence selection setup we employ with those representations,

encounters limitations in getting state-of-the-art performance on the CNN/DailyMail dataset.

Recent extractive and abstractive document summarisation systems use a range of mech-

anisms that are not present in our selection system: attention mechanisms that focus on

di�erent places of the document (Cheng and Lapata, 2016) or side information (Narayan

et al., 2018a), copying mechanisms able to copy words straight from the document (out-of-

vocabulary or otherwise; See et al. 2017), hierarchical attention (Nallapati et al., 2016b) and

others. It is worth exploring then, whether our multi-view system and these state-of-the-art

techniques can be combined. Further work on combining multi-view representations with

representations from state-of-the-art systems can shed more light on the quality and e�ec-

tiveness of the representations, revealing whether they are complementary.

In a similar fashion, given its performance, our CCA-based abstract scene captioning system

described in Chapter 4, can be utilised to complement other image captioning systems. Im-

age captioning systems operating on photographical data and yielding state-of-the-art per-

formance can be complemented with representations inspired by our approach.

In Chapter 5, we present multi-view models for movie understanding tasks. While the out-

put of tagging may not be too informative on its own, such tasks provide ground towards

automatic movie understanding. Moreover, they can prove quite useful in information re-
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trieval applications, where episodes or videos can be automatically enriched with a large set

of deduced features or labels that facilitate search, without the need for explicit annotation,

which can be costly and laborious. In the case of the CSI series, these labels can be tags indi-

cating whether the episode has one or two crime cases, whether a large part of the episode is

devoted to conversation between detectives and others.

In Chapter 6, we present the task of narration generation. Although we experiment with a

simple cartoon dataset, our work is a step towards the direction of narrative content gener-

ation. Several problems pertaining to narrative content can be modelled by taking inspira-

tion from our work, including generation of sports commentary, directors’ commentaries in

movies, or narrative content for news summary videos. The ideas, models and experiments

presented in Chapter 6 are presented within a rather general and abstract framework which

allows for easy extensions. For example, modelling narration timing as an incremental tag-

ging problem was not strictly necessary for our speci�c dataset. Depending on the type of

narration and the dataset, timing can be fairly straightforward (�ll in gaps in the dialogue

with length more than a couple of seconds; this is the case with our dataset), or could be

more complex (decide when it is time for a narrator to speak, given the information they

have at hand, as is the case in sports commentary). We chose to work with the more general

case, providing a framework for benchmarking narrative content generation techniques.

7.1.2 Peppa Pig Dataset

In Chapter 6 we present a new video dataset from the animated cartoon series Peppa Pig. A

strong point of the Peppa Pig dataset is the simplicity of its language and images. While it

follows the paradigm of Abstract Scenes Dataset (Zitnick and Parikh 2013; also see Chapter

4) by abstracting away from complex images, at the same time it calls for an image processing

component, as it does not use any semantic representations for images. As such, it stands in

the middle between semantically annotated and complex, real-life datasets.

This dataset served as a testbed for the task of narration generation that is described in detail

in Chapter 6. However, movie and cartoon datasets can have multiple uses. The Peppa

Pig dataset can be used for episode creation, namely creating whole episodes by generating

dialogues and narrations from the the video signal alone. Moreover, it can be used for video

summarisation, video title generation and video description tasks.

The task of narration generation itself, as shown, needs inference on the plot level and is

more creatively solved when information from the past, the present and the future is com-
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bined. Further investigation using more complex models and/or architectures can yield bet-

ter performance on this task. Finally, using other cartoon datasets, such as ToonNet (Zhou

et al., 2018) for pre-training, can be bene�cial for narration generation and other tasks on

this dataset.
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Implementation Details

A.1 Encoder model used in Deep CCA Extractive Sum-

mariser (DCorES + encoder)

This appendix outlines the structural and implementation details of the encoder DCCA

model, referenced in section 3.3.3.1. We repeat the schematic of the model in Figure A.1, for

reference.

The model is heavily inspired by the architecture described in past work (Narayan et al.,

2018a) and consists of a hierarchical encoder for the documents and a sentence encoder for

the summary sentences. The encoded information is then fed to the DCCA model, and the

whole network is trained by maximising the correlation between the two views.

More speci�cally,

• Data are tokenised and replaced with token ids. The vocabulary size is set to 150,000.

• Each sentence is encoded in a 350-dimensional vector by applying convolution. For

the convolutional encoder, we followed (Kim, 2014), and used a list of kernels of widths

1 to 7, each with output channel size of 50.

• Sentences of each document are fed to an RNN network. For the recurrent neural

network component in document encoder and sentence extractor, we used a single-

layered LSTM network with size 600.

• Summary sentences are encoded in a 350-dimensional vector, by applying convolu-

tion, in a similar manner to the document’s sentences. The �nal hidden state of this
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encoder is used as the �rst view input to the DCCA network.

• For every summary, we consider three sentences, using padding if the summary con-

sists of less than three sentences, and selecting the �rst three in cases the summary

consists of more than three sentences.

• The three vectors for every highlight are concatenated to give the second view input.

• The DCCA network lengths are set to [300, 800, 800, 300]. The output dimension-

ality is 300.

• The metric used for sentence similarity in decoding is cosine similarity.

• The model was trained with the Momentum optimiser with learning rate and mo-

mentum set to 10−5
, and 0.99 respectively.

• The model is implemented in TensorFlow
1

(version 1.1.0) using Python 2.7.
2

1https://www.tensorflow.org/
2https://www.python.org/

https://www.tensorflow.org/
https://www.python.org/
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Figure A.1: Schematic of the encoder-dcca model.



148 Appendix A. Implementation Details

A.2 Multi-view sequential inference model

This appendix outlines the structural and implementation details of the multi-view infer-

ence model, referenced in Section 5.2.

• The hidden size of the LSTM and the corrGRU is 128.

• We use one-layer sequence models for all experiments.

• We set value for parameters λ = 0.001,λa = 0.001,λb = 0.001,λc = 0.001 after

tuning in the validation set.

• Optimisation is done using the Adam optimiser (Kingma and Ba, 2014), with an initial

learning rate of 0.001.

• Training proceeds for 150 epochs.

• The model is implemented in TensorFlow
3

(version 1.7.0) using Python 2.7.
4

3https://www.tensorflow.org/
4https://www.python.org/

https://www.tensorflow.org/
https://www.python.org/
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Peppa Pig Dataset Details

B.1 List of Episodes

This section contains a full list of the episodes used for the Peppa Pig Dataset described in

Section 6.1.

ep. no episode title ep. no episode title

season 1 season 4

1 Muddy Puddles 106 Work and Play

2 Mr. Dinosaur is Lost 107 The Rainbow

3 Best Friend 108 Pedro’s Cough

4 Polly Parrot 109 The Library

5 Hide and Seek 110 The Camper Van

6 The Playgroup 111 Camping Holiday

7 Mummy Pig at Work 112 Compost

8 Piggy in the Middle 113 Richard Rabbit Comes to Play

9 Daddy Loses his Glasses 114 Fun Run

10 Gardening 115 Washing

11 Hiccups 116 Polly’s Boat Trip

12 Bicycles 117 Delphine Donkey

13 Secrets 118 The Fire Engine

14 Flying a Kite 119 Princess Peppa

15 Picnic 120 Teddy Playgroup

16 Musical Instruments 121 Danny’s Pirate Party

149
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17 Frogs and Worms and Butter�ies 122 Mr. Potato Comes to Town

18 Dressing Up 123 The Train Ride

19 New Shoes 124 Granny Pig’s Chickens

20 The School Fete 125 Talent Day

21 Mummy Pig’s Birthday 126 A Trip To the Moon

22 The Tooth Fairy 127 Grandpa at the Playground

23 The New Car 128 Goldie the Fish

24 Treasure Hunt 129 Funfair

25 Not Very Well 130 Numbers

26 Snow 131 Digging up the Road

season 2 season 6

27 Windy Castle 132 Freddy Fox

28 My Cousin Chloe 133 Whistling

29 Pancakes 134 Doctor Hamster’s Tortoise

30 Babysitting 135 Sun, Sea and Snow

31 Ballet Lesson 136 Grandpa Pig’s Computer

32 Thunderstorm 137 Hospital

33 Cleaning the Car 138 Spring

34 Lunch 139 Miss Rabbit’s Helicopter

35 Camping 140 Baby Alexander

36 The Sleepy Princess 141 Grampy Rabbit’s Lighthouse

37 The Tree House 142 Miss Rabbit’s Day O�

38 Fancy Dress Party 143 The Secret Club

39 The Museum 144 Grampy Rabbit’s Boatyard

40 Very Hot Day 145 Shake, Rattle and Bang

41 Chloe’s Puppet Show 146 Champion Daddy Pig

42 Daddy Gets Fit 147 Chatterbox

43 Tidying Up 148 Mr. Fox’s Van

44 The Playground 149 Chloe’s Big Friends

45 Daddy Puts up a Picture 151 The Blackberry Bush

46 At the Beach 152 Pottery

47 Mister Skinnylegs 153 Paper Aeroplanes

48 Grandpa Pig’s Boat 154 Edmond Elephant’s Birthday

49 Shopping 155 The Biggest Muddy Puddle in the World

50 My Birthday Party 156 Santa’s Grotto
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51 Daddy’s Movie Camera 157 Santa’s Visit

52 School Play season 7

season 3 158 Potato City

53 Bubbles 159 The New House

54 Emily Elephant 160 Basketball

55 Polly’s Holiday 161 Horsey Twinkle Toes

56 Teddy’s Day Out 162 Naughty Tortoise

57 Mysteries 163 Mr. Fox’s Shop

58 George’s Friend 164 Shadows

59 Mr. Scarecrow 165 International Day

60 Windy Autumn Day 166 The Rainy Day Game

61 The Time Capsule 167 Mummy Rabbit’s Bump

62 Rock Pools 168 Pedro the Cowboy

63 Recycling 169 Peppa and George’s Garden

64 The Boat Pond 170 The Flying Vet

65 Tra�c Jam 171 Kylie Kangaroo

66 Bedtime 172 Captain Daddy Dog

67 Sports Day 173 Grampy Rabbit’s Dinosaur Park

68 The Eye Test 174 Bedtime Story

69 Granddad Dog’s Garage 175 Lost Keys

70 Foggy Day 176 George’s New Dinosaur

71 Jumble Sale 177 Grandpa Pig’s Train to the Rescue

72 Swimming 178 The Pet Competition

73 Tiny Creatures 179 Spider Web

74 Daddy Pig’s O�ce 180 The Noisy Night

75 Pirate Island 181 The Wishing Well

76 George Catches a Cold 182 Mr. Potato’s Christmas Show

77 The Balloon Ride 183 Madame Gazelle’s Leaving Party

78 George’s Birthday 184 The Queen

season 4 season 8

79 The Long Grass 185 Desert Island

80 Zoe Zebra the Postman’s Daughter 186 Perfume

81 Painting 187 The Children’s Fete

82 Cuckoo Clock 188 The Aquarium

83 The Baby Piggy 189 George’s Racing Car



152 Appendix B. Peppa Pig Dataset Details

84 Grandpa’s Little Train 190 The Little Boat

85 The Cycle Ride 191 The Sandpit

86 Ice Skating 192 Night Animals

87 The Dentist 193 Flying on Holiday

88 Dens 194 The Holiday House

89 Pretend Friend 195 Holiday in the Sun

90 School Bus Trip 196 The End of the Holiday

91 Rebecca Rabbit 197 Mirrors

92 Nature Trail 198 Pedro is Late

93 Pen Pal 199 Garden Games

94 Granny and Grandpa’s Attic 200 Going Boating

95 The Quarrel 201 Mr. Bull in a China Shop

96 The Toy Cupboard 202 Fruit

97 School Camp 203 George’s Balloon

98 Captain Daddy Pig 204 Peppa’s Circus

99 The Powercut 205 The Fish Pond

100 Bouncy Ball 206 Snowy Mountain

101 Stars 207 Grampy Rabbit in Space

102 Daddy Pig’s Birthday 208 The Olden Days

103 Sleepover 209 Pirate Treasure

104 Cold Winter Day
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B.2 Preprocessing

This section outlines the preprocessing process followed for the episodes of the Peppa Pig

Dataset, described in Section 6.1. Speci�cally, each episode was preprocessed as follows:

• Double episodes
1

were split to two separate episodes and corresponding subtitles were

manually synchronised with the video.

• Each episode was trimmed to the correct length. Commonly, episodes start with an

“introduction” part, in which Peppa, the main character, introduces herself and her

family. This part, which usually lasts less than two minutes, was manually removed.

• The audio channel was extracted from each episode.

• We performed normalization of the text, by manually inspecting it. Since Peppa Pig is

a cartoon targeting young children, animal sounds and sound e�ects are abundant in

its dialogues. We manually identi�ed and normalised such instances. As an example,

all the occurrences of “oink”, “ooink”, “oinking”, “big oink”, “loud snort” etc. were

normalised to “*pig_sound*” for text application and to a special noise token (“{ns}”)

for forced alignment purposes (see next step).

• The subtitles were aligned with the audio channel in the token level. We used the Penn

Forced Aligner (p2fa; Yuan and Liberman 2008) for that.

• After forced alignment, usingffmpeg,
2

we extracted frames (snapshots from the video)

for every token, at timestamps corresponding to the beginning, the end and the mid-

dle of the token timeframe.

• Annotation of the narrator: the sentences uttered by the narrator were semi-manually

annotated. Some subtitles, especially those that contained the �rst utterrance of the

narrator after a dialogue between the characters, begin with a tag (“[NARRATOR]”

– subtitles are mostly meant for the hearing impaired, since Peppa Pig is aimed at

preschoolers). However, the use of this cue is not consistent, and also, it is not used

more than once in consecutive narrator subtitles. First, we annotated the subtitles

beginning with the “NARRATOR” tag as belonging to the narrator, and a second

manual pass was done to ensure that all narrations are properly tagged as such.

• MFCC features were calculated using the tool aubio.
3

1
most video �les contained two episodes

2https://www.ffmpeg.org/
3https://aubio.org/

https://www.ffmpeg.org/
https://aubio.org/
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