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ABSTRACT 

The initial objective of this study was the determination of the 

lateral variation in electrical structure of the crust and upper mantle 

across the Moine Thrust region of Northern Scotland. To this effect 

Magnetotelluric measurements were made along a profile in the Moine 

Thrust region of Northern Scotland between National Grid references 

21279243 and 27188943 in the frequency range 780 Hz. To 0.1 Hz. using 

the then recently developed Short Period Audio-Magnetotelluric 

(S.P.A.M.) system. 

The data were supplemented by that of Mbipom (1980) in the frequency 

range 0.05 Hz. TO 0.0012 Hz. from along a nearby profile. 

The data were processed in the frequency domain. The bias on the 

data was estimated using the four impedance tensor element estimators. 

The processed resistivity and phase data were modelled using a 

Hedgehog algorithm and two-dimensional modelling was conducted using a 

biased linear estimation algorithm extended by the author. 

Contrary to the lateral variation of conductivity expected as a 

result of the structures revealed by the offshore Moine and Outer Isles 

Seismic Traverse reflection profile and of combined electromagnetic and 

seismic reflection studies in the Eastern United States Of America there 

was no evidence in this study of an electrical Moine Thrust structure. 

Moreover no common features were observed in the electrical models and 

the results of geological, gravity and aeromagnetic studies. A 

resistive structure of not less than 1X10 4  ohm-metres was found at 

National Grid Reference 23939160 with a possible extension as far 

eastwards as National Grid Reference 25279021. More intensive field 

observations are required for the verification and elaboration of this 

model structure. 

The two-dimensional models yield a resistivity profile similar to 

that proposed by Hjelt (1987) for cold crusts. 

The determination of the two-dimensional electrical model led the 

author to investigate and modify a two-dimensional magnetotelluric 

inversion method using singular value truncation and ridge regression 

methods iteratively. This development itself became the major objective 

and probably the most significant part of the study. 



A computer programme was written to invert the two-dimensional 

Magnetotelluric data. Novel block boundary parameters were used and 

parametric errors were calculated using a linear approximation. Three 

experimental inversions were conducted and it was found that: 

The proceedure improved the fit between the model response and 

the data when the initial model consisted of a section of 

collated one-dimensional models. 

The novel block boundary technique improved convergence for a 

given number of model resistivity blocks. 

With the models used at least ten iterations would be required 

for convergence. 

The inversion procedure used a two-dimensional finite difference 

forward modelling algorithm due to Brewitt-Taylor and Weaver and this 

was modified. A method for calculating derivatives was extended by use 

of a series to account for non-linearity in the finite interval over 

which the derivative was required. The computation time for the 

derivativeswas reduced to a minimum of 0.065 of that for the original 

algorithm in the case of a 1800 node finite difference mesh. 

The above routines have been further developed and applied in the 

current Magnetotelluric research in the Department Of Geophysics at the 

University Of Edinburgh. 



CHAPTER I 

INTRODUCTION 

1.1. THE INITIAL OBJECTIVES. 

The initial objective of this study was the determination of the 

lateral conductivity structure of the crust and upper mantle in the 

Moine Thrust region of Northern Scotland. This required an electrical 

method capable of resolving conductivity structures to depths exceeding 

20 Kms. in the crust. One such available procedure which did not 

require large transmitter arrays was the Magnetotelluric Method, 

(Kaufman and Keller 1981). This method utilizes natural electromagnetic 

fields with frequencies extending from a few kilohertz to milihertz and 

the fact that conductivity structures below the surface of the earth 

being subject to electromagnetic induction, affect measured surface 

electric and magnetic fields. Earth response functions derived from 

these fields thus allow models of the conductivity structures to be 

calculated. 

1.2 THE MODIFICATION OF THE OBJECTIVES. 

Magnetotelluric data were collected particularly in the area where 

the Moine Thrust is evident at the surface, and also at sites having a 

greater geographical separation to the east of this area. 

One-dimensional modelling of the data suggested that the Moine Thrust 

could not be readily identified and that contrary to expectation the 

area with the most variable electrical conductivity structure lay in the 

eastern area where data of only moderate quality could be collected. 

This was due to undesirable electromagnetic noise from high voltage 

transmission lines and hydro-electric plants. 

Since one-dimensional modelling could not accurately be applied to a 

region with observed large lateral conductivity variations within the 

length of one skin depth, it was apparent that at least two-dimensional 

modelling would be required. This led the author to examine a 

two-dimensional inversion scheme utilizing biased linear estimation and 

to its development to the extent that it constitutes a major part of 

this study. Following the inversion of the field data further study of 

the inversion scheme was undertaken. This resulted in the modification 



of the forward finite difference two-dimensional modelling algorithm in 

a novel way which resulted in a considerable reduction of computer run 

time. 

1.3 THE STRUCTURE OF THE THESIS. 

Following the introductory comments of this chapter and an account of 

general Magnetotelluric theory in Chapter II the contents of this thesis 

are grouped into two parts related to the modification of the initial 

project objectives. Chapters III,IV and V are primarily concerned with 

the regional study. The second and principal part of this thesis 

(Chapters VI,VII and VIII) is concerned with the two-dimensional 

inversion theory and its application to the data used in the regional 

study. This part also contains in Chapter VII the additional inversion 

studies which were tested but not applied to the regional data. Finally 

Chapter IX summarises the conclusions of the study and contains 

suggestions for further work. 

1.4 THE KNOWN GEOLOGY AND GEOPHYSICS OF THE STUDY REGION. 

The Moine Thrust Region consists of a Lewisian Foreland to the 

north-west and a Moinian Hinterland to the south-east. The Foreland 

consists of two parts. To the west of Assynt is found the Scourian type 

area which has been extensively intruded with dykes (2400 Ma. TO 2200 

Ma. Watson (1983)) having a north-west south-east trend. To the north 

and south of Assynt lies the later Laxfordian Complexes (2400 Ma. TO 

2200 Ma. Watson (1983)). The Moines to the east of the Thrust, which 

at the surface dips eastwards at approximately 150,  consist largely of 

siliceous granulites. In north-eastern Sutherland migmatitic and 

granitic complexes are found while the eastern coastal regions are 

characterized by old red sandstone and younger rocks. The Hinterland is 

also characterized by a number of Lewisian inliers and igneous 

intrusions. Of the intrusions the Rogart, Grudie, Fearn, and Migdale 

granites are in the region of the study and are generally considered to 

be the Newer Granites (435 Ma. TO 390 Ma. (Brown 1983)). To the south 

lies the early (550 Ma. TO 450 Ma. (Brown 1983)) Carn Chunneag and 

Glen Dessary complexes. Within Assynt and within the vicinity of the 

study region are found the Loch Borrolan and Loch Ailsh intrusives (426 

Ma. TO 434 Ma. (Van Breemen ET. AL. 1979)) of the alkaline suite of 

the north-west Highlands. 

The Hinterland is thought to have overthrust the Foreland by possibly 

up to 100 Kms. (Elliott and Johnson (1980)). Various models have been 



proposed to represent the thrusting including those of Soper and Barber 

(1982) who considered the deep structures and Elliott and Johnson (1980) 

who considered the shallow structure with the use of balanced 

cross-sections. 

Sweit (1972) proposed that the existence of sedimentary rocks 

overlying part of the Lewisian Foreland may imply that this region 

formed the western subtidal margin of the Proto-Atlantic or Iapetus 

Suture. According to Cook ET. AL. (1979) and Cook ET. AL. (1981) the 

Appalachian system may have formed the eastern boundary of the Iapetus 

Suture. However there are a number of alternative theories concerning 

the location of the Iapetus Suture in Britain (Kennedy (1979)). 

The entire structure in the Moine Thrust region has been compared 

with the Appalachian structure of North America (Barton (1978)). The 

more recent COCORP seismic study has been compared by Brewer and Smythe 

(1981) with the results of the M.O.I.S.T. seismic study (Section 1.5.3) 

conducted across the supposed offshore extension of the Moine Thrust 

(Figure 1.3). The seismic reflectors were compared and found to be 

similar. Greenhouse and Bailey (1981) and Thompson ET. AL. (1983) 

considered a geomagnetic variation study and reaffirmed an 

over-thrusting model for the Appalachians. 

1.5 MISCELLANEOUS STUDIES AND CONCEPTS. 

We collect here for convenience a series of studies and concepts 

referred to at regular intervals throughout the thesis. 

1.5.1. THE LITHOSPHERIC SEISMIC PROFILE OF BRITAIN. 

The Lithospheric Seismic Profile Of Britain (LISPB) was conducted 

with large shot spacings by Bamford ET. AL. (1978). The profile 

extended from Northern Scotland into Northern England. A generalised 

seismic velocity structure for Scotland derived from the results of this 

study is shown in Figure (1.1). 

1.5.2 THE MODEL OF SOPER AND BARBER. 

The model was constructed from existing geological and geophysical 

observations by Soper and Barber (1982). Since their model shown in 

Figure (1.2) was proposed at the time of initiation of this study it was 

used as a basis for the site locations of the Magnetotelluric profile 

discussed in this thesis. 
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1.5.3 THE MOINE AND OUTER ISLES TRAVERSE OF THE BRITISH INSTITUTIONS 

REFLECTION PROFILING SYNDICATE. 

The Moine and Outer Isles Traverse (M.O.I.S.T.) was undertaken 

commercially along the profile indicated in Map (1) for the British 

Institutions Reflection Profiling Syndicate (B.I.R.P.S.) after the 

Magnetotelluric fieldwork for this study had been completed. An 

interpretation of the M.O.I.S.T. data was published by Brewer and Smythe 

(1981) who detected two possible signatures of an offshore extension of 

the Moine Thrust (Figure 1.3). 

1.5.4. THE SEISMIC PROFILE OF THE CONSORTIUM FOR CONTINENTAL REFLECTION 

PROFILING. 

The seismic profile of the Consortium For Reflection Profiling 

(COCORP) was conducted in the southern Appalachians of the United States 

Of America (Cook ET. AL. 1979, Cook ET. AL. 1981). The structure in 

this region was considered by Brewer and Smythe (1984) to be a 

continuation of the Moine Thrust structure of (Figure 1.4). 

1.5.5. THE LAW OF ARCHIE. 

The conductivity of many rocks may be attributed to the presence of 

electrolytes within their porous structure. The law of Archie (1942) 

relates the conductivity of the saturated porous rock aR  with that of 

the electrolyte aE  and the porosity of the rock fl  as below: 

where a and a are constants with l<B <2. 

1.5.5 THE. SEMICONDUCTION IN HEATED ROCKS. 

Many materials which constitute the crust of the Earth posess filled 

valence bands (Kittel 1962). At high temperatures these materials may 

exhibit semiconduction. For intrinsic semiconductors the conductivity 

ai is related to the temperature T as below: 

Ooc, 

where EG  is the forbidden energy gap between the filled valence band and 

the conduction band for the semiconductor. 

However impurities affect the value of EG  substantially so that the 

value of ai is unknown unless the impurities and their concentrations 

are known. We may be able to account for conductivity at depth where 

high temperatures are found by semiconduction. However since no maximum 



value for EG  is known we are unable to show that high resistivities 

cannot be found at depth where high temperatures are found. 



CHAPTER II 

THE THEORY OF THE MAGNETOTELLURIC METHOD 

2.1 THE ELECTROMAGNETIC SOURCE FIELD FOR MAGNETOTELLURIC SOUNDINGS 

The sources of the electromagnetic disturbances (Bleil 1964, 

Matsushita and Campbell 1967, Orr 1973) used in Magnetotelluric Sounding 

are located in the Magnetosphere for frequencies below approximately 0.2 

Hz. and in the Earth Ionosphere Cavity for the higher frequencies above 

approximately 0.2 Hz. The frequency spectrum for the disturbances is 

shown in Figure (2.1). 

In the Magnetosphere which results from the interaction of the Solar 

Wind with the permanent geomagnetic field there exists a plasma. This 

has the properties of a gas but since the conductivity of the plasma is 

large , it remains frozen t4o the geomagnetic field lines. Hence 

disturbances in the plasma result in disturbances of the geomagnetic 

field. 

Assuming a uniform magnetic field the plasma may support transverse 

Alfven waves and compressional Fast waves. Further, assuming that the 

plasma exerts a pressure a further slow wave is introduced which 

corresponds to an acoustic wave. 

The classification of the electromagnetic disturbances is found in 

Table (2.1). The Pc5, Pc4 and Pc3 events and possibly some Pc2 events 

are due to standing Alfven waves. The Pc4 events are associated with 

the reflection of hydromagnetic wave packets from the ends of the 

geomagnetic field lines which act as wave guides. The Pil and Pi2 

events generally occur at night and are found in the Auroral zone. The 

Pi2 events may be associated with the vibrations of the last closed 

field line near the midnight meridian in high latitudes or with the 

ringing of the Plasmapause in middle latitudes. 

The excitation of the modes may be effected by Kelvin-Helmholtz 

instability at the Magnetosphere-Solar Wind boundary, by fluctuations in 

the Solar Wind or by wave particle interactions as in the case of the 

Pci disturbances. 

The higher frequency disturbances above approximately 0.2Hz. are due 

to electrical storms The-- di-sturbance-----propagates -in the 

Earth-Ionosphere cavity. The cavity also allows the establishment of 

In 
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DESCRIPTION DISTURBANCE PERIODICITY (SECONDS) 
Pci CONTINUOUS 0.2 TO 5.0 
Pc2 CONTINUOUS 5.0 TO 10 
Pc3 CONTINUOUS 10 TO 45 
Pc4 CONTINUOUS 45 TO 150 
Pc5 CONTINUOUS 150 TO 600 
P11 IRREGULAR 1.0 TO 40 
Pi2 IRREGULAR 40 TO 150 

TABLE 2.1. THE NATURAL ELECTROMAGNETIC DISTURBANCE DEFINITIONS. 

I 

21 



resonances. 

The remote location of these sources of the electromagnetic 

disturbances allows the assumption of the incidence of plane 

electromagnetic waves at the surface of the Earth. 

2.2 THE ELECTRICAL HALF SPACE 

Let us assume that the electromagnetic waves arriving at the surface 

of the Earth are plane . As is customary in magnetotellurics we shall 

assume that the electromagnetic waves arriving at the surface of the 

earth are normally incident upon that surface. If the skin depth (see 

below) of the electromagnetic waves in the Earth is small compared with 

the dimensions of the Earth we may model the situation as plane waves 

arriving normally on a half -space . Let the surface of the half-space 

lie in the x-y plane and z represent the depth. Then from Maxwells 

equations 

difr=g 

Q 

	

Curl N =T + 	 3 
4 

We may obtain for media homogeneous in p and c 

where a is the conductivity of the half space . This expression has 

been obtained under the assumptions that 3/at=jw and that the 

displacement current has been neglected (>>W). This is often true at 

the frequencies used in electromagnetic induction studies (less than 

1000 Hz. ) and with the Earth resistivities encountered ( greater than 

10 ohm-metres.). The associated magnetic field is given by 

14X = 0 

7 
l'Iz:O 	 8 

We require some frequency invariant parameter to represent the 

electrical conductivity of the half-space. The driving point impedance 

( viewed downwards from the surface ) is given by : 

Z= % (it) 	 9 h / 
The apparent resistivity is defined by 

10 
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The phase is defined by 

Ø=Ar2x 	 ii  

Thus for a half space we find that 

l2 

'3 
The skin depth in the medium is defined as the distance over which 

electric field falls to l/e of its initial value. In a homogeneow 

medium the skin depth w is given by 

8:: 	 14 

2.3 THE LAYERED EARTH MODEL. 

Consider now the half-space replaced by a stack of N homogenetj 
conductivity layers as in the case of a layered earth characterized bj 

l,k 2,....,k n . where 

"5 

TH. 
Let the field at depth z in the n 	layer be given by: 

TH. 
Let the impederice as viewed downwards from the n 	interface beZ, 

Since the tangental electric and magnetic fields are continuous acro 

boundaries we may apply (7) and (16) to obtain: 

	

TH. 	K fAn c," ks  

Similarly at the (n-i) 	interface we obtain: 

	

Zn 	[An i8J 

An-8nj [ Where h =z -z 	
I(,i  

n n n-i 

From (17) and (18) we obtain the following recursion formula: 

Z,. 1   
K17 	10) wJ K" h] 	19 



The deepest layer in the stack is assumed to be the half space with 

an impedence Zn 	given by (9). 

Details of the application of (19) in a Hedgehog modelling programme 

are given in Section (5.1.1). 

2.4 THE TWO-DIMENSIONAL CASE 

In the two-dimensional case we assume that the properties of the half 

space previously considered vary with x and z but are invariant with y. 

Let the term E-Polarization refer to the case when E=/= 0, E y O and 

Ez0 and H-Polarization refer to the case when H=/= 0, H, =0 and Hz  =0 

Maxwell's equations (1 TO 4) decouple into two sets of equations. 

The expressions for H-Polarization are 

20 

21 

9 z = jw)tl1r!i 

In the case of H-Polarization we account for the structural conductivity 

gradients  

/t +  

&% 
	 25 

-0')E, 27 
Kron (1944) and Madden (1965) have likened the two-dimensional case 

to that of an electrical transmission surface. This may in turn be 

approximated by a two-dimensional lumped circuit (Brewitt-Taylor and 

Johns 1980 ). The transmission surface is characterized by series 

impedance Z per unit length and shunt admittance Y per unit, length so 

that 

28 

du.r1 YY 	 ag 
After some manipulation we obtain the following analogue 

t! — 
;)V,  . 3,  3 	/ &% I T 	 t ZYV 	 •30 

- 



Comparing (30),(31) and (32) with (20),(22) and (23) we have the 

analogue for E-polarization where, VE X , Iy Hy , Z=iwI1 and Ya with j 

invariant with position for example. Comparing (30), (31) and (32) with 

(24), (26) and (27) we have the analogue for H-polarization where V=Hx, 

I y=Eyi IzEz,  Z= and Y=-iwj.1 for example. The expressions (30),(31) 

and (32) also give an analogue for the one-dimensional case 

2.5 THE FINITE DIFFERENCE REPRESENTATION 

In general the solution of the two-dimensional problem requires the 

use of numerical methods. Two common methods are the finite-difference 

and finite-element methods. The finite-difference method 

(Brewitt-Taylor and Weaver 1976, Brewitt-Taylor and Johns 1976 ) was 

used for the purposes of this investigation and is described below. 

A mesh of nodes is laid over the region of interest . Each grid 

square is assigned a conductivity at its centre whereas the field values 

are calculated at the nodes. The mesh lines form divisions between 

regions of different conductivity, as shown in Figure (2.2). 

t 

2.5.1 E-POLARIZATION AND H-POLARIZATION. 

Consider the case of E-Polarization described in Figure (1.2). 

Using central difference formulae to second order we obtain a finite 

difference expression for (20) of the form 

Km Cm- 	
Emin. 	'2. 	[Eii+i + 	 uijt< - Emil 	33 

+ [KmIcp,_I Kn_1] EmIL Where the conductivity has been averaged in orthogonal directions to 

give < 0 > as 

= Km-  in 0m42n-y2 + kfl1—iIfl C'hI112 flty2  t 	 n-V, + MnK ,.ç 34 
19m- 1 t scm] [Icn-, 

The surface value of the magnetic field is obtained from (20) and 

(22). At a surface node m,q the expression for the electric field is 

expanded upwards and downwards in a Taylor series to produce after some 

algebra: 

—  Egl tJ 	mtYzJEm 

Now consider the case of H-Polarization. The use of the central 

difference formulae to second order in conjunction with equation (24) 

-yi-e-lds: 

I n, j 11 	+ 
(LnI8 
	 + [29mn 	39 	13r  

Km KM_  LLK m 

ZrmLn kT-4) 	
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The resistivities are averaged using an expression similar to (35) 

and the expressions for (P/ 3 Y)mn' (3P/3z)mn are obtained to first 

order from the appropriate central difference formulae. 

The surface electric field is obtained by expanding the expression 

for Bml downwards by means of a Taylor series. By assuming that the 

surface nodes are located inside the region of varying conductivity we 

obtain (3P/3z) mn=O . Then from (24) and (26) we conclude that: 

F u = s-'J _j 	 37 37 

where H is the magnetic field strength at the surface. 

2.5.2 AN ELECTRIC CIRCUIT ANALOGUE. 

We may now exploit the lumped circuit analogue of (30),(31) and (32). 

We note that for a structure such as that shown in Figure (1.2) 

Vinmi  + Vmn-s . 

3 	Z4. 	L'' Z2 ZJ Z4- 	J 
This expression is seen to be similar to both (33) for the 

E-Polarization and (36) for the H-Polarization under certain 

circumstances. The necessary equivalences to obtain similarity are 

found in Figure (1.2). 

The simultaneous solution of such a set of simultaneous equations 

involves a sparse coefficient matrix with no more than five coefficients 

per row as compared with seven coefficients per row for the finite 

element equations where triangular elements are used. The 

Brewitt-Taylor and Weaver program uses a sparse matrix inversion 

procedure due to Zollenkopf. In this procedure only non-zero elements 

are processed to produce an inverse in terms of left and right-hand 

factors. 

2.6 THE ROTATION OF THE IMPEDANCE TENSOR 

In general the electric and magnetic field vectors above a 

conductivity structure are related by the impedance tensor Z where: 

ZIE 	 39 

Let E' and H' be the electric and magnetic fields measured in the 

rotated frame of reference and let Z' be theorresotdinq iupedne 

tensor such that: 

'ZE 	 40 



Then if R is a rotation matrix we have: 

Z'=RZR 
In the general three-dimensional case 	(Sims and Bostick 1969, 	Hermance 

1973) 	the elements of Z' 	are as below: 

[ !Zxx
+ZYY]_. 

Z,, [0+ -Tr/.. 42  

Z [z { 	+A-]  43 

z[ o] 44 

Z z{ [Zvx-Zx1+ ] 
Where Z0 is given by: 

z [!Z+ZYx] _[Zxx.Zii] &;z& 4 

and G is the angle through which the frame of reference is rotated. 

In 	the 	two-dimensional 	case 	the 	E-Polarization 	and H-Polarization 

equations decouple into two independent sets as shown so that 	Z=Z,=O 

Furthermore in the one-dimensional case we have in addition z xy -,Z-Zyx  

2.6.1 THE DIMENSIONALOTY INDICATORS. 

A convenient index of dimensionality is given by the skew S where 

S 1ZXX + ZYYL 	 46a 
IZx-ZxI 

where the conductivity structure of the earth is one or two-dimensional 

when 5=0 (section 1.4) whereas for three dimensional conductivity 

structures S is finite. 

2.7 THE ESTIMATION OF THE IMPEDANCE MATRIX 

Consider measurements of the parameters E, Hx, E and H.where: 

[Uxt Hy, [Zx ] - [Exj j+47  
' 	i+rzJ Lz4 	Ex. 

	[61'j .] 

 

On condition that the polarizations of the two source fields differ, 

that is detH=/= 0 we may estimate ZXX  and Zxy 

Define the squared error as 14) for n such equations (Sims and Bostick 

1969, Hermance 1973). Then we have: 

4-9 '4' = 	- Zxx H X -  ZXY ,-¼] [EX!- Z xx  Hj - z, 



Differentiating 4i with respect to real and imaginary parts and setting 

a /dzJ = cL 	 0
00 

We obtain 

EXLHL = z2 HxL 1+ Zxy 2 

Z E,zLI1.0 = Z xx! H XL Hut  + Z xy Yj Hvi Uv 
The noise on Ex  may be minimised by the simultaneous solution of (50) 

and (51) as below 

<E1) 	 H y t1x'> 	 52 

<ExU> 	Zx<Hx)'1 Zcy<F4 y t > 	 53 

where the mean values have been taken. 

Using a similar method we obtain 

EE = Zxx<H,cE>+Zxy<HyE,> 	 54 

Ex F—Y 	Z, <HxE>Zx.c<HyE> 	515 

Equations (52 TO 55) yield six estimates for zxy as below 

XEE>-&><EFA,  
<Ux(Hg> — 1x<hE '  '1 

66 

<?4xE'XHH, 	<tx (HyE 57 

<'ZXT> - _______________________ <Ii x E,)KHy Uy*~ <H,1 I+ktfrE 

E<HyH'CHX U>.< H1E 
59 

- <N><jyflt -<tbc 4><frr Ey' 
________ I 

<H,<UyHy7< 4sfI+çHx 
The fields are usually assumed to be slowly varying functions of 

frequency (although this may not always be true as in the case near 

vertical conductivity boundaries) so that the mean <AjBj*> represents 

the cross-power spectrum between Ai and B at some centre frequency. 

In a one-dimensional situation where the fields are highly 

unpolarized estimates (58) and (59) böme tAtab1eTñc<ExE * >, 

<ExHx *>, <EyHy*> and <ExHy*>  tend to zero. 

51 



2.8 THE EFFECTS OF RANDOM NOISE UPON THE Z ESTIMATES 

Let Xc  be a measured electric or magnetic field component so that 

XC = X 3  +7c.CN 	 62, 

where Xcs  is the signal and Xcn  is the noise. Assume for simplicity 

(Sims and Bostick 1969) a one-dimensional model where we may decompose 

the signal as below 

	

HfrO 
	

<ExE/O <(f1-I1>o <E,(J1>-?fO 

Also 

	

E1/_O We 
	

<Us I{ ~0 jét  <EH 0 

But where 

<HyH> 4  0 

Under these conditions we have in addition 

Equations (58) and (59) then yield 

=X 
>A)I Ex;;~ 

	 63 

< !Z-y> <ExH)'/< HTJ+ 

Utilizing (62) we obtain the cross-power and autopower spectra 

expressions below 

<EE, 	< Es E> +<ExAE> 	 65 

HyH> = 	 t. ( uya Hyj) 	 69 

<Ex 	t- <Exs Hyb+<E,nHv )' <Ex,. I4n> 7 

<HyEx> 	 - < 14Y8 E> 1cE> ZIYn> '   $L  

Let us assume that the noise signals are random, that is they are 

uncorrelated with either the signal or with themselves . In this case 

(67) and (68) yield 

<Es Uc/> = <U E> = <E Hyt> 	 69 

Under these conditions (63) yields 

= ZXY 	
< E)('> J 	76 

L 
Similarly (64) yields : 

= 

Zx/[i t<nmt4>] 	 71 



It is thus seen that the noise effectively biases the Z estimates. 

This fact was used in this study to assess the reliability of the data 

before modelling was undertaken. 

2.9 THE COHERENCE FUNCTIONS 

Let s(t) and u(t) be two series and let S(W) and U(w) be their 

respective Fourier transforms. Then the coherence between s(t) and u(t) 

is given by c 5  where 

= 

The index yields Csul  for perfectly correlated signals and C 5 =O 

for totally uncorrelated signals. 

Now consider the signal s(t) to be a linear combination of u(t) and 

v(t) as below: 

Z(W)(AW)+ZY (w)V(t4)) 	 73 

The expected value of S(W) is given by 

(Z (w) (kLo)> +(Zv(w) Vuo)> 	74 

Define the Predicted Coherency between S(W) and <S(W)> as below 

<S(4?)> C<Zu)<Zu<Uw U(u+ yZy7'<'V(uU-')> +  
The effect of noise upon the coherence may be envisaged by writing 

	

(e) * S, (e) 	 76 

	

act) U3(t) tUn(t) 	 77 
where ss and us are noise free signals and sn  and un  represent the 

random noise. If sn  and un  are uncorrelated and independent of the 

signals then we obtain 

(3 . 	* 
C 	t4 (J3 73 

[Wsu. SnL) 	w)]Lts(w)UtvJ £Jn(wMJiW)] 
Thus we obtain a coherence C 5 2  where Csu2 <l 

2.10 THE ESTIMATION OF THE POWER SPECTRA 

Define the cross-correlation function of two transient signals x(t) 

and y(t) as Pxy(T)  where 

Px(V) 
[ 	

c )kttcLt 	 ___79 

7' 



The Fourier transform of Pxy(t)  is known as the cross-energy density 

function Pxy(W)  where 

&r(W) 	 () edV 

Let us assume that we may represent y(t+t) by the expression below 

too  
j (t 	= ,' 	Y e 

(t+) 	 I 

Then from (79) we may obtain 

Cv) = )'2erçf' y[:tet]eJwtd 	82 

Hence we obtain the cross-energy density function of x(t) and y(t) as 

X*(w) YCu) 	 M. 

where X(W) and Y(W) are the Fourier transforms of x(t) and y(t) 

respectively. 

When considering stationary random processe we may define the 

cross-correlation function as 

LXA4Xr f—. 	ttjdt 

The Fourier transform of (84) produces the cross-power spectrum 

f 0 

C-C)  

In practice it is not possible to calculate numerically a Fourier 

transform over the range - TO + and it is customary to take the 

transform of x(t) over a window of duration t as below 

f -t-T/ 

 -% 
However the window modulates x(t) in the time domain to produce 

sidebands characterized by the sinc function. These sideband which are 

generally described as leakage may be reduced by using a tapered window 

of some description defined by w(t). Then we have 

T1 	

(±) W Ct) e 

where T' is taken to be sufficiently large -tocoverthe range where 

w(t)=/= 0. The cosine taper window was used in this study. As we only 



use ratios of the Fourier transforms it is not necessary to correct for 

the effect of the window taper used. 



CHAPTER III 

THE INSTRUMENTATION 

3. THE INSTRUMENTATION. 

This chapter describes a set of active filters used in conjunction 

with the N.E.R.C. Geologger and the E.C.A. CM11E magnetic sensors. 

The resultant Magnetotelluric system was designed by the author with a 

pass-band extending from 0.4 Hz. TO 100 Hz. 

In addition the Short Period Automatic Magnetotelluric (S.P.A.M.) 

system is also described. 

3.1 THE NEED FOR A NON-AUTOMATIC LONG PERIOD RECORDING SYSTEM 

During September 1981, the S.P.A.M. system of Dawes described in 

section (3.5) was completed and first used in the Travale region of 

Italy in a program of research undertaken as part of the E.E.C. 

Geothermal Project. The system was theoretically capable of 

automatically selecting Magnetotelluric events on a real-time basis in 

the frequency range 780 Hz. TO 0.01 Hz. which was divided into four 

adjacent bands. Approximately seventy sets of five component 

Magnetotelluric events could be recorded on a magnetic tape for each 

band. When the measurements in one band had been completed the 

measurements in another band could commence. It was found however that 

whereas event recording for each of the first two highest frequency 

bands took approximately one hour each, it took approximately three 

hours to record data from the third band covering the frequency range 

6.0 Hz. TO 0.25 Hz. 

It was realized that a digital tape recorder such as the N.E.R.C. 

Geologger digitising at the rate of 1 Hz. could be operated continuously 

for more than six hours before the magnetic tape had to be replaced. 

Such a system need not actually select events, but record all magnetic 

and telluric variations, the tape later being analysed in the laboratory 

in a fraction of the actual recording time. Furthermore the system 

could be operated without attention on a continuous basis while higher 

frequency data were being recorded with the S.P.A.M. system. 

In the Moine Thrust region the crustal rocks were expected to have 

resistivities in the range 102  TO 10 4  ohm-metres. Thus electromagnetic 



fields of frequencies from 0.25 Hz. TO 0.01 Hz. could penetrate to 

depths greater than the crustal thickness of approximately 30 Km. and 

data in this frequency range could constrain the range of possible 

structures at the base of the eventual crustal model. 

3.2 THE GENERAL DESIGN 

The author was required to formalize the specification of a set of 

five matched bandpass filters and also to design and test these filters. 

The filters were required for use in conjunction with the N.E.R.C. 

Geologger and E.C.A. CM11E magnetic sensors. An additional pair of 

matched filters was required for use with the telluric electrodes having 

a contact resistance of not more than 10 kilohms. 

The principal requirement of the design of the five matched filters 

was the production of an anti-aliasing high-frequency cut-off. Since 

the N.E.R.C. Geologger was to be used with its maximum digitising rate 

of 1 Hz., the voltage transmission of the filters at the Nyquist 

frequency (0.5 Hz.) was to be not less than 20 db. below that at the 

band centre. In addition the flat transmission region was to extend as 

close to the 0.25 Hz. cut-off as possible. The requisite sharp 

curvature of the response function in the cut-off region thus 

necessitated the use of circuits which were less than critically damped 

and it was also necessary that the band edge ringing and overshoot 

characteristics of the circuit were not excessive. A three pole 

Butterworth-Optimum-L (Papoulis (1958), Kuo (1966))Transitjon filter met 

the above requirements with minimum circuit complexity and is described 

in section (3.3) and shown in Figure (3.1). 

The lower frequency -3db. point was thought to be of less importance 

at the time of design and was effected by two passive H-C circuits. The 

complete circuit thus assumed an assymetric transmission characteristic. 

The telluric signal amplifiers were designed to be used with a cross 

electrode configuration with the common earth electrode at the centre of 

the cross. This configuration unlike the L configuration does not allow 

the appearance of any variation in the earth electrode potential as 

coherent signals in the two orthogonal telluric directions. 

The principal requirements of the design for the telluric signal 

filters were that they should provide a high input impedance of 

approximately 1 megohm. and D.C. decoupling for the electrodes so that 

any electrochemical potential between the electrodes would not saturate 

the subsequent amplifiers. Suppression of 50 Hz. and low frequency 

noise was effected by a passive R-C bandpass configuration. 
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The required passband gains for the five matched filters were in the 

range from 10 TO 1000, with an additional gain of 10 for the telluric 

signal filters. With a Geologger dynamic range of ± 10 volts in 5 

millivolt digitising steps, this allowed the recording of magnetic 

signals in the range ± 0.1 lxl0 -3  tesla TO ± 20 2xl0 8  tesla and 

telluric signals in the range 5 microvolts (determined by circuit noise) 

to 100 millivolts. These ranges were considered suitable for recording 

signals arising from Pc2, Pc3 and Pc4 magnetic disturbances (section 

1.1). 

3.3 THE CIRCUIT DESCRIPTION 

3.3.1 THE CONTROL BOX CIRCUIT 

The assymetric all-pole bandpass characteristic was realized using a 

lowpass monotonic Butterworth-Optimum-L transition filter in conjunction 

with a passive high-pass filter. The two complex poles of the 

transition filter required an active two pole stage. The actual section 

was of the Multiple Loop Feedback (M.F.B.) type, but the printed circuit 

board was furnished with Sallen Key Voltage Controlled Voltage Source 

(V.C.V.S.) connections so that the cut-off could be improved without 

excessive ratios of C1:C2 of capacitance in the M.F.B. circuit (Figure 

3.1). The transitional lowpass filter was designed graphically with a 

maximum ratio C1:C2 of 10 : 1. The single real pole of the transition 

filter was combined with a real pole of the high-pass filter to form a 

passive band-pass filter. This passive section preceded the 

under-damped active section to reduce the possibility of spikes on the 

input signal reaching and causing saturation at the active section 

itself. The remaining pole of the high-pass filter was located at the 

output of the active section and a lowpass L-section with a high cut-off 

frequency added to suppress high frequency noise before final 

amplification at the variable gain Output stage. 

Most of the amplifiers were used in the voltage follower 

configuration. This was necessary in order to realize sufficiently high 

input impedances and high gains for the low frequency filters, without 

the necessity of using high value resistors in the inverting 

configurations or additional operational amplifiers. Even so with the 

values of resistors used, moisture and stray capacity affected the 

circuit performance and thorough varnishing and screening precautions 

had to be taken. Although R-C product multiplication of 15 or more may 

be achieved at the expense of circuit gain this technique was not used 



in this circuit since the relevant configurations showed little 

advantage in terms of noise over the high resistance circuits. 

It was realized that near 0.2 Hz. there would be little signal. In 

an attempt to enhance the amplificaton in this region, the band edge 

peak of the active section was increased in gain by decreasing the the 

damping. However in practice this led to excessive spike noise at the 

output and so this approach was abandoned. 

3.3.2 THE DISTRIBUTION BOX CIRCUIT 

The telluric pre-amplifiers and filters were designed to be used with 

a cross configuration of electrodes with a central earth. The currents 

utilized two voltage follower configurations with high input impedances 

driving a differential amplifier configuration a passive filter section 

and an output stage. When used with the LM11CLH operational amplifier 

the circuit proved unsatisfactorily noisy and was temporarily abandoned 

in favour of the use of two Keithley Model 155 microvoltmeter chopper 

amplifiers. 

A similar circuit was later constructed by Dawes who used the OP-07 

operational amplifier which had become available and this circuit was 

sufficiently quiet for use as a telluric preamplifier. 

The Keithley microvoitmeter chopper amplifiers were D.C. decoupled 

from the electrodes with a high-pass passive R-C section to prevent 

saturation of 	the amplifiers by constant electrode potential 

differences. 	The amplifiers were used with an L electrode 

configuration. 

A discrete component chopper amplifier circuit based upon the 

Reithley microvoltmeter circuit but incorporating LM11CLH operational 

amplifiers yielded similar noise levels to those of the microvoltmeter 

amplifiers. However they were abandoned in favour of the simplicity of 

the circuit incorporating the OP-07 operational amplifiers. 

3.4 THE CALIBRATION 

The calibration of the system was carried out using a spectrum 

analyser. The five control-box amplifiers were tested for comparable 

responses as were the responses of the telluric amplifiers. The 

frequency responses of both sets of amplifiers were obtained 

independently and these responses together with the published CM11E 

magnetic sensor response curves were used to obtain the total magnetic 

and telluric responses. It should be noted that a more satisfactory 

method of obtaining the total responses would have been by direct 



measurement but accurate facilities were not locally available for the 

magnetic responses, and so such a procedure was similarly not used for 

the telluric responses. 

The noise levels for the system were obtained by loading the inputs 

with suitable resistors and digitally recording the noise with the 

N.E.R.C. Geologger.The total noise for the magnetic channels was 

deduced using these measurements in conjunction with the published data 

for the CM11E magnetic sensors. Direct measurements of the noise on the 

magnetic channels was again impractical. 

3.5 THE SHORT PERIOD AUTOMATIC MAGNETOTELLURIC (S.P.A.M) SYSTEM 

The Short Period Automatic Magnetotelluric (S.P.A.M) system was 

designed by Dawes to automatically select windows on a real time basis 

in the field. In this way only good quality data need be recorded. 

The S.P.A.M. system recorded data in three bands; 780 Hz. TO 20 Hz. 

and 30 Hz. TO 1 Hz. and 4 Hz. TO 0.125 Hz. and a fourth band which was 

not used 0.3 Hz. TO 0.01 Hz. The signal was initially amplified and 

optionally applied to 50 Hz. and 150 Hz. notch filters to reduce the 

affects of noise from electrical supply lines. The signal was then 

applied to anti-aliasing band-pass filters which could select signals in 

the above frequency ranges. After further programmable amplification 

the Z,D,H,E and N signals were sequentially sampled and converted from 

analogue to digital form for in-field computing purposes and written to 

tape for further analysis. 

Each window was sampled at 512 points in the time-domain. The input 

voltage into the analogue to digital converter was adjusted using the 

programmable amplifier by decreasing the gain to suitable levels at the 

beginning of each window. After the window had been converted to 

digital form the computer analysed the data in the time domain to ensure 

that 

The signals had not saturated the equipment. 

The signals contained no spikes. 

The mean of the modulus of the signal amplitude exceeded a 

given minimum. 



On condition that the signals met the above criteria the Fourier 

transform of the data was taken at 256 frequencies and the data averaged 

into approximately ten frequency bands. 

The data was then analysed in the frequency domain to ensure that: 

The minimum coherencies for the orthogonal measurement 

directions exceeded a given minimum. 

The number of frequency bands with coherencies satisfying (1) 

per window exceeded a given minimum. 

If any of the above criteria were not met then the time-series data 

already written to tape was over-written by that of the next window 

analysed. 



CHAPTER IV 

THE DATA ACQUISITION AND ANALYSIS 

4.1 THE PROFILE LOCATION. 

The 	data 	for this 	study were 	collected in 	the 	region of 	the Moine 

Thrust 	(Map 	1 	). A profile line orthogonal to the line of the Thrust 

was adopted with a 	high linear density of sites between sites 	B and F 

where 	it 	was 	believed 	the Moine 	Thrust structure 	may exist. The 

objective 	was 	to 	extend 	the data 	set 	of Mbipom 	(1980) covering 	the 

frequency range 1.2x10 3 	Hz. TO 	0.05 	Hz. with additional data in the 

frequency range 0.125 Hz. TO 780 Hz. It was further intended to test 

the validity of two-dimensional wedge shaped models for the thrust 

including the model proposed by Soper and Barber (1982) Figure (1.2). 

It was considered that the Lewisian Foreland should be more resistive 

than the Moine hinterland owing to the low porosities of the non 

granular Lewisian Gneiss of the Foreland compared with the higher 

porosities of the Moinian siliceous granulites of the Hinterland 

(section 1.4). Hence it was considered that it should be possible to 

detect a thrust structure in the region of relatively high site density 

of approximately 0.2 sites Km. 

The original data set of Mbipom was collected along a profile part of 

which was adjacent to high tension transmission lines. Since the 

frequency range of this study included 50 Hz. and switching frequencies, 

an approximately parallel profile line 15 Kms. to the south of the 

profile of Mbipom was adopted in this study. 

Since the S.P.A.M. equipment was vehicle bound it was necessary to 

position the sites near roads or tracks. This resulted in the bisection 

of three-dimensional structures in the region of grid references 265895 

and 246901. The latter structure appearson both Bouguer gravity and 

aeromagnetic anomaly maps (Map (3) and Map (4)). 

The positions of the principal sites are given in table (4.1) with 

the sounding frequencies used at each. 



SITE 	NATIONAL GRID REFERENCE 
	

FREQUENCY RANGE OF SOUNDING 

7.80x10 2  TO 1.25x10 1  
5.00x10 2  TO 1.20x10 3  
5.00x10 2  TO 1.20x10 3  
5.00x10 2  TO 1.20x10 3  
7.80x10 2  TO 1.25x10 1  
7.80x10 2  TO 4.00 
7.80x10 2  TO 1.25x10 
7.80x10 2  TO 1.25x10 
5.00x10 2  TO 1.20x10 3  
2.00xlO 1  TO 1.25x10 
5.00x10 2  TO 1.20x10 3  
5.00x10 2  TO 1.20x10 3  
5.00x10 2  TO 1.20x10 3  
7.80x10 2  TO 1.25x10- 

A 21279243 
BAD* 21959475 
ACH* 22789409 
KIN* 23319364 
B 23179103 
C 23299052 
D 23939160 
E 24599013 
SHN* 25279176 
F 25279021 
TER* 25639142 
LAI* 26059076 
BNB* 26348955 
G 27188943 

* 	DATA OF MBIPOM (1980). 

TABLE 4.1. THE SITES. 



4.2 THE DATA ACQUISITION. 

The rate of data collection was limited by the occurrence of natural 

signal. Frequently there was a polarized signal usually in the 

east-west direction, with little or no coherent signal in the 

north-south direction. This was particularly the case in the frequency 

range 0.125 Hz. TO 4.0 Hz. However at a rate of approximately one in 

every four days there were satisfactory unpolarized signals over the 

entire frequency range in which the S.P.A.M. system operated (0.125 Hz. 

TO 780 Hz.). Hence there were five sites at which measurements were 

made throughout the complete frequency range with one additional site 

where measurements were limited to the frequency range 4.0 Hz. TO 780 

Hz. 

The region between F and G was strongly affected by 50 Hz. noise 

making measurements with the S.P.A.M. system impossible. Observations 

at site F were restricted to tthe range 

0.125 Hz. TO 40 Hz. owing to the equipment saturation by 50 Hz. noise 

before the notch filters. 

Owing to the in-field aquisition and analysis facilities of the 

S.P.A.M. system, it was possible to compare responses obtained at 

different times at the same site (Figure 4.1). These comparisons showed 

that smooth responses could be obtained with small random errors where 

the observations were unrepeatable. 

Thse responses were obtained throughout the entire length of the 

profile including the north-western regions (Map 2) where little 

cultural noise was expected. They were thus attributed to source and 

telluric self-potential field effects. Furthermore the responses of 

adjacent sites could also be compared. On the assumption that the 

responses change only slowly with distance this enabled abnormal 

responses for a given locality to be identified. 

The selection of acceptable data was thus to some extent qualitative. 

4.3 THE DATA ANALYSIS 

Each event window selected by the S.P.A.M. system consisted of 512 

samples of magnetic and telluric data in the time-domain for each of the 

five Magnetotelluric components. The Fourier Transform produced 256 

Fourier Coefficients which were divided into ranges on a frequency basis 

and averaged to produce 52 sets of impedance tensor elements Zij per 

window. A broader frequency range was then selected and the impedance 

values averaged both over the frequencies within the range and over all 
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the acceptable windows. The vaLues of Zij which were associated with a 

coherency less than some assigned minimum coherency were not included in 

the average. The impedance tensor was then rotated into its principal 

axes by maximising the off-diagonal terms. Alternatively the axes of 

the impedance tensor may be rotated through some fixed azimuth. The 

elements Zxy  and Zyx  of the rotated impedance tensor were then used to 

estimate the appropriate apparent resistivity and phase estimate. 

4.4 THE BIAS ANALYSIS. 

The bias associated with the apparent resistivity measurements was 

assessed by estimating the apparent resistivities associated with the 

four stable equations (56,57,60 and 61) of section (1.7). It was shown 

in section (1.8) that noise present in the data may bias the apparent 

resistivity estimates obtained from these equations in different 

directions. The term bias range as used below is defined as the maximum 

range in log(ohm-metres) or degrees between the mean estimates obtained 

from equations 56,57,60 and 61 (section 1.7) at a given frequency. 

Although use of a minimum acceptable coherency (section 1.9) of almost 

unity may be a satisfactory criterion for the rejection of data with 

incoherent noise, coherency does not directly indicate the level of bias 

present in the apparent resistivity estimates. 

The effects of bias appeared to be present at all frequencies and 

sites in this study. However the bias range appeared to be least 

between 3.0 Hz. and 40 Hz. while at frequencies below 3.0 Hz. the bias 

range appeared to increase with decreasing frequency, and at frequencies 

above 400 Hz. a large bias range was also found. 

In this study the presence of bias was taken to indicate that there 

was some inconsistency between the behaviour of the electric and 

magnetic fields measured in the field and the assumed theoretical 

behaviour of those fields upon which the forward modelling was based. 

For this reason the estimates of apparent resistivity and phase with a 

large range of bias were not used for modelling purposes. It should 

however be noted that a large bias range did not necessarily imply that 

all the associated apparent resistivity and phase measurements were 

incorrect. 

The noise on the data was assumed to be predominantly on the telluric 

components and the impedence estimator which biased the impedence moduli 

upwards was used. 

The anisotropy in apparent resistivity estimates did not exceed 

approximately 0.5 decades. In order to identify anisotropic responses 



data with a bias range exceeding 0.2 decades was considered inconsistent 

and was not used for modelling. 

It was found that the bias ranges frequently exceeded the standard 

errors obtained for both the apparent resistivity and phase estimates. 

For modelling purposes the bias ranges were considered random errors and 

of the values given in table (4.2). 

4.5 THE MAGNETOTELLURIC RESPONSE FUNCTIONS. 

The magnetotelluric responses are shown in Figure (4.2). 	The 

following earth response functions are shown: 

Orthogonal apparent resistivity and phase responses after 

rotation through 15 0 . 

The azimuths of the unrotated data. 

The skew. 

The number of estimates at each frequency. 

The following observations were made concerning sites A,B,C,D,F and 

G. 

The anisotropy at sites B,C,D,F and G were larger than at site A but 

did not exceed 0.5 Log (Ohm-Metres). Excluding frequencies above 100 

Hz. and below 1 Hz. the skew is less than 0.2 at sites A,B,C and D but 

greater than 0.2 at sites F and G. 

Site E shows anisotropy of at least 1 Log (Ohm-Metre) and skew 

scattered values. 

The azimuths at each site vary widely. 

All the data appear to exhibit bias at frequencies below 1 Hz. 

However the absence of a large bias range appears to be insufficient to 

guarantee the reliability of the data since sites A,F and C have data 

which are scattered yet have a low bias range. 

4.6. THE QUALITATIVE INTERPRETATION OF THE MAGNETOTELLURIC RESPONSES. 

The complete set of Magnetotelluric responses is now compared with 

the expected deep geology, the surface geology and the geophysical 

properties of the region. 



BIAS RANGE 

0.0 TO 0.1 LOG( M.) 
0.1 TO 0.2 LOG( M.) 
GREATER THAN 0.2 LOG( M.) 

0.00  TO 2.50  
2.50  TO 7.50  
GREATER THAN 750 

ASSUMED ERROR 

+0.1 LOG( M.) 
+0.2 LOG( M.) 
DATA REJECTED. 

+2.50  
750 

DATA REJECTED. 

NOTE: 

THE ASSUMED ERROR WAS GREATER THAN THE RANDOM ERRORS ON THE ACCEPTED 
DATA. 

TABLE 4.2. THE BIAS RANGES. 

4.7 
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4.6.1 THE MAGNETOTELLURIC RESPONSES AND THE EXPECTED DEEP GEOLOGY. 

It had been expected as discussed in Section (4.1) that the 

Magnetotelluric responses should constitute two sets of data 

representative of the high resistivities expected on the Lewisian 

Foreland and the lower resistivities expected on the Moinian Hinterland. 

This however is not evident either from the apparent resistivity curves 

(Figure 4.2) or the one-dimensional models (Figure 5.1 and Figure 5.2). 

A different subdivision of sites was then utilized. It is apparent 

that the Magnetotelluric sites may be divided into two sets according to 

the maximum apparent resistivity at each site (Table 4.3). Sites 

A,B,C,F and G do not have apparent resistivities greater than lxl0 4  

ohm-metres and are henceforth decribed as normal sites for the study 

region. Sites D and E have apparent resistivities as large as 8x10 4  

ohm-metres and are henceforth described as anomalous sites for the study 

region. 

4.6.1.1 THE CLASSFICATION OF THE MAGNETOTELLURIC RESPONSES AND THE 

INTRUSIVES. 

In the following we shall assume that the granitic intrusives have 

resistivities in the region of 4.4x10 3  ohm-metres TO 1.3xl0 8  ohm-metres 

(Telford ET.AL . 1976) are embedded in country rocks which according to 

the normal Magnetotelluric sites have a resistivity in the range lxl0 3  

ohm-metres TO 1.2xl0 4  ohm-metres (Figure 5.1), (Figure 5.2). Hence the 

granite intrusives were expected to constitute positive resistivity 

anomalies or to be of approximately the same resistivity as the country 

rock. Inspection of Table (4.4) indicates that the anomalous sites are 

relatively remote from the surface evidence of granite intrusives. 

Furthermore the sites relatively near the known granite intrusives are 

normal. 

Hence we may conclude that either the granite intrusives have the 

same resistivity as the country rock or that the Magnetotelluric method 

was unable to detect them in this area. 

4.6.1.2. THE CLASSIFICATION OF THE MAGNETOTELLURIC RESPONSES AND THE 

GEOPHYSICAL ANOMALIES. 

Inspection of Table (4.5) indicates that the anomalous sites are 

relatively remote from the gravity anomalies. Furthermore the sites 

relatively near the gravity and aeromagnetic anomalies are normal. 

Sites near the aeromagnetic anomalies are both normal and anomalous. 

Hence we conclude that the Magnetotelluric Method is unable to detect 



SITE DESIGNATION MAXIMUM LOG(APPARENT 
A NORMAL 3.5 
B NORMAL 4.0 
C NORMAL 4.0 
D ANOMALOUS 4.5 
E ANOMALOUS 4.75 
F NORMAL 3.8 
G NORMAL 3.75 

RESISTIVITY) 

TABLE 4.3. THE MAXIMUM APPARENT RESISTIVITIES AT THE SITES. 



SITE MAXIMUM APPARENT NEAREST GRANITE INTRUSIVES REMARKS 
RESISTIVITY NAME DISTANCE AREA 
LOG(OHM-METRES) KMS. 	KMS2  

A 3.6 0.5 NUMEROUS DYKES. 
B 4.0 LOCH BORROLAN 1 

LOCH AILSH 3 
C 4.0 LOCH BORROLAN 8 

LOCH AILSH 8 
D 4.5 LOCH BORROLAN 10 

LOCH AILSH 6 
E 4.8 GRUDIE 2 UNRELIABLE DATA. 

LATERAL EXTENT OF GRUDIE 
GRANITE IS UNKNOWN BUT IS 
AT THE CENTRE OF AN 
EXTENSIVE 1.4X10 4  ms -2  
GRAVITY ANOMALY. 

F 3.9 GRUDIE 2 UNRELIABLE DATA. 
LATERAL EXTENT OF GRUDIE 

GRANITE IS UNKNOWN BUT IS 
AT THE CENTRE OF AN 
EXTENSIVE 1.4X10 4  ms-2  
GRAVITY ANOMALY. 

G 3.8 MIGDALE 5 
BOGART 9 

TABLE 4.4. 
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SITE MAXIMUM APPARENT NEAREST AEROMAGNETIC ANOMALY NEAREST GRAVITY ANOMALY 
RESISTIVITY DISTANCE ANOMALY DISTANCE ANOMALY 
LOG(OHM—METRES) KMS. nT. KMS. ms -2  

A 3.6 3.6 —100 44 —1.4X10 4  
B 4.0 2.0 300 15 —1.4X10 4  
C 4.0 1.0 —80 21 —1.4X10 4  
D 4.5 1.0 —180 17 —1.4X10 4  
E 4.8 1.0 —150 9.0 —1.4X10 4  
F 3.9 3.0 100 2.4 —1.4X10 4  
G 3.8 3.6 100 20 —1.4X10 4  

TABLE 4.5 



the structures to which the gravity and aeromagnetic anomalies in this 

are due. 



CHAPTER V 

THE ONE-DIMENSIONAL INVERSION 

5.1 ONE-DIMENSIONAL MODELLING. 

At this point as the data have been analysed we now require to 

obtain a conductivity structure from the data prior to any 

interpretation. The first step involved the determination of 

one-dimensional models for each site and then their compilation to 

construct an approximate two-dimensional conductivity section. As we 

are only interested in plausible conductivity structures at this stage 

the entire data sets were used in the construction of these models. 

5.2 THE INVERSION PROCEEDtJRE. 

The one-dimensional modelling programme used was a Hedgehog routine 

modified from a Monte-Carlo routine by Dawes. This routine was suitable 

for a non-linear search for models provided the range of models admitted 

at each iteration was sufficiently large. 

The algorithm used a Monte-Carlo search in an iterative manner so as 

to reduce the range of possible models at each iteration. Let P1 be the 

1TH parameter; a logarithm of resistivity or depth. Initially (i)x, 

(i)MIN and  (i)AV  are specified for the first iteration. Let H be one 

of a set of random nembers having a mean of zero and a variance of 

unity. Sets of random parameters are calculated as below: 

= P. i-  R [(Pj)M -(P y ] ; 19 '>0. 

	

p 	R[(PL)Av - (Pf IN] 

The corresponding model responses are calculated (Section 2.3) from 

each set of random parameters, and the 20 models the responses of which 

best fit the data are used as the set of models from which the maximum 

parameter values (Qi)X  and minimum parameter values (Qi)MIN are 

calculated together with a new parameter value (Pi)AV- 
The new search range for the parameters is now defined in the 

following arbitary manner. Let 	and B be constants and let K= 1 be a 
constant 	adjustable 	for- ----- each 	series 	iterations. 	If 

(P1)r1Ax/(Q1)1pX>ct, the search range is expanded, and the new values of 



(Pi)MAX and (i)MIN are given by: 

') 	4PL)MA + Ic [(P),, -(Pi)Av] 

(Pz)M,N (P)MIN - Ic [(PL)AV - (Pc)MiiJ] 	 4- 

If (Qi)MIN/(i)MIN<8' the search range is contracted, and the values of 

( P i) MAX and (i)MIN  are given by: 

(Pt) P4A X 	(Pi) MAX - ç [(PL)'4AK - 
to. 	I 	S 

(Pt) 	Pt) 4!N 1 t 
[ 

pjv 	(P 0At I N] 

These 	values 	of 	(Pi)MAX, 	(i)MIN 	and 	(Pi)AV 	are 	used 	as 	starting 

values for the second iteration. 

After a given number of iterations (usually approximately 40), the 20 

models whose responses best fit the data are plotted together with their 

responses. 	Although this does not give a formal statement of the error 

on 	the 	model 	parameters, 	it 	does 	allow 	the 	spread 	of 	models 	to 	be 

displayed with their associated spriead  of responses. 

One of three possible measures of fit may be selected for use in the 

Hedgehog programme. 	A least squares criterion and weighted (by the data 

error) 	least 	squares 	criterion 	are 	available, 	as 	is 	an 	error 	bars 

criterion where the 	fit 	index 	is proportional 	to the number 	of 	error 

bars which the model response intersects. 

5.3 1HE MODIFIED BOSTICK TRANSFORM. 	 -' 

The modified form of 	the Bostick Transform 	(Bostick 1977) 	utilizing 

the phase data given below: 

Af/2Ø3J3 
D Z rgi 15& 

L)'wi2o,J 	 S 

Where p is the resistivity, D is the depth, PA  is the apparent 

resistivity and 	is the phase. 

5.4 THE ONE-DIMENSIONAL INVERSION RESULTS. 

As already stated all one-dimensional models were obtained for all 

the response estimates of Figure (4.2) where the north and east 

measurement axes have been rotated by150 . These are presented site by 

site in Figure (5.1). In each case the best fitting models derived 

using the algorithm described -in Section (5.2) are---superimposed on -- the 

results obtained using the modified Bostick Transform (Section 5.3). 
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The computed responses for the one-dimensional models are superimposed 

on the observed responses as shownin Figure (5.1). They are also 

collected to form conductivity sections for each of the rotated 

measurement axes along the profile between sites A and C. 

These models (Figure 5.1 and Figure 5.2) show little difference in 

conductivity structure between the Lewisian Foreland and the Moinian 

Hinterland. However many of the models incorporate layers having 

resistivities in the range lx10 4  ohm-metres TO lxl0 5  ohm-metres and 

these layers extend to considerable depth near the centre of the 

profile. 

At the frequencies used, the skin-depths in such highly resistive 

layers may extend to 50 Kms. Since the one-dimensional model sections 

of Figure (5.1) and Figure (5.2) indicate a lateral variation in 

conductivity structure over horizontal distances of the order of tens of 

kilometers, we cannot draw any useful any conclusions from these 

one-dimensional models. For this reason two-dimensional modelling was 

subsequently conducted as discussed in Chapter VIII. 

I 
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CHAPTER VI 

THE OPTIMIZATION THEORY FOR INVERSION 

6.1 OPTIMIZATION AND STATISTICAL INVERSION THEORY. 

This section considers the use of the truncation and ridge regression 

methods applied to inversion in terms of optimization and statistical 

interpretation. 

6.1.1 A PRACTICAL MODELLING PROBLEM. 

Consider an approximate two-dimensional model derived by collating 

one-dimensional models produced at each of the measuring sites by say 

Hedgehog inversion technique applied in this study. Let this model 

consist of block resistivities and orthogonal boundaries. Designate the 

value of a block resistivity or the position of a tboundary as a 

parameter. 

It should be possible given sufficient parameters, to change them to 

improve the fit of the model responses to the anisotropic response 

estimates. One approach changes the parameters one at a time by trial 

and error. Unfortunately however there is often little indication as to 

how much a parameter should be perturbed. Several trial changes may be 

necessary to optimize the model fit at this stage. However it may then 

be found that a parameter has been overadjusted to compensate for errors 

in the other parameters of the model. Thus when the other parameters 

are adjusted it may be necessary to return to the first parameter to 

correct the over-adjustment or bias. 

These two problems may be overcome to some extent by linearizing the 

model over some restricted range. The Jacobian of the model response 

derivatives with respect to a number of parameters is obtained. Using a 

minimization of variance technique the parameters are adjusted 

simultaneously to a set of optimum values which lie within the 

restricted range of linearity. The process is then repeated. This 

method has the further advantage that the entire data set is considered 

simultaneously so that the interaction of the model parameters is 

recognized. 

----I-t--may -be found however that the initial - sef parameters -

ultimately insufficient to describe a model with a response which fits 



the data. Further parameters may then have to be made available. 

However by the time a deficiency in the number of parameters has been 

identified a number of iterations may have been made and hence the 

adjustments of the initial set of parameters may be biased. 

The initial choice of parameters is clearly important. However the 

linearization method is unable to allocate the parameters. Although a 

fine grid of blocks would be ideal, this would have required a finite 

difference forward modelling program (section 7.1) would have to be used 

in order that the computing time would not become prohibitive. 

In this study only models with a few block resistivities were 

considered. 

6.1.2 THE GENERAL THEORY 

Let x1 ...... xn be the parameters and 4l ...... m be the discrete 

model responses . Let ...... m  be the set of discrete measured 

responses. In general the 4j and xi are related by some non-linear 

function. 

t 	 I 

• It is required to minimize the misfit of the calculated model to the 

data (Jupp and Vozoff (1974), Jupp and Vozoff (1977),Lawson and Hanson 

(1974), Luenburger (1968), Plackett (1961), Price (1964), Rodgers 

(1976), Smith (1969), Twomey (1977)). The measured responses IP however 

are associated with unequal errors and are hetrogeneous in units. 

Thus assuming the errors on the data to be independent the sum 

2  is minimized. To effect this we solve an equation similar 

to (2). 

ATA ,.= AT'  E 	 2% 

The minimization is effected by local linearization of. the model 

response function 4. Let A0 be the Jacobian of j/Xj for i1,n and 

j=l,m. Let the errors E1on the data be independent so that COV(y) is 

a diagonal matrix with entries 1/Cjj 2 . Then we may define the scaled 

data y as below: 

A [cv(!j)T" A 0  73 

,q [cov (q)] 4 
The--scaled equations may now be solved for x. 	Itmaybeshown that 	2) 

minimizes 	the 	sum 	of 	squared residuals by 	differentiation of 	the 

Q  



expression: 
2. 

jz= $i-AcJ= 

We may decompose the square matrix ATA using the decomposition 

ATA = S'Ds 

In this representation the columns of S constitute the eigenvectors and 

the diagonal of D constitutes the eigenvalues of the equation 

7 

It should be noted that the singular value decomposition of Lanczos may 

be written 

A=V4.VT 	 S 

where s=vT  and D=ATA. This second decomposition was used in this study 

in preference to that of equation (6). It may be shown that the least 

squares solution for xi as given by (2) may be obtained using the 

expression : 

VA- 'u 	 9 

The Lanczos inverse A+  is evaluated by determining A 1  in accordance 

with the conditions : 

At= VJVT 	
10 

IF7O 	 II 

, J 

6.1.3. THE NATURAL INVERSE OF LANCZOS. 

The Natural Inverse of Lanczos (Lanczos (1961), Penrose (1954), Roxis 

(1984)) appears frequently in the following discussion. For 

completeness a description of the inverse and the associated notation is 

given below. 

The mxn matrix A may be studied by enlarging it to an (in+n)x(m+n) 

square matrix and considering its eigenvalue equation: 

1° '1 wl 
LAT oJ YJ 	LJ 

-----We--may express (13) in matrix form : 	- ---- 

	

AV =4U 	 '4 

ArC) 	4V 	 is 
an 



After multiplication we may obtain: 

• ATA Vz = 	Ve 	
16 

 

17 

Hence vjTvjo,  or the vectors Vj and Vj are orthogonal and ui Tuj =O, or 

the vectors Uj and Uj are orthogonal for all A 1 . 

The vectors vi and uj may be found independently of each other but 

for non-zero eigenvalues (X 1 /=O) the U and V spaces are coupled. Let 

there be p non-zero eigenvalues. It is convenient to divide the U space 

into U and U0  and the V space into VP  and V0  as below: 

ATAVP  

A T  A V0 
ATA up 

Any solution to: 	 AFA U0 

A TAVp 
may be added to any solution to: 

VP 
	 IS 

o 	 19 

Up 	 20 
o 

7L2pVP 	 22 

ATAV0=O 
to give the general solution for V. 

Hence solutions for V where one or more of the X i  are zero are 
non-unique and contain projections into the V0  space. 

A similar argument applies to the solutions for U. 

6.1.3.1 THE ANALOGY WITH SQUARE SYMMETRIC MATRICES. 

Let the matrix Abe square and symmetric so that m=n=p. Then A may 

be decomposed as below where d is a diagonal matrix and STS=SST=i :  

A = ST DS 	 24 

For the square symmetric matrix by analogy of (13) with (24) we have: 

QS 

VTV= VVT=i 
UT() =V UT= I 

Whence 

A'=B= Vj.CUT 

01 



6.1.3.2 THE GENERAL MXN MATRIX. 

The inverse B may be extended to account for the general mxn matrix A 

of rank p as below: 

vp4; UPT 	
29 

Where 

iF 	 30 

0 	ic 7O 

Then we have: 

AB = UpUpT Xp 	 32 

Also 

BA = V ppTI p 	 33 

Let t7T) be an arbitary vector in U space. Then the product AB leaves 

UpTI unchanged as below: 

AS OP 
	

UpU 7Up 	Up"t 	34 

Similarly let Vp71 be an arbitary ye ctor in VP  space. Then the product 

BA leaves V11 unchanged as below: 

BAV Q1 
	VP  VpT  Vp = VP 	35 

The matrix B is known as the Natural Inverse of A which operates only in 

p space. 

6.1.3.3 THE GENERAL LINEAR SYSTEM. 

Consider the equation: 

Ax 

We may use B to obtain the solution as below: 

ry , 37 

= Vp.tC t UpT 14 	39 
If the equations are compatible then we have: 

AJ 	 39 
Whence: 

Up4V,7Vp4'uj :j 	40 

n 11 



Hence the equations are only compatible if y is in U space and has the 

form y=Upn where Ti is some vector. The least-squares equations are not 

usually compatible. 

If the equations are complete then we have: 

X=8A7( 	 41 

Whence: 

Vp .4 U VpII p VP )C 	 42 

Hence the equations are only complete if x is in V P  space and has the 

form X=V11 where Ti is some vector. The solution then has no projection 

into the v0  space since vTv0=o. 

6.1.3.4 THE LEAST SQUARES INVERSE. 

Let A be an mxn matrix and let: 

	

It was shown in section (6.1.2) that the least-squares solution for x 	I 

may be obtained using: 

[ATA]AT 	
11 

= [VPPUUPLPVP'] 'VPLI P U PTI 4_5 

= VpJp$pT 	
4-6 

The least-squares solution x has no projection into the V0  space since 

v0Tv=o. 

6.1.4 THE STEP LENGTH LIMITATION. 

The 	truncation technique 	(Marquardt 	(1970)) 	for step-length 

limitation uses the expression below 

	

T 	 47 

where the elements of AT 	are related to those of A by the transforms 

where 1 0 is some thresho1d--e-i-genva1ue. 

4 

'if A.,<A.0 	 49 



The ridge regression technique for step-length limitation uses the 

expression 

[ATA.+,L&I]= A 	 S.', 

This is equivalent to the form 

VJcP UT , J 	61 

where the elements of AR_ 1 are related to those of A by the transform: 

52 

where 11 is some damping factor. 

It should be noted that ATY  is the component of the gradient vector 

resolved along the direction of the misfit y between the data and the 

model. 

The gradient method uses the expression 

= i(AJ 

where K is some arbitary scalar chosen to restrict the step-length. 

Alternatively the parameters which produce the small A1 may be 

removed from the problem by for example inspecting the associated 

Ridge-Plots. 

It may be shown that the Gauss Method (where X0.tO) is not 

convergent when 

However the gradient method is always theoretically convergent. As 

p. is increased the ridge regression technique produces steps xR  which 

have decreasing length but which make a decreasing angle with xG. 

The fact that I IxRI I decreases with increasing p. is shown by 

utilizing the fact that ATA  is a square matrix where vTv=vvT=i  and 

expressing XR as below 

= vT[I+jtrJVATj 	 155 

Let 

- v,v - 	 56 

Then we obtain 

ODCR 
	 72  4Z XT 	7A 

0il 



Since Ti and A 1  are independent of )i 	IxRI decreases with increasing 

11 . 

We may show that the angle between the gradient vector xc and the 

ridge regression vector xR decreases with increasing .1 s below. 

Let xG be the correction vector of the gradient method and let xR  be 
the correction vector of the ridge regession method with a damping 

factor ji. Then as j.1 increases monotonically e decreases monotonically. 
We have the angle 0 given by 

T 

= 	
572 IIIxI 

The gradient correction vector xG is given by 

The angle may be expressed as below 

Co9 = 5•7 
[v 

Whence : 
Vj2  
Z tA  

L a i AJip. ][xc] 
After differentiation we obtain  

jk 	im  r x 	' 

doê 
	vi, +43 	VJ25,[4.,L?] 

-, /..l 	
57F djz. 

- 	
lL[ 	 *[] 

The denominator of (57p) is positive and the numerator may be expressed 
as 

[ =l [

F

L
r  

j 

	

 r 	
J J 

 z 

T 
 'L

v'1a+..1 J r 

'' 	
,J]  

'[ViVIII i L 	' 

 

Al 

Then by the Schwartz inequality d(cos0)/dji is positive for 

jl>>o. 

The truncation method also possesses the property ,  that the step 
CO1rection length Ixpi decreases with assumed rank R of the matrik A. 
This may be shown using a similar argument to that used with the ridge 

regression tQchnique yielding 

z 2UjZ [ 
	[ Vtj 

]] 	

5 A 
j-I 

'where we have g=ATY. As R decreases 	IXTJ 	decreases. 

We may derive the conditions under which the angle betwfl the 

vector xc and the truncation vector xT decrease :with däressng 

umed rank R as below. 	 - 

Let xG be the correction vector of the gradient method and let 	be 
t 	correction vector of the truncation method. Let 0 be th.e angle 

95 
I 	1: 



between xG and XT- 

Then we have 

CosØ - ?9cI 

I3Cy!IXc1I Then 

x 7Tç = 	VI VT 	
5c 

Whence 

u_ 

Coj6 [x  vi 141] 
tl=R 	 616,D 

Then [ 2  fxs) vjq 
u.R- tL- g  

IIIc4s Or castir-a = 	 - 2 CDC 

r a- 	 liz 1 li 

	

: 	f[x tu:J '12.LL 	2J 	i,. 	c - 

The denominator of (M4 is positive. The numerator is positive and the 

angle decreases when 

xzI< 
I J_I 

	M" 
	

:57Z F 
[ 	a[[i] 	

-  
• 

12xviu] J =, 
Under certain circumstances the condition above may be simplified to 

(AR_1/Xn_2)<<l. Nevertheless in this study the condition was rarely 

satisfied and where truncation to low ranks would have been necessary to 

secure sufficient step-length limitation the ridge regression technique 

was used. 

The effects of using the ridge regression or truncation bechniques 

may be seen by reference to Figure (6.1). Where the gradient method is 

ued the convergence to the minimum may be slow and hemst'itching (Figure 

4;.2) may occur. When the Gauss-Newton method is used the vectors xN lie 

along the ridges but the iterative series may diverge if (54) is not 

satisfied and IxNI may be sufficiently large to extend beyond the 

region of linearity. The ridge regression and truncation techniques 

produce xR  which lie between these extremes. 

6.1. RIDGE REGRESSION AS CONSTRAINED OPTIMIZATION. 

It is possible to envisage ridge regression as a constrained 

minimization problem : minimize x RTxR  subject to the constraint 

[R— <x>]TATA[XR_<x,>]. 4 
	

61 

Where 	is the permissable sum squared bias in the estimate Xk and x 

i the unbiased least squares estimate. Using the method of Laqraige 
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multipliers (50) and (61) may be solved to obtain an estimate for xR. 

Alternatively an equivalent constrained problem is to minimize 

(y_AxR) T (y_AxR) subject to the constraint 

62 

where H is the step length. Using the method of Lagrange Multipliers 

(50) may be solved with (62) to obtain an estimate xR. 

Neither of these methods was used as they are unable to limit the 

magnitude of any given step correction vector element to a given range 

The linearization of the variation in the model response with respect to - 

the model parameters is only valid for limited ranges in the parameters. 

As the relationship between the largest step correction vector element 

and the possible bias 4 0  was not known the method of (61) was not used. 
The method of (62) was not used since the relationship between the 

largest step correction vector element and the step length R is only 

known as an inequality The consequent use of step correction vectors of 

unnecessarily short lengths would be inefficient. Hence in this study 

the magnitude of the step correction vector was limited by the 

adjustment of i until the largest vector element equaled some maximum. 

6.1.6 THE STATISTICAL PROPERTIES OF THE RIDGE REGRESSION AND TRUNCATION 

METHODS. 

The ridge regression and truncation methods have been considered from 

the viewpoint of optimization and step-length limitation . In the 

following section we present a number of statistical advantages (Hoerl 

and Kennard (1970), Marquardt (1970)) of using these methods. 

In the case of the truncation method the shorter principal component 

vectors were neglected. In the case of the ridge-regression method the 

shorter principal component vectors were relatively neglected. Hence 

the correction vectors moved in directions lying between those of the 

steepest gradients and the ridges or valleys of the ETC  surface 

(section 6.1.4). 

If in the region of the minimum, the objective function is 

sufficiently linear then the properties of the truncation and ridge 

regression methods should apply as they do to the linear problem. The 

stabilization methods may reduce the expected sum of squares error 

between the exact and estimated parameters by decreasing the random 

error and introducing a systematic bias error. This however increases 

the sum of squares misfi-t----bet-ween--the predicted model response and the --

data. 

QA 



This is described below. 

At the final iteration step, we may consider the model to be 

approximately linear. We may require an estimation of the error on a 

vector x. Let the true value of x be that which satisfies: 

	

A=y+ 	 75 

The estimate of x may in fact be quite remote from the true value of x 

as indicated by the variance expectation 

ELE<>-jTr<>-?J:1= 	E&23 	7 

The variance on this expected value may be similarly large: 

VAR E[K) - 	- 3} = 2 Q' ,.i i 	 77 
Let xz  be some estimate of x where: 

	

Z)C7- 2x 	 76 

Then the expectation E[(X -X) T (X -X)] is given by: 

E [[ 	
jT[ 

z — 	 t' TRACE rATAJ ZTZ i 	TEzI] 	79 

The first term is the sum of the variances while the second term is the 

Euclidiàn distance between xz and x or the squared bias in the estimate 

xZ. 

Both the estimates of the truncation and ridge regression methods 

satisfy linear relationships of the same form as (78). It may be shown 

for both truncation and ridge regression methods that it is possible to 

obtain a smaller expectation value EUxZ_x) T (xz_x)] than with the least 

squares method. 

To demonstrate that this is the case for the ridge regression method 

we express (79) in the form : 
1P 	.2 Zj j = 'Z Z 	2 

E E E<> - 	- 	 [VJ . go 

The differentiation of (80) yields 
iP 

[[<>->J --z- 	+z. 	LV] 
dR 	 - 	LXtJ3 	£./ [AtAtJ3  

At JI=O the expectation E[(xR_x) T (xR_x)J is given by a9/X,2 while as M 

the squared bias tends assymptotically to xTx. From (81) at j.t=0 the 

variance term decreases at a greater rate than the squared bias term 

increases with jI and hence the expectation E[(xR_x)T(xR_x)] assumes 

values less than E[  

00 



Now consider the truncation method. For an assumed rank R of the 

matrix ATA  equation (79) yields: 

EEL r xJT[x-x:fl c- 	J,Y] Z x V 
The condition: 

E E[<>  ]TE&II1 > ErLxT -2Q 'tr - xJJ 
	

mi 
Is satisfied when: _p 	

[VP_R t:zj > 0 
	

99 
The condition for the truncation method is seen to be more complex than 

for the ridge regression technique. 

It should be noted that the truncation method or ridge regression 

method may decrease E[(xz_x)T(xz_x)J but at the same time this increases 

the residual sum of squares misfit. If we assume that the response is 

smooth and that the data are randomly scattered about that response, 

then E[. (xz_x) T (xz_x)] decreases with an increase in the residual sum of 

squares misfit as expected. 

At the first iteration step vector we have further assumed that the 

model'is linear. This may not necessarily be true and only a few of the 

model parameters may show a linear relationship with the responses. If 

the non-linear parameters are excluded the final step vector estimate is 

liable to be biased and if all the parameters are used the final step 

estimate may of necessity be small or in error due to the effects of 

non-linearity in conjunction with small eigenvalues. 

Nevertheless where the region about the minimum is approximately 

linear the expectation E((xz_x) T (xZ_x)] may be minimized to produce a 

form of optimal solution. This solution however reduces the errors from 

the random spread of values about x by introducing an unknown bias. 

Although the expectation value is reduced the introduction of the bias 

term may itself introduce difficulties in interpretation. 

6.1.7 THE ESTIMATION OF THE ERRORS ON THE PARAMETERS. 

Let us assume that the minimum residual sum of squares has been 

reached in accordance with any distortions arising from the biasing. We 

now require an estimate of the range of values each parameter may assume 

(Hoerl and Kennard (1970), Jackson (1973), Marquardt (1970), Roxis 

(1984)). 
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6.1.7.1 THE PARAMETER COVARIANCE MATRIX. 

One possibility is to examine the parameter covariance matrix 

(ATA). Let the general estimate xZ be related to the true value of x 

by (78). Then we obtain 

VAR [<>] "-' 	ATAJ Z 
In the case of the ridge regression this becomes 

VAR E<,'>J = 0tA1AtPIJ 'EAFAJEATAt.IT '  16 
In the case of the truncation method where ATA  has an assumed rank R we 

obtain 

VA1t<x7->1 = c7VJ!VT 	 97 

The estimates of the diagonal of the covariance matrix indicate the 

variance associated with the individual parameters. However the region 

of constant variance Qv for parameter combinations x are 

hyper-ellipsoids satisfying 

TrArAJX = Gk V 

6.1.7.2 THE PARAMETER ELLIPSOID. 

It is further possible to identify the maximum parameter range 

associated with any linear combination b of parameters. 

Let Q'cj be the maximum variance. Then we may minimize xTb subject to 

the constraint 

XTCATAJX Qv 	 99 
11%.

The Lagrangian function L is given by 

2' xT 	 90 

Let H be the generalised inverse of A. Then we obtain 

r________ 
H[j±LfrrHnr&3hHTkj 	

91 

This method is capable of yielding the range of x required so that when 

x is projected onto some arbitary vector b the variance limit Qv is 

encountered. 

The covariance matrix has identical principal components to that of 

the system under consideration. The eigenvalues of ATA  thus represent 

the variances associated with the principal components of--the-system. 

1 Al 



Let Qva. Let b be a vector with a single unit element b 1 =l and all 

other elements zero. The range of the corresponding parameter xi is 

equivalent to the standard deviation for that parameter evaluated from 

the parameter covariance matrix. 

6.1.7.3 THE MOST SQUARES METHOD OF JACKSON (1976). 

Another possible approach is to define some threshold which the 

residual sum of squares misfit may not exceed. The residuals c may be 

defined as below 

92 

For a fixed sum of squares residual ER TCR the parameters form 

hyper-ellipsoids given by 

= X TA TA, - 	 93 

We may define a threshold Q0 and a projection of x onto a arbitary unit 

vector b and ascertain the range of values x may assume by minimizing 

xTb subject to the constraint 

- 	 TATA4  -2 TATLJ jjT, 	 94. 
The Lagrangian function L is given by 

z= 	 95 

Let H be the generalised inverse of A. Then we obtain 

H 	± i OØLSJHT&J 

Where QLS  is the sum of squares misfit for the least squares solution 

to (92). 

This method is capable of yielding the range of x required so that 

when x is projected onto some arbitary vector b the residual sum of 

squares misfit threshold is encountered. The vector b may be chosen to 

have one element with all the other elements zero or it may be chosen as 

a principal axis of the problem or as some linear combination of 

variables which one may assume to be related to each other. 

The procedure may be illustrated by reference to the two-dimensional 

case shown in Figure (6.2). 

The ellipse shown here satisfies (93) for a given value of Q. Let b 

be a combination of parameters. We evaluate the extreme values of X to 

find Xb which lie on the boundary of the ellipse- and---hence satisfy 

(93). 

in') 
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It is seen that (91) and (96) are identical when 

Qo - QLS = Q v0 	 97 

Let Qv=a. When b is a vector with a single unit element b=l with 

all the other elements zero, the range of the corresponding element xi 

is equivalent to the standard deviation for that element evaluated from 

the parameter covariance matrix. 

6.1.7.4 THE PARAMETER BASIS. 

The methods above give ranges for the individual parameters which are 

independent of the parameter basis on condition that matrix Z is 

diagonal in (85). 

This may be illustrated by reference to Jacobian A. 	Let the 

parameter basis be changed so that the Jacobian may be represented by AL 

where L is a diagonal matrix. The expression (ATA)_ in (85),(91) and 

(96) after the change of basis may be written as L(ATA)L. 

Expressions for the parameter ranges which use the diagonal term 

(L-1  (ATA) -lL-l )ii only for each parameter xi yield parameter ranges for 

X1 independent of the parameter basis. Expressions which use linear 

combinations of the diagonal terms (L_ l (ATA) - L_l )ij or the off-diagonal 

terms (L-1  (ATA)_1L_1 )i for i=/=j yield parameter ranges dependent upon 

the parameter basis. - 

Thus for a vector b with a single unit element b1=1 and all other 

elements zero, the parameter range for Xj is parameter basis independent 

whereas that for xj where i=/=j is basis dependent. Where the vector 

has more than one non-zero element the parameter range is basis 

dependent. 

6.1.7.5 THE APPENDED DATA. 

It is questionable however whether the range of a parameter estimated 

using a technique known to append arbitary data to the data set or 

introduce bias into the estimate is a valid range. The effect of the 

arbitary data is to reduce the variance from iX 1  TO X1/(X1 2 +j.L) and to 

reduce the range of values which the parameters may satisfy. 

If we require only use of the non-augmented model data then we may 

either use only the parameters which may be estimated without bias or 

use the entire parameter set with a non-augmented Jacobian. In both 

cases the parameter ranges are calculated from less data than the 

parameter estimates. Hence ---even- --t-hough - the model has been linearized 

the calculated parameter range may lie assymetrically about the 

1 ril 



parameter estimates. 

6.1.7.6 THE NON-LINEARITY. 

The methods described in Section 6.1.7.1 TO Section 6.1.7.5 are 

strictly only applicable to linear objective functions unless used as 

part of an iterative scheme. The Hessian of ETC is given by 

H 2 	 4 ZZ 61,  

An assumption of the method is that H= 2ATA. 

In the case of non-linear objective functions the C  
E surface is no 

longer quadratic. In the case of approximately linear objective 

functions the linear estimation of the error may be sufficient but in 

more non-linear cases the iterative application of (91) or (96) may be 

necessary. 

A further difficulty of non-linearity is that if the solution is 

displaced from the minimum then the elements of the Jacobian may be 

poorly estimated. 

Since the solution is derived by an iterative process in which the 

Jacobian is evaluated several times, the comparison ,  of successive 

Jacobians should - reveal any non-linearity present. 

THE ERRORS ON THE MODEL PARAMETERS. 

The errors on the model parameters were in this study estimated using 

two methods. The error on the individual parameters was estimated by 

setting the maximum residual sum of squares error Q0 such that 

O= c+a 

Since the Jacobian was that used for the final iteration step the errors 

may be incorrectly estimated. No iterations were conducted for the 

error estimations. 

Unresolved adjacent parameters of similar values were averaged 

together by summing the appropriate columns of the Jacobian. The new 

parameters were estimated and the errors on the parameters calculated 

for the individual parameters. This differs from the proceedure of 

maximizing the sum of the parameters xTb since the amalgamated 

parameters may take only one value. Since in this study the Jacobian 

was that used for the final iteration step the errors may be 

underestimated. No iterations were conducted for the error estimations. 
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6.2 THE DISADVANTAGES OF THE RIDGE REGRESSION AND TRUNCATION TECHNIQUES. 

Section (6.1) considered the use of the ridge regression and 

truncation techniques from the viewpoint of optimization and statistical 

interpretation. In this section we show that the ridge regression 

technique relies upon the addition of fictitious data to the data set. 

Furthermore we show that the technique of adjusting the ridge regression 

damping factor with each iteration is not consistent with the use of a 

single set of a-priori information. 

6.2.1 THE A-PRIORI INFORMATION APPROACH. 

Now we show that a single iteration of the model using the ridge 

regression technique relies upon the addition of a-priori information to 

the Jacobian and the right hand side error vector (Marquardt (1970)). 

It has been shown that for ridge regression the forms 

= [ATA5tAIJAT.y 	 100 

And 

p= V4UT 
	

U 

Where : 

	

DIAE+] 	 102. 

Are equivalent. 

6.2.2 THE ITERATION OF THE RIDGE REGRESSION TECHNIQUE. 

In this section we show that ridge regression may be.represenred as a 

statistical problem where the diagonal damping factor matrix added to 

the Jacobian represents a covariance matrix, (Tarantola and Valette 

1982, Tarantola and Valette 1982). An expression for the .iteration is 

derived and it is shown that changing the damping factor for the ridge 

regression with each iteration changes the covariance of the statistical 

problem This is usually assumed to be constant a-priori information in 

statistical problems. 

It may be shown that (100) is equivalent to the addition of 

fictitious data to the experimental data. This is seen by considering 

the partition 

[AT t.ti,J 1~m
] 	LAT H]1 	 103 

tJ 	 LOJ 
Then if  

S 	 104- 



We obtain the expression (100). 

The additional information implies that the elements of xR have all 

been measured by some response which is directly proportional to the 

parameters and that these responses fit the data. 

It may be shown however that (100) is a special case of a more 

general formulation. 

Let xbe the set of data and parameters and let CO be the covariance 

of x as below 

CO' 	 ICctodo 	p.  Cd0 
' 	 1O6 
L'Pc: C rC  

Let f(x) be a non-linear function where 

107 

If f(x) is linear and if the data have a Gaussian distribution the 

parameters will also have a Gaussian distribution. We require to 

minimize the weighted residual sum of squares 

-jT J 
	

'Os 

WexO is the set of data and a-priozi parameters 	Using the method 

Ôf Lagrange Multipliers we obtain the expression 

t c0F[ F, CO FTJ 	 - 	 109 

Where 

Fir, 	01%2CIC IXK 	
"a 

For (107) Fik  is given by the partitioned matrix 

Where 
F [I - 1] 

= 

Using (105),(106),(107) and (111) we obtain from (109) the expression 

P61 +  [,°op- CredJ [c &  - 	çj 	t 	IJ3 1(-(P)t 	— ejj It 

If further we assume that the data and the parameters are independent we 

obtain 

-------------- 	CdcCTpoO 

Whence 

PRn <PjtE C3 K 	 oCp1 	 Pc)] + 

'$4- 

ILS 
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This is the solution for the non-linear problem. 

We may compare (100) with (115) whence we obtain 

A i t< 	 (17 

•dUI = Cpopô 	 119 

However (115) has one additional term Cp0p0 1 [p0pk]. 	If we assume 

during an iteration step that POPk  then (100) is equivalent to (113) 

and the a-priori parameters are those at which the iteration starts. In 

a series of iterations, the a-priori parameters are changed with each 

step and this makes the solution dependent upon the starting point of 

the iteration series in some complex way. 

However in the iterations in Section (8.7) and Section (8.8), ridge 

regression was used iteratively to limit the magnitude of the elements 

in the step correction vector. The a-priori data added to the data set 

in this way (Section 6.2.1) adds no further information to the problem 

and therefore cannot be considered as necessarily constituting 

conditions under which a solution is to Be obtained. Hence the a-priori 

data is arbitary and we may set C-1 (PO -PK) equal to zero by setting 

POPK at each iteration. 

There are however a number of disadvantages associated with the use 

of (115). 

The expression (115) is stabilized using Cp0p0, the covariance of the 

a-priori data which remains constant throughout the iteration sequence. 

However it was found in this study that the damping factor p in (100) 

could be decreased as the iteration proceeded. This resulted in a step 

correction vector of maximum length, consistent with thp linearity 

approximation. Hence the use of (115) may require a larger number of 

iterations than (100) to obtain a solution. 

For this reason (100) was used in this study in prefernce to (115). 
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CHAPTER VII 

FURTHER INVERSION STUDIES 

7. FURTHER INVERSION STUDIES. 	- 

This chapter contains the derivation of a number of expressions which 

should be of considerable utility in future stuies. They were not 

applied to the inversion of the present field data as they were 

developed at a later stage. 

7.1 THE PERTURBATION OF THE MODEL PARAMETERS. 

Swift (1965) and Jupp and Vozoff (1975) presented a method for the 

computation of the Jacobian as required by the two-dimensional 

inversion. The extension of this technique by the author is now 

described. The modified method allows the calculation of the response 

of a perturbed two-dimensional model to greater than first order 

accuracy and hence allows the calculation of the mean value of a 

- derivative of a non-linearly varying response over a finite parameter 

interval. When used to first order accuracy the computation time for a 

Jacobian using the algorithm is approximately 0.065 of that required for 

the computation using single runs of the Brewitt-Taylor and Weaver 

programme. 

7.1.1. THE METHOD DESCRIBED BY SWIFT (1965), JUPP AND VOZOFF (1976). 

Consider the electrical network analogue of the two-dimensional model 

for E or H polarizations. For the E-polarization the electric field is 

assumed constant at the top of an air layer above the surface of the 

conductivity structure while for the H-polarization the magnetic field 

is assumed constant at the surface of the conductivity structure. These 

electric and magnetic fields are as represented by voltage generators. 

The boundary conditions applied to the sides of the network are those 

of a one-dimensional structure, that is no horizontal electric field. 

The lower boundary of the network is also assumed to have no horizontal 

electric field and to extend to infinite depth, without changes in the 

electrical properties of the medium. This is effected using a matched 

- - - - termination. 	- 
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It is thus seen that the current sources and sinks in the network 

remain unchanged by the specific structure under consideration provided 

the perturbation of the model parameters is not too extensive. 

Let A be the admittance matrix, x be the nodal voltage vector and y 
be the constant source current vector for the network. Then we have 

Differentiating ( ) with respect to the model parameters a represented 

by the network we obtain 

*A 4Q 
Then 

'% =A'[9(4J 	 3 

Hence by replacing y by (A/ac*)x we may obtain the voltage change at 
the network nodes due to the perturbation a in the model. 

7.1.2. THE ITERATIVE METHOD. 

The method described above can be extended to an iterative method. 

The - perturbation of x can' be expressed as a series. 

The advantage in using the iterative method is that a first order 

approximation to x can be unsatisfactory when the series for x converges 

slowly. This occurs with inaccurate initial solutions or with the 

larger perturbations to the model when the spectral radius of the terms 

is near unity. The iterative method below also allows for changes in y 

in the case of H-Polarization. 

Let the initial equation be 

4 

Let the perturbed equation be 

t— 	 .5 ev 

Let the Zollenkopf inverse of (A+) be estimated as A 1 . In order to 

obtain a solution to (5) we apply the residual iterative algorithm for 

x ' .f.l as below 

.tI 

Repeated application of (6) yields a series for x1 

[E*&\JKJ+EE1A]K'jt ------ t 1—EAf &JA 	Jf.so-cJ 	
' 

+ [-J1[C't8F4J Ao] 
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The solution to (4' is obtained from (7) with 

• 

The solution to (5) is obtained from (7)  with x0=A -y as below 

XA4 : , 	- 	

utJ[y JtE- 	in7 
M

9 
The perturbation 6x1=(x'-x) is then obtained as below 

1X'- X114 
	X,jXri 	FOR MN 	 JO 

For the series ((C) to converge as n4Qo and m+, the series (8) and (9) 
must be convergent. In practic e convergence can only be be ascertained 

for a finite expansion from the terms in the series and by the 

application of (II) to determine the error C given by 

cc 	- tA1tSJ x' 

An alternative method for obtaining an estimate for (x'-x) is given 

below. An expression for xN  is obtained to order N from (s). In (7)  we 

set xoxN  and expand to order I. Then the series produced using the 

latter method is given by 6x2  where 

+A- 1  {{ - Et.A+&A:IAI:1i- [[+€Jic3 +------- 	J 	l 

The expressions (8) and (7) should be expanded in order that (so) and (iz) 

are identical to accuracy. 

In many cases owing to the relative magnitudes of the elements in A 

and (A+SA) the resistivities of the model are increased for 

E-Polarization and decreased for H-Polarization in order to produce the 

most rapid convergence. The method may also be used for changes in - 

frequency where the frequency is decreased. However in this application 

the convergence is not rapid. 

7.1.3. THE JACOBIAN ESTIMATE. 

The expression (0) for 6x1 is equivalent to that, of Vozoff (1975) 

when N-i and M-l. The expression (SZ) for 6x 2  is equivalent to that of 

Vozoff (1975) when N-O and M-l. These forms are first order 

approximations for iSx, and are suitable for forming a Jacobian matrix. 

Consider a Taylor series for f(X+h). Comparison of the series to 

first order with (so) or (sz) shows that the first order coefficient of 

(10) or (sz) is the derivative of f at f(X), that is the derivative 

--determine-d --at one side of the interval h. 
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Suppose now that f is non-linear but that we know the range h over 

which we require the first derivative. We can obtain a mean derivative 

over that range by using the series solutions of (7) or (9), and hence 

take account of some of the non-linearity in f. In practice the range h 

can be obtained approximately from a previous value for h determined 

using a Jacobian as described in the Vozoff (1975) method. 

Such an approach is particularly useful where the errors on the 

models obtained from the two-dimensional inversion are-required... (section 

.1.7), as these are frequently large. 

The alternative iterative method of section (7.1.2) is compared in 

Figure (7.1) with the method of Vozoff for the example 'of a quater 

space. 

7.2 THE BREWITT-TAYLOR AND WEAVER APPROXIMATE SOLUTION FOR A HALF-SPACE. 

The Brewitt-Taylor and Weaver equations are used to derive the 

dependence of the approximate apparent resistivity and phase upon the 

horizontal mesh spacing and skin depth. 

7.2.1 THE FINITE DIFFERENCE MESH 

The finite difference formulation of the two dimensional requires the 

construction of a rectangular mesh of continuous lines of nodes parallel 

to the cartesian x and y axes. The nodes of the mesh must be 

sufficiently closely spaced to represent the electromagnetic field 

accurately but be sufficiently far apart to keep to a minimum the number 

of nodes and network equations to be solved. 

To obtain an estimate of the necessary spacing we may consider a 

one-dimensional half space and apply the two dimensional equations. 

Let the vertical meh spacing be linear so that k=k2=k4 (Figure 2.2). 

Let the conductivity of the half space be a. Since there is no 
variation in a with y there are no horizontal currents 'arid a 

capacitor-resistor ladder network analogue for E-polarizatlOn and 

'?cilarization (Figure 7.2) yields a characteristic impedance in terms 

Of the kin-depth 6 given by 

- K 
JK

4 13 

!C E-polarization with a continuous variation of resistivity at the 

OUtivity-structure air interface (Brewitt-Taylor and Weaver (1976)) 
ud for the modelling in this study we have from equation (.35) 

I = JL&& ZS' 
14 

SA g{i- K:/+] 

/4[t+K2.11 	WHERcS>h 	 16 
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FIGURE 7.1 • THE COMPUTED APPARENT RESISTIVITY OF A HALF-SPACE FOR E-P0LABIZAION, 

THE APPARENT RESISIVITY OF A 100 M-METRE F"-SPACE WAS COMPUTED USINS THE 

FIlTIT3 DIFFERENCE METHOD OF BREWT-TAYZR AND WEAVER (1976) ASSTJ1IN A 

CONTINUOUSLY VAiUA3L RZSIUIWY AT THE SURFACE OF THE HALF-SPACE, THE 

RESISTIVITY OF THE HALF-SPACE WAS THEN VARIED AND THE APPARENT RESTIVITIES 

RECALCULATED USI? 

THE Ffl$2 ORDER APPROXIMATION, THIS USED TEE METHOD OF SWIFT (1965) AND 

JUPP AND VOZOFF (197$). 

m FcuicHoRDER AppRoxImATioN. rsis USED THE ALTRN&TIVE MODIFICATION OF (1) 

TO FOURTH ORDER. 

THE APPARENT RESISTIVITY VALUES WERE AVERAGED OVER 11 POINTS Al' THE CENTRE OF THE 

GRID SUCH THAT  NO POINT WAS  LESS THAN 3.75 SKIN DEPTHS FROM THE EDGE OF THE  GRID, 

THE ERRORS SffOWN ARE THE STANDARD DEVIATIONS OF THE AVERAGES. 

WHEN DERIVATIVES ARE CALCULATED, METHOD (1) GIVES THE DERIVATIVE AT THE 5P1I21' OF 

THE INTERVAL WHEREAS METHOD (2) GIVES A MEAN VALUE OF THE DERIVATIVE OVER TEE 

THE INTERVAL, 
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For E-polarization with a discontinuous variation of resistivity at the 

conductivity-structure air interface (Brewitt-Taylor and Weaver (]976)) 

we have 

Ell,_____ I ZO6 	
I 	

17 = 4A 	2S2+jZcl 

{i+K,] 	 WIE1E &h. 	 It 

0 	 WbiERES>h 	
I, 

For H-polarization as used for the modelling in this study we have: 

 '92 tj Zo 
2 	

o W.LL 

WnERC 8?h 

0 	1-
,<] 	w 

Similar results may be obtained using an inductor-resistor analogue. 

Brewitt-Taylor and Johns (1980) give an accuracy assessment for the 

lumped network and transmission line approximations for Maxwell's 

equations using propagation analysis. 

Consider now an electromagnetic disturbance entering a half-space. 

As the wave penetrates to increasing depth in the conductor the higher 

frequency components of the wave become attenuated more rapidly than the 

low frequency components. At depth, the most dominant wave frequencies 

have larger skin depths than at shallower levels. Thus it appears 

reasonable to increase the vertical mesh spacing with depth. In the 

case of a half space a logarithmically spaced mesh is suggested by the 

exponential decay in a homogeneous conductor of the amplitude at any one 

frequency. 

The variation of the mesh spacing however causes each section of the 

ddër network to possess a slightly different characteristic impedance 

unless 6>>)c/V a . Hence refløctions are set up at each node associated 

with a change in mesh spacing. Where the spacing is continuously 

changing the reflections are sufficient to generate errors in the 

C.1qt-!lated PA value. - 

7.2.2 THE APPLICATION OF THE RELATIONSHIPS. 

The relationships derived above may be used to estimate the mesh 

acng required for a given accuracy of apparent resistivit- and phase 

in a uncftm roeistive block. 

They may also be used to ascertain the computational rounding error 

incurred when calculating the response of a half-space. 
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CHAPTER VIII 

THE APPLICATION OF THE TWO-DIMENSIONAL INVERSION TO THE 

MAGNETOTELLURIC DATA 

8. THE TWO-DIMENSIONAL MODELLING. 

The following sections describe the two-dimensional modelling which 

was'conducted using only the data with bias ranges less than those shown 

in Table ç. 

Sections 8.1 TO 8.5 describe the general considerations common to the 

three iterative series described in subsequent sections 8.6 TO 8.8. 

Section 8.9 describes the simplification of the model derived from the 

second series of iterations and the calculation of the errore 

parameters. 

8.1. THE NECESSITY FOR TWO-DIMENSIONAL MODELLING. 

All the sites at which Magnetotelluric measurements were made in this 

study showed slight anisotropy indicating that the structure was two or 

three dimensional. Since however the skew estimates were usually less 

than 0.2 except at site G (Section 4.1.7 and Figure 4.2) this indicated 

the presence of only limited three-dimensional effects (section 1.6.1). 

While the variation of apparent resistivity and phase responses between 

the non-anomalous sites is small as is the variation between the 

associated one-dimensional models, the necessity for two-dimensional 

modelling has already been shown in Figure (5.2) by the differences 

between the one-dimensional models. 

8.2 THE ASSUMED GEOLOGICAL STRIKE. 

It was assumed for the purpose of two-dimensional modelling that the 

conductivity structure had a strike of 150  east of north at all points 

along the profile. This direction is along the assumed geological 

strike of the Moine Thrust. Furthermore it generally lies perpendicular 

to the gravity and smoothed aeromagnetic gradients in the region of 

study. 



The assumption of invariance in conductivity structure along this 

line permitted the projection of the site positions onto a line 750  west 

of north. None of the apparent resistivity and phase responses appeared 

to be affected by the intrusives in the region of study (Section 4.2 TO 

Section 4.2.5.3). 

8.3 THE DESIGN OF THE FINITE DIFFERENCE MESH. 

If a computationally efficient finite difference method, such as that 

developed by Brewitt-Taylor and Weaver, is used to derive the apparent 

resistivity and phase responses for a two-dimensional conductivity 

structure then the number of finite difference nodes must be kept to a 

minimum. 

The largest acceptable mesh spacing may be estimated by considering a 

half space where the estimates of apparent resistivity and phase are 

obtained for h<6/4 where 6 is the skin depth (Section 7.2). Also in 

the case of the half space if h<< /6 then the changes in the mesh 

spacing do not cause large reflections of an incident electromagnetic 

disturbance (Section 7.2). 

However for a half space it is not necessary to adhere to these 

spacings at large depths for every given frequency, since total 

reflections of the incident electromagnetic disturbance at depths of 26 

will produce reflected disturbances of only approximately 1% of the 

amplitude of the disturbance at the surface. 

To minimize the number of horizontal meshes the mesh spacings were 

arranged in nearly linear blocks with only a limited number of 

discontinuities at which the reflections may occur. However the ratio 

of mesh sizes between the blocks is greater than between the individual 

meshes in the continuously varying mesh spacing scheme. As a result the 

reflections at the block boundaries are greater but fewer in number. 

The horizontal mesh spacings were necessarily identical at the 

surface and at depth. The mesh spacings at the surface were made as 

large as required by the surface conductivity at the highest frequency 

used. This resulted in the mesh spacings at depth being smaller than 

necessary. 

Unlike the finite element method the finite difference method 

necessitates the use of continuous mesh lines throughout the model 

structure. For this reason the finite element method may be more 

suitable than the finite difference method for magnetotelluric 

modelling. 



8.4 THE PARAMETERIZATION OF THE TWO-DIMENSIONAL MODELS. 

The use of a starting model with a large number of parameters may 

lead to a structure which requires subsequent simplification. Further 

the resolution of the small scale parameters of such a model is often 

inferior to that of the larger scale parameters. On the other hand, an 

insufficient number of parameters in the initial model may lead to an 

optimal biased model with a poor fit to the data. It also results in 

the need to add further parameters for an acceptable fit to the data, 

and, in subsequent iterations, a considerable change in the optimal 

biased model. On grounds of efficiency it appears that the model 

requires to be sufficiently over-parameterized and constrained by an 

explicit smoothing function, for example by the addition of a smoothing 

matrix as a-priori data (Twomey 1977, Section 6.2, Section 9.4.2). 

Alternatively additional parameters have to be added to the model before 

the insufficiently parameterized model becomes highly biased during the 

iteration sequence. The iteration used in this study utilized no 

explicit smoothness function constraints. The only constraints used 

were those which express a preference for small step lengths and hence 

minimal amendments to each successive model in the iteration scheme. 

A least squares variance fit was required to logarithmic resistivity 

and linear phase data. The parameter units were chosen so that the 

linear relationship between the parameters and the data extended over a 

wide range of values. This was effected by using as parameters 

logarithmic resistivity and logarithmic depth with the surface as 

origin. The vertical boundary position parameters were linear length as 

there appeared to be no horizontal origin acceptable to all the 

horizontally displaced sites. 

It should be remembered however that changes in the depth or 

horizontal position parameters may change the length of certain other 

block boundaries and such changes may lead to non-linear changes in the 

logarithmic resistivity and linear phase responses of the model hence 

giving rise to a reduced range of linearity for these parameters. 

8.5 THE COMPUTATION OF THE JACOBIAN. 

The Jacobian for the two-dimensional inversion scheme was obtained by 

computing partial derivatives. Each iteration adjusted its associated 

initial model. In order to compute the derivatives a parameter from the 

initial model was perturbed by unit change and the difference between 

the initial model response and the perturbed model response taken. 



In the case of block resistivities the resistivities themselves were 

changed. 

In the case of the block boundaries-consider for example two blocks A 

and B each at least two mesh spacings wide and separated by a vertical 

boundary. Suppose we require to move the boundary such that the area of 

block A is increased. A third block (C) the width of which is only one 

mesh spacing is introduced so that it lies along the boundary and 

occupies for example part of the area formerly in block B. Initially 

blocks B and C have the same resistivity which differs from that of 

block A. In order that the boundary be moved, the resistivity of block 

C is changed to that of block A. In the case of non-uniformly spaced 

grids, the method may also change the width of the transitional 

resistivity region. 

8.6 THE FIRST SERIES OF ITERATIONS. 

A series of iterations was carried out to test the routine written by 

the author on a two-dimensional model with variable block resistivities 

and block boundaries. The number of parameters was restricted to 

ascertain whether the method could produce an acceptable model with a 

few parameters. This series of iterations is described below. 

8.6.1 THE DATA. 

The data for this series of iterations were taken from five sites A, 

B, D, F and G . The amplitude and phase data for both polarizations was 

used at seven frequencies covering the range 0.3Hz. TO 300 Hz. The 

variance on the log-resistivity data was nominally set at 1.0 

log-ohm-metres relative to the variance on the linear phase of 100.  No 

account was taken of the possibility of bias at this stage. 

8.6.2 THE INITIAL MODEL AND THE PARAMETERIZATION. 

One-dimensional models were available for five sites and these 

indicated a three layer structure extending continuously from west to 

east with a resistive block at the centre. 

Owing to the similarity between these one-dimensional models and the 

LISPB (Section 1.5.1) and M.O.I.S.T. (Section 1.5.3) seismic models an 

initial two-dimensional model based upon the structure presented in 

(Figure 8.1 ) was used. 

Initially a model with a restricted number of parameters was 

determined along with the Jacobian generated by the parameter 

perturbations. This however was extended so that each site had two 
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variable depth parameters. These depth segments each extended laterally 

to mid-site positions. The block resistivities however were initially 

assumed to be continuous from west to east on account of the apparent 

association between the one-dimensional electrical conductivity models 

and the LISPB and M.O.I.S.T. seismic results. 

The separation between the horizontal boundary segments was 

convenient since the sites were located in regions where there was 

little possibility of severe non-linearity arising from the generation 

of vertical boundaries, as the levels of the horizontal boundary 

segments changed. The range of linearity could thus be assumed to be 

large, enabling rapid initial convergence of the sum of squares residual 

with each iteration from an easy starting point. 

8.6.3. THE ITERATION. 

The step-lengths were limited using the truncation method. 	Two 

criteria were used to derive the assumed rank of matrix A. First no 

element of the step correction vector should assume a value outside the 

range to which the linearization of the model applied. The second 

criterion involved the inspection of a plot of the Euclidian length of 

the step correction vector against the projected residual sum of squares 

misfit (Figure 8.2). It was found that the rank could be increased so 

decreasing the residual sum of squares while the Euclidian Norm of the 

step vector steadily increased. At some critical rank the Euclidian 

Norm of the step vector would rise sharply with little decrease in the 

residual sum of squares misfit. The highest rank for A that did not 

exceed the critical rank but satisfied the linear limit criterion was 

used to calculate the step vector. 

The effect on the predicted residual sum of squares of the addition 

to the initial model of a number of resistivity block parameters was 

found to be negligible. A three layer block resistivity initial model 

was then corrected (using the step correction vector) to produce a 

second model. 

The second model was in turn split into smaller resistivity blocks 

but this was found to have little effect on the predicted residual sum 

of squares. Subdivision into two sections of many of the horizontal 

boundary sections was similarly found to have little effect on the 

predicted residual sum of squares. The three layer block resistivity 

second model was then corrected. Three possible correction vectors were 

selected. The three trial responses for the third model were calculated 

to test for convergence. The third accepted model was then taken to be 
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that model with the minimum residual sum of squares misfit and is shown 

in Figure (8.3). 

No further parameter additions were made to this model and a set of 

three step vectors was produced. Following a convergence test the 

fourth model was taken to be that model with the minimum residual sum of 

squares misfit and is shown in Figure (8.3). 

The step-lengths which permitted convergence of each of models 1 TO 3 

were successively shorter. In addition the reductions in the sum of 

squares residual misfit became smaller as the iterations proceeded. The 

sum of squares residual misfits for each model are shown in table (8.1). 

8.7 THE SECOND SERIES OF ITERATIONS. 

The first series of iterations produced models which did not 

adequately fit the data. The principal reasons were considered to be 

the finite difference mesh used and the parameterization of the model. 

A second series of iterations was thus produced which varied from 

those of the first series as described below. 

8.7.1 THE REGION TO BE MODELLED. 

Owing to the computational effort required to produce the Jacobian 

the use of a finer finite difference mesh (Section 8.4.3) required the 

region to be modelled to have a smaller lateral extent. 

It was thus restricted to the area about the Moine Thrust containing 

the high resistivity anomaly located at sites D and E. The 

north-western and south-eastern margins of the two-dimensional structure 

were taken to be those produced by the first series of iterations. 

In - this way the modelling area was restricted to the region of higher 

site density and anomalous structures. 

8.7.2. THE DATA. 

The data set used in the second series of iterations consisted of 

that used in the first series of iterations with the following 

modifications. The data were supplemented by that of site C which 

extended from 780 Hz. TO 8.0 Hz. Also sites KIN and SHN were added to 

the data set with frequencies extending from 0.1 Hz. to 1.2X10 3  Hz. 

Data from sites A and G were excluded on account of their remoteness 

from the central region of interest. In addition the E-polarization 

data at site E were excluded on account of their unreliability. 

The errors on the data were assigned in accordance with table (3.2) 
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ITERATION JACOBIAN MISFIT ROOT MEAN SQUARE ROOT MEAN SQUARE 
SCALED MISFIT MISFIT 

RHO PHASE RHO RHO 	PHASE RHO 
PHASE PHASE 

* 

1 1 ACTUAL 0.62 2.35 1.72 0.62 	23.50 16.63 
1 1 PREDICTED 0.49 0.99 0.80 0.49 	9.91 7.02 

2 2 ACTUAL 4.37 2.18 3.46 0.44 	10.92 7.73 
2 2 PREDICTED 3.42 1.95 2.79 0.34 	9.77 6.92 

3 3 ACTUAL 3.57 1.90 2.86 0.36 	9.51 6.73 
3 3 PREDICTED 3.34 1.87 2.70 0.33 	9.37 6.63 

ACTUAL MISFIT 
THE ACTUAL SUM OF SQUARES MISFIT BETWEEN THE RESPONSES OF THE MODEL 
AND THE DATA. 

LEAST SQUARES MISFIT 
THE LEAST SQUARES MISFIT BETWEEN THE RESPONSES OF THE MODEL OBTAINED 
USING THE JACOBIAN AND THE DATA 

PREDICTED MISFIT 
THE PREDICTED MISFIT OBTAINED BETWEEN THE RESPONSES OF THE MODEL 
OBTAINED USING THE JACOBIAN AND DAMPING AND THE DATA. 

NOTES: 

THE OPTIMIZATION USED ONLY THE SCALED RESISTIVITY AND PHASE PARAMETER 
(*) 

THE PARAMETERS FOR THE FIRST ITERARION WERE SCALED DIFFERENTLY TO 
THOSE FOR THE SECOND AND THIRD SERIES OF ITERATIONS. 

TABLE 8.1. THE FIRST SERIES OF ITERATIONS. SUM OF SQUARES MISFIT. 
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8.7.3. THE MESH. 

The corrections to the third model from the first series of 

iterations as predicted by the step vector involved many boundary 

changes which were of sub-mesh separation lengths. Further the coarse 

mesh size was considered to introduce errors in the calculated responses 

made by each iteration. For these reasons a new set of meshes was 

devised to continue the iterative process. 

The mesh spacing was made finer. The block resistivities near the 

surface of the conductivity structure were used in a half-space model to 

ascertain the mesh spacing that would give an apparent resistivity error 

not exceeding approximately 20% at the highest frequency used for 

modelling. This mesh spacing was used near the surface of the 

conductivity structure. At the greater depths, wider mesh spacings were 

used to take account of the decreased amplitudes of the higher frequency 

signals and the higher resistivities found there. The mesh separations 

were approximately constant within a number of vertical groups to avoid 

the multiple reflections found with a continuously varying mesh spacing 

(section 8.3). 

8.7.4 THE PARAMETERISATION. 

The parameterization was restricted to variable block resistivities. 

The constraint of a model with three layers extending continuously from 

north-west to south-east was abandoned and more horizontal block 

divisions were introduced. 

In this way it was considered that regions of anomalous resistivity 

could be approximately located before the introduction of block boundary 

parameters. 

8.7.5. THE ITERATION. 

The initial model was based on the block resistivities and boundaries 

produced by the first series of iterations (Figure 8.4). However in the 

second series of iterations only the block resistivities were made 

variable. 

The block resistivity perturbation was fixed at 0.02 log-ohm-meters. 

The step length of the correction vector was increased until the largest 

element of the correction vector was 0.2 log-ohm-metres. 

Each Jacobian was used for two iterations. 	After the first 

iteration, the convergence was tested using forward modelling and an 

up-dated error vector produced. The second iteration was based upon the 

up-dated error vector. This allowed over-correction of the model to be 
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itself corrected under certain conditions 

Eight iterations were carried out with four Jacobians. The sum of 

squares residual misfits are shown in table (8.2). 

8.7.6. THE ITERATION RESULTS. 

The iterations produced a resistive anomaly to the east of the Moine 

Thrust (Figure 8.5) as found in the one-dimensional models (Figure 5.2). 

However the resistive structure was less than twice as resistive as that 

of the one-dimensional models (1.5X10 50M.) and extended to depths less 

than than 16.0 Kms. 

The fit of the model response to the data is shown in Figure (8.6). 

8.8 THE THIRD SERIES OF ITERATIONS. 

The modifications to the mesh and parameterization fo the second 

series of iterations were insufficient to effect any considerable 

improvement in the fit of the model response to the data within eight 

iterations, except at site D and site E for H-polarization data where a 

considerable improvement is seen. 

It is possible that further improvement in the fit of the model 

response to the data could be effected by further iterations with or 

without the introduction of block boundaries as variables. However the 

first option would admit variables and could not be efficiently 

implemented without the use of the methods in sections (7.1.1),(7.1.2) 

and (7.1.3). 

It was considered more important to show that only a few iterations 

with approximately 20 variables would be sufficient to improve the fit 

of a two-dimensional model response to the data, where the 

two-dimensional model had been constructed from one-dimensional models. 

This was on account of the two-dimensional inversions which required 

large numbers of parameters and iterations also requiring large 

quantities of computation time. This is considered below. 

8.8.1. THE PARAMETERIZATION. 

The model space was reparameterized using the mean values of the 

resistivities and depths obtained from the one-dimensional models for 

the directions parallel and perpendicular to strike (Figure 8.7). The 

block resistivities were made variable parameters and the block 

boundaries were fixed. 



ITERATION JACOBIAN MISFIT ROOT MEAN SQUARE ROOT MEAN SQUARE 
SCALED MISFIT MISFIT 

RHO PHASE RHO RHO PHASE RHO 
PHASE PHASE 

* 

1 1 ACTUAL 3.71 1.65 2.89 0.47 11.05 7.75 
1 1 LEAST SQUARES 1.41 0.86 1.17 0.32 8.45 5.93 
1 1 PREDICTED 3.09 1.68 2.50 0.41 11.22 7.86 

2 1 ACTUAL 3.11 1.70 2.52 0.41 11.19 7.85 
2 1 LEAST SQUARES 1.35 0.81 1.11 0.31 8.06 5.65 
2 1 PREDICTED 2.42 1.66 2.08 0.37 11.18 7.84 

3 2 ACTUAL 2.52 1.72 2.16 0.38 11.33 7.94 
3 2 LEAST SQUARES 1.28 0.78 1.06 0.30 7.82 5.48 
3 2 PREDICTED 2.15 1.56 1.88 0.36 10.52 7.38 

4 2 ACTUAL 2.17 1.58 1.90 0.36 10.70 7.50 
4 2 LEAST SQUARES 1.28 0.78 1.06 0.30 7.72 5.41 
4 2 PREDICTED 1.90 1.39 1.67 0.35 9.69 6.79 

5 3 ACTUAL 1.93 1.42 1.70 0.35 10.08 7.07 
5 3 LEAST SQUARES 1.29 0.75 1.06 0.33 7.83 5.49 
5 3 PREDICTED 1.74 1.27 1.53 0.34 9.76 6.84 

6 3 ACTUAL 1.74 1.27 1.53 0.34 9.63 6.75 
6 3 LEAST SQUARES 1.29 0.75 1.06 0.33 7.81 5.47 
6 3 PREDICTED 1.61 1.13 1.39 0.34 9.25 6.49 

7 4 ACTUAL 1.62 1.15 1.41 0.34 9.38 6.58 
7 4 LEAST SQUARES 1.36 0.72 1.10 0.34 7.00 4.91 
7 4 PREDICTED 1.54 1.03 1.31 0.34 8.36 5.86 

8 4 ACTUAL 1.54 1.04 1.32 0.34 8.99 6.31 
8 4 LEAST SQUARES 1.36 0.72 1.09 0.34 7.01 4.92 
8 4 PREDICTED 1.50 0.93 1.25 0.35 7.93 5.57 

ACTUAL MISFIT 
THE ACTUAL SUM OF SQUARES MISFIT BETWEEN THE RESPONSES OF THE MODEL 
AND THE DATA. 

LEAST SQUARES MISFIT 
THE LEAST SQUARES MISFIT BETWEEN THE RESPONSES OF THE MODEL OBTAINED 
USING THE JACOBIAN AND THE DATA 

PREDICTED MISFIT 
THE PREDICTED MISFIT OBTAINED BETWEEN THE RESPONSES OF THE MODEL 
OBTAINED USING THE JACOBIAN AND DAMPING AND THE DATA. 

NOTES: 

THE OPTIMIZATION USED ONLY THE SCALED RESISTIVITY AND PHASE PARAMETER 
(*) 

THE FIRST THREE ITERATIONS APPEAR TO ADJUST THE MISFIT WITH RESPECT TO 
THE DISTRIBUTION OF ERRORS ON THE DATA. 

TABLE 8.2. THE SECOND SERIES OF ITERATIONS. SUM OF SQUARES MISFIT. 
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8.8.2. THE MESH. 

The mesh was similar to that used for the second series of iterations 

with some adjustments for the relocated block boundaries. 

8.8.3. THE ITERATION. 

Using the initial model of Section (8.8.1) one iteration was 

conducted which produced residual sum of square misfits as shown in 

table (8.3). 

8.8.4. THE ITERATION RESULTS. 

The one-dimensional model responses fit the entire data set well at 

all sites. However when the one-dimensional structure is modelled in 

two dimensions with a reduced data set the two-dimensional model 

responses do not fit this data set, especially at site D and at site E 

for H-polarization as may be seen by comparison of Figure 5.1 with 

Figure 8.6. 

One iteration was sufficient to show that an improvement in the fit 

of the two-dimensional model responses to the data could be obtained. 

Hence on the assumption that the data had been produced by a 

two-dimensional structure the two-dimensional modelling technique 

produced in this case a better model than could be obtained by the 

assembly of adjacent one-dimensional models. The iteration produced a 

model similar to that of the second series of iterations with a higher 

resistivity (2.5xl0 5 c2M.) in the region of site E between 1 Km. and 20 

Kms. depth (Figure 8.8). 

8.9. THE ERRORS ON THE MODEL PARAMETERS. 

The errors on the block resistivities of the second series of 

iterations were obtained using the methods of section (6.1.7) in 

conjunction with a parameter rationalization technique described below 

(Figure 8.9). 

Since the errors were linear approximations calculated with a zero 

damping factor (Section 6.1.7.5) the error is symmetric about the least 

squares solution (Section 6.1.7.3). 

The damping factor and step correction vector elements for the final 

iteration of the second series of iterations were smaller than those of 

the other iterative series. The results of the second series of 

iterations are thus closer to those of the least squares technique than 

are those of the other iterative series. Hence the calculated errors 

are more representative of the results from the second series of 



ITERATION JACOBIAN MISFIT ROOT MEAN SQUARE ROOT MEAN SQUARE 
SCALED MISFIT MISFIT 

RHO 	PHASE RHO RHO 	PHASE RHO 
PHASE PHASE 

* 

1 1 ACTUAL 2.54 	0.69 1.87 0.39 	6.30 4.44 
1 1 LEAST SQUARES 1.36 	0.77 1.11 0.30 	6.37 4.49 
1 1 PREDICTED 1.41 	0.76 1.14 0.32 	6.35 4.48 

2 1 ACTUAL 1.51 	0.71 1.18 0.31 	5.92 4.17 

ACTUAL MISFIT 
THE ACTUAL SUM OF SQUARES MISFIT BETWEEN THE RESPONSES OF THE MODEL 
AND THE DATA. 

LEAST SQUARES MISFIT 
THE LEAST SQUARES MISFIT BETWEEN THE RESPONSES OF THE MODEL OBTAINED 
USING THE JACOBIAN AND THE DATA 

PREDICTED MISFIT 
THE PREDICTED MISFIT OBTAINED BETWEEN THE RESPONSES OF THE MODEL 
OBTAINED USING THE JACOBIAN AND DAMPING AND THE DATA. 

NOTES: 

THE OPTIMIZATION USED ONLY THE SCALED RESISTIVITY AND PHASE PARAMETER 
(*) 

TABLE 8.3. THE THIRD SERIES OF ITERATIONS. SUM OF SQUARES MISFIT. 
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iterations and the error range lies approximately symmetrically about 

the mean results. Furthermore owing to non-linearities in the 

two-dimensional model response with respect to the model parameters the 

Jacobian used in the estiumation of the errors should be more accurate 

(Section 6.1.7.6). 

The errors on the model parameters were estimated using two methods. 

The error on the individual parameters was estimated by setting the 

maximum residual sum of squares error Q0  such that 

The Jacobian was that used for the final iteration step and hence the 

errors may be incorrectly estimated. No iterations were conducted for 

the error estimations. 

Unresolved adjacent parameters of similar values were averaged 

together by summing the appropriate columns of the Jacobian. The new 

parameters were estimated and the errors on the parameters calculated 

for the individual parameters. This differs from maximizing the sum of 

the parameters xTb  since the amalgamated parameters may only take one 

value. The Jacobian was that used for the final iteration step and 

hence the errors may be underestimated. No iterations were conducted 

for the error estimations. 

8.10 THE GENERAL REGIONAL CONCLUSIONS FROM THE TWO-DIMENSIONAL MODELS. 

Although all of the iterations are not completely converged, the 

first and second iteration results appear to indicate that the depth of 

the base of the resistor at the centre of the profile is not less than 

that implied in the one-dimensional sections (Figure 5.2). 

A comparison of the final simplified model of the second series of 

iterations with the generalised crustal resistivity models of Hjelt 

(1987) (Figure 8.10) suggests that acox crustal model may be used to 

represent the study region. Although the maximum resistivities from the 

two-dimensional model appear to exceed those of the cold crust model, 

the former are associated with large errors (Figure 8.9). 
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CHAPTER IX 

SUMMARY AND CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

9.1. THE REGIONAL STUDY. 

Magnetotelluric measurements were made along a profile in the Moine 

Thrust region of Northern Scotland between National Grid References 

21279243 and 27188943 in the frequency range 780 Hz. TO 0.1 Hz. The 

data were supplemented by those of Mbipom (1980) where the data sets 

were compatible. They were in the frequency range 0.05 Hz. TO 0.0012 

Hz. and from nearby sites along an adjacent profile. 

The data were processed in the frequency domain with bias on the data 

being estimated using the four impedence tensor estimators. 

The resistivity structure was modelled using a Hedgehog algorithm. 

Two-dimensional modelling was subsequently conducted using a biased 

linear estimation algorithm extended by the author. 

There is no evidence of a resistivity contrast between the 

Lewisian Foreland and The Moinian Hinterland. 

A crust of resistivity not less than lXl0 4  ohm-metres and 

extending to a depth of approximately 22 Kms. has been 

detected at National Grid Reference 23939160. This crustal 

resistivity value is considerably greater than that obtained 

at more westerly sites. 

The resistive structure may extend to Natioinal Grid Reference 

24599013 but not further eastwards than National Grid 

Reference 25279021. 	Further observations are required to 

verify the existence of this feature both owing to the 

unreliability of the data at National Grid References 24599013 

and 25279021 and the need for additional data between National 

Grid References 23939160 and 25279021. 

The coparison of the models with geological, gravity and 

aeromagnetic studies appear to yield no obvious similarities. 

The two-dimensional models correspond with the resistivity 



profiles of Hjelt (1977) for cold crust. 

9.2. THE INVERSION STUDY. 

A data set was usd to investigate and modify a two-dimensional 

Magnetotelluric inversion method using singular value truncation and 

ridge regression iteratively. 

A computer programme was written by the author to invert the 

two-dimensional Magnetotelluric data. Novel block boundary parameters 

were used and parametric errors were calculated using a linear 

approximation. Three experimental inversions were conducted. Essential 

features of these inversions are described below in order of 

significance. 

An initial model was constructed from a section consisting of 

adjacent one-dimensional models. The misfit between the model 

response and the data was calculated. 	After a single 

iteration the fit between the model response and the data had 

improved so that the sum of squares misfit was 79% of the 

initial value. 

A novel block boundary technique was used with both the block 

resistivities and block boundaries being variable parameters 

in the inversion scheme. Although the vertical boundaries did 

not move substantially (probably owing to the sparsity of the 

sites in this study) it was found that during a given 

iteration 	the movement 	of 	the horizontal boundaries 

considerably aided convergence. 

With the data set and model parameters used it appeared from 

these experiments (when Jacobian matrices are used twice) that 

at least ten iterations would be required to produce an 

acceptable model. 

9.3. THE ADDITIONAL INVERSION STUDIES. 

The two-dimensional finite difference routine of Brewitt-Taylor and 

Weaver was modified by the author to allow derivatives to be calculated. 

The computing time required by this ammendment was reduced to a minimum 

of 0.065 of that required by the unmodified programme. 

A novel extension of the modification was made. 	Instead of 

calculating the derivative at the beginning of the finite interval by 



using a first order approximation, it involved a series expansion to 

higher orders which allowed a mean derivative to be calculated over the 

interval. This accounted for non-linearity within the interval and is 

useful when it is known that certain parameters are incremented more 

than others during an iteration. It is also advantageous when 

calculating the larger errors and when calculating the responses of 

models the parameters of which have been changed substantially. 

9.4.1. FURTHER WORK: THE REGIONAL STUDY. 

The following suggestions are made for further work. 

The data at sites E and F require verification. If they are 

valid a higher density of sites is required in the region of 

the sites in order to improve the resolution of the structure 

to which the responses are attributable. 	A large spread 

resistivity sounding (1 Km. TO 2Kms.) would help. verify the 

presence of the highly resistive region at approximately 600 

metres depth between sites D and E. 

A Magnetotelluric sounding is required at the centre of a 

known or exposed granite body to ascertain directly the 

resistivity of the granites to establish whether or not a 

contrast between the granites and the country rocks exist. 

A high resolution broadband Magnetotelluric study over the 

whole region would necessitate a substantial survey conducted 

over several months to obtain the high quality data required. 

Resources for such a study were not available at the time of 

the study. 

9.4.2 FURTHER WORK: THE TWO-DIMENSIONAL INVERSION. 

The following suggestions for further work are made. 

(1) 	The ridge regression should in future studies be used with the 

modified Brewitt-Taylor algorithm. As the computation time 

required per iteration is now reduced this will enable more 

itertations to be made with models incorporating more 

parameters. 



(2) 	The use of additional data in the form of additional 

geophysical data or a geologically preferential model, may be 

a desirable alternative to ridge regression. The addition of 

a-priori data with various weightings may be used to produce 

desirable model features such as a preferred model. 

Alternatively models without regions of localised high and low 

resistivity may be produced using a smoothing matrix as 

a-priori data. 



APPENDIX I 

THE ALTERNATIVE MODIFICATION OF THE BREWITT-TAYLOR AND WEAVER ALGORITHM 

(SECTION 7.2) 

SUBROUTINE ZOLLRD(NEQN, NC, SEQ, NONZ, LOC1, NEXT, ROWS, 
COEFF, 

+ 	NBUF, 	CBUF, 	IBUF, 	IERROR) 	C 

C PERFROM REDUCTION STEP OF ZOLLENKOPF SOLUTION. 
COMPLEX COEFF(NC), LEFTJJ, LFACT, DIAG , CBUF(NBUF) 
INTEGER NONZ(NEQN), 	SEQ(NEQN), ROWS(NC), NEXT(NC), 

LOC1(NEQN), 
+ STEP, SMALL, PIVCOL, PIVROW, PIVLOC, ROWR, ROWJ, 

VACANT, 
+ OLDVAC, IBUF(NBUF) 
COMMON /CZOLL/ VACANT, MAXVAC, IDISC, IZOLL(7) 

INTEGER NRRR(15000),NCCC(15000),NAAA(15000) 
COMPLEX AAAA(15000) 
COMMON/MATRIX/ NRRR , NCCC , AAAA, K 
COMIVION/ITERAT/ INC, IPOL 
COMMON/STORE1/NAAA 
IF(INC.EQ.1) GO TO 8200 
J=0 
K0 8000 J=J+1 
NILOC1(J) 
IF(NI.NE.0) GOTO 8100 
N2NONZ (J) 
IF(N2.NE.0) STOP 'N2.NE.0' 
GOTO 8000 8100 KK+1 
NRRR(K)ROWS(NI) 
NCCC(K)J 
NAAA(K)N1 

NINEXT(NI) 
IF(NI.NE.0) GOTO 8100 
IF(J.NE.NEQN) GOTO 8000 8200 DO 8300 I=1,K 
AAAA(I)COEFF(NAAA(I)) 8300 CONTINUE 
IF(INC.EQ.1) RETURN C C 600P FOR EACH COLUMN OF 

MATRUX 
IERROR = 0 
lEND = NEQN - 1 
DO 600 STEP = 1, lEND C FIND COLUMN WITH SMALLEST NUMBER 

OF NONZERO COEFFS. 
ISEQ = SEQ(STEP) 
SMALL NONZ(ISEQ) 
IPIVOT = STEP 
ISTART = STEP + 1 
DO 10 INDEX = ISTART, NEON 
ISEQ = SEQ(INDEX) 
IF(SMALL .LE. NONZ(ISEQ)) GO TO 10 

IPIVOT = INDEX 
SMALL = NONZ(ISEQ) 10 CONTINUE C SWAP NEW PIVOT 

COLUMN NAD FIRST UNUSED COLUMN. 
PIVCOL = SEQ(IPIVOT) 



SEQ(IPIVOT) = SEQ(STEP) 
SEQ(STEP) = PIVCOL 
IF(SMALL .LE. 0) GO TO 600 C FIND DIAGONAL ELEMENT AND 

CALCULATE L(J,J) 
LOCJ = LOC1(PIVCOL) 12 IF(ROWS(LOCJ) .EQ. PIVCOL) GO TO 

15 
LOCJ = NEXT(LOCJ) 
GO TO 12 15 DIAG = COEFF(LOCJ) 

LEFTJJ = 1. / DIAG 
COEFF(LOCJ) = LEFTJJ C WORK DOWN PIVOT COLUMN 

CALCULATING NEW L(R,J) 
LOCJ = LOC1(PIVCOL) 17 IF(ROWS(LOCJ) .NE. 	PIVCOL) 

COEFF(LOCJ) = - LEFTJJ * COEFF(LOCJ) 
LOCJ = NEXT(LOCJ) 
IF(LOCJ .GT. 0) GO TO 17 C LOOP FOR EACH ELEMENT IN 

PIVOT COLUMN 25 PIVLOC = LOC1(PIVCOL) 30 PIVROW = ROWS(PIVLOC) 
IF(PIVROW .EQ. PIVCOL) GO TO 500 C CALCULATE FACTOR - 

L(R,J) / L(J,J) 
LFACT = - DIAG * COEFF(PIVLOC) C WORK DOWN COLUMN WHOSE 

C IS SAME AS CIRRENT R IN PIVOT COLUMN 
LOCR = LOC1(PIVROW) 
ROWR = ROWS(LOCR) 
LOCRO = 0 
LOCJ = LOC1(PIVCOL) 40 ROWJ = ROWS(LOCJ) 
IF(ROWR - ROWJ) 100, 200, 300 C TERM IN COLUMN C ONLY, 

A(R,C) UNCHANGED SO DO NOTHING. 100 LOCRO = LOCR 
LOCR = NEXT(LOCR) 
GO TO 280 C TERM IN BOTH COLUMNS 200 IF(ROWR .EQ. 

PIVCOL) GO TO 250 C CALCULATE NEW VALUE OF A(R,C) IN PLACE 
COEFF(LOCR) = COEFF(LOCR) + LFACT*COEFF(LOCJ) 
LOCRO = LOCR 
LOCR = NEXT(LOCR) 
GO TO 270 C DELETE UNNEEDED COEFF IN PIVOT ROW. 250 

NEXTR = NEXT(LOCR) 
IF(LOCRO .GT. 0) GO TO 255 

LOC1(PIVPOW) = NEXTR 
GO TO 260 255 NEXT(LOCRO) = NEXTR 260 NEXT(LOCR) 

= VACANT 
VACANT = LOCR 
NONZ(PIVROW) = NONZ(PIVROW) -1 
LOCR = NEXTR C MOVING ON TO NEXT TERMS. 270 LOCJ = 

NEXT(LOCJ) 280 IF(LOCR .GT. 0) GO TO 290 
ROWR = NEQN + 1 
GO TO 400 290 ROWR = ROWS(LOCR) 

GO TO 400 C TERM IN PIVOT COLUMN ONLY, INSERT NEW COEFF 
IN COL C. 300 IF(VACANT .GT. 0) GO TO 310 

IERROR = 1 
RETURN 310 IF(LOCRO .GT. 0) GO TO 320 
LOC1(PIVROW) = VACANT 
GO TO 325 320 NEXT(LOCRO) = VACANT 325 OLDVAC = 

VACANT 
VACANT = NEXT( VACANT) 
NEXT(OLDVAC) = LOCR 
ROWS(OLDVAC) = ROWJ 
COEFF(OLDVAC) = LFACT * COEFF(LOCJ) 
NONZ(PIVROW) = NONZ(PIVROW) + 1 
MAXVAC = MAXO(MAXVAC, VACANT-1) 
LOCRO = OLDVAC 
LOCJ = NEXT(LOC.J) C ENDS OF LOOPS 400 IF(LOCJ .GT. 0) GO 

TO 40 500 PIVLOC = NEXT(PIVLOC) 	- 



IF(PIVLOC .GT. 0) GO TO 30 C WRITE OUT EQUATION JUST 
PROCESSED TO DESC 

IF(IDISC .GT. 0) CALL ZOLLWR(NEQN, NC, SEQ, LOC1, NEXT, 
ROWS, 

-f COEFF, NBUF, CBUF, IBUF, STEP) 600 CONTINUE C PROCESS 
LAST STAGE, ONLY ONE TERM LEFT. 

LOCJ = LOC1(SEQ(NEQN)) 
COEFF(LOCJ) = 1. / COEFF(LOCJ) 
IF(IDISC .GT. 0) CALL ZOLLWR(NEQN, NC, SEQ, LOC1, NEXT, 

ROWS, 
+ COEFF, NBUF, CBUF, IBUF, NEQN) 
RETURN 
END 
SUBROUTINE ZOLDS2(NEQN, SEQ, RHS, NBUF, CBUF, IBUF) C 

---------------------------------------------------* 
C ZOLLENKOPF MATRIX MULTIPLICATION USING INVERSE MATRIZ FROM 
DISC. 

COMPLEX CBUF(NBUF), RHS(NEQN), TEMP,Z(45000) ,RHSO(3000) 
+ 

AAAA ( 15000) , RHS1( 3000) , RHS2( 3000) , RHS 3 ( 3000) , RHS4( 3000 
+ 

RHS5(3000),RH56(3000),ARHS(3000),Zz1(100),zz2(100),zz3(100) 
INTEGER 	SEQ(NEQN), 	IBUF(NBUF), 	STEP, 	COLUMN, 

ROW,IZ(45000) 
+ ,NRRR(15000),NCCC(15000) 
COMMON /CzOLL/ IZOLL(2), IDISC, IBLK1, IBLOCK, LOC 

COMMON /STORE/ Z,IZ 
COMMON/CPROB/NX,NY,NZ ,NXP,NYP,NZP,NCPTF,NPROB,NROW,NDIM,LSYM(3) 

COMMON/MATRIX/NRRR, NCCC , AAAA, K 
COMMON/ITERAT/ INC, IPOL 
COMMON/ITERN/ NLEVEL , AITER1 , AITER2 , MAXITR, NPRINT 

COMMON/STORE2/RHSO , RHS5 , RES6 
COMMON/SIGMAC/ZZ1,ZZ2,ZZ3,SURFAC,YLOC,ZGRID1,ZGRID2,ZGRID3 

C 
I TAG 1 = 0 
ITAG2O 
ITAG3O 
RES01=1.0E70 
RES021. 0E70 
NITRO 

BITER1 AITER1 
BITER2 =AITER2 
IF(INC.EQ.0) BITER1=100.0 
IF(INC.EQ.0) BITER2=1.0 
NMINNY-1 
IF(IPOL.EQ.1) NMIN=(NY_2)*(NLEVEL_1)+1 

IF(INC.NE .0) GO TO 8100 
DO 8000 I=1,NEQN 
RHSO(I)=RHS(I) 
RHS1( I) =RHS ( I) 
RHS3(I)=CMPLX(0.0,0.0) 8000 CONTINUE 
GOTO 8600 8100 DO 8400 I=1,NEQN 
RHS1(I)RHS5(I)-RHSO(I)+RHS(I) 
RHS3(I)=RHS6(I) 
RHS(I)=CMPLX(0.0,0.0) 8400 CONTINUE 
I TAG 1 1 
GOTO 8800 8600 NITRNITR+1 

LOC = 0 
LOCBUF = 1 
STEP = 0 C FORWARD MULTIPLICATION, LOOP FOR EACH 



EQUATION. 10 STEP = STEP + 1 
COLUMN = - IZ(LOCBUF) 
SEQ(STEP) = COLUMN 
TEMP = RHS(COLUMN) 
RHS(COLUMN) = (0.,0.) 
GO TO 25 20 RHS(ROW) = RHS(ROW) + TEMP * 

Z(LOCBUF) 
LOC = LOC + 1 25 LOCBUF = LOCBUF + 1 30 ROW = 

IZ(LOCBUF) 
IF(ROW) 10, 40, 20 C REVERSE MULTIPLICATION, SKIP PAST 

LAST EQUATION. 40 LOCBUF = LOCBUF - 1 45 IF(IZ(LOCBUF) .GT. 0) 
GO TO 40 

STEP = STEP - 1 C LOOP FOR EACH COLUMN OF MATRIX 50 
COLUMN = SEQ(STEP) 

TEMP = RHS(COLUMN) 
GO TO 65 60 IF(ROW .NE. COLUMN) TEMP = TEMP + 

Z(LOCBUF) * RHS(ROW) 65 LOCBUF = LOCBUF - 1 70 ROW 
IZ(LOCBUF) 

IF(ROW .GT. 0) GO TO 60 
RHS(COLUMN) 	TEMP 
STEP = STEP - 1 
IF(STEP .GT. 0) GO TO 50 C C 

IF(INC.EQ.1) GO TO 8800 
DO 8700 I1,NEQN 
RHS6(I)=RHS3(I) 
RHS5(I)=ARHS(I) 8700 CONTINUE 8800 DO 8900 11,NEQN 

RHS4(I)=RHS3(I) 
RHS3(I)=RHS3(I)+RHS(I) 
ARHS(I)=CMPLX(0.0,0.0) 8900 CONTINUE 
DO 9000 I1,K 
ARHS(NRRR(I))=ARHS(NRRR(I))+AAAA(I)*RH53(NCCC(I)) 

9000 CONTINUE 
RES11O .0 

RES12O .0 
DO 9100 INMIN,NEQN 
RES11rRES11+RHS(I)*CONJG(RHS(I)) 
RHS(I)=RHS1(I)-ARHS(I) 
RES12=RES12+RHS(I)*CONJG(RHS(I)) 9100 CONTINUE 

RES11=SQRT(RES1I) 
RES12=SQRT(RES12) 

WRITE(10,*) RES11,RES12 
IF(ITAG1.NE.0) RES11=RES01 
RES21=BITER1*RES01 
RES22=BITER2*RES02 
IF(RES12 .GT.RESO2) ITAG3=1 
IF(RES11.GT.RES21)GOTO 8200 
IF(RES12.GT.RES22)GOTO 8200 
IF((NITR.GE .MAXITR).AND.(INC.NE .0)) GO TO 8200 
RESO1RES11 
RES02=RES12 
ITAG1O 
GOTO 8600 8200 IF(ITAG3.EQ.1) GO TO 8500 
DO 9200 I=1,NEQN 
RHS4(I)=RHS3(I) 9200 CONTINUE 8500 IF(NPRINT.EQ.0) 

GOTO 9400 
DO 9500 11,NEQN 
RHS(I)=RHS4(I) 9500 CONTINUE 9400 CONTINUE 
NNAX=NY-2 
DO 9300 I=1,NMAX 



ZZ1(I+1)=RHS4(I±(NY_2)*(NLEVEL_3)) 
ZZ2(I+1)=RHS4(I+(NY_2)*(NLEVEL_2)) 

ZZ3(I+1)=RHS4(I+(NY_2)*(NLEVEL_1)) 9300 CONTINUE 
ZZ1(1)=ZZ1(2) 
ZZ1(NY)=ZZ1(NY-1) 
ZZ2(1)=ZZ2(2) 
ZZ2(NY)=ZZ2(NY-1) 
ZZ3(1)=ZZ3(2) 
ZZ3(NY)=ZZ3(NY-1) 
RETURN 

END 



APPENDIX I. 

THE INVERSION PROGRAMME USED IN SECTIONS (8.5) TO (8.9). 

INTEGER 
TEMP1(400) ,TEMP12(400) ,TEMP3(400) ,A1 ,A3 ,F,COL(40) 

REAL*8 TEMPR(400),R(400),TEMPRA(400,40),RA(400,40) 
REAL*8 TEMP2(400),TEMP4(400),TEMP5(400) 
REAL*8 

TEMP6(400),TEMPMO(400),MODELO(400),A2,A4,A5,A6 
REAL*8 B1,B2,B3,B4,LM 

REAL*8 A(400,40),B(400),U(400,40),V(40,40) 
REAL*8 

TEMP7( 400) , TEMP 8 ( 400) , TEMP 9 ( 400) , TEMP1O( 40) ,RADJ ( 400 
REAL*8 ADJ,SUMF,TEMP11(400) ,TEMP13(400) ,TEMP14(400) 
COMMON /SPLIT/ISUM1, TEMP 9 
COMMON/RECORD/ MAX, TEMP 1 ,TEMP 3 

CALL FPRMPT ('DATA RECORD LENGTH : ',21) 
READ(5,*) MAX 
CALL FPRMPT ('SENSITIVITY MATRIX 	N : ',25) 
READ (5,*)  N 
CALL FPRMPT (' NUMBER OF FREQUENCIES 	',24) 
READ (5,*)  F 

CALL FPRMPT('RHO:O,PHASE:l.RHO AND PHASE:2',29) 
READ(5,*) ITAG C**********READ IN DATA 

DO 1 I1,MAX 
READ(52 1*) A1,A2,A5,A3,A4,A6 
TEMP1 ( I  ) A1 
TEMP2 ( I  ) =A2 
TEMP3 (I) =A3 
TEMP4( I) =A4 

TEMP7 ( I  ) A5 
TEMP8(I)=A6 1 CONTINUE 

C**********AMPLITUDE/PHASE/AMPLITUDE AND PHASE 

IF(ITAG.EQ.0)GO TO 180 
IF(ITAG.EQ.1) GO TO 190 
IF(ITAG.EQ.2) GO TO 200 180 DO 160 I1,MAX 
TEMP3(I)0 160 CONTINUE 
GO TO 200 190 DO 170 I=1,MAX 



TEMP1(I)=0 170 CONTINUE 200 CONTINUE 

C**********CALCULATE M 

I St.JM 0 
DO 10 11,MAX 

IADD1 =0 
IF(TEMP1(I).GT.0) IADD11 
IStJM=ISUM+IADD1 10 CONTINUE 
I SUM1 = I SUM 
I SUM 0 
DO 20 I1,MAX 
IADD2O 
IF(TEMP3(I).GT.0) IADD2=1 
ISUM=ISUM+IADD2 20 CONTINUE 
IStJM2ISUM 
M=ISUM1+ISUM2 

C**********RESISTIVITY 	AND 	PHASE 	CONCERTED 	TO 
C**********LOG(RESISTIVITY) AND PHASE C**********READ IN 
STANDARD MODEL 

DO 30 I1,MAX 
READ(51,*) B1,B2,B3,B4 
TEMP5 (I ) =B2 
TEMP6 (I ) =B3 

READ(50,*) B1,B2,B3,B4 
TEMP13(I)=B2 
TEMP14(I)=B3 30 CONTINUE 

C**********SET UP STANDARD MODEL 

110 
I1OISUM1 
DO 90 I1,MAX 
IF(TEMP1(I).LT.1) GO TO 100 
11=11+1 
TEMP12 (Ii) =0 
IF(TEMP1(I) .GT.1) TEMP12(I1)1 
TEMPMO(I1)=DLOG10(TEMP5(I)) 100 IF(TEMP3(I).LT.1) GO 

TO 90 
110=110+1 
TEMP12(I10)0 
IF(TEMP3(I) .GT.1) TEMP12(I10)1 
TEMPMO(I10)=TEMP6(I) 90 CONTINUE 

C**********SET UP ERROR VECTOR 

120=0 
I3OISUM1 
DO 50 I1,MAX 
IF(TEMP1(I).LT.1) GO TO 40 



120=120+1 
TEMPR(120)=(DLOG10(TEMP2(I))-DLOG10(TEMP5(I))) 
TEMP11(120)=TEMP7(I) 40 CONTINUE 

IF(TEMP3(I).LT.1) GO TO 50 
130=130+1 

TEMPR(130)=(TEMP4(I)-TEMP6(I)) 
TEMP11(130)=TEMP8(I) 50 CONTINUE 

C**********SET UP SENSITIVITY MATRIX 

DO 60 J1,N 
140=0 

150 = I SUM1 
DO 70 I=1,MAX 
KJ+ 10 
READ(K,*) B1,B2,B3,B4 
IF(TEMP1(I).LT.1) GO TO 80 

140=140+1 
TEMPRA(I40,J)=(DLOG10(B2)-DLOG10(TEMP13(I))) 	80 

IF(TEMP3(I).LT.1) GO TO 70 
150=150+1 
TEMPRA(I50,J)=(B3-TEMP14(I)) 70 CONTINUE 60 CONTINUE 

C**********COPY TO TEMPORARY MATRIX 

NON 1000 NNO 
DO 440 11,M 
DO 450 J1,N 
RA(I,J)=TEMPRA(I,J) 450 CONTINUE 

R(I)=TEMPR(I) 440 CONTINUE 

C***** ****  *INCREMENTAL 	ADJUSTMENT 	OF 	ERROR 	VECTOR 
C**********AND REALLOCATION OF N 

CALL FPRMPT('INCREMENTAL MODEL CHANGE? ',26) 
READ(5,*) NTAG 
IF(NTAG.LT .1) GO TO 210 
DO 220 11,N 
CALL FPRMPT('PERTTJRBATION VECTOR :',22) 
READ(5,*) ADJ 
TEMP10(I)=ADJ 220 CONTINUE 
DO 230 11,M 
SUMF=0 .0 
DO 240 J1,N 
SUMF=SUMF+TEMPRA(I,J)*TEMP10(J) 240 CONTINUE 
RADJ(I)=SUMF 230 CONTINUE 
DO 250 11,M 
R(I)=TEMPR(I)-RADJ(I) 250 CONTINUE 
WRITE(6,260) 260 FORMAT(' PERTURBATION VECTOR') 
WRITE(6,270)(TEMP10(I),I=1,N) 	 270 

FORMAT(2X,10(F10.4)) 
WRITE(6,280) 280 FORMAT(' PERTURBED ERROR VECTOR') 
WRITE(6,290)(RADJ(I),I=1,M) 290 FORMAT(2X,10(F10.4)) 



CALL FPRMPT( 'NEW N : ',8) 
READ(5,*) N 

210 CONTINUE 

C**********ADD COLUMNS OF MATRIX, DELETE SUPERFLUOUS COLUMNS 
C**********AND REALLOCATE N 

420 CALL FPRMPT('AMALGAMATE N VARIABLES : N : 	 ',29) 
READ(5,*) NC 
IF(NC.EQ.0) GO TO 430 
CALL FPRMPT('AMALJGAMATE VARIABLES : 	 ',23) 
READ(5,*)(COL(I) ,11,NC) 
I1=COL(1) 
DO 380 I2,NC 
I2COL(I) 
DO 390 J1,M 
RA(J, Ii) =RA( J, Ii) +RA( J, 12 
IF(12.EQ.N) GO TO 390 
NNN-1 
DO 400 KI2,NN 
13K+1 
RA(J,K)=RA(J,I3) 	400 CONTINUE 390 CONTINUE 
NN-1 

DO 410 J1=2,NC 
COL(J1)=COL(J1)-1 410 CONTINUE 380 CONTINUE 
GO TO 420 C**********DISPLAY INITIAL DATA 

430 WRITE (9,110) M,N 110 FORMAT ( ' SENSITIVITY MATRIX : M 
',14,'N 	',I4) 

DO 120 I80=1,M 
WRITE (9,130) (RA(I80,1120),1120=1,N) 130 FORMAT 

(2X,10(F8.4,2X)) 120 CONTINUE 
WRITE (6,140) 140 FORMAT (' ERROR VECTOR') 
WRITE 	(6,150) 	(R(I140),1140=1,M) 	150 	FORMAT 

(2X,10(F8.4,2X)) 

CONTINUE 

C**********ADJUST ROW SCALING FACTORS 

CALL FPRMPT ('VARIANCE MULTIPLIER : ',24) 
READ(5,*) LM 
DO 330 11,M 
IF(TEMP12(I).GT.0) GO TO 340 
TEMP 9(1 ) TEMP11  ( I) 
GO TO 330 340 TEMP9(I)=LM*TEMP11(I) 330 CONTINUE 

C**********ROW SCALE RESISTIVITY AND PHASE MATRICES 
C**********AND COPY TO TEMPORARY MATRICES 

DO 350 I1,M 
MODELO(I)=TEMPMO(I)/TEMP9(I) 
R(I)=R(I)/TEMP9(I) 350 CONTINUE 



DO 360 J1,N 
DO 370 11,M 
RA(I,J)RA(I,J)/TEMP9(I) 370 CONTINUE 360 CONTINUE 

CALL SCALE(M,N,RA) 

CALL MISFIT (M,R,F) 

CALL GRADIE (M,N,F,PA,R,MODELO) 
CALL MATCH2 (M,N,A,RA,R,F,MODELO,U,V) 

GO TO 1000 

STOP 
END 

SUBROUTINE MISFIT(M,M1,F) 

INTEGER M,F,S,L 
REAL*8 

M1(400),SUM,SUMA,StJMP,RSUM,RSUMA,RSUMP,TEMP9(400) 
COMMON/SPLIT/ISUM1, TEMP 9 

SUMAO .0 
RSUMAO .0 

IF(IStJM1.LT.1) SUMA=1.OE10 
IF(ISt.TM1.LT.1) RSUMA1.0E10 

IF(IStJM1.LT.1). GO TO 50 
DO 1 I=1,ISUM1 
SUMA=SUMA+(M1(I)**2 )/FLOAT(ISUM1) 
RSUMA=RSUMA+((M1(I)*TEMP9(I))**2)/FLOAT(ISUM1) 

CONTINUE 

50 ISUM3=IStJl41+1 
ISUM4=M-ISUM1 
SUMPO.0 
RStJMPO .0 

IF(ISUM4.LT.1) SUMP1.OE10 
IF(ISUM4.LT.1) RSUMP1.OE10 
IF(ISUM4.LT.1)GO TO 60 
DO 10 IISUM3,M 
StJMP=SUMP+((M1(I))**2)/FLOAT(IStJM4) 

RSUMP=RSUMP+(((M1(I))*TEMP9(I))**2)/FLOAT(ISTJM4) 	10 
CONTINUE 



60 StJM=( (SUMA*FLOAT(IStJM1) )+(StJMP*FLOAT(ISUM4)) )/ 
C FLOAT(IStJM1+ISUM4) 

RStJM=((RStJMA*FLOAT(ISUM1) )+(RSUMP*FLOAT(IStJM4) ) )/ 
C FLOAT( ISUM1+ISUM4) 

WRITE(6,20) 	 20 	 FORMAT(' 
DESCRIPTION' ,SOX, 'ROW-SCALED' ,1OX, 'ROW-DESCALED') 

WRITE(6,30) SUMA,RSUMA 30 FORMAT( ' AMPLITUDE MISFIT 
VARIANCE' , 36X,F10. 4,1OX,F10. 4) 

WRITE(6,40) SUMP,RSUMP 40 FORMAT(' PHASE MISFIT 
VARIANCE' ,36X,F10.4,1OX,F10.4) 

WRITE(6,70) SUM,RStJM 70 FORMAT(' AMPLITUDE AND PHASE 
MISFIT VARIANCE' ,26X,F10.4,1OX, 

C F10.4) 
RETURN 
END 

SUBROUTINE DECODE(M,F,R,MODELO,1T1,ID,FACTOR,NRR) 

INTEGER F,TEMP1(400) ,TEMP3(400) 
REAL*8 

R( 400 ) ,MODELO( 400) C1( 400) , C2 ( 400) , NEWMOD ( 400 
REAL * 8 

DEC1( 400) DEC2 ( 400) , DEC3( 400) , DEC4( 400) FACTOR 
REAL*8 

DEC5(400),DEC6(400),DEC7(400),DEC8(400),DEC9(400) 
REAL*8 DEC10(400),DEC11(400),DEC12(400),DEC13(400) 

REAL*8 DEC14(400),TEMP9(400) 
COMMON/SPLIT/IStJM1 , TEMP9 
COMMON/ERROR/Cl 
COMMON/RECORD/MAX, TEMP 1 ,TEMP 3 

C**********CALCULATE AMMENDED MODEL 

DO 1 I1,M 
NEWMOD(I)=(R(I)+MODELO(I)+C1(I))*TEMP9(I) 

C2(I)=C1(I)*TEMP9(I) 1 CONTINUE 

C**********DECODE VECTORS TO INPUT FORMAT 

110=0 
DO 10 I=1,MAX 
IF(TEMP1(I).LT.1) GO TO 20 
110=110+1 
DEC1(I)=NEWMOD(Il0) 

DEC5(I)=C2(Il0) 
DEC11(I)=TEMP9(I10) 

GO TO 10 20 DEC1(I)=99999.9999 
DEC5(I)99999.9999 
DEC11(I)=0.0 10 CONTINUE 

120 = I SUM1 
DO 30 I=1,MAX 
IF(TEMP3(I)..LT.1) GO TO 40 
120=120+1 
DEC2(I)=NEWMOD(I20) 

DEC6(I)=C2(120) 



DEC12 (I) TEMP9( 120 
GO TO 30 40 DEC2(I)=99999.9999 

DEC6(I)99999.9999 
DEC12(I)0.0 30 CONTINUE 

C**********DECODE VECTORS TO SITE FORMAT 

130=0 
I STEP =MAX/F 
DO 50 ISTART=1,ISTEP 
DO 60 I=ISTART,MAX,ISTEP 
130=130+1 
DEC3(130)=DEC1(I) 
DEC4(130)=DEC2(I) 

DEC7(I30)=DEC5(I) 
DEC8(I30)DEC6(I) 

DEC13(130)=DEC11(I) 
DEC14(130)=DEC12(I) 60 CONTINUE 50 CONTINUE 

C**********RECOVER DATA 
DO 220 11,MAX 
DEC9(I)=DEC3(I)-DEC7(I) 
DEC10(I)=DEC4(I)-DEC8(I) 	220 	CONTINUE 

C**********WRITE DECODED VECTORS TO OUTPUT FILES 

WRITE(7,90)IT1 90 FORMAT(' SINGULAR VALUES TRUNCATED 
AFTER ENTRY : ',14) 

IF(NRR.EQ.2) GO TO 120 
WRITE(7,110) ID 110 FORMAT('SINGULAR VALUES DAMPED 

BY ENTRY : ',14) 
GO TO 140 120 WRITE(7,130) FACTOR 130 FORMAT(' Q(1)*X 

X : ',F10.4) 140 WRITE(7,100) 100 FORMAT(' RHO DATA RHO 
MODEL RHO MISFIT RHO ERROR 

C PHASE DATA PHASE MODEL PHASE MISFIT PHASE ERROR') 
NFF-1 

NSMAX/2 

N10 
N2=0 
N30 
DO 70 11,MAX 

IF(N1.GT.NF ) N1=0 
N1N1+1 
IF(I.GT.NS) GO TO 170 
IF(N1.EQ.1) GO TO 150 
GO TO 200 150 N2=N2+1 
WRITE(7,160) N2 160 FORMAT(' E-POLARIZATION : SITE 

1 ,14) 

GO TO 200 170 IF(N1.EQ.1) GO TO 180 
GO TO 200 180 N3=N3+1 
WRITE(7,190) N3 190 FORMAT(' H-POLARIZATION 	SITE 

',14) 	 200 	 WRITE(7,80) 
DEC9(I),DEC3(I),DEC7(I),DEC13(I),DEC10(I), 

C DEC4(I) ,DEC8(I) ,DEC14(I) 80 FORMAT(2X,8(F10.4,5x)) 
WRITE(8,210) N1,DEC9(I) ,DEC3(I) ,DEC13(I) ,DEC1O(I), 

C DEC4(I),DEC14(I) 210 FORMAT (2X,14,8(F10.4,2X)) 70 
CONTINUE 



RETURN 
END 

SUBROUTINE MATCH2(M,N,A,RA,R,F,MODELO ,U,V) 

INTEGER M,N,F,INDEX 
REAL*8 RA(400,40),R(400),A(M,N),U(M,N),V(N,N),Q(40) 
REAL*8 U0(400,40) ,VO(40,40),00(40),TOL,MODELO(400) 

DO 800 J=1,N 
DO 810 I1,M 
A(I,J)=RA(I,J) 810 CONTINUE 800 CONTINUE 
INDEX =l 
CALL SVD(M,N,A,U,V,Q,INDEX) 

832 CONTINUE 

DO 840 J1,N 
DO 850 11,M 
U0(I,J)=U(I,J) 850 CONTINUE 840 CONTINUE 
DO 860 I1,N 
DO 870 J1,N 
V0(I,J)=V(I,J) 870 CONTINUE 860 CONTINUE 
CALL SVDA(M,N,U0,V0,Q,R,TOL,F,RA,MODELO) 
RETURN 
END 

SUBROUTINE RESIDU(M,N,F,RA,B,R,MODELO) 

INTEGER M,N,F 
REAL*8 

RA( 400 40) ,B( 400) ,R( 400) ,C( 400) ,C1( 400) ,C2( 400) 
REAL*8 LENGTH,RESIDUE,S,MODELO(400) 
COMMON/ERROR/Cl 

LENGTH=0 
DO 400 I400=1,N 
LENGTH=LENGTH+(B(I400) )**2  400 CONTINUE 

DO 410 I410=1,M 
S=O 
DO 420 I420=1,N 
S=S+(RA(1410,1420))*B(I420) 420 CONTINUE 
C(1410)=S 410 CONTINUE 

DO 430 I430=1,M 
Cl(1430)=C(1430)-R(I430) 430 CONTINUE 



WRITE 	(6,440) 	LENGTH 440 FORMAT 
(' 	 EUCLIDIAN 

LENGTH' ,F10.4) 
WRITE (6,450) 450 FORMAT 	RESIDUE,LINEAR PROJECTED 

SUM SQUARED DEVIATIONS') 

CALL MISFIT (M,C1,F) 

C WRITE (6,460) C460 FORMAT (' LINEAR PROJECTED ERROR VECTOR') 
C CALL MISFIT(M,C,F) 

RETURN 
END 

SUBROUTINE SVDA(M,N,U0 ,V0 ,Q,R,TOL,F,RA,MODELO) 

INTEGER L(40),LL(40),F 
REAL*8 U0(400,40),V0(40,40),Q(40),R(400) 
REAL*8 

UOT(40, 400) ,VOT(40,40) ,Q1(40) ,001(400 ,40) ,V01(40, 40) 
REAL*8 

U01T(40,400),VO1T(40,40),TOL,RA(400,40),MODELO(400) 
REAL*8 RHS(40),RHS1(40),5tJM 

C**********FIND ORDER OF SINGULAR VALUES 

DO 1 11,N 
LL(I)=0 1 CONTINUE 
DO 10 11,N 
S=0.0 
DO 20 J1,N 
IF(LL(J).GT.0) GO TO 20 
IF(Q(J).GT.S) JIJ 
IF(Q(J).GT.S) SQ(J) 20 CONTINUE 

LL(JI)1 
L(I)=JI 10 CONTINUE C**********ORDER SINGULAR VALUES 

AND MATRICES 

DO 30 J1,N 
KL(J) 
DO 40 11,M 
U01(I,J)=U0(I,K) 40 CONTINUE 30 CONTINUE 
DO 50 J1,N 
K=L(J) 

Q1(J)=Q(K) 
DO 60 I1,N 
V01(I,J)=V0(I,K) 	60 	CONTINUE 	50 	CONTINUE 

C**********TRANSPOSE MATRICES 

DO 70 I=1,M 
DO 80 J=1,N 
U01T(J,I)=U01(I,J) 80 CONTINUE 70 CONTINUE 
DO 90 11,N 
DO 2000 J1,N 
V01T(J,I)=V01(I,J) 2000 CONTINUE 90 CONTINUE 

C**********OBTAIN tJT*B 



DO 2010 11,N 
StJM=0.0 
DO 2020 J1,M 
SUM=SUM+UO1T(I,J)*R(J) 2020 CONTINUE 
RHS(I)=SUM 2010 CONTINUE C**********OBTAIN UT*B/L 
DO 2040 11,N 
RHS1(I)=RHS(I)/Q1(I) 2040 CONTINUE 
WRITE(6,900) 900 FORMAT(' SINGULAR VALUES') 
WRIPE(6,910)(Q1(I) ,I=1,N) 910 FORMAT(2X,10(F8.4)) 
WRITE (6,920) 920 FORMAT(' PARAMETER VECTORS') 
DO 930 11,N 
WRITE(6,940)(VO1T(I,J),J=1,N) 	 940 

FORMAT(2X,10(F8.4)) 930 CONTINUE 
WRITE(6,2030) 2030 FORMAT(' ROTATED RIGHT HAND SIDES') 

WRITE(6,240) (RHS(I),I=1,N) 240 FORMAT(2X,10(F12.4)) 
WRITE(6,2050) 2050 FORMAT(' TRANSFORMED RIGHT HAND 

SIDES ((UT*B)/L)') 
WRITE(6,2060) 	(RHS1(I),I=1,N) 	2060 	FORMAT 

(2X,10(F12.4)) C WRITE(6,950) C950 FORMAT(' DATA VECTORS') C 
DO 960 J1,M C WRITE(6,970)(UO1T(I,J),I=1,N) C970 
FORMAT(2X,10(F8.4)) C960 CONTINUE 

CALL INVERS(M,N,Q1,V01 ,UO1T,R,TOL,F,RA,MODELO ,VO1T) 
RETURN 

END 
SUBROUTINE SCALE (M, N, MX) 

REAL*8 MX(400,40),CVAR(40),SUMV 
COMMON/SCAL/C VAR 

DO 5 11,N 
CVAR(I)=1.0 5 CONTINUE 

CALL FPRMPT( 'NOSCALE?0:COLtJMN?1:MANUAL?2: ',28) 
READ(5,*) fl 
IF(I1.EQ.0)GO TO 60 
IF(I1.EQ.1)GO T070 
IF(I1.EQ.2) GO TO 80 

70 CONTINUE 
DO 1 J1,N 
SUMV=0.0 
DO 10 11,M 
SUMV=SUMV+(MX(I,J))**2 10 CONTINUE 
CVAR(J)=DSQRT(SUMV) 1 CONTINUE 50 CONTINUE 
DO 20 J1,N 
DO 30 11,M 
IF(CVAR(J) .LT.1.OE-10) CVAR(J)=1.OE-10 
MX(I,J)=MX(I,J)/CVAR(J) 30 CONTINUE 20 CONTINUE 
GO TO 60 80 CONTINUE 
DO 40 11,N 
CALL FPRMPT('MX(I,J)/X, X : ',12) 
READ(5,*) CVAR(I) 40 CONTINUE 
GO TO 50 60 CONTINUE 

	

WRITE (6,90) 90 FORMAT( M(I,J)/X 	X: ') 
WRITE 	(6,2000) 	(CVAR(I), 	I=1,N) 	2000 

FORMAT ( 2X, 10 ( FlO . 4, 2X) 
RETURN 
END 

SUBROUTINE 



INVERS(M,N,Q1,V01,UO1T,R,TOL,F,RA,MODEL0,vO1T) 

INTEGER M,N,F 
REAL * 8 

UO1T( 40, 400) ,V0l( 40, 40) ,V02( 40, 40) , P( 40, 400) ,Ql( 40) 
REAL*8 Q2(40),R(400),V2(40),TOL,SMALL,MIN,SUM,SUM1 
REAL*8 

RA(400,40),MODELO(400),ERR1(40),ERR2(40),TEMP9(400) 
REAL * 8 

SUM2,SUM3,SUMCOL(400),FACTOR,V01T(40,40),C1(400) 
REAL*8 D,L,LSQE,SOL1(40) ,SOL2(40) 
COMMON/SPLIT/ ISUM1 ,TEMP9 
COMMON/ERROR/Cl 	C**********RIDGE 	REGRESSION 

PARAMETERS, NDIV1, NDIV2 C**********CODE:NRRO RESCALE MARGINAL 
DATA 	VARIANCE 	C**********CODE:NRR=l 	MANUAL 	BY 	STEPS 
C**********CODE:NRR=2 MANUAL CONTINUOUS C**********CODE:NRRr3 
RIDGE REGRESSION C**********CODE:NRR4 OBTAIN RESIDUE 

NDIV1=20 
ND1V220 

NLSQ1 
NRR=l 

NI = 0 
IT1N 
I D= 0 
GO TO 2050 240 NLSQ=0 
WRITE(6,3240) 3240 FORMAT(' ********************1) 

CALL FPRMPT ('OPTION : ',9) 
READ(5,*) NRR 

IF(NRR.EQ.0)GO TO 3180 
IF(NRR.EQ.4) GO TO 3230 
CALL FPRMPT ('TRUNCATE AFTER : ',17) 
READ(5,*) IT1 
NI = 0 

IF(NRR.EQ.2) GO TO 3190 
IF(NRR.EQ.3) GO TO 3100 
CALL FPRMPT ('DAMP BY ENTRY : ',16) 
READ(5,*) ID 
IF(ID.EQ.0) GO TO 2050 
DQ1(ID) 
GO TO 2090 2050 D=0.0 

GO TO 2090 3190 CALL FPRMPT('DAMP BY ENTRY(1)*X 	X 
1,25) 

READ(5,*) FACTOR 
DFACTOR*Q1(1) 

GO TO 2090 C**********INCREMENT RIDGE REGRESSION 
DAMPING FACTOR 3100 NI=NI+1 

IF(N.LT.2)GO TO 3130 
D=Q1(N)+(FLOAT(NI)*(Q1(1)_Q1(N)))/FLOAT(NDIV1) 
GO 	 TO 	 2090 	 3130 

DQ1(N)+(FLOAT(NI)*(Q1(N)_FLOAT(NDIV2)*Q1(N)))/FLOAT(NDIV1) 
2090 LD**2 

DO 2060 I=1,IT1 
Q2(I)=Q1(I)/(Q1(I)**2+L) 2060 CONTINUE 
1T2=IT1+1 
DO 2070 I=1T2,N 
Q2(I)=0.0 2070 CONTINUE 
DO 20 J1,N 
DO 30 I1,N 
V02(I,J)=V01(I,J)*Q2(J) 30 CONTINUE 20 CONTINUE 



DO 2000 K=1,M 
DO 110 11,N 
StJMO.0 
DO 120 J1,N 
SUMSUM+V02(I,J)*UO1T(J,K) 120 CONTINUE 
V2(I)=SUM 110 CONTINUE 
DO 130 11,N 
P(I,K)=V2(I) 130 CONTINUE 2000 CONTINUE 

DO 40 11,N 
SUM1O .0 

S1JM2=0 .0 
DO 50 J=1,M 
SUM1=SUM1+P(I ,J)*R(J) 

StJM2=SUM2+P(I,J) 50 CONTINUE 
SOL1(I)=StJM1 

SOL2 ( I  ) SIJM1 
ERR1(I)=StJM2 
ERR2(I)=SUM2 40 CONTINUE 
CALL RSCALE(N,SOL2) 
CALL RSCALE(N,ERR2) C**********COLUMN SUMS OF 

PSEUDOINVERSE MATRIX 3030 DO 3050 J=1,M 
SUMO.0 
DO 3060 I1,N 
SUM=StJM-4-P(I,J) 3060 CONTINUE 
SUMCOL(J)=SUM 3050 CONTINUE C**********WRITE TO 

RIDGE REGRESSION FILES 
IF (NI.LE.0) GO TO 3170 
DO 3120 11,N 
NJ I + 60 
WRITE(NJ,*) 	D,SOL2(I) 	3120 	CONTINUE 

C****** "DISPLAY OUTPUT C WRITE(6,250) TOL C250 FORMAT(' 
TOLERENCE' ,F6.4) 

IF(NRR.EQ.3) GO TO 3150 3170 WRITE(6,280) IT1 280 
FORMAT(' SINGULAR VALUES TRUNCATED AFTER ENTRY 	1 ,14) 

IF(NRR.EQ.2) GO TO 3200 
WRITE (6,2080) ID 2080 FORMAT(' SINGULAR VALUES DAMPED 

BY ENTRY : ',I4) 
GO TO 3210 3200 WRITE(6,3220) FACTOR 3220 FORMAT(' 

Q(1)*X X : ',F10.4) 3210 WRITE(6,3040) 3040 FORMAT(' 
PSEUDOINVERSE MATRIX') 

DO 3160 I=1,M 
JM-I1 
WRITE(9,3020)(P(K,J),K=1,N) 	 3020 

FORMAT (2X,20(F4.1,2X)) 3160 CONTINUE C WRITE(6,3070) C3070 
FORMAT(' COLUMN SUMS FOR PSEUDOINVERSE MATRIX') C 
WRITE(6,3080)(SUMCOL(I) ,11,M) C3080 FORMAT(2X,10(F1O.6,2X)) 

WRITE(6,3500) 	3500 	FORMAT(' 	COLUMN 	DESCALED 
SOLUTIONS') 

WRITE(6,200) 200 FORMAT(' SOLUTIONS') 
WRITE(6,210)(SOL2(I),I=1,N) 	 210 

FORMAT ( 2X, 10 ( FlO .6 , 2X) 
WRITE(6,2030) 2030 FORMAT(' SOLUTION ERRORS') 
WRITE 	(6,2040) 	(ERR2(I),I=1,N) 	2040 

FORMAT(2X,10(F10.6,2X)) 
WRITE(6,3600) 3600 FORMAT(' COLUMN SCALED SOLUTIONS') 
WRITE(6,3700) 3700 FORMAT(' SOLUTIONS') 
WRITE(6,3800)(5OL1(I),I=1,N) 	 3800 

FORMAT(2X,10(F1O.6,2X)) 



WRITE(6,3900) 3900 FORMAT(' SOLUTION ERRORS') 
WRITE(6,4000)(ERR1(I),I=1,N) 	 4000 

FORMAT(2X,10(F10.6,2X)) 
CALL RESIDEJ(M,N,F,RA,SOL1 ,R,MODELO) 
IF(NLSQ.LT .1) GO TO 3400 

LSQE=0.0 
DO 3300 11,M 
LSQE=LSQE+C1(I)**2 	3300 	CONTINUE 	3400 	CALL 

DECODE(M,F,R,MODELO, 1T1,ID,FACTOR,NRR) 
NRRO=NRR 3150 IF(NI.LE.0) GO TO 240 

IF(NI.GE .NDIV1) GO TO 240 
GO 	TO 	3100 	 3230 	CALL 

RESOLV(M,N,NRRO,IT1,FACTOR,ID,P,V01T,R,SOL1,LSQE) 
GO TO 240 3180 CONTINUE 

RETURN 
END 

SUBROUTINE RSCALE (N, SOL) 

REAL*8 SOL(40) ,CVAR(40) 
COMMON/SCAL/C VAR 

DO 1 11,N 
SOL(I)=SOL(I)/CVAR(I) 1 CONTINUE 
RETURN 
END 

SUBROUTINE GRADIE(M,N,F,RA,R,MODELO) 

INTEGER M,F 
REAL*8 

RA(400,40),GRAD(400),CHANGE(400),R(400),M1(400) 
REAL*8 MODELO(400),B(400) 
REAL*8 MIN,MAX,FACTOR,SUM 

C**********CALCULATE GRADIENT 
DO 1 J1,N 

SUM0.0 
DO 10 I=1,M 
StJMStJM+RA(I,J) 10 CONTINUE 
GRAD(J)=SUM 1 CONTINUE 
WRITE(6 f 40) 40 FORMAT(' GRADIENT VECTOR') 
WRITE(6,50) (GRAD(I),I=1,N) 50 FORMAT (2X,10(F12.4)) 

C**********CALCULATE CHANGE VECTOR 90 CALL FPRMPT('LINEAR 
LIMIT ',lS) 

READ (5,*) MAX 
IF (MAX.GT .1000)GO TO 100 
MINO.0 
DO 20 I1,N 
IF(GRAD(I).LT.MIN) MIN=GRAD(I) 20 CONTINUE 
IF(MIN.LT.1.OE-10) MIN1.OE-10 
FACTOR MAX/MIN 
DO 30 11,N 
CHANGE( I ) FACTOR*GRAD  ( I) 30 CONTINUE 
WRITE(6,60) MAX 60 FORMAT(' LINEAR LIMIT',F12.4) 
WRITE(6,70)(CHANGE(I),I=1,N) 70 FORMAT(2X,10(F12.4)) 



CALL RESIDU(M,N,F,RA,CHANGE,R,MODELO) 
GO TO 90 100 RETURN 
END 

SUBROUTINE 
RESOLV(M,N,NRRO,IT1,FACTOR,ID,P,v01T,R,SOL,LSQE) 

REAL*8 P(40,400),VO1T(40,40),R(400),B(40),v(400) 
REAL*8 

UMAX(400),tJMIN(400),SOLMAX(40,40),SOLMIN(40,40) 
REAL * 8 

SOL(40) ,SUM1,SUM2,FACTOR,MULTIP,C1(400) ,MU,RES,LSQE 
COMMON/ERROR/Cl 

RESO .0 

DO 310 I=1,M 
RES=RES+C1(I)**2 	310 	CONTINUE 	290 	CALL 

FPRMPT( 'PERTURBATION FACTOR : ',22) 
READ(5,*) MTJLTIP 

CALL FPRMPT('SINGLE:1,SUM:2,ARBITARY:3 ',26) 
READ(5,*) NNR 

IF(NNR.EQ.0) GO TO 300 
IF(NNR.EQ.2) GO TO 80 
IF(NNR.EQ.3) GO TO 320 

C**********SET B FOR SINGLE VARIABLE 

NP=N 
K0 70 KK+l 

DO 60 I=l,N 
B(I)0.0 60 CONTINUE 
B(K)1.0 

GO TO 90 80 NP=N 
K=0 100 KK+l 

DO 110 11,N 
B(I)=VO1T(K,I) 110 CONTINUE 

GO TO 90 320 NP1 
K1 

DO 330 I1,N 
CALL FPRMPT (' VECTOR ENTRY : ',16) 
READ(5,*) B(I) 330 CONTINUE 90 SUM2=0.0 
DO 10 11,M 
SUM1O .0 
DO 20 J=l,N 
SUM1=SUM1+P(J,I)*B(J) 20 CONTINUE 
V(I)=SUM1 
SUM2=SUM2+(StJM1)**2 10 CONTINUE 
IF(SUM2 .LT.l.OE-10) StJM2=1. OE-l0 
MtJDSQRT( (RES*MULTIP_LSQE)/SUM2) 
DO 30 I=l,M 
UMAX ( I) =R ( I) +MjJ*V( I) 
UMIN(I)=R(I)_MU*V(I) 30 CONTINUE 
DO 40 11,N 
StJM1O .0 



SUM2=0 .0 
DO 50 J1,M 
SUM1SUM1+P(I ,J)*UMAx(J) 
SUM2=StJM2+P(I,J)*UMIN(J) 50 CONTINUE 
SOLMAX(I ,K)=SUM1 
SOLMIN(I,K)=SUM2 40 CONTINUE 
IF(NNR.EQ.3) GO TO 340 
IF(NNR.EQ.2) GO TO 120 
IF(K.LT.N) GO TO 70 120 IF(K.LT.N) GO TO 100 

C**********DISPLAY OUTPUT 

IF(NNR.EQ.2) GO TO 190 
WRITE(6,160) 	160 	FORMAT(' 	RESOLUTION 	SINGLE 

VARIABLE') 
GO TO 180 190 WRITE(6,170) 170 FORMAT (' RESOLUTION 

LINEAR SUM') 
GO TO 180 340 WRITE(6,350) 350 FORMAT (' RESOLUTION 

ARBITARY LINEAR SUM') 180 WRITE(6,200) RES,MtJLTIP 200 
FORMAT(' RESIDUE 	',F10.4,2X,'PERTURBATION FACTOR : ',F10.4) 

IF(NRRO.EQ.2)GO TO 210 
WRITE(6,130) IT1,ID 130 FORMAT(' TRUNCATE AFTER 

',14,2X,'DAMP BY ENTRY 	',I4) 
GO TO 150 210 WRITE(6,140) 1T1,FACTOR 140 FORMAT(' 

TRUNCATE AFTER : ',14,2X,'Q(1)*X X : ',F10.4) 150 
WRITE(6,280) 280 FORMAT(' SOLUTION VECTOR') 

WRITE(6,260)(SOL(I),I=1,N) 	 260 
FORMAT(2X,10(F8.4,2X)) 

WRITE(6,270) 270 FORMAT (' RANGE') 
DO 220 J1,NP 
WRITE(6,230)(SOLMAX(I,J),I=1,N) 	 230 

FORMAT(2X,10(F8.4,2X)) 
WRITE 	(6,240)(SOLMIN(I,J),I=1,N) 	 240 

FORMAT(2X,10(F8.4,2X)) 
WRITE(6,250) 250 FORMAT(' ') 220 CONTINUE 
GO TO 290 300 RETURN 
END 

SUBROUTINE SVD(M,N,A,U,V,Q,INDEX) C$$ CALLS NO OTHER 
ROUTINES C SINGULAR VALUE DECOMPOSITION) FOR ALGO PROGRAM SEE 
WILKINSON+REINSCH C HANDBOOK FOR AUTOMATIC COMPUTATION VOL 2 - 
LINEAR ALGEBRA, PP140-144 C TRANSLATED FROM ALGOL BY 
R.L.PARKER C THE MATRIX A(M,N) IS DECOMPOSED. SINGULAR VALUES 
IN Q, PRE-MATRIX IN C POST-MATRIX IN V. INDEX MAY BE 1,2,3 OR 
4. IF 1, FIND U,V. IF 2, F C ONLY U. IF 3, FIND ONLY V. IF 
4, FIND NEITHER. IN ALL CASES, THE ARRA C MUST BE SUPPLIED AS 
IT IS USED AS WORKING SPACE FOR THE ROUTINE. C 

REAL*8 A(M,N),C,E(200),EPS,F,G,H,Q(N),S,TOL 
REAL*8 U(M,N),V(N,N),X,Y,Z 

TOL1.OE-77 
EPS1.OE-15 
DO 1100 I1,M 
DO 1100 J1,N 

1100 U(I,J)=A(I,J) C HOUSEHOLDER REDUCTION TO BI-DIAGONAL 
FORM 

G0.0 



x=O.O 
DO 2900 11,N 
E(I)=G 
S=0.0 
L1+1 
DO 2100 J1,M 

2100 S=U(J,I)**2 + S 
IF (S .LT. TOL) GO TO 2500 
F=U( 1,1) 
G=-DSIGN(DSQRT(S) ,F) 
HF*G - S 
U(I,I)F - G 
IF (L.GT.N) GO TO 2501 
DO 2400 JL,N 
S=0.0 
DO 2200 K1,M 

2200 SU(K,I)*U(K,J) + S 
FS/H 
DO 2300 K1,M 

2300 U(K,J)=U(K,J) + F*U(K,I) 
2400 CONTINUE 

GO TO 2501 
2500 G0.0 C 
2501 CONTINUE 

Q(I)=G 
S=0.0 
IF (L.GT.N) GO TO 2601 
DO 2600 JL,N 

2600 SU(I,J)**2 + S 
2601 IF (S.LT.TOL) GO TO 2800 

FU( 1,1+1) 
G-DSIGN(DSQRT(S) ,F) 
H=F*G - S 
U(I,I+1)=F - G 
IF (L.GT.N) GO TO 2651 
DO 2650 J=L,N 

2650 E(J)U(I,J)/H 
2651 CONTINUE 

IF (L.GT.M) GO TO 2850 
DO 2700 J=L,M 
S=0.O 
IF (L.GT.N) GO TO 2700 
DO 2670 KL,N 

2670 SU(J,K)*U(I,K) + S 
DO 2690 KL,N 

2690 U(J,K)=U(J,K) + S*E(K) 
2700 CONTINUE 

GO TO 2850 
2800 G=0.O 
2850 Y=DABS(Q(I)) + DABS(E(I)) 

IF (Y .GT. X) XY 
2900 CONTINUE C C ACCUMULATION OF RIGHT-HAND TRANSFORMS (V) C 

GO TO (3000,3701,3000,3701 ),INDEX 
3000 CONTINUE 

DO 3700 IBACK1,N 
1N+1-IBACK 
IF (G .EQ. 0.0) GO TO 3500 
HtJ(I , I+1)*G 
IF (L.GT.N) GO TO 3500 
DO 3100 JL,N 



3100 V(J,I)=U(I,J)/H 
DO 3400 JL,N 
S=0.0 
DO 3200 KL,N 

3200 SU(I,K)*V(K,J) + S 
DO 3300 KL,N 

3300 V(K,J)V(K,J) + S*V(K,I) 
3400 CONTINUE 
3500 CONTINUE 

IF (L.GT.N) GO TO 3601 
DO 3600 JL,N 
V(J,I)=0 .0 

3600 V(I,J)0.0 
3601 V(I,I)=1.0 

G=E(I) 
L1 

3700 CONTINUE 
3701 CONTINUE C C ACCUMULATION OF LEFT-HAND TRANSFORMS 

GO TO (4000,4000,4701,4701 ),INDEX 
4000 CONTINUE 

DO 4700 IBACK=1,N 
I=N+1-IBACK 
L1+1 
GQ(I) 
IF (L.GT.N) GO TO 4101 
DO 4100 JL,N 

4100 U(I,J)=0.0 
4101 IF (G.EQ. 0.0) GO TO 4500 

HU( 1,1 ) *G 
IF (L.GT.N) GO TO 4401 
DO 4400 J=L,N 
S=0.0 
DO 4200 KL,M 

4200 S=U(K,I)*U(K,J) + S 
FS/H 
DO 4300 KI,M 

4300 U(K,J)=U(K,J) + F*U(K,I) 
4400 CONTINUE 
4401 CONTINUE 

DO 4550 JI,M 
4550 U(J,I)=U(J,I)/G 

GO TO 4700 
4500 CONTINUE 

DO 4600 JI,M 
4600 U(J,I)=0.0 
4700 U(I,I)=U(I,I) + 1.0 C C DIAGONALIZATION OF BI-DIAGONAL 

FORM 
4701 EPS=EPS*X 

DO 9000 KBACK=1,N 
K=N+1-KBACK C TEST F-SPLITTING 

5000 CONTINUE 
DO 5100 LBACK=1,K 
LK+1-LBACK 
IF (DABS(E(L)).LE. EPS) GO TO 6500 
IF (DABS(Q(L-1)) .LE. EPS) GO TO 6000 

5100 CONTINUE C CANCELLATION OF E(L), IF L.GT. 1 
6000 C0.0 

S=1.0 
L1L - 1 
DO 6200 1L,K 



FS*E( I) 
E(I)C*E(I) 

IF (DABS(F) .LE. EPS) GO TO 6500 
GQ(I) 
Q(I)=DSQRT(F*F + G*G) 
HQ(I) 
C=G/H 
S-F/H 
GO TO (6050,6050,6200,6200 ),INDEX 

6050 CONTINUE 
DO 6100 J1,M 
YU(J,L1) 
ZU(J, I) 
U(J,L1)=Y*C + ZS 
U(J,I)=_Y*S + ZC 

6100 CONTINUE 
6200 CONTINUE C TEST F-CONVERGENCE 
6500 ZQ(K) 

IF (L .EQ. K) GO TO 8000 C SHIFT FROM BOTTOM 2 X 2 
MINOR 

X=Q (L) 
YQ(K-1) 
GE(K-1) 
HE(K) 
F((Y_Z)*(Y+Z) + (G_H)*(G+H))/(2.0*H*Y) 
G=DSQRT(F*F + 1.0) 

F=((X_Z)*(X+Z) + H*(Y/(F + DSIGN(G,F))-H))/X C NEXT Q-R 
TRANSFORMATION 

C=1.0 
S=1.0 
LPLUSL + 1 
DO 7500 ILPLUS,K 
GE(I) 
Y=Q(I) 
HS*G 
G=C*G 
ZDSQRT(F*F + H*H) 
E(I-1)Z 
C=F/Z 
S H/Z 
FX*C + G*S 
G=_X*S + G*C 
HY*S 
yy*C 

GO TO (7100,7201,7100,7201 ),INDEX 
7100 DO 7200 J=1,N 

XV(J,I-1) 
ZV(J, I) 
V(J,I_1)=X*C + ZS 
V(J,I)=_X*S + Z*C 

7200 CONTINUE 
7201 Z=DSQRT(F*F + H*H) 

Q(I-1)=Z 
CF/Z 
S H/Z 
F=C*G + S'Y 
X_S*G + C*Y 
GO TO (7300,7300,7500,7500 ),INDEX 

7300 DO 7400 J1,M 
YU(J,I-1) 



Z=U(J, I) 
U(J,I_1)Y*C + Z'S 
U(J,I)_Y*S + ZC 

7400 CONTINUE 
7500 CONTINUE 

E(L)=O.0 
E(K)=F 
Q(K)=X 
GO TO 5000 C CONVERGENCE 

8000 IF (Z .GE. 0.0) GO TO 9000 
Q(K)=-Z 
GO TO (8100,9000,8100,9000 

8100 DO 8200 J1,N 
8200 V(J,K)=-V(J,K) 
9000 CONTINUE 

RETURN 
END 

C Q  IS MADE NON-NEGATIVE 

INDEX 
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