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Abstract

The purpose of this thesis is to investigate the hydrology and dynamics of a land-

terminating outlet glacier on the western margin of the Greenland Ice Sheet (GrIS).

The investigations are motivated by uncertainty about the effect of meltwater on

rates of ice flow in the GrIS and the possibility that hydrologically forced changes

in ice velocity might increase mass loss from the ice sheet significantly in response

to climate warming. The impact of meltwater on fluctuations in ice flow has been a

research focus for glaciologists studying Alpine and Arctic glaciers for decades. In these

settings, one of the main controls on the relationship between surface melting and ice

velocity is the structure of the subglacial drainage system, which evolves spatially and

temporally on a seasonal basis in response to inputs of meltwater from the glacier surface.

In this thesis we present three years of field observations of glacier velocity, surface

ablation and hydrology from a land-terminating glacier in west Greenland. These data

are supplemented by satellite data and the use of simple models to constrain surface

melting.

We find that hydrologically forced ice acceleration occurs each year along a ∼115

km transect, first at sites nearest the ice sheet margin and at locations further inland

following the onset of surface melting at higher elevations. At sites near the ice

sheet margin, the relationship between surface melting and ice velocity is not consistent

throughout the melt season, and ice velocity becomes less sensitive to inputs of meltwater

later in the summer. This is explained by development in the efficiency of the subglacial

drainage system, in a manner similar to Alpine glaciers. We perform a hydrological

study which indicates that an efficient subglacial drainage system expands upglacier

over the course of the melt season, in response to inputs of water from the ice sheet

surface. At higher elevation sites, however, thicker ice and colder temperatures mean

that it is harder to generate enough water to reach the ice-bed interface and this only

occurs once enough water has accumulated to propagate fractures through thick ice to

the bed. One mechanism which allows this is drainage of supraglacial lakes.

Inter-annual comparison shows that increased rates of annual ablation lead to higher

annual ice velocities. At high elevation sites (>1000 m), timing of drainage of meltwater

to the ice-bed interface appears to be the main control on the the overall magnitude of

summer acceleration. At lower elevations, although development in the structure of the
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subglacial drainage system limits the overall summer acceleration signal, short-term

variability in meltwater input can sustain high ice velocities even once the subglacial

drainage system has become channelised. Overall, the research presented in this thesis

suggests that hydrologically-forced acceleration can increase mass loss from the GrIS

in a warmer climate due to inland expansion of the area of the ice sheet bed which is

subject to inputs of meltwater from the ice sheet surface. The relationship between

surface melting and ice velocity is mediated, however, by the structure of the subglacial

drainage system and variations in the rate of meltwater drainage to the ice bed interface.

Insights from this work can help in the development of numerical ice sheet models which

aim to predict the future contribution to sea-level rise from the Greenland Ice Sheet.
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CHAPTER 1

Introduction

The purpose of this thesis is to investigate the hydrology and dynamics of a land-

terminating outlet glacier on the western margin of the Greenland Ice Sheet (GrIS). The

investigations are motivated by uncertainty about the effect of meltwater on rates of

ice flow in the GrIS and the possibility that hydrologically forced changes in ice velocity

might increase mass loss from the ice sheet significantly in response to climate warming.

1.1 The Greenland Ice Sheet and climate change

The GrIS covers an area of 1.7 million km2 and contains enough freshwater to increase

global sea level by approximately 7 m if it were to melt completely (Bamber et al., 2001,

2003; Church et al., 2001). The most recent IPCC report (AR4) estimated that the

GrIS contribution to global sea level rise had increased from 0.05 ± 0.12 mm yr−1 for

the period 1961 - 2003, to 0.21 ± 0.07 mm yr−1 between 1993 and 2003 (Bindoff et al.,

2007) in response to late 20th century climate warming (Meehl et al., 2007). In addition
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to concerns over the socio-economic impacts of global sea level rise (e.g. Nicholls et al.,

2007; Dasgupta et al., 2009), increased freshwater flux from the GrIS has the potential

to inhibit key areas of North Atlantic Deepwater (NADW) production (Dickson and

Brown, 1994), affecting the turnover of large scale ocean circulation and, in turn, global

heat transfer and regional climate (e.g. Rahmstorf , 1995; Fichefet et al., 2003).

The GrIS gains mass through precipitation and loses it primarily by runoff of

meltwater from the ice sheet surface, calving of icebergs where outlet glaciers meet

the sea and submarine melting of floating ice tongues. Recently reported estimates of

the GrIS mass balance (the net sum of mass gained and lost from the ice sheet over a

balance year) vary from modest loss during the 1990s (47 - 97 Gt yr−1, which is '0.13 -

0.27 mm yr−1 sea-level equivalent (s.l.e); Krabill et al., 2000) and near equilibrium for

the period 1992 - 2002 (Zwally et al., 2005), to mass losses of >200 Gt yr−1 ('0.55 mm

yr−1 s.l.e) since 2002 (Rignot and Kanagaratnam, 2006; Velicogna and Wahr , 2006;

Chen et al., 2006; Rignot et al., 2008; Van Den Broeke et al., 2009; Rignot et al., 2011).

This evidence that GrIS mass loss has accelerated in the last decade is substantiated by

independent calculations of the GrIS mass balance using different techniques (e.g. Van

Den Broeke et al., 2009; Rignot et al., 2011).

Traditional consensus had suggested that climate warming over the coming centuries

(Meehl et al., 2007) would lead to gradual interplay between marginal mass loss in the

ablation zone and increased mass gain in the accumulation zone of the GrIS, resulting in

a slow retreat of the ice sheet over the course of a few millennia, and that changes in ice

dynamics (controlled either thermodynamically or by changes in ice geometry) would

respond over glacial-interglacial timescales (e.g. Huybrechts et al., 1991; Oerlemans,

1991; Van de Wal and Oerlemans , 1994; Huybrechts and de Wolde, 1999; Church et al.,

2001). Recent observations of accelerated ice flow in outlet glaciers which drain from

the GrIS interior (Joughin et al., 2004; Rignot and Kanagaratnam, 2006; Luckman and

Murray , 2005; Howat et al., 2005, 2007; Luckman et al., 2006; Stearns and Hamilton,

2007; Pritchard et al., 2009) suggest, however, that ice dynamic responses to climate

warming may play a much greater role in the future mass balance of the GrIS than had

been previously considered (Pritchard et al., 2009; Howat et al., 2007; Krabill et al.,

2004; Alley et al., 2005a; Zwally et al., 2002; Parizek and Alley , 2004). Annual rates of
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dynamic mass loss are now roughly equal to ablation at the ice sheet surface (Rignot

and Kanagaratnam, 2006; Van Den Broeke et al., 2009) and if recent increases in ice

discharge continue, sea level rise predictions for the next few centuries will need to be

revised upward (Krabill et al., 2004; Alley et al., 2005a; Shepherd and Wingham, 2007).

Although this shortcoming was recognised in AR4, mechanisms that allow rapid

coupling between ice dynamics and climatic forcing are not currently included in large

scale ice sheet models used to predict future sea level change (Meehl et al., 2007). This

is partly a consequence of computational limitations, but also because the processes

which control these changes are relatively poorly understood (Alley et al., 2005a).

Where outlet glaciers drain into the ocean, changes in ice dynamics may result from

processes that act at the glacier terminus to trigger a retreat, thereby reducing resistance

to ice flow. Proposed mechanisms include a reduction in the buttressing resistance

provided by an ice shelf (Joughin et al., 2004), increased calving rates sustained by

rapid melting (Thomas, 2004; Holland et al., 2008) or glacier retreat and associated

ungrounding (Howat et al., 2005). These mechanisms are often termed ‘marine’ and

are thought to result from warmer ocean temperatures (e.g. Thomas, 2004; Holland

et al., 2008), although the initial forcing could also be driven by surface melting at the

glacier terminus. Dynamic thinning of marine-terminating outlet glaciers now reaches

all latitudes in Greenland (Rignot and Kanagaratnam, 2006; Pritchard et al., 2009) and,

although these glaciers only represent a small fraction of the GrIS margin, they drain

ice from large inland basins (Rignot and Kanagaratnam, 2006) and are responsible for

virtually all of the recent acceleration in dynamic mass loss that has been observed in

the GrIS (Rignot and Kanagaratnam, 2006; Sole et al., 2008; Van Den Broeke et al.,

2009; Thomas et al., 2009; Joughin et al., 2010).

In land-terminating sections of the GrIS, variations in ice velocity are initiated

when surface meltwater drains to the ice-bed interface, via moulins and crevasses,

lubricating basal motion (Zwally et al., 2002; Van de Wal et al., 2008; Joughin et al.,

2008a; Shepherd et al., 2009). Inputs of meltwater from the ice sheet surface act to raise

subglacial water pressure, which weakens the coupling between ice and the bed to allow

faster sliding (Iken and Bindschadler , 1986; Iverson et al., 1999; Schoof , 2005). Initial

observations show that summer velocities in land-terminating sections of the GrIS can
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be >50% faster than in winter (Van de Wal et al., 2008; Joughin et al., 2008a). Zwally

et al. (2002) recorded summer acceleration of 5 - 25 %, ∼35 km from the ice margin

in west Greenland, in four consecutive years that was directly correlated with the

magnitude of local surface melting (parameterised by the positive degree-day method

(Braithwaite, 1995)).

Such observations suggest that GrIS dynamics may also respond to atmospheric

forcing over short timescales (Zwally et al., 2002; Joughin et al., 2008a; Das et al., 2008;

Van de Wal et al., 2008; Shepherd et al., 2009). Although this atmospheric forcing

mechanism has not led to rates of ice thinning in land-terminating sections of the GrIS

margin that can be resolved using remote sensing techniques (Sole et al., 2008; Van

Den Broeke et al., 2009), numerical simulations indicate that the widespread effect of

increased surface melting on ice velocities would lead to an additional sea level rise

of 0.15 - 0.4 m by 2500 AD, should there be a direct correlation between rates of

surface melting and the magnitude of ice acceleration (Parizek and Alley , 2004). In

these simulations, acceleration near the ice sheet margin draws ice to lower elevations

where ablation rates are higher, leading to a positive feedback between enhanced surface

melting and ice velocity (Parizek and Alley , 2004).

The ice-motion response to seasonal variations in meltwater inputs remains poorly

constrained, however, both spatially and temporally. Observations from near the ice

sheet margin show that summer acceleration is widespread <30 km from the ice margin

in west Greenland (Joughin et al., 2008a). However, we lack datasets which extend

further inland to regions where the ice sheet is thicker and melt rates are lower. Both of

these factors make it more difficult for surface meltwater to reach the ice-bed interface

and may limit the spatial extent of seasonal velocity variation. Drainage of supraglacial

lakes is known to be common in the ablation zone of the GrIS (Box and Ski , 2007;

McMillan et al., 2007; Sundal et al., 2009) and does provide a mechanism by which

water can drain through ice >1 km thick (Das et al., 2008; Krawczynski et al., 2009).

Nonetheless, while dramatic changes in vertical and horizontal components of ice motion

have been observed in response to a lake drainage event in Greenland (Das et al., 2008),

it is not certain that the integrated effect of many individual lake drainage events is a

sustained and significant increase in ice velocity.
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Simultaneous measurements of ice velocity and air temperature have established, over

short-time scales, a correlation between local surface melting and velocity fluctuations

over a widespread area (Joughin et al., 2008a; Van de Wal et al., 2008; Shepherd et al.,

2009). A longer-term study found, however, that higher annual ablation does not

necessarily lead to increased annual ice velocities (Van de Wal et al., 2008) and the

importance of this relationship for large-scale dynamic behaviour of the GrIS therefore

remains equivocal (e.g. Sundal et al., 2011).

The link between subglacial water pressure and variations in the basal sliding

component of glacier motion has been long recognised in temperate glaciers (e.g. Iken

et al., 1983; Iken and Bindschadler , 1986). Shepherd et al. (2009) suggest that Alpine

glaciers may provide an appropriate analogue for the evolution of the GrIS in a warming

climate. In Alpine and High Arctic polythermal valley glaciers ice motion depends on

variations in the structure, hydraulic-capacity and efficiency of the subglacial drainage

system (Iken et al., 1983), each of which evolve spatially and temporally on a seasonal

basis (Kamb, 1987; Bingham et al., 2003; Anderson et al., 2004; Kessler and Anderson,

2004; Mair et al., 2002a). Until now, limited datasets have been unable to confirm this

hypothesis for the GrIS and it is not clear whether our understanding of the behaviour

of smaller glaciers can be scaled-up to large ice sheet systems.

1.2 Research objectives

The aim of this project is to investigate the relationship between meltwater production

and variations in summer ice velocity in a land-terminating outlet glacier in west

Greenland. This is achieved primarily through field studies, supplemented by use of

satellite data and simple modelling. The research has a particular focus on behaviour at

different elevations along a transect and the mediatory role of the subglacial drainage

system. We hope that this will provide a better framework to understand whether

meltwater-forced ice acceleration is an important component of GrIS mass balance, and

to provide insights for the modelling community who are tasked with representing these

mechanisms in large scale ice sheet models through collaborations such as the European

Union funded Ice2Sea programme.
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Investigation of a land-terminating section of the GrIS margin allows us to focus

on atmospheric forcing of ice acceleration because the simpler system isolates the

mechanism from the complex interactions associated with marine forcing. The extent

to which meltwater forcing contributes to changes in marine-terminating outlet glacier

dynamics, by weakening the coupling between ice and its bed, is not fully resolved (e.g.

Van der Veen et al., 2011; Howat et al., 2010; Sole et al., 2011). Recent modelling work

suggests that while the marine-terminating glacier response to climate warming may be

large and rapid, it is also likely to be transient and contemporary changes cannot be

simply projected into the future. Roughly half of the ice which calves off the GrIS into

the ocean drains through only twelve of these fast flowing outlet glaciers (Rignot and

Kanagaratnam, 2006), and the greatest changes are observed in those glaciers which

have the deepest marine troughs (Thomas et al., 2009). In contrast with the Antarctic

ice sheet, however, the GrIS is grounded mostly above sea level (Bamber et al., 2001,

2003). If marine-terminating glaciers continue their retreat (e.g. Howat et al., 2008)

then it is possible that the entire GrIS margin will become land-terminating within

hundreds of years or less, and the marine forcing will be short-lived (Bamber et al.,

2007).

1.3 Thesis structure

The presentation of research in this thesis is structured as a series of papers, each of

which comprises a chapter which can be read as an independent piece of work. This

approach has been adopted because a large part of the research has been published

in peer-reviewed journals. Chapters 4 and 6 are reproduced from articles that were

published during the course of my doctoral study, in 2010 and 2011 respectively. In

addition, chapter 5 is a slightly extended version of an article that was also published

in 2011 and chapter 7 has been submitted for consideration. In order to maintain a

coherent structure, and because it is intended that the work is submitted for publication,

chapter 8 is also written in paper format.

The research is based on field observations of an outlet glacier in west Greenland

that were made over a three year period, from 2008 to 2010. The papers which make up
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the thesis reflect chronological development of insights from new data and continuing

work. A brief description of how each chapter follows on from the work already

presented is provided between each research chapter, along with a statement of the

author contributions.

The relationship between surface meltwater production and ice dynamics in the GrIS

is an active research focus for a large number of glaciology researchers. Over the course

of this study, new data have been reported in the literature and hypotheses have been

extended that were not available when the earlier papers were published. This work has

played its part in these developments, which often draw directly on findings presented

in papers that form this thesis (e.g. Schoof , 2010; Sundal et al., 2011; Pimentel and

Flowers, 2011). As such, later chapters comment on and respond to work that did not

exist when earlier chapters were written. Where appropriate, these developments are

made clear in the preamble to the research chapters.

Chapter 2 discusses the background and context of the thesis research, and chapter

3 provides a description of the field site and a summary of the data that were collected.

Due to the format of the thesis, however, a large part of the discussion about data

limitations and uncertainties is incorporated within each chapter at the relevant point.

Chapter 9 summarises the main findings of the research and outlines its contribution to

our understanding of the relationship between surface melting, glacier hydrology and

ice dynamics in land-terminating sections of the GrIS.

The published versions of the three papers that make up chapters 4 - 6 are included

in the thesis as appendices. A fourth paper that was produced by our research group

during my PhD studies, and on which I am also an author, investigates hydrological

controls on ice dynamics in a marine-terminating outlet glacier in SW Greenland. This

paper is also included as an appendix.
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CHAPTER 2

Background

Current understanding of glacier hydrology and its relationship with ice dynamics is

derived mainly from theoretical considerations (e.g. Röthlisberger , 1972; Iken, 1981)

and observations of temperate glaciers in Europe and Alaska (e.g. Iken et al., 1983;

Kamb, 1987). Recent studies have extended their scope onto High Arctic polythermal

glaciers which contain both ice that is at, and ice that is below, the pressure-melting

temperature (e.g. Skidmore and Sharp, 1999; Copland et al., 2003; Bingham et al., 2003).

Our knowledge of the hydrology of large ice sheets, however, is much less complete.

This reflects both their scale and inaccessibility, as well as the realisation only recently

that meltwater can reach the ice-bed interface in Greenland and that this causes ice

acceleration which might have an important impact on the future mass balance of the

GrIS (Zwally et al., 2002). The purpose of this section is to build a conceptual model of

water flow through an ice mass and the consequences for glacier dynamics. I extend

the scope of previous reviews (e.g. Röthlisberger and Lang , 1987; Hubbard and Nienow ,
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1997; Fountain and Walder , 1998) by relating classical theory of glacier hydrology to

larger ice sheet systems.

2.1 Glacier motion and water pressure

Glacier motion occurs through a combination of three components: plastic deformation

of the ice, sliding of ice over its bed, and deformation within underlying sediments

(Paterson, 1994). The presence of subglacial meltwater is a necessary condition for basal

motion as it facilitates both of two basic sliding mechanisms (regelation and enhanced

plastic flow around bedrock obstacles (Weertman, 1957)) and deformation of saturated

sediments (Boulton and Hindmarsh, 1987; Alley et al., 1989; Tulaczyk et al., 2000) as

well as mechanisms that cause enhanced basal motion such as ice-bed separation (e.g.

Bindschadler , 1983). As a result it is expected that the motion of cold-based glaciers

will be dominated by internal deformation as the ice is frozen to its bed. Conversely, in

glaciers where the ice-bed interface is at the pressure melting point basal motion will

occur and can account for a significant proportion of ice flow (e.g. Kamb et al., 1985).

One of the most important controls on rates of basal motion is the subglacial

water pressure. In classical theories of sliding over a hard bed, higher basal water

pressure encourages the growth of subglacial cavities in the lee of bedrock undulations

(Lliboutry , 1968; Iken, 1981; Fowler , 1986; Schoof , 2005). Growth of subglacial cavities

leads to local separation of the ice and its bed, causing a reduction in basal drag thus

allowing higher sliding velocities (Bindschadler , 1983). Surface measurements of glacier

movement have repeatedly shown short-term (days to weeks) accelerations that are

related to variations in melt or rain-water supply (e.g. Iken et al., 1983; Hooke et al.,

1989; Raymond et al., 1995; Mair et al., 2002a; Nienow et al., 2005; Bartholomaus

et al., 2007). Since short-term variations in ice motion cannot result from changes in ice

deformation rates, because ice thickness and surface slope cannot change significantly

over such short time periods, such observations confirm the link between increases in

subglacial water pressure and variations in the basal component of glacier motion (e.g.

Iken et al., 1983; Iken and Bindschadler , 1986; Kamb, 1987; Kamb et al., 1994; Nienow

et al., 2005).
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An influential modelling study by Iken (1981) showed that the sliding velocity of

ice over bedrock depends not only on effective pressure (equal to the ice overburden

minus the subglacial water pressure), but on the stage of subglacial cavity growth. In

her experiments which described sliding across an idealised undulating bed, the highest

horizontal ice velocities were achieved while subglacial cavities were expanding and

maximum horizontal speeds were also associated with vertical movement of ice, out

from the growing cavities (Iken, 1981). This finding was supported by subsequent

field observations of ice uplift at the surface of Unteraargletscher, by up to 0.6 m, at

the same time as horizontal acceleration, up to six times its normal value (Iken et al.,

1983). Uplift of a glacier surface that coincides with horizontal acceleration has been

reproduced in numerous further studies (e.g. Anderson et al., 2004; Bartholomaus et al.,

2007) and is widely viewed as diagnostic of subglacial cavity growth caused by increased

water pressure (Mair et al., 2002a).

Where the glacier bed is comprised of sediments, higher water pressures are also

associated with faster rates of basal motion. Basal motion of an ice mass over a

sedimentary bed can arise from pervasive deformation of the bed, shearing across

discrete planes in the bed or ploughing of clasts through the upper layer of the bed

(Alley et al., 1989) as well as sliding of the ice over its bed (Iverson et al., 1995). High

basal water pressures promote glacier sliding by weakening coupling between the ice

and its bed, and also has the potential to weaken basal sediments allowing the bed to

deform (Fischer and Clarke, 2001).

Although effective pressure beneath the glacier features dominantly in most sliding

theories, there is no formulation of a sliding law which is universally applicable to all

glaciers (Van der Veen, 1999). This reflects the complexity and interdependence of

factors which control rates of basal motion, such as glacier bed roughness, the strength of

the underlying substrate, rheology and temperature of ice and the amount of subglacial

water (Weertman, 1979), as well as uncertainty about the spatial scales over which

variations in basal drag must occur to allow widespread changes in ice motion (Harbor

et al., 1997; Nienow et al., 2005)

A major obstacle is the difficulty of making direct observations at the glacier bed at

appropriate temporal and spatial scales. While measurements of basal water pressure
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at a single point can be made using boreholes (e.g. Fountain, 1994; Hubbard et al.,

1995; Gordon et al., 1998) ice velocity might reflect water pressure averaged over a

larger area (Iken, 1981; Kamb, 1987). As a result it has proved difficult to reconcile

observations of ice velocity and subglacial water pressure in order to make inferences

about the mechanisms which control basal motion. For example, Iken and Bindschadler

(1986) captured simultaneous measurements of borehole water level and surface velocity

at Findelengletscher in the Swiss Alps. Multi-day variations in horizontal velocity were

strongly correlated to borehole water levels and maximum velocities coincided with

maximum water pressure. Other field studies have found, however, that maxima in

sliding velocity occur on the rising limb of subglacial water pressure, rather than at

its peak (Blake et al., 1994; Fischer and Clarke, 1997; Nienow et al., 2005) leading to

the suggestion that the relationship between high water pressures and ice acceleration

operates via a ‘stick-slip’ mechanism, where water pressures increase until a local strain

build-up in the ice is is released (Fischer and Clarke, 1997; Nienow et al., 2005).

On the basis of field observations of the water budget of Columbia Glacier, Kamb

et al. (1994) found that ice velocity fluctuations were better correlated with water

storage beneath the glacier rather than peak water pressure. A similar observation

was made later on Kennicott Glacier, Alaska (Bartholomaus et al., 2007). Iken and

Bindschadler (1986) argue, however, that ‘‘the subglacial water pressure can affect the

sliding velocity only if it acts on a large proportion of the bed’’. It is possible, then,

that the correlation of ice velocity with water storage can be reconciled with previous

predictions if higher subglacial water storage reflects an increase in the spatial extent of

raised subglacial water pressures.

Overall, although the conditions at the ice-bed interface that result in transient ice

acceleration may vary, it is generally believed that high subglacial water pressure is

required to initiate faster rates of basal motion. Discrepancy between observations of

ice velocity and water pressure likely reflects spatial and temporal variability in basal

conditions (Hubbard et al., 1995; Murray and Clarke, 1995; Stone and Clarke, 1996)

and competition between different mechanisms that allow ice to move over its bed (e.g.

Iken et al., 1983; Fischer and Clarke, 2001).
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2.2 Subglacial drainage system structure

One of the major controls on spatial and temporal patterns in subglacial water pressure

(and therefore rates of basal motion) is the structure of the drainage system, which, in

turn, reflects the recent water flux (Hubbard and Nienow , 1997; Nienow et al., 1998).

Meltwater necessary for basal motion can be generated at the ice bed interface by

frictional heating and the geothermal heat flux (Paterson, 1994). In practice, however,

large quantities of surface meltwater also penetrate to the beds of temperate and

polythermal glaciers, dominating the water budget of the subglacial drainage system

under all or part of the glacier, and determine the drainage system structure, at least

during the summer months (e.g. Röthlisberger , 1972; Röthlisberger and Lang , 1987;

Hubbard and Nienow , 1997; Fountain and Walder , 1998).

There is presently broad agreement among glaciologists that, in temperate glaciers,

water flows at the glacier bed in one or both of two qualitatively different flow systems,

commonly termed ‘channelised’ or ‘distributed’, which exhibit contrasting pressure-

discharge characteristics (e.g. Hubbard and Nienow , 1997; Fountain and Walder , 1998).

The existence of these drainage configurations has been established empirically on the

basis of proglacial bedrock mapping (e.g. Walder and Hallet , 1979; Sharp et al., 1989),

dye-tracer studies (e.g. Seaberg et al., 1988; Nienow et al., 1998) and meltwater hydro-

chemistry (e.g. Collins , 1979; Tranter et al., 1993; Brown, 2002). A channelised system

is composed of relatively large, hydraulically efficient channels that cover a relatively

small proportion of the glacier bed and results from higher water flux (Röthlisberger ,

1972; Shreve, 1972; Röthlisberger and Lang , 1987). By contrast, distributed drainage

systems are composed of more tortuous and resistive flow pathways that cover a greater

proportion of the glacier bed. A distributed drainage system may comprise several

morphologically distinct flow pathways that include discharge through cavities that are

linked by short channels (Walder , 1986; Kamb, 1987) and flow through subglacial sedi-

ments (Clarke, 1987; Hubbard et al., 1995) and flow within a thin water film (Weertman,

1972).

The relationship between drainage system structure and its pressure-discharge

characteristics is generally understood in terms of the theoretical steady-state behaviour
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Figure 2.1: Schematic view of subglacial conduit cross-sections: a. The size of channels
primarily reflects balance between closure under the weight of overlying ice (pi) and opening of
the walls by melting and the pressure of water within the conduit (pw). In the largest channels,
which carry higher discharge, a greater proportion of channel opening can be maintained by
melting of the walls, resulting in lower steady-state water pressure (Röthlisberger , 1972). b.
In a cavity discharge is not as high, and rates of cavity wall melting are less significant. The
size of cavity is maintained by horizontal flow of ice past bedrock obstacles and water pressure
increases with cavity size (Walder , 1986). Diagram based on Schoof (2010) after Röthlisberger
(1972) and Walder (1986).

of subglacial conduits (Röthlisberger , 1972; Walder , 1986; Schoof , 2010). Overall, the

size of subglacial conduits is determined by the balance between the tendency for conduit

closure by collapse under the weight of overlying ice, and opening due to frictional

melting of the walls by water, horizontal flow of the ice past bedrock obstacles and the

pressure of water within the conduits (Figure 2.1; Röthlisberger , 1972; Walder , 1986;

Schoof , 2010). Larger water flux therefore leads to faster rates of conduit opening and

a drainage system dominated by larger conduits (channelised), while lower water flux

means that conduits remain small and large channels do not develop (distributed).

In small conduits, opening of conduit walls by frictional melting is small due to

the low water flux and conduit size is maintained largely by flow of ice past bedrock

obstacles (Figure 2.1). In conduits of this type, generally described as ‘cavities’, the

tendency for creep closure is balanced by an increase in water pressure to maintain

equilibrium (Walder , 1986; Schoof , 2010). In a drainage system which is dominated by

cavity-type drainage there is a positive relationship between conduit size, subglacial

discharge and water pressure. In larger conduits where the water flux is much greater

(known as ‘R-channels’), closure is principally offset by higher rates of wall melting,

which is controlled by the conduit discharge (Figure 2.1; Röthlisberger , 1972). The
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largest channels have the highest closure rates (greatest effective pressure) and therefore

require the highest discharge to maintain conduit size by melting. Above a critical

discharge, the melting of walls relieves water pressure as a channel grows in a way that is

not possible in cavities where flux is low (Schoof , 2010). As a result, in a predominantly

channelised subglacial drainage system in steady-state, there is an inverse relationship

between drainage system discharge and mean subglacial water pressure (Röthlisberger ,

1972; Schoof , 2010).

Where the glacier bed is comprised of a sediment layer, distributed drainage is

more likely to occur by Darcian porewater flow or through a thin film than through

interconnected bedrock cavities (Alley , 1989; Walder and Fowler , 1994; Flowers and

Clarke, 2002). Walder and Fowler (1994) also predicted the development of ‘canals’

incised down into the sediment layer, in response to higher water flux, that would

exhibit a positive relationship between water flux and pressure. Since the analysis does

not rule out the development of R-channels at the same time, however, it is likely

that conduits of this type could only exist when water flux is relatively low. Leakage

of water through permeable sediments will drain water away from canals towards

lower pressure R-channels, causing their collapse (Fountain and Walder, 1998). It is

expected, therefore, that the pressure-discharge behaviour of the subglacial drainage

system remains qualitatively similar whether the glacier is underlain by sediments or

bedrock.

In a drainage system where R-channels predominate, the largest channels, which

operate at lower mean pressure, will tend to capture water from smaller channels,

leading to concentration of flow into fewer channels and development of a dendritic

drainage pattern (Röthlisberger , 1972; Shreve, 1972). Conversely, in a system where

there is a positive relationship between conduit discharge and water pressure there is

no tendency for one conduit to outgrow others by capturing water across a hydraulic

gradient. As a result, cavity-type drainage systems with low water flux are spatially

distributed across the glacier bed (Walder , 1986). Since a channelised drainage system

occupies a small portion of the bed, however, the two drainage configurations may

co-exist once a channelised drainage system has developed, with a distributed system

filling the space between channels (Fountain, 1994; Hubbard et al., 1995; Hubbard and
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Nienow , 1997). Under these circumstances the two types of drainage system do not

operate in isolation and R-channels can interact with the surrounding distributed system

to alter water pressure over a wider area (Hubbard et al., 1995; Gordon et al., 1998).

2.3 Temporal and spatial development in subglacial drainage

Routing of meltwater has an important influence on subglacial drainage system de-

velopment as it controls spatial and temporal patterns of meltwater delivery to the

ice-bed interface. Water input to the subglacial drainage system is driven by seasonal

variations in air temperature but the delivery is mediated by supraglacial conditons

and englacial pathways.

The key features of meltwater drainage in a temperate glacier are shown in Figure

2.2. Early in the summer melt season, the whole of the glacier surface is likely to be

covered by snow and, above the ablation zone, this will be underlain by a firn layer

(Nienow and Hubbard , 2006). The primary hydrological effects of the seasonal snowpack

and firn layers on glacier hydrology are to temporarily store water (Jansson et al., 2003),

to delay its passage to the interior of the glacier, and to smooth out diurnal variations

in meltwater input (Campbell et al., 2006). After the seasonal snowpack has melted

in the ablation zone, meltwater can be routed more quickly across the glacier surface.

Channels develop on the glacier surface that drain meltwater directly into crevasses

and moulins, and water can be routed more quickly into the body of the glacier. On

temperate glaciers, supraglacial streams rarely flow for more than a kilometre before

intersecting a crevasse (Nienow and Hubbard , 2006). On cold or polythermal ice masses,

deeply incised (>3 m) supraglacial streams (Thomsen et al., 1988; Bingham et al., 2003)

may flow for many kilometres because of the lack of crevasses, and individual catchment

basins may reach up to several hundred square kilometres (Sugden and John, 1976).

For temperate glaciers, meltwaters typically flow to the bed via moulins and crevasses.

Pathways to the bed develop through downcutting of streams at the bottom of crevasses,

which are subsequently isolated by creep closure above (Fountain and Walder , 1998).

Shreve (1972) argued that englacial conduits should form an upward branching ar-

borescent network, with the mean flow direction orientated steeply downglacier, as
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thesis of our current understanding. We have extended
the scope of previous reviews [Röthlisberger and Lang,
1987; Lawson, 1993] by focusing on ways in which the
various components of the drainage system interact. As
part of the conclusions, we outline subjects that need
further investigation. This paper emphasizes temperate
alpine glaciers (glaciers at their melting point), but re-
sults from and implications for ice sheets are included
where appropriate. We do not discuss the hydrological
role of the seasonal snowpack, as there is a comparative
wealth of literature on the subject [e.g., Male and Gray,
1981; Bales and Harrington, 1995] and because the effect
of snow on glacier hydrology has recently been reviewed
[Fountain, 1996].

2. HYDROLOGY OF THE FIRN
AND NEAR-SURFACE ICE

At the end of the melt season the surface of a glacier
consists of ice at lower elevations in the ablation zone,
where yearly mass loss exceeds mass gain, and snow and
firn at upper elevations in the accumulation zone, where
yearly mass gain exceeds mass loss (Figure 1). Firn is a
transitional material in the metamorphosis of seasonal
snow to glacier ice. As we will discuss in section 2.1, the
presence or absence of firn has important implications
for subglacial water flow and for variations in glacial
runoff.

2.1. Accumulation Zone
The accumulation zone typically covers !50–80% of

an alpine glacier in equilibrium with the local climate
[Meier and Post, 1962]. The near surface of the firn is

partially water saturated. The rate of water movement
through unsaturated firn depends on the firn’s perme-
ability and the degree of saturation [Ambach et al.,
1981], similar to percolation through unsaturated snow
[Colbeck and Anderson, 1982] and soil [e.g., Domenico
and Schwartz, 1990]. The near-impermeable glacier ice
beneath promotes the formation of a saturated water
layer at the base of the firn. Such water layers are
common in temperate glaciers [Schneider, 1994]. The
depth to water generally increases with distance upgla-
cier [Ambach et al., 1978; Fountain, 1989], as can be
expected from the general increase in snow accumula-
tion with elevation. High in the accumulation zone, the
water table may be as much as 40 m below the glacier
surface [Lang et al., 1977; Schommer, 1977; Fountain,
1989].

The hydrological characteristics of firn are fairly uni-
form between glaciers. Field tests of the hydraulic con-
ductivity (permeability with respect to water) of the firn
at five different glaciers [Schommer, 1978; Behrens et al.,
1979; Oerter and Moser, 1982; Fountain, 1989; Schneider,
1994] indicate a surprisingly narrow range of 1–5 " 10#5

m/s. This may reflect a uniform firn structure resulting
from a common rate of metamorphism of firn to ice.
Firn samples from South Cascade Glacier, Washington
State, had a porosity of 0.08–0.25 with an average of
0.15 [Fountain, 1989]. This average value is equal to the
value that Oerter and Moser [1982] found to be most
appropriate for their calculations of water flow through
the firn. Within the water layer, !40% of the void space
is occupied by entrapped air [Fountain, 1989].

The depth to the water layer depends on the rate of
water input, the hydrological characteristics of the firn,
and the distance between crevasses, which drain the

Figure 1. Idealized longitudinal cross section of a temperate alpine glacier showing the important hydro-
logical components. In the accumulation zone, water percolates downward through snow and firn to form a
perched water layer on top of the nearly impermeable ice, and then flows from the perched water layer in
crevasses (open fractures). In the ablation zone, once the seasonal snow has melted, water flows directly across
the glacier surface into crevasses and moulins (nearly vertical shafts). Based on Figure 10.11 of Röthlisberger
and Lang [1987]; copyright John Wiley and Sons Ltd.; reproduced with permission.
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Figure 2.2: Idealised longitudinal cross-section of a temperate alpine glacier showing the
important hydrological components. In the accumulation zone, water percolates downward
through snow and firn to the top of the nearly impermeable ice, and then flows into crevasses
(open fractures). In the ablation zone, once the seasonal snow has melted, water flows directly
across the glacier surface into crevasses and moulins. Figure: Röthlisberger and Lang (1987).

determined by the gradient of the total potential (gravity and ice pressure) driving the

flow. Englacial conduits which form under open conditions are able connect to the glacier

bed even when ice is >200 m thick (Hooke et al., 1984). An important consequence

of englacial drainage through moulins is that inputs of meltwater to the subglacial

drainage system are concentrated at discrete locations, favouring the development of

a channelised drainage system (Röthlisberger and Lang , 1987; Hubbard and Nienow ,

1997; Fountain and Walder , 1998).

Spatial and temporal variations in meltwater input to the ice-bed interface force

the subglacial drainage system to develop over the course of a melt season, from

a spatially distributed inefficient system to a discrete network of efficient channels

(Hubbard and Nienow , 1997). The winter subglacial hydrological system is dominated

by water produced by melting at the bed, creating a relatively low volume, high

pressure, distributed system. Dye-tracer studies at Haut Glacier d’Arolla indicate that

channelised drainage develops when water drains to the ice-bed interface in late spring,

destabilising the winter drainage pattern (Nienow et al., 1998). As surface melting

and subglacial discharge increase through the summer, headward growth of channels

replaces distributed flow and the channelised system migrates upglacier, growing in
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extent and efficiency. The boundary between the two systems is broadly associated

with the retreat of the snow line at the glacier surface (Nienow et al., 1998). Analysis of

subglacial piezometric surfaces indicates that such replacement is laterally variable, with

distributed drainage surviving the melt season in areas of the glacier bed separating the

channels (Fountain, 1994). Late in the melt season, however, all but the upper reaches

of the glacier are drained by a distributed flow network that feeds into, and interacts

with, large R-channels (Hubbard et al., 1995; Hubbard and Nienow , 1997; Nienow et al.,

1998) and the behaviour of the channelised drainage system dominates subglacial water

pressure patterns (Gordon et al., 1998). Inputs into the subglacial hydrological system

end with the suppression of surface melting in the autumn. Large channels, that can no

longer maintain their size by frictional heating, gradually close by deformation of the

overlying ice. Rates of channel closure are dependent on variables such as ice thickness,

viscosity and conduit shape (e.g. Nye, 1953; Hooke et al., 1990) as well as the size of

the conduit; plausible timescales for the closure of efficient subglacial channels are in

the range of days to weeks. During the winter, therefore, the background high-pressure

system becomes widely established once again (Hubbard and Nienow , 1997).

2.4 Impact of subglacial drainage on ice dynamics

Interplay between development of the subglacial drainage system and variations in

meltwater drainage to the ice-bed interface leads to temporal and spatial variations in

subglacial water pressure that cause ice velocity changes on timescales ranging from 1

year to <1 day.

Low volumes of meltwater input to the winter subglacial drainage system result

in steady and relatively slow rates of ice motion (e.g. Hooke et al., 1989; Anderson

et al., 2004). During the early stages of a melt season, when subglacial channels are

poorly developed, delivery of large volumes of surface meltwater to the ice bed result in

a temporary incapacity of the subglacial drainage system to match outputs to inputs,

creating high subglacial water pressures. The associated glacier speed-up is often termed

the ‘spring event’ and may last a few hours or days. Spring-events are common features

in valley glaciers, marking initial drainage of meltwaters to the ice bed, and have
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been recorded in detail on Unteraargletscher and Findelengletscher (Iken et al., 1983;

Iken and Bindschadler , 1986) in Switzerland, the polythermal Störglaciaren in Sweden

(Hooke et al., 1989) and Haut Glacier d’Arolla (Mair et al., 2001, 2003).

As the season progresses, however, the development of a channelised subglacial

drainage system causes basal motion to become less sensitive to changes in water

input. A progressive transition from a predominantly distributed to well-developed

channelised drainage system causes lower mean subglacial water pressures. In the early

stages of channelisation, discharge through incipient channels below moulins, not yet

connected to the main channel, cause more localised basal forcing and slightly increased

glacier velocity as higher water pressures are transferred to the surrounding distributed

system (Iken and Truffer , 1997; Mair et al., 2002a). Later in the melt season, however,

increasing discharge through a fully channelised drainage system has less effect as waters

are efficiently routed through discrete channels and late summer glacier velocity has

often been found to be similar to the annual deformation flow pattern (Hooke et al.,

1989; Iken and Truffer , 1997; Hanson et al., 1998; Mair et al., 2002a; Anderson et al.,

2004).

Observations of surface motion and water balance on Bench Glacier, Alaska, also

show that spatial patterns in seasonal evolution of the subglacial drainage system

result in up-glacier development of changes in ice velocity (MacGregor et al., 2005). A

short-lived pulse of surface acceleration, which raised velocities up to four times the

annual mean velocity, propagated up-glacier from the terminus at a rate of 200 - 250

m day−1. The speed-up event is caused by the pressurisation of a poorly connected

subglacial linked-cavity system (Mair et al., 2002b, 2003), while its termination can be

explained by an increase in efficiency of the subglacial hydrologic system through the

up-glacier evolution of an efficient subglacial drainage system (Nienow et al., 1998).

Water pressure variations recorded in boreholes located close to a subglacial conduit

at Haut Glacier d’Arolla, Switzerland, show that diurnal variations in water pressure

continue to occur even once a channelised system has been established (Hubbard et al.,

1995). Pressure variations within a large subglacial conduit resulted in a transverse

pressure gradient that drove water laterally into the distributed system during high

pressures, and back to the channel when levels dropped at night and the pressure
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gradient reversed. The observations demonstrate interconnection between the two types

of drainage system (Hubbard et al., 1995). Subsequent observations of diurnal cycles

in ice velocity suggest that a channelised system can raise subglacial water pressure,

and ice velocities, over a wider area (Hubbard et al., 1995; Nienow et al., 2005). While

subglacial conduits adjust in size to accommodate meltwater discharge over timescales

of days or more (e.g. Röthlisberger , 1972; Röthlisberger and Lang , 1987; Cutler , 1998;

Schoof , 2010), variability in meltwater delivery can vary significantly over much shorter

periods. Although steady-state analysis indicates that a channelised drainage system will

operate at lower mean pressure than a distributed one (Röthlisberger , 1972), temporary

imbalance between the volume of water delivered to a subglacial drainage system and its

ability to evacuate that water are accommodated by short-term spikes in subglacial water

pressure which lead to transient ice acceleration (Röthlisberger and Lang , 1987; Schoof ,

2010). Short-term ice velocity variations can therefore be explained by time-varying

water input to a channelised subglacial drainage system.

2.5 Polythermal glaciers

Observations have shown seasonal velocity variations that are linked to changes in

subglacial water pressure in High Arctic polythermal glaciers (Muller and Iken, 1973;

Andreasen, 1985; Rabus and Echelmeyer , 1997; Bingham et al., 2003, 2006). Bingham

et al. (2003) observed a spring event at John Evans Glacier at 80◦N on Ellesmere Island

where increased basal water pressures induced a velocity speed-up 50 - 100% above

winter velocities and rates of ice motion remained up to 50% above winter velocities

whilst surface derived meltwaters enhanced rates of basal sliding. During the course

of the summer, meltwaters accessed the glacier bed at increasing distances upglacier

thereby impacting on the glacier wide dynamics.

Observations of water drainage and ice acceleration in polythermal glaciers are

particularly significant since it had been thought that supraglacial meltwaters would be

unlikely to penetrate through thick layers of cold (below pressure-melting temperature)

ice to the glacier bed (Boon and Sharp, 2003). At John Evans Glacier, multiple,

relatively abrupt, drainage events occurred over a period of about one week during
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which a crevasse was water-filled or overfilled. After eight such events the surface

reservoir which had been feeding water into the crevasse drained completely within

one hour, suggesting that a hydraulic connection had been established through the

entire 150 m ice thickness (Boon and Sharp, 2003). It is proposed that a hydrofracture

mechanism is responsible for propagating cracks from the bottom of crevasses to the

bottom surface of a glacier (Van der Veen, 1998; Boon and Sharp, 2003). Because

the density of water is slightly greater than that of ice, provided a crevasse or moulin

remains water-filled, theoretical calculations show that the weight of the water can

overcome the lithostatic (resistive) stress in the ice, to deliver supraglacial meltwater

through layers of cold ice to a glacier bed (Weertman, 1973; Van der Veen, 1998; Alley

et al., 2005b; Van der Veen, 2007). At John Evans glacier, multiple drainage events

were necessary in order to deliver water through the full ice thickness because refreezing

of surface meltwater penetrating the initial fractures exceeded water inflow (Van der

Veen, 2007). The rate of crevasse penetration is dominantly controlled by the rate at

which water is supplied to the crevasse (Van der Veen, 2007) and a water-filled crevasse

has unlimited capacity, acting under gravity, to force water to the bottom surface of a

glacier (Weertman, 1973; Van der Veen, 1998; Alley et al., 2005b).

The thermal regime of polythermal glaciers means that there are differences in the

mechanisms and evolution of subglacial hydraulics compared with temperate glaciers.

For example, in many polythermal glaciers, the presence of cold ice under the glacier

snout creates a ‘thermal dam’ which delays subglacial outburst (Skidmore and Sharp,

1999; Rippin et al., 2003) and may prolong the spring velocity event. However, the

evidence for links between meltwater production, drainage of water by hydrofracture,

and ice acceleration raise the possibility of similar behaviour in larger ice sheet systems.

2.6 Hydrology and dynamics of ice sheets

By comparison with temperate and polythermal glaciers, our understanding of the

hydrology and dynamics of larger ice sheets is far less complete. In marginal parts

of the ablation zone, it may be reasonable to suggest that the hydraulic regime is

similar to a temperate glacier. Summer temperatures are warm and field observations
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from Jakobshavns Isbræ, a marine-terminating glacier in west Greenland, indicate that

meltwater streams drain through crevasses up to approximately 10 km from the ice sheet

margin (Echelmeyer et al., 1991). Numerous meltwater streams and moulins are also

reported further inland (Echelmeyer et al., 1991), although they become rarer at higher

elevations and have not been found above the equilibrium line (Catania et al., 2008).

The Quaternary geologic record contains strong evidence of channelised subglacial water

flow beneath former ice sheets in the form of tunnel valleys (e.g. Brennand and Shaw ,

1994), bedrock channels (Denton and Sugden, 2005) and eskers (e.g Clark and Walder ,

1994; Brennand , 2000). These features are usually restricted to marginal areas of former

ice sheets (Boulton et al., 2001) and it has been suggested that they delimit the ablation

zone (Clark and Walder , 1994).

Initial observations of summer ice acceleration ∼35 km from the ice sheet margin

in west Greenland (Zwally et al., 2002) indicate that surface meltwater does penetrate

to the GrIS bed and causes acceleration of the ice sheet. Zwally et al. (2002) recorded

summer acceleration of 5 - 25 % in four consecutive years that was directly correlated

with the magnitude of local surface melting (parameterised by the positive degree-day

method (Braithwaite, 1995)). Numerical simulations using a flowline model showed

that meltwater forced acceleration of ice flow has the potential to increase the GrIS

contrbution to sea level rise by 0.15 - 0.4 m by 2500 AD, should there be a direct

correlation between rates of surface melting and the magnitude of ice acceleration

(Parizek and Alley , 2004).

In these simulations, it is assumed that ice basal sliding rates are positively related

to air temperature, parameterised using the data from Zwally et al. (2002), and by the

driving stress which is determined by the evolving ice sheet surface slope. External

temperature forcing for the model was based on projections from the 3rd IPCC assessment

(Cubasch et al., 2001), and was then also used to determine variations in precipitation

patterns (Parizek and Alley , 2004). A number of simulations of GrIS evolution under

different global warming scenarios and parameter configurations were performed. These

demonstrated the following typical scenario, indicating the potential significance of

meltwater induced sliding for the future mass balance of the GrIS (Parizek and Alley ,

2004):
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Rising air temperatures over the GrIS increase melting in the ablation zone and

cause retreat of the ice sheet margin. Meanwhile, increased precipitation in the ice sheet

interior maintains the ice thickness there, leading to higher mean ice sheet thickness.

This increase in mean ice thickness, and in surface slope in the ablation zone, leads to

higher driving stresses. Following from this change in driving stress, a redistribution of

mass from the accumulation to the ablation zone occurs. This redistribution is initially

driven by higher surface slopes but ice flow velocity is also increased within the region

that water is able to drain to the ice-bed interface. The increase in ice flux from the ice

sheet interior to the ablation zone reduces the rate of ice front retreat, but lowers the

elevation of the surface inland. Elevated ice flux is sustained until the surface slope and

ice thickness have been sufficiently reduced to offset the additional sliding allowed by

meltwater. As the ice surface falls (with continued climate warming) the area of the

ice sheet subject to basal lubrication migrates inland. With surface ablation attacking

more and more of the ice sheet, the period of slowed marginal retreat is followed by

faster than standard retreat predicted by ice sheet models which do not account for the

basal sliding mechanism (Parizek and Alley , 2004).

The feedback between surface lowering of the GrIS and increases in the area which

is subject to meltwater enhanced basal sliding is exacerbated by the hypsometry of

the ice sheet which flattens inland, exposing a greater area of the ice sheet surface to

melting as temperatures increase (Bamber et al., 2001). Sensitivity testing of the model

employed by Parizek and Alley (2004) indicates that, beyond inclusion of a meltwater

related sliding law, parameterisation of the onset location of meltwater induced sliding

is the most important factor in determining the sensitivity of ice volume projections

in a climate warming scenario, even above the climate warming scenario that is used

itself. In the context of the research presented in this thesis, then, understanding

the relationship between meltwater production and factors controlling its spatial and

temporal evolution can be considered particularly important.

Satellite observations from west Greenland show that summer acceleration in land-

terminating sections of the GrIS margin is widespread up to ∼30 km inland (Joughin

et al., 2008a). A short study used ground-based and satellite observations from sites

further inland (up to 72 km from the margin) to detect large diurnal and longer-term
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variations in ice flow during late summer that were strongly coupled with changes in

surface hydrology (Shepherd et al., 2009). The diurnal signals were associated with

periodic changes in surface melting, and the less frequent signals were associated with

the episodic drainage of supra-glacial lakes. Overall, they found that the ice sheet

accelerated by 35% per positive degree-day of melting. The close link between surface

melting and enhanced flow suggests that Alpine glacier behaviour may provide an

appropriate analogue for the interplay between hydrology and dynamics in the GrIS

(Shepherd et al., 2009).

A longer-term study of ice velocity at 8 sites along the ‘K-transect’, which extends

inland from the west margin of the GrIS at ∼ 67◦N, found that higher rates of annual

ablation did not necessarily lead to faster ice flow (Van de Wal et al., 2008). Truffer

et al. (2005) caution that, similar to Alpine glaciers, the development of efficient water

drainage networks in times of high runoff may tend to reduce basal motion in larger

ice sheet systems. The results from the K-transect indicate, then, that the subglacial

drainage system beneath the GrIS may become channelised over the course of a melt

season to accommodate larger volumes of water at lower pressure. As a result, higher

levels of surface melting do not result in higher water pressures and ice velocity (cf.

Zwally et al., 2002; Parizek and Alley , 2004) and the importance of this relationship for

large-scale dynamic behaviour of the GrIS therefore remains uncertain (Truffer et al.,

2005; Van de Wal et al., 2008).

Despite the evidence that the relationship between surface meltwater production,

subglacial hydrology and ice dynamics in land-terminating sections of the GrIS is

analogous to smaller temperate and polythermal glacier systems, two critical issues

remain unresolved. Firstly, without hydrological data or detailed observations of the

seasonal structure of ice velocity variations from the GrIS, there is no direct evidence

which can confirm that seasonal development of the hydrological system occurs, or that

this process is responsible for the lack of correlation between rates of annual ablation

and ice velocity. For example, the study along the ‘K-transect’ only compares velocity

with ablation on yearly timescales (Van de Wal et al., 2008), while the short-term

study further inland confirms that meltwater is responsible for the ice acceleration, but

can only provide a snapshot of the relationship between hydrology and ice dynamics
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(Shepherd et al., 2009). Secondly, it is not clear whether inputs of meltwater from the

surface of the GrIS are sufficiently large to establish an efficient drainage system that

remains open for the entire melt season, or whether the large overburden pressure of

thick ice causes any subglacial tunnel networks to collapse after each drainage event,

making the subglacial environment of the GrIS less able to accommodate large volumes

of water and more sensitive to repeated hydrological perturbations than in smaller

glaciers.

Since the GrIS is much thicker and colder than temperate glaciers, it seems likely

that hydrofracture (e.g. Van der Veen, 1998; Boon and Sharp, 2003) plays an important

role in allowing water to reach the ice bed, particularly further inland from the ice sheet

margin. Satellite imagery shows seasonal development of large numbers of supraglacial

lakes which fill and subsequently drain from the surface of the GrIS over the course of

each summer (McMillan et al., 2007; Sundal et al., 2009). Supraglacial lake drainage

events have an obvious potential to supply large volumes of water to the ice sheet bed

(Alley et al., 2005b; Box and Ski , 2007; Sneed and Hamilton, 2007) and to provide the

large water fluxes necessary for crevasse hydrofracture (Van der Veen, 2007). Das et al.

(2008) recently reported drainage of a 2.7 km diameter lake, holding approximately 0.03

km3 of water, draining entirely through 1 km of ice thickness in less than 2 hours. The

peak rate of water flow during this event exceeded 8700 m3 and coincided with rapid

glacier uplift of 1.2 m and horizontal acceleration to nearly 8 km yr−1. Subsequent

subsidence and deceleration of the ice sheet occurred over the following 24 hours.

The coincidence of lake drainage, ice surface uplift and horizontal acceleration is

consistent with the propagation of a conduit linking the ice sheet surface and basal

hydraulics. These observations provide evidence for the injection of surface melt water

directly to the ice sheet bed, in a region where the ice ∼1 km thick; significantly thicker

than sites which are nearer the ice sheet margin. With increased summer temperatures

and an expanded ablation zone, it is likely that a greater area of the GrIS will have

surface lakes in future years, increasing the area of the bed that meltwaters have the

potential to access (Box and Ski , 2007; Sundal et al., 2009). The dynamic effect of

this lake drainage event was short-lived, however, and the factors which control the

initiation and timing of this process are currently not well understood (Alley et al.,
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Figure 2.3: Schematic of drainage features in the equilibrium and ablation zones of the GrIS,
including lakes, supraglacial streams, crevasses and moulins. Figure: Zwally et al. (2002)

2005b; Van der Veen, 2007). It is not clear, therefore, whether the integrated effect of

widespread lake drainages can explain the net regional summer ice speed-up as observed

by satellite and ground-based observations (Das et al., 2008; Joughin et al., 2008a).

Given the temporal correlation between horizontal ice acceleration and ice sheet

surface uplift observed in a number of studies (Das et al., 2008; Shepherd et al., 2009),

it appears summer velocity increases are local events that are triggered by inputs of

surface meltwater directly to the bed. It is possible, however, if behaviour similar to

Alpine glaciers does occur (e.g. Zwally et al., 2002; Van de Wal et al., 2008; Shepherd

et al., 2009) that it is confined to a narrow marginal zone where the ice sheet is thinner

and surface ablation is higher, while lake drainage events dominate at higher elevations

(Figure 2.3).

Whilst theoretical considerations suggest that longitudinal stress gradients do not

have a large effect on whole ice sheet profiles, they may be important closer to the

margin, or where basal sliding is the dominant mode of ice flow (Van der Veen, 1999).

Price et al. (2008) argue it is important to investigate how a zone of fast flowing

ice at the ice sheet margin can affect ice velocity further upglacier. In a numerical
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study designed to investigate the mechanisms responsible for the summer acceleration

observed by Zwally et al. (2002) in the Swiss Camp region in west Greenland, Price

et al. (2008) suggested that larger surface meltwater induced seasonal accelerations

(>2x those observed at Swiss Camp) in a region <20 km from the ice sheet margin

can induce significant speed-ups further inland by longitudinal (along-flow) coupling.

Since the region nearer the ice sheet margin is heavily crevassed as a result of extending

ice flow, it is proposed that abundant meltwater access to the ice-bed interface in this

region results in behaviour similar to Alpine glaciers, and that coupling to ice upglacier

is a more plausible explanation for ice acceleration further inland (>35km) than local

hydrological forcing (cf. Zwally et al., 2002; Parizek and Alley , 2004; Das et al., 2008).

This ‘coupling-hypothesis’ suggests that increased sliding as a function of increased

surface melt will be limited by evolution of the subglacial water system which operates

like an Alpine glacier, and that the effects of meltwater induced acceleration in a

warming climate will therefore have a smaller impact on the mass balance of the ice

sheet than has been implicated (Price et al., 2008). Without field observations, however,

it is not known over what distance longitudinal coupling can be effective and including

longitudinal stress gradients in ice sheet models of basal sliding remains an important

challenge (Marshall , 2005). Even if not wholly responsible for upglacier acceleration,

longitudinal (tensile) stress gradients that propagate from downglacier could contribute

to a feedback which would favour the hydrofracture of water-filled crevasses to the

glacier bed (Boon and Sharp, 2003).

In light of concerns about the future contribution of the GrIS to sea level change,

there has been significant recent interest in modelling of large-scale glacial hydrology

and coupling with models of ice sheet evolution (Arnold and Sharp, 2002; Flowers and

Clarke, 2002; Marshall , 2005; Pimentel and Flowers, 2010). These efforts are limited,

however, by fundamental shortcomings in available datasets and understanding of the

processes that control the relationship between melting at the surface of the GrIS and

seasonal changes in ice dynamics (Alley et al., 2005a). The purpose of this thesis,

therefore, is to investigate factors which control the relationship between the hydrology

and dynamics of a land-terminating section of the GrIS margin in order to provide

insights that improve our ability to make robust predictions about the future GrIS mass
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balance.
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CHAPTER 3

Study area, data and methods

The research presented in this thesis is based on field observations of the hydrology and

dynamics of a land-terminating outlet glacier in west Greenland. The aim of the project

is to use a suite of different observations in order to compare temporal and upglacier

variability in the relationship between surface meltwater production, subglacial drainage

system development and ice velocity over the course of a summer melt season. This

section describes the study area and outlines the main data that were collected. It is

not intended as an exhaustive methodological review, however, and specific discussions

of data limitations and errors are provided in the individual chapters where they are

most relevant.

3.1 Study area

Fieldwork was carried out at Leverett Glacier, a land-terminating outlet glacier located

at ∼67.10◦N on the western margin of the GrIS (Figure 3.1). The glacier tongue extends
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Figure 3.1: Location of Leverett Glacier on the western margin of the GrIS. The ice sheet
margin in this region is mostly land-terminating (Figure 3.1; cf. e.g. SE Greenland) and
therefore provides an appropriate glaciological setting in which to begin investigations into the
relationship between surface melting, glacier hydrology and ice dynamics in the GrIS. Satellite
images from the Moderate Resolution Imaging Spectroradiometer (MODIS).

approximately 2 km from the south part of Russell Glacier, a slightly larger outlet

glacier which forms part of the same lobe, and drains ice from the main ice sheet.

Measurements of surface mass balance have been collected along a transect close to

Leverett Glacier (K-transect) at ∼67◦N since 1990 (Van de Wal et al., 1995; Greuell

et al., 2001; Van de Wal et al., 2005). The region is characterised by relatively high

ablation (4-5 m yr−1) near the margin and low accumulation (∼0.3 m w.e. yr−1; Van de

Wal and Russell , 1994; Van de Wal et al., 2005). At a site 3 km from the ice sheet

margin, which is at an altitude of 340 m a.s.l, the mean annual surface mass balance

was -4.03 m w.e. for the period 1990 - 2003 (Van de Wal et al., 2005). The mass

balance increased with elevation at a rate of ∼3.7 x 10−3 m m−1 and these data indicate

29



that the mean equilibrium-line altitude (ELA) in this region is 1534 m (Van de Wal

et al., 2005). Satellite interferometry and ground-based observations have shown that

this section of the ice sheet experiences summer ice acceleration which is attributed

to meltwater forcing (Joughin et al., 2008a; Van de Wal et al., 2008; Shepherd et al.,

2009). Seasonal development and subsequent drainage of supraglacial lakes has also

been observed at elevations up to ∼1600 m using optical satellite imagery (McMillan

et al., 2007; Sundal et al., 2009).

Large volumes of meltwater drain each summer from Leverett Glacier. Peak

discharge is estimated to be hundreds of m2s−1, suggesting that water is delivered from

a large catchment, perhaps several hundred km2 in area, within the ice sheet. Drainage

at the glacier snout emerges from a discrete portal and flows along a single channel

for approximately 2 km before reaching a bedrock cross-section (Figure 3.2; location

shown by green triangle, Figure 3.3), making an ideal setting in which to investigate

hydrological parameters in water emerging from the subglacial drainage system. The

ice sheet margin in this region is mostly land-terminating (compared with, for example,

SE Greenland) and therefore provides an appropriate glaciological setting in which to

begin investigations into the relationship between surface melting, glacier hydrology

and ice dynamics in the GrIS.

The field site was also chosen partly for practical reasons. Leverett Glacier is

approximately 25 km east from the town Kangerlussuaq which lies at the head of Søndre

Strømfjord and most of the distance can be covered by vehicle. Access for personnel

and equipment is therefore relatively easy compared with most sites in Greenland.

3.2 Data and methods

Data were collected over three field seasons from 2008 - 2010. In spring 2008 we

established a transect of four global positioning system (GPS) receivers which were used

to monitor rates of surface motion approximately along a glacier flowline, as determined

using interferometric synthetic aperture radar observations (InSAR; Palmer et al.,

2008, 2011). This transect extended ∼35 km inland across an alitudinal range of 390 -

1060 m (Figure 3.3). Simultaneous measurements of air temperature were made at each
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Figure 3.2: Leverett Glacier viewed from the east. The proglacial stream emerges from the
north side of the glacier snout through a single outlet. The outlet is fed by a large subglacial
channel which is expressed as a depression on the surface of the glacier which extends several
kilometres upglacier. The gauging site where hydrological measurements were made in the
proglacial stream is marked by a green triangle.

of these sites in order to constrain melt rates.

Hydrological monitoring began in 2009 in the proglacial stream that emerges from

the Leverett Glacier snout. This site was chosen because Leverett Glacier has much

higher proglacial meltwater discharge than its close neighbours, implying that meltwater

drains from a larger portion of the ice sheet. In this season the GPS transect was also

expanded to include seven sites extending ∼115 km inland to ∼1700 m elevation and

more detailed measurements of surface ablation were made (Figure 3.4). The GPS at

site 1 was transferred to the Leverett Glacier tongue from neighbouring Russell Glacier,

where it had been placed in 2008 for access reasons, in order to be able to compare

changes in ice velocity with hydrological parameters (Figure 3.3). Sites 2 - 4 remained

in the positions indicated in figure 3.3.

The ice velocity, air temperature and surface ablation measurements were continued

in 2010 along with basic hydrological measurements. In the spring of 2010, an airborne

geophysical survey also collected ice surface elevation data from a flightline which passed
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Site 1 
(2009-)

Figure 3.3: Map showing the GPS transect in 2008 (black triangles). Four GPS sites are
located in the ablation zone of the GrIS across an altitudinal range of 395-1060 m a.s.l., where
ice thickness ranges from 270-920 m (Bamber et al., 2001). Simultaneous measurements of air
temperature were made at each site to constrain surface melt-rates. The hydrological monitoring
site from 2009 is shown by the green triangle. Site 1 was relocated from Russell Glacier to the
Leverett Glacier tongue in 2009 in order to be able to compare the hydrological record with
changes in ice dynamics.

directly over the transect (Figure 3.4; Krabill , 2010). Combined with a lower resolution

digital elevation model (DEM) of the GrIS bed (Bamber et al., 2001) the cross-profile

shows that ice thickness along the transect ranges from ∼270 m at site 1 to ∼1400 m

at site 7 (Figure 3.5).

3.2.1 Global Positioning System observations

GPS observations have been used since the 1980s to provide measurements of glacier

surface velocities (e.g. Hinze and Seeber , 1988). Satellites in the GPS constellation

continuously orbit the Earth, broadcasting radio signals with an embedded code which

allows computation of the signal transit time and therefore the distance from an antenna
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Figure 3.4: Map showing the extended GPS transect in 2009 & 2010. The transect consists
of seven sites which extend from 450 - 1700 m a.s.l. (red stars). The ELA in this region is at
∼1500 m (red; Van de Wal et al., 2005). In 2010, an airborne geophysical survey collected
surface elevation data along the transect (Krabill , 2010). The flightline for this survey is shown
by the black line and the data are presented in Figure 3.5. The hydrological monitoring site
from 2009 is shown by the green triangle. Contours on this map are produced at 100 m intervals
from a digital elevation model derived from InSAR (Palmer et al., 2011).

to each satellite. Precise coordinates of the antenna position can then be calculated

by trilateration (as opposed to triangulation, which uses angles), typically using four

or more satellites (e.g. Leick , 2004). The use of GPS holds significant advantages

over traditional survey techniques, particularly in polar regions where distances from

stable reference points are prohibitively large and continuous manual operation is

impractical. Achievable accuracies can be reduced to millimetres or centimetres by

using high temporal resolution sampling and appropriate processing techniques (King ,

2004).

In ice sheet applications, use of GPS provides highly detailed timeseries of the

antenna position, and therefore ice motion, at a single point. A drawback of GPS

systems is their cost, both in terms of equipment and in deploying a station in a remote

area. In addition, the low spatial coverage (i.e. one point) necessitates use of multiple

stations. The observations therefore represent one extreme of a trade-off between spatial
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Figure 3.5: Ice thickness profile along the GPS transect. Ice surface elevation data were
acquired during an airborne geophysical survey (Krabill , 2010) and bed elevation were sampled
from a coarser resolution DEM of the GrIS bed (Bamber et al., 2001)

coverage and temporal resolution. At the other end are satellite observations, which can

provide snapshots of ice velocity over wide areas (e.g. Joughin et al., 2010), but whose

temporal resolution is limited by the repeat period of satellite orbits. For this study,

however, the high temporal resolution provided by GPS observations is critical in order

to understand how atmospheric forcing controls short-term variability in ice motion.

We used dual-frequency Leica 500 and 1200 series GPS receivers to collect season

long records of ice motion at each site. Each GPS antenna was mounted on a pole

drilled several metres into the ice, which froze in subsequently, providing measurements

of ice motion that were independent of ablation (Figure 3.6). The GPS receivers were

powered by solar panels which were mounted on the same pole as the antenna. The

GPS receivers were housed in an insulated box that also contained the batteries and

was loosely attached to the bottom of the pole. This allowed the box to remain near

the pole as the ice sheet surface lowered during the summer ablation period. Each site

was visited twice a year, at the start and end of the melt season, to collect data, redrill

the poles and perform any necessary maintenance.

The GPS receivers collected data continuously at 30 second intervals that were

processed using a kinematic approach relative to an off-ice base station (King , 2004)
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Figure 3.6: The GPS monitoring station at site 1. The GPS antenna is mounted on the top of
a support pole which is drilled ∼4 m into the ice. At this site, a shielded temperature sensor and
UDG are attached to a cross-bar which is also mounted on the pole. The GPS is powered by
the large solar panels. Data are collected by the GPS receiver and a datalogger (which records
the temperature and ablation data) which are housed in an insulated box at the base of the
pole along with the batteries. At sites where no ablation data was collected, a shielded HOBO
temperature sensor with integrated logger was attached directly to the support pole.

using the Track 1.21 software (Chen, 1999; King and Bock , 2006). Data from an

International GNSS Service (IGS) base station located in Kelyville, approximately 30

km east from Leverett Glacier, were used for processing data in 2008, 2009 and the first

part of 2010. In 2010 we also established an off-ice base station at the snout of Leverett

Glacier and reduced the sampling interval to 10s in order to improve the accuracy of

the ice motion observations. Conservative estimates of the uncertainty associated with

positioning at each epoch in the GPS record are approximately ± 1 cm in the horizontal

direction and ± 2 cm in the vertical direction. Rates of ice motion along the transect

range from approximately 0.3 - >1 m day−1. We can therefore resolve variations in ice

velocity over timescales of 1 day or less. Specific discussion of the uncertainty in each

GPS timeseries is provided in the methods sections of chapters 4, 6, 7 and 8.
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3.2.2 Temperature and surface ablation data

Simultaneous measurements of air temperature and surface ablation were made at each

GPS site in order to constrain melt rates using the positive degree-day method (e.g.

Braithwaite and Olesen, 1989; Ohmura, 2001). This method rests on an empirical

relationship between snow or ice melt and air temperatures and has been widely used in

glaciological studies. The popularity of degree-day (also known as temperature-index)

models is due to the relative ease of collecting temperature data and generally good

performance despite their simplicity (Hock , 2003). In its simplest application we use

positive air temperature values as a proxy for local melt rates (e.g. in Chapters 4 and

6). This approach is improved upon, however, by using a simple model which uses

observed lapse rates and a surface DEM (Palmer et al., 2008, 2011) to calculate rates

of surface melting distributed across a catchment (discussed in chapter 5).

Degree-day models often match the performance of energy balance models (which

quantify melt as residual in the heat balance equation) on a catchment scale (Hock ,

2003). This success is explained by high correlation of temperature with several energy

balance components (Braithwaite and Olesen, 1990; Lang and Braun, 1990; Ohmura,

2001). It is recognised that there are important limitations of degree-day melt models

compared with more complex methods. For example, two major shortcomings are

decreasing accuracy with increasing temporal resolution and difficulty in accurately

representing spatial variability in melt rates, which may vary substantially due to

topographic effects such as shading, slope and aspect (Hock , 2003). In addition, it is

also challenging to capture relevant data, such as the lapse rate, on appropriate scales.

For the purposes of our investigations, however, where we wish to compare temporal

patterns of surface melting with variations in ice velocity, this method can provide a

simple first-approximation of bulk meltwater production at the ice sheet surface within

the Leverett Glacier catchment.

Measurements of air temperature were made using shielded Campbell Scientific T107

temperature sensors connected to Campbell Scientific CR800 dataloggers (sites 1, 3 and

6) or shielded HOBO U21-004 temperature sensors (sites 2, 4, 5 and 7) at 15 minute

intervals throughout the survey period, and were mounted on the same poles as the
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GPS antennae (Figure 3.6). Seasonal melt totals were measured using the GPS support

pole as an ablation stake at each site. In addition, detailed measurements of local

surface ablation were made at sites 1, 3 and 6 from spring 2009 using a Campbell SR-50

ultra-sonic depth gauge (UDG; Figure 3.6). The datalogger for both the temperature

and ablation measurements was housed in the same box as the GPS equipment and

powered by a small solar panel mounted on the top of the box. Winter snow depth was

also measured before the onset of melt at each site using an avalanche probe. Combined

with the detailed surface ablation record, this allows us to improve the parameterisation

of melt production by calculating different degree-day factors for snow and ice.

3.2.3 Hydrological data

Drainage from Leverett Glacier occurs through one large portal on the North side of

the glacier snout, which is the outlet for runoff from a large subglacial conduit (Figure

3.7). This conduit grows to >20 m wide over the course of the melt season and its

route is expressed on the glacier surface as a large depression which extends several

kilometres inland (Figure 3.2; Van Tatenhove et al., 1995). Meltwater flows in a single

channel for ∼2 km before reaching a stable bedrock cross-section prior to drainage

over a large waterfall. Water stage, electrical conductivity (EC) and turbidity were

monitored continuously in the proglacial stream at the bedrock section (Figures 3.8 &

3.9).

Detailed analysis of the form and timing of variability in proglacial discharge

parameters may reveal characteristics of the flow pathways followed by the meltwater

and therefore the structure and extent of the subglacial drainage system (e.g. Collins,

1979; Fenn, 1987; Swift et al., 2002). Studies of sediment evacuation by subglacial

drainage system have demonstrated high variability in sediment yield at both seasonal

and annual timescales (e.g. Collins, 1990; Bogen, 1996; Swift et al., 2002). This

variability in sediment yield has previously been related to sediment availability (Bogen,

1996; Collins, 1996), changes in the basal area accessed by subglacial meltwater due to

flood events or drainage system expansion (Gurnell , 1995; Collins, 1996; Denner et al.,

1999), and drainage instabilities, including flowpath migration and drainage system

reorganisation (Gurnell , 1987; Collins, 1990; Gurnell and Warburton, 1990; Humphrey
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Figure 3.7: The meltwater stream emerging from the snout of Leverett Glacier. This single
portal grows in size over the course of a melt season and is the outlet for a large subglacial
channel and carries virtually all the water that drains from the glacier.

and Raymond , 1994). Theoretical analysis suggests that the hydraulic efficiency of

subglacial drainage is likely to be a critical control on basal sediment evacuation

because it controls flow competence and capacity (Alley et al., 1997). Distributed

drainage systems are likely to access a large area of the glacier bed, but their hydraulic

inefficiency limits the mobilisation and transport of basal sediments (Alley et al., 1997).

In a channelised drainage system, however, higher energy flow allows greater entrainment

of sediment and evacuations rates increase rapidly as a nonlinear function of flow velocity

and discharge (Alley et al., 1997).

Electrical conductivity of meltwater can also be used to crudely differentiate runoff

components and hydrological pathways through a glacial catchment (Collins, 1979).

Electrical conductivity of meltwater is an indicator of its ionic concentration. When

water is transported efficiently through the subglacial drainage system water-rock

contact times are short, and water:rock ratios are low, which limits the potential for

solute acquisition (Collins, 1979; Fenn, 1987). Under these circumstances, weathering

is limited to fast surface exchange reactions (Tranter et al., 1993). Conversely, the
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14th May 11th August

Figure 3.8: River cross-section where hydrological measurements were made (dates in the
photographs are from 2009). At the start of the melt season the river bed is empty and discharge
grows to several hundred m3 s−1 by late summer. The cross-section is located at the top of a
large waterfall approximately 2 km from the glacier snout (see Figure 3.3).

distributed system transports meltwaters relatively slowly at the ice-bed interface,

allowing longer for meltwater to interact with the products of subglacial erosion, hence

weathering may include slower dissolution and the potential for solute acquisition is

high (Tranter et al., 1993). In Alpine and High Arctic glacier systems a basic pattern of

decline from high to low solute concentration is typical as the drainage system becomes

more efficient and a greater proportion of water is transported rapidly through the

glacier over the course of a melt season (e.g. Collins, 1979; Skidmore and Sharp, 1999).

It is recognised that these hydrological parameters are somewhat crude indicators

of subglacial drainage system behaviour and we rely on inference about the spatial

extent of each of two drainage system types and the partitioning of water between

them (e.g. Hubbard and Nienow , 1997; Brown, 2002). In light of this, we are careful

only to draw conclusions which are clearly supported within the limits of the data.

One significant advantage, however, is that these are simple data to collect using

commercially available sensors. This allows us to collect continuous records at high

temporal resolution throughout the entire melt season which can be compared with the

detailed records of ice velocity and meltwater production.

The monitoring station was located in a single channel close to the ice margin that

did not overflow at peak discharge. During a 2 week period simultaneous measurements

of EC and turbidity were taken within 50 m of the glacier snout, and showed that the
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Figure 3.9: Hydrogical monitoring station in the proglacial stream. Pressure transducers,
turbidity meters and an electrical conductivity meter are mounted on a support structure which
is fixed to bedrock and are submerged at a fixed height. A UDG is also suspended above to
channel to provide a secondary record of river stage.

hydrological parameters we measured did not change significantly following emergence

of the meltwaters from the glacier terminus (Cowton et al., in review). As a result,

our analysis is not greatly complicated by riverine or subaerial processes allowing us to

make direct inference about the drainage system under this section of the GrIS margin

(Clifford et al., 1995a).

Measurements of stage were made using a pressure transducer submerged at a fixed

level in the proglacial stream and a sonic-ranging device suspended above the water

surface (Figure 3.9). As stage was monitored at a bedrock cross-section, the relationship

between water stage and discharge is temporally stable. Stage was converted into

discharge using a rating curve derived from repeat dye-dilution gauging tests (Kilpatrick

and Cobb, 1984) conducted in the proglacial stream across the full range of discharges.

Use of the dye-dilution method was necessitated by high discharges which made standard

gauging techniques, such as the velocity-area method, impracticable.

Measurements of turbidity were made using a Partech IR40C active-head turbidity
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meter (Clifford et al., 1995b), which measures attenuation of a pulse of infrared light

across a fixed gap to determine the opacity of meltwater. A relationship between tur-

bidity and suspended sediment concentration was derived by calibration against manual

samples of sediment. Depth integrated samples of suspended sediment concentration

were obtained using a USDH-48 sampler which was lowered through the water column

near the stream edge. These samples were filtered and the remaining sediment was

weighed to determine the sediment concentration.

Electrical conductivity was measured using a Campbell CS547A Conductivity meter

and the data were recorded using a Campbell CR1000 datalogger. The sensors were

mounted on a support structure that was placed in the proglacial stream for the course

of the melt season (Figure 3.9). Given the large size of the cross-section and high

discharge in late summer (Figure 3.8) the sensors had to be moved regularly through the

melt season to avoid being washed away. Continuity in the stage record was maintained,

however, by using two sensors which were not moved at the same time. The hydrological

data are presented in chapter 5 which includes discussion of the dye-dilution method

and uncertainties in the discharge and suspended sediment data.

3.2.4 Satellite data

In addition to the field observations, we used freely-available satellite data to provide

information about ice sheet surface conditions inland from the Leverett Glacier tongue

in 2009. Observations from the Moderate-resolution Imaging Spectrometer (MODIS)

allow us to study the development of supraglacial lakes within the region of our GPS

transect (Sundal et al., 2009). In addition, we used the MYD10A1 1-day albedo product,

part of the MODIS Aqua snow cover daily L3 global 500 m gridded product (Hall and

Salomonson, 2009; Hall et al., 2009), to map changes in the albedo of the ice sheet

surface in this region of the GrIS through the survey period. By using repeat imagery

we used these data to build timeseries of lake development and drainage (Chapters 5

& 6; Sundal et al., 2009) and to quantify the lowering of surface albedo associated

with meltwater generation and retreat of the seasonal snowline (Chapter 6). Aside from

days where cloud cover obscures satellite images, the timeseries cover the whole melt

season, from before the onset of melt at the ice sheet margin in spring, to the period of
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refreezing and snowfall in the autumn. These data are presented in chapters 5 and 6.
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CHAPTER 4

Seasonal evolution of subglacial drainage and acceleration

in a Greenland outlet glacier
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Abstract

The Greenland Ice Sheet contains 7m equivalent sea level rise yet its present mass

and future contribution to sea level is poorly understood (IPCC , 2007). Recent ob-

servations indicate that mass loss near the margin is accelerating, partly the result of

increases in ice motion (Krabill et al., 2004; Rignot and Kanagaratnam, 2006; Joughin

et al., 2008a). Surface meltwaters are known to access the ice sheet base and affect

ice motion through the enhancement of basal motion (Das et al., 2008; Zwally et al.,

2002). However, the ice-motion response to seasonal variations in meltwater inputs

remains poorly constrained both spatially and temporally. Here, we present ice motion

data from global positioning system receivers located along a ∼35 km transect at the

western margin of the Greenland Ice Sheet throughout a summer melt-season. Our

measurements reveal substantial increases in summer motion, up to 220% above the

winter background. These speed-up events display an upglacier evolution over the

course of the summer. The relationship between melt and ice motion varies both at a

site and between sites during the melt-season and can be explained by seasonal evolution

in the subglacial drainage system similar to hydraulic-ice dynamic forcing mechanisms

observed at smaller valley glaciers.

Recent studies have focused on the role that seasonal changes in hydrological forcing

have on ice motion of the Greenland Ice Sheet (GrIS; Rignot and Kanagaratnam, 2006;

Joughin et al., 2008a; Das et al., 2008; Parizek and Alley , 2004; Van de Wal et al.,

2008) and suggest that surface melting generates large enough volumes of meltwater to

lubricate basal flow should it reach the bed (Shepherd et al., 2009). This process has the

potential to create a positive feedback between climate warming and ice velocity that

has not been considered in ice sheet models that predict sea-level rise (IPCC , 2007).

A theoretical mechanism of hydro-fracture (Van der Veen, 2007; Alley et al., 2005b)

proposes how surface meltwater can penetrate to the bed through cold ice >1000m

thick and has been invoked to explain changes in vertical and horizontal components

of ice motion in response to a lake drainage event (Das et al., 2008). Simultaneous

measurements of ice velocity and air temperature have established, over short-time
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scales, a correlation between local surface melting and velocity fluctuations over a

widespread area (Joughin et al., 2008a; Van de Wal et al., 2008; Shepherd et al., 2009).

However, it has been shown that higher annual ablation does not necessarily lead to

increased annual ice velocities (Van de Wal et al., 2008) and the importance of this

relationship for large-scale dynamic behaviour of the GrIS remains equivocal. Shepherd

et al. (2009) suggest that Alpine glaciers may provide an appropriate analogue for the

evolution of the GrIS in a warming climate. In Alpine and High Arctic polythermal

valley glaciers ice motion depends on variations in the structure, hydraulic-capacity

and efficiency of the subglacial drainage system (Iken et al., 1983), each of which

evolve spatially and temporally on a seasonal basis (Kamb, 1987; Bingham et al., 2003;

Anderson et al., 2004; Kessler and Anderson, 2004; Mair et al., 2002b). Until now,

limited datasets have been unable to confirm this hypothesis for the GrIS.

We used global positioning system (GPS) observations to provide continuous ice

velocity measurements, from May 7th, during the 2008 melt-season and subsequent

winter at four sites along a land-terminating transect in the ablation zone of the western

margin of the GrIS at ∼67.10◦N (Figure 4.1). Simultaneous measurements of air

temperature were made at each site.

The GPS observations show that each site experienced changes in daily ice velocity

that were >110% above winter motion over the course of our survey (Figure 4.2). This

variability is consistent with, but much stronger than, previously reported observations

(Zwally et al., 2002; Parizek and Alley , 2004; Shepherd et al., 2009). When our survey

began, melt had commenced near the ice margin and site 1 was already experiencing

motion above winter background level. At sites 2, 3 and 4 a common pattern of seasonal

ice velocity variation is characterised by an initial period of slow-flow at winter levels,

followed by a 70 - 100% increase in horizontal velocity, following the onset of melt, that

marks a change in the dynamic regime to higher mean velocities. These sites gradually

return to velocities below their winter values by the end of the summer, although

individual high velocity events occur throughout the summer. Average rates of ice

motion at sites 1, 3, and 4, following the seasonal increase in horizontal velocity, were

114, 132, and 142 m yr−1 respectively. The net increases in ice motion above winter

background motion, due to these summer variations, are 19%, 40% and 17% equating
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Figure 4.1: Location of the GPS transect on the western margin of the Greenland Ice Sheet.
The four GPS sites are located in the ablation zone of the GrIS across an altitudinal range of
395 - 1060 m a.s.l., where ice thickness ranges from 270-920 m (Bamber et al., 2001) and are
located along a flowline from the ice sheet interior as determined by interferometric synthetic
aperture radar (InSAR) observations (Palmer et al., 2008). Simultaneous measurements of air
temperature were made at each site to constrain surface melt-rates.

to an increase in annual ice flux of 8%, 14% and 6%. In addition, the data reveal

an up-glacier evolution in the onset of horizontal acceleration, and in the subsequent

slowdown. Site 2 began to speed up on May 15th and sites 3 and 4 followed on May

27th and June 11th respectively.

At all sites, the highest horizontal velocities coincide with uplift of the ice sheet

surface, up to 12 cm in a single event, and reductions in velocity occur when the surface

is lowering or stable. The highest daily horizontal velocities occur during periods of

rapid uplift, rather than at peak elevation. Clear longer-term seasonal changes in surface

elevation are associated with variations in the horizontal flow regime, particularly at

sites 3 and 4, and can be categorised into three phases. Phase 1 is characterised by no

enhanced surface uplift and low horizontal velocities (May 7 - 30 at site 3; May 7 - June
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Figure 4.2: Seasonal development of melt-induced ice velocity variations. a-d, 24-hour
horizontal velocity (blue) and surface height (green) at each GPS site. Surface height is
displayed relative to an arbitrary datum with a linear, surface-parallel, slope removed. Dashed
lines show winter background velocity (black) and velocities from periods with sparse data
(blue). Shaded sections identify periods of ice acceleration associated with ice-surface uplift (red),
and slower ice motion associated with a decrease in surface height (blue). Solid lines indicate
different phases of longer-term ice velocity vs. surface uplift relationship. e. Temperature record
from sites 1 (magenta), 3 (red) and 4 (blue).

10 at site 4) and, the slow flowing inland ice (sites 3 and 4) appears to be unaffected by

the faster ice downstream (sites 1 and 2). During phase 2 the rate of uplift increases as

do the horizontal velocities (May 31 - June 19, at site 3; June 11 - July 14 at site 4)

and in phase 3, surface elevations gradually decrease towards (site 3) and below (site 4)

their early season levels (June 20 - July 21 at site 3; July 15 - August 29 at site 4) but

can fluctuate by ∼0.05 m day−1.
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Figure 4.3: Intra-seasonal changes in surface melting vs. ice velocity relationships. a, Positive
Degree Day (PDD) vs. velocity change at sites 1, 3 & 4 for whole season. 24-hour velocities are
shown as percentage change relative to winter background. b-d, PDD vs. velocity for different
phases of ice-velocity vs. uplift relationship 1. ‘pre-melt’, 2. ‘enhanced surface uplift’, and 3.
‘surface lowering’ at GPS sites 1, 3 & 4 respectively.

We used air temperature data to derive positive degree days (PDD) at each site to

investigate relationships between surface melt (as inferred from PDDs) and ice velocity.

For the melt-season as a whole there was a weak but significant correlation between

PDD and daily ice velocity at each site but there is no link between the intensity of

seasonal melting and the mean horizontal velocity increase (Figure 4.3a).

Studies of hydro-mechanical coupling at alpine and sub-polar glaciers reveal that

intra-seasonal changes in the hydraulic efficiency of the subglacial drainage system

are a major control on the sensitivity of ice motion to meltwater inputs (Kamb, 1987;

Bingham et al., 2003; Anderson et al., 2004; Kessler and Anderson, 2004; Mair et al.,

2002b). Our data show that: i) phase 1 (pre-melt) velocities are low and show no

relationship to PDD (Figure 4.3c,d); ii) phase 2 (enhanced surface uplift) mean velocities

are high (>50% above winter background) and positively correlated with PDD (Figure

4.3b-d); and iii) during phase 3 (surface lowering) the sensitivity of the relationship

between PDD and velocity changes such that only periods of most intense melting (i.e.
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high PDDs; Figure 4.3b-d) are associated with substantial enhanced surface velocity

(>50% above winter background). This accounts for the gradual decline in ice velocities,

but explains the sporadic high velocity events.

From the association between the onset of surface melting, surface uplift and

enhanced horizontal velocities we infer rapid delivery of surface meltwater to the ice

sheet bed following the establishment of a hydraulic connection (Das et al., 2008; Zwally

et al., 2002; Van de Wal et al., 2008; Shepherd et al., 2009). This meltwater increases

basal sliding by reducing friction between overlying ice and its bed, likely through

hydraulic jacking or cavitation (Anderson et al., 2004; Iken, 1981). Although changes

in surface elevation can also result from changes in bedrock topography and strain rates

(Gudmundsson, 2003), the patterns we observe cannot be attributed to these effects

alone. We would expect acceleration of downstream ice to cause thinning upstream, yet

observe the opposite, and would not expect bedrock obstacles to be expressed at the ice

sheet surface on the length scales of the changes in our data. The coincidence of highest

velocities with rate of uplift, rather than peak elevation, suggests ‘stick-slip’ behaviour

similar to that observed in an Alpine type glacier (Anderson et al., 2004; Iken, 1981;

Fischer and Clarke, 1997), whereby separation of the ice and bed allows the immediate

release of built-up stresses in the overlying ice.

Our observations of temperature and the pattern of changes in horizontal and vertical

motion at each site, suggest a local, temperature-related, forcing mechanism for the

seasonal changes in ice-motion. As also observed at Alpine and High Arctic polythermal

glaciers (Anderson et al., 2004; Kessler and Anderson, 2004; Mair et al., 2002b), the

initiation of summer velocity changes is dependent on the establishment of a hydraulic

connection between the ice surface and bed, which occurs first in the lowest parts of the

ablation zone, through thinner ice, and migrates progressively up-glacier (Figure 4.2).

However, our results from Greenland suggest that a temporally consistent relationship

between surface melt and ice velocity does not exist once a hydraulic connection has

been made. Instead, the relationship evolves both at a point and develops upglacier.

When melt first accesses the bed, the onset of high surface velocities and uplift (phase

2; Figure 4.3) is indicative of an inefficient basal hydraulic system in which basal

water pressures are highly sensitive to relatively small inputs of water (Kamb, 1987).
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During the latter part of the melt-season (phase 3), the gradual surface lowering and ice

slow-down indicates a more efficient channelised system in which basal water pressures

are generally lower (Kamb, 1987). Only during very high meltwater inputs are basal

water pressures raised enough to reduce basal friction significantly and enhance surface

velocity (Iken and Bindschadler , 1986). This categorisation is complicated by a small

number of examples of high horizontal velocity in our data in the absence of high

temperatures (e.g. site 4 on Aug 14th (Figure 4.2)), which may be caused by rapid

drainage of surface lakes to the ice sheet bed (Das et al., 2008; Zwally et al., 2002).

Sites 3 and 4 do not show velocity increases to above winter values even when

sites downstream have started accelerating (Figure 4.2) suggesting that longitudinal

coupling is not effective over >10 km at these locations. Whilst numerical studies

have suggested that it may be possible for seasonal acceleration of inland ice to be

explained through longitudinal coupling to marginal ice (Price et al., 2008), and our

data do not preclude its effectiveness in other parts of the GrIS, we do not observe

that process here at length-scales of >10 km. Therefore, enhanced surface velocity is

primarily a consequence of local hydrological forcing at each site and the efficiency of

the hydrological system.

Thus the ice sheet exhibits a transient dynamic response to seasonal melting at

each site (Rignot and Kanagaratnam, 2006; Joughin et al., 2008a; Iken, 1981). We find

that, in addition to surface melt-rates, a key control on the magnitude and location

of enhanced basal sliding is the structure and efficiency of the subglacial drainage

system which evolves seasonally, in a similar manner to Alpine glaciers (Anderson

et al., 2004; Iken, 1981; Nienow et al., 1998). The seasonal and spatial increase in

subglacial hydraulic efficiency is likely responsible for the lack of correlation between

seasonal ablation rates and velocity changes that has caused previous authors to question

the existence of positive feedback between climate warming and annual ice velocity

of the GrIS (Van de Wal et al., 2008; Truffer et al., 2005). Using a more extensive

dataset, we find that the relationship between melt-rate and ice motion evolves through

time at each site and with distance up-glacier, suggesting that its significance lies at

higher elevations. Although our data only extend up to 1000 m altitude, additional

ground-based observations have also detected ice-motion variations during late summer
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that are strongly associated with changes in surface hydrology, at elevations above 1400

m in the same region (Shepherd et al., 2009).

In a warming climate, with longer and more intense summer melt-seasons, we would

expect that water will reach the bed farther inland (Hanna et al., 2008) and a larger

portion of the ice sheet will experience summer velocity changes. Modelling studies

have suggested that the enhancement of summer ice motion is critical in drawing down

ice from the accumulation zone thereby reducing the surface elevation of the ice sheet,

exposing more of the ice sheet to surface ablation (Parizek and Alley , 2004). Additionally,

the low gradient of the GrIS interior ensures that a small rise in temperature will induce

melt across a spatially extensive area and substantial melt at elevations above 1600

m is already evident in the presence of supraglacial lakes (Sundal et al., 2009). Our

findings emphasise the importance of both surface melting and seasonal evolution of

the subglacial drainage system on ice motion in marginal regions of the GrIS and will

help parameterise numerical models that predict the future evolution of the GrIS.

4.1 Supplementary methods

Each GPS antenna was mounted on a support pole drilled several metres into the ice,

which froze in subsequently, providing measurements of ice motion that are independent

of ablation. The GPS receivers collected data that were processed kinematically using

a Precise Point Positioning approach (sites 2, 3 & 4 at 300s intervals), and relative

to a local (<2.5 km, 10s intervals) base station for site 1 (King , 2004). Estimates of

the uncertainty associated with positioning are ± 1.5 cm in the horizontal and ± 2.5

cm in the vertical. The precision and resolution of the dataset is therefore sufficient to

study changes along the flowline on seasonal and shorter (<1 day) timescales. Daily

horizontal velocities reported in this paper are calculated by differencing 1-hour mean

positions every 24 hours. Vertical profiles are generated by filtering the whole data set

to suppress noise without over-smoothing the time series.

The GPS units were powered by solar panels. The GPS receiver at site 2 lost power

on June 16th and our analysis is focused mainly on the three remaining sites. The

receiver at site 1 was installed 3 days later than the others on June 10th. We also
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experienced power problems later in the season at site 3 and data from the beginning of

September onwards is sporadic. This means that the detail of the ice motion record

is unavailable at the very end of the melt-season and through the subsequent winter.

However, using occasional GPS positions (Figure 4.2 a-d, dashed blue lines), horizontal

ice motion can still be calculated over longer periods, allowing us to assess the net

velocity increase in summer compared with winter. The values for net summer velocity

over winter background reported in this paper are calculated on the basis of ice motion

from the onset of speed-up (the beginning of the survey period in the case of site 1)

until the end of summer, when melting has finished at all sites and the effect of ‘slower

than winter’ motion that we observe in late summer has been incorporated - as such

they may be considered minimum estimates of summer velocity.

The values for background velocities are derived from the displacement of each site

over the subsequent winter, following the end of the summer melting period (between

11 October - 27 February at Site 1, 26 September - 2 May at site 2, 26 September

- 8 May at site 3, and 11 October - 8 May at site 4). The reported contribution to

annual ice flux from the hydrologically-forced summer ice velocity variations is the

percentage by which the observed displacement exceeds that which would occur if the

ice flowed at calculated winter rates all year round. At sites 3 & 4, the pre-speed up

velocities bear close agreement with over-winter velocities, however, are not included in

the calculations in order to retain consistency between the approach adopted for each

site.

Measurements of air temperature were made using shielded HOBO air temperature

sensors. PDDs, used as a proxy for rates of surface melting, are derived using mean

daily air temperature. Lack of ablation data meant that it was not possible to obtain

Degree-Day Factors, which vary for ice and snow. However, accumulation rates are

low in this part of Greenland and snow depths when the GPS were deployed at the

beginning of May were less than 20 cm.
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CHAPTER 5

Supraglacial forcing of subglacial drainage in the ablation

zone of the Greenland Ice Sheet

This paper is a study of the seasonal drainage system development at Leverett Glacier

in 2009. In the previous chapter we used ice motion data to show that the relationship

between surface melting (as parameterised by positive degree-days) and ice velocity

in this section of the GrIS margin is not consistent over the course of the summer

melt season. It was argued that this is due to development in the structure and

efficiency of the subglacial drainage system, which operated at lower pressure for a

given discharge as the summer progressed in a manner similar to Alpine Glaciers. There

are no direct measurements of seasonal drainage system evolution, however, to confirm

this hypothesis for the Greenland Ice Sheet. We use a combination of field and satellite

data to investigate development of the drainage system within the Leverett Glacier

catchment over the course of a full melt season, from the start of May 18th until

September 3rd 2009, in response to inputs of meltwater from the ice sheet surface.
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Abstract

We measure hydrological parameters in meltwater draining from an outlet glacier

in west Greenland to investigate seasonal changes in the structure and behaviour of

the hydrological system of a large catchment in the Greenland Ice Sheet (GrIS). Our

data reveal seasonal upglacier expansion and increase in hydraulic efficiency of the

subglacial drainage system, across a catchment >600 km2, to distances >50 km from

the ice-sheet margin. This expansion occurs episodically in response to the drainage of

surface meltwaters into a hitherto inefficient subglacial drainage system; this system is

similar to Alpine glaciers. Combining satellite observations with changes in hydrological

parameters reveals that supraglacial lake drainage events play a key role in developing

an efficient subglacial drainage system at higher elevations, allowing large volumes

of surface generated meltwater to be transported via the ice sheet bed to the margin.

These observations provide the first synopsis of seasonal hydrological behaviour in the

ablation zone of the GrIS, providing a conceptual model of drainage system development

that can be applied to investigations of the role of glacier hydrology in the dynamic

response of the GrIS to anticipated climate warming.

5.1 Introduction

In land-terminating sections of the GrIS, meltwater production enhances ice motion

through seasonal velocity variations that are initiated when surface meltwaters gain

access to the ice-bed interface (Zwally et al., 2002). It has been hypothesised that a

feedback between surface melting and ice velocities will accelerate mass loss from the

GrIS in a warmer climate (Zwally et al., 2002; Parizek and Alley , 2004; Shepherd et al.,

2009). On the basis of correlations between ice motion and surface melting, however, it

has been shown that a key control on the relationship between surface melting and ice

velocity variations is the structure and hydraulic efficiency of the subglacial drainage

system, which develops spatially and temporally on a seasonal basis (Bartholomew

et al., 2010). A more efficient subglacial drainage system can evacuate large volumes of

water in discrete channels which operate at a lower steady-state water pressure, thereby

reducing the basal lubrication effect of external meltwater inputs (Kamb, 1987; Pimentel
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and Flowers, 2011).

Despite the clear link between rates of ice motion and the structure of the subglacial

drainage system, predictions about the future extent and magnitude of hydrologically-

forced ice velocity changes in the GrIS remain uncertain (Van de Wal et al., 2008).

To address this, we need to understand how spatial and temporal changes in surface

melting of the GrIS force development of an efficient subglacial drainage system on

a seasonal basis (Pimentel and Flowers, 2011). Here we present observations from

Leverett Glacier, a land-terminating outlet glacier at ∼67◦N in west Greenland (Figure

5.1) in 2009, that are used to elucidate seasonal development of the hydrological system

of a large catchment in the ablation zone of the GrIS.

5.2 Data and methods

Drainage from Leverett Glacier occurs through one large portal on the North side of

the glacier snout, which grows in size over the season and is the outlet for runoff from

a large subglacial conduit. Water stage, electrical conductivity (EC) and turbidity

were monitored continuously in the proglacial stream at a stable bedrock section ∼2

km downstream from the glacier terminus from May 18th 2009, before melting had

started, until September 3rd. Stage was converted into discharge (Q) using a rating

curve (r2=0.85) derived from 29 repeat dye-dilution gauging tests (Kilpatrick and

Cobb, 1984) conducted in the proglacial stream across the full range of discharges.

Uncertainty in the discharge record is the result of measurement error and application

of a rating curve, and is estimated to be ± 14.5%. A relationship between turbidity

and suspended sediment concentration (SSC) was derived by calibration against 49

manual gulp sediment samples (r2=0.82). Uncertainties in the SSC and EC record are

estimated to be ± 6.6% and ± 10% respectively. Our monitoring station was located in

a single channel close to the ice margin that did not overflow at peak discharge. During

a 2 week period, simultaneous measurements of SSC and EC taken within 50 m of the

glacier snout show that the hydrological parameters we measured were not substantially

modulated following emergence of the meltwaters from beneath the glacier terminus.

A surface digital elevation model (Palmer et al., 2008) was used to derive a first
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Figure 5.1: a. Map showing the location of Leverett Glacier, a catchment derived from the
surface DEM (purple), and locations of temperature measurements (red stars). Lakes that
drain during the survey period are denoted by circles, colour-coded to show drainage events
that coincide with meltwater pulses P2 (red) and P4 (green). Lakes which drain during the
survey period but are not clearly associated with pulses in the discharge record are coloured
blue. Contours are at 100 m intervals and the equilibrium line is identified in red (Van de Wal
et al., 2005). The location of the bedrock section where stage, EC and turbidity were measured
is shown by the green triangle. b. Positive degree-days at each of the temperature measurement
locations.

approximation of the Leverett Glacier hydrological catchment (Figure 5.1), which is

less than 10 km wide below 800 m and widens to 30 - 40 km at higher elevations.

Although there is uncertainty in such an approach, lack of appropriate bed elevation

data prevents an estimate of catchment geometry based on calculations of subglacial

hydraulic potential (Shreve, 1972). We used satellite observations from the Moderate-

resolution Imaging Spectroradiometer (MODIS) to study the development and drainage

of supraglacial lakes within the Leverett catchment (Sundal et al., 2009; Box and Ski ,

2007). 40 MODIS images were used spanning the period 31st May to 18th August,

representing all days when lake identification was not impeded by cloud cover. There

is significant uncertainty in applying a depth-retrieval algorithm based on surface

reflectance to find the depth of GrIS supraglacial lakes shallower than 2.5 m (Box and
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Ski , 2007). Therefore, we used an estimate (McMillan et al., 2007) of the average depth

of supraglacial lakes obtained within this region to estimate volumes of lakes that drain

from the ice sheet surface. Continuous measurements of air temperature were made at

seven sites, from 450 -1700 m altitude (Figure 5.1). Ablation rates were also monitored

in order to constrain a temperature-melt index model (Hock , 2003) which we used to

predict volumes of runoff generated from the catchment during our survey period.

5.3 Hydrological observations

The proglacial runoff hydrograph (Figure 5.2a) shows that prior to June 1st discharge

was <6 m3 s−1, during a period of ∼20 days of above-zero temperatures, extending up

to 1400 m altitude before this date (Figure 5.2d). Discharge then increased rapidly

over 3 days to 46 m3 s−1 on June 4th and continued to grow episodically before rising

dramatically, by 220 m3 s−1 in 10 days, to a peak of 317 m3 s−1 on July 16th. Following

this peak, discharge declined gradually but remained 3-4 times greater than early-season

levels until late August. Proglacial runoff showed clear diurnal cycles which had greatest

amplitude (∼25 m3 s−1) later in the season, after July 16th, and were more subdued

(∼6 m3 s−1) earlier in the summer.

The rising limb of the seasonal hydrograph is also marked by four distinct pulses of

water, superimposed on the general pattern of runoff growth. These pulses each last

a few days, and contribute between 4.9 - 11.8 x 106 m3 of water to the total runoff.

These pulses are also defined by coincident spikes in the EC and SSC records (Figure

5.2a-c). The first pulse of water (P1 on June 3rd) marks the start of significant runoff

growth. It was followed by further pulses (P2-P4) starting on June 7th, June 17th and

July 3rd (Figure 5.2a).

Maximum EC (69.9 µS cm−1) occured while discharge was still low at the beginning

of the season and declined in a stepwise fashion to a minimum of 9.9 µS cm−1 on July

3rd, immediately prior to P4 (Figure 5.2b). There is a negative relationship between

EC and discharge over the whole melt season (r2=0.27). Following P4 EC remains

low (<20 µS cm−1) and the daily cycles of Q and EC develop a characteristic inverse

relationship (Fenn, 1987) with clear stable hysteresis where EC is highest on the rising
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Figure 5.2: a. Proglacial meltwater stream discharge (m3 s−1; blue line). Timing, area and
elevation of lake drainage events. Each circle represents a single lake drainage event, based on
change in surface area on MODIS images. Horizontal bars represent the time period in which
drainage took place. Red circles are lakes that drained slowly over several images while blue
circles drained in a discrete event between two images. b. Electrical conductivity (µS cm−1).
c. suspended sediment concentration (kg m−3; left-axis, black) and suspended sediment load
(t d−1; right-axis, red). d. Temperature measurements from 450 m and 1480 m elevation. e.
24-hour windowed correlation coefficient between EC and Q.

limb of the diurnal hydrograph (Figure 5.3). However, the relationship is not consistent

throughout the survey period (Figure 5.2e), and early in the season can fluctuate

between a strong positive relationship and a strong negative one over short time-scales

(<1 week). In particular, the pulses of water P1, P2 and P4 are characterized by

pronounced conductivity peaks (Figure 5.2b) that show a strong positive relationship
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with increasing Q on their rising limbs. During P2, EC increases from 17 - 42 µS cm−1

in 9 hours as Q increases from 40 - 59 m3 s−1 and during P4, EC increases from 10 - 40

µS cm−1 in 6 hours as Q increases from 74 - 140 m3 s−1. In these pulses, an EC peak

shortly precedes maximum discharge, and EC returns to pre-pulse levels within a few

days (Figure 5.2b). By contrast, there is no large peak in EC associated with P3.
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Figure 5.3: a-d. Diurnal variability in the relationship between EC and Q early in the
melt-season. 24 hours of data are shown in each window and crosses mark the last measurement
at 2400h. The relationship is unstable and often reverses over short timescales. We note that b
& c are on the rising limb of P2 & P4 respectively and show a strong positive relationship, this
is in contrast to the more typical negative relationship shown in a & d. e. 22 consecutive days
of data (25th July - 15th August) show the stable hysteresis pattern that develops on the falling
limb of the seasonal hydrograph. The data are split into 24-hour windows and normalised about
their midpoint.

Suspended sediment concentration ranged from less than 0.2 kg m−3 to greater than

18 kg m−3, beyond the range of our sensor, and increased gradually but episodically
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throughout the season (Figure 5.2c). In common with the pattern in electrical conduc-

tivity and discharge, there are large spikes in SSC at P1, P2 and P4, and to a lesser

extent at P3. These spikes precede the local discharge peaks and are characterised by a

steep rise followed by a more gradual return to lower values. The SSC peak at P4 is the

most dramatic and shows a jump from 2 - >18 kg m−3 within 6 hours. The suspended

sediment load (SSL) also grows throughout the season, and is significantly greater in

the latter part of the season (Figure 5.2c). Prior to P4, SSL ranges from 0 - 4 x 104 t

d−1, and following P4 ranges from 4 - 20 x 104 t d−1. The total suspended sediment

flux for the survey period is ∼4.7 ± 0.74 x 106 t.

5.4 Discussion

The delay in the onset of significant runoff, following ∼20 days with high temperatures,

can be explained by refreezing of an initial fraction of the surface melt in cold snow

until the firn becomes isothermal (Pfeffer et al., 1991; Van den Broeke et al., 2008) and

observed ponding of surface meltwater prior to accessing the subglacial drainage system.

Prior to P1, low runoff volume and high EC indicate that water in the proglacial stream

was derived substantially from leakage of basal meltwater from an inefficient winter

drainage system beneath Leverett Glacier (Collins, 1979; Skidmore and Sharp, 1999).

Comparison with a temperature-melt index model (Hock , 2003) shows that the

seasonal discharge volumes we observe cannot be explained by an increase in melt

intensity within a stable catchment area, indicating delivery of surface-generated

meltwater from a progressively larger area of the ice sheet as the melt season develops

(Figure 5.4). The required development and expansion of the contributing hydrological

catchment, up to 800 m elevation by June 6th, and to 1000 m by July 9th, eventually

delivers surface meltwater from an area of over 600 km2 that extends higher than 1200

m elevation and to a distance of >50 km from the ice margin by July 21st. The dramatic

rise in runoff observed in the first half of July is driven, therefore, by a combination of

high temperatures (Figure 5.2d) and recent expansion of the area of the ice sheet which

delivers water to the ice margin via Leverett Glacier.

The EC of meltwater can be used crudely to differentiate runoff components and

62



hydrological pathways through a glacial catchment (Collins, 1979). The basic pattern

of decline from high to low solute concentration that we observe is typical of Alpine and

High Arctic glaciers (Collins , 1979; Skidmore and Sharp, 1999) as the hydrological system

becomes more efficient and a greater proportion of water is transported rapidly through

the hydrological system, limiting the potential for solute acquisition. Therefore, along

with the upglacier expansion of the hydrological catchment in response to surface melt

inputs, our data suggest a concomitant increase in its hydraulic efficiency throughout

the melt-season.

High suspended sediment concentrations indicate that meltwater emerging from

Leverett Glacier has been routed from the ice sheet surface, where it was generated, via

the ice sheet bed. Rates of basal sediment evacuation are controlled by the hydraulic

efficiency of the subglacial drainage system, but can be limited by the availability

of source material (Alley et al., 1997; Swift et al., 2002). A sustained increase in

subglacial hydraulic efficiency, and ongoing expansion of the subglacial drainage system,

is consistent with the continued increase in SSC, even while runoff diminishes following

peak discharge on July 17th (Alley et al., 1997). In addition, SSC shows no sign of

supply exhaustion suggesting that expansion of the efficient basal hydraulic system

provides continual access to an extensive reservoir of basal sediment (Swift et al., 2002).

Spatial expansion of efficient subglacial drainage at the expense of a hydraulically

inefficient distributed system explains temporal instability in the correlation between

EC and Q on the rising limb of the seasonal discharge hydrograph. Upglacier expansion

of supraglacial melt extent results in the headward expansion of the efficient subglacial

drainage system through the contribution of surface meltwater to the subglacial hydraulic

system (Nienow et al., 1998). These surface waters drain initially into a hydraulically

inefficient drainage system causing channel sections to grow in a downglacier direction

until they connect with existing channels further downstream. Reduction of mean

water pressure in the channels, relative to the distributed drainage system, is probably

responsible for drawing out stored basal waters. Temporal and spatial evolution of the

efficiency of the hydrological system therefore complicates the relationship between

surface melting and proglacial runoff characteristics during its seasonal growth phase.

The stable hysteresis pattern that develops with EC peaking on the rising limb of the
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diurnal flow hydrograph, and the constant inverse relationship between EC and Q

(Figure 5.2e), demonstrates that the hydrological system has reached a more stable and

uniform configuration by July 21st.

Observations on the GrIS have shown that moulins essentially comprise vertical

conduits which transport water from the ice sheet surface to its bed (Das et al., 2008;

Catania and Neumann, 2010). While there may be some lateral transport of water via

englacial channels, in order to explain the trends in Q, EC and SSC we argue that

opening of moulins at progressively higher elevations allows surface generated meltwater

to be delivered to the ice sheet bed further inland through the melt season. Growth of

the efficient subglacial system therefore follows upglacier development of supraglacial

drainage and proceeds in a stepwise fashion as new input points become active (Nienow

et al., 1998), transporting water to the ice sheet margin via the subglacial hydrological

system. This proposed model is analogous to Alpine glacier systems. It is notable,

therefore, that the channelised subglacial drainage system is sustained in the GrIS where

ice thicknesses are much greater. This implies that the high volumes of meltwater input

are sufficient to offset increased channel closure potential by deformation of thicker ice.

5.5 Supraglacial lake drainage

Two pulses of water (P2 & P4) that are superimposed on the rising limb of the seasonal

hydrograph (Figure 5.2a) are not explained by trends in surface melting. Dramatic

rises in EC associated with P2 and P4 suggest that a significant component of these

flood-waters is of subglacial provenance and indicates the displacement of large volumes

of solute-rich stored water from an inefficient hydrological system (Skidmore and Sharp,

1999). Large sediment flushes (Figure 5.2c) also confirm interaction of meltwaters

with the basal environment. They indicate sudden access of water to areas of stored

subglacial sediments and a dramatic increase in hydraulic efficiency to evacuate them

(Raymond et al., 1995; Swift et al., 2002).

We used MODIS satellite imagery to investigate possible supraglacial sources for

the pulses of meltwater and identify a number of lakes that develop and subsequently

drain from the ice sheet surface during the survey period (Figure 5.1). The timing of
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their drainage, their size and elevation (Figure 5.2a), and location within the proposed

catchment of Leverett Glacier, suggests that they are likely candidates for the source

of the pulses of water that we observe on the rising limb of the runoff hydrograph. In

particular, P2 is associated with the drainage of five lakes between 800 - 1000 m, and

P4 coincides with seven drainage events between 1100 - 1200 m.

We note that there are also spikes in SSC and EC at P1, which indicate a similar

process of change in hydraulic efficiency, but that it precedes any lake drainage events

observable on MODIS imagery. The rise in EC is less dramatic than at P2 and P4,

and we suggest that P1 is the result of initial access of meltwater to the subglacial

drainage system through moulins crevasses low down on the glacier following the onset

of spring melting. This is supported by observations of meltwater ponded in crevasses

and supraglacial channels prior to P1. P3 is not accompanied by a rise in EC and

therefore does not appear to be driven by a rapid lake drainage event but by changes in

temperature-driven runoff feeding into the existing drainage system.

Estimation of lake area (Figure 5.2a), based on manual pixel counting of classified

images (Sundal et al., 2009), indicates that the lakes that drain at P2 have areas between

0.13 and 0.49 km2 and those that drain at P4 are between 0.25 and 0.88 km2. Using

an average lake depth of 2.7 m (a value determined (McMillan et al., 2007; Shepherd

et al., 2009) for ∼150 lakes in this region in summer 2001), we find that the volume

of water in each pulse (4.9 and 7.2 x 106 m3 respectively) is accounted for by the

drainage of multiple lakes in a single event. Previous studies have found that MODIS

classification of GrIS supraglacial lakes is robust when compared with higher resolution

satellite data (Sundal et al., 2009) and has approximate error of 0.22 km2. Since there

is also uncertainty about the depth of individual lakes we are unable to determine

precisely which, or how many, of the lakes contribute to each meltwater pulse. It is

clear, however, that the pulses at P2 and P4 are caused by drainage of a cluster of

lakes within close proximity to one another (Figure 5.1), rather than drainage of an

individual lake.

Rapid transfer of these pulses to the ice margin implies that the hydraulic system

further downglacier already has the capacity to transport water efficiently. Combined

with the hydrological signature of the pulses, our data indicate that these events

65



represent the emergence at the ice sheet margin of large volumes of meltwater which had

been stored at the ice surface and subsequently drained to its bed on the establishment

of a hydraulic connection between the two (Das et al., 2008). These surface waters

mix with and flush out long-term subglacially stored water, hence the large rise in EC

values, and effect a stepwise expansion of the efficient subglacial hydrological system,

progressively further inland.

Our observations suggest that a key role of lake drainage in GrIS hydrology is

contribution to the expansion of the subglacial area that is subject to inputs of sur-

face meltwater, and therefore undergoes hydraulic reorganisation, on a seasonal basis.

Supraglacial lake drainage may be particularly important at high elevations for two

reasons. Firstly, by providing a mechanism for water to penetrate through thick, cold ice.

Secondly, concentration of surface meltwater into lakes may be critical to provide the

volumes of water required to force evolution of a channelised drainage system beneath

thicker ice where overburden pressure is greater. Under warmer climatic conditions we

expect lakes to form and drain from backslopes which occur at higher elevations on the

GrIS (Sundal et al., 2009). Previous studies have shown that the immediate effect of

lake drainage to the ice sheet bed is a short-term increase in horizontal and vertical

ice velocities (Das et al., 2008). A recent study (Bartholomew et al., 2010) indicates

further that the net effect of meltwater delivery to the ice-bed interface of the GrIS is

an increase in annual ice velocity compared with winter background rates. Drainage of

supraglacial lakes has the potential, therefore, to create a positive relationship between

GrIS dynamic mass loss and surface melting, albeit one that is moderated by resultant

variations in the structure of the drainage system (Pimentel and Flowers , 2011; Truffer

et al., 2005).

5.6 Conclusions

Our observations provide the first synopsis of the seasonal hydrological behaviour from

a large (>600 km2) catchment in the ablation zone of the GrIS, showing how surface

meltwater production drives spatial and temporal changes in the subglacial drainage

system. They attest to the development and expansion of a hydrological system that
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delivers water from the ice surface, via the ice-sheet bed, to the margin. This system

expands progressively throughout the ablation season to >50 km from the ice margin.

We propose that the model is similar to Alpine systems where the drainage system

becomes increasingly efficient as hydraulic connections between the surface and bed

are established further inland, evacuating large volumes of meltwater and sediment.

Supraglacial lake drainage events appear to play a key role in establishing hydraulic

connections between the ice sheet surface and bed, helping to drive evolution of the

subglacial drainage system. Lake drainage events may be especially important at higher

elevations where stronger forcing is required to overcome greater overburden pressures

associated with thicker ice.

5.7 Supplementary material

5.7.1 Degree-day melt model

We used a temperature-melt index model (Hock , 2003) to predict volumes of meltwater

generated at the ice-sheet surface within an estimated catchment that drains from

Leverett glacier. The catchment was derived from a surface digital elevation model

with a spatial resolution of 100 m (Figure 5.1).

Air temperatures were measured continuously at 7 sites throughout the survey

period (Figure 5.1). We used Campbell T107 temperature sensors, which were mounted

in radiation shields and connected to a Campbell CR800 datalogger at 4 sites and Onset

HOBO U21-004 temperature sensors at the remaining three. Degree-day factors (DDFs)

for snow and ice were then derived at 2 sites using continuous measurements of ablation

from a sonic ranging device. At the five additional sites, seasonal ablation was measured

against stakes, producing DDFs for both snow and ice across a range of elevations.

We estimated an elevation-dependent initial snow depth based on measurements

made at each temperature recording site just prior to the onset of the melt season. The

model was then run using an hourly timestep to calculate the surface melt rate by

elevation band using the temperature data as a forcing signal. This melt was multiplied

by the area of the catchment within each elevation band to estimate total runoff volume

at each timestep.
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Figure 5.4: Predicted runoff volume by elevation (at 20 m intervals) for each day of the survey
period using a simple temperature-index model (i.e. the melt rate (m s−1) multiplied by the
catchment area (m2) at that elevation). White sections did not experience melting. The runoff
rate for the whole catchment can be calculated by integration of each column of the plot. The
white line indicates the elevation below which the modelled runoff produced is equal to the
discharge observed at Leverett Glacier. The lags caused by sharp drops in air temperature and
the resulting drop in discharge at Leverett Glacier are not captured by the simple model and
cause short-term increases in the apparent catchment extent to unrealistic elevations and these
values have been removed from the figure.

Figure 5.4 shows modelled runoff volume by elevation for each day of the survey

period (i.e. the melt rate (m s−1) multiplied by the catchment area (m2) at that

elevation). White sections did not experience melting. The runoff rate for the whole

catchment can then be calculated by integration of each column of the plot. The white

line indicates the elevation below which the modelled runoff produced is equal to the

observed discharge record (Figure 5.2). It is clear from Figure 5.4 that we are unable

to account for the discharge observed at Leverett glacier without progressive upglacier

expansion of the catchment to include runoff from higher elevations through the melt

season.

This analysis rests on the assumption that discrepancy between modelled melt values

and the observed discharge at each timestep indicates the size of the catchment that

drains through Leverett Glacier. Interpretation of the model results is complicated,

however, by a number of factors. Firstly, very little of the initially predicted runoff

(e.g. May and early June) emerges from the glacier immediately following melt. This

result suggests that early in the season meltwater percolates and refreezes in the cold

snowpack and actual runoff of meltwater from a particular site will only start once
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the whole of the snowpack is isothermal (Pfeffer et al., 1991). Secondly, we assume

that there is zero delay between runoff production and meltwaters emerging from the

glacier snout. In reality there is a lag due to supraglacial, englacial and subglacial

travel times (which are likely to reduce over the season) as well as supraglacial storage

of meltwater in crevasses and lakes. This is particularly clear when runoff exceeds

total melt due to lake drainage event (Figure 5.2), or continued release of water after

sudden cooling. Smaller errors may be introduced, however, when the discrepancy is

less striking. Thirdly, the lateral boundaries of the catchment are derived from surface

elevation data (Palmer et al., 2008, 2011), while the direction of meltwater flow within

a glacier is also governed by bed topography (Shreve, 1972).

Discrepancies between modelled runoff and observed discharge have the potential to

provide important information about development of the subglacial drainage system.

For example, a reduced lag between peak discharge and diurnal peaks in temperature

would be indicative of more efficient transport of meltwater. Unfortunately, although the

degree-day method has often been shown to be effective on catchment scales (e.g. Hock ,

2003) its performance deteriorates with increasing temporal resolution. In addition,

our crude method of distributing runoff by elevation band is unlikely to be accurate

in representing spatial variability in melt rates, which may vary substantially due to

topographic effects such as shading, slope and aspect (Hock , 2003).

In light of these uncertainties, defining the exact catchment area at any one time

is approximate, and we cannot verify a precise figure. The value of 600 km2 as the

maximum summer extent represents our best estimate from the available data. The

results are useful, however, in support of observations from the hydrological and satellite

data which demonstrate upglacier expansion of the contributing catchment through the

melt season as water reaches the bed further inland.

5.7.2 Discussion of errors

Discharge

The discharge record was constructed using continuous measurements of stage in the

proglacial stream which were calibrated against discrete measurements of river discharge
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obtained using the dye-dilution method (Kilpatrick and Cobb, 1984). Uncertainty in the

estimates of river discharge results from error in the discharge measurements themselves

and error introduced by the rating curve between the discharge measurements and

water stage in the bedrock cross-section.

A nonlinear rating curve is widely used for stage-discharge relationships, and is

justified by the shape of the cross section where the filled area grows in a nonlinear

fashion as water depth increases (Figure 5.5). Since depth integrated flow velocity is

also expected to become greater with water depth (Richards, 1982), a nonlinear rating

curve performs significantly better than a linear one. Investigations of uncertainty in

river discharge observations (e.g. Di Baldassarre and Montanari , 2009), indicate that

appropriate rating curves can be found using power law or exponential relationships.

Both these performed better than other types that we tested (e.g. linear or polynomial)

and when applied, the power law fit provided the best option for our data (r2=0.85,

compared with r2=0.79 for an exponential fit, n=29; Figure 5.6).

Uncertainty induced in the calculated discharge record by application of the rating

curve is due to: interpolation and extrapolation of the modeled values, unsteady flow

conditions, and changes in river roughness throughout the survey period (Di Baldassarre

and Montanari , 2009). Given the lack of vegetation and the use of a bedrock cross-

section, changes in roughness during the season are likely small (Richards, 1982) and

this uncertainty is therefore negligible. In addition, discharge was measured across the

full range of observed stage meaning that we have no need to extrapolate discharge

values. Measurements of stage were made using a Druck pressure tranducer connected

to a Campbell CR1000 datalogger and the errors in these measurements are small (±1-2

cm on a stage depth ranging up to 6 m). Therefore, uncertainties due to application

of the rating curve are primarily due to a combination of interpolation errors and the

effect of unsteady flow conditions.

Calculation of the different components of error induced by application of the rating

curve would require use of a hydrological model and is beyond the realistic scope of

this investigation. A crude estimate of the error is therefore achieved by calculating

the root mean square difference (rmsd) between the observed and fitted discharge

estimates. This effectively lumps the components discussed in the previous paragraph
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Figure 5.5: a. River cross-section at gauging site. b. Filled cross-sectional area vs. water
depth for the cross-section

into a single term. We express this uncertainty as a normalised root mean square

difference (nrmsd) between the modelled and measured discharge. The rmsd between

the discharge measurements and the power law rating curve is 40.1 m3s−1 (as opposed

to 48.6 m3s−1 for the exponential fit), and the nrmsd (expressed as a percentage) is

10.4%.

Discharge estimates were made using the dye-dilution method (e.g. Kilpatrick

and Cobb, 1984; Rantz , 1982; Hubbard and Glasser , 2005). A known quantity of

fluorescent Rhodamine dye was manually injected into the stream in a single pulse. Dye

concentration was then measured at a downstream location using a Turner Designs

CYCLOPS-7 Submersible Fluorometer attached to a Campbell CR800 datalogger and

used to estimate discharge according to the conservation of mass.

The main sources of error in dye dilution gauging are due to:
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Figure 5.6: Stage-discharge rating curve

i. Assumption of complete mixing of dye within the channel. The tests were made in

a reach with a single turbulent channel of approximately 1 km. Dye was injected

above, and sampled below, a waterfall to ensure complete mixing. This was

confirmed by a test where dye was injected from each side of the channel within a

short time period, which produced the same dye concentrations (and ‘area under

the curve’) at the sample site.

ii. Fluorescence of suspended sediment at a similar wavelength to the dye. This

resulted in background fluorescence for each tracer test which was related to

turbidity. This was removed by recording for 10 minutes before and after each

dye test in order to measure the background fluorescence, which was removed

in subsequent processing. Repeat calibrations of river water with known con-

centrations of dye but on different days (and therefore with different sediment

concentrations) showed that the calibration slope was not affected by turbidity
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and that an offset is effective in minimising this background signal.

iii. Loss of dye along the reach. Tracer losses are primarily due to sorption and

chemical reaction between the tracer and one or more of the following: streambed

material, suspended sediments, dissolved material in the river water, plants, and

other organisms. These errors were minimised by use of Rhodamine WT, which is

known to adsorb onto suspended sediment less than other fluorescent dyes (Smart

and Laidlaw, 1977). We note that significant loss of tracer would cause measured

dye concentrations to be reduced, resulting in an overestimate of discharge.

Other sources of error include measurement of the volume of tracer used and

calibration and resolution of the fluorometer (which was repeated at intervals throughout

the season using water from the river with standards of known concentration). Although

dye-dilution gauging is an established technique for measuring streamflow, there are

very few estimates for its accuracy in the literature. Herschy (1995) suggests a figure of

± 5 % while information from the fluorometer manufacturer suggests that uncertainties

are ± 2 % (Turner Designs Inc., 2011).

Without an independent measure of discharge we are unable to verify the accuracy

of our discharge measurements. However, based on repeatability of traces which were

done within a short time of each other (less than an hour) at high rates of discharge, a

conservative estimate is ± 10%.

We assume that the error due to uncertainty in the discharge measurements and

from the rating curve are independent (Di Baldassare & Montanari, 2009) and compute

the total error in the discharge from the quadratic sum as follows:

Discharge error =
√

(rating curve error)2 + (discharge measurement error)2

=
√

10.42 + 102

=± 14.5%
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Suspended sediment

Turbidity was measured continuously in the proglacial stream using a Partech IR15C

turbidity meter connected to a Campbell CR1000 datalogger (Clifford et al., 1995b).

Suspended sediment samples were collected manually on 50 occasions from the

vicinity of the turbidity probe using a USDH-48 depth-integrating suspended sediment

sampler. The samples were filtered in the field with 0.2 m filter papers following the

procedure laid out by Hubbard and Glasser (2005), and the volume of filtrate was

measured in a measuring cylinder. The samples were stored and returned to a lab for

drying and weighing in order to calculate suspended sediment concentration.

Given the high precision and accuracy of a mass balance and the routine nature of

the field sampling, errors in the suspended sediment sampling are likely to be small

(taken here to be less than 2%).

The greatest error is that induced by application of a relationship between measured

turbidity and suspended sediment concentration. Uncertainty is minimised by calibration

of the turbidity record with field samples rather than in a laboratory. Following a similar

procedure that that for the discharge rating curve, the rmsd in the ssc vs turbidity

record is 1.07 kg m−3, and the nrmsd is 6.2 %.

SSC error =
√

(SSC vs. turbidity relationship error)2 + (SSC measurement error)2

=
√

6.22 + 22

=± 6.5%

Uncertainty in suspended sediment load (SSL) is due to error in both discharge and

suspended sediment concentration. We therefore compute this error as follows:

SSL error =
√

(SSC error)2 + (discharge error)2

=
√

6.52 + 14.52

=± 15.9%
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Measurements of turbidity in glacial meltwater streams are subject to significant

variation across a range of timescales (Clifford et al., 1995a). Over a diurnal cycle,

SSC is partly controlled by rates of glacier melting and daily peaks in discharge are

associated with increased sediment concentration (Richards , 1984; Clifford et al., 1995a).

In our dataset this is particularly the case when the subglacial system is well developed

(Figure 5.2; Swift et al., 2005). Daily cycles of suspended sediment concentration

also contain short-term, pseudo-periodic fluctuations that are not directly related to

discharge. Clifford et al. (1995a) argue that fluctuations over timescales of 10 - 30

minutes may be associated with channel bank collapse or migration of the proglacial

stream, contributing 5 - 30 % of the total daily range in an Alpine glacier setting. On

even shorter timescales, variability in SSC is caused by turbulent velocity fluctuations,

which may be on the order of ∼0.1 kg m−3 (Clifford et al., 1995a).

In order to minimise the impact of short-term variability on our record of SSC,

measurements were made continuously at 30s intervals over the entire survey period.

This allowed us to reliably capture diurnal variability in SSC and the seasonal signal,

as well as sudden short-term fluctuations such as those associated with large meltwater

pulses (Figure 5.2).

The major impact of short-term fluctuations in SSC on our dataset is most likely in

the uncertainty added to calibration of the turbidity record against manual sediment

samples. In addition to temporal variability, there is also likely to be significant lateral

and vertical variation in SSC within the proglacial stream. We collected depth-integrated

meltwater samples using a USDH-48 sediment sampler which was lowered through

the water column. While this helps capture vertical variation in the sediment sample,

turbidity was measured at a fixed height. This discrepancy is incorporated in the

uncertainty estimates described above, however, lateral variability in SSC across the

river section cannot be captured as the exceptionally high discharges made sampling

further out into the channel impracticable.

A second turbidity sensor, placed within 50 m of the glacier snout between 11th July

and 16th August to test the reliability of the downstream sampling site, generated the

same pattern of SSC as at the cross-section with values that were ∼4% lower on average

(r = 0.98, Cowton et al., in review). This observation indicates, therefore, that the SSC
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record we have derived is representative of the patterns in sediment transport from

beneath Leverett Glacier on the relevant timescales within reasonable error estimates.
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CHAPTER 6

Seasonal variations in Greenland Ice Sheet motion: inland

extent and behaviour at higher elevations

The data in chapters 4 and 5 showed that the subglacial drainage system of Leverett

Glacier develops to become more efficient over the course of a summer melt season,

limiting the impact of summer velocity variations on ice motion at sites up to ∼35 km

from the ice sheet margin. These and similar findings lead some authors to suggest

that ice in Greenland might flow more slowly in a warmer climate (e.g. Van de Wal

et al., 2008; Schoof , 2010; Pimentel and Flowers, 2011; Sundal et al., 2011). Their

hypothesis suggests that higher rates of meltwater input to the ice sheet bed will cause

the drainage system to become channelised more rapidly and that ice velocity will

therefore be reduced earlier in the summer, leading to lower seasonal mean ice velocity.

However, such an argument ignores the spatial aspect of this problem. Firstly, in a

warmer climate a larger area of the ice sheet will experience summer melting and we
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would expect changes in ice velocity to occur further inland. Secondly, it is not clear

that patterns in hydrologically-forced dynamic behaviour observed near the ice sheet

margin are replicated at higher elevations where the ice sheet is both thicker and colder.

In this chapter we present ice velocity data from the GPS transect in 2009, which

had been extended up to ∼115 km from the ice sheet margin. These data capture,

for the first time over a full melt season, the full inland extent of summer ice velocity

variations in a land-terminating section of the Greenland Ice Sheet. This allows us

to investigate the full impact of summer velocity changes on rates of mass loss from

this part of the ice sheet. In addition, by comparing the GPS velocity records with

observations of air temperature, proglacial discharge and lake drainage events, we can

examine the controls on hydrological forcing of ice motion at higher elevation sites.
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Abstract

We present global positioning system observations that capture the full inland extent of

ice motion variations in 2009 along a transect in the west Greenland Ice Sheet margin.

In situ measurements of air temperature and surface ablation, and satellite monitoring

of ice surface albedo and supraglacial lake drainage are used to investigate hydrological

controls on ice velocity changes. We find a strong positive correlation between rates

of annual ablation and changes in annual ice motion along the transect, with sites

nearest the ice sheet margin experiencing greater annual variations in ice motion (15 -

18 %) than those above 1000 m elevation (3 - 8 %). Patterns in the timing and rate

of meltwater delivery to the ice-bed interface provide key controls on the magnitude

of hydrologically-forced velocity variations at each site. In the lower ablation zone,

the overall contribution of variations in ice motion to annual flow rates is limited by

evolution in the structure of the subglacial drainage system. At sites in the upper

ablation zone, a shorter period of summer melting and delayed establishment of a

hydraulic connection between the ice sheet surface and its bed limit the timeframe for

velocity variations to occur. Our data suggest that land-terminating sections of the

Greenland Ice Sheet will experience increased dynamic mass loss in a warmer climate,

as the behaviour that we observe in the lower ablation zone propagates further inland.

Findings from this study provide a conceptual framework to understand the impact of

hydrologically-forced velocity variations on the future mass balance of land-terminating

sections of the Greenland Ice Sheet.

6.1 Introduction

Our ability to make robust predictions about the future mass balance of the Greenland

Ice Sheet (GrIS), and therefore its contribution to sea-level change, is limited by

uncertainty about how the dynamic component of mass loss (i.e. due to changes in

ice motion) will respond to anticipated changes in atmospheric temperature (IPCC ,

2007; Pritchard et al., 2009). In land-terminating sections of the GrIS, variations in

ice velocity are initiated when surface meltwater gains access to the ice-bed interface,

lubricating basal motion (Zwally et al., 2002; Van de Wal et al., 2008; Joughin et al.,
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2008a; Shepherd et al., 2009; Bartholomew et al., 2010). This effect is both widespread

(Joughin et al., 2008a; Sundal et al., 2011) and persistent each summer (Van de Wal

et al., 2008; Sundal et al., 2011; Zwally et al., 2002) near the ice sheet margin. Initial

observations show that summer velocities in land-terminating sections of the GrIS can

be 50% faster than in winter (Van de Wal et al., 2008; Joughin et al., 2008a), and

that summer velocity variations increase annual ice motion by 6 - 14 % in the lower

ablation zone (Bartholomew et al., 2010). A direct positive relationship between rates

of surface melting and basal motion would create a mechanism to significantly increase

rates of mass loss from the GrIS in a warming climate by drawing more ice to lower

elevations where ablation rates are higher (Parizek and Alley , 2004). This process allows

the dynamic component of the GrIS mass balance to respond to climatic variability

within decades or less, yet is not considered in current sea-level projections made by

the Intergovernmental Panel on Climate Change (IPCC).

Recent observations (Bartholomew et al., 2010; Sundal et al., 2011) and theoretical

work (Pimentel and Flowers , 2011; Schoof , 2010) suggest, however, that the contribution

of seasonal velocity variations to annual rates of ice motion at a particular site is limited

by evolution in the structure of the subglacial drainage system. Each summer in the lower

ablation zone, sustained inputs of meltwater from the ice sheet surface transform the

subglacial hydrological system into an efficient network of channels that can evacuate

large quantities of water rapidly (Bartholomew et al., 2011a). This moderates the

lubricating effect of meltwater on ice velocities by reducing the pressure within the

hydrological system for a given volume of water (Kamb, 1987; Van de Wal et al., 2008).

It has been observed that late summer velocities near the GrIS margin are lower for a

given intensity of surface melting than earlier in the season (Bartholomew et al., 2010;

Sundal et al., 2011). As a result, it is not expected that increased annual ablation

rates at a specific location will necessarily stimulate faster ice flow than at present; in

this respect the process could be seen as self-limiting (Van de Wal et al., 2008). By

extension, it has been argued that summer, and therefore annual mean ice velocities

at a given site on the GrIS could be lower in high ablation years than in low ablation

years because channelisation of the subglacial hydrological system occurs more quickly

(Truffer et al., 2005; Pimentel and Flowers, 2011; Sundal et al., 2011).
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A key feature of hydrologically-forced velocity variations in the GrIS is also that

they propagate inland from the ice sheet margin on a seasonal basis, in response to

the onset of surface melting at successively higher elevations (Bartholomew et al.,

2010). The initiation of hydrologically-forced ice velocity variations is dependent on the

development of a conduit from the ice sheet surface to allow surface meltwater to access

the ice-bed interface. In a warmer climate we expect summer melting of the GrIS to

be more intense, affecting a wider area for a longer time period than is currently the

case (Hanna et al., 2008), providing greater volumes of surface meltwater. The melt

regime will be amplified because the hypsometry of the GrIS, which flattens inland,

gives a non-linear expansion of the area of the GrIS experiencing melt in response to a

rise in the equilibrium-line altitude (ELA). It is therefore possible that seasonal velocity

variations in the GrIS will propagate further inland in response to climate warming.

One mechanism to allow this is drainage of supraglacial lakes, which have the potential

to concentrate surface meltwaters into large enough reservoirs to propagate fractures

through ice that is >1000 m thick (Alley et al., 2005b; Das et al., 2008; Krawczynski

et al., 2009).

Current debates over whether increased melt rates across the GrIS will induce

greater dynamic mass loss can therefore be reduced to whether increased mass loss

due to inland propagation of velocity variations in warmer years will more than offset

any potential reduction in mass loss due to earlier onset of channelisation in the lower

ablation zone. However, uncertainty remains over the effect of increased meltwater

production on dynamic behaviour in the lower ablation zone - observations to date

do not show conclusively whether annual mean ice velocities will increase or decrease

in a warmer climate (Van de Wal et al., 2008; Joughin et al., 2008a; Bartholomew

et al., 2010; Sundal et al., 2011) and a more detailed understanding of the response of

the subglacial drainage structure to large inputs of surface meltwater is required. In

addition, while diurnal ice velocity variations have been observed up to 72 km from

the GrIS margin in a short-term study (Shepherd et al., 2009), it is not clear that

patterns in hydrologically-forced dynamic behaviour observed near the ice sheet margin

are replicated at higher elevations. While singular lake drainage events have been

described in detail (Das et al., 2008), it has not been shown that the integrated effect of
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widespread meltwater generation and lake drainage (McMillan et al., 2007; Box and Ski ,

2007; Sundal et al., 2009) is a significant and sustained increase in glacier flow speed at

higher elevations.

A secondary effect of meltwater inputs to the glacier system on ice dynamics is ‘cryo-

hydrologic warming’, whereby heat conduction from water within the englacial system

causes ice temperatures to be raised (Phillips et al., 2010). Increased temperatures will

reduce ice viscosity and thus contribute to faster ice flow. It has been suggested that,

in a warmer climate, drainage of meltwater into the ice sheet across a wider area will

also cause a rapid thermal response in deep layers of the GrIS, compounding the effect

of meltwater drainage on ice velocities (Phillips et al., 2010).

The aim of this study is to provide a clearer understanding of the mechanisms

which control the magnitude and extent of hydrologically-forced dynamic behaviour at

elevations up to and beyond the current ELA on a seasonal basis. This is motivated by

the need to incorporate these processes in numerical models which predict the future

evolution of the GrIS and the current lack of comprehensive empirical data with which

to inform them (Parizek , 2010). The thermal effect of meltwater, which affects ice

deformation rates rather than basal motion, does not have a significant seasonal signal

(Phillips et al., 2010) and is not considered here.

We present continuous ice velocity measurements, derived from global position

system (GPS) observations, that capture the full inland extent of seasonal velocity

variations along a land-terminating transect at ∼67◦N in western Greenland during

the 2009 melt season (Figure 6.1). Measurements were made at seven sites up to 1716

m elevation, which is ∼115 km inland from the GrIS margin. The ice motion record

is compared with in situ and satellite observations of air temperatures, surface melt

characteristics and supraglacial lake evolution within the region of study, as well as

with proglacial hydrological data (Bartholomew et al., 2011a).
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Figure 6.1: a. Location of the study region on the western margin of the GrIS. The GPS sites
are located along a transect across an altitudinal range of 450 - 1700 m a.s.l. Simultaneous
measurements of air temperature and seasonal measurements of ablation were made at each
site. The ELA in this region is at 1500 m (Van de Wal et al., 2005). Contours are produced
from a digital elevation model derived from InSAR (Palmer et al., 2011) at 100 m intervals.
Lakes which drain in the interval between sequential MODIS satellite images during the survey
period are denoted by coloured patches which represent their surface area immediately prior to
drainage (yellow: July 11th-15th; red: July 19th-23rd; blue: July 26th-29th). The region in
which lake drainage events were monitored is enclosed by the grey box and the catchment of
the river which drains through Leverett glacier and which was also monitored in 2009 is shown
in red (Bartholomew et al., 2011a). b. Ice surface (Krabill , 2010) and bed elevation (Bamber
et al., 2001) profiles along the transect (black line, main figure). The locations of the GPS sites
are shown by black vertical marks.

6.2 Data and methods

6.2.1 GPS data

We used dual-frequency Leica 500 and 1200 series GPS receivers to collect the season

long records of ice motion at each site. Each GPS antenna was mounted on a pole

drilled several metres into the ice, which froze in subsequently, providing measurements

of ice motion that were independent of ablation. The GPS receivers collected data

at 30 second intervals that were processed using a kinematic approach relative to an

off-ice base station (King , 2004) using the Track 1.21 software (Chen, 1999; King and
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Bock , 2006). Conservative estimates of the uncertainty associated with positioning at

each epoch are approximately ± 1 cm in the horizontal direction and ± 2 cm in the

vertical direction. The data were smoothed using a Gaussian low-pass filter to suppress

high-frequency noise without distorting the long-term signal. Daily horizontal velocities

reported in this paper (Figure 6.2a-g) are calculated by differencing the filtered positions

every 24 hours. Shorter-term variations in ice velocity were derived by differencing

positions across a 6 hour sliding window, applied to the whole timeseries of filtered

positions for each site. This window length was chosen in order to highlight short-term

variations in the velocity records while retaining a high signal to noise ratio. Estimates

of the magnitude of daily cylces in horizontal velocity are therefore minimum estimates.

Unfortunately, the quality of the GPS data at site 1 was compromised by technical

problems, and we are unable to resolve short-term variations in horizontal velocity at

this site.

Uncertainties associated with the filtered positions are <0.5 cm in the horizontal

and <1 cm in the vertical directions, corresponding to annual horizontal velocity

uncertainties of <3.7 m yr−1 and <14.6 m yr−1 for the 24 hour and 6 hour velocity

measurements respectively. We used the standard deviation of 24 hour and 6 hour

sliding window velocities from site 7, which has the longest processing baseline and

experienced negligible velocity variations, to estimate the noise floor in the GPS velocity

records. The standard deviations for 24 hour and 6 hour velocities at site 7 are 5.6

m yr−1 and 19.5 m yr−1 respectively. These values compare well with the calculated

uncertainties and represent conservative error estimates for our dataset.

The values for winter background ice-velocities are derived from the displacement

of each GPS receiver between the end of the summer melt season and the following

spring (Bartholomew et al., 2010). The reported contribution to annual ice flux from

the hydrologically-forced summer ice velocity variations is the percentage by which

the observed annual displacement exceeds that which would occur if the ice moved at

winter rates all year round.
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6.2.2 Air temperate and surface ablation

Simultaneous measurements of air temperature were made at each GPS site to constrain

melt rates, and show that the velocity data cover the whole seasonal melt cycle.

Measurements of air temperature were made using shielded Campbell Scientific T107

temperature sensors connected to Campbell Scientific CR800 dataloggers (sites 1, 3 and

6) and shielded HOBO U21-004 temperature sensors (sites 2, 4, 5 and 7) at 15 minute

intervals throughout the survey period. Seasonal melt totals were also measured using

ablation stakes at each GPS site.

6.2.3 Proglacial discharge

We made continuous measurements of water stage in the proglacial stream that emerges

from the terminus of Leverett Glacier. Proglacial discharge was derived from a continu-

ous stage-discharge rating curve calibrated with repeat dye dilution gauging experiments

throughout the melt-season as described in detail in Bartholomew et al. (2011a).

6.2.4 Supraglacial lake evolution

We used satellite observations from the Moderate-resolution Imaging Spectroradiometer

(MODIS) to study the development of supraglacial lakes within the region of our GPS

transect (Figure 6.1; delimited by the grey line). 20 MODIS images, spanning the

period 31st May to 18th August 2009, were used, representing all the days when

lake identification was not impeded by cloud cover. MODIS level 1B Calibrated

Radiances (MOD02) were processed and projected as 250 m resolution true colour

images in conjunction with the MODIS Geolocation product (MOD03), according to

the methodology laid out by Gumley et al. (2003); see also Box and Ski (2007), and

Sundal et al. (2009). Lakes were digitised manually in order to allow classification even

on days of partial or thin cloud cover, producing a dataset with slightly higher temporal

resolution than fully automated classification (Sundal et al., 2009). Drainage events

were identified as occasions on which the area of a lake decreased to zero (or a very

small fraction of its former size) without an intermediate period of refilling. Previous

studies have found that MODIS classification of GrIS supraglacial lakes is robust when
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compared with higher resolution satellite data (Sundal et al., 2009) and has approximate

error of 0.22 km2 per lake. However, since the lakes within this region are relatively

small (typically <1 km2) and there is considerable uncertainty in using a depth-retrieval

algorithm to determine the depth of individual lakes (Box and Ski , 2007) we do not

estimate individual lake volume. We note, however, that on the basis of a recent

theoretical study of supraglacial lake drainage in the western GrIS (Krawczynski et al.,

2009), any lake which is large enough to be resolved on MODIS images (theoretically

one 250m x 250m pixel (0.0625 km2)) will contain enough water to drive a water-filled

crack through 1 km of ice.

6.2.5 Ice sheet surface characteristics

We used the MYD10A1 1-day albedo product, part of the MODIS Aqua snow cover

daily L3 global 500 m gridded product (Hall and Salomonson, 2009; Hall et al., 2009),

to map changes in the albedo of the ice sheet surface in this region of the GrIS through

the survey period. These data are used to quantify the lowering of surface albedo

associated with meltwater generation and retreat of the seasonal snowline through the

survey period. This product provides albedo values for pixels identified as cloud free

and snow-covered on a 500m grid derived from a snapshot taken once per day (Stroeve

et al., 2006). We used 70 days of data, from April 22nd to September 20th, representing

all the days on which the image was not obscured by cloud cover. This time period

covers the whole melt season, from before the onset of melt at the ice sheet margin in

spring, to the period of refreezing and snowfall in the autumn. In order to integrate

the albedo characteristics across the region surrounding the transect, mean albedo was

calculated by 50 m elevation bands in the study region using a surface digital elevation

model (Palmer et al., 2011). Albedo thresholds for snow (<0.45) and bare ice (>0.66)

surfaces were used to classify pixels on the basis of field observations along the nearby

K-transect (Knap and Oerlemans, 1996). A resulting transitional band between the

two zones is assumed to comprise a mixture of snow, ice with surface water and slush

surfaces and broadly delimits the transient snowline (Knap and Oerlemans, 1996).
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6.3 Hydrological forcing of velocity variations

Sites 1 - 6 all experience velocity peaks that are over 100 % higher than their winter

background values (Figure 6.2a-f). These variations begin nearest the margin on May

22nd, and propagate inland following the onset of surface melting up to a distance of

80 km from the GrIS margin in late July, at 1482 m elevation. Initial uplift of the

ice sheet surface at each of these sites is interpreted to signal the establishment of a

local hydraulic connection to the ice sheet bed (Iken et al., 1983; Zwally et al., 2002;

Das et al., 2008; Anderson et al., 2004; Bartholomew et al., 2010). A high-velocity

‘spring-event’, accompanied by uplift of the ice sheet surface, characterises the start of

locally-forced velocity variations at each of these sites in a manner similar to Alpine

and High Arctic glaciers (Iken et al., 1983; Iken and Bindschadler , 1986; Mair et al.,

2001; Bingham et al., 2008). This behaviour is consistent with inputs of meltwater to a

subglacial hydrological system which is incapable of accommodating them without a

great increase in pressure (Röthlisberger and Lang , 1987; Iken et al., 1983; Iken and

Bindschadler , 1986; Hooke et al., 1989; Mair et al., 2001).

Although a small component of the coincident vertical and horizontal velocity changes

is due to thickness changes resulting from longitudinal strain-rate or stress-gradient

coupling, the signals we observe cannot be attributed to these effects alone. Based

on motion of adjacent sites and ice thickness data (Figure 6.1b; Bamber et al., 2001;

Krabill , 2010), we calculate that the thickness changes originating due to longitudinal

coupling are approximately an order of magnitude smaller than the elevation changes

we have recorded. They also typically operate in the opposite direction as acceleration

of downstream sites causes extension and thinning of ice upstream as opposed to the

uplift observed. Throughout the summer, further speed-up events which are coincident

with ice surface uplift confirm the role of surface generated meltwater in forcing seasonal

changes in ice motion for this section of the GrIS. We also note that the evidence for

hydraulically-forced enhanced basal motion implies that basal temperatures along this

transect are at the pressure melting point.

Immediately prior to the spring events most sites also experience a short period

of increased velocity in the absence of uplift of the ice surface, which we attribute to
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Figure 6.2: a-g. 24-h horizontal velocity (black stairs), surface height (grey line) and positive-
degree days (grey bars) at sites 1-7 for the survey period. The surface height is shown relative to
an arbitrary datum, with a linear, surface-parallel, slope removed. Winter background velocity
(black dashes) is determined by bulk movement of each GPS site over the subsequent winter.
Text to the left of each panel shows the elevation, percentage annual velocity change due to
summer velocity variations compared with values if the ice moved at winter rates all year and
the total surface ablation in water equivalence at each site for the whole survey period. h.
Discharge hydrograph (black; m3s−1) from Leverett Glacier in 2009. The estimated catchment
for this outflow channel (Bartholomew et al., 2011a) is shown on Figure 6.1 and contains GPS
sites 1, 2 and 3. The blue shaded sections identify pulses of meltwater which are associated with
dramatic reorganisation and expansion of the subglacial drainage system within the catchment.

mechanical coupling to ice downglacier that is already moving more quickly (Price

et al., 2008). At site 7, which is located at 1716 m elevation, 115 km from the margin,

there is no surface uplift or significant ice acceleration indicating that surface generated

meltwater did not penetrate to the bed this far inland (Figure 6.2g). Site 7 does display

a small, but clear, change in horizontal velocity (Figure 6.3), however, which can likely

be attributed to coupling to ice downstream. Since the magnitude of these changes is

insignificant in terms of annual ice flux, site 7 delimits the inland extent of hydrologically
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Figure 6.3: Detrended along-flow position for the GPS at site 7. The residual value indicates
the observed distance in metres of the GPS from the expected position if it flowed at its mean
rate for the whole survey period. Negative slopes therefore occur when the velocity is slower
than the survey period average and vice versa.

forced velocity variations in 2009 for this transect.

6.3.1 Behaviour in the lower ablation zone

At sites 1 - 3, which are low in the ablation zone and experience the greatest acceleration,

spring-events occur early in the melt-season, near the beginning of June, and ice velocity

become less sensitive to air temperature variations as the melt season progresses (Figure

6.2). This behaviour is explained by evolution in the structure of the subglacial drainage

system in response to sustained inputs of meltwater from the ice sheet surface, consistent

with previous observations and predictions of dynamic behaviour in this section of the

GrIS (Bartholomew et al., 2010; Pimentel and Flowers, 2011).

A recent hydrological study (Bartholomew et al., 2011a) supports the conclusion that

evolution in the structure of the subglacial drainage system is responsible for limiting

the magnitude of hydrologically-forced velocity variations at sites 1 - 3 later in the melt

season. Observations of hydrological parameters from a catchment that drains through

Leverett Glacier show that an efficient subglacial drainage system expands upglacier

at the expense of an inefficient one as the summer progresses, a process that has been

observed previously on Alpine glaciers (Nienow et al., 1998). Episodic increases in

the runoff hydrograph (Figure 6.2h), which are interpreted as evidence for dramatic

re-organisation and expansion of the subglacial drainage system in response to new
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inputs of meltwater from the ice sheet surface, have a clear short-lived effect on the

velocity records at sites 1, 2 and 3 (Figure 6.2a-c,h). These events indicate, firstly, that

sites 1 - 3 are within the hydrological catchment of the river and, secondly, that changes

in the subglacial drainage system have a direct impact on ice velocity downglacier

from where they initially occur. The large volumes of water exceed the capacity of

the subglacial drainage system, causing pressurisation, and a concomitant reduction in

basal drag (Iken and Bindschadler , 1986), as the water is transported to the ice sheet

margin.

Clear daily-cycles in horizontal velocity occur at sites 2 and 3 following the spring

events, and persist until mid-August. The magnitude of these cycles is typically between

100 and 150 % of the mean daily velocity, and can be over 200 % of winter background

velocity during periods of significantly enhanced motion (Figure 6.4). Their existence

indicates that over-pressurisation of the subglacial drainage system also happens regularly

on diurnal timescales. The daily cycles in ice velocity appear to be closely related to

variations in air temperature, with a typical lag between peak temperature and peak

velocity of less than 3 hours, suggesting that they occur in direct response to diurnal

variations in meltwater production at the ice sheet surface and that surface and englacial

transit times are short (Shepherd et al., 2009).

In addition to these short-lived events, ice velocities at sites 1, 2 and 3 are higher on

the rising limb of the seasonal runoff hydrograph for Leverett Glacier, subdued following

peak discharge on July 21st, and display a return to winter background rates in late

August, when runoff is diminishing (Figure 6.2a-c,h). ‘Slower than winter’ ice velocities

are also observed for a short period at some sites once the summer melt has stopped,

however this signal is not large enough to have a significant impact on rates of annual

ice motion.

These findings from the lower ablation zone can be explained in physical terms.

Although increased efficiency of the subglacial hydrological system reduces the dynamic

response to absolute water input volume (Bartholomew et al., 2010), lake drainage and

other singular high velocity events, as well as diurnal fluctuations in horizontal velocity

testify that the system can still be overfilled by a large enough increase in meltwater

input, causing an increase in subglacial water pressure (Das et al., 2008; Shepherd et al.,
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Figure 6.4: a. Daily cycles in horizontal ice velocities at sites 2 (blue) and 3 (magenta) for
∼ 3 weeks in late-July/early-August. 24-hour mean velocities are shown by black stairs and
coloured lines indicate winter background velocities. b. Temperature record for sites 2 (blue)
and 3 (magenta) for the same period.

2009; Pimentel and Flowers , 2011; Schoof , 2010). Production of surface meltwater, and

its delivery to the ice-bed interface, is inherently variable on timescales of hours, days,

weeks and months. Since the capacity of the subglacial hydrological system reflects the

balance between channel opening by melting of the channel walls, and closure due to

deformation of the surrounding ice, and adjusts relatively slowly to changes in water

flux (Röthlisberger , 1972; Schoof , 2010), the system never reaches steady-state. We

argue, therefore, that once a conduit has been established to deliver surface meltwater

to the glacier bed, large changes in the rate of meltwater delivery to the subglacial

hydrological system will continue to force velocity variations.

This analysis explains why high-velocity events at sites 1, 2 and 3 occur on the

rising limb of the discharge hydrograph, when the system is continuously challenged to

evacuate larger and larger volumes of water. Later in the season, when a channelised
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drainage system has been established, and volumes of meltwater are diminishing, the

drainage system is better able to evacuate meltwater without overfilling, explaining

the reduction in magnitude of hydrologically-forced variations in ice motion. While

ice velocities are subdued on the falling limb of the runoff hydrograph, velocities at

sites 1 - 3 still exceed winter flow rates until mid-August. This appears to be the

result of continued diurnal fluctuations in ice velocity (Figure 6.4), which occur until

there is a dramatic reduction in runoff volumes at Leverett glacier after August 15th

(Bartholomew et al., 2011a).

6.3.2 Behaviour in the upper ablation zone

At sites 4 - 6, which are higher in the ablation zone (>1000 m), the relationship between

changes in the rate of horizontal motion and the rate of uplift of the ice sheet surfaces

indicates that the forcing mechanism is the same as in the lower ablation zone. Mapping

of surface albedo using satellite data shows that the observed spring-events at these

sites follow the onset of surface melting above their respective elevations (Figure 6.5),

although both satellite and in situ observations showed that the snowpack was not fully

removed at sites 5 and 6 by the end of the summer.

A key difference from the lower ablation zone is that the spring events occur later in

the melt season (Figure 6.2a-g). There is also a significant time lag between the onset of

surface melting, as inferred from both positive degree days (PDD’s) and MODIS-derived

albedo values, and the establishment of a hydraulic connection between the ice sheet

surface and its bed as inferred from uplift of the ice surface. This means that significant

velocity enhancement occurs for a much shorter time period than at lower elevations.

At site 4, surface melting begins in early June, while coincident surface uplift and

horizontal acceleration, which are diagnostic of local hydrological-forcing, are delayed

until July 5th (Figure 6.2d). Increased velocities prior to this date, which occur without

accompanying surface uplift, are explained by coupling to downglacier ice and are

not as large as those induced by local forcing at the sites nearer the margin. In situ

measurements of air temperature and satellite observations of surface albedo show that

sites 5 and 6 both experience prolonged surface melting from July 6th onwards, and

experience locally-forced velocity variations from July 12th and July 27th respectively
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Figure 6.5: Ice sheet surface conditions inferred using the MODIS MYD10A1 1-day albedo
product. Thresholds for bare ice (<0.45; black) and snow (>0.66; light grey) are used to delimit
zones across the study region by elevation (y-axis) throughout the survey period (x-axis). A
transitional zone (dark grey) is assumed to comprise a mixture of snow, slush, surface water and
bare ice surfaces and broadly delimits the altitudinal extent of surface albedo changes caused
by melting of the ice sheet surface (Knap and Oerlemans, 1996). The timing and elevation of
the onset of hydrologically forced velocity variations, which occur at sites 1 - 6 successively, is
denoted by red crosses.

(Figure 6.2e,f). Later spring events and the delay between the onset of surface melting

and hydraulic connection between the ice surface and its bed are due in part to lower

rates of surface melting. In addition greater volumes of water are required to propagate

fractures through thicker ice (Alley et al., 2005b; Van der Veen, 2007). These factors

both increase the time required for the accumulation of sufficient volumes of meltwater

to penetrate to the ice sheet bed.

Sites 4, 5 and 6 all experienced their highest velocities during a period of cooler

temperatures from July 22nd to August 2nd (Figure 6.2d-f), suggesting that drainage

of stored surface water was a key factor in these hydrologically-forced events. Satellite

images show surface meltwater accumulation in supraglacial lakes in this region from

mid-June at elevations between 1000 - 1200 m, and from 1200 m to >1600 m from

early July. This storage of surface meltwater is made possible by relatively low surface

gradients, which reduce the tendency for water to runoff to lower elevations (Nienow

and Hubbard , 2006), and allows concentration of the large volumes of water required to
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propagate fractures to the ice sheet bed through thick ice (Das et al., 2008; Box and

Ski , 2007; McMillan et al., 2007; Sundal et al., 2009).

Using MODIS imagery, we identify a number of events where changes in horizontal

and vertical movement at one or more of our GPS sites is coincident with the dis-

appearance of supraglacial lakes from the ice sheet surface. In particular, the spring

event at site 5 on July 12th is coincident with disappearance of three supraglacial lakes

from between 1200 - 1350 m elevation (Figure 6.1, yellow). Widespread drainage of

supraglacial lakes at elevations up to 1500 m between July 19th - 23rd (Figure 6.1, red)

corresponds with increases in ice velocity at sites 4 and 5 of up to 100 m y−1 on July

21st and 22nd respectively. The peak in horizontal velocities at sites 4, 5 and 6 at the

end of July also coincides with drainage of a lake at ∼ 1400 m elevation and a number

of lakes above ∼1500 m between July 26th and July 29th (Figure 6.1, blue). It is not

possible to be certain, using optical imagery, that all lakes which disappear from the ice

sheet surface drain directly into englacial conduits. For example, some lakes may drain

superficially either into other lakes or to join with water input points that are already

open further downglacier. However, the repeated coincidence of lake disappearance

from the ice sheet surface with changes in ice velocities suggests strongly that a large

number of these lakes drain to the ice-bed interface locally. Uplift of the ice surface

indicates that this water is delivered to a subglacial drainage system which is unable to

evacuate it without a large increase in water pressure, leading to the enhanced basal

motion (Das et al., 2008).

Drainage of supraglacial lakes therefore appears to be responsible for the initiation

of hydrologically forced velocity variations at both sites 5 and 6. It is not clear that the

spring event at site 4, on July 5th, is caused directly by drainage of supraglacial lakes.

This site is located by a large moulin which becomes active each year (Catania and

Neumann, 2010), and it is likely that the spring event is associated with the re-opening

of this moulin. A common factor in the upper ablation zone, however, is that by the time

a hydraulic connection has been established between the ice sheet surface and its bed,

facilitating hydrologically-forced velocity variations, air temperatures and proglacial

runoff are already decreasing. Lake drainage events are known to be rapid, delivering

large enough volumes of water to quickly transform the subglacial hydrological system
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into an efficient channellised network (Das et al., 2008). Under these circumstances, it is

unlikely that the volumes of water generated at the ice sheet surface at these elevations

following lake drainage events will be sufficient to sustain large velocity variations

(Pimentel and Flowers, 2011). Accordingly, even though the temperature data show

considerable melting occurs at sites 4 and 5 until mid-August, we do not observe any

changes in ice velocity at sites above 1000 m elevation beyond August 2nd.

6.4 Changes in annual motion

Annual mean ice velocities at sites 1 - 7 respectively are 16.7 %, 18.4 %, 14.8 %, 7.6 %,

5.1 %, 2.5 % and 0.2 % greater than they would be if the ice flowed at winter rates

all year round. We find a strong correlation between the magnitude of local ablation

and the percentage changes in annual ice motion due to hydrologically-forced velocity

variations at each GPS site (Figure 6.6). Sites 1, 2 and 3, which are nearest the margin

and below 800 m elevation, experience the most surface melting and show significantly

greater annual acceleration than those at higher elevations, with the effect attenuating

inland. Data from 2008 also show increases in mean annual ice velocity of 13.5 % and 5.6

% at sites 3 and 4 respectively due to summer velocity variations (Bartholomew et al.,

2010), indicating that the velocity changes that we observe in 2009 are a persistent

feature of the dynamic behaviour of this part of the GrIS.

The relationship between rates of annual ablation and the amplitude of hydrologically-

forced velocity change is not intuitive on the basis of previous theoretical work (Pimentel

and Flowers, 2011) and observations (Van de Wal et al., 2008), which have suggested

that higher volumes of surface meltwater production will ultimately reduce the impact

of hydrological forcing on GrIS motion. Implicit in these arguments is a concept

of ‘optimum melt’: too much meltwater and the hydrological system will become

channelised earlier in the summer, making ice velocities less sensitive to the volumes

of meltwater reaching the bed more quickly, reducing the impact of seasonal velocity

variations on the annual displacement of the ice. However, it is important to consider

that the hydrological forcing at each site is a product of both local melting and meltwater

delivered through the subglacial drainage system from further upglacier. As a result,
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Figure 6.6: Percentage change in mean annual ice velocity vs. total surface ablation (m w.e.)
at the GPS sites. The increase in annual ice velocity is calculated as the percentage by which
the observed annual displacement exceeds that which would occur if the ice moved at winter
rates all year round.

sites nearest the margin will receive disproportionately more meltwater per unit of local

melting than those at higher elevations. Following this logic, previous theoretical work

(Pimentel and Flowers, 2011) and observations (Van de Wal et al., 2008) expect sites

nearest the margin, where the total flux of meltwater through the subglacial drainage

system will be greatest, to show smaller overall velocity changes than sites further inland.

However, despite significant differences in the local volume of meltwater delivered to

the ice-bed interface, we see similar increases in annual ice motion at sites 1 - 3 (14.8 -

18.4 %).

Our findings from the lower ablation zone are consistent with the numerical model of

subglacial drainage proposed recently by Schoof (2010) and suggest that hydrologically-

forced ice velocity variations are controlled more strongly by variations in the rate,

rather than the absolute volume, of meltwater production and delivery to the ice-bed
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interface. In particular, this reflects a temporary imbalance between the volume of

water within the subglacial drainage system, and its inability to evacuate this water

without an increase in pressure over a wide enough area to significantly affect basal

motion (Kamb et al., 1994). We argue that in a warmer climate, where greater volumes

of surface meltwater are produced in the lower ablation zone, the seasonal rising limb

and shorter-term variations in water delivery to the subglacial drainage system will

continue to cause significant increases in annual ice motion despite the potential for an

earlier ‘switch’ from a distributed to a channelised subglacial drainage system (Schoof ,

2010). However, the overall magnitude of velocity variations will continue to be limited

by evolution in the structure of the subglacial drainage system, which responds to inputs

of surface meltwater over a longer period (Mair et al., 2002a; Anderson et al., 2004;

Bartholomew et al., 2010; Schoof , 2010).

While development in the efficiency of the subglacial drainage system also exerts

some control on hydro-dynamic behaviour at higher elevations, the dominant limiting

factor on the contribution of velocity variations to annual ice motion at sites in the upper

ablation zone is the shorter duration and later establishment of the hydraulic connection

between the ice sheet surface and its bed. The expectation that surface melting will

be more intense, and spatially extensive, in a warmer climate (Hanna et al., 2008),

leads us to suggest that, in future, sites at higher elevations are likely to experience

velocity variations for a longer period of time, allowing a greater annual change in ice

velocity. In particular, higher rates of meltwater production would allow lakes that

fill and subsequently drain to reach the volume required to propagate cracks through

thick, cold ice earlier in the summer season (Krawczynski et al., 2009). We therefore

expect that the behaviour observed at sites 1 - 3 would be extended to higher elevations,

creating a positive relationship between atmospheric warming and dynamic mass loss

in land-terminating sections of the GrIS, albeit one that is modified by development in

the structure of the subglacial drainage system.

We do not infer direct cause and effect between bulk volumes of surface ablation and

changes in ice motion on the basis of the relationship shown in Figure 6.6. Instead, our

data show contrasting regimes in hydrologically-forced dynamic behaviour of the GrIS

at different elevations within the ablation zone, which provide a compelling explanation
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for the relationship between total surface ablation and changes in annual ice motion.

We therefore believe that our data provide a realistic basis for parameterisation of ice

flow models that are used to predict the future evolution of the GrIS (Parizek and Alley ,

2004).

6.5 Conclusions

Our data show that seasonal changes in horizontal ice velocity along a ∼115 km transect

in a land-terminating section of the western GrIS are forced by the generation of

surface meltwater which is able to reach the ice-bed interface. These velocity variations

propagate inland from the ice sheet margin to progressively higher elevations in response

to the onset of surface melting, and the creation of a hydraulic connection between the

ice sheet surface and its bed. We find a positive relationship between rates of annual

ablation and percentage changes in annual ice motion along the transect, with sites

nearest the ice sheet margin experiencing greater annual variations in ice motion (15

-18 %) than those above 1000 m elevation (3 - 8 %).

Patterns in the timing and rate of meltwater delivery to the ice-bed interface are key

controls on the magnitude of hydrologically-forced velocity variations at each site. In the

lower ablation zone (<800 m elevation), ‘spring events’ occur early in the melt season

and the overall contribution of variations in ice motion to annual flow rates is limited by

evolution in the structure of the subglacial drainage system (Bartholomew et al., 2010).

At these sites, hydrologically-forced ice acceleration is greatest on the rising limb of

the seasonal runoff hydrograph, when the hydraulic capacity of the subglacial drainage

systems is consistently exceeded. However, we find that this behaviour is not replicated

at sites in the upper ablation zone (>1000 m), where the period of summer melting is

shorter, and the establishment of a hydraulic connection between the ice sheet surface

and its bed is delayed, limiting the timeframe for velocity variations to occur.

In a warmer climate we expect seasonal melting of the GrIS surface to extend over

a wider area, and to be more prolonged (Hanna et al., 2008). This makes it likely that

volumes of meltwater sufficient to reach the ice-bed interface will accumulate further

from the ice sheet margin and that the timing of meltwater input will occur earlier each
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summer (Sundal et al., 2009; Krawczynski et al., 2009). Our data therefore support

the hypothesis that inland propagation of hydrologically-forced velocity variations will

induce greater dynamic mass loss in land-terminating sections of the GrIS in a warmer

climate, as patterns of hydro-dynamic behaviour observed in the lower ablation zone

extend upglacier. These considerations provide a conceptual framework to understand

the positive relationship between annual rates of surface ablation and percentage

variations in annual ice velocity, and can be used to improve numerical simulations

used for predicting the impact of hydrologically-forced variations in ice velocity on the

future mass balance of the GrIS (Parizek , 2010).
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CHAPTER 7

Acceleration of a land-terminating margin of the Greenland

Ice Sheet in contrasting melt years

In chapter 6 we compared hydrological forcing of ice acceleration at different elevations

along the GPS transect in 2009. At sites above 1000 m, where the ice is thicker and

melt rates are lower, timing of drainage of meltwater to the ice-bed interface appears to

be the main control on the the overall magnitude of summer acceleration. Although

evolution in the structure of the drainage system limited late summer ice velocities at

the lower elevation sites (confirming observations made in chapter 4), we still found a

positive relationship between rates of annual ablation and percentage changes in annual

ice motion along the whole transect. On the basis of comparison with the hydrograph

we suggest that variability in the rate of meltwater input is important in sustaining

raised ice velocities at sites near the ice sheet margin, even once a transition to an

efficient drainage system has occurred.
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The results presented in chapter 6 lead us to hypothesise that overall rates of mass

loss will increase along the transect in warmer years because meltwater will drain to the

bed earlier and over a greater part of the ice sheet, while acceleration is sustained at

sites near the ice sheet margin. Regional scale data showed that summer temperatures

near to the transect were approximately the same in 2009 as the 1960 - 2010 average,

while 2010 was ∼2.5◦C warmer. In this chapter we compare GPS records from the whole

transect in 2009 and 2010 to test the hypothesis proposed in chapter 6 and to further

investigate controls on inter-annual variability in hydrologically-forced ice acceleration

in Leverett Glacier.
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Abstract

Coupling between surface melting of the Greenland Ice Sheet and accelerated ice flow,

through lubrication of the ice-bed interface, is controlled strongly by behaviour of

the subglacial drainage system. It is not agreed, however, whether higher melt rates

will increase or decrease dynamic mass loss from the ice sheet in a warmer climate.

To address this we present data from a land-terminating transect on the western ice

sheet margin in two years with contrasting melt regimes. Near the ice sheet margin

high summer acceleration is sustained in both years by non-steady behaviour of the

channelised subglacial drainage system. At higher elevations the change in summer

acceleration was greater in response to higher temperatures as meltwater accessed the

ice-bed interface earlier in the season, prolonging summer acceleration. Overall, mean

annual ice velocities were higher in the warmer year due to the increase in summer

acceleration, suggesting that hydro-dynamic coupling will increase mass loss from the

ice sheet in response to climate warming.

Each summer, meltwater generated at the Greenland Ice Sheet (GrIS) surface drains

through the ice sheet into the subglacial hydraulic system. These external inputs of

meltwater raise subglacial water pressure and reduce the resistance to basal sliding

(Iken, 1981), facilitating faster ice motion (Iken and Bindschadler , 1986). As a result,

rates of ice flow in marginal areas of the GrIS are greater in summer than in winter

(Zwally et al., 2002; Joughin et al., 2008a; Van de Wal et al., 2008; Bartholomew et al.,

2010; Sundal et al., 2011), which can increase annual ice flux by 6 - 14 % compared

with if the ice flowed at winter rates all year round (Bartholomew et al., 2010). If the

relationship between meltwater production and ice motion is positive (Zwally et al.,

2002), this mechanism has the potential to significantly increase rates of mass loss from

the GrIS in response to anticipated climate warming by amplifying the seasonal velocity

change signal (Parizek and Alley , 2004).

In response to inputs of surface meltwater, however, the subglacial drainage system

increases in capacity, developing from a hydraulically inefficient structure into a network

of efficient channels, which operate at lower mean pressures for a given discharge (Kamb,
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1987; Röthlisberger , 1972; Schoof , 2010), reducing the lubrication effect of external

meltwater inputs to the ice sheet bed (Bartholomew et al., 2010; Sundal et al., 2011;

Bartholomew et al., 2011b). This reasoning, underpinned by steady-state theory of

water flow through subglacial channels (Röthlisberger , 1972; Schoof , 2010), has been

invoked to explain observations that ice velocities in the GrIS in late summer are lower

than those in early summer (Bartholomew et al., 2010; Sundal et al., 2011). In a number

of recent studies it has been proposed that ice in marginal areas will flow more slowly in

years with higher melt since channelisation of the subglacial drainage system will occur

more quickly in response to greater volumes of water, reducing the dynamic sensitivity

of the GrIS to climate warming (Van de Wal et al., 2008; Pimentel and Flowers, 2010;

Schoof , 2010; Sundal et al., 2011).

A key feature of hydrologically-forced velocity variations in the GrIS is that they

propagate inland from the ice sheet margin over the course of each summer following

the onset of surface melting at successively higher elevations (Bartholomew et al., 2010;

Sundal et al., 2011). Summer velocity increases have been observed to occur at elevations

above 1500 m (Palmer et al., 2011; Bartholomew et al., 2011b). However, evidence for

seasonal development of the subglacial drainage system and its effect on the relationship

between surface melting and ice velocities has come mostly from the lower ablation zone

(Bartholomew et al., 2010; Sundal et al., 2011), at elevations below 1000 m. Further,

much analysis has focused on the implications of dynamic behaviour at a point or within

a specific elevation band in the ablation zone (Van de Wal et al., 2008; Shepherd et al.,

2009; Sundal et al., 2011).

Two major uncertainties in the question of whether increased surface melting across

the GrIS will cause an increase in the rate of mass loss from the ice sheet in a warmer

climate therefore remain unaddressed. Firstly, the behaviour observed at sites below

1000 m is not necessarily replicated upglacier where the ice sheet is thicker and the melt

season is currently much shorter (Bartholomew et al., 2011b). Secondly, in a warmer

year meltwater is likely to penetrate to the bed further inland, increasing the area of

the GrIS which is subject to hydrologically-forced velocity variations.

Greenland climate in 2010 was marked by record-setting high air temperatures

and ice loss by melting (Box et al., 2010). Summer seasonal average (June-August)
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Figure 7.1: Location of the study region on the western margin of the GrIS. Contours (100 m
intervals) are produced from a digital elevation model derived from InSAR (Palmer et al., 2011).
The catchment of the river which drains through Leverett glacier is shown in red (Bartholomew
et al., 2011a).

air temperatures around Greenland were 0.6 to 2.4◦C above the 1971-2000 baseline

and were highest in the west (Box et al., 2010). As a result, bare ice was exposed

at the GrIS surface earlier than in previous years and for longer (Tedesco et al.,

2011). NCEP/NCAR reanalysis data shows that the June-August 700 mb temperature

anomaly in west Greenland near to Kangerlussuaq was +2.5◦C relative to the 1960 -

2010 mean (Kalnay et al., 1996). In contrast, this anomaly was approximately 0◦C in

2009. The regional temperature characteristics of these years provide an opportunity

to evaluate the effect that an increase in summer temperatures, commensurate with

predictions for climate warming over the next century (Meehl et al., 2007), will have on

hydrologically-forced ice dynamic behaviour compared with the late 20th century.

We present data from 7 sites along a land-terminating transect in west Greenland at

approximately 70◦ N that extends to 115 km from the margin, up to 1715 m elevation

(Figure 7.1), from both 2009 and 2010. At each site we made continuous measurements of

ice velocity, air temperature and seasonal measurements of surface ablation. In addition
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we measured discharge from a portal at Leverett glacier which drains runoff from a

catchment of approximately 1200 km2 (Bartholomew et al., 2011a), incorporating our

lowest three sites (Figure 7.1). Displacement of each GPS antenna over the intervening

winter was used to calculate mean winter ice velocities. In the following analysis these

are used as baseline values when calculating increases in ice velocity due to summer

velocity variations. When calculating annual velocities we assume that the ice flowed

at winter rates for all days of the year for which we do not have measurements.

The regional temperature difference between 2009 and 2010 is reflected in the local

measurements of air temperature at our sites, where the average difference in May-

August mean temperature is 2.1◦C. Local measurements of surfacing lowering at each

GPS site show that total summer ablation was 22 - 220% greater in 2010 than 2009,

while the runoff observations from Leverett Glacier glacier show that cumulative bulk

discharge was approximately twice as great in 2010 compared with 2009 (Figure 7.2h).

We measured summer velocity variations of up to 300 % greater than winter

background rates along the transect in both 2009 and 2010, following the onset of

surface melting. Velocity variations occurred first near the ice sheet margin and at

progressively higher elevations as the melt season progressed in a pattern which was

repeated over the two years (Figure 7.2a-g). This broad relationship with patterns of

surface melting is consistent with previous studies in this region (Bartholomew et al.,

2010, 2011b; Sundal et al., 2011) and indicates that the velocity variations were driven

by inputs of surface meltwater to the subglacial drainage system once a hydraulic

connection had been established between the ice surface and bed.

Sites nearest the ice sheet margin, which are at lower elevations and experienced

the highest rates of surface melting, showed the greatest summer acceleration over

winter background motion and the effect attenuated inland (Figure 7.2a-g). Sites 1 - 3,

below 1000 m elevation, all experienced an increase in mean annual velocity of greater

than 14.8 % due to the summer acceleration, while sites 5 - 7, which are above 1200 m

elevation, showed increases in annual velocity of 8.2 % or less (Figure 7.3a, Table 7.1).

Ice acceleration at site 1, nearest the ice sheet margin, started 15 days earlier in

2010 (2nd May) than in 2009 (22nd May). We infer that the earlier onset of above zero

temperatures produced enough water at the ice surface to force a hydraulic connection
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with the subglacial drainage system at an earlier date (Figure 7.2a,h). This pattern

was repeated at the sites upglacier, where earlier onset of melting in 2010 induced ice

acceleration earlier than in 2009 by an average of 25 days.

Significantly, comparison of annual motion data from 2009 and 2010 shows, with the

exception of site 2, that annual mean velocities along the transect were greater in 2010

than in 2009. On average, velocity variations in 2010 contributed an extra 2 % increase

in annual motion on top of winter background rates compared with 2009 (Figure 7.3a).

In 2009 site 7 did not speed-up appreciably and broadly delimited the inland extent

of hydrologically forced velocity variations along the transect for that year. A small and

short-lived acceleration, in the absence of surface uplift, was likely due to mechanical

coupling of faster moving ice downglacier (Bartholomew et al., 2011b) and is the cause

of the 0.2 % increase in annual motion (Table 7.1; Bartholomew et al., 2011b). In 2010,

when the May-August mean temperature at site 7 was 2.8◦C warmer than in 2009, the

increase in mean annual ice velocity was 1.9 %. Our data suggest, therefore, that ice

velocity variations also propagated further into the ice sheet in the warmer year of 2010

(Figure 7.3a,b).

In order to explain these findings we used the detailed records of ice motion, air

temperature, and runoff to investigate factors which control temporal and spatial

Site Winter velocity (m yr−1)
% change 2009 % change 2010

early late annual early late annual

1 49.5 62.8 23.0 16.7 76.4 22.6 20.5
2 100.9 65.8 26.0 18.4 75.5 9.9 17.7
3 97.2 53.8 18.2 14.8 67.1 10.8 16.1
4 119.5 19.3 17.7 7.6 - - 10.2
5 113.1 3.3 21.7 5.1 26.2 13.6 8.2
6 91.8 -0.1 13.0 2.5 14.9 19.1 7.0
7 62.7 -1.0 2.4 0.2 1.4 7.8 1.9

Average 1-3 - 60.8 22.7 16.6 73.0 14.5 18.1
Average 5-7 - 0.7 12.3 2.6 14.2 13.5 5.7

Table 7.1: Percentage speed-up relative to winter background rates during 2009 and 2010.
Early summer is defined as April 26th to July 9th and late summer is defined as July 10th to
August 23rd. Annual percentage speed-up is the percentage by which annual mean velocity
exceeds that which would occur if the ice flowed at winter rates all year round.

107



changes in the relationship between surface melting and ice acceleration in both years.

In the following analysis we define the summer period from April 26th to August 23rd,

which is further divided into early and late summer by the mid-point on July 10th.

This period covers the full extent of accelerated ice flow in both years and allows direct

comparison of our results with other recent studies in the same region (Sundal et al.,

2011).

Further down in the ablation zone, at sites 1 - 3, ice velocities were lower in late

summer than early summer in both 2009 and 2010 even though air temperatures and

runoff remained high (Table 7.1, Figure 7.2a-c,h). This phenomenon has been observed

before and indicates that, by late summer, the subglacial drainage system has developed

to evacuate large volumes of water at lower pressure than earlier in the summer (Iken

and Bindschadler , 1986; Bartholomew et al., 2010; Sundal et al., 2011; Bartholomew

et al., 2011b). We confirm, therefore, that seasonal development in the structure of

the subglacial drainage system acts to limit the overall impact of meltwater-forced ice

acceleration on mean annual ice velocity (Van de Wal et al., 2008; Bartholomew et al.,

2010; Sundal et al., 2011; Schoof , 2010).

Late summer velocities at sites 1 - 3 are also lower in 2010 than in 2009. This

difference appears because ice velocities in 2010 begin to decline, following early season

acceleration, at an earlier date than in 2009. In our dataset, however, the earlier decline

in velocities is offset by an earlier spring event and, integrating the velocity signal over

the whole season, we find that it does not necessarily equate to an overall reduction in

annual ice motion (Table 7.1; Sundal et al., 2011). Mean temperatures for the summer

period (April 26th - August 23rd) at sites 1 - 3 were 1.5, 1.2 and 2.7 ◦C greater in 2010

than 2009 respectively. For the same period, site 1 and site 3 experienced increases in

acceleration from 16.7% to 20.5 % and 14.8 % to 16.1 % respectively, while at site 2

acceleration decreased from 18.4 % to 17.7 %.

In contrast with recent suggestions (Truffer et al., 2005; Van de Wal et al., 2008;

Pimentel and Flowers, 2010; Schoof , 2010; Sundal et al., 2011), therefore, we do not

agree that the timing of the transition from a distributed to channelised subglacial

drainage system, presumed to occur more quickly in a warmer year, is the main control

on inter-annual variations in ice velocity. Should that be the case, we would expect that
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the effect of higher amounts of meltwater produced in 2010, which is assumed to have

effected the development of an efficient drainage system earlier in the summer than in

2009, to subdue the transient early-summer acceleration more quickly, thereby reducing

mean summer ice velocity. Although the increases in summer ice velocity observed at

sites 1 and 3 between 2009 and 2010 are relatively small, the fact that they are at least

sustained, and not dramatically reduced, is therefore significant. If we accept the logic

that higher melt will cause quicker development of an efficient drainage system at any

one site, then we must conclude that more rapid development of an efficient drainage

system is not sufficient, on its own, to reduce mean summer ice velocities.

An alternative characterisation of early and late summer is offered by the Leverett

Glacier hydrograph in both 2009 and 2010. At sites 1 - 3, velocities are greatest on its

rising limb (Figure 7.2h), and are subdued once discharge has stabilised or is declining;

after July 16th in 2009 and July 1st in 2010 (Figure 7.2a-c). Although theoretical

analyses (Röthlisberger , 1972; Schoof , 2010) show that larger subglacial meltwater

channels operate at lower mean pressure under steady-state conditions, or in response to

gradually changing inputs of meltwater, discrepancy between changes in the rate that

water is delivered to a drainage system and how quickly it can adjust to accommodate

this water leads to short-term excursions in water pressure (Röthlisberger , 1972; Schoof ,

2010). While meltwater inputs are consistently rising, steady-state conditions are

unlikely to be met, even when the subglacial drainage system has become channelised

(Röthlisberger , 1972). Our data suggest that the rising limb of seasonal runoff is able

to sustain raised subglacial water pressures, and therefore ice velocities, by constantly

challenging the drainage system to accommodate larger volumes of water. As the

discharge stabilises and/or decreases in late summer the pressure and ice velocities

fall because closure of the ice walled conduits lags behind the reduced flux of water

(Röthlisberger , 1972).

At our higher elevation sites, while summer ice acceleration is also forced by melting

at the ice sheet surface, the behaviour in relation to patterns of surface melting is

different from lower in the ablation zone. The velocity variations at sites 5 - 7 also

cause smaller increases in annual ice motion (0.2 - 8.2 %) than in the lower ablation

zone (Table 7.1). Initial acceleration is delayed relative to the onset of above-zero
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temperatures (particularly in 2009) and occurs later in the melt season. The initiation

of meltwater-forced ice acceleration is critically dependent on the development of a

hydraulic connection between the ice surface and its bed. The delay is presumably due

to lower melt rates which mean that it takes longer to accumulate enough water to

penetrate to the ice sheet bed, in particular since more water is required to propagate

cracks via hydrofracture through thicker, cold ice (Van der Veen, 2007; Krawczynski

et al., 2009). Periodic drainage of supraglacial lakes is likely to play an important role

in this process, especially at the highest elevations, by concentrating surface meltwater

from wide areas into large reservoirs (Das et al., 2008; Bartholomew et al., 2011b).

Comparison between sites and across both years suggests that this delay in the

onset of acceleration exerts primary control on the magnitude of summer acceleration

by limiting the time frame for velocity variations to occur. For example, in 2009,

accelerated ice motion began at sites 4, 5 and 6 on June 5th, July 11th and July 21st

respectively and lasted until approximately the end of August, leading to increases in

annual ice velocity of 7.6 %, 5.1 % and 2.5 %. In 2010 site 5 accelerated on June 6th, 31

days earlier than in 2009, and site 6 accelerated on June 25th, 24 days earlier, leading

to accelerations of 8.2 % and 7.0 % respectively - an increase of over 3 % on 2009.

Combining both years data we find that there is a positive relationship (r=0.92)

between the amount of local ablation and the percentage increase in annual motion due

to the summer velocity variations at each site (Figure 7.3c). The relative enhancement

of annual velocity in 2010 compared with 2009 is greater at higher elevations: while the

average percentage increase in acceleration across all sites was 2 %, at sites 5, 6 and 7

this amounted to 1.6 and 2.8 times the acceleration compared with 2009 at sites 5 and

6. Site 7 experienced 9.6 times the acceleration in 2010 compared with 2009, however,

given the very small acceleration in 2009 (0.2 %) the exact figure is not that meaningful

(Figure 7.3d, Table 7.1).

The strong relationship between local surface ablation and the increase in velocity

seen in our data is explained by the competing influence of different mechanisms at

different elevations. In a warmer climate we would expect to see increased rates of ice

motion above 1000 m elevation because meltwater will reach the ice-bed interface earlier

in the summer. The ‘time-limited’ behaviour at our upper sites will also extend further
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inland, increasing the proportion of the ice sheet that is subject to summer velocity

variations; particularly because the hypsometry of the GrIS, which flattens inland, gives

a non-linear expansion of the area producing runoff in response to rising temperatures.

We find no evidence to support the recent hypothesis (Van de Wal et al., 2008;

Pimentel and Flowers, 2010; Sundal et al., 2011) that higher rates of surface melting

near the margin of the GrIS will reduce the overall magnitude of summer velocity

variations due to earlier channelisation of the subglacial drainage system. This finding

highlights the importance of non-steady behaviour of the channelised subglacial drainage

system, where raised water pressures can still result from short-term imbalance between

inputs of meltwater to the channelised subglacial drainage system and its capacity to

accommodate them (Röthlisberger , 1972; Schoof , 2010). This process appears able to

sustain ice velocity variations while runoff is increasing. The length of time between the

onset of seasonal runoff and its peak at sites in the lower ablation zone is not expected

to change in response to climate warming. We suggest, therefore, that the current

level of summer acceleration at sites nearest the ice sheet margin will remain high in

response to climate warming, maintained by short-term variability in meltwater supply

on the rising limb of seasonal runoff. Overall our data show that rates of mass loss

from land-terminating sections of the GrIS will be enhanced in a warmer climate by the

dynamic effect of increased surface melting. In order to capture this behaviour, numerical

simulations of GrIS dynamics in a warmer climate should be able to account for both

longer-term evolution of the subglacial drainage system and short-term variations in

subglacial water pressure, as well as behaviour at higher elevations where melt rates

are lower and ice is thicker.
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Figure 7.2: a-g. 24-h horizontal velocity (black stairs) and positive-degree days (grey bars) at
sites 1-7 for the survey period in 2009 and 2010. Winter background velocity (black dashes) is
determined by bulk movement of each GPS site over the intervening winter. Vertical dashed
lines indicate the end of temperature data used to calculate PDD’s. At site 4, power was lost
in early May in the GPS unit, and was only recovered in August. As a result, the detail of
the ice velocity record was lost, although we were able to calculate mean summer velocity
from the bulk displacement. h. Discharge hydrograph (m3 s−1) from Leverett Glacier. The
estimated catchment for this outflow channel (Bartholomew et al., 2011a) is shown on Figure 1
and contains GPS sites 1, 2 and 3.
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Figure 7.3: a. Percentage change in annual velocity due to the summer acceleration vs.
elevation for GPS sites in 2009 and 2010. b. Surface elevation profile of the transect showing
the extent of summer velocity variations in 2009 and 2010. Backslopes on the ice sheet surface
where meltwater can accumulate are shown in grey. c. Percentage change in annual velocity
vs. local ablation for each GPS site. d. Ratio of percentage change in annual motion in 2010
compared with 2009 vs. elevation for each GPS site along the transect.

113



CHAPTER 8

Short-term variability in Greenland Ice Sheet motion

forced by time-varying meltwater inputs: implications for

the relationship between subglacial drainage system

behaviour and ice velocity

In chapters 6 and 7 we found a positive relationship between seasonal rates of ablation

and percentage changes in ice acceleration at all elevations across our transect. At

higher elevation sites (>1000 m) this is explained by earlier drainage of meltwater

to the ice-bed interface in the warmer year. At sites nearer the ice sheet margin,

however, where meltwater drains more easily to the ice-bed interface, this finding has

important implications for the behaviour of the subglacial drainage system. Many

authors have suggested, on the basis of steady-state analysis, that channelisation of the

drainage system is the primary control on the late summer reduction in ice velocities.
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Therefore, increased rates of surface melting will cause more rapid channelisation of the

drainage system and earlier slowdown, leading to lower annual mean velocities. The

results presented in chapter 6 show, however, that short-term variability in the rate of

meltwater input to the subglacial drainage system can result in high ice velocities at sites

near the ice sheet margin (<1000 m elevation) even once the drainage system has become

channelised. In light of the failure of steady-state considerations to explain inter-annual

variation in summer acceleration we suggest that this may have greater control over

the pattern of seasonal ice acceleration than has previously been acknowledged.

In this chapter we use high temporal resolution records of ice velocity, derived from

our GPS data, to investigate the short-term structure of summer ice velocity variations

on Leverett Glacier and the relationship with air temperature and runoff. In the second

part of the paper, we use a simple model of the behaviour of a subglacial conduit to

assess whether the features of the ice acceleration signal can be explained as a response

of subglacial water pressure to time-varying water input.
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Abstract

High resolution measurements of ice motion along a ∼120 km transect in a land-

terminating section of the GrIS reveal short-term velocity variations (<1 day), which

are forced by rapid variations in meltwater input to the subglacial drainage system

from the ice sheet surface. The seasonal acceleration signal at low elevations (<1000 m)

is dominated by events lasting from 1 day to 1 week, although daily cycles are largely

absent at higher elevations, reflecting different patterns of meltwater input. Using a

simple model of subglacial conduit behaviour we show that the seasonal record of ice

velocity is best understood in terms of a time-varying water input to a channelised

subglacial drainage system. Our investigation substantiates arguments that variability

in the duration and rate, rather than absolute volume, of meltwater delivery to the

subglacial drainage system is an important control on seasonal patterns of subglacial

water pressure, and therefore ice velocity. Our results challenge predictions, based on

analysis of subglacial conduit behaviour in response to gradually varying meltwater

input, that development in the structure of the subglacial drainage system will exert

primary control on inter-annual variations in summer acceleration in this part of the

GrIS margin.

8.1 Introduction

Mass loss from the Greenland Ice Sheet (GrIS) is one of the largest unknown components

in predictions of future sea-level change (Meehl et al., 2007). The ice sheet loses mass

primarily through melting at its surface, which runs off, and discharge of icebergs to

the ocean where glaciers meet the sea. Where the ice sheet terminates on land, ice flow

velocities are enhanced each summer by meltwater which drains to the ice-bed interface,

lubricating basal motion (Zwally et al., 2002; Van de Wal et al., 2008; Joughin et al.,

2008a; Bartholomew et al., 2010, 2011b; Sundal et al., 2011). Should there be a direct

and positive relationship between the amount of meltwater produced and the magnitude

of the seasonal acceleration signal (Zwally et al., 2002), this process has the potential

to increase the rate of mass loss from the GrIS significantly in response to anticipated

climate warming, by drawing ice to lower elevations where temperatures are warmer
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(Parizek and Alley , 2004). While the impact of meltwater on fluctuations in ice flow has

been a research focus for glaciologists studying Alpine and Arctic glaciers for decades

(e.g. Iken, 1981; Iken et al., 1983; Iken and Bindschadler , 1986; Hooke et al., 1989;

Kamb et al., 1985; Kamb, 1987; Mair et al., 2001; Anderson et al., 2004; Bartholomaus

et al., 2007; Bingham et al., 2008), the problem is now receiving renewed attention in

the context of large ice sheet systems (Zwally et al., 2002; Van de Wal et al., 2008;

Joughin et al., 2008a; Das et al., 2008; Shepherd et al., 2009; Bartholomew et al., 2010;

Schoof , 2010; Pimentel and Flowers, 2010; Bartholomew et al., 2011a,b; Sundal et al.,

2011), with the ultimate aim of reducing uncertainty in ice sheet models that are used

to predict sea-level change (Parizek , 2010).

Effective pressure at the ice-bed interface, defined as ice overburden minus subglacial

water pressure, strongly influences rates of basal motion; lower effective pressure (higher

water pressure) favours faster sliding if it occurs over a wide enough area, as it reduces

drag between ice and the bed (Iken and Bindschadler , 1986). In classical theories

of sliding over a hard bed, higher basal water pressure encourages the growth of

subglacial cavities in the lee of bedrock undulations (Lliboutry , 1968; Iken, 1981; Fowler ,

1986; Schoof , 2005). Growth of subglacial cavities leads to local separation of the ice

and its bed, causing a reduction in basal drag thus allowing higher sliding velocities

(Bindschadler , 1983). Where the glacier bed is comprised of sediments, higher water

pressures are also associated with faster rates of basal motion. Basal motion of an ice

mass over a sedimentary bed can arise from pervasive deformation of the bed, shearing

across discrete planes in the bed or ploughing of clasts through the upper layer of the

bed (Alley et al., 1989) as well as sliding of the ice over its bed (Iverson et al., 1995).

High basal water pressures promote glacier sliding by weakening coupling between the

ice and its bed, and also has the potential to weaken basal sediments allowing the bed

to deform (Fischer and Clarke, 2001).

One of the major controls on subglacial water pressure is the structure of the drainage

system (Röthlisberger , 1972; Walder , 1986; Röthlisberger and Lang , 1987; Schoof , 2010),

which, in turn, reflects the recent water flux (Nienow et al., 1998). Overall, the size

of subglacial conduits is determined by the balance between the tendency for conduit

closure by collapse under the weight of overlying ice, and opening due to frictional
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melting of the walls by water, horizontal flow of the ice past bedrock obstacles and the

pressure of water within the conduits (Röthlisberger , 1972; Walder , 1986; Schoof , 2010).

Larger water flux therefore leads to faster rates of conduit opening and a drainage

system dominated by larger conduits, and vice versa.

The relationship between drainage system structure and its pressure-discharge

characteristics is generally understood in terms of the steady-state behaviour of subglacial

conduits (Röthlisberger , 1972; Walder , 1986; Schoof , 2010). In small conduits, opening

by frictional melting is small due to the low water flux and conduit size is maintained

largely by flow of ice past bedrock obstacles. In conduits of this type, generally described

as ‘cavities’, the tendency for creep closure is balanced by an increase in water pressure

to maintain equilibrium (Walder , 1986; Schoof , 2010). In a drainage system which is

dominated by cavity-type drainage there is positive relationship between conduit size,

subglacial discharge and water pressure.

In larger conduits where the water flux is much greater (known as ‘R-channels’),

closure is principally offset by higher rates of wall melting, which is controlled by the

conduit discharge (Röthlisberger , 1972). The largest channels have the highest closure

rates (greatest effective pressure) and therefore require the highest discharge to maintain

conduit size by melting. Effectively, the melting of walls relieves water pressure as a

channel grows in a way that is not possible in cavities where flux is low. As a result,

in a predominantly channelised subglacial drainage system in steady-state, there is

an inverse relationship between drainage system discharge and mean subglacial water

pressure (Röthlisberger , 1972; Schoof , 2010).

In a drainage system where R-channels predominate, the largest channels, which

operate at lower mean pressure, will tend to capture water from smaller channels,

leading to concentration of flow into fewer channels and development of a dendritic

drainage pattern (Röthlisberger , 1972; Shreve, 1972). Conversely, in a system where

there is a positive relationship between conduit discharge and water pressure there is

no tendency for one conduit to outgrow others by capturing water across a hydraulic

gradient. As a result, cavity-type drainage systems with low water flux are spatially

distributed across the glacier bed (Walder , 1986). Since a channelised drainage system

occupies a small portion of the bed, however, the two drainage configurations may
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co-exist once a channelised drainage system has developed, with a distributed system

filling the space between channels (Fountain, 1994; Hubbard et al., 1995; Hubbard and

Nienow , 1997). Under these circumstances the two types of drainage system do not

operate in isolation. Over-pressurisation of a subglacial conduit can set up lateral

pressure gradients, driving water away from the conduit and increasing water pressure

in the surrounding drainage system (Hubbard et al., 1995; Hubbard and Nienow , 1997).

Since the volume of meltwater produced at the ice sheet surface is more than an order

of magnitude greater than is generated at the ice-bed interface, the behaviour of these

conduits is likely to force, rather than respond to, behaviour in the remainder of the

system. Large R-channels can therefore interact with the surrounding distributed system

to alter water pressure, and ice velocity, over a wider area (Hubbard et al., 1995; Nienow

et al., 2005; Bartholomaus et al., 2007).

It is acknowledged that cavities in the lee of bedrock protrusions may not occur if

the glacier bed is comprised of a sediment layer. In this case it is likely that inefficient

subglacial drainage may occur by Darcian porewater flow (e.g. Alley , 1989; Flowers

and Clarke, 2002). When subglacial water flux is higher, however, R-channels can still

occur and the pressure-discharge characteristics of drainage when the bed is comprised

of subglacial sediments is likely to be qualitatively similar to that when the substrate is

bedrock (Walder , 1986; Flowers and Clarke, 2002).

The consequence of steady-state analysis is a binary classification of the subglacial

drainage system. Where the overall flux is low, a spatially distributed system with

cavity-type behaviour predominates (Schoof , 2010). In such a system any increase in

water flux leads to raised water pressures and increased basal sliding. These systems

are often described as ‘inefficient’. When the water flux is raised above a critical level,

conduits are enlarged to the point that their behaviour becomes that of R-channels.

Larger channels with more water operate at lower pressure and are described as ‘efficient’

- increasing the water flux will increase effective pressure (reduce water pressure) and

reduce basal sliding.

As in Alpine systems, the drainage system in the ablation zone of the GrIS develops

over the course of a melt season from a spatially distributed inefficient system to a

discrete network of efficient channels, in response to meltwater inputs from the ice
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sheet surface (Nienow et al., 1998; Bartholomew et al., 2011a). Over the winter, the

only sources of meltwater are generated subglacially, through frictional and geothermal

heating; water fluxes are low and an inefficient system predominates. Channelisation of

the drainage system occurs in response to inputs of meltwater from the ice sheet surface

and this process occurs further from the ice sheet margin as the melt season progresses

(Bartholomew et al., 2011a). The development of a network of channels which cover

only a small portion of the ice sheet bed is favoured by input of meltwater through

moulins which deliver water to discrete locations, rather than evenly across the bed

(Nienow and Hubbard , 2006).

As a result of development in its structure the drainage system operates at a lower

mean pressure for a given discharge later in the summer. Late summer ice velocities

in marginal areas of the GrIS have been observed to be lower than in early summer,

indicating that drainage evolution acts to limit the overall magnitude of the summer

acceleration signal (Bartholomew et al., 2010; Sundal et al., 2011; Bartholomew et al.,

2011b; Palmer et al., 2011; Nienow et al., submitted; Chapter 7 ). Consideration

of steady-state theory of subglacial drainage, coupled with such observations from

Greenland, have lead a number of authors to suggest further that increased surface

melting will lead to a reduction in summer acceleration as the transition from an

inefficient distributed drainage system to an efficient channelised one occurs more

quickly, limiting the time frame for large spikes in water pressure (and therefore ice

velocity) to occur (Joughin et al., 2008a; Van de Wal et al., 2008; Schoof , 2010; Pimentel

and Flowers, 2010; Sundal et al., 2011).

Recently, however, we have had the opportunity to compare ice velocities along a

land-terminating transect in west Greenland in years with contrasting melt seasons.

Summer temperatures in 2009 were approximately the same as the 1960-2010 average,

while in 2010 they were approximately 2.5◦C warmer. At the Leverett Glacier catchment

this resulted in twice the runoff in 2010 compared with 2009 (Nienow et al., submitted;

Chapter 7 ). Significantly, at sites nearest the margin where meltwater reaches the ice-bed

interface abundantly, the summer acceleration signal was not reduced - rather it increased

slightly. Further inland, where ice is thicker and melt rates lower, the acceleration

was proportionally much greater in 2010 over 2009 compared to marginal sites. These
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findings suggest very strongly that the timing of a transition from predominantly

distributed to channelised drainage does not necessarily control inter-annual variations

in ice velocity and, therefore, that we should not understand subglacial water pressure

in terms of the steady-state behaviour of the subglacial drainage system.

Subglacial conduits adjust in size to accommodate variations in meltwater discharge

over timescales of days or more (e.g. Röthlisberger , 1972; Spring , 1980; Röthlisberger and

Lang , 1987; Cutler , 1998; Schoof , 2010), while meltwater delivery can vary significantly

over much shorter periods. It is unlikely, therefore, that steady-state conditions ever

exist in reality (Röthlisberger , 1972). Temporary imbalance between the volume of

water delivered to a subglacial drainage system and its ability to evacuate that water

are accommodated by temporary spikes in subglacial water pressure even once the

drainage system has become channelised (Röthlisberger and Lang , 1987; Schoof , 2010).

This raises a possible alternative explanation for ice acceleration in land-terminating

margins of the GrIS: that a large part of the seasonal acceleration signal may result

from the aggregation of short-term speed-up events which are caused by overfilling of

the drainage system in response to time-varying inputs of meltwater. Using this logic,

it has been suggested that the discrepancy between early and late summer ice velocities

in the GrIS (Bartholomew et al., 2010; Sundal et al., 2011; Bartholomew et al., 2011b;

Nienow et al., submitted; Chapter 7 ) occurs because over-pressurised conditions are

common on the rising limb of seasonal meltwater production, regardless of drainage

system structure, as the system is constantly challenged to evacuate larger quantities of

water than before (Bartholomew et al., 2011b; Nienow et al., submitted; Chapter 7 ).

The late summer decline in ice velocities is due, then, to a decline or stabilisation of

water input, which allows the subglacial drainage system to adjust to accommodate

the water at lower pressures. In this scenario, channelisation of the drainage system

would be a prerequisite for the late summer decline in ice velocity, but is not sufficient

to cause a drop in subglacial water pressure without a reduction in meltwater input.

The purpose of this paper is to provide a reassessment of the role of drainage

system behaviour in mediating the relationship between meltwater and ice velocity in

land-terminating section of the GrIS margin. In the first part of the paper, we present

high temporal resolution ice velocity measurements, derived from global position system
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Figure 8.1: Map showing the location of the transect on the western margin of the GrIS.
The sites where GPS and temperature measurements were made are indicated by red stars
and the hydrological catchment of the proglacial river at Leverett Glacier is delineated in red.
Contours are produced from a digital elevation model (DEM) derived from InSAR (Palmer
et al., 2011). The long-term ELA in the region is located at around 1500 m (Van de Wal et al.,
2005). The ice sheet profile (inset) is derived from surface elevation data collected during an
airborne geophysical survey in 2010 (black line; Krabill , 2010) and bed elevation data which is
sampled from a DEM of the whole ice sheet (Bamber et al., 2001).

(GPS) observations, along a land-terminating transect at ∼67◦N in western Greenland

during the 2009 and 2010 melt seasons (Figure 8.1). The ice motion record is compared

with in situ observations of air temperatures, as well as with proglacial hydrological

data from the Leverett Glacier catchment which overlaps the lowest three sites (Figure

8.1; Bartholomew et al., 2011a). These data reveal the detailed structure of ice velocity

variations which make up the seasonal acceleration signal, allowing us to investigate

the relationship between variations in meltwater input and ice velocity on seasonal and

shorter-term timescales. In the second part of the paper, we use a simple model of the

behaviour of a subglacial conduit to assess whether the features of the ice acceleration

signal can be explained as a response of subglacial water pressure to time-varying water

input.
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8.2 Field site and previous studies

The key features of the seasonal acceleration signal along this transect have been

identified in two previous studies using daily ice velocities from the summers of both

2009 and 2010 (Bartholomew et al., 2011b; Nienow et al., submitted; Chapter 7 ).

Measurements were made at 7 sites up to 1716 m elevation, which is ∼115 km inland

from the GrIS margin (Figure 8.1). The lowest elevation site is located on Leverett

Glacier and is approximately 2 km from the glacier terminus. The seasonal development

of the drainage system in the part of the ice sheet from which runoff drains through the

Leverett Glacier snout (Figure 8.1, red outline) was also investigated in a hydrological

study from 2009 (Bartholomew et al., 2011a).

All of the sites along the transect experience summer acceleration, where ice velocities

are raised above winter background rates, in both 2009 and 2010. Initial acceleration

follows the onset of surface melting at each site, which occurs at progressively higher

elevations through the summer (Figures 8.2 - 8.5; Bartholomew et al., 2011b; Nienow

et al., submitted; Chapter 7 ). The initiation of locally-forced velocity variations is

characterised by rapid horizontal acceleration which is coincident with uplift of the ice

sheet surface. This is indicative of initial access of surface meltwaters to the ice-bed

interface and is analogous to ‘spring-events’ widely reported from Alpine and High

Arctic glaciers (e.g. Iken, 1981; Mair et al., 2001; Anderson et al., 2004; Bingham et al.,

2008). At site 7 there was no surface uplift in 2009 and very little in 2010. The minor

acceleration at this site is attributed to the effect of coupling to faster ice downglacier

(Bartholomew et al., 2011b; Nienow et al., submitted; Chapter 7 ).

The highest velocities, which peaked at site 2 at over 500 m y−1, and greatest overall

seasonal acceleration, were achieved at sites nearest the ice sheet margin (Nienow et al.,

submitted; Chapter 7 ). At lower elevation sites, where melt rates are higher (Figures 8.2

& 8.4) and the ice is less thick (Figure 8.1), initial acceleration closely follows the onset

of surface melting. Ice velocities at these sites are higher in early-summer than in late

summer (Nienow et al., submitted; Chapter 7 ). This is explained by the development of

an efficient subglacial drainage system, in response to abundant meltwater input from

the ice sheet surface, which is able to evacuate larger discharge at lower pressures than
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earlier in the summer (Bartholomew et al., 2011a,b; Nienow et al., submitted; Chapter

7 ).

At sites further inland, however, there is a greater delay between the onset of melting

and ice acceleration as melt rates are lower and it takes longer to accumulate enough

meltwater to penetrate through thicker ice to the bed (Bartholomew et al., 2011b). In

addition, it is likely that there is significant delay associated with flow through the

snowpack to supraglacial streams (e.g. Campbell et al., 2006). This delay between the

onset of melting and drainage of water from the ice surface to its bed is responsible for

the lower overall acceleration as it limits the time frame for velocity variations to occur

(Bartholomew et al., 2011b). Accumulation and drainage of stored water in the form

of supraglacial lakes may be particularly important in forcing a hydraulic connection

between the ice sheet surface and its bed at higher elevations (Bartholomew et al.,

2011a,b).

8.3 Data and methods

8.3.1 GPS data

We used dual-frequency Leica 500 and 1200 series GPS receivers to collect the season

long records of ice motion at each site. Each GPS antenna was mounted on a pole drilled

several metres into the ice, which subsequently froze in, providing measurements of ice

motion that were independent of ablation. The GPS receivers collected data at 30 second

intervals in 2009 and the first part of 2010. The data were processed using a kinematic

approach (King , 2004) relative to an off-ice base station at Kelyville, approximately 40

km west from the snout of Leverett Glacier, using the Track 1.21 software (Chen, 1999;

King and Bock , 2006). In June 2010 we installed a new off-ice reference station less

than 2 km from the Leverett Glacier snout, which collected data at 10 second intervals.

Conservative estimates of the uncertainty associated with positioning at each epoch are

approximately ± 1 cm in the horizontal direction and ± 2 cm in the vertical direction.

The data were smoothed using a Gaussian low-pass filter to suppress high-frequency

noise without distorting the long-term signal. Short-term variations in ice velocity

were derived by differencing positions across a 6 hour sliding window, applied to the
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whole timeseries of filtered positions for each site. This window length was chosen in

order to highlight short-term variations in the velocity records while retaining a high

signal to noise ratio. Estimates of horizontal velocity magnitude are therefore minimum

estimates. Unfortunately, the quality of the GPS data at site 1 was compromised by

technical problems, making it difficult to resolve short-term variations in horizontal

velocity at this site.

Uncertainties associated with the filtered positions are <0.5 cm in the horizontal

and <1 cm in the vertical directions, corresponding to annual horizontal velocity

uncertainties of <14.6 m yr−1 for the 6 hour velocity measurements. We used the

standard deviation of the 6 hour sliding window velocities from site 7, which has the

longest processing baseline and experienced negligible velocity variations, to estimate

the noise floor in the GPS velocity records. The standard deviations for the 6 hour

velocities at site 7 are 19.5 m yr−1. These values compare well with the calculated

uncertainties and represent conservative error estimates for our dataset. The values for

winter background ice-velocities are derived from the displacement of each GPS receiver

between the end of the summer melt season and the following spring (Bartholomew

et al., 2010). The reported contribution to annual ice flux from the hydrologically-

forced summer ice velocity variations is the percentage by which the observed annual

displacement exceeds that which would occur if the ice moved at winter rates all year

round.

8.3.2 Air temperate and surface ablation

Simultaneous measurements of air temperature were made at each GPS site to constrain

melt rates, and show that the velocity data cover the whole seasonal melt cycle.

Measurements of air temperature were made using shielded Campbell Scientific T107

temperature sensors connected to Campbell Scientific CR800 dataloggers (sites 1, 3 and

6) and shielded HOBO U21-004 temperature sensors (sites 2, 4, 5 and 7) at 15 minute

intervals throughout the survey period. Seasonal melt totals were also measured using

ablation stakes at each GPS site.

125



8.3.3 Proglacial discharge

We made continuous measurements of water stage in the proglacial stream that emerges

from the terminus of Leverett Glacier. Proglacial discharge was derived from a continu-

ous stage-discharge rating curve calibrated with repeat dye dilution gauging experiments

throughout the melt-season as described in Bartholomew et al. (2011a).

8.4 Observations

8.4.1 Hydrological forcing of ice acceleration

The high temporal-resolution GPS data confirm the main findings of previous studies

along this transect. The initiation of locally-forced velocity variations is characterised

by rapid horizontal acceleration which is coincident with uplift of the ice sheet surface.

This is indicative of initial access of surface meltwaters to the ice-bed interface and is

analogous to ‘spring-events’ widely reported from Alpine and High Arctic glaciers (Iken,

1981; Mair et al., 2001; Anderson et al., 2004; Bingham et al., 2008).

At the sites nearest the margin, which lie within the Leverett Glacier hydrological

catchment, the spring-events are most dramatic and coincide with the outburst of a

pulse of meltwater from beneath the glacier (Figures 8.2 & 8.4). For example, at sites 1

and 2, ice velocities in the spring event exceeded 400 - 500 m yr−1 in 2010, and was

coincident with a rise in proglacial discharge from less than 10 m3 s−1 to 50 m3 s−1

over three days. The spring-events at site 3 in both 2009 and 2010 are also coincident

with pulses of meltwater from Leverett Glacier. The hydrological signature of these

outbursts shows that the water is both ion-rich and sediment-laden which indicates the

flushing out of stored water from an inefficient drainage system (Bartholomew et al.,

2011a).

At sites 1 - 3, the spring-event follows a period of warm temperatures and typically

lasts a few days (up to a week), building to a sharp peak before velocities return to

background levels. The decline in velocities that follows is coincident with levelling-off

or a fall in discharge as well as a return to cooler temperatures. Further inland, at the

sites which lie outside the Leverett Glacier catchment, the initial locally-forced velocity

events are smaller (Figures 8.3 & 8.5). The uplift signal at sites 4 - 6 is more a change
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Figure 8.2: a-c. Ice velocity (blue), surface height profile (grey) and air temperature (red) at
sites 1 - 3 during the 2009 summer melt season. The surface height profile is shown relative
to an arbitrary datum and has a linear, surface parallel, trend removed. Winter background
ice velocity (black dashes) is determined from displacement of the GPS sites during winter
2009/2010. d. Discharge from the Leverett Glacier proglacial river during the 2009 summer
melt season.

in trajectory than a steep rise, and velocities increase by 50 - 100 % rather than the 300

- 400 % observed at sites 1 - 3 (Figures 8.3 & 8.5). At these sites, the initial acceleration

is also sustained for a longer period of time, without the marked drop-off back to winter

levels.

Most sites exhibit slight speed-up in the absence of surface uplift prior to the first

major speed-up event of the summer. The most obvious example is site 2, which displays

a short acceleration in the absence of any surface uplift between approximately May

5th - May 12th in 2010. This feature of the acceleration signal is likely due to coupling
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Figure 8.3: a-d. Ice velocity (blue), surface height profile (grey) and air temperature (red) at
sites 4 - 7 during the 2009 summer melt season. The surface height profile is shown relative
to an arbitrary datum and has a linear, surface parallel, trend removed. Winter background
ice velocity (black dashes) is determined from displacement of the GPS sites during winter
2009/2010.

to faster moving ice further downglacier (Price et al., 2008; Bartholomew et al., 2010,

2011b). At the most marginal sites this longitudinal coupling phase lasts only for a

matter of days, while at higher sites it can last from a few days up to a number of

weeks (Figures 8.2 - 8.5). For example, at site 4 in 2009 ice velocities are raised by

approximately 50 % compared with winter background rates for the month of June

before uplift of the ice surface occurs on July 5th and velocity is raised to more than

200 m y−1.

Previous studies have found that longitudinal coupling is not effective over length
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scales of ∼10 km along this transect on the basis that, in the early season, initial speed-

up of the most marginal sites has little effect on ice motion further inland (Bartholomew

et al., 2010, 2011b). Similarly, we are unable to account for the horizontal acceleration

that precedes initial uplift of the ice surface through longitudinal coupling over length

scales determined by the site separation distances in our dataset. We acknowledge,

therefore, that some part of the velocity signal at each site is due to non-local forcing.

The coupling distance is relatively short (<∼ 10 km), however, and even though the

length-scale over which coupling is effective might be increased once water drains to the

ice-bed interface, the magnitude of the signal appears to be much smaller than velocity

changes which are due to local hydrological forcing. At site 7 there was no surface uplift

in 2009 and very little in 2010. The minor acceleration at this site is also attributed

to the effect of coupling to faster ice downglacier (Bartholomew et al., 2011b; Nienow

et al., submitted; Chapter 7 ).

8.4.2 Short-term variations in ice velocity

Following the spring-events, the ice motion record from sites 1 - 3 is dominated by

short-term velocity variations on timescales ranging from a few hours to several days.

Multi-day speed-up events, which are characterised by an increase in ice velocities lasting

for more than a single day during which ice velocity does not return to background

levels, occur at all sites except for site 7 in both 2009 and 2010 (Figures 8.2 - 8.5).

Examples of such events occur in 2009 at sites 1 - 3, which all experience velocity

increases of more than 100% between June 1st - June 10th. Similar events also occur

at these sites in 2010 between May 20th - June 1st, and from June 4th - June 9th at

sites 2 and 3. During these multi-day events, ice velocity can increase by more than

200 m yr−1 within 24 hours (Figures 8.2 and 8.4) and does not return to background

levels for an extended period. Multi-day velocity events also occur at higher elevations

in both 2009 and 2010. For example, at sites 4, 5 and 6 between July 23rd - August 1st

in 2009, and at sites 5 and 6 from July 18th - 24th in 2010.

Without exception, these speed-ups are accompanied by uplift of the ice sheet

surface, pointing to local hydrological forcing (Bartholomew et al., 2010) as their cause.

The most rapid surface uplift appears in conjunction with the most dramatic horizontal
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Figure 8.4: a-c. Ice velocity (blue), surface height profile (grey) and air temperature (red) at
sites 1 - 3 during the 2010 summer melt season. The surface height profile is shown relative
to an arbitrary datum and has a linear, surface parallel, trend removed. Winter background
ice velocity (black dashes) is determined from displacement of the GPS sites during winter
2009/2010. d. Discharge from the Leverett Glacier proglacial river during the 2010 summer
melt season.

acceleration. At sites 1 - 3 these high velocity events are associated with steep rises

in proglacial discharge, linking them to increased water flux through the subglacial

drainage system. Strikingly, the surface height profiles of sites 2 and 3 in both 2009

and 2010 mirror the discharge curve measured at Leverett Glacier. The association is

less clear at site 1, where the GPS data was of poorer quality, although the largest rises

in discharge are still matched with uplift of the ice surface.

The majority of the multi-day events at sites 1 - 3 appear to be forced by periods

of raised temperatures which increase the volume of meltwater input to the subglacial
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Figure 8.5: a-d. Ice velocity (blue), surface height profile (grey) and air temperature (red) at
sites 4 - 7 during the 2010 summer melt season. The surface height profile is shown relative
to an arbitrary datum and has a linear, surface parallel, trend removed. Winter background
ice velocity (black dashes) is determined from displacement of the GPS sites during winter
2009/2010.

drainage system for a short time (Figures 8.2 & 8.4). In some cases, however, ice

velocities are raised for a number of days in the absence of high temperatures. For

example, in 2009 velocities are raised at sites 1 - 3 between July 3rd - 8th , which

was a period of colder temperatures (Figure 8.2), although the event is still associated

with ice surface uplift and a temporary increase in discharge at Leverett Glacier. The

hydrological signature of this meltwater pulse indicates drainage of large volumes of

stored water from the ice sheet surface, which was delivered to the ice sheet margin via

the ice-bed interface (Bartholomew et al., 2011a), in a manner similar to the spring-

131



events. The likely source for this water was identified, using satellite imagery, as a

supraglacial lake within the Leverett Glacier catchment (Bartholomew et al., 2011a).

The highest velocity events at sites 4, 5 and 6 in both 2009 and 2010 are also not

closely linked to warm air temperatures and we suggest that these are also caused by

sudden drainage of stored water from the ice sheet surface. Satellite imagery from

2009 shows lake drainage events, where supraglacial ponds disappear from the ice

sheet surface in consecutive images, in close proximity to these sites at times which

correspond to the velocity events (Bartholomew et al., 2011b). Further, in 2010 we

captured the rapid drainage of a lake which had accumulated less than 2 km from site

6 using timelapse photography. Drainage of this lake coincided with a 400 % increase

in ice velocity on July 17th and uplift of the ice sheet surface of 0.3 m in less than 24

hours (Figure 8.6). Both variations in temperature and periodic drainage of meltwater

which has accumulated at the ice sheet surface can therefore cause ice acceleration by

raising meltwater input to the drainage system over a period of a few days.

8.5 Diurnal velocity cycles

The detailed velocity records also reveal clear daily cycles in ice motion at a number of

the sites. These daily cycles are most clear at sites 2, 3 and 4 and their amplitude ranges

from less than 50 m y−1 to over 300 m y−1, ∼300 % of winter background rates. At

these sites, the total motion due to diurnal acceleration makes up a significant portion

of the seasonal acceleration signal, particularly in the latter part of the melt season.

They are also evident at site 1, although the relatively slow background velocity and

technical problems with the GPS receiver mean that they are harder to resolve. In 2010,

which was a significantly warmer year than 2009 (Nienow et al., submitted; Chapter

7 ), daily cycles in ice velocity develop at site 5 from early July until the beginning of

August. There are no daily cycles in either year, however, at site 6 or 7.

Daily cycles in ice velocity develop at sites 2 - 4 in 2009 following the beginning of

locally-forced acceleration. The behaviour is very similar in 2010, although ice velocities

are dramatically reduced at sites 1 and 2 after the spring-event due to a period of

sub-freezing temperatures. When temperatures rise again, there is another multi-day
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Figure 8.6: a. Surface velocity at site 6 during the lake drainage event which occurred <2 km
from the GPS receiver on July 18th 2010. b. Surface height profile during the lake drainage
event. c & d. Before and after images of the supraglacial lake drainage event taken by a
timelapse camera mounted on the support pole at site 6. The time at which the photos were
taken is marked on the velocity and height profiles by vertical black lines.

acceleration following which daily cycles begin. The daily velocity cycles at site 5 in

2010 develop later in the melt season, around June 24th, and their magnitude is from

around 50 - 150 m y−1, slightly lower than those nearer the ice sheet margin. Once

developed, these extremely rapid variations in ice velocity appear to be superimposed on

the seasonal velocity signal, and, in the absence of other events, ice velocity consistently

returns to around winter background rates on a diurnal basis (Figures 8.2 - 8.5). At

sites 2 and 3 in 2009, for which we have the longest ice velocity and discharge records

it is clear that the cycles become subdued when discharge rapidly declines after August

18th.

Where daily cycles in ice velocity are evident, their timing is closely related to

variations in both local temperatures and discharge from Leverett Glacier (Figure
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Figure 8.7: Detailed record showing the temporal relationship between diurnal cycles in ice
velocity (blue), air temperature (red) and proglacial discharge (black) at site 2 between July 1
and July 10, 2010. Daily peaks and troughs are marked by coloured dots. Winter background
ice velocity is indicated by a black dashed line.

8.7). By taking the mean difference in time between daily peaks in velocity and local

temperature peak at each site we find that velocity lags temperature by 2 - 4 hours.

This pattern is consistent across both years and between all of sites which experience

daily cycles, although there is some variability on a day-to-day basis, as evidenced in

Figure 8.7. Despite this variability in the lag between peak daily velocity and peak daily

temperature, there is no discernible seasonal pattern. Previous studies found a similar

delay and have suggested that this reflects a plausible transit time for supraglacial

meltwater to collect and drain into the englacial drainage system before reaching the

ice-bed interface (Shepherd et al., 2009; Bartholomew et al., 2011b). A couple of factors

complicate this observation, however, and may explain the variability we see on a short-

134



term basis. Firstly, the resolution of the data makes it difficult to identify the timing of

daily peaks in all variables (Figure 8.7). Secondly, the timing of the temperature peak

does not necessarily coincide with peak melt, as melt rates are strongly influenced by

local variations in incoming solar radiation (e.g. Hock , 2003).

By contrast with the temperature signal, daily peaks in ice velocity at sites 1, 2

and 3 precede the daily discharge peak at Leverett Glacier by 2.5, 1.6 and 1.2 hours

on average respectively. This pattern is also consistent across both years and there

is no seasonal signal. Daily velocity cycles at Site 4 in 2009 are almost in phase with

discharge and at site 5 in 2010 the peak in ice velocity follows the peak in discharge.

Since these sites lie outside of the Leverett Glacier hydrological catchment, however,

there is little reason to imply cause and effect.

In common with longer term variations in ice velocity, therefore, daily cycles

appear to be forced by increased meltwater flux through the subglacial drainage system.

Although we cannot unequivocally resolve daily cycles in the surface uplift record, we

argue that the sheer magnitude of these velocity variations suggests that they are forced

locally and are not due to coupling to ice further downglacier. We can find no systematic

relationship, however, between the magnitude of the daily cycles and daily range, peak

or mean values in either temperature or discharge. Tentatively, we find the largest

amplitude cycles in ice velocity at sites 2 and 3 in the early part of the melt season in

both years, although there are some periods in the latter half of the season when the

magnitude of daily velocity variations can still exceed 150% of winter background.

8.6 Discussion - velocity, temperature, discharge & drainage

Our data show that the ice velocity records at sites 1 - 3 in 2009 and 2010 are comprised

of four main components which integrate to form the seasonal acceleration:

i. Slight acceleration, in the absence of surface uplift, which is attributed to coupling

of faster moving ice further downglacier.

ii. Locally-forced velocity variations initiate with a spring-event, in a manner similar

to Alpine and High Arctic glaciers, which indicates initial access of surface

meltwater to the subglacial drainage system.
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iii. Further events occur where ice velocity is raised above winter background rates

for a number of days, particularly in the early part of the summer melt season.

These events are forced by increased meltwater delivery to the subglacial drainage

system, due either to increased surface ablation, or drainage of stored water which

has accumulated at the ice sheet surface.

iv. Large diurnal variations in ice velocity which develop early in the melt-season,

typically following initial access of surface meltwater to the ice-bed interface,

persist for nearly all of the melt season until melting stops. Temporal association

with daily cycles in air temperature and discharge from Leverett Glacier indicates

that these are also forced by variations in meltwater delivery to the subglacial

drainage system, although there is no clear correlation between the magnitude of

daily velocity changes and variability in either of these variables.

In the short-term, changes in ice velocity, and therefore water pressure in the

subglacial drainage system, are in phase with meltwater discharge from the Leverett

Glacier snout. Over the full melt-season, however, this is not the case. Mean ice

velocities are lower in late summer, following peak discharge, than in early summer. If

we assume that the subglacial drainage system is distributed and inefficient prior to the

spring-events, following the winter period, this observation indicates that the drainage

system becomes channelised at some point during the melt season, and that this limits

the overall summer acceleration (Bartholomew et al., 2010, 2011b; Sundal et al., 2011;

Nienow et al., submitted; Chapter 7 ).

Inspection of the detailed structure of the ice velocity records from sites 1 - 3 reveals

that the discrepancy between early and late summer velocities (Nienow et al., submitted;

Chapter 7 ) is due to the the absence of multi-day speed-up events in the latter part of

the summer melt season. They dominate the early season velocity records but do not

appear once discharge has peaked and/or stabilised, while daily cycles in ice velocity

are evident through most of the melt season (Figures 8.2 and 8.4). In late summer,

therefore, either the signal which forces short-term variations in ice motion is different

from early summer, or the drainage system has developed to become less responsive to

the same forcing.
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Two observations suggest the former. Firstly, multi-day events are associated with

steep rises in proglacial discharge which are largely absent in the late season. The

hydrological study from this catchment in 2009 showed that an efficient subglacial

drainage system expands upglacier from the ice sheet margin, at the expense of the

inefficient winter drainage configuration, in response to inputs of meltwater from

higher elevations as the melt season progresses (Bartholomew et al., 2011a). Increasing

proglacial discharge therefore represents not only increasing temperatures, but an

expanding area of the ice sheet surface from which meltwater is delivered, via the

subglacial drainage system, to the ice sheet margin. Hydrological parameters such as

ion-concentration and suspended sediment concentration also indicate that this process

results in continued evolution of the drainage system until the catchment reaches

its full inland extent (presumably meltwater from higher elevations drains through a

different outlet glacier), at which point the drainage system reaches a more stable state

(Bartholomew et al., 2011a). We suggest, therefore, that the multi-day events on the

rising limb of discharge are the consequence of pressure increases in a subglacial drainage

system which is continually expanding to accommodate extra sources of meltwater.

Once the drainage system has fully expanded, the discharge becomes more stable and

these events are less likely to occur. Secondly, the large daily cycles indicate that

velocity is still responsive to variations in meltwater input on a short-term basis, even

once the subglacial drainage system has become channelised. This suggests that large

pulses of meltwater, derived from increased surface melting over a wider area or drainage

of stored supraglacial water, would still have the capacity to cause a large increase in

ice velocity should they occur.

The observations from sites 1 - 3 are not easily explained by a transition from

a predominantly distributed drainage system to a channelised one (cf. Sundal et al.,

2011). Preliminary dye-tracing experiments performed in 2010 indicate channelised

drainage conditions between site 2 and the ice sheet margin on May 31st, and from 14

km along the transect on June 2nd (T. Cowton, pers. comm). Ice velocities at site 2

exceeded 500 m y−1 on June 5th and 18th of that summer, however, during the peaks

of two separate multi-day acceleration events. This indicates that transition from a

distributed to channelised drainage system does not inhibit the large multi-day events
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which our data have revealed as the cause for the difference between early and late

summer velocities. It is likely that pressure within the channelised drainage system

does become less sensitive to variations in meltwater input over the course of the melt

season, to some extent. As discharge into the system increases, subglacial channels will

get larger and more water will be required to over-pressurise them. Since this effect

is not pronounced in our dataset, however, variability in the forcing signal appears to

exert the greatest control on changes in ice velocity.

At sites which are at higher elevations along the transect (>1000 m), the velocity

record is also marked by hydrologically-forced acceleration in the same manner as

identified in the record at sites 1 - 3, which make up the pattern of summer acceleration.

Consistently raised ice velocities follow initial uplift of the ice sheet surface for all sites

except site 7. At these sites there are locally-forced multi-day velocity events in both

2009 and 2010. Daily cycles in ice velocity occur at site 5 in 2010 from June 25th,

although they do not appear in 2009 when air temperatures were cooler. There are no

daily-cycles in ice velocity, however, that can be resolved by our GPS records at sites 6

or 7.

The thicker ice at higher elevation sites means that more water is required in order

to initiate drainage to the ice-bed interface (Van der Veen, 2007; Krawczynski et al.,

2009) and observations from our field experience indicate that moulins are more scarce

at higher elevations. Drainage of meltwater occurs in dramatic events which result in

rapid channelisation of the subglacial drainage system (e.g. Das et al., 2008). Lower

melt rates also mean that, following drainage of a reservoir of stored water from the

ice sheet surface, subsequent meltwater drainage is not sufficient to maintain high

pressure within the now channelised drainage system and ice velocities are reduced

again (Bartholomew et al., 2011b).

The pattern of sporadic high velocity events, superimposed on slightly raised back-

ground velocity, suggests a cycle of intermittent local drainage events (Das et al., 2008)

which overwhelm the subglacial drainage system, combined with steady drainage to

the ice-bed interface and coupling to faster moving ice downglacier (Price et al., 2008).

Daily cycles in ice velocity at lower sites appear to be caused by over-filling and drainage

of a channelised subglacial drainage system in response to time-varying meltwater input
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(Bartholomew et al., 2011b). Diurnal variation in meltwater delivery to moulins at

higher elevation sites is likely to be muted because moulins are spaced further apart and

the snowpack remains for most of the summer making supraglacial travel times very

long (Nienow and Hubbard , 2006; Campbell et al., 2006). In the longer-term, following

initial drainage of meltwater to the ice-bed interface, steady delivery of meltwater to

the subglacial drainage means that the capacity of the system is in balance with inputs

and short-term over-pressurisation is less likely to occur.

Our data do not show whether the drainage system beneath higher elevation sites

remains channelised following initial drainage of meltwater. Although thicker ice

increases creep closure rates in subglacial conduits, supraglacial streams can be large

(>5 m3 s−1) and could conceivably maintain efficient conduits. If an efficient system

cannot be sustained, however, lower ice velocities might be explained because the forcing

is not great enough to raise water pressure over a wide enough area to have a significant

impact on ice velocity (e.g. Iken and Bindschadler , 1986). The presence of daily cycles

in ice velocity at site 5 in 2010 appears, therefore, to be caused by higher rates of

surface melting. This favours early removal of the snowpack, allowing greater diurnal

variability in meltwater supply to moulins. In addition, higher volumes of meltwater

are also able to over-pressurise the drainage system more easily.

8.7 Subglacial conduit model

The basic physics of subglacial conduits can be described by a single equation for their

cross-sectional area, S, which captures both cavity and R-channel behaviour (Schoof ,

2010):

∂S

∂t
= c1Q

∂φ

∂s
+ ubh− c2NnS (8.1)

where Q is the water discharge, ∂φ
∂s is the hydraulic gradient along the conduit and

N = pi − pw is the effective pressure in the conduit (ice overburden, pi, minus water

pressure, pw). The first term on the right-hand side in equation 8.1 is the rate of conduit

opening due to wall melting, the second term is opening due to horizontal sliding (at

speed ub) past bedrock obstacles (with height h) and the third is conduit closure due to
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collapse under the weight of overlying ice. c1 is a constant which is related to the latent

heat of fusion for ice, L, by c1 = 1/(ρi/L), where ρi is the density of ice (910 kg m−3).

c2 is equal to An−n where A is Glen’s flow law coefficient and n = 3 is the exponent in

Glen’s flow law for ice. Q can be related to S and ∂φ
∂s by the Darcy-Weisbach law:

Q =
√

8
ρwf

A3/2∂φ

∂s

1/2

W−1/2 (8.2)

where A is the filled cross-sectional area, W is the channel wetted perimeter, ρw

is the density of water (1000 kg m−3) and f is the Darcy-Weisbach friction factor.

Equation 8.2 is a general case of the equation which was applied by Schoof (2010) for

a full semicircular conduit. Analysis of equation 8.1 by Schoof (2010) demonstrates,

for steady-state, that N decreases with Q below a critical threshold in Q, while at

higher discharge N increases with Q, reflecting the transition from cavity to channel-like

behaviour.

We present a simple model which uses Schoof’s equation (our equation 8.1) to

describe the behaviour of a subglacial conduit in response to time-varying water input in

a configuration which is inspired by the approach used by Cutler (1998). In this model,

a subglacial conduit is directly connected to a moulin that drains from the glacier surface

to the ice sheet bed (Catania and Neumann, 2010). The moulin is subject to influx of

meltwater from the ice sheet surface and a single, straight conduit, with semi-circular

cross section, then drains from the moulin base to the ice margin (Figure 8.8). The

model differs slightly from that used by Cutler (1998) in that we do not attempt to

account for changes in the shape of the channel cross-section. By employing equation

8.1, however, we are able to incorporate both cavity and R-channel type behaviour

(Schoof , 2010).

The moulin is considered to be a vertical circular pipe with constant radius, rm

which is fed by a supraglacial stream for which the discharge, Qin, can be prescribed. A

reservoir of depth hr and radius rr, sits at the top of the moulin and represents a small

supraglacial pond which allows water to collect at the ice sheet surface if the moulin

should overflow. The height of the moulin is then equal to the ice thickness, H, minus

dr at its top, and the channel radius at the moulin base (Figure 8.8).
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Figure 8.8: Schematic showing the model configuration. The drawing is not to scale. Symbols
are defined in the text.

Water flow through the conduit is calculated using equation 8.2. The conduit has a

uniform gradient, ∂z
∂s over its complete length, s. ∂φ

∂s , which drives water flow, results

from a combination of both ∂z
∂s and ∂hmr

∂s , where hmr is a function of hydraulic head in

the moulin/reservoir section of the system. It is also assumed that ∂φ
∂s is constant along

the conduit and that water emerges at the glacier margin at atmospheric pressure.

We use the model to simulate channel cross-section evolution at a distance ∆s

from the base of the moulin (Figure 8.8). We assume that ice thickness is constant in

the vicinity of the cross-section, negating the effect of glacier geometry on hydraulic

potential (cf. Shreve, 1972). In addition, in this model the conduit rests on bedrock (i.e.

no water is lost into a subglacial aquifer) and there is no energy transfer between the

water and the channel bed.

At each time step, water volume within the system is determined in accordance

with the conservation of mass:

∂V

∂t
= Qin −Qout (8.3)

which allows us to calculate the hydraulic head within the the moulin/reservoir. If

there is no water stored in the moulin then open-channel flow occurs and the hydraulic
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gradient is simply a function of ∂z
∂s . If no water is backed up in the conduit, Qout falls to

be equal to Qin. In the case of open-channel flow, melting is concentrated only on the

wetted perimeter of the channel. In order to simplify the model, however, this melting

is distributed across the whole channel boundary in the ∂S
∂t calculation, which retains

the semi-circular cross-section (cf. Cutler , 1998). Equations 8.1 and 8.3 are solved

numerically using the Matlab ode15s stiff differential equation solver (Shampine and

Reichelt , 1997), producing timeseries of the conduit evolution, discharge and pressure

characteristics in response to a time-varying water input signal.

The model described above contains a number of important assumptions which are

introduced for the sake of computational simplicity. Firstly, that the pressure gradient

is uniform along the entire conduit. In reality, the effect of glacier geometry and bed

elevation, as well as channel morphology, will alter this gradient. In addition, changes

in discharge may occur at different points downstream due to additional inputs of

meltwater, either at the base of further moulins or confluences with other conduits.

Secondly, we prescribe constant rates of basal sliding, ub, which contributes to opening

of conduits by horizontal motion past bedrock obstacles. A more sophisticated model

would couple increases in water pressure with the rate of basal motion through a sliding

law, which may hasten the transition from cavity to R-channel type behaviour. It is

also assumed that water is able to penetrate straight to the ice bed on entering the

moulin, meaning that water can only back up in the moulin if Qin is greater than Qout.

Water storage at the ice surface, either in lakes or by filling of crevasses prior to the

establishment of a hydraulic connection between the ice surface and its bed, is only

replicated by specifying an initial water height in the moulin/reservoir.

The justification for the model structure, where we envisage a single conduit rather

than attempting to simulate the evolution of a spatially distributed network, is provided

by field observations which suggest that delivery of meltwater to the subglacial drainage

system from the ice sheet surface typically occurs at discrete locations, through moulins

or crevasses. This may mean that seasonal development of the subglacial drainage

system is concentrated in relatively few conduits that interact with the pre-existing

spatially distributed drainage system. The volume of meltwater produced at the ice

sheet surface is more than an order of magnitude greater than is generated at the ice-bed
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interface, meaning that the behaviour of these conduits is likely to force, rather than

respond to, behaviour in the remainder of the system. There is no explicit interaction

between the conduit which is modelled and a surrounding drainage system (Hubbard

et al., 1995). As a result, in the following simulations, water pressure is able to exceed

ice overburden pressure. In reality, over-pressurisation of a subglacial conduit would

set up lateral pressure gradients, driving water away from the conduit and increasing

water pressure in the surrounding drainage system (Hubbard et al., 1995; Hubbard and

Nienow , 1997). If this is the case then interaction between conduits which are fed by a

direct connection with the ice sheet surface and the rest of the drainage system is likely

to govern more widespread increases in ice velocity (Fountain, 1994; Hubbard et al.,

1995; Hubbard and Nienow , 1997; Bartholomaus et al., 2007; Palmer et al., 2011).

In light of these limitations, the purpose of this study is not to provide a com-

prehensive treatment of subglacial drainage system behaviour, nor to tune the model

results to fit a set of observations. Rather we hope to assess whether a simple model

of subglacial conduit behaviour, as it responds to time-varying meltwater input, can

reproduce patterns of subglacial water pressure that might explain the features of the

seasonal acceleration signal which were described in the first part of this paper.

8.7.1 Equilibrium solution

From equations 8.1 and 8.2, the equilibrium solution for a subglacial conduit is:

Nn =
c1Q

∂φ
∂s + ubh

c2c3Q
4
5
∂φ
∂s

− 2
5

(8.4)

where c3 = 1
2π

− 1
5 (π + 2)

2
5 (ρwf)

2
5 .

Figure 8.4a uses the equilibrium solution to show, for a fixed hydraulic gradient,

that our equations satisfy the steady-state behaviour described by Schoof (2010), where

N increases with Q up until a critical threshold at which the relationship is reversed. In

figure 8.4b, we use a steady meltwater input to the model to show that this behaviour

is replicated by our numerical solution.

143



10−2 100 102
2

2.5

3

3.5

4
a.

Q (m3s−1)

N
 (M

Pa
)

10−2 100 102
2

2.5

3

3.5

4
b.

Q (m3s−1)

N
 (M

Pa
)

10−2 100 102
100

200

300

400

!"
 /!

s

Figure 8.9: a. Steady-state N versus Q, with fixed hydraulic gradient ∂φ
∂s = 250 Pam−1 b.

Modelled N versus Q with steady drainage into the system (red crosses, left axis). The right
axis shows how the hydraulic gradient also varies with discharge ∂φ

∂s (blue circles)

8.7.2 Experiment 1: model testing

In our first experiment we test the response of the conduit model to a forcing signal which

simulates the key features of seasonal meltwater delivery to the subglacial drainage

system that were identified in the first part of this paper. The model setup is based on

a moulin which is located ∼500 m south of site 2. Site 2 is 7.3 km along our transect

from the ice sheet margin and the ice thickness is 375 m (Figure 8.1; Bamber et al.,

2001; Krabill , 2010). Based on field observations of this moulin, values of rm = 3 m,

rr = 250 m and dr = 5 m were adopted.

The model is run for 100 days with a meltwater signal which comprises: (i) a

seasonal component which peaks at 4 m3 s−1; (ii) daily cycles in meltwater production,

with amplitude of 1 m3 s−1 which are superimposed on the seasonal signal; and (iii)

three pulses of meltwater which last two days each and have peak discharge of 5 m3

s−1 (Figure 8.10a). We specify an initial conduit cross-sectional area of 0.005 m2 to

reflect the fact that conduits are likely to fall in the range for cavity-type behaviour

following the winter period. The full list of model parameters is provided in Table 8.1.

Inspection of Figure 8.10 indicates that the model is able to reproduce key features

of the seasonal subglacial drainage system behaviour reasonably well. When water

drains into the conduit initially, the small conduit size restricts Qout to be much smaller
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Parameter Symbol Value Units

Ice thickness at the moulin H 375 m
Moulin radius rm 3 m
Reservoir radius rr 250 m
Reservoir depth hr 5 m
Conduit slope ∂z

∂s 0.02 -
Conduit length s 7300 m
Distance of cross-section from moulin ∆s 500 m
Melt opening parameter c1

1
ρiL

-
Darcy-Weisbach friction factor f 3.75 x 10−2 -
Latent heat of fusion L 3.35 x 105 J kg−1

Density of water ρw 1000 kg m−3

Density of ice ρi 910 kg m−3

Conduit closure parameter c2 An−n -
Glen’s flow law coefficient A 6 x 10−24 Pa−3 s−1

Glen’s flow law exponent n 3 -
Basal sliding velocity ub 30 m yr−1

Bedrock obstacle height h 0.1 m

Table 8.1: Parameter values used during the model experiments

than Qin and water backs up in the moulin. High water level, which fills the moulin but

does not cause the reservoir to overflow, causes high subglacial water pressure and an

increase in the hydraulic gradient, ∂φ∂s . Increased ∂φ
∂s forces higher discharge through the

conduit, which leads to rapid growth of the cross-section. A positive feedback between

conduit size and discharge then develops, and both Qout and S continue to increase

rapidly until the conduit has become large enough to drain all the water stored in the

moulin. At this point, which occurs after ∼5 days, pressure in the conduit drops rapidly

as the meltwater input is not sufficient to fill the expanded conduit. The weight of

overlying ice causes the conduit to adjust in size, until S and Qin are more or less

in balance after a period of a few days. Following the development of the conduit in

response to initial meltwater input, the conduit size continues to adjust to changes in

water input and short-term variations in the forcing signal cause large fluctuations in

both water pressure and conduit size. This is evident both in response to the diurnal

cycles in the meltwater signal, as well as the three pulses which occur on days 15, 30

and 45 (Figure 8.10).

Figure 8.11 shows that channel opening is forced nearly entirely by melting of
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Figure 8.10: Simulation of channel-cross section evolution in response to a time-varying water
input signal. a. Inflow to the system, Qin. b. Conduit cross-sectional area, S (blue) and filled
cross-sectional area (red) under open-channel conditions. c. Effective pressure, N = pi − pw
(blue), at the modelled cross-section. Maximum N is equal to pi (red dashes). d. Water height
in the moulin/reservoir system (blue), which drives variation in the hydraulic head gradient.
Mean water height is shown for 24h periods (black steps) and the whole model run (lowest red
dashes). Ice thickness, H is indicated by the upper red dashes. e. Outflow from the system,
Qout.

channel walls. Creep closure is the only component of equation 8.1 which is capable of

causing both conduit opening and closure although we find that it acts primarily to

close the conduit. During the pulses of meltwater, negative pressure in the conduit does

contribute slightly to rates of conduit growth, although the overall impact is minimal.
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by an artificial signal (see figure 8.10. b. Contribution of different components of equation 8.1
to the rate of conduit cross-sectional area change.

The behaviour which occurs in the first five days of the model run provides a good

representation of the characteristics of a ‘spring-event’, where an inefficient, low volume

drainage system is subject to comparatively large inputs of meltwater from the ice sheet

surface. Since the drainage system is not able to evacuate all of this meltwater, it backs

up in the englacial drainage system which causes high subglacial water pressure and

growth of subglacial conduits. The drainage system continues to develop in capacity

until there is no longer enough water in the englacial system to sustain growth, at which

point discharge rapidly declines and conduits shrink again.

The short-term events which follow also reflect temporary imbalance between the

water supply, Qin, and the capacity of the conduit to evacuate the water. The capacity

to remove water is governed by equation 8.2 which states that a larger conduit and

increased hydraulic gradient both lead to higher discharge. At the same time, however,

increased hydraulic gradient and larger discharge also causes an increase in conduit size.

In our model, fluctuations in water pressure occur when the meltwater input signal

overfills the conduit more quickly than the rate of wall melting can increase the conduit
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size in order to accommodate the extra water, leading to the imbalance between Qout

and Qin. Under these conditions water is stored in the englacial system increasing the

hydraulic gradient and subglacial water pressure. The high pressure lasts until the water

supply drops, at which point the conduit is larger than is necessary to evacuate the

incoming meltwater and open channel flow occurs, presumably at atmospheric pressure,

while the conduit slowly reduces in size again. The pulse events demonstrate that high

water pressure can be sustained in the conduit for periods of more than one day, so long

as Qin keeps rising. These events cause the conduit to reach its greatest size and also

maintain the highest mean water pressures outside of the spring-event. Following the

pulse events, however, daily cycles in water pressure are suppressed while the conduit

size adjusts more slowly to the reduction in meltwater input.

The conduit response to the seasonal component of the Qin signal, however, is very

different. Because Qin varies only gradually on the longer-term the conduit is able

to shrink and contract on the same timescales without a sharp rise in water pressure

(Schoof , 2010). Running the model with the same parameters, but removing the short-

term components of the Qin signal, we find that mean water pressure in the conduit

changes steadily with the water supply and is inversely related to Qin (Figure 8.12).

This pressure-discharge relationship is consistent with the behaviour of an R-channel in

steady-state (Schoof , 2010).

Diurnal variations in water pressure are greatest at the beginning and end of the

model run, when the size of the daily cycles in meltwater supply are greater as a

proportion of the daily mean Qin (Figure 8.10). The same also applies to the pulse

events: the first pulse on day 15 achieves the highest water pressure, while the third

pulse, which occurs on day 45 near the peak of seasonal water input, is more subdued.

This behaviour highlights an important link between short-term variations in meltwater

input and the longer-term evolution of the conduit. Since the conduit size is broadly in

equilibrium with the longer-term signal of meltwater input, S is largest in the middle

part of the model run, near the peak of the ‘seasonal’ signal. The larger channel has

greater capacity to evacuate meltwater, therefore more water is required to overfill it

and pressurise the conduit than earlier in the season when the conduit was smaller.

In this way, the ratio between mean Qin and the rate and magnitude of short-term
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Figure 8.12: Simulation of channel-cross section evolution in response to a gradually-varying
water input signal. a. Inflow to the system, Qin. b. Conduit cross-sectional area, S (blue) and
filled cross-sectional area (red) under open-channel conditions. c. Effective pressure, N = pi−pw
(blue), at the modelled cross-section. Maximum N is equal to pi (red dashes). d. Water height
in the moulin/reservoir system (blue), which drives variation in the hydraulic head gradient.
Mean water height is shown for 24h periods (black steps) and the whole model run (lowest red
dashes). Ice thickness, H is indicated by the upper red dashes. e. Outflow from the system,
Qout.

changes in Qin controls the magnitude of short-term spikes in water pressure within

the conduit. Overall, this suggests that a larger seasonal meltwater input signal may

act to limit the size of short-term variations in water pressure while larger short-term

variations in meltwater supply, relative to mean meltwater input, would favour greater
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changes in water pressure.

The preceding discussion suggests that not only does this simple model successfully

reproduce key features of the subglacial pressure response to inputs of meltwater from

the ice sheet surface, but that the behaviour can be explained in terms of time-varying

water input to a subglacial conduit without invoking the transition from cavity to

R-channel type steady-state behaviour. For a full semicircular conduit, Schoof (2010)

derived the following equation for the critical discharge value at which a switch from

cavity to R-channel type behaviour in steady-state would occur:

Qc =
ubh

c1(1− α)∂φ∂s
(8.5)

where α = 5/4 is a constant. Under full and steady-state conditions, assuming a

fixed hydraulic gradient, the critical discharge for the conduit modelled here is 0.59

m3 s−1, which corresponds to a cross-sectional area of 0.16 m2. Our model suggests,

therefore, that the Qc is easily exceeded very early in the initial growth phase. Figure

8.10 shows, however, that water pressure continues to rise during the spring-event even

once the conduit has become ‘channelised’.

In an experiment to investigate the impact which initial conduit size has on conduit

evolution we ran the model again but with a starting conduit size of 0.2 m2. The results

of this experiment are shown in Figure 8.13 and indicate that with a larger initial conduit

size the prolonged period of high pressure and conduit size adjustment seen in the first

experiment is absent. Once the adjustment phase has taken place, however, then the

conduit evolution is the same. The absence of the ‘spring-event’ in this experiment

suggests that the larger conduit is not overwhelmed by the initial input of meltwater

in the same way as a smaller one. A larger conduit has greater wetted-perimeter and

greater discharge which allows faster melting of the conduit walls. On the basis of these

results, therefore, we suggest that the significance of a transition from a winter-type

inefficient drainage system to a summer channelised one is restricted to the early part

of the melt season and is responsible for the high magnitude spring-events that occur

when water first drains from the ice sheet surface to its bed.

Overall, this set of simulations has shown that, with an input signal which varies on
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Figure 8.13: Comparison of simulated of channel-cross section evolution in response to a
time-varying water input signal with different starting conduit size, S0. In the initial experiment
(1) S0=0.01 m2, which is compared with a second experiment (2) where S0=0.2 m2. a. Inflow to
the system, Qin. b. Conduit cross-sectional area, S ((1)blue & (2)cyan) and filled cross-sectional
area ((1)red & (2)cyan dashes) under open-channel conditions. c. Effective pressure, N = pi−pw
((1)blue & (2)cyan), at the modelled cross-section. Maximum N is equal to pi (red dashes). d.
Water height in the moulin/reservoir system ((1)blue & (2)cyan), which drives variation in the
hydraulic head gradient. Mean water height is shown for experiment (1) for 24h periods (black
steps) and the whole model run (lowest red dashes). Ice thickness, H is indicated by the upper
red dashes. e. Outflow from the system, Qout ((1)blue & (2)cyan).

short timescales, the subglacial conduit does not reach steady state. This results in short-

term pressure variations within the conduit, which, should high pressure in the conduit

cause increases in pressure over a wider area by interaction with a distributed drainage
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system, could plausibly integrate to explain the seasonal velocity signal observed at

sites 1 - 3 in the first part of the paper. In addition to over-pressurisation, open-channel

flow in the conduit occurs regularly, on the falling limb of daily cycles in meltwater

production and following meltwater pulses.

8.7.3 Experiment 2: forcing with realistic input signal

We now use field observations of temperature and surface ablation from site 2 in 2010

to generate a more realistic meltwater signal to drive conduit evolution. Runoff was

estimated using a simple temperature-melt index model (Hock , 2003) applied to a 1 x 3

km rectangular catchment with a surface gradient of 0.025. This estimated catchment

area is based on field observations of the spacing of moulins in the Leverett Glacier

catchment during traverses by helicopter and on foot, and on obervations of mean

discharge into moulins at this elevation. The surface gradient was was calculated using

surface elevation data from a recent airborne survey (Figure 8.1; Krabill , 2010). A

measurement of seasonal surface ablation was then used to calculate a degree-day factor

for the period 1 May - 1 August (Hock , 2003). Applying a fixed lapse rate of -0.9◦C

per 100 m elevation, calculated using temperature from sites 2 and 3 in May and June,

we then used the temperature data to estimate runoff for a period of 92 days, from 1

May until 1 August, at which point the temperature sensor at site 2 failed. In order

to capture the daily variations in meltwater production, the daily signal in our runoff

estimate was also amplified by a factor of 2. Since water did not access the ice bed

interface until May 7 at site 2 (Nienow et al., submitted; Chapter 7 ), melt generated

prior to this date was artificially backed up in the moulin and used to calculate an

initial water height. We then ran the conduit model from May 7th until August 1st

with this initial water height and conduit evolution was driven by the remainder of the

estimated runoff signal (Figure 8.14a).

Running the model with this meltwater signal results in similar conduit behaviour

to that modelled in response to the artificial signal (Figure 8.14). A period of high

subglacial water pressure and rapid conduit growth occurs when water first drains into

the conduit. Following this, water pressure drops and the conduit reduces in size. For

the rest of the melt season, the conduit continues to evolve in response to short-term
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variations in meltwater input. This is evident both in daily-cycles in water pressure and

conduit growth as well as longer-term periods of increased meltwater input, on the order

of a few days, which sustains higher water pressures for longer and marked conduit

growth. For example, a period of higher meltwater input from 22 - 28 May causes

the conduit to reach its greatest size outside of the spring-event and high mean water

pressure is sustain for 3 - 4 days. Daily-cycles in water pressure, where the conduit

is over-pressurised during the day and operates under open-channel conditions when

meltwater input starts to fall are persistent for most of the model run.

As with the velocity observations presented in the first part of this paper, there

is no clear relationship between the magnitude of daily cycles in the input signal and

the pressure response within the subglacial conduit. We suggest that this reflects the

strong time-dependence of the relationship between meltwater supply and subglacial

water pressure. For example, if larger diurnal variations in meltwater supply increase

the size of the conduit, it will be over-filled for a shorter period of the day and require

greater amounts of water to achieve the same water pressure. In this way the water

pressure is highly sensitive to the recent development of the system.

Comparing the modelled conduit development with the observed velocity record

from site 2 (Figure 8.14c) yields striking results which bear out this reasoning. High ice

velocities are well matched with growth of the conduit, which is indicative of sustained

high water pressure. The highest velocities are associated with sharpest rises in conduit

cross-sectional area and begin to reduce again when water input declines and the conduit

shrinks in size. Over daily timescales, high velocity occurs when the channel is overfilled

and low velocities, which often return to winter background levels, occur during periods

of open-channel flow.

In common with the previous experiments, the conduit reaches R-channel size during

the spring-event and remains above the critical value through the remainder of the

model run. After the spring-event Qout roughly matches Qin suggesting longer-term

variability in meltwater input is easily accommodated by evolution of the conduit.

Our results suggest that efforts to derive a relationship between water pressure

within a conduit and ice velocity might reasonably focus on developing an understanding

of the pressure behaviour of the surrounding drainage system and its relationship to
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Figure 8.14: Simulation of channel-cross section evolution in response to a realistic water
input signal generated from temperature data at site 2 in 2010, compared with the record of
ice velocity. a. Inflow to the system, Qin. b. Conduit cross-sectional area, S (blue) and filled
cross-sectional area (red) under open-channel conditions. c. Ice velocity at site 2 during the 2010
summer melt season. d. Effective pressure, N = pi − pw (blue), at the modelled cross-section.
Maximum N is equal to pi (red dashes). e. Water height in the moulin/reservoir system (blue),
which drives variation in the hydraulic head gradient. Mean water height is shown for 24h
periods (black steps) and the whole model run (lowest red dashes). Ice thickness, H is indicated
by the upper red dashes. f. Outflow from the system, Qout.

conduit water pressure. We suggest a conceptual model where over-pressurisation of a

conduit causes excess discharge to be transferred into adjacent areas of the ice sheet

bed. Such an investigation would require development of a model similar to the one

employed here to include an extra water storage component to represent the distributed

drainage system and a method for determining the area of the bed over which pressure
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might be affected.

8.8 Discussion

Both the field observations and modelling experiments support the idea that discharge

through the subglacial drainage system and water pressure are in phase over short

timescales (<∼1 week), due to an imbalance between the capacity of the subglacial

drainage system to evacuate meltwater and variations in meltwater input (Röthlisberger ,

1972; Cutler , 1998; Schoof , 2010). When drainage into the system rises more quickly

than conduits can expand to accommodate the extra water, water is backed up in the

englacial system increasing subglacial water pressure. Over longer timescales, however,

an increase in the hydraulic capacity of the subglacial drainage system allows higher

discharge at lower pressures than earlier in the summer (Bartholomew et al., 2010,

2011b; Sundal et al., 2011).

The detailed record of ice velocity at sites near the ice sheet margin shows that

the summer acceleration signal is dominated by short-term velocity events, which are

forced by temporal variations in water input to the subglacial drainage system. Using a

simple model of subglacial conduit evolution forced by a time-varying meltwater input

signal, we are able to successfully reproduce the key features of the seasonal conduit

development and pressure behaviour over both seasonal and short-term timescales. In

the experiment where we force the conduit development with a realistic input signal,

derived from the temperature record at site 2, the pattern of ice velocity changes can

be explained by periods of high subglacial water pressure and conduit growth which

are forced by short-term variations in meltwater input to an efficient drainage system.

Our investigation suggests, therefore, that the total summer acceleration signal is

plausibly interpreted as the integrated effect of numerous short-term events, rather than

a transition from a period of consistently high ice velocities in early summer which are

then reduced in late summer. In this context, the observation that mean ice velocities

are higher in early summer compared with late summer is explained in two ways: firstly,

the meltwater forcing signal levels off or declines in line with seasonal trends in air

temperature (Figure 8.2d and 8.4d) and the subglacial drainage system stabilises having
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reached its maximum spatial extent (Bartholomew et al., 2011a); secondly, the drainage

system has evolved to accommodate more water than earlier in the season and greater

variations in meltwater input are required to overwhelm the system than earlier in the

summer.

Many authors have appealed to the pressure-discharge characteristics of subglacial

conduits in steady-state to suggest that the transition from an inefficient drainage

system, where discharge is positively related to subglacial water pressure, to an efficient,

channelised, drainage system, where higher discharge leads to lower water pressure, is

responsible for the discrepancy between early and late summer mean velocities in land-

terminating sections of the GrIS. We find no evidence in either the field observations or

our modelling experiments to support this interpretation. Firstly, we find that conduit

growth during the initial spring-event is likely to be sufficient to effect a change from

cavity to R-channel size conduits soon after initial drainage of meltwater to the ice-bed

interface. This finding is supported by preliminary dye tracing experiments (T.Cowton,

pers. comm.) and the hydrological study conducted in 2009 (Bartholomew et al., 2011a).

Following the spring-events, however, mean velocities remain high until much later in

the summer. The good agreement between the model of the development of a single

conduit and observations of ice velocity, which is likely to represent subglacial water

pressures over a wider area (Kamb et al., 1994), implies that pressure within a discrete

channelised drainage system which is fed by meltwater from the ice sheet surface causes

interaction with a distributed drainage system when overfilled to raise pressure over

a wider area (Hubbard et al., 1995; Hubbard and Nienow , 1997; Nienow et al., 2005).

Secondly, the detailed ice velocity record does not reveal two modes of flow where ice

velocity is positively related to temperature for the first part of the summer and then

declines in late summer. The prevalence of short-term variations in ice velocity suggests

very strongly that steady-state conditions rarely occur in practice in this section of the

GrIS margin. Coupled with the success of the model experiments in reproducing both

the long-term and short-term behaviour of the subglacial drainage system we argue that

the variations in subglacial water pressure are better understood in terms of the response

to time-varying meltwater input. In light of these findings it is extremely important

to draw a distinction between ‘channelisation’ of the drainage system, which implies
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a reversal in pressure-discharge characteristics, and development of a conduit system

to accommodate larger volumes of water which reduces its sensitivity to variations in

meltwater supply.

Previous studies from this transect have shown that increased summer ablation does

not necessarily lead to a reduction in annual ice velocities (Bartholomew et al., 2011b;

Nienow et al., submitted; Chapter 7 ). Our investigation substantiates the arguments put

forward that variability in the rate, rather than absolute volume, of meltwater delivery

to the subglacial drainage system is an important control on patterns of subglacial water

pressure. In a warmer climate, therefore, we would expect the summer acceleration

signal at lower elevations to be sustained by variability in meltwater delivery to the

ice-bed interface, particularly in early summer while the system is continually adjusting

to larger and larger inputs of meltwater.

Behaviour at higher elevations, where overall seasonal acceleration is lower, appears

to be controlled strongly by supraglacial and englacial hydrology. In the first instance,

accumulation and sudden drainage of stored water from the ice sheet surface control

the timing of hydrologically forced ice acceleration (Bartholomew et al., 2011b). Two

previous studies have shown that higher melt rates result in greater seasonal acceleration

because meltwater can drain to the ice-bed interface earlier in the season, increasing

the time for velocity variations to occur (Bartholomew et al., 2011b; Nienow et al.,

submitted; Chapter 7 ). Following the initial drainage event, long supraglacial transit

times mean that short-term cycles in meltwater inputs to the ice sheet bed are subdued.

When there is more meltwater, however, the input signal can vary more quickly over

shorter timescales and the record at site 5 shows that the behaviour of higher elevation

sites becomes more like those nearer the ice sheet margin. At these sites, a warmer

climate therefore favours increased seasonal acceleration on two counts, by increasing the

length of time for which meltwater can reach the bed, and by increasing the short-term

variability in that supply by removing the smoothing effect of the winter snowpack

earlier in the summer.
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8.9 Conclusions

High resolution measurements of ice velocity in a land-terminating section of the GrIS

reveal that the seasonal acceleration signal is dominated by short-term variations in ice

velocity. These short-term variations in ice velocity are forced by rapid variations in

meltwater input to the subglacial drainage system from the ice sheet surface. The absence

of short-term cycles in ice velocity at higher elevation sites reflects different patterns

of meltwater input to the ice-bed interface, which are controlled by supraglacial and

englacial hydrology. At these sites the velocity signal reflects more gradual variations in

meltwater input, punctuated by events where large volumes of stored meltwater drain

to the ice-bed interface.

We find that an efficient drainage system is likely to be established shortly after

initial access of meltwater to the ice bed interface, which occurs at progressively higher

elevations through the melt season. Large velocity variations can continue to occur,

however, even once the drainage system has become channelised. Using a simple model

of subglacial conduit behaviour we show that the record is best understood in terms of a

time-varying water input to a channelised subglacial drainage system. Our investigation

substantiates the arguments that variability in the rate, rather than absolute volume,

of meltwater delivery to the subglacial drainage system is an important control on

patterns of subglacial water pressure. These findings resolve the failure of steady-state

analyses of subglacial drainage system behaviour to explain inter-annual variations in

summer acceleration in this part of the GrIS margin.

In the context of predictions about the impact of increased meltwater production on

ice dynamics and therefore on the future mass balance of the GrIS, we find no reason

to expect a reduction in summer acceleration at sites near the ice sheet margin where

water easily drains to the ice bed interface. At sites further inland, increased rates of

surface melting favours greater summer acceleration both because water will drain to

the ice-bed interface earlier each year and because earlier snowpack removal will lead

to greater melt supply variability.

While we suggest that atmospheric forcing has the potential to increase rates of

dynamic mass loss from the GrIS in a warmer climate, our findings call for a reassessment
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of the role that the subglacial drainage system plays in moderating the relationship

between surface melting and ice velocity (cf. Van de Wal et al., 2008; Shepherd et al.,

2009; Schoof , 2010; Sundal et al., 2011; Pimentel and Flowers, 2011).

8.10 Appendix: model sensitivity testing

In order to test the sensitivity of our model to variations in key unknown parameters,

we performed a series of sensitivity tests. The key parameters which affect rates of

conduit opening and closure are f in the Darcy-Weisbach equation and B in Glen’s

flow law respectively. In addition, due to uncertainty about drainage concentration at

the ice sheet bed, we also tested variations in meltwater input to our conduit model.

The results of these simulations are presented in figures 8.15 - 8.18. Overall, these

simulations show that the values chosen for the parameters and inputs exert strong

control over absolute values for modelled effective pressures and conduit size. In the

context of the research presented in this chapter, however, the patterns of variability in

conduit size, discharge and effective pressure remain similar within plausible limits for

the parameters.

8.10.1 Darcy friction factor

The Darcy friction factor, f , controls rates of energy loss through friction at the channel

walls in both pipe and open channel flow. In addition to our initial simulation, we

performed experiments using values of 0.1 and 0.2 for f , to cover the range typically

used for subglacial tunnels (e.g. Clarke, 1996; Schoof , 2010, Figure 8.15). Increasing

f in our model reduces the conduit discharge for a given S. Initial rates of conduit

opening are lower with increased f , but ultimately the conduit reaches a greater size in

order to carry the same amount of water (Figure 8.15b). The slower rate of conduit

opening applied in these sensitivity tests also leads to larger short-term variations in

effective pressure (Figure 8.15c).
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Figure 8.15: Simulation of channel-cross section evolution in response to a time-varying water
input signal with different values for f . a. Inflow to the system, Qin. b. Conduit cross-sectional
area, S (f=0.0375, blue; f=0.1, black, f=0.2, grey) and filled cross-sectional area (red) under
open-channel conditions. c. Effective pressure, N = pi − pw (f=0.0375, blue; f=0.1, black,
f=0.2, grey), at the modelled cross-section. Maximum N is equal to pi (red dashes). d. Outflow
from the system, Qout (f=0.0375, blue; f=0.1, black, f=0.2, grey).

8.10.2 Flow law parameter

The parameter B in Glen’s flow law controls the stiffness of ice and is strongly related

to ice temperature (Paterson, 1994). Higher values of B represent softer ice, allowing

faster rates of conduit closure for a given effective pressure. A lower value for B leads

to stiffer ice and slower conduit closure rates. Figure 8.16 shows that reducing B leads
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to a larger conduit size, but reduced daily variations in N , while increasing B leads to

a slightly reduced conduit size and greater daily variations in N .
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Figure 8.16: Simulation of channel-cross section evolution in response to a time-varying water
input signal with different values for the flow law parameter B. a. Inflow to the system,
Qin. b. Conduit cross-sectional area, S (B=6x10−24, blue; B=3x10−24, black, B=9x10−24,
grey) and filled cross-sectional area (red) under open-channel conditions. c. Effective pressure,
N = pi − pw (B=6x10−24, blue; B=3x10−24, black, B=9x10−24, grey), at the modelled cross-
section. Maximum N is equal to pi (red dashes). d. Outflow from the system, Qout (B=6x10−24,
blue; B=3x10−24, black, B=9x10−24, grey).
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8.10.3 Meltwater inputs

Finally, we performed experiments where we changed the magnitude of the overall

meltwater input signal and the amplitude of daily cycles (Figures 8.17 and 8.18).

Results for Qx2 and Qx4 are shown in figure 8.17. While the overall size reached by the
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Figure 8.17: Simulation of channel-cross section evolution in response to a time-varying water
input signal with different magnitude meltwater scenarios. a. Inflow to the system, Qin (blue =
Qin; black = Qin x2; grey = Qin x4) . b. Conduit cross-sectional area, S (blue = Qin; black =
Qin x2; grey = Qin x4) and filled cross-sectional area (red) under open-channel conditions. c.
Effective pressure, N = pi − pw (blue = Qin; black = Qin x2; grey = Qin x4), at the modelled
cross-section. Maximum N is equal to pi (red dashes). d. Outflow from the system, Qout (blue
= Qin; black = Qin x2; grey = Qin x4).

162



0

5

10

Q
_i

n 
(m

3 s−
1 )

a.

0

1

2

S 
(m

2 )

b.

0

1

2

3

N
 (M

Pa
)

c.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

Q
_o

ut
 (m

3  s
−1

)

Days

d.

Figure 8.18: Simulation of channel-cross section evolution in response to a time-varying
water input signal with different daily cycle scenarios. a. Inflow to the system, Qin (blue =
2 m3 s−1 amplitude; black = 1 m3 s−1 amplitude; grey = 4 m3 s−1 amplitude). b. Conduit
cross-sectional area, S (blue = 2 m3 s−1 amplitude; black = 1 m3 s−1 amplitude; grey = 4 m3

s−1 amplitude) and filled cross-sectional area (red) under open-channel conditions. c. Effective
pressure, N = pi − pw (blue = 2 m3 s−1 amplitude; black = 1 m3 s−1 amplitude; grey = 4
m3 s−1 amplitude), at the modelled cross-section. Maximum N is equal to pi (red dashes). d.
Outflow from the system, Qout (blue = 2 m3 s−1 amplitude; black = 1 m3 s−1 amplitude; grey
= 4 m3 s−1 amplitude).

conduit scales with the magnitude of the meltwater input signal (Figure 8.17a,b), daily

cycles in effective pressure are much less sensitive (Figure 8.17). As discussed in this

chapter, we obtain this result because variations in effective pressure are controlled more

strongly by short-term variability in meltwater drainage which leads to an imbalance
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between conduit capacity and meltwater inputs. In experiments presented in figure

8.18, therefore, we changed the magnitude of daily cycles in meltwater inputs while

keeping the longer term signal the same. Increasing the daily variations in meltwater

drainage leads to similar conduit growth, but much greater daily variations in N , while

reducing the magnitude of daily cycles in meltwater drainage has the opposite effect.
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CHAPTER 9

Conclusions

The aim of this thesis has been to investigate the relationship between surface meltwater

production and seasonal variations in ice velocity in a land-terminating outlet glacier

in west Greenland. The investigations were motivated by uncertainty about the effect

of meltwater on rates of ice flow in the GrIS and the possibility that hydrologically

forced changes in ice velocity might increase mass loss from the ice sheet significantly

in response to climate warming.

The link between subglacial water pressure and variations in the basal sliding

component of glacier motion has been long recognised in temperate glaciers (e.g. Iken

et al., 1983; Iken and Bindschadler , 1986) and a number of authors had suggested that

Alpine glaciers, where the relationship between surface melting and ice motion depends

on variations in the structure, hydraulic-capacity and efficiency of the subglacial drainage

system (Iken et al., 1983), may provide an appropriate analogue for the relationship

between meltwater and ice velocity in the GrIS (e.g. Bartholomaus et al., 2007; Shepherd
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et al., 2009). Until now, however, limited datasets have been unable to assess this

hypothesis for the GrIS and it is not clear whether our understanding of the behaviour

of smaller glaciers can be scaled-up to large ice sheet systems.

The research presented in this thesis is based on field observations of the hydrology

and dynamics of Leverett Glacier, a land-terminating outlet glacier at ∼67.10◦ N in west

Greenland. We used a suite of different field observations in order to compare temporal

and upglacier variability in the relationship between surface meltwater production,

subglacial drainage system development and ice velocity over the course of three melt

seasons. The primary field datasets were supplemented by use of satellite data and

simple modelling.

In chapter 4 we compared seasonal records of ice velocity at four GPS sites in a

transect which extended up to ∼35 km inland with variations in air temperature. We

found that summer acceleration occurred at each of these sites, first near the ice sheet

margin and progressively upglacier following the onset of surface melting. Observations

of temperature and coincident changes in horizontal and vertical motion at each site,

suggest a local, temperature-related, forcing mechanism for the seasonal changes in

ice-motion. These summer velocity variations lead to an increase in annual ice motion

of 6 - 14 %.

Comparison with records of air temperature indicated, however, that a temporally

consistent relationship between surface melt and ice velocity does not exist once a

hydraulic connection has been made and increases in ice velocity became less sensitive

to surface melt rates later in the melt season. These results are interpreted to show that

development in the structure and efficiency of the subglacial drainage system causes a

reduction in basal water pressure in late summer, in a manner similar to Alpine glaciers.

A more efficient subglacial drainage system can evacuate large volumes of water in

discrete channels which operate at a lower steady-state water pressure, thereby reducing

the basal lubrication effect of external meltwater inputs (e.g. Röthlisberger , 1972; Kamb,

1987; Iken and Truffer , 1997; Schoof , 2010; Pimentel and Flowers, 2011).

The hydrological study in chapter 5 substantiated the arguments made in chapter

4. Using proglacial records of discharge, EC and SSC we found that an efficient

subglacial drainage system expanded upglacier, at the expense of the inefficient winter
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drainage system, as the melt season progressed. This development was forced by inputs

of meltwater from the ice sheet surface. We proposed that the model is similar to

Alpine systems where the drainage system becomes increasingly efficient as hydraulic

connections between the surface and bed are established further inland, evacuating

large volumes of meltwater and sediment. It is notable, therefore, that the channelised

subglacial drainage system is sustained in the GrIS where ice thicknesses are much

greater. This implies that the high volumes of meltwater input are sufficient to offset

increased channel closure potential by deformation of thicker ice.

The hydrological records revealed outburst of discrete pulses of stored water from

the terminus of Leverett Glacier. These observations indicate that upglacier expansion

of the efficient drainage system took place in a stepwise manner as water drained to

the bed further and further inland. Satellite imagery suggests that supraglacial lake

drainage events play a key role in establishing hydraulic connections between the ice

sheet surface and bed, helping to drive evolution of the subglacial drainage system.

Lake drainage events, which have the potential to concentrate surface meltwaters into

large enough reservoirs to propagate fractures through ice that is >1000 m thick (Alley

et al., 2005b; Das et al., 2008; Krawczynski et al., 2009), may be especially important

at higher elevations.

The seasonal and spatial increase in subglacial hydraulic efficiency supported ar-

guments that have been advanced by previous authors to question the existence of

positive feedback between climate warming and annual ice velocity of the GrIS (Truffer

et al., 2005; Van de Wal et al., 2008). Although we do not claim that this process

is responsible for the lack of correlation between seasonal ablation rates and velocity

changes observed in the long-term study of ice motion in the Leverett Glacier region

by Van de Wal et al. (2008), the findings presented in chapter 4 lead some to argue,

by extension, that summer and therefore annual mean ice velocities at a given site

on the GrIS could be lower in high ablation years than in low ablation years because

channelisation of the subglacial hydrological system would occur more quickly (Truffer

et al., 2005; Van de Wal et al., 2008; Schoof , 2010; Pimentel and Flowers , 2011; Sundal

et al., 2011).

Such reasoning ignores two crucial aspects of this problem: Firstly, the initiation of
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hydrologically-forced ice velocity variations is dependent on the development of a conduit

from the ice sheet surface to allow surface meltwater to access the ice-bed interface. In

a warmer climate we expect summer melting of the GrIS to be more intense, affecting

a wider area for a longer time period than is currently the case (Hanna et al., 2008),

providing greater volumes of surface meltwater. It is likely, then, that seasonal velocity

variations in the GrIS will propagate further inland in response to climate warming.

In addition, while diurnal ice velocity variations had been observed up to 72 km from

the GrIS margin in a short-term study (Shepherd et al., 2009), lack of comprehensive

datasets meant that it was not clear that patterns in hydrologically-forced dynamic

behaviour observed near the ice sheet margin are replicated at higher elevations.

In chapter 6 we presented ice velocity data from a transect which extended across

the entire ablation zone and reached up to ∼1700 m elevation. At higher elevations

(>1000 m), where the ice is thicker and temperatures are colder, there was a significant

time lag between the onset of surface melting, as inferred from both positive degree-days

and MODIS-derived albedo values, and the establishment of a hydraulic connection

between the ice sheet surface and its bed as inferred from uplift of the ice surface. This

means that significant velocity enhancement occurs for a much shorter time period than

at lower elevations. Comparison of satellite observations of supraglacial lake drainage

with ice velocity records indicates that drainage of stored surface water is a key factor

in initiating hydrologically-forced ice acceleration at these higher elevation sites.

We found a strong positive correlation between rates of annual ablation and changes

in annual ice velocity along the entire transect, with sites nearest the ice sheet margin

experiencing greater increases in annual motion (15 - 18 %) than those above 1000 m

elevation (3 - 8 %). At sites in the upper ablation zone, timing of meltwater drainage

to the ice-bed interface appears to be the main control on the the overall magnitude of

summer acceleration. In the lower ablation zone, the overall contribution of variations

in ice motion to annual flow rates is limited by evolution in the structure of the

subglacial drainage system. The positive relationship between temperature and seasonal

acceleration across the lower elevation sites is explained, however, by variations in the

rate, rather than the absolute volume, of meltwater production and delivery to the

ice-bed interface.
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Importantly, the data presented in chapter 6 indicate that short-term variations

in ice velocity can still occur even once the subglacial drainage system has become

channelised. Short-term variations in the rate of meltwater delivery to the ice-bed

interface cause a temporary imbalance between the volume of water and the capacity

of the subglacial drainage system to evacuate this water without an increase in pressure

over a wide enough area to significantly affect basal motion (Kamb et al., 1994). We find

that hydrologically-forced ice acceleration is greatest on the rising limb of the seasonal

runoff hydrograph when the hydraulic capacity of the subglacial drainage system is

consistently exceeded and suggest that short-term variability in meltwater supply can

sustain significant velocity variations for a large part of the summer.

Steady-state analysis of subglacial drainage system behaviour does not explain the

positive correlation between rates of annual ablation and changes in annual ice velocity

along the transect particularly well; sites near the ice sheet margin, which experience

the highest rates of surface ablation, do not experience a smaller acceleration that

those several kilometres upglacier. Although channelised drainage conditions do allow a

reduction in subglacial water pressures in late summer, this appears to not be sufficient

to cause a general reduction in ice velocities, which are sustained by time-varying

meltwater inputs to the subglacial drainage system. These observations suggest that

the timing of a transition from distributed to channelised drainage is not the main

control on inter-annual variations in ice velocity at a particular site. Combined with

the data from higher elevation sites, these findings lead us to hypothesise that inland

propagation of hydrologically-forced velocity variations will induce greater dynamic

mass loss in land-terminating sections of the GrIS in years with higher melting, as ice

motion is sustained at sites near the ice sheet margin and water reaches the ice sheet

bed earlier in the summer and at sites further inland.

In chapter 7 we had the opportunity to test this hypothesis. Regional scale data

showed that summer temperatures near to the transect were approximately the same

in 2009 as the 1960 - 2010 average, while 2010 was ∼2.5◦C warmer. The regional

temperature difference between 2009 and 2010 was reflected in the local measurements

of air temperature at our sites, where the average difference in May-August mean

temperature was 2.1◦C. Local measurements of surfacing lowering at each GPS site also
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show that total summer ablation was 22 - 220% greater in 2010 than 2009, while the

runoff observations from Leverett Glacier glacier show that cumulative bulk discharge

was approximately twice as great in 2010 compared with 2009.

Significantly, comparison of annual motion data from 2009 and 2010 shows, with

the exception of site 2, that annual mean velocities along the transect were greater in

2010 than in 2009. On average, velocity variations in 2010 contributed an extra 2 %

increase in annual motion on top of winter background rates compared with 2009. In

addition, increases in ice velocity at our highest elevation GPS sites indicate that ice

velocity variations also propagated further into the ice sheet in the warmer year of 2010.

Combining data from 2009 and 2010 these data show that there is a direct and positive

relationship between the seasonal rates of local ablation and the percentage increase in

annual motion due to summer acceleration at each site.

Finally, in Chapter 8 we used high temporal resolution GPS data to reveal the

detailed structure of the seasonal velocity record across our transect. These data are

coupled with a simple model of subglacial conduit behaviour in response to a time-

varying meltwater input signal in order to investigate the role of short-term variability

in meltwater production on seasonal patterns of ice motion.

Both the field observations and modelling experiments support the idea that discharge

through the subglacial drainage system and water pressure are in phase over short

timescales (<∼1 week), due to an imbalance between the capacity of the subglacial

drainage system to evacuate meltwater and variations in meltwater input. Over longer

timescales, however, an increase in the hydraulic capacity of the subglacial drainage

system allows higher discharge at lower pressures than earlier in the summer.

The summer acceleration signal at sites near the ice sheet margin is dominated by

short-term velocity variations on timescales ranging from a few hours to several days,

which are forced by variations in air temperature or drainage of stored water from the

ice sheet surface. The largest ice velocity events are absent, however, in the second part

of the summer and we find that the reduction in mean late summer velocity at these

sites is primarily due to stabilisation in the meltwater input signal.

Behaviour at higher elevations, where overall seasonal acceleration is lower, appears

to be controlled strongly by supraglacial and englacial hydrology. In the first instance,
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accumulation and sudden drainage of stored water from the ice sheet surface controls

the timing of hydrologically forced ice acceleration. Following the initial drainage event,

however, short-term cycles in meltwater inputs to the ice sheet bed are subdued. At

these elevations meltwater input locations are more widely spaced and the snowpack

remains for much of the summer, leading to long supraglacial transit times which damp

diurnal and other short-term variations in meltwater deliver. At these sites the velocity

signal reflects the more gradual variations in meltwater input, and is punctuated by

high velocity events where large volumes of stored meltwater drain to the ice-bed

interface. The record from site 5 in 2010 shows, however, that warmer temperatures

can encourage short-term variability in the meltwater input signal and that behaviour

of higher elevation sites has the potential to become more like sites nearer the ice sheet

margin.

Using a simple model of subglacial conduit evolution forced by a time-varying

meltwater input signal, we are able to successfully reproduce the key features of the

seasonal conduit development and pressure behaviour over both seasonal and short-term

timescales. Our investigation suggests, therefore, that the total summer acceleration

signal is plausibly interpreted as the integrated effect of numerous short-term events,

rather than a transition from a period of consistently high ice velocities in early summer

which are then reduced in late summer. Overall, our investigation substantiates

arguments that variability in the duration and rate, rather than absolute volume, of

meltwater delivery to the subglacial drainage system is an important control on seasonal

patterns of subglacial water pressure, and therefore ice velocity.

The research presented in this thesis was motivated by uncertainty about the effect

of hydrologically-forced ice acceleration on the future mass balance of the GrIS. Drainage

of surface meltwater to the ice sheet bed has the potential to allow GrIS dynamics to

respond to atmospheric forcing on timescales of decades or less (Parizek and Alley , 2004).

Initial field observations had suggested that there is a direct and positive relationship

between rates of surface melting and ice velocity (Zwally et al., 2002) and a subsequent

numerical simulation applied this relationship to suggest that the widespread effect of

increased surface melting on ice velocities would lead to an additional sea level rise of

0.15 - 0.4 m by 2500 AD (Parizek and Alley , 2004).
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Our investigations suggest that higher rates of seasonal ablation would lead to

increased hydrologically-forced dynamic mass loss in land-terminating sections of the

GrIS. Higher surface ablation will allow hydrologically-forced velocity variations to

propagate over larger sections of the GrIS as sufficient meltwater to force a hydraulic

connection to the ice-bed interface is generated over a wider area. In addition, meltwater

drainage will occur earlier at those sites in the upper ablation zone where the delay in

the onset of seasonal acceleration currently limits the overall speed-up. At sites near

the ice sheet margin, where abundant meltwater already reaches the bed each summer,

variability in the meltwater input signal can sustain the high levels of acceleration that

we have observed. Insights from the new datasets that were collected show, however,

that interaction between patterns of meltwater drainage to the ice-bed interface and

behaviour of the subglacial drainage system make this problem more complex than was

captured by the initial observations made by Zwally et al. (2002) and the simulations

performed by Parizek and Alley (2004).

We believe, then, that the research presented in this thesis offers an improved

conceptual basis on which to understand the relationship between surface melting and

ice dynamics in land-terminating sections of the GrIS. In addition, the data can be a

valuable resource for numerical studies of hydro-dynamic behaviour in the GrIS. In the

first instance we advocate attempts to use the positive relationship between seasonal

rates of local ablation and the percentage increase in annual velocity reported in chapter

7 to constrain basal processes empirically in, for example, an ice flow-line model. This

can then be used to perform similar experiments to Parizek and Alley (2004) to assess

the potential impact of hydrologically-forced ice acceleration on the future mass balance

of the GrIS in a range of anticipated climate scenarios. In the longer-term, we hope that

insights from this work can help researchers in the glaciological modelling community

improve representation of hydrologically-forced acceleration and subglacial drainage

processes in more physically-based ice sheet models which are used to predict future

sea-level change. Such models do exist for smaller domains(Pimentel and Flowers,

2011, e.g) as well as schemes for the inclusion of basal hydrology into ice flow models

(e.g. Creyts and Schoof , 2009). It is clear, however, that this is not a straightforward

task. A particular challenge is to represent detailed and complex physical processes on
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appropriate temporal and spatial scales within the limits imposed by computational

efficiency (Alley et al., 2005a; Parizek , 2010). This problem is currently being worked

on by a large number of groups and represents a focus for large collaborative projects

such as the European Union funded Ice2sea initiative. In a more practical sense the

data are also of value for calibration and testing of such models.

At the outset we identified that Alpine glaciers may provide an appropriate analogue

for hydro-dynamic behaviour in the GrIS. We find that the basic processes operate

in a very similar way: local drainage of meltwater to the ice bed interface causes

surface uplift and horizontal acceleration of the ice, the hydrological system develops

in efficiency, both spatially and temporally, over the course of the melt season and

development in the structure of subglacial drainage system has a limiting effect on ice

velocities. There are important differences, however, between an Alpine glacier setting

and the marginal zone of the GrIS which complicate the analogy. Firstly, thicker ice

found in the GrIS influences patterns in the timing and manner of meltwater delivery to

the ice-bed interface, particularly at high elevation sites. The hydrofracture mechanism

is critical in propagating fractures through the thick cold ice, in a manner similar to

that observed on high Arctic polythermal glaciers (e.g. Boon and Sharp, 2003; Bingham

et al., 2003). In particular, drainage of supraglacial lakes, during which large volumes

of meltwater drain in a discrete pulse, may play a key role in spatial and temporal

development of subglacial drainage at higher elevations and as the ablation zone expands

upglacier. Secondly, the larger catchment sizes that are possible for moulins in the

GrIS alters patterns in meltwater delivery to the ice-bed interface, affecting short-term

variability in ice motion. This appears to be particularly important at sites where the

winter snowpack remains for most of the summer. Finally, we have identified that the

rising limb of seasonal runoff and variability associated with upglacier evolution of the

drainage system play a key role in sustaining ice velocities at sites lower in the ablation

zone. Compared with Alpine glaciers where the spatial extent of surface melting is

limited by the size of the glacier, in the GrIS there is effectively an unlimited upglacier

extent over which surface melting can occur. Meltwater production can therefore keep

rising as a result of increased temperatures over a wider and wider area over the course

of a summer, perhaps being able to sustain increasing rate of discharge for longer than
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is possible in Alpine glaciers.

An important consequence of this study, which used more detailed datasets than

had been available previously, has been to cast doubt on the application of steady-state

analysis of subglacial drainage system behaviour to understand the role of subglacial

drainage in mediating the relationship between meltwater production and ice velocity

(e.g. Van de Wal et al., 2008; Schoof , 2010; Pimentel and Flowers, 2011; Sundal et al.,

2011). This idea has gained momentum recently within the glaciological community,

because it provides an explanation for the observations that late summer velocity is

lower than in the spring while melt rates remain high. It is a conceptually attractive

explanation which turns the original hypothesis on its head (Sundal et al., 2011).

Channelisation of the subglacial drainage system has often been invoked to explain late

summer slow-down in the same way in Alpine and Alaskan glaciers (e.g. Mair et al.,

2002b; Anderson et al., 2004; Bartholomaus et al., 2007), although it has been shown

that short-term fluctuations in ice velocity can still occur (e.g. Nienow et al., 2005).

Such reasoning has, however, ignored crucial aspects of this problem. For example,

the focus on behaviour at a particular site (e.g. Van de Wal et al., 2008; Sundal et al.,

2011) fails to account for inland propagation of the seasonal acceleration signal. In

addition, it has not been known whether behaviour observed at lower elevations is

replicated upglacier. Critically, our investigations suggest that the subglacial drainage

system in the ablation zone of the GrIS rarely appears to operate under steady-state

conditions. While this last finding undermines recent hypotheses about the impact of

hydrologically-forced ice acceleration on future mass loss from the GrIS, its likelihood

was put forward by Röthlisberger (1972) in his seminal paper on subglacial drainage

nearly 40 years ago. While this might be a contentious observation, we suggest that,

since observations in Greenland are difficult to obtain, investigators have at times been

required to utilise temporally or spatially limited datasets, resulting in the reporting of

potentially ambiguous signals with respect to their particular argument.

In many ways, the research presented in this study is preliminary and therefore

provides the impetus for future work at Leverett Glacier and on other outlet glaciers in

the GrIS. For example, we have highlighted that the timing, location and variability

of seasonal meltwater drainage to the ice-bed interface are extremely important in
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controlling the overall magnitude of summer acceleration, suggesting a need for detailed

investigations of supraglacial and englacial hydrology in the GrIS and how it might

evolve in the future. In particular this includes spatial and temporal controls on

supraglacial lake development and drainage, crevasse and moulin formation, removal of

the seasonal snowpack and spacing of supraglacial streams. Many of these questions

are already being investigated by researchers within the glaciological community (e.g.

Sundal et al., 2009; Krawczynski et al., 2009; Catania and Neumann, 2010).

At Leverett Glacier, the detailed datasets from three field seasons make it a good

test site for catchment scale modelling experiments and for more detailed investigations

which focus on spatial and temporal variability in subglacial drainage behaviour and ice

velocity. The model of a single subglacial conduit presented in chapter 8 is rudimentary

and only designed to demonstrate the behaviour of the equations which describe the

physics of subglacial conduit development (Schoof , 2010). The next step is to generate

a more sophisticated and spatially distributed version of this model, and to couple

this with improved meltwater input data. In addition, while upglacier and temporal

variability in seasonal drainage system development and changes in ice velocity have been

investigated along the transect, further studies which investigate lateral variability in

both of these processes on a range of scales would help us to understand how widespread

or restricted the effect of acceleration in outlet glaciers might be (e.g. Palmer et al.,

2011). In addition, we currently lack direct observations of subglacial water pressures

with which to compare our records of ice velocity and meltwater production. These

could be captured using borehole drilling studies and would provide valuable information

to verify the hypotheses made here about subglacial drainage system behaviour, and to

constrain the relationship between basal water pressure and glacier sliding (e.g. Harper

et al., 2010).

The overall aim of this thesis has been to provide insights about hydrologically-forced

dynamic behaviour in a land-terminating section of the GrIS margin, in order to help

improve our ability to make predictions about the future mass balance of the ice sheet.

Our observations have been made at a single glacier for a relatively short period of

time. Although there is no reason that the findings presented here cannot be generalised

across the whole ice sheet, it is not certain to be the case. Extending similar studies
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to outlet glaciers at different latitudes and other regions of the GrIS margin will help

address this shortcoming. Finally, continuous long-term records of ice velocity from

Leverett Glacier can provide valuable datasets to investigate the longer-term controls

on inter-annual variations in hydrologically-forced ice acceleration in land-terminating

glaciers and to provide data to the glaciological community for model validation and

testing.

While this thesis has focused on land-terminating glaciers, the significance of the

results must be considered in the context of marine-terminating glaciers, not least

because of their importance for the mass balance of the GrIS (Rignot and Kanagaratnam,

2006). Marine-terminating outlet glaciers have generally displayed less sensitivity to

variations in meltwater forcing (Echelmeyer and Harrison, 1990; Joughin et al., 2008a)

and seasonal flow variations have been explained by changes in ice calving rates due to

processes occurring at the ice front (e.g. Howat et al., 2007; Joughin et al., 2008b; Nick

et al., 2009; Amundson et al., 2010). Subglacial hydrology has, however, been shown

to exert strong control on the dynamics of marine-terminating glaciers in Alaska (e.g.

Kamb et al., 1994; O’Neel et al., 2001). Furthemore, a number of recent observations

suggest that meltwater forcing and glacier hydrology may also play an important role

in the dynamics of marine-terminating outlet glaciers in the GrIS (Joughin et al., 1996;

Andersen et al., 2010; Howat et al., 2010; Sole et al., 2011).

Sole et al. (2011) point out that most observations of seasonal flow variations in

GrIS marine-terminating glaciers come from close to their termini (<30 km) where

calving is likely to be the principal control on ice flow (Joughin et al., 2008b). Their data

show that, further into the ice sheet interior, seasonal and shorter-term variations in ice

flow are controlled principally by surface melt-induced changes in subglacial hydrology

rather than by changes at the calving front. It is not clear however, that the impact of

meltwater forcing on marine-terminating glaciers results in the same acceleration signal

as has been observed in land-terminating sections (Joughin et al., 1996; Andersen et al.,

2010; Howat et al., 2010; Sole et al., 2011).

Although the relative importance of calving and hydrology on the dynamics of marine-

terminating outlet glaciers is uncertain (e.g. Andersen et al., 2010), these studies suggest

that it is important to investigate the role of hydrological forcing on ice acceleration in
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marine-terminating settings, particularly further from the glacier terminus. In addition,

Thomas et al. (2009) shows that the greatest recent acceleration of marine-terminating

outlet glaciers is restricted only to those with the deepest marine troughs. The impact

of ice front processes on marine-terminating glacier dynamics may therefore become

diminished if marine-terminating glaciers continue their retreat into shallower water

(e.g. Howat et al., 2008), or retreat further to become land-terminating (Bamber et al.,

2001; Sole et al., 2008), leading to an increased role for hydrologically-forced ice dynamic

processes in the future mass balance of the GrIS.
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Seasonal evolution of subglacial drainage and
acceleration in a Greenland outlet glacier
Ian Bartholomew1*, Peter Nienow1, Douglas Mair2, Alun Hubbard3, Matt A. King4 and Andrew Sole2

The Greenland ice sheet contains enough water to raise sea
levels by 7m. However, its present mass balance and future
contribution to sea level rise is poorly understood1. Accelerated
mass loss has been observed near the ice sheet margin,
partly as a result of faster ice motion2–4. Surface melt waters
can reach the base of the ice sheet and enhance basal ice
motion5,6. However, the response of ice motion to seasonal
variations in meltwater supply is poorly constrained both in
space and time. Here we present ice motion data obtained with
global positioning system receivers located along a ∼35 km
transect at the western margin of the Greenland ice sheet
throughout a summer melt season. Our measurements reveal
substantial increases in ice velocity during summer, up to
220%abovewinter background values. These speed-up events
migrate up the glacier over the course of the summer. The
relationship between melt and ice motion varies both at
each site throughout the melt season and between sites.
We suggest that these patterns can be explained by the
seasonal evolution of the subglacial drainage system similar to
hydraulic forcing mechanisms for ice dynamics that have been
observed at smaller glaciers.

Recent studies have focused on the role that seasonal changes
in hydrological forcing have on ice motion of the Greenland ice
sheet3–5,7,8 (GrIS) and suggest that surface melting generates large
enough volumes ofmelt water to lubricate basal flow should it reach
the bed9. This process has the potential to create a positive feedback
between climate warming and ice velocity that has not been con-
sidered in ice sheet models that predict sea level rise1. A theoretical
mechanism of hydrofracture10,11 proposes how surface melt water
can penetrate to the bed through cold ice >1,000m thick and has
been invoked to explain changes in vertical and horizontal compo-
nents of ice motion in response to a lake drainage event5. Simul-
taneous measurements of ice velocity and air temperature have es-
tablished, over short timescales, a correlation between local surface
melting and velocity fluctuations over a widespread area4,8,9. How-
ever, it has been shown that higher annual ablation does not neces-
sarily lead to increased annual ice velocities8 and the importance of
this relationship for large-scale dynamic behaviour of the GrIS re-
mains equivocal. It is suggested9 that alpine glaciers may provide an
appropriate analogue for the evolution of the GrIS in a warming cli-
mate. In alpine and high Arctic polythermal valley glaciers, ice mo-
tion depends on variations in the structure, hydraulic capacity and
efficiency of the subglacial drainage system12, each of which evolves
spatially and temporally on a seasonal basis13–17. Until now, limited
data sets have been unable to confirm this hypothesis for theGrIS.

We used global positioning system (GPS) observations to
provide continuous ice velocity measurements, from 7May, during
the 2008 melt season and the subsequent winter at four sites
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Figure 1 | Location of the GPS transect on the western margin of the GrIS.
The four GPS sites are located in the ablation zone of the GrIS across an
altitudinal range of 395–1,060m a.s.l., contours show altitude where ice
thickness ranges from ∼270–920m (ref. 29) and are located along a
flowline from the ice sheet interior as determined by interferometric
synthetic aperture radar observations30. Simultaneous measurements of
air temperature were made at each site to constrain surface melt rates.

along a land-terminating transect in the ablation zone of the
western margin of the GrIS at ∼67.10◦ N (Fig. 1). Simultaneous
measurements of air temperature weremade at each site.

The GPS observations show that each site experienced changes
in daily ice velocity that were >110% above winter motion over
the course of our survey (Fig. 2). This variability is consistent
with, but much stronger than, previously reported observations6,8,9.
When our survey began, melt had commenced near the ice
margin and site 1 was already experiencing motion above winter
background level. At sites 2, 3 and 4 a common pattern of
seasonal ice velocity variation is characterized by an initial period
of slow flow at winter levels, followed by a 70–100% increase
in horizontal velocity, following the onset of melt, that marks a
change in the dynamic regime to higher mean velocities. These
sites gradually return to velocities below their winter values by
the end of the summer, although individual high-velocity events
occur throughout the summer. Average rates of ice motion at sites
1, 3 and 4, following the seasonal increase in horizontal velocity,
were 114,132 and 142m yr−1, respectively. The net increases in ice
motion above winter background motion, owing to these summer
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Figure 2 | Seasonal development of melt-induced ice velocity variations. a–d, 24-h horizontal velocity (blue) and surface height (green) at GPS site 1
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surface height (blue). The solid lines indicate different phases of longer-term ice velocity versus surface uplift relationship. e, Temperature record from sites
1 (magenta), 3 (red) and 4 (blue).

variations, are 19%, 40% and 17%, equating to an increase in
annual ice flux of 8%, 14% and 6%. In addition, the data reveal an
up-glacier evolution in the onset of horizontal acceleration, and in
the subsequent slowdown. Site 2 began to speed up on 15 May and
sites 3 and 4 followed on 27May and 11 June, respectively.

At all sites, the highest horizontal velocities coincide with uplift
of the ice sheet surface, up to 12 cm in a single event, and reductions
in velocity occur when the surface is lowering or stable. The highest
daily horizontal velocities occur during periods of rapid uplift,
rather than at peak elevation. Clear longer-term seasonal changes
in surface elevation are associated with variations in the horizontal
flow regime, particularly at sites 3 and 4, and can be categorized into
three phases. Phase 1 is characterized by no enhanced surface uplift
and low horizontal velocities (7–30 May at site 3; 7 May–10 June
at site 4), and the slow-flowing inland ice (sites 3 and 4) seems
to be unaffected by the faster ice downstream (sites 1 and 2).
During phase 2, the rate of uplift increases, as do the horizontal
velocities (31May–19 June at site 3; 11 June–14 July at site 4), and in
phase 3, surface elevations gradually decrease towards (site 3) and
below (site 4) their early season levels (20 June–21 July at site 3;
15 July–29August at site 4) but can fluctuate by∼0.05md−1.

We used air temperature data to derive positive degree days
(PDDs) at each site to investigate relationships between surface

melt (as inferred from PDDs) and ice velocity. For the melt
season as a whole, there was a weak but significant correlation
between PDD and daily ice velocity at each site but there is no link
between the intensity of seasonal melting and the mean horizontal
velocity increase (Fig. 3a).

Studies of hydromechanical coupling at alpine and subpolar
glaciers reveal that intra-seasonal changes in the hydraulic efficiency
of the subglacial drainage system are a principal control on the
sensitivity of ice motion to meltwater inputs13–17. Our data show
that: (1) phase 1 (pre-melt) velocities are low and show no
relationship to PDD (Fig. 3c,d); (2) phase 2 (enhanced surface
uplift) mean velocities are high (>50% above winter background)
and positively correlated with PDD (Fig. 3b–d); and (3) during
phase 3 (surface lowering), the sensitivity of the relationship
between PDD and velocity changes such that only periods of
most intense melting (that is, high PDDs; Fig. 3b–d) are associated
with substantial enhanced surface velocity (>50% above winter
background). This accounts for the gradual decline in ice velocities,
but explains the sporadic high-velocity events.

From the association between the onset of surface melting,
surface uplift and enhanced horizontal velocities, we infer rapid de-
livery of surface melt water to the ice sheet bed following the estab-
lishment of a hydraulic connection5,6,8,9. This melt water increases
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basal sliding by reducing friction between overlying ice and its
bed, probably through hydraulic jacking or cavitation15,18. Although
changes in surface elevation can also result from changes in bedrock
topography and strain rates19, the patterns we observe cannot be
attributed to these effects alone. We would expect acceleration of
downstream ice to cause thinning upstream, yet observe the oppo-
site, and would not expect bedrock obstacles to be expressed at the
ice sheet surface on the length scales of the changes in our data. The
coincidence of highest velocities with rate of uplift, rather than peak
elevation, suggests ‘stick–slip’ behaviour similar to that observed in
an alpine-type glacier15,18,20, whereby separation of the ice and bed
allows the immediate release of built-up stresses in the overlying ice.

Our observations of temperature and the pattern of changes
in horizontal and vertical motion at each site, suggest a local,
temperature-related, forcing mechanism for the seasonal changes
in ice motion. As also observed at alpine and high Arctic
polythermal glaciers14,15,17, the initiation of summer velocity
changes is dependent on the establishment of a hydraulic
connection between the ice surface and bed, which occurs first
in the lowest parts of the ablation zone, through thinner ice, and
migrates progressively up-glacier (Fig. 2). However, our results
from Greenland suggest that a temporally consistent relationship
between surfacemelt and ice velocity does not exist once a hydraulic
connection has beenmade. Instead, the relationship evolves both at
a point and develops up-glacier. When melt first accesses the bed,
the onset of high surface velocities and uplift (phase 2; Fig. 3) is
indicative of an inefficient basal hydraulic system in which basal
water pressures are highly sensitive to relatively small inputs of
water13. During the last part of themelt season (phase 3), the gradual
surface lowering and ice slow down indicates a more efficient
channelized system in which basal water pressures are generally
lower13. Only during very high meltwater inputs are basal water
pressures raised enough to reduce basal friction significantly and
enhance surface velocity21. This categorization is complicated by a
small number of examples of high horizontal velocity in our data in
the absence of high temperatures (for example, site 4 on 14 August
(Fig. 2)), which may be caused by rapid drainage of surface lakes
to the ice sheet bed5,6.

Sites 3 and 4 do not show velocity increases to above winter
values even when sites downstream have started accelerating
(Fig. 2), suggesting that longitudinal coupling is not effective
over >10 km at these locations. Although numerical studies have
suggested that it may be possible for seasonal acceleration of inland
ice to be explained through longitudinal coupling to marginal ice22,
and our data do not preclude its effectiveness in other parts of the
GrIS, we do not observe that process here at length scales of>10 km.
Therefore, enhanced surface velocity is primarily a consequence
of local hydrological forcing at each site and the efficiency of
the hydrological system.

Thus, the ice sheet exhibits a transient dynamic response to
seasonal melting at each site3,4,18. We find that, in addition to
surface melt rates, a key control on the magnitude and location
of enhanced basal sliding is the structure and efficiency of the
subglacial drainage system, which evolves seasonally, in a similar
manner to alpine glaciers15,18,23. The seasonal and spatial increase in
subglacial hydraulic efficiency is probably responsible for the lack
of correlation between seasonal ablation rates and velocity changes
that has caused previous authors to question the existence of
positive feedback between climate warming and annual ice velocity
of the GrIS (refs 8,24). Using a more extensive data set, we find that
the relationship between melt rate and ice motion evolves through
time at each site and with distance up-glacier, suggesting that its
significance lies at higher elevations. Although our data extend only
up to 1,000m altitude, further ground-based observations have also
detected ice-motion variations during late summer that are strongly
associated with changes in surface hydrology, at elevations above
1,400m in the same region9.

In a warming climate, with longer and more intense summer
melt seasons, we would expect that water will reach the bed farther
inland25 and a larger portion of the ice sheet will experience
summer velocity changes. Modelling studies have suggested that
the enhancement of summer ice motion is critical in drawing
down ice from the accumulation zone, thereby reducing the surface
elevation of the ice sheet, exposing more of the ice sheet to
surface ablation7. Furthermore, the low gradient of theGrIS interior
ensures that a small rise in temperature will induce melt across
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a spatially extensive area and substantial melt at elevations above
1,600m is already evident in the presence of supraglacial lakes26,27.
Our findings emphasize the importance of both surface melting
and seasonal evolution of the subglacial drainage system on ice
motion in marginal regions of the GrIS and will help parameterize
numericalmodels that predict the future evolution of theGrIS.

Methods
Each GPS antenna was mounted on a support pole drilled several metres into the
ice, which froze in subsequently, providing measurements of ice motion that are
independent of ablation. The GPS receivers collected data that were processed
kinematically using a Precise Point Positioning approach (sites 2, 3 and 4 at 300 s
intervals), and relative to a local (<2.5 km, 10 s intervals) base station for site 1
(ref. 28). Estimates of the uncertainty associated with positioning are ±1.5 cm in
the horizontal direction and ±2.5 cm in the vertical direction. The precision and
resolution of the data set is therefore sufficient to study changes along the flowline
on seasonal and shorter (<1 day) timescales. Daily horizontal velocities reported
in this letter are calculated by differencing 1-h mean positions every 24 h. Vertical
profiles are generated by filtering the whole data set to suppress noise without
over-smoothing the time series.

The GPS units were powered by solar panels. The GPS receiver at site 2 lost
power on 16 June and our analysis is focused mainly on the three remaining sites.
The receiver at site 1 was installed 3 days later than the others on 10 June. We
also experienced power problems later in the season at site 3 and data from the
beginning of September onwards is sporadic. This means that the detail of the ice
motion record is unavailable at the very end of the melt season and through the
subsequent winter. However, using occasional GPS positions (Fig. 2a–d, dashed
blue lines), horizontal ice motion can still be calculated over longer periods,
allowing us to assess the net velocity increase in summer compared with winter.
The values for net summer velocity over winter background reported in this paper
are calculated on the basis of ice motion from the onset of speed-up (the beginning
of the survey period in the case of site 1) until the end of summer, when melting
has finished at all sites and the effect of ‘slower than winter’ motion that we observe
in late summer has been incorporated—as such they may be considered minimum
estimates of summer velocity.

The values for background velocities are derived from the displacement of
each site over the subsequent winter, following the end of the summer melting
period (between 11 October and 27 February at Site 1, 26 September and 2 May at
site 2, 26 September and 8 May at site 3 and 11 October and 8 May at site 4). The
reported contribution to annual ice flux from the hydrologically forced summer ice
velocity variations is the percentage by which the observed displacement exceeds
that which would occur if the ice flowed at calculated winter rates all year round.
At sites 3 and 4, the pre-speed-up velocities bear close agreement with over-winter
velocities, however, are not included in the calculations to retain consistency
between the approach adopted for each site.

Measurements of air temperature were made using shielded HOBO air
temperature sensors. PDDs, used as a proxy for rates of surface melting, are derived
using mean daily air temperature. A lack of ablation data meant that it was not
possible to obtain degree-day factors, which vary for ice and snow. However,
accumulation rates are low in this part of Greenland and snow depths when the
GPSs were deployed at the beginning of May were less than 20 cm.
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[1] We measure hydrological parameters in meltwater
draining from an outlet glacier in west Greenland to
investigate seasonal changes in the structure and behaviour
of the hydrological system of a large catchment in the
Greenland ice sheet (GrIS). Our data reveal seasonal
upglacier expansion and increase in hydraulic efficiency
of the subglacial drainage system, across a catchment
>600 km2, to distances >50 km from the ice‐sheet margin.
This expansion occurs episodically in response to the
drainage of surface meltwaters into a hitherto inefficient
subglacial drainage system as new input locations become
active progressively further upglacier; this system is
similar to Alpine glaciers. These observations provide
the first synopsis of seasonal hydrological behaviour
in the ablation zone of the GrIS. Citation: Bartholomew, I.,
P. Nienow, A. Sole, D. Mair, T. Cowton, S. Palmer, and J. Wadham
(2011), Supraglacial forcing of subglacial drainage in the ablation
zone of the Greenland ice sheet, Geophys. Res. Lett., 38, L08502,
doi:10.1029/2011GL047063.

1. Introduction

[2] In land‐terminating sections of the GrIS, meltwater
production enhances ice motion through seasonal velocity
variations that are initiated when surface meltwaters gain
access to the ice‐bed interface [Zwally et al., 2002]. A
positive feedback between surface melting and ice velocities
would accelerate mass loss from the GrIS in a warmer cli-
mate [Zwally et al., 2002; Parizek and Alley, 2004;
Shepherd et al., 2009]. On the basis of correlations between
ice motion and surface melting, however, it has been shown
that a key control on the relationship between surface melting
and ice velocity variations is the structure and hydraulic
efficiency of the subglacial drainage system, which develops
spatially and temporally on a seasonal basis [Bartholomew
et al., 2010]. A more efficient subglacial drainage system
can conduct large discharges in discrete channels which
operate at a lower steady‐state water pressure, thereby
reducing the basal lubrication effect of external meltwater
inputs [Kamb, 1987; Pimentel and Flowers, 2011; Schoof,
2010; Sundal et al., 2011].
[3] Despite the clear link between rates of ice motion and

the structure of the subglacial drainage system, predictions
about the future extent and magnitude of hydrologically‐

forced ice velocity changes in the GrIS remain uncertain
[Van de Wal et al., 2008]. To address this, we need to
understand how spatial and temporal changes in surface
melting of the GrIS force development of an efficient sub-
glacial drainage system on a seasonal basis [Pimentel and
Flowers, 2011; Schoof, 2010]. Here we present observa-
tions from Leverett Glacier, a land‐terminating outlet glacier
at ∼67°N in west Greenland (Figure 1) in 2009, that eluci-
date seasonal development of the drainage system of a large
catchment in the ablation zone of the GrIS.

2. Data and Methods

[4] Drainage from Leverett Glacier occurs through one
large portal on the North side of the glacier snout, which
grows in size over the melt season and is the outlet for
runoff from a large subglacial conduit. Water stage, elec-
trical conductivity (EC) and turbidity were monitored con-
tinuously in the proglacial stream at a stable bedrock section
∼2 km downstream from the glacier terminus from May
18th 2009, before melting had started, until September 3rd.
Stage was converted into discharge (Q) using a rating curve
(r = 0.92) derived from 29 repeat dye‐dilution gauging tests
conducted in the proglacial stream across the full range of
discharges. Uncertainty in the discharge record is the result
of measurement error and application of a rating curve, and
is estimated to be ±15%. A relationship between turbidity
and suspended sediment concentration (SSC) was derived
by calibration against 49 manual gulp sediment samples
(r = 0.91). Uncertainties in the SSC and EC record are
estimated to be ±7% and ±10% respectively. Our monitoring
station was located in a single channel close to the ice
margin that did not overflow at peak discharge. During a
2 week period simultaneous measurements of SSC and EC
were taken within 50 m of the glacier snout, showing that
the hydrological parameters we measured did not change
significantly following emergence of the meltwaters from
the glacier terminus.
[5] A surface digital elevation model [Palmer et al., 2011]

was used to derive a first approximation of the Leverett
Glacier hydrological catchment (Figure 1). Although there
is uncertainty in this approach, lack of appropriate bed
elevation data prevents an estimate of catchment geometry
based on calculations of subglacial hydraulic potential
[Shreve, 1972]. We used satellite observations from the
Moderate‐resolution Imaging Spectrometer (MODIS) to
study the development and drainage of supraglacial lakes
within the Leverett catchment [Sundal et al., 2009; Box
and Ski, 2007]. 40 MODIS images were used spanning
the period 31st May to 18th August, representing all days
when lake identification was not impeded by cloud cover.
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There is significant uncertainty in applying a depth‐retrieval
algorithm based on surface reflectance to find the depth of
GrIS supraglacial lakes shallower than 2.5 m [Box and Ski,
2007]. Therefore, we used a modelled estimate [McMillan
et al., 2007] of the average depth of supraglacial lakes
obtained within this region to estimate volumes of lakes
that drain from the ice sheet surface. Continuous measure-
ments of air temperature were made at seven sites, from
450–1700 m altitude (Figure 1). Ablation rates were also
monitored using measurements of surface lowering from
ultrasonic depth gauges in order to constrain a temperature‐
melt index model which we used to predict volumes of run-
off generated from the catchment during our survey period.

3. Hydrological Observations

[6] The proglacial runoff hydrograph (Figure 2a) shows
that, prior to June 1st, discharge was <6 m3 s−1 during a
period of ∼20 days of above‐zero temperatures extending up
to 1400 m altitude (Figure 2d). Discharge then increased
rapidly over 3 days to 46 m3 s−1 on June 4th and continued
to grow episodically before rising dramatically, by 220 m3

s−1 in 10 days, to a peak of 317 m3 s−1 on July 16th. Fol-
lowing this peak, discharge declined gradually but remained
3–4 times greater than early‐season levels until late August.
Proglacial runoff showed clear diurnal cycles which had
greatest amplitude (∼25 m3 s−1) later in the season, after
July 16th, and were more subdued (∼6 m3 s−1) earlier in
the summer.
[7] The rising limb of the seasonal hydrograph is also

marked by four distinct pulses of water, superimposed on
the general pattern of runoff growth. These pulses each last a
few days, and contribute between 4.9–11.8 × 106 m3 of water
to the total runoff. These pulses are also defined by coinci-
dent spikes in the EC and SSC records (Figures 2a–2c).
The first pulse of water (P1 on June 3rd) marks the start

of significant runoff growth. It was followed by further
pulses (P2–P4) starting on June 7th, June 17th and July 3rd
(Figure 2a).
[8] Maximum EC (69.9 mS cm−1) occurred while dis-

charge was still low at the beginning of the season and
declined in a stepwise fashion to a minimum of 9.9 mS cm−1

on July 3rd, immediately prior to P4 (Figure 2b). There is a
negative relationship between EC and discharge over the
whole melt season (R2 = 0.27). Following P4 EC remains
low (<20 mS cm−1) and the daily cycles of Q and EC
develop a characteristic inverse relationship [Fenn, 1987]
with clear stable hysteresis where EC is highest on the rising
limb of the diurnal hydrograph (auxiliary material).1 How-
ever, the relationship is not consistent throughout the survey
period (Figure 2e), and early in the season can fluctuate
between strong positive and strong negative relationships
over short time‐scales (<1 week). In particular, P1, P2 and
P4 are characterized by pronounced conductivity peaks
(Figure 2b) that show a strong positive relationship with
increasing Q on their rising limbs (Figure 2e). During P2,
EC increases from 17–42 mS cm−1 in 9 hours as Q increases
from 40–59 m3 s−1 and, during P4, EC increases from 10–
40 mS cm−1 in 6 hours as Q increases from 74–140 m3 s−1.
In these pulses, an EC peak shortly precedes maximum
discharge, and EC returns to pre‐pulse levels within a few
days (Figure 2b). By contrast, there is no large peak in EC
associated with P3.
[9] Suspended sediment concentration ranged from less

than 0.2 kg m−3 to greater than 18 kg m−3, beyond the range
of our sensor, and increased gradually but episodically
throughout the season (Figure 2c). In common with the
pattern in electrical conductivity and discharge, there are

Figure 1. (a) Map showing the location of Leverett Glacier, a catchment derived from the surface DEM (purple), and
locations of temperature measurements (red stars). Lakes that drain during the survey period are denoted by circles, col-
our‐coded to show drainage events that coincide with meltwater pulses P2 (red) and P4 (green). Lakes which drain during
the survey period but are not clearly associated with pulses in the discharge record are coloured blue. The location of the
bedrock section where stage, EC and turbidity were measured is shown by the green triangle. (b) Positive degree‐days at
each of the temperature measurement locations (sites 1–7).

1Auxiliary materials are available in the HTML. doi:10.1029/
2011GL047063.
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large spikes in SSC during P1, P2 and P4, and to a lesser
extent, P3. These spikes precede the local discharge peaks
and are characterized by a steep rise followed by a more
gradual return to lower values. The SSC peak at P4 is
the most dramatic and jumps from 2–>18 kg m−3 within
6 hours. The suspended sediment load (SSL) also grows
throughout the season, and is significantly greater in the
latter part of the season (Figure 2c). Prior to P4, SSL ranges
from 0–4 × 104 t d−1, and following P4 ranges from 4–20 ×
104 t d−1. The total suspended sediment flux for the survey
period is ∼4.7 ± 0.74 × 106 t.

4. Discussion

[10] The delay in the onset of significant runoff, following
∼20 days with above‐zero temperatures, can be explained by
refreezing of an initial fraction of the surface melt in cold
snow until the firn becomes isothermal [Pfeffer et al., 1991]
and observed ponding of surface meltwater. Prior to P1,
low runoff volume and high EC indicate that water in the
proglacial stream was derived substantially from leakage
of basal meltwater from an inefficient winter drainage sys-
tem beneath Leverett Glacier [Collins, 1979; Skidmore and
Sharp, 1999].

[11] Using a temperature‐index model [Hock, 2003] of
surface melt within the catchment, calibrated with in situ
measurements of initial snow depth and ablation, we found
that the seasonal discharge volumes we observe cannot be
explained by an increase in melt intensity within a stable
catchment area (auxiliary material). Instead, the discharge
observed at Leverett glacier can only be accounted for by
progressive upglacier expansion of the catchment to include
runoff from higher elevations through the melt season,
indicating delivery of surface‐generated meltwater from a
progressively larger area of the ice sheet as the melt season
develops. The required development and expansion of the
contributing hydrological catchment, up to 800 melevation
by June 6th, and to 1000 m by July 9th, eventually delivers
surface meltwater from an area of over 600 km2 that extends
higher than 1200 m elevation and to a distance of >50 km
from the ice margin by July 21st. The dramatic rise in runoff
observed in the first half of July is driven, therefore, by a
combination of high temperatures (Figure 2d) and recent
expansion of the area of the ice sheet which delivers water
to the ice margin via Leverett Glacier.
[12] The EC of meltwater can be used crudely to differ-

entiate runoff components and hydrological pathways
through a glacial catchment [Collins, 1979]. The basic pat-
tern of decline from high to low solute concentration that we
observe is typical of Alpine and High Arctic glaciers
[Collins, 1979; Skidmore and Sharp, 1999] as the drainage
system becomes more efficient and a greater proportion of
water is transported rapidly through the glacier, limiting
the potential for solute acquisition. Therefore, along with the
upglacier expansion of the catchment in response to surface
melt inputs, our data suggest a concomitant increase in its
hydraulic efficiency throughout the melt‐season.
[13] High suspended sediment concentrations indicate that

meltwater emerging from Leverett Glacier has been routed
from the ice sheet surface, where it was generated, via the
ice sheet bed. Rates of basal sediment evacuation are con-
trolled by the hydraulic efficiency of the subglacial drainage
system, but can be limited by the availability of source
material [Alley et al., 1997; Swift et al., 2002]. A sustained
increase in subglacial hydraulic efficiency, and ongoing
expansion of the subglacial drainage system, is consistent
with the continued increase in SSC, even while runoff
diminishes following peak discharge on July 16th [Alley
et al., 1997]. In addition, SSC shows no sign of supply
exhaustion, suggesting that expansion of the efficient basal
hydraulic system provides continual access to an extensive
reservoir of basal sediment [Swift et al., 2002].
[14] Spatial expansion of efficient subglacial drainage at

the expense of a hydraulically inefficient distributed system
explains temporal instability in the correlation between
EC and Q on the rising limb of the seasonal discharge
hydrograph. Upglacier expansion of supraglacial melt extent
results in the upglacier expansion of the efficient subglacial
drainage system through the delivery of surface meltwater to
the glacier bed [Nienow et al., 1998]. These surface waters
initially drain into a hydraulically inefficient drainage sys-
tem causing channel sections to grow in a downglacier
direction until they connect with existing channels further
downstream. Reduction of mean water pressure in the chan-
nels, relative to the distributed drainage system, is probably
responsible for drawing out stored basal waters. Temporal
and spatial evolution of the efficiency of the drainage system

Figure 2. (a) Proglacial meltwater stream discharge (m3 s−1;
black line; shaded blue sections show the pulses of meltwater
(P1–P4) which are superimposed on the rising limb of the sea-
sonal runoff hydrograph). Timing, area and elevation of lake
drainage events. Each circle represents a single lake drainage
event, based on change in surface area on MODIS images.
Horizontal bars represent the time period in which drainage
took place. Red circles are lakes that drained slowly over sev-
eral images while blue circles drained in a discrete event
between two images. (b) Electrical conductivity (mS cm−1).
(c) suspended sediment concentration (kg m−3; left‐axis,
black) and suspended sediment load (t d−1; right‐axis, red).
(d) Temperature measurements from 450 m and 1480 m ele-
vation. (e) 24‐hour windowed correlation coefficient between
Q and EC.
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therefore complicates the relationship between surface melt-
ing and proglacial runoff, especially during the period of each
year when the subglacial system is becoming established. The
stable hysteresis pattern that develops with EC peaking on
the rising limb of the diurnal flow hydrograph, and the con-
stant inverse relationship between EC and Q (Figure 2e),
demonstrate that the hydrological system has reached a more
stable and uniform configuration by July 16th.
[15] Observations on the GrIS have shown that moulins

essentially comprise vertical conduits which transport water
from the ice sheet surface to its bed [Das et al., 2008;
Catania and Neumann, 2010]. While there may be some
lateral transport of water via englacial channels, in order to
explain the trends in Q, EC and SSC we argue that opening
of moulins at progressively higher elevations allows surface
generated meltwater to be delivered to the ice sheet bed
further inland through the melt season. Growth of the efficient
subglacial system therefore follows upglacier development
of supraglacial drainage and proceeds in a stepwise fashion
as new input points become active 1998. This proposed model
is analogous to one previously proposed for Alpine glacier
drainage systems [Nienow et al., 1998]. It is notable, therefore,
that the channelized subglacial drainage system is sustained
in the GrIS where ice thicknesses are much greater, implying
that the high volumes of meltwater delivered to the glacier
bed are sufficient to offset the increased potential for channel
closure by deformation of thicker ice.
[16] Large rises in EC associated with P1, P2 and P4

suggest that a significant component of these flood‐waters
has a subglacial provenance and indicates the displacement
of solute‐rich stored water from an inefficient drainage
system [Skidmore and Sharp, 1999]. Large sediment flushes
(Figure 2c) also confirm interaction of meltwaters with the
basal environment. They indicate sudden access of water
to areas of subglacially stored sediments and a dramatic
increase in the capacity of subglacial waters to mobilise and
evacuate them [Swift et al., 2002]. Rapid return to low EC
values following each of the meltwater pulses implies that
the hydraulic system downglacier already has the capacity to
transport water quickly and efficiently.
[17] We suggest that P1, when the rise in EC is less

dramatic than during P2 and P4, is the result of initial access
of meltwater to the subglacial drainage system through
moulins and crevasses low down on the glacier following
the onset of spring melting. This is supported by observa-
tions of meltwater ponded in crevasses and supraglacial
channels prior to P1, the drainage of which causes mixing
with subglacially stored water and flushing of sediments
from the winter drainage system as new channel sections
develop. P3 is not accompanied by a dramatic rise in EC and
therefore appears to be driven by changes in temperature‐
driven runoff feeding into the existing drainage system.
[18] P2 and P4 are superimposed on the rising limb of the

seasonal hydrograph (Figure 2a) and cannot be explained by
trends in surface melting (Figure 2d) as they occur during
periods of low or zero ablation within the catchment. From
the MODIS satellite images, we find that the timing of
supraglacial lake drainage events, the size and elevation of
the lakes (Figure 2a), and their location within the proposed
catchment of Leverett Glacier (Figure 1), suggest that they
are likely candidates for the source of the pulses of water
during P2 and P4. In particular, P2 is associated with the
drainage of five lakes between 800–1000 m, and P4 coin-

cides with seven drainage events from lakes located between
1100–1200 m.
[19] Previous studies have found that MODIS classifica-

tion of GrIS supraglacial lakes is robust when compared
with higher resolution satellite data [Sundal et al., 2009] and
has an approximate error of 0.22 km2. Estimation of lake
area (Figure 2a), based on manual pixel counting of clas-
sified images [Sundal et al., 2009], indicates that the lakes
that drain at P2 have areas between 0.13 and 0.49 km2

and those that drain at P4 are between 0.25 and 0.88 km2.
Using an average lake depth of 2.7 m (a value determined
[McMillan et al., 2007; Shepherd et al., 2009] for ∼150
lakes in this region in summer 2001), we find that the vol-
ume of water in each pulse (4.9 and 7.2 × 106 m3 respec-
tively) can be accounted for by the drainage of multiple
lakes in a single event. Since there is uncertainty about the
depth of individual lakes we are unable to determine which,
or how many, of the lakes could contribute to each meltwater
pulse. It is clear, however, that coincident with the observed
pulses of meltwater (P2 and P4) a commensurate volume
of meltwater drains from a number of lakes on the surface
of the ice sheet within the catchment of Leverett glacier.
[20] We have observed active moulins at elevations of

at least 1100 m in this region and supraglacial lakes that
have drained through large crevasses in their centre at ele-
vations up to 1450 m. A key role of these features in GrIS
hydrology appears to be their contribution to the expansion
of the subglacial area that is subject to inputs of surface
meltwater and seasonal reorganization. Supraglacial lake
drainage at high elevations may be particularly important
for two reasons. Firstly it provides a mechanism for water
to penetrate through thick, cold ice [van der Veen, 2007].
Secondly, concentration of surface meltwater into lakes may
be critical to provide the volumes of water required to force
evolution of a channelized drainage system beneath thick
ice where overburden pressures are large.
[21] Our findings of seasonal upglacier‐directed seasonal

expansion of evolution in the subglacial drainage system
and its conversion from a distributed to channelized system
are supported by observations of ice‐motion [Bartholomew
et al., 2010] and upglacier evolution in the timing of lake
drainage [Sundal et al., 2009] in this section of the ice
sheet. Given recent focus within the glaciological commu-
nity on the impact of channelized subglacial drainage on
ice motion [Schoof, 2010; Sundal et al., 2011] our find-
ings provide a conceptual model of subaerial and supra-
glacial forcing of subglacial drainage development which
can be incorporated in numerical experiments designed
to investigate the relationship between surface melting
and ice velocity in the GrIS [Schoof, 2010; Pimentel and
Flowers, 2011].

5. Conclusions

[22] Our observations provide the first synopsis of the
seasonal hydrological behaviour of a large (>600 km2)
catchment in the ablation zone of the GrIS, showing how
surface meltwater production drives spatial and temporal
changes in the subglacial drainage system. These observa-
tions show the development and expansion of a drainage
system that delivers water from the ice surface, via the ice‐
sheet bed, to the margin. This system expands progressively
throughout the ablation season to >50 km from the ice
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margin. We propose a model that is similar to one proposed
for Alpine systems, where the drainage system becomes
increasingly efficient as hydraulic connections between the
surface and bed are established further inland, evacuating
large volumes of meltwater and sediment.
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We present global positioning system observations that capture the full inland extent of ice motion variations
in 2009 along a transect in the west Greenland Ice sheet margin. In situmeasurements of air temperature and
surface ablation, and satellite monitoring of ice surface albedo and supraglacial lake drainage are used to
investigate hydrological controls on ice velocity changes. We find a strong positive correlation between rates
of annual ablation and changes in annual ice motion along the transect, with sites nearest the ice sheet margin
experiencing greater annual variations in ice motion (15–18%) than those above 1000 m elevation (3–8%).
Patterns in the timing and rate of meltwater delivery to the ice–bed interface provide key controls on the
magnitude of hydrologically-forced velocity variations at each site. In the lower ablation zone, the overall
contribution of variations in ice motion to annual flow rates is limited by evolution in the structure of the
subglacial drainage system. At sites in the upper ablation zone, a shorter period of summer melting and
delayed establishment of a hydraulic connection between the ice sheet surface and its bed limit the timeframe
for velocity variations to occur. Our data suggest that land-terminating sections of the Greenland Ice Sheet will
experience increased dynamic mass loss in a warmer climate, as the behaviour that we observe in the lower
ablation zone propagates further inland. Findings from this study provide a conceptual framework to
understand the impact of hydrologically-forced velocity variations on the future mass balance of land-
terminating sections of the Greenland Ice Sheet.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Our ability to make robust predictions about the future mass
balance of the Greenland Ice Sheet (GrIS), and therefore its
contribution to sea-level change, is limited by uncertainty about
how the dynamic component of mass loss (i.e. due to changes in ice
motion) will respond to anticipated changes in atmospheric temper-
ature (IPCC, 2007; Pritchard et al., 2009). In land-terminating sections
of the GrIS, variations in ice velocity are initiated when surface
meltwater gains access to the ice–bed interface, lubricating basal
motion (Bartholomew et al., 2010; Joughin et al., 2008; Shepherd
et al., 2009; Van de Wal et al., 2008; Zwally et al., 2002). This effect is
both widespread (Joughin et al., 2008; Sundal et al., 2011) and
persistent each summer (Sundal et al., 2011; Van de Wal et al., 2008;
Zwally et al., 2002) near the ice sheet margin. Initial observations
show that summer velocities in land-terminating sections of the GrIS
can be 50% faster than in winter (Joughin et al., 2008; Van de Wal

et al., 2008), and that summer velocity variations increase annual ice
motion by 6–14% in the lower ablation zone (Bartholomew et al.,
2010). A direct positive relationship between rates of surface melting
and basal motion would create a mechanism to significantly increase
rates of mass loss from the GrIS in a warming climate by drawing
more ice to lower elevations where ablation rates are higher (Parizek
and Alley, 2004). This process allows the dynamic component of the
GrIS mass balance to respond to climatic variability within decades or
less, yet is not considered in current sea-level projections made by the
Intergovernmental Panel on Climate Change (IPCC).

Recent observations (Bartholomew et al., 2010; Sundal et al.,
2011) and theoretical work (Pimentel and Flowers, 2010; Schoof,
2010) suggest, however, that the contribution of seasonal velocity
variations to annual rates of ice motion at a particular site is limited by
evolution in the structure of the subglacial drainage system. Each
summer in the lower ablation zone, sustained inputs of meltwater
from the ice sheet surface transform the subglacial hydrological
system into an efficient network of channels that can evacuate large
quantities of water rapidly (Bartholomew et al., 2011). This
moderates the lubricating effect of meltwater on ice velocities by
reducing the pressure within the hydrological system for a given
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volume of water (Kamb, 1987; Van de Wal et al., 2008). It has been
observed that late summer velocities near the GrIS margin are lower
for a given intensity of surface melting than earlier in the season
(Bartholomew et al., 2010; Sundal et al., 2011). As a result, it is not
expected that increased annual ablation rates at a specific locationwill
necessarily stimulate faster ice flow than at present; in this respect the
process could be seen as self-limiting (Van de Wal et al., 2008). By
extension, it has been argued that summer, and therefore annual
mean ice velocities at a given site on the GrIS could be lower in high
ablation years than in low ablation years because channelisation of
the subglacial hydrological system occurs more quickly (Pimentel and
Flowers, 2010; Sundal et al., 2011; Truffer et al., 2005).

A key feature of hydrologically-forced velocity variations in the
GrIS is also that they propagate inland from the ice sheet margin on a
seasonal basis, in response to the onset of surface melting at
successively higher elevations (Bartholomew et al., 2010). The
initiation of hydrologically-forced ice velocity variations is dependent
on the development of a conduit from the ice sheet surface to allow
surfacemeltwater to access the ice–bed interface. In a warmer climate
we expect summer melting of the GrIS to be more intense, affecting a
wider area for a longer time period than is currently the case (Hanna
et al., 2008), providing greater volumes of surfacemeltwater. Themelt
regime will be amplified because the hypsometry of the GrIS, which
flattens inland, gives a non-linear expansion of the area of the GrIS
experiencingmelt in response to a rise in the equilibrium-line altitude
(ELA). It is therefore possible that seasonal velocity variations in the
GrIS will propagate further inland in response to climate warming.
One mechanism to allow this is drainage of supraglacial lakes, which
have the potential to concentrate surface meltwaters into large
enough reservoirs to propagate fractures through ice that is N1000 m
thick (Alley et al., 2005; Das et al., 2008; Krawczynski et al., 2009).

Current debates overwhether increasedmelt rates across theGrISwill
induce greater dynamic mass loss can therefore be reduced to whether
increased mass loss due to inland propagation of velocity variations in
warmer years will more than offset any potential reduction in mass loss
due toearlieronsetof channelisation in the lowerablationzone.However,
uncertainty remains over the effect of increasedmeltwater production on
dynamic behaviour in the lower ablation zone— observations to date do
not showconclusivelywhether annualmean ice velocitieswill increaseor
decrease in a warmer climate (Bartholomew et al., 2010; Joughin et al.,
2008; Sundal et al., 2011; Van de Wal et al., 2008) and a more detailed
understanding of the response of the subglacial drainage structure to
large inputs of surfacemeltwater is required. In addition,while diurnal ice
velocity variations have been observed up to 72 km from the GrISmargin
in a short-termstudy (Shepherdet al., 2009), it is not clear that patterns in
hydrologically-forced dynamic behaviour observed near the ice sheet
margin are replicated at higher elevations. While singular lake drainage
events have been described in detail (Das et al., 2008), it has not been
shown that the integrated effect ofwidespreadmeltwater generation and
lake drainage (Box and Ski, 2007; McMillan et al., 2007; Sundal et al.,
2009) is a significant and sustained increase in glacier flow speed at
higher elevations.

A secondary effect of meltwater inputs to the glacier system on ice
dynamics is ‘cryo-hydrologic warming’, whereby heat conduction
from water within the englacial system causes ice temperatures to be
raised (Phillips et al., 2010). Increased temperatures will reduce ice
viscosity and thus contribute to faster ice flow. It has been suggested
that, in a warmer climate, drainage of meltwater into the ice sheet
across a wider area will also cause a rapid thermal response in deep
layers of the GrIS, compounding the effect of meltwater drainage on
ice velocities (Phillips et al., 2010).

The aim of this study is to provide a clearer understanding of the
mechanisms which control the magnitude and extent of hydrologi-
cally-forced dynamic behaviour at elevations up to and beyond the
current ELA on a seasonal basis. This is motivated by the need to
incorporate these processes in numerical models which predict the

future evolution of the GrIS and the current lack of comprehensive
empirical data with which to inform them (Parizek, 2010). The
thermal effect ofmeltwater, which affects ice deformation rates rather
than basal motion, does not have a significant seasonal signal (Phillips
et al., 2010) and is not considered here.

We present continuous ice velocity measurements, derived from
global position system (GPS) observations, that capture the full inland
extent of seasonal velocity variations along a land-terminating
transect at ∼67∘N in western Greenland during the 2009 melt season
(Fig. 1). Measurements were made at seven sites up to 1716 m
elevation, which is ~115 km inland from the GrIS margin. The ice
motion record is comparedwith in situ and satellite observations of air
temperatures, surface melt characteristics and supraglacial lake
evolution within the region of study, as well as with proglacial
hydrological data (Bartholomew et al., 2011).

2. Data and methods

2.1. GPS data

We used dual-frequency Leica 500 and 1200 series GPS receivers to
collect the season long records of ice motion at each site. Each GPS
antenna was mounted on a pole drilled several metres into the ice,
which froze in subsequently, providing measurements of ice motion
that were independent of ablation. The GPS receivers collected data at
30 second intervals that were processed using a kinematic approach
relative to an off-ice base station (King, 2004) using the Track 1.21
software (Chen, 1999; King and Bock, 2006). Conservative estimates of
the uncertainty associated with positioning at each epoch are
approximately ±1 cm in the horizontal direction and ±2 cm in the
vertical direction. The data were smoothed using a Gaussian low-pass
filter to suppress high-frequencynoisewithout distorting the long-term
signal. Daily horizontal velocities reported in this paper (Fig. 2a–g) are
calculatedbydifferencing thefilteredpositionsevery24 h. Shorter-term
variations in ice velocity were derived by differencing positions across a
6 hour sliding window, applied to the whole time series of filtered
positions for each site. This window length was chosen in order to
highlight short-term variations in the velocity records while retaining a
high signal to noise ratio. Estimates of the magnitude of daily cycles in
horizontal velocity are therefore minimum estimates. Unfortunately,
the quality of the GPS data at site 1 was compromised by technical
problems, and we are unable to resolve short-term variations in
horizontal velocity at this site.

Uncertainties associatedwith thefiltered positions are b0.5 cm in the
horizontal and b1 cm in the vertical directions, corresponding to annual
horizontal velocity uncertainties of b3.7 m yr−1 and b14.6 m yr−1 for
the 24 hour and6 hour velocitymeasurements respectively.Weused the
standard deviation of 24 hour and 6 hour slidingwindow velocities from
site 7, which has the longest processing baseline and experienced
negligible velocity variations, to estimate the noise floor in the GPS
velocity records. The standard deviations for 24 hour and 6 hour
velocities at site 7 are 5.6 m yr−1 and 19.5 m yr−1 respectively. These
values compare well with the calculated uncertainties and represent
conservative error estimates for our dataset.

The values for winter background ice-velocities are derived from
the displacement of each GPS receiver between the end of the
summer melt season and the following spring (Bartholomew et al.,
2010). The reported contribution to annual ice flux from the
hydrologically-forced summer ice velocity variations is the percent-
age by which the observed annual displacement exceeds that which
would occur if the ice moved at winter rates all year round.

2.2. Air temperate and surface ablation

Simultaneous measurements of air temperature were made at
each GPS site to constrain melt rates, and show that the velocity data
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cover the whole seasonal melt cycle. Measurements of air tempera-
ture were made using shielded Campbell Scientific T107 temperature
sensors connected to Campbell Scientific CR800 data loggers (sites 1, 3
and 6) and shielded HOBO U21-004 temperature sensors (sites 2, 4, 5
and 7) at 15 minute intervals throughout the survey period. Seasonal
melt totals were also measured using ablation stakes at each GPS site.

2.3. Proglacial discharge

Wemade continuousmeasurements of water stage in the proglacial
stream that emerges from the terminus of Leverett Glacier. Proglacial
discharge was derived from a continuous stage–discharge rating curve
calibrated with repeated dye dilution gauging experiments throughout
the melt-season as described in detail in Bartholomew et al. (2011).

2.4. Supraglacial lake evolution

We used satellite observations from the Moderate-resolution
Imaging Spectrometer (MODIS) to study the development of
supraglacial lakes within the region of our GPS transect (Fig. 1;
delimited by the grey line). 20 MODIS images, spanning the period
31st May to 18th August 2009, were used, representing all the days
when lake identification was not impeded by cloud cover. MODIS
level 1B Calibrated Radiances (MOD02) were processed and projected
as 250 m resolution true colour images in conjunctionwith theMODIS
Geolocation product (MOD03), according to the methodology laid out
by Gumley et al. (2003); see also Box and Ski (2007), and Sundal et al.
(2009). Lakes were digitised manually in order to allow classification
even on days of partial or thin cloud cover, producing a dataset with
slightly higher temporal resolution than fully automated classification
(Sundal et al., 2009). Drainage events were identified as occasions on
which the area of a lake decreased to zero (or a very small fraction of
its former size) without an intermediate period of refilling. Previous

studies have found that MODIS classification of GrIS supraglacial lakes
is robust when comparedwith higher resolution satellite data (Sundal
et al., 2009) and has approximate error of 0.22 km2 per lake. However,
since the lakes within this region are relatively small (typically
b1 km2) and there is considerable uncertainty in using a depth-
retrieval algorithm to determine the depth of individual lakes (Box
and Ski, 2007) we do not estimate individual lake volume. We note,
however, that on the basis of a recent theoretical study of supraglacial
lake drainage in the western GrIS (Krawczynski et al., 2009), any lake
which is large enough to be resolved on MODIS images (theoretically
one 250 m×250 m pixel (0.0625 km2)) will contain enough water to
drive a water-filled crack through 1 km of ice.

2.5. Ice sheet surface characteristics

We used the MYD10A1 1-day albedo product, part of the MODIS
Aqua snow cover daily L3 global 500 m gridded product (Hall et al.,
2009a,b), to map changes in the albedo of the ice sheet surface in this
region of the GrIS through the survey period. These data are used to
quantify the lowering of surface albedo associated with meltwater
generation and retreat of the seasonal snowline through the survey
period. This product provides albedo values for pixels identified as
cloud free and snow-covered on a 500 m grid derived from a snapshot
taken once per day (Stroeve et al., 2006). We used 70 days of data,
from April 22nd to September 20th, representing all the days on
which the image was not obscured by cloud cover. This time period
covers the whole melt season, from before the onset of melt at the ice
sheet margin in spring, to the period of refreezing and snowfall in the
autumn. In order to integrate the albedo characteristics across the
region surrounding the transect, mean albedo was calculated by 50 m
elevation bands in the study region using a surface digital elevation
model (Palmer et al., 2011). Albedo thresholds for snow (b0.45) and
bare ice (N0.66) surfaces were used to classify pixels on the basis of
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Fig. 1. a. Location of the study region on the western margin of the GrIS. The GPS sites are located along a transect across an altitudinal range of 450–1700 m.a.s.l. Simultaneous
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field observations along the nearby K-transect (Knap and Oerlemans,
1996). A resulting transitional band between the two zones is
assumed to comprise a mixture of snow, ice with surface water and
slush surfaces and broadly delimits the transient snowline (Knap and
Oerlemans, 1996).

3. Hydrological forcing of velocity variations

Sites1–6all experience velocity peaks that are over100%higher than
their winter background values (Fig. 2a–f). These variations begin
nearest the margin on May 22nd, and propagate inland following the
onset of surfacemelting up to a distance of 80 km from the GrIS margin
in late July, at 1482 m elevation. Initial uplift of the ice sheet surface at
each of these sites is interpreted to signal the establishment of a local
hydraulic connection to the ice sheet bed (Anderson et al., 2004;
Bartholomew et al., 2010; Das et al., 2008; Iken et al., 1983; Zwally et al.,
2002). A high-velocity ‘spring-event’, accompanied by uplift of the ice
sheet surface, characterises the start of locally-forced velocity variations
at each of these sites in a manner similar to Alpine and High Arctic
glaciers (Bingham et al., 2008; Iken et al., 1983; Iken and Bindschadler,
1986; Mair et al., 2001). This behaviour is consistent with inputs of
meltwater to a subglacial hydrological system which is incapable of
accommodating themwithout a great increase in pressure (Hooke et al.,
1989; Iken et al., 1983; Iken and Bindschadler, 1986; Mair et al., 2001;
Röthlisberger and Lang, 1987).

Although a small component of the coincident vertical and
horizontal velocity changes is due to thickness changes resulting
from longitudinal strain-rate or stress-gradient coupling, the signals
we observe cannot be attributed to these effects alone. Based on

motion of adjacent sites and ice thickness data (Fig. 1b; (Bamber et al.,
2001; Krabill, 2010)), we calculate that the thickness changes
originating due to longitudinal coupling are approximately an order
of magnitude smaller than the elevation changes we have recorded.
They also typically operate in the opposite direction as acceleration of
downstream sites causes extension and thinning of ice upstream as
opposed to the uplift observed. Throughout the summer, further
speed-up events which are coincident with ice surface uplift confirm
the role of surface generatedmeltwater in forcing seasonal changes in
ice motion for this section of the GrIS. We also note that the evidence
for hydraulically-forced enhanced basal motion implies that basal
temperatures along this transect are at the pressure melting point.

Immediately prior to the spring events most sites also experience a
short period of increased velocity in the absence of uplift of the ice
surface, which we attribute to mechanical coupling to ice downglacier
that is already movingmore quickly (Price et al., 2008). At site 7, which
is located at 1716 m elevation, 115 km from the margin, there is no
surface uplift or significant ice acceleration indicating that surface
generated meltwater did not penetrate to the bed this far inland
(Fig. 2g). Site 7 does display a small, but clear, change in horizontal
velocity (Fig. 3), however, which can likely be attributed to coupling to
ice downstream. Since themagnitude of these changes is insignificant in
terms of annual ice flux, site 7 delimits the inland extent of
hydrologically forced velocity variations in 2009 for this transect.

3.1. Behaviour in the lower ablation zone

At sites 1–3, which are low in the ablation zone and experience the
greatest acceleration, spring-events occur early in the melt-season,
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Fig. 2. a–g. 24-h horizontal velocity (black stairs), surface height (grey line) and positive-degree days (grey bars) at sites 1–7 for the survey period. The surface height is shown
relative to an arbitrary datum, with a linear, surface-parallel, slope removed. Winter background velocity (black dashes) is determined by bulk movement of each GPS site over the
subsequent winter. Text to the left of each panel shows the elevation, percentage annual velocity change due to summer velocity variations compared with values if the ice moved at
winter rates all year and the total surface ablation in water equivalence at each site for the whole survey period. h. Discharge hydrograph (black; m3s−1) from Leverett Glacier in
2009. The estimated catchment for this outflow channel (Bartholomew et al., 2011) is shown on Fig. 1 and contains GPS sites 1, 2 and 3. The blue shaded sections identify pulses of
meltwater which are associated with dramatic reorganisation and expansion of the subglacial drainage system within the catchment.
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near the beginning of June, and ice velocity becomes less sensitive
to air temperature variations as the melt season progresses (Fig. 2).
This behaviour is explained by evolution in the structure of the sub-
glacial drainage system in response to sustained inputs of meltwater
from the ice sheet surface, consistent with previous observations
and predictions of dynamic behaviour in this section of the GrIS
(Bartholomew et al., 2010; Pimentel and Flowers, 2010).

A recent hydrological study (Bartholomew et al., 2011) supports the
conclusion that evolution in the structure of the subglacial drainage
system is responsible for limiting the magnitude of hydrologically-
forced velocity variations at sites 1–3 later in the melt season.
Observations of hydrological parameters from a catchment that drains
through Leverett Glacier show that an efficient subglacial drainage
system expands upglacier at the expense of an inefficient one as the
summer progresses, a process that has been observed previously on
Alpine glaciers (Nienow et al., 1998). Episodic increases in the runoff
hydrograph (Fig. 2h), which are interpreted as evidence for dramatic re-
organisation and expansion of the subglacial drainage system in
response to new inputs of meltwater from the ice sheet surface, have
a clear short-lived effect on the velocity records at sites 1, 2 and 3
(Fig. 2a–c,h). These events indicate, firstly, that sites 1–3 are within the
hydrological catchment of the river and, secondly, that changes in the
subglacial drainage system have a direct impact on ice velocity
downglacier from where they initially occur. The large volumes of
water exceed the capacity of the subglacial drainage system, causing
pressurisation, and a concomitant reduction in basal drag (Iken and
Bindschadler, 1986), as thewater is transported to the ice sheetmargin.

Clear daily-cycles in horizontal velocity occur at sites 2 and 3
following the spring events, and persist until mid-August. The
magnitude of these cycles is typically between 100 and 150% of the
meandaily velocity, and canbe over 200%ofwinter backgroundduring
periods of significantly enhanced motion (Fig. 4). Their existence
indicates that over-pressurisation of the subglacial drainage system
also happens regularly on diurnal timescales. The daily cycles in ice
velocity appear to be closely related to variations in air temperature,
with a typical lag between peak temperature and peak velocity of less
than 3 h, suggesting that they occur in direct response to diurnal
variations in meltwater production at the ice sheet surface and that
surface and englacial transit times are short (Shepherd et al., 2009).

In addition to these short-lived events, ice velocities at sites 1, 2
and 3 are higher on the rising limb of the seasonal runoff hydrograph
for Leverett Glacier, subdued following peak discharge on July 21st,
and display a return to winter background rates in late August, when
runoff is diminishing (Fig. 2a–c,h). ‘Slower than winter’ ice velocities
are also observed for a short period at some sites once the summer
melt has stopped, however this signal is not large enough to have a
significant impact on rates of annual ice motion.

These findings from the lower ablation zone can be explained in
physical terms. Although increased efficiency of the subglacial hydro-
logical system reduces the dynamic response to absolute water input

volume (Bartholomew et al., 2010), lake drainage and other singular
highvelocity events, aswell asdiurnalfluctuations inhorizontal velocity
testify that the system can still be overfilled by a large enough increase
in meltwater input, causing an increase in subglacial water pressure
(Das et al., 2008; Pimentel and Flowers, 2010; Schoof, 2010; Shepherd
et al., 2009). Productionof surfacemeltwater, and its delivery to the ice–
bed interface, is inherently variable on timescales of hours, days, weeks
and months. Since the capacity of the subglacial hydrological system
reflects the balance between channel opening bymelting of the channel
walls, and closuredue todeformationof the surrounding ice, and adjusts
relatively slowly to changes in water flux (Röthlisberger, 1972; Schoof,
2010), the system never reaches steady-state. We argue, therefore, that
once a conduit has been established to deliver surface meltwater to the
glacier bed, large changes in the rate of meltwater delivery to the
subglacial hydrological systemwill continue to force velocity variations.

This analysis explains why high-velocity events at sites 1, 2 and 3
occur on the rising limb of the discharge hydrograph, when the system
is continuously challenged to evacuate larger and larger volumes of
water. Later in the season,whena channeliseddrainage systemhasbeen
established, and volumes of meltwater are diminishing, the drainage
system is better able to evacuate meltwater without overfilling,
explaining the reduction in magnitude of hydrologically-forced varia-
tions in ice motion. While ice velocities are subdued on the falling limb
of the runoff hydrograph, velocities at sites 1–3 still exceed winter flow
rates untilmid-August. This appears to be the result of continueddiurnal
fluctuations in ice velocity (Fig. 4), which occur until there is a dramatic
reduction in runoff volumes at Leverett glacier after August 15th
(Bartholomew et al., 2011).

3.2. Behaviour in the upper ablation zone

At sites 4–6, which are higher in the ablation zone (N1000 m), the
relationship between changes in the rate of horizontal motion and the
rate of uplift of the ice sheet surfaces indicates that the forcing
mechanism is the same as in the lower ablation zone. Mapping of
surface albedo using satellite data shows that the observed spring-
events at these sites follow the onset of surface melting above their
respective elevations (Fig. 5), although both satellite and in situ
observations showed that the snowpack was not fully removed at
sites 5 and 6 by the end of the summer.
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A key difference from the lower ablation zone is that the spring
events occur later in the melt season (Fig. 2a–g). There is also a
significant time lag between the onset of surface melting, as inferred
from both positive degree days (PDDs) and MODIS-derived albedo
values, and the establishment of a hydraulic connection between the
ice sheet surface and its bed as inferred from uplift of the ice surface.
This means that significant velocity enhancement occurs for a much
shorter time period than at lower elevations. At site 4, surface melting
begins in early June, while coincident surface uplift and horizontal
acceleration, which are diagnostic of local hydrological-forcing, are
delayed until July 5th (Fig. 2d). Increased velocities prior to this date,
which occur without accompanying surface uplift, are explained by
coupling to downglacier ice and are not as large as those induced by
local forcing at the sites nearer themargin. In situmeasurements of air
temperature and satellite observations of surface albedo show that
sites 5 and 6 both experience prolonged surface melting from July 6th
onwards, and experience locally-forced velocity variations from July
12th and July 27th respectively (Fig. 2e,f). Later spring events and the
delay between the onset of surface melting and hydraulic connection
between the ice surface and its bed are due in part to lower rates of
surface melting. In addition greater volumes of water are required to
propagate fractures through thicker ice (Alley et al., 2005; Van der
Veen, 2007). These factors both increase the time required for the
accumulation of sufficient volumes of meltwater to penetrate to the
ice sheet bed.

Sites 4, 5 and 6 all experienced their highest velocities during a
period of cooler temperatures from July 22nd to August 2nd (Fig. 2d–f),
suggesting that drainage of stored surface water was a key factor in
these hydrologically-forced events. Satellite images show surface
meltwater accumulation in supraglacial lakes in this region from mid-
June at elevations between 1000 and 1200 m, and from 1200 m to
N1600 m from early July. This storage of surface meltwater is made
possible by relatively low surface gradients, which reduce the tendency
for water to runoff to lower elevations (Nienow and Hubbard, 2006),
and allows concentration of the large volumes of water required to
propagate fractures to the ice sheet bed through thick ice (Box and Ski,
2007; Das et al., 2008; McMillan et al., 2007; Sundal et al., 2009).

Using MODIS imagery, we identify a number of events where
changes in horizontal and vertical movement at one or more of our
GPS sites are coincident with the disappearance of supraglacial lakes
from the ice sheet surface. In particular, the spring event at site 5 on
July 12th is coincident with disappearance of three supraglacial lakes
from between 1200 and 1350 m elevation (Fig. 1, yellow). Wide-
spread drainage of supraglacial lakes at elevations up to 1500 m

between July 19th and 23rd (Fig. 1, red) correspondswith increases in
ice velocity at sites 4 and 5 of up to 100 m y−1 on July 21st and 22nd
respectively. The peak in horizontal velocities at sites 4, 5 and 6 at the
end of July also coincides with drainage of a lake at ∼1400 m elevation
and a number of lakes above ∼1500 m between July 26th and July
29th (Fig. 1, blue). It is not possible to be certain, using optical
imagery, that all lakes which disappear from the ice sheet surface
drain directly into englacial conduits. For example, some lakes may
drain superficially either into other lakes or to join with water input
points that are already open further downglacier. However, the
repeated coincidence of lake disappearance from the ice sheet surface
with changes in ice velocities suggests strongly that a large number of
these lakes drain to the ice–bed interface locally. Uplift of the ice
surface indicates that this water is delivered to a subglacial drainage
system which is unable to evacuate it without a large increase in
water pressure, leading to the enhanced basal motion (Das et al.,
2008).

Drainage of supraglacial lakes therefore appears to be responsible
for the initiation of hydrologically forced velocity variations at both
sites 5 and 6. It is not clear that the spring event at site 4, on July 5th, is
caused directly by drainage of supraglacial lakes. This site is located
by a large moulin which becomes active each year (Catania and
Neumann, 2010), and it is likely that the spring event is associated
with the re-opening of this moulin. A common factor in the upper
ablation zone, however, is that by the time a hydraulic connection has
been established between the ice sheet surface and its bed, facilitating
hydrologically-forced velocity variations, air temperatures and pro-
glacial runoff are already decreasing. Lake drainage events are
known to be rapid, delivering large enough volumes of water to
quickly transform the subglacial hydrological system into an efficient
channelised network (Das et al., 2008). Under these circumstances, it
is unlikely that the volumes of water generated at the ice sheet surface
at these elevations following lake drainage events will be sufficient to
sustain large velocity variations (Pimentel and Flowers, 2010).
Accordingly, even though the temperature data show that consider-
able melting occurs at sites 4 and 5 until mid-August, we do not
observe any changes in ice velocity at sites above 1000 m elevation
beyond August 2nd.

3.3. Changes in annual motion

Annual mean ice velocities at sites 1–7 respectively are 16.7%,
18.4%, 14.8%, 7.6%, 5.1%, 2.5% and 0.2% greater than they would be if
the ice flowed at winter rates all year round. We find a strong
correlation between the magnitude of local ablation and the
percentage changes in annual ice motion due to hydrologically-forced
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velocity variations at each GPS site (Fig. 6). Sites 1, 2 and 3, which are
nearest the margin and below 800 m elevation, experience the most
surface melting and show significantly greater annual acceleration
than those at higher elevations, with the effect attenuating inland.
Data from 2008 also show increases in mean annual ice velocity of
13.5% and 5.6% at sites 3 and 4 respectively due to summer velocity
variations (Bartholomew et al., 2010), indicating that the velocity
changes that we observe in 2009 are a persistent feature of the
dynamic behaviour of this part of the GrIS.

The relationship between rates of annual ablation and the
amplitude of hydrologically-forced velocity change is not intuitive
on the basis of previous theoretical work (Pimentel and Flowers,
2010) and observations (Van de Wal et al., 2008), which have
suggested that higher volumes of surface meltwater production will
ultimately reduce the impact of hydrological forcing on GrIS motion.
Implicit in these arguments is a concept of ‘optimum melt’: too much
meltwater and the hydrological system will become channelised
earlier in the summer, making ice velocities less sensitive to the
volumes of meltwater reaching the bed more quickly, reducing the
impact of seasonal velocity variations on the annual displacement
of the ice. However, it is important to consider that the hydrological
forcing at each site is a product of both local melting and meltwater
delivered through the subglacial drainage system from further
upglacier. As a result, sites nearest the margin will receive dispro-
portionately more meltwater per unit of local melting than those at
higher elevations. Following this logic, previous theoretical work
(Pimentel and Flowers, 2010) and observations (Van de Wal et al.,
2008) expect sites nearest the margin, where the total flux of
meltwater through the subglacial drainage system will be greatest, to
show smaller overall velocity changes than sites further inland.
However, despite significant differences in the local volume of
meltwater delivered to the ice–bed interface, we see similar increases
in annual ice motion at sites 1–3 (14.8–18.4%).

Our findings from the lower ablation zone are consistent with the
numerical model of subglacial drainage proposed recently by Schoof
(2010) and suggest that hydrologically-forced ice velocity variations
are controlled more strongly by variations in the rate, rather than the
absolute volume, of meltwater production and delivery to the ice–bed
interface. In particular, this reflects a temporary imbalance between
the volume of water within the subglacial drainage system, and its
inability to evacuate this water without an increase in pressure over a
wide enough area to significantly affect basal motion (Kamb et al.,
1994). We argue that in a warmer climate, where greater volumes
of surface meltwater are produced in the lower ablation zone, the
seasonal rising limb and shorter-term variations in water delivery
to the subglacial drainage system will continue to cause significant
increases in annual ice motion despite the potential for an earlier
‘switch’ from a distributed to a channelised subglacial drainage
system (Schoof, 2010). However, the overall magnitude of velocity
variations will continue to be limited by evolution in the structure of
the subglacial drainage system, which responds to inputs of surface
meltwater over a longer period (Anderson et al., 2004; Bartholomew
et al., 2010; Mair et al., 2002; Schoof, 2010).

While development in the efficiency of the subglacial drainage
system also exerts some control on hydro-dynamic behaviour at
higher elevations, the dominant limiting factor on the contribution of
velocity variations to annual ice motion at sites in the upper ablation
zone is the shorter duration and later establishment of the hydraulic
connection between the ice sheet surface and its bed. The expectation
that surface melting will be more intense, and spatially extensive, in
a warmer climate (Hanna et al., 2008), leads us to suggest that, in
future, sites at higher elevations are likely to experience velocity
variations for a longer period of time, allowing a greater annual
change in ice velocity. In particular, higher rates of meltwater pro-
ductionwould allow lakes that fill and subsequently drain to reach the
volume required to propagate cracks through thick, cold ice earlier in

the summer season (Krawczynski et al., 2009). We therefore expect
that the behaviour observed at sites 1–3 would be extended to higher
elevations, creating a positive relationship between atmospheric
warming and dynamic mass loss in land-terminating sections of the
GrIS, albeit one that is modified by development in the structure of the
subglacial drainage system.

We do not infer direct cause and effect between bulk volumes of
surface ablation and changes in ice motion on the basis of the
relationship shown in Fig. 6. Instead, our data show contrasting
regimes in hydrologically-forced dynamic behaviour of the GrIS at
different elevations within the ablation zone, which provide a
compelling explanation for the relationship between total surface
ablation and changes in annual ice motion. We therefore believe that
our data provide a realistic basis for parameterisation of ice flow
models that are used to predict the future evolution of the GrIS
(Parizek and Alley, 2004).

4. Conclusions

Our data show that seasonal changes in horizontal ice velocity
along an ∼115 km transect in a land-terminating section of the
western GrIS, are forced by the generation of surfacemeltwater which
is able to reach the ice–bed interface. These velocity variations
propagate inland from the ice sheet margin to progressively higher
elevations in response to the onset of surfacemelting, and the creation
of a hydraulic connection between the ice sheet surface and its bed.
We find a positive relationship between rates of annual ablation and
percentage changes in annual ice motion along the transect, with sites
nearest the ice sheet margin experiencing greater annual variations in
ice motion (15–18%) than those above 1000 m elevation (3–8%).

Patterns in the timing and rate of meltwater delivery to the ice–
bed interface are key controls on the magnitude of hydrologically-
forced velocity variations at each site. In the lower ablation zone
(b800 m elevation), ‘spring events’ occur early in the melt season and
the overall contribution of variations in ice motion to annual flow
rates is limited by evolution in the structure of the subglacial drainage
system (Bartholomew et al., 2010). At these sites, hydrologically-
forced ice acceleration is greatest on the rising limb of the seasonal
runoff hydrograph, when the hydraulic capacity of the subglacial
drainage systems is consistently exceeded. However, we find that this
behaviour is not replicated at sites in the upper ablation zone
(N1000 m), where the period of summer melting is shorter, and the
establishment of a hydraulic connection between the ice sheet surface
and its bed is delayed, limiting the timeframe for velocity variations to
occur.

In a warmer climate we expect seasonal melting of the GrIS surface
to extend over a wider area, and to be more prolonged (Hanna et al.,
2008). This makes it likely that volumes of meltwater sufficient to
reach the ice–bed interface will accumulate further from the ice sheet
margin and that the timing of meltwater input will occur earlier each
summer (Krawczynski et al., 2009; Sundal et al., 2009). Our data
therefore support the hypothesis that inland propagation of hydro-
logically-forced velocity variations will induce greater dynamic mass
loss in land-terminating sections of the GrIS in a warmer climate, as
patterns of hydro-dynamic behaviour observed in the lower ablation
zone extend upglacier. These considerations provide a conceptual
framework to understand the positive relationship between annual
rates of surface ablation and percentage variations in annual ice
velocity, and can be used to improve numerical simulations used for
predicting the impact of hydrologically-forced variations in ice
velocity on the future mass balance of the GrIS (Parizek, 2010).
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Seasonal speedup of a Greenland marine‐terminating outlet
glacier forced by surface melt–induced changes in
subglacial hydrology

A. J. Sole,1,2 D. W. F. Mair,2 P. W. Nienow,1 I. D. Bartholomew,1 M. A. King,3

M. J. Burke,4 and I. Joughin5
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[1] We present subdaily ice flow measurements at four GPS sites between 36 and 72 km
from the margin of a marine‐terminating Greenland outlet glacier spanning the 2009
melt season. Our data show that >35 km from the margin, seasonal and shorter–time
scale ice flow variations are controlled by surface melt–induced changes in subglacial
hydrology. Following the onset of melting at each site, ice motion increased above
background for up to 2 months with resultant up‐glacier migration of both the onset and
peak of acceleration. Later in our survey, ice flow at all sites decreased to below
background. Multiple 1 to 15 day speedups increased ice motion by up to 40% above
background. These events were typically accompanied by uplift and coincided with
enhanced surface melt or lake drainage. Our results indicate that the subglacial drainage
system evolved through the season with efficient drainage extending to at least 48 km
inland during the melt season. While we can explain our observations with reference to
evolution of the glacier drainage system, the net effect of the summer speed variations on
annual motion is small (∼1%). This, in part, is because the speedups are compensated for
by slowdowns beneath background associated with the establishment of an efficient
subglacial drainage system. In addition, the speedups are less pronounced in comparison to
land‐terminating systems. Our results reveal similarities between the inland ice flow
response of Greenland marine‐ and land‐terminating outlet glaciers.

Citation: Sole, A. J., D. W. F. Mair, P. W. Nienow, I. D. Bartholomew, M. A. King, M. J. Burke, and I. Joughin (2011),
Seasonal speedup of a Greenland marine‐terminating outlet glacier forced by surface melt–induced changes in subglacial
hydrology, J. Geophys. Res., 116, F03014, doi:10.1029/2010JF001948.

1. Introduction

[2] The Greenland Ice Sheet (GRIS), which contains
sufficient water equivalent to raise global sea level by ∼7 m
[Lemke et al., 2007], has experienced increased rates of
mass loss over the last decade due to increased surface melt
and runoff [Tedesco, 2007; Tedesco et al., 2008; van den
Broeke et al., 2009] and accelerated ice discharge [Rignot
and Kanagaratnam, 2006; Rignot et al., 2008; Pritchard
et al., 2009]. Approximately half the current mass loss is
through melt and runoff, while the remainder is due to ice
discharge to the surrounding oceans [Shepherd and
Wingham, 2007; van den Broeke et al., 2009]. Two prin-

cipal mechanisms by which climate could influence ice
discharge have been proposed: (1) ice geometry and thick-
ness changes at the calving fronts of marine‐terminating
glaciers reduce resistive forces, resulting in glacier acceler-
ation and thinning or “drawdown” [Thomas, 2004; Howat et
al., 2005; Luckman and Murray, 2005; Howat et al., 2007;
Nick et al., 2009], and (2) increased surface melt reaches the
ice sheet bed locally, [Das et al., 2008] enhancing basal
sliding and lowering the ice sheet surface, exposing it to
higher melt rates [Zwally et al., 2002]. Although both effects
have been modeled for individual glacier basins [e.g., Price
et al., 2008; Pimentel and Flowers, 2010; Nick et al., 2009],
their relative importance for the mass balance of the whole
GRIS is at present unknown because continental‐scale ice
sheet models do not include the necessary physics to rep-
resent them [e.g., Parizek and Alley, 2004; Huybrechts
et al., 2004].
[3] The drainage of surface lakes to the bed via hydro-

fracture [van der Veen, 2007] enables subsequent rapid
routing of surface melt to the glacier base [Shepherd et al.,
2009] and causes short‐lived ice acceleration [Das et al.,
2008]. Acceleration is driven by a reduction in effective
pressure, which promotes basal sliding at times when the
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input of surface meltwater to the bed exceeds the capacity
of the subglacial drainage system [Iken, 1981; Iken and
Bindschadler, 1986; Kamb, 1987; Meier et al., 1994;
Anderson et al., 2004]. Following the establishment of local
surface to bed conduits, land‐terminating margins have been
shown to respond rapidly to seasonal [Bartholomew et al.,
2010] and diurnal [Shepherd et al., 2009] variations in sur-
face meltwater generation with the net effect of increasing
annual ice speed [Joughin et al., 2008a; Bartholomew et al.,
2010]. A 17 year record from west Greenland found a weak
negative correlation between ice speed and melting [van de
Wal et al., 2008], suggesting that in certain situations,
other processes such as changing ice geometry might eclipse
the importance of basal sliding. Inland expansion of the
region experiencing melting, expected in a warming climate,
will increase the area over which seasonal acceleration
occurs and, thus, its potential impact on annual ice flux
[Sundal et al., 2009]. A positive relationship between surface
melting and ice speed is important because it would initiate a
positive feedback whereby in a warmer climate ice would
flow increasingly quickly into the lower‐elevation ablation
area, thereby experiencing higher melt rates.
[4] In contrast, marine‐terminating GRIS outlet glaciers

have generally displayed less sensitivity to variations in
meltwater forcing [Echelmeyer and Harrison, 1990; Joughin
et al., 2008a]. Instead, seasonal flow variations at such
glaciers have been explained by changes in calving rate due
to the breakup of the seasonal ice mélange (a mixture of
fjord sea ice and recently calved ice) [Joughin et al., 2008b;
Amundson et al., 2010] or the ungrounding of ice near the
terminus [Howat et al., 2007]. However, most observations
of seasonal flow variations on GRIS marine‐terminating
glaciers come from close to their termini (<30 km) where
calving is very likely to be the principal control on ice flow
[Joughin et al., 2008b]. On the other hand, a “minisurge” of
Ryder Gletscher in northern Greenland, which experienced a
400% speedup over a 7 week period toward the end of the
1995 melt season, was likely related to changes in subglacial
water pressure caused by the drainage of several large
supraglacial lakes [Joughin et al., 1996]. Similarly, Andersen
et al. [2010] found a correlation (with a 1 day lag)
between modeled surface melting and ice speed at Helheim
Gletscher, east Greenland. The relationship was strongest
for the heavily crevassed terminus region, but variations in
flow were small compared to those attributed to calving
front changes. Howat et al. [2010] found that close to the
calving fronts of several marine‐terminating outlet glaciers
in west Greenland, ice speed decreased by 40% to 60%
following the drainage of surface lakes in midsummer.
Furthermore, subglacial hydrology has been shown to exert
a strong control on the dynamics of large marine‐terminat-
ing glaciers in Alaska [e.g., Kamb et al., 1994; O’Neel et al.,
2001]. The relative importance of calving and subglacial
hydrology on controlling ice flow of GRIS marine‐termi-
nating glaciers farther inland from their termini is not
known. There is, therefore, a clear need to include both
empirically constrained representations of basal hydrology
and the long‐ and short‐term effects of ice front changes and
their transmission inland into models which aim to predict
the future contribution of the GRIS to global sea level rise.
[5] Here we present subdaily ice flow measurements from

Global Positioning System (GPS) sites located between 36

and 72 km from the calving front of a major marine‐
terminating GRIS outlet glacier spanning the 2009 melt
season (May to August). These data show that far into the
ice sheet interior, seasonal and shorter‐term variations in ice
flow are principally controlled by surface melt–induced
changes in subglacial hydrology rather than by changes at
the calving front.

2. Field Site and Methods

[6] Kangiata Nunata Sermia (KNS) is a large tidewater
outlet glacier which terminates at the head of the ∼175 km
long Nuup Kangerlua Fjord in southwest Greenland at
∼64.30°N (Figure 1a). The glacier, which flows at ∼6000 m
yr−1 at its calving front [Joughin et al., 2010], drains an area
of ∼31,400 km2 (see Figure 1c) toward a ∼4.5 km wide
calving front. KNS accelerated by 27% between 2000 and
2005 and retreated by 580 m between 2006 and 2007
[Rignot and Kanagaratnam, 2006; Moon and Joughin,
2008; Joughin et al., 2010]. Surface lowering rates exceeded
10 m yr−1 between 1998 and 2001 within 10 km of the
glacier’s calving front and decreased to approximately zero
30 km inland [Thomas et al., 2009] (Figure 1b).
[7] On 11 May (day 131), prior to the onset of runoff in

2009, four dual‐frequency GPS receivers (“rovers”) were
deployed on a single flow line of KNS at sites 36 km
(KNS1), 48 km (KNS2), 59 km (KNS3), and 72 km (KNS4)
from the KNS calving front (Figure 1a and Table 1).
Extensive crevassing precluded deploying GPS receivers
closer to the terminus. Each on‐ice GPS antenna was
mounted on a support pole drilled into the ice (to 5 m depth
for KNS1 and KNS2 and to 3 m depth for KNS3 and
KNS4), which froze in place subsequently, providing mea-
surements of ice motion that were independent of ablation.
None of the poles tilted significantly during the survey
period. A fifth GPS receiver acted as a reference station and
was installed on bedrock overlooking the calving front of
KNS. The maximum baseline between reference station and
rover was ∼70 km. The GPS data were sampled and re-
corded at 10 s intervals, with a continuous record obtained
from 11 May (day 131) to 13 August (day 225) for KNS1
and to 23 August (day 235) for KNS2, KNS3, and KNS4.
The data were processed in Track v1.21 [Chen, 1998;
Herring et al., 2010] relative to the off‐ice reference station
using a kinematic approach [see King, 2004] that utilized
International Global Navigation Satellite Systems Service
(IGS) precise orbits and loosely constrained site motion to
be no more than 0.02 m per epoch. We estimated relative
(base to rover) tropospheric zenith delay parameters which,
if not estimated, could result in biased height time series.
Site coordinates were produced for each measurement
epoch, and these were then rotated to along‐ and across‐
flow directions, from which speeds were computed. Daily
horizontal speeds were calculated by taking the difference of
1 h mean positions every 24 h. Uncertainties associated with
mean hourly positioning are <0.5 cm in the horizontal and
<1 cm in the vertical, corresponding to annual horizontal
speed uncertainties of <3.7 m yr−1. The determined vertical
positions were detrended by removing a linear component
assumed to represent bed‐parallel motion to give residual
vertical displacement, which includes horizontal (and ver-
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tical) strain rate as well as bed separation and till dilation
[Howat et al., 2008].
[8] At each GPS site, snow depth was measured before the

onset of runoff, and mean surface lowering rate and air
temperature were measured every 15 min using a Campbell
SR50A ultrasonic depth gauge and a Campbell T107 shiel-
ded temperature sensor, respectively. The surface lowering
data, combined with appropriate densities of snow and firn
facies [Parry et al., 2007], were used to estimate the
potential water input to the subglacial drainage system. We

Table 1. GPS Site Characteristics

Distance From
Calving Front (km)

Elevation Above
Geoid (m)

Approximate Ice
Thickness (m)

KNS1 36 1282 unknown
KNS2 48 1443 1500
KNS3 59 1648 350
KNS4 72 1840 1200

Figure 1. (a) Location of KNS and the GPS transect. GPS sites KNS1–KNS4 are represented as black
crosses. Bold black lines show airborne radio echo sounding transects of bed topography, and the bold
gray line shows the laser altimetry flight line for ice surface topography. Contours show ice sheet eleva-
tion above the geoid (m), and dot‐dashed lines represent surface (and approximate subglacial) hydrolog-
ical pathways. The location of the off‐ice reference station (KNS Base) and time‐lapse camera
approximate field of view are also shown. (b) Bed and surface topography for KNS centerline (A–B)
as well as surface elevation change rates for the along‐flow flight line shown in Figure 1. (c) The location
of the KNS surface drainage basin.
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acknowledge that initial snowmelt is likely to refreeze in the
snowpack [Pfeffer et al., 1991] but assume that the majority
of measured surface lowering represents melting ice which
does produce runoff. A time‐lapse camera system was
installed adjacent to the off‐ice reference station with a
field of view encompassing the calving terminus of KNS
(Figure 1a) and obtained hourly photographs over the entire
melt season (Figure 2). The resulting photographs allowed a
qualitative analysis of water outflow from the glacier system
[e.g., O’Neel et al., 2001] and the timing of the ice mélange
breakup.
[9] Supraglacial lake evolution was analyzed using

Moderate Resolution Imaging Spectroradiometer (MODIS)
level 1B calibrated radiances (MOD02QKM) of the catch-
ment, which were corrected for atmospheric effects and
orthorectified using the Gumley et al. [2007] method after

Sundal et al. [2009]. Forty‐seven MODIS images were used
spanning the period 30 April to 27 August, representing all
days when lake identification was not impeded by cloud
cover. Band 3 data were upsampled from 500 to 250 m
resolution using a resolution‐sharpening algorithm [Gumley
et al., 2007] which bilinearly interpolates band 3 to the
equivalent of 250 m resolution [Sundal et al., 2009].
Supraglacial lakes were identified using membership func-
tions of the ratio of band 1 to band 3 and band 1 radiances
(band 1/(band 1 + band 3)) [Sundal et al., 2009], and their
areas (A) were subsequently calculated. Comparison between
areas for 45 lakes automatically identified on three 250 m
pixel size MODIS images and manually digitized on three
concurrent 14 m pixel size Landsat images (days 173, 198,
and 230) gives a correlation of 0.84 (p < 0.05) with a 1s
uncertainty (Aerr) of 0.2 km2 per lake. This is comparable

Figure 2. Time‐lapse images of (a) early season with fjord ice mélange intact, 12 May, day 132; (b) the
breakup of seasonal fjord ice mélange, 4 June, day 155; (c) when a small ice‐free area and turbid plume
first became visible in the fjord at the KNS terminus, 11 July, day 192; and (d) when the ice‐free area and
turbid plume expanded significantly, 14 July, day 195.
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with the 1s uncertainty of 0.22 km2 per lake from a com-
parison of MODIS‐derived and Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER)–
derived (15 m pixel size) lake areas from a similar region of
the ice sheet [Sundal et al., 2009]. Mean lake depths (D)
were estimated from their relationship with band 1 reflec-
tance after Box and Ski [2007],

D ¼ 0:716738

Rþ 0:036304ð Þ þ 0:701691; ð1Þ

where R is band 1 reflectance. This relationship has 1s
uncertainty Derr of 0.86 m [Box and Ski, 2007]. Lake volume
V was simply estimated by multiplying D by A. The uncer-
tainty Verr associated with estimating V for a single lake is
therefore

Verr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Derr

D

� �2

þ Aerr

A

� �2
s2

4
3
5V : ð2Þ

[10] We used the ASTER Global Digital Elevation
Model (GDEM, http://www.ersdac.or.jp/GDEM/E/2.html)
combined with the Bamber et al. [2001] 1 km resolution
Digital Elevation Model (DEM, which has an accuracy of
−0.33 ± 6.97 m for slopes 0.0° to 1°) farther inland to
estimate the extent of KNS’s surface drainage basin. Water at
the ice sheet base is expected to flow normal to equipotential
contours which, because of the density difference between
water and ice, can be expected to be 11 times more sensitive
to ice surface slope than bedrock slope [Shreve, 1972].
Despite this, it is possible that at several locations along our
transect (see Figure 1b), bed topography is sufficiently steep
to control subglacial water routing. However, there are no
ice‐marginal rivers large enough to evacuate runoff from the
KNS basin visible in satellite imagery of the KNS margin,
and so we assume the majority of runoff is injected directly
into the Nuup Kangerlua Fjord. Therefore, in the absence of
more extensive or accurate bed data, we also used the surface
topography data to delineate the extent and likely flow paths
of theoretical subglacial drainage (Figure 1).

3. Results

3.1. Horizontal Motion

[11] At the start of our survey period all the sites were
flowing at steady background speeds (Figures 3a–3d). In the
absence of GPS data spanning a winter season, background
speed for each site was estimated by taking a mean early
season value, prior to the start of melting and the breakup of
the ice mélange. Following the onset of melting at each site,
ice flow rate increased above background with a resultant
up‐glacier evolution of both the onset and peak of speed
enhancement (Figures 3a–3d). Seasonal acceleration at
KNS1, KNS2, KNS3, and KNS4 began on approximately
days 156, 183, 190, and 198, respectively. Ice flow rate
reached a maximum at KNS1 on day 191 (535 m yr−1, 40%
above background), at KNS2 on day 203 (271 m yr−1, 25%
above background), and at both KNS3 and KNS4 on day
213 (200 and 133 m yr−1, 15% and 36% above background
speed, respectively). Initially, at each site the acceleration
was small (giving speeds generally <10% above back-

ground) but increased episodically toward a peak. After this,
speeds varied considerably but gradually returned to values
below or similar to background.
[12] Superimposed on the seasonal ice flow pattern were

multiple short‐lived speedup events lasting 1 to 15 days,
some of which occurred at multiple sites. For the remainder
of the paper, we refer to six of the more significant indi-
vidual speedup events as S1 (days 156–170), S2 (days 177–
184), S3 (days 189–195), S4 (days 201–204), S5 (days 212–
214), and S6 (days 220–223) since these are synchronous
across multiple sites (Figures 3a–3d). For example, during
S3, the largest of these events at KNS1, speed increased by
33% of background (from 408 to 535 m yr−1) in 3 days. At
the same time at KNS2, speed increased from 221 to 259 m
yr−1 (20%), while KNS3 accelerated from 174 to 183 m yr−1

(6%). There was no discernible concurrent speedup at
KNS4.
[13] Following S4 at KNS1, ice flow decreased to consis-

tently >6% below background for 9 days, while at KNS2
speed decreased to >1% below background for 5 days. This
period of below‐background flow was interrupted at both
sites by S5, during which speed increased to 2% and 4%
above background at KNS1 and KNS2, respectively. Imme-
diately after S6, speeds at KNS2 decreased steadily, reaching
a minimum of ∼6% below background after 11 days, while
at KNS1, speed decreased to ∼10% below background over
3 days. A similar pattern of speedup followed by slowdown
to below background speeds was also observed at KNS3
and KNS4. By the end of our survey, speeds at both KNS1
and KNS2 were ∼5% below background, while at KNS3 and
KNS4 speeds were 1% and 2% below their background
values, respectively.

3.2. Vertical Motion

[14] At KNS1, the ice surface was raised by between
0.025 ± 0.01 and 0.140 ± 0.01 m coincident with these
short‐lived speedup events. During each event at KNS1,
maximum horizontal speed coincided with maximum rate of
vertical uplift rather than peak vertical displacement (e.g.,
day 191, Figure 3a). Indeed, for the whole survey period,
horizontal ice speed is more strongly correlated with rate of
vertical displacement (r = 0.72 and p < 0.05) than it is with
vertical displacement itself (r = 0.42 and p > 0.05). After
each speedup event, the ice surface subsided, at times (e.g.,
days 173–178 and days 205–212) to levels below those
immediately prior to the speedup. The rate of subsidence
was generally less than the rate of uplift (e.g., uplift of
∼0.06 cm d−1 from days 155–160 and subsidence of
∼0.02 cm d−1 from days 160–178). Sites KNS2–KNS4
showed smaller magnitude variations in vertical position, but
maximum horizontal speed did not always coincide with
maximum rate of vertical uplift (Figures 3b–3d).

3.3. Calving Front Changes

[15] The breakup of the seasonal ice mélange occurred on
day 155 (vertical solid black line in Figures 3a–3f; compare
Figures 2a and 2c), a day before the onset of seasonal
acceleration at KNS1. A turbid plume first appeared in the
time‐lapse photographs on day 192 (vertical black dotted
line in Figures 3a–3f), 1 day after maximum speed at KNS1.
The plume grew dramatically on day 195 (vertical black
dashed line in Figures 3a–3f), flushing remnant sea ice and
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Figure 3. (a–d) Daily horizontal speed (stepped line), 6 hourly vertical displacement (smooth line), and
daily water equivalent ice melt (gray bars) at KNS1–KNS4. The horizontal dashed lines represent respec-
tive background speeds, and shaded light gray areas display periods categorized as short‐lived speedup
events (S1–S6). (e) Daily mean temperature for KNS1 and KNS4. (f) Lake volume by 200 m elevation
band derived from MODIS imagery and the relationship between radiance and lake depth from Box and
Ski [2007]. The solid vertical black line in each plot shows the timing of the breakup of seasonal fjord ice
mélange (day 155, 4 June), the dotted black vertical line indicates when a small ice‐free area and turbid
plume first became visible in the fjord at the KNS terminus (day 192, 11 July), and the dashed vertical
black line shows when the ice‐free area and turbid plume expanded significantly (day 195, 14 July).
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recently calved glacier ice down fjord (Figure 2d). The
plume persisted until day 209, after which it returned only
sporadically. According to the time‐lapse images, after the
initial mélange breakup the calving front remained in
approximately the same position for the entirety of our
survey period.

3.4. Supraglacial Lake Drainage

[16] Surface lakes are clearly visible in MODIS imagery
(e.g., Figure 4) of KNS from day 155, 2 days before the start
of S1. MODIS imagery has a horizontal resolution of 0.25
by 0.25 km, and so all of the visible lakes (assuming a
conical bathymetry [Krawczynski et al., 2009] with a
diameter‐to‐depth aspect ratio of 100:1 [e.g., Sneed and
Hamilton, 2007; Krawczynski et al., 2009]) contain suffi-
cient water (∼2 × 10−5 km3) to force hydrofracture through
1000 m of ice [Krawczynski et al., 2009]. Figure 3f shows a
time series of supraglacial lake volume for 200 m elevation
bands within the KNS catchment with error bars for the 1s
uncertainty. The region with the greatest lake volume mi-
grates up glacier through the season. The expansion of lake
area within each elevation band is controlled by surface
melting. Rapid decrease in lake area corresponds to lake
drainage, probably initiated by hydrofracturing once suffi-
cient water has gathered [Krawczynski et al., 2009]. The
largest of these drainage events within each elevation band
coincide with the largest accelerations at the respective GPS
sites but also affect adjacent sites. For example, the biggest
1200–1400 m lake drainage event (days 192–197) coincided

with the biggest speedup (S3) at KNS1 and with S3 at
KNS2. Similarly, the biggest 1400–1600 m lake drainage
event (days 201–207) coincided with the biggest speedup
(S4) at KNS2 and also with S4 at KNS1.
[17] Several lakes drained between days 201 and 205

coinciding with S4, the peak ice speed at KNS2. According
to the surface (and by extension, bed) flow routing (dot‐
dashed lines in Figure 1a), these lakes are <8 km upstream
of KNS2. The first lake (L1 at ∼1500 m) drained over a
3 day period from day 200 to day 203 (Figures 5b and 5c). A
second lake (L2 at ∼1300 m) drained from day 201 to day
206, and several other up‐glacier lakes (L3–L7 between
∼1450 and 1650 m) decreased in size between days 204 and
207 but did not completely empty (Figure 5a). A time series
of the combined discharge from L1 and L2 (and subsequent
surface melt from these lake drainage basins) was estimated
by linearly interpolating the reductions in MODIS‐derived
[Box and Ski, 2007] L1 and L2 volume through time
(Figures 5b and 5c). The initiation of these lake drainages
preceded the onset of S4 at KNS1 and KNS2 by approxi-
mately 24 h.

4. Discussion

[18] The synchroneity of the short‐lived speedups at dif-
ferent sites suggests a common forcing which acts over
length scales of at least ∼11 km. There are two mechanisms
that could be responsible for the observed synchronous
behavior: (1) changes at the calving front could propagate

Figure 4. Example of a MODIS image showing surface lakes (dark blue on‐ice patches) on 10 June,
day 161.
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up glacier via longitudinal stresses [Nick et al., 2009] or (2)
local changes in subglacial water pressure may initiate speed
variations as observed on land‐terminating margins of the
GRIS [Bartholomew et al., 2010].

4.1. Mechanism for Speed Variations

[19] If the observed speedups had been directly caused by
changes at the calving front, we would expect the magnitude
of the ice speed response to each event to decrease up gla-
cier [Nick et al., 2009] and the ice surface at KNS1 to have
lowered as the ice was stretched by positive longitudinal
strain rates [Thomas, 2004]. To examine the surface low-
ering which could be expected at KNS1 from an event such
as S3, we obtained the speed at a point ∼16 km down glacier
from KNS1 prior to and after S3 from interferometric syn-
thetic aperture radar (InSAR) data [Joughin et al., 2010].
Our estimated acceleration between this point and KNS2

(a distance of ∼28 km) would have produced additional
longitudinal strain rates of ∼+0.023 yr−1 at KNS1. Mean ice
thickness for this region is not known, but on the basis of ice
thickness for similar‐sized marine‐terminating outlet glaciers
(e.g., ∼600 m for Kangerdlugssuaq Gletscher near terminus
and ∼1900 m for ∼30 km inland (using Center for Remote
Sensing of Ice Sheets bed elevation data, https://www.cresis.
ku.edu/data/greenland, and the 1 km Bamber GRIS surface
DEM [Bamber et al., 2001])), we employ a value of 1200 m.
Using the above values of strain and ice thickness, ignoring
any changes in ice thickness advection, and assuming that
the cause of S3 originated at the calving front, we estimate
that lowering rates at KNS1 would be approximately 0.13 m
d−1 (0.054 m d−1 for 500 m ice thickness and 0.16 m d−1 for
1500 m ice thickness) [Thomas, 2004]. On the contrary, we
observed synchronous vertical uplift at KNS1 during S3 of
∼+0.03 m d−1 (Figure 3a), indicating that the speedup did not
originate at the calving front.
[20] Uplift was also recorded at KNS1 during S2–S6,

none of which coincided with major changes (i.e., visible
in the time‐lapse photographs) at the calving terminus.
Furthermore, if the speedups measured across sites KNS1–
KNS4 were all caused by perturbations at the calving front,
we would expect KNS1 to display the greatest ice flow
response to each event and the relative magnitude of each
acceleration to decrease with distance up glacier [Nick et al.,
2009]. Instead, our data show that the maximum relative
acceleration during each event occurred at sites farther up
glacier as the melt season progressed, indicating a local
cause. Although the arrival of the turbid plume at the ter-
minus could also have affected the glacier’s force balance by
removing the ice mélange (which may inhibit calving
[Amundson et al., 2010]), it occurred after S3, suggesting
that it was a consequence rather than a cause of the speedup
and lake drainage observed farther up glacier. This indicates
that there was no coupling between the terminus and KNS1
(36 km apart) at this stage of the melt season [cf. Kamb and
Echelmeyer, 1986] and that the breakup of the ice mélange
had little effect on ice flow. This lack of coupling between
the terminus and ice ∼36 km up glacier is in line with the
observations of Thomas et al. [2009], who reported dynamic
thinning of >10 m yr−1 between 1998 and 2001 within 10 km
of the terminus decreasing to zero ∼30 km inland.
[21] During each speedup event at KNS1, maximum

horizontal speed coincided with maximum uplift rate. Such
behavior is consistent with enhanced basal sliding as a
consequence of high basal water pressures [Iken et al., 1983;
Iken, 1981]. The asymmetrical shape of the uplift and sub-
sidence (steep uplift and more gradual subsidence) is also
indicative of subglacial water pressure forcing and has been
attributed to the (relatively) slow release of basal water
trapped in cavities following the cessation of increased
surface meltwater input [Iken et al., 1983]. This “hydraulic
jacking” has been well documented on temperate glaciers
[Iken et al., 1983; Iken, 1981; Iken and Bindschadler, 1986;
Mair et al., 2003] and has also been observed previously on
the GRIS [Zwally et al., 2002; Das et al., 2008; Shepherd
et al., 2009; Bartholomew et al., 2010].
[22] Further evidence for local hydrological forcing at

KNS1 comes from temporal patterns of measured surface
melt and lake drainage discharge (which we use as a proxy
for water input to the subglacial system). Although surface

Figure 5. (a) Changes in lake area during S4. Dot‐dashed
black lines represent supraglacial or subglacial flow path-
ways, thick black lines delineate L1 and L2 drainage basins,
and colored polygons show daily lake area. The GPS sites
are marked with black crosses. (b) Daily horizontal surface
speed and (c) combined discharge of lakes L1 and L2 and
subsequent surface melt from the L1 and L2 drainage basins
(delineated by the vertical black line). Shaded light gray
areas display periods categorized as short‐lived speedup
events (S4 and S5).
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meltwater will initially percolate and refreeze in the snow-
pack, eventually the snowpack temperature reaches the
pressure melting point and becomes saturated [Pfeffer et al.,
1991]. Once this occurs, surface meltwater can rapidly
access the ice bed via existing moulins [Catania and
Neumann, 2010] and crevasses and influence basal sliding.
This is likely to have been the cause of S1 and S2 at KNS1
as both followed several days of above‐freezing tempera-
tures and consequent increased melt (Figures 3a–3e). The
coincidence of other speedups (e.g., S3 and S4) with re-
ductions in lake volume is strong evidence that they were
caused by these lakes draining to the glacier bed. It is likely
that these large volumes of meltwater were initially input to
an inefficient distributed drainage system, creating episodes
of high subglacial water pressure, hydraulic jacking, and
enhanced basal sliding. Expansion of the efficient channel-
ized subglacial system therefore follows up‐glacier devel-
opment of surface melting, lake formation, and hydrofracture
and proceeds in a series of steps as new ice‐bed connections
are established [Nienow et al., 1998].

4.2. Coupling of Ice Flow Over ∼10 km

[23] At KNS2–KNS4 we observed speedups with differ-
ent simultaneous patterns of surface uplift from those
observed at KNS1 (Figures 3b–3d). For example, during S3
at KNS1 we observed vertical uplift of 0.14 m, while at
KNS2 the ice surface lowered simultaneously by ∼0.02 m.
Indeed, we estimate surface lowering at KNS2 resulting
from the relative accelerations at KNS1 and KNS3 during
S3 (i.e., due to the additional horizontal strain imposed by
the speedup event) to be ∼0.02 m d−1. Theoretical and field
studies show that the stress coupling length, L, should range
between 4 and 10 times the ice thickness (approximately 4
to >10 km along our transect) depending on glacier geom-
etry and bed topography [Balise and Raymond, 1985; Kamb
and Echelmeyer, 1986]. L is therefore comparable to the
distance between our GPS sites, indicating that speedups
could have resulted from longitudinal or lateral coupling to
adjacent hydraulically induced faster flowing ice [Price et
al., 2008]. We note, however, that although S2 is observed
at KNS2, S1 is not, and neither S1 nor S2 are measured at
KNS3. The former suggests that longitudinal stress coupling
over ∼10 km is not possible until the bed is primed, for
example, once basal water pressure has reached a critical
proportion of overburden pressure [Pimentel and Flowers,
2010], while the latter indicates that sites ∼20 km apart are
not stress coupled.
[24] The coincidence of S4 at KNS1 and KNS2 with

drainage of nearby lakes (Figure 5) suggests that this
speedup was due to local coupling to areas of hydrome-
chanical forcing. Simple modeling of subglacial channel
expansion and closure (following Spring and Hutter [1981];
see auxiliary material)1 suggests that the drainage of L1 and
L2 (Figures 5b and 5c) would be sufficient to open large
(∼18 m2) conduits at the bed and that water pressures within
these channels would exceed ice overburden pressure for
longer than 24 h. Thick overlying ice could reduce conduit
diameter in less than a day, but the conduits would remain
open because of surface melt–derived discharge assumed to

reach the bed via moulins at the lake drainage sites [e.g., Das
et al., 2008]. A subsequent increase in discharge to the ice
bed on day 213 (Figures 5b and 5c), caused by the drainage
of several lakes between 1600 and 2000 m, would have been
sufficient to increase basal water pressures above ice over-
burden pressure once again for a further 12 h during S5. This
simple modeling approach produces qualitatively similar
results to other simulations of supraglacial lake drainage
such as those of Pimentel and Flowers [2010]. Supraglacial
lake development is therefore important, because it provides
sufficient water both to force hydrofracture through thick
cold ice and to open efficient channels at the ice bed, forming
a rapid surface‐bed route for subsequent surface meltwater.

4.3. Slowdown Events

[25] At KNS1, following S3 and S4, horizontal speed
decreased to values consistently lower than those immedi-
ately prior to the speedups. For S4 these values were also >6%
below background speed. These “extra slowdowns” [Meier
et al., 1994] are probably the consequence of enlargement
of the basal water conduits following increased surface water
input. Less significant extra slowdowns are also observed at
land‐terminating margins [e.g., Bartholomew et al., 2010].
Larger channels subsequently require greater water flux to
become pressurized so that the basal resistance required to
balance the driving stress can be achieved at lower speeds
[Meier et al., 1994]. The extra slowdowns that follow many
of the later speedup events and the late season below‐back-
ground speeds at each site therefore suggest that toward the
end of our survey period an efficient subglacial drainage
system had developed at distances of up to 48 km from the
terminus [Mair et al., 2002; Anderson et al., 2004]. This
reasoning is consistent with the findings of Howat et al.
[2010], although slowdowns at our sites are relatively
smaller, between 1% and 10% as opposed to 40% and 60%.
We find that although establishment of an efficient drainage
system reduces the sensitivity of the subglacial hydrological
system to further meltwater inputs, it does not preclude
subsequent speedups. This is demonstrated by the occur-
rence of S5 and S6 at KNS1 despite preceding extra slow-
downs. The amount by which sensitivity is reduced depends
on the balance between channel closure rates and basal water
flux following channelization [Pimentel and Flowers, 2010;
Schoof, 2010].
[26] The emergence of the large turbid fjord plume at the

KNS calving front on day 195, indicative of the arrival of an
efficient channelized subglacial system and consequent
flushing of stored basal water and sediment [Kamb et al.,
1985], coincided with the slowdown at KNS1 after S3
(Figure 3a) and followed by less than 24 h reductions in lake
area between 1200 and 1400 m (Figure 3f). A similar
coincidence between ice deceleration and discharge from the
basal water system was observed following the surge of
Variegated Glacier, Alaska [Kamb et al., 1985], and further
supports a hydrological forcing mechanism for S3.

5. Conclusion

[27] Our data show that beyond 36 km up glacier of
the terminus of Kangiata Nunata Sermia, a large marine‐
terminating outlet glacier in southwest Greenland, both sea-
sonal and shorter‐term ice flow variations are principally

1Auxiliary material files are available in the HTML. doi:10.1029/
2010JF001948.
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controlled by local hydromechanical forcing rather than
by changes at the calving front. At our transect, as has
been demonstrated for land‐terminating margins [e.g.,
Bartholomew et al., 2010], surface melt forcing drives evo-
lution of the subglacial drainage system, leading to uplift,
acceleration, and subsequent slowdown following the estab-
lishment of an efficient channelized hydrological system
[Bartholomaus et al., 2008; Das et al., 2008]. Lake
drainages play a key role in forcing subglacial drainage
evolution and often coincide with the largest speedup
events. Our data support the conclusion that lakes provide
sufficient accumulations of surface water to (1) force
hydrofracture through thick cold ice, (2) pressurize the
existing drainage system, and (3) develop efficient subgla-
cial channels which reduce the sensitivity of the subglacial
hydrological system to subsequent variations in meltwater
flux. More generally, our data support previous observations
[e.g., Fudge et al., 2009] and modeling [e.g., Schoof, 2010]
demonstrating that it is rapid variations in the meltwater
supply to the subglacial drainage system that have the
greatest effect on ice flow. In this sense, at distances >36 km
from the calving front, KNS behaves similarly to other
smaller glaciers elsewhere [Iken, 1981; Kamb et al., 1994].
[28] However, as has been previously reported at locations

closer to the margins of other marine‐terminating glaciers
[Joughin et al., 2008a], the overall effect of observed sea-
sonal flow variations on the annual motion of KNS is small
compared to those reported for land‐terminating glaciers
[Bartholomew et al., 2010] (Table 2). This in part is because
the speedups are compensated for by slowdowns beneath
background speed associated with the establishment of an
efficient subglacial drainage system, which are greater than
those reported at land‐terminating margins. The short‐lived
speedups at KNS are also relatively small compared to those
observed at land‐terminating margins (up to 40% rather than
220% [Bartholomew et al., 2010]). Fast flowing outlet
glaciers, such as KNS, may be less sensitive to seasonal
variations in surface meltwater input because basal shear
heating already provides a supply of subglacial water that
could maintain relatively high basal water pressures
[Joughin et al., 2008a] if the subglacial drainage system
remains inefficient. Marine‐terminating outlet glaciers tend
to be deep and narrow so that lateral shear stress is likely to
provide a greater proportion of the total resistance to ice
flow, and changes in basal friction will have relatively less
impact on ice speed [Joughin et al., 2008a]. It is important
to note, however, that our most down‐glacier site (KNS1) is

at a similar elevation to the most up‐glacier site reported by
Bartholomew et al. [2010], where the effect on annual ice
speed of seasonal variations was 6%. Our results suggest
that despite the above differences, sufficiently far inland
from the calving front, the ice flow response of a large GRIS
marine‐terminating outlet glacier to variations in surface
melting is similar to that of land‐terminating outlet glaciers.
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