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1. 

TRANSIENT VIBRATIONS OF THIN, RECTANGULAR, 

CANTILEVER PLATES. 

CHAPTER 1 INTRODUCTION 

When an elastic structure is subjected to a 

static load the deformation produced is independent 

of time and is a state of equilibrium between the 

applied load and the elastic properties of the syste . 

Where dynamic loads are involved the state of 

equilibrium is no longer independent of time but 

includes the effects of the inertial forces due to 

the motion of the system. Only in certain cases 

does the deformation of the structure retain a 

particular shape while varying in magnitude. In 

general both the deflection at a given point and the 

shape of the deformation throughout the system are 

time -dependent. 

The eventual failure of a structural component 

may be due to metal fatigue, rather than the actual 

values of stresses associated with the dynamic loads 

since a vibration may continue to exist for some 

time after removal of the load. 

The sources of dynamic loads depend on the 

types of structures considered and the uses to which 

they are put, but the following cases illustrate 

a few of the possibilities and some of the structure 

affected. 

1. Shock waves due to explosions, earthquakes, 

etc. 

(a) In an internal- combusion engine the 

piston/ 
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piston and cylinder are subjected to a 

rapid series of explosive forces and the 

piston also has a high inertia loading 

due to its motion as a rigid body. 

(b) The pressure wave associated with a nuclear 

explosion is accompanied by a strong 

thermal shock wave. 

(c) In countries where earthquakes are 

relatively common occurrences the building 

codes con Cain allowances for their effects. 

2. Moving loads 

Bridges are vibrated by the movenent of traffic 

across them. Railway bridges especially are 

subject to very heavy loading due to the 

weights of the vehicles and also the "hammer 

blow " effects connected with the peculiar 

balancing conditions employed on steam 

locomotives. 

3. Water waves produce impulsive loads on the 

bows of a ship and vessels used for ice- 

breaking work under conditions of dynamic 

loading. 

4. The forces acting on an aeroplane in flight 

can change rapidly due to maneuvering or 

encountering turbulent air, and at the 

moment of landing severeimpact loads are 

transmitted to the fuselage and wings through 

the landing gear. 

The/ 



The importance of the stresses 

produced in this latter case is well 

illustrated by the photograph at the 

beginning of the book "Dynamics of 

Airplanes" by H. N. Abramson. This shows 

a large aeroplane on the ground with both 

wings broken at the roots. The legend 

accompanying the photograph is the formula 

for stresses produced by a sudden load: 

The present problem was suggest by the lace of 

its consideration in the literature, either 

theoretically or experimentally. 

Greenspon (1955) studied the deflections and 

stresses induced by transient loading in plates with 

simply supported or clamped edges, and obtained an 

approximate formula for the maximum deflection and 

stress. No experimental results were available but 

static deflections and stresses were compared with 

published results given by Timoshenko (1940) for 

some combinations of clamped and supported edges. 

Part of the analysis requires the calculation of 

natural frequencies of transverse vibration of she 

plate and Greenspon states that the method he employs 

can be used for plates with free, supported or 

clamped edges. The expression he uses is based on 

the differential equation of motion for the plate 

(see equation (35), Chapter 3) and requires the 

approximate deflection shape to satisfy the 

boundary conditions at the edges of the plate. The 

approximating/ 



approximating :functions used by Greenspon do satisfy 

the conditions for supported or clamped edges but not 

those for free edges. Frequencies calculated by this 

method for cases with free edges can be either higher 

or lower than the true frequencies. This is especially 

true for a cantilever Plate which has three free 

edges, the approximate frequency differing from the 

experimental value by a very wide margin. 

Chapter 2 of this dissertation is devoted to a 

discussion of methods suitable for calculating the 

natural frequencies of plates. 

Eringen (1953) considered the impact of a sphere 

on a plate or beam from the integral equation stand- 

point. (See Chapter 3, Section 3.2.3) The paper is 

mainly concerned with the calculation by various 

approximate methods of the variation with time of the 

force between the sphere and the plate. Plates with 

free edges are not treated. 

To obtain data for comparison with calculated 

results it was necessary to carry out an experiment 

in which some form of transient loading could be 

applied to a cantilever plate. In the actual choice 

of an experimental set -up several methods of 

initiating a transient vibration were considered which 

had been used by various workers in studying vibrations 

of beams. 

1. E. Z. Stowell, E.B. Schwartz and J.C. Houbolt 

(19+5). 

This group of authors investigated the 

results obtained by the instantaneous arrest 

of/ 
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of the root of a moving cantilever beam. 

"A circular steel tube was mounted 

symmetrically on the end of a pendulum to 

form a pair of cantilever beams. The 

pendulum was permitted to start its swing 

from a predetermined position and was 

suddenly brought to rest at the bottom of its 

swing against an electromagnet used to 

prevent rebound." 

Assuming that the motion of the canti- 

levers immediately before impact could be 

considered as uniform translation perpendic- 

ular to their lengths, the authors developed 

a theory for the bending and shear stresses 

produced in the beams by the impact. 

If the beams were replaced by plates it 

might not be permissible to neglect the 

effects of air resistance and the finite 

breadth of the plate would cause a variation 

of velocity across it, 

2. G. A. Nothmann (19L8) 

The "free" end of a cantilever beam was 

forced to follow a prescribed displacement 

law and expressions were obtained for the 

shear force and displacement at any point in 

the beam. The investigation was mainly 

concerned with the force necessary to produce 

the prescribed motion. i.e. The magnitude and 

direction of the shear force at the "free" 

end/ 



end of the beam. No experimental results 

are quoted. 

It would be difficult to apply this 

method to a cantilever plate since twisting 

of the plate could occur about an axis 

perpendicular to the clamped edge. 

3. R. P. N. Jones (1954) 

The method used by Jones is mathematically 

similar to that of Stowell, et al, in that a 

sudden disturbance is applied to the system, 

in this case sudden removal of a static load. 

A simply supported beam was held in an 

initial position of static deflection by a 

magnet and coil arrangement. The coil was 

attached to the beam at its midpoint and 

release of the beam was effected by cutting 

off the current passing through the coil. 

4. R. H. MacNeal (1951) used an analogue 

approach to study the natural frequencies and 

mode shapes of a cantilever plate. The 

relevant differential equation was expressed 

in finite difference form and the solution 

was obtained from the currents and voltages 

in the analogue network. 

Transient vibration of plates could be 

solved in this way but MacNeal suggests that 

a reasonably complicated problem would require 

about 250 essentially perfect transformers. 

Previous/ 



Previous papers by IvcCann and MacNeal 

(1950) and by Criner, McCann and Warren (1945) 

studied the transient vibration problems of 

beams and finite degree -of- freedom systems 

respectively. 

An advantage of electrical analogue 

experiments is that various odd- shaped pulses 

can be applied to disturb the system and non- 

uniformity of the system itself can be 

considered. 

5. The method that was finally adopted was that 

of impact of a steel sphere falling from a 

height on to the plate. Little apparatus was 

required, the parameters of the process could 

be varied quickly (e.g. position of impact, 

etc.) and, as will be shown in Chapter 3, for 

the corresponding problem of impact on beams 

an approximate solution exists which can be 

employed in the present problem. 

In the analysis of vibration of a plate two of t e 
most important factors are the natura, frequencies and 

modes of vibration of the plate. Approximate 

calculation of these quantities is described in 

Chapter 2. 

Chapter 3 contains the mathematical analysis of 

the transient vibration of a cantilever plate. 

produced by an arbitrary load distribution, and also 

considers the particular case of a concentrated force 

(as applied to the impact problem). 

Experimental/ 



Experimental and calculated results are given 

in Chapter Li.. The final chapter summarises these 

results and discusses possible extensions which could 

be made in the analysis. 
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2. Calculation of Natural Frequencies and Normal 

Modes of Vibration 

2.1. Uniform Beams 

2.1.1. Solution of the Equation of Motion 

For free, undamped, harmonic vibration of 

a uniform beam the transverse displacement w at 

any point x along the beam satisfieS the partial 

differential eouLation 

a¢w- a r -o 
x4 ce- at-- - 

If w = Wr(x) sinO t this becomes the ordinary 
differential equation 

414W, - ws-w =O 
dux* c 

where 40,..is the rth natural frequency of the beam an 

C= 115 is a constant for a given beam. 

Putting x,,r = f.tr the solution of equation 

(2) is of the form /' 
W,. = A cos t1Ç'c tB cos 1Cr + C stub Rix t .D ,sN rx (3) 
where A,B,C and D are constants to be evaluated 

from the °constraints at the ends of the beam. Such 

boundary conditions are 

=fi - Q at a clamped end 
dok 

d =- `W. dx2 - - 
A.143 

at a free end 

The first pair of conditions (4) are known as 

C14 

geometrical or artificial conditions and the second 

pair are the dynamical or natural conditions. 

Substitution of the correct boundary condition 
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in equation (3) leads to values for ßßi, CAA, li/1 

and to a "frequency equation ", the roots of which 

are related to the natural frequencies of the 

beam. 

Examples are: 

1. Beam clamped at x = 0 and free at x =de 

W4. L lcOskl(.x -4os 1rx ) -Ç (fsNÁ 7L S/N19_) 

where 

c sñ ( t cosf( 
and 

(Sr 
$/N%ñff - S/Ni(tt 

= 
O t t 

cosh fed . cosktt t t= o 
2. Beam free at both ends. 

tl114.: (cosh IQ( + costec) -d* 0w47(,x +Ss0,1((*4 

where 

and 

Cs) 

= 
rosit le - cosh(,. dr 

snvA 44.j - sm.fied 

CoShiCtt°. cos kte - ¡ = O 

The functions 104.(and their derivatives), «. 

and tire are tabulated by Bishop and Johnson. (1956) 

2.1.2. Rayleigh (Energy) Yethod 

The exact solution of the differential equation 

of motion of a more complicated system is not 

always possible. In such a case an approximate 

value for a natural frequency can be obtained by 

using the method of :_ayleigh. 

The strain energy stored in the vibrating 

beam can be written as 

E_ 4 á r dc s, a a x 
-c d=Wt 

Silt( 4rt E = I (44(1 
0 

for : Wr. fix) . S /N 4),t ,t 



The kinetic energy of the beam can similarly be 

written as 
w ,a? 2 f1 

L 
( d 

z 

cos w,,t . 
A4- I Wi, d,x 

21 Jo 

Also, U. t T = coHyrANIT = Lam =T 
Therefore, equating maximum strain and kinetic 

energies 

If Wtin this equation is the exact form which 
satisfies the equation of motion and the boundary 

conditions, then Otis the exact frequency. 
Rayleigh's method is to assume an approximate shape 

for V which satisfies at least the geometrical 

boundary conditions at the ends of the beam. It 

can be shown that the estimate of Or obtained by 
this method is always greater than the exact value. 

As an illustration take the case of a uniform 

cantilever beam with boundary conditions 

= I dr 
dc 

= d=*' _ 
d/is 

o 

o 

at 

at 

11. 
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For the lowest natural frequency we will 

take for W1 the expression for static deflection 
of the beam under its own weight. This shape 

satisfies all four of the above conditions and is 

- +-ex + 6-C2) 
where. K is a constant. 

On substituting for W in the energy integrals 
we have 2 2 4 W1 

_ 
12 

we Z, o ducs 

_ Lit t s2.APwiK44 
-r __P_.1 W - +-5 2 o 

- 
E 4 ,12x46 - 12.46 

Hence 4;:': Apr. s-24512. A te 
The exact value from the frequency equation (5) is 

w = t2 36236.. 
The error in the approximate frequency is thus 

less than 1% showing that this method of 

approximating a natural frequency can yield a 

satisfactory result. 

2.2. Rectangular Cantilever Plates. 

2.2.1. The Plate Equation of Motion. 

In the case of a beam the length is very 

much greater than the breadth so that the beam 

can be treated as one -dimensional i.e. Deflection 

1 T or (04. is dependent on only one space 

variable, x. For a plate the breadth is 

comparable with the length andWrbecomes a 

function of two space coordinates, x and y. 



Corresponding to equation (1) for a uniform 

beam we have, from the theory of thin plates of 

uniform thickness, the 

ÓX4 3Xza2 
or ®4'I, 
The boundary condition 

D{ 

plate equation 

._.V-} - . -)14r a 
a8 ât a O 

.2Skr - O 
s to be satisfied by'f,J' at 

the edges of the plate, Fig. 1, are in general 

more complicated than those for a beam. 

y 

Fig. 1. C 

a 

0 

o' __i x A 
For a cantilever plate clamped at CO and 

free at the other three edges, the boundary 

conditions are(Timoshenko 1940): 

On C O : 
[ = r 

2? - 0 x -o ax Jxr..0 

a +va La...---.3/j'+ (zv); 
] , ok r iZ ax á ax _ ° 

a a 

AB Lax L x4 L axs as.a3 xsQ 
3 

BC : + V 
?14,r _ f ám*(2- V)awLÌ _ 0 ` y abax u=t, 

At the free corners, 

Ógß` 1 
axâ Jx =4 = o t =o 

B. 12-1.4.7- x_a _.o axò 
y =b 

For harmonic motion the solution of equation 

(8) might be written in the form 

(8) 

?Ar (x, y, t) = WrEz, y). a fis/tv 4)4- 60) 

(co 

13. 



14 

where Wr(x.V is a dimensionless normal -mode 

function denoting the shape of the vibration form 

at the rth natural 

dimension of length 

V4W1- 

It i possible 

for Wp and w{ as in the case of the vibrating 

beam, so that some approximate method such as 

Rayleigh's must be employed. 

frequency (4, and Aghas the 

. Thus, 

t3) 
to solve this equation exactly 

2.2.2. Nodal Patterns 

Experimentally it is found_ that when a plate 

vibrates at a natural frequency the zeros of W. 

form a stationary pattern of lines which are 

approximately parallel to the sides of the plate. 

Since, in general, each frequency Otis associated 

with a particular function W,p each pattern of 

"nodal lines" corresponds to a definite frequency 

The patterns can be found experimentally by 

sprinkling sand, or a similar substance, on to the 

vibrating plate. Provided that the amplitude of 

vibration is great enough to produce accelerations 

of more than one "g ", the sand will tend to collect 

at the zeros of 44. 

2.2.3. Rayleigh Method 

Assuming that the nodal lines are parallel to 

the sides of the plate, G.B. Warburton (1954) takeB 



the deflection in the form 

= W(x y).siNwt = A.kx), 043).sjHwt (12) 

where e.,(X) and ¢L(j) are the beam functions for 

cantilever and free -free beams respectively. 

These are defined by equations (5) and (6) where 

x is replaced by y in (6), and the length 'e is 

replaced by a in equation (5) and b in equation (6). 

A mode of vibration is identified with the number 

of zeros m of ®,(X) and n -of 0(3), For 

example, Fig. 2. shows the mode mn, where m = 3 

and n = 2. 

2. Nodal Patter 

m = 3; n = 2. 

The lowest mode of vibration of a free -free 

beam is that corresponding: to n = 2 so that 

functions 960(3) and 01(y) have yet to be defined. 

These functions are taken to represent rigid -body 

translation and rotation respectively. 

That is, 

0(x) = Cc. osh1 c - cosSCx) -djSiNhiS - swine: 

with 

and 

d SINK XM4. - SIN A.,11. 

cosh J(a + cosa 

coshlC,,,a . cosk aa + 1 = o 

1, Z, 3..... 

C3Ì 

15. 



95o(y) - i 
Om) = f3 ('_-) 

96n(y ) = CCOshj(xii t Cos1(y, _ d" (siArhlCy +sir+7Ç j) 

= 2.,3,4.. 
with COshJCb - cosA,b 

Singh 1Cb - sINX ,,b 
and 

coshJCb.cosSb - I = C 

The above functions satisfy the geometrical 

boundary conditions of zero slope andabflection 

at x = 0, but in general do not satisfy the other 

conditions in equation (9). 

From the theory of thin plates (Timoshenko 

1940) the strain energy due to bending is given by 

li 
ab 

a2s 
x) (Lc), (-v 

O O 

and kinetic energy 
a b f (#1J)t 

s1 T 
Therefore 

ab 

u = 
O 

á } á x 

v t 
+rá: +y 

t 
W +2(-0(1 

x aJ 
os) 

m M2 O 

(4% 

a b 

Z 
= Z o 

1nl á,cdi (I') 

whence 

Wa 

frW1444"/"J Zq o o 
Warburton then substitutes for W from equations 

(12),(13) and (14). rie defines a non -dimensional 

frequency factor X by 

16. 
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= -,=4 2 TT 
z D4 C ; 

where WZ = C2-nf )t and from the substitution 

for in (ii) it is shown that (17) can also be 

written as 

0. 4 
i1 ,Z = G 4 + a (bflyK,Hy +í6- v)ÇJ,} (t?) r 
The coefficients Gx, Cy, Hx, Hy, Jx and Jy depend 

on the nodal pattern and the boundary conditions. 

For all combinations of clamped, free and 

freely -supported edges (fiften cases in all) 

Warburton has evaluatéd and tabulated these 

coefficients in terms of the assumed nodal pattern 

of m and n nodal lines parallel to the edges of the 

plate. The values of the coefficients are given 

in Table 1 for the case of a cantilever plate. 

Given the dimensions and elastic constants of 

a plate it is possible to obtain quickly reasonably 

accurate values of the natural frequencies by 

making use of Table 1 and equations (18) and (19) . 

When frequencies obtained by this method are 

compared with experimental values it appears that 

the greatest errors arise for modes with n = 1. 

This can probably be attributed to the "stiffening" 

effect of the assumption of linear variation of 

deflection in the y - direction. This "stiffening" 

will increase the strain energy U, and hence the 

frequency. 

15 . 
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2.2.4. Rayleigh - Ritz Method 

A variation of this energy method of 

calculation of frequencies is one which was used 

by Rayleigh himself for simple systems, and which 

was independently developed by Ritz and used by 

him in his investigation of the natural frequencies 

and modes of vibration of a square plate with all 

edges free (Ritz, 1909). 

The procedure is based on an assumed form 

for W which contains an arbitrary parameter. The 

frequency expression (17) is then minimised with 

respect to the parameter thus giving 's_ better 

approximation to frequency and mode shape than would 

otherwise be obtained. The frequencies given by 

this method are greater than the true values. 

Young (1950) and Barton (1951) use this so 

called Rayleigh -Ritz method to obtain frequencies 

and mode shapes for plates with various edge cond- 

itions. They follow Ritz in assuming for W the 

series expression 

LE w (x, y) A mn ®mtxi .'k' ) (2.0) 
n 

where 8 () and h) al,e normal mode functions for 

beams with c1 mped, free or freely- supported edges. 

Equation (20) is substituted in the energy 

expression for frequency, equation (17),which is 

then minimised with respect to each of the 

coefficients A. This is done by differentiating 

equation (17) with respect to one of the coefficients 



a0. 

say Ail/ , and equating the result to zero. 

a ._ á ` 
w=) 1JwZdy Á k- u f "2°`°J ( »Mot 

aA« Pñ. ( ff wZ ocy.aty ) 
Or, since 

Wwnt = 

1^ WZ fl W2 
`fY 

we have for each coefficient an expression of thq 

iiwaAca 6 
wtP á 

2 , 

o 

II equation (20 gives in terms of an i 

series then equation (21) represents an infinite set 

of equations in the coefficients A. The condition 

that (21) represents a consistent set of equations is 

that the determinant of the coefficients of must 

be zero. This leads to an infinite determinant, the 

roots of which are the natural frequencies of vibrat- 

ion of the plate. 

Using an eighteen term series for " with 

n1 = 1,2,3, and n = 0,1,2,3,4,5, Young evaluates 

frequencies and coefficients Al by using an 

iterative procedure to solve the set of equations. 

This is for a square cantilever elate. i.e. a = b. 

Since any natural mode of vibration will either be 

symmetrical or anti-symmetrical about the line 

y = it is found that the set of eighteen 

equations separates into two independent groups of 

nine equations containing either those coefficients 

for which n is odd or those for which n is even. 

Tabulated values of Amn, for m = 1,2,3, and 

n = 1,3,5 or 0,2,4, and values of frequency w are 
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given for the first five modes of a square 

cantilever plate. Similar tables are 

presented for a square plate clamped on all edges 

(6 modes from 36 term series) , and for a square 

place clamped on two adjacent edges and free on 

the other two (5 modes from 9 term series). 
In carrying out the integration and 

differentiation in equation (21) it is necessary 

to evaluate certain integrals of the beam 

functions 9 CO and The set 

of functions 8t(x) Loy. On CO are 

orthogonal in the region p < X <0. . Lof.y.S. b]. 
i.e a 

I94..9S'¼ = Q. fur.fi=S 
O (za) 

F b -8 
a = o fr p * i ) 

also 
Û1:,S% As = a.(14-404 .F,,- ,r-?. s t a+ 

(7.) 
b. (5.144 _E.& a_4 s t - b ` # i - at 

Provided that we arbitrarily define y(o 16.- = o 
for 00 and Of since 

b b 

j (se:6aq = 1 ( 
Z 

t0 a 

cii ci. = 0 s) 
o44i o 



Values are also required of the integrals, 

r- e 
846 

, Ss . duc 
l 6. 

48fi d8S 4k 
614.t a oMc 

b 

J 
o 

dYá 
b 

d3 
s J d : O y 

These are tabulated by Young for clamped -clamped, 

clamped -free and free -free functions. Values are 

also given of other quantities which arise in the 

analysis. 

The use of beam functions in the series for W 

has the advantage that terms .in the leading diagonal 

of the determinant become large compared with the 

others, thus improving the convergence of the 

iterative procedure. 

The work of Young is extended by Barton who 

treats rectangular plates as a special case of skew 

or oblique plates. i.e. Plates in which the sides o 

length statt are not at right angles to the clamped 

edge. (cantilever Plates). The procedure followed 

by Young is again used to obtain a set of equations 

in the coefficients A and numerical calculations 

are made for rectangular cantilever plates with 

length to breadth ratios = 2, 1,2,5 using an 

eighteen term series for deflection. The resultant 

coefficients A and their associated frequency have 

been tabulated for the first three symmetrical 

modes and for the first two anti -symmetrical modes. 

From these calculated values of frequencies 

a graph has been drawn showing the variation of 

f 
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frequency of each mode with length - to - breadth 

ratio. Within the range of length - to - breadth 

ratios used by Barton and Young and for the modes 

they consider, it is a simple matter to obtain the 

required frequency by examining the graph. The 

modes of vibration are obtained from equation (20) 

and the tabulated values of A. For other modes 

of vibration o? for length - to - breadth ratios 

outwith the range considered it is necessary to 

repeat the whole analysis, including the solution 

of a large number of simultaneous equations. 

2.2.5. The Variational Method. 

In appendix 1 it is shown that if calculus 

of Variations is applied directly to minimise 

equation (17) then W must satisfy the differential 

equation (11) and also the boundary conditions at 

the edges of the plate. Since the differential 

equation cannot be solved no useful information has 

been gained. However, Martin (1956) has applied 

variational methods to the solution of the __roblem 

of vibration of a cantilever plate by first 

ma_ ing an assumption as to the general form of the 

function W. Thus, as an approximation 

vw = a(x). 0(j) 
where O(j) is taken as one of the free -free beam 

functions and 9(X) represents a function which can 

be varied with the boundary conditions 

9(o) = 
de(°) 

d4c 



When the required variation is carried out 

>(y) is considered constant and 8(x) i s subject 

to the above boundary conditions. This procedure 

leads to an ordinary differential equation for eV) 
and to two boundary conditions for 90 at x = a. 

The solution of the differential equation is 

reasonably simple, but it leads to a complicated 

equation for frequency which Martin solves 

graphically by plotting length -to- breadth ratio 

against frequency for each mode of vibration. 

For those modes of vibration with no nodal 

lines perpendicular to the clamped ed'e the methods 

of Warburton and Martin give exactly the same 

answer for frequency. That is 

WZ_ D 41- 

e- 0. 
where m is a positive integer. This is the same 

expression as is obtained for a cantilever beam 

vibrating in the same mode but with R. replacing 

E_ 
A 

2.2.6. The Finite- difference Approach. 

The methodfso far discussed for calculation of 

natural frequencies yield approximate values which 

are b gher than the exact frequencies. By replacing 

the differential equation (11) by its corresponding 

difference equation, approximate values for 

frequencies are obtained which are lower than the 

exact values. This method has been used by 

D. Williams (1957) to obtain the fundamental 

24 



frequency of vibration of a square plate simply 

supported on each edge, Fig. 3., the exact solution 

for which is 2 
27t' 9 

ae- eß,. 

2' 6' --r ---t- - - - -t- - 
A ' at ; ;6 ; 
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Fig. 
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A rectangular grid of mesh length dt is drawn 

on the plate MCD. Por a first approximation ie has 

been tai -:en as one quarter of the length of a side. 

i.e. - 

á 
Por a point 0 surrounded by a pattern of twelv 

points as shown in :tig. 3. we can use central 

difference formulae to transform the differential 

equation (11) into 

4 8 i2 t 
lb 

o 

[to (1wo 
4 8 It 

-8Ewr + 2Lw,. + 2:wi. = o (24) 
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where Wo is the deflection at point 0, etc. 

(42.4,4 
31) 

and, as before 
12 

- Pr" wZ. 
am 

( Q 14,..2. 

The boundary conditions for a simply- supported 

1te are used to define imaginary grid roints 

I t etc. outside the ?date and, since the 

fundamental mode of vibration is symmetrical in two 

directions, we have 

with 

7,, = 
J4 

='a 
719 = W10 = W11 - '"Jl2 = 

0 (BcundTy Conditin1) 

This reduces the number of unknowns to three, namely 

'ji, 
16. 

Application of equation (24) to each of the 

points 0,1,6 leads to three algebraic eouations 

in ':`!, WI_ and 176 and thence to the frequency equation 

2. 
CZ 6i- , + 832- 102 + =o 

16 6 

_;ïe .lowest root is 

mence 

w _ 

, = 1.113 
/G 

-rr=A., 1 b 
16 aZ J Pt 

187(0 p ._... - 1 7. a p 
answer is j, pelow the _,:act valu 

2 
z 1916 4E''-2 

pg- aZ Ph- 

The remaining two roots of eoua1 ion (25) 

(25) 
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correspond to appro_dmations to the second and third 

doubly- symmetric modes but they are 60 -70 below 

the exact values. A closer grid spacing would 

yield greater accuracy, but if there are n unknowns 

n simultaneous equations are obtained and hence 

a frequency equation of the nth degree. 

In the case of a cantilever plate the boundary 

conditions are more complicated, and bcause there 

is at most one line of symmetry the same grid 

spacing as in the previous problem will give more 

unknowns and hence a frequency equa 6ion of higher 

degree. 

Livesley and Birchall (1956) use finite 

differences to study the static deflection of a 

cantilever plate and give a useful discussion of 

boundary conditions in finite difference form. 

They consider that it may be more important to 

satisfy the condition of zero force at a free 

corner than to satisfy the vanishing of the third 

order differential condition of equations (9) on 

a free edge. 

2.2.7. Comparison of the various method of 

calculating natural frequencies. 

To obtain reasonably accurate estimates of the 

first n natural frequncies using finite differences, 

one would require to solve possibly as many as n2 

simultaneous algebraic equations. For hand 

computation this would, in many cases, be too 



28. 

laborious to be practicable. Williams, however, 

suggests that the method is ideal for use with an 

electronic digital computer since complicated 

boundary conditions and even variations of sections 

(thickness of plate, etc.) can be incorporated with 

little difficulty. 

The final step in the procedure used by 

Barton and Young also requires-solution of 

simultaneous equations, but for the same order of 

accuracy the number of equations is much smaller 

than in the finite difference method. 

This method reduces to that of Warburton when 

a single product of beam functions is substituted 

for W in place of a series of products. Warburton's 

analysis has the great advantage of simplicity since 

the formula for a particular frequency can be 

evaluatéd without feference to other frequencies. 

i.e. No simultaneous equations. It is to be 

expected that the errors will be larger than in the 

Barton -Young analysis but this increase is 

appreciable only for certain modes of vibration, 

notably those with one nodal line perpendicthr 

to the clamped edge. For these modes a better 

approximation can be obtained by taking a 

two -term series for W of the form 

W = A CX } 8-<`.sy n 
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2 

and minim ng W in equation (17) with respect to 

the parameter B. For example, consider the first 

torsional mode for which 

and take for the additional term 

8r Cx) . cPscy) _ 92cx) y) 

( t - b 
*JO = (cosk la x - cosich x)-- d'(s+ar/, CY - sIN1çx) 

1i,a = /.87.5" :a :469+ 
Because of the form of AVall second 

derivatives with respect to y vanish and the energy 

equation (17) for frenuency becomes 

Z 
Joio 

6 (ue1 
a) 

l4 
b w Z 

of . df 
The integrals involved can be evaluated by 

referring to the tables giver. by Young and we 

Fet eventually 

t pz 

a a4 (% -I- tel 

Taking (b, ° 2 and y = 0.3, we have 

Z,4 
= 

314.36 - 990 B + 2 660 E32- AE32- 
1 +82) 

This expression has a minimum value when B = 0.205, 

leading to 

X = 1.52 

The corresponding figure obtained byusing the 

one term approximation is X = 1.825 
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and the experimental value given by Barton is 

= 1.47 

The one -and two -term approximations for W 

lead to values for the frequency which are 

respectively 24% and 3.2% higher than the experim- 

ental result. 

No great improvement is obtained by using more 

terms in the expression for W; .the Young- Barton 

analysis applied to an eighteen -term series yields 

a value for X which is 2.V. higher than the 

experimental result. 

There does not seem to be any obvious guide to 

the best choice of 91.(x). A( 9) . In any particular 

case thiswill.probably be most easily decided by trial 

and error. 

Frequencies determined by the procedure 

developed by Martin are more accurate than those 

from the one -term approximation but, in general, 

are less accurate than those from the two -term 

series. It would appear that this method might 

be improved (at the expense of an increase in 

complexity) by variation of the function 56 instea 

of 9 . The use of a cantilever -beam function for 

9 would automatically satisfy the slope and 

deflection conditions at the clamped edge and the 

-Problem would contain conditions for two free edges 

instead of one. Martin suggests that 'A more 

difficult enterprise would be to take both 9 
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as two independent vaxable functions'. This is 

not profitable in view of the accuracy reported 

above for the Rayleigh -Ritz method. 

In the work which follows some form of the 

Rayleigh -Ritz method will be used, including the 

one- or two -term approximation where this is 

satisfactory. 
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CHAPTER III 

Impact and Transient Vibrations 

3.1. Historical Inroduction 

When two elastic bodies are in contact the 

static force pressing them together is related to 

the change in distance between their centres by a 

non- linear algebraic equation. That is, 
1 a =ft P3 (26) 

where, a = the change in distance between the 

centres of the bodies. 

P = the force between the bodies 

k = a constant for a given pair of bodies, 

dependent on the elastic constants and 

radii of curvature at the Point of 

contact. 

Hertz (1881) derived this equation by assuming 

that near the point of contact the surfaces were of 

the second degree (e.g. spherical) and that elastic 

deformations were confined to a small region around 

the point of contact. Neglecting the energy losses 

due to vibrations, etc., Hertz applied the abo- e 

equation to the study of the impact of two elastic 

bodies and obtained an expression for the duration 

of contact. A later investigation by Rayleigh (190á) 

showed that for spheres, for examJ1 e, the duration 

of contact was much greater than the period of the 

lowest mode of vibration of the s_ he ̂ es so that 

vibrations could be neglected. 

Timoshenko (1913) made use of hertz's work 

in developing a theory for the impact of a sphere 
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Zener and Feshbach (l9 9) produced a powerful 

approximate method for the solution of the simple 

impact of a sphere on a beam. By equating the total 

impulse acting on the sphere to the change in its 

momentum, a "normalised" force was obtained which 

was quite insensitive to the approximate force -time 

shapes used in the calculations. If the sphere of 

mass ir has a velocity v immediately before impact, 

and a velocity ev in the opposite direction 

immediately after impact, we have 
T 
Pat _ v (1 t e) (vi) 

where T is the duration of contact and e is a 

coefficient of restitution. Using the "normalised" 

force this gives .. 

and 
s .dt i 

p 29ì (1+e) 
By equating the kinetic energy lost by the sphere 

to the sum of the kinetic and strain energies 

gained by the beam, Zener and Feshbach were able to 

calculate the quantity e within 3% of that obtained 

from the numerical analysis of Timoshenko. 

Using this method with two different " normalisd" 

forces, Lee (1940) showed that the distribution of 

energy among the Various modes of vibration was 

little affected by the choice of force -time shape. 

Like Zener and Feshbach he equated the maximum 

value of the approximate force to that of the Hertz 

force, so that the contact time T depended on the 

(2.$) 
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chosen force-time she,: . 

fingen (19;t3) investigated the targat of a 

sphere on a beam or plate'ant by shitably definimF 
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depended on the load shape. e.g. A unit load 

applied gradually to a single de ree -of- freedom 

system may produce a deflection id; It can be 

shown that the same load applied suddenly (unit 

step -function) produces a maximum deflection of 

2W.. The figure 2 in this case is the dynamic 

load factor. To obtain an estimate of the 

maximum deflection produced by a .riven load acting 

on a plate Greenspon added the first four terms of 

his series assuming thr:.t they were in phase. This 

will not in general be true and since no 

experimental results were given the extent of the 

error is not known. Greenspon states that this 

calculation should always give maximum deflections 

or stresses higher than the values obtained by 

computing the response as a function of time and 

that the method should be adequate for pulses in 

which the first mode of vibration makes the primary 

contribution to the deflection and stress. That 

the method can produce reasonable results is shown 

by a comparison. of static deflections and stresses 

with those given in Timorishenko (1940). Maximum 

error is about 3% for stresses and 2% for deflections. 

3.2. Vibration of a Plate 

3.2.1. Arbitrary Force Distribution 

The motion of a plate under the action of a 

load F(x,y,t) is given by the differential eouation 
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a r 2 a4 a - + Ffx , y ,t D aeae ag+ 3 tZ 

O-r t 4 
- Ó . p r- t = efL 

E e 
(300 

where F is the load /unit area and D = 
12.0-V1) 

is the flexural stiffness of the plate. 

Consider a solution in the form of a series. 

tr(x,y,t) 
00 

The subscript r refers to a particular natural 

frequency and ,l1/IFAX,9) is the mode shape as 

defined by equations (10), (12) or (20) of the 

previous chapter. That is 

WI. (;1 
j) T. [A, A(x).0(9 + Ae1cx).0,(1)t (3 2) 

Young has calculated several sets of the 

coefficients A assuming: for the first mode that 
mn 

A10 = 
1.0, etc. It is more convenient to divide 

throughout by 
CGAri.n)fi 

so that we obtain a set 

of coefficients which satisfy the condition 

(33) 

Wr(x,y) is dimensionless and ft(t) is a function 

of time with the dimension of length. 

Substitute equation (31) into (30), multiply 

by a mode shape function Wm(x,y) and integrate over 

the area of the plate 

2 = dA 
Iw (4Zw)4A w,.ZwtrzdA= e' 

e' A q dt A 
(3 4) 
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Rayleigh (1945) shows that for any boundary 

conditions 

W,,m .W*. dA = o 

Also, from equation (11), we have 

0 W et . (Arts/44. 
fi 

'43) 

So that 

4 s 
W,.vwfi.dA = w w,w,..dA= o ?IN 01- 
A a A 

Equation(34) then reduces to - f W 0w f .dA + tw.4tA = /--F24' ̀
"dA 

J M e A A d.t: eq%. 

,z. 
d.: w.. v w`". dA 

= ..- + 
A 

_ 9 et jp, w f`" 

4.16Y, WZ 5 JA F w1,dA _ ._. e Sw.dA A 
where the frequency of the mth mode of vibration is 

4 
JAW: V WM 

w_ `d"`"f 
fA w, dA 

3.2.2. Force concentrated at a Point 

:e have 

Çi0 q 

_ ab 
Also, if the loacuin consists of a concentrated 

force P(t) applied at the point whose coordinates 



are (xo, yo) 

SA 
Equation (35) can therefore be rewritten as 

d-g`" + wa, =-- p Ww.(x0, o) (36) 

If the plate is assumed to start from rest in 

a position of zero displacement the general soluti 

of equation (36) is of the form 

F. W,,,, .dA . p(t). wv,,,(xo, yo) 

t w0('y°) ' aut d 37 C : = - Per). , . r C ) 
M et.ab 644 

o 

Substitution for &M in equation (31) ives 

the solution for the displacement of any point of 

the plate unc.er the action of the force P(t). 

wn.(40.10).wM(x y í1-r)stN'Jt-r)dr 3s ?,sCx t) - C ) 
If, further, we take 

P(t) = P. sin W t 

where P is a constant and W IrAWienthe integral 

can be evaluated directly to give 

p& w,(yo)w,Cx,y) (w )S t -(w )sK (3cl) ?J'(X Ve) _ s 0`b - w 
After a time T where T = 7, the force P(t) is 

removed and free vibration of the plate ensues. To 

find an expression for this we substitute T for 

the upper limit in the integral. This is 

equivalent to putting 

P izÌ = P s'mwz' 

= o 

o 2'<T 

39. 
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On carrying out the integration we have 

CJ.,. 

L. El Iwi..0(090).vv,ax,y) C ̀ '' cos w SiNw t -17) p 
W(x,y,t)= fiab 

(142.% 

ws 2 z 4 
e (-(-j 4 

.2.3. Impact of a Sphere on the Plate : The 
Integral Equation. 

Consider a sphere travelling with velocity v 

and coming into contact with a stationary plate 

at the point whose coordinates are (x0, y0) (See 

Fig. 4). Time t is measured from the beginning of 

impact and effects due to gravity are neglected. 

If it can be assumed that the Hertz relation- 

ship applies then we have from equation (26) 
Z 

oc = P 3( ti (2.6 a) 

In a time t, travelling in unrestrained motion 

with velocity v, the sphere will move through a 

distance 

vt 

Due to the existence of the force P(t) a change 

invelocity is produced in the sphere, given by 
Q t a ?ea CM W O 

where á is the mass of the sphere. This change 

in the velocity or the sphere leads to a reduction 

in the distance travelled by the sphere, equal to 

t 
-` H P'C) d'C at 

w o 
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Thus we have for the actual distance transverse 

by the centre of the sphere 
t t 

S = 1ft - P(r). d-[, dt (41) 
w o 

The deflection of the centre line of the plate 

at the position (x0, y0) is obtained from equation 

(38) as t a 
w,, C __ p(z)siNwnst .-tMr (i-t) 14T(xsyot) =e b -w 

o 

Also, by definition, 

S = oC t- otAr (xo,yd,t ) 

Substitution from equations (26a), (41) and 

(42) leads to the integral equation for the force 

P(t). 

rt -11 j na d ,r.dt 
woe 

4- 
o) p(z).siN (t -T)d-C (43) 

Equation (43) is exactly analogous to that 

obtained by Timoshenko for the analysis of the 

impact of a sphere on a simply- supported beam and 

could be solved, in any particular case, by the 

numerical procedure used by Timoshenko. 

Eringen'obtains a similar equation and, after 

expressing it in non -dimensional form, solves it by 

approximate methods for the particular cases of two 

beams, a circular plate, a square plate and a 

rectangular plate, all simply -supported at the 

boundaries. 



3.2.4. An Approximate Solution of the Impact 

Problem 

Instead of attempting to solve equation (43) 

the approximate method of Zener and Feshbach will 

be employed to obtain a suitable shape for P(t) 

which will then be substituted in equation (40). 

Equation (28) which defines the "normalised" 

force P(t ), is satisfied by 

SIN f P 
(.0 = 2T -r 

Hence, from equation (29), we have 

Kt) = w1rCe) 11 sN t 
a ZT -r- 

Thus in equation (40) we have 

ir 

- 

p = 11,6+0'5- and 

(#4) 

(4S) 

43. 

leading to 

W1t( ItEiì W+iK,,).W,r Tt , cos wT 
c3" t) gab -r . s 1 w ww(t 

2 
, Cß-6) 

e ) 
L, _ 

li 
The "time of contact ", T in equation (44), is 

as yet undefined. To find this the amplitude of 

the normalised force will be equated. to the 

maximum value of the normalised Hertz force. 

By considering the changes of momentum 

occurring during the impact of two elastic spheres 

it is possible to produce an equation for the Hertz 

time of contact, TH (See, for instance, Timoshenko, 

1951). This procedure neglects vibrations, etc. so 



that a sphere of weight W falling with velocity 

v on to a fixed solid has a value of unity for 

the coefficient of restitution. Thus from equatio 

(27) TN 

Tr P .dt 
M 

Using the subscript i to denote maximum values 

we have from Timoshenko (1951) 673 

Z,wv fit PM _._. _ - , 
5 .9r 

2d 3 
Also, 2..94328.. A pN% 

M - '1)' 

pM 

Hence the maximum normalised Hertz force 

PNM _ `MM 
th 

1:4. S v 
2.94328... 

8 TFt 

183955 
TH 

Equating this to the maximum value of the 

approximate normalised force gives 

1.83955 
2T T4 

Hence, 

T = 0854 TH 

44. 
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Where 
W = weight of the sphere 

g = acceleration due to gravity 

v = velocity of sphere immediately 

before impact 

R = radius of the sphere 

E = Young's modulus of elasticity for 

the material of the sphere and of 

the plate. 

1) = Poisson's ratio for material of 

sphere and plate. 

It is also of interest tocalculate the strain 

at the surface of the plate during fee vibration. 

Strain in the x - direction is related to the 

deflection by the equation 

+ g á Cx,,,t) 
Ex 2 ó 

x 
Z at the surface of the plate 

ò z9) 

wv(i *e) n M«.!) ax: i ) cos wT 2 SIN 411 ?) (+8) 
2 eIab T Ww LI - C`-R`) 

Using the first few terms of the series (46) 

and (48) deflection and strain histories have been 

calculated for particular points on the plate. 

These results will later be compared with those 

obtained experimentally. 

For the case of elastic impact of a sphere on 

a simply -supported beam Zener and Feshbach obtained 

a value for the coefficient of restitution e by 

equating the kinetic energy lost by the sphere to 

the sum of the kinetic and strain energies gained 

by the beam. This method has not been used in the 
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present case of impact of a sphere on a plate 

since it was found that permanent deformation 

occurred at the point of contact. The value of e 

used in the calculations was determined by 

experiment. 
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CHAPTER 4 

Experiments and Calculations 

L4..1. The Plate and Clamping Device 

Fig. 5. shows the arrangement which was finally 

adopted for clamping of the fixed edge of the 

cantilever plate. The thick metal blocks were used 

to provide a rigid structure which would resist any 

movement of the plate over the clamped area. This 

resistance to movement was not obtained when less th 

clamping blocks were used. One row of ' diameter 

Whitworth studs was placed as close as possible to 

the clamped edge, agáin in an attempt to minimise 

movement and to increase the effective stiffness of 

the support. A further row of studs was used to 

reduce the possibility that the first row might tend 

to act as a simple support. The complete unit was 

then clamped as shown in the diagram to an existing 

set -up of I- section beams fixed in a concrete base. 

4.2. Determination of Natural Frequencies 

A block diagram of the apparatus used to deter 

the natural frequencies of transverse vibration of 

the plate is. shown in Fig. 6. 

The method employed was essentially that of 

finding the frequencies at which the plate would 

resonate in forced vibration. 

The plate was vibrated by an electromechanical 

vibration -generator which was supplied by an 

oscillator with an alternating voltage of suitable 

frequency. A moving -coil type vibration pick -up in 
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in contact with the plate then supplied an output 

voltage to the Y - plates of a cathode -ray 

oscilloscope, while an accurate oscillator connected 

to the X- plates provided 'a voltage of similar 

frequency. The frequency at which the plate was 

vibrating was obtained from the setting of the 

oscillator switches when a stationary ellipse was 

formed on the screen of the oscilloscope. 

Resonance, and thus the required natural 

frequency, was found by altering the frequency of 

forced vibration until the output from the pickup was 

a maximum. 

Modes of vibration were identified by 

investigating the nodal pattern at resonance, either 

by sprinkling sand on the surface of the plate or by 

moving the pick up across the plate. 

Several experimental frequencies are shown in 

Table 2 where Warburton's notation has been used to 

identify the modes of vibration. The letters m and 

n refer respectively to the numbers of nodal lines 

parallel and perpendicular to the clamped edge of the 

plate (See Fig. 2). The calculated results given in 

the same table were obtained from Warburton's 

approximate method except for those modes of vibration 

with n = 1, where an approximation of the form 

Wcx,y>= AVeM> }s, (ix >3.99. ) 

has been used. The constant B was determined in such 

a manner as to minimise the frequency, and the 

following figures were obtained. 
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m B 

1 + 0.2078 

2 + 0.2387 

3 + 0.1680 

In the analysis of deflections and strains the 

same approximate mode shapes were used as in the 

calculation of natural frequencies. The value of A 

in the above two -term expression for ',`J was chosen to 

make a ` 
15'U2 dxdy = ab 

i.e. A2 (1 + B2) = 1 

or A + 1 

+ Bz) 

This led to the following mode shapes, corresp- 

onding to the first six natural frequencies in 

numerical order. 

W,(x,y) = 61(x). 99,(1) 

Wz(x,y) = Co. 9,91 8,(x) +0.2 035 491Cx), 

W3(x,1)= 82(x). 4700y) 

W4(x,y)= [0.9`T27 8204) t 0.2322 9360 ICPI(y) 

Ws043) r 83(x). o() 

V4604-,9= [o.'1861 83(0 + o301 61+cx)] 

4.3. Transient Displacements 

To record transient displacements of a point on 

the plate the apparatus shown in Fig. 6 was again 

used except for the vibration- generator and its 

associated oscillator. 
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The output voltage from the pickup was 

proportional to velocity so a "calibration unit" 

containing an integrating network was inserted 

between the pickup and the oscilloscope. This unit 

could also supply a voltage proportional to an 

amplitude of vibration (at the pickup) of 10-3 of an 

inch. 

One beam of the double -beam oscilloscope was 

used to display the transient signal while the 

decade oscillator supplied to the other beam a 

sinusoidal timing - signal of 1,000 c /s. 

The oscilloscope screen was photographed on 

35 m.m. film by a camera with a motor attachment which 

moved the film past the screen at an approximate 

speed of 25 inches per second. 

The course of an experiment was as follows: 

1. A photographic record was made of the 

standard amplitude of 10 -3 of an inch at 50 c /s. 

2. A steel sphere was dropped from a suitable 

height on to the chosen point on the plate and 

a photographic record was made of part of the 

resultant free vibration at the position of the 

pickup. The sphere was allowed to rebound and 

to fall back to the plate surface. 

3. The above procedure was repeated. 

Part of the record, corresponding approximately 

to one cycle of the fundamental frequency of the 

plate, was then enlarged for comparison with 

calculated results. 



When the sphere is allowed to fall back to the 

plate the second impact is clearly seen on the film. 

By using the timing signai on the film to measure 

the interval between first and second impacts a 

simple formula can be used to determine the 

coefficient of restitution. This formula depends on 

two assumptions which we may reasonably assume are 

satisfied. 

1. The distance travelled by the sphere after 

the first impact is much greater than the 

movement of the plate at the impact point. 

2. The velocity of the sphere on return to the 

plate surface is numerically equal to its 

velocity immediately after the first impact 

and is in the opposite direction. 

Application of the laws of motion of a body 

moving freely under the action of gravity yields the 

formula, 

e = 
2v- 

e = coefficient of restitution 

To = time interval between first and second 
impacts 

v = the speed of the sphere immediately before 
the first impact 

g = acceleration due to gravity. 

It was found that the impact of the sphere 

produced a permanent deformation on the surface of 

the plate and under these conditions the coefficient 

of restitution was obtained as 

e =0.52 

51. 
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Data and calculated results are given below for 

the particular case of impact at the point with 

coordinates (6 ", 52 ") and pickup at position (16 ",7f) 

Weight of sphere W = 0.01229 lb 

Radius of the sphere R -1" -32 

Young's modulus for sphere and plate 

E = 30 x 16 0 1b/sq.in. 

Poisson's ratio for sphere and plate 1 = 0.3 

Length of the plate 

Breadth of the plate 

`_Thickness of the plate 

Velocity of the sphere 

a = 16" 

b=72" 
h = 0.282" 

v= 2gx15" 

= 107.7 in/sec. 

(WO(l 
-Va`z 

S _b 
T = 3.23 = 27.3 x io sec. 

R E1 
The following tabulated values show the first 

five natural frequencies and the corresponding 

amplitudes of the associated terms in the series for 

displacement, equation (46). 

Frequency Amplitude 

237 rad sec + o.726 x 10-3inches 

1067 + 0.284 x 10-3 

1485 - 0.370 x 10-3 

3411 - 0.199 x 10-3 

g 4162 + 0.124 x 10-3 

Using the above five terms the displacement was 

evaluated at intervals of 2000 
of a second for a 

total time of 25 milli- seconds. The resultant curve 

of displacement v, time is presented in Fig. 7 together 
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with the corresponding experimental result. 

Calculated and experimental curves are also 

presented in Pig. 8 for the displacement of the 

point at (16 ",0) due to impact at (6,52). 

4.4. Transient Strains 

Recordings of transient strains at a point on 

the surface of the plate were obtained with the 

apparatus shown in Fig. 9. The voltage across the 

strain gauge is 

'11' _ V. Rs 
( R +RA) 

where V = voltage of the batter. = 24V 

R = resistance of the wirewound resistor 

Rg= resistance of the strain gauge. 

Since the resistance of the gauge alters under 

strain we have a change in V 

Sera = . sR, 
(R.r iyt 

(R+ Ro% R3 

ivKF 
CR +R, 

where K is the gauge factor, a constant for a 

particular gauge. The above equation shows that the 

change in voltage across the gauge is directly 

proportional to the strain. This voltage is then 

amplified and displayed on one beam of the 

oscilloscope while the other beam, as before, carries 

a timing signal. 
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Strains occurring at the position of gauge B 

(see Fig. 5) due to an impact at (6",5?) were 

calculated from equation (48) using the first five 

terns, the amplitudes of which were as shown below. 

i rea uency Strain A alit ude 

237 rad /sec + 1.329 x 10 -6 

1067 - 0.694 x 10-6 

1485 + 3.630 x 10 -6 

3411 -2.006x10 -6 

4162 + 2.897 x 10 -6 

Calculated and experimental results for this 

problem and also for the strains at gauge A due to 

the same impact conditions are shown in Figa 10 and 

11 respectively. 

Due to the experimental method adopted only a 

qualitative comparison is possible of the 

experimental and theoretical strains. 
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CHAtTLR 5 COMMENTS AND CONCLUSIONS 

Figs. 7 and 8 show that the displacements 

calculated from five terms of the infinite series 

agree with the general trend of the experimental results 

during the first ten or twelve milli seconds. After this 

period the differences between the curves become more 

noticeable and it is apparent that the development of 

the predicted history proceeds more quickly than that 

of the experimental result. Two of the more important 

causes of these differences are 

(a) calculated frequencies are higher than 

observed values 

and (b) normal mode shape approximations may be too 

simplified. 

From equation (46) we see that displacement w is 

related to the -,!ode sha. e WM (x-,t5) by 

11- oc. W,.Sx0 
, Yo) 

. W1,(x 4I) 

The figures given below compare the values of this 

product used in the calculations for Fig. 7. with 

improved values obtained from the nine -term series 

used by Barton. 

WM (xo, ye). W,,cx, , y,) 

m A (FtCTï) s (gARToN) Rano ti- 

I + 0.8196 + 0.8153 1.005 

2. + 1.4459 -{- 1. 4-630 0.988 

3 - 2.615+ - 2.4915 I.oso 

4 - 3.2254 - 3.6115 0.893 

5 + 2.4658 - ----- 
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The coefficients required for the nine -term 

series were available only for the first four mode- shapes 

but these few results suggest that the error involved 

in using a one -term approximation is greater for the 

higher frequencies, and also that the amount of the 

error is not constant. It is the variation of error 

that causes distortion of the computed record since a 

constant á error would increase or decrease each term, 

and thus the total displacement, by the same factor. 

by 

Equation (4 ) relates 'displace...ent and frequency 

COS ° it¡ C 
it 2 

SIN W,(t ') 
C401[1 -00) :] ?t 

sm w,,,ct- s) say. 

A constant % error in frequency would alter the 

time scale by the same factor but, in general, distor- 

tion wo,ald still result from error variations in the 

quantity G Oww.Ì. 
Where the errors in estimating 041/4, 60.... etc, 

are different then some time after the start of the 

vibration the corresponding terms in the series for 

displacement may subtract instead of adding. This 

suggests why only the beginning of the calculated 

curve in Fig. 7 (Fig. 8) agrees reasonably well with 

the experimental result. 

Values obtained for CT6AO using (a) calculated 

frequencies, and (b) experimental frequencies are 

given below. 
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G(01) 

1'l'L A( F 1 Gr7) 6 ( EXpER/MENTAL) Rano I 
1 486 515 0.944 

2. 1 o8 113 0.956 

3 17.5" 84 0.923 

4- 33.7 34.6 0.971- 

5 2.7.6 29.6 0.932 

The results in the last two tables were used to 

re- calculate the amrlitudes of the terms in the 

displacement series and Figs. 12 and 13 were drawn to 

correspond to Figs. 7 and 8 

DI SPLACEMEnrTS 

m. A(F167) 
- 
e( vÁL.vÉs) RATIO 8 

, 

1 6 x l3 + 0.12.6 ó + 0.`166 xi* 3 
o 0.948 

2. + 0.2.84 x lo3 
p 

4- 0.302- Xió3 
I 

0.91-1 

3 -- 0.37o x 10 ' .3 is 0.382 x10 0.969 

4 - 0.99x" ó 
_ ,, -o2Sxto .2 0.872 

5 + 0.12g. xlô3 
I. 

Even though only four terms were used for the new 

curves it is immediately obvious that the agreement 

with the experimental results is better. It is to be 

expected that the results in Figs. 12 and 13 would be 

improved even further by making use of more terms from 

the infinite series, but in Figs. 7 and 8 adding more 

terms based on approximate frequencies and mode shapes 

would 
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would probably cause more distortion of the record. 

If no damping were present it is possible that at 

some time the deflection would be obtained by ac_ding 

the maximum values of each term in the series. 

i.e. If 

14r = 
Y1SIN 

w,(t-) +j,StNwst- z) +,... 

Ys t YZ it Y3 t Y4 t 
This is the formula derived by Greenspon as an 

upper limit for the maximum deflection. He assumes that 

in practice it is sufficient to consider only four 

terms and the calculations are based on the one -term 

approximate mode shape. The following figures compare 

the values obt, aine d from this formula with the 

corresponding observed maximum, Fig. 7 or 12. 

lArinanc. 

Above FORMULA : oNETERM Mon SHAPE 

. 

1.491 x103 " 

It tt : F14 7 cALcuLATloNS 1.59 x1O3 " 

It u : FIC{ 02 01 1.67$x153 a 

, 
Ac7,rAL cq.tuLATI:,b MAX. FoR Fs47 (STeRMS) 

-3ii 
I. 42, x lo 

u te , 4 Fitt it 1.4o si ,óa 
ObSeRV Fa MA X. F14 7 oR 12. 1. 88x ij3 

u 
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It can be seen that the experimental figure is 

larger than any of the estimates. Since the calculations 

are based on an approximate force and an experimental 

value of coefficient of restitution, comparison of the 

above results may not be helpful in criticising 

Greenspon's procedure. A method of initiating the 

transient vibration which could be "exactly" accounted 

for in the analysis would be necessary before reaching 

any relevant conclusions. One comment which can be 

made, however, is that in the above case the more 

exact calculations seem to give higher values of Vin444 

than the simple one -term approximation, and each of 

these figures is greater than the actual calculated 

maximum deflection. 

In a practical case the presence of damping will 

affect the amplitudes and will occur during 

the first few cycles of the lower frequencies. 

The integral equation developed for elastic, 

Hertzien impact of a sphere on a plate is similar to 

that obtained by Timoshen_.-o for impact on a beam. In 

this latter case Timoshenko (1913) suggested that the 

problem of plastic impact could be treated in a similar 

manner provided that a static relationship between force 

and distance was known for the plastic condition. 

In the plastic region the rate of straining is 

important and relaxation of stress and strain may not 

occur at the rate of removal of the load. In view of 

this the use of a static plastic relationship in the 

integral/ 
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integral equation would be an approximation similar 

to the use of the Hertz expression for elastic impact. 

Even with elastic impact it has been tacitly 

assumed that all the energy transmitted to the plate 

(or beam) results in flexural motion. That this is 

not necessarily so is shown by an investigation by 

Goodier and Ripperger (1959). A steel sphere of 

diameter 2a was allowed to strike a steel slab of 

thickness h and records were taken of strains produced 

on the upper and lower surfaces of the slab. For 

h 
2a 16 the motion was essentially confined to a 

surface wave on the upper face of the slab. i.e. The 

response was that of a semi -infinite solid rather than 

a thin plate. The motion was almost entirely flexural 

when 2-ha G 3. In the intermediate range 

3 2 $ < 16 it would be necessary to consider both 

flexural and surface wave effects. 

The present experiments were performed with 

h : 1. 2a 

Since strains are obtained from the series for 

displacement by differentiating with respect to one 

of the space variables, x or y, a process which 

increases the importance of the higher frequencies, it 

is to be expected that convergence of the resultant 

series will be slower than that of the series for 

displacement. i.e. More terms may be required to give 

a reasonable representation of the experimental result 

than is the case for displacements. 
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Observed (qualitative) and predicted strains 

are presented in Figs. 10 and 11 for two cases. Both 

strain gauges were placed near the clamped edge of 

the plate (see Fig. 5) but one gauge was situated 

on the line of symmetry so that asymmetrical modes 

produced no effect. Fig. 11 shows the results for 

this gauge, the calculations being limited to 

consideration of only three frequencies. It should 

be noted that three of the first six natural 

frequencies correspond to asymmetrical mode shapes. 

Many of the comments made about the displacement 

records in Figs. 7 and 8 can be repeated for Figs. 

10 and 11. Approximate frequencies produce the same 

effect on strain and displacement but there is a 

difference in the effect of using approximate mode 

shapes. Strain Ex in the x- direction is related to 

mode shape Wvyi(X,y) by 

Ex a W Cxo .i . 
? 

x 

Fig. 7 (displacement) and r'ig. 10 (strain) were 

calculated from the sane five mode shapes. 

The four improved mode shapes obtained from 

the nine -term series of Barton were used to calculate 

Figs. 12 (displacement) and 14 (strain) but in the 

latter case, Fig. 14, it was found necessary to 

include/ 
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include a fifth (approximate) shape. Values of 

the above product are compared in the following 

table 

W,e,yoA 11411(14,40 
. 

In A CF1C;lo) B(F1cx14) RAno B 
I + 0.010637 + 0.010459 I017 

2 - 0 . 02502.5 - o. 025920 0.965 

3 + 0 182.080 + 0.114687 1.042 

4 `. 0 231 136 - 0.199647 1.158 

S + 0. 40170 4- + 0. 407701- 1. 000 

The corresponding amplitudes of each term in the 

series for strain are: 

STRAINS 

A ( F1CT Io) B (F10 14-) 
A 6 

1 + 1;32.88 x to-6 t 1.386 x 10-4 o.959 

2. 0. 694-16 x10-6 - o.-154- x lÓb o.92I 

3 + 3.6303 x ló6 + 3.176 x epb 0.961 

4. - 2.00 59 xse' - 1.177 x/0-6 1.129 

S + 2.8965 xló` + 3.107 xió 0.932. 

The effect of the new figures for stain is to 

reduce the distortion in the later parts of the 

calculated history and to eliminate the reduction in 

time scale which arises from use of inaccurate 

frequencies. No great change is apparent in the 

calculated result for Fig. 15 when compared with 

Fig./ 
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Fig. 11 except the change in time scale. This may be 

due to the use of only three terms and the fact that 

errors in approximate frequencies for symmetrical 

modes are more nearly constant than for asymmetrical 

modes, so that distortion would not be appreciable 

in that part of the record considered in Pizs. 11 and 

15. 

Greenspon's method can be used to estimate the 

maximum strain and values obtained in this way are 

show below for the case represented in Figs. 10 and 

14. No experimental result is quoted since the method 

used to record strain did not provide quantitative 

results. 

ex 
FouR-rERMS 

Marc 
A 0E-reams 

GREer(apoNs FoRMOIg : oNE Tt.Rt4 MODE SHAPE 6./6 x 10 6 6 9.06 K166 

1% : Ft4.6O cALcuCATroNS 7. 66 xi p'6 1056x so-6 

it tt Fi¢14 it 7.693(16-6 10.8 x 16 

ATita L c A LcuLA-r"Ea MAX. FcR Ft¢. to 9.73 x rc b r 
VI l. e. 4. FIcr lg.. 8.38 x 454 

The similar table of results for displacement 

showed that the "upper limits" calculated by 

Greenspon's method were larger than the actual 

maxima as given by the calculated curves Fig. 7 and 12. 

The above table shows that this is not so for strains 

unless five terms are considered. 

The analysis has neglected such factors as 

internal and external damping, rotatory inertia and 

shear/ 



64. 

shear deformation. The effect of damping in a 

practical case will be to eliminate the higher modes 

of vibration from the experimental records and, 

unless calculated results are required over several 

c;cles of the lower frequencies, damping can usually 

be neglected. (The calculation being limited to 

consideration of the lower modes only). Shear 

deformation, and to a lesser extent rotatory inertia, 

will be important during the initial stages of the 

impact process when the disturbance is confined to 

a small region near the point of contact. There 

information is required concerning shear forces (or 

the force between the sphere and plate) it would 

seem necessary to consider shear deformation. This 

would suggest that the integral eouation of 

Timoshenko should be modified to include deflections 

due to both flexure and shear. Such a procedure 

would greatly complicate the analysis and it is 

doubtful whether, in general, the results obtained 

would justify the extra complexity. 

Goland, ,iickersham and Dengler (1955) 

investigated the problem of strain propagation in 

beams subjected to impulsive loading, including in 

their analysis the effects of rotatory inertia and 

shear deformation. A force gauge was designed in 

which a steel hemisphere rested on the surface of 

a Barium Titanate strain- gauge, which in turn was 

cemented to the surface of the beam. A steel 

sphere was allowed_to fall on to this gauge and the 

resultant/ 
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resultant variation of force was obtained from the 

changes of voltage generated by the Barium iitanate. 

This recorded force history was assumed to act as a 

series of impulses and as such was utilised in the 

mathematical analysis of the problem. 

For the period during which the sphere was in 

contact with the beam strains calculated by this 

method showed good agreement with observed results 

except for a small- amplitude high- frequency component 

present in the measured strain histories but lacking 

in the analytical solution. 

A similar method could be used to measure the 

force applied to a plate during impact instead of 

using the Zener- Feshbach procedure. It offers the 

possibility of dealing with cases where double - 

peaked force histories occur. (Sub- impacts). 

While a variation of strain produces a similar 

variation of voltage across a Barium Titanate gauge 

attached to the strained surface, the opposite is 

also true. i.e. By supplying a suitable voltage 

pulse to the gauge it should be possible to apply 

to the surface of the plate a given transient strain. 

This suggestion has not been tested except for 

sustained harmonic motion but it would be an 

interesting method of inducing a transient vibration 

since pulses of almost any shape can be produced by 

electrical means. 

Static deflection caused by a concentrated force 
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P can be obtained from equation (39) by allowing W 
to tend to zero and considering the result at Wt= Z 

We have 

zr(X,y) = 21- E wM(xo.`Jo).W,w(x4) (+9) 
Qßtab w, 

Taking (x,y) = (x0,y0) _ (a,o) and rewriting 

the equation non -dimensionally, we have for the 

deflection under the load at a free corner of a 

square cantilever plate, 

D . 1+47'61.,o) 
_ n%`a,o) 

P aZ 1T4 

Values of this quantity obtained by various 

methods are compared below 

(5o) 

LIVESLEY & 61RCNALL : FoNiTE VIFFERENCES C00 01-9 0 
1t it << i t (b) 0.5oo 

5 TERMS oF THE SUM Oa EQuar,oN (50) 0.495 
MAd NEAL : ANA Lo4vE ilETWORk 0.522. 

II : ZIREGT MEAS vat' MENT 0.4-62. 

The results of Livesley and Birchall (1956) 

were found using finite differences with a network 

of thirty -six points. (See Chapter 2, Section 2.2.6.) 

It is possible to use as boundary conditions on the 

clamped edge either (a) deflection and slope equal 

to zero, or (b) deflection zero and symmetry about 

the edge. Conditions (a) and (b) yield the 

corresponding/ 
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corresponding figures in the above table. 

One -term approximations were used for the mode 

shapes in equation (50) and the frequency parameters 

Xm were evaluated by Warburton's method. 

MacNeal's electrical analogue is essentially 

a sixteen -point finite- difference network and as 

such is less accurate than the procedure used by 

Livesley and Birchall. 

Static deflections are important in a method 

suggested by Williams (1949) for obtaining 

displacements due to a transient load. The integral 

in equation (38) of Chapter 3 is evaluated by parts 

to give 

Wm \'b,yo /. Wh1lX1/ P Ww,(XoO)WíX o SIN(Jt - 
\ w $,4 1 Mt 

t) = SINWtEetab W dab W 
2 W 

(s i ) 
The first sum is recognised as the static 

deflection due to the concentrated load P, and the 

remaining summation of terms is the additional effect 

produced by inertia forces. 

The static deflection can be evaluated either by 

summing the series or by substituting a value from 

some other source. (e.g. Livesley and Birchall). 

According to Williams only a few of the inertial 

terms need be considered due to the rapid convergence 

of the series. 

As a final comment it is perhaps relevant to note 

that while this dissertation is concerned only with 

a uniform rectangular plate, in prac ice it may be 

necessary/ 
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necessary to consider plates where the thickness, 

breadth, length, and possibly elastic properties are 

functions of the variables x and y. Such coblems 

may be too complex for direct analytical solution 

but the use of finite-difference methods and an 

electronic digital computer can yield a solution for 

a particular numerical case. Livesley and l3irchall 

used the computer DEUCE to invert a 30 x 30 matrix 

and the result is quoted in their paper. Each 

element of the inverted matrix is an influence 

coefficient giving the non -dimensional deflection at 

point m due to a unit load at point n, both m and 

n being in the range 1 to 30. 



APPENDIX 1 

Application of Calculus of Variations to L.inimise 

Equation (17) 
Z 

With the notation WxX - , etc, 

we have 
ab 

2 = J WX +WYyt2v W,Ws +t(-)W ÿ dcdt 
GJ _ o o 

a.b 
w2 r 

D Jo 
;( 

o Jo 

The right hand side of this equation is a 

functi. nal of W, Jxx , 

Wis 
and Wxy . x and y are 

considered as fixed quantities and only W and its 

derivatives are to be varied. 

For cj to be stationary the first variation 

must be zero. 

1 F; 

FZ 

. . S(wt) = Ft SF - F, SFi 

SF - F'.SFz = SF, - w. EFL = o Ft 

=o 

does no c contain derivatives of IN, thus 

111S'w (5E2. = a b 
= 2P. j hl.Sw&lcas 

al) oo 

S F= á w,, Swxx + áw . S W,y t áwx . swx 

yy 9 

jJ{(w* = 2 vwyy)Sw,tx +(wn +Jvrm) Swy WI" Swxyl dxd 
0 0 

2 =I + 2. =1 + 4-(1-0=3 say. 
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+=2.+20-013 arA..w: 
J 5D 00 

P 
W. Sw.d4c.d3= o -Mt) 

a b _ = J f(ww,,SW.J..J.4 
o ax 

Integral by parts with 

Z : L(W,4,0. wy)5 

respect to x, hence, 
b,4 

((CKum +vwxyyISw sa 
00 

Integrate the second integral by parts with respect 

to x, 
a 4 ab 

11=1 (w,,+vwbwx d - E(w+ vwxySwdy 4104,(4.yvic,5sw.4,t4 
o 0 

o o 

Similarly, by interchanging x and y, and a and b 

we have 

[(vJy +vv)Sw dnc- 1( [(Wm + v w,c,)ów] d4 -J4J (wyyyytvW ó'w.6443 
y yo I 0 00 0 e 

a b 

I, = J sw,,, . dx 
o 

Again, by parts with respect to x, 

ffb{[w,ty ,Sw yX V¡xXy . Swy d'c 

a 
00 

dis 

oo y y 

4 1 1 ) 
443 

a b a`6 

_ (Wx .Sw - .ó - {Wxx3.ówIclnc+ 
1 
Wy Sw . [WI," 

p o0 

Grouping terms together and substitu tin; in (17a) 

we find 

d0.42) IMO 

O 0 

Q 4w - W 
] . W SW. 614 S 

j&[(t-tilev 
o 

` aw ,,.,,.aw a 
+ C ax ä z swX 

o , 
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o 

r[( W %)S yz 
alai o 

t3+(t-'))-Ze)swla aJ 

-- to-v) 17-1"/ Sw 
Wavy' ] 

D 

O 
For this to be true 

terms must vanish. 

Therefore 

and, 

each of the bracketed 

OW = C) (11) 

& y= b 

o o-r Swy = o 

3 3 a W 4- (2.-10 4.-271= O vt 6W :. O 
a X3 ax óe- 

(x,y) _ Co,o);(á o); (0,b); (4.b) and at the corners 

Thus 

áw_o = 
1) ay 

:re see that the function which 

minimises equation (17) is a solution of equation 

(11), subject to the relevant boundary conditions 

in (17b). 

For clamped edges, 

For supported edges 

For free edges 

At a free corner 

6,14 = Swx(atóW0 = o 

6'w =0 Sw,c*o 
Sw 5v41,4 #. c 
Sw *.o. 

( b) 
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In the cases where the variation is zero, 

e.g. where zero slope or deflection isprescribed 

at the boundary, the boúndary conditions of 

equation (l7b) are satisfied. Where the variation 

is not zero then the more complicated expressions 

in (17b) are the required boundary conditions which 

the function W must satisfy. 

The above problem refers. to a function W which 

makes O) stationary. Further investigation shows 

2 
that W is a minimum (Courant and Hilbert, 1953) . 
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Appendix 3 Notation 

b 

C 

e 

dimensions of the plate in the x -and y- 

directions 

1735 % 

= constant for a given beam 

coefficient of restitution = - V V 
acceleration due to gravity 

thickness of the plate 

coefficient in Hertz expression, equation(26) 

length of a beam; grid spacing in finite - 

difference method. 

positive integers 

generalised coordinate, equation (31) 

time 

V ) V velocities of the sphere 

14' (x t) deflection of a beam 

W(xowt) deflection of a plate 

,X, 
coordinates in rectangular, cartesian system 

(x 

0,40) coordinates at the point of impact 

1151) coordinates at the position of the Pickup. 

(XlsS) coordinates at the position of the strain - 

gauge. 

area of beam cross -section 

dimensionless coefficient in series for 

W(x,y), equation (20) 

B dimensionless coefficient in two -term 

mode shape 

plate stiffness = -ot) 
E Young's modulus of elasticity 

Efis 

F(X,y,t) load per unit area acting on the plate 
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Vi'.,, factors in the equation for X, equation (19) 
I, Jx, TV 

and Table 1. 

second moment o.f area of beam cross -section i = f C for a beam 
P, Pit) force between bodies in contact 

r(t) concentrated force acting on the Plate 

P(*) t'normalised" force 

Rim maximum value of Hertz force 

R, radius of the sphere 

Ì kinetic energy of vibrating plate or beam 

Ì duration of application of P(t) 

ÌN Hertz time of contact, equation (47) 

strain energy of vibrating plate or beam 

V/ weight of the sphere 

deflection at point r in finite- difference 

network, Fig. 3. 

W *(X) shape of rth mode of vibration of beam, 

equation (3) 

W4.(X,y) shape of rth mode of vibration of the plate 

OL change in distance between centres of two 

elastic bodies in contact, equation (26) 

x strain in the x- direction at the surface of 

the plate 

% fit¡ 4 (X)for a cantilever (clamped -free) beam, 
r+ 

equation (13) 

frequency parameter, equation (18) 

V Poisson's ratio 

weight density of the material of beam, 

plate and sphere. 
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C41- parameter in equation (5) for Aff (X) 

95j3) 
n(y) for free -free beam, equation (14) 

GJt rth natural frequency radians per sec 

D a +2aß 'AZ 
a x4 axtaá a+ 
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EXpERIMENTAL FREQUENCIES (C/5) 

-Tn. n, 0 1 2 

1 35.6 162..2. i115.4 

2. 2.18.5 529.4 1451.3 

3 618.1 996.1 1995.5 

4 120s.s 

CALCULATED FREQUENCIES (c /s) 

lit 
, 

O 1 2. 

I 37.7 169.8* 1166 

2. 236.3 5+2.9* 1563 

3 662..3 1030.5* 2149 

4 1298 

* Two TERMS 

TABLE 2. 

et. 



E XPERItvIENT 

Il 

CALCULATION (5 TERMS) 

zS 

DISPLACEMENT AT (16',7 i) 
IM PACT AT (6;'5e 

FIG.7 

.... 
sec. 

'U = 107.7 7sec. 

W = o.oi229 lb 

R- 2 32. 

83. 
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II 

EXpERIMENT 

CALCULATION (5 TERMS) 

84 

1.- 5 10 IS 2o 25 m.sec 

-s 

DISPLACEMENT AT (16',16) 

IMPACT AT (6';50 

FIG. 8 

'U' = 10y7 Ysec. 
W:-.. o.oI229 lb 
R = -1" 32. 
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II 

_ 

CALCULATION (5 TERMS) 

STRAIN AT (0.61'-,11.9753 

IMPACT AT (6 5±") 

FIG. 10 

86. 

11' u 107.7 sec. 
W = o.oi229 16 

1 /I 

R= - 32 



-5 y 10 

o 
II . 

E XpERIMENT 

CALCULATtONj3 TERMS) 

kg IL AL 2.0L4 
ry loy rif 

-IO 

STRAIN AT (0.64, 3.75") 

INTACT AT ( 6", 5i") 

F1G.11 

2.5" M.SeC 

1T = t o-r.-t'isec. 

w= o. o i z.2g ib 

1 
32. 



EXpER1MENT 

CALCULATION (4TERMS) 

USIN& EXPERIMENTAL 
FREQUENCIES 

. . 
5 /0 S 20 25 ,».sec 

DISpLACEMFNT AT (16;74;) 

I M ACT AT (61,5i/ 

FIG. 12. 

(COMPARE Fieo 

v- = (07.-1 ysec. 
w = 0.O12.29 lb 

R - 32 

88. 
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M tQ 

EXPERIMENT 

89. 

CALCULATION (4TERMS) 

USI N4 EXpER/MENTqL 
FREquENVES 

110 

2o 125 wt. sec 
ow- 

a 

DISPLACEMENT AT (16, 0") 

I(WpACT AT (6:50 

FIG. 13 

(COMPARE F'IC=.8) 

1r = 107.7 7sec 
W = 0.01229 lb , 
R 32 



 

IA .1 A 

EXPERIMENT 

j 
CALCULATION (S TERMS) 

USING EXPERIMENTAL 

, A 

FREQUENCIES 

.s -io 

STRAIN AT (0.64 1.875) 

IMPACT AT (6 ", 511). 

FIG. 14 
(co M pARE FIG 10 

25 rn.set. 

90. 

V=107.7 7sec. 
W-o.o122916 

R=- 32. 
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CALCULATION (3 TERMS) 

USINE EXPERIMENTAL. 
FREQUENCIES 

A `A 
vv5 i5T 20 

STRAIN AT (0.64~, 3.751) 

I M P ACT AT (6 % 5 i) 

FIG, 15 
(COMPARE FIS ii ) 

25 rn,sec 

_ WaY.Z "/Sec. 
W _O.ot229 1% 

R = 3-u 
32. 


