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ABSTRACT

The steroid hormone receptors (SR) are nuclear transcription factors

which, upon activation by hormone binding, bind specifically to short DNA

sequences called steroid response elements (SRE) in steroid regulated

genes, and alter the transcription rates of those genes.

The consensus oestrogen response element (ERE) and

glucocorticoid response element (GRE) can work alone as hormone-

dependent transcriptional enhancers in vivo, when linked to a heterologous

promoter. However, highly specific binding of purified SR to a SRE in vitro

has not been demonstrated; in many cases, purified oestrogen (ER) and

glucocorticoid (GR) receptor discern between their specific SRE and non¬

specific DNA with less than 10-fold discrimination.

Several studies have implicated the involvement of accessory

proteins that increase the affinity of purified SR for its SRE in vitro. In vivo,

such accessory proteins may be involved in high affinity binding of SR to a

SRE to confer transcriptional regulation.

This thesis describes the identification and characterisation of a

steroid response element-binding protein (SRE-BP) and argues that by

modulating the interaction of different SRs with their target SREs, the SRE-

BP plays a role in steroid hormone action.

Whole cell extracts (WCE) of HeLa, GH3 and CV-1 cells contain SRE-

BP activity. SRE-BP activity is also present in nuclear extracts of HeLa cells

and WCE of liver tissue.

The SRE-BP binds specifically to two classes of functionally distinct

SREs. In gel retardation experiments the SRE-BP binds preferentially to

oligonucleotides containing a consensus ERE or a symmetrical GRE; it

binds less well to a mutant GRE and does not bind to a symmetrical thyroid

response element. The SRE-BP does not recognise transcription factor
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binding sites present in the Herpes Simplex Virus thymidine kinase gene

promoter.

Using gel filtration chromatography, the SRE-BP has been partially

purified and shown to have a relative molecular weight under non-

denaturing conditions of 205kD (± 20kD), as it exists in solution. The

molecular weight of the SRE-BP when bound to an ERE oligonucleotide is

200kD (± 27kD) as determined by pore gradient gel electrophoresis. Thus,

the SRE-BP species that exists in solution is the same as the DNA-bound

form of the SRE-BP. Crosslinking experiments show that the SRE-BP is not

a single ~200kD polypeptide, but is a protein complex made up of different

subunits. Preliminary results suggest the DNA-binding subunit of the SRE-

BP is between 88kD and 42kD.

Hence, the SRE-BP is a sequence specific DNA binding protein, it is

neither ER nor GR, as demonstrated by its cell type distribution, its DNA

sequence specificity, and its relative molecular weight.

Preliminary evidence is presented suggesting that HeLa WCE which

contain SRE-BP activity can increase the binding of in vitro translated ER to

a consensus ERE in a gel retardation assay. A role for accessory proteins

in SR DNA-binding activity is further substantiated by the finding that in vitro

translated ER binds to an ERE as part of a 362kD complex and not simply as

a 130kD ER homodimer.
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CHAPTER 1

INTRODUCTION



1.1 INTRODUCTION

Eukaryotic gene activity can be controlled at various stages during

gene expression. These include regulation of transcription, translation and

post-translational events. Most frequently, though, gene activity is

controlled at the level of transcriptional initiation; the decision of whether or

not a gene is switched on and the rate at which it will be transcribed.

Understanding the molecular mechanism behind control of transcriptional

initiation has become one of the major goals of modern biology.

Experimental procedures such as in vivo cell transfection systems, in vitro

DNA-binding assays and protein purification techniques have given much of

the knowledge concerning transcriptional control to date.

Traditionally, eukaryotic protein encoding genes transcribed by RNA

polymerase II (class II genes) are represented diagrammatically as two-

dimensional structures with two distinct regions: the transcribed region and

the non-transcribed region. Within the transcribed region, information is

encoded which is transmitted from DNA to RNA by the enzyme RNA

polymerase II and subsequently to protein after translation of the fully

processed mRNA species. Within the non-transcribed 5'- region,

information is encoded which confers control over the site at which

transcription is initiated and the rate of transcription initiation. This

non-transcribed regulatory region exists 5'- to the transcribed region as

depicted below in a two-dimensional representation of the steroid hormone

controlled rat prolactin gene (Fig. 1.1).

Enhancer Promoter

-1718 -1550 -200 -62

+1

ERE TATA

Fig. 1.1 Schematic diagram of the 5' regulatory region of the rat prolactin
gene. Hatched boxes represent binding sites for the regulatory factor, Pit-1.
The ERE and TATA box are also shown. Adapted from Ingraham et al.
(1988).
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Functional dissection of regulatory regions in several cloned

eukaryotic genes led to the definition of two genetic elements which control

gene transcription, called promoter and enhancer elements (see Fig. 1) (for

reviews see Serfling et al., 1985; Maniatis et al., 1987; Mulleret al., 1988;

Dynan, 1989). It is generally accepted that proximal promoter sequences

which include the TATA element control the site at which transcription is

initiated (called the 'cap' site or +1), and basal transcription level, whereas

distal promoter sequences and enhancers control the rate at which

transcription is initiated. By definition, an enhancer confers transcriptional

control in a manner independent of its orientation and distance relative to

the promoter, often existing up to two kilobases from +1 (Muller et al., 1988;

Maniatis et al., 1987; Serfling et al., 1985).

It is now clear that promoters and enhancers are modular structures

composed of multiple short DNA sequences (see Fig 1.1) that individually

confer transcriptional response to different stimuli. Responses are mediated

through interaction between particular DNA-sequences with specific DNA-

binding proteins, called transcription factors. Transcription factors may be

expressed ubiquitously, e.g. TFIID (Buratowski et al., 1989 and 1988 and

references therein), or may be cell type specific and/or inducible under

certain conditions such as developmental or environmental stimuli. For

example, the steroid hormone receptors are cell-type specific but are also

only active when exposed to steroid hormones; activated SR then interacts

with its DNA sequence, or SRE, in the regulatory region of a particular

steroid hormone responsive gene and modulates transcription of that gene

(see Yamamoto, 1985 for review). Thus, depending on the array of DNA

sequences in the promoter and/or enhancer controlling any one gene, in

any particular cell type, distinct complex patterns of transcriptional regulation

are seen (for reviews see Dynan, 1987 and 1989; Schaffner, 1989; Berk &
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Schmidt, 1990). It appears that different combinations of distinct

transcription factors interact with specific genes.

As more and more transcription factors are cloned and their protein

structures analysed, it is becoming apparent that there are families of related

factors which interact with related DNA sequences. Such families include

the steroid hormone receptor superfamily (for reviews see Evans, 1988;

O'Malley, 1990 and section 1.6.2) , CTF family (Chodosh et al., 1988a and b;

Dorn et al., 1987) and the POU-domain transcription factor family (Herr et

al., 1988; He et al., 1989). It is clear that within these families, several

structural protein motifs have evolved (reviewed in section 1.2), which are

essential to transcription factor function.

A correctly positioned initiation complex within the promoter element

allows RNA polymerase II to initiate transcription at +1 (reviewed in section

1.3.2). The present scenario for transcriptional control dictates that

DNA-bound transcription factors, directly or indirectly, interact with

components of the transcription machinery to promote/stabilise (activation;

reviewed in section 1.3.3) or in some way inhibit/disrupt (repression;

reviewed in section 1.3.4) the formation of a transcription initiation complex.

In vivo, the native environment of DNA involves its close association

with histone and non-histone proteins, and subsequent packaging into

higher order chromatin. The ability of transcription factors to modulate

transcription from transfected plasmid DNA or to bind naked DNA does not

include the effect of chromatin structure on transcriptional control.

Moreover, the study of purified transcription factor activity in a DNA-binding

assay does not address the possible role of accessory proteins, normally

found in the cell, which may modulate DNA-binding activity of the factor.

The role of chromatin structure and of accessory proteins in transcription

factor activity is reviewed in sections 1.4 and 1.5 respectively, and with

specific reference to steroid receptors in sections 1.6.5.2 and 1.6.5.3.
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1.2 PROTEIN MOTIFS CHARACTERISED IN TRANSCRIPTION FACTORS

1.2.1 Introduction

DNA-binding transcription factors interact with DNA via their DNA-

binding surfaces. Such factors could contact either the negatively charged

backbone of B-form DNA or bases , which have innate hydrogen (H)

bonding potential, exposed on the major or minor groove (reviewed by Pabo

& Sauer, 1984). Characteristically, DNA-binding surfaces of transcription

factors contain an excess of basic amino acids and also inherent H-bonding

ability (Pabo & Sauer, 1984; Struhl, 1989; Schleif, 1988)). Thus,

electrostatic attraction between the DNA phosphate backbone and the basic

DNA-binding surface brings protein and DNA into close proximity.

Specificity of the protein-DNA interaction arises from hydrogen bonding and

van der Waals interactions between nucleotides and amino acid side

chains; hydrogen bond formation is highly dependent on the position and

orientation of the hydrogen bond donor and acceptor sites. As the minor

groove is small and has less hydrogen bonding potential, the major groove

is favoured for specific protein-DNA interactions.

The three dimensional configuration of B-form DNA imposes several

structural constraints on the conformation of DNA-binding surfaces capable

of interaction. Early model building studies predicted that an a-helix or a

pair of antiparallel (3-strands could fit into the major groove of B-form DNA

(reviewed by Pabo &Sauer, 1984).

Analysis of protein structure of several cloned transcription factors

reveals a small number of distinct structural motifs implicated in DNA-

binding activity. The formation of either an a-helix or (3-sheet has been

demonstrated for some of these motifs and implicated in others. These

motifs; helix-turn-helix, zinc fingers, leucine zipper, helix-loop-helix and

(3-sheet are reviewed below.
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1.2.2 Helix-turn-helix motif

The helix-turn-helix motif was first proposed as a sequence-specific

DNA-binding structure in the early 1980s, after X-ray crystallographic

analysis of three prokaryotic DNA-binding proteins: Bacteriophage X

repressor and cro proteins and E.coli cAMP receptor protein (reviewed by

Pabo & Sauer, 1984; Brennan & Mathews, 1989). Despite differences in

size, domain organisation and tertiary structure, each of these proteins binds

to DNA as a dimer and uses the helix-turn-helix structure to contact adjacent

major grooves along one face of B-form DNA.

Fig. 1.2 Alpha carbon backbone of helices 2 and 3 of the X-operator
complex, showing the helix-turn-helix region positioned in the major groove
of the DNA. Adapted from Pabo & Sauer (1984).
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The helix-turn-helix motif consists of two a-helices separated by a

tight [3-turn (Fig. 1.2). The recognition a-helix (helix 3 in diagram) directly

contacts bases exposed in the major groove of the target DNA sequence;

the other a-helix (helix 2) lies across, but not in, the major groove. Helix 2

helps to position helix 3 in the major groove and makes non-specific DNA

contacts with the phosphate backbone, so securing protein/DNA interaction

(Ptashne, 1986a; Pabo & Sauer, 1984). Helix 2 of the X repressor has also

been implicated in protein-protein interaction with RNA polymerase

(Hochschild et al., 1983).

Structural predictions based on sequence homologies provoked the

proposal that DNA-binding by homeodomain-containing eukaryotic

transcription factors involves a helix-turn-helix motif similar to that found in

prokaryotic DNA-binding proteins (Laughon & Scott, 1984). The

homeodomain is a highly conserved region of approximately 60 amino

acids, first described in Drosophila homeotic genes (reviewed by Levine &

Hoey, 1988). Mutational analysis (for examples see Treisman et al., 1989;

Desplan et al., 1988) and homeodomain "swap" experiments show that the

homeodomain is important for sequence-specific DNA binding (reviewed by

Levine & Hoey, 1988). In fact, for the Drosophila Antennapedia

transcription factor, NMR studies show that the homeodomain does form a

helix-turn-helix motif in solution, virtually identical to those observed on

prokaryotic DNA-binding proteins (Qian et al., 1989).

Homeodomains have since been characterised in a number of

transcription factors from different species including the mammalian

POU-domain proteins: Oct-1 (Sturm et al., 1988), Oct-2 (Clerc et al., 1988)

and Pit-1 /GHF-1 (Ingraham et al., 1988; Bodner et al., 1988; Herretal.,

1988). The POU-domain consists of two subregions: a C-terminal

homeodomain and an N-terminal POU-specific domain which are both

necessary for effective DNA-binding in vitro (Herr et al., 1988; Sturm & Herr,
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1988). Indeed, amino acid substitutions within the putative recognition

a-helix of Oct-1 homeodomains abolish DNA binding activity, in vitro (Sturm

& Herr, 1988). The second a-helix (Fig. 1.2, helix 2) of Oct-1 has also been

implicated in protein-protein interactions analogous to those proposed for X

repressor (Stern et al., 1989); mutations which abolish Oct-1 interaction with

the herpes simplex virus VP16 protein, all map to putative a-helix 2.

1.2.3 Zinc fingers

Recognition of a second DNA-binding motif, the zinc finger, was first

described for the Xenopus laevis transcription factor TFIIIA (Miller et al.,

1985). TFIIIA contains 7-11 zinc ions per molecule and is composed of nine

30 amino acid repeating units. Each unit incorporates one invarient pair of

cysteines and one invarient pair of histidines (C2H2 finger protein), and

co-ordinates a single atom of zinc (Klug & Rhodes, 1987). Structural

analysis of many C2H2 finger proteins (Berg, 1986; Vincent, 1986) led to the

proposal of a three dimensional model for these domains consisting of an

anti-parallel p-sheet followed by an a-helix (Berg, 1988; Gibson et al.,

1988). NMR studies of a 25 residue peptide encoding a single C2H2 finger

of the Xenopus protein Xfin have now provided evidence that this ppa

structure does indeed form in solution (Fig. 1.3a) (Lee et al., 1989).

The second class of zinc finger is exemplified by the steroid hormone

receptor superfamily (Evans & Hollenberg, 1988; Frankel & Pabo, 1988).

Receptor family members contain two potential zinc fingers within their

DNA-binding domain, each incorporating two invarient pairs of cysteine

residues (C2 C2 finger proteins) (Evans & Hollenberg, 1988; Berg, 1989).

For GR, it has been shown that each finger motif binds one zinc ion which is

essential for DNA-binding activity (Freedman et al., 1988).

The deleterious effect on DNA-binding activity observed when one C2

pair of a C2 C2 finger is replaced with an H2 pair (Green & Chambon, 1987)
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indicated that the C2 C2 and C2 H2 finger structures differed. NMR studies

of a peptide containing the DNA-binding domain of GR confirms that the

C2 C2 finger is structurally different from the C2 H2 finger (Fig. 1,3b) (Hard

et al., 1990a). In each case a P(3a conformation forms, although the

cysteine residues co-ordinating a zinc ion are located within the a-helix of

the C2 H2 finger, whereas only the C-terminal cysteine residue of the C2 C2

finger lies within the a-helix (see Figs. 1.3a and 1,3b).

Fig. 1.3 3D structure of the zinc fingers of Xfin-31 and rat GR

a) Model of the 3D structure of a single zinc finger from Xfin-31
(Adapted from Lee et al., 1989).

b) Model of the 3D structure of the rat GR DNA binding domain. The first
finger region is in the top right and the 2nd finger region in the top left of
the diagram. (Adapted from Hard et al., 1990a)

The zinc atoms are shown as filled circles, co-ordinated (shown as
dotted lines) to protein.

(a) (b)
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1.2.4 The leucine zipper

The leucine zipper model (Fig. 1.4) for protein dimerisation was first

proposed for the CCAAT-box binding factor and enhancer binding protein,

C/EBP (Landschulz et al., 1988). When a region of protein sequence of

C/EBP is arranged on an idealised a-helix, a periodic repetition of leucine

residues, present at every seventh position over a distance of eight helical

turns, aligns along one face of the a-helix. A similar periodic array of five

leucine residues has been identified in protooncogenes c-Fos and c-Jun in

a region which mediates dimerisation between Fos and Jun proteins

(Landschulz et al., 1988; Schuermann et al., 1989; reviewed by Curran &

Franza, 1988). Homology to the leucine zipper motif has recently been

identified in the extensive family of activation transcription factor (ATF)

proteins (Hai et al., 1989) and the yeast activator GCN4 (Vogt et al., 1987).

Peptides containing the leucine zipper motif of either Fos or Jun proteins

independently form a-helices in solution. When mixed, a-helices form

heterodimers arranged in a parallel conformation (O'Shea et al., 1989)

suggesting that leucine zipper motifs direct protein dimerisation via a short

coiled-coil structure (Landschulz et al., 1988; O'Shea et al., 1989).

)' \
COOH COOH

Fig. 1.4 Schematic representation of a leucine zipper protein. Filled
rectangles represent the basic DNA binding domain and hatched rectangles
represent the leucine repeat region.
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Sequence analysis of leucine zipper proteins reveals a short region

containing a high proportion of basic amino acids immediately adjacent to

the leucine zip (Landschulz et al., 1980; Vinson et al., 1989). Secondary

structure predictions of this basic region suggest it could form a stable cc-

helix (Vinson et al., 1989). Furthermore, this region in C/EBP must remain

intact to direct effective DNA-binding (referred to in Landschulz et al., 1988

as unpublished data). This led to the formulation of a 'scissor-grip' model

for DNA-binding of leucine zipper proteins (Vinson et al., 1989) in which two

polypeptides dimerise to form the 'stem' of a Y-shaped molecule (Fig. 1.4).

The arms of this molecule constitute a linked pair of basic regions, arranged

in a manner suitable for sequence-specific DNA-binding. The bifurcation

point of the Y-shaped molecule closely approaches the centre of the

DNA-target site and optimally positions basic regions to allow tracking along

each half of the recognition site, hence binding securely and specifically to

DNA. Of course, three dimensional protein structural studies are required to

confirm or reject this model for DNA binding.

1.2.5 Helix-loop-helix

A second structural motif for dimerisation and DNA-binding has been

proposed. This motif is common to a family of proteins capable of forming

homo and heterodimers with particular members of the group (Murre et al.,

1989a). These proteins include the tissue-specific muscle determination

genes (MyoD, Myf-5), two ubiquitous enhancer binding proteins (E12, E47),

and several Drosophila genes (daughterless, achaete-scute, hairy, twist)

(Murre et al., 1989b; Benezra et al., 1990 and references therein). The

motif is divided into two conceptual subdomains: the helix-loop-helix (HLH)

domain (Murre et al., 1989b) and a short basic region juxtaposed N-

terminally to HLH (Tapscott et al., 1988).
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Within the HLH are two highly conserved regions, each potentially

capable of forming amphipathic a-helices, connected by a less well-

conserved p-loop. The HLH has recently been shown to be necessary for

MyoD-E12 heterodimer formation (Davis et al., 1990); this heterodimer

contains increased specific DNA-binding activity compared to MyoD alone

(Murre et al., 1989a). Dimerisation by HLH is probably essential for

DNA-binding activity, as deletion of one or both putative a-helices impairs

E12 DNA-binding activity in vitro (Murre et al., 1989a).

The adjacent basic region is not required for dimerisation but is

absolutely necessary for specific DNA-binding in vitro (Davis et al., 1990).

In fact, heterodimer formation between a ubiquitously expressed HLH

protein containing no basic region (called Id), and either MyoD, E12 or E47

inhibits DNA-binding activity (Benezra et al., 1990). Discovery of Id gives

new insight into mechanisms by which a family of related transcription

factors may be controlled (discussed in Benezra et al., 1990).

1.2.6 Antiparallel p-sheet

The antiparallel p-sheet is the latest addition to an expanding club of

structural motifs characterised in DNA-binding proteins. NMR studies of

prokaryotic Arc repressor reveal that it binds to DNA via a structural motif

involving two anti-parallel p-sheets (Breg et al., 1990). The N-terminally

located DNA-binding domain of one Arc monomer dimerises with the

analogous region of a second Arc monomer to form an anti-parallel p-sheet

(Fig. 1.5). Two such Arc dimers bind to DNA with their p-sheet in successive

major grooves on one side of the DNA-helix.



Fig 1.5 Model of the DNA-binding region of bactiophage P22 Arc repressor
complexed with DNA. The antiparallel p-sheets (one from each dimer)
interact with the major groove of DNA. (Adapted from Breg et al., 1990)

Sequence homologies and structural studies reveal three prokaryotic

repressors (Arc, Mnt, Met) which are all members of the same family of

P-sheet DNA-binding proteins (Breg et al., 1990; Rafferty et al., 1989). It will

be of interest to see if similar p-sheet DNA-binding proteins exist in

eukaryotes.
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1.3 CONTROL OF TRANSCRIPTION INITIATION

1.3.1 Introduction

The proximal promoter of most eukaryotic class II genes includes an

A/T-rich DNA sequence called the TATA-box, which is found 20-30bp

upstream of the cap site in mammalian genes (Breathnach & Chambon,

1981). The ubiquitous transcription factor, TFIID, a component of the

transcription machinery, binds specifically to the TATA-box. TFIID binding

institutes the ordered assembly of other transcription machinery components

(TFIIA,-B,-E/F, RNA polymerase II) to form a transcription initiation complex in

the vicinity of the TATA box and cap site (Buratowski et al., 1989; Van Dyke

et al., 1988 and references therein). The TFIID binding and subsequent

initiation complex formation is important in determining the site at which

transcription is initiated, and supports basal transcription (Buratowski et al.,

1989; Pugh & Tijian, 1990; Hoey et al., 1990). The distal promoter and/or

enhancer contain DNA-binding sites for other transcription factors which

may act to induce (activate) or inhibit (repress) basal transcription from a

particular gene (reviewed by Ptashne & Gann, 1990; Lewin, 1990;

Renkawitz, 1990; Levine & Manley, 1989).

The following sections 1.3.2, 1.3.3. and 1.3.4, review aspects of the

transcription machinery, and current mechanistic models for transcriptional

activation and repression.

1.3.2 The transcription machinery

The finding that purified RNA polymerase II does not accurately

initiate transcription in vitro led the search for additional cellular factors

required for efficient transcription. Fractionation of mammalian cell extracts

identified four transcription factors called TFIIA, TFIIB, TFIID and TFIIE/F,

which, in addition to purified RNA polymerase II, accurately initiate
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transcription from a minimal promoter containing a TATA element and a cap

site (Matsui et al., 1980; Samuel et al., 1982; Sawadogo & Roeder, 1985).

TFIID-specific binding to the TATA-box is the first step in transcription

initiation (see Fig. 1.6) (Van Dyke et al., 1988; Buratowski et al., 1989).

Yeast, Drosophila and mammalian TFIID can be functionally interchanged to

mediate basal transcription; for example, yeast TFIID can substitute for

mammalian TFIID in a mammalian RNA polymerase II in vitro transcription

assay (Buratowski et al., 1988; for Drosophila TFIID see Pugh & Tijian,

1990). The recent cloning of TFIID from a number of species, including

human, yeast and Drosophila (reviewed by Ptashne & Gann, 1990; Lewin,

1990) reveals that they are all small (~30kDa) and retain a high degree of

conservation within the C-terminal 180 amino acids. This conserved region

is sufficient both to direct specific binding of a TFIID monomer to DNA and for

basal transcription, in vitro (Hoey et al., 1990; Horikoshi et al., 1990). It is

proposed that the nonconserved N-terminal region determines the

differential ability of TFIID from distinct species, to respond to disparate

activators (reviewed in section 1.3.3).

TFIIB (also called BFT3) has been purified from HeLa cells as a

~27kD protein (Reinberg & Roeder, 1987a; Zheng et al., 1987). Recent

cloning of its cDNA reveals that as well as the full length TFIIB, an

N-terminally truncated 22kD TFIIB is also expressed; both TFIIB forms are

expressed in various cell lines from different species (Zheng et al., 1990).

Although the specific function of TFIIB is not yet defined, it does not

independently bind to promoter DNA (Zheng et al., 1987), but purified TFIIB

does form a stable complex with purified RNA polymerase II in solution

(Zheng et al., 1987; Reinberg & Roeder, 1987; Zheng et al., 1990).

TFIIF is a component of the less purified fraction TFIIE (BF2) and TFIIF

is similar or identical to the factor called RAP30/74 (Flores et al., 1988).

RAP30/74 has recently been cloned and may be associated with a DNA
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helicase activity (Sopta et al., 1989). In addition, TFIIE nuclear fractions

also contain a DNA-dependent ATPase activity (Reinberg & Roeder, 1987).

TFIIF (RAP30/74) may function to hydrolyse ATP; the energy released would

permit the associated helicase to melt DNA, a pre-requisite for RNA

polymerase II mediated transcription.

The final characterised component of the transcription machinery is

TFIIA. Unlike TFIIB.-D, and -E/F, TFIIA is not absolutely required for most in

vitro transcription systems but acts as an accessory protein (see section 1.5)

which increases the affinity of TFIID for the TATA-box (Buratowski et al.,

1988; Buratowski et al., 1989 and references therein).

Efforts to determine the order of events in initiation complex assembly

have exploited the major late promoter (MLP) of adenovirus-2 for its

simplicity. Recently, gel retardation assays (Buratowski et al., 1989) in

conjunction with DNAse 1 footprinting (Van Dyke et al., 1988; Buratowski et

al., 1989) resolved a series of preinitiation complexes which suggest the

ordered assembly of purified transcription machinery components over the

MLP promoter to form a functional transcription initiation complex (Fig. 1.6).

Specific binding of TFIID to the TATA-box represents formation of the first

preinitiation complex; TFIID binding may be modulated by adjacent,

upstream binding of TFIIA (Fig. 1.6). TFIIB binds downstream of the

TATA-box in a TFIID-bound dependent manner. RNA polymerase II then

binds, probably by direct interaction with TFIIB; TFIIE/F binds downstream of

RNA polymerase II probably through its interaction with RNA polymerase II.

Reportedly, TFIIE/F binding represents the final step in initiation complex

formation (Buratowski et al., 1989).
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Fig 1.6 Schematic model of the assembly of the transcription initiation
complex. The stepwise addition of TFIID, TFIIA, TFIIB, pol II and TFIIE/F are
described in the text. (Adapted from Buratowski et al.„ 1989).

One puzzling observation concerning class II genes is the sequence

divergence of the TATA-box (Singer et al., 1990) and its apparent absence

from some class II promoters (Smale & Baltimore, 1989 and references

therein). It has recently been shown that approximately 1% of random 16bp

oligonucleotide sequences can function as basal promoters in vivo (Singer

et al., 1990). In general, yeast TFIID binds to A/T-rich oligonucleotides in

vitro even if no sequence homology to the consensus TATA-box (TATAAA) is



18

observed. The remaining non-TFIID binding oligonucleotides may function

through their interaction with an alternative basal promoter binding factor.

The lymphocyte-specific terminal deoxynucleotidyl-transferase gene has no

TATA-box despite efficient transcription initiation at a single nucleotide.

Smale & Baltimore (1989) have identified a 17bp initiator sequence

containing within itself a cap site, and capable of mediating efficient basal

transcription in vivo. The inclusion of an initiator sequence in TATA-less

promoters provides one explanation for how eukaryotic promoters direct

accurate transcription initiation.

1.3.3 Activation of Transcription

1.3.3.1 Activation

There are two classes of activators: members of one work universally,

whereas members of the other work only in certain cells. The yeast

transcriptional activator, GAL4 works universally; when introduced into a

wide variety of eukaryotic cells, GAL4 activates transcription of a gene

encoding a GAL4 binding site (Ma et al., 1988; Kakidani & Ptashne, 1988;

Webster et al., 1988). It is proposed that universal activators encode both

DNA-binding and activation functions and interact directly with a component

of the transcription machinery.

The second class of activators encode either a DNA-binding function

or an activation function and can, therefore, only work in cells which provide

the missing function. For example, the Herpes Simplex Virus protein VP16

and the mammalian protein Oct-1 are both transcriptional activators

although the former has no DNA-binding domain and the latter has no

activation domain. VP16 and Oct-1 specifically interact with each other

(Stern et al., 1989) to give high level activation from genes containing a

binding site for Oct-1. Thus, Oct-1 will activate genes in cells.
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Functional analysis of several activators has identified activating

regions which can be transferred to heterologous DNA-binding domains and

still confer transcriptional activation (Brent & Ptashne, 1984; Webster et al.,

1988; Godowski et al., 1988; reviewed by Ptashne, 1988). Sequence

analysis of activating regions has grouped activation domains into three

loose categories based on their amino acid content (reviewed by Mitchell &

Tijan, 1989); acidic activation domain (AAD), so called due to its high

content of acidic amino acids (e.g. GAL4, GCN4, VP16, GR) (Ma & Ptashne,

1987 reviewed by Ptashne, 1988); the glutamine-rich activation domain

(Sp1) (Courey & Tijan, 1988) and the proline-rich activation domain

(CTF/NF-1 family) (Mermod et al., 1989). Additionally, activators such as

Ela (Martin et al., 1990) and ER (Webster et al., 1989) do not fall into these

categories. For AAD (and possibly others), the potency of activation is

directly reflected in the overall negative charge (Ma & Ptashne, 1987).

Although AADs appear less structurally defined than DNA-binding domains

(section 1.2), an amphipathic a-helix has been implicated in acidic activation

(Giniger & Ptashne, 1987).

The mechanism(s) by which activation domains increase the rate of

transcription initiation has been addressed in several recent reports

(reviewed by Lewin, 1990; Ptashne & Gann, 1990). However, these reports

reach different conclusions and so several different models for

transcriptional activation are proposed.

Stringer et al. (1990) propose that acidic activators interact directly

with TFIID to promote formation of an initiation complex. They find that an

affinity column bearing VP16 retains a protein (or proteins) present in HeLa

nuclear extracts that restores activity to TFIID-depleted mammalian extract.

The affinity column also retains yeast TFIID expressed from a cloned gene in

bacteria so demonstrating direct TFIID-VP16 interaction (Stringer et al.,

1990). This proposition is supported by the earlier demonstration that GAL4
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and the mammalian activator ATF alter the extent of TFIID interaction with

the TATA-box (Horikoshi et al., 1988a and 1988b). However, purified

cloned mammalian TFIID expressed in E.colican restore basal level

transcription, but not VP16-mediated activation to TFIID-depleted

mammalian extracts, although a crude fraction containing TFIID activity can

restore both basal and activated transcription (Peterson et al., 1990). It

therefore appears that at least one other factor is required, in addition to

TFIID, to respond to VP16, but not for the VP16-TFIID interaction (reviewed

by Ptashne & Gann, 1990). However, Berger et al. (1990) propose the

existence of an "adaptor" molecule which arbitrates VP16-TFIID interaction

and mediates activation. In their study, VP16-GAL4 fusion protein,

specifically bound to a separate oligonucleotide in an in vitro transcription

system, can inhibit activated (but not basal) transcription from a

heterologous promoter (Berger et al., 1990). They proposed that

oligonucleotide-bound GAL4-VP16 sequesters the "adaptor" required for

interaction with TFIID, but not TFIID itself, and thus prevents activation but

leaves basal transcription unaffected. Thus, more work is required to define

whether VP16-TFIID interaction is direct or involves adaptors and whether

this interaction typifies activation by all acidic activators.

The mechanism by which Ela activates transcription differs from

VP16. Ela activates transcription in mammalian, but not yeast, cells

(reviewed in Ptashne & Gann, 1990), unlike VP16, which activates in both

yeast and mammalian extracts (Kellecher et al., 1990; Berger et al., 1990;

Stringer et al., 1990). Martin et al. (1990) show that high level expression of

VP16 in in vitro transcription assays squelches Ela activity, although Ela

does not squelch VP16-mediated activation. They propose that both Ela

and VP16 function through interaction with the same target of the

transcription machinery (TFIID) although Ela-TFIID interaction is indirect and

requires an intermediary adaptor molecule.
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Ptashne & Gann (1990) have argued that all activators exert their

effects by interacting with TFIID: acidic activators interact directly, and hence

universally (although results of Berger et al. (1990) contradict this) and

others (Sp1, Ela, Oct 1) do so via intermediary adaptor molecules

(e.g. VP16) bearing acidic activating regions. The possibility that activators

interact with some other component of the transcription machinery, however,

cannot be ignored.

1.3.3.2 Synergy between transcription activators

A striking characteristic of many different eukaryotic transcription

activators is their ability to activate gene expression synergistically;

transcriptional activation by two activators is greater than the sum of the

effects of each working alone. Analysis of a combination of several

transcription factor binding sites (NF-1, Sp-1, CP-1) with a SR receptor

binding site (GRE/PRE) demonstrates strong synergistic effects on steroid

hormone induction of transcription in vivo (Schule et al., 1988). The rat

glucocorticoid receptor and the yeast activator GAL4 cooperatively activate

transcription of a mammalian gene bearing binding sites for each protein

(Kakidani & Ptashne, 1988)

Synergy between activators may be achieved by cooperative DNA-

binding of transcription factors; binding of an activator to its site may

increase binding of a second activator via protein-protein interactions.

Interaction between PR complexes bound at distinct target DNA sites has

been demonstrated (Theveny et al., 1987); it is possible that this accounts

for the observed synergistic transcriptional activation. Alternatively,

activators may synergise by simultaneously contacting some part of the

transcription machinery so cooperatively promoting/stabilising an initiation

complex. In support of this, yeast GAL4 can synergise with itself or

mammalian ATF in vitro, when either is present at concentrations sufficiently
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However, if transcriptional activators directly or indirectly interact with TFIID

as proposed, it is difficult to imagine how multiple activating domains can

simultaneously touch a small (~ 30kD) TFIID molecule.

1.3.3.3 Looping and scanning

Transcription factors which bind to target DNA sequences and

increase the rate of transcription initiation from a linked promoter are termed

activators. Two models have been proposed to explain how activators

bound to distal promoter and enhancer elements can stimulate transcription

initiation from the proximal promoter (reviewed by Ptashne, 1986b). In the

first model, the scanning model, a constituent of the transcription machinery

initially binds to distal elements, facilitated by already bound activators, then

slides in either direction along the DNA until it reaches the proximal

promoter; the transcription initiation complex is thus able to assemble.

Support for the scanning model was provided by transfection studies in

yeast where insertion of a transcription terminator sequence between a

TATA-box and an upstream activation site strongly reduced transcription

(Brent & Ptashne, 1984). Also, in mammalian transfection studies,

preferential enhancer-mediated transcriptional activation from the closer

promoter elements of tandemly repeated promoters, can be explained by the

scanning model (reviewed by Muller et al., 1988). However, no direct

evidence for scanning is documented and neither example above is

incompatible with the looping model, described below.

In the second model, it is proposed that distally bound activators

directly, or indirectly, interact with the proximally bound transcription factor,

looping out the intervening DNA to ultimately facilitate and/or stabilise

formation of a transcription initiation complex at the proximal promoter; this

is known as the looping model.
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The recent demonstration that enhancer bound activators can

stimulate transcription in trans from a promoter attached non-covalently by a

protein bridge favours the looping model; the protein bridge between the

enhancer and promoter, which is not required for transcriptional activation,

would conceivably be looped out (Muller et al., 1989).

1.3.4 Repression of transcription

In recent years, many reports describing negative transcriptional

effects have accumulated (reviewed by Levine & Manley, 1989; Renkawitz

1990), and in several cases the components involved in transcriptional

repression have been characterised. It appears that there are loosely

grouped mechanisms by which transcriptional repression is mediated in cis

which are 1) inhibition of a transcriptional activator and 2) silencing

(reviewed below in 1.3.4.1 and 1.3.4.2). The former mechanism arises

when a repressor interferes with either the DNA-binding or activation activity

of an activator. The latter mechanism of silencing can be considered as

"direct" repression whereby a repressor binds to a defined DNA sequence

and somehow inhibits transcription without interfering with the function of an

activator. Both can be regarded as cis-repression mechanisms as each

affects transcriptional activity from a linked promoter. Squelching (reviewed

in 1.3.4.3) has been proposed to explain trans-repression of transcription

observed when an activator is over-expressed in either cell transfection

systems or in vitro transcription assays. It will become apparent in the

following sections that a single transcription factor can behave as an

activator in one particular context and a repressor in another. For the

purpose of this review, I will use the term "repressor" for any factor which

negatively regulates gene transcription, independent of whether the factor

positively regulates another gene in a different context.
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1.3.4.1 Inhibition of a transcriptional activator

As reviewed in 1.3.3, activators must have or must acquire two

surfaces; a DNA-binding domain and an activation domain, in order to fulfil

their function. Accordingly, repressors can elicit their effect by interfering

with the function of either domain.

Inhibition of DNA-binding can be mediated by either a cytoplasmic or

a nuclear inhibitor which specifically interacts with an activator to prevent

DNA-binding. Alternatively, competition between two transcription factors,

one which mediates transcriptional activation and the other, repression, for

binding to the same or overlapping DNA site can also result in negative

transcriptional control.

Untransformed steroid hormone receptors are retained in a form

incapable of binding to DNA, by specific interaction with the inhibitor, hsp90

(Denis et al., 1988b; Renoir et al., 1990). Only after stimulation with steroid

hormone does SR dissociate from hsp90 and bind to DNA (reviewed in

section 1.6.3). The more recently identified nuclear inhibitor, Id, which

contains a helix-loop-helix (HLH) domain but no adjacent DNA-binding

domain (reviewed in 1.2.5) can associate specifically with other DNA-

binding HLH proteins and inhibit their DNA-binding activity in vitro (Benezra

et al., 1990). Id is expressed at varying levels in all cell lines tested and it is

proposed that it negatively regulates at least three HLH proteins (MyoD,

E12, E47) in a dose-dependent manner, by formation of a non-functional

heterodimeric complex (Benezra et al., 1990).

A recently characterised DNA-binding repressor, GCF, binds

specifically to GC-rich sequences (Kageyama & Pastan, 1989) similar to

sequences recognised by the activator Sp1 (Kadonaga et al., 1986).

Kageyama & Pastan (1989) propose that GCF repressor and Sp1 activator

compete for binding to the same GC-rich DNA site, thus eliciting negative or

positive transcriptional effects, respectively.



Unlike GCF which so far appears only to mediate negative

transcriptional effects, GR, which activates transcription of some genes (see

Beato 1989 for review), also represses transcription of others (for examples

see Camper et al., 1985; Charron & Drouin 1986; Frisch & Ruley, 1987;

see also section 1.6.4.2). Akerblom et al. (1988) suggest that GR-mediates

repression of gonadotrophin a-subunit gene by steric hindrance; in the

presence of glucocorticoids and increased cAMP levels, GR and CRE-

binding protein, which confer repression and activation respectively,

compete for binding to their respective DNA sites which overlap with each

other. Why GR behaves as an activator in the context of some genes and a

repressor of others is unknown. A suggestion has been made that some

GREs which differ only slightly from the consensus GRE (see section 1.6.4.2

for more complete review) behave as negative GREs (nGRE) by altering the

structure of bound GR and preventing it functioning as an activator (Sakai et

al., 1989). The nGRE hypothesis would explain GR-mediated repression,

whether it be by steric hindrance (Akerblom et al., 1988) or by silencing (see

below, 1.3.4.2).

Inhibition of transactivation happens when a repressor blocks or

masks the activation domain of a DNA-bound activator, so preventing it

promoting/stabilising (see 1.3.2) assembly of an initiation complex. Such

repressors may, or may not, be DNA-binding proteins. For example,

transcription activation by DNA-bound c-Myc is repressed by adjacent

binding of the negative factor Myc-PRF (Kakkis et al., 1989). Presumably,

protein-protein interactions between c-Myc and Myc-PRF interfere with

activation domain function. The yeast repressor GAL80, which does not

bind to DNA, interacts directly with DNA-bound GAL4 and somehow blocks

the function of both GAL4 activating domains (Ma & Ptashne, 1988 and

references therein).
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Silencing can be regarded as "direct" repression, in which one or

more repressors bind to a DNA element (silencer) and negatively regulate

transcription, independent of interfering with activator function. Repression

conferred by a silencer often displays characteristics analogous to activation

by an enhancer in that both elicit their effects in a manner independent of

orientation and distance from the controlled promoter (Brand et al., 1985).

The negative response element (NRE) of human immunodeficiency virus

behaves as a silencer (Smith & Greene, 1989 and references therein).

Several viral proteins have been implicated in mediating repression of HIV

transcription through the NRE although for only one of these, SP50, has

DNA-binding and repression been shown (Smith & Green, 1989).

However, NRE probably mediates repression by interaction with more than

one repressor, as a single SP50 binding site is incapable of negatively

regulating a heterologous promotor in vitro (Smith & Greene, 1989 and

references therein).

Several enhancer and silencer elements have been described

upstream of the chicken lysozyme gene which together control macrophage-

specific expression of this gene (Baniahmad et al., 1987 and 1990). One of

these silencers (S-2.4kb) is comprised of multiple short DNA sequences that

independently repress gene activity (Baniahmad et al., 1990), comparable to

the molecular structure of enhancers (reviewed by Dynan, 1989).

Furthermore, the individual modules of S-2.4kb silencer interact

synergistically to repress transcription from a linked promoter (Baniahmad et

al., 1990; compare with synergistic activator effects reviewed in 1.3.3.2).

V-erbA, unliganded TR or unliganded RAR are directly implicated in

repressor function by binding to one module of the S-2.4kb silencer

(Baniahmad et al., 1990).
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An interesting mechanism for silencer function has been deduced

from the finding that a silencer-binding protein, RAP-1, is involved in

chromatin loop formation at the silent mating type locus of yeast (Hofmann et

al., 1989). Such a configuration may lock activator binding sites critical to

transcription activation within the chromatin loop, and inhibit activator-target

interaction (see 1.3.3.1).

1.3.4.3 Squelching

Squelching is a form of repression where neither direct modulation of

activator activity (see 1.3.4.2) nor a silencing mechanism applies.

Squelching constitutes trans-repression and requires over-expression of a

non-DNA-bound activator which apparently titrates the target protein

(1.3.3.1) of a DNA-bound activator, essential for transcriptional activation

(Gill & Ptashne, 1988). Over-expression of GR, PR or ER interferes with

transcriptional induction mediated by each of the other receptors (Meyer et

al., 1989). Since neither heterodimer formation nor any other kind of

interaction between distinct SRs has been demonstrated, the favoured

explanation for repression is that the interfering SR sequesters (in solution)

the target factor required for SR activation. Whether squelching is a

physiologically important form of repression remains to be seen; it has,

however, proved indispensable in the characterisation of the target factors of

activators (reviewed by Lewin, 1990; Ptashne & Gann, 1990; reviewed in

section 1.3.3).

1.4 THE INFLUENCE OF CHROMATIN ON TRANSCRIPTION FACTOR

ACTIVITY

1.4.1 Introduction

As reviewed in section 1.3, processes by which basal transcription,

transcriptional activation and transcriptional repression of eukaryotic genes
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occur, depend on specific interactions between nuclear proteins and DNA

sequences. Therefore, recognition and binding of target DNA sites requires

that specific DNA sequences are accessible to transcription factors.

Much of the work towards characterising eukaryotic gene transcription

has relied on the use of DNA templates which are essentially devoid of

chromatin structure and, therefore, do not reflect the natural environment of

nuclear genomic DNA. For example, in vitro DNA-binding assays and in

vitro transcription systems allow characterisation of transcription factors

using naked DNA. Transient transfection systems depend on introduced

supercoiled plasmid DNA which is not packaged into chromatin.

1.4.2 DNA in the nucleosome

Unlike these experimental situations, the DNA in eukaryotic cells is

highly packaged in a chromatin hierarchy that stretches from the initial

wrapping of DNA around histone octamer cores to the fully condensed

structure of chromosomes (reviewed by Pederson et al., 1986). The basic

repeating unit of chromatin, the nucleosome, constitutes two copies each of

the histones H2A, H2B, H3 and H4 around which some 146bp of DNA is

wrapped 1.8 times. This introduces torsional stress into the DNA wrapped

around the histone octamer, causing it to bend and kink (reviewed by Morse

& Simpson, 1988). The influence of these structural alterations, and the

close DNA-DNA, DNA-histone proximities, on the accessibility of specific

DNA sites and interaction with transcription factors, is poorly understood (for

reviews, see Gross & Garrard, 1988; Morse & Simpson, 1988; Elgin, 1988).

There is convincing evidence that nucleosome presence can repress

transcription activation. PH05 is usually repressed by high, and activated

by low, levels of inorganic phosphate, although, enforced nucleosome

depletion of genetically engineered yeast derivatives results in constitutive

activation of PH05 independent of inorganic phosphate levels (Han &
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Grunstein, 1988 and references therein). Furthermore, Workman & Roeder

(1987) demonstrate that preassembly of nucleosomes inhibits basal

transcription from the adenovirus major late promoter in vitro, and Bresnick

et al. (1990) argue that inhibiting nucleosome dissociation from the MMTV

promoter in stably-transfected cells by chemical modification represses

steroid hormone induction. Thus, the role of the nucleosome as a

transcriptional repressor is strongly implicated; the nucleosome must

therefore be removed or modified to allow transcriptional activation of

particular genes.

Nucleosomes are phased in some genes with respect to the

underlying DNA sequence (reviewed by Gross & Garrard, 1988). The yeast

PH05 locus (Aimer et al., 1986), the long terminal repeat of MMTV (Richard-

Foy & Flager, 1987) and the mouse major (3-globin gene promoter (Benezra

et al., 1986) are examples of inducible promoters in which a pattern of

nucleosome phasing is well characterised. Phasing could dictate the

rotational orientation of a particular DNA sequence on the nucleosome

relative to the histone octamer, or may place a DNA sequence within the

linker DNA region between adjacent nucleosomes. Therefore, some DNA

sites will be accessible to their specific transcription factor, whereas others,

facing into the nucleosome, will be inaccessible. The proposal that certain

transcription factors, able to bind to DNA since their specific site is exposed

on the nucleosome, can act as specific nucleosome displacement factors, is

reviewed in section 1.6.5.2.

Other mechanisms for nucleosome displacement have been

proposed which include DNA replication and demethylation of cytosines

(reviewed by Gross & Garrard, 1988). Flowever, for the latter, it is not clear

whether demethylation is the cause or consequence of nucleosome

displacement.
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1.4.3 Nuclease hypersensitive sites

In chromatin, nucleosome-free regions, also called nuclease

hypersensitive sites, are believed to represent the "open windows" that allow

enhanced access of transcription factors to crucial DNA sequences;

hypersensitive sites generally represent a minor (< 1%) but highly selective

fraction of the genome which encompasses functional elements including

enhancers, silencers, promoters, transcription terminators and replication

origins (for examples see Cordingley et al., 1987; Burch & Weintraub, 1983;

Weintraub, 1985; reviewed by Gross & Garrard, 1988). Analysis of the fine

structure of hypersensitive sites reveals footprints that indicate the presence

of bound trans-acting factors (see, for example, Becker et al., 1986;

Cordingley et al., 1987; Lohr et al., 1987; Liberator & Lingrel, 1987).

However, as promoters and enhancers often possess multiple and

sometimes overlapping protein binding sites (reviewed by Dynan, 1989), the

question of which trans-acting factors are present within hypersensitive sites

in vivo is ambiguous.

The link between hypersensitive sites and transcriptional activation is

well established. The promoter regions of genes on the active X-

chromosome in mammals possess hypersensitive sites while their allelic

partners residing in the inactive X-chromosome lack such sites (Wolf &

Migeone, 1985; Yang & Caskey, 1987). The mouse (3-globin gene, which

is expressed in erythroid cells, has a 700bp hypersensitive region

encompassing its promoter from which 4 nucleosomes have been removed;

this hypersensitive site is absent in non-erythroid cells which do not express

(3-globin (Benezra et al., 1986). When the chicken vitellogenin gene is

transcriptionally activated in the liver by oestrogen treatment, three

hypersensitive sites are induced in the 5' region of the gene (Burch &

Weintraub, 1983). Two of these sites are stable and are propagated to

daughter cells after hormone withdrawal. The third site is
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oestrogen-dependent and is proposed to coincide with activated ER binding

to its response element upstream of the vitellogenin gene (Burch &

Weintraub, 1983).

Thus, in addition to current models of transcription regulation in which

DNA-bound factors mediate regulation of transcription via protein-protein

interactions (see section 1.3), additional control at the level of chromatin

organisation must not be forgotten. Control over nucleosome displacement

and maintenance of "open" chromatin structure are, undoubtedly, important

in transcriptional control.

1.5 A ROLE FOR ACCESSORY PROTEINS IN TRANSCRIPTION FACTOR

DN A-BINDING ACTIVITY

1.5.1 Introduction

An accessory protein is the term given to a particular protein which

modulates DNA-binding activity of a specific transcription factor for its target

DNA site. The accessory protein may elicit its effect by increasing (or

decreasing) transcription factor affinity for its 'usual* DNA sequence (1.5.2)

or by altering factor specificity so that it preferentially binds to a different,

related DNA sequence (1.5.3). In addition, one accessory protein may alter

both DNA-binding affinity and sequence specificity of a particular

transcription factor (see below).

The role of accessory proteins in transcription factor DNA-binding

activity is a developing concept with respect to transcription regulation

research. This is probably due to the experimental techniques used to

study aspects of transcriptional regulation to date. For example, in vivo

transient transfection systems ensure high levels of the transcription factor of

interest (over-expressed from a co-transfected expression plasmid) and/or

the specific DNA site (encoded on a reporter plasmid). Also, high

concentrations of transcription factor (present in cell extracts enriched for
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factor or partially/totally purified factor) and/or DNA site (encoded on naked,

linear DNA fragment or oligonucleotide) are also used for in vitro DNA-

binding systems. However, transcriptional regulation occurring in the

nucleus is dependent on a limiting concentration of transcription factors

specifically interacting with a small number of target DNA sites, present

within a large mass of chromosomal DNA. Therefore, any specific

transcription factor must encode or acquire extremely high,

sequence-specific DNA binding affinity in order to elicit a significant

transcriptional response. To achieve this, accessory proteins may be

enlisted to modulate transcription factor DNA-binding activity; the

importance of such accessory proteins is, therefore, overlooked under the

artificial in vivo and in vitro experimental conditions described above.

Furthermore, the observation that many purified transcription factors

discriminate weakly between their specific DNA-binding site and non¬

specific DNA (see for example Compton et al., 1983; von der Ahe et al.,

1985; Maurer & Notides, 1987; Peale et al., 1988) implies a need for

additional factors (accessory proteins) in vivo which assist high affinity

DNA-binding.

1.5.2 Altering the DNA-binding affinity of a transcription factor

The prokaryotic histone-like protein HU (Varshavsky et al., 1977)

alters the structure of DNA when it binds non-specifically as a multimeric

complex (Broyles & Pettijohn, 1986). Flashner & Gralla (1988) show that

HU differentially regulates the interaction of three diverse prokaryotic

transcription factors with their DNA sites. In the presence of HU, specific

DNA recognition by Lac repressor and cAMP receptor protein is increased

more than 10-fold, whereas Trp repressor binding is slightly decreased.

This differential modulation of DNA-binding is mimicked by the chemical

agent BaCl2, known to promote DNA bending (Lauden & Griffith, 1987).



33

Frashner & Gralla (1988) propose that HU binding to DNA may promote a

variety of alternative DNA structures that either facilitate or inhibit specific

interaction of transcription factors with their target DNA sites.

Cleat & Hay (1989) propose that the non-specific adenovirus DNA-

binding protein, DBP, acts in an analogous fashion to HU, in modulating

eukaryotic NF-1 binding to the adenovirus origin of replication. The

presence of DBP in a footprinting experiment has no effect on NF-1 binding

when NF-1 is present at saturating concentrations. In contrast, DBP

significantly increases the DNA binding activity of limiting quantities of NF-1

to either its viral or human DNA site, in vitro (Cleat & Hay, 1989).

Furthermore, DNasel footprinting results suggest that the NF-1 site may be

distorted upon NF-1 binding. Thus, DBP may distort and bend DNA in its

vicinity into a conformation which resembles DNA when it is incorporated in

an NF-1/DNA complex, and so facilitating NF-1/DNA interaction (Cleat &

Hay, 1989). If DBP selectively binds to adenovirus DNA in vivo, then

limiting quantities of NF-1 in the cell nucleus may be attracted to the

adenovirus replication origin in preference to host NF-1 sites. Several

different CCAAT-binding proteins have been identified and although CCAAT

elements seem grossly similar (but probably have different flanking

sequences), recent evidence suggests that different proteins are capable of

distinguishing between different elements (Dorn et al., 1987; Chodosh et al.,

1988a, 1988b; and references therein). It is tempting to speculate the

existence of DBP-like accessory proteins in higher eukaryotes, which act to

increase the affinity of limiting CCAAT-binding proteins for their preferential

sequences.

Studies on the role of TFIIA in formation of a transcription initiation

complex (reviewed in 1.3.2) are confounded by its variable requirement in in

vitro transcription reactions; reports have ranged from TFIIA being totally

dispensable (Sawadogo & Roeder, 1985), strongly stimulatory (Samuels &
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Sharp, 1986; Buratowski, et al., 1988; Buratowski et al., 1989) to being

absolutely necessary (Reinberg et al., 1987). These variable results

probably reflect 1) the relative TFIIA concentration (see below) and/or

2) the TATA-box sequence (see 1.5.3). Buratowski et al. (1988) show that

TFIIA positively modulates TFIID DNA-binding activity to the adenovirus

major late TATA-box, only when TFIID is present at non-saturating

concentrations. Furthermore, approximately two-fold less TFIID is required

to saturate TATA elements when TFIIA is present in vitro (Buratowski et al.,

1989). Although TFIIA binding alone to DNA has not been demonstrated,

TFIID binding to DNA creates a larger footprint when TFIIA is present

(Buratowski et al., 1989). Whether this reflects TFIIA binding to DNA

adjacent to the TATA-element, or conformational change in TFIID caused by

a protein-protein interaction between TFIIA and TFIID, remains to be

clarified.

1.5.3 Altering the sequence specificity of transcription factors

In the yeast Saccharomyces cerevisiae, cell type is determined by

three key regulatory DNA-binding homeodomain proteins, a1 and a2

(encoded within Mat a locus) and al (encoded within Mat a locus) (reviewed

by Herskowitz, 1989). In their haploid state, two yeast cell types exist called

a and a which express a1 and a1+-a2 respectively; diploid yeast express all

three regulatory proteins. Early genetic analysis of Mat locus mutants

(Strathern et al., 1981) led to the proposal that in haploid a-cells, a1

switches on a-specific gene expression and a2 represses a-specific gene

expression, whereas in diploids a2 and a1 work together to repress

expression of haploid-specific genes (in diploids, a2 alone still represses

a-specific genes). Goutte & Johnson (1988) demonstrate specific binding of

a2 to a 32bp DNA site found upstream of a-specific genes in vitro.

However, in combination with a1, a2 DNA-binding sequence specificity is
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modulated so that it no longer recognises the 32bp a-specific DNA site, but

instead acquires the ability to recognise a 29bp related sequence found

upstream of haploid-specific genes.

The DNA-binding specificity of another homeodomain protein, Oct-1,

may be modulated by its interaction with the viral activator VP 16. Oct-1

binds to the conserved octamer motif ATGCAAAT and is a ubiquitous

mammalian transcriptional activator of small nuclear RNA and histone H2B

genes (Baumruker et al., 1988, and references therein); Oct-1 is a member

of the POU-domain family (Herr et al., 1988). VP16 is a non-DNA binding

viral transactivator which acquires DNA-binding activity by interacting with

Oct-1. This VP16-Oct-1 complex activates Herpes Simplex Virus immediate

early gene expression through binding to the degenerate viral octamer motif,

TAATGARAT (Preston et al., 1988; O'Hareetal., 1988; Stern etal., 1989),

although on its own, Oct-1 preferentially binds to the cellular conserved

octamer motif (Baumruker et al., 1988). Stern et al. (1989) demonstrate that

VP16-Oct-1 interaction is dependent on an intact Oct-1 DNA-binding

domain. They speculate that VP16 interaction with the Oct-1 DNA-binding

domain could alter the sequence preference of Oct-1 so it no longer binds

with high affinity to cellular octamer motifs but directs preferential binding of

VP16-Oct-1 complex to the degenerate viral sequence. Thus, preferential

expression of viral genes compared to cellular genes, would occur.

In vitro DNA-binding studies reveal that a given homeodomain protein

can interact with a range of related sequences (Baumruker et al., 1988;

reviewed by Levine & Hoey, 1988) and that a given DNA sequence can be

recognised by more than one homeodomain protein. For example, different

homeodomain proteins, from Drosophila to man, containing a broad range

of homeobox sequences, can recognise the same Drosophila DNA site

(Hoey & Levine, 1988; Desplan et al., 1988; Ko et al., 1988). It is, however,

unclear as to what extent this lack of selectivity reflects in vivo DNA-binding
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affinities. In light of the discovery that DNA-binding specificity of yeast a2

homeodomain protein is modulated by a1, perhaps there are a number of

(related) accessory proteins which mediate high affinity, sequence-specific

binding of homeodomain proteins in vivo.

As mentioned in section 1.5.2, TFIIA appears to positively modulate

TFIID affinity for the adenovirus major late promoter when TFIID is present at

limiting concentrations. TFIIA also mediates TFIID binding to a different

TATA sequence found upstream of the adenovirus proximal promoter; TFIID

binding to this sequence is absolutely dependent on the presence of TFIIA

(Buratowski et al., 1989). The upstream site differs from the promoter box

sequence by only one nucleotide, although both elements have diverse

flanking sequences. Possibly, TFIIA, or TFIIA-like factors, interact with TFIID

and permit TFIID binding to the wide variety of TATA-elements occurring in

different genes (for review of TATA-element diversity, see Singer et al.,

1990). If TFIIA or TFIIA-like factors are differentially distributed in distinct cell

types, this could lend some degree of specificity to certain genes encoding a

particular TATA-element.

1.6 STEROID HORMONE REGULATION OF GENE TRANSCRIPTION

1.6.1 Introduction

In vertebrates, there are five major classes of steroid hormone which

are subdivided into the adrenal steroids (glucocorticoids and

mineralocorticoids) and the sex steroids (oestrogens, progestins,

androgens) (O'Riordan et al., 1982). Together they play a central role in

triggering and governing developmental and physiological processes by

coordinating regulation of tissue-specific gene networks (see Yamamoto,

1985 and Evans, 1988 for reviews). Steroid hormones elicit their effects on

gene expression after traversing the cell membrane and specifically

activating endogenous steroid hormone receptors.
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The steroid hormone receptors are nuclear transcription factors

which, when activated (transformed) by steroid hormone binding, acquire

the ability to regulate transcription of steroid hormone responsive genes.

The transformed SR binds specifically to short DNA sequences called

steroid response elements, found usually in the 5'- regulatory region of

target genes. This SR-SRE interaction either activates or represses basal

transcription, presumably through SR interaction with a component(s) of the

transcription machinery. One class of steroid hormone specifically

transforms a distinct SR which subsequently interacts with its specific SRE;

for example, oestradiol binds to and transforms ER which then binds

specifically to an ERE.

Within the past five years, the human cDNAs of the major SRs have

been cloned: ER (Green et al., 1986), GR (Hollenberg et al., 1985), PR

(Misrahi et al., 1987), AR (Trapman et al., 1988), and MR (Arriza et al., 1987).

Various cDNA receptor sequences from other organisms including rat, rabbit

and mouse have also been cloned (reviewed by Evans, 1988).

Comparative analysis of SR sequences with each other and with other

nuclear receptors led to the identification of a steroid hormone receptor

superfamily (reviewed in 1.6.2).

Many steroid hormone responsive genes have also been cloned

(reviewed Beato, 1989; Beato et al., 1989). By using the trans-acting

receptor and c/'s-acting SRE in in vitro DNA-binding studies and in vivo cell

transfection systems, different functional domains of the SR have been

defined, as well as its interaction with the SRE. So far, there appear to be

five main reactions involving different functional domains of the SR, which

culminate in steroid hormone mediated transcriptional regulation (reviewed

in 1.6.3 and 1.6.4). They are 1) Steroid hormone (ligand) binds
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specifically to its SR and transforms it from an inactive to active state

(reviewed in 1.6.3.1). This involves SR dissociation from the inhibitory

protein Hsp90 and possibly other inhibitory proteins; 2) SR dimerisation

which is essential for efficient DNA-binding activity of the SR (reviewed in

1.6.3.2); 3) Nuclear localisation of cytoplasmically located SR (reviewed in

1.6.3.3). Whether this reaction occurs before, after or coincides with

receptor dimerisation, is not known; 4) Specific interaction between SR

and SRE (reviewed in 1.6.3.4), and 5) SR-mediated activation or

repression of transcriptional initiation (reviewed in 1.6.3.5).

However, the precise mechanism of steroid hormone regulation of

gene transcription is still not fully characterised. Enzymes which metabolise

particular hormones have been identified which play a critical role in the fate

of a specific hormone (reviewed in 1.6.5\l). There is also increasing

evidence that nucleosome phasing plays an integral role in steroid receptor

mediated control of transcription and that SRs may function as nucleosome

displacement factors (reviewed in 1.6.4.3). Finally, a number of reports

indicate that accessory proteins exist which modulate SR-SRE interaction

(reviewed in 1.6.4.4).

1.6.2 The steroid hormone receptor superfamily

Analysis of SR structure is essential for understanding how SRs

mediate transcriptional control. Before SRs were cloned, biochemical and

immunochemical analysis of purified rat liver GR provided the first

suggestion of a domain structure for SRs. GR is composed of three domains

which can be separated by limited proteolytic digestion (Wrange &

Gustafsson, 1978; Carlstedt-Duke et al., 1982). Two domains contain

information for DNA-binding and steroid hormone binding, which function



39

independently of each other (Wrange & Gustafsson, 1978), and the third

domain contains a major epitope for immunoreactivity (Carlstedt-Duke et al.,

1982).

After the molecular cloning of GR and subsequently other receptors

(see 1.6.1 for cloning references), it became possible to carry out functional,

structural and comparative analysis of SR molecules. Perhaps not

surprisingly, the SRs are all structurally related. It is now clear that the

steroid hormone binding domain is C-terminally located and the DNA-

binding domain is found in the middle of the receptor molecule (see Fig. 1.7)

(reviewed by Evans, 1988; O'Malley, 1990; Green & Chambon, 1988; Beato,

1989). Throughout all the SRs these two domains, in particular the DNA-

binding domain, share maximal sequence homology (see above reviews).

The N-terminal domain of SRs is hypervariable with respect to both

sequence and length; this non-conserved region corresponds to the major

immunoreactivity epitope of GR, discussed above. Chambon's group have

subdivided the three regions into six sub-regions (A-F) based on varying

levels of homology (Krust et al., 1985) (Fig. 1.7). Thus, regions C and E are

commonly used to denote the DNA-binding and steroid binding domains,

respectively.
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Fig 1.7 Schematic representation of members of the steroid hormone
receptor superfamily. Receptors have been aligned by the DNA binding
domain (shown as a hatched box for GR). Numbers correspond to amino
acid residues, and the amino acid positions of the boundaries of the DNA
binding domain (hatched box for GR) and the ligand binding domain
(stippled box for GR) are shown. (Adapted from Evans, 1988).

The existence of a superfamily of nuclear receptors that respond to

ligands other than steroid hormones, was suggested by the finding that the

GR DNA-binding domain bore remarkable similarlity to the viral oncogene
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v-erbA (Weinberger et al., 1985) and by the subsequent identification of

c-erbA as the receptor for thyroid hormone (Weinberger et al., 1986; Sap et

al., 1986). Molecular cloning and sequence analysis of two more TRs

(Miyajima et al., 1989), at least three receptors for retinoic acid (RAR) (Zelent

et al., 1989), and the vitamin D receptor (VDR) (McDonnell et al., 1987) show

that they are all superfamily members (reviewed by Evans, 1988 and

O'Malley, 1990).

Other superfamily members have been identified, although their

activating ligand is unknown. For this reason, these superfamily members

are referred to as 'orphans' (O'Malley, 1990). Orphans have been identified

either by low stringency hybridisation between receptor cDNA and either

cDNA or genomic libraries, or by cloning other transcription factors to find

that they too bear structural similarity to the SRs. Orphans include two

ER-related proteins called ERR1 and ERR2 (Giguere et al., 1988), COUP

transcription factor (Wang et al., 1989), the NGF-induced NGFI-B protein

(Milbrandt, 1988), the drosophila gene encoded by E75 locus (Seagraves &

Flogness, 1990) and the drosophila gene tailess (Pignoni et al., 1990).

O'Malley (1990) predicts that these orphan receptors are activated by

ligands indigenous to the cells in which particular orphans are found.

It appears then that the steroid hormone receptor superfamily is ever

expanding and it will be of particular interest to find out exactly what ligands

activate different superfamily members.

1.6.3 Functional Domains of Steroid Receptors

1.6.3.1 The ligand binding domain

Steroid hormone binding to receptor is absolutely essential for the in

vivo activity of the wild type SR (Denis et al., 1988a; Becker et al., 1986).
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Upon hormone binding, the receptor is transformed from a non DNA-binding

8-9S state containing the inhibitory protein Hsp90, to an active 4-5S state,

from which Hsp90 is dissociated (Denis et al., 1988a and 1989 and

references therein). SR transformation affects all aspects of characterised

receptor activity which includes receptor dimerisation (section 1.6.3.2),

nuclear localisation (section 1.6.3.3), DNA-binding (section 1.6.3.4) and

transcriptional activation (section 1.6.3.5).

The steroid binding domain (region E, Fig. 1.7) alone confers steroid

dependence on SR activity. Transferring the hormone binding domain of

GR to the DNA binding domain of prokaryotic factor LexA (Godowski et al.,

1988) or yeast GAL4 (Webster et al., 1988), or fusing it to the adenovirus

E1A gene product (Picard et al., 1988), confers strict glucocorticoid

regulation on each factor. Similarly, fusion of the ER steroid binding domain

to c-Myc (Eilers et al., 1989) or GAL4 (Webster et al., 1988) imposes

oestrogen dependence on these factors. In fact, deletion of this domain

creates a mutant receptor which constitutively binds DNA, although it retains

only 5% of wild-type transcriptional activity (Kumar et al., 1987).

The steroid binding domain contains all the information necessary for

high affinity hormone binding (Kumar et al., 1986; Rusconi & Yamamoto,

1978; Gronemeyer et al., 1987). Mutational analysis of the hormone

binding domain of GR (Giguere et al., 1986; Rusconi & Yamamoto, 1987),

ER (Kumar et al., 1986) and PR (Dobson et al., 1989) reveal that integrity of

the entire domain is necessary for efficient steroid binding. Photoaffinity

labelling of GR with radioactive hormone, identifies three hydrophobic amino

acids within the steroid binding domain, which directly interact with hormone

(Carlstedt-Duke et al. (1988). The reacting amino acids reside in distinct

hydrophobic segments of the steroid binding domain; this hydrophobicity is
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conserved throughout GR, ER, PR and c-erbA (Carlstedt-Duke et al., 1988).

Fawell et al. (1990) demonstrate that amino acids involved in steroid binding

overlap with a conserved hydrophobic region which is involved in oestrogen

receptor dimerisation (reviewed in 1.6.3.2). Fawell et al. (1990) propose

that by analogy to the structure defined for dimeric uteroglobulin which binds

progesterone (Bally & Delettre, 1989), the steroid binding domain of SRs

forms a hydrophobic pocket at the dimerisation interface, within which the

steroid hormone binds. This proposal assumes that conserved hydrophobic

residues are important for pocket structure and non-conserved residues

determine specific ligand binding.

1.6.3.1.1 The non-transformed SR

When SRs are not induced by hormone, they reside mainly in the

cytosol in a non-transformed, multimeric 8-9S state capable of binding

steroid hormone but unable to bind to DNA (Dalman et al., 1989; Denis et

al., 1988a). These 8-9S non-transformed SRs contain the 90kD heat shock

protein, Hsp90 (Jaob et al., 1984; Renoir et al., 1990 and references therein)

and probably other non-SR proteins (Kost et al., 1989; Bagchi et al., 1990

and references therein).

Hsp90 interaction with the GR steroid binding domain has been

demonstrated. Limited trypsin digestion of crude GR preparations yields a

27kD fragment which does not bind DNA, but does bind steroid (Wrange &

Gustafsson, 1978). In the presence of molybdate, a metal ion which

stabilises the labile Hsp90/SR interaction, the 27kD steroid binding fragment

is immunoprecipitated by anti-Hsp90 antibodies (Dennis et al., 1988b). As

SRs are highly conserved, it is therefore likely that Hsp90 interacts with each

SR through their steroid binding domains. However, the number of Hsp90
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molecules associated with each SR may differ from one receptor to another.

Non-transformed cytosolic GR probably contains one molecule of GR and

two molecules of Hsp90 (Mendel & Orti, 1988; Bresnick et al., 1990),

whereas immunological data suggest that two ER molecules are associated

with two Hsp90 molecules in the non-transformed ER complex (Redeuilh et

al., 1987).

Several lines of evidence suggest that Hsp90 association with SR

generates or stabilises a SR conformation capable of binding steroid. High

salt conditions which disrupt Hsp90/ER complexes also destroy steroid

binding capacity in cytosols (Bresnick et al., 1988), and glucocorticoid

binding capacity of immunopurified GR correlates with the relative

concentration of Hsp90 (Bresnick et al., 1988). Further, GR in vitro

translated in reticulocyte lysate is associated with endogenous Hsp90,

during or immediately at termination of translation, and binds glucocorticoid

with high affinity; GR expressed in wheat germ lysates, where there is no

identifiable Hsp90, does not bind steroid (Dalman et al., 1989).

1.6.3.1.2. SR transformation

Hsp90 association with SR inhibits DNA-binding activity (Groyer et al

1987; Denis et al., 1988a) and it is, therefore, generally accepted that Hsp90

dissociation is required to transform SR from an inactive to active DNA-

binding state (see Groyer et al., 1987; Kost et al., 1989; Dalman et al., 1989;

Denis et al., 1988a for examples). Several lines of evidence indicate that

steroid binding promotes Hsp90 dissociation. In vitro, molybdate-stabilised

Hsp90/GR complexes cannot bind DNA unless treated with dexamethasone

(Dalman et al., 1989; Denis et al., 1988a). In vivo, protein/DNA interactions

within GREs of the tyrosine aminotransferase gene can be detected only
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after hormone activation of endogenous GR (Becker et al., 1986). In

contrast, TR, which does not associate with Hsp90, does bind DNA in vitro,

in the absence of hormone (Dalman et al., 1990).

Recent evidence, however, demonstrates that Hsp90 dissociation

alone is not sufficient to attain a transcriptionally active SR (Bagchi et al.,

1990). Thermal or high salt treatment can mediate Hsp90 dissociation (see

Bagchi et al., 1990; Dalman et al., 1989 for examples). However, the 4S

form of PR devoid of Hsp90, recovered in nuclear salt extracts prepared from

hormone-untreated cells, cannot activate transcription in vitro unless

stimulated by hormone (Bagchi et al., 1990). Thus, steroid hormone may be

required to induce further allosteric alterations to generate an active receptor

or remove other inhibitory proteins which may mask receptor domains

essential for activation. There are, in fact, several reports of SR association

with other proteins whose functions are not yet defined (Kost et al., 1989;

Tai et al., 1986; Sanchez et al., 1990 and references therein); one or more

of these proteins may mask essential SR functional domains which are also

exposed upon steroid binding.

1.6.3.1.3 Steroid independent DNA-binding in vitro

In vivo, steroid hormone is absolutely required for SR DNA-binding

and transactivation. However, several reports demonstrate DNA-binding

and in vitro transcription by purified SRs in the absence of hormone

treatment (Bailly et al., 1986; Tsai et al., 1988; Klein-Hitpass et al., 1990). It

is conceivable that during purification, SR is purified from inhibitory proteins

normally associated with non-transformed receptor. Alternatively, in vitro

manipulations may accomplish an irreversible conformational change in the

SR, converting it to a fully transformed state. In vivo, such a conformational
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change and/or inhibitory protein dissociation from SR would be absolutely

dependent upon steroid binding.

There are also conflicting reports concerning steroid dependence on

DNA-binding of SRs in crude protein extracts. For example, in vitro

DNA-binding of ER expressed in HeLa WCE (Kumar & Chambon, 1988), or

of liver cytosol GR (Willmann & Beato, 1986), is dependent on hormone

treatment, whereas ER translated in reticulocyte lysate can bind DNA in a

hormone independent manner (Fawell et al., 1990). This disparity probably

reflects the conditions in which cells are grown prior to extract preparation,

the method by which protein extracts are prepared, the labile nature of

Hsp90/SR complex or a combination of all three.

1.6.3.2 Steroid receptor dimerisation

As the SRE is a palindromic sequence (see section 1.6.3.4.2), it has

been speculated for some time that SRs bind to their target DNA sites as

protein dimers (Scheidereit et al., 1986; Chalepakis et al., 1988b. There is

now direct evidence showing that human ER (Kumar & Chambon, 1988), rat

GR (Wrange et al., 1989) and rabbit PR (Guichon-Mantel et al., 1989)

homodimerise in solution, in a hormone-dependent manner, and bind to

their respective SRE as dimers.

Analysis of dimer formation reveals that the information for

dimerisation is predominantly contained within the steroid binding domain of

the receptor. Proteolytically generated fragments of ER which contain only

the hormone binding domain can independently form homodimers in

solution (Sabbah et al., 1989). Most recently, mutagenesis of a small

N-terminal region in the hormone binding domain of mouse ER identified a

heptad repeat of hydrophobic residues, the integrity of which is essential to
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both receptor dimerisation and steroid hormone binding (Fawell et al.,

1990). The dimerisation and steroid binding activities within this region

overlap, but are discrete; dimerisation amino acids are located N-terminally

and residues important for steroid binding are located towards the

C-terminus of the heptad repeat (Fawell et al., 1990).

Comparison of amino acid sequences shows that the heptad repeat is

conserved throughout members of the nuclear receptor superfamily (Fawell

et al., 1990). Scrutiny of the amino acid sequence encompassing the ER

dimerisation motif reveals certain features in common with the leucine zipper

(see section 1.2.4), the helix-loop helix (see section 1.2.5) and the

uteroglobulin (Bally & Delettre, 1989) dimerisation motifs (Fawell et al.,

1990). The three-dimensional structure of uteroglobulin has been

characterised by X-ray diffraction analysis (Bally & Delettre, 1989). Two

uteroglobulin monomers interact to form a globular protein with two-fold

symmetry centred around the dimer interface, and forming a hydrophobic

pocket within which one molecule of steroid hormone is proposed to bind

(Bally & Delettre, 1989). Fawell et al. (1990) propose that SR dimerisation

occurs via a novel structure that resembles the dimerisation structure of

uteroglobulin. This is consistent with the finding that ER dimerisation and

steroid binding activities overlap.

The demonstration of in vitro receptor dimerisation occurring when

steroid binding ability is abolished (Fawell et al., 1990) contrasts with the

strict hormone dependence of receptor dimerisation reported by other

workers (Kumar & Chambon, 1988; Guichon-Mantel et al., 1989; Wrange et

al., 1989). However, Fawell et al. (1990) do report that, although observed

receptor dimerisation is hormone-independent, mutation of amino acids

important for steroid binding reduces the level of ER dimerisation. Steroid
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binding (within the proposed hydrophobic pocket) is probably necessary to

stabilise receptor dimers.

Deletion of the dimerisation domain within the steroid binding domain

of ER, vastly reduces DNA-binding activity, but does not completely abolish it

(Fawell et al., 1990; Kumar & Chambon, 1988). Kumar & Chambon (1988)

have proposed that there is a second, weak dimerisation function in the

DNA-binding domain of ER, since dimers between wild type and steroid

binding domain-truncated ERs still form and bind to target DNA. Hard et al.

(1990a) have constructed a model of the interaction between a GR

DNA-binding domain dimer and DNA. In this model, amino acids in the

second zinc finger are involved in protein-protein interactions between GR

DNA-binding domain monomers. Consistent with this model is the

observation that purified GR DNA-binding domain binds to DNA in vitro as a

homodimer (Tsai et al., 1988). This GR dimerisation is dependent on the

initial binding of one GR DNA-binding domain monomer to DNA followed by

cooperative binding of a second monomer.

1.6.3.3 Nuclear localisation

Proteins enter the nucleus by one of two mechanisms; 1) the protein

harbours a nuclear localisation signal which directs it to the nucleus,

probably by interaction with constituents of the nuclear pore, or 2) the

protein diffuses through the nuclear membrane and is then trapped by

binding to an intranuclear component (reviewed by Hunt, 1989; Dingwall &

Laskey, 1986).

The subcellular localisation of the steroid hormone receptors has

been the subject of many studies over the years, yielding conflicting results.

Initially, it was observed that, when cell homogenates were prepared from
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animals lacking hormone, the corresponding receptor was recovered in the

soluble fraction. After hormone administration, the activated SR complexes

were found attached to chromatin. The hypothesis was then put forward

that receptor is cytoplasmic in location and migrates into the nucleus when

activated by hormone (Gorski et al., 1968).

The advent of monoclonal antibodies for various SRs and their use in

immunocytochemical procedures allowed the cellular localisation of

receptors to be defined. Ligand-free GR is localised in the cytoplasm

(Wikstrom et al., 1987; Picard & Yamamoto, 1987). However, receptors for

progesterone (Perrot-Applanot et al., 1985), oestrogen (King & Greene,

1984) and probably androgens (Trapman et al., 1988) appear to be

localised also in the nucleus, even in the absence of hormone. Other

superfamily members, VD3 and TR, are located in the nucleus bound to

chromatin in the absence of activating ligand (Walters et al., 1981). Thus,

nuclear translocation of GR would appear to differ mechanistically from

nuclear localisation of other receptors.

In the SV40 large T-antigen, a seven amino acid nuclear localisation

sequence is sufficient to direct T-antigen to the nucleus (Kalderon et al.,

1984; Landford et al., 1986). A T-antigen-like sequence has been defined

in the hinge region, or region D (see Fig. 1.7) of both the rabbit PR

(Guiochon-Mantel et al., 1989) and the rat GR (Picard & Yamamoto, 1987),

which mediates receptor nuclear localisation.

For PR, the T-antigen-like sequence acts as a constitutive nuclear

localisation signal; deletion of 5 amino acids within this sequence renders

the PR cytoplasmic. However, such a cytoplasmic mutant PR can be shifted

to the nucleus on addition of hormone, indicating the existence of a distinct

hormone-dependent nuclear localisation signal (Guiochon-Mantel et al.,
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Similarly, two nuclear localisation signals, NL1 and NL2, have been

defined in GR, although both appear to be hormone-dependent (Picard &

Yamamoto, 1987). NL1 constitutes the T-antigen-like sequence and NL2 is

located within the steroid binding domain of GR. Deletion of the GR steroid

hormone binding domain renders this mutant nuclear, revealing that the

T-antigen-like sequence NL1 is, in fact, a constitutive nuclear localisation

signal, analogous to T-antigen-like activity of PR (Picard & Yamamoto,

1987). Perhaps in wild type GR, NL1 activity is masked by the steroid

binding domain or inhibitory proteins associated with non-transformed GR

(see section 1.6.3.1.1). In either case, steroid binding would be required to

expose NL1 activity, thus NL1 appears hormone-dependent. The second

GR nuclear localisation signal, NL2, is strongly hormone-dependent. In fact,

fusion of 258 amino acids of GR, which includes NL2, to p-galactosidase

creates a fusion protein which exhibits strict hormone-dependent nuclear

localisation (Picard & Yamamoto, 1987).

Perhaps for all SRs, there is a hormone-dependent and a

hormone-independent nuclear localisation signal. Indeed, the

T-antigen-like sequence is conserved in region D of all SRs

(Guiochon-Mantel et al., 1989). Guiochon-Mantel et al. (1989) propose an

eight amino acid consensus sequence, rich in basic residues, which is

sufficient to mediate constitutive nuclear localisation of SRs.

1.6.3.4 The DNA-binding domain

The DNA-binding domain of SRs, region C (diagram 1.7), is a small

(66 to 68 amino acid) domain located in the middle of the SR molecule.

This domain alone is sufficient for DNA-binding in vitro (Rusconi &



Yamamoto, 1987; Kumar & Chambon, 1988), and deletion of region C

abolishes DNA-binding activity (Kumar et al., 1986). However, additional

information encoded within N- and C-terminal sequences are required for

high affinity DNA-binding as demonstrated by deletion analysis (Danielsen

et al., 1987).

Region C, which is highly basic and rich in cysteine residues,

contains two copies of the zinc finger motif (reviewed in 1.2.3). EXAFS

spectroscopy confirmed that region C of GR binds two zinc ions; furthermore,
zinc incorporation is essential for DNA-binding activity (Freedman et al.,

1988). Recently, Hard et al. (1990a) demonstrated, by NMR, that a peptide

encoding the GR DNA-binding domain does form a (3(3a zinc finger structure

in solution, which is similar to, but distinct from, the P|3oc zinc finger of TFIIIA

(see section 1.2.3 for review and finger structures).

The DNA-binding domain encodes information essential for target

gene specificity of the SR; substituting ER region C with GR region C

creates a hybrid receptor which activates transcription from a GRE but not

from an ERE (Green & Chambon, 1987). Mutational analysis within region

C of either ER (Mader et al., 1989) or GR (Umesono & Evans, 1989;

Danielsen et al., 1989) demonstrates that the ability of these receptors to

discriminate between the closely related ERE and GRE (see section

1.6.3.4.2 for review of SREs) resides in two amino acids located between the

two C-terminal cysteines of the N-terminal zinc finger (Fig. 1.8).
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Fig. 1.8 The amino acid sequence of the first zinc finger of both GR and ER
DNA-binding domains are shown. Mutant receptors in which the two
'specificity* amino acids of GR or ER were substituted with 'specificity'
residues of ER or GR, respectively, are indicated below each parent
receptor; only mutated amino acids are shown. The ability of parent or
mutant receptor to transactivate transcription from a GRE or ERE-containing
promoter are indicated to the right of amino acid sequences. (Data taken
from Mader et al., 1989 and Danielsen et al., 1989).

Additional amino acids within this finger region are also required for

maximal DNA-binding activity although they do not appear to alter target

gene specificity (Mader et al., 1989).

Hard et al. (1990a) have proposed a model for GR DNA-binding

domain interaction with DNA, in which the two amino acids that determine

specificity are located at the beginning of the a-helix which directly interacts

with DNA. The consensus ERE and GRE are very similar, differing by only

two nucleotides within each arm of the response element (see 1.6.3.4.2). It

is conceivable that the two 'specificity' amino acids interact directly with the

distinguishing nucleotides of either response element, and that other amino

acids aligned along the a-helix interact with nucleotides conserved between
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the ERE and GRE.

Mutational analysis of the second zinc finger indicates that this region

is also required for efficient DNA-binding; deletions extending into this

region abolish transcriptional activation (Danielsen et al., 1987; Hollenberg

et al., 1987). Umesono & Evans (1989) show that replacing the 'specificity'

amino acids of GR with those of TR (which are identical to ER), together with

five amino acids located between the N-terminal cysteines of the C-terminal

finger, creates a hybrid receptor which activates from a consensus TRE; a

hybrid receptor with just the 'specificity' residues replaced activates only

from an ERE and not from a TRE. Umesono & Evans (1989) therefore

propose that residues in this region of the second zinc finger are involved in

discriminating between half site spacing of the SRE; the consensus TRE

encodes identical conserved nucleotides to the consensus ERE, but does

not retain the 3bp spacer (see section 1.6.3.4.2). In the DNA-GR interaction

model (Hard et al., 1990), the C-terminal zinc finger is involved in protein-

protein dimer interaction. Perhaps for TR, which can bind both an ERE and

a TRE (Glass et al., 1988), the second finger sequence allows formation of a

flexible dimer which can 'open' and 'close' to accommodate response

elements with different half site spacing. This flexibility would not be

allowed by second finger sequences of the ER and GR.

1.6.3.4.1 Promiscuous DNA-binding of SRs

Identification of the two amino acids critical for specificity (see section

1.6.3.4) divides the steroid hormone receptor superfamily (see section 1.6.2)

into sub-families (Mader et al., 1989; Danielsen et al., 1989). Receptors for

mineralocorticoids, progestins and androgens all contain the identical

'specificity' residues to GR and constitute one subfamily. This reflects the
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fact that GR, PR, AR and MR can all activate transcription from a GRE (for

examples see Strahle et al., 1987; Cato et al., 1988; Chalepakis et al.,

1988a; Arriza et al., 1987; Ham et al., 1988; Otten et al., 1988). Similarly,

receptors for TR, RAR and VDR have the same 'specificity' residues as ER,

which may indicate that these receptors all recognise similar response

elements. Indeed, hormone response elements which can mediate thyroid,

retinoic acid or vitamin D3 responsiveness share the same conserved arms

as the consensus ERE, except that each exhibits differential spacing

between the arms (see section 1.6.3.4.2). TR can bind to a

consensus ERE and mediate transcriptional repression (Glass et al., 1988),

and there is evidence that TR and RAR recognise the same response

element (Umesono et al., 1988).

This promiscuous DNA-binding behaviour observed amongst certain

members of the steroid hormone receptor superfamily contrasts with the

hormone-specific activation of genes in specialised cell types. This may be

explained, in part, by the differential expression of SRs in particular cell

types. For example, introduction of PR by transfection into glucocorticoid

responsive hepatoma cells, confers progesterone responsiveness upon

several endogenous glucocorticoid regulated genes (Strahle et al., 1989).

This strongly suggests that simply the lack of PR in liver cells prevents

progesterone from activating glucocorticoid responsive genes. However,

this does not explain why endogenous GR does not activate progesterone,

androgen or mineralocorticoid responsive genes. Perhaps such genes are

packaged into inactive chromatin (see section 1.4); thus, the SREs in

question will be inaccessible to active GR. Human ER transfected into

oestrogen-nonresponsive kidney cells can induce transcription from an

exogenous ERE-containing promoter, but is unable to activate endogenous
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vitellogenin genes in the presence of oestrogen (Seiler-Tuyns et al., 1988).

This is probably because the endogenous vitellogenin genes are located

within inactive chromatin.

Promiscuous DNA-binding of SRs to response elements of genes

activated by different steroid hormones may also be minimised by the

differential ability of SRs to recognise distinct features of a common

response element. For example, although PR and GR binding to a GRE is

very similar (Chalepakis et al., 1988a; Slater et al., 1988), there are also

distinct differences (von der Ahe et al., 1986; Cato et al., 1988; Chalapakis

et al., 1988a). These differences are probably functionally relevant to

hormone-specific gene activation in vivo, as mutations in the MMTV GRE

differentially affect induction by progesterone or glucocorticoid (Chalepakis

et al., 1988a). Also, it is becoming clear that SRs contain promoter-specific

and cell-type specific transcriptional activation domains (reviewed in section

1.6.4.1) that restrict the transcriptional activity of certain SRs to particular

promoters and cell-types. Thus, differential DNA-binding of SRs to a

common SRE, together with their promoter and cell-type specific

transcriptional activation activity, may explain, in part, why a particular SR

only induces transcription of specific genes.

1.6.3.4.2 The steroid response element

The steroid hormone response elements defined for the various

steroid hormones are short DNA sequences, consisting of 5 or 6bp inverted

repeats (arms) separated by a 3bp spacer. DNA-binding studies show that

the SRE is recognised specifically by purified SR in vitro (Compton et al.,

1983; Payvar et al., 1981; Maurer & Notides, 1987; Klein-Hitpass et al.,

1989), and gene-transfer experiments demonstrate that the SRE is required
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for hormone-dependent transcriptional modulation of transfected genes in

vivo (for examples see Klock et al., 1987; Strahle et al., 1987; Klein-Hitpass

et al., 1988).

Comparative analysis of DNA sequences responsible for oestrogen

inducibility of the vitellogenin genes, the chicken apo VLDLII gene (Walker

et al., 1984; Klein-Hitpass et al., 1986) and the rat prolactin gene (Maurer &

Notides, 1987) have allowed the identification of a 13bp ERE consensus

sequence. The ERE consensus sequence comprises a 5bp inverted repeat

of conserved nucleotides GGTCA separated by a non-conserved 3bp spacer

(see Fig. 1.9). Similarly, a consensus sequence responsible for

glucocorticoid and progesterone inducibility has been deduced by

comparative analysis of a number of responsive genes (Compton et al.,

1983; Sheidereit et al., 1986; Strahle et al., 1987). The 15bp consensus

GRE/PRE consists of a 6bp inverted repeat of conserved nucleotides

AGAACA separated by a non-conserved 3bp spacer (see Fig. 1.9). As can

be seen, the consensus ERE and GRE are similar in both structure and, in

fact, the consensus ERE can be converted to a functional GRE by only two

base pair changes in either arm of the SRE (see Fig. 1.9) (Klock et al., 1987;

Martinez et al., 1987).
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ERE consensus

GRE consensus

AGGTCACAGTGACCT
TCCAGTGTCACTGGA

i i
AGGACACAGTGTCCT
TCCTGTGTCACAGGA

I i
AGAACACAGTGTTCT
TCTTGTGTCACAAGA

Oestradiol Dexamethasone

V X

X

X

X'

V

"minimal responsiveness to dexamethasone was detected

Fig. 1.9 The consensus ERE and GRE; nucleotide substitutions convert an
ERE into a GRE. Plasmids containing the 15bp oligonucleotide inserted
upstream of the HSV tk promoter/CAT gene fusion were transfected ±
oestradiol or dexamethasone. Responsiveness to hormone (V);
non-responsiveness to hormone (X). (Data from Klock et al., 1987).

The consensus ERE or GRE alone is able to confer specific hormone

inducibility on a linked promoter in vivo (Klein-Hitpass et al., 1988; Klock et

al., 1987; Martinez et al., 1987; Strahle et al., 1987). However, although

consensus EREs are found in the Xenopus iaevis vitellogenin A1 and A2

genes and in the chicken vitellogenin II gene (Klein-Hitpass et al., 1986;

Walker et al., 1984), the EREs found in Xenopus laevis vitellogenin B1 and

B2 genes (Walker et al., 1984; Martinez et al., 1987; Seiller-Tuyns et al.,

1986), human pS2 gene (Berry et al., 1989) and the rat prolactin gene

(Maurer & Notides, 1987) all deviate from the consensus sequence. This

deviation reflects the decreased ability of such response elements to behave

as independent transcriptional enhancers in vivo: Alone, neither the

vitellogenin B1 EREs (Martinez et al., 1987) nor the rat prolactin ERE

(Maurer & Notides, 1987) can confer oestrogen inducibility on a linked



58

promoter, the human pS2 ERE functions as a less efficient transcriptional

enhancer than does the consensus ERE (Berry et al., 1989). It would

appear that imperfect EREs require additional flanking DNA to elicit their full

transcriptional effects (for example see Maurer & Notides, 1987; Waterman

et al., 1988), although a combination of two imperfect palindromes can act

co-operatively as an efficient oestrogen-dependent enhancer in vivo

(Martinez et al., 1987). Similarly, imperfect GRE/PREs resulting from

deviations in the GRE consensus sequence behave as less efficient

hormone dependent transcriptional enhancers in vivo (see for example Kock

et al., 1987; Strahle et al., 1987; Cato et al., 1988).

Although consensus response elements for other classes of steroid

hormone have not been identified, cell transfection studies have shown that

a GRE/PRE is also capable of functioning as a response element for

androgens and mineralocorticoids (Ham et al., 1988; Otten et al., 1988;

Cato et al., 1988; Arizza et al., 1987).

A consensus thyroid hormone-responsive element has been

postulated which contains a 5bp inverted repeat identical to that of the

consensus ERE, but no 3bp spacer (Glass et al., 1988). The consensus

TRE alone can confer both thyroid hormone and retinoic acid-dependent

transcriptional enhancement on a linked promoter (Umesono et al., 1988).

However, the consensus TRE is not found endogenously in either thyroid

hormone or retinoic acid-responsive genes studied so far and, therefore, the

exact DNA sequence requirements for responsiveness of genes to thyroid

hormone or retinoic acid are unknown. Indeed, the laminin B1 retinoic acid

response element, which deviates from the consensus TRE and exhibits

differential spacing between the conserved arms, can only confer retinoic

acid-dependent transcriptional enhancement and is not influenced by
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thyroid hormone (Vasios et al., 1989). A vitamin D3 response element has

also been identified in the 5'-flanking region of the osteocalcin gene that

resembles the consensus ERE, although this response element contains

three conserved arms, each separated by a 1 bp spacer (Morrison et al.,

1989).

Thus, the hormone response elements can be divided into two

groups: elements that mediate response to glucocorticoids, progesterone,

androgens and mineralocorticoids, and elements that mediate response to

oestrogens, thyroid hormones, retinoic acid and vitamin D3. These two

groups reflect the two subfamilies of the steroid hormone receptor

superfamily reviewed in 1.6.3.4.1: GR, PR, AR and MR all encode the 'GS'

pair of 'specificity' amino acids and interact with the GRE, whereas ER, TR,

RAR and VDR encode the 'EG' pair of 'specificity' amino acids which are

distinct from the first subfamily, and mediate transcriptional effects through

ERE-like sequences.

1.6.4 SR Mediate Transcriptional Activation and Repression

1.6.4.1 SR mediated activation of transcription

As reviewed in section 1.3.3, DNA-bound transcriptional activators

enhance basal transcription by interacting with a component of the

transcription machinery. This interaction, mediated via the activation

domain of the transcriptional activator, is proposed to initiate or stabilise

formation of an active transcription initiation complex (see section 1.3).

Identification of transcriptional activation domains in SRs has been

the subject of controversy and it now appears that this is because SRs

contain multiple activation functions located in different regions of the SR

molecule. Two experimental approaches have been used to determine the
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location of SR activation domains: 1 ) examining the transcriptional activity

of SR deletion mutants in in vivo transfection studies and 2) transferring

putative activation domains to heterologous 'anchor' DNA-binding domains

and examining the transcriptional activity of these chimeric proteins in vivo.

As a result, three areas of the SR have been described which contain

transcriptional activation domains; these are the central DNA-binding

domain, the N-terminal A/B domain, and the C-terminal steroid binding

domain.

The DNA-binding domain alone of either GR (Hollenberg et al., 1987;

Schena et al., 1989) or PR (Klein-Hitpass et al., 1990) can transactivate

transcription of a reporter plasmid in a cell transfection study, or from a

synthetic PRE-containing template in an in vitro transcription assay,

respectively. This demonstrates the existence of a transcriptional activation

function within region C (see Fig. 1.7) of both GR and PR, although

additional activation functions are required as wild-type GR or PR exhibits a

higher level of transcriptional enhancement. Within the DNA-binding domain

of GR, DNA-binding and transcriptional activation activities can be separated

by mutation; two single amino acid substitutions in the tip of the C-terminal

zinc finger abolish transcriptional activation but do not affect DNA-binding

(Schena et al., 1989). In contrast, no such transcriptional activation function

within region C of ER exists. The DNA-binding domain alone of ER cannot

mediate transcriptional activation in cell transfection studies (Kumar et al.,

1987; Kumar & Chambon, 1988), nor can a chimeric protein containing

region C of ER fused to the DNA-binding domain of GAL4 (Webster et al.,

1989).

Deletions within the N-terminal region or C-terminal region of GR

(Danielsen et al., 1987; Hollenberg et al., 1987), ER (Kumar et al., 1987;
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Kumar & Chambon, 1988) and PR (Gronemeyer et al., 1987) indicate that

these regions also contain transcriptional activation domains. Fusion

proteins containing the A/B region of GR or ER fused to a heterologous

DNA-binding unit demonstrate that the activation domain in this region

behaves constitutively (Godowski et al., 1988; Hollenberg & Evans, 1988;

Tora et al., 1989). In contrast, fusion of the steroid binding domain of GR or

ER to a heterologous DNA-binding unit reveals that this region encodes a

hormone-dependent transcriptional activation function; such chimeric

proteins only activate transcription after hormone treatment (Hollenberg &

Evans, 1988; Picard et al., 1988; Eilers et al., 1989; Webster et al., 1988;

Godowski et al., 1988).

The activation functions located in regions A/B and E of the GR are

both acidic in character and are proposed to behave in a similar manner to

that proposed for other acidic activators (Hollenberg & Evans, 1988; see

section 1.3.3). However, both the N- and C-terminal activation regions of

ER are distinct from acidic activation domains (Tora et al., 1989) and it is

likely that the mechanism by which ER activates transcription differs from

acidic activator mediated transcriptional regulation.

Nevertheless, despite the different mechanisms proposed for

transcriptional activation mediated by GR or ER, all SRs probably interact

with a component of the transcription machinery and initiate or stabilise the

formation of a transcription initiation complex (see section 1.3).

Klein-Hitpass et al. (1990) demonstrate that PR acts as a hormone-

dependent transcriptional activator by facilitating the formation of a stable

initiation complex. Pre-incubation of a minimal template containing a PRE

and a TATA element with HeLa whole cell extract results in formation of a

stable and functional initiation complex only when purified PR is added
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(Klein-Hitpass et al., 1990).

1.6.4.1.1 Promoter- and cell-type specific transcriptional

activation domains

The N-terminal activation domain of ER has been implicated in

promoter-specific transcriptional activation. N-terminally deleted ER,

transfected into HeLa cells, can activate transcription from a co-transfected

reporter plasmid containing the vitellogenin A2 gene ERE linked to the HSV

tk promoter, but not from either the human pS2 gene promoter (Kumar et al.,

1986) or from an ERE linked to the adenovirus 2 major late promoter

(Ad2MLP) (Tora et al., 1989). This indicates that the A/B transcriptional

activation domain of ER is differentially required for transcriptional activation

of distinct promoters.

Cell-type specific transcriptional activation by the N-terminal and

C-terminal activation domains of different SRs has also been observed.

C-terminally deleted ER mutants can activate transcription from an ERE

linked to the Ad2MLP in chicken embryo fibroblast cells but not in HeLa cells

(Tora et al., 1989). Thus, some factor which acts through the N-terminal

activation domain of ER, and is required for ER-mediated transcriptional

induction of the ERE-Ad2MLP promoter construct, must be missing from

HeLa cells but present in chicken embryo fibroblast cells.

In nature, PR receptor exists in two forms, PRa and PRb, the former

corresponding to an N-terminally truncated PRb (Gronemeyer et al., 1987).

Interestingly, PRa can mediate transcriptional enhancement from a reporter

plasmid containing the chicken ovalbumen gene whereas PRb cannot (Tora

et al., 1988). It therefore appears that the presence of the N-terminal

domain in PRb blocks transcriptional activation of this promoter. The

mechanism by which PRa does, and PRb does not, activate transcription



from the chicken ovalbumen promoter is not clear, as both receptors can

activate this same promoter in HeLa cells (Tora et al., 1988).

There is probably a differential distribution of 'adaptor' molecules with

which different activation domains of the SRs interact and ultimately contact

a component of the transcription machinery. Defining the mechanism by

which SRs interact with the transcription machinery will undoubtedly help

explain the mechanism behind cell-type and promoter-specific gene

expression.

1.6.4.2 SR-mediated repression of gene transcription

In addition to the myriad of genes which are positively regulated by

steroid hormones (cited throughout section 1.6; see also Beato et al., 1989

for review), several genes are down-regulated by steroids. In most

documented cases, SR-mediated transcriptional repression of certain genes

is conferred after glucocorticoid treatment. Genes repressed by

glucocorticoids include the bovine prolactin gene (Camper et al., 1985), the

proopiomelanocortin gene (Charron & Drouin, 1986), the human

glycoprotein hormone a-subunit gene (Akerblom et al., 1988) and the

stromelysin gene (Firsch & Ruley, 1987). Although the precise

mechanism(s) by which glucocorticoids repress gene transcription are not

fully understood, both silencing (reviewed in 1.3.4.2) and steric hindrance

(reviewed in 1.3.4.1) are involved in steroid-dependent transcriptional

repression of certain genes.

A 500bp upstream regulatory region has been defined in the bovine

prolactin gene which behaves as a glucocorticoid-dependent transcriptional

silencer (Sakai et al., 1988). This region contains multiple binding sites for

purified GR (Sakai et al., 1988). Functional analysis of these GR binding



sites led to the definition of a negative GRE (nGRE) which alone can confer

glucocorticoid-dependent repression from a linked promoter, in vivo (Sakai

et al., 1988). A nGRE has also been defined upstream of the rat

proopiomelanocortin (POMC) gene; this region is essential for

glucocorticoid-mediated transcriptional repression and also binds purified

GR (Drouin et al., 1989). Both defined nGREs, although related to the

consensus 'positive' GRE, differ in nucleotide sequence from the consensus

GRE. It is proposed that the different nucleotide sequence of the nGRE may

result in different receptor-DNA interactions which somehow alter the

structure of bound GR, thereby preventing it from functioning as an activator

(Sakai et al., 1988).

However, the incapacitation of GR activating ability cannot account

entirely for transcriptional repression; GR binding must somehow interfere

with the activity of transcriptional activators required for gene expression.

Indeed, in the absence of glucocorticoids, the bovine prolactin gene nGRE

enhances promoter activity, presumably by the action of activators which

bind the same region (Sakai et al., 1988). In rat POMC, the region of DNA

encoding the nGRE also contains a putative binding site for a CCAAT-

binding protein (Drouin et al., 1987). Thus, in the presence of

glucocorticoids the nGRE may compete with overlapping 'positive' DNA

elements for binding of distinct transcription factors. This mechanism of

steric hindrance is well-documented for glucocorticoid-mediated

transcriptional repression of the human gonadotrophin a-subunit gene

(Akerblom et al., 1988; reviewed in section 1.3.4.1). The TR has been

shown to mediate both ligand-dependent and ligand-independent

transcriptional repression, depending on the nucleotide sequence and

structure of its binding site. When transfected into CV-1 cells, the
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unliganded TR suppresses transcription from a co-transfected

TRE-containing reporter construct; upon hormone treatment, transcriptional

repression ceases and transcription is stimulated (Damm et al., 1989).

Interestingly, the oncogenic derivative of TR, v-erb-A, which does not contain

a ligand binding domain, and therefore does not bind ligand (Sap et al.,

1986; Weinbergeret al., 1986), behaves as a constitutive transcriptional

repressor in the presence or absence of ligand (Damm et al., 1989). It

therefore appears that ligand binding to TR is required to expose or create a

transcriptional activation domain.

In contrast, TR, which can bind to an ERE in vitro, represses

transcription from an ERE-containing promoter in vivo only when stimulated

by thyroid hormone (Glass et al., 1988). This repression occurs in the

absence of oestrogen stimulation and is, therefore, unlikely to involve

competition between TR and ER for binding to the common response

element. Thus, the mechanism(s) by which liganded or unliganded TR

represses transcription is poorly understood. Purportedly, TR binding

somehow interferes with formation of a functional transcriptional initiation

complex at the linked promoter.

1.6.5 Additional Factors which Influence Transcription by

Steroid Receptors

1.6.5.1 Enzymes that metabolise steroid hormones

As discussed earlier (section 1.6.3.4.1), receptors for glucocorticoids,

progestin, androgens and mineralocorticoids can all activate transcription

through a common response element.

A second order of promiscuous behaviour has been observed in MR

which can bind and be transformed by mineralocorticoid (aldosterone) and



glucocorticoids (Cortisol and corticosterone) (Krozowski & Funder, 1983;

Arriza et al., 1987). However, MRs present in classical mineralocorticoid

target tissues (kidney, colon and parotid) are selective for aldosterone

binding and show minimal glucocorticoid binding in vivo (Funder et al., 1988

and references therein). It is now clear that glucocorticoid insensitivity, and

so mineralocorticoid specificity in these tissues, is achieved by the presence

of the enzyme 11 p-hydroxysteroid dehydrogenase (11 p-HSD). 11 p-HSD

specifically metabolises glucocorticoids and the resulting metabolites are

unable to bind to either MR or GR (Funder et al., 1988).

Agarwal et al. (1989) claim to have cloned the cDNA of 11 p-HSD and

show that it hybridises with a single mRNA species in mineralocorticoid

target tissues and additional tissues which include liver and testis.

However, a recent review (Funder, 1990) casts doubt on this claim and

proposes that the cDNA cloned by Agarwal et al. (1989) encodes an

11 P-HSD-related enzyme and that 11 p-HSD and Agarwal's enzyme

constitute members of a multigene family. Indeed, Southern blot analysis

using the cloned cDNA suggests that a number of enzyme-related genes

exist in rat and human (Agarwal et al., 1988). It is, therefore, tempting to

speculate that GR activity is controlled by selective enzyme activity in a

number of cell-types.

In conclusion, target tissue specificity is not merely dictated by the

presence of specific SR but also by the expression of enzymes which

metabolise specific steroids.

1.6.5.2 The SRE in the nucleosome

The influence of chromatin structure on transcription factor activity has

been reviewed in section 1.4. In summary, the nucleosome appears to



behave as a transcriptional repressor and nucleosome-free regions, called

nuclease hypersensitive sites, are often associated with transcriptionally

active DNA. The finding that nucleosomes are phased along certain

studied promoters invites speculation that some target DNA sites are always

accessible to transcription factor binding, whereas others are always

inaccessible.

The MMTV long terminal repeat reproducibly acquires a series of six

positioned nucleosomes (A-F) when introduced into mammalian cells, in the

absence of hormone (Richard-Foy & Flager, 1987). Upon glucocorticoid

treatment, one of these nucleosomes, NucB, is displaced, which coincides

with the appearance of a 190bp hypersensitive region encompassing the

normally NucB-associated DNA (Richard-Foy & Flager, 1987).

MMTV DNA associated with NucB includes the MMTV GRE and a

binding site for NF-1 (Cordingley et al., 1987). NucB can be reassembled in

vitro and can be bound by purified GR (Pearlmann & Wrange, 1988). In

contrast, in vivo NF-1 binding can only be detected after hormone

stimulation of MMTV-infected murine cells and NucB displacement

(Cordingley et al., 1987). Flowever, NF-1 concentration in infected cells is

apparently unaffected by hormone treatment, and NF-1 is present in a form

capable of binding, with high affinity, to naked MMTV DNA in vitro

(Cordingley et al., 1987).

Hager's group has developed a cell-free system in which

nucleosomes A and B are specifically reassembled on MMTV DNA. NF-1

cannot bind to its recognition site when that site is accurately positioned on

NucB, whereas GR can bind and induce displacement of NucB (T. Archer &

G. Flager, personal communication). Ffager's group propose that GR,

through binding to the MMTV GRE exposed on NucB, acts as a nucleosome



displacement factor. NucB displacement thus allows NF-1 access to its

DNA site, which was previously concealed within NucB.

Interestingly, inducible hypersensitive sites are frequently associated

with steroid hormone regulated genes; the hypersensitive sites often

appearing during hormone stimulation (for examples see Burch &

Weintraub, 1983; Fritton etal., 1983; Becker etal., 1986; Jantzen etal.,

1987; Cordingley et al., 1987; reviewed by Gross & Garrard, 1988).

Perhaps one function of the SR is to behave as a nucleosome displacement

factor, so allowing transcription factor recognition of previously inaccessible

DNA sites.

1.6.5.3 The role of accessory proteins in SR DNA-binding

affinity

Accessory proteins can modulate the DNA-binding activity of a

particular transcription factor for its target DNA site. The role of accessory

proteins in altering either the DNA-binding affinity or sequence specificity of

a particular factor has been reviewed in section 1.5.

Purified SRs have been shown to bind directly to their respective SRE

in vitro\ however, the discrimination between a specific binding site and

non-specific DNA may be less than 10-fold (see for example Maurer &

Notides, 1987; Payvar et al., 1981; Compton et al., 1983; Bially et al., 1986;

von derAhe et al., 1985; Jantzen et al., 1987; Peale et al., 1988; Hard et

al., 1990b). This indirectly suggests that other cellular proteins, in addition

to the purified receptor itself, are required in order to achieve the high affinity

SR-SRE interaction necessary for efficient steroid responsiveness, in vivo.

There is mounting evidence which suggests that the affinity of a

particular SR for its response element can be modulated by accessory
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proteins, in vitro. Such accessory proteins have been implicated in

increasing the sequence-specific DNA-binding affinity of purified ER

(Feavers et al., 1987), GR (Payvar & Wrange, 1983), PR (Edwards et al.,

1989) and the SR related TR (Murray & Towle, 1989). Furthermore, crude

preparations of PR will bind with higher affinity to DNA already complexed

with other nuclear proteins, rather than to naked DNA (Thrall & Spelsberg,

1980), and electron microscopy demonstrates that ER bound to DNA forms a

large protein complex (Heggeler-Bordier et al., 1987). The role of

accessory proteins in SR DNA-binding activity will be discussed in more

detail throughout chapters 3, 4 and 5.

The aim of this thesis was to investigate whether accessory proteins

(which are not SRs) can bind directly to a SRE and thus modulate the steroid

receptor SR-SRE interaction.

This thesis now reports the identification and characterisation of a

steroid response element-binding protein (SRE-BP). The SRE-BP binds

preferentially to either an ERE or a GRE in vitro and does not recognise a

palindromic TRE, nor transcription factor binding sites present in the Herpes

Simplex Virus thymidine kinase promoter.

Circumstantial evidence reported in this thesis suggests that the

SRE-BP, present in HeLa whole cell extracts, behaves as an accessory

protein and increases the affinity of in vitro translated ER for its response

element. Additionally, the demonstration of in vitro translated ER binding to

DNA as part of a 362kD complex, and not simply a 130kD receptor dimer

(Kumar & Chambon, 1988; Fawell et al., 1990), further substantiates the

proposal that accessory proteins are involved in SR binding to DNA.



CHAPTER 2

MATERIALS AND METHODS



STANDARD SOLUTIONS

.1 Gel electrophoresis buffers

10 xTBE:
108.9g Tris
55.7g Boric acid
4.7g EDTA
Make up to 1000ml with dH20

10 xTAE:
8.11g Tris (pH 7.9)
2.7g N-acetate
3.72g EDTA
Make up to 1000ml with dH20

5 x SDS Electrode Buffer:
30g Tris
144g Glycine
5.0g SDS
2.7g EDTA
Make up to 1000ml with dH20

Gel Juice:
0.25% (w/v) bromophenol blue
0.25% (w/v) xylene cyanol
1 mM EDTA
30% glycerol

2 Bacterial Growth Media

L-Broth:
10g tryptone
5g yeast extract
5g NaCI
Make up to 1000ml with dH20 and autoclave

L-Agar:
L-broth to which 1% Bacto-Agar (Difco) is added

10 x M9

10g NH4CI
100g Na2.HPO4.7H2O
30g KH2 P04
50g NaCI
to 100ml with dH20



2.1.3 General

TE:

solutions

10mM Tris HCI (pH8), 0.1 mM EDTA

10 x PBS:
80g NaCI
2.0g KCi
11.4g Na2HP04
2.0g KH2PO4
Make up to 1000ml with dH20 and autoclave

Tris-saturated phenol

Frozen phenol was thawed by heating to 60°C. Phenol
was then extracted 2-3 times with 0.2M Tris HCI (pH 8.0)
until buffer pH was > 7.0. Phenol was extracted twice
with 0.1 M Tris HcL and finally stored at 4°C under a
layer of 0.1 M Tris HCI (pH 8.0).

2.2 GEL ELECTROPHORESIS

2.2.1 Horizontal agarose gel electrophoresis

Agarose gels were used to visualise linear DNA restriction fragments

or supercoiled plasmid DNA. If a DNA restriction fragment was to be

recovered from the agarose gel, low melting point agarose (Sea Plaque

agarose, FMC) was used.

The percentage of agarose to be used was determined by the size

range of linear DNA fragments to be separated. One per cent (w/v)

agarose was routinely used to separate DNA fragments of ~7kb to 0.56kb;

1.5% to 2% (w/v) agarose was used to separate smaller DNA fragments of

~1kb to 0.1 kb. The correct percentage agarose solution was prepared by

dissolving agarose in 100mls 1/2 x TBE buffer in a microwave oven. The

agarose solution was then poured into a 11cm x 14cm gel former with a

comb in place - the tooth size of the comb depended on sample size - and

allowed to set. The gel was placed in a horizontal gel electrophoresis

apparatus (Gibco BRL, Model HS) containing sufficient 1/2 x TBE buffer to
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just cover the gel. 0.1 volume of Gel Juice was added to DNA samples

before loading onto the gel with a Gilson pipette. Gels were usually

electrophoresed at 60mA for as long as required to see sufficient separation

of DNA fragments. After electrophoresis, gels were stained in Ethidium

Bromide (10mgml-1) for 5 minutes in order to visualise DNA fragments using

a UV transilluminator emission wavelength 312nm. If required, gels were

photographed using Polaroid film in a Polaroid Cu-5 camera.

2.2.2 Vertical gel electrophoresis

Glass plates used for vertical gel electrophoresis were soaked in

dilute Fairy Liquid solution, scrubbed with a soft nylon brush, rinsed 5 times

with dH20, and twice with 70% ethanol before use.

2.2.2.1 Denaturing polyacrylamide gel electrophoresis

A 20% denaturing polyacrylamide solution was prepared by

dissolving 21 g Urea (Aristar, BDH) in 20ml 50% (19:1) bis:acrylamide

(Biorad, premixed), 2.5ml 10 x TBE and 300pl 10% ammonium persulphate.

Distilled water was added to a final volume of 50ml. The polyacrylamide

solution was filtered through Whatman #1 filter paper and degassed using a

vacuum pump, before adding 30pl TEMED (BDH). The solution was

immediately poured into a 15cm x 17cm x 0.8mm glass sandwich, which

was held together with bulldog clips. A 20 tooth comb was inserted and the

solution left to polymerise. After polymerisation, the gel was attached to a

perspex vertical gel box (Gibco BRL, Model V16) containing V2 x TBE. The

wells were flushed out with buffer to remove unpolymerised acrylamide/urea

solution and the gel was pre-electrophoresed at 35mA for 30 minutes.

One volume of STOP solution (formamide to which 0.03% xylene

cyanol, 0.03% bromophenol blue and 20mM EDTA had been added) was

added to DNA samples to be electrophoresed, which were then heated to
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60°C for 10 minutes. Samples were loaded onto the gel using a Gilson

pipette with an elongated pipette tip (multiflex duckbill tips, Bioquote) and

electrophoresed for 30 to 40 minutes at 35mA. Radiolabeled samples

were visualised by autoradiography (section 2.3).

2.2.2.2 4% Native polyacrylamide gel electrophoresis

A 4% native polyacrylamide gel solution was prepared by mixing 4ml

50% 19:1, bis:acrylamide (Biorad, premixed) with 2.5ml of either 10 x TBE

or 10 x TAE, 300pl 10% ammonium persulphate, in a final volume of 50ml.

The solution was filtered through Whatman #1 filter paper before adding

30pl TEMED (BDH) and poured immediately into a 15cm x 17cm x 1.5mm

glass sandwich which had been previously sealed with 1% (w/v) agarose

(dissolved in water); a 20-tooth comb was placed in the top of the gel

between the glass plates. After polymerisation, the 4% polyacrylamide gel

was attached to vertical gel electrophoresis apparatus (Gibco BRL, Model

V16) containing either 1/2 x TBE buffer or V2 x TAE buffer respectively and

pre-electrophoresed for 30 minutes at 200V. Gels which contained V2 x

TAE buffer were electrophoresed in circulating buffer. Using a Gilson

pipette and an elongated pipette tip (Multiflex round tip, Bioquote), band shift

reactions (section 2.8.1) were loaded onto the gel while the gel was

electrophoresing, which minimised disruption of any protein/DNA

complexes. The gel was run for 45-60 minutes at 250V. Following

electrophoresis, the gel was transferred to Whatman #1 paper, covered with

Saran wrap and dried using a heated vacuum gel drier (Biorad).

Protein/DNA complexed were visualised by exposing the dried gel for 24h to

autoradiographic film (section 2.3).
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2.2.2.3 Native pore gradient gel electrophoresis

Two different percentage (3% and 25%) polyacrylamide solutions

were made as follows: a 3% or 25% solution was prepared by mixing

1.65ml or 13.75ml respectively, of 40% 79:0.8:0.2, acrylamide:bis-

acrylamide (BDH):diallyltartardiamide (Sigma) with 1.1ml 10 x TBE, 100jil

10% ammonium persulphate and dH20 to 22ml. Each solution was

separately filtered through Whatman #1 filter paper and degassed under

vacuum before adding 7.5|il TEMED (BDH). The solutions were

immediately poured into separate chambers of a gradient former, taking

care not to trap air between the chambers, which was connected to a

peristaltic pump (LKB). As the 25% polyacrylamide solution was pumped

from its chamber into an agarose-sealed 15cm x 17cm x 1.5mm glass

sandwich at a rate of 2.6mls/minute, the 3% polyacrylamide solution was

pulled into this chamber and mixed with a magnetic stirrer to form the pore

size gradient. A 20 tooth comb was inserted into the top of the gel, between

the glass plates, which was then left to polymerise.

The gradient gel was attached to vertical gel electrophoresis

apparatus (Gibco BRL, Model V16) and pre-electrophoresed overnight at

75V in 0.5 X TBE at 4°C. Protein standard markers were loaded onto the

gradient gel. The voltage was increased to 300V and band-shift reactions

(section 2.8.1) were loaded immediately, in adjacent lanes to markers.

Pore gradient gel electrophoresis was carried out at 300V for 5h at 4°C

(1500 volt hours). Following electrophoresis, the gel was stained with

Coomassie Brilliant Blue R (section 2.6.4.1) to visualise protein standards.

The gradient gel was then transferred onto Whatman #1 blotting paper,

covered with Saran wrap and dried using a heated vacuum gel drier

(Biorad). Protein/DNA complexes were visualised by autoradiography

(section 2.3); their molecular weight was calculated by relating the
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electrophoretic mobility of radioactive-DNA/protein complexes to the

electrophoretic mobility of the protein standard markers.
The precise size of mol. wt. markers used differed depending on their source.

2.2.2.4 SDS polyacrylamide gel electrophoresis

A 10% SDS polyacrylamide separating gel solution was prepared by

mixing 8ml of filtered 30% 37.5:1, acrylamiderbis-acrylamide (Biorad,

premixed) with 6ml of filtered separating buffer (1.5M Tris HCI (pH 8.8), 8mM

EDTA, 0.4% SDS), 200pl 10% ammonium persulphate and dh^O to 24ml.

After adding 30pl TEMED (BDH) the 10% SDS acrylamide solution was

poured into a 15cm x 17cm x 0.8mm glass sandwich held together with

bulldog clips. The gel was overlaid with water-saturated butan-2-ol. Once

polymerised the butan-2-ol was removed and the gel surface was washed

several times with dH20.

A 5% SDS polyacrylamide stacking gel solution was prepared by

mixing 1ml of filtered 37.5:1 ,acrylamide:bis-acrylamide (Biorad, premixed)

with 1.25ml of filtered stacking buffer (0.5M Tris HCI (pH 6.8), 8mM EDTA,

0.4% SDS), 100pl 10% ammonium persulphate and dH20 to 6ml. After

adding 10pl TEMED (BDH), the stacking gel solution was poured on top of

the separating gel, a 20 tooth comb was inserted and the stacking gel was

left to polymerise. The polymerised gel was attached to vertical gel

electrophoresis apparatus (Gibco, Model V16) containing 1 x SDS electrode

buffer (section 2.1).

Protein samples were incubated for 10 minutes at 60°C with 0.25

volumes of 4 x sample incubation buffer (0.5M Tris HCI (pH 6.5), 8% SDS,

0.2M EDTA, 40% (v/v) glycerol). 2-3|il of gel juice were added and samples

were loaded onto the SDS polyacrylamide gel using a Gilson pipette with

an elongated pipette tip (multiflex duckbill tips, Bioquote). Samples were

electrophoresed at 70V overnight. The gel was silver stained (section
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2.6.4.1) if required, dried using a heated vacuum gel drier and

autoradiographed (section 2.3) if necessary.

2.3 AUTORADIOGRAPHY

Detection of radiolabeled material was carried out at -70°C using

either Kodak X-omat 5 X-ray film (18cm x 24cm) or Agfa Curix RP-1 X-ray

film (24cm x 30cm). X-ray film was placed inside autoradiography cassettes

which contained 2 x or 4 x intensifying screens and was in direct contact

with either hydrated gels covered with a sheet of Saran wrap or dried gels.

Exposed film was developed for 2 minutes in Kodak LX-24 developer (0.25

dilution), rinsed in water, fixed for one minute in Kodak FX-40 fixer (0.25

dilution), rinsed once more in water and left to dry.

2.4 CLONING AND DNA TECHNIQUES

2.4.1 Parent plasmids used in plasmid construction

All plasmids constructed for use in this thesis (listed in Table 2.1)

were derived from pBLCAT2 (Luckow & Schutz, 1987).

Plasmids from which fragments were taken and inserted into the

pBLCAT2 polylinker were as follows:

1) (a) pKC264-14: pUC18 into which one 21 bp ERECon oligonucleotide

(oligonucleotide sequence in Chapter 3, Fig. 3.1a) was cloned (Dr. K.E.

Chapman).

(b) pKC264-04: pUC18 into which one 21 bp ERECon oligonucleotide

was cloned in opposite orientation to pKC264-14 (Dr. K.E. Chapman).

2) pKC264-13: pUC18 into which two 21 bp ERECon oligonucleotides had

been cloned (Dr. K.E. Chapman).

3) pKC246: M13mp19 derivative containing one ERECon generated by

site-specific mutagenesis of lac operator sequences (Dr. K.E.

Chapman).



77

Table 2.1: Plasmids constructed and used in this thesis

NAME DESCRIPTION

pLC4a pBLCAT2 with 21 bp EREpRLOligonucleotide (Fig. 3.1b)
cloned into BamHI site

pLC4b pBLCAT2 with 2 x 21 bp EREpRLOligonucleotide cloned into
BamHI site

pLC5a pBLCAT2 with 56bp BamHI - Hindlll fragment of pKC264-14

pLC5b pBLCAT2 with 68bp BamHI - Hindlll fragment of pKC264-13

pGRE32* pBLCAT2 with one 21 bp GRE oligonucleotide (Fig. 3.1c)
cloned into BamHI (filled) site

pGRE3 pBLCAT2 with two 21 bp GRE oligonucleotides cloned into
BamHI (filled) site

PGREm 13 pBLCAT2 with one 20bp GREm oligonucleotide (Fig. 3.1d)
cloned into BamHI (filled) site

PGREmI 1 pBLCAT2 with two 20bp GREm oligonucleotide cloned into
BamHI (filled) site

pLC3 pBLCAT2 with 30bp Hindlll - BamHI fragment replaced with
179bp Pvull - Hindlll fragment of pKC246

*plasmids were constructed and supplied by Dr. K.E. Chapman, MRC Brain
Metabolism Unit, University Department of Pharmacology, Edinburgh
University.

2.4.2 Plasmid construction

pLC4a and pLC4b were constructed as follows: 10pg pBLCAT2 was

digested with 10 units BamHI in a 20pl reaction containing 2pl 10 x

restriction buffer (recipe, Table 2.2) at 37°C for 1-2h. This reaction was

diluted 2-fold to reduce salt concentration; digested plasmid was then

dephosphorylated by adding 1pl bacterial alkaline phosphatase (2500 units,

17fil"1; BRL) and incubating for 1h at 65°C. Digested, phosphatased vector

was purified from a low melting point agarose gel (section 2.4.4). 500pmol
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of each strand of the EREprl oligonucleotide (see Fig. 3.1b for sequence)

was phosphorylated with 5|il 10mM ATP (Sigma) in a 50jj.I reaction

containing kinase buffer (recipe, section 2.7.1) and 10 units T4

polynucleotide kinase (NBL, 12 units ph1) at 37°C for 45 mins. Enzyme was

then inactivated at 65°C for 10 mins and complementary phosphorylated

oligonucleotides were annealed (see section 2.7.1). Phosphatased vector

and phosphorylated EREpRi_oligonucleotide were ligated (section 2.4.6)

using 100-fold excess of oligonucleotide over vector. Competent cells were

transformed with ligation mix (section 2.4.7). Restriction analysis (section

2.4.3) of DNA minipreps (section 2.4.8) confirmed insertion of either one or

two ERprl oligonucleotides inserted in pLC4a, and pLC4b, respectively.

Large scale plasmid preparations (section 2.4.9) were then carried out.

pLC5a and pLC5b were constructed as follows: 5pg of pBLCAT2

(vector) and 5pg pKC264-13 (containing 2 x EREcon oligonucleotide, section

2.4.1) or pKC264-14 (containing 1 x EREcon oligonucleotide, see 2.4.1)

were digested with BamHI and Hindlll (section 2.4.3). Vector and insert

fragments (see 2.4.1) were purified from a low melting point agarose gel

(see section 2.4.4). Purified digested pBLCAT2 vector and pKC264-13 or

pKC264-14 insert fragments were ligated (section 2.4.6). pLC5a and

pLC5b constructions were checked by restriction analysis (section 2.4.3).

The insert sequence of pLC5b was determined by sequencing of pKC264-

13 by Dr. K.E. Chapman, (insert sequence presented in Chapter 5: Fig 5.1

(DF2)).

pLC3 was constructed as follows: 5pg pBLCAT2 vector was digested

with Hindlll (see section 2.4.3). After inactivating enzyme activity at 65°C for

10 mins, sticky ends were filled in with 2pl dNTPs (mixture of 2mM each of

dTTP, dCTP, dATP, dGTP) and 0.5pl Klenow (large fragment of DNA

polymerase I) (1000 units 17pM; Gibco, BRL or BCL) at room temperature

for 15 mins before inactivating enzyme activity (see 2.4.3). Linearised, filled



vector was then digested with BamHI. pKC246 was digested with Pvull and

BamHI (section 2.4.3). Insert and vector fragments were purified from a low

melting point agarose gel (section 2.4.4) and ligated (section 2.4.6). pLC3

construct was checked by restriction analysis. Sequence of pLC3 insert

was as follows:

Pvull

i
CAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCG

CAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGC

TTTACACTTTATGCTTCCGGCTCGTATAATGTGTGGAATTGG

TCACTGTGACCAATTTCACACAGGAAACAGCTATGACCATGA

TTACGCCAAGCTT
T

Hindlll

Conserved nucleotides of ERECon sequence are indicated by horizontal

lines. Insert sequence was determined by sequencing of pKC246 by

Dr. K.E. Chapman
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2.4.3 Restriction endonuclease digestion

Table 2.2

Restriction Endonucleases and Reaction Buffers

Restriction

Endonucleaseb
Source Recognition

site3

EcoRI NBL, BRLorBCL GiAATTC

Hindlll n AlAGCTT
BamHI II GiGATCC

Alul ii AG-lGT
Pvull ii CAGlCTG

a. In each case, the sequence is shown 5' to 3' and the point of

cleavage is denoted by a downward arrow.

b. Reaction Buffer in which enzymes were used 1: 10 x restriction

buffer: 500mMNaCI, 500mM Tris HCI (pH 8.0), 100mM MgCl2, 6mM (3-

mercaptoethanol, IpguT1 Bovine Serum Albumin (DNAse free, BRL).

Plasmids and oligonucleotides used for cloning are described above

(section 2.4.1 and Table 2.1) and oligonucleotide sequences are given in

Chapter 3, Fig. 3.1. The restriction enzymes and reaction buffers used for

plasmid digestion are listed in Table 2.2.

DNA was digested using 1 unit of restriction enzyme per 1pg of DNA,

1 x restriction buffer (Table 2.2) and dH20 to the required volume.

Digestion reactions were incubated at 37°C for 1-2h. Enzyme activity was

terminated by heating digests to 60°C for 10 mins and digested DNA was

visualised after electrophoresis through an agarose gel (section 2.2.1).

For investigatory purposes, 0.2-0.4|ig of DNA was routinely digested

in a final volume of 1Opl. For cloning purposes, 5-1 Opg of plasmid DNA
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were routinely digested in a final volume of 50(il. The required restriction

fragments were recovered after electrophoresis of the entire 50|il digest

through a low melting point agarose gel (section 2.2.1 and 2.4.4).

Molecular weight markers routinely used were Alul fragments of

pBR322 which give a range of mol. wt. sizes between 910bp and 100bp.

2.4.4 Purifying DNA fragments from low melting point agarose

gels

DNA restriction fragments were visualised as described (section

2.2.1). A gel slice containing the required DNA fragment was excised with a

scalpel blade, placed into a 1.5ml Eppendorf tube and heated at 70°C for

10-15 minutes or until the agarose was completely melted. 10Optl of Tris-

saturated phenol was added, vortexed for 10 seconds and then incubated at

-70°C for 5-10 minutes. After centrifugation for 10 minutes in an Eppendorf

bench top centrifuge, the aqueous phase, which contained the DNA

fragment, was carefully removed to a fresh Eppendorf tube. The aqueous

phase was extracted three more times to remove residual agarose as

follows: once with 0.5 volumes tris-saturated phenol, once with 0.5 volumes

tris-saturated phenol and 0.5 volumes chloroform:isoamylalcohol (24:1, v/v),

then finally with 0.5 volumes chloroforrmisoamylalcohol; each extraction

was centrifuged for 2 mins in the Eppendorf bench-top centrifuge. The DNA

fragment was then ethanol precipitated and its recovery checked (section

2.4.5).

2.4.5 Ethanol precipitation of DNA

The DNA sample was vortexed for 10 seconds with 0.15 volumes 5M

NaCI or 0.05 volumes 8M ammonium acetate, and 2.5 volumes of ethanol,

put on dry ice for 5-10 minutes, then centrifuged in an Eppendorf bench top

centrifuge for 10 minutes. The DNA pellet was dried briefly at 37°C for
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approximately 30 mins then resuspended in the required volume of TE. If

the pelleted DNA had been purified from a low melting point agarose gel, it

was usually resuspended in 20pl of TE. Recovery of precipitated DNA was

then checked by electrophoresing an aliquot (1-2pl or 5-10%) of the total

recovered DNA through an agarose gel (section 2.2.1).

2.4.6 DNA ligation

The DNA restriction fragments to be ligated were recovered from a

low melting point gel as described in section 2.4.1. Ligation reactions were

performed in a total volume of 10pl containing 1pl 10 x ligation buffer (50mM

Tris HCI (ph 7.5), 10mM MgCI2,1 mM DTT), 1 mM ATP pH 7.0, 0.5 units T4

DNA ligase (BCL) and either a 1:3 or 1:6 molar ratio of vector DNA:insert

DNA. Ligation reactions were incubated at room temperature overnight.

Note: Enzymes used for plasmid digestion all generated DNA fragments

with sticky ends which, in some cases, were filled in (section 2.4.2). To

ligate sticky ends, 0.5 units of T4 DNA ligase in 10pl total volume was

sufficient; to ligate blunt-ended DNA fragments, 2.5 units of T4 DNA ligase

was used.

2.4.7 Preparation of competent cells and transformation with

recombinant plasmid DNA

Escherichia coli strain HB101 was used for competent cell

production and subsequent plasmid transformation.

Genotype: (F~ hsd S20 (re nre) rec A13, ara 14, pro A2, lac Yl. gal

K2, rps L20, xyi 5, sup E44)

A single colony of HB101, grown overnight to saturation in L-broth

was diluted approximately 50-fold into 40ml of fresh L-broth and grown in an

orbital shaker at 37°C to A600 of 0.4 to 0.7. The cells were harvested by

centrifugation at 6000rpm in a Sorvall SS34 rotor for 5 minutes at 4°C. The
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pellet was gently resuspended in 10ml of ice cold 0.1 M CaCl2, left on ice for

10 mins and centrifuged as before. The pellet was gently resuspended in

2ml of ice cold 0.1 M CaCl2 and stored on ice for > 2h to acquire full

competence.

Competent cells were transformed as outlined in Maniatis et al.

(1982). Either 1-5gJ of ligation mix or 10ng of plasmid DNA in TE, were

mixed with 200pl of competent cells and incubated on ice for up to 30

minutes. Cells were heat shocked at 37°C for 5 minutes then returned to

ice. Immediately 100pl-200pl aliquots were spread on selective media (L-

agar containing O.lmgmh1 sodium ampicillin) using a glass spreader.

Plates were allowed to dry for a few minutes with the lids off, before

incubating them overnight at 37°C. Colonies that grew on the selective

media represented cells which had been successfully transformed by

recombinant DNA bearing the ampicillin resistance marker. Single colonies

were picked with a tooth pick and streaked out onto fresh selective media

and grown overnight at 37°C. Plates with purified transformed colonies

were sealed with parafilm and stored at 4°C for up to three months.

2.4.8 Preparation of small quantities of plasmid DNA

(Alkaline Lysis Method, Maniatis et al 1982)

1.5ml of selective growth medium (L-broth + O.lmgmM sodium

ampicillin) was inoculated with a single transformed bacterial colony and

grown overnight at 37°C on a rotator. The overnight culture was placed in

an Eppendorf tube and cells were pelleted for 1 minute in an Eppendorf

bench top centrifuge. The bacterial cell pellet was resuspended in 10Opil of

ice cold GTE buffer (50mM glucose, 25mM Tris HCI (pH 8.0) 10mM EDTA),

containing approximately 4mgmM lysozyme (Sigma) then gently mixed with

200pl of freshly prepared alkaline-SDS solution (0.2M NaOH, 1% SDS) and

stored on ice for 5 minutes. Ice cold potassium acetate, 150pl (3M with
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respect to potassium and 5M with respect to acetate, pH 4.8) was mixed in

by flicking, and the Eppendorf tube was stored on ice for 5 min. The sample

was then centrifuged in an Eppendorf bench top centrifuge for 5 mins to

remove denatured chromosomal DNA, cellular proteins and high molecular

weight RNA. The supernatant was transferred to a new Eppendorf tube

and extracted with 0.5 volumes of tris-saturated phenol/0.5 volumes

chloroforrmisoamyl alcohol (24:1 v/v). After centrifuging for 2 mins as

above, the aqueous phase was ethanol precipitated (section 2.4.5) with 2

volumes of ethanol at room temperature for 5 mins. After centrifuging for 5

mins in an Eppendorf bench top centrifuge, the pellet was dried at 37°C for

approximately 30 mins and resuspended in 50(il TE containing 20jigmH
DNase-free pancreatic RNase (Sigma), (prepared by heating at 100°C for

10 mins). 10pl was removed for restriction analysis (section 2.4.3) and the

remainder was stored at -20°C.

2.4.9 Preparation of large quantities of plasmid DNA

L-broth, approximately 2ml, containing 0.1mgml"1 ampicillin, was

inoculated with a single transformed bacterial colony and grown overnight at

37°C on a rotator. The overnight culture was diluted into 40ml of selective

minimal medium (0.3% casamino acid, 1XM9, 2ml 1M MgSC>4, 1 ml 0.01%

thiamine, 0.5ml 0.1 M CaCl2, 12.5ml 20% glucose, O.lmgml'1

sodiumampicillin, dh^O to 500ml), grown at 37°C to A600 of 0.4-0.7 before

adding to 460ml of selective minimal medium. The 500ml transformed

E.coli culture was grown overnight in an orbital shaker at 37°C then

centrifuged at 6000rpm for 5 minutes at 4°C in a Sorvall GSA rotor. The

bacterial cell pellet was resuspended in 12ml of ice-cold GTE buffer (50mM

glucose, 25mM Tris HCI (pH 8.0), 10mM EDTA) containing approximately

4mgmh1 lysozyme (Sigma). Immediately after, 24ml of freshly prepared

alkaline-SDS (0.2M NaOH, 1% SDS) was added and the suspension was



85

stored on ice for 5 minutes. Ice-cold potassium acetate: 16ml, pH 4.8 (3M

with respect to potassium and 5M with respect to acetate) was added and

the sample was stored on ice for a further 10 mlns before centrifuging at

6000rpm for 10 minutes at 4°C in a Sorvall GSA rotor. The resulting yellow

supernatant (and as little of the flocculent pellet as possible) was strained

through butter muslin into 250ml centrifuge pots. Plasmid DNA was allowed

to precipitate out of solution by adding 32ml of isopropanol and leaving at

room temperature for 30 mins; plasmid DNA was recovered by centrifuging

at 10,000rpm for 2 mins at 4°C in a Sorvall GSA rotor. The DNA pellet was

dried at room temperature for 30 mins before resuspending in 7ml of TE.

Following resuspension, 8g of CsCI and 0.2ml of Ethidium Bromide

(10mgmM) were then added. The DNA/CsCI solution was transferred into

an 11.5ml PK50 Sorvall ultracentrifuge tube and centrifuged at 33,000rpm

for 48-72 hours at 20°C in a Sorvall Ti65 rotor. Plasmid DNA bands were

clearly visible after centrifugation; they were collected through the tube wall

using a syringe and 21G needle and transferred to a new ultracentrifuge

tube. Fresh CsCI solution (prepared by adding 100g CsCI to 100ml TE)

was added to the recovered plasmid DNA band, enough to fill the tube, and

the sample was centrifuged as before for 48-72h. The visible plasmid band

was collected through the tube wall as before and transferred to a glass test

tube. Ethidium bromide was removed from the plasmid DNA by extracting

several times with 0.2 volumes of TE-saturated isopropanol (until aqueous

and organic phases were no longer pink). The plasmid preparation was

dialysed for 24h against three 2 litre changes of TE, at 4°C.

The concentration of recovered plasmid was calculated by

measuring its A26O in a Shimadzu UV60 spectrophotometer. Plasmid

preparations were stored at -20°C.



2.5 TISSUE CULTURE GROWTH CONDITIONS

HeLa, GH3 and CV-1 cells were maintained (by myself or Ms. E.

Clark) on 75cm2 tissue culture flasks (J. Bibby Science Products) in DMEM

(Dalbecco's Modification of Eagles Medium; Flow Laboratories) containing

10% foetal calf serum (Globefarm) which had been heat inactivated at 56°C

for 30 mins to denature proteases; 2mM L-Glutamine (Gibco, BRL) and 100

units Penicillin/1 OOpg Streptomycin ml-1 (Penicillin/Streptomycin solution:

10,000units/10,000|igm|-1; Gibco, BRL).

Confluent cells were harvested with trypsin-EDTA (Flow

Laboratories) as follows: medium in which cells were grown was discarded

into Chloros. Cells were washed twice with 2.5ml trypsin-EDTA to remove

residual serum; both washes were discarded into Chloros. Cells were then

incubated at 37°C with 2.5ml trypsin-EDTA for 5 mins or until cells detached

from flask surface. The trypsin/cell suspension was divided between two or

three sterile 75cm2 tissue culture flasks and 15ml of fresh tissue culture

medium (described above) were added to each flask. Cells were then

incubated at 37°C in 5% CO2 until confluent and then cells were harvested

and divided between sterile tissue culture flasks again, as described above.

If required, tissue culture medium was replaced with fresh medium between

cell harvests. Usually 12 flasks of confluent cells were harvested to make

cell extracts as described in section 2.6.1. Occasionally, cells were counted

using a haemocytometer; approximately 2 x 106 cells were recovered from

each confluent 75cm2 flask.

2.6 PROTEIN TECHNIQUES

2.6.1 Preparation of whole cell extracts

GH3, HeLa and CV-1 cells were cultured as described (section 2.5).

WCE were prepared essentially as described by Manley et al. (1980).
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Approximately 2.5 x 107 cells were harvested with trypsin-EDTA

(Flow Laboratories). The cell pellet was washed three times in 1 x PBS,

then once in 1 x PBS containing 10mM MgCl2 (occasionally cells were

stored in pellet form for up to 3 days at -70°C before the final wash). All

further steps were carried out between 0°C & 4°C.

Cells were centrifuged as above, for 5 mins at 4°C in a clinical bench

top centrifuge (Chilspin, MSE), resuspended in 4 packed cell volumes of

ice-cold TED buffer (1 OmM tris HCI (pH 7.9), 1 mM EDTA, 5mM DTT and

allowed to swell on ice for 20 minutes. Cells were then lysed with 8 strokes

of a 3ml Uniform glass homogeniser before adding 4 packed cell volumes of

TMDSG buffer (50mM Tris HCI (pH 7.9), 10mM MgCI2, 2mM DTT, 25% (w/v)

sucrose, 50% (v/v) glycerol) containing 0.15|igmh1 PMSF (Sigma) and the

mixture was stirred gently for 5 minutes. One packed cell volume of

saturated (NH4)2S04 was added slowly, dropwise, and the suspension was

stirred gently with a magnetic stirrer for 20 minutes. The resulting cell lysate

preparation was placed in either 5ml or 12ml ultracentrifuge tubes (Dupont)

and centrifuged at 100,000xg for 3h at 2°C (33,000rpm in a Sorvall AH-650

rotor). The supernatant was decanted taking care not to disturb the pellet,

which contained unwanted cellular membranes and nucleic acid material.

Protein in the supernatant was precipitated by gradually adding solid

(NH4)2S04 (0.33gmH supernatant). Once (NH4)2S04 had dissolved, 1pl

of 1M NaOH was added for every gram of solid (NH4)S04 already added (to

adjust the pH of the precipitate to approximately pH7) and the suspension

was stirred gently for 30 mins with a magnetic stirrer. The suspension was

then centrifuged at 15,000xg, for 20 mins at 4°C and the protein pellet was

resuspended in 1/2o of the high speed supernatant volume in ice cold

extract buffer (50mM tris HCI pH 7.9, 6mM MgCI2, 40mM(NH4)2SO4, 0.2mM

EDTA, 1mM DTT, 15% (v/v) glycerol). The resuspended whole cell protein

extract was then dialysed 16-18h against three 1 litre changes of the extract
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buffer and centrifuged at 10,000rpm for 10 mins in Eppendorf bench top

centrifuge at 4°C to eliminate insoluble matter.

Protein concentration of the WCE was determined using Biorad

Protein Assay (section 2.6.4.2). WCE concentration was usually between 8

and 20jigp.l"1. Whole cell extract was aliquoted into 20-50pl samples, snap-

frozen in liquid nitrogen and stored at -70°C. The protein extracts were

stable at -70°C for up to 3 months, after which time they began to lose

activity.

WCE was prepared from rat liver tissue by the same method as

outlined above, except liver tissue was initially homogenised at 4°C in TED

buffer using a chilled 3ml uniform homogeniser. Rat liver tissue was

dissected from an adult female Cobb Wistar rat (~ 250g) by Mr. R.C. Dow, MRC

Brain Metabolism Unit, University of Edinburgh.

If required, protein extract was denatured either by heating to 60°C

for 10 mins or adding 6M urea and incubating on ice for 10 mins.
Urea was removed by overnight dialysis at 4°C against two changes of extract
buffer (recipe given above).
2.6.2 Preparation of nuclear extracts

The following protocol outlines nuclear extract preparation from 106
cells (Schreiber et al., 1989). In general, 6 x 106 HeLa cells were used and
the volumes given in this protocol were multiplied accordingly.

Approximately 106 HeLa cells were harvested by trypsinisation

(trypsin 0.02M EDTA (Flow Laboratories)), washed in 5ml of 1 x PBS and

pelleted at 1000rpm, for 5 mins at 4°C in a clinical bench top centrifuge

(Chilspin, MSE) before resuspending in 1 ml 1 X PBS and transferring to an

Eppendorf tube. Cells were centrifuged again in an Eppendorf bench top

centrifuge. Cells were swollen by resuspending in 400jil of cold buffer A

(10mM Hepes (pH 7.9), 10mM KCI, 0.1 mM EDTA, 0.1 mM EGTA, 1mM DTT),

containing a protease inhibitor cocktail (200pM PMSF (Sigma), 1pM

leupeptin (Sigma), 1pM pepstatin (Sigma)) and allowed to swell on ice for
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15 minutes. After adding 25|il of 10% (v/v) Nonidet NP-40, the cells were

lysed by vigorously vortexing for 10 seconds; lysed cell homogenate was

centrifuged for 30 seconds in an Eppendorf bench top centrifuge. Pelleted

nuclei were resuspended in 50pl of ice-cold buffer C (20mM Hepes (pH 7.9),

0.4M NaCI, 1mM EDTA, 1mM EGTA, 1mM DTT) containing a protease

inhibitor cocktail as described above, vortexed for 10 seconds and rocked

vigorously on a shaking platform for 15 minutes at 4°C. The nuclear sample

was then centrifuged for 5 mins in an Eppendorf bench top centrifuge to

remove nucleic acid material. The nuclear extract supernatant was

aliquoted into 20|il samples, snap-frozen in liquid N2 and stored at -70°C.

Nuclear extract concentration was determined using Biorad Protein Assay

(section 2.6.3.2); protein recovery was usually about 8-10|igph1. Nuclear

extracts were fairly unstable, losing activity within two weeks.

2.6.3 Preparation of bacterial lysates

E.coli strain used to prepare bacterial lysate was KC1074 (cya A crp

A) transformed with pHA5 (Aiba et al., 1982) which constitutively over-

expresses cAMP-receptor protein. This strain was engineered by Dr. K.E.

Chapman who also prepared bacterial lysates as follows: a 20ml culture in

selective L-broth was grown to late log phase (A600 ~ 1.0). Cells were

collected by centrifugation at 6000rpm in an SS34 rotor for 5 mins at 4°C,

washed in TE and resuspended in 1ml lysate buffer (100pM potassium phosphate pH

7.4), 50mM KCI, 10% glycerol, 1mM EDTA, 1mM DTT, 160pgmM PMSF).

The bacterial preparation was sonicated, generally with two 10 second

pulses of a MSE sonicator at 0°C. The sonicated sample was centrifuged in

an Eppendorf bench top centrifuge for 10 mins at 4°C. Supernatant was

transferred to a new tube and 0.2 volumes glycerol were added. Bacterial

lysate was stored at -70°C for several months.



2.6.4 Detection and quantitation of proteins

2.6.4.1 Detection of proteins

Coomassie Blue R Protein Staining: Coomassie blue is a

moderately sensitive protein-specific dye which usually allows detection of

0.2-0.5p.g of any protein in a sharp band in a gel (Hames & Rickwood,

1987).

Protein gels were fixed for 45 mins in sufficient fix solution (10%

glacial acetic acid, 50% Methanol) to completely submerge gel. Fix was

removed and replaced with ~300mls Coomassie Blue R staining solution

(0.25% Coomassie Blue R (Sigma), 50% methanol (v/v), 7.5% v/v) for 30

mins. The gel was then rinsed twice with tap water and soaked overnight in

destaining solution (7% glacial acetic acid, 10% methanol). Small squares

of sponge were sunk in the destain solution to soak up excess Coomassie

Blue R stain and so ensure even destaining of the gel. The stained gel was

then dried using a heated vacuum gel drier (Biorad) and autoradiographed

(section 2.3), if required.

Silver Staining: Silver stain is a highly sensitive protein-specific

stain which allows detection of as little as 0.4ng of bovine serum albumin

per square mm of polyacrylamide gel (Hames & Rickwood, 1987).

The gel was fixed for 45 mins (as described in 2.6.4.1) then washed

twice for 1h in 50% methanol and rinsed once after each methanol wash for

15 mins in d^O. During the final dH20 rinse, two solutions were made up

for the silver stain: solution A (0.6g AgNC>3 (Sigma), dH20 to 4ml) and

solution B (21ml 0.36% NaOH, 1.4ml 14.8M ammonium hydroxide).

Solution A was added dropwise to solution B, stirring continuously, and the

resulting silver stain solution was adjusted to 100ml with dH20. Shaking

gently, the gel was stained with stain solution for 20 minutes then washed

three times, each for 10 mins in a total volume of 1.5 litres dH20. The gel

was then rocked gently in freshly made up developer (2.5ml w/v 1% citric
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acid, 250jil formaldehyde, dh^O to 500ml) until protein bands were visibly

resolved. The developer was poured off and the gel was rinsed several

times in dh^O. The gel was either stored in fixer (for up to 2 days), or dried

using a heated vacuum gel drier (Biorad) and autoradiographed (section

2.3), if required.

2.6.4.2 Quantitation of proteins

Protein concentration was calculated using the Biorad Protein Assay.

Biorad Protein Assay was prepared by diluting 1 part in 5 and filtering

through Whatman #1 paper; this assay solution was used as follows:

Protein standard solution (bovine serum albumin, usually

~1,46mgml-1) was diluted to 0.05, 0.1, 0.2, 0.3, 0.4 and 0.6 of its original

concentration with dH20 to 20(il final volume. Each dilution, plus a 20(il

dH20 control was vortexed for 2-3 sees with 1 ml of prepared Biorad protein

assay solution. These seven protein standards were left at room

temperature for about 5 mins before transferring to 1ml plastic cuvette tubes.

The A595 of each protein standard was measured and a calibration curve

was determined using a Shimadzu UV/60 spectrophotometer.

Simultaneously, 20pl aliquots of protein extract (prepared as

described in sections 2.6.1, 2.6.2 or 2.6.3, and diluted if necessary), were

vortexed with 1 ml of assay solution and treated similarly. Protein extract

concentration was calculated (by spectrophotometer) by relating A595 of

protein extract to the protein standard curve.

2.7 LABELLING DN A

2.7.1 Preparation of oligonucleotide probe

30pmol of single stranded oligonucleotide was end labelled at 37°C
for 45 mins using 50pCi [y32P]-ATP (~3000Ci/mmol) (Amersham) and

approximately 4.5 units T4 polynucleotide kinase (NBL) in a total of 20pl
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kinase buffer (1 OOmM tris HCi pH 8.0, 0.01 mM MgCl2, 0.005mM DTT). The

reaction was stopped by inactivating kinase at 60°C for 10 mins. 1pl of

kinased oligonucleotide was diluted 10-fold and stored for gel

electrophoresis.

The remaining labelled oligonucleotide was separated from

unincorporated label essentially as outlined in Maniatis, 1982. Labelled

oligonucleotide was diluted to 10Opil with TE and centrifuged (1000rpm, 5

mins, 4°C in clinical bench top centrifuge: MSE Chilspin) through a 1ml

Sephadex G-50 (Pharmacia) column which had been pre-equilibrated with

three 1OOpI washes of STE (TE containing 10OmM NaCI). Most of the

radioactive material, both incorporated and unincorporated label, remained

on the column at this stage. Labelled oligonucleotide was removed from

the column with three 100pl washes of TE and the effluent from each wash

(4 effluents in total) was collected. The recovery of labelled oligonucleotide

was estimated, after electrophoresis (section 2.2.2.1) and autoradiography

(section 2.3) by comparing the signal intensity of recovered oligonucleotide

to that of the known quantity of unseparated oligonucleotide (aliquoted

above). As the concentration of recovered oligonucleotide was estimated,

the amount of oligonucleotide used in experiments was approximate.

Electrophoresis of recovered and unseparated oligonucleotide also allowed

the efficiency of Sephadex G-50 column separation to be checked.

Labelled oligonucleotide usually eluted from the Sephadex G-50

column with the first and second 100pl TE washes. The complementary

labelled oligonucleotides were mixed and annealed by heating at 60°C for

10 minutes and cooled slowly. Labelled double-stranded oligonucleotide

was diluted to O.lpmolpT1 or 0.05pmolpl'1 for use in band shift assays

(section 2.8.1).

Periodically, 1 pi of labelled oligonucleotide final preparation was

removed into 1ml of scintillation fluid and counted in an LKB scintillation
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counter to determine specific activity. Oligonucleotide probe was usually

labelled to a specific activity of 5-6 x 10^cpnypmoL

2.7.2 Preparation of DNA restriction fragment probe

One microgram of plasmid (pKC264-13 or pKC264-04, section 2.4.1)

was digested with EcoRI (section 2.4.1). Sticky ends generated were filled

in with 30pCi [a-32P]dATP (~3000Ci/mmol, Amersham) and 1 pi of a mixture

of 2mM each dTTP, dCTP, dGTP (Sigma) in a final volume of 10pl

containing 1 x restriction buffer (see Table 2.2 for recipe) and 2.5 units

Kienow (large fragment from DNA polymerase I) (1.000U/17pl, Gibco, BRL

or BCL) for 10 minutes at room temperature. Chase was then added: 1pl

2mMdATP, to complete filling in of partially filled ends and incubation

continued for 5 mins at room temperature. Enzyme activity was stopped by

heating at 60°C for 10 mins. Labelled linear plasmid DNA was then

restriction endonuclease digested with Hindlll (section 2.4.3). The EcoRI-

Hindlll fragment, labelled at the EcoRI end was purified from a 1% low

melting point agarose gel (section 2.4.2) and finally resuspended in 100pl

TE. 1pl of recovered fragment was counted in a LKB scintillation counter to

determine specific activity. Specific activity of labelled DNA probes was

usually 1-3 x 106cpm/pg DNA.

2.8 ANALYSIS OF DNA/PROTEIN COMPLEXES

2.8.1 Gel retardation assay

Gel retardation assays (band shift assays) were carried out as

outlined by Singh et al. (1986).

A standard band shift reaction contained approximately O.lpmol of

32P-labelled double stranded oligonucleotide (section 2.7.1) (or 3fmol of

32P-labelled DNA restriction fragment (section 2.7.2) where stated, 10pl of 2

x binding buffer (2 x = 200mM NaCI, 20mM tris HCI (pH 7.9), 2mM EDTA,



25% (v/v) glycerol), 4jig of the non-specific competitor poly [d(l-C)] (BCL)
and 1pg-20pg of protein sample, in a final reaction volume made up to 20pl

with dH20. All ingredients, except the protein, were mixed together; the

DNA-binding reaction was initiated on addition of protein sample which was

mixed in by pipetting the reaction up and down a few times using a Gilson

pipette. The nature of the protein sample used was either whole cell extract

(section 2.6.1), nuclear extract (section 2.6.2), partially purified protein

extract from Sephacryl S300 column (section 2.9), bacterial lysate (section

2.6.3) or in vitro translated mouse ER (supplied by Dr. S. Fawell, ICRF,

London; see Chapter 5). Band shift reactions were incubated at room

temperature for 20 mins then loaded immediately and swiftly onto an

electrophoresing 4% native polyacrylamide gel (section 2.2.2.2) or gradient

gel (section 2.2.2.3). Protein-DNA complexes formed in the band shift

reaction were resolved from unbound labelled DNA by electrophoresis at

200V for 45-60 mins. Protein-DNA complexes were detected after drying

the gel using a heated vacuum gel drier (Biorad) and exposing to

autoradiographic film (section 2.3). Typically, exposure to autoradiographic

film was overnight, unless otherwise stated.

In competition band shift assays excess unlabelled competitor

oligonucleotide was included into the standard band shift reaction at 3- to

243-fold molar excess over 32P-labelled oligonucleotide, prior to addition of

protein extract. Most commonly, 100-fold excess of competitor

oligonucleotide was used.

2.8.2 UV Cross-linking of protein-DNA complexes

(Adapted from Kumar & Chambon, 1988)

Bdll-containing oligonucleotides were end-labelled with 32P and

annealed (section 2.7.1) with unlabelled, unsubstituted complementary

oligonucleotide (Fig. 4.1). HeLa WCE was incubated with labelled
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oligonucleotide in a series of band shift reactions in which the quantity of

each substrate had been increased 10-fold (100pg WCE, 40pg poly [d(l-C)],

1pmol labelled oligonucleotide) and the final reaction volume was

increased 5-fold, from 20pl to 10Optl. Four reactions were set up in

duplicate: 100pg HeLa WCE added to approximately 1pmol each of 1)

labelled BdU-ERE1, 2) labelled BdU-ERE2 , 3) labelled EREcon and 4) a

control reaction in which no oligonucleotide was added. Reactions were

incubated for 20 min at room temperature during which time each 100pl

reaction was transferred to four wells (25pl per well) of a microtitre plate.

The microtitre plate was covered in Saran wrap and inverted on top of a UV

transilluminator (emission wavelength, 312nM; Ultraviolet Products Inc).

One set of reactions was UV-irradiated for 40 mins and the duplicate set was

irradiated for 20 mins.

To confirm that protein-DNA had formed complexes, a 10pJ aliquot

from each reaction was subjected to 4% native gel electrophoresis (section

2.2.2.2). To the remaining 90pl of each reaction, 25pl of sample incubation

buffer (recipe, 2.2.2.4) was added; reactions were heated as described in

section 2.2.2.4 and subjected to 10% SDS polyacrylamide gel

electrophoresis (section 2.2.2.4). Protein standard mol. wt. markers

(Rainbow Markers, Amersham) were electrophoresed in parallel. The gel

was dried using a heated vacuum drier (Biorad) and exposed to

autoradiographic film (section 2.3) for up to two weeks.

Rainbow Markers: molecular weights as follows:
Lysozyme (MW 14,300)
Trypsin inhibitor (MW 21,500)
Carbonic anhydrase (MW 30,000)
Ovalbumin (MW 46,000)
Bovine serum albumin (MW 69,000)
Phosphorylase b (MW 97,400)
Myosin (MW 200,00)

The precise size of mol. wt. markers used differed depending on their source.
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2.9 GEL FILTRATION CHROMATOGRAPHY

TheSephacryl S300 column used for gel filtration chromatography

was 150cm high and 3cm wide (approximately 1 litre volume). This column

had been precalibrated (by Dr. S. Chapman, Chemistry Department,

Edinburgh University) with the following molecular weight markers

flavocytochrome b2 (230kD), p-amylase (200kD), alcohol dehydrogenase

(150kD), bovine serum albumin (66kD), carbonic anhydrase (29kD),

myoglobin (17.5kD) and cytochrome C (12.5kD) and preequilibrated at 4°C

with 2 litres of column buffer (recipe below). The protein pellet generated

after the final ammonium sulphate precipitation of HeLa WCE preparation

(see 2.6.1) was finally resuspended in column buffer (50mM tris HCI (pH

7.9), 6mM MgCI2, 100mM NaCI, 0.2mM EDTA, 1mM DTT, 10% (v/v)

glycerol) instead of extract buffer (recipe, 2.6.1). Column buffer differed

from extract buffer most importantly in 1) glycerol content: less glycerol

(v/v) in column buffer ensured fairly swift progression of protein extract

through the column so minimising exposure to proteolytic attack, and

retaining glycerol content similar to that of 1 x binding buffer used in the

band shift assay (see below) and 2) column buffer did not contain

ammonium sulphate but contained 100mM NaCI similar to 1 x binding buffer

(see section 2.8.1). This was important since 18(il of each fraction collected

from the column was to be assayed for DNA-binding activity in a band shift

reaction; ammonium sulphate presence in such an assay prohibits

protein/DNA complex resolution by gel electrophoresis, giving rise to

extended 'smears' down length of gel (unpublished result)

Approximately 7mg of HeLa WCE was fractionated over the column.

4pg of blue dextran (mol. wt. > 300kD) and 1mg cytochrome c (mol. wt.

12.5kD) were added to HeLa WCE prior to loading to mark the void volume

of the column and the lower mol. wt. parameter, respectively within which

protein fractions were to be collected (see Chapter 4, Introduction). WCE
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was allowed to diffuse into the top of the column before adding a continuous

flow of column buffer. A calibration graph was constructed by plotting the

mol. wt. of each protein marker against the fraction of its elution volume

divided by the void volume on semi-log paper. (Fig 4.1). Fractions of 3.5mls

eluted and were collected from the column over 24h-48h at 4°C. In a band

shift assay (section 2.8.1), 18pl of each fraction were assayed for SRE-BP

DNA-binding to either 32P-labelled EREcon oligonucleotide in the presence

of 4pg poly [d(l-C)] in a final reaction volume of 20pl. The reaction was

incubated at room temperature for 20 mins before 4% native gel

electrophoresis (see 2.2.2.2). The mol. wt of SRE-BP was determined by

dividing the buffer volume in which its DNA-binding activity eluted by the

void volume and relating this fraction to the calibration graph derived from

standard mol. wt. markers (Fig. 4.1). Fractions which contained SRE-BP

DNA-binding activity were concentrated using an Amicon concentrator.

Approximately 800|il (1 pigpil-1, see 2.6.4.2) of concentrated partially purified

protein was recovered.

A protein elution profile was attempted by measuring the OD595 of

each column fraction in a Shimadzu UV/60 spectrophotometer. However,

protein concentration in each fraction was too low for detection under these

conditions.



CHAPTER 3

IDENTIFICATION OF A SEQUENCE SPECIFIC STEROID RESPONSE

ELEMENT-BINDING PROTEIN
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3.1 INTRODUCTION

The consensus ERE and GRE are related sequences which show dyad

symmetry with 5 or 6-base-pair (bp) arms separated by a 3bp spacer region.

Receptors for glucocorticoids, mineralocorticoids, progesterone and androgens

can all act specifically through a GRE, whereas the receptor activated by

oestrogen acts through the similar, but distinct, ERE (Klock et al., 1987;

Martinez et al., 1987; Ham et al., 1988; Cato et al., 1987; Cato et al., 1988;

Otten et al., 1988; Strahle et al., 1987; Klein-Hitpass et al., 1988; Arrizaetal.,

1987). The consensus ERE and GRE are independently able to confer

hormone dependent transcriptional enhancement from a linked promoter in

vivo, as demonstrated by gene transfer experiments (see above references and

Fig. 3.2).

Although purified SRs directly bind to the respective SRE in vitro, their

ability to discriminate between a specific binding site and non-specific DNA

may be less than 10-fold (for examples see Maurer & Notides, 1987; Payvar

et al., 1981; von de Ahe et al., 1985; Jantzen et al., 1987; Peale et al.,

1988; Hard et al., 1990b). This observation provokes speculation that other

cellular factors are required to achieve high affinity binding of SR to the SRE

in vivo.

There are several reported experiments which directly or indirectly suggest

the involvement of accessory proteins which increase sequence-specific

binding of SRs to DNA (Feavers et al., 1987; Wrange et al., 1986; Payvar &

Wrange, 1983; Edwards et al., 1989; Murray & Towle, 1989). Moreover,

electron microscopy of the protein-DNA complex at the ERE of the Xenopus

vitellogenin gene (Heggeier-Bordier et al., 1987) indicate that this complex is

large and may include other proteins in addition to the hormone receptor.

In this study, I wished to determine whether accessory proteins (which are

not SRs) could specifically bind to a SRE and thus increase the specificity of

SR-SRE interaction. To do this, a DNA-binding assay known as the gel
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retardation or band shift assay was used. This assay is based on the altered

mobility of protein-DNA complexes relative to unbound DNA, during non-

denaturing gel electrophoresis (Fried & Crothers, 1983; Garner & Revzin,

1981). Protein-DNA complexes are formed by mixing protein extract with

32P-labelled DNA which encodes the binding site for a particular protein in a

band shift reaction. Distinct protein-DNA complexes are detected when excess

heterologous 'nonsense' DNA (poly [d(l-C)]), which titrates out more abundant

non-specific DNA-binding proteins present in crude protein extract, is included

in the reaction. The sequence requirement for complex formation can be

examined by including excess unlabelled competitor DNA encoding a defined

sequence in a competition band shift assay; sequences which compete and

sequences which do not compete for complex formation can therefore be

determined.

DNA sequences examined in this study for their ability to be bound by

specific cellular factors are shown in Figure 3.1. Each is a short

oligonucleotide which encodes a consensus ERE (EREcon, Fig. 3.1a) (Klock et

al., 1987), an ERE derived from 5'-regulatory sequences in the rat prolactin

gene (EREprl, Fig. 3.1b) (Maurer& Notides, 1987; Waterman et al., 1988), a

symmetrical GRE (GRE, Fig. 3.1c) (Klock et al., 1987), a mutant GRE (GREm,

Fig. 3.1d), and a symmetrical TRE (TRE, Fig. 3.1e) (Glass et al., 1988). These

are all related sequences; compared to the conserved nucleotides of the

consensus ERE (Fig. 1a), the sequence of and/or the spacing between the

conserved nucleotides has been altered.

Each oligonucleotide (Fig. 3.1) was initially tested for its ability to confer

either oestrogen or glucocorticoid inducibility on a linked heterologous

promoter in a cell transfection system (Fig. 3.2). Both the ERECon

oligonucleotide and the GRE oligonucleotide independently enhanced

transcription from the Herpes Simplex Virus (HSV) thymidine kinase (tk)

promoter when either oestradiol or dexamethasone respectively, were present



Figure 3.1 Sequence of oligonucleotides used in the
gel retardation assays

(a) EREcON GCAGGTCACAGTGACCTGGAC
CGTCCAGTGTCACTGGACCTG

(b) EREprl GATCTTGTCACTATGTCCT
AACAGTGATACAGGACTAG

(c) GRE GCAGAACACAGTGTTCTGGAC
CGTCTTGTGTCACAAGACCTG

(d) GREm CAAGAACATGCATGTTCTTG
GTTCTTGTACGTACAAGAAC

A

(e) TRE CATCAGGTCATGACCTGATG
GTAGTCCAGTACTGGACTAC

Horizontal lines indicate the conserved nucleotides within the SRE. A
hollow arrow head shows the position of an additional base-pair in the
spacer region of oligonucleotide (d). (a) ERE consensus sequence derived
from the oestrogen-inducible vitellogenin genes of Xenopus laevis and
chicken (Klock et al., 1987). (b) ERE sequence from the 5' flanking region
of the rat prolactin gene (Maurer & Notides, 1987; Waterman et al., 1988).
(c) GRE sequence with perfect 2-fold symmetry (Klock et al., 1987). (d)
Mutant GRE sequence, (e) Symmetrical TRE sequence (Glass et al., 1988).
Oligonucleotides were synthesised by Oswell DNA Services, Department of
Chemistry, Edinburgh University.
EREpRL oligonucleotide was synthesised with BamHI sticky ends for cloning
purposes.
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(Fig. 3.2). An oligonucleotide encoding the same conserved nucleotides as the

symmetrical GRE with a 3bp spacer region has also been shown to

independently confer progesterone-dependent transcriptional enhancement

from a linked promoter in gene transfer experiments (Strahle et al., 1987).

However, the GREm oligonucleotide did not mediate dexamethasone-

dependent transcriptional enhancement (Fig. 3.2). EREprl did not act as a

transcriptional enhancer on its own (Fig. 2), but it has been shown to confer

oestradiol-dependent transcriptional enhancement on a linked promoter when

contained within a 228bp fragment of DNA (Maurer & Notides, 1987).

Preliminary results from this laboratory (Clark & Chapman, personal

communication) indicated that the palindrommic TRE did mediate oestradiol-

dependent transcriptional enhancement although at a much reduced level

(2-fold) compared to the ERECOn (10-fold induction). Umesono & Evans (1989)

have similar findings although Glass et al. (1988) demonstrate non-

responsiveness of the rat growth hormone TRE to oestradiol stimulation. The

palindromic TRE has been shown to act as an independent enhancer in

response to thyroid hormone (Glass et al., 1988). The ERECOn and the

symmetrical GRE are, therefore, functional SREs in vivo, whereas the TRE and

GREm are non-functional SREs, in the presence of either oestrogen or

glucocorticoid hormone, respectively.

This chapter now describes identification of a cellular factor present in

whole cell extracts (WCE) of HeLa, GH3 and CV-1 cells, and in liver tissue

WCE. This factor binds preferentially to oligonucleotides which contain either

an ERE or symmetrical GRE sequence. The factor has reduced affinity for the

GREm oligonucleotide and does not bind to the TRE oligonucleotide, nor does it

bind to transcription factor binding sites present in the HSV tk promoter. The

factor, also present in HeLa cell nuclear extracts, is named the Steroid

Response Element-Binding Protein (SRE-BP).



Figure 3.2 Ability of oligonucleotides (Fig. 3.1) to
confer oestradiol or dexamethasone

dependent transcriptional enhancement
on HSV tk promoter (unpublished data from E.
Clark & K. Chapman)

CAT activity is expressed relative to pBLCAT with hormone treatment, which
is given an arbitrary value of 1.0.

Top Panel: Open bars indicate CAT activity in the presence of mER (cells
cotransfected with expression plasmid, pJ3MOR). Reporter plasmids were

pBLCAT2 (pBLcat), pBLCAT2 containing one copy (EREC) or two copies
(2 x EREC) of the ERECOns oligonucleotide, or pBLCAT2 containing one

copy (EREp) or two copies (2 x EREp) of the EREprl oligonucleotide.
Filled bars indicate CAT activity in the absence of cotransfected pJ3MOR.
Bottom panel: filled bars and open bars indicate CAT activity in the absence
or presence of 10"6M dexamethasone respectively. Reporter plasmids
were pBLCAT2 (pBLcat), one copy (GRE) or two copies (2 x GRE) of the
GRE oligonucleotide, or one copy (GREm) or two copies (2 x GREm) of the
GREm oligonucleotide

Methods oligonucleotides (one copy or two copies) were cloned into the
polylinker of pBLCAT2. Each electroporation (carried out in duplicate) used
2 x 106 HeLa cells, transfected with 5pg reporter DNA and 5jig pCH110
(Pharmacia: included as an internal control for transfection efficiency). For
measurement of oestradiol responsiveness, 1(ig of pJ3 or pJ3MOR (a gift
from J. Lees & M. Parker, ICRF) was co-transfected with the reporter
construct. pGEM3 was added to give a total of 15pg of DNA.

Oestradiol responsiveness was measured in transfected cells plated
in medium containing complete serum and to which 1CL8M 17p-oestradiol
was added. Dexamethasone responsiveness was measured in transfected
cells plated in medium containing charcoal-stripped serum. Where
appropriate, dexamethasone was added at a final concentration of 10~6M.

Each value represents an average from at least two experiments.
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3.2 RESULTS

3.2.1 Identification of a nuclear protein which binds selectively to

both an ERECon and a GRE.

Identification: Gel retardation assays were used to detect the presence of

DNA-binding protein(s) in WCE of HeLa, GH3 and CV-1 cells which bind to a

double-stranded oligonucleotide containing the ERECOn sequence (ERECon;

Fig. 3.1a). 10pg or 20pg of WCE, prepared according to Manley et al., (1980)

(section 2.6.1) were incubated with approximately O.lpmol 32P-labelled ERECon

oligonucleotide and 4|ig poly [d(l-C)], under standard band shift assay

conditions (section 2.8.1). Bound labelled oligonucleotide was resolved from

unbound oligonucleotide by 4% native polyacrylamide gel electrophoresis

(section 2.2.2.2); complexes formed were detected by overnight

autoradiography (section 2.3). HeLa, GH3 (Fig. 3.3) and CV-1 (Fig. 3.4a) WCE

all contained a cellular factor which bound to the EREcon oligonucleotide in the

presence of 4pg poly [d(l-C)], and formed a complex with identical retarded

electrophoretic mobility and signal intensity (Fig. 3.3). This complex formation

was not due to endogenous ER or GR as neither HeLa nor CV-1 cells express

oestrogen receptor (Kumar & Chambon, 1988; Klein-Hitpass et al., 1989), nor

do CV-1 cells express functional glucocorticoid receptor (Giguere et al., 1986;

Umesono & Evans, 1989).

To rule out the possibility that the identified factor expressed in these cells

is a unique characteristic of transformed cells, WCEs were prepared from

normal female rat liver tissue. 741 mg liver tissue were homogenised in TED

buffer (section 2.6.1), and WCE were then made accordingly (section 2.6.1).

Either 10pg or 20jj.g of liver WCE were included in a standard band shift

reaction (section 2.8.1) with 32P-labelled ERECon oligonucleotide and 4pg poly

[d(l-C)]. Liver WCE contained a factor which bound to ERECon arid exhibited

identical electrophoretic mobility to the complex formed with HeLa WCE (Fig.

3.4b, compare lanes 3 & 4 with 1 & 2). This factor is, therefore, present in both



Figure 3.3 Analysis of DNA binding activity present in

whole cell extracts of HeLa and GH3 rat

pituitary tumour cells

Whole cell extracts of HeLa and GH3 cells were

prepared (section 2.6.1). Increasing amounts of whole

cell extracts (as indicated in micrograms above each

lane) were incubated with O.lpmol 32P-labelled EREcon

oligonucleotide in the presence of 4pg poly [d(l-C)].

Free and bound oligonucleotide were separated on a

4% polyacrylamide gel by electrophoresis (section

2.2.2.2). An arrow indicates the position of bound

oligonucleotide.



GH3HeLa
I1I1

ngextract0-61-32-551020-61-32-551020 ft• ~wyfwOtf



Figure 3.4 Analysis of DNA-binding activity present in

WCE of HeLa, CV-1 monkey kidney tumour cells

and rat liver tissue

WCE of HeLa, CV-1 and Liver were prepared as

described in section 2.6.1 and incubated with O.lpmol

32P-labelled EREcon oligonucleotide in the presence of

4(ig poly [d(l-C)]. (a) Lane 0, no protein added; lanel,

10(ig HeLa (H) WCE added; lane 2 and 3, 10pg and

20|ig CV-I (C) WCE added respectively (b) lanes 1 and

2, 10pg and 20pg HeLa (H) WCE added respectively;

lanes 3 & 4, 10pg and 20|ig liver (L) WCE added,

respectively. Free and bound oligonucleotide were

separated on a 4% native polyacrylamide gel as

described (section 2.2.2.2).
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untransformed mammalian liver tissue and several transformed cell lines, and is

therefore not an artifact of malignant cell lines.

Factor Binding is Specific: If factor binding to a labelled DNA sequence is

specific, then an excess of unlabelled homologous DNA sequence (competitor)

included in the band shift reaction, will compete for factor binding, whereas

heterologous unrelated sequences (non-specific competitor) will not. Thus,

signal intensity of the labelled DNA-factor complex will decrease in the

presence of increasing quantities of specific unlabelled competitor and will be

unaltered with non-specific competitor.

To determine whether formation of the identified complex represented a

sequence-specific interaction with the ERECon oligonucleotide, competition

band shift assays were carried out (section 2.8.1). Increasing quantities, from

3-fold to 243-fold molar excess of unlabelled EREcon oligonucleotide (Fig. 3.1a)

were included in a series of band-shift reactions each with O.lpmol 32P-labelled

EREcon oligonucleotide, 4pg poly [d(l-C)] and 10pg of HeLa or GH3 WCE

(Fig. 3.5). Significant competition for factor binding was observed at 9-fold

molar excess of competitor oligonucleotide over labelled oligonucleotide

(Fig. 3.5). As competitor concentration increased, signal intensity of the

DNA-factor complex decreased until complete competition (no complex

visualised) was apparent between 81-fold and 243-fold molar excess of

competitor (Fig. 3.5), implying complex formation was sequence-specific.

To confirm that factor binding was specific, the ability of SRE-unrelated

sequences, encoded within digested plasmid DNA, to compete for factor

binding, was examined. Plasmid DNA used was pBLCAT2 (Luckow & Schutz,

1987) which contains both prokaryotic derived DNA and eukaryotic DNA

sequences. Eukaryotic sequences include transcription factor binding sites

present in the tk promoter of HSV (Jones et al., 1985). Plasmid DNA was

initially titrated; 3|ig, 6(ig and 9pg (Fig. 3.6a) or 1 pig, 2pg, 3pg and 4jig

(Fig. 3.6b) of Alul digested pBLCAT2 were included in band shift reactions



Figure 3.5 Analysis of specificity of factor binding to the

ERECon oligonucleotide: ERECon

oligonucleotide as competitor

1Opg of HeLa or GH3 WCE were incubated with 0.1 pmol

32P-labelled ERECOn oligonucleotide and 4pg poly

[d(l-C)]. Increasing amounts of unlabelled EREcon

oligonucleotide were added, as indicated in fold molar

excess over labelled oligonucleotide, above each lane.

Free and bound labelled oligonucleotide were

separated by 4% native polyacrylamide gel

electrophoresis as described (section 2.2.2.2).



GH3WCEHeLaWCE
competitor1~n'— (foldexcess)03927812430392781243 *•ft*

**:e!|M|y*



103

(section 2.8.1) containing O.lpmoi 32P-labelled ERECOn oligonucleotide

(Fig. 3.1a) and 4jig poly [d(l-C)]. As can be seen in Fig. 3.6a, 3pg of plasmid

(3rd lane) competed less well, and 6pg of plasmid (4th lane) competed more

strongly for factor binding, than did 4pg poly [d(l-C)] (2nd lane) . In Fig. 3.6b,

4pg plasmid competitor (6th lane) exhibited competition at a similar level to 4pg

poly [d(l-C)] (2nd lane). It was, therefore, decided to replace 4pg poly [d(l-C)]

with 4p.g Alul digested plasmid DNA as the non-specific competitor in the assay

described below.

Either pBLCAT2 (Luckow & Schutz, 1987) or pLC3, a derivative of

pBLCAT2 that differs by the presence of an ERECOn sequence cloned into the

pBLCAT2 polylinker, was used in this competition band shift assay. pLC3 was

constructed by inserting a 140bp DNA fragment of M13 mp19 DNA, in which the

lac operator had been converted into an ERECon sequence (K. Chapman,

personal communication), into the polylinker of pBLCAT2 (pLC3 construction

and insert sequence described in section 2.4.2). 4p.g of Alul digested pLC3

plasmid DNA (approximately equivalent to a 10-fold molar excess of competitor

EREcon) competed for complex formation between HeLa WCE and 32P-labelled

EREcon oligonucleotide (Fig. 3.7, lanes 2 & 4), whereas 4pg of Alul digested

pBLCAT2 did not (Fig. 3.7, lanes 3 & 5). This demonstrated that the factor

detected bound specifically to an ERECOn sequence embedded in a fragment of

non-specific DNA and did not bind to the transcription factor binding sites

(Sp1, CTF and TATA factor binding sites) in the HSV tk promoter region (Jones

et al., 1985) of pBLCAT2.

Factor has affinity for different, related oligonucleotide

sequences: To investigate DNA sequence alteration tolerated by the

DNA-binding activity of the identified factor, its ability to recognise a SRE

related to the ERECon. although functionally distinct from it, was examined.

Introduction of four base-pair changes within the conserved bases of the

EREcon converts this sequence into afunctional GRE (Klock et al., 1987;



Figure 3.6 Analysis of DNA-binding activity in the

presence of competitor plasmid DNA

10jig HeLa WCE (H) were incubated with O.lpmol

32P-labelled EREcon oligonucleotide, except for the left¬

most lane in panels (a) and (b) where WCE was not

included. Increasing amounts of unlabelled, Alul

digested pBLCAT2 were added to reactions as indicated

(pg comp.) above each lane. 4pg poly [d(l-C)] was

added only to band shift reactions marked (-) Free and

bound oligonucleotide were separated by 4% native

polyacrylamide gel electrophoresis (section 2.2.2.2).

Panels (a) and (b) represent different band shift assays.
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Figure 3.7 Analysis of specificity of factor binding to

EREcon oligonucleotide: Alu I digested plasmid

DNA as competitor

10pg (lanes 1-3) or 20fig (lanes 4-5) HeLa WCE were

incubated with O.lpmol 32P-labelled EREcon

oligonucleotide. Lane 0 does not contain WCE.

Competitor unlabelled DNA was 4pg poly [d(l-C)] (lanes

0 and 1), 4pg Alul digested pLC3 (lanes 2 and 4) or 4pg

Alul digested pBLCAT2 (lanes 3 and 5). Free and

bound oligonucleotide were separated by 4% native

polyacrylamide gel electrophoresis (section 2.2.2.2).
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Martinez et al., 1987; Fig. 3.1) (GRE, Fig. 3.1c). Surprisingly, complex

formation was observed between O.lpmol 32P-labelled GRE oligonucleotide

and 10pg of either HeLa or GH3 WCE (Fig. 3.8). Once more, complex

formation was specific; complete competition by 100-fold molar excess of

unlabelled ERECon oligonucleotide was observed (Fig. 3.8, 6th & 7th lanes).

Since this identified factor bound specifically to two functionally distinct

SREs, it was named the Steroid Response Element-Binding Protein

(SRE-BP).

Having determined that SRE-BP binding to EREcon and GRE

oligonucleotides was specific, SRE-BP affinity for oligonucleotides containing

ERECon and GRE related sequences was examined. EREprl differs from the

conserved nucleotides of the ERECOn by two base-pairs (Maurer & Notides,

1987; Waterman et al., 1988) (EREprl; Fig. 3.1b). A mutant GRE (GREM) was

created by increasing the spacing between the conserved nucleotides of a GRE

(GREm; Fig. 3.1d), and a TRE was created by decreasing the spacing between

the conserved nucleotides of a consensus ERE (Glass et al., 1988) (TRE;

Fig. 3.1 e). The ability of each oligonucleotide to compete for SRE-BP binding

in 10pg HeLa WCE to O.lpmol 32P-labelled ERECOn oligonucleotide in a

competition band shift assay (Fig. 3.9, left panel), was examined. A 100-fold

molar excess of unlabelled EREprl or GRE oligonucleotide competed for

SRE-BP binding at a level comparable to that observed when 100-fold molar

excess of ERECon oligonucleotide was used (Fig. 3.9, compare lanes 2, 3 & 4

with lane 1). A 100-fold molar excess of unlabelled GREm oligonucleotide

competed less well (compare lane 5 with lanes 1 & 2) whereas a 100-fold molar

excess of unlabelled TRE oligonucleotide competed weakly, if at all, for SRE-BP

binding (compare lane 6 with lanes 1 & 2). In the reciprocal band shift assay

(Fig. 3.9, right panel), a similar competition pattern was seen in which 100-fold

molar excess of unlabelled ERECon. EREprl or GRE oligonucleotide competed

with O.lpmol 32P-labelled GRE oligonucleotide for SRE-BP binding (compare



Figure 3.8 Specificity of factor binding to the GRE

oligonucleotide: ERECon oligonucleotide as

competitor

10|ig of GH3 (G) or HeLa (H) WCE were incubated with

O.lpmol 32P-labelled GRE oligonucleotide in the

presence of 4pg poly [d(l-C)]. Lane 0 does not contain

WCE. Excess unlabelled ERECOn oligonucleotide was

added as indicated in fold molar excess (10 x and 100 x)

above the four right-most lanes. Free and bound

oligonucleotide were separated by 4% native

polyacrylamide electrophoresis (section 2.2.2.2).
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lanes 2, 3 & 4 with lane 1); 100-fold molar excess of unlabelled GREm

oligonucleotide competed poorly (compare lane 5 with lane 1 & 2) and the TRE

did not compete (compare lane 6 with lanes 1 & 2). It was also noted that

GREm was consistently a slightly better competitor for binding to a labelled GRE

than to a labelled EREcon-

As GREm and TRE oligonucleotides displayed consistently poor

competition for SRE-BP binding, it followed that little or no SRE-BP-DNA

complex would be detected when either labelled GREm or TRE oligonucleotide

was used in a band shift assay. SRE-BP binding to either O.lpmol 32P-labelled

GREm or TRE oligonucleotides was not detected after incubating with 10pg

HeLa WCE and 4pg poly [d (l-C)] (Fig. 3.10, 8th & 6th lanes, respectively). In

order to detect any weak complex formation, the gel was exposed to

autoradiographic film for 10 times longer than usual; minimal SRE-BP GREM

binding was detected (Fig 3.10, 12th lane) but no SRE-BP TRE-binding was

observed (Fig. 3.10,10th lane). The SRE-BP therefore, binds with highest

affinity to oligonucleotides which contain either an ERE or GRE sequence; the

SRE-BP also binds to a GREm oligonucleotide although with reduced affinity,

and does not bind at all to a TRE under band shift assay conditions. The

SRE-BP, therefore, has varied affinity for different, related oligonucleotide

sequences, although SRE-BP binding is more selective for either an ERE or a

GRE, but preferential to neither.

3.2.2 The SRE-BP is located in the nucleus

The cellular location of the SRE-BP was investigated; DNA-binding

proteins must be localised in the cell nucleus with DNA substrate in order to

have a biological effect. Nuclear extracts of HeLa cells were prepared (section

2.6.2) and assayed for SRE-BP binding activity using O.lpmol 32P-labelled GRE

oligonucleotide under standard band shift assay conditions (section 2.8.1).

4pg HeLa nuclear extract gave rise to a complex (Fig. 3.11) with identical



Figure 3.9 Specificity of factor binding to both an EREcon

oligonucleotide or a GRE oligonucleotide

10|ig of HeLa whole cell extract were incubated with

4(ig poly [d(l-C)] and either O.lpmol 32P-labelled

ERECon oligonucleotide (left panel) or O.lpmol

32P-labelled GRE oligonucleotide (right panel). Lane 0

does not contain WCE; lane 1 does not contain

competitor; lanes 2-6 show binding in the presence of a

100-fold molar excess of competitor oligonucleotide as

follows: lane 2, EREcon; lane 3, EREprl; lane 4, GRE;

lane 5, GREM; lane 6, TRE. Free and bound labelled

oligonucleotide were separated on a 4% polyacryalmide

gel by electrophoresis (section 2.2.2.2).
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Figure 3.10 Specificity of factor binding to radiolabeled

ERECOn, GRE, TRE and GREM oligonucleotides

10jig of HeLa WCE was (+) or was not (-) incubated with

O.lpmol each of 32P-labelled EREcon oligonucleotide

(E), GRE oligonucleotide (G), TRE oligonucleotide (T), or

GREm oligonucleotide (M) in the presence of 4pg poly

[d(l-C)]. The right-most four lanes represent a 10 times

longer exposure of the adjacent 4 lanes. Free and

bound oligonucleotide were separated by 4% native

polyacrylamide gel electrophoresis (section 2.2.2.2).
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characteristics to SRE-BP complex formed by 10pg HeLa WCE; 100-fold molar

excess of ERECon and GRE oligonucleotide competed for complex formation

(Fig. 3.11, lanes E & G), whereas GREm and TRE oligonucleotides did not

(Fig. 3.11, lanes M & T). The sequence preference of nuclear factor binding

and its identical electrophoretic mobility to SRE-BP in HeLa WCE (data not

shown) indicated that this activity was SRE-BP and that SRE-BP was, therefore,

localised in the cell nucleus. However, the possibility that SRE-BP activity is

also found in the cytoplasm cannot be ruled out.

3.2.3 The SRE-BP is a protein

Extracts of whole cells have been used in many of the experiments

detailed in this thesis. The method by which whole cell extracts are

prepared (section 2.6.1) will yield a solution highly enriched for protein

substrates. It is, therefore, extremely likely that the identified SRE-BP is a

protein species. The major fat component in cells is phospholipid which is

found in cellular membranes. It is assumed that these membranes are

removed after cell lysis, along with contaminating nucleic acids, by high

speed centrifugation; presumably, the resulting WCE has negligible content

of fatty acid and nucleic acid. In this section, experiments are described in

which various treatments which inactivate proteins were administered to

HeLa WCE or to partially purified SRE-BP derived from HeLa WCE (see

Chapter 4, section 4.2.1.1 and section 2.9) to reinforce this premise.

Treated protein extracts were assayed for SRE-BP activity.

Most proteins are inactivated by either heating to temperatures above

60°C or exposure to high (usually 6-8M) concentrations of urea. Heat and

urea denaturation of proteins is caused by disruption of non-covalent bonds

necessary to maintain the three dimensional conformation of a protein.

10pg HeLa WCE or 1pg partially purified SRE-BP (see Chapter 4,

section 4.2.1.1 and section 2.9) were exposed either to 60°C for 10 mins or



Figure 3.11 Analysis and specificity of SRE-BP activity in

nuclear extracts of HeLa cells

Nuclear extracts of HeLa cells were prepared as

described in section 2.6.2. 10pg of HeLa nuclear

extract were incubated with O.lpmol 32P-labelled GRE

oligonucleotide and 4pg poly [d(l-C)]. The left-most

lane in the band shift reaction did not contain nuclear

extract. Excess (100-fold) unlabelled competitor

oligonucleotide was added as follows: EREcon

oligonucleotide (lane E), GRE oligonucleotide (lane G),

GREm oligonucleotide (lane M), TRE oligonucleotide

(lane T). Free and bound oligonucleotide were

resolved by 4% native polyacrylamide gel

electrophoresis (section 2.2.2.2).
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to 6M urea for 10 min at 0°C (section 2.6.1). Treated WCE or treated

partially purified SRE-BP were incubated with O.lpmol 32P-labelled EREcon

oligonucleotide and 4pg poly [d(l-C)j in a band shift assay (section 2.8.1).

Figure 3.12 demonstrates that SRE-BP DNA-binding activity was inactivated

by heat treatment (Fig. 3.12a, compare lane 1 & 2 with 4 & 5) and exposure

to 6M urea (Fig. 3.12b, compare lane 1 with lanes 3 & 4). SRE-BP binding

activity was also denatured after leaving HeLa WCE at 4°C for more than six

weeks, or at room temperature for more than two weeks; protein-DNA

complexes with faster electrophoretic mobility were observed after 10pg of

these old HeLa WCEs were incubated with EREcon oligonucleotide

(Fig. 3.12b, lane 2). This was probably due to proteolytic attack on

SRE-BP.

3.3 DISCUSSION

The results presented in this Chapter clearly show the existence of a

cellular protein in WCE of HeLa, GH3 and CV-1 cells, and in rat liver tissue,

which exhibits preferential DNA binding to both ERE and GRE containing

oligonucleotides. This cellular protein is named the Steroid Response

Element-Binding Protein (SRE-BP).

The SRE-BP binds preferentially to EREs and a GRE in vitro.

Transcription factor binding sites present within the truncated HSV tk

promoter of pBLCAT2 (TATA, CTF and Sp1 binding sites) (Jones et al.,

1985) are unable to compete for SRE-BP binding to an EREcon

oligonucleotide when digested pBLCAT2 DNA is included in the band shift

reaction. Plasmid DNA only competes for complex formation if a 140bp

DNA fragment containing an ERECon sequence has been cloned into the

pBLCAT2 polyiinker. All of the DNA sequence flanking the EREcon on the

140bp insert of pLC3 are derived from pUC (K.E. Chapman, personal

communication). Exactly the same DNA sequences are present in the



Figure 3.12 Analysis of SRE-BP activity after heat or urea

denaturation

Heat or urea denatured WCE was prepared as

described (2.6.1) (a) 10jig and 20jig HeLa WCE (lanes

1 and 2); 10pg HeLa WCE which had been stored at

4°C for ~6 weeks (lane 3), or 10|ig and 20pg heat

denatured HeLa WCE (lanes 4 & 5 respectively) were

incubated with O.lpmol 32P-labelled EREcon

oligonucleotide and 4pg poly [d(l-C)] (b) No WCE

added to lane 0. 10pg HeLa WCE (lane 1); 10pg HeLa

WCE having been left at room temperature for over two

weeks (lane 2); 10pg and 20|ig urea denatured HeLa

WCE (lanes 3 and 4, respectively) were incubated as

above.

Free and bound oligonucleotide were separated by 4%

native polyacryalmide gel electrophoresis (section

2.2.2.2).
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pBLCAT2 which contains the entire 2.7kb of pUC18 DNA (Luckow & Schutz,

1987). The observed competition is, therefore, due to the encoded ERECon

and not to flanking DNA sequences.

Three SREs; EREprl, ERECon and GRE, compete for SRE-BP binding

to either an ERE or GRE oligonucleotide. Each SRE can function as a

transcriptional enhancer in cell transfection studies. EREprl contained

within a 228bp fragment of rat prolactin DNA is able to confer oestradiol-

dependent transcriptional enhancement on a linked promoter in vivo (Mauer

& Notides, 1987; Waterman et al., 1988). Oligonucleotides encoding either

a 13bp ERE consensus sequence or a 15bp GRE consensus sequence are

independently able to confer transcriptional enhancement from a linked

promoter in vivo in the presence of oestradiol and dexamethasone,

respectively (Klock et al., 1987; Martinez et al., 1987; Klein-Hitpass et al.,

1988; Strahle et al., 1987; Ham et al., 1988, Fig. 3.2). However, SRE-BP

complex formation is competed for only weakly by a GREm oligonucleotide

and undetectably by a TRE oligonucleotide. This weak competition is

reflected in the low affinity binding of SRE-BP to a radiolabeled GREm

oligonucleotide and in its total lack of binding to radiolabeled TRE

oligonucleotide. GREm and TRE oligonucleotides share the same

conserved nucleotides as the symmetrical GRE and EREcon

oligonucleotides, respectively. However, both GREM and TRE have mutated

spacer regions with respect to the GRE and EREcon respectively; the GREM

has a 4bp spacer, whereas the TRE has no spacer. It therefore appears that

the relative orientation and spacing of the SRE conserved arms is important

for SRE-BP DNA-binding activity.

The DNA sequence at either end of ERECon and GRE are identical to

each other, although different from those of the TRE or GREm

oligonucleotide. It can be argued that neither GREm nor TRE

oligonucleotides compete for SRE-BP binding because they do not have
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identical flanking DNA sequences to the ERECon and GRE oligonucleotides.

This is unlikely, since the ERECon sequence encoded in pLC3 competes

efficiently for SRE-BP binding, although its flanking DNA is different from

EREcon and GRE oligonucleotides. Also, the TRE and GRE^

oligonucleotides are only 20bp long whereas the ERECon and GRE

oligonucleotides are 21 bp in length. As the capabilities of either TRE or

GREm to bind SRE-BP are significantly different (see Fig. 3.10), it is unlikely

that simply being a shorter oligonucleotide could account for the differential

SRE-BP DNA-binding affinity exhibited.

Several lines of evidence indicate that the SRE-BP is unlikely to be

either ER or GR. i) The SRE-BP is present in a number of cell-types,

including HeLa cells and CV-1 cells. As neither HeLa nor CV-1 cells

contain endogenous ER (Kumar & Chambon, 1988; Klein-Hitpass et al.,

1989), SRE-BP activity cannot be due to the presence of contaminating ER.

CV-1 cells do not respond to glucocorticoids (Giguere et al., 1986;

Umesono & Evans, 1989) and it is generally assumed that they do not

contain endogenous functional GR; it is, therefore, unlikely that SRE-BP

activity is due to functional GR. It is, however, noted that Hoeck & Groner

(1990), who also observed non-responsiveness of CV-1 cells to

glucocorticoids, additionally demonstratedimmunoprecipitation of a protein

by polyclonal antiserum directed against the DNA-binding and ligand

binding domains of rat GR. The relatedness of this protein to GR is not

defined; nor is it known if this protein is peculiar to the CV-1 cell-line used in

that particular study or present in all CV-1 cells lines, ii) In contrast to the

sequence-specific binding of ER to an ERE, or GR to a GRE (Kumar &

Chambon, 1988), the SRE-BP binds to either an ERE or a GRE without

sequence preference for either. Beato (1989) claims that his laboratory

detected significant binding of ER to the MMTV promoter, which contains a

GRE, in vitro. However, no evidence of this has been published , and
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conditions under which this apparent ER-GRE interaction is detected are not

available for scrutiny, iii) GR is located cytoplasmically in its uninduced

state (Wilkstrom et al., 1987). However, SRE-BP GRE-binding activity is

detected in nuclear extracts of HeLa cells which were not exposed to high

levels of hormone. Although some endogenous HeLa GR may be activated

by residual glucocorticoids in the serum added to tissue culture medium

(see section 2.5 for tissue culture condition), taking into account all three

arguments it is unlikely that observed SRE-BP activity is due to either ER or

GR activity.

It is also unlikely that the SRE-BP activity observed is due to TR.

Although TR binds to an ERE with high affinity, TR does not bind to a GRE

(Glass et al., 1988). Additionally, CV-1 cells do not contain endogenous TR

(Glass et al., 1988; Umesono & Evans, 1989), although they do contain

SRE-BP.

It is widely accepted that SRs bind to their specific SRE with high

affinity in vivo and enhance transcription from a linked promoter. In support

of this, Becker et al. (1986) have reported hormone-dependent changes in

reactivity of guanine residues in the GRE of the tyrosine aminotransferase

gene which reflect GR binding to its GRE in vivo in a hormone-dependent

manner. In the absence of hormone, Becker et al. (1986) report some

changes in reactivity of guanine residues within the GRE in vivo, compared

to reactivity within the same region of naked DNA, in vitro. This data is

consistent with the possibility that a protein (possibly SRE-BP) is bound to

the GRE in vivo in the absence of hormone, although with lower affinity than

activated GR. The data do not rule out the possibility that other proteins,in

addition to activated GR, may bind to the GRE during hormone activation.

In contrast to the situation in vivo, in vitro studies which have

examined the ability of purified SR to discriminate between a specific SRE

and non-specific DNA have largely failed to demonstrate high specificity of
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binding. In many cases, the purified receptor binds with less than 10-fold

higher affinity to SRE-containing DNA than non-specific DNA (Maurer &

Notides, 1987; Payvar et al., 1981; Compton et al., 1983; Bailly et al., 1986;

von derAhe et al., 1985; Jantzen et al., 1987; Peale et al., 1988; Hard et

al., 1990b). Higher specificity could be achieved, in part, by accessory

proteins. A number of reported experiments directly, or indirectly, suggest

the involvement of accessory proteins in increasing sequence-specific

binding of SRs to target DNA sequences (Feavers et al., 1987; Wrange et

al., 1986; Payvar et al., 1983; Edwards et al., 1989) and of TR (Murray &

Towle, 1989; Chin, 1990). Only one such accessory protein has been

shown to bind directly and specifically to a SRE; Feavers et al. (1987) have

identified a 70kD protein, NHP-1 (which is not ER) which binds specifically to

the ERE of chick vitellogenin gene and which increases ER binding to the

ERE. SRE-BP and NHP-1 have various features in common; neither is

tissue- nor species-specific and neither binds to an ERE which retains the

conserved nucleotide arms but has the 3bp spacer region deleted. Feavers

et al. (1987) report a chick hepatoma cell line, DU249/2, which does not

contain NHP-1. It would be interesting to examine whether this cell line also

lacks SRE-BP DNA-binding activity.

Electron microscopic resolution of interaction between SR in nuclear

extract and SRE demonstrate that these complexes are large and probably

include additional proteins (Heggeler-Bordier et al., 1987). Furthermore,

several reports demonstrate preferential binding of purified SR to DNA

already complexed with protein, rather than to naked DNA (Thrall &

Spelsberg, 1980; Feavers et al., 1987). This suggests the involvement of

DNA-bound accessory proteins (possibly SRE-BP) in increasing the

specificity of the SR-SRE interaction.

In contrast to SRs themselves, the SRE-BP interacts with two classes

of functionally distinct SRE, binding to an ERE and GRE with similar affinity.
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EREs and GREs direct oestrogen and glucocorticoid regulation of gene

transcription, respectively. The GRE is also capable of directing

transcriptional control in response to progestins, androgens and

mineralocorticoids (Ham et al., 1988; Arizza et al., 1987). A GRE with

identical conserved nucleotides to the symmetrical GRE used in this study

can direct glucocorticoid and progesterone transcriptional regulation in cell

transfection studies (Strahle et al., 1987). In this respect, the SRE-BP may

be analogous to the 90kD heat shock protein which plays a global role in

steroid hormone action. Hsp90 interacts with ER, GR, AR and PR (Renoir et

al., 1990) and probably with MR, in the absence of hormone, and maintains

the SR in a conformation which cannot bind to DNA (Denis et al., 1988b) but

which can efficiently bind steroid hormone (Dalman et al., 1989; see section

1.6.3 for review). I propose that the SRE-BP described in this thesis whose

DNA-binding activity is not confined to one class of SRE or one type of

tissue, also plays a global role in steroid hormone regulation of gene

transcription by modulating DNA-binding affinity of SR for SRE.



CHAPTER 4

MOLECULAR CHARACTERISATION OF THE STEROID RESPONSE ELEMENT-
BINDING PROTEIN
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4.1 INTRODUCTION

In the previous Chapter, the SRE-BP was identified and its DNA-

binding affinity for different, related SREs was assessed by band shift

analysis. For this chapter, the techniques of gel filtration chromatography,

pore gradient gel electrophoresis, and UV-crosslinking were employed to

investigate the relative mol. wt. of SRE-BP in its soluble or DNA-bound state,

and the SRE-BP subunit composition, respectively.

Gel filtration chromatography commands separation of molecules

based on their ability to be absorbed onSephacryl beads, which, in turn, is

dependent on molecule size and shape. Small protein molecules are

easily absorbed on sephacryl beads and, therefore, their progression

through the column is impeded, whereas large protein molecules are less

easily absorbed and proceed through the column faster than smaller

molecules. Thus, proteins of different mol. wts. are separated from each

other and collected in fractions which elute from the column.

The size of the Sephacryl bead determines the mol. wt. parameters

within which molecules can be separated. For the purpose of this study, a

Sephacryl S300 column was used (precalibrated by Dr. S. Chapman,

Department of Chemistry, Edinburgh University) which allowed absorption,

and so separation of proteins of mol. wt. below 300kD. Proteins larger than

the 300kD exclusion limit would travel through the column unhindered with

the void buffer volume.

In pore gradient gel electrophoresis, protein-DNA complexes are

electrophoresed adjacent to protein standard mol. wt. markers through a

polyacrylamide gel with a pore size gradient (Rodriguez & O'Malley,

personal communication; Andersson et al., 1972); the largest pores are

nearest the loading wells of the gel and the smallest pores are furthest away

from the wells. Complexes and markers eventually reach a pore size in the

gradient gel through which they cannot proceed any further, as the pore size
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becomes too small to accommodate the size of the molecule.

Consequently, when the gradient gel is electrophoresed for a sufficient

length of time, electrophoretic mobility of protein-DNA complexes and of

protein markers is ultimately determined by their respective mol. wts. and is

not affected by electrostatic charge (except for very positively charged

proteins which are drawn out of the gel loading wells into the reservoir

buffer). The mol. wt. of a protein-DNA complex can be determined by

comparing its electrophoretic mobility to that of protein mol. wt. markers.
Characterised mol. wts. published in this thesis represent mean and range calculations.

UV-crosslinking uses short-wave (312nM, for this study) UV-light to

covalently crosslink protein to DNA (or RNA). Using this technique, specific

interactions between protein and nucleic acid can be stabilised for further

characterisation and analysis.

The chemistry behind UV-crosslinking is only partly understood.

UV-irradiation of protein-nucleic acid complexes forms a covalent linkage

between nucleotide and amino acid side chain. Nucleotide-amino acid

crosslinks are specific as neither nucleic acid-nucleic acid nor protein-

protein covalent crosslinks occur (Smith, 1976; Woppmann et al., 1988).

Since UV light has a short effective crosslinking range, protein-nucleic acid

adducts are formed only when interacting groups are in close proximity,

within one bond length apart (Smith, 1976). Therefore, protein-nucleic acid

molecules which become crosslinked are assumed to have been in direct

contact in the stable non-covalent protein-DNA complex.

In this study, UV-crosslinking of cellular proteins to DNA containing a

bromodeoxyuridine (BdU) nucleotide was employed. BdU is a derivative of

thymine, which is particularly sensitive to irradiation by UV to form covalent

BdU-protein crosslinks.

Two derivatives of the ERECOn oligonucleotide (Fig. 3.1a) were used

for crosslinking analysis, each incorporating a single thymine to BdU

substitution (Fig. 4.7). BdU-ERE1 contains a substitution within the EREcon
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spacer region, whereas BdU-ERE2 has a substitution within the conserved

nucleotides of the ERECon- In addition, the BdU substitutions are 4bp apart

in their respective oligonucleotide. Hence, in their double-stranded

conformation, each BdU substitution will almost be on opposite sides of the

DNA helix, assuming 10.5bp per turn of B-form DNA. BdU-ERE1 and 2,

therefore, provide differential positioning and orientation of UV-sensitive

BdU molecules which will maximise the chance of generating crosslinked

SRE-BP-BdU complexes.

This chapter describes mol. wt. characterisation of the SRE-BP as an

approximately 200kD protein in both its soluble and DNA-bound state.

Preliminary evidence is also presented which suggests the SRE-BP is not a

single ~200kD polypeptide but probably a multisubunit protein complex.

4.2 RESULTS

4.2.1 Molecular weight characterisation of the SRE-BP

4.2.1.1 The SRE-BP is stable in solution as a 205kD (±20kD)

protein:

The relative mol. wt. of the SRE-BP, as it exists in solution, was

determined by gel filtration chromatography (section 2.9). HeLa WCE

resuspended in column buffer (section 2.9) exhibited SRE-BP ERE-binding

activity in a band shift reaction, although at a reduced level compared to

WCE resuspended in extract buffer (section 2.6.1) (Fig. 4.2, compare

complexes in lanes B and A, respectively). Approximately 7mg HeLa WCE

(with blue dextran and cytochrome C added as described in section 2.9)

were loaded onto the precalibrated, preequilibratedSephacryl S300 column

and allowed to travel through the column at 4°C for 24h-48h (section 2.9).

In one such experiment, a total of 47 fractions each of 3.5ml eluted from the

column within the mol. wt. range 300kD-12.5kD. 18pl of each fraction was

assayed for binding to O.lpmol 32P-labelled ERECon oligonucleotide in a
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20pJ band shift reaction containing 4jig poly [d(l-C)] (Fig. 4.2). Most of the

ERE-binding activity was contained in fractions 20 and 21 (Fig. 4.2) with a

lower amount of ERE-binding activity detected in fractions 19 and 22.

Fractions 15 to 27 were subsequently assayed for binding to O.lpmol

32P-labelled GRE oligonucleotide in a similar band shift assay (Fig. 4.3).

GRE-binding activity was also predominantly detected in fractions 20 and 21

with a lower amount observed in fractions 19 and 22 (Fig. 4.3). Thus, ERE

and GRE binding activities co-eluted from the Sephacryl S300 column,

supporting the theory that one cellular protein, the SRE-BP, contains both

activities.

SRE-BP mol. wt. was determined relative to the protein mol. wt.

markers (described in section 2.9). The average of the volumes at which

fractions 20 and 21 eluted was divided by the void volume; the result was

plotted on the calibration graph (Fig. 4.1). As can be seen from Fig. 4.1,

SRE-BP eluted in a buffer volume at which proteins of approximately 200kD

elute. Analysis of results provided by two different gel filtration

chromatography experiments revealed the soluble form of SRE-BP had a

relative mol. wt. of 205kD (± 20kD).

The SRE-BP has been partially purified: In addition to characterising

the relative mol. wt. of the SRE-BP, gel filtration chromatography of HeLa

WCE also partially purified SRE-BP activity from other cellular proteins of

different mol. wt. The two fractions containing the most SRE-BP

DNA-binding activity(20 and 21 in the described experiment) were pooled

(total volume 7mls) and concentrated using an Amicon filter to a final volume

of ~800p.l (section 2.9). Concentrated partially purified SRE-BP was Ip-gpL1

as determined by Biorad Protein Assay (section 2.7).

To estimate the degree to which SRE-BP had been purified by gel

filtration chromatography, the amount of partially purified SRE-BP required

to give a protein-DNA complex of equivalent signal intensity to 10pg of HeLa
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Figure 4.2 Gel filtration chromatography: Elution

profile of ERE-binding activity

HeLa WCE was fractionated over a Sephacryl

S300 column; fractions were collected for band

shift analysis. Each reaction contained 0.1 pmol

32P-labelled EREcon oligonucleotide and 4pg

poly [d(l-C)]. Reactions were as follows: no

protein added (lane A), 10pg HeLa WCE finally

resuspended in either extract buffer (lane B) or

column buffer (lane C), or 18pl of fractions 1-26

(numbered above each lane). Free and bound

oligonucleotide were separated by 4% native

polyacrylamide gel electrophoresis (section

2.2.2.2).
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Figure 4.3 Gel filtration chromatography: Elution

profile of GRE-binding activity

HeLa WCE was fractionated over a Sephacryl

S300 column; fractions were collected for band

shift analysis. Each reaction contained O.lpmol

32P-labelled GRE oligonucleotide and 4pg poly

[d(l-C)]. Reactions were as follows: no protein

added (lane A), 10p.g HeLa WCE finally

resuspended in either extract buffer (lane B) or

column buffer (lane C), or 18(il of fractions 15-27

(numbered above each lane). Free and bound

oligonucleotide were separated by 4% native gel

electrophoresis (section 2.2.2.2).
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WCE was determined in a band shift assay. Either 1(ig, 2(ig or 3pg of

partially purified SRE-BP or 10(ig of HeLa WCE were mixed with O.lpmol

32P-labelled EREcon oligonucleotide and 4pg poly [d(l-C)] in a standard

band shift reaction (section 2.8.1). DNA-binding activity in 1pg of partially

purified SRE-BP was at least equal to that contained in 10pg of HeLa WCE

(Fig. 4.4, compare lanes 2 and 3). Thus, the partially purified SRE-BP

represented at least a 10-fold purification of SRE-BP from HeLa WCE.

When 3(ig of partially purified SRE-BP was included in the band shift,

a second complex exhibiting faster electrophoretic mobility, but the same

signal intensity compared to the SRE-BP/ERE complex, was observed which

was not seen when only 1pg partially purified SRE-BP was used (Fig. 4.4,

compare lane 3 with 1). The reason for the formation of this second

complex remains unknown.

To verify that partially purified SRE-BP retained its previously

characterised DNA-binding preference for both EREs and a GRE (described

in Chapter 3), a competition band shift assay was performed. In a 20pl

band shift reaction containing 4pg poly [d(l-C)] (see section 2.8.1), 100-fold

molar excess of unlabelled EREcon, EREprl or GRE oligonucleotides

(oligonucleotide sequences detailed in Fig. 3.1) competed efficiently for

binding of 1pg of partially purified SRE-BP to O.lpmol 32P-labelled ERECon

oligonucleotide (Fig. 4.5, lanes 2-4), whereas 100-fold molar excess of

GREm competed poorly (Fig. 4.5, lane 5). This competition pattern was

identical to that previously characterised for SRE-BP DNA-binding activity

present in 10pg HeLa WCE (compare Fig. 4.5 to Fig. 3.9). Hence, partially

purified SRE-BP, retained the ability to bind preferentially to

oligonucleotides containing an ERE or a GRE sequence.



Figure 4.4 Analysis of DNA-binding activity in

partially purified SRE-BP

Sephacryl S300 column fractions containing

SRE-BP activity (fractions 20 and 21 in Figs. 4.2

and 4.3) were pooled and concentrated using an

Amicon filter. Concentrated partially purified

SRE-BP was used for band shift analysis as

shown: 10gg HeLa WCE (H) or 1pg, 2pg, and

3pg of partially purified SRE-BP (S300) (as

indicated above relevant lanes) were incubated

with O.lpmol 32P-labelled ERECOn

oligonucleotide and 4pg poly [d(l-C)]. Lane O did

not contain any protein. Free and bound

oligonucleotide were separated by 4%

polyacryalmide gel electrophoresis (section

2.2.2.2).
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Figure 4.5 Specificity of partially purified SRE-BP

binding to the ERECOn oligonucleotide

Fractions 20 and 21 containing partially purified

SRE-BP were concentrated using an Amicon

filter. 1pg of partially purified SRE-BP was

incubated with O.lpmol 32P-labelled EREcon

oligonucleotide and 4pg poly [d(l-C)]. A 100-fold

molar excess of competitor ERECOn (lane 2),

EREpRL(lane 3), GRE (lane 4), and GREm (lane 5)

oligonucleotide was added; competitor was not

added to lane 1. Free and bound labelled

oligonucleotide were separated on a 4%

polyacrylamide gel by electrophoresis (section

2.2.2.2).
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4.2.1.2 The SRE-BP forms a 213kD ±27kD complex with the

EREcon oligonucleotide

Some transcription factors exist in solution in a different state to their

DNA-bound form. For example, the steroid hormone receptors are

complexed with a 90kD heat shock protein (hsp90) in their soluble form, but

hsp90 is dissociated from SR which is bound to DNA (reviewed in section

1.6.3.1).

To examine whether SRE-BP binds to DNA in solution in a similar or

different form to its soluble state (determined in 4.2.1.1), native pore gradient

gel electrophoresis was used (section 2.2.2,3).

Protein extract, either 10pig of HeLa WCE or 1pg of partially purified

SRE-BP, was incubated with O.lpmol 32P-labelled ERECOn oligonucleotide

and 4pg poly [d(l-C)] in a standard band shift assay (section 2.8.1).

Reactions were loaded onto a 3-25% pore gradient polyacrylamide native

gel (prepared as described in section 2.2.2.3), adjacent to protein standard

mol. wt. markers (bovine serum albumin, 67kD; Myosin, 200kD; E.coli

galactosidase tetramer, 464kD), and electrophoresed for 1500 volt-hours.

The gel was stained with Coomassie Brilliant Blue R (section 2.6.4.1) to

visualise protein markers, dried and exposed to autoradiographic film

overnight.

Figure 4.6 shows that SRE-BP/ERE complex formed with either HeLa

WCE or partially purified SRE-BP migrated to a position near to the 200kD

mol. wt. marker. By relating the electrophoretic mobility of the SRE-BP/DNA

complex to that of protein mol. wt. markers, the SRE-BP/ERE complex was

shown to have a relative mol. wt. of 213kD. Analysis of four such

experiments, each correcting for inclusion of the EREcon oligonucleotide

(approximately 13kD), demonstrated that the active SRE-BP DNA-binding

form was 200kD ± 27kD. Thus, the relative mol. wts. of the soluble (~205kD,



Figure 4.6 Pore gradient gel electrophoresis of

ERE/SRE-BP complexes

Either 1pg of partially purified SRE-BP (lane 1) or

10|ig HeLa WCE (lane 2) were incubated with

O.lpmol 32P-labelied EREcon oligonucleotide and

4(ig poly [d(l-C)]. Lane 3 contained "lOjig HeLa

WCE previously left at 4°C for longer than six

weeks. Free and bound oligonucleotide were

resolved by electrophoresis through a 3-25%

native gradient polyacrylamide gel (section

2.2.2.3). Protein mol. wt. markers were

electrophoresed in parallel lanes: bovine serum

albumin (67kD), myosin (200kD), and E. coli

(3-galactosidase (464kD).
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Fig. 4.1) and DNA-bound forms (~200kD, Fig. 4.6) of SRE-BP are very

similar. It is likely that these forms represent the same protein species.

4.2.2 Characterisation of subunit composition of SRE-BP

The SRE-BP activity identified (Chapter 3) may represent either a

single DNA binding, 205kD polypeptide, or a multiple subunit protein

complex with a total mol. wt. of approximately 205kD, of which one subunit,

the DNA-binding subunit, binds to DNA. To explore the subunit composition

of SRE-BP, UV-crosslinking experiments were implemented.

DNA-binding reactions to be crosslinked (section 2.8.2) contained

100pg HeLa WCE, 40pg poly [d(l-C)] and 1pmol of either32 P-labelled

BdU-ERE1, BdU-ERE2, or EREcon oligonucleotide (see Figs. 4.7 and 3.1a

for oligonucleotide sequences) in a final volume of 100pl; reactions were

exposed to UV light for either 20 or 40 minutes, as described in section

2.8.2.

To confirm that SRE-BP-DNA complexes had formed in UV -irradiated

reactions, a 10pl aliquot from each reaction was electrophoresed through a

native 4% gel (section 2.2.2.2), adjacent to a set of standard band shift

reactions (section 2.8.1). These standard band shift reactions, which had

not been irradiated, contained 10pg HeLa WCE, 4pg poly [d (l-C)] and

O.lpmol of 32P-labelled BdU-ERE1, BdU-ERE2 or EREcon oligonucleotide.

SRE-BP binding to each labelled oligonucleotide was detected before and

after irradiation (Fig. 4.8); irradiated reactions and their counterpart

non-irradiated control reactions exhibited similar SRE-BP activity with

respect to SRE-BP-DNA complex intensity and electrophoretic mobility.

This indicated that BdU-substitutions in BdU-ERE1 and BdU-ERE2 did not

interfere with detection of a SRE-BP-DNA complex. The decreased signal

intensity of SRE-BP-BdU-oligonucleotide complexes compared to

SRE-BP-EREcon oligonucleotide complex probably reflected the lower



Figure 4.7 Sequence of oligonucleotides used in

bromodeoxyuridine crosslinking

experiments

(a) BdU-ERE 1 GCAGGTCACAGTGACCTGGAC
CGTCCAGTGBCACTGGACCTG

(b) BdU-ERE 2 GCAGGTCACAGTGACCTGGAG
CGTCCBGTGTCACTGGACCTC

Horizontal lines indicate the conserved

nucleotides within ERE. The letter B marks the

position of a single thymine to bromodeoxyuridine

substitution in the ERECon sequence. The BdU

substitution of ds oligonucleotide (a) and (b) exist

within the spacer region and conserved

nucleotides of the EREcon respectively (ERECon

oligonucleotide sequence is presented in

Fig. 3.1a). Oligonucleotides were synthesised by

Oswell DNA Services, Department of

Chemistry, Edinburgh University.



Figure 4.8 Analysis of SRE-BP activity after UV-

irradiation

Reactions were exposed to UV radiation for 20

(panel 20') and 40 (panel 40') mins (section

2.8.2). A 10|il aliquot of each UV-irradiated

reaction, equivalent to 10pg HeLa WCE, 4jig poly

[d(l-C)] and O.lpmol 32P-labelled BdU-ERE1

(lane 1), BdU-ERE2 (lane 2) or EREcon (lane E)

oligonucleotide was analysed by 4% native

polyacrylamide gel electrophoresis (section

2.2.2.2). No labelled oligonucleotide was added

to lanes marked (-). Standard 20|il band shift

reactions (panel BS) (section 2.8.1) containing

10jiig HeLa WCE O.lpmol 32p.|abelled BdU-

ERE1 (lane 1), BdU-ERE2 (lane 2), or EREcon

(lane E) oligonucleotide and 4pg poly [d(l-C)]
were electrophoresed in parallel lanes. Lanes

marked O did not contain protein extract.
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specific activity of the former oligonucleotides; only the BdU oligonucleotide

was end labelled and not the complementary oligonucleotide to which it had

been annealed (see 2.8.2).

The remainder of each 10Opil irradiated reaction was subjected to

10% SDS gel electrophoresis (section 2.2.2.4); protein standard mol. wt.

markers (detailed in Fig. 4.9 legend) were electrophoresed in parallel.

Several crosslinked complexes were detected, none of which

represented a complex of around 200kD; all complexes were smaller than

92.5kD (Fig. 4.9). These complexes were due to protein DNA interactions,

since no complex formation was detected when 1pmol 32P-labelled

oligonucleotide was exposed to UV radiation in the absence of WCE

(Fig. 4.10, right-most three lanes). Six crosslinked complexes were

observed with both BdU-ERE1 and BdU-ERE2, of mol. wts. 88kD, 74kD,

60kD, 55kD, 48kD, and 42kD. These complexes were most apparent with

BdU-ERE1 oligonucleotide after 40 mins exposure to UV radiation (Fig. 4.9;

panel 40'; lane 1). Similar crosslinked complexes detected with the

labelled ERECOn were less intense, except for a prominent 88kD complex

observed most readily after 40 mins UV-irradiation (Fig. 4.9; panel 40;

lane E).

To examine whether any of the crosslinked complexes formed

specifically with an ERE sequence, a competition experiment was carried

out. A 100-fold molar excess of ERECOn or TRE oligonucleotide was

included into a 100pl crosslinking reaction (section 2.8.2) containing 100pg

FleLa WCE, 40pg poly [d(l-C)] and either 1pmol 32P-labelled BdU-ERE1 or

EREcon oligonucleotide. Reactions were exposed to UV radiation for 30

mins then analysed by SDS polyacrylamide gel electrophoresis (section

2.2.2.4) (Fig. 4.10).

The six complexes previously observed were reproducibly formed

with BdU-ERE1 and EREcon oligonucleotides (Fig. 4.10; panel BdU1,



Figure 4.9 Analysis of ERE/HeLa WCE UV-

crosslinked complexes

Reactions were exposed to UV-radiation for 20

(panel 20') and 40 (panel 40') mins (section

2.8.2). 90pl of each 1 OOjj.1 reaction, which

contained 100pg HeLa WCE, 40pg poly [d(l-C)],

and approximately 1pmol 32P-labelled

BdU-ERE1 (lane 1), Bdll-ERE2 (lane 2) or

ERECOn (lane E) oligonucleotide, were analysed

by 10% SDS polyacrylamide gel electrophoresis

(section 2.2.2.4). Oligonucleotide was not added

to lanes marked (-). Protein mol. wt. markers

were electrophoresed in parallel lanes: carbonic

anhydrase (30kD), ovalbumin (46kD), bovine

serum albumin (69kD), phosphorylase b

(92.5kD), and myosin (200kD).
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lane (-) and panel ERE, lane (-)) although the 88kD protein/EREcon

complex was much less prominent (Fig. 4.10; compare panel ERE, lane (-)

with Fig. 4.9; panel 40; lane E). Proteins crosslinked to BdU-ERE1 were

competed neither by excess ERECon nor TRE oligonucleotide (Fig. 4.10). In

contrast, protein-EREcon oligonucleotide crosslinked complexes were

competed by excess of either ERECon or TRE oligonucleotide (Fig. 4.10).

Although a single crosslinked complex was not detected, assuming

that SRE-BP was involved in crosslinked complex formation, the absence of

a complex of about 200kD makes it unlikely that the SRE-BP is a single

polypeptide of approximately 200kD. It is more likely that SRE-BP is a multi-

subunit protein complex with a DNA-binding subunit of between 88kD and

42kD.

4.4 DISCUSSION

In Chapter 3, I report the identification of a protein present in extracts

prepared from several different cell types, which specifically binds to two

classes of functionally distinct SRE (Chapter 3; Crawford & Chapman,

1990). Using the techniques of gel filtration chromatography and pore

gradient gel electrophoresis, I now demonstrate that the mol. wt. of SRE-BP

in solution and as it binds to DNA respectively, is approximately 200kD.

These data strongly imply that the stable form of SRE-BP in solution is also

the active DNA-binding species. Additionally, preliminary evidence from

crosslinking experiments indicates that SRE-BP is not a single polypeptide

of approximately 200kD, but more likely a multisubunit protein complex;

evidence suggests that the mol. wts. of constituent SRE-BP subunits are

probably between 88kD and 42kD.

UV-irradiation of protein-DNA complex formed between BdU-

containing oligonucleotides and HeLa WCE creates six crosslinked

complexes. As native gel electrophoresis of an aliquot of UV-irradiated



Figure 4.10 Specificity of ERE/HeLa WCE UV-

crosslinked complexes

Reactions were exposed to UV radiation for 30

mins (section 2.8.2) . Either a 100-fold molar

excess of ERECOn (lane E) or TRE (lane T)

oligonucleotide was included in a 10Opil crosslink

reaction (section 2.8.2) containing 100|ig HeLa

WCE, 40pg poly [d(l-C)] and either 1pmol 32P-
labelled BdU-ERE1 (panel BdU 1) or EREcon

(panel ERE); oligonucleotide competitor was not

added to lane marked (-). The right-most control

lanes marked 1, 2 and E represent control

reactions containing UV-irradiated 32P-labelled

BdU-ERE1, BdU-ERE2, and EREcon

oligonucleotides respectively, to which no WCE

was added. Crosslinked complexes were

analysed by 10% SDS polyacrylamide gel

electrophoresis (section 2.2.2.4). Protein

standard mol. wt. markers were electrophoresed

in parallel: carbonic anhydrase (30kD),

ovalbumin (46kD), bovine serum albumin (69kD),

phosphorylase b (92.5kD), and myosin (200kD).
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crosslinked reactions only indicates the presence of the SRE-BP-ERE

complex, one would imagine that the observed crosslinked complexes are

SRE-BP derived. However, since crude WCE was used to generate these

complexes, the possibility that crosslinked complexes resulting from DNA

interaction with cellular proteins other than SRE-BP cannot be excluded.

In native gel electrophoresis, SRE-BP binds to BdU-ERE1 and

BdU-ERE2 with equal affinity. However, crosslinked complexes are most

readily observed with BdU-ERE1 which contains a BdU substitution within

the ERE spacer region (see Fig. 4.7). Assuming crosslinked complexes are

SRE-BP derived, the higher level of Bdll-ERE1-mediated crosslinking

suggests that the SRE-BP more closely approaches the BdU within the

spacer region of the ERE than BdU within the conserved arm (BdU-ERE2).

It is noteworthy that, as demonstrated in Chapter 3, SRE-BP DNA binding to

an ERE is abolished when the 3bp spacer region is deleted (see Fig. 3.10,

6th & 10th lanes).

The inability to demonstrate sequence specificity of BdU-

oligonucleotide crosslinked complex formation was disappointing. If

crosslinked complexes are due to SRE-BP binding and are, therefore,

sequence-specific (see Chapter 3), one would expect to see competition by

excess unlabelled ERE competitor and not by excess TRE. If, on the other

hand, complex formation is sequence-independent, competition by both

excess ERE and TRE sequences would occur. However, neither pattern of

competition is seen. Possibly SRE-BP binds preferentially to EREs

containing a BdU substitution. Alternatively, covalent crosslinking of

BdU-ERE1 or 2 to SRE-BP, which would prevent SRE-BP dissociation from

the oligonucleotide would, in turn, lead to an overall decrease in

SRE-BP-DNA 'off rate. Subsequently, a reduction in the effectiveness of

competition by excess ERECon oligonucleotide is predicted. Inclusion of

excess BdU-containing competitor ERE oligonucleotide, instead of excess
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EREcon oligonucleotide into a competition crosslinking reaction, may help

resolve this peculiarity.

The data presented in this chapter provides further support that the

identified SRE-BP activity (Chapter 3) is neither ER nor GR. Firstly, the mol.

wt. of the SRE-BP is approximately 200kD; ER is smaller and has a

monomer mol. wt. of 65kD and a dimer mol. wt. of 130kD (Kumar &

Chambon, 1988; Fawell et al., 1990). Secondly, the mol. wt. of activated

GR [a dimer of 190kD (Giguere et al., 1986; Tsai et al., 1988)] is close to that

of SRE-BP, and its elution profile from a Sephacryl S300 column may

overlap with that of SRE-BP. However, as ERE and GRE binding activities

coelute from the Sephacryl S300 column, SRE binding activity is unlikely to

be due to ER or GR, which would be expected to elute in distinct fractions

according to their mol. wt. Finally, crosslinking experiments do not show a

complex which reflects the monomer mol. wt. of either ER or GR which are

65kD and 94kD respectively.

As discussed in Chapter 3, Feavers et al. (1987) have identified and

partially purified a 70kD protein which binds specifically to an ERE and is not

ER. Payvar & Wrange (1983) have shown that fractions which contain a

72kD protein increase the DNA-binding activity of purified GR, although it is

not known whether this 72kD protein can also bind to DNA. The mol. wts. of

these two proteins were defined under denaturing conditions and, therefore,

cannot be compared to the native mol. wt. derived for SRE-BP. Preliminary

crosslinking experiments did, however, indicate that SRE-BP is probably not

a single polypeptide of approximately 200kD, and that its DNA binding

subunit is less than 92.5kD. In fact, crosslinking allowed detection of six

complexes, one of which is approximately 74kD. Whether this complex is

related to the proteins discussed above remains to be determined. Ideally,

the SRE-BP should be purified in order to allow elucidation of its subunit

composition and subunit relationship to other proteins implicated in steroid



hormone regulation. The use of Fast Protein Liquid Chromatography

(FPLC) is an attractive method by which SRE-BP purification could be

initiated.



CHAPTER 5

EVIDENCE FOR INVOLVEMENT OF ACCESSORY PROTEINS IN ER DNA-BINDING

ACTIVITY
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5.1 INTRODUCTION

The SRE-BP binds preferentially to EREs and a GRE and has a

relative mol. wt. under non-denaturing conditions of ~200kD, in both its

soluble and active DNA-binding state (Chapters 3 and 4; Crawford &

Chapman, 1990a; Crawford & Chapman, 1990b). In Chapter 3, I proposed

that SRE-BP is involved in steroid hormone regulation of gene expression

by modulating SR-SRE interaction in vivo.

Binding of SRE-BP to a SRE could positively or negatively modulate

SR-SRE interaction; alternatively, it may not affect SR binding. Assuming

SRE-BP does modulate SR-SRE interaction, it may elicit its effect by

1) regulating access of SR to its target DNA sequence, 2) binding to the

SRE and creating a more or less favourable DNA conformation which could

potentially increase or decrease SR affinity for SRE, respectively, or 3) by

binding together with SR to provide protein-protein contact in addition to

SR-DNA contact and secure SR-SRE interaction.

In this chapter, I examine the effect of protein extract, which either

does or does not contain SRE-BP activity, in modulating ER affinity for DNA,

in vitro. ER used in this study was prepared and kindly donated by Dr. S.

Fawell, with consent from Dr. M. Parker, both from Imperial Cancer Research

Fund (ICRF) in London. ER was prepared by synthesis of cRNA

transcribed from a linearised mouse ER cDNA template and in vitro

translated in reticulocyte lysate as described in Fawell et al. (1990). Control

reticulocyte lysate in which ER had not been expressed was also supplied.

The protein concentration of reticulocyte lysate was calculated (section

2.6.4.2) to be 100pgpM.

ER polyclonal antibodies generated against synthetic peptides from

the non-conserved N-terminal region of ER (MP16) and preimmune serum

were also a gift from Dr. M. Parker's laboratory. Generation of antibody has

been described elsewhere (Fawell et al., 1990).
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This chapter describes preliminary evidence that accessory proteins,

possibly SRE-BP, are involved in ER DNA-binding activity. ER binding to

DNA in vitro is increased when HeLa WCE, which contains SRE-BP, is

present, but not by bacterial lysate, which does not have SRE-BP activity.

Additionally, pore gradient gel electrophoresis demonstrates ER binding to

DNA as part of a macromolecular protein complex and not simply as a

130kD homodimer.

5.2 RESULTS

5.2.1 In vitro translated ER does not bind to a 21 bp EREcon

oligonucleotide

In vitro translated (IVT) ER binding to the 21 bp ERECOn

oligonucleotide (Fig. 3.1a) was not detected (Fig. 5.1). In a band shift assay

(section 2.8.1) either 0.5jil IVT ER (containing 50pg protein) or 0.5pl (50pg)
control reticulocyte lysate were incubated with O.lpmol 32P-labelled EREcon

oligonucleotide and 4pg poly [d(l-C)]. No complex uniquely generated by

IVT ER was observed (Fig. 5.1, compare lanes E and R). Flowever, IVT ER

and reticulocyte lysate gave rise to complexes with similar electrophoretic

mobility and intensity to each other (Fig. 5.1, lanes E and R, respectively),

and similar electrophoretic mobility to the SRE-BP-ERECOn complex formed

with 10|ig HeLa WCE (compare lanes E and R to lane H). Therefore,

complex formation with either IVT ER or reticulocyte lysate is probably due to

residual SRE-BP activity in reticulocyte lysates.

5.2.2 Identification of ER-DNA complexes; correlation between

number of EREs present and complexes formed

Since ER binding to the 21 bp ERECon oligonucleotide was not

observed (Fig. 5.1), longer DNA probes (Fig. 5.2) were used to detect ER

DNA-binding activity. DNA fragment two (DF2) encodes two ERECon



Figure 5.1 Analysis of ER DNA-binding activity to

the 21bp EREcon oligonucleotide

Either 10pg HeLa WCE (H), 0.5(il ER (E), or 0.5|il

control reticulocyte lysate (R) were incubated

with O.lpmol 32P-labelled EREcon

oligonucleotide and 4|ig poly [d(l-C)]. WCE was

not added to lane O. Free and bound

oligonucleotide were resolved by 4% native

polyacrylamide gel electrophoresis.



21 bp ERE
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sequences within an 89bp fragment; DF1 has one ERECon on a 77bp

fragment and DFO is a 92bp fragment with no EREs.

HeLa WCE binding to each DNA probe in Fig. 5.2 was initially

examined. In a band shift assay (section 2.8.1), when 10pg FleLa WCE was

incubated with 4pg poly [d(l-C)] and approximately 3fmol of 32P-labelled
DF2 or DF1, the number of complexes formed reflected the number of EREs

encoded on each probe (Fig. 5.3, lanes 7 to 10). FleLa WCE generated two

complexes with DF2 (Fig. 5.3 complexes c and d) and one complex

(complex c) with DF1. Presumably, complex (c) represented protein binding

to one ERE of DF1 or DF2 and complex (d), which had slower

electrophoretic mobility and decreased signal intensity, represented

occupancy of both EREs encoded on DF2. Unexpectedly, four poorly

defined complexes were generated by HeLa WCE incubation with labelled

DFO (Fig. 5.3, lanes 11 and 12) which did not contain any EREs.

In a similar band shift assay, 0.5pl IVT ER was incubated with 4pg

poly [d(l-C)] and 3fmol of 32P-labelled DF2, DF1, or DFO (Fig. 5.3, first six

lanes, marked E). As with HeLa WCE, the number of complexes generated

with IVT ER reflected the number of EREs encoded on either DF1 or DF2

probe. Two complexes (Fig. 5.3, complexes a and b) formed with DF2 and

only one complex (complex a) formed with DF1. Since complex formation

between 32P-labelled DF2 and 0.5pl reticulocyte lysate was not observed

(see Fig. 5.4 and data not shown), complexes (a) and (b) were, therefore, ER

derived. Presumably, complex (a), which exhibited fastest electrophoretic

mobility and increased signal intensity represented IVT ER binding to one

ERE of DF1 or DF2 and complex (b) represented IVT ER binding to both

EREs of DF2 probe. As expected, IVT ER binding to DFO, which did not

contain any EREs, was not observed.



DF2

AATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCCAGGTCACTGTGACCTGCAGGTCACAGTGACCTGGACCTGCAGGCATGCAAGCT EcoRI

Hindlll

DF1

AATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGTCCAGGTCACTGTGACCTACCTGCAGGCATGCAAGCAAGCT EcoRI

Hindlll

DFOAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAG ECORIPvull
Figure5.2NucleotidesequenceofDNAprobesusedinChapter5. Onestrandonlyisshown;horizontalarrowsindicatethedyadsymmetryofconservednucleotideswithintheEREcon.DF2,DF1andDFOweregeneratedasdescribedinsection2.7.2.;restrictionsitesusedareunderlinedateitherendofeachfragment.DF2 containstwoEREcon;DF1containsoneEREcon;DFOdoesnotcontainanyEREs.AlthoughallfragmentswerederivedfrompUC19,flankingDNAofDF1andDF2aresimilartoeachotherbutdifferentfromDFO.



Figure 5.3 Analysis of ER and HeLa WCE DNA-

binding activity to DF2, DF1, and DFO

DF2, DF1, and DFO were prepared and end

labelled as described in section 2.7.2. Either

0.5|il ER (lanes E) or 10pg FleLa WCE (lanes Fl)

were incubated with 4pg poly [d(l-C)] and 3fmol

of 32P-labe!led DF2, DF1, or DFO (depicted at

bottom of figure as no. of EREs: 2, 1, or O,

respectively). No protein was added to lanes

marked (-). Free and bound DNA were

resolved by 4% native polyacrylamide gel

electrophoresis (section 2.2.2.2). Horizontal

arrows indicate complexes a and b or c and d, as

discussed in the text.
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Since complex formation between DF2 and either IVT ER or HeLa

WCE was significantly greater than with DF1 probe, DF2 was used for further

experiments presented in the following sections.

5.2.3 ER DNA-binding is increased by the presence or absence

of SRE-BP containing protein extract

The possibility that WCE containing SRE-BP activity could, in some

way, modulate ER binding to target DNA, was investigated in a band shift

assay. The approach taken for this investigation was to examine whether

IVT ER bound differentially to naked DNA compared to DNA which had been

preincubated with HeLa WCE.

In a band shift assay (section 2.8.1) 12 different reactions were set up,

each containing approximately 3fmol 32P-labelled DF2 and 4pg poly [d(l-C)].
In control reactions, 10pg HeLa WCE were incubated with DF2 for 20 mins

and 0.5pl of either IVT ER or reticulocyte lysate were incubated with DF2 for

10 mins. Band shift reactions containing both WCE and either IVT ER or

reticulocyte lysate were set up as follows: DF2 probe was preincubated for

10 mins with 10pg HeLa WCE before adding 0.5pl of IVT ER or reticulocyte

lysate and incubating for a further 10 mins. Where appropriate, either 1 pi

ER polyclonal antibody or preimmune serum was added and incubation was

continued for an extra 2 mins before resolving complexes by native gel

electrophoresis (section 2.2.2.2).

Incubation of HeLa WCE with DF2 (Fig. 5.4, lane 2) generated two

complexes. The most prominent complex was analogous to complex (c)

described in section 5.2 (refer to Fig. 5.3). The second, less well defined

complex, which exhibited slower electrophoretic mobility and decreased

signal intensity compared to complex (c), probably corresponded to complex

(d), defined in Fig. 5.3. Incubation of IVT ER with DF2 (Fig. 5.4, lane 3) only

allowed detection of one complex, analagous to complex (a) defined in
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Fig. 5.3. Inability to detect the weaker ER derived complex (b) (see Fig. 5.3)

was probably due to the lower specific activity of 32P-labelled DF2 used in

this assay compared to labelled DF2 used in the Fig. 5.3 assay. No

complex formation was observed between 32P-labelled DF2 and either

reticulocyte lysate (lane 4), ER polyclonal antibody (lane 5), or preimmune

serum (lane 6).

Preincubation of DF2 probe with HeLa WCE increased the signal

intensity of the ER generated complex (Fig. 5.4; compare signal intensity of

ER-generated complex in lane 3 with that in lanes 7 and 9). Addition of ER

antibody (lane 8), but not preimmune serum (lane 9), resulted in the

disappearance of ER generated complex and formation of a supershifted

ER-antibody complex (Fig. 5.4, complex S).

Addition of 0.5pl of reticulocyte lysate to HeLa WCE preincubated with

DF2, with or without subsequent addition of ER polyclonal antibody or

preimmune serum (Fig. 5.4, lanes 10,11,12 respectively), did not give rise to

either the ER-generated complex or supershifted complex S.

5.2.4 ER DNA-binding activity is not affected by protein extract

which does not contain SRE-BP activity

It could be argued that a simple excess of DNA-binding proteins in

HeLa WCE, binding non-specifically to poly [d(l-C)] in the band shift reaction,

would leave more ERE-containing DNA available for ER binding. Thus,

favourable conditions which drive ER-ERE interaction would be created and

increased ER-DNA interaction would be observed. If this is so, the

observed increase in IVT ER binding in the presence of HeLa WCE (Fig. 5.4)

would not be due to the presence of accessory proteins modulating SR-SRE

interaction.

To test this theory, DF2 probe was preincubated with either HeLa

WCE (which contained SRE-BP activity) or protein extract (which did not



Figure 5.4 Analysis of ER DNA-binding activity to

DF2 in the presence and absence of

HeLa WCE

Protein binding to 3fmol 32P-labe!led DF2 probe

in the presence of 4pg poly [d(l-C)] was assayed

as follows: Lane 1 did not contain protein. Lane

2 and 7-12 each contained 10pig HeLa WCE;

lanes 3 and 7-9 each contained 0.5pl ER, and

lanes 4 and 10-12 each contained 0.5pl control

reticulocyte lysate. Either 1pl polyclonal

antibody was added to lanes 5, 8 and 11, or 1 pi

preimmune serum was added to lanes 6, 9, and

12. Free and bound DNA were separated by

4% native polyacrylamide gel electrophoresis

(section 2.2.2.2). Hollow arrow represents

position of supershifted complex S.
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contain SRE-BP activity) before addition of IVT ER. Ideally, eukaryotic WCE

without SRE-BP activity should have been used. However, such cell lines

were difficult to find (unpublished results). For this reason, lysate of E.coli,

in which no SRE-BP activity was detected, was used. In addition to

containing prokaryotic DNA-binding proteins, bacterial lysate used also

expressed high levels of plasmid-encoded cAMP-receptor protein (Dr. K.E.

Chapman, see section 2.6.3).

A band shift assay was used to examine two aspects of ER activity:

1) the effect of IVT ER concentration, together with 2) the effect of

preincubating DF2 probe with either HeLa WCE or bacterial lysate on

DNA-binding activity of IVT ER.

IVT ER was diluted to half, quarter and an eighth of its original

concentration with 1 x binding buffer (recipe, 2.8.1). Twelve band shift

reactions were carried out (section 2.8.1), each containing 3fmol 32P-

labelled DF2 and 4pg poly [d(l-C)]. Labelled DF2 was preincubated for 10

mins with either 10pg HeLa WCE or 10pg bacterial lysate before addition of

1 pi of IVT ER dilution and incubation for a further 10 mins.

As seen previously (see Fig. 5.3 and 5.4), HeLa WCE incubated with

DF2 probe created two complexes (Fig. 5.5, lane 2) equivalent to complexes

(c) and (d) in Fig. 5.3 and IVT ER formed one complex (Fig. 5.5, lane 4)

equivalent to complex (a) in Fig. 5.3. Inability to detect the less abundant

ER-generated complex (b) (see Fig. 5.3) was probably due to the lower

specific activity of the DF2 probe used in this assay. Incubation of DF2

probe with bacterial lysate produced one faint complex exhibiting very slow

electrophoretic mobility (Fig. 5.5, lane 3) compared to complexes formed by

either HeLa WCE or IVT ER (Fig. 5.5, lanes 1 and 4). This bacterial complex

was not investigated further.

IVT ER diluted by half exhibited DNA-binding to naked DF2 probe

(Fig. 5.5, lane 4) whereas dilution to a quarter or an eighth of the original
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concentration prohibited complex detection (lanes 7 and 10). However,

when DF2 probe was preincubated with HeLa WCE prior to addition of IVT

ER, not only was DNA-binding activity of 1/2 concentration IVT ER slightly

increased, but more significantly V4 concentration IVT ER then exhibited

detectable DNA-binding activity (Fig. 5.5, compare lanes 5 with 4 and 8 with

7). One eighth concentration of IVT ER still did not show DNA binding

activity to DF2 preincubated with HeLa WCE (lane 11). DNA-binding of V2
concentration of IVT ER to DF2 probe was not increased by preincubation of

DF2 with bacterial lysate (Fig. 5.5, lane 6). A slight increase in binding of V4
concentration of IVT ER to bacterial lysate preincubated probe was observed

(compare lane 9 to lane 7) although this increase was not as obvious as that

mediated by DF2 preincubation with HeLa WCE.

Thus, preincubation of ERE-containing probe with HeLa WCE which

contained SRE-BP activity increased DNA-binding of limiting amounts of IVT

ER. DNA-binding of IVT ER was otherwise unaffected by preincubation of

probe with bacterial lysate which did not contain SRE-BP activity.

5.2.5 ER binds to DNA as part of a macromolecular protein

complex

It has been demonstrated that efficient ER binding to target DNA

requires dimer formation between two 65kD ER monomers (Kumar &

Chambon, 1988; Fawell et al., 1990). To determine the mol. wt. of the

active DNA-binding ER complex, native pore gradient gel electrophoresis

was carried out (section 2.2.2.3) using IVT ER. The theory of pore gradient

gel electrophoresis has already been discussed (section 4.1).

Three band shift reactions (section 2.8.1) were set up, each

containing 3fmol 32P-labelled DF2 probe and 4pg poly [d(l-C)]. DF2 was

incubated with 10(ig HeLa WCE for 20 mins (Fig. 5.6, lane H), 0.5pil IVT ER

for 10 mins (Fig. 5.6, lane E), or 10pg HeLa WCE for 10 mins followed by



Figure 5.5 Analysis of ER DNA-binding activity in

the presence of protein extract which

does not contain SRE-BP activity

Bacterial lysate which does not contain SRE-BP

activity was prepared as described (section

2.6.3). Protein binding to 3fmol 32P-labelled
DF2 probe in the presence of 4(ig poly [d(l-C)]

was assayed as follows: Lane 1 did not contain

protein extract; lanes 2, 5, 8, and 11 contained

10|ig HeLa WCE, and lanes 3, 6, 9, and 12

contained 10jig bacterial lysate. ER was diluted

and 1jil of diluted ER was added to lanes 4, 5, 6

(1/2 dilution); lanes 7, 8, and 9 (V4 dilution) and

lanes 10, 11, and 12 (Vs dilution) respectively.

Free and bound DF2 probe were separated by

4% native polyacrylamide gel electrophoresis

(section 2.2.2.2).
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0.5pl IVT ER for 10 mins (Fig. 5.6, lane H + E). Protein mol. wt. markers

were electrophoresed in adjacent lanes (detailed in Fig. 5.6 legend).

The mol. wt. of the ER-DNA complex was calculated by relating its

electrophoretic mobility to that of protein markers. The ER-DNA complex

was found to be 420kD. By correcting for DNA content (DF2 probe, 58kD), it

was demonstrated that ER bound to DNA as part of a 362kD protein

complex. Also, after correcting for DNA content, the mol. wt. of the DNA-

binding protein in HeLa WCE, which generated a complex equivalent to

complex (c) in Fig. 5.3, was calculated to be approximately 200kD.

5.3 DISCUSSION

This chapter presents preliminary evidence which suggests that

accessory proteins, present in HeLa WCE, increase ER affinity for target

DNA. Also reported is evidence for the participation of additional proteins,

besides an ER homodimer, in ER-DNA complex formation.

In vitro translated ER does not bind to the 21 bp EREcon

oligonucleotide used for experimentation in Chapters 3 and 4. However,

other studies demonstrate binding of either in vitro translated ER (Fawell et

al., 1990) or ER present in crude cell extracts (Kumar & Chambon, 1988) to a

32bp or 35bp oligonucleotide, respectively, containing an ERECon

sequence. Chalepakis et al. (1988b) demonstrate that either purified GR or

PR protect a region of the MMTV promoter which includes both arms of one

SRE and additional flanking DNA from hydroxyl radical attack. It is,

therefore, likely that the 21 bp oligonucleotide provides too small a target for

ER interaction and that DNA flanking a SRE is probably required to allow

additional non-specific contact between SR and the phosphate backbone of

DNA which will secure SR-SRE interaction.

In vitro translated ER can bind to either an 89bp DNA fragment

containing two consensus EREs (DF2) or a 77bp DNA fragment containing



Figure 5.6 Pore gradient gel electrophoresis of

ER/DF2 complexes

Either 1Opg HeLa WCE (H), 0.5(il ER (E), or both

(H + E) were incubated with 3fmol 32P-labelled
DF2 and 4(ig poly [d(l-C)]. Protein/DNA

complexes were resolved by electrophoresis

through a 3-25% native pore size gradient

polyacrylamide gel (section 2.2.2.3). Protein

mol. wt. markers were electrophoresed in

adjacent lanes; bovine serum albumin (67kD),

(3-galactosidase (116kD-monomer, 232kD-dimer

and 464kD-tetramer).
Pore gradient gel electrophoresis of ER/DF2

complexes was carried out twice.
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one consensus ERE (DF1). The number of complexes generated with

either DF2 or DF1 reflects the number of EREs each fragment encodes.

ER-generated complex (b) formed only with DF2 probe. The slower

electrophoretic mobility of complex (b) indicated that it was larger than

complex (a), which was generated by ER binding to either DF1 or DF2

probe. Complexes (a) and (b) most probably represent ER occupancy of

one and two EREs respectively, although to verify this, DNA footprinting

analysis is needed. Similarly, complex formation between HeLa WCE and

either DF2 or DF1 reflects the number of EREs encoded. As SRE-BP in

HeLa WCE binds preferentially to an EREcon (Chapter 3), it is proposed that

complex (c) represents SRE-BP interaction with one ERE and complex (d),

formed only with DF2 and exhibiting slower electrophoretic mobility than

complex (c), represents SRE-BP interaction with two EREs. This is

supported by mol. wt. analysis which shows that complex (c) formation is

due to DF2 interaction with a protein of approximately 200kD, identical to the

characterised mol. wt. of SRE-BP (Chapter 4). HeLa WCE incubated with

DFO probe which did not contain any EREs unexpectedly created four

poorly resolved complexes. It is unlikely that such complex formation is

SRE-BP derived; DFO originates from lac operator DNA, which is also

present in pBLCAT2 and digested pBLCAT2 is incapable of competing for

SRE-BP DNA-binding activity in vitro (Chapter 3, Fig. 3.7; Crawford &

Chapman, 1990a).

In vitro translated ER binds with increased affinity to DF2 when DF2 is

preincubated with HeLa WCE; the degree to which ER DNA-binding activity

is increased appears to be inversely related to ER concentration. At lower

concentration of ER, preincubation of DNA with bacterial lysate also

increases ER DNA-binding activity although to a much lesser degree than

WCE. It is unlikely that the enhancement of ERE binding by bacterial lysate

is specific to ER as neither SRs nor steroid hormone responsiveness have
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been reported in prokaryotes. More likely, non-specific prokaryotic

DNA-binding proteins interact with, and therefore reduce, the quantity of

unbound poly [d(l-C)] available for non-specific ER interaction, thus driving

ER-ERE binding. Of course, this phenomenon will also occur when non¬

specific DNA-binding proteins in HeLa WCE titrate poly [d(l-C)] out of

solution, thus driving ER-ERE interaction. However, HeLa WCE increases

ER DNA-binding activity notjcea-bLy more than the same quantity of

bacterial lysate. Assuming eukaryotic and prokaryotic cell extracts contain

approximately the same amount of DNA-binding proteins per jig, then these

results suggest the existence of eukaryotic proteins which positively

modulate ER-DNA interaction. Since SRE-BP also interacts with EREs, I

propose that this activity constitutes the positive modulator of ER DNA-

binding activity. If this is so, the actual extent to which SRE-BP can increase

ER affinity for target DNA will be masked by the residual SRE-BP present in

the reticulocyte lysate in which ER was expressed. Purification of SRE-BP

activity and/or obtaining a cell line devoid of SRE-BP activity will hopefully

provide direct evidence to test this hypothesis.

Whether SRE-BP remains bound to DNA after ER interaction is not

known. The ER-DNA complex has a mol. wt. of approximately 362kD which

presumably contains the 130kD ER homodimer necessary for efficient and

specific DNA-binding (Kumar & Chambon, 1988; Fawell et al., 1990).

Inclusion of the approximately 200kD SRE-BP may account for, at least in

part, the remaining 232kD of mol. wt. Indeed, electron microscopy studies

of protein-DNA interaction at the ERE of the Xenopus vitellogenin (Heggeler-

Bordier et al., 1987), indicate that protein-DNA complexes at the ERE are

large and may include other proteins besides hormone receptor.

There are several reported experiments which demonstrate how SR

affinity for target DNA is increased in the presence of additional proteins. As

discussed in Chapter 3 and Chapter 4, Feavers et al. (1987) have identified
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a protein, NHP-1, which specifically binds to an ERECon sequences;

preincubation of a 45bp oligonucleotide containing an ERECon with HeLa

nuclear extract containing NHP-1 increases the affinity of partially purified

ER for this oligonucleotide more than 8-fold. Thrall & Spelsberg (1980)

have demonstrated that activated PR has a higher affinity for DNA which is

complexed with nuclear proteins than for naked DNA, and propose that the

nuclear acceptor site for high affinity PR binding is complexed with other

proteins. In addition, mixing cytosolic PR with nuclear extracts depleted of

PR by immunoaffinity absorption increases PR affinity for target DNA more

than 4-fold (Edwards et al., 1989). Wrange et al. (1986) have identified a

72kD protein (determined under denaturing conditions) that copurifies with

activated rat GR. Although DNA-binding activity by this protein has not been

demonstrated, fractions containing this protein increase the DNA-binding

activity of GR (Payvar & Wrange, 1983).

Thus, there is mounting evidence that the SR molecule alone does

not contain ail the information required for high affinity, specific DNA-

binding. This is ultimately reflected in the poor ability of purified receptors to

discriminate between a specific SRE and non-specific DNA (see below for

references). As discussed in Chapter 3, purified receptors often bind with

less than 10-fold higher affinity to SRE-containing DNA than to non-specific

DNA (Payvar et al., 1981; Compton et al., 1983; Bailly et al., 1986; von der

Ahe et al., 1985; Maurer & Notides, 1987; Jantzen et al., 1987; Peale et al.,

1988; Hard et al., 1990b).

The relationship between the SRE-BP and the accessory proteins

discussed above also implicated in SR action, remains to be determined. I

have previously proposed that SRE-BP plays a global role in steroid

hormone regulation of gene transcription by modulating the DNA-binding

affinity of SR for SRE (Chapter 3). In light of the finding that SRE-BP does

not bind to a palindromic TRE (Chapter 3), and that accessory nuclear
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factors which increase TR affinity for the rat growth hormone TRE have been

reported (Murray & Towle, 1989), I also propose that accessory proteins (the

SRE-BP) involved in positive modulation of SR DNA-binding activity are

different from those involved in TR DNA-binding activity. Perhaps, for the

steroid hormone receptor superfamily, there is a family of related accessory

proteins which modulate receptor-DNA interaction.



CHAPTER 6

SUMMARY
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This thesis clearly shows the existence of a cellular protein in HeLa,

GH3, CV-1 and liver tissue whole cell extracts, and in nuclear extracts of

HeLa cells, that specifically binds to SREs. I have named this protein the

steroid response element-binding protein (SRE-BP) and propose that, by

modulating the interaction of SRs with target SREs, the SRE-BP plays a

global role in gene regulation by steroid hormones.

The SRE-BP binds preferentially to two related, although functionally

distinct, SREs. In a band shift assay, the SRE-BP binds with highest affinity

to oligonucleotides containing either an ERE or asymmetrical GRE; it binds

weakly to a mutant GRE and does not recognise a palindromic TRE. The

mutant GRE and palindromic TRE encode conserved arms identical to those

of the symmetrical GRE and consensus ERE, respectively. It therefore

appears that the orientation of, and the spacing between, the conserved

arms of the SRE are important to SRE-BP activity.

SRE-BP binding to a SRE is specific. When digested plasmid

competitor DNA, which encodes transcription factor binding sites present in

the HSV tk promoter (TATA, CTF and Sp1 binding sites), is included in a

band shift assay, it is unable to compete for SRE-BP DNA-binding activity.

Only when the plasmid DNA also encodes an ERE consensus sequence is it

then able to compete for SRE-BP binding.

The mol. wt. of the SRE-BP as it exists in solution is approximately

200kD, as determined by native gel filtration chromatography. The mol. wt.

of the DNA-bound form of SRE-BP is also approximately 200kD, as

determined by native pore gradient gel electrophoresis. This strongly

suggests that the stable form of SRE-BP in solution is the active

DNA-binding species. Preliminary covalent crosslinking experiments

suggest that the SRE-BP is not a single 200kD polypeptide, but probably a

multisubunit protein complex.
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Several lines of evidence indicate that the SRE-BP is unlikely to be

either ER or GR. (1) The SRE-BP is present in cells that express neither ER

nor GR; (2) The SRE-BP binds to either an ERE or GRE without sequence

preference for either. In contrast, ER and GR display sequence-specific

binding to an ERE and a GRE, respectively; (3) The mol. wt. of the SRE-BP

is approximately 200kD which is larger than the 130kD ER dimer; formation

of such a dimer is necessary for efficient ER DNA-binding. The SRE-BP

mol. wt. is close to that of a GR dimer (190kD), however, since the SRE-BP

contains both ERE and GRE binding activities, the SRE-BP is unlikely to be

either ER or GR; (4) Protein-DNA complexes generated in preliminary

crosslinking experiments suggest that the SRE-BP contains a DNA-binding

subunit of between 42kD and 88kD; complexes which reflected the

monomer mol. wt. of ER and GR (65kD and 94kD, respectively) were not

apparent.

Circumstantial evidence reported in this thesis indicates that the

SRE-BP present in HeLa whole cell extracts, behaves as an accessory

protein and increases the affinity of in vitro translated ER for its response

element. Additionally, the demonstration of in vitro translated ER binding to

DNA as part of a 362kD complex, and not simply a 130kD receptor dimer,

further substantiates my proposal that accessory proteins are involved in SR

binding to DNA.

Ultimately, it is desirable to purify the SRE-BP; an attractive method

by which SRE-BP purification could be achieved is by Fast Protein Liquid

Chromatography. Purified SRE-BP could be used in many experimental

applications. Perhaps the most informative path to follow would be to

generate sufficient quantities of pure SRE-BP, thereby allowing adequate

production of SRE-BP peptides for amino acid sequencing. Degenerate

oligonucleotide probes would then be synthesised for use as primers for



DNA amplification by polymerase chain reaction, with a view to cloning the

SRE-BP.
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ABBREVIATIONS



LIST OF ABBREVIATIONS

A600. A595, A26O Absorbance (number = wave length in nm)

Ampr ampicillin resistance

AR androgen receptor

bp base-pair

cAMP cyclic adenosine monophosphate

CAT chloramphenicol acetyltransferase

cDNA complementary DNA

dATP deoxyadenosine triphosphate

dCTP deoxycytosine triphosphate

dGTP deoxyguanosine triphosphate

dH20 distilled water

DNA deoxyribonucleic acid

ds double-stranded

DTT dithiothreitol

dTTP deoxythymidine triphosphate

EDTA ethylenediamine tetra acetic acid

EGTA ethylene glycol-bix ((3-aminoethyl ether)

N,N,N\N'-tetraacetic acid

ER Oestrogen receptor

ERE Oestrogen response element

EXAFS extended X-ray absorption fine structure

GR Glucocorticoid receptor

GRE glucocorticoid response element

h hour

HCI hydrochloric acid

HEPES N-(2-hydroxyethyl) piperazine-N-2-ethane

HSV Herpes Simplex Virus

IVT in vitro translated



kD kilo Dalton

M Molar

mA milliamp

mg milligramme

mins minutes

ml millilitre

mM millimolar

MMTV mouse mammary tumour virus

mol. wt. molecular weight

MR Mineralocorticoid receptor

nM nanometer

NMR nuclear magnetic resonance

PBS phosphate buffered saline

pmol picomoles

PMSF phenylmethylsulphonyl fluoride

PR progesterone receptor

PRE progesterone response element

RAR retinoic acid receptor

RNA ribonucleic acid

SDS sodium dodecyl sulphate

SR steroid receptor

SRE steroid response element

TEMED N,N,N',N'-Tetramethylethylene diamine

tk thymidine kinase

TR thyroid receptor

TRE thyroid response element

U international enzyme unit

UV ultraviolet

V volt



vitamin D3 receptor

very low density lipoprotein
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Identification of a High Molecular
Weight Steroid Response Element
Binding Protein

Louise Crawford and Karen Chapman

MRC Brain Metabolism Unit
Royal Edinburgh Hospital
Morningside Park
Edinburgh, Scotland EH10 5HF

In this study we report the identification of a Steroid
Response Element-Binding Protein (SRE-BP) pres¬
ent in whole cell extracts of HeLa cells and GH3
pituitary tumor cells which specifically binds to two
classes of functionally distinct SREs. In gel retar¬
dation experiments SRE-BP binds preferably to oli¬
gonucleotides containing an estrogen response ele¬
ment (ERE) or a symmetrical glucocorticoid re¬
sponse element (GRE); it binds less well to a mutant
GRE and poorly, if at all, to a thyroid response
element (TRE). The SRE-BP does not recognize tran¬
scription factor binding sites present in the promoter
of the Herpes Simplex Virus thymidine kinase gene.
We have shown, using gel filtration chromatography
that the SRE-BP has a relative molecular weight
under nondenaturing conditions of 205 K (±20 K).
The SRE-BP is not a steroid receptor as evidenced
by different DNA sequence specificity, cell type dis¬
tribution, and molecular weight. We propose that by
modulating the interaction of steroid receptors with
target SREs, the SRE-BP plays a role in specificity
of steroid hormone action. (Molecular Endocrinology
4: 685-692, 1990)

INTRODUCTION

The steroid hormone receptors are nuclear transcription
factors which, upon activation by hormone binding,
specifically bind to short DNA sequences in steroid
regulated genes and alter the transcription rates of
those genes (reviewed in Refs. 1-4). These DNA se¬
quences, or steroid response elements (SRE) (5-8) are
generally present in the 5'-flanking regions of steroid
hormone responsive genes, although the existence of
a glucocorticoid response element (GRE) in the first
intron of the human GH gene has been reported (9). In
most instances, binding of steroid receptor to a SRE
leads to increased transcription rates of target genes;
however, some examples of negative regulation by

0888-8809/90/0685-0692S02.00/0
Molecular Endocrinology
Copyright © 1990 by The Endocrine Society

glucocorticoid receptor (GR) have also been described
(10-13).

Steroid receptors share a common structural orga¬
nization in which a hormone binding domain determines
the ligand specificity of the steroid receptor and a highly
conserved DNA binding domain determines the DNA
sequence to which the steroid receptor will bind (2, 3
and references therein). Different steroid receptors
may, however, elicit a functional response by binding
to a common SRE. Receptors for glucocorticoids, min-
eralocorticoids, progesterone, and androgens can all
act through a GRE/progesterone response element
(GRE/PRE), whereas the receptor activated by estro¬
gen acts through the similar, but distinct, estrogen
response element (ERE) (5-7, 14-18).

The consensus GRE/PRE and ERE are related se¬
quences which show dyad symmetry with 5 or 6-base-
pair (bp) arms separated by a 3-bp spacer region. Each
is independently able to confer hormone-dependent
transcriptional enhancement from a linked promoter, as
demonstrated by gene transfer experiments (5-7,
17,18). SREs which deviate from the consensus GRE/
PRE or ERE may function as less efficient transcrip¬
tional enhancers in vivo or lose their regulatory capacity
altogether (5-7, 18-22), although they may still retain
the ability to be bound by steroid receptor in vitro (18,
20-23). For example, the PRL ERE (EREprl), which
differs from the consensus ERE by two nucleotide
substitutions, confers a weak response to estradiol
[—3-fold; (20, 21)] but can be directly bound by highly
purified estrogen receptor (ER) in vitro (20, 24). Al¬
though purified steroid receptors directly bind to the
respective SRE in vitro, the discrimination between a
specific binding site and nonspecific DNA may be less
than 10-fold (see for example Refs. 20, 25-30).

In this study, we wished to determine whether ac¬
cessory proteins (which are not steroid receptors) could
bind to a SRE and thus increase the specificity of the
steroid receptor SRE interaction. Such accessory pro¬
teins might elicit an effect either by regulating access
of steroid receptor to the SRE, or alternatively, by
binding to the SRE together with steroid receptor, to
provide protein-protein contact in addition to steroid
receptor-DNA contact.
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In this paper, we report the identification and partial
purification of a cellular factor which binds preferably to
oligonucleotides containing either an ERE or a GRE.
The identified factor is distinct from either ER or GR, is
present in whole cell extracts of different cell types, and
has a relative mol wt of 205 K (±20 K) under nonde-
naturing conditions.

RESULTS

Identification of a Factor which Binds Selectively to
Both EREs and GREs

Gel retardation assays were used to detect the pres¬
ence of DNA-binding protein(s) in whole cell extracts of
HeLa and GH3 cells which bind to a double-stranded
oligonucleotide containing an ERE^ sequence (ERE^;
Fig. 1a). Both GH3 and HeLa whole cell extract con¬
tained a cellular factor which bound to the EREcon
oligonucleotide in the presence of nonspecific compet¬
itor, poly[d(l-C)], to form a complex with identical re¬
tarded electrophoretic mobility and signal intensity (Fig.
2).

To determine whether the formation of this complex
represented a sequence-specific interaction with the
EREcon oligonucleotide, competition experiments were
carried out. A 100-fold molar excess of unlabeled

EREcon oligonucleotide efficiently competed for complex

formation (Fig. 3a), demonstrating that complex for¬
mation is sequence specific.

In a similar competition assay, poly[d(l-C)] was re¬
placed with plasmid DNA digested with Alu\, either
pBLCAT2 (31) or pLC3, a derivative of pBLCAT2 that
differs only by the presence of an EREcon sequence
cloned into the pBLCAT2 polylinker. Four micrograms
of digested pLC3 plasmid DNA (-equivalent to a 10-
fold molar excess of competitor EREcon) competed for
complex formation, whereas 4 pg pBLCAT2 did not
(Fig. 3b), demonstrating that the factor detected could
efficiently bind to an EREcon sequence embedded in a
fragment of nonspecific DNA. Furthermore, the identi¬
fied factor did not bind to the transcription factor binding
sites (Spl, CTF, and TATA factor binding sites) of the
Herpes Simplex Virus (HSV) thymidine kinase (tk) gene
promoter (32) present in pBLCAT2.

To investigate further the sequence preference of the
identified factor, its ability to bind to oligonucleotides
containing a SRE distinct from ERECOn was examined.
ERErrl differs from the conserved nucleotides of the
EREcon by 2 bp (20, 21) (EREPBL; Fig. 1b). The introduc¬
tion of 4 bp changes within the conserved bases of the
EREcon converts this sequence into a functional GRE
(5); (GRE; Fig. 1c). A mutant GRE was created by
increasing the spacing between the conserved nucleo¬
tides of a GRE (GREm; Fig. 1 d), and a TRE was created
by decreasing the spacing between the conserved nu¬
cleotides of a consensus ERE (33) [thyroid response
element (TRE); Fig. 1e], Each of these oligonucleotides

(a) EREcon gcaggtcacagtgacctggac
cgtccagtgtcactggacctg

(b) EREpri, GATCTTGTCACTATGTCCT
AACAGTGATACAGGACTAG

(c) GRE GCAGAACACAGTGTTCTGGAC
CGTCTTGTGTCACAAGACCTG

(d) grem caagaacatgcatgttcttg
gttcttgtacgtacaagaac

A

(e) TRE CATCAGGTCATGACCTGATG
GTAGTCCAGTACTGGACTAC

Fig. 1. Sequence of Oligonucleotides Used in the Gel Retardation Assays
Horizontal lines indicate the conserved nucleotides within the SRE. A hollow arrow head shows the position of the additional

base-pair in the spacer region of oligonucleotide (d). (a) ERE consensus sequence derived from the estrogen-inducible vitellogenin
genes of Xenopus laevis and chicken (5). (b) EREprl sequence from the 5' flanking region of the rat PRL gene (20, 21). (c) GRE
sequence with perfect 2-fold symmetry (5). (d) Mutant GRE sequence, (e) Symmetrical TRE sequence (33)
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Fig. 2. Analysis of DNA Binding Activity Present in Whole Cell Extracts of HeLa and GH3 Pituitary Tumor Cells
Whole cell extracts of HeLa and GH3 cells were prepared. Increasing amounts of whole cell extracts (as indicated in micrograms

above each lane) were incubated with 0.1 pmol labeled EREc,,, oligonucleotide in the presence of 4 ng poly[d(l-C)]. Free and bound
labeled oligonucleotide were separated on a 4% polyacrylamide gel by electrophoresis. An arrow indicates the position of bound
oligonucleotide.

B
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!# IN

likJ J
Fig. 3. Analysis of Specificity of Factor Binding to the EREcon Oligonucleotide

(a) Ten micrograms of HeLa or GH3 whole cell extract were incubated with 0.1 pmol labeled EREcon oligonucleotide and 4 ng
poly[d(l-C)]. Increasing amounts of unlabeled ERE^n oligonucleotide were added as indicated in fold excess over labeled EREcon
oligonucleotide. Free and bound labeled oligonucleotide were separated on a 4% polyacrylamide gel by electrophoresis, (b) Ten
micrograms (lanes 1-3) or 20 mg (lanes 4-5) HeLa whole cell extract were incubated with 0.1 pmol labeled EREcon oligonucleotide.
Lane 0 does not contain whole cell extract. Competitor labeled DNA was 4 ^g poly[d(l-C)] (lanes 0 and 1) 4 AluI digested pLC3
(lanes 2 and 4) or 4 ^g Alu\ digested pBLCAT2 (lanes 3 and 5). Free and bound labeled oligonucleotide were separated on a 4%
polyacrylamide gel by electrophoresis.

was tested for ability to bind the factor in competition
assays. A 100-fold molar excess of unlabeled EREprl
or GRE oligonucleotide competed with 32P-labeled
EREccn oligonucleotide for complex formation to an

extent comparable to that observed using 100-fold
excess of EREcon oligonucleotide (Fig. 4). A 100-fold
molar excess of unlabeled GREM oligonucleotide com¬
peted less well for complex formation and a 100-fold
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molar excess of unlabeled TRE oligonucleotide com¬
peted weakly, if at all, for complex formation (Fig. 4). A
similar competition pattern was seen in the reciprocal
gel retardation assay in which a 100-fold molar excess
of unlabeled EREcon, EREprl, or GRE oligonucleotides
competed for binding to 32P-labeled GRE oligonucleo¬
tide and a 100-fold molar excess of unlabeled GREM
and TRE oligonucleotides competed poorly (Fig. 4).We
have also noted the GREM is consistently a slightly
better competitor for binding to a labeled GRE than to
a labeled EREcon. Thus, the identified factor has varied
affinity for different, related oligonucleotide sequences.
However, factor binding is more selective for either a
GRE or an ERE, although preferential to neither. This
factor has been termed the SRE-binding protein (SRE-
BP).

The SRE-BP has a Relative Mol Wt of =^205 K

Having identified a SRE-BP and confirmed that it binds
with the same affinity to both an ERE and a GRE, its
relative molecular weight was determined using gel
filtration under nondenaturing conditions. HeLa whole
cell extract was passed through a calibrated Sephacryl
S300 column. Fractions which eluted from the column
within the mol wt range of 300 K-12.5 K were individ¬
ually assayed for binding activity to the ERECOn oligo¬
nucleotide or the symmetrical GRE oligonucleotide. The
observed EREcon and GRE binding activities coeluted
in four consecutive fractions (fractions 19, 20, 21, 22;
Fig. 5, a and b) corresponding to the volume at which
proteins of 205 kDa ± 20 kDa elute. The SRE-BP is,
therefore, either a very large protein or a protein com¬
plex, with a relative mol wt of 205 K.

After partial purification by gel filtration, the SRE-BP
retains its ability to discern between different SRE
sequences as demonstrated by the competition assay
(Fig. 6).

DISCUSSION

Our studies clearly show the existence of a cellular
protein in HeLa and GH3 whole cell extracts, which
exhibits preferential DNA binding to both ERE and GRE
oligonucleotides. This factor, which we have termed
the SRE-BP has been partially purified and shown to
have a mol wt of 205 K ± 20 K.

The SRE-BP preferably binds to EREs and a GRE in
vitro. Transcription factor binding sites present within
the truncated HSV tk promoter of pBLCAT2 (TATA,
CTF, and Spl binding sites) are unable to compete for
binding of SRE-BP to an EREcon oligonucleotide when
pBLCAT2 plasmid DNA is included in the binding assay.
Plasmid DNA will only compete for complex formation
if an EREcori sequence has been cloned into pBLCAT2,
demonstrating the sequence-specific binding of the
SRE-BP to the SRE and not to other regulatory DNA
elements.

The SRE-BP binds with equal affinity to three differ¬
ent functional SREs. EREprl contained within a 228 bp
fragment of DNA is able to confer estradiol-dependent
transcriptional enhancement on a linked promoter (20,
21). Both the 13 bp ERECOn sequence and the 15 bp
symmetrical GRE sequence are transcriptional enhan¬
cer elements in vivo in the presence of estradiol or
dexamethasone, respectively (5). However, the relative
orientation and spacing of the two conserved arms of
the SRE appear to be important for SRE-BP binding.
The SRE-BP binds very weakly, if at all, to a functional
TRE (33) and weakly to a mutant GRE. Both these
elements have identical conserved nucleotides to an

ERECor, and a GRE, respectively, but do not have the 3
bp spacer region characteristic of EREs and GREs.

Several lines of evidence indicate that the SRE-BP is

unlikely to be either ER or GR. 1) The SRE-BP is present
in a number of cell-types including HeLa cells and CV-
1 cells (our unpublished results). As HeLa cells do not

01 23456 01234 56
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Fig. 4. Specificity of Factor Binding to Both an EREcon Oligonucleotide or a GRE Oligonucleotide

Ten micrograms of HeLa whole cell extract were incubated with 4 mg poly[d(l-C)] and either 0.1 pmol labeled EREcon oligonucleotide
(left panel) or 0.1 pmol labeled GRE oligonucleotide (right panel). Lane 0 does not contain whole cell extract; lanes 2-6 show
binding in the presence of a 100-fold molar excess of competitor oligonucleotide as follows: lane 2, ERE„>n; lane 3, EREprl.; lane 4,
GRE; lane 5, GREM; lane 6, TRE. Free and bound labeled oligonucleotide were separated on a 4% polyacrylamide gel by
electrophoresis.
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GRE

Fig. 5. Gel Filtration Chromatography of SRE-BP
Hela whole cell extract was fractionated over a Sephacryl S300 column (see Materials and Methods). Lane (A) has no protein

added, lane (B) has 10 txg whole cell extract added in binding buffer (see Materials and Methods) and lane (C) has 10 ng HeLa
whole cell extract added in column buffer (see Materials and Methods), (a) Fractions 1 to 26 (numbered above each lane) were
incubated with 0.1 pmol labeled EREcon oligonucleotide in the presence of 4 poly[d(l-C)]. (b) Fractions 15 to 27 (numbered above
each lane) were incubated with 0.1 pmol labeled GRE oligonucleotide in the presence of 4 /ag poly[d(l-C)]. Free and bound labeled
oligonucleotide were separated on a 4% polyacrylamide gel by electrophoresis.

contain ER (23) and CV-1 cells contain neither ER nor
GR (23, 34, 35) SRE-BP activity present in whole cell
extract of HeLa and CV-1 cells cannot be due to either
ER or GR. 2) In contrast to the sequence-specific
binding of ER or GR to an ERE or GRE, respectively,
the SRE-BP binds to either an ERE or a GRE without

sequence preference for either. 3) The mol wt of the
SRE-BP is 205 K; ER is smaller and binds to DNA as a
dimer (23) with a relative mol wt of 130 K. The mol
wt of activated GR [a dimer of 190 K (35, 37)] is close
to that of SRE-BP and its elution profile from the
Sephacryl S300 column might overlap with that of the
SRE-BP. However, as the ERE and GRE binding activ¬
ities coeluted from the Sephacryl S300 column SRE
binding activity is unlikely to be due to ER or GR, which
would be expected to elute in distinct fractions accord¬
ing to their different molecular weights.

It is widely accepted that steroid receptors bind to
their specific SRE in vivo to enhance transcription from
a downstream promoter. In support of this, Becker et
al. (38) have reported hormone-dependent changes in
reactivity of guanine residues in the GRE of the tyrosine
amino transferase gene which reflect the binding of GR
in vivo to the GRE in a hormone-dependent manner. In
the absence of hormone, Becker et al. (38) report some
changes in reactivity of guanine residues within the
GRE in vivo, compared to reactivity within the same
region of naked DNA in vitro. This data is consistent
with the possibility that a protein (possibly the SRE-BP)
may be bound at the GRE in vivo in the absence of
hormone, although with lower affinity than the activated
GR.

In contrast to the situation in vivo, in vitro studies
which have examined the ability of purified steroid

receptor to discriminate between a specific SRE and
nonspecific DNA have largely failed to demonstrate high
specificity of binding. In many cases, the receptor binds
with less than 10-fold higher affinity to SRE-containing
DNA than nonspecific DNA (20, 25-30). Higher speci¬
ficity could be achieved, in part, by additional cellular
proteins. It has been suggested (24) that high affinity
binding of ER to EREprl is achieved by a local structural
alteration in the DNA allowing binding of ER to single
stranded DNA. If local structural changes are involved,
they could be facilitated by accessory proteins. There
are several reported experiments which directly or in¬
directly suggest the involvement of accessory proteins
which increase sequence-specific binding of steroid
receptors to DNA. Feavers et al. (39) identified a 70
kDa protein which binds specifically to the ERE of the
chick vitellogenin gene. In the presence of this 70 kDa
protein, ER binding to the ERE was increased (39).
Wrange et al. (40) have identified a 72 kDa nonsteroid
binding protein that copurifies with the rat GR. Fractions
containing this protein increased the DNA binding activ¬
ity of the GR (41). Similarly, Edwards et al. (42) have
identified an activity in nuclear extracts which is distinct
from progesterone receptor and which increases the
specific binding of progesterone receptor to DNA in
vitro. There are also a number of reports of avian
progesterone receptor binding to a class of nonhistone
chromosomal proteins (43, 44). We have preliminary
evidence that the SRE-BP is present in nuclear extracts
of HeLa cells, and we are currently purifying the SRE-
BP in order to further characterise the protein to deter¬
mine its relationship to the above proteins.

In contrast to steroid receptors themselves, the SRE-
BP interacts with two classes of SRE, binding to an
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Fig. 6. Specificity of Partially Purified SRE-BP Binding to the
EREcor Oligonucleotide

Fractions 20 and 21 were concentrated using an Amicon
concentrator. One microgram of pooled fractions 20 + 21 was
incubated with 0.1 pmol ERE^n oligonucleotide in the presence
of 4 Mg poly[d(l-C)]. A 100-fold molar excess of competitor
oligonucleotide was added as follows: lane 1, no competitor;
lane 2, EREcon lane 3, EREprl; lane 4, GRE; lane 5, GREM.
Free and bound labeled oligonucleotide were separated on a
4% polyacrylamide gel by electrophoresis.

ERE and GRE with similar affinity. In this respect, the
SRE-BP may be analogous to the 90 kDa heat shock
protein (HSP 90) which interacts with several different
steroid receptors and which appears to play a global
role in steroid hormone action. In the absence of steroid
hormone, HSP 90 forms a complex with the unoccupied

steroid receptor, maintaining the steroid receptor in a
non-DNA binding form (45, 46). We suggest that the
SRE-BP described in this paper may also play a global
role in gene regulation by steroid hormone receptors in
that its DNA binding activity is not confined to one class
of SRE. The role of SRE-BP remains unclear, but it is
likely to fulfill a common function in transcriptional reg¬
ulation by many or all classes of steroid hormone re¬
ceptors.

MATERIALS AND METHODS

Cell Culture Conditions

HeLa cells (Flow Laboratories, McLean, VA) were maintained
in monolayer culture in 1 x RPMI 1640 medium (Flow Labo¬
ratories) supplemented with 10% fetal calf serum (Seralab,
Crawley Down, UK), 2 min L-Glutamine (Flow Laboratories),
100 IU ml"1 penicillin, and 100 ng ml"1 streptomycin (GIBCO,
Grand Island, NY). Cells were grown in 75 cm2 flasks in 5%
C02in air at 37 C. GH3 cells (47) were maintained as above in
supplemented Dulbecco's Modified Eagles Medium (Flow Lab¬
oratories).

Cell Extract Preparation

Whole cell extracts were made by harvesting 2 x 10s cells
using 0.05% Trypsin, 0.02% EDTA (Flow Laboratories). The
cells were washed twice in PBS, pelleted, and stored at -70
C. Cells were thawed slowly on ice and whole cell extracts
prepared according to procedures outlined (48). Extracts were
aliquoted and stored at -70 C for up to 3 months. Generally,
the whole cell extracts contained 3-10 protein.

Labeling of Oligonucleotide

Thirty picomoles of single stranded oligonucleotide (OSWEL
DNA Service, University of Edinburgh) were labeled with 50
nCi [7-32P]ATP [SA, 3000 Ci/mmoi (Amersham, Little Chalfont,
UK)] in a total volume of 20 jul containing 100 itim Tris HCI (pH
8), 10 mM MgCI2, 5 mM dithiothreitol (DTT) and 4.5 U T4
polynucleotide kinase. 32P-Labeled oligonucleotide was sepa¬
rated from unincorporated radionucleotide by passage through
a sephadex G-50 column (49). For some experiments, 32P-
labeled oligonucleotide was further purified by excision from a
20% denaturing polyacrylamide (19:1) gel and extracted by
freeze/thawing in 10 mM Tris HCI (pH8), 1 mM Na2-EDTA.
Oligonucleotides were made double-stranded by mixing equal
amounts of complementary oligonucleotides and heating to 60
C for 10 min, then allowing the mixed solution to cool slowly
to room temperature.

Gel Retardation Assay

Double-stranded, 32P-labeled oligonucleotide (-0.1 pmol) was
added to binding buffer (100 mM NaCI, 10 mM Tris HCI (pH 8),
1 mM Na2-EDTA, 12.5% glycerol) with 4 /xg poly[d(l-C)] (except
where stated), and with or without unlabeled competitor oli¬
gonucleotide. The binding reaction was carried out in a final
volume of 20 n\ and was initiated by addition of whole cell
extract. The binding reaction was incubated at room temper¬
ature for 20 min; reactions were loaded immediately onto a
4% polyacrylamide (19:1) gel containing 6.7 mM Tris-HCI (pH
7.5), 3.3 mM Na-acetate, 1 mM Na2-EDTA to separate DNA-
protein complexes from free DNA. Electrophoresis was carried
out at 30 mA for 30 min, with circulating reservoir buffer. The
gel was vacuum dried and autoradiographed.

Fractions collected after gel filtration (see below) were as-
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sayed by adding a maximum volume of each fraction to the
poly[d(l-C)] and 0.1 pmol 32P-labeled oligonucleotide in a final
volume of 20 /J.

Gel Filtration

HeLa whole cell extract (=7 mg), made according to Manley
et al. (48), was finally resuspended in column buffer: 50 mM
Tris HCI (pH 7.9), 6 mM MgCI2, 100 mM NaCI, 0.2 mM Na2-
EDTA, 1 mM DTT, 10% glycerol. The molecular weight of the
native SRE-BP was determined using a Sephacryl S300 col¬
umn (150 cm x 3 cm) calibrated with the following molecular
weight markers: flavocytochrome b2 (230,000), /3-amylase
(200,000); alcohol dehydrogenase (150,000); BSA (66,000);
carbonic anhydrase (29,000); myoglobin (17,500), and cyto¬
chrome c (12,500). A total of 47 3.5-ml fractions were collected
at 4 C and assayed for binding activity as outlined above.
Fractions containing SRE-BP activity were concentrated using
an amicon filter. Approximately 1 ml (1 jvg m'"1) of concentrated
protein was recovered.
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The changes in ODC and SAM-DC activities seen here,
when sheep adipose tissue slices were cultured for 48 h with
various hormones, suggest that putative polyamine con¬
centrations will fall when the tissue is cultured with insulin or

dexamethasone, but spermidine and spermine concentra¬
tions will rise when the tissue is cultured in the presence of
growth hormone.

These putative changes in polyamine concentrations do
not parallel changes in the rate of lipolysis during tissue
culture as this falls in the presence of dexamethasone and is
unaffected in the presence of insulin; growth hormone alone
has no effect, but prevents the fall seen in the presence of
dexamethasone [9]. In addition, there is no relationship
between the putative changes in polyamine concentrations
and rates of basal or catecholamine-stimulated lipolysis
measured after culture for 48 h with the various hormones
(R. G. Vernon & E. Finley, unpublished work). Thus it seems
unlikely that changes in polyamine concentration modulate
the rate of lipolysis in sheep adipose tissue or mediate the
chronic effects of insulin, growth hormone or glucocorticoids
on lipolysis.
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A high molecular mass steroid response element binding protein forms a 213 kDa complex with an

oestrogen response element

LOUISE CRAWFORD and KAREN CHAPMAN
M.R.C. Brain Metabolism Unit, Royal Edinburgh Hospital,
Morningside Park, Edinburgh EH10 5HF, Scotland, U.K.

We have previously reported the identification of a DNA-
binding protein present in whole-cell extracts of HeLa cells
which specifically binds to two classes of functionally distinct
steroid response elements. We have named this protein the
steroid response element-binding protein (SRE-BP) [1], In
gel-retardation experiments, the SRE-BP bound specifically
to oligonucleotides containing an oestrogen response ele¬
ment (ERE) or a glucocorticoid response element (GRE),
but only poorly to a mutant GRE and not at all to transcrip¬
tion factor-binding sites present in the herpes simplex virus
thymidine kinase promoter (Sp-1, CTF, TATA). Using gel-
filtration chromatography, we have shown- that the SRE-BP
has a molecular mass under non-denaturing conditions of
205 kDa ( ± 20 kDa) as it exists in solution. The SRE-BP is
neither an oestrogen receptor nor a glucocorticoid receptor
as evidenced by binding sequence specificity, cell type dis¬
tribution and apparent molecular mass. We have proposed
that by modulating the interaction of steroid receptors with
target SREs, the SRE-BP is involved in steroid hormone
regulation of gene expression.

We have now used pore-gradient gel electrophoresis
[2, 3] to demonstrate that the form of SRE-BP that binds to
an ERE has a molecular mass of 213 kDa ± 27 kDa.

HeLa whole-cell extract (WCE) was made as previously
described [4], SRE-BP was partially purified by gel-filtration
chromatography [1], WCE (10 pg) or 1 pg of partially
purified protein were incubated with 0.1 pmol of
double-stranded 32P-labelled ERE oligonucleotide
(5 '-GCAGGTCACAGTGACCTGGAC-3') in 20 pi of bind¬
ing buffer containing: 100 mM-NaCl,- 10 ^M-Tris/HCl, pH
8.0, 1 mM-EDTA (sodium salt), 12.5% (v/v) glycerol, 4 pg of
poly[d(I-C)] for 20 min at room temperature. Samples were
loaded on to a 3-25% (w/v) gradient polyacrylamide gel (79/

Abbreviations used: SRE-BP, steroid response element-binding
protein; ERE, oestrogen response element; WCE, whole-cell
extract.

1 2 3

464 kDa -

200 kDa-

67 kDa-

Fig. 1. Pore-gradient gel electrophoresis of ERE/SRE-BP
complexes

The arrowhead indicates the ERE/SRE-BP complex formed
in the presence of 1 pg of partially purified SRE-BP or 10 pg
HeLa WCE: lane 1 and lane 2, respectively. Lane 3 shows
non-specific complex formation with double-stranded ERE
using HeLa WCE previously left at 4°C for longer than 6
weeks. Molecular mass markers were electrophoresed in
parallel lanes: bovine serum albumin (67 kDa), myosin (200
kDa) and /Lgalactosidase (464 kDa).
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0.8/0.2, acrylamide:bis:diallyltartardiamide, 0.5XTBE
[1 xTBE = 0.089 m-Tris base, 0.089 m-boric acid, 0.002 m-
EDTA]) which had been pre-electrophoresed overnight at 75
V in 0.5 x TBE buffer. Protein standard markers were

loaded in parallel lanes and the gel was electrophoresed for
1500 V h. The gel was stained with Coomassie Brilliant Blue
R to visualize the protein standards, dried and exposed to
autoradiographic film overnight.

Fig. 1 shows that the ERE/SRE-BP complex migrates to a
position where proteins of 213 kDa are prevented from
further progression through the gradient gel. Lanes 1 and 2
demonstrate ERE/SRE-BP complex formation using
partially purified SRE-BP and HeLa WCE, respectively. The
third lane shows complex formation using HeLa WCE after
storage at 4°C for longer than 6 weeks. We believe the com¬
plex formed in lane 3 is a proteolysed form of the SRE-BP
which retains the DNA-binding activity of the SRE-BP, but
loses the sequence specificity characteristic of the SRE-BP
[1], Taking into account the molecular mass of the double-
stranded ERE oligonucleotide used for complex formation

(13.6 kDa), we have determined that the sequence-specific
SRE-BP binds to the ERE oligonucleotide as a 200
kDa ± 27 kDa protein complex.

These results indicate that the form of SRE-BP which is
bound to a steroid response element has a molecular mass of
200 kDa ± 27 kDa. This is very similar to the molecular mass
that we have determined by gel-filtration chromatography
and we therefore conclude that the stable form in solution is
the active DNA-binding species.
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We refer to the 'substrate inhibition' model in [1,2] and let
a = [cyclic AMP] and h = [ATP] or a = cyclic AMP and
/t = ATP. A simple non-trivial model for morphogenesis
involves the following non-linear reaction-diffusion system:

a = V2C ■ K?c
1/1 a a" a

1 5 ^ 3 H 7 + . . .

h \C„ Co Ct

•TTroT kha+D^AaK,„ +a

h = ~-w(h)+D,,Ah
r[h)
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Upon hormone activation, becomes large enough, the
autocatalysis for a in eqn 1(a) becomes strong enough, and
the production (positive) term in eqn 1(a) overcomes the loss
(negative) terms in eqn 1(a), and we then have/a>0 [fa is the
partial derivative of /with respect to a). The mathematical
expression in eqn 1(a) of the 'substrate inhibition' auto¬
catalysis corresponds to the increase in the rate of the reac¬
tion h^a as the reaction progresses, i.e. as we move from
right to left on a rate curve in Fig. 2 in [1]. The assumption
that a < h used in [1] and [2] and here is valid in vivo (see [3]).
We also see from eqn 1(a) that h reduces the rate of produc¬
tion of a, both because of the substrate inhibition [the first
term in eqn 1(a)] and also because readily oxidizable sub-

Abbreviations used: PLC, phospholipase C; PK, protein kinase;
PLA2, phospholipase A2; AC, adenylate cyclase.

strates such as glucose (which we assume will yield h) stimu¬
late the release of intracellular a into the external milieu [4],
Indeed, Sutherland and co-workers suggest that a is actively
pumped out of the cell (see reference 2 in [5]). h should be a
major requirement for such active pumping. This active
pumping is represented by -k-h-a in eqn 1(a). Thus/,<0.
fh < 0 is important for long-range inhibition in order to keep
the autocatalysis local, and the fact that there is an excess of
h in relation to a and that the species ATP4-, ATPMg2 ,

1(a)

1(b)

where V%c, K j'yc represent the usual quantities for the M.E.
[1] adenylate cyclase, and FJ>„D, A/„D for the cyclic AMP phos¬
phodiesterase. z(a), r(h), w(h) are increasing functions of
their argument. Eqns 1(a) and 1(b) can be written more com¬
pactly and generally as:

M{or R)
Fig. 1. Establishment and persistence of lysogeny, segment-

polarity and homoeotic selector gene transcription
A non-linear curve represents the rate of transcription (M
production) or the rate of translation (R production), i.e. it
represents the sum of positive terms in eqn (5). The straight
line represents the linear term in eqn (5) and the rate of loss
of M (or R). An intersection of a non-linear curve with the
linear curve represents a steady state. For the lower non¬
linear curve an unstable steady state separates two stable
steady states. For increasing a the non-linear curves are dis¬
placed upwards. Beyond a critical a there is only the 'high'
steady state and an abrupt transition occurs from the low to
the high steady state. But if a is now decreased, the system
remains in the high steady state. The irreversible 'hysteresis'
is depicted in the inset.
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