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TRANSTIENT VIBRATIONS OF THIN, RECTANGULAR,
CANTITEVER PLATES,

CHAPTER 1 INTRODUCTION

When an elastic sﬁructure is subjected to a
static load the deformation produced is independent

of time and is a state of eguilibrium between the

aprlied load and the elastic properties of the gystem.

Where dynamic loads are involved the state of
equilibrium is no longer independent of time but
includes the effects of the inertial forces due %o
the motion of the sj;stem. Only in certain cases
does the deformation of the structure retain a
pbarticular shape while varying in magnitude. In
general both the deflection at a given point and the
shape of the deformation throughout the system are
time-dependent.

The eventual failure of a structural component
may be due to metal fatigue, rather than the actual
values of stresses associated with the dynamic loads
since a vibration may continue to exist for some
time after removal of the load.

The sources of dynamic loads depend on the
types of structures considered and the uses to which
they are put, but the following cases illustrate
a Tew of the possibilities and some of the structures

affected,

1. Shock waves due to explosions, earthquakes,
etc.
(a) In an internal-combusion engine the

piston/
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piston and cylinder are subjected to a
rapid series of explosive forces and the
hpiston also has a high inertia loading
due to its mbbion as a rigid body.

(b) The pressure wave associated with a nuclear
explosion is accompanied by a strong
thermal shock wave.

(¢) In countries where earthquakes are
relatively common occurrences the building

codes concain allowances for their effects.

Moving loads

Bridges are vibrated by the movement of traffic
across them. Raillway bridges especially are
subject to very heavy loading due to the
weighis of the vehicles and also the "hammer
blow" effects connected with the peculiar
balancing conditions employed on steam
locomotives.

Water waves produce impulsive loads on the
bows of a ship and vessels used for ice-
breaking wori: under conditicons of dynamic
loading.

The forces acting on an aeroplane in flight
can change rapidly due to maneuvering or
encountering turbulent air, and at the

moment of landing severeimpact loads are
transmitted to the fuselage and wings through
the landing gear.

The/




The importance of the stresses
produced in this latter case is well
illustrated by the photograph at the
beginning of the book "Dynamics of
Alrplanes" by H. N. Abramson. This shows
a large aeroplane on the ground with both
wings broken at the roots. The legend
accompanying the photograph is the formula
for stresses produced by a sudden load!

The present problem was suggest by the lack of
its consideration in the literature, either
theoretically or experimentally.

Greenspon (1955) studied the deflections and
stresses induced by transient loading in plates with
simply supported or clamped edges, and obtained an
approximate formula for the maximum deflection and
stress. No experimental resulits were available but
static deflections and siresses were compared with
published results given by Timoshenko (1940) for
some combinations of clamped and supported edges.
Part of the analysis requires the calculation of
natural frequencies of transverse vibration of ihe
plate and Greenspon states that the method he employs
can be used for plates with free, supported or
clamped edges. The expression he uses is based on
the differential equation of motion for the plate
(see equation (35), Chapter 3) and requires the
approximate deflection shape to satisfy the
boundary conditions at the edges of the plate. <The

approximating/




approximating functions used by Greenspon do satisfy
the conditions for supported or clamped edges but not
those for free edges. Freguencies calculated by this

method for cases with free edges can be either higher

or lower than the true frequencies., This is especially

true for a cantilever plate which has three free
edges, the approximate frequency differing from the
experimental value by a very wide margin.

Chapter 2 of this dissertation is devoted to a
discussion of methods suitable.for calculating the
natural freguencies of plates,

Eringen (1953) considered the impact of a sphere
on a plate or beam from the integral equation stand-
point. (See Chapter 3, Section 3.2.3) The paper is
meinly concerned with the calculation by various
approximate methods of the variation with time of the
force between the sphere and the plate., Plates with
free edges are not treated.

To obtain data for comparison with calculated
results it was necessary lto carry out an experiment
in which some form of transient loading could be
applied to a cantilever plate. 1In the actual choice
of an experimental set-up several methods of

initiating a transient vibration were considered which

had been used by various workers in studying vibrations

of beams,

l, E. Z. Stowell, E.B. Schwartz asnd J.C. Houbolt

(1945).

This group of authors investigated the

results obtained by the instantaneous arrest

of/




of the root of a moving cantilever beam.

"A circular steel tube was mounted
symmetrically on the end of a pendulum to
form a pair of cantilever beams. The
pendulum was permitted to start its swing
from a predetermined position and was
suddenly brought to rest at the bottom of its
swing against an electromagnet used to
prevent rebound."

Assuming that the motion of the canti-
levers immediately before impact could be
considered as unif'orm translation perpendic-
ular to their lengths, the authors developed
a theory for the bending and shear stresses
produced in the beams by the impact.

If the beams were replaced by plates it
might not be permissible to neglect the
effects of eir resistance and the finite
breadth of the plate would cause a variation
of velocity across it,

G, A, Nothmann (1948)

The "free" end of a cantilever beam was
forced to follow a prescribed displacement
law and expressions were obtained for the
shear force and displacement at any point in
the beam, The investigation was mainly
concerned with the force necessary to produce
the prescribed motion. i.e. The magnitude and
direction of the shear force at the "free!

end/




end of the beam. No experimental resulscs
are guoted,

It would be difficult to apply this
method to a cantilever plate since twisting
of the plate could occur about an axis
perpendicular to the clamped edge.

3. Re P, W, Jones (1954)

The method used by Jones is mathematically
similar to that of Stowell, et al, in that a
sudden disturbance is applied to the system,
in this case sudden removal of a satatic load.

A simply supported beam was held in an
initial position of static deflection by a
magnet and coil arrangement. The coll was
attached to the beamm at its midpoint and
release of the beam was effected by cutiting

off the current passing through the coil.

4. R. H. MacNeal (1951) used an analogue

approach to study the natural frequencies and
mode shapes of a cantilever plate. The
relevant differential equation was eXpressed
in finite difference form and the solution
was obtained from the currenis and voltages
in the analogue network.

Transient vibration of plates could be
solved in this way but Maclieal suggests that
a reasonably complicated problem would reguire
about 250 essentially perfect transformers.

Previous/




Previous papers by lMcCann and Maclieal
(1950) and by Criner, leCann and Warren (1945)
studied the transient vibration problems of
beams and finite'degree—of-freedom systems
respectively,

An advantage of electrical analogue
experiments is that various odd-shaped pulses
can be applied to disturb the system and non-
uniformity of the system itself can be
considered.

5. The method that was finally adopted was that
of impact of a steel sphere falling irom a
height on to the plate. Little apparatus was
reguired, the parameters of the process could
be varied quicikly (e.g. position of impact,
etc.,) and, as will be shown in Chapter 3, for
the corresponding problem of impact on beams
an approximate solution exists which can be

employed in the present problem,

In the analysis of vibration of a plate two of the
most important factors are the naturgl frequencies and|
modes of vibration of the plate. Approximate
calculation of these quantities is described in
Chapter 2,

Chapter 3 contains the mathematical analysis of
the transient vibration of a cantilever plafte.
produced by an arbitrary load distribution, and also
considers the particular case of a concentrated force
(as applied to the impact problem).

Experimental/




Experimental and calculated results are given
in Chapter L. The final chapter summarises these
results and discusses possible extensions which could

be made in the analysis.,.




2. Calculation of Natural frequencies and Normal

Modes of Vibration

2.1. Uniform Beams

2.1.1. Solution of the Equation of lMotion

For free, undamped, harmonic vibration of
a uniform beam the transverse displacement w at
any point x along the beam satisfie§ the partial
differential equation
4 2
F(w L 3w _g (1)
1 ——
I+  c* o9t
If w = W (x) sinqrt thic becomes the ordinary

differential equation

4 L3
d We _ Wr\y 0o )
doxt ct L
whereﬁ%Jx;the rth natural frequency of the beam and
C= %E% is a constant for a given beam.
~

Putting 'K,r = J-.gf , the solution of equation
(2) is of the form

W, = Acoshﬂ,x +BeosKox +CSwhK e + DSINK.X (3)
where A,B,C and D are conctants to be evaluated
from the constraints at the ends of the beam. Such

boundary conditions are

w.,- = :—E*: O at a clamped end
. Gy
de d!w.,.
dxz = a—’j: O at a free end
The first pair of conditions (4) are known as
geometrical or artificial conditions and the second

pair are the dynamical or natural conditions.

Substitution of the correct boundary conditions




in equation (%) leads to values for B/A, O/A, D/A
and to a "frequency equation", the roots of which
are related to the natural frequencies of the
beam.

Examples are:

l. Beam clamped at x = 0O and free at x ={f

Wi = (coshK e -cosK ) -G, (swkK x — sinkx)

heee = Slﬂhﬂf‘[ - Sivkef (5-)
.= == r
2 coshKel + cos&ef
an

Cosh’,l .coskelf + ( =0

2. Beam free at both ends.
W,z (oshi e+ cosk,x )-8, (shKpe +smwix)

where ‘ % m‘«t{_ cos—ﬂ-t-{ L (é)
Siwh Kol — sivfel

Cosht,l.cos#yf — [ =0 |
The functions V¢¢(and their derivatives), (L %

and

and "f‘.{ are tabulated by Bishop and Johnson (1956 )_

2.1.2. Rayleigh (Energy) Method

The exact solution of the differential equation
of motion of a more complicated system is not
always possible. In such a case an approximate
value for a natural frequency can be obtained by
using the method of rayleigh.

The strain energy stored in the vibrating

beam can be written as

u = EIJ ( Bx‘)

dfx
for wW = W,.(.x) . Sin "-'ft'

10




11,

The kinetic energy of the beam can similarly be

written as £ s 2
o T

2 €
= coszw,.f: : &%"" ] h/:‘ox

Also, W +T = consTaAnT = u,m.-_-‘l',, E
Therefore, equating maximum strain and kinetic

energies

{4 1 2
_Eg’fjw o %'5] (%:{)d«
£ d\nl-r
wz_’_ 1 E_J_:Pﬂ- j,jf = ):: (1)

Ii'\ifin.this equation is the exact form which
satisfies the equation of motion and the boundary
conditions, then @Wpis the exact frequency.
Rayleigh's method is to assume an approximate shape
for W which satisfies at least the geometrical
boundary conditions at the ends of the beam. It
can be shown that the estimate of Qg obtained by
this method is always greater than the exact value.

As an illustration take the case of a uniform

cantilever beam with boundary conditions

d -
Wiie Ay o (o) at x=0
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For the lowest natural freguency we will
take for W' the expression for static deflection
of the beam under its own weight. This shape
satisfies all four of the above conditions and is

W, = Kt (x*-4£€x +6L€?)
where. K is a constant.

On substituting farV%iﬂ_the energy integrals

we have {' Q_w1 % .5
ET( (A W), _ 12 €
W ey * "i‘L(d«‘)"‘“ = Zexx
2
_Apel(ft, 2 1S -53.&3.‘."'.&'{?
Tuw S Wit = 355

Exq 12x45 _ o, ExTY
Hence w?‘: A’E:a* Sx52 = 12:4-6 Ae,e‘l-

The exact value from the freguency equation (5) is

2 Exg
W, = (2°36236....
' AP{+
The error in the approximate frequency is thus
less than 1% showing that this method of
approximating a natural freguency can yield a

satisfactory result.

2.2. Rectangular Cantilever Plates.

2.2.1. The Plate HEquation of Motion.

In the case of a beam the length is very
much greater than the breadth so that the beam
can be treated as one-dimensional 1i.e. Deflection
W or Wpis dependent on only one space
variable, x. TFor a plate the breadth is
comparable with the length andWgpbecomes a

function of two space coordinates, x and y.
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Corresponding to equation (1) for a uniform
beam we have, from the theory of thin plates of

uniform thickness, the_plate eqguation
pf Ywr, o P }.,. eiQ'w
Ixt 3x“33" 354-
or +
v+ B35 =o0 (3)
The boundary conditions to be satisfied by®f at
the edges of the plate, Fig. 1, are in general

more complicated than those for a beam.

J L—— |

Baig, L. i€ 31—
' |
o & X

For a cantilever plate clamped at CO and
free at the other three edges, the boundary

conditions are(Timoshenko 1S40):

On €O : '_‘w']x_° = [‘a‘w- _ =0© \
[P, P W, (2-9) P
QA : *a'az 3,‘1.] yio L a’ax -;- (o]
'Qg 3‘—w- A, (0
AB : 3x"- +V 33‘]::.- ‘ax"*(z v)gaa]
3
. [w Py ‘a"ur 3
BC : | S eV 2 (2-v)o W
3.41- x> '3"5 053* 333%]5=b > (q)

At the free corners,

2w a
i [ 3&‘35-.\3‘:: -
. AVwr
[ Bl - J

For harmonic motion the solution of equation
(8) might be written in the form

W(x,g,t) = Wrlxy) A siva t (10)




where va(xvﬁ)is a dimensionless normal-mode
function denoting the shape of the vibration form

th

at the r natural freduency'btr, and /\¢has the

dimengion of length. Thus,
V"N.,- R ?j; “:' w‘f =0 (“)
It igﬁghssible to ;%lve this equation exactly
for Wp and @p as in the case of the vibrating

beam, so that some approximate method such as

Rayleigh's must be employed.

2.2.2. Nodal Patterns

Experimentally it is found that when a plate
vibrates at a natural frequency the zeros of Vir
form a stationary pattern of lines which are
approximately parallel to the sides of the plate.
Since, in general, each freguency Weis associzted
with a particular function.Vi¢each pattern of
"modal lines" corresponds to a definite frequency
The patterns can be found experimentally by
sprinkling sand, or a similar substance, on to the
vibrating plate. Provided that the amplitude of
vibration is great enough to produce accelerations
of more than one "g", the sand will tend to collect

at the zeros of Wa.

2.2.%5. Rayleigh lethod

Assuming that the nodal lines are parallel to

the sides of the plate, G.B. Warburton (1954) takes

14
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the deflection in the form

W = Weysinet = A B0 gisinet  (12)
where 9“‘(10 and. ¢“f5) are the beam functions for
cantilever and free-free beans recspectively.
These are defined by equations (5) and (6) where
x is replaced by y in (6), and the length 1: is
replaced by a in eguation (5) and b in eguation (6)
A mode of vibration is identified with the number
of zeros m of (X)) and n of ¢,‘(3). For

example, Fig. 2. shows the mode mn, where m = 3

and n = 2.
= _; \
el == e —-—--t-.-—
E | \ Fig. 2. Nodal Pattern
= ' |
u——-—-‘——..—.l__ I]'l=5;11=2o
-
- | 1
3

The lowest mode of vibration of a free-free
beam is that corresponding to n = 2 so that
functions Q(u) and é(:‘) have yet bto be defined.
These functions are taken to represent rigid-body
translastion and rotation respectively.

T}l at iS 9

Gh(x) = (coshj(hx —cosX 'f.) - d“(auh‘!(%c-— sin¥ :ﬂ

with
o swhK & —sw¥i a

™ T cosh K a + cosK o y (3)

and

coshK,a .cosXa + 1 = o0

™= 1,23, )




56,(3): 1 \
gy = J3 (I -’-'—a-)

é‘ (:') = (Cosh j(“\j + Cosx“g) -d, (siuh.‘f(_lj +SINK, y)
n= 2,3.4....

r(hqo
ek i = coshX b -cosX,.b
T sinhK b-sinK. b

coshX b.cosK.b - | = © Y,

The above functions satisfy the geometrical

and

boundary conditions of zero slope and @&flection
at x = 0, but in general do not satisfy the other
conditions in equation (9).

From the theory of thin plates (Timoshenko

1940) the strain energy cue to bending is given by

b . %
R e e

and kinetic energy

acb 2
T = el (R

e Yo
Therejore

” (Lo (Bfor Lot e 5}&.«7 ()

whence u
2 max
W = - (17)
5 L1 wiendy

Warburton then substitutes for W from equationg

(12),(13) and (14). He defines a non-dimengional

frequency factor ;L by

16,
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Lio'S vz |9os1| 2 | sz Lvet  |bbt| 2
an@..w_ o o \ ILbe0 oL80°0- |LbSO| |
o o o| o

o Ay ‘s | w Rp *H *5 | w




4
X f;,;—f,.,- (2m$)" (8)

2 2
where W = (Z‘I'ff) and from the substitution
for W in (17) it is shown that (17) can also be

written as

4 2
A = G;:' + G-‘:.(g’l;) +2 (%).[VH‘H’, +( t-V)T,J,] (19)

v’ *:

on the nodal pattern and the boundsry conditions.

The coefficients Gx’ G H s JX and Jv depend

x? Ty

For all combinations of clamped, free and
freely-supported edges (fiften cases in all)
Warburton has evaluated and tabulated these
coefficients iﬁ terms of the assumed nodal pattern
of m and n nodal lines parallel to the edges of the
plate. The values of the coefficients are given
in Table 1 for the case of a cantilever plate.

Given the dimensions and elastic constants of
a plate it is possible to obitain guickly reasonably
accurate values of the natural freguencies by
making use of Table 1 and eguations (18) and (19).
When freguencies obtained by this method are
compared with experimental values it appears that
the greatest errors arise for modes with n = 1,
This can probably be atiributed to the "stiffening"
effect of the assumption of linear variation of
deflection in the y - direction, This "stiffening"

will inecrease the strain energy U, and hence the

freguency.

18




2244, Rayleigh - Ritz Method

A variation of this energy method of
calculation of frequenciés is one which was used
by Rayleigh himself for simple systems, and which
was independently developed by Ritz and used by
him in his investigation of the natural freguencies
and modes of vibration of a square plate with gll
edges free (Ritz, 1909).

The procedure is based on an assumed form
for W which contains an arbitrary parameter. The
frequency expression (17) is then minimised with
respect to the parameter thus giving a better
approximation to freguency and mode shepe than would
otherwise be obtained. The frecuencies given by
this method are ;reater than the true values.

Young (1950) and Barton (1951) use this so
called Rayleigh-Ritz method to obtain frequencies
and mode shapes for plates with various edge cond-
itions. They follow Ritz in assuming for W the
series expression

Wx,y) = EE A o B89, ¢(5) (20)
where 9 (x) and é(ﬂ) are normal mode functions for
beams with chmped, free or freely-supported edges.

Bquation (20) is substituted in the energy
expression for freguency, equation (l?).which is
then minimised with respect to each of the
coefficients Ane This is done by differentiating

equation (17) with respect to one of the coerficients),

19.




say Aih’ and equating the result to zer

. )
g_(w‘) e a_(ﬁw dndy) .9_?:: = U - g-ﬁdt ﬂ
A PR ( If‘vz‘h‘dﬂ)

Or, since

. R = 2
- Ve 0y 45
lluuug i 23 -[[VV 1&
we have for each coefficient an expression of the

]
Lo
¥

Womex _ y2pf . 3
MRiw i E‘f A j/” dndy = o 1)

I eguation (20) gives W in terms of an infinite

f=tel

series then equation (21) represents an infinite set

that (21) represents a consistent set of equations is

that the determinant of the coefficients of A”m must
be zero. This leads to an infinite determinant, the
roots of which are the natural freguencies of vibrat-
ion of the plate.

Using an eighteen term series for '/ with

m=1,2,3, and n = 0,1,2,3,4,5, Young evaluates
freguencies and coefficients Amn by using an

iterative procedure to solve the set of ecuations.

L4)]

This is for a square cantilever plate. i.e. a = b.
Bince any natural mode of vibration will either be
symmetrical or anti-symmetrical about the lin

Y =35 it is found that the set of eighteen

equations separates into two independent groups of

nine equations containing either those coefficients

for which n is odd or those for which n is even,
Tabulated values of A, for m = 1,2,3, and

n=1,3%>5 or 0,2,4, and values of freguency w are

Eer————— e e e e e

20
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given for the first five modes of a square
cantilever plate. Similar tables are
bresented for a square plate clamped on all edges
(6 modes from 36 term series), and for a square
place clamped on two ad jacent edges and Iree on
the other two (5 modes from 9 term series).

In carrying oui the integration and
differentiation in eguation (21) it is necessary
to evaluate certain integrals of the bzam
functions 9“(1&) and ¢“(|j) o The set
of functions O, (xX) [o-r ¢n (9)] are
orthogonal in the region © £ X <a . L° 55-‘- b].

i.e

j 9‘_.95.4'& = a §friI=s i
; = o for rgs| t (22)
[bé ba = b for P2y
° P z'dﬂ = o for b#£g
also

T
¥

d  (23)

J'dJér 4Jéz,dﬂ = b. (5%5% £t b=“$

dﬁ ch = O for PEg)

Provided hfld'i.'. we arbitrarily define *o"k‘ =0
for ¢¢ and é since

b P

[(a = J(F)s <o

21
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Values are also required of the integrals,

e, 2 o
4 48+ o8,
S’ 3_,_,4_:.&’: , L aF Q% dx

b 2 b dd, A
[ sy [ i

These are tabulated by Young for clamped-clamped,
clamped-free and free-free functions, Values are
also given of other guantities which arise in the
analysis,

The use of beam functions in the series for W
has the advantage that terms in the leading diagonal
of the determinant become large compared with the
others, thus improving the convergence of ihe
iterative procedure.

The work of Young is exutended by Bartion who
treats rectangular plates as a special case of skew
or oblique plates. 1i.e. Plates in which the sides of
length "a" are not at right angles to the clamped
edge. (cantilever Plates). The Procedure followed

=

by Young is again used to obtain a set of equations
in the coefficients Amn and numerical calculations
are made for rectangular cantilever plaves with
length to breadtn ratios % = %, 1,2,5 using an
eighteen term series for deflection. The resultant
coef'Ticlentss Amn and their associated rCrecuency have
been tabulated Ffor the first three syimeiricsal

modes and for the first two anti-symmetrical modes.

From these calculated values of irecuencies

a graph has been drawn showiag the variation of




freguency of each mode with length - to - breadth
ratio., Within the range of length - to - breadth
ratios used by Barton and Young and for the modes
they consider, it is g simple matter to obtain the
reguired frequency by examining the graph. The
modes of vibration are obtained from eguation (20)
and the tabulated values of %nn' For other modes
of vibration o¥ for length - to - breadth ratios
outwith the range considered it is necessary to

repeat the whole analysis, including the solution

of a large number of simultaneous equations,

2.2,H5. The Variational licthod.

In appendix 1 it is shown that if calculus
of Variations is gpplied directly to minindse
equation (17) then W must satisfy the differential
equation (11) and also the boundary conditiocns at
the edges of the plate., Since the differential
eguation cannot be solved no useful information has
been gained., However, Martin (1956) has applied
variational methods to the solution of the _roblem
of wibration of a cantilever plate by first
ma.-ing an assumpition as to the general Tform of the
function W. Thus, as an approximation

W = 8. ¢y
where ¢(3) is taken as one of the free~free beam
functions and s(ﬁarepresents a function which can

be varied with the boundary conditions

(o) = éﬂ(o) = 0

23,




When the required variation is carried out
¢(3) is considered constant and 90() is subject
to the above boundary condivions. This procedure
leads to an ordinary differential equation for B[ﬁ)
and to two boundary conditions for 9(?‘) at x

The solution of the differential eguation

reasonably simple, but it leads %

o

equation f'or frequency which Eartin solves

graphically by plotting length-to-breadth

against freqguency for each mode of vibration,
For those modes of vibration with no nodal
lines perpendicular to the clamped edge Llhe

of' Warburton and lartin give exactly the same

answer for freguency. That is

w' = 3D ( ) ('"‘"z)

where m is a positive integer. This is the same

exovression as is obtained for a cantilever

vibrating in the same mode but with

D
ET B
A

'he Jinlbe-d;fzeregce Approach.

2.2.6.

The methodeso far discussed for calculstion of

natural freqguencies yileld approximate values

are higher than the eXactu freguencies. By

the differential eguation (11) by its corr

difference eguation, approximate values Tfor
freguencies are obitained which are lower th
exact values. This method has been used by

D. Williams (1957) to obtain the fundamental

a complicate

replacing

replacing

esponding

24 |




eguency of vibration of a square plate simply
supported on each edge, Fig. 3., the exact solution

Tor which i =
- e e (gD
S Tar |Ted

T A 16
EE R T g~ g ey
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A rectangular grid
on the plate ABCD. For a first aQNﬂ**T*““4ﬂn1f has

been taken as one guarter of

N\
I
jf -P\.P

difference formulae to transiorm tne

equation {ll) into

{zow -SZw +?.Z.w +Zw,] g—; SWES

=S ‘r:q

or

[20 - (‘%\:f‘ 1]W° - Bzwf +?.Z.w,- 4o wa =0 (29)
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his answer is 5% below the exact value
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The remaining two roots of eguation (25)
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correspond to approximations to the second and third

doubl’-symmetric modes but they are 60 =707, below

the exact values. A closer grid spacing would '

yield greater accuracy, but if there are n unknowns

n simultaneous equations are obtsined and hence

Py e St oot .

a Irequency eguation of the n degree. .

In the case of a cantilever plate the boundary |

4

conditions are more complicated, and bccause there
is at most one line oi symmetry the same grid
spacing as in the previous problem will give more
uninowns and hence a freguency eguaition of hizher
degree,

Livesley and Birchall (1956) use finite
differences to study the staitic deflection of a
cantilever plate and give a useful discussion of

boundary conditions in finite difference form,. '

fos |
oy

ct
o

They consider that it may be more important
satisfy the condition of zero force at =z free
corner than to satisfy the vanishing of T
order differential condition of eguationz (9) on |

a free edge.

2.2.7s Comparison of the various methed ol

calculating natural freguencies.

=

th

@

To obtain reasonably accurate estimates of
first n natural freguncies using finite differences,

one would reguire to solve possibly as many as ne

e

simultaneous algebraie eguations. TFor hand

computation this would, in many cases, be too

27




laborious to be practicable. Williams, however,
suggests that the method is ideal for use with an
electronic digital computer since complicated
boundary conditions and even variations of sections
(thickness of plave, ete.) can be incorporated with
little difficulty.,

1

The final step in the grocedure used by

5
Barton and Young also recuires. solution of
simultaneous equations, but for the same order of
accuracy the number of ecguations is mmch smaller
than in the finite difference method,

This method réduces to that of ‘larburton when
a single product of beam functions is substituted

Tor W in place of =2 series of products. Werburtonk

analysis has the great advantage of simplicity since

the formula for a particular freguency can be

evaluated: without feference to other freguencies,

]_l
o
c 1,
O
D

i.e. No simultanecus equations. It
expected that the errors will be larger than in the

Barton-Young analysis but this increase is
appreciable only for certein modes ol vibration,
notably those with one nodal line perpendicdar

to the clamped edge. For these modes a better
approximation can be obtained by taking a

two-term series for W of the form

W, = A[80.£) + B.6R.40)

28
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11 a ,[llﬂﬁlm!_\ w 7,1 S’E'L,ulf '.—]-T: with
conaid

the parameter B, TFor example, consider

torsional mode for which

0..4.(y) = B,w.Py)

and take for the additional term

Or (). Psty) = 8, (x). $i(y)

2
¢(('j) = F—”(‘ : _é‘)
B“(X) = (wsk K. x -cos:f(,,.x)— c (Si'(hi(mx—smk“x)

X,a = 1.8715 ; K,a = 4.694
Because of the form of ¢,(9} all second

P R T = with 7 T T » P
derivatives with respect to y vanish and <

equation (17) for frec

"lé" 7\.(“") II {( a«- :‘"7'(‘ ;)(axag)}‘“dﬂ
jf w? dmdy

nvolved can

The integrals i

@

PTIT ] u E C T e L ol el S e
referring o tae tascles givell 0¥ Young and w

et eventually
1236244855 €v2s0-wX Deus-1nrss+3202€) ]

* ]
l({- ot (1 + &%)

Taking (g) =2 ,and v =03 we have

R. ot . 324.36 - 9908 +2660 g*
(1+82)

This expression has a minimum value when B = 0,205,

11l o

7
The corresponding figur

one term approximation 1s
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and the experimental value given by Barton is
7,1 = N

The one-and two-term approximations for W

lead to values for the frequency which are

respectively 24L9% and 3;2%\higher than the experim-

ental result, '

No great improvement is obtained by using more : |

terms in the expression for W;-the Young-Barton

a value for A which is 2.8Y higher than the

experimental result.

There does noit seem to be any obvious guide to
the best choice of &f(x).¢&¢3) . In any particular
cage thiswill probably be most easily decided by trial
and error.,

Freguencies determined by the procedure
developed by Martin are more accurase than those
from the one-term approximation but, in general,
are less accurate than those from the two-term
gseries., It would appear that this methad might
be improved (at the expense of an increase in
complexity) by variation of the function ﬂ‘ instead
of 9 « The use of a cantilever-beam funcition for
ﬁ would auntomatically satisfy the slope and |
deflection conditions at the clamped edre and the
problem would centain conditions for two Ifree edges
instead of one. Martin suggests thz=t 'A mor

difficult enterprise would be to talte both g and¢




as two independent varable functions'. This is
not profitable in view of the accuracy reported
above for the Rayleigh-Ritz method.

In the work which follows some form of the
Rayleigh-Ritz method will be used, including the
one- or two-term approximation where this 1is

saiisfactory.
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CHAPTER IIT

Impact and Transient Vibrations

2e1l. Historical Inctroduction

When two elastic bodies are in contact the
static force DPressing them together is related to

the change in distance between their centres by a

o

non-linear algebraic equation. That is,

2
el = i. P-i (26)
where, o = the change in distance between the
centres of the bodies.
P = the force between the bodies
k = a constant for a given pair of bodies,
dependent on the elastic constants and
radii of curvature at thé point of
contact,
Hertz (1881) derived this egquation by assuming

that near the point of contact the surfaces were of

the point of contact, Neglecting the snergy losses

0

T

due to vibrations, etc., Heriz applied the asbove

equation to the study of the impact of two elastic
bodies and obtained an eXpression for the duration
of contact. A later invesitigation by
showed that for spheres, for examole, the dursiion
of contact was much greatier than ithe vsricd of the

lowest mode of vibration of the spheres so that

e

vibrations could be neglecte

Timoshenko (1513) made use of Hertz's work
in developing a theory for the impact of =z sphere

32
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Zener and Feshbach (19%9) produced a powerful
approximate method for the solution of the simple
impact of a spiere on a bean. By eqguating the total
impulse acting on the sphere to the change in its
momentum, a "normalised" force was obtained which
was quite insensitive to the approximate force-time
shapes used in the calculations. If the sphere of
mass %g has a velocity v immediately before impact,
and a velocity ev in the opposite direction
immediately after impact, we have

[Tﬂdt = ‘L;-v(u-e) @27)
where T is the duration of contact and e is a
coefficient of restitution. Using the "normalised"

force this gives o

Pda =1 (2.8)
and = @ f:
A War(i+ee) (29)

By equating the kinetic energy lost by the sphere
to the sum of the kinetic and strain energies
gained by the beam, Zener and Feshbach were able to
calculate the quantity e within 3% of that obtained
from the numerical analysis of Timoshenko.

Using this method with two different "normalised”
forces, Lee (1940) showed that the distribution of
energy among the various modes of vibration was
little affected by the choice of force-time shape.
Like Zener and Feshbach he equated the maximum
value of the approximate force to that of the Hertz

force, so that the coatact time T depended on the




chosen force-time share.

Eringen (1953) imvestigated the impact of 2
sphere on a beam or plate and by sultadhly defimime
his symbols treated beams zmd plattes a2s one provilen.
The integral equation of Timoshenko wasg solved
approximately using two methods.

(a) Generalised Galersin method

(b) Collocation method.

An approximate shape was chosen for the force
P containing a number of unknown paraweters. Im (&)
the parameters were evaluated by minimising certain

integrals, while in (b) they were d:temrmime

=
Vi
i
o
=

atisfying the integral egustiom at wvaricus

characteristic pointe such as thne begimming =md

W

end of contact and the point of maximum force.
Flexural deflections were thnen founu by solving the
differential equation of forced vibtratiom of the
beam or plate. Eringen suggests tiat the series
for deflections convergee rapidly but that the
serieg for stress ovtained by differentiatiom
converges only slowly.

Stresses and deflections produced in rectamg-—
ular vlates (with combinations of clamped =md
simply~supported edues) by dynamic loads were
considered by Greenspen (1955). His aprrosch was
based en the goiigent 6f 8 dynamic loed fictor. i.e.

The defleetion Wae obtained in the form of a2 series,

i

airle deflectioan

ssch tera of whisgh censisved of the

in & pervieulas mede #willviplied by & factor which

e
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depended on the load shape. e.g. A unit load
applied gradually to a single dezrese-of-freedcm
system may produce a deflection AW, It can be

shown that the same lozd anplied suddenly (unit

D

step-function) produces a maximum deflection of
2W, Tne figure 2 in this case is the dynamic
load factor. To obtain an estimate of the

maximum deflection produced by a ziven load acting
on a plate Greenspop added the first four terms of
his series assuming thet they were in phase. Tnis
will not in general be true and since no
experimental results were given the extent of the
error is not known. Greenspon states that this
calculation should always give maximum deflections
or stresses higher than the values obtained by
computing the response as a function of time and
that the method should be adequate for pulses in
which the first mode of vibration makes the primary
contribution to the deflection and stress. That
the method can produce reasonable results is shown
by a comparison of static deflections and stresses
with those given in Timodshenko (1940). Maximum

error is about 3% for stresses and 2% for deflections.

3.2. Vibration of a Plate

3.2.1. Arbitrary Force Distribution

The motion of a plate under the action of a

load F(x,y,t) is given by the differential equation
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524. 7 ‘3‘7’- y+ i 2¢2
orT o VW
wr — =
8B vw + W . L (30)
3
| T S Wy s ER
where F is the load/unit area and D = 2 (1-vY)

is the flexural stiffness of the plate.

Consider a solution in the form of a series.

W y,t) = Z W, (9. 9,C€) (31)

r=1\
The subscript r refers to a particular natural

frequency and VJ;(NQS)is the mode shape as
defined by equations (10), (12) or (20) of the

previous chapter. That is

W'r (;;’ 5) = [A. ‘e'(ﬁ),éfﬂ) +A “B.(x).é(S)'l' ..... ]‘r (3 2)

Young has calculated several sets of the
coefficients Amn assuming for the firgst mode that

AlO = 1.0, etc. It is more convenient to divide

throughout by ‘(ZA:“]* so that we obtain a set

of coefficients which satisfy the condition

. [XA:“]* = 1.0 (33)

Wr(x,y) is dimensionless and 2,’.('&) is a function
of time with the dimension of length.

Substitute equation (31) into (30), multiply
by a mode shape function wm(x,y) and integrate over

the area of the plate

Sszum(v*zw,g, dA +JAN.. (Zwe %;)M =

j 3%‘1%44\
¢

) €
(34)




Rayleigh (1945) shows that for any boundary

conditions

IA\Aﬁn:VlrJdA.:z (o) w4
Also, from equation (11), we have
4 2
re o Bty

®

S50 that

S V(“vﬁf;vf,dﬁ\ e;; -0, J:Vﬂnﬁﬂ}giﬁﬁ:C) m#Es
A 3 A

Equation (34 ) then reduces to

@& 2 12 a i
dq.. & dA
%Lwﬁvwh.gﬁdn 4 ]w,,._e. dA _‘ ok

A at*
Or 4
4:‘_:“ 5 3% Jhwm.v Wu.dA.z ij dA
2 Q 2 '\ o SR
dt § W .dA ee. fwadh
. 2 g J Fw.da
f Wy, = 3 AT

Qf\- Sﬁwm.da

where the frequency of the mth mode of vibration is
l—"' JW. T W_an
A .
“* lne=.
_[w dA

%3.2.2. Force concentrated at a Point

We have

I W2 dA = ” [A Bwda+... ] o dy

= ab

Also, if the loading consists of a concentrated

force P(t) applied at the point whose coordinates

38,
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are (XO, yo)
I F.W“.dk = P(t)' wm(xo,go)
B
Bguation (35) can therefore be rewritten as
e
* Pt)
dim 4 wlg = AP® W y) (GO
dt efhab
If the plate is assumed to start from rest in
a position of zero displacement the general solutim

of equation (%26) is of the form

. a -wm(x. 5‘)
"(‘t) ehab W,

t
j P(r).sinw (t-T).dr (37)

Substitution for ”!f)in equation (31) gives
the solution for the displacement of any point of

the nlabe under the action of the force P(t).

Z W (X, 'Jo)""( i) PE)sing(t-T)dT (38)

Coy,e) = eﬁ b

iuruner, we take
P(t) = P. sin & %
where P is a constant and @& =& W, the integral

can be evaluated directly to give

W (5,90) W, (% -—"‘)Sunmt- (“)smut
wxy,t)= —:-E-bz Y e 3) ( (“‘) (3‘])

After a time T where T =£, the force P(t) is

removed and free vibration of the plate ensues. To
find an expression for this we substitute T for
the upper limit in the integral. This is

equivalent to putting

P(T) = PswoT 0 TLT
= O T <7




40,



t=o0 vl (%.,Ys)

55 gy
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-\3- ] ‘P('r), drdt
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'\ -2 1 '
tt i
vt - é.[ Plr)dTdt
W<
Y t £
= RP(t) + 3 ZW‘J‘Ptﬂsmu_u-T)dt
Q?\.a.b W, A
Fig. 4.

DEVELOPMENT OF THE INTEGRAL BEOUATION




On carrying out the integration we have

Lo
st (o)
MesE)= -?ful.b ] [l-(%-)]“s =" sivun(t-T)

3.2.3. Impact of a Sphere on the Plate jm= The

Integral Equation.

Consider a sphere travelling with velocity v
and coming into contact with a stationary plate
at the point whose coordinates are (xo, yo) (Bee
Fig. 4). Time t is measured from the beginning of
impact and effects due to gravity are neglected.
If it can be assumed that the Hertz relation-

ship applies then we have from ecquation (26)

=R P%(t) (26a)

In a time t, travelling in unrestrained motion
with velocity v, the sphere will move through a
distance
vt
Due to the existence of the force P(t) a change

invelocity is produced in the sphere, given by
t
-3 {"perrat
W iy

where s is the mass of the sphere. This change
in the velocity of the sphere leads to a reduction

in the distance travelled by the sphere, equal to

-9 S ] P(T) dTdt

W o o

41
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Thus we have for the actual distance transver:-ed

by the centre of the sphere
tt
s = vt -3 ]IP(f)d'tdt @)

The deflection of the ceatre line of the vplate

at the position (xo, Y, ) is obtained from equation

(38) as
(¢ & o) -
w(xeg.t) = ckabz W N3 P(‘t)smu (t-T)dt 42)

Also, by deflnltlon,

S = A + wW(X,Y,t)

Substitution from equations (26a), (41) and

(42) leads to the integral equation for the force
P(t).

t
-3_8 [‘P(t) drdt
__ﬁP’(t) +__ Z"L"‘zﬂ**’] P@)sma(t-Tdt 43)

Equation (43) is exactly analogous to that
obtained by Timoshenko for the analysis of the
impact of a sphere on a simply-supported beam and
could be solved, in any particular case, by the
numerical procedure used by Timoshenko.

Eringen obtains a similar equation and, after
expressing it in non-dimensional form, solves it by
approximate methods for the particular cases of two
beams, a circular plate, a square plate and a

rectangular plate, all simply-supported at the

boundaries.




3.2.4., An Approximate Solution of the Impact

Problem
Instead of attempting to solve equation (43%)
the approximate method of Zener and Feshbach will
be employed to obtain a suitable shape for P(%)
which will then be substituted in equation (40).
Equation (28) which defines the "normalised"

force P(t), is satisfied by

— < wt
= T snES @4)
Hence, from equation (29), we have
w N nt
t) = Zariee) 2 siInTE
P(®) r S (45)
Thus in equation (40) we have
a &L
weE T
and P = 3‘\7(1#8) =T
leading to
(""" cosw

_wv( 14€) T T W (Xolle). WX Y)
WEYE) fab T w2y

The "time of contact", T in equation (44), is
as yet undefined. To find this the amplitude of
the normalised force will be equated to the
maximum value of the normalised Hertz force.

By considering the changes of mementum
occurring during the impact of two elastic spheres
it is possible to produce an equation for the Hertz
time of contact, TH (See, for instance, Timoshenko,

1951). This procedure neglects vibrations, etc. so

43

-

LSINW (‘t-—r) (4-6)
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that a sphere of weight W falling with velocity
v on to a fixed solid has a value of unity for
the coefficient of restitution. Thus from equation

(27) Tn '
LW
I

: 3

Using the subscript M to denote maximum values

we have from Timoshenko (1951) A
owv _ 8 R fm
9 S Vv 2y
weo, ¢ 54328, KB
T ais Y

Hence the maximum normalised Zertz force

1; = Pum s Fro
HMm Tor A
8 . R Fuu
® .Pn.dt ? v )
. 5. 2-94328...

= 1-839S85
Tw
Bquating this to the maximum value of the

approximate normalicsed force gives

T " 1.839SS

o7 Tw
Hence,
T = 0-854 Ty

I

() (-vH%

\ 3
o E*R

525

C))
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Where

W weight of the sphere
g = acceleration due to gravity
v = velocity of sphere immediately
before impact
R = radius of the sphere
E = Young's modulus of elasticity for
the material of the sphere and of
the plate.
9 = Poisson's ratio for material of
sphere and plate.
It is also of interest to wmlculate the strain
at the surface of the plate during flee vibration.
Strain in the x - direction is related to the

deflection by the equation

E = ’i ’3'&’19555t9
F 4

z Ix2 at the surface of the plate

Awy(xy)
wylite) wn«ﬁd ‘Q;__(g_;_)__ . <
ylee) e & jz. sivu e T) (48)

Using the first few terms of the series (46)

=R
"2
and (48) deflection and strain histories have been
calculated for particular points on the plate.
These results will later be compared with those
obtained experimentally.

For the casge of elastic impact of a sphere on
a simply-supported beam Zener and Feshbach obtained
a value for the coefficient of restitution e by
equating the kinetic energy lost by the sphere to
the sum of the kinetic and strain energies gained

by the beam. This method has not been used in the
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present case of impact of a sphere on a plate
since it was found that permanent deformation
occurred at the point of contact. The value of e
used in the calculations was determined by

experiment.




CHAPTER |

Experiments and Calculations

Lh,1l. The Plate and Clamping Device

|

|
Fig. 5. shows the arrangement which was finally i
adopted for clamping of the fixed edge of the i
cantilever plate, The thick metal blocks were used
to provide a rigid structure which would resist any
movement of the plate over the clamped area., This

resistance to movement was not obtained when less thick

clamping blocks were used. One row of 3" diameter

Whitworth studs was placed as close as possible to |
the clamped edge, again in an attempt to minimise !
movement and to increase the effective stiiffness of l
the support, A further row of studs was used to
reduce the possibility that the first row might tend
to act as a simple support. The complete unit was
then clamped as shown in the diagram to an existing

set-up of I-section beams fixed in a concrete base,

.2, Determination of Natural Freguencies

A block diagram of the apparatus used to deternine
the natural frequencies of transverse vibration of
the plate is. shown in Fig. 6.

The metihod employed was essenttally that of

finding the frequencies at which the plate would
resonate in forced vibration.

The plate was vibrated by an electromechanical
vibration-generator which was supplied by an
oscillator with an alternating voltage of suitable '

frequency. A moving-coil type vibration pick-up in

47




in contact with the plate then supplied an output
voltage to the ¥ - plates of a cathode-ray
oscilloscope, while an accurate oscillator connected
to the X-plates provided 'a voltage of similar
freguency. The freqguency at which the plate was
vibrating was obtained from the setting of the
oscillator switcnes when a stationary ellipse was
formed on the screen of the oscilloscope.

Resonance, and thus the recguired natural
freguency, was found by altering the frequency of
forced vibration until the output from the pickup was
a maximum.,

Modes of vibration were identified by
investigating the nodal pattern at resonance, either
by sprinkling sand on the surface of the plate or by
moving the pick up across the plate.

Several experimental frequencies are shown in
Table 2 where Warburton's notation has been used to
identify the modes of vibration. The letters m and
n refer respectively to the numbers of nodal lines
parallel and perpendicular to the clamped edge of the
plate (See Fig. 2). The calculated results given in

the same table were obtained from Warburton's

approximate method except for those modes of vibration

with n = 1, where an approximation of the form
= 8.0 Ct)l*¢7( )
W tx,y) = A[6.06)+8.8, 6 LAy
has been used. The constant B was determined in such
a manner as to minimise the fre@uency, and the

following figures were obtained.
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m B

1 + 0,2078

o e o

3 + 0,1680

In the analysis of deflections and strains the
same approximate mode shapes were used as in the
calculation of natural freguencies, The value of A
in the above two-term expression for W was chosen to
malke e\

W o .
N*® dxdy = ab '
® ©
L€ A(lL+B) =1

or A =._._i'._..1_ I

,Aﬁ + B:)
This led to the following mode shapes, corresp-
onding to the first six natural frequencies in

numerical order.

Wi(2.9) = 6,00). ,y)

Woey) = [0.9791 ) +0.2035 )] €y
Wj(x,y) = 8, . 4Ly)

Wyl = [0.4727 8,090 + 02322 6,0 ] F,(y)
Ws(x,y) = B3 0x). .Cy)

We(xy) = [ 09862 500> + 0.657 G&)] F.Y)

1,5, Transient Displacements

To record transient displacements of a point on
the plate the apparatus shown in Fig. 6 was again
used except for the vibration-generator and its

associated oscillator.



The output voltage from the pickup was
proportional to velocity so a "calibration unit
containing an integrating_network was inserted
between the pickup and the oscilloscope. This unit
could also supply a voltage proportional to an
amplitude of vibration (at the pickup) of 1072 of an
inch,

One beam of the double-beam oscilloscope was
used to display the transient signal while the
decade oscillator supplied to the other beam a
sinusoidal timing-signal of 1,000 c¢/s.

The oscilloscope screen was photogrsphed on

25 m.m., film by a camera with a motor attachment which

moved the film past the screen at an approximate
speed of 25 inches per second.
The course of an experiment was as follows:
l. A photographic record was made of the
standard amplitude of 1072 of an inch at 50 ¢/s.
2. A steel sphere was dropped from a suitable
height on to the chosen point on the plate and
a photographic record was made of part of the
resultant free vibration at the position of the
pickup, The sphere was allowed to rebound and
to fall back to the plate surface.
3. The above procedure was repeated.
Part of the record, corresponding approximately
to one cyecle of the fundamental frequency of the
plate, was then enlarged for comparison with

calculated results.

S0




Whe

n the sphere is allowed to fall back to the

plate the second impact is clearly seen on the film,

By using the timing signal on the film to measure

the inte

rval between first and second impacts a

simple formula can be used to determine the

coeffici

ent of restitution. This formula depends on

two assumptions which we may reasonably assume are

satisfie
1o

the

de
The distance travelled by the sphere after
first impact is much greater than the

movement of the plate at the impact point.

2.

The velocity of the sphere on return to the

plate surface is numerically equal to its

vel

ocity immediately after the first impact

and is in the opposite direction.

App

lication of the laws of motion of a body

moving freely under the action of gravity yields the

formula,

g

It
produced
the plat

of resti

9%
eV

coefficient of restitution

e =

= time interval between first and second
impacts

= the speed of the sphere immediately before
the first impact

= acceleration due to gravity.
was found that the impact of the sphere

a permanent deformation on the surface of
e and under these conditions the coefficient
tution was obtained as

e = 0552
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Data and calculated resulis are given below for
the particular case of impact at the point with
coordinates (6", 5z") and pickup at position (16",7%")

Weight of sphere W = 0.01229 1b

- Z"

Radius of the sphere R =33

Young's modulus for sphere and plate
E = 30 x 106lb/sq.in.

Poisson's ratio for sphere and plate ¥ = 0.3

Length of the plate a = 16"
Breadth of the plate b = 73"
Thickness of the plate h = 0,282"

J2e%% 15"

107.7 in/sec.

wi* 2\2
T =3.23 (—3ﬂ———t) =273 xl10 6sec.
Vv R E

The following tabulated values show the first

Velocity of the sphere v

]

o\

five natural freguencies and the corresponding
amplitudes of the associated terms in the series for

displacement, equation (46).

Freguency Amplitude

237 rad/sec|+ 0.726 x 10 Jinches
1067 + 0,284 x 1072

1485 - 0.370 x 1077

3111 - 0,199 x 1072

| 11162 + 0,124 x 1075

Using the above five terms the displacement was

£ A - 2] 1 L
evaluated at intervals of 5000 of g second for a
total time of 25 milli-seconds. The resultant curve

of displacement v, time is presented in Fig. 7 together
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with the corresponding experimental result.
Calculated and experimentsl curves are also
presented in Fig. 8 for the displacement of the
point at (16",0) due to impact at (6,5%).

]

L.y, Transient Strains

Recordings of transient strains at a point on
the surface of the plate were obtained with the
apparatus shown in fig. 9. The voltage across the

strain gauge is

|
d (R+Ry)
where V = voltage of the batterv = 24V
R = resistance of the wirewound resistor
Rg: resistance of the strain gauge.

Since the resistance of the gzauge alters under

strain we have a change in Vg,

Sv. = VR SR
d (R« Rs)" 3

= _RR, v &Ry

= !S:EES V. KE
(R+R,\‘

where K is the gauge factor, a constant for a

e

particular gauge. The above eguation shows that the
change in voltage across the gauge is directly
proportional to the strain. This voltage is then
amplified and displayed on one beam of the .

oscilloscope while the other beam, as before, carries

a timing signal.




Strains occurring at the position of gauge B
(see Fige. 5) due to an impact at (6",5%") were
calculated from equation (48) using the first five

terms, the amplitudes of which were as shown below.

Freguency Strain Amplitude
237 rad/sec |+ 1.329';: 40
1067 - 0.69) x 1070
1485 + 3,630 x :Lo'6
3411 - 2,006 x 107°
4162 + 2,897 x 1072

Calculated and experimental results for this
problem and also for the strains at'gauge A due to
the same impact conditions are shown in Figgs 10 and
11 respectively.

Due to the experimental method adopted only a
gualitative comparison is possible of the

experimental and theoretical strains.
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CHAFTER 5 COMMENTS AND CONCLUSIONS

Figs. 7 and 8 show that the displacements

calculated from five terms of the infinite series

agree with the general trend of the experimental results

during the first ten or twelve milli-seconds. fter this

beriod the differences between the curves become more
noticeable and it is apparent that the development of
the predicted history proceeds more quickly than that
of the experimental result. Two of the more important
causes of these differences are
(a) calculated freguencies are higher than
observed values
and (b) normal mode shape approximations may be too
simplified.
From equation (46) we see that displacement w is

related to the mode shave W.,.\(x-,g) by

w =< wh.(xo } yo) % wm(x'l | Hl)
The figures given below compare the values of this
product used in the calculations for Fig. 7. with
improved values obtained from the nine-term series

used by Barton.

wﬂ\«o.v.). Wln.(x‘ 2 51)

m A (FiqT) B8 (BARTON) nnnog-_
| + 0.8196 + 0.8153 1.00S
2 + 1.4459 + |.4630 0.988
3 - 2.615%4 - 2.4915 1.0S80
4 | - 3.2254 - 3.6ll5 0.893
5 + 2.4658




The coefficients required for the nine-term

series were available only for the first four mode-shapes

but these few resulis suggest that the error involved
in 'wsing a one-~term approximation is greater for the
higher freguencies, and also that the amount of the
error is not constant. It is the variation of error
that causes distortion of the computed record since a
constant % error would increase or decrease each uterm,
and thus the toutal displacement, by the same factor.

Equation (46) relates displacement and frequency

by cos QmI '!I

(“"") [' (“-'J)]

= G (@), s e (t-F) | say,

A constant % error in frequency would alter the
time scale by the same factor but, in general, distor-
tion would still result from error variations in the
quantity G}quo.

Where the errors in estimating ®W,,Ws,Ws,.... €L,
are different then some time after the start of the
vibration the corresponding terms in the series for
displacement may subtract instead of adding. This
suggests why only the beginning of the calculated
curve in Fig. 7 (Fig. 8) agrees reasonably well with
the experimental result.

Values obtained for G'(N,J using (a) calculated
frequencies, and (b) experimental freguencies are

given below.



G (W)

m A (FlaT) 8 (EXPERIMENTAL) [Rario a
( 486 515 0.944
2 108 "3 0.956
3 77.5 84 0.923
4 33.7 34.6 0.974
5 27.6 29.6 0.932

The results in the last two tables were used to
re-calculate the amplitudes of the terms in the
displacement series and iigs. 12 and 13 were drawn to

correspond to Bigs. 7 and 8

DISPLACEMENTS
m A (FIG7) s (T RAT0 S |
| + 0126 x106°" | + 0166 xi6% 7 |0.948

3u + 0.302 auo's “ | 0.94I

+ 0.284 x10
- 0.370 216> | - 0.382 x> " 0.969

0.199 x15° ”

- 0.228x0°" | o0.872

P F S [ Y
|

+ 0124 x16>"

Even though only four terms were used for the new
curves it 1s immediately obvious that the agreement
with the experimental resulis is better. It is to he
expected that the results in Figs. 12 and 13 would be
improved even further by making use of more terms from
the infinite series, but in Figs. 7 and 8 adding more
terms based on approximate freguencies and mode shapes

would/
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would probably cause more distortion of the record.

If no damping were present it is possible that at
some time the deflection would be obtained by acding
the maximum values of each term in the series.

i.e, 1T

W= Y SNG(E-T) +Y, N0, (t-T)s....

W ® Yo + Yo v Ys *Yat--o-

This is the formula derived by Greenspon as an
upper limit for the maximum deflection. He assumes that
in practice it is sufficient to consider only four
terms and the calculations are vased on the one-term
approximate mode shape. The following figures compare

the values obtaired from this formula with the

corresponding observed maximum, Fig. 7 or 12,
Wman.
Above FORMULA : ONE-TERM ModE swapE | 1491 x16°
" " : Fig T eplevlAaTions .59 xi16> "
" " : Fir&i2 " 1.678 x> 7
AcTual cALcoLATED Max. FoR FigT(STeems) | 1.42 x16°"
" W W ow Figl2, 1.40 x16>"
ObserveEd MAX. F!& T oR 12, 1.88x 63"
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It can be seen that the experimental figure is

larger than any of the estimates. Since the calculations

are based on an approximate force and an experimental
value of coefficient of restitution, comparison of the
above results may not be helpful in criticising
Greenspon's procedure. A method of initiating the
transient vibration which could be "exactly" accounted
for in the analysis would be necessary before reaching
any relevant conclusions. One comment which can be
made, however, is that in the above case the more
exact calculations seem to give higher values of Wamax
than the simple one-term approximation, and each of
these figures is greater than the sctual calcula ted
maximum deflection,

In a practical case the presence of damping will
affect the amplitudes and Wwman Will occur during

the first few cycles of the lower freguencies.

The integral equation developed for elastic,
Hertzian impact of a sphere on a plate is similsr to
that obtained by Timoshenxzo for impact on a beam. In
this latter case Timoshenko (1913) suggested that the
problem of plastic impact could be treated in a similar
manner provided that a static relationship between force
and distance was known for the plastic condition.

In the plastic region the rate of straining is
important and relaxation of stress and strain may not
occur at the rate of removal of the load. In view of

this the use of a static plastic relationshivp in the

integral/
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integral equation would be an approximation similar
to the use of the Hertz expression for elastic impact.
Even with elastic impact it has been tacitly
assumed that all the energy transmitted to the plate
(or beam) results in flexural motion. That this is
not necessarily so is shown by an investigation by
Goodier and Ripperger (1959). A steel sphere of
diameter 2a was allowed to strike a steel slab of
thickness h and records were taken of strains produced
on the upper and lower surfaces of the slab. For
h

5a >» 16 the motion was essentially confined

surface wave on bthe upper face of the slab. i.e. The

to a
response was that of a semi-infinite solid rather than
a thin plate. The motion was almost entirely flexural
when g% & 3, In the intermediate range

3 - é%<. 16 it would be necessary to consider both
flexural and surface wave eifecis.

The present experiments were performed with

h
é-é-é ks

Since strains are obtained from the series for
displacement by differentiating with respect to one
of the space variables, X or y, a process which
increases the importance of the higher freguencies, it
is to be expected that convergence of the resultant
series will be slower than that of the series for
displacement, i.e. liore terms may be required to give

a reasonable representation of the experimental result

than is the case for displacements.

Ao o Obenged/l
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Observed (qualitative) and predicted strains
are presented in Figs., 10 and 11 for two cases. Both
strain gauges were placed near the clamped edge of
the plate (see Fig. 5) but one gauge was situated
on the line of symmetry so that asymmetrical modes
produced no effect. HFig. 11 shows the results for
this gauge, the calculations being limited to
consideration of only three frequencies. It should
be noted that three of the first six natural
frequencies correspond to asymmetrical mode shapes.

Many of the comments made about the displacement
records in Figs. 7 and 8 can be repeated for Figs.

10 and 11, Approximate frequencies produce the same
effect on strain and displacement but there is a
difference in the effect of using approximate mode
shapes, Strain 8x in the x-direction is related to

mode shape Wm(",‘p by

2
Ex % W, (x,4,). IWnlX; 4,)
Ox®

Fig. 7 (displacement) and Fig. 10 (strain) were
calculated from the same five mode shapes.

The four improved mode shapes obtained from
the nine-term series of Barton were used to calculate
Pigs. 12 (displacement) and 14 (strain) but in the
latter case, Fig. 14, it was found necessary to

include/




include a fifth (approximate) shape.

Values of

the above product are compared in the following

table
Wik, 4,), Tnlat)

m A (F1G10) B (FiGi14) RATI0 fé_
[ + 0.010637 + 0.010459 1.017

2 - 0.025025 - 0.025920 0.965

3 + 0.182080 + 0.174687 1.042
4 ~  0.231136 - 0.199647 1.158

5 +  0.4071704 + 0.407704 /.000

The corresponding amplitudes of each term in the

series for strain are:

STRAINS

m A (F1G ) B (FG4) [ramo £
\ v 1.3288 x16° | + 1.386 x10€ 0.959
2 - 0.69416x16° | - 0754x16° 0.921
3 + 3.6303 x16° + 3T76x16° 0.9¢6l
4 - 2.0059 x16° - L7717 %06 1.129
5 + 2.8965x16° | + 3.007x067€ 0.932

The effect of the new figures for stmin is to

reduce the distortion in the later parts of

the

calculated history and to eliminate the reduction in

time scale which arises from use of inaccurate

freguencies,

No great change is apparent in the

calculated result for Fig. 15 when compared with

Fig./
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Big, 11 except the change in time scale,

This may be

due to the use of only three terms and the fact that

errors in approximate freguencies for symmetrical

modes are more nearly constant than for asymmetrical

modes, so that distortion would not be appreciable

15.

Greenspon's method can be used to estimate the

maximum strain and values ovtained in this way are

shovn below for the case represented in Figs. 10 and

14, No experimental result is qguoted since the method

used to record strain did not provide quantitative

results,
Ex maxc

Four TERMS | FIvE TERMS
GREENSPON’S FormulLA = one-Texm Mang sware | 6./6 % 16° ©|9.06 x15¢
' " : Fig 10 calculamions | 7. 66x10° |10.56x15°
" w i FIg4e N 7.69x16° |10.8 x16°
Actval cAlculATED MRX.FoR Fi§.lo 9.73 x10 6
" . « v Figu. 8.38 x/6%

The similar table of results for displacement

showed that the "upper limiis" ealculated by

Greenspon's method were larger than the actual

maxima as given by the calculated curves Fig. 7 and 12,

The above table shows that this is not so for strains

unless five terms are considered.

The analysis has neglected such factors as

internal and external damping,

shear/

rotatory inertia and

63,
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shear deformation. The effect of damping in a
bractical case will be to eliminate the higher modes
of vibration from the experimental records and,
unless calculated Pesulté are required over several
cycles of the lower frequencies, damping can usually
be neglected. (The calculation being limited to
consideration of the lower modes only). Shear
deformation, and to a lesser extent rotatory inertia,
will be important during the initial stages of the
impact process when the disturbance is confined to

a small region near the point of contact. Iihere
information is reguired concerning shear Torces (or
the force between the sphere and plate) it would
seem necessary to consider shear deformation. This
would suggest that the integral equation of
Timoshenko should be modified to include deflections
due to both flexure and shear. ©Such a procedure
would greatly complicate the analysis and it is
doubtful whether, in general, the results obtained
would Jjustify the extra complexity.

Goland, Wickersham and Dengler (1955)
investigated the problem of strain propagation in
beams subjected to impulsive loading, including in
their analys.s the effects of rotatory inertia and
shear deformation. A force gauge was designed in
which a steel hemisphere rested on the surface of
a Barium Titanate strain-gauge, which in turn was
cemented to the surface of the beam. A steel
sphere was allowed. to fall on to this gauge and the

resultant/

e NN T R AT =
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resultant variation of force was obtained from the
changes of voltage generated by the Barium Titanate.
This recorded force history was assumed to act as a
series of impulses and as such was utilised in the
mathematical analysis of the problem.

For the period during which the sphere was in
contact with the beam strains calculated by this
method showed good agreement with observed resultis
except for a small-amplitude high-frequency component
present in the measured strain histories but lacking
in the analytical solution.

A similar method could be used to measure the
force applied to a plate during impact instead of
using the Zener-Feshbach procedure. It offers the
possibility of dealing with cases where double-
peaked force histories occur. (Sub-impacts).

While a variation of strain produces a similar
variation of voltage across a Barium Titanate gauge
attached to the strained surface, the opposite is
also true. 1i.e. By supplying a suitable voltage
pulse to the gauge it should be possible to apply |
to the surface of the plate a given transient strain,

This suggestion has not been tested except for

sustained harmonic motion but it would be an |
interesting method of inducing a transient vibration
since pulses of almost any shape can be produced by

electrical means.

Static deflection caused by a concentrated force
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P can be obtained from equation (39) by allowing @

to tend to zero and considering the result at Wts= %r

We have
P Wan (X, Yo), W G5, 4)
w-(xl =_._&- M\ Jo/. Y¥mM Ja
4) chab ac 49)

Taking (X,y) = (xo,yo) = (a,0) and rewriting
the equation non-dimensionally, we have for the
deflection under the load at a free corner of a

square cantilever plate,

D.w@o %
@po) _ W,.;(a.o) (50)
P & o

Values of this guantity obtained by various

methods are compared below

LivesLey & BIRCHALL :FiniTe DiFFerences (o) | 0490
" " m " (k)| o.500

5 TERMS oF THE sum 1N EQuATioN (50) 0.495

MacNeal : Analogue NeTwork 0.522 |
" :  DIRECT MEASURE MENT 0.462

- =

The results of Livesley and Birchall (1956)
were found using finite differences with a network
of thirty-six points. (See Chapter 2, Section 2.2.6.)
It is possible to use as boundary conditions on the
clamped edge either (a) deflection and slope egual
to zero, or (b) deflection zero and symmetry about
the edge. Conditions (a) and (b) yield the

corresponding/




corresponding figures in the above table,

One=-term approximations were used for the mode
shapes in equation (50) and the freguency parameters
Em were evaluated by Warburton's method.

MaclNeal's electrical analogue is essentially
a sixteen-point finite-difference network and as
such is less accurate than the procedure used by
Livesley and Birchall,

Static deflections are important in a method
suggested by Williams (1949) for obtaining
displacements due to a transient load. The integral

in equation (38) of Chapter 3 is evaluated by parts

to give
0 :
3 Pq. W 4). W X,8) _ Pa_§7 Wo(x,4o) W, (x y) |SiNat - (&)smut
wWxy,t) = siNnwt ohab Wr b o - (%»-)""

(51)

The first sum is recognised as the static
deflection due to the concentrated load P, and the
remaining summation of terms is the additional effect
produced by inertia forces.

The static deflection can be evaluated elther by
swimming the series or by substicuting =2 value from
some other source. (e.g. Livesley and Birchall),
According to Williams only a few of the inertial
terms need be considered due to the rapid convergence
of the series.

As a final comment it is perhaps relevant to note
that while this dissertation is concerned only with

a uniform rectangular plate, in pracc.ice 1t may be

necessary/



68,

necessary to consider plates where the thickness,
breadth, length, and possibly elastic properties are
functions of the variables x and y. Such problems
may be too complex for direct analytical solution
but the use of finite-difference methods and an
electronic digital computer can yvield a solution for
a particular numerical case. Livesley and Birchall
used the computer DEUCE to invert a 30 x 30 matrix
and the result is quoted in their paper. Each
element of the inverted matrix is an influence
coefficient giving the non-dimensional deflection at
point m due to a unit load atv point n, both m and

n being in the range 1 to 30,



Application of Calculus of Variations %o lliinimise

BEquation (17)

AW

With the notation Wxx = —-K‘ ] etc.
we have

acb
2 2 2
2 o L] WG W 2oy +20-0E fdn dy

= Yo% T o
s;LLWMs

The right hand side of this equation is a

(1)

functicnal of W, g 2 w}y ana ﬁﬁs . X and y are
considered as fixed gquantities and only W and its
derivatives are to be varied.

3 l 3 Ly 4 f. 2 31 -

Hor @ to be stationary the first variation
must be zero.

éfl =

K 8(NP) = Eié*i -LF;SFQ
Gy

Sﬁ _%.SF‘ = SF,—I;}‘.SE =
2

m|m

F2 does not contailn derivatives of

SE = QF'- Sw
2
9. eﬁj j W.SW dxdy

8E= %E -wau + ‘a‘a {“SS ‘% EWI,

W, thus
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“b
& T AT ~ai¥)T, — F’_ﬁ-.e‘j [ w.8w.axayz0 —(ma)

jI(w *VW, )‘3 Swamxa

Integrat by parts with fesyec t to x, hence,

b o ba

I'-j [(W“"I-VW,,)SW:&]O.J-, o j l [wxxx.*vw 3!]8“’ d‘lda

-] [- 2 -]
Integrate the second integral by parts with respect
to 5t

+owW. \iw [(w + VW, Sw] ] w Y )éw.
I"J [ow 9)3 ]“3 J ss) Yoy SW. dudy

Similarly, by interchanging x and a and by

we have

b a b
L I[Cw ww“)Sw] - I [(wm+ vww)aw]‘,d; -] ](w,mww ’)&w dudy

a b
S 1

Again, by parts with respect to x,

I,= j“[ b{[wg, Sw,] - Wy .sw,} oo dy
: ’ﬂb{h,.sw]‘ -[w,,_”jw] -[w,..”.Sw] +[Wu,,8w]}dud3

[[ Sw]] IN,.” Sw]ol:, J[Wu, Sw]d,“” gy Swdndy

Grouping terms together and substituting in (17a)

we Lind

$(w?) = i lV W - ?f‘ ww]Sw dmd.u

[(aww‘a’w gw] di

S [('&w .,.v‘aw SW} 6\3

10.




i J [( %;5 *(2-")33:,3:‘)8“]::&‘

- UG Ts) ey

ox3 3@3
2
+ z(\-v)[[ %"%’3.8\«:1]0

For this to be true each of the braclketed
terms must vanish.
Therefore 4 2
= eW=0 — ()
and, on edges y=o0 & y: b
2 2
N 4 vA¥WN_o o Sw.=
'é'a ox* J
3 3
W eIV _ 6 o SWzo
S i
on edges X =0 & x=z=a
W :

o x* 35’-
L -o-(z-v)L%-o o SW=p

and at the corners (x,y)e (9,00 5(0,0);(0,b); (a,b)

2
?_.\.\'. (o] o §w =0

M 33 J

Thus we see that the function W which

minimises eguation (17) is a solution of equation

(11), subject to the relevant boundary conditions
in (17b):

» clamped edges, SW =8wu(“swy) =0
supported edges Sw =0 , wa =# (o
Sw#o0 , SwWiy#o

SwW #o0,

free edzes

At a free corner

Tl

r (vb)




T2.

In the cases where the variation is zero,
€.2. Where zero slope or deflection isprescribed
at the boundary, the boundary conditions of
equation (17b) are satisfied. Where the variation
is not zero then the more complicated expressions
in (17b) are the reguired boundary conditions which
the function W must satisfy.

The above problem refers to a funcition W which
makes Oslstationary. FMarther investigation shows

kA %
that @ is a minimum (Courant and Hilbert, 1953).
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Appendix 3

a,b

&+ 0 0

4R, mn,
k2,%'s

F(x,9,£)

Notation

dimensions of the plate in the x-and y-

directions

! L
= %\_é% = constant for a given beam
coefficient of restitution = =— 1-:-!’-.

acceleration due to gravity

thickness of the plate

coefficient in Hertz expression, ecuation (26)

lengih of a beam; grid spacing in finite-
difference method.

positive integers

generalised coordinate, equation (31)

time

velocities of the sphere

deflection of a beam

deflection of a plate

coordinates in rectangular, cartesian system

coordinates at the point of impact

coordinates at the position of the pickup.

coordinates at the position of the strain-
gauge.

area of beam cross-section

dimensionless coefficient in series for
W(x,v), equation (20)

dimensionless coefficient in two-term

mode shape

3
ER
s
12(1=v?)
Young's modulus of elasticity

plate stiffness =

load per unit area acting on the plaie

TT.




G, Gy, M

>t factors in the equation for A, eguation (19)
‘1’)3;,33j}

and Table 1.
I second moment of area of beam cross-section
xr = j--zc-f- for a beam
P, P(#) force between bodies in contact
Pft) concentrated force acting on the plate

.P-C't) "normalised" force

Pl'll"l maximum value of Hertz force

R radius of the sphere |

T kinetic energy of vibrating plate or beam
T duration of application of P(t)

T“ ‘Hertz time of contact, equation (L7)

uw strain energy of vibrating plate or beam
w weight of the sphere

We deflection at point r in finite-difference

network, Fig. 3.
wf(ﬂ) shape of rth mode of vibration of beam,
equation (3)
w.,.(x,g) shape of rth mode of vibration of the plate
ol change in distance between centres of two

elastic bodies in contact, equation (26)

Ex strain in the x-direction at the surface of
the plate
9“@) wn()\)for a cantilever (clamped-free) beam,

equation (13)
frequency parameter, egquation (18)
Poisson's ratio

weight density of the material of beam,

o < »

plate and sphere.




a9,

parameter in equation (5) for Wy ()
Wn(y) for free-free beam, equation (14)

rth natural freguency radians per sec
- '3____44-1' +2'a__4"1a7' e &"'
ox* ox'oy* %yt
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EXPERIMENTAL FREQUENCIES (c/s)

il © \ 2
\ 35.6| 162.2| 1115.4
2 218.5| 529.4| 145\.3
3 | 618.1 | 996.1 [ 1995.5
4 |[12:5.8

CALCULATED __ FREQUENCIES (c/s)

wviie ; 2
\ 377 | 169.8%| 1166
2 | 236.3 | 542.9 %| 1563
3 | 662.3 |1030.5%| 2144
4 |12498

3 TWO TERMS

TABLE 2.
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EXPERIMENT

167
|

V=
)
—

CALCULATION (5TERMS)
8 /j\/\/\
i /‘/\ /

DISPLACEMENT

20 S msec.
==
DispLACEMENT AT (16,7f)
IMmpacT AT (6','552 v = 1077 “/sec.
W =0.01229 b

FIG.7 R = z?z”

h.

83.




“ -3 v
I = lo

DISPLACEMENT

84

EXPERIMENT

cALCULAnon (5 TERMS)

3 Al |

DISPLACEMENT AT (16,0)

| U s o U{s\

=3 I

W \25 |
i

i |

IMPACT AT (6'5%)

FIG. 8

Y = 10717 /sec.

W= 0.01229 \b I
R = 2.7 I
33
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ARBITRARY ScALE

[

=

/\4’\/\ n/\hfvt

LAY

VV\/L/”'\/ :

CALCULATION (5 TERMS)

A VAV WJ\\/\Z]M\/ i

STRAIN AT (0.64,1.875)
Impact AT (6°,5%)

V= 107.7 fsec.
w=0.01229 |b

FlG. 10 R=5

86.




L
-8
mo 10 CALCULATION (3 TERMS) |
‘.l.l. | I.
ik IS f\Z\ oM\ asmsec |
2
z \/\
¥
v
o )
-10

A
f‘/\ /\’\ J\\ Q[\ ,J\MM
WMl

STRAIN AT (0.64,3.75)
IMpACT AT (6°,5%)

AF = to1.7 [sec.

wW = 0.01224 b
1 "

FIG 11 R* =




z‘-
/\m EXPERIMENT
t
’PQ i
~ . ; ¢
" ov Vﬁ —
=
2-1t

CALCULATION (4 TERMS)

USING EXPERIMENTAL
FREQUENCIES

DISPLACEME
n

[
e
25 m.sec.

DiSpLACEMENT AT (16,75)

IMPACT AT (6':5-5 V= (07,7 %ec.
W= 0.01229 |b
R= o i
32
F\G, |2

(compare Fia.7)
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4 EXPERIMENT
ot
CALCULATION (4TERMS)
USING EXPERIMENTAL
EREQUENCIES
N5 n .20 25 mg:c
(1
DISPLACEMENT AT (16,0")
ImpacT AT (6'5%) V= 1077 Jsec
W =20.012294 |b
R= - A
FlG 13 32

(CompARE F1G.8)
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Sa
ke
i
= m
>

|
F

ULATION (S TER
USING EXPERIMENTAL
FREQUENCIES

STRAIN AT (0.6¢ 1.875)

ImpAcT 6" 5% ’
. AT (6 ,53) V=107 Jsec.
_ W=0.01229 b
v R
FIG. 14 =3a

(compArE Fig 10 )




STRAIN ("= 10"

ARBITRARY SCALE

i,

EXPERIMENT

e

o,
]

M /\'\ﬂh/\\/&/\ /V\

ALY

CALCULATION (3 TERMS)
USING EXPERIMENTAL
FRE QUENCIES

f\f\ S

[=]

S,
| ]

v 7 V JSV\/\J \/\/ 2S msec

STRAIN AT _ (0.64,3.75)

IMpPACT AT (6 5%) . ars lo-r.'r"/sec.
W =0.01229 b

' £ l”

ElG 15 R* %

(COMPpARE Figil)




