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Abstract

Automatic speech recognition requires many hours of transcribed speech recordings

in order for an acoustic model to be effectively trained. However, recording speech

corpora is time-consuming and expensive, so such quantities of data exist only for

a handful of languages — there are many languages for which little or no data exist.

Given that there are acoustic similarities between different languages, it may be fruitful

to use data from a well-supported source language for the task of training a recogniser

in a target language with little training data.

Since most languages do not share a common phonetic inventory, we propose an

indirect way of transferring information from a source language model to a target lan-

guage model. Tandem features, in which class-posteriors from a separate classifier

are decorrelated and appended to conventional acoustic features, are used to do that.

They have the advantage that the language used to train the classifier, typically a Multi-

layer Perceptron (MLP) need not be the same as the target language being recognised.

Consistent with prior work, positive results are achieved for monolingual systems in a

number of different languages.

Furthermore, improvements are also shown for the cross-lingual case, in which the

tandem features were generated using a classifier not trained for the target language.

We examine factors which may predict the relative improvements brought about by

tandem features for a given source and target pair. We examine some cross-corpus

normalization issues that naturally arise in multilingual speech recognition and validate

our solution in terms of recognition accuracy and a mutual information measure.

The tandem classifier in work up to this point in the thesis has been a phoneme clas-

sifier. Articulatory features (AFs), represented here as a multi-stream, discrete, multi-

valued labelling of speech, can be used as an alternative task. The motivation for this is

that since AFs are a set of physically grounded categories that are not language-specific

they may be more suitable for cross-lingual transfer. Then, using either phoneme or

AF classification as our MLP task, we look at training the MLP using data from more

than one language — again we hypothesise that AF tandem will resulting greater im-

provements in accuracy. We also examine performance where only limited amounts of

target language data are available, and see how our various tandem systems perform

under those conditions.
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Chapter 1

Introduction

Automatic speech recognition (ASR) systems are typically composed of a number of

components. Simply put, the stages are:

Feature extraction In which the raw acoustic signal is represented as a sequence of

vectors of real numbers. This representation is what makes the modeling of

speech feasible.

Acoustic model The acoustic model holds representations of sub-word units in terms

of the feature space that we are operating in. The model needs to be trained with

labelled data.

Lexicon This is simply a look-up table which provides a correspondence between

words and sequences of sub-word units.

Language model This a model of word sequences, which allows us to select the most

probable alternative out of those suggested by the acoustic model.

Training acoustic models for speech recognition typically requires hundreds of hours

of transcribed speech data (e.g. [Janin et al., 2007]). Whilst such data exist for English

and a handful of other languages, there are thousands of languages for which there is

only a little data [Gordon, 2005].

We are focusing on acoustic modelling and not other aspects of the recogniser —

for instance, we assume a lexicon and language model exist for the language to be

recognised. This work examines ways in which training data in one language can

be used to improve the accuracy of a recogniser in another. That is done here by

encapsulating information learnt from one corpus in the parameters of a model, which

is then applied to the target language.

1



2 Chapter 1. Introduction

We do this by training a classifier, namely a neural network, on data in a source

language and then applying it to recognise data in a target language. More than one

source or target language can be used. Doing this directly requires either that the

languages are labelled with a common set of sub-word units or that a mapping is learnt

from the sub-word units in the source language(s) to the target language(s). Using the

neural network output indirectly avoids the need for mapping between label sets. The

terms directly and indirectly are more precisely defined in Section 1.3.

The task that the neural network will perform is that of classifying the speech signal

in to the sub-word units of the source language. Phonemes are the most commonly

used sub-word unit, but perhaps phonemes are not the best classes to use for this task.

When considering an alternative, it’s useful to bear in mind what properties we’re

looking for:

Realized in the same way in different languages This means that once a model has

been trained in one language it can easily be applied to another. Since nominally

identical phonemes (e.g. sharing the same IPA symbol) can in fact be realized

differently in different languages [Imseng et al., 2011], phonemes may be a bad

choice for cross-lingual recognition.

Evenly distributed across languages For instance, we might train a classifier on a

language which has few, or even zero, instances of a unit that occurs frequently

in the target language — this would result in poor performance.

Easily labelled Speech data usually have only word level transcriptions — the lexicon

is then used to derive a phone-level transcription. Producing a dictionary for a

new language can be a time-consuming and expensive task. In addition, for

domains such as conversational telephone speech, the pronunciation observed is

rarely the canonical pronunciation in the dictionary.

Few in number and easily distinguishable These properties are desirable simply be-

cause they would make the classification problem easier.

An alternative to phonemes that we will consider is articulatory features (AFs). Ar-

ticulatory features are described in more detail in Chapter 5, but for our purposes they

are a discrete multi-stream labelling of speech data that bears a close relationship to the

physical articulators used for speech production. They have almost all of the desired

properties listed above: they are a more language universal unit and should therefore

have a more consistent representation across languages, they have similar coverage in
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different languages ([Schultz and Kirchhoff, 2006, page 98] and Table 5.7). The clas-

sification problem can be posed so that multiple classifiers each have fewer classes to

choose from. Previous work [Frankel and King, 2005] shows that AFs can be distin-

guished from each other using only acoustic observations.

Another option is to use graphemes — this would mean simply using the letters that

make up a word as its sub-word units. This solution has the advantage that the lexicon

can be trivially generated, given a phonographic script. A disadvantage is that for some

languages, e.g. English, the spelling can bear only little relation to the pronunciation.

Due to time constraints, grapheme-based models are not used in this thesis.

The rest of this chapter covers prior work in the area of cross-lingual and multilin-

gual speech recognition, drawing in part from [Schultz and Kirchhoff, 2006, Chapter

4], which provides a good overview of work in multilingual acoustic modelling. Sec-

tion 1.1 takes a look at various scenarios in which cross-lingual learning may take

place, particularly looking at how the languages involved relate to each other, and

identifies where the current work fits within the literature. Section 1.2 explores differ-

ent choices of sub-word unit, namely contrasting the use of phonemes and articulatory

representations. Section 1.3 then looks at different ways in which sub-word units could

be represented in the model. Finally, Section 1.4 examines the different speech corpora

that could be used, as well as the one that was eventually selected.

1.1 Usage scenarios

This section looks at different ways in which the language to be recognised and the

other languages involved relate to each other. First of all we look at language in-
dependent systems, in which all languages involved are in the same position — the

system can recognise more than one language and is trained with data from each of

them. We then look at language adaptive systems, in which a model trained for one

language is used in some way to aid the recognition of another target language — the

resulting model can be applied to the target language but generally not to the source

language.

1.1.1 Language-Independent

Language independent ASR systems are those which can recognise a number of dif-

ferent languages simultaneously. Some training data are usually available for each of
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the languages and the models learnt are combined in some way. Methods for training

both context-independent and context-dependent models are described below and are

followed by the introduction of some work using a universal phoneset.

Context-independent

In the case of context-independent models, e.g. monophones, there are three main ways

in which acoustic models can be combined. The descriptions here assume phonemes

to be an appropriate sub-word unit to use, but that need not be the case — the same

methods could be applied to a different choice of unit.

Heuristic Phonemes from different languages are treated as being in the same

class as each other based on rules derived from articulatory knowledge

[Weng et al., 1997], the IPA chart [Köhler, 1999] or auditory phonetic criteria

[Dalgaard and Andersen, 1992]. A model for each class is trained using data

from all languages and then used during decoding to model all phonemes within

that class. Unless target language data is lacking [Andersen et al., 2003] or the

speakers are bilingual/accented [Übler et al., 1998] then a monolingual system

using only target language data performed better than one using this heuristic

mapping.

Data-driven A similarity measure is used to cluster phonemes into classes. That mea-

sure could be something derived from, for example:

• Confusion matrices obtained through recognition [Andersen et al., 2003]

• The likelihood [Köhler, 1999] or posterior [Corredor-Ardoy et al., 1997] of

a phone, given the model of another

Recognition accuracy of a multilingual system trained in this way is worse than

a monolingual system unless only limited amounts of data are available. Fur-

thermore, the classes derived may not be linguistically meaningful and in some

cases all sounds from one language end up in the same class.

Hierarchical Phonemes are first separated into categories heuristically, and then some

data-driven method is applied within those categories to cluster the models into

the final set of classes used for recognition. In [Weng et al., 1997] phonemes in

the same category share Gaussian components from single mixture model; in

[Köhler, 1999] bottom-up clustering within IPA-based categories is used.
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Hierarchical model combination, which essentially combines the two other meth-

ods, performs the best and using heuristic rules typically performs least well. Of

course, none of the multilingual model combination methods described above per-

formed better than a purely monolingual one. [Zgank et al., 2004] also compared a

heuristic “expert-driven” phoneme mapping method to a data-driven (confusion matrix

based) method for cross-lingual speech recognition and reached a similar conclusion.

Context-dependent

Whilst the previous section works with monophone (context-independent) mod-

els, we need some method that works with triphones (and other context-dependent

units) since using triphones generally always provides an improvement over

monophones. Methods for training context-dependent models are described in

[Schultz and Kirchhoff, 2006, pp106–110].

ML-sep Separate models are trained for each phoneme and no sharing of data occurs

between languages. The one exception to this (in [Schultz and Waibel, 2001]) is

in the feature extraction stage, where LDA is used to maximize the separation

between all phonemes and not just those for each separate recogniser.

ML-mix Training data is shared across languages such that all phonemes sharing the

same IPA symbol are treated as being the same phoneme. IPA phoneme labels

are also referred to in questions when tying triphone models, but the language is

not available as a potential question.

ML-tag This differs from ML-mix in two ways

• Data is labelled with its language, meaning that the triphone clustering

procedure can ask questions about language

• Gaussian components are shared between languages but mixture weights

are trained separately

As reported in [Schultz and Waibel, 1998], ML-tag outperforms ML-mix for the

five languages that the methods were compared on. This implies that asking triphone

tying questions about language is beneficial and it is not reasonable to assume that

segments of speech from different languages with the same IPA symbol are the same.
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Universal Phoneme Posteriors

In recent work presented in [Imseng et al., 2011], a universal phoneme classifier was

used. MLP(s) were used to provide phoneme posteriors that were then modelled di-

rectly using an HMM. The phoneme posteriors used were derived in one of three ways:

Monolingual A collection of monolingual MLPs, one per language.

Universal :

Language independent An MLP that classifies into a universal phoneset, con-

sisting of the union of the phonesets of the languages involved.

Language dependent A set three components, by which the posterior proba-

bility of a phoneme in the universal phoneset is estimated. The estimate is

composed1 of:

P(l|xt) the frame-based language posterior

P(u|mk
l ) the probability of a universal phoneme given a language specific

phoneme (this is assumed to be one if the phoneme symbols are iden-

tical and zero otherwise, i.e. a deterministic mapping)

P(mk
l,t |xt) the posterior probability of a language specific phoneme

The conclusions of the paper were that systems using universal phoneme posteriors

(especially the language dependent system described above) were more accurate than

the monolingual system when the language being spoken was unknown. Improved

recognition of non-native speech was also reported.

1.1.2 Language Adaptive

The work in this thesis could perhaps be described as language adaptive — this refers

to the scenario in which a model from a source language is applied to a target lan-

guage. On the other hand, it does not take the form of the language adaptive method

described in this section since the source language model does not directly appear in

the target language model. Different terms exist for the cross-language scenarios that

are possible:
1The expression used to estimate the posterior of universal phoneme u at time t is

P(u|xt) =
N

∑
l=1

P(l|xt)
Kl

∑
k=1

P(u|mk
l )P(m

k
l,t |xt) (1.1)

where N is the number of languages and Kl the number of phonemes in language l.
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Cross-language transfer This is the case where no target language training data is

available.

Language adaptation technique Here, some target language data is available and is

used to adapt a model trained from source language data.

Bootstrapping approach Bootstrapping is where plenty of target language data exists

and so the source language data is used only to initialize the target language

model. The target language data is then used to train the model.

Polyphone decision tree specialization (PDTS) [Schultz and Waibel, 1999] is an

example of a language adaptive method and the starting point for a range of work in

multilingual acoustic modelling. When combining context-dependent models from a

number of different languages, the coverage of polyphones in the combined languages

may differ widely from that in the language to be recognised. To address this, the

decision tree learnt from the combined languages is specialized:

1. A multilingual polyphone decision tree is learnt using data from all input lan-

guages

2. Those phonemes not appearing the language to be decoded are removed from

the tree

3. The tree is then regrown using some target language data until a specified number

of leaves is attained

This final step means the distribution of polyphone contexts will diverge less from that

which appears in the target language. The resulting decision tree is also specific to

the target language being decoded. Whilst PDTS has been shown to work, this work

focuses on the use of tandem features as method for applying the knowledge in one

model to another.
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The reasons for that decision include:

• Cross-lingual transfer using tandem features allows for more separation between

source and target languages — the units of the source language are of no concern

to the target language model

• The same tandem feature generation system can be used for a range of target

languages

• Little change is made to the target language model structure by the introduction

of source language information (the differences are confined to the feature space)

— this is arguably a simpler method

1.2 Sub-word Units

In order to directly share models across languages, the models need to be drawn from

some common inventory of units. These will be the units that words are made up of

and have been assumed up to this point to be phonemes. Other sub-word units could

be considered and in the following sub-sections we look more closely at phonemes,

articulatory features and briefly at graphemes.

1.2.1 Phonemes

Phonemes are by far the most commonly used sub-word unit used for ASR. The sym-

bols themselves are generally derived from the IPA chart, with different subsets of IPA

symbols being used for different languages. Using phonemes necessitates the use of a

lexicon containing representations of words in terms of phoneme sequences.

In reference to cross-lingual acoustic modelling, phonemes have advantages and

disadvantages:

Simple Many languages already have dictionaries that are expressed in terms of

phonemes.

Not realized uniformly across languages Although the same IPA symbol may be

used in different languages they are not necessarily realized in the same way

Less effective for conversational speech As discussed in [Ostendorf, 1999], it is dif-

ficult to transcribe spontaneous conversational speech in terms of phonemes be-
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cause segments often apparently disappear or change. The canonical pronun-

ciation that appears in the lexicon is rarely used outside read speech. Having

multiple streams of articulatorily-motivated labels — rather than a single stream

of labels, sometimes described as “beads on a string” — may allow us to capture

various co-articulation effects that occur in spontaneous speech.

1.2.2 Articulatory Features

The use of articulatory knowledge in acoustic modelling is reviewed in

[King et al., 2007]. The speaker’s articulatory state (i.e. the position and motion of

lips, tongue and glottis) can be represented in the model in a wide variety of ways:

Multi-valued categories This is where a number of feature streams, including for

example, {place, manner, voicing, rounding, front-back}, are used. Each feature

has a number of values it can take (for example, manner could be one of {lateral,

nasal, fricative, approximant, vowel, silence}).

Binary categories Here each feature is either present or absent rather than multi-

valued. The set of features is therefore larger and includes variables such as

voiced/voiceless and nasal/non-nasal, as in the commonly used Chomsky and

Halle features [Chomsky and Halle, 1968].

Tract variables In [Browman and Goldstein, 1992], speech is described in terms of

gestures, i.e. constriction actions produced by the lips, tongue, velum and glottis.

Speech gestures can be described in terms of eight tract variables2, each of which

is a physical position and its change over time.

Formants Formants are peaks in amplitude on a spectral display of speech that vary

as the speech signal changes. Whilst they do bear a relationship to speech pro-

duction it is entirely mediated through the acoustic signal. Formants are simply

a feature of spectrograms and not a physical concept that exists independently of

them, unlike the other representations listed above.

The position and movement of speech articulators can be physically measured in a

number of ways:

2These variables are Lip Aperture, Lip Protrusion, Tongue Tip constriction (degree and location),
Tongue Body constriction (degree and location), Velum and Glottis.
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Electromagnetic Articulography Small magnetic coils are placed along the tongue,

on the lips (and on the nose and upper incisors to provide stationary reference

points). A magnetic field is used to induce currents in the coils, which are then

measured.

X-ray microbeam Here, gold pellets are used instead of using magnetic coils. These

are observed with a narrow beam, high energy X-ray. Unlike the silent operation

of EMA, the X-ray equipment used is noisy and so affects the audio recording

quality as well as the naturalness of the speech.

Electroglottograph Electrodes placed alongside the larynx measure changes in con-

ductance, which imply changes in glottal contact area.

Electropalatograph An artificial palate with a grid of electrical contacts is placed in

the mouth to measure the position of contact between the tongue and the palate.

Articulator positions can also be inferred from the acoustic signal, a process called

articulatory inversion.

A problem with using AF labels when training acoustic models is the issue of

finding ground truth labels. These are usually derived by applying a simple mapping

to pre-existing phone labels but doing so does not allow for the asynchrony that can

occur between articulators in conversational speech. However, embedded training can

be used to get a new realignment of the separate AF label streams.

One attribute all of those articulatory representations share is their multi-stream

nature. The multiple streams can either be represented explicitly in the model, e.g.,

with a multi-stream state space [Livescu et al., 2007], or implicitly, for example by

concatenating the streams and passing them through a dimensionality reduction stage.

AFs have been employed in a wide range of models:

Additional acoustic features A number of experiments have shown that appending

some representation of articulator positions to conventional acoustic features

improves recognition accuracy. Those position can either be measured directly

[Wrench and Richmond, 2000] (through, for example, electromagnetic articu-

lography) or inferred (using, for example, an MLP [Fukuda et al., 2003]). The

representation could be continuous, looking at how the exact positions of vari-

ous points on the tongue change, or discrete, where a range of either binary of

multi-valued phonetic features are used.
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Hybrid models A similar but slightly different scenario [Kirchhoff, 1999,

Kirchhoff et al., 2002] is a hybrid HMM/ANN in which, rather than ap-

pending information on to the acoustic feature vector and then modelling that

with a Gaussian Mixture Model (GMM), ANNs are used to provide likelihoods

directly. Using a discrete, multi-stream articulatory representation, one MLP

generates posterior distributions for each feature. Those distributions are then

combined with a further MLP to give phoneme posteriors, which can be divided

by prior probabilities to get likelihoods the HMM can use.

Dynamic Bayesian Networks Dynamic Bayesian Networks (DBNs) are a class of

probabilistic model, of which HMMs are one particular instance. DBNs allow

the clear modelling of additional random variables, for example, articulator po-

sitions. In [Stephenson et al., 2000], a DBN is designed such that, at each time

frame the observations are dependent on both the current sub-word state (as with

HMMs) and on the current articulator position. The articulator position is ob-

served during training but becomes hidden when decoding. Furthermore, the

articulator position depends on the current sub-word state too, as well as the

previous time frame’s articulator position. Using articulatory information in this

model results in a 12 or 9% relative improvement in WER, depending whether

it is treated as an observed or hidden variable respectively.

Bayesian Network observation model In a hybrid HMM-Bayesian Network model

[Markov et al., 2003] observations are modelled with a Bayesian network.

Acoustic and discretized articulatory measurements are used, with the acous-

tic observations modelled using a GMM conditioned on both the sub-word state

and the current articulator position. Training the model on both acoustic and

articulatory data results in an improvement over just using acoustic data. Fur-

thermore, decoding with that model using only acoustic data performs better

than using a purely acoustic model. This work differs from that described in the

previous paragraph in so far as there are no dependencies between AF variables

in one frame and another.

Linear Dynamic Models The previously described models employ a discrete repre-

sentation of articulator position; an alternative would be to use a Linear Dynamic

Model (LDM). An LDM has the same topology as an HMM, but with a contin-

uous state variable. [Frankel, 2003] reports phone classification and recognition

experiments using LDMs and measured articulatory observations.
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In the context of prior work, this thesis can be positioned as the use of an abstract

representation of the articulatory state as observations.

1.2.3 Graphemes

Whilst we do not use graphemes here, they do have some advantages that are relevant,

as well as some obvious disadvantages

Trivial dictionary creation One of the costs associated with recognising a new un-

seen language is that a dictionary needs to be created. If we use graphemes as

our sub-word unit then that task can become much simpler — we consider the

pronunciation of a word to be the sequence of letters in it.

Only relevant for phonographic languages This clearly has limited applicability —

it can not be directly applied to logographic languages such as Mandarin.

Letter-to-sound mapping ignored The use of graphemes makes the largely unrea-

sonable assumption that the spelling of a word directly implies the pronun-

ciation. Whilst this may be partially true for some languages, e.g. Spanish,

Japanese, it is not really the case for others e.g. English.

Graphemes, articulatory features labels and phonemes like other sub-word units,

can be either modelled directly or used indirectly, during training and decoding —

those two options are explored in Section 1.3.

1.3 Modelling Methods

The sub-word units used could be represented in different ways — the contrast we look

at here is between direct and indirect modelling. Direct models are those in which the

units of the source language model appear explicitly in the target language model.

The use of indirect models, on the other hand, means that the sub-word units from

the source language do not necessarily appear in the target language model. Whilst

with a direct model we would need sufficient target language training data for each of

the source language units appearing in the model, that is not a concern in the indirect

case — the set of units can be selected to be something more suitable for the target

language.
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1.3.1 Direct Modelling

Direct modelling means that the sub-word unit appears explicitly in the model struc-

ture and therefore requires a common inventory of unit types across all the languages

involved. Examples include a conventional “HMMs-of-phones” system (as in Sec-

tion 1.1) where source phonemes and target phonemes are drawn from a shared set of

models, a hybrid system or a detector-based system (as described below).

Hybrid Modelling

Phoneme-based hybrid models, in particular MLP-HMM hybrids, are first described

in [Renals et al., 1992]. There, an MLP was used to provide class likelihoods for the

DARPA Resource Management (RM) task [Price et al., 1988]. The MLP outputs were

either used on their own or interpolated with GMM-derived likelihoods.

For the 1k word vocabulary RM task, with a bigram language model, a baseline

word error rate of 12.8% was attained — replacing the Gaussian mixtures for each

state with an MLP brought that error rate down to 8.3%. Combining both models, by

using a weighted sum of the class likelihood provided by each, gave a further reduction

to 7.9% WER.

Some of the benefits brought by using a hybrid ANN-HMM system include

• access to a wider time context when determining phone likelihoods

• the use of a discriminatively trained classifier

A more complete description of hybrid ANN-HMM systems appears in

[Bourlard and Morgan, 1993, Chapter 7].

Application to Articulatory Features

AF-based hybrid models had been used in [Kirchhoff et al., 2002]. In that work, sepa-

rate MLPs were trained to give posterior probabilities for five different AFs — the out-

puts of those nets were then combined by being input to a further MLP. The posteriors

from the merger MLP were used directly in the HMM. The AF hybrid system per-

formed roughly as well as the phoneme-based system and significantly outperformed

it under noisy conditions. Interestingly, different AFs deteriorated before others as the

signal-to-noise ratio was reduced.

The use of articulatory feature MLPs in a hybrid system was one of the aims

of the 2006 Johns Hopkins Workshop and results of that work are presented in
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[Livescu et al., 2007, Section 4.1]. The 10-word SVitchboard task was used to eval-

uate an AF hybrid system — SVitchboard [King, 2005] is a small vocabulary sub-

set of a conversational telephone speech corpus. The AF MLPs used to produce

phoneme posteriors were trained on around 2000 hours of data from the Fisher cor-

pus [Frankel et al., 2007]. Experiments showed that a hybrid model performed worse

than a monophone baseline, although that degradation reduced considerably when the

model was used to realign the training data before retraining. Given the negative result

it is suggested that hybrid models might perhaps be better suited to cross-lingual or

cross-domain tasks.

Detector-based Speech Recognition

An interesting direction that is relevant to this work is covered in

[Bromberg et al., 2007] — ASR based on an array of speech attribute detectors.

A detector-based recogniser consists of three main stages [Siniscalchi et al., 2008]:

1. An array of detectors, each focusing on the task of detecting of a number of

articulatory features, e.g. fricatives, stops or back vowels. These detectors can,

and have been, implemented as MLPs. The input to this stage is an acoustic

feature representation of the speech signal. Given a softmax output layer on the

MLPs, the output is a posterior distribution for each articulatory feature.

2. An event merger stage, in which the attribute posteriors from the previous stage

are combined to give phoneme posteriors. This is also implemented with an

MLP, taking the posteriors from the first as input.

3. The final evidence verifier can also be thought of as an HMM decoder, common

to many other ASR systems.

Unlike some other articulatory feature based work, the work described in

[Siniscalchi et al., 2008] treats AF detectors as a basic and central unit in the model.

1.3.2 Indirect Modelling

Indirect modelling, which is a focus of this thesis, means that the sub-word units used

in training do not appear explicitly in the recognition model structure. The Tandem

method is an indirect modelling approach, and is described this section.
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Tandem Features

Tandem processing of features was introduced in [Hermansky et al., 2000] where it

was applied to a noisy digit recognition task and then used for a noisy, medium-

vocabulary spontaneous speech task [Ellis et al., 2001] (both in English). Tandem fea-

tures are the concatenation of conventional acoustic features (e.g. MFCCs) to posterior

probabilities provided by a discriminative classifier(s), after undergoing a dimension-

ality reducing transformation — the details of how they are extracted are described in

Section 2.2.

In [Ellis et al., 2001] two phone classifying MLPs were used to generate the pos-

teriors used, each using a different acoustic feature set. Using tandem features re-

sulted in substantial improvements when modelled with context-independent models

and smaller but still significant gains after context was introduced and Maximum Like-

lihood Linear Regression (MLLR) applied. Adding tandem features to any ASR sys-

tem typically brings a consistent improvement in accuracy, e.g. [Zhu et al., 2005].

Tandem systems have many of the advantages of the hybrid systems discussed in

the previous section — access to a wider time context, use of a discriminatively trained

classifier — but also allow us to benefit from advances in conventional GMM-based

systems e.g., speaker adaptation methods or discriminative training.

Another advantage of all indirect methods is that there is no requirement to devise a

common sub-word unit inventory (e.g., a common phoneme set) for all the languages.

The disadvantages include: this may somewhat restrict the potential for shared param-

eters between systems for different languages; the ASR system as a whole may be a

little more complex.

Application to Articulatory Features

The use of AF MLPs rather than phone MLPs to compute tandem features is described

in [Çetin et al., 2007a]. There we see that, when supplied with the same training data,

AF tandem features perform as well as phone tandem features on the SVitchboard 500-

word task. It was also shown that if better trained AF MLPs (i.e., trained on 2000 hours

of data) are used then it results in a statistically significant improvement.

Cross-lingual Use

[Çetin et al., 2007b] Further work in [Çetin et al., 2007b] also uses AF MLPs in a

tandem system. As well as showing that a factored, multi-stream observation model
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performs better than simply concatenating conventional and MLP features together,

the paper features application to a cross-lingual system, with an English MLP being

used to generate tandem features for a Mandarin broadcast news task. Focusing on the

latter result, we see that whilst phone tandem features trained on English data bring

down WER in the Mandarin system (from 21.5% to 21.2%), AF tandem features in

fact degrade word error rate (21.9%).

A number of possible explanations for the negative result with AF tandem features

were given:

• ground truth AF labels were unavailable for AF MLP training — AF labels were

derived by applying simple rules to a phone-labelling produced by forced align-

ment with a pre-existing model

• the acoustic features used for the AF MLPs may not be ideal for the task —

additional acoustic-phonetic features such as fundamental frequency and voicing

may be needed

• the language mismatch is confounded by a domain mismatch — conversational

telephone speech compared to broadcast news.

[Toth et al., 2008] Another example of tandem features being used cross-lingually

is [Toth et al., 2008], in which English phoneme MLPs and English AF MLPs3 are

used to generate tandem features for a Hungarian telephony speech recognition task.

As well as those two cross-lingual systems and monolingual tandem and non-tandem

baselines, a system that used an adapted MLP was produced. The adapted MLP took

the English phoneme MLP and retrained some model parameters with Hungarian data.

Some results from that work include

• Both English phoneme and AF MLPs provide an improvement over the non-

tandem baseline but do not perform any better than using tandem features from

the Hungarian phoneme MLP. Domain and channel differences may have con-

tributed to this result

• Using the adapted MLP resulted in word error rates statistically significantly

better than all other systems

3Again, the AF MLPs from [Frankel et al., 2007] that were trained on 2000 hours of Fisher corpus
data were used.
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[Thomas et al., 2010] In [Thomas et al., 2010] tandem features are used but the

cross-lingual element comes about through retraining of the MLP. The task addressed

is the challenging Callhome corpus of conversational telephone speech. An MLP was

trained to classify German and Spanish speech using a pooled phoneme set. It was then

applied to English — output activations were observed as English speech was passed

forward through the net and the mutual information between English phoneme labels

and pooled German-Spanish phonemes was calculated. That information was used to

learn a mapping between English and German-Spanish phonemes and the MLP un-

derwent further training with a limited amount of target language data, now relabelled

with German-Spanish phonemes.

Recognition accuracy is shown to improve with the use of non-target speech data.

The main differences between that work and ours is in the use of MLP training as the

tool for cross-lingual transfer as well as their extensive use of novel acoustic features.

[Rasipuram and Magimai-Doss, 2011] [Rasipuram and Magimai-Doss, 2011] fea-

tures the use of articulatory feature posteriors in a Kullback-Leibler divergence based

HMM (KL-HMM). A typical KL-HMM takes phoneme posteriors at each frame and

computes the KL-divergence between them and a reference multinomial distribution

defined for each state. The state sequence that minimizes the total KL-divergence is

found by Viterbi decoding.

This paper showed that by using a multi-stage series of AF MLPs to estimate AF

posteriors it is possible to perform phoneme recognition as accurately as with phoneme

MLPs on the TIMIT corpus. Furthermore, AF posteriors can easily be combined with

phoneme posteriors in a KL-HMM system to give an improvement in accuracy relative

to a phoneme posterior only system.

Template Matching

Features based on class posteriors have been used within the template matching

paradigm too [Aradilla et al., 2008]. Without giving a detailed explanation, template

matching is a method for performing speech recognition that differs a great deal from

conventional HMM-based recognition. Words are treated as sequences of feature vec-

tors and typically dynamic time warping is used to compare candidate words against

templates learnt from data.

In [Aradilla et al., 2008], a feature space consisting of phoneme posteriors is used

and compared with a more conventional PLP feature space. This allows the principled
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use of Kullback-Leibler divergence ([Mackay, 2003] and related measures) to calculate

the distances to templates — since the feature space consists of posterior distributions

all elements sum to one and are non-negative and KL-divergence takes account of

that. Whilst a highly interesting and novel approach, it is difficult to draw further

comparison between the use of posterior features in template matching and ours.

Subspace GMMs

An exciting new model for speech recognition is that of Subspace Gaussian mixture

models (SGMMs). In a subspace GMM, the distribution of acoustic features x for state

j is modelled with a Gaussian mixture: P(x| j) = ∑
I
i=1 w jN (x;µ jiΣi). I is typically

a few hundred, covariances are shared across states. The interesting difference with

subspace GMMs is that the mean vectors are estimated separately and defined as µ ji =

Miv j. Mi describes the subspace in which mean vectors can live and v j appears to

represent the range of speech sounds [Burget et al., 2010, Figure 1].

In [Burget et al., 2010], SGMMs are applied to the task of multilingual speech

recognition. The English, Spanish and German parts of the challenging Callhome cor-

pus are used. The shared parameters Mi are the focus here — in the mulitlinugal system

those parameters are trained with data from all three languages; the state-specific v j are

trained with language-specific data. That approach results in 1.5%, 0.5% and 1.0% ab-

solute improvements in word error rate for English, Spanish and German recognisers

respectively when compared to a monolinugal SGMM recogniser. Also, when only

limited amounts of target language data are available, using data from other languages

to train the shared parameters results in a substantial drop in error rate. An English

recogniser with only one hour of training data sees a drop in word error rate of 8%

absolute if the Spanish and German corpora are also used for the estimation of shared

parameters. Some similarity with the work described in this thesis can be seen since

information is being transferred between languages through the trained parameters of

a model — in this case it is through the shared Mi matrices and in cross-lingual tandem

it is through MLP parameters.

1.4 Data

All of the methods discussed so far require at least a few hours of transcribed speech

data if we are to learn and evaluate probabilistic models of speech. The speech corpora
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would need to be in a number of different languages and with word-level transcriptions.

Recordings of native speakers are strongly preferred.

Individual speech corpora recorded for different tasks and under different condi-

tions already exist and could be used for this task. However, doing so would mean

that, in addition to cross-lingual differences, there would be further differences in-

troduced by disparities in task (effecting e.g. vocabulary and utterance length) and

recording conditions (e.g. telephone vs. studio recordings, noisy vs. quiet conditions).

To avoid that unnecessary additional factor of cross-corpus normalization4, we restrict

our corpus choice to one of several multilingual corpora available — some of them

are described in Table 1.1. The GlobalPhone corpus was chosen because it contained

enough data in each language for a baseline recogniser to be built and because it con-

tained a wide range of languages. Ten of the available languages were selected such

that a wide range of phonetic phenomena are seen and some groups of similar lan-

guages exist, but so far experiments have only been performed with six of them, due

to the unavailability of language models for the other four.

Our choice of languages covers a range of language families — their relation to

each other is described in Figure 1.1. The phonetic characteristics of each of the lan-

guage families included, in particular those aspects that differ between families, are

briefly given below. A wide and distinct set of phonetic phenomena exhibited in source

and target languages is one of the challenges faced in cross-lingual speech recognition

and so choosing a set of languages with a diverse range of properties should force us

to address that.

Chinese In Mandarin Chinese, syllables consist of a vowel nucleus, which can be a

monophthong, diphthong or triphthong, and optional an onset and coda. The

tone of the vowel is phonemic. Consonant clusters are rare in the syllable onset.

In Mandarin, only /n/ and /N/ are valid codas. [Chao, 1968]

Germanic Swedish features a unique voiceless palatal-velar fricative realization

of /Ê/ [Ladefoged and Maddieson, 1996, pages 171–2, 330; 173–6]. It

also possibly has more than on type of lip rounding gesture in vowels

[Ladefoged and Maddieson, 1996, page 295]. Both German and Swedish have

phonemic vowel length. German and Russian have broadly similar movement

patterns for labiodental fricatives [Ladefoged and Maddieson, 1996, page 140].

4Despite using a multilingual corpus recorded under consistent conditions we still put some work
into normalization — see Section 4.1.
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Corpus number

of lan-

guages

Notes

GlobalPhone[Schultz, 2002] up to

15

Includes English, Arabic, Chinese and

a number of European languages.

300+ hours total data.

OGI Multi-language

Telephone Speech

Corpus[Muthusamy et al., 1992]

11 2052 speakers and about 40 hours total

data.

EPPS[ELRA, 2006] 5+ Recordings of European Parliament

Sessions. 92 hours of transcribed

speech.

SPEECON[Siemund et al., 2000] 10 Some European languages plus Man-

darin and Korean. Estimated 300

hours total data.

EUROM1[Chan et al., 1995] 11 European languages including En-

glish. 60 speakers per language. Es-

timated 18 hours per language (about

200 hours total).

AURORA3[Pearce et al., 2000] 5 Isolated and connected digits recorded

in a car; European languages.

Table 1.1: Available multilingual speech corpora.
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• Indo-European

– Germanic

∗ North→ East Scandinavian→ Danish-Swedish

· Swedish

∗ West→ High German→ German→Middle German→ East Middle

German

· German

– Balto-Slavic

∗ Slavic→ East-Slavic

· Russian

– Italic

∗ Romance → Italo-Western → Western → Gallo-Iberian → Ibero-

Romance→West Iberian

· Portuguese-Galician→ Portuguese

· Castilian→ Spanish

• Sino-Tibetan

– Chinese

Figure 1.1: The placement of the language used in our experiments, within the Ethno-

logue language hierarchy.
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Number of speakers

Language Training Development Evaluation Total(hours)

M F Σ M F Σ M F Σ

Chinese 53 58 111 6 5 11 5 5 10 31

German 62 3 65 4 2 6 4 2 6 18

Portuguese 45 41 86 4 4 8 4 3 7 26

Russian 51 44 95 5 5 10 5 5 10 22

Spanish 34 45 79 5 5 10 4 4 8 22

Swedish 40 39 79 5 4 9 5 5 10 22

Table 1.2: The number of speakers in GlobalPhone in each corpus split, with gender,

and the total size of the corpus in hours.

Romance Spanish has an alveolar trill /r/ that also appears in

Russian[Ladefoged and Maddieson, 1996, page 218]. Spanish is unusual

amongst the world’s languages in having dental fricatives[Harris, 1969].

An uncommon aspect of Portuguese is that, whilst laterals in most lan-

guages have some place of articulation, it has completely unoccluded

laterals [Ladefoged and Maddieson, 1996, page 193].

Russian Russian has five vowels and a set of consonants that come in plain and pala-

tized pairs, known as hard and soft consonants [Halle, 1959]. Syllable-initial

consonant sequences are common [Ladefoged and Maddieson, 1996, page 128]

GlobalPhone consists of recordings of a range of speakers reading from a newspa-

per in their native language. Recording were done under a range of ‘quiet’ conditions

using a Sony DAT-recorder TDC-8 and a close-talking Sennheiser microphone HD-

440-6 — since the recording locations varied, acoustic conditions are likely to vary

both between and within each language corpora. The amount of data available in each

language, as well as the standard partitioning into training, cross-validation (dev)̇ and

test, plus the gender split of the speakers is described in Table 1.2. The sizes of the

available GlobalPhone lexica in each language are given in Table 1.3. The phoneme

inventory for each language is described in Table 1.4.

At the conclusion of this chapter we have introduced the task we wish to address

and the corpus we will be working with. We will be performing cross-lingual automatic

speech recognition using an indirect model to transfer knowledge between languages.
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Language Pronunciations Words

Chinese 73388 73387

German 48979 46037

Portuguese 54163 51987

Russian 28818 27062

Spanish 41286 28803

Swedish 25402 25257

Table 1.3: GlobalPhone lexicon sizes for each language.

Our sub-word units for the model will be phonemes but articulatory feature based units

will also be used when a model is transfered from one language to another. We will use

six languages from the GlobalPhone corpus, each language in the corpus has around

20 hours of clean newspaper text read by native speakers.

The following chapter goes on to describe some baseline experimental results, ar-

rived at by using the methods and data introduced in this chapter.
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Shared

by this

many

languages

Number of

phonemes

Polyphonemes

Consonants Vowels

All 10 f, k, l, m, n, p, s, t i, u

5 7 b, d, g, r a, e, o

4 5 j, S, v, x, z

3 4 N, ð, ts y

2 29 ç, dj, L, ù, tj, ü,w E, ai, a:, ä, 5, au, ei, e:,

ë, 9, eu, i:, ï, O, ø, ø:, o:,

ö, y:, u:, ü

Language Number of

monophonemes

(total phonemes)

Monophonemes

CH 24(45) kh, C, th, tsh, tù, tùh,

tC,tCh

A,AU, AI, ia, iAU, iE, iO,

iou, ou, 7, ua, uaI, uei,

yœ, uO

GE 1(44) - 5

PO 15(48) K ã, "ã, 5, ẽ, "ẽ, ĩ, "̃i, I, õ, "õ,

ũ, "ũ, U

RU 16(49) bj, lj, mj, pj, P, rj, sj, C:,

C:j, zj, üj, Sj, ts, tsj, vj

W

SP 8(43) D, G, ð, R, T, tS, B oi

SW 14(52) ã, ks, í, ï, ú A:, E:, æ, æ:, O, œ, œ:, 8,

0:

Σ 78

Table 1.4: Phoneme distribution across languages. This table is in fact a version of

[Schultz and Kirchhoff, 2006, Table 4.3] limited to the six languages used here. Poly-

phonemes are phonemes appearing in more than one languages, monophonemes ap-

pear in only one.



Chapter 2

Baseline systems

In the previous chapter we defined the problem we intend to address and the datasets

that will be involved. As with any evaluation, we need a baseline system with which

to compare our new methods and in this chapter we state some baseline results and

describe how those models were created. This chapter describes two baseline systems

— Section 2.1 describes a GMM-HMM system built using only conventional MFCCs

(Mel Frequency Cepstral Coefficients) as acoustic input and Section 2.2 looks at a

simple, monolingual tandem system (in which MFCCs are supplemented with MLP-

based features).

2.1 Conventional acoustic features

A conventional GMM-HMM system was built to provide:

• a baseline for comparison with tandem systems

• phone-level alignments used for training the classifiers used in future steps

The remainder of this section describes how that model was trained and how it

performed on test data.

2.1.1 Model training

This, and all other HMM systems described here, were created using HTK

[Young et al., 2006]. Standard MFCC acoustic features1 were extracted and speaker-

level cepstral mean and variance normalization was applied.

1MFCC E D A Z in HTK notation

25
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The workflow used to train the baseline model is described in Figure 2.1, with

notes below — it is based on the tutorial recipe in the HTKBook [Young et al., 2006,

Chapter 3].

1. Initialization. A flat start initialization is used to set the starting parameters of

our model. Each phone is modelled with an HMM that has three emitting states.

The emission model in each of those states is a diagonal covariance Gaussian.

The variance floor is also set here — during training, no covariance element is

allowed to fall below its floor value. An additional special model is used to deal

with out-of-vocabulary (OOV) words — words in the training corpus that do not

appear in the lexicon are given this phone as their pronunciation and an unknown

word <unk>, with the special label as its pronunciation, is used during decoding

to catch OOVs in the test data.

2. Expectation Maximization Given the existing word-level transcription of the

training corpus, a lexicon with exactly one pronunciation for each word is used

to generate a phone-level transcription. Each pronunciation in the lexicon ends

with the silent phone sil meaning that we assume, for now, that all words have

some silence after them. EM training continues until the increase in the average

log-likelihood per frame of the training data falls below some convergence limit

(5% relative increase).

3. Inter-word pauses The centre state of the silent phone is cloned to create a

one state short pause (sp) model. This sp symbol appears at the end of all

pronunciations in the lexicon that is used from here on. The topology of the sp

HMM is such that the emitting state can be skipped, making the pause between

words optional.

4. Align The new HMM with an sp model undergoes EM-training, iterating un-

til the relative increase in training data likelihood falls below 5%. A forced

alignment of the training data is performed using the trained model and the new

lexicon described in the previous step. This gives us a phone-level alignment.

5. Upmix The HTK PS command is used to split the Gaussian mixture components

and turn the existing single Gaussian system into a GMM. The number of Gaus-

sian components per state is proportional to the number frames of speech for that

state, raised to some power2. Splitting is done in three steps, with EM-training
2The value of 0.2 used, taken from the example in HTKBook.
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Initialize

model (1)

EM-training

of mono-

phones (2)

Inter-word

pause (3)

Align (4)

Upmix (5)

Align (6)

EM (7)

EM-training

of triphones

Clone (8)

State-

tying (9)

EM-training

of tied

models

Upmix

EM-training

of triphones

(10)

State-tying

(11)

EM-training

of tied

models

Upmix

Figure 2.1: Workflow for training an HMM.
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after each of those split stages (see Figure 2.2). The first round of EM-training

continues until the relative likelihood increase falls below 0.5%, the other two

rounds consist of just one iteration. An average of 128 components per state is

used for the monophone model in all languages. The number of components

in later triphone GMMs varies between languages, depending on dev. set WER,

and is described in Table 2.2. To avoid problems brought about by trying to

create too many components at once, the following gentle upmix schedule was

employed — 1 2 4 6 8 10 12 15 18 21 24 28 32 48 64 96 112 128 — and

component weights are floored3 to 5×MINMIX.

6. Align The monophone GMM is used to perform a forced alignment of the data.

7. EM Using the alignment generated from the monophone GMM, re-estimate pa-

rameters for the single Gaussian monophone model

8. Clone The lexicon is used to enumerate all possible cross-word triphones —

these triphones are initialized to be clones of their centre phone’s single Gaussian

monophone model.

9. Tie Decision tree tying is used to tie those trained models — standard questions

about the neighbouring phones are used. Tree growth is managed by two pa-

rameters — the minimum increase in log-likelihood required for a question to

be asked (i.e. for a new tree node) and the minimum size (in terms of state oc-

cupancy) of a leaf node (nodes falling below the minimum will be pruned). The

min. increase was set to 900 and the outlier threshold was 100. Triphones that

are unseen in the lexicon or training data transcriptions are synthesized using

this tree.

10. Two-model re-estimation is used in this recipe – this means that the model

used to align the initial, cloned triphone is a fully trained tied-triphone system.

This improves on simply using the monophone GMM to align the model, which

would have a less precise correspondence between frames of speech and phone

labels [Young et al., 2006, Section 8.7]. The resultant model is shown to be more

accurate in Table 2.1.

11. Tie The second state-tying operates in the same way as the first but, given the

improved alignment used to train the initial cloned triphones, the occupancy

3using the -w option on HERest
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Word error rate (%)

Language conventional two-model training

Chinese 23.1 23.3

German 26.4 26.1

Portuguese 27.3 23.5

Russian 34.2 34.7

Spanish 19.0 18.3

Swedish 50.8 50.3

Table 2.1: Using two-model training results in an improvement in accuracy for most lan-

guages (LM scale & insertion penalty have not been tuned for the conventional system,

so the improvement may diminish for some languages). Eval. set word error rates are

shown.

statistics will be different and a different tree will result. The actual number of

physical triphones in each system is given in Table 2.2.

For reasons of consistency the same workflow is used throughout — regardless of

the languages involved or feature set used, the same process is employed. Parameters

that vary between systems, aside from feature-set related parameters, are:

• The number of Gaussian components per state in the aligning model at step 8

• The number of Gaussian components per state in the final model

• Decoding parameters:

– Insertion penalty

– Language model scale

As well as the acoustic model, we need a language model (LM) for use during

decoding. Standard n-gram language models, which were available from the same

source as the GlobalPhone corpus, are used. The LM provides the probability of a

word given the previous n− 1 words. That probability is multiplied by a grammar

scale parameter when it is combined with the acoustic model score — that parameter

is something that is tuned to minimize the dev. set word error rate. Both a bigram

(supplying P(wi|wi−1)) and trigram (supplying P(wi|wi−1,wi−2)) models are available.
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Language number of components number of triphones

Chinese 24 1985

German 15 3653

Portuguese 18 2436

Russian 12 1836

Spanish 24 1546

Swedish 10 3221

Table 2.2: Some details about the baseline triphone GMMs, namely — the mean num-

ber of Gaussian components per state and the number of physical triphones.

from previous iteration

Split EM Split EM Split EM

to next iteration

Upmix

Figure 2.2: Workflow for upmixing Gaussian mixture models. The diagram describes

the process for going from, say, 15 to 18 components per state. Each Split block repre-

sents one of the three partial PS commands. The same method was used for through-

out.
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2.1.2 Results

Decoding was performed using these models to obtain the results in Table 2.3. A

two-pass method was employed:

1. Lattices were generated using HDecode. Search parameters were selected to

optimize dev. set lattice error rate — the Swedish corpus was used here and the

same tuned parameters used throughout. Table 2.4 describes that tuning — in

summary it shows that

• a wider beam adversely affects run-time with little improvement in accu-

racy. That is, if the correct hypothesis is available at all, then it has high

likelihood and widening the beam is unnecessary.

• increasing the number of tokens per state improves accuracy but also re-

quires more run-time

2. The 1st best path through the lattice is found. Whilst a bigram language model

was used in the first step, those LM scores are discarded and probabilities from

a trigram model are used instead. A rough manual search was used to find the

grammar scale and word insertion penalty that minimized the word error rate of

the 1st best hypotheses in the dev. set.

The search method only goes as far as to guarantee that increasing or decreasing

the LM scale and/or insertion penalty by 4 will result in an increased error rate, that is,

we are at a minimum. This was the first method implemented and whilst better ones

could have been used. The fact that

• earlier searches exploring wider values for scale & penalty only found higher

word error rates and

• similar values are found across different languages

implies that the optima found are not simply local optima.

The same scale and penalty was used when searching for the 1st best path through

the eval. set lattices. Scale and penalty were tuned separately for each language but the

same beam was used to generate lattices across all languages.

One important observation to be made here is that Swedish has a very high word er-

ror rate, especially in comparison to recognisers performing the same task in the other

GlobalPhone languages. The same recipe that created effective recognisers in other
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Language
Word error rate (%)

dev eval

Chinese 17.2 23.3

German 26.9 26.1

Portuguese 26.1 23.5

Russian 38.8 34.7

Spanish 27.3 18.3

Swedish 49.4 50.3

Table 2.3: Word error rates for baseline MFCC-only systems. In Chinese, pinyin error

rates are quoted, and not word error rates.

tokens/state(-n) beam(-t) word-end beam(-v) Lattice

error

rate(%)

Real-

time

factor

10 500 50 45.38 8.5

10 500 100 34.23 10.7

10 500 200 30.58 12.9

10 750 50 44.20 24.4

10 750 100 33.52 31.9

10 750 200 30.00 28.6

15 500 200 26.16 17.8

20 500 200 23.44 20.2

25 500 200 21.57 22.3

32 500 200 19.91 28.0

50 500 200 16.67 46.1

64 500 200 16.52 64.1

Table 2.4: Lattice error rates for the Swedish dev. set at various lattice sizes and beam

settings, with mean real-time factors shown. HDecode flags are shown in column head-

ings, for reference. A fuller version of this search appears in Table A.11.
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Language
Lattice error rate(%)

dev eval

Chinese 51.7 43.7

German 13.7 13.8

Portuguese 15.3 16.7

Russian 20.9 14.3

Spanish 12.5 9.8

Swedish 19.9 21.9

Table 2.5: Lattice error rates (the word error rate of the path through the lattice with the

lowest word error rate) for baseline MFCC-only systems. In Chinese, the error rates are

word error rates, not pinyin error rates. In Russian, utterance RU065 34 is excluded for

lattice error rate calculation due to excessive length.

languages was used for Swedish so it is difficult to find the cause of the problem. Fur-

ther attempts to debug the problem were unsuccessful and so any conclusions drawn

in this thesis will be made without reference to Swedish results.

The Russian recogniser also has quite a high error rate, this has been ascribed to

the language’s rich morphology [Stüker and Schultz, 2004, Section 4.6] and possible

deficiencies in the lexicon4. Furthermore, the results achieved here are comparable to

those in [Stüker and Schultz, 2004]. This becomes relevant later when we choose to

work with only a subset of these six languages.

2.2 Baseline Monolingual Tandem

Tandem modelling [Ellis et al., 2001] can be seen as a (rather complex) pre-

processing/feature extraction step to produce the observations for a conventional gen-

erative Gaussian mixture model.

Now that we have a reasonably effective MFCC based recogniser we can use it to

produce phone-level labels for the generation of tandem features. This mono-lingual

baseline serves as a point of comparison for cross-lingual systems. The steps required

4Following discussions with a Russian speaker, Korin Richmond.
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to generate a model that uses tandem features are described below:

1. Train the MFCC baseline system, as described in Figure 2.1
Training

Data

Dev.

Data

Train Tune
GMM-

HMM

MFCC

MFCC

2. Generate a frame-level phone labelling for the corpus by forced-alignment of the

MFCC baseline model made in the previous step.

This step also requires a word-level transcription and a lexicon that maps from words

to phoneme.
GMM-

HMM

Data

Labels

Forced

Alignment
Labels

MFCC

word

phoneme

3. Train an MLP using frame-level targets obtained from the previous step.

PLPs5are extracted from the acoustic data instead of MFCCs.

Labels

Training

Data

Dev.

Data

Train
Convergence

Test
MLP

PLP

phoneme

PLP

5PLP E D A Z in HTK notation
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4. Generate tandem features:

(a) Apply that trained classifier to the corpus and obtaining estimated phone poste-
riors at each frame.

(b) Take logs of those posteriors. This is equivalent to omitting the softmax func-

tion that is usually applied in the output layer of the net. Taking logs results in

features that appear more Gaussian.

(c) Transform them using, for example, PCA. PCA is used to decorrelate and re-

duce the dimensionality of the features that are going to be concatenated —

using HLDA (Hetroscedastic Linear Discriminant Analysis, [Kunar, 1997]), or

any other similar scheme is also an option here. The PCA transform is estimated

using the training set. The number of dimensions is reduced such that 95% of

the variance is still accounted for.6The features generated at this point will be

referred to as MLP features, to distinguish them from log-posteriors generated

in the previous step and tandem features generated in the following step.

(d) The massaged MLP output vector is now concatenated to the MFCCs. These

acoustic features can be the same as those input to the MLPs but a further gain

in performance can be attained if complementary acoustic features are used, e.g.

the MLPs are trained with PLPs and MFCCs are used in this step.

MLP

MLP

forward

pass
Data

PCA Concatenate Data

PLP
MFCC

POSTERIORS
TANDEM

5. The new features can be modelled with a GMM-HMM again using the training sched-

ule described in Figure 2.1
Training

Data

Dev.

Data

Train Tune
GMM-

HMM
TANDEM

TANDEM

Once tandem features have been generated, decoding is performed in the same way
6This conveniently means that we can fairly compare systems built using different numbers of sub-

word units. A script to implement this heuristic was provided by Özgür Çetin.
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as with an MFCC-based model. Adding tandem features to a system has been shown to

consistently improve recognition performance. This happens for a number of reasons:

• Since acoustic observations from a number of frames either side of the one being

classified are input to the MLP, it can bring in information from a wider time
context.

• The classifier has been trained discriminatively, in other words to minimize

error, rather than with any other objective e.g. maximizing likelihood.

A number of effective extensions to the basic tandem system have been made, some

of them include:

• TRAPs (TempoRAl PatternS, [Hermansky and Sharma, 1998]) and subse-

quently HATS (Hidden Activation TRAPs, [Chen et al., 2003]) operate by using

a long window of the log spectrum over a single frequency band. In a system

using TRAPs, features from a window as long as 1 second would be fed to an

MLP, with one MLP existing per frequency band. The outputs of those classi-

fiers would then be combined in a further MLP to give a phone posterior. HATS

works in the same was as TRAPS except that the output layers of the frequency

band MLPs are removed and the activations of the hidden layers are used in their

place.

• Using state posteriors rather than phone posteriors as the targets for the MLP

has been shown to result in better accuracy [Grézl and Fousek, 2008]. Apart

from requiring a state-level alignment of the training corpus for MLP training,

this is an easy modification.

• Bottle-neck MLPs [Grézl and Fousek, 2008] are four or five layer MLPs in

which the middle layer has far fewer units than the other hidden layers (which

are large as usual). The smaller layer is the bottle-neck layer. The MLP is trained

as usual to perform phone classification, but when it comes to using it for tandem

feature generation the activations of the bottle-neck layer are used instead of the

output layer.

Modifications to tandem feature generation are not the focus of this thesis and so the

standard workflow is used.
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2.2.1 Multi-layer Perceptrons

Phone posteriors in our tandem systems are provided by multi-layer percep-

trons (MLPs). Training and classification were both performed with QuickNet

[Johnson et al., 2011].

The input to the MLP consists of the PLP coefficients at the frame to be classified

and at the adjacent four frames in either direction — a nine frame context window. At

the beginning of each utterance the left-hand context consists of some padding frames,

— the first frame repeated four times. A similar fix is applied at the end of each

utterance.

Training MLPs

We use three-layer feed forward MLPs (a simple example appears in Figure 2.3) and

train them in the conventional way, using back-propagation to minimize errors on the

training set. Training consists of two steps, jointly referred to as an epoch, that are

iterated through until the frame error rate on a cross validation set (identical to the dev.

set mentioned elsewhere) converges.

Propagation New training patterns are presented to the network — in a batch update

setup as used here, multiple patterns are presented before weights are updated

(the exact number of patterns is discussed below on page 39).

Forward The input is passed forwards through the network and the current

weights are used to give output activations at each layer

Backward At the output layer, the activations are compared with ground truth

training targets to give deltas

Update For each weight

• Compute the gradient at that point using previously computed deltas

• Using the gradient to determine which direction would reduce error, up-

date the weight in that direction by moving an amount proportional to the

learning rate set

The initial learning rate used when training MLPs was 0.005. The “newbob” learn-

ing rate schedule was used, meaning that after starting with the initial learning rate we

repeat epochs until the dev. set frame accuracy increases by less than 0.5% over the
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Input #1

Input #2

Input #3

Input #4

Hidden

layer

Input

layer

Output

layer

Figure 2.3: A simple 3-layer MLP, as used to generate the class posterior probabilities

used for tandem processing. The number of nodes in the output layer is equal to the

number of classes, that is, the number of phonemes. The number of input nodes is

the product of the number of features per frame and the number of frames in the input

window. The size of the hidden layer can be adjusted to give various levels of model

complexity.
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Language

units in layer free parameters

as % of data

frames

Training data

(×106

frames/×104 sec)

Training

time (×103

sec)

hidden

(×103)
output

Chinese 12.1 44 50 9.30 89.3

German 4.85 44 35 5.25 17.3

Portuguese 8.35 48 40 8.06 45.6

Russian 8.07 45 45 6.71 50.0

Spanish 8.00 43 50 6.05 36.4

Swedish 7.11 52 45 6.13 29.2

Table 2.6: Information about the MLPs used to classify phones in our tandem system

and the corpora used to train them.

previous epoch. After that, the learning rate is halved before each epoch to home-in

with increasing precision on the local optimum7.

The number of units in the hidden layer is set such that the number of free param-

eters in the net is equal to some percentage of the total number of data frames8. The

number of free parameters in a net with a I×H×O structure is I+H +O+H(I+O)

where I is the product of the number of features per frame (39 PLP coefficients) and

the size of the context window (9 frames) and O is the number of phonemes in the

language being classified. The actual percentage used was around 35–50% but was

tuned to each language so as to maximize dev. set accuracy.

A softmax output function is used so that output nodes sum to one and can be

treated as the posterior probability of that class being the label for the current frame.

MLPs throughout are gender-independent. The presentation order of the training

data is randomized, so as to avoid local minima. A batch update of the parameters

is applied during training after each ’chunk’ of data is processed. The chunk size is

determined dynamically by a simple heuristic which refers to the memory available

on the executing machine. Chunk size is selected to be as large as can be held in

memory but also such that the final chunk is not small (a small final chunk would bias

the estimated parameters towards the data appearing in that less representative chunk).

7http://www.icsi.berkeley.edu/speech/faq/nn-train.html
8This heuristic was provided by Joe Frankel
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Language
Frame error rate(%) Phone error rate (%)

MLP [Schultz and Kirchhoff, 2006, Fig. 4.5],

[Schultz and Waibel, 2001, Fig. 4]dev eval

Chinese 31.2(32.2) 34.6(35.6) 45.2

German 26.5(30.6) 25.2(29.2) 44.5

Portuguese 47.7(49.4) 41.1(42.4) 46.8

Russian 38.4(39.5) 37.5(38.6) 50.79

Spanish 31.8(32.6) 29.0(29.8) 43.5

Swedish 39.6(41.3) 37.4(39.2) -

Table 2.7: Frame error rates for all used languages are reported here — ignoring the

silence class gives the figures in parentheses.

Classifying with MLPs

Classifying with an MLP is relatively straightforward. The weights and biases in each

layer of the MLP have been set by the training stage and remain unaltered. In the

MLPs we use here the output layer has a softmax activation function and so the output

unit with the highest activation is the one with the greatest posterior probability. The

label corresponding to that unit can be taken to be the label for that frame.

Table 2.7 shows the performance of the language-specific MLPs described in

Table 2.6 (since silence is very easy to classify and, at the same time, not very

useful, frame error rates in which all frames labelled as silent in the reference la-

belling are ignored are also given). It would be useful to have some benchmark

against which to compare those error rates. Unfortunately, we were unable to find

any phone classification results for the GlobalPhone corpus — we do however have

phone recognition figures from [Schultz and Kirchhoff, 2006, Fig. 4.5, p. 86] and

[Schultz and Waibel, 2001, Fig. 4]. A rough comparison with those results implies

that our MLPs are not under-performing.

Since the MLP is not being used as a classifier, but to generate a vector of features,

the identity of the class with maximum posterior probability is not the only quantity of

interest. Maximizing the difference between the highest posterior and all others can be

expected to result in better tandem features. It should also produce distinct posterior

distributions when applied to different speech segments in a language it may not have
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been trained to classify.

2.2.2 Results

Looking at Table 2.8 we can see that tandem features result in a consistent improve-

ment in recognition accuracy. The matched pairs sentence-segment word error statis-

tical significance test [Gillick and Cox, 1989], implies that at a 95% confidence level,

the monolingual tandem system performs significantly better than baseline for all lan-

guages.

Language

Word error rate(%)

Baseline Monolingual tandem
Prior work

[Schultz and Waibel, 2001,

Stüker and Schultz, 2004]

Chinese 23.3 17.9 14.5

German 26.1 23.5 11.8

Portuguese 24.3 18.4 19

Russian 34.7 30.5 33.5

Spanish 18.3 16.0 20

Swedish 50.3 46.3 -

Table 2.8: Word error rate of baseline (monolingual) tandem systems are reported on

the standard eval. set. Previously reported error rates, using conventional MFCCs, are

also given where available.

At the conclusion of this chapter we have introduced a number of baseline results.

We have also explained how those systems were built, giving an indication of the

structure of the other recognisers used in this thesis. Finally, we have reproduced

an established result for six different languages, namely that using phoneme tandem

features results in a significant improvement in word error rate over an MFCC baseline.

9This figure was estimated by multiplying separate error rates for consonants and vowels by the
proportion of consonants and vowels in the dictionary [Schultz and Kirchhoff, 2006, Fig. 4.5].





Chapter 3

Cross-lingual Tandem Features

The previous chapter has introduced tandem features — we now examine their use

cross-lingually. In the cross-lingual case, the net used to generate tandem features is

trained using data from the source language and then applied to the target language.

This chapter begins with a clear description of how cross-lingual tandem features

are generated. That is followed by a rapid method for evaluating the effectiveness

of tandem features by using mutual information (Section 3.1) and some initial cross-

lingual results (Section 3.2). The chapter concludes with some analysis of those exper-

iments along with evaluation of a number of variables, including mutual information,

that might predict cross-lingual performance with minimal computational cost (Sec-

tion 3.3). The final section is written with the intention of indicating how you could

choose a source language given a certain target language — mutual information is

shown to be an effective indicator of source language suitability that takes into account

both source and target corpora.

It is easy to get confused about which data from which language is used to train

the various parts of the system and so the entire process is laid out below. Blue boxes

represent source language data, red boxes are target language data and operations per-

formed with data are shown in clear boxes.

1. Train the source language MFCC GMM
Training

data

Dev.

data

Train Tune GMM

MFCC

MFCC

43
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2. Generate source language phone labels

GMM

Data

Labels

Forced

Alignment
Labels

MFCC

word

phoneme

3. Train the source language phone MLP

Labels

Training

data

Dev.

Data

Train
Convergence

Test
MLP

PLP

phoneme

PLP

4. Generate target language Tandem features

MLP

MLP

fwd.

pass
Data

PCA Concatenate Data

PLP

MFCC
POSTERIORS

TANDEM

5. Train target language Tandem GMM
Training

Data

Dev.

Data

Train Tune GMM

TANDEM

TANDEM
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3.1 Feature Evaluation

In this section we explore a way in which we can determine how effective a feature set

will be for recognition without having to build an entire recogniser.

3.1.1 Motivation

It would be useful to be able to evaluate the tandem features without the computational

cost of training the entire tandem recogniser (referring to steps above, this amounts

to evaluating the output of steps 1–4 without the effort of step 5 and a subsequent

decoding step). In the monolingual case, the accuracy of the net (e.g. phone error rate)

can be used for this purpose. A more accurate MLP should result in more informative

tandem features, all other things being equal. In the cross-lingual case this is not

really an option, even when there is an overlap between source and target phonesets

(as explained below).

Can we simply use MLP accuracy?

Consider the cross-lingual case in which a Spanish net generates tandem features for a

Portuguese recogniser. The frame error rate for the net on Spanish data is 29.8% (eval-

uation set, ignoring silence) — since this figure is comparable to frame error rates for

other languages in the corpus and to previous results with the same language (page 40)

we can conclude that it is sufficiently trained for Spanish phone classification. Tan-

dem features give the Spanish monolingual tandem system a statistically significant

11% relative reduction in WER, which assures us there is not any problem in using the

Spanish net for Spanish tandem.

When Spanish tandem features are used cross-lingually, the word error rate for

Portuguese is reduced by a statistically significant 17% (relative). If, however, we

were to evaluate the tandem features that came from the Spanish net when applied

to Portuguese data on the basis of Portuguese phone frame error rate — 67.1% — it

would imply that the features would not be particularly informative. This is despite an

at least nominally overlapping phoneset — over half of the phonemes in each language

appears in the other. Prior work [Thomas et al., 2010] looks at how a mapping can be

learnt between source and target labels but it is not clear how that could be used for

accurately stating error rates.
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Mutual information

One solution is to compute the mutual information (MI, [Mackay, 2003]) between the

target language labels and the features to be used. Tandem features with greater MI

will carry more information about the target language labels and therefore should be

more effective for recognition.

This can be verified by comparing the MI between some features and their corre-

sponding labels with the WER achieved by a recogniser trained with those features. If

MI correlates with accuracy then this is a useful and computationally relatively inex-

pensive measure.

This is not the first use of mutual information in this context — in

[Omar and Hasegawa-Johnson, 2002] the best subset of standard acoustic features to

be used for the task of classifying a range of different phonological factors is deter-

mined by maximizing mutual information. The methods used to compute mutual in-

formation are also related to prior work in [Dowson et al., 2008].

Every frame of data has a class label C and we can, using the prior label distri-

bution, compute the entropy of the class labels H(C). A useful feature set Y will

be one that reduces that entropy, i.e. the conditional entropy of the labels given the

features H(C|Y ) is low and so mutual information I(C,Y ) = H(C)−H(C|Y ) is high.

The prior uncertainty on class labels H(C) provides a ceiling on I(C,Y ). Features

that are independent of the labels will result in H(C|Y ) being the same as H(C) and

mutual information therefore being 0. I(C,Y ) can also be expressed as the Kullback-

Leibler divergence [Mackay, 2003] between the joint and product of marginal densities

DKL(p(C,Y )||p(C)p(Y )).

3.1.2 Implementation

The mutual information between features and labels is computed using prior work

[Torkkola, 2001, Equation 4]. As suggested in [Torkkola, 2001, Section 3], computa-

tion is made feasible by clustering the data first.

Clustering

Since the dev. and eval. sets in each language consist of around 5× 105 to 1× 106

frames, the clustering itself needed to be parallelized. k-means clustering consists of

two steps shown in Figure 3.1, performed after cluster centres are initialized to random

values taken from the data set and until a convergence criterion is met:
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from previous iteration

Assign Update

to next iteration

Figure 3.1: Workflow for one iteration of k-means clustering, done serially. This is only

shown for comparison with Figure 3.2.

from previous iteration

Assign

Assign

Assign

Assign

Acc.

Update

Update

Update

Update

Acc.

to next iteration

Figure 3.2: Workflow for one iteration of k-means clustering, done in parallel.

Assign All data points are assigned to their nearest cluster

Update The centre of each cluster is recomputed to be the mean of data points as-

signed to it

The parallel version assigns data to clusters in a number of parallel jobs and is

shown in Figure 3.2. The assignments are combined before the update step can occur.

The update step can also be parallelized, with each cluster centre updated in a different

thread.

The number of clusters and convergence threshold need to be tuned. To perform

that tuning we look at the Pearson’s correlation coefficient1 between each variable

1Using the Octave function corrcoef.
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and the reduction in word error rate relative to the non-tandem baseline. Rather than

use all target and source language pairs together, we compute six separate correlation

coefficients — one for each of six target language, making use of features from each

of the source languages — and take the mean of those coefficients.

number of clusters The number of clusters used is proportional of the number of

frames to be clustered. Given enough computation time we would not need

to cluster the data (in other words, there would be one cluster per frame) —

here we find a compromise between execution time2 and the effectiveness of MI

as a predictor of WER. Other tuning parameters are held at ε = θ = 10−2 (ε is

introduced on page 51).

Clusters (×103) Mean run time(sec) Mean correlation with WER

0.25 28 0.65

0.5 49 0.72

1 69 0.73

2 103 0.71

4 188 0.70

8 249 0.69

convergence threshold A convergence threshold θ, expressed in terms of the propor-

tion of frames changing cluster membership in a given iteration, is set. A higher

threshold may cause the clustering algorithm to terminate prematurely but will

also improve its speed. 1000 clusters are used and ε = 10−2

log10(θ) Mean run time(sec) Correlation with WER

-2 69 0.73

-3 239 0.73

-4 361 0.73

MI computation

MI computation is not entirely straightforward — the treatment used here is taken from

[Torkkola, 2001].

2Run times in this section are always wall-clock times. Actual user CPU time is longer, since an
OpenMP implementation of k-means clustering [Liao, 2011] is run on an eight core machine.
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Section 3.1.1 described MI as the KL divergence DKL between p(C,Y ) and

p(C)p(Y ). Here, the quadratic divergence DQ is used instead, where

DQ(p,q) =
∫

x
(p(x)−q(x))2dx (3.1)

and p and q are continuous densities over x. Using quadratic divergence means that the

integrands in Equation 3.3 are quadratic in the densities used. DQ(p,q) is equivalent

to ∫
x

p(x)2dx−2
∫

x
p(x)q(x)dx+

∫
x
q(x)2dx (3.2)

and so, given that C is discrete,

DQ(p(C,Y )||p(C)p(Y ))=∑
c

∫
y

p(c,y)2dy−2∑
c

∫
y

p(c,y)p(y)P(c)dy+∑
c

∫
y
(p(c)p(y))2dy.

(3.3)

We want to avoid assuming any particular probability density p(c,y) and so use a

non-parametric Parzen window method to estimate densities,

p(y) =
1
N

N

∑
i=1

G(y− yi,Σ) (3.4)

where G(y,Σ) is a Gaussian kernel, returning p(Y = y) assuming Y ∼ N (0,Σ). Fea-

tures have been normalized to have zero mean and unit variance and so Σ can simply be

the identity matrix. We make use in Rényi’s entropy [Rényi, 1960], which is compu-

tationally simpler than Shannon’s entropy — 1
1−α

log

(
∑

n
i=1 pα

i

)
where α = 2. Since

the density being measured is a sum of Gaussian kernels, the quadratic term in Renyi’s

entropy results in the convolution of those Gaussians. Using the kernel density esti-

mates, we get the following expression for DQ(p(C,Y )|p(C)p(Y ))

1
N2

Nc

∑
p=1

Jp

∑
k=1

Jp

∑
l=1

G(ypk− ypl,2Σ) (3.5)

− 2
N2

Nc

∑
p=1

Jp

N

Jp

∑
j=1

N

∑
k=1

G(yp j− yk,2Σ)

+
1

N2

(
Nc

∑
p=1

(
Jp

N

)2
)

N

∑
k=1

N

∑
l=1

G(yk− yl,2Σ)

where ypk is the kth feature vector out of frames labelled with class p, Jp is the number

of data points in class p and Nc is the number of classes. Note the alarming double

sum over all N data points. Since using that expression as it is would entail billions
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of kernel evaluations, we cluster the feature vectors y for each class separately and use

the cluster centres and sizes to get a more tractable expression:

1
N2

Nc

∑
p=1

Ĵp

∑
k=1

s(pk)
Ĵp

∑
l=1

s(pl)G(ŷpk− ŷpl,2Σ) (3.6)

− 2
N2

Nc

∑
p=1

Ĵp

N

Ĵp

∑
j=1

s(p j)
N̂

∑
k=1

s(k)G(ŷp j− ŷk,2Σ)

+
1

N2

(
Nc

∑
p=1

(
Ĵp

N̂

)2) N̂

∑
k=1

s(k)
N̂

∑
l=1

s(l)G(ŷk− ŷl,2Σ)

where s(i) is the number of samples in the ith cluster, ŷpk is the kth cluster centre in

class p and Ĵp is the number of clusters in class p.

Since each of the sums in the previous expression are of the form

N

∑
k=1

s(k)
N

∑
l=1

s(l)G(y(k, l),Σ) (3.7)

we can make use an existing library, FIGTree, that was designed to speed up the

weighted summation of Gaussians for kernel density estimation [Morariu et al., 2008].

The main parameters that needs to be set in this part comes from the kernel density
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estimation, namely

h Bandwidth of the Gaussian kernel (we could consider alternative kernels, but stick to

a Gaussian here). [Morariu et al., 2008] suggests a kernel bandwidth of σ
√

2 —

since the data is normalized to unit variance we use h =
√

2. There are adverse

consequences for sub-optimal bandwidths:

• Having too low a width means the Gaussian ’bump’ around each data point

will be too narrow, the estimated density will appear ’spikier’ than it really

is and, most importantly for us, the kernel evaluations will result in very

small values unless the points being evaluated are very close to each other.

• Too high a width would mean smaller details of the density to be estimated

would be lost e.g. the lower density valley between the modes of a bimodal

distribution. An excessively high width would mean the distance between

points yi and y j will make less difference to value of the kernel evaluation

G(yi− y j,2σ2I) — this will make the measure less sensitive overall.

ε This represents the maximum error in the approximated Gaussian sum and is a pa-

rameter of FIGTree. In this case, tuning this parameter does not provide any

benefit yet greatly increases computation time.

log10 ε Run time(sec) Correlation with WER

-4 75 0.73

-3 79 0.73

-2 361 0.71

3.2 Results

Looking at Table 3.1 we can see that the addition of tandem features consistently results

in reduced word error rate, even if the MLP used to generate the features was trained

on another language. The difference is usually, but not always, statistically significant.

As might be expected, the reduction is never greater than for the monolingual tandem

case.

Model size, in terms of number of Gaussian components, LM scale and insertion

penalty are tuned separately for each language pair. For a handful of language pairs3 it

was observed that a model size that was optimal for the development set was far from

3Chinese systems using German or Spanish nets, the German system using a Portuguese net.
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optimal for the evaluation set i.e. word error rates greater than 70–80%. For those

systems the next smallest model size was used successfully.

Word error rate (%)

Target

language

Source language
Baseline

Chinese German Portuguese Russian Spanish Swedish

CH eval 17.9 22.7 22.5 23.4 24.0 23.6 23.3

GE eval 25.3 23.5 24.5 25.2 24.9 24.6 26.1

PO eval 22.4 21.0 18.4 20.4 20.2 21.3 23.5

RU eval 34.2 33.9 32.5 30.5 33.1 33.2 34.7

SP eval 18.2 17.9 17.1 17.2 16.0 17.5 18.3

Table 3.1: Word error rates for various cross-lingual phoneme tandem systems. Devel-

opment set word error rates are in brackets. Results that are statistically significantly

better than the baseline (on the evaluation set only) are shown in bold.

3.3 Analysis

Looking at the results for various phone tandem systems, it’s interesting to try to de-

termine any patterns in the results and see if it’s possible to predict the improvement

tandem features will provide from prior knowledge. More general observations that

can be made include:

• For both Romance languages, the second most effective source language after

itself is the other Romance language. Those two languages also have a high

degree of lexical similarity4

• Looking at the two Germanic languages examined, a statistically significant im-

provement over baseline occurs when one of the languages is used to generate

tandem features for the other.

• Chinese belongs to a different language family to the others and does not show

any improvement from the use of tandem features from those languages.
4In places, Ethnologue also provides lexical similarity figures. Lexical similarity is defined here as

the percentage of overlap in the words appearing in each language. The figures provided by Ethnologue
are computed by taking a standardised word list and looking at the similarity of words with a shared
meaning. Unfortunately, only the figure available online is comparing Spanish and Portuguese — 89%
— which is deemed by Ethnologue to be a high degree of similarity comparable to that between dialects.
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We would argue that it’s more useful to make quantitative statements about language

similarity when trying to predict which languages work well together. This section

looks at a number of measures that can be computed before building and testing a

recogniser and entail varying degrees of computational cost. It concludes by compar-

ing the measures in terms of how well they correlate with word error rate improve-

ments.

3.3.1 Share Factor

In order to quantify the degree of overlap between different phoneme sets,

[Schultz and Waibel, 2001, Section 2.3] defines the phoneme share factor s fN for a set

of N languages. The share factor can be interpreted as the average number of language

sharing the phonemes of the global (pooled) phoneset.

s fN =
1
|Y |

Σ
N
i=1|YLi| (3.8)

where YLi is the set of phonemes in language Li and

|Y |= |YLI|+Σ
N
i=1|YLDLi

| (3.9)

where YLI is the set of phonemes appearing in all languages and YLDLi
denotes those

phonemes appearing only in language Li.

Here, only a source and target language are involved i.e. N = 2, so the share factor

is simply |Ysrc|+|Ytgt |
|Yglobal | . Share factors will range between one and two inclusive, indicating

completely distinct or completely overlapping phoneme sets respectively. Figure 3.3

shows the relationship between share factor of the source and target phoneme sets and

the increase in tandem system accuracy relative to baseline.

3.3.2 Triphone Overlap

Table 3.3, somewhat like [Schultz and Waibel, 2001, Table 4.5], shows what propor-

tion of source language triphones are covered by target language triphones.

Whilst, unlike [Schultz and Waibel, 2001], the source language model is used indi-

rectly for target language recognition and so source language triphones do not make an

appearance in the target model, triphone overlap may give some estimate of linguistic

similarity if we assume shared labels in different languages refer to the same sound.

Figure 3.4 plots triphone overlap of the source and target models with the increase in

tandem system accuracy relative to baseline.
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Target language

Source language

Share factor

Chinese German Portuguese Russian Spanish Swedish

Chinese -

German 1.239 -

Portuguese 1.165 1.353 -

Russian 1.219 1.413 1.388 -

Spanish 1.208 1.426 1.468 1.375 -

Swedish 1.215 1.627 1.282 1.311 1.284 -

Table 3.2: Phoneme share factors for all language pairs.

Figure 3.3: The relative reduction in word error rate of cross-lingual tandem sys-

tems compared to their respective baselines, plotted against the share factor between

source and target phoneme sets.
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Target Language

Source language

Triphone overlap (%)

Chinese German Portuguese Russian Spanish Swedish

Chinese 100 3.24 1.61 3.58 2.66 2.21

German 2.72 100 11.69 21.05 13.80 34.95

Portuguese 1.54 13.35 100 13.67 17.75 7.77

Russian 4.84 33.87 19.28 100 25.70 22.77

Spanish 3.86 23.92 26.95 27.70 100 15.11

Swedish 1.45 27.32 5.32 11.06 6.82 100

Table 3.3: Triphone overlap for all language pairs — the percentage of target language

triphones that appear in the source language. The number is in terms of number of

triphones, rather than the number of occurrences of those triphones.

Figure 3.4: The relative reduction in word error rate of cross-lingual tandem systems

compared to their respective baselines, plotted against the triphone overlap between

source and target models.
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Figure 3.5: The relative reduction in word error rate of cross-lingual tandem systems

compared to their respective baselines, plotted against the frame error rate of their

source language MLP when applied to source language data (i.e. numbers from Ta-

ble 2.7).

3.3.3 MLP Accuracy

Figure 3.5 shows the relationship between the accuracy of the MLP used to generate

tandem features, measured in terms of MLP frame error rate, and the improvement in

WER that those features provide to the resulting tandem system. Section 3.1 has al-

ready discussed why it is not possible to measure MLP accuracy using target language

data. Whilst on one hand it would make sense for the a well-trained and accurate MLP

to provide better tandem features than a less accurate one, that statement does not take

into account that MLP accuracy is a measure only on the source language — the result

of forward passing target language features through the net is ignored.
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Variable Mean correlation coefficient

Share factor 0.91

Triphone overlap 0.90

Mutual information 0.73

MLP FER 0.41

Table 3.4: A comparison of variables predicting cross-lingual performance of tandem

features.

3.3.4 Mutual Information

Figure 3.6 shows the relationship between the mutual information between the tandem

features and target language phone labels and the tandem system accuracy. The trans-

formed output of the MLP is used here, rather than full tandem features with MFCCs

appended (i.e. the output of step 4(c) in Section 2.2). Cepstral mean and variance

normalization is applied on a speaker-level.

3.3.5 Comparing Predictors

Correlation coefficients, averaged across each of the target languages, are shown in

Table 3.4. First of all, we can see that relatively simple measures have a high degree

of correlation with word error rate. Given a range of options for source language to

use in a cross-lingual system, we can make an accurate estimate of the best language

to use by looking the monophone share factor or triphone overlap.

However, since those measure are not influenced by the amount or quality of data

available they can probably only be used when the source corpora are similar to each

other in size and type. In fact, these measures only perform so well here because mul-

tiple systems from the same language were not included in the comparison. If tandem

features generated using less training data, different feature sets or less accurate refer-

ence labels were used when computing the correlation coefficient then these measures

probably would not perform as well.

Next we look at the mutual information between the tandem features and target

language phone labels. Whilst the mean correlation is weaker here than for the simpler

measures, this method does have some advantages over them, the primary one being

that the actual features have some bearing on the predictor. It also allows us to draw

comparisons between different types of tandem features drawn from the same MLP
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Figure 3.6: The relative reduction in word error rate of cross-lingual tandem systems

compared to their respective baselines, plotted against the mutual information be-

tween source MLP features and target phone labels. The lower graph is a copy of the

top graph but with German systems excluded for clarity.
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e.g. features with or without cross corpus normalization (Section 4.1).

Surprisingly, the frame error rate of the source language MLP has the least corre-

lation with word error rate reduction. This could be explained by the fact that source

language MLP error rates are independent of the choice of target language. An MLP

may accurately predict phonemes for the language it was trained for but whether it can

be used to produce useful tandem features for some target language depends on the

choice of source and target languages.

The main point of this chapter was to introduce and evaluate mutual information as a

measure for selecting source language data, given a target language. The four mea-

sures compared operate at different levels within the recogniser. Share factor is the

simplest in this sense since it works in terms of phone sets — no data is required. Tri-

phone overlap requires comparatively more work to be done — labelled acoustic data

is required from each language so that a triphone tying decision tree can be grown.

MLP accuracy requires yet more training to be done — an aligning GMM is required

to train the source language MLP and then the MLP itself needs to be trained. The

mutual information measure requires a little more computation — the MLP activations

need to be transformed and supplemented to make tandem features.





Chapter 4

Improved Cross-lingual Tandem

Features

In this chapter we look at ways in which the cross-lingual systems of Chapter 3 can be

improved upon. A pressing issue in any cross-lingual or cross-task transfer is that of

normalizing for acoustic differences between corpora — the advantages of additional

data may be cancelled out by differences in recording conditions or task or vocabulary

etc. That issue is addressed in Section 4.1.

In the subsequent section we look at ways of improving the tandem features gen-

erated by using data from more than one source language. Two different methods are

examined — using a single language-independent MLP and using multiple (monolin-

gual) MLPs together.

4.1 Cross Corpus Normalization

Whilst the GlobalPhone corpus benefits from the fact that the same recording equip-

ment was used throughout (and sampling rates, bit depths etc. were consistent too),

recording sessions were conducted at different locations across the world, in different

sized rooms and occasionally under different noise conditions. This will inevitable re-

sult in acoustic differences that are independent of the words being spoken. It therefore

makes sense to try to address this problem.

Prior work in this area includes [Tsakalidis and Byrne, 2005]. That work involved

estimating a corpus-normalizing feature transform for each corpus. Training proceeded

by maximizing the likelihood of the training data by alternately updating the transforms

and the model means and variances, until convergence.

61
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Here we focus on the point at which the data from the different corpora meet, that

is, when target language acoustic observations are passed through the source language

MLP. We apply a linear transformation to those features before inputting them to the

net. Note that whilst the PLPs used by the MLP are transformed, the MFCCs modelled

with a GMM are unchanged. The MLP remains unchanged throughout this process.

We derive the transform as follows:

1. Use two single state HMMs to model the source language training data — one

HMM models all speech frames and the other models silence (initial labels are

derived from the existing word-level transcriptions). Each HMM state uses a

128 component GMM to model the 39 dimension PLP feature vector

2. Treat the target language training data as if it were adaptation data and compute

an MLLR transform that brings it closer to source language speech1

3. Apply that transform to all target language data before it is passed through the

source language MLP

We are able to apply a model transform as if it were a feature transform here be-

cause all speech data is modeled with one HMM. The same transform is applied to

all frames even though it would have been preferable to apply the transform learnt for

silence to silent frames and the transform learnt for speech to speech frames. Since

speech is significantly different to silence, this mistreatment of silent data is assumed

to have little effect. To evaluate the effectiveness of that transform we could either

• look at the accuracy of the resultant tandem system or

• look for any change in the mutual information between target language labels

and acoustic features before and after applying said transform

As discussed in Section 3.1, looking at the frame error rate of the source language

MLP is not meaningful. Computing and then comparing mutual information values

is far less expensive than training and testing a range of recognisers with different

normalizing transforms applied to the MLP input features.

The results of such a comparison are shown in Table 4.1. From the table we can see

that applying the adaptation method described above generally results in greater mutual

information between acoustic features and reference phoneme labels. That generally

holds true for both the PLP features themselves and the transformed MLP features, the

one exception being German.
1Only means are adapted in this work, i.e. MLLRMEAN in HTK
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Target Language

relative increase in mutual information (%)

PLP→
MLLR(PLP)

MLP(PLP)→
MLP(MLLR(PLP))

lowest MI source

lang.→ highest MI

source lang.

Chinese 9.5 6.8 8.9

German 37.9 -6.0 47.7

Portuguese 6.1 4.8 5.3

Russian 12.1 4.4 5.4

Spanish 18.5 12.7 4.2

Swedish 11.4 5.8 4.7

mono(excl.SW) 0.0 0.0 -

Table 4.1: Comparing the mutual information between phoneme labels and (a) adapted

acoustic features and (b) their resultant MLP features. For the 2nd and 3rd columns,

the mean of all six source languages is shown. As a point of reference, the 4th column

shows the relative increase in going from the least informative to the most informative

source language, using unadapted PLPs as input. MLLR(X) stands for the applica-

tion of the above adaptation technique to features X . MLP(X) stands for MLP fea-

tures2generated with features X . All features are speaker normalized to zero mean and

unit variance. Only the development set is used here.
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Figures 4.1 and 4.2 look at those results in more detail, plotting the MI of features

for each target and source language pair against the MI of those features after adapta-

tion to the target language. An effective normalization method, by which we mean one

that increases MI, would keep all points above the diagonal line plotted in each figure.

In order to assess whether the increases in MI are large enough to result in signif-

icant improvements in recognition accuracy, we compare them to the relative increase

from the lowest MI and highest MI source language tandem features for each target

language. The increase in MI brought about by normalization is comparable in size

to the difference in MI between tandem features made from the best and worst source

language. The use of MI is not contingent on any aspect of the normalization method

and so other cross-corpus normalization methods could be compared in the same way.

Furthermore, applying cross-corpus normalization in the monolingual case gener-

ally has no effect on MI — in other words, learning a normalizing transform for a

given target language when the source MLP has already been trained on data from that

language does not have an adverse effect on MI. The change in MI is effectively zero,

except for Swedish which (as discussed earlier) we can exclude from our argument and

include here only for completeness.

At this stage we have not trained or tested any recognisers using the transformed

features. To check that the increases in MI due to cross-corpus normalization actually

result in improvements in WER we build recognisers for Spanish using tandem features

from each of the languages. Results are shown in Table 4.2 — apart from when the

Swedish MLP is used, cross-corpus normalization results in an improvement in word

error rate for all source languages when applied to Spanish. This is consistent with the

prediction made by the mutual information measure.

2As defined on Page 35, MLP features refer to the PCA-ed log posteriors from a source language
MLP forward pass.
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Figure 4.1: The mutual information between PLP and reference phoneme labels for

all source and target language pair combinations, plotted against the same figure after

cross-corpus normalization. The lower plot excludes German in order to make the

remaining section clearer.
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Figure 4.2: The mutual information between MLP features and reference phoneme

labels for all source and target language pair combinations, plotted against the same

figure after cross-corpus normalization. The lower plot excludes German in order to

make the remaining section clearer.
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Source Language
Word error rate (%)

normalized baseline

Chinese 26.0 27.3

German 25.7 26.3

Portuguese 25.3 25.9

Russian 25.6 25.8

Spanish 22.8 23.2

Swedish 28.5 25.3

Table 4.2: Word error rates for a Spanish recogniser using various source language

tandem features, with or without cross-corpus normalization. Word error rates on the

Spanish development set are shown.

4.2 Multiple Source Languages

Recognisers built and tested up until this point have involved only one source language.

There may be up to two languages involved — a source language and a target language

— but the data used to train the MLP comes from only one language.

We now extend this idea to systems in which data from more than one language is

used to train the MLP. Multiple source languages can be used in a number of ways —

two of them are explored in the remainder of this section.

Language-independent MLPs Here we mean using just one MLP that has been

trained with data from many languages. The output layer of the MLP will con-

sist of the union of the different phoneme-sets from each of the source languages.

The hidden layer size is a function of the output layer size and dataset size and

so will be larger for language-independent MLPs.

Multiple MLPs In this design, MLPs that perform phoneme classification for a range

of different source languages are used together. During recognition, the same

acoustic features are passed through all MLPs and their outputs are combined.

The best way to combine their posteriors is discussed in Section 4.2.2.

In these experiments, two different sets of three languages were chosen as source

languages. We wanted to choose languages for which we already had good base-

line systems — on those grounds we excluded Swedish (but not until we had already

trained a {Portuguese, Spanish, Swedish}MLP) and Russian (referring back to earlier
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discussion regarding the quality of the Russian recogniser (Page 33)). This left us with

two linguistically similar languages — Portuguese and Spanish — and one somewhat

distant language — German. Choosing three rather than six languages also reduced

MLP training time and complexity. Having two sets of three drawn from a total of four

languages also means we can simulate the “previously unseen language” scenario —

given the three source languages, the fourth language can be designated as the target

language.

4.2.1 Language-independent MLPs

First of all, we look at systems in which the recogniser contains a single MLP that clas-

sifies the acoustic signal into a global phoneme set. The global phoneme set is simply

the union of the individual language phoneme sets. The use of a single language-

independent MLP assumes that if two phonemes in separate languages share a name

then they sound the same — this is not always a reasonable assumption. A block

diagram showing the how the language-independent MLP is trained is shown below.

• Training the language-independent MLP
Labels

(global)

Training

data

Dev.

Data

Train
Convergence

Test

MLP

(ALL)

PLP

phoneme

PLP

• Using the multi-lingual MLP

MLP

(ALL)

forward

pass

Acoustic

fea-

tures

PCA Concatenate

Tandem

fea-

tures

PLP

MFCCPOSTERIORS

TANDEM

Some of the issues to consider when training such an MLP include:

• The training set is much larger than for monolingual MLPs and so comparisons

between the two may be unfair. This applies equally to multiple-MLP systems,
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Source languages

units in layer
Training data

(hh:mm)

Training

time

(hours)

hidden

(×103)
output

German, Por-

tuguese, Spanish

19.5 77 53:36 > 50

Portuguese,

Spanish, Swedish

19.1 91 56:06 > 90

Table 4.3: Information about the training of language-independent phoneme MLPs.

Training times are very approximate.

in which the same larger training set is split across MLPs. Comparisons between

systems using the same larger data set are perfect acceptable though

• Labels used during MLP training need to come from a global inventory — this

calls for a simple mapping from one label-set to another

• Whilst the training set is multilingual, the cross-validation set should ar-

guably contain only target language data. Doing so would have the advan-

tage of optimizing the MLP with respect to a more relevant objective. On the

other hand, it would mean the resultant MLP would cease to be language-

independent and probably be sub-optimal for other languages — separate

“language-independent” MLPs would be needed for each target language

Table 4.3 describes some practical features of the MLP training process for the

two language-independent MLPs trained. The accuracy of those language-independent

MLP with respect to each source language is given in Table A.10. For any given target

language, the same test data is used.

The phoneme set sizes for each MLP are listed for reference in Table 4.3. It can be

observed that language-independent MLPs are comparable in accuracy to monolingual

MLPs but that only for Portuguese are they better. Part of the explanation may be that

the output layer of the language-independent MLP is in terms of a global phoneme set

and many of those phonemes do not appear in the target language.

Looking at the results in Table 4.4 we can compare the outcome of using a number

of different types of tandem feature as our acoustic representation, in terms of word

error rate on a test set. In this table, all tandem results are significantly better than
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Target

Language

Word error rate (%)

Language-independent
Monolingual Non-tandem baseline

{GE,PO,SP} {PO,SP,SW}
German 23.8 26.1 23.5 26.1

Portuguese 19.8 24.9 18.4 23.5

Spanish 16.7 17.2 16.0 18.3

Swedish - 47.2 46.3 50.3

Table 4.4: Word error rates for systems using a shared phoneset MLP, reported on

the evaluation set. Statistically significant differences (in either direction) relative to the

monolingual tandem system are shown in bold.

the non-tandem baseline, with the exception of the German recogniser that used the

{PO,SP,SW} language-independent MLP. Language-independent results are, however,

worse than monolingual ones.

Analysis

Some initial observations:

• Tandem features generated using a language-independent MLP perform signifi-

cantly better than baseline (non-tandem) MFCC features

• Language-independent MLP based systems perform significantly worse than

tandem systems trained only with target language data (with the exception of

the {GE,PO,SP} recogniser above)

In order to help interpret these results we look at a number of other variables and

see how they relate to word error rate. In the following subsections we examine

• if the mutual information measure that was so useful for predicting the accu-

racy of various single source language cross-lingual systems is effective here

• if the proportion of data from a particular language used in MLP training affects

the accuracy of a system using it

• if the phoneme share factor is a relevant predictor
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Target Language
Feature set size

{GE,PO,SP} {PO,SP,SW} Monolingual

German 84 95 64

Portuguese 84 96 70

Spanish 84 94 67

Swedish - 96 70

Table 4.5: Feature vector sizes for a range of multilingual systems, plus monolingual

systems for reference.

Mutual Information Table 4.6 shows the mutual information between various tan-

dem features sets, derived from language-independent or monolingual MLPs, and a

reference phone labelling derived from the forced alignment of a well trained model

(the same model used to generate hard targets from MLP training). The same figure

for baseline MFCC features is also shown for comparison.

In the previous chapter, a higher mutual information value strongly predicted a

lower word error rate. Unfortunately, looking across results for various features sets

applied to the target languages used, it seems the same does not hold true here. Even

setting aside the new tandem features, going from baseline MFCC features to sim-

ple monolingual tandem features results in a drop in MI, which runs counter to our

expectations given that word error rate drops when we using tandem features.

The reason for this failure, we believe, is that the feature sets being compared are

of different sizes:

In an attempt to address this we looked at normalizing the mutual information

measure by the feature vector size — normalized values also appear in Table 4.6 —

but that does not appear to have remedied the problem.

What we seem to have overlooked is this. When computing mutual information,

Gaussian kernels functions are used for kernel density estimation (see Section 3.1.2 for

details). Looking at the kernel function we can see that adding additional dimensions to

a feature space will inevitably reduce the magnitude of the values returned. The change

in size will be purely due to extra dimensions being introduced, rather than any change

in the data. One solution may be to, rather than use the entire N-dimensional feature

space, take the mean (or maximum or median) of N different single-dimensional MI

measures.
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Target

Language

Language-independent
Mono-

lingual

Non-

tandem

baseline

{GE,PO,SP} {PO,SP,SW}

German 1.296 - 1.458 1.585

M
I(
×

10
−

3 )

Portuguese 1.109 1.127 1.090 1.102

Spanish 1.048 1.057 1.031 1.054

Swedish - 1.077 1.071 1.087

German 15.43 - 22.78 40.64

N
or

m
al

iz
ed

M
I(
×

10
−

6 )

Portuguese 13.20 11.74 15.57 28.26

Spanish 12.48 11.24 15.39 27.03

Swedish - 11.22 15.30 27.87

Table 4.6: Mutual information measure for a system using a shared phoneset MLP. The

development set is used to produce these figures.

Dataset Size The amount of data from each language appearing in MLP training

data was not balanced across languages. This reflects situations where there are differ-

ent corpora sizes in different languages. The percentages of data from each language

appear in Table 4.7.

Comparing that with MLP frame error rates in Table A.10 we can see that for

both language-independent MLPs, the language with the greatest proportion of data

in the training set experiences a drop in frame error rate. The numbers are plotted

against relative changes in MLP frame error rate and recogniser word error rate in

Figure 4.3. We can see that whilst MLP frame error rate is improved if target language

Target Language
Proportion of data(%)

{GE,PO,SP} {PO,SP,SW}
German 27.1 0.0

Portuguese 41.4 39.6

Spanish 31.5 30.1

Swedish 0.0 30.3

Table 4.7: Proportion of target language data used to train a language-independent

MLP, for two different language-independent MLPs
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Target Language
Share factor

{GE,PO,SP} {PO,SP,SW}
German 1.571 -

Portuguese 1.623 1.527

Spanish 1.558 1.473

Swedish - 1.571

2.213 1.709

Table 4.8: Share factors between various target languages and two different sets of

source languages that went into training a language-independent MLP. The first four

rows compare the target language phoneme set and the phoneme set of a language

that combines all three source languages. The final row is the share factor of the three

source languages involved.

data constitutes a large proportion of MLP training data, the benefit is not carried

through to recogniser word error rate.

Share Factor Share factor, as defined in [Schultz and Waibel, 2001, Section 2.3] and

explained in Section 3.3.1, quantifies the amount of overlap between two phoneme sets.

The values listed in Table 4.8 range from 1 — indicating two entirely distinct phoneme

sets — to 2 — which would indicate completely identical phoneme sets.

Looking at Figure 4.4 it is difficult to observe any correlation between word error

rate and share factor, perhaps because any differences are drowned out by the effect of

different dataset sizes, but there is a stronger correlation with MLP frame error rate.

Language-independent MLPs for Low-Resource Target Languages

In this section we look at the scenario in which there is only a limited amount of

target language data available. Both for a conventional MFCC-based recogniser and

one using monolingual tandem features, having less target language data will result in

higher word error rates.

If, however, we have access to data from other languages then perhaps we can use it

to improve the target language recogniser. We do this by adding that data to a language-

independent MLP that will go on to generate MLP features. In these experiments we

choose German as our target (and source) language and Portuguese and Spanish as
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Figure 4.3: The relation between WER and MLP FER and the proportion of language-

independent MLP training data from the target language. The data percentage is plotted

against the relative change in error rate compared to a monolingual tandem system.

MLP frame error rate excludes silence frames.
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Figure 4.4: The relation between word error rate and MLP frame error rate and the share

factor between target and source language for language-independent MLPs. Share

factor is plotted against the relative change in error rate compared to a monolingual

tandem system. MLP frame error rate excludes silence frames.
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our additional source languages. We build German tandem recognisers that assume

the availability of different amounts of German data but, for MLP training, we add the

Portuguese and Spanish data.

These experiments are not entirely realistic since we are using the entire target lan-

guage corpus to train the source language model that generates reference alignments.

In other words, looking at the tandem feature generation process described at the be-

ginning of Chapter 3, the limited German dataset is used in steps 3, 4 and 5 but for

steps 1 and 2 we use the entire dataset. This decision was made to reduce experi-

mental complexity. It has a greater impact on monolingual tandem systems than on

language-independent tandem systems since language-independent MLPs will have

Portuguese and Spanish data that would be unaffected by this choice. Since we intend

to show that language-independent tandem features will outperform baseline monolin-

gual ones, this decision has served to strengthen the baseline and not weaken it. For

both this section and the similar future section covering AF tandem with limited data

(Section 5.3.1) the baseline error rate is lower than it would be if this shortcut had not

been taken.

Table 4.9 compares the characteristics of monolingual phoneme MLPs trained with

varying amounts of German data. We vary the amount of training data by choosing

different numbers of speakers from the original training set. This emulates the situation

that would arise if it really was difficult to gather more target language data. We also

limit the amount of data in the development set — that data is used here to test for

MLP training convergence and also user later on to tune some model settings3. To

ensure we still have an accurate picture of the MLP’s frame error rate, we report that

using the complete evaluation set. We can see the frame error rate of the MLP degrades

gradually as the amount of target language data available reduces.

Another scenario we consider in parallel is that of training a German recogniser

where we have access to Portuguese and Spanish data too. In Table 4.10 we train

a language independent MLP using Portuguese and Spanish data as well as varying

amounts of German (target) data. The subsets of German data is exactly as in Table 4.9.

The entire Portuguese and Spanish training corpora are used throughout.

Plotting the previous two tables in Figure 4.5 makes the relationship between the

systems clear. We can see that when little German training data is available, Portuguese

and Spanish data can be added to provide a substantial improvement in accuracy. This

3Namely, the mean number of Gaussian components per state, insertion penalty and grammar (LM)
scale
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Training data (hh:mm)
# speakers hidden

units

(×103)

Training

time

(hh:mm)

Frame error

rate (%)
train dev

train dev

14:35 1:58 65 6 4.85 4:48 25.2(29.2)

7:11 0:51 32 3 2.40 0:53 30.4(35.1)

3:31 0:46 16 2 1.16 0:14 33.0(38.2)

1:05 0:21 4 1 0.36 0:02 38.2(44.1)

Table 4.9: Characteristics of German phoneme MLPs trained with varying amounts of

data. Frame error rates are reported for the full evaluation set, the figure in brackets is

that achieved when ignoring silent frames.

Total training data

(hh:mm)

hidden

units

(×103)

Training

time

(hh:mm)

Frame error

rate (%)
train dev

53:36 5:43 19.5 < 80 : 05 27.4(31.4)

43:53 4:11 16.2 < 82 : 45 28.5(33.0)

38:53 4:01 15.0 36:15 29.2(33.8)

35:33 3:31 14.1 40:58 29.6(34.2)

Table 4.10: Characteristics of language-independent phoneme MLPs trained with vary-

ing amounts of target language data. The MLP is trained with Portuguese and Spanish

data as well as German data which is varied in quantity. Frame error rates are reported

for the full German evaluation set, the figure in brackets is that achieved when ignoring

silent frames. The training time for the two larger MLPs is only approximate since the

task was split into two and the work done in one training epoch was lost.
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Figure 4.5: Frame error rates for German phoneme MLPs trained with varying amounts

of German data. Frame error rates are reported for the full evaluation set and exclude

silent frames.

holds true even in the presence of upto around 12–13 hours of training data, based on

the intercept of the two lines.

Next we look at the mutual information between log-posteriors generated by those

MLPs and reference phoneme labels. Ideally, we would look at tandem features here

or, failing that, MLP features. Unfortunately, the varying amounts of data mean that

different PCA transformations are estimated for each dataset, resulting in different

size feature vectors (therefore making those features incomparable in terms of mutual

information, at present). Measuring MI at the log-posterior stage gives us some handle

on how good the tandem features will be but fails to capture the effect of the PCA

transformation or the additional MFCCs.

We can see from Table 4.11 that mutual information roughly correlates with frame

error rate, insofar as for the monolingual case they both drop and for the language-

independent case they’re both less affected by the amount of German data. Ideally,

if monolingual and language-independent tandem feature mutual information values
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Target language training data

(hh:mm)
Mutual information (×10−3)

train dev Monolingual Language-independent

14:35 1:58 2.881 1.447

7:11 0:51 2.890 1.429

3:31 0:46 2.492 1.444

1:05 0:21 2.515 1.456

Table 4.11: Mutual information of normalized log-posteriors generated from phoneme

MLPs trained with varying amounts of data. Monolingual and language-independent

values are not comparable with each other since they refer to different dimensionality

feature sets. Evaluation set figures are reported.

were comparable, then they could be used to predict, for example, the point at which

the two systems should perform equally well.

Finally, we evaluate both types of system using the held out evaluation set in terms

of word error rate. The same training recipe is used for all four systems, with the only

minor difference being with the smallest recogniser — Gaussian component weights

are floored to 10×MINMIX rather than 5×MINMIX as was used everywhere else. Word

error rates are given in Table 4.12 and plotted against the amount of target language

data available in Figure 4.6.

In summary, having access to only a limited amount of target language training

data has a strong adverse effect on both MLP frame error rate and the word error

rate of a recogniser using tandem features. However, given data from some other lan-

guages, a language-independent MLP can be trained — frame error rates for language-

independent MLPs do not degrade as quickly as for monolingual MLPs. Given increas-

ing amounts of target language data, the language-independent MLP out-performs the

monolingual MLP until around 12 hours of data are available.

On the other hand, when evaluated in terms of recognition accuracy, far less data

is needed for a monolingual system to outperform one with access to a language-

independent MLP. Given more than around three hours of target language data the

addition source language data used to train the MLP becomes a hindrance. However,

these differences in word error rate are not statistically significant, except for the small-

est system where the language-independent MLP results in a significantly better word

error rate compared to the monolingual one.
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Target language training data

(hh:mm)
Word error rate (%)

train dev Monolingual Language-independent

14:35 1:58 23.5(22.1) 23.8(23.5)

7:11 0:51 24.5(25.5) 25.4(26.2)

3:31 0:46 26.2(21.6) 26.8(21.4)

1:05 0:21 43.6(43.0) 39.1(33.9)

Table 4.12: Word error rates for German recognisers using phoneme tandem trained

with varying amounts of German data. Word error rates are reported for the full evalua-

tion set whilst a limited development set was used to tune model size, insertion penalty

and grammar scale. The development set word error rate is listed in brackets.

Figure 4.6: Word error rates for recognisers using phoneme tandem where limited target

language data is available.
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4.2.2 Multiple-MLP systems

If we want to make use of multiple source languages but do not wish to assume that

phonemes in different languages represent the same sound then we can employ the

following method

• Train a phoneme classifying MLP for each source language. Each MLP is

trained only with data from its own language and uses the native source lan-

guage phoneme set

• When tandem features are generated, PLPs are passed through each of the MLPs

(rather than just one)

The way in which the phoneme posteriors distributions provided by each MLP should

be combined is explored in the following subsection. Results are presented and ana-

lyzed after that.

System design

Having more than one MLP brings about further changes in the way the recogniser

works. One design decision that needs to be made early on is whether to

• use a factored multi-stream HMM — in which independent streams of features

are used for each set of MLP features and for the acoustic MFCC features or

• to concatenate the MLP outputs and acoustic features into one feature stream

A similar question was explored in [Çetin et al., 2007a], the main difference here

with that work being that all MLP features were represented with one variable rather

than with many. That work concluded that factoring into two separate streams resulted

in a statistically significant improvement over using one concatenated stream. How-

ever, in order to avoid our experiments growing further in complexity, we use a single

concatenated feature stream in this work. The next question is how the dimensionality

reduction step (PCA) should be applied. Three options present themselves:
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• early PCA, in which PCA is applied to log-posteriors from each MLP before concate-

nation
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• late PCA, in which log-posteriors are concatenated before PCA is applied
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• early and late PCA, in which PCA is applied to log-posteriors from each MLP, those

features are then concatenated and PCA is again applied to the result

MLP(1)

MLP(2)

MLP(3)

forward

pass

forward

pass

forward

pass

Acoustic

fea-

tures

PCA

PCA

PCA Concatenate PCA Concatenate

Tandem

fea-

tures

PLP

MFCC

TANDEM

We try to resolve this question with the following experiment. Taking one set

of source languages — German, Portuguese and Spanish — we built recognisers for

Portuguese using each of the configurations described above. The PCA transform

is estimated using a random subset of training set utterances limited to 2GB4 The

configurations, and the resultant word error rates are shown in Table 4.13. It would be

helpful to use mutual information as a way to compare these future sets but since they

are of different sizes it is not possible to make a straightforward comparison — this

problem is discussed further in a later section.

From the table we can conclude that applying PCA to each set of log-posteriors,

concatenating the transformed features and then applying PCA to the result is the best

method to use (early and late PCA).

4The entire training set isn’t used for practical reasons — in some cases it would result in a pfile larger
than 2GB, which can’t be used by pfile klt for transform estimation. The same problem doesn’t arise
when pfile klt is used to apply the transform since the pfile can be split up. We assume 2GB is
sufficient for estimating the PCA transformation.
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Method Word error rate (%)

early PCA 27.8

non-tandem baseline 26.1

late PCA 25.9

early and late PCA 25.1

monolingual baseline 21.8

Table 4.13: Comparing different PCA configurations for multiple-MLP phoneme-tandem

systems in terms of word error rate. German, Portuguese and Spanish phoneme MLPs

are used for a Portuguese recogniser. All figures are based on the development set.

The cross-corpus normalization method of Section 4.1 can be applied here but a

different transform needs for be used for the inputs of each MLP. So, for example, if

German, Portuguese and Spanish MLPs are used in a Spanish recogniser then three

transformations are used to alter the PLPs for use each of the source MLPs.

Results

Word error rates for systems using multiple MLPs are given in Table 4.14. We can see

that multiple-MLP systems have rather mixed results. Some general observations that

we can make are:

• Multiple-MLP systems are either approximately as good as baseline or worse

than baseline

• Applying cross-corpus normalization transforms for each of the MLPs can re-

duce word error rate

To conclude this chapter we state concisely what we’ve shown:

• Acoustic differences between corpora in different languages exist despite efforts

to control for them when designing data collection protocols

• A method for normalizing some of those differences has been demonstrated,

as well as a way of evaluating that method, and similar methods, without the

expense of training a complete recogniser

• Tandem features can be generated with a language-independent MLP, trained

with data from more than one source language, but do not perform as well as
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Target Language

Word error rate (%)

Multiple-MLP
Monolingual Non-tandem baseline

normalized original

German 30.0(28.5) 29.0(31.4) 23.5(22.1) 26.1(26.9)

Portuguese 33.1(39.5) 33.5(25.1) 18.4(21.8) 23.5(26.1)

Spanish 17.8(25.8) 17.2(32.2) 16.0(23.2) 18.3(27.3)

Table 4.14: Word error rates for a system in which German, Portuguese and Spanish

phoneme MLPs are used. Evaluation set results are reported, with development set

numbers given in brackets.

those made from monolingual MLPs (usually significantly worse). They are,

however, more accurate than a non-tandem baseline

• Systems using more than one source language MLP do not perform well, often

worse than baseline. They do, however, benefit from cross-corpus normalization.





Chapter 5

Articulatory Features

Articulatory features (AFs), as used in this work, are a multi-stream labelling of the

speech signal that more closely represent the actions of human speech articulators. As

described in Section 1.2.2, they are an abstraction, rather than a representation of the

articulators’ precise physical positions. The articulatory features used here (based on

[Çetin et al., 2007a]) and their values are shown in Table 5.1 (“silence” is another valid

value for all features).

Our motivation for considering AFs is that they are less language-specific than a

phoneme inventory. This has the potential advantage that it will be easier to devise

a language-independent AF set than a phoneme set. Furthermore, because AFs are a

factored representation, each feature has fewer possible values and therefore will suffer

less from data sparsity problems than a phoneme set. It is likely that AFs are a more

appropriate way to transfer knowledge between languages, than phonemes.

5.1 Articulatory feature classification

Training the AF MLPs requires frame-level labels for each AF. These were derived

through the following three steps:

1. Take the same forced-alignment used for training phoneme MLPs

2. Split phones that are composed of two parts into to two different labels. This

includes, for example, diphthongs and plosives. The split occurs as near as pos-

sible to halfway through the segment, although that can be adjusted for each

phone according to taste

87
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Feature Values Cardinality

Place labial, labio-dental, alveolar, post-alveolar, velar, glottal,

lateral, none

8

Degree /

manner

vowel, approximant, fricative, closure, trill 5

Nasality +, - 2

Voicing voiced, voiceless 2

Rounding +, - 2

Vowel German: a,E,5,e,9,i,o,ø,u,y 10

Portuguese: a,5,e,i,I,o,u,U,W 9

Spanish: a,e,i,o,u 5

Swedish: a,A,E,æ,e,9,i,o,O,ø,œ,8,u,y,0 15

Height very high, high, mid-high, mid, mid-low, low, nil 7

Frontness back, central, front, mid, nil, reduced-back, reduced-front 7

Stress +, - 2

Table 5.1: Articulatory features and their values.

3. Map these new labels to their corresponding articulatory feature values. The

mapping used is listed in Table A.6

Table 5.2 describes the specifications of the MLPs used to classify articulatory fea-

tures. The number of free parameter as a proportion of the data set size is set at the

same value as for the phoneme MLP and not retuned. This is due both to expense of

tuning the sizes of nine different MLPs in four different languages and also because

initial experiments showed little improvement in frame error rate. The accuracy of

those nets is shown in Table 5.4 and the chance error rate for each feature is shown in

the Table 5.3 — it is simply the error rate that would be achieved if the MLP always

labelled frames as belonging to the most common class for that feature. Chance levels

are relevant here since some features are far easier to classify than others — for exam-

ple, nearly 90% of frames of speech are non-nasal whilst the place feature can take a

far wider and more evenly distributed range of values1.

These AF MLPs are comparable in terms of frame error rate with, for example,

those reported in [Frankel et al., 2007]. Therefore it seems reasonable to proceed to
1Details of the distribution of feature values across languages are given in Section A.3, along with

information about the mapping from phoneme to articulatory feature value.
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Language
units in layer

free params

as % of

data frames

Training data

(hh:mm)

Training

time

(hh:mm)hidden output

German 5360±
51

6.44 ±
3.21

35 14:35 2:19–3:51

Portuguese 9312±
78

6.67 ±
3.08

40 22:23 6:08–9:41

Spanish 8841±
66

5.78 ±
2.77

50 16:48 3:38–7:01

Swedish 8007±
100

7.11 ±
4.65

45 17:01 3:00–5:43

Table 5.2: Information about the MLPs used to classify articulatory features in our tan-

dem system and the corpora used to train them. The number of hidden and output

units and vary between AFs so means and standard deviations are stated. Similarly for

training times, the range from one standard deviation above and below the mean time

is stated.

Target

Language

Frame error rate (%, excluding silence)

Place Manner NasalityRounding VoicingVowel Height Frontness Stress

GE eval 60.6 60.6 14.0 8.0 25.4 39.4 39.4 39.4 39.4

PO eval 49.9 49.9 12.9 10.3 27.7 50.1 50.1 50.1 50.1

SP eval 58.8 58.8 9.1 11.4 29.3 41.2 41.2 41.2 41.2

mean eval 56.4 56.4 12.0 9.9 27.5 43.6 43.6 43.6 43.6

Table 5.3: The frame error rate that would be achieved by simply labelling all frames

with the most common value for each articulatory feature, in each of the languages.
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Target

Language

Frame error rate (%, excluding silence)

Place Manner NasalityRounding VoicingVowel Height Frontness Stress

GE eval 26.5 17.7 6.0 5.2 12.5 18.1 17.1 15.7 12.6

PO eval 30.6 29.6 9.6 8.3 13.9 34.5 33.0 31.5 33.3

SP eval 22.3 20.8 3.6 4.7 9.5 15.0 15.3 13.8 15.1

mean eval 26.5 22.7 6.4 6.1 12.0 22.5 21.8 20.3 20.3

Table 5.4: The frame error rate of MLPs classifying each of the articulatory features, in

each of the languages. The corresponding chance error rates appear in Table 5.3

use them for tandem feature generation, as we do in the following section.

5.2 ASR with AF tandem

Given a set of MLPs that provide posterior distributions for each of the nine AFs used,

we can generate AF tandem features. This proceed in much the same was as phoneme

tandem generation but with the added complication of multiple MLPs.

The steps for feature generation are listed below. The two main computational

differences between this and phoneme tandem is the mapping step (step 3) and the

three options explored for PCA application (shown in step 5).

1. Train the source language MFCC GMM
Training

data

Dev.

data

Train Tune GMM

MFCC

MFCC

2. Generate source language phone labels

GMM

Acoustic

fea-

tures

Labels

Forced

Alignment
Labels

MFCC

word

phoneme
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3. Map source language phone labels to AF labels

Labels Mapping Labels

Labels

...

Labels

phoneme place
manner

stress

4. Train the source language AF MLPs, one for each AF. ”place” shown in example here:

Labels

Training

data

Dev.

Data

Train

Conver-

gence

Test

MLP

(place)

PLP

place

PLP
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5. Generate target language Tandem features (three options)

(a) late PCA
MLP

(place)

MLP

(manner)

...

MLP

(stress)

forward

pass

forward

pass

...

forward

pass

Acoustic

fea-

tures

PCA Concatenate

Tandem

fea-

tures

PLP

MFCC

(b) early PCA
MLP

(place)

MLP

(manner)

...

MLP

(stress)

forward

pass

forward

pass

...

forward

pass

Acoustic

fea-

tures

PCA

PCA

...

PCA

Concatenate

Tandem

fea-

tures

PLP

MFCC
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(c) early and late PCA
MLP

(place)

MLP

(manner)

...

MLP

(stress)

forward

pass

forward

pass

...

forward

pass

Acoustic

fea-

tures

PCA

PCA

...

PCA

Concatenate PCA Concatenate

Tandem

fea-

tures

PLP

MFCC

6. Train target language Tandem GMM
Training

Data

Dev.

Data

Train Tune GMM

TANDEM

TANDEM

As with phoneme tandem features, the PCA transform is estimated using a random

subset of training set utterances. To determine where to use PCA we look at results for

a particular language pair, as shown in Table 5.5.

The results seem to suggest that concatenating log-posteriors before performing

PCA is the most effective method. This differs from a similar experiment with multiple

phoneme MLPs (Section 4.2.2) but the difference is not entirely surprising — here we

have a system with nine MLPs each with an average of seven output units whilst the

multiple phoneme MLP system featured three MLPs with an average of 45 outputs

each.
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Method Word error rate (%)

early PCA 26.7

non-tandem baseline 26.1

late PCA 23.4

early and late PCA 24.5

Table 5.5: The resultant word error rates for two different PCA methods in an AF tan-

dem system. Dev. set results for a Portuguese recogniser using Swedish AF tandem

features are shown here.

Target Language
Word error rate (%)

Articulatory Feature Phoneme Non-tandem baseline

German 23.1(22.5) 23.5(22.1) 26.1(26.9)

Portuguese 17.2(21.4) 18.4(21.8) 23.5(26.1)

Spanish 15.6(22.2) 16.0(23.2) 18.3(27.3)

Swedish 45.5(40.7) 46.3(41.4) 50.3(49.4)

Table 5.6: Word error rates for when AF MLPs are used to generate tandem features,

with phoneme tandem and non-tandem systems displayed for comparison. Results are

reported on evaluation set with development set figures in brackets. AF tandem sys-

tems that are statistically significantly different to their corresponding phoneme tandem

system are shown in bold.

Using the late-PCA configuration, we now go on to compare the recognition accu-

racy of monolingual AF tandem systems with their phoneme counterparts. The word

error rates of those systems appear in Table 5.6. All AF tandem systems perform statis-

tically significantly better than the non-tandem baseline system, on the evaluation set,

but more interestingly they also perform better than phoneme tandem systems. The

difference is significant only for Portuguese but is still an exciting result.

5.3 Language-independent MLPs

In this section we train language-independent MLPs for AF classification and then per-

form recognition using them. This is the only AF-based method we use that involves

multiple source languages. We are not exploring the multiple-MLP solution used in
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Label {GE,PO,SP} {PO,SP,SW}
Place 2.692 2.5

Manner 2.75 2.444

Nasality 3.0 3.0

Rounding 3.0 3.0

Voicing 3.0 3.0

Vowel 2.143 1.42

Height 2.714 2.714

Frontness 2.429 2.125

Stress 3.667 3.667

Phoneme 2.213 1.709

Table 5.7: Share factors of various labels used for language-independent MLPs.

Section 4.2.2 for phoneme MLPs because

• it failed to prove particularly effective at reducing word error rate

• given nine AF MLPs and three languages it would entail a system with 27 sepa-

rate MLPs, which may prove cumbersome. That would also raise further ques-

tion about how to combine their outputs and where PCA could be applied

This is achieved in much the same way as with language-independent phoneme

MLPs. One difference is that whilst the language-independent phoneme MLPs had a

much larger output layer than the monolingual ones, that increase is much smaller for

AF MLPs. This is because of the difference in share factor between phonemes and

AFs — there are more phonemes that don’t occur in all languages than there are AF

values that don’t occur in all languages. Table 5.7 shows the greater degree of unit

sharing in AFs (larger share factors indicate a greater degree of overlap). As described

in Section 3.3.1, share factors typically2 range from 1 to N where N is the number of

languages being compared.

2 In unusual circumstances, such as for the stress AF here, share factor can exceed N. Here N = 3
so, for {GE,PO,SP}

s f3 =
(|YGE |+ |YPO|+ |YSP|)

|YLI |+ |YLDGE |+ |YLDPO |+ |YLDSP |

where YLi is the set of possible stress values in language Li, YLI is the set of values appearing in all
three languages and YLDLi

denotes those phonemes appearing only in language Li. YGE = {−,nil,sil},
YPO = {+,−,nil,sil}, YSP = {+,−,nil,sil}.
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Source languages

units in layer
Training data

(hh:mm)

Training time

(×103 sec)
hidden

(×103)
output

German, Por-

tuguese, Spanish

22.5±0.27 7.67±4.30 53:36 21.23–52:56

Portuguese,

Spanish, Swedish

23.4±0.38 8.56±5.92 56:06 31.28–40.35

Table 5.8: Information about the Language-independent MLPs used to classify articu-

latory features in our tandem system and the corpora used to train them. The number

of hidden units and training times vary between AFs so means and standard deviations

are stated.

Target

Language

Frame error rate (%, excluding silence)

Place Manner NasalityRounding VoicingVowel Height Frontness Stress

GE
eval 60.6 60.6 14.0 8.0 25.4 39.4 39.4 39.4 39.4

PO
eval 49.9 49.9 12.9 10.3 27.7 50.1 50.1 50.1 50.1

SP
eval 58.8 58.8 9.1 11.4 29.3 41.2 41.2 41.2 41.2

mean eval 56.4 56.4 12.0 9.9 27.5 43.6 43.6 43.6 43.6

Table 5.9: The frame error rate that would be achieved by simply labelling all frames

with the most common value for each articulatory feature, using the possible values

provided by the {GE,PO,SP} language-independent MLPs.

Some information about the training of language-independent AF MLPs is given

in Table 5.8 — the methods used are identical to those used for language-independent

phoneme MLPs.

The frame error rates achieved by the language-independent MLP using German,

Portuguese and Spanish are listed below in Table 5.10 with corresponding chance error

rates in Table 5.9. Due to time constraints, the rest of this section makes use of only

those MLPs. The same set of MLPs is used in each row of those tables, the only

difference being the test data that is passed through them.

We can see that the error rates for the language-independent MLPs are roughly

comparable to the monolingual MLPs trained only on target language data. Going from

monolingual MLPs to language-independent MLPs and taking the average evaluation
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Target

Language

Frame error rate (%, excluding silence)

Place Manner NasalityRounding VoicingVowel Height Frontness Stress

GE
eval 23.0 19.7 6.8 6.2 12.3 22.0 20.2 18.6 13.9

PO
eval 26.7 26.5 8.6 7.6 17.4 32.6 31.4 29.1 30.6

SP
eval 26.0 24.1 4.9 5.9 15.9 19.0 18.4 16.7 18.0

mean eval 25.2 23.4 6.8 6.6 15.2 24.5 23.3 21.5 20.8

Table 5.10: Frame error rates, ignoring silence frames, are reported for AF MLPs trained

on German, Portuguese and Spanish data. Corresponding chance error rates appear

in Table 5.9

MLP Drop in frame error rate, relative to chance levels (%)

Articulatory feature Phoneme

{GE,PO,SP} 47.6 58.3

Target language only 51.1 57.7

Table 5.11: Drops in frame error rate relative to their corresponding chance error rates.

A higher number here indicated a greater drop relative to a chance and therefore better

accuracy. Evaluation set results are reported and silent frames are excluded from error

counting. All figures are the means of German, Portuguese and Spanish evaluation set

results. Articulatory feature error rates are means across AFs.

set frame error rates across languages, we see an average (across AFs) relative increase

in frame error rate of 7.0%. This would imply that language-independent AF MLPs

perform a little worse than monolingual ones. Even taking the different chance level

frame error rates into account — speaking in terms of “drop in frame error rate relative

to chance” rather than simply “frame error rate” — points to a 6.9% (relative) lower

drop in error rate relative to chance.

Either way, language-independent MLPs perform less well than monolingual ones.

In contrast, for MLPs performing phoneme classification, the change in “drop in

frame error rate relative to chance” when going from monolingual MLPs to language-

independent MLPs is a 1% relative improvement. This discussion is summarized by

Table 5.11.

Based on those positive results for the MLPs, we proceed to use them to produce

tandem features. Word error rates for recognisers made using language-independent
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Target Language
Word error rate (%)

Articulatory Feature Phoneme Non-tandem baseline

German 24.0 23.8 26.1

Portuguese 18.7 19.8 23.5

Spanish 16.1 16.7 18.3

Table 5.12: Word error rates for when language-independent AF MLPs are used to gen-

erate tandem features, with language-independent phoneme tandem and non-tandem

systems displayed for comparison. German, Portuguese and Spanish data were used

to train all MLPs. Results are reported on the evaluation set. AF tandem results that

are significantly different, in either direction, to their corresponding phoneme tandem

results are shown in bold.

AF MLPs are listed in Table 5.12. For all three languages, language-independent AF

tandem systems perform significantly better than the non-tandem baseline, on the eval-

uation set, and sometimes even perform better than language-independent phoneme

tandem systems.

5.3.1 Language-independent MLPs for Low-Resource Target Lan-

guages

Reflecting the scenario described in Section 4.2.1, we build tandem feature-based

recognisers using various amounts of target language data but this time with AF MLPs

(rather than phoneme MLPs). First of all, the details of AF MLPs trained with limited

German data are given in Table 5.13.

Frame error rates for those MLPs are given in Tables 5.15 and 5.17, with chance

error rates in Table 5.14. For those tables, only the eval set results are comparable with

other German systems since an impoverished development set was used (the dev. set

results are comparable within their own table).

The same results are plotted in Figure 5.1, which makes it easier to observe that

• Monolingual MLP make more errors when they are trained with less data

• Language-independent MLPs sometimes do too, but to a lesser extent

• Neither type of MLP degrades as much as phoneme MLPs do with the same

amounts of data
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Training data

(hh:mm)
units in layer

Training time

(hh:mm)

train dev hidden (×103) output

14:35 1:58 5.36±0.051

6.44±3.21

2:18–3:51

G
er

m
an3:31 0:46 1.28±0.011 0:06–0:12

1:05 0:21 0.40±0.012 –0:01

14:35 1:58 22.5±0.27

7.67±4.30

21:23–52:56

L
an

g.
in

de
-

pe
nd

en
t

3:31 0:46 17.8±0.21 18:10–30:24

1:05 0:21 16.8±0.20 20:14–21:20

Table 5.13: Characteristics of German AF MLPs trained with varying amounts of data.

Frame error rate (%, excluding silence)

Place Manner NasalityRounding VoicingVowel Height Frontness Stress

60.6 60.6 14.0 8.0 25.4 39.4 39.4 39.4 39.4

Table 5.14: Chance frame error rates for AF MLPs trained using just over four hours of

German data.

MLP

Type

Frame error rate (%, excluding silence)

Place Manner NasalityRounding VoicingVowel Height Frontness Stress

German 29.5 21.2 6.6 6.0 13.2 21.8 20.2 18.7 14.2

Lang. Independent 23.5 20.3 7.1 6.5 12.3 21.1 20.5 18.2 14.2

Table 5.15: Frame error rates, ignoring silence frames, are reported for AF MLPs trained

either with only German data or with German, Portuguese and Spanish data. In both

cases only 12.7×103 seconds of German training data and 2.8×103 seconds of dev

data were available. Corresponding chance error rates appear in Table 5.14.

Frame error rate (%, excluding silence)

Place Manner NasalityRounding VoicingVowel Height Frontness Stress

60.6 60.6 14.0 8.0 25.4 39.4 39.4 39.4 39.4

Table 5.16: Chance Frame error rates for AF MLPs trained using around 90 minutes of

German data.
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MLP

Type

Frame error rate (%, excluding silence)

Place Manner NasalityRounding VoicingVowel Height Frontness Stress

German 32.8 23.5 7.9 7.0 14.1 25.0 22.6 20.4 15.7

Lang. Independent 23.8 20.6 7.5 5.8 13.4 21.5 20.9 18.3 14.2

Table 5.17: Frame error rates, ignoring silence frames, are reported for AF MLPs trained

either with only German data or with German, Portuguese and Spanish data. In both

cases only 3.9× 103 seconds of German training data and 1.3× 103 seconds of dev

data were available. Corresponding chance error rates appear in Table 5.16.

Target language training data

(hh:mm)
Word error rate (%)

train dev Monolingual Language-independent

14:35 1:58 23.1 24.0

3:31 0:46 27.0 27.8

1:05 0:21 44.6 39.7

Table 5.18: Word error rates for German recognisers using phoneme tandem trained

with varying amounts of German data. Word error rates are reported for the full evalua-

tion set whilst a limited development set was used to tune model size, insertion penalty

and grammar scale. The development set word error rate is listed in brackets.

• Language-independent MLPs generally make more errors than monolingual

ones, unless very little training data is available

• The exception to that statement is the place feature, for which the language-

independent MLP is consistently more accurate

In Table 5.18 we can see the results of using tandem features generated from those

MLPs for recognition. Again, the same limited corpus sizes are used for GMM-

HMM training. The language-independent system is significantly less accurate than

the monolingual one, except for the smallest corpus where the difference ceases to

be significant. German is the only one of the three languages looked at for which

language-independent AF tandem is worse than language-independent phoneme tan-

dem and perhaps for one of the other languages this results would have been different.
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Figure 5.1: Frame error rates for German AF MLPs trained with varying amounts of

German data. Frame error rates are reported for the full evaluation set and exclude

silent frames. Red +-signs represent monolingual MLPs and green ×-signs represent

language-independent MLPs.
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Figure 5.1: Frame error rates for German AF MLPs trained with varying amounts of

German data. Frame error rates are reported for the full evaluation set and exclude

silent frames. Red +-signs represent monolingual MLPs and green ×-signs represent

language-independent MLPs.
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Figure 5.2: Word error rates for recognisers using AF tandem where limited target

language data is available.
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In this chapter we have introduced the method by which we extract AF feature

posteriors from speech and generate tandem features from them. AF error rates are re-

ported, as well as word error rates for a monolingual recognition task using AF tandem.

AF tandem recognisers are shown to have a lower word error rate than phoneme tan-

dem recognisers, but in only one of the three languages is that difference statistically

significant.

We then went on to produce a set of language independent AF MLPs. When used

for classification they were less accurate than their monolingual counterparts — how-

ever, when integrated into a tandem recogniser, the resulting system had greater accu-

racy than a corresponding language independent phoneme tandem system. The final

set of experiments looked at reducing the amount of target language data provided to

the MLP during training, in both the mono-lingual and language independent scenar-

ios. Reduced amounts of data have an adverse effect on the classification accuracy of

the MLPs but the increase in error rate is less than that for phoneme MLPs. When

limited amounts of data are used to train a recogniser we also see an expected drop

in accuracy but using data from other languages (in the language independent MLP)

reduces that drop.

It could be argued that one of the main benefits of using AF tandem is the dis-

tributed representation it brings — rather than using one MLP that is performing quite

a difficult classification task we use nine MLPs each performing a simpler task. Whilst

it does seem plausible that that is true, the selection of articulatory features does play

a role. In [Simon King and Paul Taylor, 2000] neural networks were used to classify a

range of articulatory features — permuting the mapping between phonemes and SPE

features [Chomsky and Halle, 1968] resulted in classification accuracy3 dropping from

52% to 37%. It is beneficial to have a distributed representation where each element

has some relation to the speech signal.

Another point to address is that of model size. The number of parameters in an AF

tandem system is greater than that in a phoneme tandem system and so some would

argue that a comparison between the two is unfair. On the other hand, have a greater

number of parameters doesn’t necessarily give a system design the advantage over a

simpler design. Furthermore, the exact number of parameters at which the systems are

to be compared will always be somewhat arbritary. The principle followed throughout

this thesis is to find the model size that optimises word error rate separately for each

system.

3all SPE features correct at a given frame
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Conclusions

In this final chapter we describe the main contributions of this work and suggest some

possible future investigation that might be of interest. The first section gives a quick

summary of the thesis, covering the main experimental results, discusses their impli-

cations and makes comparisons with other contemporaneous work. That is followed

by a section describing some possible future work.

6.1 Summary of Results

This section gives a brief account of a wide range of speech recognition experiments

performed with a multilingual corpus. Various combinations of languages, sub-word

units and amounts of data were used.

We are interested in the task of cross-lingual transfer for acoustic modeling in

speech recognition — given a recognition task in one language (a target language)

we want to make use of data in one or more other languages (source languages) to

improve target language recognition accuracy. We do this using tandem features — as

introduced in Chapter 2 — the steps required to generate tandem features are briefly

summarised below.

1. Train a conventional MFCC-based recogniser for the source language

2. Generate a frame-level phone labelling for the corpus by forced-alignment of

the MFCC-based model made in the previous step. This step also requires a

word-level transcription and a lexicon that maps from words to phoneme.

3. Train an MLP using frame-level targets obtained from the previous step. This

MLP takes an acoustic signal and classifies it into source language units

105
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4. Generate tandem features:

(a) Apply that trained classifier to the target language corpus and obtaining

class posteriors at each frame. These will be source language phoneme

posteriors but for target language data

(b) Take logs of those posteriors. This is equivalent to omitting the softmax

function that is usually applied in the output layer of the net.

(c) Transform them using, for example, PCA. PCA is used to decorrelate and

reduce the dimensionality of the features. The PCA transform is estimated

using the training set. The number of dimensions is reduced such that 95%

of the variance is still accounted for.

(d) The massaged MLP output vector is now concatenated to target language

MFCCs. These acoustic features can be the same as those input to the

MLPs but a further gain in performance can be attained if complementary

acoustic features are used, e.g. the MLPs are trained with PLPs and MFCCs

are used in this step.

5. The new features can be modelled with a GMM-HMM using the same training

recipe used for the baseline MFCC system

The corpus chosen for the task is the multilingual GlobalPhone corpus, which con-

sists of around 20–30 hours of noise-free speech per language, read out by native

speakers from national newspapers, in a number of languages. We define a recipe for

building recognisers that is used for all baseline and tandem recognisers throughout

(see Figure 2.1). Results for that baseline are reported in Table 2.8, alongside results

for a simple monolingual tandem system1. Monolingual tandem features have been

confirmed to provide statistically significant improvements in recognition accuracy for

a number of different languages.

Whilst those results show the successful use of monolingual tandem features, what

we are really interested in is their cross-lingual use and that is what we come to in

Chapter 3. Cross-lingual phoneme tandem features, in which data from a source lan-

guage is used to train the MLP used in separate target language recogniser, have also

been shown to give statistically significant improvements for a number of different

language combinations, as listed in Table 3.1.

1By monolingual we mean that the source and target languages are one and the same
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It is all very well to have positive results such as those above but it would also be

useful to be able to predict which languages are most effective at generating tandem

features for which other languages.

So, in Chapter 3, we describe a method of estimating the effectiveness of tandem

features without the expense of training a tandem recogniser. We do this by looking

at the mutual information between an acoustic feature set and a reference phoneme

labelling. Using the evaluation set results of the cross-lingual systems above and their

corresponding mutual information figures, we observe a correlation coefficient of 0.73,

implying that mutual information is a strong predictor of recognition accuracy. We

also analyse our cross-lingual results by looking at how they correlate with a number

of other factors in Table 3.4 .

Variables based on the level of phoneme sharing between source and target lan-

guages serve as very good predictors of how helpful tandem features. But since both

of those options make no reference to the actual features, they will be insensitive to

the quality of the model used to generate them or the data collected for that language.

Furthermore, simply looking at the accuracy of the source language MLP ignores the

effect of the target language features that are passed through it.

A persistent problem with cross-lingual speech recognition is that of normalizing

features between different corpora. Thankfully this problem is somewhat alleviated in

the GlobalPhone corpus since consistent recording equipment, audio quality and text

domain were used. Some benefit can still be drawn from cross-corpus normalization

though, since recording locations varied widely. In Section 4.1, a simple method for

cross-corpus normalization is demonstrated to be effective, both in terms of an increase

in mutual information for the normalized features (Table 4.1) and an improvement in

recognition accuracy (Table 4.2).

In Section 4.2 we extend the idea of using cross-lingual tandem features to the

case where the MLP is trained using data from multiple languages — we call this

a language-independent MLP. We show in Table A.10 that a language-independent

phoneme MLP is approximately as effective as one where only target language data is

used, when it comes to phoneme classification.

When tandem features are generated with language-independent phoneme MLPs

the word error rate of the resulting recogniser is significantly worse than that of the

monolingual tandem recogniser (Table 4.4) but usually significantly better than the

non-tandem baseline. Table 4.4 also features a further interesting result — a language-

independent MLP trained on Portuguese, Spanish and Swedish data was used to gen-
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erate tandem features for a German recogniser. The language being recognised was

not one of those used to train the MLPs that generate tandem features. The resultant

system performed as well as the baseline MFCC-only system.

We also investigate another way of bringing in multiple source languages. We take

monolingual MLPs, each trained on different source languages, and use of all of them

simultaneously to generate three sets of phoneme-posteriors. These can be combined

in a number of different ways, with PCA applied both before and after the three sets of

posterior features are concatenated. Multiple-MLP systems always performed much

worse than tandem systems where only the target language MLP is used — in some

cases they performed worse than the MFCC baseline (Table 4.14). For that reasons we

focused on language-independent MLPs.

Exploring the theme of using language-independent MLPs for unseen target lan-

guages further, we look at training a language-independent MLP with varying amounts

of target language data. This is compared to a monolingual tandem system trained

with the same varying amounts of training data. We intend to simulate the situation

in which we have access to limited amounts of target language data. Word error rates

for phoneme tandem systems with various amounts of training data are reproduced in

Figure 6.1.

We can see that if we have less than around three hours of target language data

then bringing in data from other languages through the use of a language-independent

phoneme MLP has some benefit (the difference at the leftmost point of Figure 6.1 is

statistically significant but the others are not).

In Chapter 5 we use articulatory feature (AF) based MLPs instead of phoneme

MLPs. AF tandem features are generated using the outputs of nine different MLPs,

each classifying an articulatorily motivated feature such as place of articulation or

vowel height, rather than a phoneme MLP. AF MLPs are trained in the same way

as phoneme MLPs, with ground truth labels coming from a mapping from phoneme

labels. Some phonemes, for example plosives and diphthongs, are treated as a sequence

of articulatory feature configurations and that is reflected in the mapping. The set of

AF and the values they can take are given in Table 5.1.
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Figure 6.1: Word error rates for phoneme tandem recognisers where limited target

language data is available.
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AF tandem features prove as effective as phoneme tandem features, as shown in

Table 5.6. All tandem results are significantly better than a non-tandem system and the

only result that is significantly different to its corresponding phoneme tandem result is

the Portuguese monolingual one, for which AF tandem features are significantly better.

As with phoneme tandem, we created a set of language-independent AF MLPs and

used those to generate tandem features. The results of using those tandem features are

given in Table 5.12. Those results lend weight to the idea that AFs are a language-

independent representation of speech, especially when compared to phonemes.

Finally, we look at work covered in Sections 4.2.1 and 5.3.1, where we examine

how recognition accuracy degrades as we have less available target language data. The

effects of a lack of data can be avoided to some extent by introducing supplemen-

tary data from other languages in the MLP training corpus — by using language-

independent MLP. The following graph shows word error rates plotted against the

amount of data available during training, for a number of systems. For each cor-

pus size, the only differences that are statistically significant are between language-

independent and monolingual recognisers for the small corpus case (less than two

hours).

6.2 Discussion

Figure 6.3 shows, for three different languages, bar charts listing (from left-to-right)

evaluation set word error rates when using

1. MFCCs

2. Target language phone tandem features

3. Language-independent phone tandem features

4. Target language AF tandem features

5. Language-independent AF tandem features

Given the results listed in the previous section and the summary in Figure 6.3, we

can now discuss the contributions of this thesis. First of all, we can see that almost

all of the tandem recognisers built are significantly more accurate than the non-tandem

baseline — the exceptions to that statement are the multiple-MLP systems from Sec-

tion 4.2.2 and the German recogniser that used language-independent phoneme MLPs

trained on Portuguese, Spanish and Swedish.
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Figure 6.2: Word error rates for various tandem recognisers where limited target lan-

guage data is available.



112 Chapter 6. Conclusions

Figure 6.3: This figure summarises some of the main results. The top row of bar charts

contains systems using all available data, the bottom row contains a system using

only around 90 minutes of target language data. For three different languages, bar

charts listing (from left-to-right) evaluation set word error rates when using (a) MFCCs,

(b) Target language phone tandem features, (c) Language-independent phone tandem

features, (d) Target language AF tandem features and (e) Language-independent AF

tandem features. No MFCC bar appears on the bottom row but such a system can be

reasonably be expected to perform worse than all others on that chart.
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Comparing AF tandem results for the three languages it was applied to with the

corresponding phoneme tandem result shows that AF tandem is generally better than

phone tandem, sometimes significantly so. The differences between the two systems

can be isolated to the task performed by the MLP — all other aspects are unchanged2.

This means the only information added to the training process when going from

phoneme to AF is that of how each phone is represented in AFs and how some of

them are split into sequences of AF configurations. The improvement in accuracy

comes from the fact that this added information is relevant to the way in which the

recorded speech was produced in the human vocal tract. We can conclude that, given

the knowledge that would allow us to transform a phoneme labelling into an AF la-

belling, choosing to use AF tandem will result in a more accurate recogniser.

The final contribution listed here is a potential solution for situations in which only

limited amounts of target language data are available. We have shown that if less than

around two hours of target language speech is to hand then it would be beneficial to

make use of a language-independent MLP in the generation of tandem features. If more

data is available then the distinction is no longer clear. This work has demonstrated a

method by which language-independent MLP can be trained such that information can

be transferred from multiple source corpora to a target task in a different language.

6.3 Future Work

Here we briefly list some possible future work on this topic:

Mutual information improvements Whilst mutual information has been shown to

be useful in predicting word error rate, it is not valid for comparisons between

features sets of different sizes. Rather than compare entire feature sets, it may

be better to compute per-feature mutual information and then compare the mean

and spread of those values.

Multi-stream models For AF tandem systems, multi-stream HMMs have been shown

to outperform simply concatenating features [Çetin et al., 2007a]. It would be

interesting to apply that here.

Comparing AF Sets There are a number of different articulatory features sets that

2By this we mean the training procedures remained the same — factors such as the average number
of components per Gaussian mixture, word insertion penalty and MLP hidden layer size differed but
were set by the same criteria.
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could be used to generate AF tandem features. Given a mutual information mea-

sure that works for different size feature spaces, we could compare AF sets in

terms of mutual information.

More diverse languages Practical reasons have meant that, despite access to data in

non-European languages, we have applied AF tandem to only a few languages.

Checking that our results apply to linguistically different languages would be

important.

Spontaneous speech It would be interesting to apply this to spontaneous speech. That

would be where AF labels form a more accurate description of the speech, since

phonemes in the canonical pronunciation are sometimes dropped or modified,

and so AF tandem may have an even stronger advantage.
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Appendix

A.1 GlobalPhone notes

Specific notes about the GlobalPhone corpus, including and modifications made to the

corpus used, are listed in the following sections.

Arabic

The following audio files have no transcription and are silent: AR005 76, AR006 54,

AR006 58, AR006 63, AR006 70, AR029 1, AR104 1.

Chinese

• CH025 53, CH032 9, CH035 50, CH038 39, CH042 13, CH044 55, CH046 33,

CH047 67, CH055 63, CH059 26, CH063 102, CH064 73, CH073 112,

CH073 113, CH076 11, CH076 100, CH081 101, CH084 110, CH084 111,

CH084 113, CH088 103, CH096 60, CH107 19, CH109 36, CH119 30, CH126 62,

CH132 10 have not successfully aligned — excluding from corpus for now

• CH068 53 has OOV word tong3yi1zhan4xian4ta1. tong3yi1zhan4xian4 is in the

lexicon but I do not know if that’s what was intended, so excluding that utterance.

• Removed {di4xiong5} {{d WB} i4 x io5 {ng WB}} from the Mandarin dictio-

nary because it contains the only instance of io5, which does not appear in the

data.

• Removed {ge1bei5} {{g WB} e1 b {ei5 WB}} and {mei4mei5} {{m WB} ei4
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m {ei5 WB}} from the Mandarin dictionary because they used the phone ei5

which does not appear in the data

• Removed {tong4kuai5} {{t WB} o4 ng k {uai5 WB}} and {tong4kuai5lin4li2}
{{t WB} o4 ng k uai5 l i4 n l {i2 WB}} from the Mandarin dictionary because

they used phone uai5 which does not appear the data

• Removed {lou4ma3jiao5} {{l WB} ou4 m a3 j {iao5 WB}} from the Mandarin

dictionary because it used phone iao5 which does not appear the data

• Removed {tun5} {{t WB} ue5 {n WB}} from the Mandarin dictionary because

it used ue5 which does not appear in the data

• The following audio files have no transcription:
CH025 76

CH046 33 utterances transcribed, 33 non-empty audio files

but 77 audio files in total.

CH051 81

CH063 121

CH064 128 recording exists, but no transcription

CH073 117 recording exists, but no transcription

CH073 118 recording exists, but no transcription

CH073 119 recording exists, but no transcription

CH073 62 recording exists, but no transcription

CH073 63 recording exists, but no transcription

CH076 103 recording exists, but no transcription

CH076 116 recording exists, but no transcription

CH076 117 recording exists, but no transcription

CH084 103

CH084 117

CH091 43 recording exists, but no transcription

• The Mandarin corpus partitioning seems to have some articles appearing in more

than one set (looking at .spk files). The table below shows the speakers speaking
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each duplicated article in each set:

article eval dev train

a0602.004 032 033

a0620.004 089 063

b0620.002 089 063,090

e0531.004 080 079

Croatian

• The following audio files have no transcription:
CR005 0

CR002 77

CR030 25

CR062 42 silent

CR072 15 recording exists, but no transcription

• The audio for speakers CR021 and CR091 in v2.1 of the Croatian database seems

to be missing

• (minor typo) CR088.rmn and CR088.trl have the comment indicating utterance

7 as part of the transcription for utterance 6, not on a new line

• The recording for utterance CR060 16 does not seem to be the same as the one

transcribed (but I don’t speak Croatian)

• The speaker seems to be speaking only the end of utterance CR069 11

• The end of the audio for utterance CR083 58 seems to be cut off (there might

also be an untranscribed word fragment before “Medical”)

German

• The following utterances have transcriptions but not recordings: GE024 29,

GE024 35, GE027 1, GE029 34, GE029 52, GE033 100, GE043 144, GE043 146,

GE044 35, GE044 52, GE045 92, GE049 85, GE049 89, GE058 69, GE058 96,

GE062 42, GE062 54

• Trying to decompress utterances GE003 2, GE004 34 and GE004 181 results in a

“premature EOF on compressed stream” error with shorten

• The audio keeps cutting in and out on utterances GE025 64 and GE040 94
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• Utterance 60 of speaker GE051 has “3 D Methode” transcribed as “3D-Methode”

• Utterance 15 of speaker GE077 has “15 jahres frist” transcribed as “15-jahres-

frist”

• The speaker in GE005 144 only says half of what the transcription says he says

• The speaker in GE011 122 does not seem to read the last few words of the tran-

scribed utterance

• The speaker appears to say international rather than national, in GE007 22

• The German dictionary contains two identical pronunciations for

achtundzwanzig

Portuguese

• The Portuguese development set contains two speakers, PO065 and PO073, who

do not exist (no audio or .spk file)

• Files PO136 1.adc.shn through to PO136 50.adc.shn inclusive cause

shorten to give a “No magic number” error when decompressing

• PO111 63, PO111 66 and PO112 20 excluded because of dictionary issues

• PO101 1 — excluding because of / in date — unclear what was said in PO101 1

and PO101 2

• PO115 59, PO116 22 excluded after doubt about transcription

• Removed PO003 86, PO004 45, PO139 34 because of alignment problems

• PO136 has 73 utterances transcribed and 73 audio files but the first 50 are empty

(giving the “No magic number” error mentioned earlier on) while the remain-

der are valid .shn files but empty. In summary, there were also problems with

speakers 14, 15, 17, 22, 26, 31, 36, 58 and 136. Problem utterances were at

least PO014 125, PO014 126, PO015 100, PO017 160, PO022 168, PO026 21,

PO031 52, PO036 27, PO058 16, PO058 18 and PO136 10. Technically, results

reported here on the Portuguese corpus are not directly comparable to prior work

since PO136 is in the evaluation set but was not successfully used.
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• The following audio files have no transcription:
PO003 61 silent

PO014 117 silent

PO015 66 utterances transcribed, 88 non-empty audio files

and 126 audio files in total.

PO021 172 silent

PO031 36 silent

PO031 52 silent

Russian

• A minor typo in the corpus documentation — the number of Russian utterances

is one less than stated. Utterance RU005 9 seems to be repeated in the corpus,

once as RU005 9.adc.ori.shn and again as RU005 9.adc.shn (the file con-

tents are identical).

• The following audio files have no transcription:
RU006 121 silent

RU114 13 silent

• Excluded RU006 41 RU008 9 RU008 10 RU013 92 RU013 130 RU015 75

RU032 12 RU037 56 RU037 57 RU050 73 RU050 76 RU052 37 RU073 42

RU086 21 RU093 12 RU099 13 due to presence of ambiguous % sign

• Removed {Nejwif∼yuel∼} {{n WB} e j w i f∼ yu e {l∼WB}} from the Rus-

sian dictionary because it contains the only word with a palatized f, of which

there is only one instance in the corpus. Also excluded that instance, RU104 94.

• RU006 98 and RU059 51 failed to align — excluded from corpus

Spanish

• Utterances SP001 18, SP005 24, SP014 72, SP016 25, SP018 7, SP054 27 and

SP079 1 cause problems when I try to realign — the speaker seems to be reading

only the first half of the transcribed utterance

• The final word in SP042 20 is cut off halfway

• The transcription for utterance SP046 150 reads “. . . llegan a cerca de los de

presupuesto que. . . ” when in fact the speaker says “llegan a cerca de presupuesto

que”
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• The transcription for SP086 50 states “Poli+tica” is said twice but it’s only said

once

• Where the transcription for SP094 13 says “1995” the speaker actually said “95”

• SP049 1 was missing the word “Nicaragua” in transcription

• The following audio files have no transcription:
SP007 15 recording exists, but no transcription

SP007 16 recording exists, but no transcription

SP007 18 recording exists, but no transcription

SP035 first 57 utterances are untranscribed

SP040 utterances 56 and 57 are untranscribed

SP041 first 87 utterances are untranscribed

SP058 utterances 45 till 73 are untranscribed

SP078 first 53 utterances are untranscribed

SP077 56 recording exists, but no transcription

Swedish

• The speaker in SW086 84 only says half of what the transcription says she says

• Utterance SW050 94 causes problems when I try to align it and is therefore re-

moved

• The recording of utterance SW067 113 is cut off early

• The end of the audio for utterance SW009 125 seems to be cut off

• The 30th utterance in SW005.trl contains a nbsp character

• SW015 20 has no transcription but a recording exists

A.2 Cross-lingual phoneme symbol alignment

For the purposes of the language-independent phoneme MLP, symbols in different

dictionaries we assumed to be the same — Table A.1 lists the mapping used.
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IPA GlobalPhone Language-specific labels

a M a GE:M a, PO:A, RU:a, SP:M a, SW:M a

ã M a∼ PO:A∼
A M ab CH:a1, CH:a2, CH:a3, CH:a4, CH:a5

A M abl SW:M abl

AU M abVst CH:ao1, CH:ao2, CH:ao3, CH:ao4, CH:ao5

E M ae GE:M ae, SW:M ae

E: M ael SW:M ael

ai M aI GE:M aI, SP:M aI

aI M aIp CH:ai1, CH:ai2, CH:ai3, CH:ai4, CH:ai5

a: M al GE:M al, SW:M al

æ M ale SW:M ale

æ: M alel SW:M alel

"a M aplus PO:A+, SP:M a+

"ã M a∼plus PO:A∼+

5 M atu GE:M atu, PO:AX

au M aU GE:M aU, SP:M aU

b M b GE:M b, PO:B, RU:b, SP:M b, SW:M b

bj M bj RU:b∼
ç M C GE:M C, SW:M C

d M d GE:M d, PO:D, RU:d, SP:M d, SW:M d

D M D SP:M D

dj M dj PO:DJ, RU:d∼
d: M dr SW:M dr

e M e GE:M e, PO:E, RU:e, SP:M e, SW:M e

ẽ M e∼ PO:E∼
ei M eI CH:ei1, CH:ei2, CH:ei3, CH:ei4, CH:ei5, SP:M eI

e: M el GE:M el, SW:M el

"e M eplus PO:E+, SP:M e+

"ẽ M e∼plus PO:E∼+

9 M etu GE:M etu, SW:M etu

eu M eU GE:M eU, SP:M eU

Table A.1: Phoneme labels in different dictionaries are assumed to point to the same

IPA symbol. Exceptions and ambiguities are listed in this table.
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IPA GlobalPhone Language-specific labels

f M f CH:f, GE:M f, PO:F, RU:f, SP:M f, SW:M f

fj M fj RU:f∼
g M g GE:M g, PO:G, RU:g, SP:M g, SW:M g

G M G SP:M G

h M h GE:M h, SW:M h

i M i CH:i1, CH:i2, CH:i3, CH:i4, CH:i5, CH:ii1, CH:ii2,

CH:ii3, CH:ii4, CH:ii5, GE:M i, PO:I, RU:i, SP:M i,

SW:M i

ĩ M i∼ PO:I∼
ia M iA CH:ia1, CH:ia2, CH:ia3, CH:ia4, CH:ia5

iAU M iAbVst CH:iao1, CH:iao2, CH:iao3, CH:iao4, CH:iao5

iE M iAe CH:ie1, CH:ie2, CH:ie3, CH:ie4, CH:ie5

i: M il GE:M il, SW:M il

iO M iOc CH:io1, CH:io2, CH:io3, CH:io4, CH:io5

iou M iOU CH:iou1, CH:iou2, CH:iou3, CH:iou4, CH:iu1, CH:iu2,

CH:iu3, CH:iu4, CH:iu5

I M ip PO:IX

"i M iplus PO:I+, SP:M i+

"̃i M i∼plus PO:I∼+

j M j GE:M j, RU:j, SP:M j, SW:M j

k M k CH:g, GE:M k, PO:K, RU:k, SP:M k, SW:M k

kh M kh CH:k
>
ks M ks SW:M ks

l M l CH:l, GE:M l, PO:L, RU:l, SP:M l, SW:M l

L M L PO:LJ, SP:M L

lj M lj RU:l∼
í M lr SW:M lr

m M m CH:m, GE:M m, PO:M, RU:m, SP:M m, SW:M m

mj M mj RU:m∼
n M n CH:n, GE:M n, PO:N, RU:n, SP:M n, SW:M n

N M ng CH:ng, GE:M ng, SW:M ng

ñ M nj PO:NJ, RU:n∼, SP:M n∼
ð M nq SP:M ng

ï M nr SW:M nr

o M o GE:M o, PO:O, RU:o, SP:M o, SW:M o

Table A.1
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IPA GlobalPhone Language-specific labels

õ M o∼ PO:O∼
O M oc CH:o1, CH:o2, CH:o3, CH:o4, CH:o5, SW:M oc

ø M oe GE:M oe, SW:M oe

ø: M oel GE:M oel, SW:M oel

oi M oI SP:M oI

o: M ol GE:M ol, SW:M ol

œ M ole SW:M ole

œ: M olel SW:M olel

"o M oplus PO:O+, SP:M o+

"õ M o∼plus PO:O∼+

ou M oU CH:ou1, CH:ou2, CH:ou3, CH:ou4, CH:ou5

7 M ow CH:e1, CH:e2, CH:e3, CH:e4, CH:e5

8 M ox SW:M ox

p M p CH:b, CH:p, GE:M p, PO:P, RU:p, SP:M p, SW:M p

pj M pj RU:p∼
P M Q RU:Q

r M r GE:M r, PO:R, RU:r, SP:M r, SW:M r

R M rf SP:M rf

rj M rj RU:r∼
K M rk PO:RR

s M s CH:s, GE:M s, PO:S, RU:s, SP:M s, SW:M s

S M S GE:M S, PO:SCH, RU:sch, SW:M S

sj M sj RU:s∼
Sj M Sj RU:sch∼
ù M sr CH:sh, SW:M sr

C M ss CH:x

C:? M ssl RU:schTsch

C:j? M sslj RU:schTsch∼
t M t CH:d, GE:M t, PO:T, RU:t, SP:M t, SW:M t

T M T SP:M T

th M th CH:t

tj M tj PO:TJ, RU:t∼
ú M tr SW:M tr

>
ts M ts CH:z, GE:M ts, RU:tscH, RU:ts

Table A.1
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IPA GlobalPhone Language-specific labels
>
tS M tS SP:M tS
>
tsh M tsh CH:c
>
tsj M tsj RU:tscH∼
>
tù M tsr CH:zh
>
tùh M tsrh CH:ch
>
tC M tss CH:j
>
tCh M tssh CH:q

u M u CH:u1, CH:u2, CH:u3, CH:u4, CH:u5, GE:M u, PO:U,

RU:u, SP:M u, SW:M u

ũ M u∼ PO:U∼
ua M uA CH:ua1, CH:ua2, CH:ua3, CH:ua4, CH:ua5, CH:va1,

CH:va2, CH:va3, CH:va4

uaI M uAIp CH:uai1, CH:uai2, CH:uai3, CH:uai4, CH:uai5

y M ue CH:v1, CH:v2, CH:v3, CH:v4, CH:v5, GE:M ue,

SW:M ue

uei M uEI CH:uei1, CH:uei2, CH:uei3, CH:uei4, CH:uei5

y: M uel GE:M uel, SW:M uel

yœ M ueOle CH:ue1, CH:ue2, CH:ue3, CH:ue4, CH:ue5, CH:ve1,

CH:ve2, CH:ve3, CH:ve4

u: M ul GE:M ul, SW:M ul

uO M uOc CH:uo1, CH:uo2, CH:uo3, CH:uo4, CH:uo5

"u M uplus PO:U+, SP:M u+

"ũ M u∼plus PO:U∼+

0: M uxl SW:M uxl

v M v GE:M v, PO:V, RU:w, SW:M v

B M V SP:M V

vj M vj RU:w∼
U M vst PO:UX

w M w PO:W,SP:M w

W M W RU:i2

x M x CH:h,GE:M x,RU:h,SP:M x

Table A.1
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IPA GlobalPhone Language-specific labels

z M z GE:M z,PO:Z,RU:z,SP:M z

zj M zj RU:z∼
ü M zr CH:r,RU:jscH

üj M zrj RU:jscH∼
w∼ PO:W∼
ya RU:ya

ye RU:ye

yo RU:yo

yu RU:yu

A.3 Articulatory Features

A.4 Language-independent phoneme MLP Accuracy

A.5 Decoder beam settings

A.6 Articulatory Feature representations of phones

Phone Place Manner Nasality Rounding Voicing Vowel Height Frontness Stress

M a none vowel minus minus voiced M a open front minus

M a none vowel plus minus voiced M a open front minus

M aplus none vowel minus minus voiced M a open front plus

M a plus none vowel plus minus voiced M a open front plus

M ab none vowel minus minus voiced M ab open back minus

M abl none vowel minus minus voiced M ab open back minus

M ae none vowel minus minus voiced M ae open-

mid

front minus

M ae none vowel plus minus voiced M ae open-

mid

front minus

M ael none vowel minus minus voiced M ae open-

mid

front minus

continued on next page
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Place Chinese German Portuguese Spanish Swedish

alveolar 23.3 30.8 24.6 27.8 30.7

dental 1.9

glottal 0.9 1.2

labial 4.6 4.9 7.7 8.3 5.9

labio-dental 1.7 4.4 2.7 1.3 4.6

lateral 0.0 2.5 1.4 4.2 3.2

noise 0.0 2.2 0.5 1.8

none 38.4 34.1 47.8 39.5 37.3

palatal 1.4 0.3 3.6 2.2

palato-alveolar 2.1

post-alveolar 5.8 1.6 0.3 0.1 0.9

retroflex 6.5 1.4

silence 3.7 13.5 3.0 3.2 4.7

uvular 2.7 0.0 2.9

velar 14.5 5.7 5.1 6.9 6.0

Table A.1: Distribution of articulatory features across languages — place of articulation.

continued from previous page

Phone Place Manner Nasality Rounding Voicing Vowel Height Frontness Stress

M al none vowel minus minus voiced M a open front minus

M ale none vowel minus minus voiced M ale near-

open

front minus

M alel none vowel minus minus voiced M ale near-

open

front minus

M atu none vowel minus minus voiced M atu near-

open

mid minus

M bcl labial closure minus minus voiced nil nil nil nil

M brl labial fricative minus minus voiced nil nil nil nil

M bjcl palato-

labial

closure minus minus voiced nil nil nil nil

M bjrl palato-

labial

fricative minus minus voiced nil nil nil nil

M C palatal fricative minus minus voicelessnil nil nil nil

continued on next page
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Nasality German Portuguese Spanish Swedish

- 74.7 83.3 87.5 82.9

+ 11.7 11.4 8.7 10.6

noise 0.0 2.2 0.5 1.8

silence 13.5 3.0 3.2 4.7

Table A.2: Distribution of articulatory features across languages — nasality.

Manner Chinese German Portuguese Russian Spanish Swedish

approximant 0.3 1.3 3.9 1.5

closure 26.6 22.4 14.8 21.8 23.2

flap 4.4

fricative 31.3 24.6 28.3 25.9 24.8

nasal 0.3

noise 0.0 0.0 2.2 0.5 1.8

silence 3.7 13.5 3.0 3.2 4.7

trill 5.0 2.6 0.7 6.4

vowel 38.4 34.1 47.8 39.5 37.3

Table A.3: Distribution of articulatory features across languages — manner of articula-

tion.

Voicing German Portuguese Spanish Swedish

voiceless 23.4 25.7 28.1 26.7

voiced 63.1 69.0 68.2 66.9

noise 0.0 2.2 0.5 1.8

silence 13.5 3.0 3.2 4.7

Table A.4: Distribution of articulatory features across languages — voicing.
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Rounding German Portuguese Spanish Swedish

- 79.2 85.7 85.3 82.6

+ 7.3 9.0 11.0 10.9

noise 0.0 2.2 0.5 1.8

silence 13.5 3.0 3.2 4.7

Table A.5: Distribution of articulatory features across languages — vowel rounding.

Vowel German Portuguese Spanish Swedish

a 7.7 9.6 12.1 4.0

A 6.1

E 0.4 3.2

æ 1.3

5 1.2 4.8

e 4.9 9.4 12.6 6.5

9 5.9 0.1

i 6.8 6.3 4.4 5.2

I 3.6

o 2.7 5.7 8.5 4.4

O 1.9

ø 0.4 0.9

œ 0.7

8 1.1

u 3.5 2.3 2.0 0.2

y 0.7 0.7

0 1.0

U 4.8

w 1.4

nil 52.3 49.2 57.2 58.0

silence 13.5 3.0 3.2 4.7

Table A.6: Distribution of articulatory features across languages — vowel.
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Stress Chinese German Portuguese Spanish Swedish

+ 20.3 2.4

- 38.4 34.1 27.5 37.1 37.3

nil 57.9 52.3 49.2 57.2 58.0

silence 3.7 13.5 3.0 3.2 4.7

Table A.7: Distribution of articulatory features across languages — vowel stress.

Height German Portuguese Spanish Swedish

close 11.0 9.9 6.4 7.2

close-mid 13.9 15.1 21.1 12.9

low

near-close 8.4

near-open 1.2 4.8 1.3

nil 52.3 49.2 57.2 58.0

open 7.7 9.6 12.1 10.1

open-mid 0.4 5.8

reduced-close

reduced-close-mid

reduced-low

silence 13.5 3.0 3.2 4.7

Table A.8: Distribution of articulatory features across languages — vowel height.

Frontness Chinese German Portuguese Spanish Swedish

back 18.6 6.2 8.0 10.5 12.7

central 5.9 2.2

front 18.5 20.8 26.7 29.1 22.5

mid 1.2? 4.8

near-back 0.7 4.8

near-front 0.6 3.6

nil 57.9 52.3 49.2 57.2 58.0

silence 3.7 13.5 3.0 3.2 4.7

Table A.9: Distribution of articulatory features across languages — vowel frontness.
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Target Language

Frame error rate (%)

Language-independent
Monolingual

{GE,PO,SP} {PO,SP,SW}

German
dev 27.4(31.7) - 26.5(30.6)

eval 27.6(31.9) - 25.2(29.2)

Portuguese
dev 42.5(44.0) 41.9(43.4) 47.7(49.4)

eval 44.5(46.3) 48.1(50.0)

Spanish
dev 34.3(35.2) 35.9(36.8) 31.8(32.6)

eval 31.6(32.4) 27.0(27.7)

Swedish dev - 41.5(43.4) 39.6(41.3)

Table A.10: Classifying speech from various target languages with a language-

independent MLP in to a global phoneme set. The monolingual case, where the MLP

was trained with only target language data, is shown for comparison. Frame error rates

are reported — ignoring the silent frames in error counting gives the figures in paren-

theses.

continued from previous page

Phone Place Manner Nasality Rounding Voicing Vowel Height Frontness Stress

M Ch palatal fricative minus minus aspiratednil nil nil nil

M drl alveolar fricative minus minus voiced nil nil nil nil

M dcl alveolar closure minus minus voiced nil nil nil nil

M djrl palato-

alveolar

fricative minus minus voiced nil nil nil nil

M djcl palato-

alveolar

closure minus minus voiced nil nil nil nil

M D dental fricative minus minus voiced nil nil nil nil

M drrl retroflex fricative minus minus voiced nil nil nil nil

M drcl retroflex closure minus minus voiced nil nil nil nil

M e none vowel minus minus voiced M e close-

mid

front minus

M e none vowel plus minus voiced M e close-

mid

front plus

M e plus none vowel plus minus voiced M e close-

mid

front plus

continued on next page
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tokens/state(-n) beam(-t) word-end beam(-v)

Lattice

error

rate(%)

Real-

time

factor

4 1000 400 42.55 24.8

5 1000 400 39.15 27.7

7 1000 400 34.13 33.7

10 250 50 61.96 0.4

10 250 100 53.95 0.6

10 250 200 51.71 1.3

10 500 50 45.38 8.5

10 500 100 34.23 10.7

10 500 200 30.58 12.9

10 750 50 44.20 24.4

10 750 100 33.52 31.9

10 750 200 30.00 28.6

10 750 400 29.78 33.8

10 750 600 29.77 35.3

10 1000 200 29.78 36.1

10 1000 400 29.58 42.2

10 1000 600 29.58 43.0

10 1500 200 29.57 38.8

10 1500 400 29.38 42.9

10 1500 600 29.43 45.1

15 500 200 26.16 17.8

20 500 200 23.44 20.2

25 500 200 21.57 22.3

32 500 200 19.91 28.0

50 500 200 16.67 46.1

64 500 200 16.52 64.1

15 750 200 25.46 42.3

20 750 200 22.61 56.3

Table A.11: Lattice error rates for the Swedish development set at various lattice sizes

and beam settings, with mean real-time factors shown. HDecode flags are shown in

column headings, for reference.



132 Appendix A. Appendix

continued from previous page

Phone Place Manner Nasality Rounding Voicing Vowel Height Frontness Stress

M eplus none vowel minus minus voiced M e close-

mid

front plus

M el none vowel minus minus voiced M e close-

mid

front minus

M etu none vowel minus minus voiced M etu close-

mid

central minus

M f labio-

dental

fricative minus minus voicelessnil nil nil nil

M grl velar fricative minus minus voiced nil nil nil nil

M gcl velar closure minus minus voiced nil nil nil nil

M G velar fricative minus minus voiced nil nil nil nil

M h glottal fricative minus minus voicelessnil nil nil nil

M i none vowel minus minus voiced M i close front minus

M W none vowel minus minus voiced M W close central minus

M i none vowel plus minus voiced M i close front minus

M ip none vowel minus minus voiced M ip near-

close

near-

front

minus

M iplus none vowel minus minus voiced M i close front plus

M i plus none vowel plus minus voiced M i close front plus

M il none vowel minus minus voiced M i close front minus

M j palatal approximantminus minus voiced nil nil nil nil

M j4 velar approximantminus minus voiced nil nil nil nil

M krl velar fricative minus minus voicelessnil nil nil nil

M kcl velar closure minus minus voicelessnil nil nil nil

M khrl velar fricative minus minus aspiratednil nil nil nil

M khcl velar closure minus minus aspiratednil nil nil nil

M l lateral closure minus minus voiced nil nil nil nil

M lj palato-

lateral

closure minus minus voiced nil nil nil nil

M L palatal approximantminus minus voiced nil nil nil nil

M lr retroflex approximantminus minus voiced nil nil nil nil

M m labial closure plus minus voiced nil nil nil nil

continued on next page
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continued from previous page

Phone Place Manner Nasality Rounding Voicing Vowel Height Frontness Stress

M mj palato-

labial

closure plus minus voiced nil nil nil nil

M n alveolar closure plus minus voiced nil nil nil nil

M ng velar closure plus minus voiced nil nil nil nil

M nj palatal closure plus minus voiced nil nil nil nil

M nq uvular closure plus minus voiced nil nil nil nil

M nr retroflex nasal plus minus voiced nil nil nil nil

M o none vowel minus plus voiced M o close-

mid

back minus

M o none vowel plus plus voiced M o close-

mid

back minus

M oplus none vowel minus plus voiced M o close-

mid

back plus

M o plus none vowel plus plus voiced M o close-

mid

back plus

M oc none vowel minus plus voiced M oc open-

mid

back minus

M oe none vowel minus plus voiced M oe close-

mid

front minus

M oel none vowel minus plus voiced M oe close-

mid

front minus

M ol none vowel minus plus voiced M o close-

mid

back minus

M ole none vowel minus plus voiced M ole open-

mid

front minus

M ole none vowel plus plus voiced M ole open-

mid

front minus

M olel none vowel minus plus voiced M ole open-

mid

front minus

M ov none vowel minus minus voiced M ov open-

mid

back minus

M ow none vowel minus minus voiced M ow close-

mid

back minus

M ox none vowel minus plus voiced M ox close-

mid

central minus

continued on next page
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continued from previous page

Phone Place Manner Nasality Rounding Voicing Vowel Height Frontness Stress

M prl labial fricative minus minus voicelessnil nil nil nil

M pcl labial closure minus minus voicelessnil nil nil nil

M pjrl palato-

labial

fricative minus minus voicelessnil nil nil nil

M pjcl palato-

labial

closure minus minus voicelessnil nil nil nil

M plusQK noise noise noise noise noise nil nil nil nil

M Qrl glottal fricative minus minus voicelessnil nil nil nil

M Qcl glottal closure minus minus voicelessnil nil nil nil

M r alveolar trill minus minus voiced nil nil nil nil

M rf alveolar flap minus minus voiced nil nil nil nil

M rk uvular fricative minus minus voiced nil nil nil nil

M rj palato-

alveolar

flap minus minus voiced nil nil nil nil

M s alveolar fricative minus minus voicelessnil nil nil nil

M sh alveolar fricative minus minus aspiratednil nil nil nil

M S post-

alveolar

fricative minus minus voicelessnil nil nil nil

M sj palato-

alveolar

fricative minus minus voicelessnil nil nil nil

M sr retroflex fricative minus minus voicelessnil nil nil nil

M ss post-

alveolar

fricative minus minus voicelessnil nil nil nil

M ssh post-

alveolar

fricative minus minus aspiratednil nil nil nil

M srh retroflex fricative minus minus aspiratednil nil nil nil

M tcl alveolar closure minus minus voicelessnil nil nil nil

M trl alveolar fricative minus minus voicelessnil nil nil nil

M thcl alveolar closure minus minus aspiratednil nil nil nil

M thrl alveolar fricative minus minus aspiratednil nil nil nil

M tjcl palato-

alveolar

closure minus minus voicelessnil nil nil nil

continued on next page
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continued from previous page

Phone Place Manner Nasality Rounding Voicing Vowel Height Frontness Stress

M tjrl palato-

alveolar

fricative minus minus voicelessnil nil nil nil

M T dental fricative minus minus voicelessnil nil nil nil

M trcl retroflex closure minus minus voicelessnil nil nil nil

M trrl alveolar trill minus minus voiced nil nil nil nil

M u none vowel minus plus voiced M u close back minus

M u none vowel plus plus voiced M u close back minus

M uplus none vowel minus plus voiced M u close back plus

M u plus none vowel plus plus voiced M u close back plus

M ue none vowel minus plus voiced M ue close front minus

M uel none vowel minus plus voiced M ue close front minus

M ul none vowel minus plus voiced M u close back minus

M ux none vowel minus plus voiced M ux close central minus

M uxl none vowel minus plus voiced M ux close central minus

M v labio-

dental

fricative minus minus voiced nil nil nil nil

M vst none vowel minus minus voiced M vst near-

close

near-

back

minus

M V labial fricative minus minus voiced nil nil nil nil

M w labial approximantminus plus voiced nil nil nil nil

w none vowel minus minus voiced M w close front minus

M x velar fricative minus minus voicelessnil nil nil nil

M z alveolar fricative minus minus voiced nil nil nil nil

M zj palato-

alveolar

fricative minus minus voiced nil nil nil nil

M Z post-

alveolar

fricative minus minus voiced nil nil nil nil

sil silence silence silence silence silence silence silence silence silence

sp silence silence silence silence silence silence silence silence silence

M zr retroflex fricative minus minus voiced nil nil nil nil

Table A.12: The articulatory feature representations of the phonemes used.
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[Stüker et al., 2003] Stüker, S., Schultz, T., Metze, F., and Waibel, A. (2003). Multi-

lingual articulatory features. In IEEE Transactions on Acoustics, Speech, and Signal

Processing, Hong Kong, Hong Kong.

[Thomas et al., 2010] Thomas, S., Ganapathy, S., and Hermansky, H. (2010). Cross-

lingual and Multi-stream Posterior Features for Low-resource LVCSR Systems. In

Proceedings of the 11th International Conference on Speech and Language Pro-

cessing, Makuhari, Japan.

[Torkkola, 2001] Torkkola, K. (2001). Nonlinear feature transforms using maximum

mutual information. In Proceedings of the International Joint Conference on Neural

Networks, pages 2756–2761, Washington D.C, USA.

[Toth et al., 2008] Toth, L., Frankel, J., Gosztolya, G., and King, S. (2008). Cross-

lingual Portability of MLP-Based Tandem Features — A Case Study for English

and Hungarian. In Proceedings of the 10th International Conference on Speech and

Language Processing, pages 2695–2698, Brisbane, Australia.



Bibliography 145

[Tsakalidis and Byrne, 2005] Tsakalidis, S. and Byrne, W. (2005). Acoustic training

from heterogeneous data sources: Experiments in Mandarin conversational tele-

phone speech transcription. In IEEE Transactions on Acoustics, Speech, and Signal

Processing, Philadelphia, USA.
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