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Abstract

Infrared (IR) singularities are a salient feature of any field theory containing
massless fields. In Quantum Chromodynamics (QCD), such singularities give
rise to logarithmic corrections to physical observables. For many interesting
observables, these logarithmic corrections grow large in certain areas of phase space,

threatening the stability of perturbative expansion and requiring resummation.

It is known, however, that IR singularities are universal and exponentiate, allowing
one to study their all-order behaviour in any gauge theory by means of so-called
webs: specific linear combinations of Feynman diagrams with modified colour

factors corresponding to those of fully connected trees of gluons.

Furthermore, infrared singularities factorise from the hard cross-section into
soft and jet functions. The soft function may be calculated as a correlator of
Wilson lines, vastly simplifying the computation of IR poles and allowing analytic
computation at high loop order. Renormalisation group equations then allow the
definition of a soft anomalous dimension, which may then be directly computed

either through differential equations or by a direct, diagrammatic method.

Soft singularities are highly constrained by rescaling symmetry, factorisation, Bose
symmetry, and high energy- and collinear limits. In the case of light-like external
partons, this leads directly to a set of constraint equations for the soft anomalous
dimension, the simplest solution of which is a sum over colour dipoles. At two
loops, this so-called dipole formula is the only admissible solution, leading to the
complete cancellation of any tripole colour structure. Corrections beyond the
dipole formula may first be seen at three loops, and must take the form of weight
five polylogarithmic functions of conformal invariant cross-ratios, correlating four

hard jets through a quadrupole colour structure.

In this thesis we calculate this first correction beyond the dipole formula by

considering three-loop multiparton webs in the asymptotic limit of light-like



external partons. We do this by computing all relevant webs correlating two,
three and four lines at three loop order by means of an asymptotic expansion of

Mellin-Barnes integrals near the limit of light-like external partons.

We find a remarkably simple result, expressible entirely in terms of Brown’s
single-valued harmonic polylogarithms, consistent with high-energy and forward

scattering limits.

Finally, we study the behaviour of this correction in the limit of two partons

becoming collinear, and discuss collinear factorisation properties.
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Lay Summary

Because of the high level of specialisation needed to do research in particle physics,
people who work on experiments very rarely also work on theory, and vice versa.
Furthermore, taking a complex theory of fundamental particles — be it the standard
model or some more exotic theory of new physics — and producing predictions
which can be tested in an experiment like the Large Hadron Collider is a large and
complicated task, involving large amounts of mathematics, computer simulation
and statistics. Indeed, taking a theory from an equation on a blackboard and
bringing it to the stage where it can be tested requires the work of researchers
with a great many different specialisations, loosely gathered under the umbrella
term of “phenomenology”. Physicists in this field tend to concern themselves with

a few key questions:

How can I tell different theories of particle physics apart in an experiment?

What do these theories have in common, and what sets them apart?

In this theory, what is the probability of producing particle X in a collider

experiment at energy Y7

What are the error bars on this prediction, and how can I get a more precise

prediction?

In addition, some physicists are interested in understanding the mathematical
properties of theories, in the hopes that this will lead to better ways of either

performing these calculations, or a better understanding of the theory itself.

In this thesis, I study a feature shared by all theories of particle physics: so-
called infrared singularities. Infrared singularities are a mathematical property of
any theory which contains massless particles, and the exact behaviour of these

particles makes a large difference to predictions for experiments. I calculate these
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singularities at higher precision than has been done before, and in a way such
that it can be applied to any theory of particle physics. This is interesting both
for understanding the mathematics of particle physics, and hopefully it will also

help contribute to higher precision predictions for experimental results.

v



Declaration

I declare that this thesis was composed by myself, that the work contained herein
is my own except where explicitly stated otherwise in the text, and that this work
has not been submitted for any other degree or professional qualification except
as specified.

Parts of this work have been published in [I].

(Oyvind Almelid, April 2016)



vi



Acknowledgements

I wish to thank my supervisor Einan Gardi, for many useful discussions, guidance,
and for his time and patience. His enthusiasm for physics and dedication to detail
has been of enormous value to me throughout my PhD. Many thanks also go to
Claude Duhr for all his help and collaboration, without which this work would
not have been possible. I also wish to thank Vittorio Del Duca for welcoming
me to Rome and letting me work at La Sapienza, and Lorenzo Magnea for his
hospitality in letting me visit Turin.

Special thanks also go to everyone else whose work on three-loop multiparton
webs has been used in this thesis: Chris White, Jennifer Smillie, Mark Harley,
Giulio Falcioni, Lorenzo Magnea, Mairi McKay, Alastair Heffernan, Rebecca
Lodin. Without your contributions it would not have been possible to perform
this calculation.

Special thanks go to Mark Harley and Samuel Abreu for many useful discussions on
soft singularities, polylogarithms and other things. Thanks to James Carrington
for help with Mathematica and programming. To Anne Pawsey, Ben Wynne,
Catherine Lee, Kym Eden, Robert Concannon: thanks for all the fish. To Omer
Gurdogan, Hjalte Frellesvig, Francesco Moriello who made my stay in Rome so
very fun. To Kristel Torokoff for all her guidance and support in my teaching
work.

I also wish to thank my many office mates: Enrico Rinaldi, Pan Kessel,
Nico Kronberg, Valentina Verducci, Samuel Abreu, Eliana Lambrou, Vladimir
Prochazka, Sam Bartrum, Jack Medley, Andries Waelkens, Ava Khamseh and
Gustav Mogull.

Thanks to my family: Ragnhild, Kaare, Janos, Marianne, Fridtjof, Jannike.
Your support means a lot to me. Special thanks to Ragna, for her never-ending
enthusiasm.

Many thanks also to the many other people on the PPT corridor, in condensed
matter, particle physics experiment and elsewhere who have made the last four
years in Edinburgh fun.

Finally, huge thanks to my girfriend Hannah. Words cannot describe how grateful

vii



I am for all her love, support and patience.

viil



Contents

|

|Lay Summary| iii

Declaration %

|Acknowledgements vii

|List of Figures| XV

|List of Tables| xix

i

1 |Introduction and Background| 1
1.1 |A One-Loop Examp1e| .......................................................... 5

1.2 |T he Soft Anomalous Dimensionl .............................................. 9
1.2.1 |IR—UV Connection and The Soft Anomalous Dimensionl ..... 12

1.2.2 |Colour Algebral ......................................................... 13

1.2.3 |Constraint Equations and The Dipole Formulal ................. 13

1.2.4 |Kinematic Dependence of Three-loop Corrections to the
Dipole Formulaf............................ 17

X



1.2.5 |The Soft Anomalous Dimension on Massive Wilson Linesl ... 18

1.2.6 |[Exponentiation and Renormalisation of the Multi-Parton |
| Soft Anomalous Dimension|.......................coooooonnn 19

1.2.7 |Feynman Rules for Multi-Parton Webs in Configuration |

| SPACE]. ..o 22
1.2.8 [Regge Limits|......oovieii 24

1.2.9 |Collinear Factorisationl ................................................ 25

1.3 |Mellin—Barnes Integration and Asymptotic Expansion| .................. 25
1.3.1 |Integration Contours| .................................................. 28

1.3.2 |Parametrising Mellin-Barnes integra,lsl ............................ 30

1.3.3 |Asymptotic Expansions| ............................................... 32

1.4 |P01ylogarithms| ................................................................... 33
1.4.1 |Multiple Polylogarithms| .............................................. 34

1.4.2 |A1gebra and Coalgebral ................................................ 35

1.4.3 |Parameter Integrals| .................................................... 36

1.4.4 |Single—Valued Harmonic Polylogarithms| .......................... 38

2 [The Soft Anomalous Dimension at Two Loops| 41
2.1 |Two—loop Calculation of the Three-line Two-loop Web| ................. 41
2.1.1 |The Scalar Three-mass Trianglel .................................... 44

2.1.2 [Feynman Parameters|........................c 45

2.1.3 |A1pha Parameters| ...................................................... 47

2.2 [The Two-loop Soft Anomalous Dimension in the limit of Light-Like |

| External Partons| ... 43
3 |Colour Conservation at Three Loops 51
3.1 |0 on Four Lines|.............oooooiiiiiiiiii 52




3.2 |F0ur—Line Websl .................................................................. 52

3.3 |Three—Line Websl ................................................................. 54
3.3.1 |Colour Conservationl ................................................... 54

3.4 |Two—Line Webs| .................................................................. 5}
3.4.1 |Colour Conservation| ................................................... 56

3.5 |Colour Conservation in FS| .................................................... 57

3.6 |FS on Three Lines| ............................................................... 59

4 |Computing Webs at Three Loops 61
4.1 |General Overviewl ................................................................ 62

4.2 |Webs Containing Gluon-Gluon Interactions| ............................... 66
4.2.1 |Vertex Integrals and Dual Momentum Space Representa- |

| BIOTIS|. .. 68
4.2.2 |Vertex Differentiation and Parameter Integration| .............. 71

4.2.3 |Asymptotic Expansionl ................................................ 73

4.2.4 |Parametrisation| ......................................................... 74

4.2.5 |Numerical Evaluation of MB Integralsl ............................ 74

4.3 |Collinear Reduction|................oooiiiiiiiii 75

5 |Results for Three-loop Webs in Lightlike Kinematics 7
5.1 |F0ur—1ine Webs| .................................................................... 79
5.1.1 |The Four-Line Four-Gluon Vertexl ................................. 79

5.1.2 |The Four-Line Double Three-Gluon Vertexl ...................... 79

5.1.3 |The 1121—Web| ........................................................... 80

5.1.4  [Multiple Gluon Exchange Webs|........................ 82

X1



5.2 |Three—line Websl .................................................................. 83

5.2.1 |Fully connected graphs| ............................................... 84
5.2.2 [Webs Containing a Single Three Gluon Vertex| ................. 88
5.2.3 [Webs with Vertex Correctionsl ...................................... 91
0.2.4 |Three—line Multiple Gluon Exchange Webs| ...................... 93
5.3 |Two-Line Websl .................................................................. 95
5.3.1 |Fully Connected Websl ................................................ 95
5.3.2 [Webs Containing Three Gluon Vertices| ........................... 97
5.3.3 [Webs With Vertex Corrections| ...................................... 98
5.3.4  [Multiple Gluon Exchange Webs|...................... 99

6 |The Quadrupole Correction to the Soft Anomalous Dimension| 101

6.1 |Assembling all two-line diagrams| ............................................ 101

6.2 |Assembling all three-line diagrams| .......................................... 102

6.3 |Combining Two-Line and Three-Line Websl ............................... 103

6.4 |Four—line diagrams| .............................................................. 104
6.4.1 |Combining all fully connected diagrams.| ......................... 105

6.4.2 [The 1221-web and the 1121-web|.............................. 107

6.4.3 |The 1113—Web| ........................................................... 108

6.4.4 |Combining all Four-Line Diagrams|.......................oo.. 110

6.5 |Assembling all diagrams| ....................................................... 111

7 |The Regge Limit| 113
8 |Collinear Limits| 121

xii



9 |C0nc1uding Remarks and Outlook| 127

15

A |Full Calculation of the Four-Line Four-Gluon Vertex Diagram| 131

B |Full Calculation of the Four-Line Double Three-Gluon Vertex |

| T:)iagram| 137

C |Full Calculation of the Three-Line Four-Gluon Vertex Diagraml 143

D |Full Calculation of the Three-Line Double Three-Gluon Vertex |

| T)iagram| 149

E |Full Calculation of the 311-Web| 155

F |Collinear reduction of the 23-Web| 159

|Bibli0graphy| 161

xiil



Xiv



List of Figures

(1.1 Single emission of soft gluon from an external parton emerging

XV

from an arbitrary process P.|. . . . . . . . ... ... .. ... .. )

(1.2 One-loop QCD correction to the gluon-fermion coupling.| . . . . . 7
(.3 Schematic depiction of factorisation, as in eq. (1.16).| . . . . . .. 10
(1.4 Examples of color-connected and disconnected two-line diagrams.| 19
[1.5 Example of effective vertex diagrams contributing to different |
fexponentiated colour factors (ECFs){in ws)| . . . . . . . . .. .. 21

[1.6 A scalar triangle with powers v; of the propagators and incoming |
off-shell momenta p;, asineq. (1.68) | . . . .. ... ... ... .. 26

(1.7 Contour shift to regulate z,. From the initial contour (a), crossing |
the pole at zo = —e — 21 (b) causes us to pick up its residue (c¢).| . 29

[2.1 ~Web topologies correlating three lines at two loops.| . . . . . . .. 42
[2.2 A three-mass scalar triangle| . . . . . . .. .. ... ... ... .. 43
[3.1  Maximally Non-Abelian Colour Structure on Four Lines| . . . . . 53
[4.1  Four-line webs containing gluon-gluon interactions.| . . . . . . .. 61
[4.2  Representative diagrams for each four-line multiple gluon exchange- |
Cwebl . . . 62
[4.3  Web with tripole colour factor, which we discard.| . . . . . . . .. 63
[4.4  Fully connected three-line webs contribution to Hsf . . . . . . .. 63
[4.5 Representative diagrams of three-line webs contributing to A5 which |
contain a single three-gluon vertex.| . . . . . .. ... .. ... .. 64



[4.6  Representative diagram of web with vertex correction contributing

to Hal . . o o o 64
[4.7  Representative diagrams of three-line [multiple gluon exchange webss |

(MGEWSs)| contributing to Hs.| . . . . . .. ... ... ... .... 65
[4.8  Fully connected two-line webs contributing to Ho.| . . . . . . . .. 65
[4.9  The 23-web, which contributes to H,.| . . . . . . .. .. ... ... 65
[4.10 Representative diagrams of [IMGEWSs| with and without vertex |

corrections that contribute to Ho.| . . . . . . . . ... ... .. .. 66
[4.11 Gluon vertex integrals and corresponding dual diagrams.| . . . . . 69
4.12 Collinear reduction of w(i112) to wyog| . . . . . . o oo oL 76
[>.1  Fully connected webs connecting four lines.|. . . . . ... ... .. 78
[5.2  One of two graphs with single three gluon vertex contributing to [

Wittel - - - - e 78
[>.3  Representative diagrams of four-line MGEWSs|| . . . . . . . .. .. 78
(5.4  Fully connected three-line diagrams contributing to Hs| . . . . . . 84
[>.5 Representative diagrams of three-line webs containing a single [

three-gluon vertex.| . . . . . . . . ... o oL 88
(0.6  Collinear reduction of w(i119), to wean| . . . . . . . .. ... &9
[0.7  Representative diagram of the 411-web: w1y . . . . . . . .. .. 91
H.8  Three-linelMGEWKI . . . . . ... ... o000 92
5.9 Fully connected two-line webs,| . . . . . ... ... ... ... ... 96
[5.10 Representative diagram from the 32-web, w3, . . . . . . . . . .. 98
[>.11 Representative diagram of the 24-web, wyo| . . . . . . . . . . . .. 98
5.12 wag(ana)| - - - o 99
[5.13 Collinear reduction of wis9; to w33, note the symmetry 5; <> 55 in |

wsz, NOt present In wioz.| . . . . . . . ..o 100

[7.1 Analytic continuation contours for z and z for the case of 5, and

[ Incoming, both contours are continuing in the clockwise direction.[114

(7.2 Example t-channel exchange in clockwise labelling convention.| . .

Xvi

117



[A.1 The four-gluon vertex web wygf. . . . . . . ... ..o 132

[A.2 The four mass box, Box ({p;})| . . . . . . ... ... ... 133

................................ 137

[B.2 The slashed four mass box S({p:},s,¢) . . . ... ... ... ... 139
[C.1 Three-line four-gluon vertex wg) 3(Q12, a1, ao3)[ . . . . . . . . .. 144
[D.1  Hard three-line double three gluon vertex. . . . . . . .. .. ... 150
[F.1 Representative diagram of the 23-web.| . . . . . . ... . ... .. 159

XVvil



XVviil



List of Tables

M1

some examples of Brown’s single-valued harmonic polylogarithms.|

40

71

Analytic continuation of u, v, z, and z to the forward scattering

region. We give the total phase change of v and v, and the

corresponding transtformation of z and z, where we have abbreviated

the direction of the contours as c. for clockwise and c.c. for

counterclockwise. |. . . . . . . . ...

Xix



XX



Glossary

CICR conformal invariant cross ratio. [79], [106],
ECF exponentiated colour factor. [xv]
IR infrared. [IH3] [} [7-09] 13,

MB Mellin-Barnes. @ [[8, 8033} 36} [66}, [70} [71} [74} [B7 [128)

MGEW multiple gluon exchange webs. [xvi [66], [78{80}, [82] [83], 2
[99} [106} [157]

MPL multiple polylogarithms.

RG renormalisation group. 14

SVHPL single-valued harmonic polylogarithm. [114

UV ultraviolet. [1], [2] [7]

xxi



xxi1



Chapter 1

Introduction and Background

The study and treatment of singularities is an integral part of perturbative

quantum field theory. In the case of jultraviolet (UV)|singularities, the process

of renormalisation has both cured the singularities and provided us with a new

understanding of quantum field theories through [renormalisation group (RG)

equations (see e.g. [2], a concise modern introduction is given in [3], or in e.g.
[4, 5]).

In addition to [UV]singularities, any theory with massless fields also has
singularities, i.e. singularities associated with the emission and re-absorption
of one or more low-energy particles. The existence of such [[R] singularities is thus
a general property of gauge theories with massless gauge bosons, such as Quantum

Electrodynamics or Quantum Chromodynamics.

[R] singularities may arise in two distinct, but overlapping regions of phase space.
Firstly, massless particles give rise to singularities when their energy becomes
small, we refer to such singularities as soft singularities. Secondly, when two
massless particles become collinear, they give rise to so-called collinear singularities,
resulting in jets. A key distinction is whether a scattering amplitude has massless
or massive external states, since the latter only contains soft singularities, not

collinear ones.

singularities are treated in cross-sections through the sum of virtual corrections

and diagrams containing real emissions, integrated over some appropriate region



of phase space (see e.g. [6]). Schematically this looks like

2

1 mdk? m?
- —Q xlog | — | + O(e), (1.1)
c o (k) Q2

~~ . -

virtual o

real

where () is some hard scale associated with the relevant observable (e.g. the
center-of-mass energy of a scattering event), and m? is some small scale which

depends on the observable (e.g. a jet mass).

Treatment and cancellation of [[R] singularities was first understood in the context
of QED by Bloch and Nordsieck [7]. More generally, the safe treatment of
singularities is guaranteed for so-called infrared safe observables by the Kinoshita-~
Lee-Nauenberg (KLN) theorem [8, 9]. However, if a process has a large hierarchy
of scales, i.e. a,log(Q?/m?) ~ 1, perturbative expansion breaks down. For this
reason, it is vital to calculate, classify and resum(see e.g. [10, [11]) singular

contributions to scattering amplitudes.

The history of [[R]singularities dates back over three decades, from early treatments
in quantum electrodynamics (see e.g. [12]), to more general treatments in a variety
of non-Abelian gauge theories [6, 13H34]. Apart from the direct need to compute
and resum [[R] singularities for phenomenological reasons, they also have a number
of features which make them interesting from a purely theoretical standpoint. For
one thing, they are universal [13], enabling computation for a general scattering

process in a given field theory.

Furthermore, we will see in section that certain [[R}singular contributions
share kinematic structure in a way which enables their computation in a general
gauge theory. For these contributions, useful constaints may be obtained by
requiring compatibility with different theories. Notably, compatibility with A" = 4
Super Yang-Mills will require that our final result in chapter [6] must be composed

of polylogarithms of uniform transcendental weight 2 + 1 [35] E|

Secondly, an observation was made in [I§], which relates the structure of soft
singularities to those of [UV] singularities of a correlator of Wilson lines. This
enables us to study the structure of [[R] singularities by means of RG] equations.
Such [RG] considerations have led to the ability to directly compute a soft anomalous
dimension (defined in section , which simplifies the process of exponentiating
poles. This approach has been studied extensively and yields insights into

'We will discuss polylogarithms and transcendental weight in section

2



the all-order structure generated by soft gluons [18|, 27-33, [35H61].

Exponentiation can also be achieved through the study of so-called webs, which
enables the direct diagrammatic computation of the soft anomalous dimension
[T5HIT, [19-26]. The study of such webs is of mathematical interest, as they reveal

a rich, iterative structure of the exponentiated [[R] poles.

Furthermore, both of these methods reveal a startling simplicity in taking the
soft limit, which both motivates and enables analytic computation. Thus, [R]
singularities are known in general at two-loop accuracy for both light-like [27] and

massive [28-31] external partons.

Both direct calculation [27H3T] and theoretical considerations [32, [33], 35] 50, 62, [63]
reveal a startling simplicity in the structure of [[R] singularities. This is understood
as a consequence of rescaling invariance, Bose symmetry, high-energy limits other

general considerations which serve to constrain the structure of soft singularities.

A direct study of these constraints revealed a possible all-order solution for the soft
singularities of massless external partons to be a sum over colour dipoles (which
we will outline in section [1.2.3) [32, [33] [37]. This solution is the only permissible

solution at two loops. At three loops, there may be corrections composed of

specific kinematic invariants known as |conformal invariant cross ratios (CICRs))|

and at four loops we may see contributions arise due to quartic casimir operators.
Indeed, theoretical considerations have shown that the so-called sum-over-dipole
formula receives corrections at four loops [34], though as yet no complete analytic

computation has been performed beyond two loops.

Besides the clear interest in understanding soft singularities at three loops for
theoretical reasons, a full three-loop calculation would also be useful for practical
applications. Firstly, understanding the complete structure of soft singularities
at three loops will serve as a check of any three-loop calculation. Since parts of
the work in this thesis were published in [I], such a calculation has in fact been

performed [64], and the results confirm our findings.

Furthermore, a complete three-loop calculation is of relevance to resummation of
observables involving three or more hard external partons (see e.g. [10] 1T} Such
resummation involves also the real (and process-specific) terms, which would have
to be computed and taken into account to the same order in perturbation theory.
Nonetheless, a full three-loop calculation of the soft anomalous dimension would

eventually be applicable at a sufficiently high logarithmic order to many processes



(see e.g. [65-68]).

In this thesis, we will aim to calculate the three-loop contributions to the exponent
for soft singularities containing massless external partons. Our general strategy
will be to work on a process containing only massive external partons, thus
avoiding the issue of collinear divergences. We will then perform an asymptotic
expansion around the limit of massless external states in order to obtain the

required corrections to the dipole formula.

We will begin by considering a simple one-loop example in section [I.I} We will
then take some time to study the soft anomalous dimension in section [1.2} starting
from soft-collinear-hard factorisation we will define the soft anomalous dimension
in section [I.2.1] We will then discuss the constraint equations and the sum-over-
dipole formula of [32] [33], B7] in section [1.2.3] Following on from this, we will look
at the kinematic and colour structure of any corrections to the dipole formula,
before briefly discussing constraints provided by the Regge limit (section
and collinear limits (section [1.2.9).

Having thus introduced the main theoretical concepts, we will briefly cover

two calculational tools of importance. We will begin with [Mellin-Barnes (MB)|

integration techniques (section , which will enable us to perform asymptotic
expansions near the limit of light-like external partons. Finally, we will conclude
this chapter with a discussion of parameter integration and polylogarithms in
section [4

After defining our main concepts and tools, we will consider an example two-loop
calculation and discuss the implications of the sum-over-dipole formula at two
loops in the limit of massless external partons (chapter . We will then proceed
to consider the colour structure of any results of our calculation in chapter [3]
and outline our general method of computation in chapter 4 Finally, we will
present our results for each individual diagram in chapter [5| before assembling
the full correction to the dipole formula in chapter [ff We will then consider the

Regge limit of our result in chapter [7] before discussing collinear factorisation in
chapter [§



p+k

Figure 1.1 Single emission of soft gluon from an external parton emerging from
an arbitrary process P.

1.1 A One-Loop Example

Before we consider singularities in more general terms, it is perhaps useful
to consider a simple example. We begin by investigating the Feynman rule for
the emission of a soft gluon from a fermion. Consider the diagram snippet in
fig. where we take the momentum of the fermion — p — to be external and
hence on-shell. The vertex then contributes the following factor to the Feynman

diagram

p p+Ek+m

i (1.2)

VH(p, k,a) = igsu(p)y
The colour matrix T® is here the usual emission matrix for an outgoing fermion
T = t(aag. The purpose of writing T is to later generalise to arbitrary colour
representations, independent of the specific gauge group or representation of the

particle emitting a gluon. Full details on this notation are given in section [I.2.2]

Taking k < p, we neglect k? in the denominator and # in the numerator, since p

is on-shell the denominator then simplifies

" o u ptm
VEp k,a) = igsu(p)y 2(p_k,)T : (1.3)

We may now utilise the anticommutator to exchange p and +*, the Dirac equation
then immediately tells us that u(p)p = @(p)m. When the dust settles, we have

obtained the following expression for the vertex and the internal propagator
pH
(p- k)

It is noteable that the emission vertex has become invariant under rescalings of

VE(p, k,a) kzp igsu(p) T (1.4)



the four-momentum p#. Furthermore, the spin-dependence of the gluon emission
has entirely vanished from the vertex in the soft limit. This is convenient, since it

allows us to generalise this result to any number of gluon emissions inductively.

To be more precise, we define the eikonal Feynman rule for the emission of a soft

gluon from an external parton as

p+k p - ph T B
k — 19, T =149, T .
2(p- k) (B-k)

(1.5)

Note the appearence of § = p/Q, which represents an arbitrary rescaling of the
momentum p, under which the eikonal Feynman rule is invariant. Furthermore,
the eikonal Feynman rule can be entirely reproduced by a Wilson line operator,

written in configuration space as

000,00 = Pesp (i, [ st a, (64 ) (16)

To see this, we fourier transform to momentum space

d

b d®k ~ o ,
i%/@WMwwﬂ%/@WW&WA(mW*

A% B
0. | AT

The Wilson line thus captures the fact that the emission of a soft gluon causes no

(1.7)

recoil to the emitting particle, and does not resolve its spin.

We may now apply these tools to an example. Consider a QCD correction to the

gluon-fermion coupling, as in fig. [I.2]

M,ua(pl —I—p2) = —ggTbTaTb

Ak, gkt m L p—kam (1.8)
&/@ﬂﬂ@ﬁywﬁwy_mﬂ(m_MLﬂM%EMM)

The expression above is clearly not gauge invariant. However, it does serve to

illustrate some of the concepts we will introduce in the following chapter. Taking



/

p

Figure 1.2 One-loop QCD correction to the gluon-fermion coupling.

the soft limit of eq. (|1.8)) we find

dk P1-D2
(2m)d k% (pr- k) (p2 - k)

M=) | o g T T T alp) o) [ (1.9)

k%< py,p5
The tree-level amplitude has factorised out of the loop integral in the soft limit.
This property is a general property of [[R] singularities, and one we will return to
in section [I.2]

A few observations are in order: firstly, the expression in eq. is divergent
both for k < p and for k& > p, in spite of eq. being ﬁnite. Furthermore,
the rescaling invariance of the eikonal emission means that the whole integral is
scaleless, and hence zero in dimensional regularisation. The reason for this is that
taking the soft limit has introduced [UV] poles which precisely cancel the [[R] poles
[53]. This enables us to compute the [[R] pole of eq. in terms of the pole
in eq. . We will discuss this in more detail in section m

We also note that while the kinematics have factorised, the colour factor of this
diagram differs from the tree-level vertex, albeit in a fairly simple manner for
this example. This is hardly surprising, since the soft gluon does carry colour,
and we would in general expect it to thus affect the colour flow of the hard
interaction vertex between the gluon and fermion in eq. . Thus, when we
consider soft factorisation more generally in section [1.2] we will have to choose a
basis for the possible colour flows in the hard part of the amplitude, whereupon

soft singularities will be some matrix in this colour flow space (see e.g. [11] for a
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much more thorough treatment of factorisation).

In the next section we will define all the tools needed to understand and handle
these issues, and we will show that we may capture the soft singularity in eq. (|1.8)

in the following configuration-space diagram by utilising our Wilson lines:
wan)(ijs €) = (T1 - T2) (igsp)* (Br - Bo) N

/oo e efim(sl\/ﬂfinJrSz\/B%in) (1.10)
X .
0 e (—=(s181 — 8252))1_6

In the above, we have utilised the Feynman rules for Wilson lines which we will

give in full in section [1.2.7. For now, we note that we have introduced the rescaling-

invariant angle v;; = \/%f;_w a normalisation associated with the configuration
1 2

space propgataor N' = 1:1(732_,?

the [IR| pole (we may utilise the counterterm to recover it) in a manner which

obeys the rescaling invariance of the Wilson lines. The advantage to working in

and an exponential regulator which regulates away

configuration space is the immediate reduction from d-dimensional momentum
integrals to scalar ones. For this reason, we will work exclusively in configuration

space for the remainder of the thesis.

Having highlighted most of the properties we need for section [1.2] we are now
more or less done with our one-loop example. For completeness, we note that the

integrations over the Wilson line parameters s; may be performed by the following

rescaling
ax
51 = \/_%, (1.11)
1—
55 = M—ﬁ;”) (1.12)
2

where we have o € [0,00) and z € [0,1]. Performing the integral over o then

yields

wan (Yig, €) = = (T1 - T2) (g5)* (;—22) %NP(%)

1 (1.13)
X /o do (—2* — (1 —2)* + 2(1 - x)fm)l_e.



This integral may then be recast in terms of a hypergeometric function [17]:

g2 12
way (i, €) = — (T1 - Ty) 38712 <ﬁ> NT(2)

(1.14)
o P ([1, 1—d,[3/2], % + %) .

Thus, the one-loop two-line soft pole may be found order-by-order through an

expansion of the hypergeometric function in e.

This concludes our one-loop example. In the next section we will look at
singularities more generally, and define the tools we need for our three-loop

calculation.

1.2 The Soft Anomalous Dimension

Having seen an example of an [[R]singularity, we now turn to the broader study of
such singularities in the context of a general gauge theory. As we have already seen,
the Eikonal approximation leads to a significant simplification of the Feynman
rule for the emission of a soft photon. This property extends beyond QCD: it is
universal to all massless particles and enables a succinct and simple description of
singularities in any gauge theory, and to all orders in perturbation theory. The
basis for this is soft-collinear factorisation, which enables the separation of the soft
and collinear modes from the hard scattering event [11 13| 14l 27, 33], 49, 50, [69)].
On an intuitive level, the energy scales of the hard scattering and any soft gluons
dictate a significant difference in the compton wavelength, which prohibits the
soft gluons from resolving the hard interaction. While a two-leg amplitude in a
non-Abelian gauge theory is necessarily a colour singlet, a multi-leg amplitude
allows many different colour flows through the amplitude. It is convenient to
explicitly define this decomposition: let M be an amplitude with n partonic legs:
we denote the colour index of leg ¢ with a; and pick a linearly independent basis

of colour tensors (Cf){a,} for the amplitude:

M (2. aim.c) =Y M (%ae) €y (115)



Figure 1.3 Schematic depiction of factorisation, as in eq. 1)

We will follow [33] 50] and define a factorised amplitude M as follows:

i 2pi -p; (2pi - ’
M, (%,as(u),e) :;SLK(@'@,%(MQ%E)HK ( p/ﬁpj’ : Z;Zzunzl) ’as(“2)>

)2
ﬁ Jz ((2{:2“5) 7043(/’62)7 6)
X - .
=1 x77, <(2/8;,L+)2a ()[5([1'2), 6)

(1.16)

Fig. |[1.3| provides a schematic depiction of the formula. We have thus defined four
quantities: the hard function H, the soft function S, a jet function J and the so-
called eikonal jet 7. The hard function is finite after the usual UV renormalisation,
and we have defined it with an index K to allow for different process-dependent
colour flows through the amplitude in a manner analogous to eq. . Since
soft gluons carry colour, the soft function Sy then mixes the colour flows of the
hard interaction, producing M. Finally, the jet functions are unique to massless

external partons, and carry information about collinear singularities.

The soft function is of primary interest to us: its definition is motivated by the
eikonal Feynman rule we defined in eq. (1.5)), and is defined in terms of the Wilson

line in eq. (1.6)):

b
By (a,b) = P exp (Z / dx“A#(x)) , (1.17)
where the operator P is a path-ordering operator.
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We may define the soft function as a vacuum expectation value of multiple such
Wilson lines, extending from the hard interaction at the origin to infinity in

directions (;

(CL) ey Suxc(Bi - By, as(p®),€) = > (0] @5,(0,00) - -+ D, (0,00) [0) . (1.18)
{ni}

The jet functions capture collinear singularites, and their definition depend on the
partonic content of the various external lines. For instance, an outgoing fermionic

jet is defined as

- (2p; - ni)2 7

a7 (5 ) €) =0l HOR,0.-00) 0 (119
The Wilson line simulates interactions with other external partons, the direction
of n is arbitrary, but off the light-cone in order to avoid incurring further spurious

collinear singularities.

Finally, the so-called Eikonal jet has been introduced to deal with the region of
phase space which is both soft and collinear. It shares the kinematic structure of

the partonic jet, but with a Wilson line replacing the partonic line as follows

2
T; (—(2@'”'2”” ,as(,f),e) = (0] @,(0, 00)@,,(0, —00) |0) . (1.20)
The jet functions are of primary importance in understanding the [[R] singularity
structure of amplitudes with massless external partons. In particular, note the
dependence of the eikonal jet on both § and n. This dependence, coupled with
the way in which the eikonal jet serves the dual purpose of either cancelling soft
singularities from the jet function, or collinear singularities from the soft function,

strongly constrain the structure of the soft function, as we will see in section [1.2.1

Before we do, however, we note that the jet functions only appear for Wilson lines
with massless external partons. For massive external partons, the factorisation

formula becomes

M (B o)) =3 Sukc g alid), 0 Hie (2B a,(u?)) . (121)
(o) =3 (o)
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Note in particular the dependence on the spacetime angle ;;:

L BB

This quantity captures the rescaling invariance of the Wilson lines, and is therefore

(1.22)

the invariant which the massive soft function depends on.

The absence of collinear singularities in the case of massive external partons
will enable us to avoid directly working with jet functions. We will work with
amplitudes containing only massive external partons, where 32 # 0. However,
we are ultimately interested in corrections to the dipole formula (which we will
discuss shortly in section , which is a purely massless phenomenon. Hence,
we will later perform an asymptotic expansion around the massless limit 57 — 0
in order to recover the massless soft anomalous dimension, where we may directly

compare our result with the constraints which we will derive in section |1.2.3|

1.2.1 IR-UV Connection and The Soft Anomalous Dimension

Since it only depends on the momenta of the external partons through f;, the
soft function as defined in eq. is scaleless, and hence zero in dimensional
regularisation. This is not due to a lack of singularities, but rather due
to the introduction of spurious ultraviolet singularities when taking the eikonal
approximation [53]. These UV singularities must then precisely cancel the [[R]poles
present in S. This presents us with the opportunity to utilise UV renormalisation
group considerations to study [IR] singularities [18] [32, [40] 53], 56]. The argument
is based on multiplicative renormaliseability [70], which enables us to write a
counterterm which obeys the standard [RG| equations. The soft function is then
nonzero after renormalising the [UV] terms. The fact that the soft function is
scaleless thus enables us to identify the [[R] poles of the soft function with the [UV]
poles in the multiplicative counterterm, which ultimately enables us to define the

soft anomalous dimension I'°:

d
/,L@S[K (Bz ' ﬂj7 O (/‘LQ) ,6) =

= T35 (Bi By s (17) v €) Saxc (Bi - By s (12) s €) -

(1.23)

We note here that I'¥ is a pure counterterm: it only depends on the renormalisation

scale p through the running coupling.

12



In section we will review how we may obtain a direct diagrammatic description
of I'¥, which we will use for our calculations. However, the ability to use
equations to study I'® directly also yields some interesting constraints which we
will summarise shortly. First, however, we must make a slight digression to make
a full exposition of our colour algebra notation, which we briefly introduced in
section [[11

1.2.2 Colour Algebra

Throughout this thesis, we will be utilising Catani-Seymour notation for the colour
algebra. Our aim is to work with a general, representation-independent colour
structure, which may later be specialised to a specific process. Thus, we operate
with the colour factors T;, where 7 indexes an external parton in S, and is taken
to be in the relevant representation for parton ¢. This means that T} = 7, for
a final state-quark or an initial-state antiquark, T{ = —tf, for an initial-state
quark or a final-state antiquark, and T{ = if,,.s for a gluon. As an example, this
enables to write the quadratic Casimir in an arbitrary colour representation as

follows
C;1="T{T7. (1.24)

For a quark in SU(N,), this yields Cp = t2t% = (N2 —1)/(2N,)0ay-

1.2.3 Constraint Equations and The Dipole Formula

The massless two-loop soft anomalous dimension was calculated in 2006 [27]. The
result was found to be proportional to the one-loop result, specifically, if we label

the I-loop soft anomalous dimension as I'®, then we have

(1.25)

where yg) is the two-loop coefficient of the well-known cusp anomalous dimension:
the coefficient of the [IR] pole of a Wilson loop with a single cusp [I8, [7T]. This
result confirmed an earlier prediction [6], and prompted a review of the general
structure of |IR]| singularities [32], B3]. We will utilise the notation of [33] and

summarise the main results in this section. The key component in deriving the
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constraint equations is the eikonal jet. Since it is a pure counterterm and depends
on no scale, it only depends on p through the running coupling, allowing the

immediate integration of its [RG] equation, i.e. we have the standard RG] equation

d 2 2
i 1y Us 3 = - ; iy (s ) ) 1.26
dlog(u)J(w as(1?), €) = =y, (wi, as(1?), €) (1.26)
where we have defined the shorthand w; = %—2)2 Upon integration, this yields
) S )
\772 (wiv A (M ) 76) = exXp _§ ?’Yﬂ (wi7 A (5 76) 76) . (127)
0

The anomalous dimension v, is singular due to the cusp anomaly. In the same
manner as for the Sudakov form factor [72], the singular contribution is then
governed by g, and can be separated out as a pure counterterm with no kinematic
dependence, into a so-called K +G-equation. This results in a factorised expression

for the eikonal jet:
Ji (wi, a5 (1) ) =
w2 g2 2 (1.28)
exp E [ % (560 (0n0ule.0) = Jx (aule?, ) o (‘g—))] .

However, the dependence of J; on w; is known from [50]:

3} ) B 1 ;
Blog(wy) log(Ji (wi, as (1), €)) = —g/o ?’7]((055 (&%,¢) (1.29)

Comparing the eq. ((1.29) to eq. (1.28]) we may deduce the dependence of G 7 on
w;. Ultimately, this yields the following result for the eikonal jet

Ti (wi, o (/fz J€) =
P [% /O# dg_f; (%57 (as(€% ) — }LVK (s(&%,€)) log (wgéﬂ))] . (1.50)

The solution obtained in eq. ([1.30]) directly enables us to derive the constraint
equations for I'. The crucial observation which enables this is that while
I'¥ contains collinear singularities, and hence has a singular contribution, this

singularity is cancelled by the eikonal jet. We define the so-called reduced soft
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function S:

_ S[J (ﬂz ' Bja As (MQ) ) E)
H?:l Ji (wia % (MQ) 7€>'

Sta(pijs s (1?)) (1.31)
The reduced soft function also has an associated reduced soft anomalous dimension
'S, defined in the same way as we defined I'Y. However, this reduced soft
anomalous dimension is free of cusp singularities, and eq. (1.16]) implies that it
must be manifestly rescaling invariant in both § and n, hence we have defined
the invariants
2
(Bi - B;)” ninj

Pij :4 (5; - ni>2 (/8] ' nj)2. (1.32)

Differentiating eq. 1' we obtain a relationship between I'S, I'S and ~ 7, which
upon inserting eq. (1.30]) yields

FfJ(piﬁ as(u?)) =T(B; - Bj, s (%) €) = O1g Z _%‘5% (as(1?,€))
k=1

. (1.33)
L (o L[ de 2

+=vi (as(p”, €)) log(w;) + — 72 VK (as (f >€)> :

i 1)y ¢

At this point we may observe a few things which will be of primary importance
to the structure of our calculation in later chapters. Firstly, any off-diagonal
elements in T'° are equal to those of I'®, and are hence finite and invariant of any
rescaling of ;. Thus, they must be composed entirely of so-called defined

as

(8B (B B) (1.34)

Pkl = 3. Be) (B; - Br)

We note the need for at least four distinct partons in order to define a [CICR], this

means that such terms can first appear at three-loop order. This fact provides a

strong motivation for studying the light-like soft anomalous dimension at three

loops.

Turning to the diagonal elements of I'®| it is clear that in order to obtain only finite
contributions to 'Y, the singular terms must cancel between I' and the eikonal
jet terms vz . Thus, any singular terms must be proportional to v, and any finite
terms which are not [CICRFdependent must combine with log(w;) in eq. to

produce the appropriate dependence on p;;. Considering the w-dependence of
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eq. (1.33)), one then arrives at [32, [33]

0
Zm]a Fu(ng,as)—éu L 9. (1.35)
J#i

Eq. ultimately leads to the promised sum-over-dipoles formula. However, a
few remarks with regards to the colour structure of the soft anomalous dimension
are required in order to obtain it. Specifically, the non-Abelian exponentiation
theorem implies that up to and including three loops, the cusp anomalous
dimension is only proportional to the quadratic Casimir operator C; of the relevant
parton, so-called Casimir scaling. Utilising our notation for the colour factors

outlined in section [1.2.2] we then define

1 () = TIT% e (as) + 742 (), (1.36)

where we take 'Nyé? to be O(a?). Considering the solution to eq. |D for Yk
and excluding any contributions which are separately rescaling invariant then
ultimately yield [32], 33]

i (6 B3 0(12)) =~ (0u(1%) S log(5, - 5, TTS
i#j
, | gy ’ (1.37)
5 2 a a
—30s (as(p?)) + Z/o 7K (as(X2) € ZT TY.

+

The dipole formula is arrived at as the unique solution to eq. (1.35) under the
requirement that the kinematic function does not explicitly depend on [CICRS|
as well as the assumption of Casimir scaling. These assumptions then naturally

yield two potential sources of corrections to the dipole formula.

As we mentioned, Casimir scaling may first be broken at four loops, by the
appearance of quartic Casimir operators. Secondly [CICR}dependent terms may
arise at three loops, and recent considerations in N/ = 4 Super Yang-Mills
demonstrated that such terms will exist at four loops [34]. To date, no complete
calculation of any such corrections exists. We will therefore attempt a complete
calculation at three loops of any [CICR}dependent corrections to the dipole formula
in chapter [f
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1.2.4 Kinematic Dependence of Three-loop Corrections to

the Dipole Formula

As we mentioned, contributions to I'Y beyond the dipole formula (eq. ) at
three loops can be exclusively composed of as in eq. . This motivates
a particular interest in diagrams connecting four Wilson lines by a single connected
tree of gluons. The reason for this is that these diagrams are the only ones which
depend on the complete set of angles 3; - 3; connecting all four lines, and hence
the only diagrams which may directly depend on All other diagrams may
produce dependence on only through sums of permutations of the external
legs.

Since we wish to study corrections to the dipole formula in more detail, we define

the function A according to

T2(B; - By, as (1)) Ergip.(ﬂi - By, as(1)) + A(z, 2). (1.38)

Our results will often depend on Kallén functions, hence we have used the kinematic
invariants z and z in eq. ((1.38). They are defined by

=2z, (1.39a)

/) _(51'52)(&3
By - Bs) (B -
(BuBa) (B2 B3) _ o\ oy
TG, =(1-2)(1-2). (1.39h)

P1432 :(51 "B

Their utility is made clear if we explicitly solve for z and z

2z =1 — p1a34 + prag2 + \/)\ (1, p1234, p1as2) (1.40a)
Z =1 — p1234 + praz2 — \/>\ (1, p1234, p1432), (1.40b)

where )\ is the familiar Kallén function

A(a,b,c) = a® +b* + ¢ — 2ab — 2ac — 2bc. (1.41)

Bose symmetry constrains the kinematic behaviour of A. We will return to this
matter when we consider the specific combinations of kinematic functions and
colour factors which may appear in chapter 3] However, it is convenient to consider
how permutations affect z and z. Following [35], we observe that swapping Wilson

lines yield transformations that affect z and z in the same way. Specifically, we
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find the following effects on z and z

12/ 34 z

> 1.42
- (1.42)
losvEed, (1.43)
1
1<—>4V2<—>3\ . (1'44>
1—2z

These symmetries will be useful in chapter |3 and later in expressing our results in

a manner which makes Bose symmetry explicit.

1.2.5 The Soft Anomalous Dimension on Massive Wilson

Lines

Our aim in this thesis is to compute A(z, z), as defined in eq. . However,
we wish to avoid the thorny issue of collinear singularities and the overlapping
singularities in the soft-collinear region. As we mentioned at the beginning of
this chapter, we will avoid collinear singularities by working explicitly with non-

lightlike Wilson lines, whereupon the factorisation formula reduces to the one in
eq. (T21).

For the remainder of this chapter we will therefore work exclusively with non-
lightlike Wilson lines. Using eq. ([1.21), we may then define a soft anomalous
dimension for massive external partons in analogy to eq. (1.23)) [17]

M%SIK</Y7LJ'7 as(1”)) = =7, (vig, s (1)) S i (g s (117)). (1.45)

In the next section, we will look at how we may directly compute I'°
diagrammatically, we will then turn our eyes to the tool we will ultimately use to
recover the light-like behaviour of I'®: integration in section Finally, in
section we will discuss the analytic structure of our results in the context of

multiple polylogarithms.
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B2

B
(a) Fully connected two- (b) Color-connected (c) Disconnected two-line
line  diagram  with two-line diagram. diagram. The dashed
fermion bubble. lines indicate where one

may cut the Wilson
lines and obtain two
connected pieces.

Figure 1.4 Ezxamples of color-connected and disconnected two-line diagrams.

1.2.6 Exponentiation and Renormalisation of the

Multi-Parton Soft Anomalous Dimension

The calculation of soft singularities can be significantly simplified by the fact that
soft singularities exponentiate. That is, we may not only write the soft matrix
as some exponential, but we can in fact find a diagrammatic interpretation of
this exponential. This fact has been known in the context of Abelian theories (it
was first shown in [12]), where the exponent receives contributions only from fully

connected diagrams.

However, the Abelian case is vastly simplified by the ability to interchange the
points of emission and absorption of photons without it affecting the charge flow.
For a non-Abelian theory this is no longer possible, leading to some complications
in defining the exponentiated soft function. In the case of two-parton diagrams, one
finds that the exponent receives contributions from all color-connected diagrams
[15], 19, 22, [73]. These are diagrams where there is no way to cut the Wilson lines
and obtain two disjoint, connected diagrams. Put differently: the colour flow of
the diagram, as dictated by the ordering of the gluons, does not allow one to
decompose the diagram into separate pieces. An example of both color-connected

and color-disconnected diagram is given in fig. [I.4]

Extending this notion to diagrams with more than two external partons presents
a challenge: since gluons may now attach to multiple different lines, the notion of
color-connected does not easily extend to multi-leg diagrams. Instead, one finds

[20] that sets of diagrams diagrams contribute to the exponent in very specific
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linear combinations. These linear combinations are collectively referred to as webs,

and are defined as follows.

Consider a set of n Feynman diagrams — {D;}, i € {1,---n} — contributing to
the soft function, where the diagrams in the set differ only by permutations of
the orderings of emissions of gluons along the Wilson lines. Each diagram has
a colour and kinematic component, labelled C; and F;. These diagrams then
contribute to the exponent only in specific linear combinations dictated by the

web mizing-matriz R;; as follows

W =Y CRy;F;. (1.46)

1]

The web-mixing matrix can be found either by means of the replica trick[20], or
more directly by means of web effective vertices[16], the latter of which we will

discuss later in this section.

The mixing matrix has some interesting properties. Firstly, it is idempotent, i.e.
it has eigenvalues \; € {0, 1}, making it a projection matrix. Furthermore, the

sum of any row or column in R;; is zero.

The role of R is to project out specific linear combinations of Feynman diagrams
with modified colour factors, which we refer to as , which we will label C.
To see this, we diagonalise the web mixing matrix as R = Y"'DY. D is then
a diagonal matrix with all diagonal entries being either 0 or 1. The number of
nonzero diagonal entries in D are r = Rank(R), and we may choose to work in a
basis such that D is simply an identity matrix in the upper left corner, and zero

everywhere else, yielding
W=) (cYy "), (YF),=) CF. (1.47)
i=1 i=1

It then transpires that the in C , are fully connected, i.e. they are colour
factors corresponding to connecting the same attachments of Wilson lines to a

single graph of gluons, internally connected by three-gluon vertices[16].

As mentioned before, the precise expressions for these linear combinations may
be derived in a few different ways. One method, which is largely diagrammatic
is the method of effective vertices [16], which in turn is derived from the replica
trick method [20]. To do this, a set of effective vertices which attaches n gluons

to a Wilson line — V,, , — are defined. We will not give details of the definition,
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Figure 1.5 FEzxample of effective vertex diagrams contributing to different
m w(33)

but merely note that in terms of colour and kinematics, these vertices correspond
to antisymmetric permutations of the points of emission along the Wilson line,
both in terms of colour and kinematics. For instance, the colour component of

the effective vertex attaching two gluons to a Wilson line is given by
Va,b a mb] __ ; paberpe
2c X [T 7T ] - Zf T ) (148>

And the corresponding kinematic factor would then take the difference between

the two potential orderings of the gluons on the Wilson line.

Vor o< 0(xq > ) — 0(zp < x4). (1.49)

A web in this notation is defined by a group of gluons attached to effective vertices
in such a way that if the Wilson lines were removed entirely, the graph of gluons
and effective vertices is singly connected. This somewhat formalises the notion of
web colour factors being fully connected. We emphasise that a Wilson line may
have more than a single effective vertex attached to it. In such cases, we take the
symmetric sum over all permutations of the effective vertices along the Wilson

line.

Finally, we may now turn to the topic of renormalisation of multi-parton webs.
Our goal is to directly compute I'¥, which as we have seen consists of particular
linear combinations of kinematic factors, with [ECFg It is also notable that
while individual diagrams may have subdivergences, higher-order poles are always

determined by the exponent, implying an intricate cancellation of subdivergences
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between webs and lower-order counterterms. This complex interplay means that
one may directly compute I'* as a specific linear combination of webs, and lower-
order pole terms. Labelling the n-loop web contribution at order €* as w(™*, and

'™ as the corresponding n-loop contribution to I'¥, it has been shown that [I7]

W = — 27D, (1.50)
@ — 42D _9 [w(l’_l), w(l,o)] , (1.51)
O — _ B3 4 ;bo [wD) D] 4 3 [, D]

13 [w(2’0), w(l,—l)] I [w(1,0)7 [w(l,—l)’w(l,O)H (1.52)
4 [, [, ]

In the above we have the constant by, being the first coefficient of the beta function

: do _ 0 n+1p .
of oy, ie gpoteny = —a (e+ > 2paltth).

The specific linear combinations of webs and counterterms in egs. (1.50]) to ((1.52)
thus are ultimately the objects we wish to compute. We refer to them as reduced

webs and denote them w.

Having thus defined our objects of interest, we will now look at how to calculate
them by setting up the Feynman rules. We will then return to a few additional

constraints which will be of interest after we have completed our calculations.

1.2.7 Feynman Rules for Multi-Parton Webs in Configuration
Space

Now that we have a complete picture of the various components of 'Y (v;;, a(u?))
with non-lightlike external partons, the associated Feynman rules are as follows.

Each attachment of a gluon to a Wilson line is associated with the term
Dg (") = igsuTep* / ds e~ msV B0 (1.53)
0

The exponential regulator is there to eliminate [IR] singularities, leaving only UV
poles. We explicitly indicated the sign of the i0-prescription, which corresponds
to 3% being interpreted as a square mass. This prescription guarantees the
convergence of the integral at s — oo for both space-like and time-like Wilson

lines, and is in accordance with the convention chosen in [I6]. In particular,
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note that the analytic continuation of the i0-term is 5% — i0 = |3?| exp(—if)
with # > 0. For timelike Wilson lines we then have § — 0%, this results in
VB2 —i0 = /|82 — i0/2. Conversely, in the case of spacelike Wilson lines we
have # = 7 and consequently obtain \/@j = —i\/W . While our prescription

works in both of these regions, we will for the sake of convenience limit ourselves

to the case of spacelike Wilson lines.

The rescaling invariance of the Wilson lines manifests itself as the ability to rescale
the integration measure s. We will be utilising this property when integrating
over the exponential regulator. We recall that a natural invariant to express
¥ for non-lightlike external partons is the spacetime angle ~,;, we also define a

normalised [;

B = 1.54
V1B (154
Y 52% YN (1.55)

The definition of 7;; in terms of B is specific to spacelike Wilson lines, as is the
fact that 32 =—1.

One further convenient parametrisation, and one we will use when writing our

results is given by:

In the above, we have the choice of |a;;| > 1 or |a;;| < 1. In this work, we will

always choose |a;;| < 1, thus placing «;; within the unit circle.

The light-like limit of these parameters are given by 3? — 0, this implies

51?1210 Yij = —00 (1.57)
li =07 1.58
Jim (159
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The gluon propagators are given by

2%
_I(—¢

A three-gluon vertex is given by

ngl;‘;(ﬁ,:@,xg) = — igspff“bc/ddz Lo (0215 Opy, Ong), (1.61)
DM Dy, Ony, Oay) = [9" (07, — 07,) + 977 (0, — O4) + g™ (9%, — 9%,)] -
(1.62)

Similarly, a four-gluon vertex is defined as

G4Zbycl;ia - _ Zggu2€ / ddZ [fabefcde (gupgua o guagup)

+ £ (G Gpo — GuoGup) + YL (G Gpo — GupGuo)] - (1.63)

1.2.8 Regge Limits

A further constraint can be found for any non-dipole contributions to I'¥ by
considering the Regge limit of forward scattering [62, [63] [74]. This limit of two-to-
two scattering is characterised by s > ¢, and has the effect of dressing the gluon

propagators as follows

a(t)

5 (f) , (1.64)
t t

where «a(t) is the so-called Regge trajectory. This process of dressing the

propagators is referred to as Reggeisation.

Reggeisation is an infrared phenomenon, and it has been found in [62], [63] [74]
that its behaviour is entirely accounted for by the sum-over-dipoles formula in
eq. . This directly provides a constraint on any corrections beyond the
dipole formula, since these corrections cannot contribute to leading or subleading
contributions in the Regge limit. Thus, for any contributions beyond the dipole
formula, we may not have any higher powers of log(¢/s) than log(t/s) for the
real part, and ilog®(¢/s) in the imaginary part of the correction upon taking the

Regge limit.
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In chapter [7] we will see that this provides a strong constraint and check on our

calculation of corrections beyond the dipole formula.

1.2.9 Collinear Factorisation

It is expected that amplitudes with external gluon jets should obey so-called
collinear splitting factorisation[32] 35, 69, [75]. The basic tenet of collinear splitting
factorisation is that if we take an n-leg amplitude M,, and consider the limit of

two legs parallel, the amplitude should factorise according to

Mn(ph e 7pn) m Sp(pbp?)Mn—l(pl +p2ap3a e 7pn) (165)

This should apply also to the soft components of M,,, hence we are led to define a
soft anomalous dimension for the splitting function Sp(py, p2). It has been shown
that this I's, can then be written in terms of the soft anomalous dimension on n
and n — 1 lines as [32], 35]

Lsp (81, B2) = Tn(Br, B2, -+ - Bn) — Lnca (B + B2, B3, -+, Bn)- (1.66)

Thus, an important consistency check on our result is that we must find the same
result for I'g, for any n, and that this result can only depend on p;,ps, and the
associated colour factors T; and Ty. We will return to this assertion in chapter [§]

after we have calculated the relevant contributions.

This concludes our review of the soft anomalous dimension. Next, we will turn our
attention to the mathematical tools of our calculation. First, we will review
integration techniques, which will enable us to perform an asymptotic expansion
near the limit of light-like external partons. In section we will then review the
algebra of polylogarithms, which will provide us both with a tool for computing

[MB] integrals, and with a means for simplifying and understanding our results.

1.3 Mellin-Barnes Integration and Asymptotic
Expansion

Mellin-Barnes integration techniques are of primary interest as a tool for performing

integrals, as well as asymptotic expansion. A review of integrals can be found
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ps3

/ V3

D1 D2

Figure 1.6 A scalar triangle with powers v; of the propagators and incoming

off-shell momenta p;, as in eq. (1.68)

in [76], we will limit ourselves to a brief overview. The basis of integration is
the identity

(A+ B T(\)2mi /C dzU(=2)0(2 4+ A) 5357 (1.67)

where the integration contour C' runs from —ico to +i00 between the poles of the

two gamma functions, that is when Im(z) = 0 we have Re(z) < 0 and Re(z) > —A\.
Our goal in utilising this formula is similar to the reason for utilising Feynman
parameters: by swapping the order of integration we may reduce loop integrations
in a Feynman diagram to simpler known integrals, namely Beta functions in the
case of[MB] There are some advantages to this. First and foremost, the asymptotic
behaviour of [MB] integrals is well understood, which gives us a simple way to
expand the integrand around the limit of light-like external partons. In a similar
vein, it is relatively straightforward to resolve the pole structure of [MB|integrals
and expand in € under the integral sign without incurring spurious singularities.
We will discuss these matters in detail later on, but it is convenient to consider
an example parametrisation for clarification. If we consider the massless triangle

diagram in fig. [1.6] we obtain the following Feynman integral:

) 1 A’k
T )0 = o [ o a e o O
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Recasting this in terms of Feynman parameters, we obtain

({52} . d) =i S [.H | e a]

x<6(1— > a,) (3 00> (1.69)

v;—d/2
(i} (—aaap? — qaps — 041062]03)21 /

We are now ready to introduce [MB}parameters. We utilise the Cheng-Wu theorem
to set ag = 1, then

P -V — d/2 & i1 po—
T2 ) =i 282 [ oy ot
(1+ay + ag)=ivi™d

X DIETE
3

(1.70)

2 2
(_0421?1 — p; — a1 Qop

We now use eq. (1.67)) to split the two brackets and introduce the integration
parameters z; and z:

T({pi}, {vi}. d) :ir(d — > vi) L. T(w)

0o d/2—vy—v3—2z1—1
X do i
0 "1+ o) Sivitdta

oo a§1+Zz+V2*1
x [ doy — (1.71)
/0 (—p3 — aap3) =2 ivita

where the contours C; fulfill the implicit requirement that the real part of all
Gamma functions must be positive when z; are on the real axis. If we rescale as

by p3/p3, we obtain the standard semi-infinite integral representation of the Beta

function, yielding

) » 1 |

e Sl e R
X (—pf)* (—p3) 2 () TR R (<2 )T (- 20)
xT(d/2 — vy —vg — 21)T(—1v1 +d/2 4 25+ 21)
XD(z1 + 20 + 1) (1) +v3 — d/2 — 29). (1.72)
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Finally, cleaning up a bit we may shift zo — 25 + 14 + v3 — d/2, such that the
dimension of the MB integral is entirely carried in the term proportional to p3.
This of course also modifies the contour Cy — C}, a matter which we will discuss

shortly. The end result is

2 — 1 !
T{pi} i}, d) T >, ) IL D) (2mi? /01 = /02 -

() (L) e mereanea)

—p3) \-p
XF(d/Q — Vo — V3 — zl)F(d/2 — Z9 — V] — 1/3)
XF(Zl +22+ZVZ'—d/2)F(V3+ZQ+Zl). (173)

This triangle will be useful to us later on in considering webs at two and three
loops containing a single three-gluon vertex. For now, we merely note that at this
point the kinematic structure of 7" has been entirely decomposed into a sum of
relatively simple residues. This is the key advantage to utilising [MB] integration
techniques: both expanding in € and more general asymptotic expansions are easy

to express and understand as residues of gamma functions.

In order to resolve the singularities in €, however, we must first choose our contours
such that we do not incur any unregulated poles when we expand in €. In the

next section, we will consider this issue a little more thoroughly.

1.3.1 Integration Contours

We initially required that the contours, extending from —ioco to +i00 must be such
that the real part of the Gamma functions is positive when z is on the real axis.
However, in order for the integrals over «; to be convergent, we must impose the
same requirement for the Gamma functions produced by the Feynman parameter
integrals. Thus, the procedure for deriving an MB integral leads us to require that
the contour must pass to the right of all Gamma functions with poles extending
towards —oo and to the left of any Gamma functions with poles extending towards
+00. Furthermore, this requirement is invariant of any translation or rescaling of
the integration parameters. We will therefore omit the specific contours from now
on and take their behaviour as implicit in any future calculation until such a time

as it becomes necessary to specify their real parts.

The integration contour of an [MB|integral is intricately linked to its singularity
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Tm(22) Tm(z2) Tm(22)

—€— 2 —€— 21
. .

Re(z2) Re(22) Re(z2)
(a) (b) (c)
Figure 1.7 Contour shift to requlate zo. From the initial contour (a), crossing
the pole at zg = —e — z1 (b) causes us to pick up its residue (c).

structure. Recall that we have worked with the implicit requirement that the
integration contour should be to the left of all gamma functions where the residues
extend to 400, and vice versa. A pole in € then manifests as a “pinch” on the
MB contour, where taking the limit ¢ — 0 causes the contour to run straight
across one or more poles. For example, our triangle integral is divergent in d = 6

dimensions for v; = 1, so if we consider d = 6 — 2¢ we have

Tp}{1,...},6 —2¢) =i (—’;—z)e r(31— J (27;)2 /HOO dz dz

3 100
I\ 2L /. 2\ 22
1.74
X (p_;) (%) [(=2)T(1 —€—2))(—22)I(1 — € — 22) (1.74)
p3 P3
XI'(14 21 + 29)T'(e + 21 + 22).

Considering straight-line contours, we have the requirements Re (z;) < 0,i = 1,2
and Re(z1) + Re(z2) > —e. For our initial contours, we then have to choose
something like z; = —e/4, which makes it clear that when we take e — 0, we have

Re (z;) — 0, running over the left-most pole of I'(—z;).

There are now two known approaches to expanding in € under the integral sign
[77, [78]. While we will largely be dealing with finite MB representations in this

thesis, it is worth noting that when necessary we will utilise the methods of [77].

The basic idea is that we may resolve the pole in € by shifting the contour out of
the pinch, incurring a residue, as illustrated in fig. [I.7, Having done so, we may

then simply expand in € under the integral sign.
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1.3.2 Parametrising Mellin-Barnes integrals

Performing the residue sums of [MB| integrals can be prohibitively complicated,
particularly for many-fold integrals, where the residues typically depend on other
[MB] integration parameters. In recent years, a new method has been found to
convert integrals to parametric integrals [79]. This is advantageous to us
since we anticipate that our calculations will yield polylogarithmic results with

relatively simple rational prefactors.

The basic idea is as follows: the main complication of performing the residue sums
of an [MB] integral comes from when residues of one [MB}integrand depends on
another. In such circumstances, one quickly obtains a complicated nested sum,
which can be hard to do in practice. What we wish to achieve is a factorised
form of the integral, where the argument of each Gamma function depends on one
and only one parameter. To achieve this, we require that our integrals
must be “balanced”. By this we mean that for each integrand z;, there are as
many Gamma functions depending on z; as there are which depend on —z;. The
advantage of this is that we may rewrite I'(a— 2;)['(b+2;) = B(a—z;, b+2;)['(a+b),
and then utilise the standard parametrisation formula for the Beta function to
insert a parameter integral representation. If we then choose which Gamma
functions to parametrise in such a way that we may ultimately factorise our [MB]
integrals into products of independent integrals, this would drastically simplify

the residue sum.

As an example, consider the scalar triangle of eq. (1.73) in d = 4 dimensions with

v; = 1, we have

T (09 =i [ )70 09)

X2 (=2 ) T2 (—20)T2(1 + 21 + 22),

where we have chosen Re(z) = —3 and Re(z3) = —4 for convenience. We
now wish to factorise this integral by introducing some Beta functions, we must

eliminate the Gamma functions which depend on 1+ z; + 23, S0 we parametrise
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them as follows

Tk (3 4) =iy [ ez () ()7 ()77

(27”)2 100
XB(—Zl, 1+ 21+ ZQ)B(—ZQ, 1+ 21+ 22).

(1.76)

If we wish to utilise the standard semi-infinite parameter integral representation
of the beta function, we must have positive real parts of all arguments of the Beta
function, however this argument is equivalent to the requirement made on the
Gamma functions in the first place, so it is already guaranteed by our choice of

contours. We have the following representation of the Beta function

B(a,b) :/j%. (1.77)

We furthermore introduce the invariants v = p}/p3 and v = p2/p3, this yields

T A1 4) =i () s | o

0

+i00 uzl
X le F(—zl)T(l ‘l—Zl) P 178
/ioo (1‘1(1 + ZBQ)) 11 ( )

Q/Hmd (—2)D(1 + ) ——
X 2o I'(—29) (1 + 29 >
—ico (w21 +21))= "

The [MB] integrals are now trivial to do, we may take the residue sum and simply
perform the geometric series we obtain, however this representation is simply the
standard parametrisation formula in eq. (1.67)). Thus, we have the following

parameter integral representation

oy —1 o dxy dxy
T({pd (11 4) =i (p3) (2712')2 /0 (u+z1(1+23)) (v+ 22(1 +21))° (1.79)

At this point, we are done with utilising [MB]integration techniques for this integral.
We will see in section |1.4| that the parameter integral above is expressible in terms
of multiple polylogarithms, and we will derive an analytic result for the integral
then.
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1.3.3 Asymptotic Expansions

A related issue to that of regulation is one of asymptotically expanding a [MB]
integral around some small parameter. This has been studied previously, resulting

in an algorithm and a software package which we will use extensively [80].

The algorithm in [80] requires that the expansion parameter in the integrand —
A —is written as a pure power dependence on the integration parameters. Let
us take a concrete example: suppose we wish to expand our three-mass triangle
integral, T'({p;},{1},4) near the limit of taking p; and p, on-shell at the same
rate. We recall eq. , and introduce an expansion parameter \ by rescaling
p? — Ap} and p3 — Ap3:

. 1 +ioo Z1 ) —1—2z1—22
Ta({pi}, {1}, 4, )\) =1 (27Ti)2 / le dz2 )\Z1+z2 <p%) (pg) (pg) 1

X2 (—=2)T2(=22)T?(1 + 21 + 29).
(1.80)

The introduction of X is only intended as a means of book-keeping. That is, we
now have a single parameter which captures the asymptotic behaviour of the
integrand near p? and p2 approaching zero at the same rate. The intention is to

power expand around A = 0 to obtain this behaviour, and subsequently set A = 1.

We will perform this power expansion by explicitly considering the residue sum
generated by closing the contours in eq. (1.80). We take the contours to be
straight lines in the complex plane with Re (21) = —% and Re(22) = —. Since
we are considering small A\, we must close the contours in the right half-plane to
obtain a convergent series of residues. Considering z;, we then have residues at

z1=0,1,2,---. Writing the integral over z; as a residue sum, we then have

T} {11 4,0) = — 5 /Hoosz (p—%y?)\@l“z(—@)

p?& (27TZ)2 —100 p%
- (p_§>” /\nr2(1 +n+ 2)
n=0 p% (n')Q

X (log <%> +2¢(1+n+2z) — 2¢(1 + n)) .

3

X

(1.81)

The residue sum is now a power series in A\. The leading term in the expansion of

T, in A must thus be given by the first term in the sum over n, all other terms
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are power-suppressed in A. Retaining only this term yields

i1 e AR 3
Ta({pi}7{1}747 )‘) )\21__ . / dZQ ) AT (—ZQ)F <1+22)

P3

A (1.82)
piA
X (log ( ) + 2¢(1 + 29) + 2715)
P3
The process may be repeated for z;, in the end we obtain
T,({p:}, {1},4,)) = (2@ +log ( ) log <p2)>
P s P (1.83)

+pi§1 og(\) (log( ) + log (—;) + log(\ ) +0())

Our expansion parameter A has served its purpose, we may set it to 1, we conclude
that

T({p}. (114) — - v (2@ + log (22) log (pQ)) . (1.84)

3 p3

P

ie{1,2}
The process we just outlined by example readily generalises to more intricate
integrals by means of recursion. We will utilise it to expand around 8 — 0V, i.e.

Yij — —00, or ay; — 0.

1.4 Polylogarithms

A great many Feynman integrals — and all the ones we will concern ourselves
with in this thesis — are expressible order by order in € as a sum of generalised
polylogarithmg? ~ Furthermore, it is known that polylogarithms satisfy the
structures of a Hopf algebra [R1], allowing for both significant simplification,
and the calculation of many Feynman integrals. In this thesis we will mostly be
utilising this algebraic structure explicitly to compute Feynman integrals [82]. We
will therefore not spend much time on the mathematics of polylogarithms, though

an overview can be found in [83].

2Recently it has become clear that certain Feynman integrals (most notably the three-mass
sunset diagram) cannot be described in terms of polylogarithms, but rather seem to belong to
some larger family of elliptic integrals, of which polylogarithms form a subset. However, such
functions will not appear in our calculations.
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1.4.1 Multiple Polylogarithms

Our results will be expressible in terms of so-called multiple polylogarithmss|
(MPLs)| Throughout this thesis, we will use the notation of Goncharov and define
recursively [84] R5]

o dt
G(ay,az,...,a,;2) E/ G(ag,...,an;t), (1.85)
0 t— aq
G(:z) =1, (1.86)
1
G(0,...,0;2) Emlog"(z), (1.87)
n times

where the last definition is to regulate the end-point divergence at t=0 of integrals
like G(0;z2) = OZ %. The number of integrations in a given polylogarithm is

referred to as the weight of the polylogarithnﬂ thus the weight of eq. (1.85)) is n.

Apart from the special case of eq. ((1.87)), it is also worth defining the classical
polylogarithm

Li,(z) = —=G(0,...,0,1; 2),

900 (1.88)
n-1 times
thus we have Li;(z) = —log(1 — z). This definition is somewhat unorthodox, since

the classical polylogarithm is normally defined as a sum, namely

00 .
Z’L

Li,(2) = o (1.89)

i=1
However, the equivalence can easily be shown by induction starting from Li;(2) =
—G(1,2). We also note that the Riemann zeta numbers — ¢, = Li, (1) — are
included in our definition of the classical polylogarithm. These numbers thus
have transcendental weight n, and are the only non-rational constants which will

appear in our Feynman integralsﬁ

3Tt is also sometimes referred to as the transcendental weight, or the transcendentality.
4More generally, so-called multiple zeta values may also appear, however we will not encounter
them.
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1.4.2 Algebra and Coalgebra

One very useful property of [MPLs is that they form what is known as a Hopf
algebra [81]. The basis of this algebra is the shuffle product, which is defined for

words a = aq, as,...a, and b = by, by, ...b,, as follows

G(a;2)G(b; z) = Z G(w; z), (1.90)

wEalllb

where LW denotes the shuffle product, that is any way of interleaving a and b which
preserves their internal ordering. It is worth noting that the shuffle product has

weight n + m, thus making the shuffle algebra a graded algebra.

Another convenient component of the Hopf algebra of polylogarithms is the
coproduct [8I]. The coproduct enables one to decompose polylogarithms into
products of logarithms of lower weight in a uniquely defined manner. We denote

the coproduct A, we have schematically
AG(ay, -+ an,2) = G(by,-++ by, 2) @ Gler, - Cuiy 2). (1.91)

Furthermore, the coproduct is coassociative, meaning that no matter which order
one performs these decompositions, the result is unique, i.e. applying the coproduct

again to the above, we have

A(AG(ar,-++ an,2)) =Y (AG(by, -+ b1, 2)) @ Gler, -+ Cnoiy 2)

(1.92)
= Z G(b1, e, by, Z) X (AG(CI; ©r Cn—iy Z)) :

We will not give a complete definition of the coproduct here. A thorough discussion
can again be found in [83]. However, it is notable that the coproduct has the
property that discontinuities act only on the first component of the coproduct,

and derivatives only on the last component
A (Disc(F)) = (Disc ® 1) - (AF), (1.93)

A (%F) = (1 ® %) - (AF). (1.94)

These properties have particular implications for Feynman integrals, and have
played an important role in formulating a diagrammatic interpretation of the
coproduct of Feynman diagrams [86], as well as establishing a basis of functions

for multiple-gluon-exchange webs [26].
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One other property of importance is that m and even zeta-values are only allowed
in the first entry of the coproduct, this is in order to avoid an inconsistency related
to the fact that (o, o T2Con_s.

We label particular components of the iterated coproduct as A;, 4, ... ;,, Where
ir, are the weight of the k™ term in the co-product, i.e. A;s3 will produce a
co-product where the first entry is weight 1, the second is weight 2 and the third
and final entry is weight 3. Since Zeta values are irreducible, information about
(,, is not present in a specific component of the coproduct unless that component
has a part which has weight £ > n. In the case of even n, the first entry in the

coproduct must be weight k& > n for (, to appear.

1.4.3 Parameter Integrals

The coproduct and the algebra of polylogarithms is primarily of interest to us
for two purposes: to perform parameter integrals, and to simplify our results.
From eq. , it is clear that at each step in our integration, we require a
denominator which is linear in at least one integration parameter, and then to be
able to rewrite the numerator in terms of polylogarithms whose last argument is
this same integration parameter. The ability to do this is related to the property
of linear reducibility. Assuming that our integral has this property an algorithm
for performing the integration — which uses numerical fitting to determine the
dependence on , — is presented in [83]. A completely analytic method is presented

in [87], however we will only utilise the methods in [83] in this thesis.

The algorithm works by repeatedly taking the coproduct until one obtains the
component of the coproduct where every term is weight 1. The algebraic properties
of logarithms may then be utilised on this component to re-write the coproduct
and match it to a trial function on the level of the co-product. Having obtained
such a trial function, the terms proportional to (; must then be reconstructed,
since such terms are invariably lost when taking the 1,1, 1-component of the

coproduct.

As a simple example, we may consider a scalar three-mass triangle in d = 4. We
saw in the previous section that its [MB| representation may be parametrised as
in eq. . The form is already conducive to writing the result in terms of
[MPL, since the integrand consists of linear denominators in the two integration
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parameters:

oy —1 o dxy dxy
T({pd (11 4) =i (23) (271@')2 /0 (u+21(1+22)) (v+ 22(1 +21))° (1.95)

Our first step is to part the integral into fractions, which enables us to do one

integral immediately

Tpit {14 =i (pg’)il /OOO x5+ (1 —Cixj— v)xe + v

X (log (%) + log (1 + %) — log (z2) + log (zg + 1)> (1.97)

(1.96)

The denominator is quadratic in x9, its roots contain a Kéllén function, A(1,u,v),

as in eq. ((1.41]). It is convenient to introduce new invariants z and z as follows

u=zz, (1.98)
v=(1-2)(1-2). (1.99)

We then also transform zs according to xo = 1/ts — 1, to obtain

! dts

Tipd A1), 4) =1 (p?g)_l/o (1 —t22)(1 — t22)

x [log (1 —12(1 = (1 — 2)(1 — 2))) — log(1 — t2) — log(t) — log(22)]
(1.100)

We have G(a,z) = log(1 — z/a), which we may use to re-write the integrand
in terms of [MPLs Integrating over ¢, is then a simple matter of parting into
fractions and utilising eq. ([1.85]) to obtain

T({pi}.{1},4) = z(p—lg)i [log(zz) log G - Z)

1 1 1 1

+G (—,O, 1) + G <—, 1, 1> -G (—,0, 1) -G (—,1,1) (1.101)
z Z z z
2 z+Zz2—22 2 z+zZ2—2z

Thus far we have utilised the algebraic properties of logarithms to re-cast our

integral, we now wish to do the same to this weight two expression. The algorithm
outlined in [83] does this by utilising the (1, 1)-component (d;;) of the coproduct
to find an expression with the same decomposition in terms of simple logarithms.

Numerics are then utilised to fix the constants (, which are left out by the
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coproduct. In this manner, it can be shown that

T({{pi}, {1},4) = Z(p_lg)i {log(zz) log (1—;) + Lig(2) — Lip(2)| . (1.102)

1.4.4 Single-Valued Harmonic Polylogarithms

The branch cut structure of a G(---,a; -+ ,z) is dictated by its branch
points z = a;. However, in many applications, specific kinematic regions might be
free of branch cuts in spite of a; = z being present in the region. This is possible
if the result is constructed of specific linear combinations of polylogarithms of
the various invariants, such that any branch cut of a single polylogarithm is
cancelled by an equal and opposite branch cut. The simplest example of such a
linear combination can be given for z a complex invariant and Z being its complex

conjugateﬂ We then have the linear combination
Lo(2) =log(2z) = log(z) + log(z). (1.103)

The argument of the combined logarithm is manifestly real, and it is clear that
when z crosses the branch cut in one direction, z crosses it in the other direction,

cancelling out any contribution from crossing the branch cut.

This is clearly a simple example, however such polylogarithms have been found to
exist at higher weights. They are generally called Brown’s single-valued harmonic
polylogarithms, and further details can be found in [88]. Some further discussion
of their applications to physics are given in [89, 00]. Some examples of such

polylogarithms, which we will use later are provided in table

A few properties are worth noting: firstly, the indices a; in L,,..,, are either 0 or
1, reflecting the fact that single-valued harmonic polylogarithms only have branch
points at z = 0, 1. Secondly, like [MPLE, single-valued harmonic polylogarithms

obey a shuffle relation, i.e.

Layoan(2) Lo, (2) = D> Lu(2). (1.104)

wealllb

SThese invariants appeared in section if we choose the region of A(1,u,v) < 0, where A
is the Kéllén function (eq. (1.41)).
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Lastly, there’s an index reversal identity as follows

Laya, (2) = (=D)L 0 (2) (1.105)

Finally, we note that the three-mass triangle in eq. (1.102)) may be written more
succinctly in terms of single-valued harmonic polylogarithms:
1 1

T({pd 113.4) = i = [£0a(2) — L10(2)] (1.106)

This concludes our overview of polylogarithms. In what follows, we will first
consider a two-loop calculation of a single fully connected web. This calculation
will provide us with a background example for the three-loop calculation which
follows, and will allow us to directly obtain a full non-lightlike result, which will

enable us to discuss the light-like limit of ' at two loops in more detail.
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Weight

log(2) + log(z)

log(1 — z) +log(1 — z)

1log(zz)log (2) — Lis(z) + Lis(2)

51,0,0(2)

Li(2) + Lis (2) — % o(2)Lis (5) — %Lig(z) log (2)

—%Lig (2)log (2) — ;1 log*(2) log (1 — )

1 1
—2 log(1 — z)log® (%) — 2 log(1 — 2)log?(2)

— 108 (1~ 2)log? (2) —  log(1 — =) oa(=) log (2)

2 log(2) log (1 — ) log (2) £ Lia(2) log(2)

51,0,1,0,1(2)

4¢(3)G(1,2)G(1,2) — G (1,2)G(0,1,0,1, 2)
—G?(0,1,2)G (1,2) — G(0,2)G(1, 2)G(0,1,2)G (1, 2)
-G(1,2)G(0,1,2)G (0,2) G (1, 2)
+G(0,1,2)G(1,2) G(0,1,2) — 2G(0,1,2)G (0,1, 1, 2)
~G(0,2)G(1,2)G (1,2) G (0,1, 2) — G(1,2)G* (0,1, 2)
—-G(1,2)G(0,2)G(1,2) G (0,1, 2)
+2G(1,2)G(0,0,1,2)G (1, 2)
+2G(1,2)G (1,2) G (0,0,1, 2)
+2G(0,2)G(0,1,1,2)G (1, 2)
+G(1,2)G(0,1,2)G (0,1, 2)
+2G(0,1,1,2)G(0,2) G (1,2) — 2G(0,1,1, 2)G (0,1, 2)
+2G(0,2)G(1,2)G (0,1,1, 2)
+2G(1,2)G (0,2) G (0,1,1,2) + G(0,1,0,1,2)G (1, 2)
+G(1,2)G(0,1,0,1,2) + 2G (0,1,0,1,1, 2)
+2G (0,1,1,0,1,2) — G(1,2)G(0,1,0,1, 2)
+2G(0,1,0,1,1,2) + 2G(0,1,1,0, 1, 2)

Table 1.1 Some examples of Brown’s single-valued harmonic polylogarithms.
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Chapter 2

The Soft Anomalous Dimension at

Two Loops

We now turn our attention to the two-loop soft anomalous dimension. A full

calculation has been performed in [28-31].

Our goal in this section, however, is to outline and demonstrate the methods
we will later apply to three loops, as well as to examine in further detail the
relationship between I'® for lightlike and non-lightlike external partons, and the
dipole formula (eq. (1.37))). For this reason, we will focus only on fully connected
diagrams, then simply state the full result and discuss the lightlike limit.

2.1 Two-loop Calculation of the Three-line

Two-loop Web

At this loop order, we have two diagrams to consider, one consisting of single
gluon exchanges (fig. [2.1b)), and one fully connected graph (fig. [2.1a). For our
purposes, we will only focus on the fully connected diagram containing a single
three gluon vertex, as it gives a concise introduction to the techniques we will
ultimately apply at three loops. Due to its connected nature, the diagram only
has a single % pole, and we do not need to concern ourselves with subdivergences,
which only arise in the multiple gluon exchange diagrams at this loop order. While

our starting point will differ from that of [30], B1], our calculation will eventually
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B3 Bs

b1 > B1

B2 B2
(@) wy) (b)  wqan

Figure 2.1 Web topologies correlating three lines at two loops.

converge on the same integral, and we will follow their calculation from that point

o1.

Hence, considering the three-gluon vertex diagram, the Feynman rules yield the

following expression for the full diagram

w(3g)(0412, a3, 0423) EC(?)g)-F(Sg) (06127 a3, Oézs)a (2-1)

Csy =i f*° T THTS, (2.2)

-7:(39)(@12, 13, 0423) =— iM4693N3 / d*z / dsy dsydss Bfﬁ;@&
0

XF/J,Z/O’ (851B1—37 asng—z’ a5333_Z> (23>
3 . e—1 . .
X [H <—(Szﬂi — Z)2> ] e m=i0)2 s
i=1

Where as before, we have taken the convention of normalised, spacelike Bi, ie.
p? = —1.

Our first order of business is to isolate the UV pole of this diagram by means of

the following reparametrisation

S =QyYi,

3
Zyi =L
i=1

(2.4)
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P3

Z~ ™~

b1 P2

Figure 2.2 A three-mass scalar triangle.

Performing the integration over « then yields

2

2e oo
f(39) = — Zg;l (%) N3F(4€) /ddz / dyl dy2 dyg ) (1 — Z y2> B{Lﬁé’ﬁg
: e—1
F,uzza (83/151 zaayzﬁz z? y353 z) [H( y@ﬂz — Z —|—20) ] .

=1

(2.5)

Note that we have transferred the i0-prescription to its usual place in the

propagator, since it will be important when we Wick-rotate z.

Next we turn our attention to the integration over the vertex, z. Our aim is
to substitute an MB representation of this vertex by means of simply inserting
that of a known one-loop integral. The z-dependence in the differentiation is
redundant, and we may simply rewrite the vertex factor I' such that it acts on
the Wilson line parameters. Doing so, we extract the z-integration entirely and

obtain

2

2e 00
Flag) = = 19, (%) N3F(4e)/0 dyr dya dys 0 (1 - Z%) 18555
d N e—1
F/““’U (ay1ﬁ1’ ayzBQ’ ayaﬁs) /d < [H <_(yZBZ o 2)2) :

=1

(2.6)
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2.1.1 The Scalar Three-mass Triangle

Turning our attention to the integration over z, we observe that if we define
auxiliary momenta p; = ysz — yi_lﬂAi_l, cyclically —i.e. yOBO = y353 — this integral
is simply a scalar triangle (fig. [2.2)), which we defined in eq. (1.68). Inserting this

into F(34), we obtain

2\ 2¢ 00
Fiag) = — gar? (#) N°T(4e) /0 dy, dys dys 6 <1 - Zy)

Blﬂﬁgﬁgrl‘”a (811151’ ayQBz’ 81/353) T ({p,?}, {1 o 6}’ d> ’

(2.7)

The one-loop scalar triangle T'({p?}, {v;},d) has been studied extensively. We
will make use of the Mellin-Barnes representation in eq. ((1.73)), inserting this into

€q. 1' and defining y;; = yiéz’ —Yj Bj we then obtain

Fo— g () " T " dys dys dus§ [ 1 -
(3g) = (4%) m2evE L'(1+e) J, Y1 ¢42 ¢Ys _Ziyz

A A A +iOO z z — €E—2Z1—Z2
55&2’1 gF/“/U <ay131’8y2/3’2’ay333> / dz1 dzy (_y%?’) 1 <_y%2) ’ (_ygi%) e

200

FQ(—Zl)FQ(—ZQ)F(l—€—|—Zl+22)r(1—2€+21+22),
(2.8)

where for convenience we have rescaled the renormalisation scale fi = pe?® /.

In order to calculate the two-loop contribution to I'g, it is sufficient to compute

the pole term of F3,), hence we now expand in € to obtain

2 oo
FE - - (%) /0 dyy dys dys 6 (1 _ Zy2>
CE AW GRS »
/ :O dadz (~yis)™ (~uh)™ (—uhe) 7
2 (—2)T? (—20) T2 (1 + 21 + 22) .

We turn next to the differentiation term I',,,,, and rewrite it in terms of derivatives
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with respect to y7;, we obtain

- 1
BBy BT v ( ylglaay25275y353> =—3 ) eiinyi (vigvie — 2vik) Iyz- (2.10)
(i.k)

Inserting this into our MB integral, and taking advantage of the fact that

T({p?},{1},4) is symmetric under the interchange of any momenta, we obtain
1/ 1\?
(2,-1)
]:(39) 9 (E)
(
[ (=2) T (=22) T (1 = 2) T* (1 + 21 + 2'2)/ dy; dy; dy,  (2.11)
0

(1 - Z yl) y] yzk (_yin)zzfl (_y?k)flle—ZQ ‘

Note here that we have used the identity zol'(—25) = —['(1 — 25) to absorb the

stray factor of z; resulting from the differentiation. At this point, our expression

1 +100
Z €ijk (%ﬂjk - 2'7ik) W / dz1 dzo

i1j7k)

exactly matches the momentum-space calculation using Feynman parameters [31].

2.1.2 Feynman Parameters

We now wish to perform the remaining two integrations over the Wilson lines. To
do this, we first observe —yfj = (y? + y]2- — 7i;9:Y;), and we use the standard MB

parametrisation formula of eq. (1.67)) to extract the terms containing ~;;

2,—1 1 1 2 1 +i00
‘7:((39) ) :§ (E) Z €iji (Vi Vik — 2%ik) W } dz1 dzo

(i.5,k) e
[H/_ - dw I )] (=)™ (=)™ (=)™
F(—zl)F(—zg)F(wg —zl)F(l —Zz—FUJg) (212)

F(1+2+2) T (1+ 21 + 20 +wn)

/ dy; dy; dyy. 6 (1—23/) syt
0

(yi2_|_y32>22*1 w3 (?J?-l-y;%)m (yj +yk>fle1fz27w1
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We are now ready to do the parameter integrals. It is convenient to separate out

the parameter integrals themselves, we define

I3 = / dy; dy; dyy, § (1 —Zyz) et gttty ot
0

(2.13)
zo—1—w 21— W —1—2z1—2z2—w
i +uy)” Wi w)” T ) T
We then perform the following transformations
Yi (1 —a)y
yil=10-2)(1-yv)], (2.14)
Yk z

followed by the transformation a = /(1 — ), yielding

](3) _/ dy/ da q¥r T2 w2+w3(1_y>w1+w3+1

(y +( y)g)zz 1—ws3 (y +a )21—w2 (2.15)
(1= a?)

We now rescale a — a(1 — y) and introduce b = y/(1 — y) to obtain

_[(3) :/ da aw1+w2 (1 + a2)717217’227w1
0 (2.16)

/ dbbPe e (14 52)™ 7" (a2 + 57) 7.
0

We are almost ready to do the integral. We introduce one more MB parameter to

get
I 1 1 /+md T (—25) T (25 + )
_ 2ol (—2 Za + Wo — 2
G =1 (we — 21) (271) J_ino s ’ ’ ? '
/ da a2z1—2z3+w1—w2 (1 + a2)7llefz27w1 (217)
0

/oo db bw2+w3+2Z3 (1 + b2)22—1—w3 .
0

46



Performing the integration now produces

1 1
D AT (wy — 2) (L + 21+ 2+ wi) T (1 + ws — 2)

1 +i00
@) / dzsl (—23) [ (23 + wy — 21)

I

100 (2.18)
1 w1 Wo 1 w1 W9
r 54‘7—74-21—23 r 54—74‘74—224-23
1 Wo Ws 1 Wa w3
r(-+—=2+-2 N . S
(2+2+2+Z3> (2 > T T 23)

Inserting this into eq. (2.12)), we obtain

— 1 1 2 1 +i00
.7-"((3?;) 1) :§ (E) Z €ije (VijVik — 2%ik) W / dzy dzoy dzs
(izjzk) —100
+1i00
/ dwi L (—wr) | (=7i)™* (=)™ (=)™
(2.19)

1 1w w
F(54‘7—7+21—23>F<§+71+72+22+23>
( 2 2 2

1 w w 1 W w
—+—2+—3+23>F(———2+—3—22—23>

2.1.3 Alpha Parameters

We have thus obtained a representation of the three-gluon vertex in the form of a
six-fold Mellin-Barnes integral. The expression is rather large, and impractical to
compute as is, so we need to apply Barnes’ lemmas [91], 92] in order to reduce the
complexityﬂ. One such application is immediately possible to perform, reducing
the integral to five-fold. However, further progress is hampered by the factors
of % in the arguments of the gamma functions. To alleviate this, we once again
introduce alpha parameters according to eq. . We then introduce three
new MB parameters to split the brackets containing alphas, and repeatedly apply

'For a good overview of these methods, see e.g. Ch. 4 and App. D of [76].
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Barnes’ lemmas. The result is a three-fold MB integral

(39) 8 \ 47 K " Oy / Ak ’ Qi

(6:5,k)

1 +i00
2rs+1 2ro 2r1+1
m/ L drs ot ea
—100

F2 (1+T1+7‘2)F2 (—Tl—Tg)FQ <1+T1—T2>P2 (—T1+T2>
F(1+T2+T3)F(—T2—T3)F(1—T2+T3>F(7’2—T3)

(2.20)

This three-fold MB integral has a remarkably simple structure.
Utilising the parametrisation procedure outlined in section [1.3.2, we obtain

I_'(?»‘U :1 i 225‘7@ a“+i a-kjLL + 2| o + !
(39) 2 \ 47 K Y O / O ’ ik

(4.3,k)

(2.21)

/OO d[El dlEQ dl’3 xs3
0 (l’l + Oéjk> <£IZ'1 + ﬂ) (l’z + Oéik> (ﬂ + Z'3> (513'3 + Oéij) <CC3 + 1>
Ak Qjk Qg5

Performing the integration, we obtain a fairly large result with a complex rational

prefactor. However, due to the sum over a totally antisymmetric tensor, most

such terms cancel. What remains is simply

]-"(2’_1)(oz Qq3, Qo) =2 * 2 Z €ij 1—i_—ogjlo o log? o
(39) 12, 413, k23 ) — An = zykl _a?j g Qjj 108" Q. (222)
17]7

The result is manifestly antisymmetric in swapping any two Wilson lines, as one

would expect and require in order to satisfy Bose symmetry.

2.2 The Two-loop Soft Anomalous Dimension in

the limit of Light-Like External Partons

A complete calculation of I'* at two loops involves the computation of the web
composed of diagrams like the one in fig. 2.15] We will not show this computation

here, however a complete calculation can be found in [28-31].
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The result obtained in eq. (2.22)) has a tripole colour structure, i.e. its colour
factor is proportional to f**T4T5TS. As discussed in section [1.2.3] such colour
structures must vanish in the limit of lightlike external partons, leaving behind

only I'¥P-. However, it is clear that near the light-like limit of a;; — 0, we have

Py e)) = 2080 — og(os)) log(ans) — loz(o) )

x (log(cvaz) — log(aua)) + O(aiy)

This contribution, however, is exactly cancelled in the light-like limit by the
contribution from the 1-2-1 web (fig. 2.1b))[30} 3], leaving behind simply

F(2,71)({BZ,}> — Fdipw(?ﬁl)({gi}). (2.24)

This cancellation only occurs in the limit of light-like external partons, and the
case of massive external partons is neccessarily more complex. For a complete

calculation and complete results, see [28-31].
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Chapter 3

Colour Conservation at Three Loops

Having seen how the dipole formula manifests itself in the light-like limit at
two loops, we now turn our attention to three loops. As we have discussed in
section [I.2.3] three loops is the first occasion for any corrections beyond the dipole
formula to occur. Such corrections can only depend on conformal invariant cross-
ratios, which implies kinematic dependence on at least four Wilson lines. However,
since the dipole formula only applies once colour conservation is taken into account,
this does not necessarily imply the cancellation of any webs connecting two or three
lines. In this chapter — however — we will see that the form of such contributions
are highly constrained by Bose symmetry, and will develop the formalism required
to assemble all diagrams contributing at three loops to four lines beyond the

dipole formula.

The layout of this chapter is as follows: we will start by discussing how to assemble
the soft anomalous dimension at four lines, and the kinematic structure of these
contributions. We will then discuss in turn the colour basis and structure of four-,
three- and two-line webs contributing to I'* before and after colour conservation,
as well as how these contributions may satisfy the requirements of the dipole

formula. Finally, we will assemble a sum of all diagrams contributing to I'®.

We work with four lines since this is the maximal number of Wilson lines it is
possible to connect at three loops. For the purposes of colour conservation, we
assume four Wilson lines, though our result is readily extensible to more than
four lines. We make no assumptions about momentum conservation at the origin,

allowing for any number of non-QCD particles.
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3.1 TI° on Four Lines

We know from the dipole formula ([1.37)) that the form of I'® at three loops for

four Wilson lines is of the form

I ({ai;}) = Az, 2) + Taip. ({ais}). (3.1)

A priori, these contributions arise from webs connecting two, three and four lines
which we will denote by I',,, where n is the number of Wilson lines. Schematically,

we have

I ({a;}) =T4 (2, 2, {log () }) + s ({log () }) + T2 ({log (ai5)}) . (3.2)

We note that I'; and I'y are polynomial in log(a;;). This is specifically because
our asymptotic expansion near the light-like limit power-suppresses any non-
logarithmic terms. The reasoning for this can also be understood by considering
the dipole formula. Specifically, the contributions from webs connecting two and
three lines are constructed by summing over all ways of choosing three or two

lines out of the four, i.e.

Ly ({log (@)} = D> Galirj. k) (3.3)

1<i<j<k<4

Ty ({log (ai))}) = > Ga(i,j) (3.4)

1<i<j<4

Since we need four Wilson lines in order to construct a CICR, the only way
we can obtain any CICR-dependence from such a sum is if terms depending
on individual angles sum to something depending on their products. Thus, the
CICR-dependence of the correction to the dipole formula implies that ['s and I's

must be polynomial in log(cv;).

3.2 Four-Line Webs

We begin by presenting the most general Bose symmetric form of a four-line web
contribution to I'*. Since all webs have maximally non-abelian colour factors,
such a contribution must take the form of the colour factor associated with a
double three gluon vertex diagram, as depicted in fig. We define the kinematic
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Figure 3.1 Mazimally Non-Abelian Colour Structure on Four Lines

function Hy [(4,7), (k,1)] where the indices i, j, k, [ label the colour and kinematic

factors associated with each leg, and obtain

T4(1,2,3,4) =T{TTETS (f°f Ha[(1,2); (3,4)]

3.5
+ f U [(1,3):(2,4)] + fo P H [(1,4)5(2,3)]) - &

Bose symmetry is realised by antisymmetry within the round brackets, and

symmetry in swapping the round brackets, i.e.
Hy[(1,2);(3,4)] = Ha[(3,4); (1,2)] = —Hq[(2,1);(3,4)]. (3.6)

We now wish to see what happens when we apply colour conservation to this
expression. We set T, = — Ele T,; and then apply the identity T¢T? =
S {T¢, T} + L feT5. All terms with a tripole colour facto which are generated
by applying colour conservation cancel due to the symmetries outlined in eq. (3.6)),

and what remains is simply

1
La(1,2,3,4) = — S ffee 3 {1 T} Ty
1,7,k ,2,
(a2 (3.7)
i#5,k

X (Hy [(4,7), (k, 4)] + Hy [(i, ), (5, 4)])-

IColour factor associated with a three gluon vertex, such as the one in eq. 1b
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3.3 Three-Line Webs

We now consider webs connecting three lines in the same manner as we did for
four Wilson lines in the previous sections. We find our three-line maximally
non-abelian colour basis to have the colour factors obtained from four lines in
eq. (3.7) and a tripole term, in agreement with [I6]. In general, the sum over all
three-line webs must then be of the form
Gs(1,2,3) =iN . fT{TSTSH, [(1,2,3)]
oY ST T T [ {5, kY, (39)
(i.7,k)€(1,2,3)

i<k

where we again require total antisymmetry within the round brackets and symmetry
within curly brackets. We now extend this to four lines by summing over all

subsets of three Wilson lines

T5(1,2,3,4) = G5(1,2,3) + G5(1,2,4) + G3(1,3,4) + G3(2,3,4). (3.9)

3.3.1 Colour Conservation

Applying colour conservation to eq. (3.9), we obtain

N(1,2,8,4) = S foe T TYTITLU G {j, kY, 4)

(Z7J7k)e(17273)
g;kk (3.10)
7 ]7

+FT(17 27 3a 4) + FD(L 27 37 4) + 1-‘Tripole(la 27 37 4)7

where we have defined I'y to contain all colour factors connecting two lines with

anticommutators, I'p to contain all dipole terms, and I'nipoe to contain pure
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tripole terms. In terms of kinematic functions, they are

U(iv {]7 k}74) =H; [iv {]v k}] — H; [iv {374}] — H; [iv {k74}]
_H3 [47 {Z?]}] - HS [47 {Z? k}] + H3 [47 {jv k}] )
Pp(1,2,3,4) =2 3 for feie e, TOHT?, T}
2 1<i<j<3 (3.12)

X (H3 [ia {]? 4}] + H3 []7 {47i}] + H3 [4’ {]7 Z}]) )
N2
FD 1,2,3,4 =—*° TZT]
( ) 4 1S;j§3( ) (3.13)

x (Hs [i, {7, 4}] + H3 [j, {4, 3}] + H3 [4,{j,}]) ,
riipote(1, 2, 3, 4) =iN.f*“T{T5T; (H. [(1,2,3)]
- Hc [(17 27 4)] + Hc [(17 37 4)] - Hc [(27 37 4)]) .

(3.11)

(3.14)

It follows from the constraint equations (eq. (1.35))) and Bose symmetry that we
must require [32], 33]

Tipote(1, 2, 3,4) = 0. (3.15)

3.4 Two-Line Webs

Moving on to webs connecting two lines, we first need to establish a colour basis
at three loops. Since exponetiated colour factors are of the form of fully connected
diagrams, there are relatively few possible combinations. One obvious form is of

course the dipole T7'T}, which we will take as one element in our basis.

The only other maximally non-Abelian colour structure at this loop order is

products of colour factors involving two structure constants, i.e.
Colw,y, 2, w) = f° f4TeT TSTY, (3.16)

Specifically, we consider Cy with all permutations of the sets {i,4,4,j} and
{i,4,j,7} being the arguments as possible basis elements. We then apply the
same commutator identity we utilised to calculate colour factors in the three- and

four-line cases to reduce this set to a basis. Upon doing so, we find just one more
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basis element composed of two anticommutator terms, our full basis is

c1 =T{T9, (3.17)
cy =f* f{T¢, TS} {TS, T} . (3.18)

Since c¢; can only contribute to Igip., we will set it aside. We therefore define the

quantities
T5(1,2,3,4) =T (1,2,3,4) 4+ Tap(1,2,3,4), (3.19)
Toc(1,2,3,4) = Y o {T¢, TS} {T%, T} Ha({i, j}), (3.20)
1<i<j<4
N2
Fap(1,2,3,4) == &> (T - T;) Hop [{i, j}] - (3.21)
1<j

3.4.1 Colour Conservation

We are now ready to apply colour conservation to the two-line graphs. We first

consider I's¢ and find

Toc(1,2,3,4) = —4f™efee N~ {T¢, TS} TOTYHa({i, 4})
(i7j,k)e(1,2,3)
i<k
+ Y e T, T TS, TYY

1<i<j<3

x (H({i, 5}) + Ha({i,4}) + Ho({],4})) (3.22)

2

]\;c ST Ty Ha({i,4))

7

+NZ D (T Ty) (Ha({i,4}) + Ha({5,4}))

1<i<j<3

The latter two terms proportional to N? are clearly dipole terms, contributing to

Igip.. For completeness, we also apply colour conservation to I'yp, yielding

ap(1,2,3,4) ]\2762 i T, - T;) Hap [{1,4}]
N2 = (3.23)
5 > (T ) (Hap [{0,3)) — Haop [{1.4)] = Hap [{7.4).
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3.5 Colour Conservation in I'°

We now wish to put all this together into a final expression for I'* on four lines.
As a first step, it is convenient to look at the expressions which come from two-
and three-line diagrams separately. We find that if we define a combined function

of two and three lines Hs as follows
Hy(i, {j. k}) =Hs(i, {5, k}) + Ho({i, j}) + Ha({i, k}), (3.24)

eq. (3.22) becomes

T3(1,2,3,4) + Toc(1,2,3,4) = Y f*f{T{, THTTL0 (0, {4, k},4)
(4,7,k)€(1,2,3)
i<k
2

_ _ N
+FT(17 2a 374) + FD(L 27 37 4) + 2C Z (Tz ’ T’L) HQ({7’74})

()

Jgf > T Ty (Ha({i5}) — Ha({i,4}) — Ha({5,4})).

1<i<j<3

(3.25)

Egs. (3.11)) to (3.13)) with Hs replaced by Hj define U, 'y and T'p, respectively.
This definition of Hy is unique: it is the only way to absorb the two-line function
H, into the definition of H3 in a manner which obeys Bose symmetry on three

lines.

Next we consider the non-dipole colour factors on two lines, they are given by I'z.
The constraint equations in eq. ((1.35]) require that these terms may at most be

constant, yielding the following requirement

where C'is a constant. This requirement also immediately yields T'p(1,2,3,4) o< C,
drastically simplifying our expression in eq. (3.25). In a similar vein, we find that

the only way of defining a four-line function with the symmetries of H, and which
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reproduces U is

(6 5), (b, 1] = Hy 6.3, (5, D)
2 Y]~ G — B G R+ G0 (327)
by b, 4000~ H 0,00~ B G+ 1 G R3)).
oo [, 3)] = Hap [,4Y] ~ Ho ({5, 71 (329

Utilising this definition along with eq. (3.26]) yields the following result for A(z, z)

and I'gip,

Az =g 3 e T T

(4,5,k)€(1,2,3)

i<k
x (Hy (i, 5), (k,4)] + Hy [(i, k), (j, 4)] + 4C) (3.29)
+gC 1<;<3 fabedee{T?, Tf}{Tg, T;i},
N2 & o
Paip.(1,2,3,4) = — QC Z (T; - Ty) Hop [{i, 4}]
+J\27c > (T T)) (HQD [0, Y] — Hop [{i,4Y] — Hop [{j,4}] J%C)‘

1<i<j<3

(3.30)

The result for A is written here in terms of colour factors after applying colour
conservation and removing the colour factor T4. However we could just as easily

write it in a manifestly Bose symmetric fashion by re-introducing Ty as follows

A(z,2) =T{TSTST] (f* fHy[(1,2); (3, 4)]
+ f (1, 3); (2, 4)] + S L [(1,4);(2,3)])
+C Y g Ty, T} T
(,5,k)€(1,2,3,4)

j<k
i#j.k

(3.31)

The inclusion of a constant term proportional to three-line colour factors differs
from similar expressions given in [32], 33], where the term was excluded for reasons
of symmetry as well as collinear limits. Contrary to expectations, we will find
that such a term is in fact needed in order to satisfy collinear limits. We will defer

further discussion of the matter until we have evaluated the limits in chapter [§]
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3.6 I on Three Lines

Now that we have found an explicit expression for A in terms of our colour and
kinematic basis, we need one more ingredient in order to consider collinear limits.
Recall that the anomalous dimension of the splitting function I'g, is defined as

the difference between an n-leg and an (n — 1)-leg soft anomalous dimension

Lsp(p1,p2) = Tn(Br, By -+ Bn) — T (Br + B2, B3, -+, Bn). (3.32)

If we wish to compute I's,, we therefore need not only I'y, but also I's We utilise

the same colour basis and find
Fg(l, 2, 3) == Gg(l, 2, 3) + Gg(l, 2) + GQ(L 3) + GQ(Q, 3) (333)

Applying the same techniques as we did for four lines, and requiring the cancellation

of tripole terms, we find that we may write

[3(1,2,3) = > [ {Ty, Tf} TV Hs(i, {4, k}). (3.34)

(4.4,k)€(1,2,3)
j<k

The I'; in I'sp, is in a four-line colour basis, i.e. it depends on T + Ty, T3 and
T,. We will therefore not apply colour conservation to eq. (3.34), but rather leave

it like this until we consider a specific collinear limit in chapter [§]

Instead, the next chapter will cover the main techniques of our calculation in

depth, before we proceed to give the full analytic result of all relevant webs in
chapter [5
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Chapter 4

Computing Webs at Three Loops

Having established the general kinematic and colour structure at three loops, we
now turn to computing three-loop webs in the asymptotic limit of lightlike Wilson
lines. Our plan is to calculate all webs contributing to colour factors other than
dipoles and tripoles, either by performing an expansion around the light-like limit
of an already known result, or utilising Mellin-Barnes techniques to perform an

asymptotic expansion near the light-like limit under the integral sign, as outlined

in section [[.3.3]

Out of these two methods, the latter is by far the most time-consuming and
intricate, and so we will dedicate a large portion of this chapter to the methodology
we use to compute these webs, which have in common that they contain one or
more gluon-gluon interaction vertices. Figure 4.1 shows the subset of these webs

which connect four lines, and fig. shows examples of specific permutations of

Ba B1

B3 B2

(a) The four gluon vertex (b) The double three gluon  (c) The 1211 web wi211.
web w4gq) - vertex web w(12)(34)-

Figure 4.1 Four-line webs containing gluon-gluon interactions.
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Pa

Bs

(a) The 3111 web ws111 (b)  The 1122 web wi122

Figure 4.2 Representative diagrams for each four-line multiple gluon exchange-
web.

the corresponding multiple gluon exchange webs.

Before we proceed, it is important to note that we must have full non-lightlike
results for a web in order to utilise collinear reduction. The reason for this is
clear if we consider the various kinematic limits involved. The light-like limit
is characterised by 8? — 0, or equivalently a;; — 0V 4,j. However, collinear
reduction requires us to take two lines parallel, i.e §; || 5;, or equivalently a;; — 1.
Thus, in expanding around «;; = 0, we lose the ability to take the collinear limit in
a consistent manner. This forces us to explicitly calculate all diagrams containing
multiple gluon vertices, since we are not in posession of any results for these

diagrams with non-lightlike external partons.

The layout of the chapter is as follows: We begin with a general overview of all the
webs we wish to compute, and how we will compute each of them. We then discuss
webs containing multiple gluon exchange vertices, outlining our methodology for
calculating the contribution to the soft anomalous dimension near the asymptotic
light-like limit. We then briefly discuss light-like limits of known results and the

procedure of collinear reduction.

4.1 General Overview

We wish to calculate Hy, Hs and Hs, as defined in eqgs. (3.5)), (3.10) and (3.20]),

respectively. These diagrams come with specific colour factors, and hence we will

discard all webs which do not contribute to these colour factors (i.e webs which

only contribute dipole or tripole colour factors, e.g. fig. [4.3)).
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B3

o5

B2

Figure 4.3 Web with tripole colour factor, which we discard.

B3 B3

A

B2 B2

(a) Three-line four-gluon vertex, w(sys) (b) Three-line double three-gluon vertex
W2)31)

Figure 4.4 Fully connected three-line webs contribution to Hs

The four-line webs we will have to explicitly compute are depicted in fig. In
the case of fig. significant progress on the integration has been made in [93],
which we will use our starting point. There are two other webs which contribute
to Hy, these are the in fig. [4.2] which have already been computed in
[26].

For Hj, we need the diagrams in figs. [£.4) to [£.7 We will explicitly compute the
webs in figs. and [5.4] while the web in fig. will be obtained by collinear

reduction. The web containing a vertex correction in fig. has been computed

in [94], and the MGEWS5|in fig. have been calculated in [95]. We will simply
state their results here.

Finally, the webs contributing to Hy are given in figs. to Again, we will
compute the fully connected webs in fig. explicitly, the remaining webs will be
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B3 B3

b1 s B1

B2 B2

(a) Configuration of 311-web which con- (b) w2
tributes to Hs, other conmfigurations
only contribute tripole colour factors.

Figure 4.5 Representative diagrams of three-line webs contributing to Hs which
contain a single three-gluon vertex.

B3

B

B2

Figure 4.6 Representative diagram of web with vertex correction contributing to
Hs.
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B3 B3
; %«i:% b Mﬂ%
B2 B2

(a) W222 (b) w123

Figure 4.7 Representative diagrams of three-line |MGE WS contributing to Hs.

B2 B2

5929 5929

521 521

512 512

b1 B1
(a) (b) (c)

Figure 4.8 Fully connected two-line webs contributing to Ha.

Figure 4.9 The 23-web, which contributes to Hs.
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Ba

S

(a) Representative diagram of the 24-web. (b)  Representative diagram of the 33-web.

Figure 4.10 Representative diagrams of [MGEWs with and without vertex
corrections that contribute to Ho.

computed by means of collinear reduction.

4.2 Webs Containing Gluon-Gluon Interactions

Arguably the most difficult webs to calculate at three loop order are webs containing
gluon-gluon interactions. This owes largely to the complexity of their kinematic
integrals, and to date no complete calculation of these webs has been performed.
We will not attempt to calculate these diagrams in full, but rather we will focus

on their behaviour near the asymptotic light-like limit.

To do this, we will find a Mellin-Barnes representation of the relevant integrals,
and utilise the techniques in section to perform an expansion around the
asymptotic light-like limit.

Our procedure mirrors the one we employed to obtain a [MB| representation in
section 2.1 We start with a Feynman integral on n; Wilson lines and with n,
internal vertices, factorised into a kinematic factor F¢ and a corresponding colour

factor Cq

we({Ti}, {7} €) =Ca ({Ti}, {is}) Fo ({vish €) - (4.1)

The colour factor will be one of the basis elements discussed in chapter [3 attached
to the relevant number of legs, and potentially with some polynomial dependence

on 7;;, to make the colour factor manifestly Bose symmetric. Focusing on the
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kinematic factor, it has the general form
ny 0o
Fe (vij. €) =A [H/ ds; B e” MV 53“0]
=10

X [ﬁ/ddzj] Ha'l---an (s’iﬁia {Zi}7€)7

Where we have once again considered spacelike Wilson lines and have used the

rescaling invariance of the Wilson lines to normalise them such that 32 = —1.

H is homogeneous such that at [ loops, we have
Hg, ..o, (a8iBi, {czi}, €) IOé(mHn”)e*m%n”Hal---an (siBi,{zi},€) - (4.3)

We therefore proceed as we did in eq. (2.4)), by rescaling all integration parameters
by a common scale «, and integrating out this scale. The specific form of this
parametrisation varies depending on the integral we intend to perform, generically

we have

2 =Qw;, (4.4)
Si :aLzé}), (4.5)
where ). fi ({z;}) = 1. This allows us to integrate over o and obtain the full
divergence of Fg. For instance, we find in Appendix [A] that the four-gluon vertex

diagram in fig. has the kinematic factor

2

Funllh =~ igt (L) A0 g 0

4 0 —imsi\/m
X /ddzH [/ ds; ¢
i=1 /0 [_ (

Siﬁi — 2)2 + ZO} e

(4.6)

It is clear that if we rescale this expression according to egs. (4.4)) and (4.5)), the

8—8e¢

denominator scales as a® ¢, and the combined integration measures rescale as

a®72¢. We choose to rescale the integrand according to s; = ay;/1/3? and z — az,
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with the requirement that ) . y; = 1. After integrating over a we then obtain

Fag({Bi}. €) = —igy (:1—22) 4713724 / dz / (dez> (4.7)

x5 (1 _ Zy) I1 [— <yﬁ . z> n zo} . (4.8)

=1

With the exception of the 1211-web in fig. — which has subdivergences — we
may at this point expand in €, since there are no further divergences. Defining
JI{fi({x;})}] as the Jacobian of our generic transformations in egs. (4.4)) and (4.5,

we then have
. 3% r Lo
e [H/ d’ﬁ‘] [H/d ] (4.9)
x |J{fil{z; D Hovoo (fi ({253) Bis {wi}, €) -

F(l,—l) _

4.2.1 Vertex Integrals and Dual Momentum Space

Representations

Next, we wish to perform the vertex integrals. This also resembles what we did in
section [2.1] in that we insert an auxiliary momentum space integral. We have three
topologies of gluon-gluon interactions to consider: a single three-gluon vertex, as
we have in the 1211-web of fig. [£.1d a four-gluon vertex as in fig. or a double
three gluon vertex as in fig. 4.1 In all these cases, regardless of the number of
external partons, the vertex integrations correspond to the same dual diagrams.

These vertices and their associated momentum-space diagrams are depicted in

fig. 1T

The mapping then proceeds as follows: consider a vertex V, we have n attachments
of gluons to a Wilson line, label their positions in spacetime cyclically as z¥, call
the integral over the vertex and associated propagators V({x;}). Introduce dual

momenta according to

Pi =Ty — Xi—1, To = T, (410)

xij = (1 — x;)° . (4.11)
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L3

p3
T
X2 D1 D2
(a) Three gluon vertex integral. (b) Triangle diagram, dual to three gluon
verter.
X1 Tyq b1 yo
L2 L3 D2 p3
(c) Four gluon vertex integral. (d) Bozx diagram, dual to four gluon
verter.
T Ty P1 Pa
T2 L3 D2 p3

(e) Double three gluon vertex integral. — (f) Slashed box diagram, dual to double
three gluon vertex.

Figure 4.11 Gluon vertex integrals and corresponding dual diagrams.
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We then have

Vi{z:}) = Dr({pi}) = Dy({wi;}), (4.12)

where Dy is the auxiliary momentum diagram of Vy. We already have a @
representation of the three-gluon vertex, T'({p;}, {vi},d), as given in eq. (1.73),
and we have seen an example of its application in eq. . In the case of the
four-gluon vertex, its dual is a four-mass box, which is known in d = 4 to have
the same representation as the three-mass triangle [96]:

Visg ({zi}) = /d4 H —2)% +i0] ! (4.13)

1 1 +i00 21 21
{7} = A 2/ dordz, ($12$34> <$14$23)
T13Toq (271)2 J_ino T13T24 L1324 (4.14)
X% (—2) T2 (—22) T2 (1 + 21 + 22) .

In the case of the double three gluon vertex, we have a two-loop slashed box
diagram as its dual. Here, we derive a [MB] representation of the momentum dual

diagram ourselves in Appendix [B], it is

<{xz}>_1 / 0z dw (— (21— 2)?) " (— (g — %))

(4.15)
— (a3 — (— (24 —w)) (= (z —w)*) 7},
100 tij
Disg({ay)) = ( o) / dt () F(=ty)
L) o
XD (—tiz — tia — tog) T (—tas — tos — taa) (4.16)

(—
XT'(1 + t1g + toz + toa) (1 + t13 + toz + ta4)
Xr(l + 110 + t13 + tog + tog + t34)

['(tsa — t12)
F(l n t34 _ t12) (’lvb(_t12> - ¢(—t34>)

Thus, we have parametrised all of our vertex integrals in terms of three different
dual momentum space diagrams. We next need to perform the integration over
the Wilson lines.
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4.2.2 Vertex Differentiation and Parameter Integration

Before we can perform any integration over the Wilson lines, we must perform
the differentiations associated with any three-gluon vertices. The differentiation
is straightforward, since the MB representations of our dual momentum diagrams
always depend on the dual momenta simply as a power, and that there is always
an accompanying gamma function, so we have (—p?)*T'(—z). We may rewrite our

differentiations in terms of p? as we did in section [2.1} we then observe

02 (—p})T(=2) =(=p})*"'T(1 - 2). (4.17)

After this, we perform the integrals over the Wilson lines, introducing as many MB
parameters as is necessary in order to ensure that each parameter integral only
produces Gamma functions, and so we obtain a pure power dependence on 7;;,
which we need in order to perform an asymptotic expansion (see section . To
obtain the latter, we observe that all of our propagators z;; have their directions
dictated by the four-momenta 3;. If z; | z;, the propagator reduces to (|a;| —|z;])?
with no angular dependence. Otherwise, we have, say z; || BZ-, and similarly z; || Bj
which we then apply the standard parametrisation formula (eq. (1.67)) to

wf; = (lail® + |25 = |willaglig)” (4.18)
1 1 / (=ill;]7i)™

= o RET —. 4.19

['(—p) (27i) (i) 2 + |2y |2)% (4.19)

Thus, we now have a pure power dependence on 7;; in our integral.

We then wish to perform the Wilson line integrals. These integrations vary
greatly depending on each diagram, however there are some common traits. As an
example, both of the fully connected four-line diagrams have Wilson line integrals

of the form

Iy ({ai}, {by}) = (H/ dy; ( yj )% 1:[ yz +yj ”) 0 (1 - Z?h) . (4.20)

Here a; and b;; are linear functions of the parameters, and I, carries the
overall mass dimension of the integral, i.e. we have 2> a; +2) b;; = —4.
Three-line and two-line integrals will be similar, but with some propagators x;;
replaced by (|z;| — |z;])? and an accompanying Heaviside function 6(|z;| < |z;]),

corresponding to the ordering of two points of emission on the same Wilson line.
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We may perform this parameter integral by introducing the following reparametri-

sation:

Y1 yr

Y2 | _ (I —y)z
Ys z(1—x)
Ya (1—-2)1—-=)

(4.21)

This yields

1
i ({anh b)) = [ dudyds (1 = apessansones i b
0

><y2‘“(1 B y)2a2z2a3(1 . Z)2a4 (y2 + (1 . y)2)b12

X (x2y2 +(1— x)222)b13 (x2y2 + (1 —2)*(1 - 2)2)b14

x (2°(1—y)* + (1 - x)222)b23

X (22(1—y)2 + (1= 2)2(1 — 2)2)™ (2 + (1 - 2)2)™.

(4.22)

Next, we transform to semi-infinite parameters

1y <{ai}7 {blj}) = Am dacdf dry (a2)a1+a2+b12+%

x(B) (B2 +1)™ (37)% (2 + 1)
X ((ﬂ + 1)2>—al—a2—b12—1 ((’)/ n 1)2)—a3—a4—b34_1

) ((5 fl)? i <v+11>2>b24 ((51512)2 " <v+11>2)m

" ((5 (fl)Q e fl>2>b23 ((ﬁ; e 121)2)“3,

We are now free to rescale o« — ay(1 + )/(1 + 7), yielding

(4.23)

Li({ah b)) = [ dadBay (2ot o2 1) ()
0
% (62 + 1)b12 (72)a1+a2+a3+b12+b13+b23+1 (72 + 1)b34 (424)

« (04252 + 1)b13 <a272 + 1)b24 (Oé2ﬁ2’72 + 1)1;14‘

The three brackets depending on more than one MB parameter can now be opened

using the standard MB parametrisation formula, doing this and performing the

72



subsequent parameter integrals yields

Iy ({ai ,{bis}) =
1 1 +io0
dz3 dzy dzs
8 <Hi<j F(—bij)) (2mi)? /—
xI (—23) I <—Z4) r (—25) r (23 — b13> I (24 — b24) I <Z5 — b14)

1 1
XF(CL1+2’3+25+§)F(—al—b12—23—2’5—5)

XF(G1+G2+512+23+Z4+Z5+1)

100

(4.25)

XF(—al—a2—612—623—23—24—2'5—1)

3
><F(a1—|—a2+a3+b12+613+bg3+z4+z5—|—5)

3
XF(—al—a2—G3—bl2—b13—523—534—2’4—25—5)-

We will utilise this result when computing the four-line fully connected webs. For
other webs with multiple-gluon vertices, we will compute the requisite parameter
integrals as needed, following the same procedure as we just used for the four-line

webs above.

Having performed this integration step, we are ready to perform an asymptotic

expansion.

4.2.3 Asymptotic Expansion

We now have a pure MB representation of our web, it is schematically of the form
L1 —+1i00 “+100
FOOL [ anl (T dsa | I e ) (426)
i —100 ’L;é] —100 k

We wish to expand around the limit of 82, that is, recalling our definition of

. 28:-B; . T
= ————="L_ we wish to study the asymptotic limit
T =T R IE Y yip

Thus, we introduce a parameter A according to 7,; — —7v;;/A and apply the
methods of asymptotic expansion outlined in section to obtain the leading

term in the expansion around A\ = 0.
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4.2.4 Parametrisation

Having performed the asymptotic expansion, we now need to compute the surviving
MB integrals. To do so, we will utilise parametrisation and residue sums, as
outlined in section [I.3.2] This process is highly individualised and can involve
a large number of MB integrals and corresponding parametrisation. Ultimately,
however, we obtain a result which can be compared numerically to our MB
representation obtained immediately following asymptotic expansion. In the next
chapter we will list the results for each web calculated in this manner, before

finally assembling the full three-loop result in chapter [0

4.2.5 Numerical Evaluation of MB Integrals

On a few occasions, we will be forced by the complexity of our integrals to compute
some constant terms numerically. The reason for this is that the asymptotic
expansion may produce a large number of integrals containing Gamma functions
with non-integer constants or coefficients of the integration parameters (e.g
J dzI'*(—=2)['(2z)). Such integrals are hard to compute algorithmically, since
their residue sums depend on roots of unity, and in some cases they are difficult
to parametrise. Furthermore, the sheer volume of such integrals produced by
a single asymptotic expansion renders manual computation infeasible, whilst

simultaneously reducing the precision of numerical computation.

Numerical integration will be performed using Monte Carlo techniques imple-
mented in [77] with its default integration parameters. These Monte Carlo
integrations are performed using the Vegas algorithm, as implemented in the Cuba
library [97]. On these occasions, we will give errors in the form of the standard

error as determined by Cuba.

Ultimately, we will have strong analytic reasons for deducing the overall result
produced by any of these numeric computations. The numerics therefore serve to

check our analytic answer, rather than as a means of deduction.
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4.3 Collinear Reduction

For a lot of the MGEWSs, we will not have to perform an explicit calculation.
Rather, we will either rely on known results for four- and three-leg diagrams
[26, ©94], O5], or we will utilise these results to infer the contributions of legs
correlating fewer lines through a process known as collinear reduction. The

technique is outlined in detail in [95], which includes some examples.

For our purposes, we note that this procedure is most easily explained by means of
effective vertices [16]. The effective vertex language provides an alternative way of
obtaining the exponentiated colour factors and associated kinematic combinations
of webs by means of a purely diagrammatic approach. For our purposes we simply
note that the effective vertices represent a completely antisymmetrised set of both
colour factors and their associated kinematic factors. For instance, the effective
vertex V5, connecting two gluons to a single Wilson line has colour component
Cy1 = [T*, T?, and orders the points of emission along the Wilson line accordingly,
i.e. if 71 and @y are associated with the colour factors T® and T?, respectively,

then kinematically, V5 produces the combination 0(zy > x9) — 0(z2 > x1).

The procedure of collinear reduction, then, stems from the observation that if
we take two lines collinear in an n-line diagram, the corresponding effective
vertices retain their internal ordering on the line, but we are integrating over all
positions of these vertices along each line, and hence we obtain a kinematic factor
corresponding to taking the symmetric sum of the ordering of points of emission

on the two lines we take collinear.

An example is shown in fig. [4.12) where we take 1||4 in fig. |4.12al to obtain a
symmetrised colour factor on 1, as indicated by the dashed circle around the two

vertices where we must sum over their orderings.

Taking the two lines collinear does not render the colour representations on each
line to become the same, however the symmetrised kinematic combination can
be obtained by taking such a collinear limit. According to the Feynman rules
n [16], the corresponding exponentiated colour factor can then be read directly

off the vertex, according to the rule that we take ${T%, T} for the symmetric
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(a) W(1112) (b) W(122)

Figure 4.12  Collinear reduction of w112y to w122

combination. In the case of fig. [4.12b, we find

Chaz ={T, T{}T3TEf f°, (4.28)
1
»7'—(122) (04127 13, 0423) = 57:(1112) (0412, 13, (23; 0434) . (4-29)
4l

More details on this calculation will be provided in section [5.2.2]
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Chapter 5

Results for Three-loop Webs in
Lightlike Kinematics

Having outlined our methods of calculation, we will proceed to present all the
webs relevant for our calculation of A(z,z). In addition to explicit calculation,
we utilise the results of [26], 94, O5], both directly and for the purpose of collinear
reduction. Due to the lengthy nature of the calculation, most of the details have
been relegated to the appendices, specifically Appendices [A] to [El The collinear
reductions will however be performed in full in this chapter. In this chapter we
will focus on summarising the main results, and any deviations from the methods
outlined in chapter [, We will begin with four-line webs, and then proceed to
three and two lines, finally assembling the full result. In all cases we give our

results factorised into colour and kinematic factors according to

wr({ei}, {Ti}) = Cr({Ti}, {aig D Fr({evs })- (5.1)

Furthermore, we decompose F according to its order in oy and e F =

D alel Fl),

In the next chapter we will assemble all of these results into a single correction to

the dipole formula.
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b1 B4

B2 B3
(a) wg) (b)  waay3a)

Figure 5.1 Fully connected webs connecting four lines.

A1

B2

Figure 5.2 One of two graphs with single three gluon vertex contributing to wi112

b Ba fe31 Ba
B2 Bs B2 Bs
(a) Diagram contributing to (b) Diagram contributing to

w1113 w1221

Figure 5.3 Representative diagrams of four-line [ MGEWS.
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5.1 Four-line webs

At four lines, we have three distinct sets of webs: fully connected graphs (fig. [5.1]),
a graph containing a single three gluon vertex and a single gluon exchange (fig.[5.2),

and two [MGEWH (fig. . As we discussed at the beginning of chapter , only
the fully connected graphs may have non-logarithmic dependence on [CICRs, and

are hence of primary interest.

5.1.1 The Four-Line Four-Gluon Vertex

In the case of w(y) in fig.[5.Tal we have relegated the full calculation to Appendix [A}]
We obtain a rather lengthy final result for wg), with the following form

Clagy =TTETGTS [ff (1 — (1 —2)(1 — 2))

+ frefhie (zz — (1—2)(1 — 2)) + fo%f (22 — 1)] (5.2)
3

where f; is a pure weight five polylogarithmic function, satisfying Bose symmetry
by being completely symmetric under the interchange of any two Wilson lines.
The result for f; is rather large, so we provide it as a supplement to this thesis in

machine-readable format.

5.1.2 The Four-Line Double Three-Gluon Vertex

Turning our attention to w9)(34) in fig. , we have again relegated its calculation
to Appendix [Bl After asymptotic expansion and performing the MB integration,

we obtain
Cazaa =f" fTITTST, (5.4)
- 172 _ 1—(1—2)(1-2),, _
-7:((?2)(?4) = (E) 3 <f0(2727 {aij}) + — fi(z, 2, {ai;}) ). (5.5)

Note again the appearance of fi(z, Z, a;;). fo is a pure, weight five polylogarithmic
function, satisfying all the symmetries of Hy in eq. (3.6)), as Bose symmetry would

require. We attach it in machine readable format as a supplement to this thesis,
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though we will analyse its full form in more detail in section [6.4.1]

5.1.3 The 1121-web

For the web in fig. it has been shown in [93] that after subtracting appropriate

counterterms, it can be written as

Crior = [ fTITHTET] (5.6)
(3,-1) L1
]:1121 (0612, 13, (23, 0434) Zgw (M0,0,0(0434)t1(04127 13, 0423) (5 7)

— 2M, g p(asq)to(2, a3, aag))

The integrals ¢ty and ¢; are integrations over Wilson lines connecting to a scalar
triangle, much like was the case for the three gluon vertex in chapter 2] Note that
to and t; only depend on the three angles internal to the three-gluon vertex. All
dependence on a4 is captured by the basis functions [95]

1 3
to(auz, o3, (a3) :/ dy dys dys o (1 — Z yi)
0 i=1

(5.8)
X B{Lﬁgﬁgrwp(aylﬂl J ayzﬁw aysﬂa)
xTO({pi}, {1}, 4),
1 3
t1 (g, ausz, ca3) Z/ dy1 dy dys 0 <1 - Z yz‘)
" = (5.9)

Xﬁ?ﬁg grlﬂ/ﬂ(aybﬁ’l ) ayzﬁz? ay3/33)
X (T(l)({pi}a {1}a 4) - 410g<y3)T(0)({pi}a {1}7 4)) )

where we define T as the O(¢") term in the expansion of the scalar triangle
integral in eq. . to is then simply the three gluon vertex diagram, for which
we have the full result in eq. . In order to calculate t;, we need an MB
representation of the O(€) term of 7". Since both the integration and 7" are finite

in d = 4 dimensions, we may expand in € under the integral sign. We insert
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eq. ‘} and write log(ys) = %‘azo y3, all of this results in

t1 (2, a3, (o3) =

e &
5 /0 dyy dys dys 0 (1 - Z%) (Z €iik¥i (VigVik — 2%in) O,

i=1 irj,k) (5.10)
AT A
X /dzleQ <%) (L) F2 (—Zl) F2 <_Z2) F2 (1 — 21— 22)

Yik yi2k

X <’YE -4 a% ((yfj)a + (y3)")

() () £ 3Lz z2>) .
a=0

We may now proceed to perform the integrals over y; in exactly the same manner
as we did in chapter [2 Performing an asymptotic expansion near the limit of

light-like external partons and computing the surviving MB integrals, we obtain

Caian) = [ fTI T TS T (5.11)

«7:1121(041% 13, 023, 0634) =

| (4;3 8 (log (a12) — log (c113)) (log (a112) — log (aras))

3
X (log (a13) — log (cv3)) (log2 (cvgq) + Cg) + 2log (cvs4)

X (10g4 (cus) — log (crz3) — log® (a2) (log (c13) — log (0423)))

+ (log (c13) log® (cro3) — log® (cr13) log (a23))

(5.12)

DOl 00 Wl

+ 3 (log (a12) log” (a13) — log (a12) log” (023))

+2 (log2 (a12) log? (agg) — log® (an12) log? (cv13))
+2 (log (112) log? (a13) log (cras) — log (au2) log (a3) log? (aas))
— 4¢ (log (a12) log (aq3) — log (a12) log (cva3))

+ 4C2 (10g2 (0413> — 10g2 (0623)) —8<3 (10g (0413) - lOg (Oégg))
Both the colour and kinematic factors are antisymmetric under the exchange of

1 and fBs, as one would expect from Bose symmetry. Furthermore, we note that

the result is uniform weight five.
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5.1.4 Multiple Gluon Exchange Webs

Finally, the two MGEWs| in fig. have been calculated in detail in [26] and
subsequently expressed in terms of MGEW| basis functions in [95], they are

—(3) _ 1 1 abe pederparmpbrperpd
w(1221)(04127 (g3, Qi34) = — awf ST Ty TSy (5.13)
><7“(%2)7’(@23)7”(0434)G(1221)(0412, 23, 0434)
1
G(1221)(Oé12> a3, 0434) == §M2,0,0 (alz) Mo,o,o (0423) Mo,o,o (0434)

1
—§M0,0,0 (0412) Mo,o,o (a23)M2,0,0 (CY34) + Mo,o,o (0412) M2,0,0 (0423) Mo,o,o (@34)

—Mo,o,o (0412) Ml,o,o (a23)M1,0,0 (CY34) - Ml,o,o (0412) M170,0 (CY23) Mo,o,o (a34)
+2M1,0,0 (0412) Mo,o,o (0423)M1,0,0 (0434) + 4Mo,0,0 (0412) Mz,o,o (a23) Ml,o,o (0434)
(5.14)
o (4, iy, u34) = — 1LT”TI’TCTGZT(Q )7 (ag3) r (aqy)
(1113) 14, tt24, tt34 ) — 6 (471')3 1+to4t344 12 13 14 (515>

X (fadefbceGlns (a4, Qo avgg) + 2 fP % Ghans (o, 0, i34) )

G(1113)(0414, g, i34) =
1 1
52,00 (cr1a) Mo,0,0 (v2a) Moo0 (u34) + 510,00 (a1a) Mo,o,0 (v24) Ma0,0 (034)

—Mo,o,o (0414) Mz,o,o (0424)]\/[0,0,0 (a34) + Mo,o,o (0414) Ml,O,O (0624) Ml,o,o (0434)

+M1,0,0 (0414) Ml,O,O (0424)M0,0,0 (0434) - 2]\/[1,0,0 (0614) Mo,o,o (0424) M1,0,0 (0434)
(5.16)

In order to obtain the light-like limit of these webs, we only need to obtain

light-like limit of the basis functions Mo, M1 and My, they are

Mogo(a) =2log(a) —  2log(a) (5.17)
M 0() = 2Lig(a?) + 4log(a)log(1 — a?) — 2log?*(a) — 2¢,
— —2log?(ar) — 2¢, (5.18)
Msgo(a) = —4 (Liz(®)+ 2Liz(1 — o)) — 8log(1 — o*) log”(a)
12 10g(a) + 8¢ og(a) + 4Gy (5.19)

3

8
= 3 log® () + 8¢y log(er) — 4¢3
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Utilising these limits, we obtain

16

G(1221)(041270423,0434) B —Elog?’(alz)log(a23)log(oz34)

16
—? 10g (Oélg) 10g (0423) 1Og3 34 +16 IOg (0[12) IOg (0423) IOg2 (0634)

(ass)
—8log® (ar12) log® (aas) log (v34) —8log (a2) log? (crz3) log? (cva)
(a12) +2

+8(, [2log (r23) log” (a2 log (cr23) log? (ugs)
~log (a34) log? (anz) ~ log? (02s)log (01) :20)
—log” (1) log (a12) —log® (as) log (aza)
—8log (a3) log (avz4) log (a12)] —8(s [2 log (av12) log (ai4)
— log (a12) log (aa3) — log (as4) log (crzs)]
+20C4 [21og (a23) — log (a12) — log (aza)]
G(1113)(Oé14, Qrog, (t34) B - % log (a14) 10g3 (r24) log (cr34)
+§ log® (114) log (@va4) log (cv34) +1—36 log (a14) log (ava4) log? (asy)
+81og? (cv14) log? (vay) log (ass) +81og (ay) log? () log? (arsy)
—161og® (a14) log (aa4) log? (vas) +8C; [log (1) log® (vas) (5.21)

+log? (cva4) log (ausy) + log? (cv14) log (ausy) + log (ar1y) log? (ausy)
—21log? (a14) log (ares) —21og (aray) log? (a34)}
—2(3 [log (a4) log (agq) + log (a24) log (args) — 21og (v14) log (azy)]
+20¢4 [log (cv14) + 21og (cvay) + log (avz4)]

The results are once again uniform weight five.

5.2 Three-line webs

We now consider all three-loop webs connecting three Wilson lines. The topologies
can be obtained by considering ways of identifying two Wilson lines in the four-loop
topologies in section [5.1 Thus, the topologies fall broadly into three classes: fully
connected diagrams, diagrams containing a three gluon vertex, and The
have been computed both directly and through collinear reduction in
[95], and we will simply apply a light-like limit to their results.

We will systematically discard any contributions to tripole or dipole colour factors,

retaining only contributions to Hj, described in detail in chapter |3, All relevant
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B3 B3

S1
b ——F B &

B2 B2

a) Three-line four-gluon vertexr, w, 3y (b) Three-line double three-gluon vertex
(49,3)
W(12)(31)

Figure 5.4 Fully connected three-line diagrams contributing to Hs

exponentiated colour factors have been computed in [16], so we only need to

explicitly compute the colour factors of the fully connected diagrams.

5.2.1 Fully connected graphs

Among the fully connected graphs, we only need to compute the topologies in

fig. 5.4l

We begin with the four gluon vertex diagram, we let 5,=0, for ease of notation

and obtain
Clag)s =ff°% {T¢, T} TS TS (5.22)
2\ 3€
oo ) =1 () o0 (292 )

4 o ]
d*z dy; T :
g / 111 [/0 ! [— (i — 2)* + i0] ] (5:23)
) (1 — Zyl) 0(ys <y1).

The calculation now proceeds in much the same way as it did for the four-gluon
vertex, we give full details in Appendix [C] The vertex integration still corresponds
to a four-mass box diagram (as we saw in the previous section for the four-line

four-gluon vertex), though the parameter integration proceeds slightly differently,
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due to the inclusion of a Heaviside function. In the end, we find

~7:(4g),3(3’_1)(a12, Qq3, Qg3) =

1 1 1 1
- (47)3 3 (_§ log" (u2) — 3 log* (c3) — log® (v12) log (cu3) log (aas)

—log (a12) log? (cr13) log (aag) + 4log (a12) log (an3) log (aras)

+21og? (a12) log? (a13) — log? (an2) log? (aas) — log? (aus) log? (aa3)

‘i% log (1) log® (cgs) + %log (cu13) log® (gs) + ;log (cu3) log® (o)

+§ log® (a3) log (ar12) + log (aa3) log® (ana) + log® (avy3) log (avas)

—6log (c13) log? (a12) — 6log? (n13) log (n12) — 21og (r23) log? (cu12)

—21log? (a13) log (aa3) 4 21og? (ars) log (a12) + 21og (a13) log? (args)

+§ 10g3 (2) + élogg (a3) — glogg (ro3) + 241og (a12) log (a13)

+4log? (av2) + 4 log? (ary3) — 4log? (cra3) — 321log (1) — 321og (au3)

—24¢s + G5 (121og (a12) + 121og (au3) — 24) + & (—61og” (v12)

—61log? (a13) + 61og (aa3) log (avy2) + 6log (a3) log (args)

+ 12log (a12) + 121og (a13) — 121log (aa3) — 24) + 64 ) :

(5.24)

Note the appearance of many terms which have transcendental weight less than

five. This is a general feature of three-line and two-line graphs, and the cancellation

of all such terms will provide a strong consistency check on our calculation.

Turning our attention to the double three gluon vertex diagram w121 in fig. [5.4b)]

we provide full details in Appendix [D] There are two permutations contributing
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to Hs, we compute them jointly and find

w(12)31) (12, Q13, Aa3) + W(2)(31) (13, Q12, Ar23) (5.25)
=C(12)(13),sF (12)(13),5 (13, Q112, Q123) (5.26)
Cazan),s =f [ {T{, T{} T5T5 (5.27)
1 21 [~
(3,-1) _
]:(12 31), (04137041270423) —(47035;/0 dy dys dys dy,
x0 (1 - Zw) / dz d'w BBy 8557
XL e (aylﬂn 6242,327 _ayllﬁ - ayQBz) (5.28)
XFPUT (ay3ﬁ3’ 6y4517 _ay353 - 8y451)
X (—(y181 — 2)? +40) " (= (Y282 — 2)* +i0) "
X (—(ysBs — w)? +1i0) " (—(yafr —
X (=(z —w)* +i0)"" (0(ya < y1) + 0(y1 < ).
The calculation proceeds much like that of ]—" however we find MB integrals to

be prohibitively complex, hindering analytlc computatlon of terms proportional to

log(ai2), log(aqs), and the constant term. We will compute these terms numerically,

and compare their value to constraints derived from collinear factorisation and

Regge limits in later chapters. We will relegate the independent result for F,

(37_1)
(12)(31),s

to Appendix [D] for now it is notable that there is a significant cancellation of
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lower-weight terms between f((fé)_(?lm and ]-"(%3), we find

wgi’gjgl))(&127 13, Qaz) + W(12)31) (12, A3, Qa3) + W(a2y31) (13, A2, Aa3) =

1 1

abe rcde a d bre
EWJC f {TlaTl}TQTS

1 1 2
X (g 1Og5 (Oém) + g 1Og5 (0413) + g 10g (0423) 1Og4 (Oém)

2.y i) 4 . 4

+ 3 log® (a13) log (cva3) — 3 log (a13) log™ (a2) — 3 log™ (a13) log (a2)
1 1

—3 log* (cva3) log (au1o) — 3 log (a13) log® (cvo3)
4 4

+ g 10g (0413) lOg (0623) 10g3 (0612) —+ g 10g3 (0613) lOg (0623) IOg (0412)

4
~3 log (a13) log® (cra3) log (r12) — 21og” (as) log? (ay)

4
— 2log’ (a3) log? (ags) + 3 log® (ar2) log” (0112) (5.29)

4 2
+ 3 log? (a3) log® (avas) + 3 log® (au3) log® (o)

+ glog2 (c13) log? (ag2) — 4log? (a19) log (aa3) log? (aus)

+ 21og (a12) log? (aigs) log? (a13) + 21og? (a12) log? (ra3) log (avys)

+ (4 (2410g (o) — 241og (a12) — 24 1og (a13) + 48)

+ (3 (8log (cve3) log (a12) + 8log (a13) log (cves) — 321og (au13) log (a2)
—8log’ (19) — 8log? (a3) + 48) + (5 (8log (a13) log? (ai2)

+ 8log” (a3) log (a12) — 8log (ay3) log (re3) log (avya)

+ 32log (a3) log (av12) + 48) + (64 — 50.1 + 0.1) (log(a2) + log(ass))

— (128 + 25 + 1.25) ) .

Again, we see the expected overall symmetry in swapping (3, and (5. It is also
noteworthy that while there is significant internal cancellation between the fully

connected diagrams, some terms with weight less than five do survive.

In the above, we have stated a result for two constants based on the numerical
methods documented in [77]. The errors given are those of a single standard
deviation of the Cuba implementation of the Vegas algorithm [97], as determined
by adding in quadrature the corresponding errors of each contributing [MB|integral.
All integration parameters used are the default parameters of the package described
in [77]. In the end, we will be able to determine the analytic value of the numerical

coefficient proportional to log(aysz) in the above from symmetry considerations
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B3 B3

8, e B,

B2 B2

(a) Representative diagram of ws11. (b) Representative diagram of wias.

Figure 5.5 Representative diagrams of three-line webs containing a single three-
gluon vertex.

when we assemble Hj in section [6.3] The numerical value we found above will
then serve as a consistency check. Similarly, we will obtain an analytic value for

the overall constant by considering collinear limits in chapter [§]

5.2.2 Webs Containing a Single Three Gluon Vertex

For the 311-web in fig. we have put the detailed calculation in Appendix [E]

After integrating over the relevant scales and expanding in €, we find the following

representation
w311y =C311)F(311) (12, Q13) (5.30)
Cony fabefcde{T T4} T (5.31)

1 db 1
]:((3?11 (12, 13) = ( 371252/3353/0 m/o da/dﬂ?ld@d%
(1_2331) (brs > (1 —b)(1 —a)) 0 ((1—b)(1—a) > bxy)

. —1
X (_ (aﬁl - (1 - a)ﬁQ) + ZO) FMVP (8901537 8902517 890351)
1 o
X A%z (— (2183 — 2)* +0) '

X (— (Igﬂl - 2)2 + 1'0)_1 (— (Zﬁgﬁl — 2)2 + ZO)

(5.32)
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Figure 5.6 Collinear reduction of w(112), to w(za1)

The integration over b can be performed, after which we find that the integral over
a yields a basis function. It is notable that at this stage, the integration

over the three-gluon vertex factorises completely from the single gluon exchange.

The vertex integration can be identified as a scalar triangle and we obtain

1
(4m)°

i 2 a=0

XF#VP (8961527 aﬂ6251 ) a363,5’1) T ({p?}v {1}7 4)

— 2 A A A
f(fil)”(au, 0413) = - § 7”(0412)M0,0,0(0112)5§Lﬁ§5§ / dxy dxo dzs

(5.33)

The calculation now proceeds in the same way as it did for the three gluon vertex
diagram in chapter [2 Taking the asymptotic light-like limit, we obtain
2 1

.F(3’_1) (0112 0613) = - -3 log(oclg)
(311),11 g 3

13 (4r) (5.34)

Y <§ log* () +4 (G — 22) (1 + log (aus)) — 344)

Next we consider the 221-web in fig. [5.5b] We will utilise collinear reduction of
the 1112-web in fig. to find its contribution to I'. To obtain this, we must
take 4 collinear to either (3; or (5, which will produce permutations of the same
diagram. We choose (4|81, as depicted in fig. [5.6l We have
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Crurz =f* [ T{ T3 T5Ty

1 aobe rcae a C <5.35>
? _f ’ f ¢ {TlaTlli} TST:S?
4 2
Fanz) (@2, aus, oz; asa) — Friniz)(Qaz, ais, aas; ais). (5.36)

4|1

This is the only collinear reduction yielding this colour factor and this configuration
of the diagram. It is therefore clear that prior to taking the light-like limit, we

may write

1
W22) = (fabedee {T(lla T‘f} Tng) (5}"(1112)(0412, Q13, (23; 0413)) (5.37)

E61(122)‘7:(122)(0412, Q23] 0413)

Inserting this into eq. (5.7)) we obtain

1 1
= (Mo p.0(a13)ti (a2, cns, aas)
6 (4m)° (5.38)

— 2M o0(0a3)to(aia, ag, azg))

F((SQI)l)(alb Q93; (13) =

We observe that our calculation of ¢; and ¢, proceed as before, the only alteration
being the argument of the basis function preceding it. Moreover, the fact
that there is no dependence on a4 in F(1112) means that we can safely take the
light-like limit without incurring any conflict with the collinear reduction. Thus,
we may simply change the argument of the basis function in our result
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b —g )

B2

Figure 5.7 Representative diagram of the 411-web: w41y)-
for F(1112), and obtain

- 1 2 10
]:((551)1)(0‘1270423;0413) ~ (4n)? _§1og5 (ai3) + 9 log (a12) log? (a13)

4 2

-3 log (an3) log* (c13) + 3 log* (cvo3) log (av13)
2 2

+ § 10g2 (0613) 10g3 (Oélg) — g 10g3 (0413) 10g2 (Oém)
8 4

-3 log? (c13) log® (a3) + 3 log® (113) log? (cva3)

2 2
— § 10g (0613) log (Oégg) 10g3 (0[12) + § IOg (0413> 10g3 (0[23) IOg (0[12)
(5.39)

2
~3 log® (n13) log (ag3) log (a2)

4
+ g(z ( - 10g3 (0413) + log (0612) 10822 (0413) — log (0423) 108;2 (0413)
— log? (cv12) log (a3) + 2 log? (cve3) log (a13) — log (aq2) log? (cvo3)

+ 10g2 (0412) 10g (0623) — lOg (Oélg) 10g (0[23) IOg (0[13) )

4 243 <1og2 (a13) — log (a13) log (cras) )}

5.2.3 Webs with Vertex Corrections

On three legs, we have our first occurrence of a so-called boomerang graph, a
vertex correction graph in which a gluon propagator has both legs attached to the
same Wilson line, i.e. w1 in fig. [5.7 This web has been computed in [94]. In

utilising it, we are forced to assume a sign error in order to obtain the required
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B3 B3

A1 5

B2 B2

(a) Representative diagram in wazg. (b) Representative diagram in wia3.

Figure 5.8 Three-line .

cancellation of lower-weight terms when the web is combined with the others.

Thus, taking the opposite sign from [94], we have

11
6 (47)°

fabedee {T(ﬂ T({l} Tng (—16C2M0,0,0(0412)M0,0,0(Oé13)) .

(5.40)

wiiny (s, a13) = —

Taking the light-like limit, we then find

1
—— fe fere LT, TV} THT; (—64¢2 log(auz) log(aus)) -

(3,1 1
6 (47)°

(5.41)
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5.2.4 Three-line Multiple Gluon Exchange Webs

The web w29y in fig. can be written as [95]

w(222)({04ij}) :fabedee{T(f, ch}TgT:c),]:(zm) (a12, a3, 013)

—f“”ef“leT?{Tg, TS}Tgf(Qm)(azg, 13, Oé12) (5-42)
—fadefbceT(ng{Tga Tg}f(zm)(&ls, a2, 0423)
(3,—1) B 1 1 1
S (222) (12, g3, o113) = —gwgr(am)?”(am)?“(a%)

1
X Mo,o,o (0412) Mo,o,o (0413) (MO,Q,O (0423) - ZM2,0,0 (0423))

1
+ gMQ,O,O (0412) Mo,o,o (0é13) Mo,o,o (0423)

1
+ gMo,o,o (c12) Mo (c3) Moo (r23) (5.43)

1
- §M1,0,0 (alz) Ml,o,o (0413) Mo,o,o (0423)

1
+ ZMI,O,O (0412) Mo,o,o (0413) MLO,O (0423)

1
+ ZMO,O,O (0412) M1,0,0 (0413) M1,0,0 (0423)
My 2 is unaltered in the light-like limit, its full form is simply
2 3
M072,0(Oé) :g IOg (Oé) + 4C2 lOg(Oé) (544)
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Utilising this, along with eqs. (5.17)) to (5.19)), we obtain the following expression
in the light-like limit

1
(47)?

_ 4
F iy nana, asg, asg) = 9 log” (a12) log (a13) log (cz3)

4 4

+ g log (av12) log® (c13) log (a3) — 3 log? (012) log? (r13) log (ava3)
2 2

+ g 10g2 (Ozlg) log (&13) 10g2 (0423) —+ g log (Ozlg) 10g2 (0413) 10g2 (0123)

+ §C4 (log (1) +log (a13) — 21og (az3))
2

- §C3 (log (a12) log (crag) + log (av3) log (aig3) — 21og (av2) log (a3))

2
+ 5@ (log2 (c13) log (o) + log? (a3) log (auys) + log (as) log? (aa3)

(5.45)

+ IOg (Oélg) 10g2 (Oélg) -2 10g (Oégg) 10g2 (@12) -2 10g2 (0613) log (OéQg)

+ 8log (a12) log (av13) log (cva3))

Next, we have w(;23), depicted in fig. [5.8b| This web has also been computed in

[95], neglecting tripole contributions, it is

w(123)(0413, a23) = - fabedeeT(f {Tg, T%’} Tgf(123),2(0413, CY23)

ade pbcerparb c d (546)
+ [T, {Tg, T3} F123),3(013, ras)
(3,—1) 1 1 1 9 1 9
F 129 2013, 02) = — ¢ ok 1o (@s)r(azs) | 5 Me00)(13) Mog0(a2s)
1
—§Mo,o,o(0413)Mo,o,o(a23)M2,o,o(0é23) + Mo,o,o(Oél?,)MlQ,o,o(Cms) (5.47)
—Ml,o,o(@m)Mo,o,o(a23)M1,o,o(0423) }
3,-1 11 1 1
]:((123),2),(0‘137 a23) ZEWET(O&B)TQ(OQS) {—éM(z,o,o)(CY13)M370,0(O¢23)
1
+§ 0,0,0(0613)M0,0,0(0423) (M2,0,0(CY23) - 8Mo,2,o(@23)) (5-48)

—M07070(a13)M1270’0(0z23) + M1,0,0(0413)M0,0,0(0423)M1,0,0(C¥23)
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Taking the light-like limits, we obtain

1
Amr)3

_ 2 2
Fiisaysulcns, ass) = 5 108 (a13) log" (ass) — Zlog” (aus) log” (zs)

+g log3 (0413) 10g2 ((123) + §C4 (lOg (0413) — (Oégg))

+§C3 (log (au13) log (av23) — log” (a23))
+§C2 (2 log (cv13) log® (aas)

— log® (s3) — log? (a1s) log (a23))

(5.49a)

.7-(123)73,”((113,@23) _(47r)3 glog (0413) log (0423) —glog (als)log (0423)

—l—g log® (on13) log? (cra3) — g@ (log (azs) — log (au3))
+§Cs (log (a13) log (aiz3) — log® (123))
_§C2 (log” (az3) — 101og (a13) log? (auz3)

+ log? (cu3) log (cr23))
(5.49b)

5.3 Two-Line Webs

Finally, we consider the two-line webs contributing to Hs in eq. (3.20)). As in the

other sections, we start with the fully connected graphs.

5.3.1 Fully Connected Webs

As was the case with three-line webs, we have three fully connected web topologies
to consider: one consisting of a four-gluon vertex exchange(fig. , and two
composed of two connected three-gluon vertices (figs. and [5.9¢)). We begin

with the four-gluon vertex web, our starting point is the following colour and
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B2 B2

522 522

521 521

S11 S11

p1 B1
(a) (b)

Figure 5.9 Fully connected two-line webs.

kinematic factors

Clagn2 =/ f** {T1, T} {T5, T3} (5.50)
(3,-1) el 12 3 .y 2,
= 1
Aan! [/ RSP ]]
ic(1,2) L0 — (YiBi — 2)” +10
e ! (5.51)

x0 [ 1-— Z Yii | 0 (via <v12)0 (Y21 < Ya2).
)

i€(1,2
JE(1,2)

The calculation now proceeds in the same way as the preceding two calculations

involving a four-gluon vertex. We obtain

1

3,— 1
Flapmaa(on2) = =57 {(32 — 16¢3) log

2
6 (4n)? ai2) — 161og” (aq2)

(5.52)

Lol —

16
+ —log® (a2) — = log? (a2) + (0.22 £0.01)] .

3

As before, the error given is the result of numerically computing a constant
coefficient using the methods given in [77]. It is a single standard deviation of the

Vegas algorithm implemented in [97], using the default parameters implemented
in [77].

Turning our attention to the double three gluon vertex diagrams in figs.
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and [5.9¢, we obtain the following representation

Ciagp2 =S [ {T, TV} {T5, T3} (5.53)
1 6e
]:(39)2,2,1(a12)+-7:(39)2,2,2(0612) = 1 (%) gSN5F(6e)

X H / B dy;j | 0| 1— Yi,j
ie(1,2) V0 i€(1,2)
JE(1,2) je(1,2)
X0 (y12 > vy11) (0 (Y12 > v11) +0(y11 > v12))
XFO’lfTQT (aymﬁlv ayz>,1527 _ay1,151 - a112,1,32)

XF03U4T (aymﬁn 82/2,2527 _81/1,252 - ay2,252>
X /ddz d%w (—(y11B1 — 2)* +i0)*

X (= (y2,102 — 2)° +10) (= (y1,261 — w)* +40)"
X (= (42282 — w)? +i0) (= (2 — w)* +140)" 1.

(5.54)

We compute this integral as usual, and obtain

_ 8
}—((3?97)21,;,1(a12)+»7:(39)2,2,2<a12) = —c— |3 log” (o2) + 3 log" (112)

32
- (? - 8@) log® (a12) + (46.172 + 0.008) log® (vy») (5.55)

—(23.75 + 0.13) log (a2) — (31.6 3.3)] .

As was the case for the four-gluon vertex above, we have been forced to utilise
numerics for the computation of some constant coefficients in the above result.
The errors given here are the same as they were for the four-gluon vertex, i.e.
single standard deviations as determined by the Vegas algorithm implemented in
[97], using the default parameters of MB tools [77]. In the coming chapters we will
see that we can obtain the analytic coefficients of both of the terms proportional
to log(ais) from analytical considerations (see section [6.3), as well as the analytic

value of the constant from collinear limit considerations (see chapter [§).

5.3.2 Webs Containing Three Gluon Vertices

On two lines, we have one web containing a three-gluon vertex: the 32-web in

fig.[5.10 We wish to obtain it via collinear reduction from the 221-web in fig. [5.5D]

97



Figure 5.10 Representative diagram from the 32-web, wso.

B2

A1

Figure 5.11 Representative diagram of the 24-web, wys

however, we only have light-like results for wi9s. The route we take to obtain this
result is therefore somewhat circuitous: we use what we know about the analytic
structure of the non-lightlike 1121-web to obtain the required collinear reduction.
The derivation is given in full in Appendix [F], the end result is

_ 1 1 8
Fim (0n2) = HE log® (v12) + (32¢5 — 64¢5) log? (aya) (5.56)

3

5.3.3 Webs With Vertex Corrections

Considering the 24-web in fig. [5.11] we may obtain it from collinear reduction

either of w411y, or from the combined reduction of wj23 and wagy. We choose to
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Figure 5.12 w33 (0512)

reduce w411y and find

24 =fo f* {T9, T7 } {T5, T3 } (5.58)
_ 1
]:2(27 1)(0412) = - 5-7:411((112, 0412)
1 1
E 3 8G Mg 0,0)(c12) (5.59)
1 1
= — 6(4 ) 32(2 lOg (0612)

5.3.4 Multiple Gluon Exchange Webs

At two legs, we only have a single to consider — wsz — it is depicted
in fig. [5.12] We will obtain it entirely through collinear reduction. We desire
a colour factor which contains an anticommutator on each leg, thus precluding
any contributions from V3. Furthermore, we need a fully connected colour factor,

which means that in effective vertex notation, we are looking for the diagram
depicted in fig.

The collinear reduction proceeds as outlined in fig. We first take 54]]5> and
subsequently (3||51. We note, however, that the final result has an additional

symmetry compared to the intermediate wjo3-web. This leads to the introduction
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(a) (b) (c)

Figure 5.13 Collinear reduction of w1221 to wss, note the symmetry B1 <> Bo in
w33, not present in wios.

of a symmetry factor % We obtain

Caz =f* f*% {T4, T} {T$, T4} (5.60)
_ 1 _
Fia Y a) =§F1(§”211)(a12,a12,a12) (5.61)
1 1 1
=- EW ) Mo 0,0(012) Mo 2,0(0112) (5.62)

Taking the asymptotic light-like limit, we obtain

(3,~1) 1 4
F 330 (12) = — G (dn)? (—SCQ log®(vyp) — 3 log5(a12)> (5.63)
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Chapter 6

The Quadrupole Correction to the

Soft Anomalous Dimension

We now turn to assembling all our results from chapter [5| with the aim of obtaining
the final form of A, as in eq. (3.31). To do this, we recall eq. (3.31)):

A(z,z) =T{TYTSTS (f° fHy[(1,2); (3, 4)]
o+ fO e L [(1,3);(2,4)] + fU P Hy [(1,4);(2,3)])
+C Z fove fede {T¢, T¢} TU T,

(4,5,k)€(1,2,3,4)
j<k

(6.1)

We will begin by assembling H; and Hy (defined in egs. (3.8) and ([3.20)),

respectively).

6.1 Assembling all two-line diagrams

We recall that Hy ({4, j}) is the coefficient of the colour factor f**f***{T¢, T§}{T% T}
In terms of the kinematic factors in section we then find

H, ({1,2}) = -6 (*7:(49@,2711(0‘12) + Fizg2,2,1,u(0n2)
+F3g)2.2.2u(2) + 2F(23)u(012) (6.2)

+2F33)u(012). )
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Explicitly, in terms of egs. (5.52)), (5.55)), (5.59)) and (5.63))

Hy ({0612}) Zﬁ (—% 1Og5 (a12) — 4¢ lOg3 (a12)

+16C3 10g2 ((1/12) — 12@1 IOg (0412) — 1662 10g2 ((112)

(6.3)
—32(, log (a12) + (7.086 & 0.016) log? (a12)

+(20.12 4 0.26) log (c12) — (15.6 & 6.7) )

Note the appearance of terms with transcendental weight less than five. Such

terms cannot appear in A(z, Z) [35], and their cancellation will serve as a useful

check of our result.

6.2 Assembling all three-line diagrams

In a similar fashion, we have for Hj

H3(17 {27 3}) =—6 (}—(49),3,11(04127 13, 0623) + -7:(39)2,3,11(04127 13, 0623)

+F(39)2,3.u(Q13, 0123 ag3) + Fa2) 0z, 133 aia3) (6.4)

+F(11ay,u(0nz, ans; ags) + Fazayul(anz, ais; aa3)

+F(123),2(va3, c13) + Fa2),3(13, 12) )
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Inserting the results from eqgs. (5.29), (5.34), (5.39), (5.41), (5.45), (5.49al)
and (5.49b|) we obtain

H3(1,{2,3}) = (471T)3 ( %log5 (a12) + %10g5 (a13)
+% log (c13) log* (au2) + % log* (av13) log (cv12)
—% log? (args) log (a12) — %log (c13) log? (args) + 4¢a log? (a2)
+4G2 log” (a13) + 4¢ log () log? (an2) + 4G log? (ana) log (a12) — (6.5)
—4¢y1og? (aigs) log (a12) — 4¢; log (as) log® (ans) + 36¢4 log (as)
+36¢4 log (a12) — 24(4 log (cvag) + 32¢2 log (aa) + 32¢3 log (aq3)
)

(
—16¢3log (a12) — 16¢31og (a3) — (13.8 £ 0.1) (log (av12) + log (av13))

—(34.76 + 1.25) )

6.3 Combining Two-Line and Three-Line Webs

We see immediately that when Hj is combined with Hs according to eq. , we
will have significant cancellation, notably of the terms proportional to 10g5(aij),
(o log?’(aij). Due to the numerical coefficient, it is less clear that the mixed weight
terms proportional to log(c;;) cancel, however, we find that when we construct

H; we obtain

H3(1,{2,3}) = ( %log (113) log* (a12) + %10g4 (ci13) log (a2)

(47)°

1 1
3 log* (c3) log (av1a) — 3 log (a13) log™ (avs3)

+4C2 log (Ozlg) 10g2 (Oélg) + 4(2 10g2 (&13) IOg (0412) (66)
—4(51og” (ara3) log (a12) — 4¢; log (an3) log? (aras) — 244 log (ara3)
+Cia (10g2 (a12) + log? (0613)) + Ci (log (a12) + log (ai3)) + Cio > )
where we have defined the numerically determined constants
Cia =16¢5 — 16(5 + 7.086 £ 0.016, (6.7a)
Cp =24¢, — 16¢5 + 6.25 £ 0.36, (6.7b)
Cpo =—66.0+14.7. (6.7¢)
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The numerical coefficients Cjy, Cj; and Cj5 should now all be uniform weight five
with reasonably simple rational prefactors. We can determine the value of Cjy
and Cj; by comparing eq. (6.10) to the symmetry requirement imposed on Hj by

the requirement that tripole terms may only be proportional to a constant, as

given in eq. (3.26)). Inserting eq. (6.10)) into eq. (3.26]), we find that we must have

Clp = 0, (6.82)
Cn = 12¢. (6.8b)

Comparing this to the numeric results we have obtained, we find

Ci =0.000 £ 0.016 (6.92)
Cyy =12¢4 + (0.00 £ 0.36) (6.9b)

In other words, our numerical results are consistent with the requirements of

eq. (3.26)), and we find

H3(1,{2,3}) = (4;)3 ( %log (cus) log* (ana) + %log‘l (a13) log (au2)

1 1
3 log4 (vo3) log (au2) — 3 log (u13) 10g4 (cra3)

+4( log (o3) log? (au2) + 4¢; log? (a3) log (av2)
—4(ylog? (ar23) log (a2) — 4 log (uis) log? (cras) — 24¢, log (as)

+12¢4 (log (a12) + log (au3)) + Cio ) -

(6.10)

6.4 Four-line diagrams

Turning to Hy4, our expectation for A dictates that H, must separate into two
pieces: one which is polylogarithmic in z and z, and one which depends only
logarithmically on all angles. Since this term must combine eventually with Hs to
form only terms which depend on log(p;jx), Hs cannot contain any terms which
are products of more than three angles. We will verify this explicitly by calculating
Hy.

It is worth noting that our four-line colour basis obeys the Jacobi identity
fabEfcde o faceJcbde + fadefbce =0. (611)
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While applying this to our two-line or three-line colour factors would not make
a difference, it will affect our results here. We will utilise the Jacobi identity to
choose to work with kinematic functions which are explicitly Bose symmetric, as
we did for Hy in chapter [3|

Thus, we define the following: for a reduced four-line web wy;({c;}) = CrFr(cu;),
define Hy by means of the sum over all permutations of webs of type f which
contribute to colour factors in a manner compatible with the symmetries of Hy,

schematically:

Z u_)f :fabefcder((1’2);<374>>
permutations (6 12)

O F((1,3);(2,4)) + FU%f O Hp((1,4); (2, 3)),

where we require as we did for Hy that H; is antisymmetric under permutation of
the legs within the round brackets, and symmetric in swapping the two brackets.
We will then find linear combinations of the kinematic factors F; such that

ultimately we have

Hy((1,2);(3,4)) :ZH(i)((172)?(374>>' (6.13)

6.4.1 Combining all fully connected diagrams.

We first consider the fully connected diagrams. They contribute to I'* as a sum

over permutations of z and z (see section for details):

- X

Bs

F4c (Z, Z, {log (aw)})

(6.14)
= w(4g)({a1j}) + W(12)(34) ({ay;}) +w (13) 24)({%;} + W(14)(23) ({ai})

= T{T;T5T} (f“befc‘iefo(z,z, {aig}) + ff* fo (1,1,{%}593)

U fo(1 - 21 - 2 {aij}’2<—>4)) :
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We observe the complete cancellation of f;, which appears in each of the webs,
but is absent in their sum. This can be understood as follows: in the momentum-
conserving limit of z — Z, the prefactor ﬁ generates a derivative, causing f;
to be at most weight four, thus once again introducing results which would be

inconsistent with the uniform weight seen in N' = 4 Super Yang-Mills [35].

It is interesting to note that we now have all non-logarithmic contributions to
A (z,z). None of the other webs, either or webs connecting three or
two lines depend independently on a set of «;; which may combine into a @
Thus all other webs can contribute at most logarithmically. A highly non-trivial
check of our result thus far, then, would be the requirement that we be able to
define a purely CICR-dependent quantity Ap(z,z) and a logarithmic polynomial
in log(ay;) — R({log(cv;)}) — such that

L (2,7, {log (ai;)}) = Ap(z, 2) + R({log(a;)}). (6.15)

We find this to be the case after applying the Jacobi identity to eq. (6.14)), with

Aples) = oyt | e (r (12 2) < (1)

e e (P (1 - 2) = F (2)) (6.16)
e (F(5) -F (555)) |
F(2) = Lio101(2) 4+ 2 (L100(2) + Loo1(2)) , (6.17)

where we have utilised the notation of single-valued harmonic polylogarithms we
described in section The expression above is final: since all other diagrams
may only contribute logarithmically to A, this polylogarithmic part will be a

direct contribution with no further alterations. The logarithmic terms given by R

in eq. (6.15)) can be written as

R({log(as;)}) = @T%TST;TZ

fobefede (Fr(1,2,3,4) — Fr (2,1,3,4) — Fr(1,2,4,3) + Fp(2,1,3,4))
4 foce fbde (Fp(1,3,2,4) — Fr (3,1,2,4) — Fr(1,3,4,2) — Fp(3,1,4,2))

— fade fhee (Fr(1,4,2,3) — Fr (4,1,2,3) — Fr(1,4,3,2) + Fr(4,1,3,2)) |,

(6.18)
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Fr(1,2,3,4) =
—8log (a12) log (v14) log (ausq) log? (cv24)
—81log (1) log (cra3) log (aisa) log? (ay)
1610g (v12) log? (aisy) log? (ras) — 8log (ay) log? (aisy) log? (avay)
—81log? (a12) log (aa3) log? (aay) + 161og? (av12) log (arsy) log® (rag)
—161log? (cv14) log? (args) log (aray) + 8log (a12) log? (ay) log® (as)

16
+8log? (0v14) log? (cva3) log (avzq) + 3 log (a12) log (cva3) log® (cvaq)

16

16
Y log (av12) log (cvs4) log® (cvoq) + 3 log (av14) log (cvs4) log® (cvoq)

(6.19)

8 8
~3 log (av14) log® (cra3) log (avaq) — 3 log® (r14) log (aa3) log (o)

8 8
—f—g 10g (0[12) IOg (0[14) 10g3 (0623) + g IOg (0[14) 10g3 (0623) log (0634)

4 4
~3 log (a12) log* (aoq) — 3 log (va4) log* (cvoq)
—32(s 1og (cv12) log (a34) log (cvaq) + 32¢3 log (av12) log (o)
+32(3 log (a34) log (ag) + 96¢4 log (avaq) -
We may thus define the sum over all connected diagrams in a manner

consistent with the symmetries of Hy: Hc((1,2);(3,4)) = Hug((1,2);(3,4)) +
H(3g)2((1a 2)a (374))7 we find

Ho((1,25.4) = (10 (1= 1) =167 (1))

+Fr(1,2,3,4) — Fr(2,1,3,4)
—Fr(1,2,4,3) + Fr(2,1,3,4)

(6.20)

6.4.2 The 1221-web and the 1121-web

We wish to find the contribution of all webs to H4. This means that we need to
find a way of expressing the sum over permutations of each web in such a way
as to explicitly satisfy Bose symmetry. In the case of both the 1221-web, and
the 1121-web, we find that this is possible without having to consider the Jacobi

identity. In the case of the 1221-web, we have 12 unique permutations of the
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diagram, which combines in the following fashion:

H(1221)((1, 2), (37 4)) Ef(1221),zz(a12, Qa3 0434) + ]:(1221),11(0412, Q4, 0434) (6 21)

—~7:(1221),zz(0412, a3, CY34) - ]:(1221),11(04127 (24, 0634)-

This linear combination thus contains the sum over all twelve permutations of

1221, with correct prefactors, and obeys the required symmetries of Hy.

The 1121-web also has 12 unique permutations. We note that the antisymmetry

of the three gluon vertex yields the following relation for the kinematic factor

]:(1121),11(04127 a3, (23, a34) = —]:(1121),11(0412, Qi23, 013, 0434)- (6-22)
Using this, we find that the following contribution to Hy:

Hpo1y((1,2),(3,4)) =
]:(1121),51(0412, a3, 023, 0434) - -7:(1121)711(04127 Q14, 24, 034) (6-23)

+~7:(1121),u(a34, a3, A4, 0412) - ]:(1121),11(%4, Ql23, (24, 0412)-

6.4.3 The 1113-web

The 1113-web has four unique permutations, corresponding to attaching the three
gluon attachments to one of the four legs. We recall eq. ((5.15]), which gives us

wéﬁl:&) (14, Qig, r34) X T%TngTZ (fadefbceG(ulz) (14, (o4, 0r34)

y (6.24)
+ UG s (o4, g, 0434)) :
We further note that eq. (5.16]) admits the following identities
G(ng) (a, b, C)+G(1113)(b, C, (I) + G(1113) (C, a, b) = 0, (625)
G(1113) (a, b, C) :G(ng) (C, b, CL). (626)

The term G 1113) (2, au3, a1q) has colour factor f*¢f“*T¢T5T{TY, we use this

fact to construct an ansatz for H 113y by constructing the only permissible linear
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combination of G/(1113) which admits all the symmetries of Hy.

Hung((1,2),(3,4)) =
-C (G(1113)(Oé127 13, 0614) + G(1113)(0612, (23, 0424)
+G(1113)(0412, 14, 0413) - G(1113) (0412, (24, 0423) (6-27)
—G1113) (34, 13, Qr23) + G(1113) (34, 14, 124

+ G(1113)(Oé34, (23, Oé13) - G(1113)(04347 (24, 0414))

Where C' is some constant to be determined. We then sum over all permutations

of W1113), and apply the Jacobi identity of eq. (6.11)) to both it and the ansatz
with the aim of comparing the two. We find that setting C' = % reproduces the

sum over permutations of w(113), and we obtain

H(1113)((172)7 (3,4)) =

—gG(nw) (a2, 013, a14) + gG(nlz) (12, argg, r4)

1 1
+§G(1113)(a12, o4, Q13) — gG(1113)(0612, a4, (123) (6.28)
1
—gG(nlg) (04347 a3, 0423) + gG(1113)(0634, 14, 0424)
1
+§G(1113)(a34, (a3, 0113) — gG(1113)(a34a (a4, Qr14).
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6.4.4 Combining all Four-Line Diagrams

We may now assemble Hy. In terms of egs. (6.20)), (6.21)), (6.23]) and (6.28]) we

have

Hy((1,2),(3,4)) = (4;)3 (16F (1 - %) oK G))

1 1
- WFR(2> 17 37 4)

1
(4m)
) —

1
— ——FRr(1,2,4,3) +

o Fr(2,1,3,4)

+ ]:(1121) {2, (13, (23, (34 ~7:(1121 (0412, 14, Q24, 0434)

(

+ «7:(1121) 11(0434, a3, 4, 0412) - ]:(1121),11(0434, (o3, o4, 0412)

+ Foonyulaaz, oz, asg) + Frooy (g, ana, ase) (6.29)
(

- f(1221) 112, 013, 0434) - -7:(1221),11(04127 (o4, 0434)
- %@G(nls) 11(0412,041370614) 11))( 1) G(1113),zz(0412,0423,0624)
—l—lLG (aaa)llG (12, oy, Qro3)
3(47r)3 (1113),11\X¥12, 14, (13 3(4) (1113),11{ 12, (24, (lo3
1 1 1 1
3
1
3

— - 5G
3 (4n)3 (1113),1 (34, 13, Q23) + (ar

Ll
3 (4m)3

E G(1113),ll(0434, 1, Qag)

1

G(1113) zz(Oé34, (23, 0413) ) G(1113),zz(0434, o4, 0614)-

(4m

Inserting eqs. (5.12)), (5.20)), (5.21)) and (6.19) and ?? we obtain the following

result:

H, ((1,2), (3,4)) = (4;) (16F (1 i) — 16F (%)

4 4
+— 10g (0412) 10g4 (0113) + 5 10g (0434) 10g4 (0113)

3
4 4
—g IOg (Oélg) 10g4 (()é14) — g IOg (Oélz) 10g4 (0623)
4 4
+§ log (av12) 108;4 (0424) ~3 108;4 (014) log (a34) (6.30)

4 4
—g 10g4 (0423) log (0434) + g 10g4 (0424) log (0434)

+96¢4 (log (av13) — log (ar14) — log () + log (avag))
+16¢; (log (a12) + log (az4))

x (log® (a3) — log® (au1a) — log” (az3) +log? (a2u)) )
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The result is remarkably simple, and belies a large amount of cancellation between
different webs. Notably, we only have terms which depend on two angles, whereas

a priori, products which depend on three angles would be permissible.

6.5 Assembling all diagrams

We now assemble H, according to eq. (3.27). Initially, this produces a large

expression, however, after applying the Jacobi identity, we find that we may define

H4((1,2); (3,4)) = (4—;)3 <16F <1 _ %) _16F G)) . (631)

That is, we have complete cancellation of all angle-dependent terms, leaving
behind a pure polylogarithmic function of z and Z, of weight five. Thus, we obtain

a complete result for A as follows

1
A(z, 2) =——=16TITLTSTY

(47)°

o))

— frefri(F(z) = F(1—2)

(6.32)
1
+ fadefbce F _F 4
1—=2 z—1
1 abe pcde a d bre
+Wcl0 N Z febefete {Tg, i} T T..
(4,9,k)€(1,2,3,4)
j<k
Where F(z) is the same as in eq. (6.17)), namely
F(Z) = 510101 (Z) + 2{2 (;Cmo(Z) + £001 (Z)) . (633)

The analytic value of Cjq is clearly unknown at this point, however we will find in
chapter [§| that it is uniquely determined by the requirement of collinear splitting

factorisation. Hence, we will postpone any further discussion of Cj, until then.

The result for A is strikingly simple, and has the manifest Bose symmetry outlined
in section Without further ado, let us now consider the Regge limit and

collinear limits in the next two chapters.

111



112



Chapter 7

The Regge Limit

Having computed A, we next consider the Regge limit. We recall from our
discussion in section that since the dipole formula is responsible for the
leading and subleading logarithmic contributions in the Regge limit, we must have
cancellation of superleading, leading and subleading logarithms when we take this
limit of A [62]. To verify this, we will have to analytically continue to the region
of forward scattering, and impose momentum conservation. Our expectation is
then that in the limit of the mandelstam invariants s > ¢, we should have no real
contributions with powers higher than log (%), and no imaginary contributions

with powers higher than ilog? (f)

Thus, we now consider the forward scattering region. That is, we take two of our
Wilson lines to be incoming and two outgoing. The angles 7;; then continue as
follows [62]

Yij = |5l e, (7.1)

The phase is determined by A;; = 1 if both partons are either incoming or outgoing,
and \;; = 0 otherwise. Thus, if we then pick a pair to be incoming or outgoing,
the may aquire phases. Translating these phases to z and z of egs.
and , we observe that they always transform such that z — z and z — z,
along contours which encircle, either clockwise or counterclockwise around one or
both of the points z = 0 and z = 1. The contours for the analytic continuation

are detailed for p1az4, p1a32 (defined in eq. (1.34)), z and Z in table , an example
contour for z and z is shown in fig. The problem of analytic continuation to

113



Incoming partons | piozq  prase | 2 z

(1,2) or (3,4) —27i 1 c. around 0
(1,3) or (2,4) 2 2mi | c.c. around 0 c.c. around 1
(1,4) or (2,3) 1 —27i | c. around 1

Table 7.1 Analytic continuation of u, v, z, and Z to the forward scattering region.
We give the total phase change of w and v, and the corresponding
transformation of z and Z, where we have abbreviated the direction of
the contours as c. for clockwise and c.c. for counterclockwise.

-1.5%

— 7 — 7

Figure 7.1 Analytic continuation contours for z and Z for the case of B1 and [o
incoming, both contours are continuing in the clockwise direction.

forward scattering is thus reduced to that of taking monodromies of
lharmonic polylogarithms (SVHPLs)| around the points z = 0 and z = 1. These

monodromies can be found by utilising the generating functionals outlined in
38, [98].

We define A1 2)(2, Z) as the A of eq. (8.19)) analytically continued to have legs 1
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and 2 incoming. Performing the analytic continuation, we then find
1
Aq (2, 2) :WlﬁT?TngTf [f“bedeeHB(z, Z)
+ facefbdeHC(z’ 2) + fadefbceHD<Z, 2)]
+Co > fepe{Ty, T} TITS.

(4,4,k)€(1,2,3,4)
j<k

(7.2)

In the above we have retained the same colour factors as in eq. (8.19) and
implicitly defined Hg, Ho and Hp as the anaytically continued coefficient of
each four-line colour factor. For instance, defining F{; 2)(2) as F'(z) in eq. (6.33)),

analytically contiuned to legs 1 and 2 incoming, we have defined Hg(z,2) =
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F19)(1 — 2) — F1,9)(2), which is given by

He(z,2) =—G(0,1,0,2)G (0,1,2) — G(0,1,2)G (0, 1,0, 2)
G(1,0,1,2)G(1,0,2) + G(1,0,2)G (1,0, 1, 2)
G(0,1,0,1,2)G (0,2) — G(0,2)G (0,1,0,1, 2)
G(1,0,1,0,2)G (1,2) + G(1,2)G (1,0,1,0, 2)

-G (0,1,0,1,0,2) + G(1,0,1,0,1, 2)
—G(0,1,0,1,0,2) + G(1,0,1,0,1, 2)

+ 2¢, (G(O, 0,2)G (1,2) + G(1,2)G (0,0, 2)

N

—G(0,1,2)G(1,2) — G(1,2)G (0,1, 2)
G(1,0,2)G (0,2) + G(0,2)G (1,0, 2)
—G(1,1,2)G(0,2) — G(0,2)G (1,1, 2)
G (0,0,1,2) =G (0,1,1,2) + G (1,0,0, 2)
(

—G(1,1,0,2) + G(0,0,1,2) — G(0,1,1, 2)

+ G(1,0,0,2) — G(1, 1,0,2))

+4¢3(G(0,1,2) + G (0,1,2) — G(1,2)G (1, 2))
— 6004 (G(1,2) + G (1,2)) + 4 (G + 20:¢s)

+ 2im (G(O, 1,2)G(0,1,2) — G(1,0,1,2)G (1, %)

— G(1,2)G(1,0,1,2) + G(0,1,0, 1, 2)
+ G(0,1,0,1,2) + 26 [-G(1,2)G (0,2) — G(0,2)G (1, 2)

-G (1,0,2)+G(1,1,2) — G(1,0,2) —|—G(1,1,z)]) :

The expressions for Hg and Hp are even lengthier, and we will not state them

here, except in the relevant kinematic limits.

Having thus taken (£, and (5, incoming, we next need to impose momentum
conservation. We wish to specialise to mandelstam invariants, and choose to do
so by means of a clockwise labelling of our indices. An example ¢-channel diagram

in this convention is shown in fig. [7.2]
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p2 —_— —_— p3

Figure 7.2 FEzxzample t-channel exchange in clockwise labelling convention.

We recall egs. ([1.40a) and (|1.40bj).

2 =1 — p1a34 + praz2 + \/>\ (17 £1234, 01432), (7-43)
Z=1— proza + prase — VA (1, prasa, pras2), (7.4b)

where A is the Kallén function
A(a,b,c) = a* +b* + ¢* — 2ab — 2ac — 2bc. (7.5)

In the momentum conserving limit, we have

(B + 32)?) a
P1234 = ((51 _ 53)2)27 (7-6 )
(B = B1)?)’
p1432 = (5 = B2 (7.6b)

Inserting this into egs. and , we find that momentum conservation
yields A(1, p1234, p1az2) = 0, or equivalently z = z. One important distinction
is that z and Zz still maintain a small (and opposite) imaginary part as per the
te-prescription. le. after analytic continuation and momentum conservation we
have z — ie and z + 7e. This is important because we have a branch cut along
{z,z} € [1,00), and retaining the imaginary part thus affects from which side of
the branch cut each variable approaches the Regge limit. Using the clockwise

labelling convention, we obtain the Mandelstam invariants

§=—"72= —7V34 (7.7)
t =14 = 723 (78)
U =Y13 = Vo4 (7.9)



We thus obtain the following relations

(Sit)Q —2? (7.10)
( ! )2 =(1 - 2)? (7.11)

s+t

Solving for z, we find that in the limit of s > t we have

S

z:1+0(_—t). (7.12)

We wish to expand A around this limit. Considering each colour factor separately,

we obtain

—t
Hp(z, 5)’z:1+?45,2=1+g+¢e tzsuo@ log <?> +40C2(3 — 4G5

+diT <3¢4 — 2¢, log? (_?t) — 2(31og (?))

(7.13)

_ —t
He(z, Z)’z:H-_?t—ie,Z:l—i-_Tt—He tzg — 1204 log (;) — 8(2C3 — 4G5

—t —t
—4im <3¢4 — 2(, log? (—) — 2¢;log <—>>
s s
(7.14)
} N —t , o [ —t ,
Hp(z, Z)’z:1+_?t—ie,2:1+?+ie tzsl20C4 log ~ )~ 8im (s log ~ )~ 7607y
(7.15)
The limit has real logarithmic contributions along with imaginary contributions

of second order in log(t/s). However, applying the Jacobi identity, we find that

we may write A as

A(1,2) (2,2) |z:1+?—ie7z:1+%+z‘e t’ZS

16T Ty T5Tg [f e fet° (32GaGs — 8Gs)

1
(im)?
_ fode pbee (4{5 + 8(2(3 — 8im(3log (%t) + ggmg)} (7.16)

1 aoe rcae a Cc
FgCo X T T T
(3,4,k)€(1,2,3,4)
j<k
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Thus our result is compatible with the expectation that A does not contribute
above O (log (_?t)), and no imaginary contributions with powers higher than
O (ilog” (<)) in the Regge limit [62).
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Chapter 8

Collinear Limits

We recall the definition of the splitting amplitude anomalous dimension (eq. (1.66))):

FSp(P17P2) = Fn(p17p27 o pn) - anl(pl +p27p3a e 7ﬁn>7 (81)

where I',, here refers to the complete soft anomalous dimension on n lines. Splitting
I'y and ' into dipole and non-dipole components, which we label I'dP- and
FA

-, respectively, the dipole part already obeys collinear splitting factorisation

separately (for details, see [35]). We therefore consider

FSAp(PaphPZ) EFS(ﬁlv ﬁQ; e Bn) - FS,1(61 + ﬁQ,Bg, cee ,ﬁn) (82)

Our expectation is that FSAp may only depend on T; + Ty, Ty and T in terms of
colour, and only on p; and ps [32, 35 69} [75].

Setting n = 4, we have ' = A. We consider the limit of 1 || 2, we then have
p1 = zP, po = (1 — 2) P, where P = p; + po is the total momentum carried by the
two collinear partons, and we have momentum conservation, so p; +ps+p3+ps = 0
[35]:

(p3-pa) P2 p2s0
(P-p3) (P ps)

i (P (- P)
=20 =2 = P o P)

0 (8.3)

2Z =

~1 (8.4)

In other words, we wish to take the limit z,Z — 0. We note that this limit is

precisely the same limit we would obtain if we were to take 3 || 4. Taking this
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limit, we obtain

1
lim A(z, 2) =~— 64 T{TRTTY (£ f2° + £ £29) ((5 + 26a(3)
p1llp2 (471')3
1
t—=Cl > fUefe Ty, T} TS

(47)3 N
(i,7,k)€(1,2,3,4)
<k

(8.5)

The collinear limit thus retains no kinematic dependence, however it does appear
to have some non-trivial colour dependence. To shed some further light on this,

consider the following four-line basis of colour tensors:

Ta =T, +Ts, (8.6)
Tp =T, — Ty, (8.7)
Te = Ts — Ty, (8.8)
Tp =T;+ T.. (8.9)

The above basis is useful since it captures the combined colour of the two partons
going collinear. We would expect I's,(p1,p2) to only depend on T4 and Tpg.
Applying colour conservation Tp = —T 4 to eq. (8.5) we then obtain

i A(:,9) =g P ST T HTSTS) (-2 (G o+ 266) + 500
_{_(4_71T)£)’facefbde{TaDTbD}{TgTé} (—2 (G +2GG) + iClO) .10
+ﬁ face pbde frpa.rpb 1 epe .y (2 (G +26G3) + %qo) .
+(471T)3N02 (Ta-Ta) <C5 + 2026 — %%) '

We now wish to do the same to I's*. We recall its composition in terms of three-line
and two-line webs from eq. (3.34)):

LS (propaps) = ) T{TITYTLf* fHy(i, {j. k}) (8.11)

(4,4,k)€(1,2,3)
i<k

In order to calculate FSAp, we must promote I's to a four-line object, this is
done by taking I'$*(P, ps, ps), where the colour of P = p; + py is given by T4 =

T, + T, [32, B5]. Applying colour conservation to this, we obtain sums over cyclic

122



permutations of Hs, leading to

1 3
P2 (P, p3, pa) =3 [ O TS T HTETL )} Cro
(47) 8 (8.12)
3
—ENf (Ta-Ta)Cpo
Inserting this into eq. , we obtain T'§,:
1 1
FSAp<P, P1,D2) :Wfacefbde{TiTi}{T%T%} <_2 (G5 + 2G2G3) + ZOZO)
1 1
iy foee frae{ T T HTE TE) (—2 (G5 + 2GoCs) — ngo)
1 ace pbde a b c md 1
+ (47T)3f PATETEHTETE} | 26+ 266) + SClo
1
+ (4W)3N3 (T4 Ty) <C5 + 2(o(5 — ng) ,
(8.13)

The colour factor above is independent of T3 and T, if and only if we have

Cio = —16((5 + 2¢2¢3). We have
Cio = — (G5 + 26:G3) (13.2 £ 2.9). (8.14)

Thus our numerical result for Cjq is consistent with the deduction:

Cio = —16(5 + 2¢2G3). (8.15)
We then obtain
3 (P pa) = = O P {TETHTE TS (G + 26 -
V2 (T ) (G + 2o

Through a remarkable set of cancellations we have obtained a contribution to the
splitting amplitude which is wholly independent of any kinematics, and which
only depends on the colour structure internal to the pair going collinear. This is
a strong indication that Cjy is indeed given by eq. .

As discussed in chapter [3, the inclusion of a constant term was not anticipated
in [32, B3]. Above we have direct evidence of such a term appearing, so it is

worthwhile considering the reasons why such a term was excluded in previous
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papers. In [32], two main arguments are given for why such constants cannot
occur. The first is an argument based on collinear reduction: if such a constant
term does occur in three-line graphs, it is shown that a corresponding term in
the same two-line graph would cancel it upon applying colour conservation. This
assumes, however, that graphs which are affected by the cusp anomaly do not
generate further constant terms upon collinear reduction. We can see that this is
not the case by comparing the results for two-line and three-line results for the

same topology obtained in chapter [f

The second argument made in [32] is that the constant term produced by the
three-line graph has colour structures which are inconsistent with the collinear
splitting amplitude. This is indeed true: Cjy contributes a term to FSAP which
depends on all four colour factors. However, we see that this contribution is
precisely cancelled by a constant produced by applying the collinear limit to H,.
Thus, the non-constant terms in H, produce a constant upon collinear reduction
which, when combined with Cjg produces a term consistent with collinear splitting
factorisation. Thus, we have strong evidence that not only is Cjy a possible

contribution, it is vital in order to consistently define FSAP.

One further consistency check can be performed by noting that I'g, is universal,
i.e. eq. (8.1)) is independent of n. In order to consistently define I's,, we must
then also be able to choose n = 3 in eq. (8.1]), which yields.

S, (P,p1,p2) =5 (1, B, B3) — T2 (By + Ba, Bs). (8.17)

By definition I'*?" is the sum over all two-line webs, we therefore have ' = 0.

Inserting eq. (3.34]), we find

FSAp(P7p17p2) =F§(517ﬁ2;53)
1 3
! AT H T TR Clo (8.18)

1 3
(e (T4 Ta) 6 Clo

The above result is only consistent with eq. (8.2) if we choose Cjy according to
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eq. (8.15)). Thus, we obtain a complete result for A(z, z):

1
Az, 2) :WMT‘{TngTg

o) ()

= frefr(F(z) = F(1-2))

4 o i (F (i) _F(zil>)}

16(Cs+2GGs) Y febepet {1y, T} TTY.

(4,9,k)€(1,2,3,4)
i<k

(8.19)

1
(47)°
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Chapter 9

Concluding Remarks and Outlook

Infrared singularities are ubiquitous in any gauge theory containing massless gauge
bosons. Having been properly treated, they still contribute logarithmic corrections
to scattering amplitudes, which may grow large and threaten perturbativity. Apart
from their phenomenological relevance, singularities also have a number of

salient features which make them interesting from a more theoretical perspective.

Firstly, soft-collinear factorisation [111, 13 [14], 27 [33] [49] 50, 69] enables us to
compute [[R] singularities in a general gauge theory. Furthermore, [[R] singularities
are spin-independent, and exponentiate which ultimately allows us to directly
compute a soft anomalous dimension I'® diagrammatically. Furthermore, this
simplified structure has led to the formulation of a concise basis of functions of

which all [[R}singular contributions must be composed [26].

Prior to this work, a full calculation had only been performed at two loops
[27-31], with partial results existing at three loops [26, 95]. In addition to this,
factorisation constraints had yielded a set of constraint equations [32, 33 37],
ultimately resulting in an ansatz for the all-order structure of soft singularities
with massless external partons: the so-called dipole formula. The first corrections
to this dipole formula may be found at three loops, and in this thesis we have

computed them explicitly.

In chapter [3| we presented a general picture of the colour structure of soft
singularities at three loops on four legs. We then proceeded to calculate all
relevant diagrams to compute the non-dipole contribution to soft singularities at

three loops in chapters 4] to[6l It takes the form of a remarkably simple weight-five
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function of single-valued harmonic polylogarithms of conformally invariant cross-
ratios. We have furthermore shown that the result is compatible with expectations
from Regge limits. Moreover: collinear splitting factorisation fixes a final constant,
Clo, and we have shown by universality of the splitting function that this choice
of constant is the only one which enables a consistent definition of the splitting

function.

It is desirable to determine the analytic value of (. There are two potential
methods for doing this: direct analytic computation or a numerical fit to rational
multiples of possible weight five constants. Work on this is ongoing, though at
present no clear method exists for achieving the required numerical precision from
the associated [MB]|integrals. Meanwhile, we have shown that collinear splitting
factorisation is obeyed, in accordance with expectations [32, 35] and formal proofs
[69, [75].
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Appendix A

Full Calculation of the Four-Line
Four-Gluon Vertex Diagram

We wish to calculate the diagram wy, in fig. [A.T] it can be factorised into a
kinematic and a colour component as follows

wig = Cag({Ti}, {Bi}) Frag ({Bi}, €), (A1)
1
C4g<{Ti}7 {Bl}) E(ﬁl ] ﬁS)(ﬂQ . 64) T(fngQTgBTTﬁ?ﬂg gﬁz
X [F2 N GupGve — GuoGup) (A.2)
+ [ (G po — GuaGup)

+ fa1a4efa2a3e (gm/ng — gupgya)] )
2

Fn((5).0) = —igk (1) N6 ) 62 )

4 ) —ims;/ 61271'0
X /ddzH [/ ds; ¢
i=1 /0 [_ (

Siﬁi — 2)2 + ZO] el

(A.3)

The colour factor can be simplified further. Evaluating the dot products and
introducing the canonical variables z and z (egs. (1.39a)) and (1.39b))), we obtain

Cay({T,} 2, 2) = TRTPTTY [0 fo5 (1 — (1 - 2)(1 - 2))

Al
+ falagefa2a4e (22 _ (1 _ Z)(l _ 2)) + fa1a4efa2a36 (22 _ 1) ] ) ( 4)
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Figure A.1 The four-gluon vertex web wag

Examining the kinematic factor F(4,), we may extract the leading singularity by
means of the following reparametrisation

s; —ay;, 1=1...3, (A.5)
3

Sy — (1 — Zyl) ) (A.6)
i=1

z —az, (A.7)

yielding

Fup({Bi),€) = — ig! (j;) A2 ) [ ot / (dez)

%) (1 _ Zyz> I1 [— (yﬁ - z> +zo}

=1

The remaining integrals are finite. Since we only requlre the leading pole we
expand around € = 0. We define Fu)({8;}.€) = a2y, Z.F(fgl) ({B:}), then

(8) = = i / (de’) <1_Zy>
SE i) ]

(A.9)
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P1 P4

N\ /

p/ \p

Figure A.2 The four mass box, Box ({p;})

Auxiliary momentum integral

The integral over the vertex z can now be recast as a dual momentum-space

integral over a four mass box (fig. |A.2)),

Box ({pi}v{yi}’d) E_i/%n 1 ‘ (AlO)

i1 ((k v z;ilp])? - ¢0> ;
)

where we have taken all external momenta to be incoming. Returning to F((Z’,j;l ,
we define the auxiliary momenta

Pi = yz‘@z‘ - yz’—lBi—la yoBo = y464- (A~11)

Shifting the integrand z = k + y4 we obtain

F((jé)_l)({ﬂi}> 2@7137242/0 <H dyi) ) (1 — Zyl> (A.12)
xBox ({p:},{1},4) . (A.13)

The four-mass box has a well-known representation as a Mellin-Barnes integral
[96]. Defining the mandelstam invariants s = (p; + p2)?, t = (p2 + p3)?, it is

1 1 +ioco p2p2 Z1 p2p2 22
B ) =—-———— dzidz, [ 2224 7irs
ox({pi}) st (2mi)? /_ioo = 22( st ) ( st (A.14)

X2 (=2 T2 (=20)T2(1 + 21 + 22).

The overall minus sign stems from the ¢0-prescription we obtain for the momentum
integral, which is the opposite of the one used in [96]. It is noteworthy that
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the leading term in the e-expansion of the four-mass box in four dimensions is
conformally invariant [06]. Hence we see the appearance of conformally invariant
cross-ratios of the external momenta appear for the first time in eq. (A.14)).

Introducing the shorthand y;; = —(yif3; — ijj)Q, we then obtain for f((f;;l

_ 1 2 1 +ioc0
.7:((;2) 1)({@'}) =— Wg%:ﬂuw / dz dzy

XFZ(—zl)F2(—zg)F2(1 + 21+ 29)

S (I} (52

—1—21—22

(A.15)

X (19123/34)Z1 (3/143423)22 (Y13Y24)

Our aim now is to bring this integral to a form where we can perform an asymptotic
expansion near the limit v;; — —oo. To this end, we wish to obtain a Mellin-Barnes
representation of wy, where the dependence on +;; is a pure power-dependence in
the MB parameters. We therefore use the standard formula in eq. to split

Yij:
vy = (W2 + 92— viy)

= R dw.: T'(—w. T R} 1I) 11 ) )
A am [ . T = N (o

Applying eq. (A.16) to eq. (A.15) yields

_ 1 2 1 +ioco
f((f;]) 1)({51'}) = Wg%ﬂmw / dz dzy

x (H/ dwijr(—wij)(—%j)%)
i<y v T

XF(wlg — 21>F(U)34 — 21>F(w14 — 22)F<w23 — 22)

XT'(1+ wiz + 21 + 22)0(1 4+ way + 21 + 22) (A.17)

< ([Lo) (52

wi12+w13+wiq, Wiz+w23+wa4 , Wi13+w23+ws4 ,, Wi4a+w4+ws4

XYq Yo Ys Yy
X (Y +y3) TR (Y Fys) TR (Y] 4 gy )
X(Ys +45)= " (s Fya) T (s )

We calculated the parameter integral associated with the Wilson lines in
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section [1.2.2] Hence, inserting eq. (4.25)) into eq. (A.17) yields
Fiy(B:}) =

5 .
1 2 1 1 100
dz;
(4 ) 3’7137248(27]7-)11 (lljl \/;zoo Z)

X( 11 / dwijr(—wij)(—%j)w“>
1<i<j<4 v —100

xI (—23) I (—24) I <—Z5) r (U)14 — 2o + Z5)
Xr(w13+21—|—22+23+1)F(w24+21+22+24+1)

(A.18)

W12 W13 W14 1
xI'| — 4+ — + —
(2 + 9 + 9 +23+Z5+2)
or (W wa wsa o
2 2 2 ooy
W14 | W24 W3y 1
x['| — 4+ — + —
(2 + 9 + 9 +Z4+Z5+2>
9 5 5 1 2 3 4 5
w w w w
T <§+—14+%+724+Z1+Z3+z4+z5+1)

Asymptotics and MB integration

At this point it is possible to perform an asymptotic expansion in the limit ~;; —
—o0. Doing so and subsequently applying Barnes’ lemma yields an expression of
the following schematic form

12 1 [f . ”
49) ({52})— (47r)3§(2m')2 /_m dz1 dza (p1234)™ (Pr432) (A.19)

XD (=20)T? (= 2)T2 (1 + 21 + 22) T ({2}, {log(7i5)})-

The pole structure of the above MB integral is similar to that of the four-mass
box, however, the order and residue of the poles is altered by the presence of T .
This is to be expected, since the four-mass box is of uniform transcendental weight
two, and ]-"((j’;)_l) should have uniform transcendental weight five. T serves the
role of raising the transcendental weight of the MB integral. One clear indication
of this is its dependence directly on log(v;;), however its dependence on {z;} also
alters the weight of the integral. Specifically, we may assign a weight n + 1 to
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™ T then takes the form

Weight 3
T ({2}, {log(7:)}) = Z:Cz‘ [[ [oe{w™ (=) 0" (=), (A.20)

a

P (1 + 21 + 22), 78, o, Jog(1i5) ]

where C; are rational numbers. The assignment of weight to 1™ is unconventional
and specific to our integral. In general, MB integrals need not be transcendental
functions, and certainly not functions of uniform weight. However, the presence of
polygamma functions raises the maximal weight that an MB integral can attain,
in accordance with the fact that an e-expansion under an MB integral results in
polygamma functions of increasing weight, order by order in e.

Final result for }"((j’é)_l)

Having obtained a much simpler MB representation, we now convert eq.
to parameter integrals utilising the techniques outlined in section [1.3.2] These
parameter integrals can then be performed in terms of Goncharov polylogarithms
using the methods outlined in section The full result is rather lengthy, but
has the generic form

o - (&) 2 ne (A21)
(49) S ir) 32—z N\O ) '

Where f; is a pure weight five function. The full result is rather lengthy, so we
have appended it electronically to this thesis.
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Appendix B

Full Calculation of the Four-Line
Double Three-Gluon Vertex
Diagram

Figure B.1 w(12)(34)

We now consider the diagram w2)(34), depicted in fig. . Our Feynman rules in
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section prescribe

4 o0
wazyea({Vig} €) =" geN? / d'zd"w <H T / 5?‘76183'6‘(’“0)3]')
=1 0

X [ Uoy057 (O5181-25 Osaa—2 Ow—3)

X fUUT ™ (Dsyy—ws Dsapa—os Do) (B.1)
x (= (5181 — 2)* +140) (5282 — 2)* +i0)?

x (— (8383 — w)? +i0) " (— (5485 — w)* 4+ 0)"

X (—(z —w)? +140)".

We will proceed in much the same way as we did in the previous chapter with w,g,
however there are some added complications. Notably, the derivatives associated
with the three-gluon vertices will require some attention, and we will have to
derive an MB representation for the two loop integrals over the vertices w and z.

As with wy,, we define separate colour and kinematic factors

Cumysy =/ f T TR TP T B.2)
4 oo
f(12)(34)({%]’},6) EM6€QSN5/dd2’ ddw (H/ ﬁj‘?jdsje—i(m—z[))sj>
j=1"9

XFU1U2T (85161—27 aSQBQ—zu 8w—z)

XFUSU4T (88353*107 88454*107 (?Z,w) (B3>

X(=(s161 = 2) +i0) 7 (= (592 — 2)* +40)"

X (— (5383 — w)* +i0)(—(s485 — w)* +i0)!

x(—(z — w)? +140)1.
We now proceed as we did previously to extract the UV pole by rescaling all
integration variables according to eqs. to . Subsequently, we wish to
perform the loop integrals. We therefore need to extract the derivatives associated
with the vertices. To do this, we utilise momentum conservation at each vertex to

rewrite the derivatives with respect to (z — w) in terms of external parameters,
yielding

6e 4 o0 ) 4
Fuzyen (s} 6 = (£) " gt T (6e) (H / 6/%) 5 (1 -2 w)
j=1 i=1
XFUNQT (aylﬁlv 8y2/32> _ay1/31 - ayQ/BZ)
XF0304T (81/3637 81/4/3’47 _ay3,33 - ay4ﬁ4>
X /ddz dw (—(y1Br — 2)? +i0) (= (y2 82 — 2)* +i0)*

X(=(ysBs — w)* +i0) (= (yaBs — w)? +i0) "
X (=(z —w)* +i0) .
(B.4)
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Auxiliary momentum integral

P1 Pa

N\ /

/ N\

D2 D3
Figure B.2 The slashed four mass box S({p?},s,t)

As previously, we may now relate the loop integral to an auxiliary momentum space
integral. Since the remaining integrals are once again finite, we limit ourselves to
the leading pole

.7-"12)(34 ({vi}) = 33 (H/ ﬁ”ﬂdy]> 4] (1 — Z_;%)

XFUIUQT (aylﬁu ay2/3’27 _aylﬂl - 89252) B5
XFU3U4 y3ﬁ37 ay4ﬁ4v _811333 - ay454) ( ' )

< [zt (- 27 (e — =)
(—(9353— w)?) " (= (yaBs — w)?) T~ (z —w)*) L.

The two loop integrals have a slashed box (fig. |B.2) as their dual diagram, we
define

1 d*ky

F/ (=(p1 + F1)? +0)(=(p1 + p2 + £1)?) + 0 (B.6)
" / d*ky '
(—(k1 — k2)? +10)(—(k2)? +40)(—(p1 + p2 + p3 + k2)? +i0)

Identifying ky = z, ks = w, and utilising the auxiliary momenta of eq. (A.11)) we

find
1 2 (& > A
(37_1) — 0j )
j= =1

Xraww (aylﬁn ayzﬁga _aznﬂl - ay2,82)
XFUSU4T (8y3537 ay4ﬁ47 _aysﬁs - 8y4,34) S({]%(Z/;ﬁg)})

S{{pi}) =

(B.7)
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In order to derive a Mellin-Barnes representation of S, we utilise the MB
representation of the general one-loop N-point function J@) [99].

dér

[T, [(g; + )2 + 0]
45, 1
e (ka)z =

D(d =2 v) TIT ()

¥ ({vitHa})

—i0o Jico . ISt
(3D#(L,N) (B8)
S DITEEED ) S I EES SPRNAES ) 9b
(jvl)J;(lLN) l]:]f[
d N-1
xI §—ZV1'+Z/1—ZZSJ'[ HF<V1‘+ZSJ‘@'+ZSU>7
J];i =2 7<t 1>

with L = N(N —1)/2, and k;; = ¢; — ¢;. Examining S, we see that the integral
over ko is a three-point function with {¢;} = {0, —k1, —ps}. We extract the minus
signs from the propagators, this yields

i/ d*k,
™ ) (71 + k1)? —i0)((p1 + p2 + k1)? — i0) (B.9)
< J({1,1,1}, {0, —ky, —pa}).

Inserting the identity in eq. and accounting again for the difference in
the 70-prescription between J and S, we observe that the integral over k; is a
four-point function. We parametrise it using the same formula, choosing p; to
carry the dimension of the integral over £,

SUpi}) = -

+i00
1
SHpi}) = (27r )7 / dsi2 dsaz dtya dtys dtaz dtag disg
P(—Slg)r<—523)r(1 + S12 + 523>2 (p2)—1 (p_%>t12
F(Q “+ S19 + 523) 4 p%

X

( P2t 3) )“3 <p_§)t23 <(p1 +p2)2)t2‘* <p_i>t34‘8”‘”3 (B.10)
i pi i

I'(—ti ( t13)L(—ta3)I'(—t24) L' (—134)
[(t12 + ti3 4 tog + tog + t34 — 512 — S23)
XT(1 + tig + Loz + tog) (=523 + ti3 + tog + t34)
XT(1 4 s12 + 523 — tog — tog — t3a) (23 — 12 — tiz — ta3).

><

X
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Applying Barnes’ lemma causes the integration over s;; to vanish and we obtain
after some simplification

+ico

S({pz}) :(pf)_l / dt12 dtlg dt23 dt24 dt34

1
(2mi)
y (p_%)tm <<p2+p3)2)t13 <p_§>t23 <(p1+p2)2)t24 (p_?l>t34

Vi I I I i
t12)L(—t13) 1 (—to3) I (—toa)[(—t34)

xI'(—
XT'(—t1g — t13 — tog) ' (—tog — tog — t34) (1 + t12 + tog + t24)
XT(1 + tig 4+ toz + t3a) (1 + t1o + tiz + tog + tos + t3a)

x p(z(ft; ?2,5)12) (V(—t12) — Y (—tsa))-

(B.11)

Returning to eq. (B.7]), we have

4
]—"((3)(;4)_ 33(1‘[/ 5%dy]> (1 Zly>

XFUIU'QT (891,317 ayzﬂm _6y151 ayz/ﬁz
XFU3J4T (8313537 ay4647 _ay3,33 ay4ﬂ4)

100

<[ 1] (2;) /dtij (&)t”p(_tij) (B.12)

i<j o Y14
(1,9)#(1,4)
XI'(—t1g — t13 — tog)['(—tog — tog — t34) (1 + t12 + tog + t24)
XT(1 + t13 + tog + t34) (1 + t1o + t13 + toz + tog + t34)

F e (0(ta) — w(-tan)

Differentiating

The structure of the integral is now similar to eq. (A.17). Indeed, if we apply
the derivatives, the remaining integrals over the Wilson lines are of the form of

eq. (4.20). We apply the derivatives by observing that every term (y;;)" comes
with a corresponding I'(—t;;), yielding

1

8”,31%] L(=ti;) = 2(yiBi, — yjﬂju)yf;ji (1 — t). (B.13)

We note that these differentiations have the effect of shifting the poles of a gamma
function away from the origin. Thus any contour chosen to satisfy the initial
requirements imposed by the slashed box integral is still valid after differentiation.
Indeed, the differentiation somewhat relaxes the requirement on the real part of
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the contour, which will be required in order to perform the integration over the
Wilson lines. Our integral is now of the schematic form

4
3,—1) oj
]:(12 )(34) — 33 H/ 5 dyy>5<1—zyi)
i=1

4
100 i ti;
ﬁ,-ﬂ> [(—ty
g J s () )

—1100

( 12 — t13 — to3)[(—toz — toa — t34) (B.14)
XT(1 + 1o + toz + tog) (1 + t13 + tag + t34)
XT(1 4 t1g + tiz + tos 4 tog + t34)
[(t34 — t12)
F(l + t34 — t12)

T(1—t,,
<Y CiRlu)) (H ﬁ) ,

where C; are rational coefficients, F; are polynomials of 7;; and o; index the terms
tr; which were produced by the differentiations.

(Y(—t12) — ¥(—t34))

Final Result for w234

The calculation now proceeds in entirely the same way as it did in Appendix [A]
Following asymptotic expansion, we obtain a large set of one-, two- and threefold
MB integrals. Unlike what we had in the case of wy4, these integrals do not appear
to have a single form, and many of them are of mixed transcendental weight.
Indeed, due to the differentiations associated with the vertices, we see appearances
of weight six terms upon parametrising single MB integrals. In accordance with
the requirement that w234y can be at most weight five, we observe that all
these terms cancel upon adding up all contributions to w(i)(34). Furthermore,
we also observe the cancellation of all terms with weight strictly less than five,
in accordance with expectations that the soft anomalous dimension has uniform
weight.

The final result is of the form

3 . . -
f&ﬂQ—Q%)g(h@%%»+l (1 @p @hwﬂmm>,(3w)

Z—z

where we note that f; here is the same f; as appears in eq. (A.21)).
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Appendix C

Full Calculation of the Three-Line
Four-Gluon Vertex Diagram

In order to compute the diagram in fig. we proceed in much the same way as
we did for the four-line equivalent. We have

Wag) 3(012, 013, 23, €) =Clag),3F (49 3(12, 13, s, €), (C.1)
C(4g),3 = (llTingTic’, (fabefcde + facefbde) ’ (CQ)
Flag)3(aiz, u3, oz, €) = — ige SN <% + %) /ddz

(C.3)

: o0 e—imsi\/w—_ig

We have taken the definition of 3; = 8, as implicit in the above for brevity. We
proceed as we did in the four-line case by first extracting the singular term through
the rescaling s; = ay; /|82, Y. y; = 1 and z — az

2

3e
~7:(4g),3(0612, 13, (g3, €) = — ig? <%) N4F(6€) (% + %)

4

- /ddz H {/0Oo o (= (i 1— 2)2)16} (©4)

=1
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Bs

b —

Ba

Figure C.1  Three-line four-gluon vertexr wg) (12, 13, @23)

Next we proceed by inserting the MB representation of the box integral after
expanding in e. Introducing the shorthand v;; = (v:8; — y;3;)?, the result is

1

(~1.3) _ 2
‘7'-(49)73 (12, 13, g3, €) = —(47r)3 3 (V12713 + 2723)

o [ (H /d%)

XT? (=2 ) T2 (—2)T2(1 + 21 + 20)

—1—2z1—29

X (%23/34)21 (y14y23)22 (Y13Y24)

Y <1 - Z?Jz) O(ys < y1).
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Note that, since 81 = B4, y14 = —(y1 — y4)*>. We split the other propagators using
the standard MB parametrisation formula to isolate the term proportional to ;;:

1 2

(_173) _ “ 1
}"(49),3 (Oz12, a3, a23) = —(47r)3 3 (712713 + 2723) —(27ri)7 /d21 dzo

<| 11 /dwij [(—wij)

1<i<j<4
(4,5)7#(1,4)

XF(—ZQ)F('UJ12 — Z1)F(w34 — Zl)F(wgg — 2’2)
xF(w13 + 21+ 2 — 1)F(w24 + 21+ 22 — 1)

% (_712)w12+w24 (_713 — o3

4
wi2+wi3, wi2+w23+w4 , wiz+w23+ws4g
X (H/d?/z> Y1 Y2 Y3
i=1

XyZLUQ4+w34 (y% 4 y%)ZI_wIQ (yg + yz)n—w&i

< (= ya)?)” (s +y3)" "™

> (y% + yg)—w13—21—22—1 (yg + yz)—w24—z1—z2—1
4
X0 (1 - Z%) 0(ys < y1).
=1

We now re-parametrise y; to resolve the delta functions

)w13+w34 ( )w23

(C.6)

hn ff(l - C)U)

Y 1—x)z

ys | | (1—2)(1—2) (C.7)
Ya Ty

The procedure from here on is similar to what we did in the four-line case. After
switching to semi-infinite parameters of the form a = z/(1 — z), and rescaling
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a — ac(1+b)/(1+ c), we obtain

(-1,3 - 1 2 1
f(4g)3 (0412,0413,0423) = - ( ) 3 (712713 + 2723) (27?2) /dzl dzs

X H /dww —w;;) | D(—=22)(wig — 21)

1<i<j<4
(4,5)#(1,4)
% (_712)w12+w24 (_,}/13>w13+w34 (_723>w23
X (w3g — 21)T(waz — 29)(wiz + 21 + 20 — 1) (C.8)
XT(wog + 21 + 22 — 1) / da/ db/ de
w12+w13+w24+w34+221+1 22 w12

Xa
wa24+w34(1_b)2z1 (a2b2+1) waa—21—22—1
ch13+w23+w34 (1 + CQ)ZI_U’% (a2b202 + 1)22—w34
x (a*c® + 1)71”13%172271 (b <1)

Using the MB identity to split the brackets contaning more than one integration
variable, and performing the integrations, we obtain our final MB representation

(-1,3) - 1 1
]-"(49),3 (a12, 13, Qrp3) = —(4 B 6 (712713 + 2723 (H/dzl>

% H / dw” wlj (_712>w12+w24 (_713)w13+w34 (_,723)1023

1<i<j<4
(1,9)#(1,4)

% r (-ZQ) r (—23) r <—Z4) r (—25) r (1 -+ 222)
r (w24 + w3y + 229 + 2253 + 225 + 2)

T (’LU34 — 21 + 25)

XP<w24—|—21+ZQ+23+1)F<ZU13+21+22—|—Z4+1) (CQ)
(w23—w13—w34— 1 )
xI' — 29 — 24 — Z5
2
Wy — W13 — W4 — W34
XF( 5 —21—22—23—24—25—1)

Wiz + Wo3 + wsg + 1
2

XP(’IU24+U)34+223+225+1>F( +Z4—|—Z5>

(wlz + w1z + Waog + W3y
xI' 5

+2’2+23+Z4+25+1)
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Upon performing the asymptotic expansion around ~;; — 00, we obtain some
unusual MB integrals of the form

I E/le dZQ ng r (—21> r (Zl + 2) r (—21 — 29 — 1) r (—ZQ)

XTI (—23)°T (2o + 23) T (21 + 22 + 23+ 1) (C.10)
XF (—Zl — 229 — 223 - 1) r (223 + 1)
r (_Zl — 222)

The main challenge in computing these integrals lies in handling the gamma
function with multiples of z;, we solve this by combining them into a single Beta
function, which we subsequently insert the integral representation of and proceed
as usual. This yields a parameter integral which is quadratic in some integration
variables, but is ultimately manageable. We find

1 1 1 1

3,-1)

-7'—((49)73 == (4#)35 (—g log* (a15) — 3 log" (c13) — log? (212) log (113) log (c23)
—log (a2) log? (r13) log (aag) + 4log (a12) log (an3) log (cvas)
+21log? (12) log? (c13) — log? (v12) log? (cra3) — log? (c13) log? (cv3)

1 1 2
+§ log (0412) 10g3 (Oégg) + g log (0413) 10g3 (0623) + g lOg (0413) 10g3 (0612)

—|—§ log® (a13) log (a12) + log (ap3) log® (aa) + log? (v3) log (avas)
—6log (c13) log? (a12) — 61og? (an3) log (an2) — 2log (r23) log? (a)
—2log” (a13) log (aas) 4 2log? (i) log (1) + 21og (n13) log? (ra3)
—|—§ log® (av2) + glog:)’ (a13) — glog‘3 (cva3) + 24 log (av12) log (a13)
+41og? (a12) + 4log? (a3) — 4log? (ags) — 321og (ap) — 321og (ay3)

—24¢, + G (1210g (1) + 1210g (cus) — 24) + G (—6log? (ar2)
—6log? (cr13) + 61log (c3) log (a12) + 61og (a13) log (aa3)
+ 12log (au2) + 121og (c13) — 121log (rp3) — 24) + 64 )
(C.11)
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Appendix D

Full Calculation of the Three-Line
Double Three-Gluon Vertex
Diagram

We now consider the diagram in fig. [D.I], the set-up is similar to the previous
diagram, we have

W(12),(31) (12, 13, a3, €) =C(12),31)F (12),(31) (12, A13, A3, €) (D.1)
Caz) 1) =T{T{Ty T f° foe (D.2)
F12),31) (@12, o3, aiag, €) =5 gS NP / d?z dw / dsy dsy dss dsy
0

Xﬁin 55263‘,’35?46‘“ > sin/1Bi|2—i0

XLo105r (0518125 Osypp—z5 Ow—)

XLgy0," (88353—% 65451—w7 az—w)

x(— (5181 — 2)* +140) (5282 — 2)* +i0)*
X (— (8383 — w)? +1i0) (= (8451 — w)* +40)""
x(—(z — w)* +140)0(s4 < 51).

A brief note about the colour factor C;2)31) is in order. We are interested in
the coefficient of the colour factor f¢fede{T¢ T¢}T,TS. This colour factor is

149



Bs

51

A1

S4

Ba

Figure D.1 Hard three-line double three gluon vertex

produced by the symmetric combination of kinematic factors, i.e.

w(lz) 31) (12, 13, (23, €) + W2y 31y (13, 12, 23, €)

T T T

2

X (-7:(12 31) (04127 (13, (23, € ) + ~7:(12),(31)(0413, a2, (23, E)) (D‘4)
1

_|_2fabefcde [T(i’ Td]Tch

X (f(lz 31) (0412,0413,04237 ) -7:(12),(31)(013,@12,0637E))

The symmetric kinematic combination holds some simplification in terms of
computational time due to the cancellation of some terms in the [MB] integral
we ultimately obtain. Therefore, we will proceed by calculating a single term
F12),31) (@12, o3, aiag, €) only until we perform the differentiations associated with
the three-gluon vertices, after which we will only have results for the symmetric
combination we require for our calculation.

As usual, we rescale the integration parameters by a/|3?| and rewrite the
derivatives in terms of the Wilson line integration parameters to obtain

(3,~-1) _ 121 d. jd =
f(lg),(gl)(am,als,az?,) :(4 )337r4 /d zdw /0 dyy dy dys dy,

x B9 632 63 B716 (1 - Zyi)

XD 007 (@m,@u 8@/2527 _ay151 - ayzﬁ2) (D‘5)
XDPoyo," (aysﬂsv Oyapr» —Oysp; — 8?;461)

X (=(y1 81 — 2)? +i0) 7 (= (y282 — 2)> +i0)

(= (ysBs — w)* +10) 7 (—(yaPr — w)* +0)"

X (=(z = w)* +140)0(ys < ).
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Next, we may insert our MB representation of the diagonal box and introduce
Yi; = Wibi — y;85)%,84 = S, this yields

1 2
(47)3 3

x By B3B3 B0 (1 - ZZJz) 0 (ya < 1)

‘F((fé;(l?),l)(ama 3, Qig3) =

/ dy dys dys dy,
0

XF0'10'27' (81/1517 ayzﬁza _aznﬁl - ay262)
-0

XF0304T (aysﬁsv ay4617 _ay353 y451)
1 7 (yij )tij (D.6)
g (27_”/) A J y14 ( ])
(i,)#(1,4) o

XT'(—t1o — tiz — to3)[(—tag — tog — t34)
Xr(l + 119 + tog + t24)F(1 + 113 + tog + t34)
XF(l + tlg + t13 + Z523 + Z524 + t34)

['(t34 — t12)
F(l oty — t12> (%U(—tlz) - w(_t34))

We now apply the differentiation as we did in the four-line case. The parameter
integration is then identical in form to the one we perfomed for the four-gluon
vertex diagram in Appendix [C]

After asymptotic expansion, we obtain a large set of [MB|integrals, most of which
we perform analytically. However, we were unable to analytically evaluate the
constant and the coefficient of a single logarithmic term. Performing numerical
evaluations using the tools provided in [77], we obtain the following expression for
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the required symmetric combination of diagrams.

]:((fé;(l3)>1)(a12» 3, g3) + F((fé;(ly))l)(al& Q2, Qp3) =

152

1 1 1 1
- - . _1 5 - 1 5
6 (4 )? 3 og’ (a12) 3 og’ (au13)
2. 4 2. 4 4. 4
+§ lOg (Oélg) + g log ((1412) — g lOg (Oélg)
4 4
+§ log® (cra3) — 3 log® (n13) + 81og? (cra3)
5 1 5. 4
—f-g IOg (0413> IOg (0[12) —+ g IOg (0[13) IOg (0[12)
2 4 Loy
—glog (cvo3) log™ (a12) + glog (cvo3) log (av12)
1 2
+§ log (v13) log* (cgs) — 3 log? (a13) log® (av12)
2 4
—g 10g3 (0613) 10g2 (0412) — § 10g3 (Oégg) 10g2 (Oélz)
4
—3 log? (c13) log® (cra3) + 2 log? (cva3) log® (v12)
4
+21og® (a3) log? (ug3) + 3 log (av13) log® (aig3) log (ay2)

4 4
~3 log (a13) log (awa3) log® (a2) — 3 log® (an3) log (ae3) log (aq2)
—21log (c13) log” (ags) log® (1) + 41og? (a13) log (cv23) log® (1)

—21log? (a13) log? (rp3) log () + 21log (a13) log (a3 ) log? (avya) (D.7)

4 2
—g 10g3 (0[13) IOg (0[12) — g 10g3 (0423) 10g (0112)

4 2
——=log (a13) log® (cv12) — = log (au3) log® (cv3)

3 3
2
3 log (a13) log (ags) + 4log (arz3) log? (a12)

—41og? (arg3) log (a12) + 21og? (ars) log? (ayz)

+21og? (a13) log (ag3) log (a12) — 21og (ap3) log? (o)
—41og? (a13) log? (avy2) + 21og? (ay3) log? (oras)

—41og (ai3) log® (a3) — 21log® (a3) log (aras)

+41og? (ar3) log (args) — 4 (3Cs + 2¢3) log (au3) log (args)
+log (ay3) (12 — 8(2) log® (vy2)

+log” (a13) (12¢o + 8G — 8) + 24 (¢ — (4) log (aa)
+8 (2 — 1) log (a13) log (ara3) log (v12)

+log? (a3) (12 — 8(3) log (a12)

—4log (aa3) (3¢ + 2¢3) log (a2)

—16 (2¢2 — 2¢5 + 3) log (a13) log (r12)

+((50.1 £ 0.1) — 24 — 24¢5 + 24¢4) (log (a12) log (an13))

+(25.85 4 1.25)



The result is clearly symmetric in interchanging aqo and ai3, as expected. We see
a large number of terms of transcendental weight less than five, all of which must
cancel in the final sum of all diagrams.
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Appendix E

Full Calculation of the 311-Web

According to [16] (diagram A, in Appendix A.2.4), the full expression for this web
is

W311) (12, nz) =Cz11)F(z11) (12, A13) (E.1)
Csiny =f% f*° {T1, T{} TS T (E.2)
i . €\6 L QU >
Fain) = — 5/\/4 (igsp©)® (B2 - B1) éﬁlﬁf/ddz/ dsadssdsi1dsy 2dsy
0

x0(s1,3 > 512)0(s12 > 51,1)p (35263—37 Ds1 18125 asl,gﬂl—z)
X (= (8232 — s1261)° + 'iO)Ef1 (= (5285 — 2) + 2,0)64
X (= (51161 — 2)’ + Z'0)6_1 (= (51381 — 2)° + io)e_l
Xefim<52m+32\/ﬁ+(51,1+s1,2+5173)\/ﬂ)
(E.3)

As usual, we rescale our integration variables by s; — s;/4/? for normalisation,
then we introduce the following rescalings

<8?2> = <1 . a) ! (B.4)

S92 X
51,1 =K | T2 3 (EE))
51,3 T3
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with Jacobians A and x? and the requirement Y, 2; = 1. This yields

Flauny = — iN* (ga)" %255 B335 / PN / dis jede—Lp—im(x+N)
0

1

d dxy dzs d o|1— i |0 A1 —
X/o a/acl xo drs X ( ;gy) (kxs > A1 —a))
X0 (M1 —a) > kxs) (= (afa — (1 — a)B)’ + ’L'O)Ef1
Xrlwﬂ (ax153:ax26178x351)/dd2 (— ($153—Z)2+i0>6_

R e

(E.6)

We perform one more transformation in order to integrate over the exponential

regulator, namely
K b
(A) ) (1_b). (E7)

This transformation then yields

1
Fainy = — iN* (gop)® =2 712 KBy 30 / dn nbte=mn / db (b)* ' (1 —p)*

0

X /1 da /dazld$2d$35 (1 - Zx,) 0 (bxz > (1 —0b)(1 —a))
%0 (1= b)(1 — a) > bas) (— (afy — (1 —a)By)® +1i0)
XF#VP (arlﬂsa a27251 ) a33351) /ddz (_ (xlﬁii - Z>2 + io)e_l

(ot =2 4 i0) 7 (= o = 2 i0)
(E.8)

The integral over n can now be performed, yielding an overall UV pole. Since
the diagram does not have further subdivergences, we then simply expand in €,
retaining only the pole term.

]_-(37—1)__2'2L B“BVB” 1L 1da dxy dxy dx
311y = 3(47r)3712 2M3P3 o b(1—b) J, 1 GX2 A3

%) <1 - Z@) (bxs > (1 =b)(1 —a)) 0 ((1 —b)(1—a) > bxy)
(E.9)

1

X (_ (aﬁ? - (1 - a>ﬁl) + 20)_ P!LVP (8901537 8902517 6’96331)
diz (= (z185 — 2)? + iO)_l

7T2

X (= (2281 — 2)* + Z'O)il (= (w381 — 2)° + 2'0)71
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The integral over b is now trivial to perform, we obtain
3,—1 cwwan [
Fan) =- mmﬁgﬁg@g/ da /dml drydrsd | 1= x; ) 0 (25 > x2)
0 i

x log (@) (_ (aﬁ? - (1 - a)61>2 + io)il FHVP (6961537 836251781351)

Hop)
X /%ddz (— (1'163 — 2)2 + iO)_l (— (Zlfgﬁl — 2)2 + iO)_l

x (= (2361 — 2)* + 2'0)71
(E.10)

Furthermore, the integral over a is an [MGEW] basis function, specifcally
MMQQQ(OQQ). We therefore find

Y12

2 1 A A A
(-1 _ v
Fan) = — ZgWr(alz)Mo,o,o(Oém)ﬁgﬁgﬁg/dml dy das

Zs3
xo|1— x; | 0 (x3 > x2)log | — | Tywp (Ony8ss Orafpy s Orappy
( ZZ: ) (23 > 29) g(@) ywp (Ory By Onars Oy (E.11)
x%/ddz (— ($163—2)2+’l'0)71 (— <I2B1—2)2+Z’0)71
T

X (— (x36 — 2)2 + i())_1

Finally, looking at the z-integral it is a scalar triangle with dual momenta p;
defined as follows

b1 x1083 — w36
pa | = | 2261 — 2153 (E.12)
b3 31 — 22

We therefore obtain

1
(4m)°

d [z3\"
X0 <]_ — EZ:ZEZ> 0 (ZE3 > [EQ) % (;2) L
XFAWP (al"lﬁ?)? aﬁvzﬁw a90351) T ({pz}v {1}7 4)

The calculation now proceeds in the same way as it did for the three gluon vertex
diagram in chapter [2] Taking the asymptotic light-like limit, we obtain

_ 2 A A A
-7:((3111)) :g T(Oélz)Mo,o,o(Oélz)ﬁgﬁgyﬂg/dfcl dzy dxs

(E.13)

- 2 1
f((§i1)ll)l(04127 a13) =57 3 log(a2)
| P (E.14)

X (% log* (a13) +4 (G — 2¢) (1 + log (cu3)) — 3C4)
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Appendix F

Collinear reduction of the 23-Web

We wish to find an expression for w(s3), as depicted in fig. . Our main problem
is that we only have light-like results for w1y, which we might have used to
obtain w(3y. However, we may attempt to use what we know about the structure
of wq121 to obtain what we need.

We recall that w121 may be written as in eq. (5.7):

Ciio1 =f f*TYTETSTS (F.1)
_ 1 1
-7:1(:1))’211)(0412, 13, (23, 0434) Zgw (Mo,o,o(Oé34)t1(a12, 13, @23) (F 2)

— 2M; g,0(c34)to (012, 03, 23)) -

Crucially, ¢, is antisymmetric under the interchange of any two f; in the light-like
limit (it is the light-like limit of the three-gluon vertex diagram in eq. (2.22)).

If we consider the limit 33 — [ of F(1121), we find that we may recover the

B2

A1

Figure F.1 Representative diagram of the 23-web.
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311-web:
W(311) (0424> 0412) =Wi121 (CY12> aq2, 1, 0424)

1 (FS)
- QfabedeeT(f {TZ, T‘zi} TZMO,O,O(G24)t1(a12, a2, 1),

where we have used the fact that due to its antisymmetry, to(aq2, a12,1) = 0. This
result is true without taking the light-like limit.

If we now wish to obtain ws), we may consider the reduction 4 || 1, this yields

w(sz)(a12) :w(311)(@12> 0412)

:;1 face fde {00 UL LTE T My o o (ona)t (02, o, 1). (F-4)
We can now obtain wsy) by solving eq. for t1(an2, a2, 1), we find
F(sz)(a12) = —%.7—"(311)(0424, alZ)%. (F5)
Taking the light-like limit and inserting eq. we find
Cagy =fof** {T1, T1} {T5, T3} (F.6)
Pl (on) = 7 |5 108" (o) + (326 = 64:) o (o) o
F.7

— (64¢, — 32(3 + 24¢4) log (a12)
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