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Abstract 

The numerical solution of well-posed Stefan problems in a two-dimensional region 

are considered using a boundary integral technique. The numerical method is an 

extension of that used in previous work in that the boundary integral formulation 

takes account of heat flow both ahead of and behind the phase change front. This 

allows more realistic problems to be considered. Furthermore, it is found that 

when parameter values appropriate for water are used, the previously applied 

routine, based on Newton's method, for determining the location of the phase 

change front, is unstable. This is overcome by using a bisection based method for 

these parameter values. This numerical formulation is found to have a number 

of advantages over finite difference and finite element techniques. For example, 

complex boundaries can be easily considered and the discretisation of the Stefan 

condition is not required. Numerical solutions of the Stefan problem are found for 

different parameter values and, more specifically, the freezing of water is consid-

ered. Employing a model of crystal formation, the numerical method is applied 

to predict the size of the crystals in the crystalline microstructure that is formed 

when a material freezes. The predictions of this model are compared against 

experimental results and it is found that they are in good qualitative agreement. 

To obtain a more accurate model of the freezing of a liquid, the numerical 

method is extended to include the fluid motion in the closed region ahead of the 

phase change front. A numerical procedure is outlined for dealing with genuine 

two-phase problems, using a different approach in each phase. The fluid flow 

problem in the liquid phase of the material is solved using a time dependent 

finite difference method on a non-uniform mesh, whereas the previously derived 

boundary integral method is used to determine the temperature distribution in the 

solid phase. The numerical scheme in the liquid phase is found to be second order 

in space and time. An examination of the freezing of water is again undertaken 

and the size of the crystals formed within the freezing liquid is predicted using the 

model for crystal growth. Comparison with previous calculations without fluid 

flow confirms that the fluid motion has a significant effect on the overall freezing 

process and upon the crystal size. 
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Chapter 1 

Introduction 

1.1 The Boundary Integral Approach To Stefan 

Problems 

Situations in which a material undergoes a change of phase are widespread in sci-

ence, engineering and industry. Industrial applications range from the processing 

of metals to food processing to blood plasma storage. For example, solidifica-

tion of steel, freezing and thawing of biological material and the production of 

ice all involve a moving boundary. Mathematically moving boundary problems 

which involve heat conduction are associated with Josef Stefan (1835-1893) and 

as such are often referred to as Stefan problems. Although such problems were 

certainly being considered by Gabriel Lamé (1795-1870) and Benoit Clapeyron 

(1799-1864) as early as 1831. In 1889 Stefan published four papers involving a 

moving boundary whose motion had to be determined. In the first of these papers 

[52] he considered a one-dimensional material lying in the semi-infinite half space 

0 C x < :- that can exist in either a solid or liquid phase. Initially the material 

was taken to be in the liquid phase at a known uniform temperature. At time 

t = 0 the surface x = 0 was cooled to a temperature below that of the fusion tem-

perature of the liquid and maintained at this level thereafter. Instantaneously a 

moving boundary begins to propagate through the material from x = 0. Ahead of 

the moving boundary the material is in the liquid phase and behind is in the solid 

phase. At some time t > 0 the problem therefore is to determine the thickness 

of the solid region and to find the temperatures of both phases. The complete 

solution is discussed in detail by Carslaw & Jaeger [7]. Other questions can of-

ten arise about the properties of each phase but in general these are problem 

dependent e.g. segregation of species [13, 161. 

At the phase change front there is a discontinuous jump in the heat flux. This 

jump is modelled by a conservation of energy relation, called the Stefan condition, 
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which in one-dimension is given by 

K. aT,(2(t),t) 
- K, aTfl(2(t),t) di 

Ox Ox 
pLyj .  

Here T,, T,, K, and K, are the temperatures and thermal conductivities of the 

solid and liquid phases respectively. The phase change front at some time t > 0 

is located at x = 2(t) and the Stefan condition states that the phase change 

front moves in such a way that its velocity is proportional to the jump in heat 

flux across the front. This heat flux is due to the release of the latent heat 

which is liberated at the moving boundary upon freezing. While the equations 

governing the phase change of a material are well understood, namely the heat 

equation in the two phases plus an energy conservation condition at the phase 

change front, the so-called Stefan condition, there are very few exact solutions of 

these equations outside of one-dimensional situations (see for example Carsiaw & 

Jaeger [7] and Crank [16]). The paucity of exact solutions is due to the position of 

the phase change front being both unknown and influenced by the temperature 

fields in the two phases. The details of a two- or three-dimensional material 

undergoing a phase change can, therefore, in general, only be calculated using 

numerical methods. Numerical schemes that are used to calculate solutions of 

Stefan problems must be chosen with care so that unphysical oscillations in the 

temperature field are not introduced at the phase change front. These oscillations 

are due to the discontinuous temperature derivative at the front. 

Successful numerical methods used to solve phase change problems must there-

fore include a way to accommodate the discontinuous temperature derivative at 

the phase change front. A number of these numerical methods are discussed in 

Crank [16] and in the articles by Fox [26] and Voller et al. [55]. One such tech-

nique is the so-called front tracking method [16]. This method requires that for 

each time step the position of the moving boundary be calculated. The solution is 

computed on a fixed grid in space-time so that, in general, the moving boundary 

at some time t > 0 will lie between grid points. Therefore close to the moving 

boundary special formulations of the governing partial differential equations and 

Stefan condition are required. These formulations lead to formulae which allow 

for unequally spaced intervals on the grid. An alternative is to transform the grid 

itself in some way so that the moving boundary lies on a grid line or is fixed in 

the transformed domain. 

The front tracking method can be modified to accommodate a variable time 

step and/or a variable space step; see Crank [16]. Variable space steps are used 

to avoid the increase in computational effort and loss of accuracy associated with 

unequal space intervals near the moving boundary. In methods which employ a 
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Figure 1.1: The enthalpy H(T) 

variable time step, the time step at a given time is determined so that the moving 

boundary coincides with a grid line at each time. The variable space step method 

can also be used to keep the number of grid points in the region constant by 

redistributing the grid points each time the front is moved. Interpolation from 

the previous grid points is used to evaluate the temperature at the new grid points 

where necessary. An extensive survey of front tracking methods can be found in 

Crank [16]. 

Difficulties with the use of front tracking methods can arise when the mov-

ing boundary does not evolve regularly, for example if it were to double back 

on itself or disappear temporarily. This can lead to numerical difficulties in the 

discretisation of the Stefan condition and the governing partial differential equa-

tions at the phase change front. The possibility, therefore, of reformulating the 

problem in such a way that the Stefan condition is implicitly bound up in the 

new form of the equations which then apply over the whole region is attractive. 

The enthalpy method [16, 23, 24, 30, 31, 54, 551, which solves for the total heat 

content, avoids the difficulties of front tracking methods since the discontinuity in 

the temperature derivative is by-passed by solving for the enthalpy instead of the 

temperature. This is achieved by defining an enthalpy function- H(T), which is 

the total energy content, i.e. the sum of the specific and the latent heat required 

for a phase change to take place. The enthalpy is defined by 

H(T) 
= 

(0) c(0) + L p(G) 8(0 - Tj)] dO, (1.2) 
T. 

 

where p(T) is the density, c(T) is the specific heat and 8(x) is the Dirac delta 

function. Furthermore To  is a reference temperature less than the freezing tem-

perature T1. The form of [1(T) is shown graphically in figure I.I. The jump 

in heat content at the moving phase change front is incorporated in the defini- 



tion of H(T). The heat conduction problem can then be reformulated over the 

whole region containing the two phases, except where T = T1, and is described 

in one-dimension by the single equation 

8H(T) 
- 

a ( T\
) 

(1.3) 
at Dxk Ox 

or in higher dimensions by 

OH(T) 
at 

=V.(K(T)VT) (1.4) 

together with associated boundary and initial conditions. The thermal conduc-

tivity K(T) is a function of temperature and is given by 

K(T)—{ K

3  ifT<T1 
- K, ifT>Tj 

The moving boundary is located by simple inspection of the solution across the 

computational mesh to locate the jump in enthalpy. The enthalpy method and its 

numerical implementation is discussed by Elliott et al. [23] and Crank [16], in the 

review article on finite element and finite volume methods for Stefan problems by 

Voller et al. [55] and in the book on the numerical solution of moving boundary 

problems by Finlayson [24]. 

Finite difference methods based on the enthalpy method work well for rectan-

gular regions (see Voller [54]), but are difficult to apply when the domain is not 

rectangular. Finite element methods can be used to overcome this drawback, see 

Voller, Swaminathan and Thomas [55], Finlayson [24], Lynch [36] and Chow [9]. 

As an alternative to finite element methods, Coleman [12] used a boundary 

integral method to find numerical solutions for phase change problems for which 

the temperature ahead of the phase change front was.kept constant at the fusion 

temperature. The integral equation describing the temperature distribution in 

the solid phase behind the phase change front, 

aT\ 
—AT3(r,t) = D, / 

' 
f G 'I ds'dt' (1.6) 

Jo 

—D3  [ G3(r, r', t, f(x', y')) dx' dy', 
JB 

was obtained from the governing equation of heat flow, the heat equation, by 

utilising a Green's function formulation of the problem; see Carslaw & Jaeger [7], 

Crank [16] and Hill and Dewynne [30]. Here D. is the thermal diffusivity of the 

solid, G. is an appropriate Green's function for the solid phase and f(x, y) is the 

position of the phase change front. In the above equation we have assumed that 

the temperature on the phase change front is T3(x, y, t) = 0 which by the implicit 
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function theorem has the unique solution t = f(x, y). The boundaries Bf  and B. 
are the fixed and moving boundary respectively, with ii the outward unit normal 

to the fixed boundary Bf. Full details for each of the terms and coefficients in 

the integral equation will be given in Chapter 3. 

This method has the great advantage in that it can be easily applied to regions 

of any shape and, furthermore, the Stefan condition is fitted naturally into the 

numerical scheme without discretisation. The boundary integral method also 

results in a great reduction in computational effort as it reduces the problem of 

solving for the temperature field in the two phases to solving for unknowns on 

the boundary of the material and on the phase change front only. Thus a two-

dimensional problem is reduced to a one-dimensional problem on two curves, with 

a resulting great saving in calculation. 

Coleman [12] applied his boundary integral method to solving phase change 

problems on square and L-shaped regions and it was found to give fast, accurate 

results in good agreement with other methods. The boundary integral method 

does however have the drawback that it can only be applied to well-posed Stefan 

problems and not to supercooled situations, unlike the enthalpy method which 

can be applied in both cases [55]. 

In Chapter 2 of the present work we shall begin by considering the one-

dimensional problem posed by Stefan [52], that of a plane phase change front 

propagating through a material that can exist in either a solid or liquid phase. 

For a fixed temperature boundary condition this relatively simple problem yields 

an exact solution in one-dimension [30] and provides a useful starting point for 

higher dimensional problems. Furthermore, the solution of the one-dimensional 

problem will be used as part of the start-up procedure for the numerical solution 

of two-dimensional problems. 

In Chapter 3 the boundary integral method of Coleman [12] will be extended 

in two ways. Firstly the boundary integral formulation will be extended to include 

heat flow ahead of the phase change front, so that more general and realistic initial 

conditions can be used. Further, Coleman [12] used Newton's method to find the 

position of the phase change front. It is found that for the freezing of a liquid 

for which the ratio of the thermal diffusivity of the liquid phase to the thermal 

diffusivity of the solid phase is large, Newton's method converges slowly due to 

small temperature derivatives at the phase change front. The numerical method 

developed in the present work overcomes this by using a bisection method to 

determine the position of the phase change front when Newton's method converges 

slowly. By symmetry, Newton's method will also converge slowly for a melting 

problem for which the ratio of the thermal diffusivities of the liquid phase to the 
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solid phase is small. 

Including the heat flow ahead of the phase change front means that the tem-

perature in the liquid phase is no longer constant. Instead the temperature dis-

tributions in both the solid and liquid phases need to be calculated as part of the 

solution process. In the solid phase behind the phase change front the integral 

equation that needs to be solved to determine the temperature field has the same 

structure as the integral equation (1.6) of Coleman [12], with the final integral 

term on the right hand side replaced by 

—D, L. G3(r, r', t, f(x', y')) V'T . V'f jt'_f(x'y') dx' dy'. (1.7) 

This different term is due to the temperature gradient of the liquid, V'T,', not 

being zero at the phase change front. In the liquid phase ahead of the phase 

change front, the integral equation for the temperature field 

—A Tj(r, t) = 
- f Tf(r', 0) G,(r, r', t, 0) dx' dy' (1.8) 

+ f Gz(r, F' ; t, f(x', y' )) V'T[ . V'ft'f(',') dx' dy' 

is obtained by a similar application of the Green's function formulation of the 

governing equation of heat flow for the liquid phase. Here G1  is an appropriate 

Green's function for the liquid phase and the boundary 5o  is the initial posi-

tion of the moving boundary at time t = 0. At the moving phase change front 

these integral equations are linked by the Stefan condition (1.1), from which the 

relationship 

KV'T31 . V'f = St + V'Tf. V'f,  

is obtained. Here 5, is the Stefan number - the ratio of latent heat to the sensible 

heat required for a phase change. These integral equations together with the 

Stefan condition, completely determine the temperature field within the material 

and the position of the phase change front. 

A detailed derivation of the integral equations for genuine two-phase Stefan 

problems will be presented in Chapter 3. Furthermore, a full account of the 

numerical scheme used to solve the integral equations, together with its imple-

mentation, is given in that chapter. Results obtained using the numerical scheme 

will be compared with the results of Coleman [12] for single phase Stefan problems 

for the purpose of the validation of the numerical method presented here. The 

boundary integral method will be applied to a number of examples of the freezing 

of a rectangular region for which the temperature ahead of the phase change front 

is higher than the freezing temperature of the liquid. Emphasis will be placed on 

the freezing of water, with parameter values chosen to be those appropriate for 

water. 



The growth of crystals formed when a material freezes can have a significant 

effect on the properties of the material once it is thawed; see Fletcher [25]. For 

example, in the freezing of protein solutions the control of crystal structure and 

size is of great importance as the formation of large crystals can lead to damage 

of the proteins at molecular level; see Miyawaki et al. [37]. Empirically it is 

known that slow freezing leads to large crystal sizes while rapid freezing produces 

a fine structure with small crystals. In general, the structure and sizes of the 

crystals formed are determined by the properties of the material to be frozen and 

the operating conditions at freezing. An application of the numerical method is 

made to predict the sizes of crystals formed when a material freezes, based on 

a simple model of crystal growth by Frank [27] and Coriell and McFadden [15]. 

The predictions of this model are compared with experimental results and good 

qualitative agreement is found. 

The main results discussed in this section form Chapters 2 and 3 of this thesis 

and are presented in the paper by Galloway & Smyth [28]. 

1.2 Fluid Motion in Stefan Problems 

In the second part of this thesis the fluid motion in the closed region ahead of 

the phase change front will be included to provide a more realistic and accurate 

model of the freezing of a liquid. This will further extend the work of Coleman 

[12] and that of Chapter 3 to include fluid motion in the numerical solution of 

two-phase Stefan problems. When fluid motion is included heat transport is not 

only driven by diffusion, but also by buoyancy induced thermal convection. The 

geometry and orientation with respect to gravity can also play an important roll 

in determining the heat transport in the fluid. However thermal convection is 

often the driving force and by its nature allows hot fluid to circulate to the phase 

change front, so that heat will be drawn out of the liquid phase more rapidly 

than if no fluid motion occurred. Thus including the fluid motion ahead of the 

phase change front, in the liquid phase, will provide a more realistic model of the 

freezing process. 

The first quantitative experiments of thermally induced convection were made 

by Henri Bénard [4] in 1900. In these experiments he considered very thin layers 

of fluid lying on a metallic dish. The lower side of the dish was maintained at 

some uniform temperature with the upper surface free and at a lower temperature 

due to its exposure to air. The layer of fluid in these experiments was observed to 

form a cellular pattern; see figure 1.2. Lord Rayleigh explained this phenomena 

in terms of a buoyancy driven instability by a linear expansion of the equations 



Edge of container 

Figure 1.2: Hexagonal Bénard cells at equilibrium 

written in terms of the fluid velocities about the rest state of no fluid motion [46]. 

It was later determined analytically and experimentally that in buoyancy driven 

convection the expected pattern would be stripes or convection rolls, rather than 

the cells observed by Bénard [22], which is a nonlinear phenomena. Pictures of 

stripes, rolls and cells for modern reproductions of Bénard's experiment are shown 

in Van Dyke [53]. 

The convective motion that leads to this pattern formation is explained by 

Drazin & Reid [22] in the following manner. Heating the lower side of the re-

gion creates a region of hotter and, in general, less dense fluid lying below a 

region of cooler, denser fluid. When the temperature difference across the layer 

is great enough, the stabilizing effects of viscosity and thermal conductivity are 

overcome by the destabilizing buoyancy and an overturning instability ensures 

thermal convection. In general problems involving convection in a fluid layer 

heated from below are called Bénard or Rayleigh-Bénard convection problems 

[22, 58]. 

In the present work we shall consider the motion, of a fluid in a closed region 

that is bounded by a moving boundary. At some time t > 0 the region R, 
which includes both the solid and liquid phases, consists of two boundaries, one 

of which is fixed and the other of which is moving; see figure 1.3. Ahead of 

the moving boundary the fluid is taken to be at a temperature greater than its 

fusion temperature and consequently in the liquid phase. Behind the moving 

boundary the fluid is at a temperature less than the fusion temperature and so 

is in the solid phase. In the cases to be considered in the present work the fluid 

is cooled uniformly around its boundary, creating a layer of cooler more dense 

fluid which lies around a region of hotter, less dense fluid. In the same way as 

with the classical Bénard problem we have a denser fluid overlaying a less denser 

fluid. The less dense fluid in the centre of the region will then, if the temperature 

difference between this fluid and the fluid at the phase change front is great 

enough, rise to displace the layer of denser, colder fluid that lies on the inside of 
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Fixed Boundary - Moving Boundary 

Figure 1.3: Region 11 with two convection cells in the liquid phase 

the phase change front. As the less dense fluid rises and reaches the colder layer, 

close to the phase change front, it will be itself cooled to a denser fluid and begin 

to fall. In this way the fluid begins to circulate, leading to thermal convection 

occurring in the liquid phase ahead of the phase change front; see figure 1.3. In 

the present work we shall be specifically concerned with the freezing of water. 

For a detailed discussion of the physical and chemical properties of water see 

Fletcher [25} and Sienko & Plane [501. Water has the unusual property that it 

attains its maximum density at about 4°C and above 4°C the density of water is 

a decreasing function of temperature. For initial temperatures greater than 4°C 

the onset of thermal convection is attained by the process described above. In 

the range 0°C to 4°C however, the colder the water, the less dense it becomes. 

Hence for the classic Bénard convection problem the rest state will remain stable, 

with the hot fluid region unable to penetrate the region of colder fluid. For water 

temperatures between 0°C and 4°C the fluid in the internal region ahead of the 

phase change front will be more dense than the cooler fluid residing in the layer 

immediately ahead of the phase change front. With the existence of sufficiently 

large temperature differences between the centre and the phase change front, 

the density difference will cause circulation of the fluid due to buoyancy induced 

thermal convection. The cooler, less dense liquid at the bottom of the region will 

be forced upwards by the descent of hotter, more dense liquid above it. As in 

all induced thermal convection problems the fluid circulation will continue until 

temperature variations throughout the liquid phase are sufficiently small. 
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In Chapter 4 the governing equations of fluid motion are stated in the vorticity-

streamfunction formulation of the Navier-Stokes equation together with the con-

vection-diffusion equation; see Batchelor [3]. The fluid is assumed to a Boussinesq 

fluid. This approximation is valid when the temperature, and therefore density, 

variations are small and assumes that the density variations are only significant in 

the buoyancy terms of the Navier-Stokes equation. In terms of non-dimensional 

variables the governing equations of fluid flow are the convection-diffusion equa-

tion 

UT, (1.10) 

the Helmholtz vorticity equation 

Ow UT, 
V .(wu) - + vjV2 w 

&0x 

and the streamfunction equation 

= —w. (1.12) 

In these equations, u is the fluid velocity, w is the vorticity, T, is the temperature 

of the liquid region and 0 is the streamfunction. Here the coefficient A is the 

thermal diffusivity and t'j is the kinematic viscosity. A detailed derivation of 

these equations together with suitable non-dimensional scalings and appropriate 

boundary and initial conditions will be presented in Chapter 4. Also in that 

chapter the boundary integral method of Coleman [12] will be further extended 

to include the fluid motion in the liquid region ahead of the phase change front. 

A full account of the numerical scheme used to solve genuine two-phase Stefan 

problems with fluid motion in the liquid phase, together with its implementation, 

is given. In the solid phase behind the phase change front, the boundary integral 

method of Coleman [12] is used to solve for the temperature field. In the liquid 

phase the solution of the equations of fluid motion, namely (1.10) to (1.12), is 

required. As in Chapter 3 the Stefan condition provides a link between the two 

phase change regions in the form of the relationship 

V'T. V'f = St + V'T,'• V'f, (1.13) 

where St  is the non-dimensional Stefan number. 

Due to the complexity of the fluid motion equations and the domain in which 

they are solved, a numerical method is required for their solution. A number of 

such methods are discussed in the book by Shyy et al. [49] and in the review 

articles by de Vahl Davis [20] and Ostrach [43]. The problem in this case, as well 
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as in the case of no fluid motion, is that any numerical procedure for solving the 

governing equations must also cope the location of the moving boundary as part 

of the solution process. Therefore many of the techniques used to solve fluid flow 

problems in the presence of a moving boundary overlap with the solution tech-

niques for the moving boundary problems themselves [49]. For example, a moving 

grid can be utilised that travels with the moving boundary itself. The moving 

boundary is explicitly tracked at each time step, with the individual domain at 

each time step being obtained by some sort of front fitted coordinate system. The 

governing equations are transformed to this front fitted domain and are solved 

in the new coordinates by a standard solution technique e.g. finite differences 

120, 21, 57] or finite elements [8, 19, 33, 42]. The mesh is then redistributed to 

conform with the new shape of the moving boundary and the solution procedure 

repeated. This solution technique is similar in construction to the front tracking 

methods described previously (Crank [161). Yeoh et al. [57] and de Vahl Davis et 

al. [21] have used this technique to study natural convection in two- and three-

dimensional regions. The governing equations are transformed into a square or 

cubical domain and then solved using a finite difference scheme. The authors 

have shown that this method gives good agreement with experimental results 

for the freezing of water. This technique can encounter difficulties if the moving 

boundary should become concave or if the moving boundary should become very 

distorted as extensive regridding can become costly computationally. 

Similarly fixed grid methods provide another technique for convection prob-

lems with a moving boundary, see Shyy et al. [49]. In heat transfer terms, one 

of the most well known methods is the enthalpy method; see Crank [16]. In this 

approach the moving boundary is tracked implicitly and the governing equations 

are reformulated in terms of the total enthalpy. These transformed equations can 

then be solved by standard solution techniques without the need to transform 

the domain or manipulate the equations. The phase change front is located by 

searching for the change in enthalpy across the grid. Furthermore the enthalpy 

method can cope with problems where the transition between different phases 

takes place over a finite interval rather than at a discontinuity. Brent et al. [5] 

have successfully applied the enthalpy technique to a range of problems where the 

material, in this case gallium, changes phase over a finite interval. This interval 

is sometimes called the mushy zone. The authors have shown that their method 

gives good agreement with experimental results. 

To accommodate the moving boundary with the governing equations of fluid 

flow we shall use a finite difference scheme that is applied on a non-uniform spatial 

mesh ahead of the phase change front in the liquid phase. The finite difference 
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scheme is based on the formulation given by Moore et al. [38). In this work 

the equations were solved on a staggered mesh, which reduces the computation 

and storage requirements of the method. However this staggered mesh requires 

a uniform spacing of the mesh points which, due to the moving boundary, is not 

possible for the problems considered in Chapter 4. Instead the strategy employed 

is to retain mesh points which fall ahead of or on the moving boundary and 

discard the points that lie behind. The remaining mesh is then extended, if 

required, to include points on the phase change front. In this way the spatial 

grid is reduced at each time step, which provides a great computational saving 

as the phase change front advances. A validation of the finite difference scheme 

is obtained by a comparison with the solutions of the classical Bénard convection 

problem considered by Moore et al. [38]. 
. 

The fluid equations are solved until 

steady convection is reached and this steady flow is found to compare favourably 

with the results of Moore et al. [38]. 

In the derivation of the above fluid equations (1.10) to (1.12) it was assumed 

that the fluid density depended linearly on temperature. For water however 

the relationship between density and temperature is approximately quadratic, 

with a maximum density at 3.98°C; see Sienko & Plane [50]. This results in a 

revised form of the equations governing the fluid flow. Under suitable scalings 

the Helmholtz vorticity equation is now 

= —V . (LO U) - (T1  - T:r)2  + V2 w, (1.14) T 
Ox 

where the temperature T1, is the non-dimensional temperature at which the wa-

ter density is at its maximum. The convection-diffusion equation (1.10) and 

the streamfunction equation (1.12) are the same as before. However the non-

dimensional coefficients are changed to those appropriate for water. 

In the present work a detailed study is made of two-phase Stefan problems 

for the freezing of water which includes convection in the liquid phase. A number 

of different initial temperatures above the fusion temperature (T11 = 0°C) are 

treated, including an example with initial temperature close to 4°C, where water 

attains its maximum density. Furthermore the crystal size model of Chapter 

3 is extended so that the effect of fluid flow on the size of ice crystals can be 

determined. The mean crystal sizes are then compared with the results for no 

convection considered in Chapter 3. The inclusion of convection in the liquid 

phase ahead of the phase change front is shown to have a significant effect on 

the size of the crystals produced when water is frozen, with crystal size being 

significantly reduced, as would be expected. 

Finally in Chapter 5 some conclusions on the work are drawn. The choice of 
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numerical strategy employed is discussed and improvements, where necessary, are 

suggested. Some points are also raised on the limitations of the adopted numer-

ical method in terms of its applicability to different geometries, well-posed and 

supercooled /superheated problems. Some aspects of the computer programming 

itself will also be raised, including a brief discussion on parallelisation. 
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Chapter 2 

The One-Dimensional Problem 

2.1 The Stefan Problem 

Moving boundary problems can arise in a variety of physical and mathematical 

contexts. One such area is when a change of state or phase occurs. The phase 

change problem is an area of extensive research in applied mathematics. There 

are few exact solutions of moving boundary problems, and consequently much 

research has focused on approximate and numerical means of solution [16, 23, 

24, 31]. In order to gain some insight into phase change problems, it is useful to 

consider a relatively simple one-dimensional problem, for which an exact solution 

exists. In addition, this one-dimensional solution will be employed as part of the 

numerical procedure for solving two-dimensional, two-phase moving boundary 

problems, presented in subsequent chapters. 

Josef Stefan (1835-1893) [52] is recognised as being the first person to make 

a detailed mathematical study of heat, conduction involving moving boundaries. 

In this work he considers a pure material which can exist in either liquid or solid 

phases on the semi-infinite half space 0 < x < oo. The material is taken to be in 

the liquid phase initially, with some known uniform temperature distribution. At 

some initial time t = 0 say the temperature at x = 0 is dropped below the freezing 

temperature of the material and kept at that temperature thereafter. Stefan 

then posed the problem at a given point t in time, what is the position of the 

solid/liquid interface, x = S(t), and the corresponding temperature distributions 

in the solid and liquid phases, T(x,t) and T,(x,t) respectively ? 

This problem can be approached in various different ways; see, for example, 

the classic work by Carsiaw and Jaeger [7]. Usually it is assumed that the material 

is initially in the liquid phase at some constant temperature T10  which is above 

the freezing temperature of the liquid T11. At time t = 0, the surface x = 0 is 

cooled to the temperature T3 , which is below T11, the freezing temperature of the 

liquid, and thereafter maintained at this level. 
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A 
X x.x(t) 

Figure 2.1: Freezing liquid with moving interface at x = 1(t) 

As soon as the boundary temperature at x = 0 is dropped below the freezing 

temperature Tif,  a freezing front begins to propagate through the liquid region. 

Ahead of the freezing front the material is in the liquid phase and behind, the 

material is in the solid phase. Figure 2.1 shows a schematic representation of the 

freezing region. It is assumed that the physical and thermal properties for both 

the solid and liquid phase remain unchanged throughout the freezing process, 

that there is no change in volume whilst the material freezes and that the heat is 

transfered by conduction only. If the assumption about no volumetric change is 

not made, then bulk motion of the solid and/or liquid must be included, which 

increases the complexity of the governing equations greatly. Thus, the tempera-

tures T8(x, t) and Tj(x, t) are determined by solving the following heat conduction 

problems in time dependent domains 

82T8  
- v-  ---, 0~x~ 53(t) 

T3  (0, t) = T36, T3(2(t), t) = Ti f, t > 0 (2.1) 

behind the phase change front and 

32T1  
= v,—

Dx
-, £(t)xcoo 

T1(1(t),t) = T11, T,(oo,t) = T10, t > 0 (2.2) 

T,(x,O) =TIO, O<x<oo, 

ahead of the phase change front, where v3  and ti are the thermal diffusivities of 

the solid and liquid phase respectively. In addition, since there is no solid phase 

initially, we require that 1(0) = 0. It should be noted that at the interface of the 

two regions both temperatures take the same value, T3(1(t), t) = T1(2(t), 1) = 

the fusion temperature of the liquid. The condition on the liquid temperature at 
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x = oc forces the solution to remain stable i.e. the solution will not grow too fast 

nor will it blow up at infinity. 

Essential to the derivation of heat flow in a material is Fourier's Law [3, 301 

which states that the rate of heat flow across an isothermal surface (a surface of 

constant temperature) per unit area is proportional to the temperature gradient 

at the surface. Either side of the phase change front there is a difference in 

temperature which we need to relate to heat flow and it is Fourier's law which 

provides this link. 

The freezing front moves in such a way that its velocity is proportional to the 

jump in heat flux across the front, this flux being due to the latent heat liberated 

on freezing. Specifically, if L is the latent heat of fusion, then when the front 

moves a distance dl, a quantity of heat p L dl is released from the freezing liquid 

and is removed by conduction. So during the time interval di we have a heat 

balance with heat flowing out of the liquid phase into the phase change interface 

and heat flowing out of the phase change interface into the solid phase. The 

difference between these heat fluxes must be equal to the latent heat liberated at 

the phase change interface, so that 

K. 
5T3(2 

-Ill 
(t),.t) DI(2(i),i) dl 

(2.3) 
ax ax 

=pL-j-  

where K8  and K1  are the thermal conductivities of the solid and liquid phases 

respectively. This equation is sometimes referred to as the Stefan condition, 

which along with (2.1), (2.2) and the initial condition 1(0) = 0 constitute all the 

mathematical information that is required to solve the problem posed by Stefan in 

[52]. The solution of this problem is discussed in Carslaw & Jaeger[7] and Crank 

[16]. In particular, they consider the case where initially the liquid is at the point 

of freezing, so that T1  = T11  everywhere. This means that when the boundary 

temperature is lowered, freezing takes place immediately and the problem reduces 

to one of heat conduction in the solid phase alone, since the temperature of the 

liquid at a point cannot change until the phase change front has passed through 

that point. This approximation leads to the retrieval of Neumann's solution of 

the planar problem [7, 16, 30, 31]. This solution is a special case of Stefan's 

problem with zero heat flux in the liquid region, the solution being completely 

determined in terms of the boundary condition. 

Neumann's solution would be a suitable approximation to use if one was not 

taking account of the temperature distribution ahead of the moving boundary 

[12]. However, to take account of a variable temperature ahead of the front, a 

solution with varying temperature ahead of and behind the phase change front is 

required. 
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2.2 A Two-Phase Solution 

A set of non-dimensional variables for the space, time and temperature is 

x
I  -, Tif  

a , 
x 

a - a2 
T'(x',t') =X V1 T(x,t) - 

= = ,
Tt 

 

where a is an arbitrary length scale of the region and T1  is a typical scale for 

the initial temperature distribution. Using these non-dimensional variables and 

dropping primes, the governing equations (2.1), (2.2), the Stefan condition (2.3) 

and the initial condition (0) = 0 become 

ST,, 527'
,, 

 

= II 0<x<2(t) 

T.(0, t) = T,6, T3(fi(t),0=0, t>0 (2.4) 

behind the phase change front and 

57' 527' 
- -a--i, x(1)<xcoo 

T1  (2(t), t) = 0, Tj(oo, t) = lflo, t > 0 (2.5) 

T j(x,O) = 7',o, O<x<oo 

ahead of the phase change front. Here the non-dimensional diffusivity ii is given 

by 
vs  

11 = - 
U, 

In non-dimensional variables, the initial condition for the front position re-

mains unchanged, (0) = 0, and the Stefan condition (2.3) becomes 

, 

ST,,(2(t), t) 8T,((t), t) dl 
49X - Ox =8 i- (2.7) 

where the non-dimensional constants 

- 

pLy, 
and K= (2.8) t_TK K, 

are the Stefan number and the thermal conductivity respectively. The Stefan 

number or phase change parameter is the ratio of the latent heat to the heat 

capacitance of the liquid phase. 

In general, the boundary condition at x = 0 would be a Newton cooling 

boundary condition [30, 311; however, no fully analytical solutions exist for this 

boundary condition. An exact similarity solution does exist for the special case 

of a fixed temperature boundary condition with T = T56  at x = 0 (see Carslaw 

(2.6) 
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F(6) 

4.  

L!JrAl  

Figure 2.2: Plot of transcendental equation showing unique root O for non- 
dimensional parameters T36  = —1.0, T10  = 1.0, K = St  = ii = 1.0 

and Jaeger [7]). This solution is 

x 
T. (x, t) = T6 

- 

T36 
erf( 

 erf (-5=) k2/i) 

and (2.9) 

x 
T1(x,t) = TIO_ 

TO erfc fc (e) 7 ( ) 

(see Crank [161). The phase change front is located at x = (t) = where 9 

is the solution of 

K T36 -4/(4U) 
- 

T10 
c°21  - 9 St = 0. (2.10) F(0) 

/erf() (2  V  

Figure 2.2 shows F (0) plotted for some typical values of the non-dimensional 

parameters of the one-dimensional two-phase Stefan problem (Equations (2.4), 

(2.5) and (2.7)). It can be seen that the solution of F (0) = 0 is unique. 

The solution of equation (2.10) will be required to start the numerical scheme 

for solving two-dimensional Stefan problems, to be described in Chapter 3. 
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Chapter 3 

Two-Phase Problems 

3.1 Governing Equations 

In this section the governing equations for a two-dimensional moving boundary 

value problem, with heat being transfered by conduction alone, are presented. As 

in the one-dimensional case (see the previous chapter) the material is assumed to 

initially be in the liquid phase, leading to the formulation of a freezing problem. 

These equations are higher dimensional generalisations of those in Chapter 2. 

To be specific, let us consider the freezing of a liquid contained in an arbitrary 

two-dimensional region R. The fixed boundary of the region R will be denoted 

by B. Inside the region R there will be a moving phase change front, which will 

be denoted by B. Furthermore, let us denote the temperature of the liquid by 

T,(r,t) and the temperature of the solid by T3(r,i),.as shown in figure 3.1. Let 

the thermal diffusivity and thermal conductivity of the liquid and the solid be v,, 

K1, v3  and K3  respectively. The equation governing the heat flow in the solid is 

then 
(3.1) 

for points r lying between the fixed boundary BI  and the phase change front B, 

while the equation governing the heat flow in the liquid is 

(3.2) 

for points r lying ahead of the phase change front B [30]. Initially the region B 

is totally filled with liquid with some temperature distribution, so that the initial 

condition is 

T, (r, 0) = Tjo(r) in B. (3.3) 

The boundary condition on the fixed boundary B1  is, in general, a Newton cooling 

condition 

Ks nVT3 +h (Ts  Ta)0 on B1, (3.4) 
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LtII1 

Figure 3.1: Region R with fixed boundary B1  and phase change front B,, 

where n is the outward normal to the boundary and T. is the temperature of 

the surroundings. The constant h is the surface heat transfer coefficient or sur-

face conductance and K. the thermal conductivity of the solid. On the moving 

boundary B the Stefan condition 

UT3 UT, K3 ---K,---=LpnV (3.5) 
Un Un 

holds, where n is the outward normal to the solid region, V is the velocity of 

the phase change front, p is the density of the solid and L is the latent heat of 

fusion [30). The Stefan condition expresses energy conservation across the phase 

change front, with energy being liberated due to the latent heat release as the 

liquid freezes. In deriving the Stefan condition it has been assumed for simplicity 

that the density of the solid and the density of the liquid are the same. 

The governing equations (3.1) and (3.2), initial condition (3.3) and boundary 

conditions (3.4) and (3.5) can be non-dimensionalised relative to the parame-

ter values for the liquid phase. Let temperature be measured with respect to 

the fusion temperature T,1  of the liquid and scaled with respect to some typ-

ical temperature Tt  of the initial temperature distribution. A non-dimensional 

temperature T' is then 

TI= TU T . (3.6) T   

If a is a typical length scale of the region I?, then non-dimensional space and time 

variables can be defined by 

and 
a 

(3.7) 
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Using these non-dimensional variables and dropping primes gives the 

non-dimensional equations 

(3.8) 

for the solid phase between the fixed boundary B1  and the phase change front 

B,, and 
871 (3.9) 

for the liquid phase ahead of the phase change front B,,. The boundary condition 

(3.4) becomes 

If. n. VT. +ah(Ts —Ta)=0 (3.10) 

on the fixed boundary B1, where T. is the non-dimensional temperature of the 

surroundings. The Stefan condition (3.5) becomes 

82'S OT, • (3.11) 

on the moving phase change front B,,. Here the non-dimensional diffusivity ii and 

conductivity K are 

and K=4. (3.12) 

The Stefan number St  is 

= 
(3.13) 

The non-dimensional equations (3.8) and (3.9), together with the Stefan condition 

(3.11), the initial condition T10  = constant > 0 and the boundary condition 

= T36  = constant .c 0 on the fixed boundary B1  (which corresponds formally 

to /3 = K5 /(czh) = cc in (3.10)) has an exact solution in one-dimension. This 

solution is given in the previous chapter. 

3.2 Integral Equations 

In this section the boundary integral equations used in the numerical solution of 

the two-dimensional Stefan problem will be derived from the heat equations (3.8) 

and (3.9) for the solid and liquid phases. These integral equations form a coupled 

system linked by the Stefan condition (3.11), which applies at the boundary 

between the liquid and solid phases. The numerical scheme presented here is an 

extension of the method of Coleman [12] to include a variable temperature ahead 

of the phase change front. Using the boundary integral method, the system of 

equations (3.8) and (3.9) is converted into a pair of coupled integral equations 

for the temperature ahead of and behind the phase change front. Let us consider 

first the integral equation for the temperature behind the front. 
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Figure 3.2: Fixed boundary B1  and phase change front B extended as surfaces 

S1 and 5,, in space-time. 

Let G. be the Green's function 

/ r-r'12  \ 
G. r', 1, t') = H(1 - 1') 

1 
exp I - (3.14) 

47rv(t - t') \ 4u(t 
- 

)j 

so that 
+ v V' 2  G8  = —6(1 - 1') 8(r - r'), (3.15) 

je- 
where V' refers to derivatives with respect to r' ( see [7, 16, 12, 30]). It can then 

be shown from (3.8) and (3.15) that 

T) + vV' (T3  'V'G3  GSV'T) = —T8(t - t') 8(r - r'), (3.16) 
TV 

where T = T3(r', 1'). The fixed boundary B1  and the phase change front B,, can 

be extended as surfaces Sj  and 8,, in space-time respectively, as shown in figure 

3.2. The phase change front is then described by an equation of the form 

- f(r) = 0 (3.17) 

in space-time. The outward unit normal to 8, is therefore given by 

np 
(Vf)  —1) (3.18) = 

IV! 2 
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Let V1 be defined to be the space-time region between the fixed boundary of the 

region and the phase change front and V be defined to be the space-time region 

ahead of the phase change front, as shown in figure 3.2. Integrating equation 

(3.16) over space-time between the surfaces Sj  and S, gives 

—AT,(r,t) 
= 

L1 (G, T:)  dv' + vf V1 . (T,'v'G, - G,V'T) W.  (3.19) 
VI  

The parameter A takes the value 1 at points away from the boundary and the 

value 1/2 at regular boundary points. The parameter A = 0(r)/27r, where 4(r) 

is the internal angle at the point r between the tangents to fixed boundary on 

either side of r. In this case the volume element dv' = dV,' di', where %/, is the 

x - y region between the fixed boundary and the phase change front. Thus for 

the first integral in equation (3.19) 

) dV' 
= J0t L. LG. ':) dy,' di' 

= 
[G, TflO  dV' = 0, (3.20) 

L1 t,  (G. 7'  

since G, = 0 at t = I' and V, vanishes at t' = 0. Applying the divergence theorem 

to the remainder of equation (3.19) then gives 

—A T,(r, t) = ii
is 
I (TV' G, - G,V'T3 . n dS'. (3.21) 

The boundary S. of the region Vj consists of two parts, the fixed boundary B1  
(boundary Sj in space-time) and the phase change front Si,. Therefore 

t~o 
—AT,(r,t) = vi 

f (
T

~, 9i—G !?2' ds'dt' 
iO B,. On' ' an') 

-uf G,V'T np  dS', (3.22) 
SF  

since T,' = 0 on the phase change front 5,. Using the outward unit normal (3.18) 

to the phase change surface S, this integral equation may be written as 

rt+O r OG UT" 
0 aiLan' 

—AT,(r,t) = v J 
' $ G ''I ds'dt' J  

-L' f C, V'T 
. V'f dS'. (3.23) 

v'l + JV'f 12  

Projecting the integral over the surface S, down onto the x - y plane as the 

surface B, finally gives 

—AT,(r,t) = vj f 
UT\ 

'—C 'I ds'dt' 
0 Bj  (T On' 

(3.24) 

—v I C,(r, r', I, f( x', y')) V'T,'. V'flt'fs,yc) dx' dy'. 
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This integral equation alone is not enough to determine the temperature behind 

the phase change front as the gradients V'T V'fIt.f(',') on the phase change 

front are not known. These unknown gradients are related to the same gradients 

ahead of the front by the Stefan condition (3.11). Differentiating with respect to 

time the equation for the phase change front in space-time, equation (3.17), gives 

V'f•V=l, (3.25) 

and so the Stefan condition (3.11) yields 

K V'T• V'f = St + V'T• V'f, (3.26) 

where St  is the Stefan number (3.13). Since this Stefan condition relates tem-

perature gradients ahead of and behind the phase change front, the temperature 

field ahead of the front also needs to be considered. 

The equation governing the temperature field ahead of the phase change front 

is (3.9) and so the Green's function appropriate to the region ahead of the front 

is 

Gj(r,r',t,t') = H(t - tl)4@1 t') exp RM (3.27) 

G, then satisfies 
aGj  

+ V'2  G, = —S(t - t') 8(r - r'), (3.28) 

so that from (3.9) 

C9 
(Gi T/) + V'. (T/ V'G1  - C1 V'T') = 8(t - t') S(r - r'). (3.29) 

In a similar manner as for the temperature field behind the front, integrating this 

equation in space-time ahead of the phase change surface, 5,, yields 

—A T j(r, t) = 
- f. T[(r', 0) Cj(r, r', t, 0) dx' dy' 

(3.30) 

+ j G,(r, r', t, f(x', y')) V'T[ . V'fIt'f(',') dx' dy', 

on noting that the outward normal to the surface S is now —n,,. The surface 8o 

is the region inside the fixed boundary B1. The integral equations (3.24) behind 

the phase change front and (3.30) ahead of the front, together with the Stefan 

condition (3.11), completely determine the temperature field within the material. 

The integral equation (3.24) involves both the temperature T, and the normal 

temperature gradient 37'3 /Dn on the fixed boundary B1. In general, at any point 

on the fixed boundary, B1, only the temperature, T5, or the normal temperature 
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gradient, 8T3/0n, will be known. It is therefore necessary to determine the ap-

propriate unknown temperature or normal temperature gradient as part of the 

solution process. For example, if a fixed temperature boundary condition is im-

posed on B1, then the gradient 01'3/8n on B1  will have to be determined. The 

calculation of the temperature distribution throughout the region will therefore 

require the determination of the unknown quantities on B1, the position of the 

phase change front B1,, and the temperature gradients V'27 . V'fIt'f(x',') ahead 

of the front itself. Once these are known, the temperature at any point in the 

region can be determined using (3.24) and (3.30). Note that once the temperature 

gradients ahead of the phase change front are known, the Stefan condition (3.11) 

is used to calculate the corresponding temperature gradients V'T. 

behind the phase change front. The numerical method used to determine these 

unknowns will now be described. 

3.3 Numerical Scheme 

In this section a method is presented to numerically solve the integral equations 

(3.24) and (3.30). This scheme is an extension of the method of Coleman [12] to 

include a variable temperature ahead of the phase change front and the possibility 

that Newton's method, which is used to determine the position of the phase 

change front, will not converge. 

Let time be discretised into intervals of constant length At, so that t1  = i At, 

and let the temperature at time t j  be T3 (r) behind the front and 1111 (r) ahead of 

the front. Then approximating the time integrals in (3.24) using the mid-point 

rule, we have that the temperature on the boundary at time step k is 

T3 (r) u At Ef (T: G3(r, r', (k - 1/2)At, (i - 1/2)At) 
1=I 

—G3(r, r', (k - 1/2)At, (i - 1/2)At) 1 
9n') ds' 

(k-1/2)t 
+v f (Tsk 

jk-l)At LG5(r, r', (k - 1/2)At, t') di' 

(k 1/2)&t 
Sk G, (r, r', (k - 1/2)At, t') di') 

—v IB. 
G, (r,  r', (k - 1/2)At, f(x', y')) 

V'flerrf(x',v') dx' dy'. (3.31) 

As in Coleman [12], the integral over the last time step has not been evaluated 

using the midpoint rule due to the singular nature of the Green's function there. 
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Figure 3.3: Distribution of quadrilaterals at time 3L\t 

Instead, over the last time step, the approximations 

(k-1/2)at 
______ 

2uAt (3.32) 
fflAt 

G3(r, r', (k - 1/2)M, I') di' 
(r - r') . n' - 

ir-r'e 

27ry Ir - r'I2  

and 

(k-L/2)t 

G3(r, r', (k - 1/2)At, t') dt' 1-  E. 
(Jr -r'J\ (333) 

4iry 2ziAi ) 

are used, where Ei  is the exponential integral [1]. 

Now that time has been discretised, space is also discretised. To evaluate 

the spatial integrals in (3.31), the boundaries B1  and B,, are approximated by 

N-sided polygons and T, and 3T3 /dri are approximated by their midpoint values 

on the sides. The integrals are then evaluated using the midpoint rule, except for 

where C3  and 1JC3 /&n' become singular. This occurs when r lies on the midpoint 

of a side of B1, in which case by expanding about this point it can be shown that 

the term 5T3/On' in (3.31) has coefficient AL(-y - 2 + log(L2/(8v&)))/(4irv), 

where y is the Enter constant and AL is the length of the side [12]. At these 

singular points, the term in (3.31) involving T. on B1  is zero [12]. 

The integral over the surface B3  in (3.31) is evaluated in the following manner. 

The phase change front B,, is approximated by a polygon at each time step. By 

joining the vertices of these polygons for times 0 up to kM together, a set of 
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quadrilaterals is formed which cover the surface B3. By way of illustration, figure 

3.3 shows a likely distribution of the quadrilaterals after three time steps when B1  

is approximated by a hexagon. The integral over each of these polygons is then 

approximated by the value of the integrand at the centroid times the area of the 

quadrilateral, which is the midpoint rule in two dimensions. This approximation 

is valid for all quadrilaterals, except those between the (k - 1)th and kth time 

step, due to G3  becoming singular on the phase change front B. As in Coleman 

[12], the integral over these quadrilaterals is approximated by 

V'T . V'flt'=(k_1/2)& 
(Lr 

-

I ,(area of quadrilateral) 
4ir i'M 

E 1 
i'M 

(3.34) 
) 

where r' is the quadrilateral centroid. The function f is approximated by (i - 

1/2)M for any quadrilateral between the (i - l)th and ith time step. 

To evaluate the unknown gradients V'T/ . V'fIt',(','), the integral equation 

(3.30) is applied at the phase change front B, where T, = 0. Setting T, = 0 at 

time t = 1cM, (3.30) gives 

0 - 
 I T!(r', 0) G,(r, r', (k - 1/2)M, 0) dx' dy' 

so  
(3.35) 

+4 Gi(r, r', (k - 1/2)At, f(x' )  y')) V'T[ V'f t'rrf(x',y') dx' dy' 

where r lies on the phase change front B. The second integral in this expression 

is evaluated in the same manner as the similar integral in (3.31). The first integral 

over the initial condition is evaluated by dividing the region inside B1  up into a 

grid. The integral is then approximated by the midpoint rule as the sum of the 

area of each grid box times the value of T(r', 0)G, at the centroid. 

The numerical procedure to solve (3.31) and (3.35) then works in the following 

manner. For definiteness, let us suppose that the boundary condition on B1  is 

the fixed temperature boundary condition T. = T36  < 0. We then assume that we 

know the temperature gradients V'T/ V'flt'=f(',') on the phase change front for 

times 0 up to (k— 1)M. The position of the phase chnge front at time kM is then 

approximated by extrapolating from its previous positions. The linear system 

arising from the integral equation (3.35) can then be solved for the unknown 

gradients V71'.  17'f on on the front at time kM. From these gradients and 

the Stefan condition (3.11), the gradients V'T V'fIt'=J(2,',') behind the phase 

change front can then be determined. Substituting these gradients behind the 

phase change front into the linear system resulting from the integral equation 

(3.31), the unknown normal derivatives OT,/On on the boundary B1  can then be 

found. Once these normal temperature derivatives are known, Newton's method, 
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with the temperature 7' given by the discretised form of (3.24), can then be used 

tofind where the temperature T. is zero. A revised position of the phase change 

front at time kAt is then determined. The whole process is repeated until the 

difference between the positions of successive estimates of the front is within a 

prescribed tolerance. 

To start the process off, the one-dimensional solution (2.9) and (2.10) is used 

to give the front position and gradients V'T,' V'fIg'=J(',') at time At. This 

solution will give a good approximation to these quantities at time At if At is 

small. To keep the phase change front smooth and to reduce truncation errors, 

when the iterations have converged, the points on the front are passed through a 

three point smoothing scheme. This smoothing of the front position at each time 

step is an essential part of the numerical scheme. In particular at time t = At 

each point on the fixed boundary B1  is moved a fixed amount toward the centre of 

the region R. This results in points that are furthest away from the centre of the 

region (corner points) lagging behind the points closest to the centre. To improve 

the initial approximation at time t = At for subsequent calculations the points 

are smoothed to bring them into alignment. It was found that the position of 

the phase change front could be successfully determined using Newton's method 

to search for when 1' = 0, unless v was large. When i' is large, the derivative 

of the temperature T, is small (see the one-dimensional solution (2.9)), and this 

causes Newton's method to converge slowly as successive estimates can be thrown 

far from the front position. To enable solutions to be found when ii is large, a 

bisection method was used to determine the position of the phase change front 

(searching for when T3  = 0) when Newton's method converges slowly. In applying 

the numerical scheme outlined in this section, Newton's method was used to 

determine the position of the phase change front, unless it did not converge within 

a fixed number of iterations. If Newton's method did not converge, the front 

finding method was then switched over to the bisection method. The procedure 

to solve the integral equations (3.31) and (3.35) can be summarised as follows 

Assuming a fixed temperature boundary condition on B1, 

For the first time step: The one-dimensional solution (2.9) and the tran-

scendental equation (2.10) are used to give the front position and gradients. 

Extrapolate to the next front position. 

Solve the linear system arising from (3.35) to obtain the gradients 

V'T/ V'fJt'J(a,') on the phase change front at time kAt. 

Use the Stefan condition (3.11) to obtain the gradients V'T . V'flt'=fcx'v') 
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behind the phase change front. 

Solve the linear system which results from equation (3.31) to obtain the 

unknown normal temperature gradients 07'3/On on the boundary B1. 

Locate where 7' is zero using Newton's (Bisection) method. 

Obtain an improved estimate of the phase change front position at time 

kAt. 

If the accepted tolerance (tol = 5 x iO) is satisfied, go to step 2. Otherwise 

go to step 3. 

A crucial part of the solution process is to solve the two linear systems of 

equations that occur as part of the numerical procedure. As with any implicit 

numerical method, these linear systems must be solved at each time step or, more 

precisely, for each estimate of the front position. This may seem to require a great 

deal of computation time but, behind the phase change front, the linear system 

takes on a special structure which provides not only a great saving in calculation, 

but also a vast reduction in storage requirements. In the cases considered here, 

the temperature T. is specified at each point on the fixed boundary B1  and the 

normal temperature gradients are unknown at each point on B1. Hence the 

integral equation behind the phase change front (3.31) can be rearranged into the 

following form 

k—i  £? j DT' k (k-1/2)at 

vtE On' B 
G3 d.s'+v-- I G3 dt'dd 

On' (k-1)M 

VAt kiL, 
(T' 

 9) c/a' + tif T / dt' '\ c/a' = 
1=1 

as On' ak 
U(k_i)At On' I 

—u I 03V'T. 17'f V_f(x'.y') dx'dy' + T8k (r), (3.36) 
185  

where over each discretised interval of B1  the normal temperature gradients are 

taken to be constant. The linear system which results from equation (3.36) can 

be written in the standard form 

111  o 0 0 O\f±1\ 1k1.\ 
F 2  1-'i 0 0 0 1i42I 

k2'  
c3  r2  c1 0 ... oil X .3 l bat 
c4  r3  1'2 F H 1= ) (3.37) 

Fic  Fk..i 1'k2 1'i) \.aik) \kk 

where A x = b. The matrix A is a block matrix of coefficients of the unknown 

data on the fixed boundary B1. Each block matrix, F, i = i,•• , k, is constructed 
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from the integral of the Green's function G3  over the fixed boundary B1. The 

vector a is partitioned into sub-vectors x1, i = 1,. .. ,k, and for the problems 

considered here contains the unknown normal temperature gradients, 07'3 /On, at 

each point on Bf. In general the vector a contains a mixture of temperatures and 

normal temperature gradients on B1. The vector k is also partitioned into sub-

vectors b, i = 1,.. , k, and is constructed using the known data on the right hand 

side of equation (3.36). Each block matrix, I',i = 1,... ,k, is an  x ii matrix, 

with it being the number of discretised points on the fixed boundary B1. The 

vectors a and b haven entries per sub-vector, ji  and b, i = 1,... , k, respectively. 

Each row in the linear system (3.37) corresponds to a phase change front and 

the structure at a time step of matrix A is due to causality. Hence, the system 

(3.37) would be produced at the kth phase change front position (i.e. kth time 

step). Notice that the structure of A allows the linear system to be written as 

i &ii  - hi (3.38) 

for the first time step, and more generally, 

r1  a =b (r1  a,_) 2 <j :5 k, (3.39) 
2 

 

for subsequent time steps. To solve for the sub-vector of unknowns a,  the struc-

ture of (3.39) dictates that at each time step it is the same coefficient matrix, 

I's , that requires inversion. As a consequence of this only one matrix inversion 
is required. Clearly this inversion is performed during the first time step and 

the LU decomposition of r1  is stored and utilised at the subsequent time steps, 

resulting in a great saving of computation time. Furthermore, the structure of 

the system (3.37) and the corresponding equations (3.39) allows the calculation 
of x to be performed with the storage of only the first column of the matrix A, 

(I', ['2, r3, F4, , I A) , (3.40) 

and the right hand side vectors b, which provides a great reduction in storage 

requirements. 
The integral equation ahead of the phase change front (3.35) can be written 

in the following form 

V'T V'fJtsf(',a) f Cl dx'dy' 
= 

T[(r', 0) C1 dx'dy', (3.41) 

where the temperature gradients V'T,' V'ft'-f(x'y') are assumed to be constant 

over a discretised interval of the phase change front B. Unlike the the linear 

system behind the phase change front, the same coefficient matrix, IF,, is not 
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obtained for each position of the phase change front. This is because instead of 

having a fixed boundary for all time, the position of the phase change front, B, 

changes at each time step. Thus, the coefficient matrix must be recalculated at 

every time step and a new LU decomposition calculated for every estimate of the 

front position. 

3.4 Results 

The boundary integral method outlined in the previous section was applied to 

a number of examples of the freezing of a region. For simplicity, the boundary 

condition applied on B1 was taken to be 2" = Ta,, cO and the initial condition was 

taken to be T, = Tm ~: 0, where T36  and T10  are constants. With these initial and 

boundary conditions, the phase change front will start to move instantaneously. 

As a check on the numerical scheme, the fixed boundary B1  was taken to be a 

square of side length 2 and T10  was set equal to zero. This then reduces to one of 

the examples considered by Coleman [12], as the temperature ahead of the phase 

change front is constant at T1  = , O. With T36  = —1, St = 1, xi = 1 and K = 1, 

the time for the complete freezing of the region was found to be 0.474695, which 

agrees with the value 0.475 found by Coleman [12]. 

In the following examples the contour plots were drawn using N.C.A.R. graph-

ics version 2.0 [11]. The surface and the (x, y) type two dimensional plots where 

drawn using GNUplot version 3.5. 

Figures 3.4 to 3.7 show the solution for the boundary temperature T36  = —1.0 

and the initial temperature T10  = 0.60 with the parameter values xi = 8.9649, 

St  = 3.5732 and K = 4.1516. The temperature is scaled by a base of Tt  = 

20°C. These parameter values are those appropriate for water freezing to ice [17]. 

For these parameter values, Newton's method converges slowly and a bisection 

method was used to determine the position of the phase change front. The region 

inside B1  was taken to be a square of side length 2. Figures 3.4, 3.5, 3.6 and 

3.7 show contour and surface plots of the temperature field at intervals of 3&, 

At = 0.01. The phase change front can be clearly seen, particularly in the contour 

plots. Figure 3.9 shows the temperature profiles along x = 0 for y > 0. At the 

interface between the two phases, the discontinuity of the temperature derivative 

is apparent. The discontinuity occurs close to, but not exactly at T. = 0, due to 

numerical error. By reducing the tolerance for accepting the position of a front, 

error can be reduced to a desired level. 

The time evolution of the phase change front is shown in figure 3.8 at time 

intervals of 0.03. This figure shows the front positions at each time step up to 
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Figure 3.4: Temperature distribution at time t = 0.050 with initial condition 

TO  = 0.6, boundary condition TA  = —1.0, At = 0.01 and As = 0.0125. Here 

= 8.9649, St = 3.5732 and K = 4.1516 (values for water). 
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Figure 3.5: Temperature distribution at time t = 0.080 with initial condition 

TO  = 0.6, boundary condition T3b = —1.0, At = 0.01 and As = 0.0125. Here 

ii = 8.9649, St = 3.5732 and K = 4.1516 (values for water). 
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Figure 3.6: Temperature distribution at time t = 0.110 with initial condition 

To  = 0.6, boundary condition TI'86  = —1.0, At = 0.01 and As = 0.0125. Here 

= 8.9649, St = 3.5732 and K = 4.1516 (values for water). 
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Figure IT Temperature distribution at time t = 0.140 with initial condition 

To  = 0.6, boundary condition T8b = —1.0, At = 0.01 and As = 0.0125. Here 

ii = 8.9649, St = 3.5732 and K = 4.1516 (values for water). 
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the given time. It can be seen that the front is evolving to a circular shape as 

time increases. The freezing time for the parameter values used in figure 3.8 is 

0.336943, which is smaller than the freezing time for the example of Coleman [12]. 

This is due to the larger values of the thermal conductivity K and the thermal 

diffusivity i', which mean that heat is more easily transported to the boundary 

B f. The Stefan number St is larger than for the example of Coleman [12], which 

means that more heat is liberated at freezing. This, and the larger value of the 

initial temperature To, would cause the freezing time to increase over the value 

of Coleman [12]. However the larger values of the thermal diffusivity and the 

thermal conductivity have the greater effect and the freezing time decreases. The 

fact that the freezing time is not much reduced over the value of Coleman [12] 

shows that the increased values of ii, K, St and To  have effects which nearly 

balance out. 

Figure 3.10 shows the variation of the freezing time t f  with To  for T8  = —1.0, 

ii = 8.9649, St = 1.0 and K = 4.1516 (taking T, = 20°C). These parameter 

values are those for water, except for S. For this high value of v, Newton's 

method converges slowly and the bisection method was used to locate the position 

of the phase change front. As expected, the freezing time increases with the 

initial temperature TO, with the increase being nearly linear. The increase in 

the freezing time t1 as the initial temperature To  ranges from 0 to 1 is not very 

large because the boundary temperature is relatively low at T b  = —1. This 

low boundary temperature and the large relative thermal diffusivity ii of the solid 

phase then dominate the heat flow. Figure 3.11 shows the variation of the freezing 

time t f  with the initial temperature T10  for 11gb = —1.0, v = 0.5, St = 3.5732 and 

K = 4.1516. The values of St  and K used for this figure are the values appropriate 

for water. The freezing time again increases with increasing initial temperature 

To  in a nearly linear fashion. The freezing times in figure 3.11 are larger than 

those in figure 3.10 due both to the smaller value of ii and the larger value of St. 

The smaller value of ii means that heat diffuses out of the region at a slower rate 

and the larger value of St  means that more heat is liberated on freezing, which 

then has to diffuse out of the region. 

Figure 3.12 shows the variation of the freezing time tf  with TO  for TPo = —1.0 

and the water parameters (ii = 8.9649, St = 3.5732 and K = 4.1516 for .T = 

20°C). The freezing time again increases with T10, as expected, but in this case 

the increase is highly nonlinear, with the rate of increase slowing with increasing 

To. The freezing times are between those of figures 3.10 and 3.11. The freezing 

times are increased over those of figure 3.10 due to the larger value of St  leading 

to more heat liberated on freezing and are decreased over those of figure 3.11 due 
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(b) At time t = 0.080 

(d) At time t = 0.140 

(a) At time t = 0.050 

(c) At time t = 0.110 

(e) At time t = 0.170 (f) At time t = 0.200 

Figure 3.8: Time evolution of the phase change front with initial condition To = 

0.6, boundary condition T8b = —1.0, At = 0.01 and Ax = 0.0125. Here v = 

8.9649, St = 3.5732 and K = 4.1516 (values for water). 
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Figure 3.10: Plot of freezing time t f  as a function of To  for a square of side length 

2 for the parameter values TA  = —1.0, v = 8.9649, St  = 1.0 and K = 4.1516. 
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Figure 3.11: Plot of freezing time i f  as a function of TO  for a square of side length 
2 for the parameter values T3b = —1.0, v = 0.5, St  = 3.5732 and K = 4.1516. 
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Figure 3.12: Plot of freezing time tf  as a function of To for a square of side length 
2 for the parameter values T5b = —1.0, v = 8.9649, St = 3.5732 and K =4.1516 

(the values of ii, St  and K are those for water freezing to ice with T = 20°C). 
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to the larger value of ii leading to more rapid loss of heat. 

3.5 Crystal Formation 

The numerical method outlined in section 3.3 can be used, together with a simple 

model of erystal formation, to predict the sizes of crystals formed when a liquid 

freezes. If the growth of the crystal is radially symmetric, Frank [27] and Coriell 

and McFadden [15] showed that the size of the crystal formed when a liquid 

freezes is given in dimensional units by 

s /2Ki(Trn_Too)t (3.42) 

Here K1  is the thermal conductivity of the liquid, L is the latent heat, T. is 

the freezing temperature of the liquid and T is the temperature far ahead of 

the growing crystal. It should be emphasised that this expression is valid for 

the stable freezing of a liquid and is not valid for the dendritic growth which 

occurs when the liquid is undercooled [35]. The size expression (3.42) holds for a 

single crystal which has been growing for a time t and was found to give crystal 

sizes in accord with experimental results [15]. When a region freezes, as in the 

numerical solutions of the previous section, a large number of crystals form, the 

crystal at a given point being formed when the phase change front passes that 

point. Hence to apply the crystal growth expression (3.42) to the freezing of a 

region, this expression needs to be applied to each crystal formed (i.e. at each 

point of the region), where the time t is the time taken for a given crystal to 

form. In the present case, the crystal size expression (3.42) is most easily applied 

if the time t is replaced by the front velocity. This is in agreement with models of 

microstructure formation which show that the size of microstructural features is 

primarily determined by the speed of the phase change front [45, 44]. If the phase 

change front were planar, then the non-dimensional front position is given by 

= e,/ (see (2.10)), so that the non-dimensional front velocity is V = 

Eliminating time in favour of front velocity in the crystal size expression (3.42) 

and using (3.7) to convert to dimensional variables gives the alternative crystal 

size expression  

= 
aD 1c1(T T) 

(3.43) 

where cj is the specific heat of the liquid. While the phase change fronts considered 

in the present work are not planar, it was noted by Coleman [12] that even for 

non-planar phase change fronts, the position of the front is proportional to v'1 to 

a good approximation. Therefore the crystal size expression (3.43) will be used 

in the present work on the freezing of two-dimensional regions. 
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The crystal sizes formed when the liquid in a region freezes are then calcu-

lated in the following manner using the boundary integral method of section 3.3. 

Using the positions of the phase change front calculated by the numerical scheme 

of section 3.3, the normal velocity 14  of a point on the front at a given time step 

can be calculated. This normal velocity V. is then used as the velocity V in the 

crystal size expression (3.43). The crystal size expression (3.43) is now employed 

to calculate the crystal size in each quadrilateral used to calculate the surface 

integral B. At each time step, the parameter 9 is determined from the transcen-

dental equation (2.10) with T3b set equal to the boundary temperature and T10  

set equal to the temperature at the centre of the square of section 3.4. While this 

transcendental equation is strictly valid only for a planar phase change front, the 

crystal size was found to be only weakly dependent on the value of 9. Indeed, the 

crystal sizes were found not to change to a significant extent if 9 was set equal to 

its initial value. The value of 9 was calculated using (2.10) so that the effect of 

the changing temperature of the liquid could be included. The temperature T 

is taken to be the boundary temperature T 6  and, for water, the freezing temper-

ature is Tm = 0, these temperatures being made dimensional using (3.6). Hence 

the crystal size in each quadrilateral used to calculate the surface integral B3  can 

then be calculated. Adding up all such local crystal sizes over all positions of 

the phase change front until the region has completely frozen and dividing by the 

area of the region then gives the average crystal size S. 

Figure 3.13 shows a plot of the mean crystal size S as a function of the 

freezing time tj for T b  = —1.0 and the water parameters with T = 20°C and 

a = 5.0cm. The mean crystal size is nearly linear in i1, except near tj = 0.34 

(i.e. except for initial temperatures near Tjo = 1.0: see figure 3.12). The rapid 

increase in the mean crystal size near T 0  = 1 is related to the slow increase of 

the freezing time with initial temperature T10  near T10  = 1, which can be seen in 

figure 3.12. The increase of the mean crystal size with freezing time is expected 

since a longer freezing time means a smaller mean front speed, which in turn 

leads to a larger crystal size. The actual mean crystal sizes, while a little on the 

high side, are in reasonable accord with the ice crystal sizes reported by Coriell 

and McFadden [151. One reason for the mean crystal sizes being somewhat higher 

than experimental values is that the fluid flow ahead of the phase change front has 

been neglected. This flow is expected to produce faster freezing times and hence 

smaller mean crystal sizes. The inclusion of fluid flow into the freezing model 

is discussed in Chapter 4. The experimental measurements of Miyawaki et al. 

[37] of the freezing of soy protein curd show a basically linear dependence of the 

mean crystal size on freezing time (with a large amount of experimental scatter), 
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which is in qualitative agreement with our simple model of crystal formation on 

freezing. Unfortunately, the exact experimental conditions were not reported in 

this work, so that quantitative comparisons with their results cannot be made. 

Figure 3.14 shows the dependence of the mean crystal size S on the boundary 

temperature T36  for fixed initial temperature T10  = 0.1 and the water parameters 

with T = 20°C and a = 5.0cm. The mean crystal size decreases with decreasing 

boundary temperature, which is expected since a lower boundary temperature 

implies a larger mean front speed, which leads to a smaller crystal size. The mean 

crystal size dependence shown in figure 3.14 shows a good qualitative similarity 

to the experimental measurements for soy protein curd obtained by [37]. 
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Figure 3.13: Plot of the mean crystal size as a function of the freezing time tj 

for T36  = —1.0 and the water parameters v = 8.9649, St = 3.5732 and K = 4.1516 

with Tt  = 20°C and a = 5.0cm. 
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Chapter 4 

Fluid Flow 

4.1 Fluid Motion Equations 

In order to obtain a more accurate and realistic model of the freezing of a liquid, 

the fluid motion in the closed region ahead of the phase change front B,, needs to 

be included (see figure 3.1). The extension of the method of the previous chapter 

to include fluid flow ahead of the phase change front is the subject of this chapter. 
The present chapter will consist of a number of sections. In the first section we 

will derive the equations governing the fluid flow ahead of the phase change front. 
These equations are derived from the Navier-Stokes equation for a viscous Boussi-

nesq fluid. Once the governing equations are derived, a numerical scheme for this 

solution in a two-dimensional region will be outlined, this numerical scheme being 

a finite-difference scheme. It will then be shown how the numerical solution for 

the fluid flow in the liquid region ahead of the phase change front can be coupled 

with the boundary integral solutions of Chapter 3 for the heat flow in the solid 

region behind the phase change front. Solutions obtained using the numerical 

method of this chapter will be discussed in section 4.3. 

The fluid flow problem considered in this chapter is as follows. Let us consider 

the freezing of the liquid contained in an arbitrary region R. Inside the region 

R, there will be a moving phase change front denoted by B,, and the equations 

for fluid motion will be applied ahead of this moving boundary, in the liquid 

region of R. In the following, dimensional variables will be denoted by a tilde, 

for example ft for the fluid velocity. Then maintaining the notation presented for 

the temperature T in the previous chapter, the equation governing the heat flow 

in the solid phase is again 

= (4.1) 

where b, is the thermal diffusivity of the solid phase. 
For the liquid phase, the temperature distribution is no longer governed by the 



heat equation alone since account is now being taken of fluid motion. The Navier-

Stokes equation will be used to describe the motion of the fluid. In the present 

work it is found convenient to use the vorticity-streamfunction formulation of 

the Navier-Stokes equations, as in Moore and Weiss [39], rather than using the 

velocity-pressure formulation, (see Batchelor [3]). A detailed derivation of the 

vorticity-streamfunction formulation of the Navier-Stokes equation can be found 

in Batchelor [3] and in Drazin and Reid [22]. 

The fluid is assumed to be a Boussinesq fluid. The Boussinesq approximation 

is valid when the temperature, and hence density, variations are small, and as-

sumes that density variations are only significant in the buoyancy terms in the 

Navier-Stokes equation. This assumption is made because it is these buoyancy 

terms which are driving the flow. In particular, the density is assumed to be 

constant in the continuity equation. 

In a Boussinesq fluid the velocity fl  therefore satisfies the Navier-Stokes equa-

tion 

(4.2) 

and the incompressibility condition 

(4.3) 

where P is the pressure, is the gravitational acceleration and i'j is the kinematic 

viscosity of the fluid. The equation of state is, for the moment, assumed to be 

= /0 [i - &j (t 4'zr)] , (4.4) 

where the density /3 has the value when the temperature Tj is equal to Ti,. 

and âj is the coefficient of thermal expansion. This equation simply says that 

the density /3 is varying linearly as a function of the liquid temperature T,. This 

linear relation is a valid approximation to a more general equation of state when 

the temperature variation is small (i.e. I 6,(T, - fir)I << i). The pressure can be 

eliminated from the Navier-Stokes equation (4.2) by taking its curl, which gives 

(4.5) 

is obtained. This form of the Navier-Stokes equation is called the Helmholtz 

vorticity equation, where Z = t x ii is called the vorticity of the fluid. Adding 

heat convection to the heat equation (3.2) of Chapter 3 for the liquid results in 

the convection-diffusion equation 

aT, _.+A 2i (4.6) 
ai 
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for heat flow in the liquid phase, where A is the thermal diffusivity of the liquid 

phase. 

In the case of the two-dimensional convection to be considered in the present 

work, the Cartesian axes are chosen with i vertical and i horizontal, so that all 

flow is confined to the ffl - i plane and is independent of . Hence the velocity 

and vorticity fields are given in components by 

fi  = (ü,O,ü) and Q = (0,  Co, 0) (4.7) 

respectively, while, from the incompressibility condition (4.3), there exists a 

streamfunction if' such that 

- 

= --r and w = -. (4.8) 
Oz Ox 

Since Co = x fl, the vorticity is then related to the streamfunction by 

CO  = (4.9) 

Using standard vector calculus relations, the Helmholtz vorticity equation (4.5) 

simplifies to
aTj - 

CO (4.10) 

for the two-dimensional flow considered here. 

The equations governing the fluid flow in the liquid region and the heat flow 

in the solid region will now be made non-dimensional. Non-dimensional variables 

will be denoted by plain symbols without tildes. In particular, a time unit based 

on a time scale for buoyancy is used. Dimensionless variables for the space, time 

and temperature scales are then 

(x,z)=, t=Jii=f, Tf= T , (4.11) 
 Tt a  it  

respectively. Here ci is a typical length scale for the region R, 1F1  is the fusion 

temperature of the liquid phase and tt  is a typical temperature of the initial 

temperature distribution. In addition, dimensionless variables for the vorticity 

and the streamfunction are given by 

w=5id' and 
01 

(4.12) 

respectively. 

The length, time and temperature scales can be combined to form the Rayleigh 

and Prandtl numbers, given by 

______ 

1', 
Ra = - and Pr = 

D1 i 
(4.13) 



respectively. In terms of the Rayleigh and Prandtl numbers, the non-dimensional 

velocity, thermal diffusivity and viscosity are 

1 
_____ and v1 

= 
-. (4.14) 

AVPrRa' PrRa Ba 

The Rayleigh number Ba is a ratio of the destabilising effects of buoyancy to 

the stabilising effects of diffusion and dissipation. Thus, for high values of the 

Rayleigh number, buoyancy dominates and the stationary fluid state with heat 

propagation by diffusion alone is unstable and the fluid starts to convect. How-

ever, for low values of the Rayleigh number, diffusion dominates and the state 

with the fluid stationary remains stable and the heat flows by diffusion alone. 

There then exists a critical Rayleigh number Ra above which the stationary dif-

fusion of heat is unstable (see Acheson [2] and Drazin & Reid [22]). The choice 

of boundary conditions can also have an effect in determining the value of the 

critical Rayleigh Number Rae. The Prandtl number is a ratio of the fluid's ca-

pacity to diffuse momentum as compared with its capacity to diffuse heat. If 

the Prandtl number is high, then vorticity diffuses faster than heat, but if it is 

small, then the diffusion of heat dominates the fluid flow. Expressing the velocity, 

thermal diffusivity and viscosity in this form enables the effects of the values of 

the Rayleigh and Prandtl numbers on the resulting fluid flow to be easily seen. 

The governing equations (4.6), (4.9) and (4.10) for the fluid flow can then be 

written in terms of non-dimensional variables as 

at 
= —V.(T, Lt) +D,V 2 Tz (4.15) 

= _V.(wi&)_.7+z1iV2 w (4.16) 

and 

VIO = —w. (4.17) 

Using the non-dimensional variables (4.11), equation (4.1) for the temperature of 

the solid region behind the phase change front is 

= D, 172TS, (4.18) 
at 

where - 

= 
D3  01 

(4.19) 

is the non-dimensional thermal diffusivity of the solid. 

The equations for the fluid motion in the liquid phase (4.15), (4.16) and (4.17), 

along with the heat equation (4.18) in the solid phase, are not enough on their 

own to fully describe the freezing of the region B. The liquid and solid phases 
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are connected by the Stefan condition at the phase change front B,,. In a similar 

manner to that of Chapter 3, it can be shown that the non-dimensional Stefan 

condition is 

(4.20) 

on the moving phase change front B,,. Here za is the outward unit normal to B,,, 
%/ is the velocity of B,, and the non-dimensional thermal conductivity and Stefan 

number are given by 
K.  

and St= 
15Ld 

(4.21) 
K1 TK,O, 

respectively. The numerical procedure used to solve the fluid flow equations in 

the liquid phase along with the suitably scaled heat equation in the solid phase 

is presented in section 4.2. 

4.1.1 Density of Water 

In the ptoblems under consideration in section 4.3, we shall be specifically con-

cerned with the freezing of water. For the purposes of modelling the freezing of 

water with fluid motion in the liquid phase, it should be noted that the density of 

water displays the peculiar characteristic that in the solid state (ice) the density 

is less than that of the liquid state, and furthermore the density of water is not a 

linear function of temperature. A detailed explanation of this phenomena is given 

in Fletcher [25]. In simple terms, when ice melts to form water the structure of 

the molecular lattice becomes less orderly, producing an increase in density. This 

effect becomes dominant at a temperature of 3.98°C where water attains its max-

imum density. As the temperature of the water is raised, one might expect the 

collapse of molecular structure to continue. There is, however, an opposing effect. 

The higher the temperature, the more the atoms get agitated, moving individual 

molecules of water further apart. Above 3.98°C the kinetic motion of the atoms 

dominates and the density is a monotonically decreasing function of temperature. 

In the derivation of the equations for fluid motion outlined in section 4.1, the 

assumption was made that any change in the density of the fluid was linear in 

temperature; see the equation of state (4.4). However, figure 4.1 shows that a 

quadratic profile for the density as a function of temperature would provide a 

better description in the case of water. Therefore for water, the equation of state 

(4.4) given in the previous section, is replaced by the expression 

- 1 
= o [i_&q ( _Tir)

2 ]

, (4.22) 

where the density ,5 has the value ,o  when the temperature fl is equal to T1, 
and dq  is the coefficient of thermal expansion; see the CRC tables [17]. This 
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Figure 4.1: Comparison of experimental data taken from CRC tables [17] and 
quadratic fit generated by multiple regression 

equation of state simply says that the density of water 3 is varying quadratically 

as a function of the liquid temperature T,. Using this new equation of state 

(4.22) with quadratic density dependence and proceeding in a similar manner as 

in section 4.1 with the linear equation of state, the forcing term 

- - 

—gal -- (4.23) 
ax 

in the Helmholtz vorticity equation (4.10) is replaced by 

(lfl_fir)2 . (4.24) 

The dimensional Helmholtz vorticity equation for water is then 

= V(j)àq (i _ir)2 +i 2 . (4.25) 

The units for & in the quadratic equation of state (4.22) for water are different 

to the units for àj in the linear equation of state (4.4). These different units mean 

that the scales used to form non-dimensional variables need to be changed when 

the water equation of state is used. In detail, when the water equation of state is 

used, the non-dimensional time is given by 

(4.26) 
N d Oq  

and the dimensionless variables for space and temperature remain as before as 

(x,z) 
= 

and Ti= (4.27) 
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respectively. The vorticity and the streamfunction in dimensionless variables are 

now given by - 
w=09 th and (4.28) 

respectively. The new time scale together with the length and temperature scales 

can again be combined to form the Rayleigh and Prandtl numbers 

Ra=9(tTtd and Pr= --. (4.29) 
D1 14 DI  

As in section 4.1, in terms of the Rayleigh and Prandtl numbers the non-dimen- 

sional velocity, thermal diffusivity and kinematic viscosity are given by 

- = and (4.30) 
- D/PrRa

, 
/PrRa rfLRa- 

The  governing equations for fluid flow with the water equation of state, con-

sisting of the temperature equation (4.6), the Helmholtz vorticity equation (4.25) 

and equation (4.9) for the streamfunction, can then be written in terms of these 

new non-dimensional variables as 

= —V. (TI  li)+D1V2 T1 (4.31) 
at 
aw 

 = _V.(wu)—- (TI —Tjr)2 +vjV2 w (4.32) 
ax 

and 
V2  ' = —w. (4.33) 

Using the non-dimensional variables for time, space and temperature equations 
(4.26) and (4.27) respectively, the non-dimensional form for equation (4.1) for the 

temperature of the solid region behind the phase change front is 

aT = D3  V2T8, (4.34) 

where - 

= 
D3 °q (4.35) 

is the non-dimensional thermal diffusivity of the solid. In terms of the new non-

dimensional variables, the Stefan condition (4.20) is 

(4.36) 

on the moving phase change front B. The non-dimensional thermal conductivity 

and Stefan number are given by 

K = and St = 
pLd (4.37) 

K, Tt KzOq  
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respectively. 

Figure 4.1 clearly indicates a nonlinear dependence of water density on tem-

perature T,. We approximate this relationship by fitting a second order polyno-

mial to the experimental data using linear regression. The experimental data was 

obtained from the CRC tables [17] at temperature intervals of 0.1°C up to 11°C 

and thereafter in increments of 1°C up to 30°C, producing 

(1r) [999.963641 - 6.296541 x 10 (t - 3.552573)2] kg m 3 . (4.38) 

The dimensional forcing term in the Helmholtz vorticity equation therefore is 

(4.24) with ä = 6.296770 x 10-6  °K 2  In the case of water the reference temper-

ature flr for this forcing term is 3.552573'C. Using the non-dimensionalisations 

for space and temperature (4.27), along with (4.26) for time and (4.28) for the 

vorticity, the non-dimensional Helmholtz vorticity equation (4.32), which holds 

for a quadratic dependence of fluid density on temperature, becomes 

Ow 0 
- - —V (wit) - - (T, - 0.355257)2 + v,V2 w (4.39) 

- Ox 

in the case of water. For water, the fusion temperature is ftçr = 0°C and the 

characteristic temperature scale for the initial temperature distribution is taken 

to be T = 10°C. 
The non-dimensional governing equations for fluid motion with a quadratic 

dependence of fluid density on temperature will provide a better model of the 

freezing of water than those with the linear equation of state. Numerical results 

obtained using the quadratic equation of state will be presented in section 4.3. 

The equations with the linear equation of state will be used for comparison with 

previous results only. 

4.1.2 Formulation 

In this section, a description of the region that will be used in the present work for 

two-dimensional freezing problems will be given, along with the relevant boundary 

conditions for the liquid and solid phases. 

Let us consider the freezing of an infinite cylinder with square cross-section R. 

At a general time t, the region R has a fixed boundary B1  and inside the region R, 

a moving phase change front B. Ahead of the phase change front, the material 

is taken to be in the liquid phase and behind the phase change front, in the solid 

phase. This region is the same as the one used for the problems discussed in 

section 3.4. The temperature distribution in the solid phase, T3(r,  t), is described 

by the heat equation (4.18). In the liquid phase however, the equations of fluid 
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f 

Figure 4.2: Region R with fixed boundary B1 and phase change front B,, 

motion are applied. For the linear equation of state, the governing equations for 

the liquid phase are (4.15) for the temperature T(,i), (4.16) for the vorticity 

w(r,t) and (4.17) for the streamfunction ,(,t). For the quadratic equation of 

state the relevant equations are (4.31) for the temperature T,(r,t); (4.39) for the 

vorticity w(, t) and (4.33) for the streamfunction 

In general one would have a Newton cooling boundary condition on the fixed 

boundary B1  (see section 3.1), but for simplicity and comparison with the results 

of Chapter 3 (section 3.4), a fixed temperature boundary condition T. = T86  is 

imposed. Initially the region is totally filled with liquid with some temperature 

distribution, so that the initial condition is i(, 0) = T10(r) in R. In the examples 

considered in the present work, ft10  is taken to be a positive constant. On the 

moving phase change front B,,, the freezing temperature is scaled to be zero, so 

that TI3  = T1  = 0 on B,,. 
The strearnfunction 0 is taken to be zero on the phase change front B,, so that 

the normal velocity of the fluid is zero on the front. Taking the normal velocity 

to be zero on the moving boundary might, at first sight, seem strange, until it 

is recalled how the phase change front is formed. The phase change front moves 

from one position to the next by all the fluid in a region next to the front freezing. 

The front is therefore not moving by pushing the fluid ahead of it, and so the 

normal velocity of the fluid is zero on the phase change front. The phase change 

front, being composed of ice, is of course a rigid boundary for which the no-slip 

condition applies. The no-slip boundary condition (see Acheson [2] and Drazin 
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& Reid [22]) is then applies on the phase change front. The boundary conditions 

for the streamfunction are therefore those proposed by Hirasaki and Hellums 

[32]; namely 

'Pt1 = 0 and 7! =0 on B1. (4.40) 

Here the subscripts t1  and ii refer to the tangential and normal directions. The 

value of the vorticity w on the phase change front B1,, can be obtained from the 

second of these conditions on 0 and Poisson's equation relating & and w, namely 

equation (4.17) for the linear equation of state or equation (4.33) for the quadratic 

equation of state. Woods [56] showed that these equations yield 

Wb 
—3(b+1 &) Wb+l 

= (An)2 — 
(4.41) 

on a solid boundary, where the subscripts b and b + 1 denote mesh points on 

the boundary and one mesh length An away from the boundary in the normal 

direction. In general Ob  is an arbitrary constant, but is taken to be zero here. 

Due to the symmetries of the square cross-section of the region B, the region 

can be reduced to that shown in figure 4.2 for a fixed temperature initial condition 

and for T. a constant on the boundary. The horizontal line of symmetry for the 

square which existed for the freezing problems of Chapter 3 no longer exists due 

to the influence of gravity in the vertical direction. Along the z axis between 

z+ and z (see figure 4.2), the vorticity and streamfunction take the value zero 

since this is a fixed stress-free fluid boundary. Furthermore the temperature of 

the fluid along [r, z] satisfies the symmetry condition OT,/bx = 0. 

4.2 Numerical Scheme 

In this section a detailed account of the numerical scheme that is employed to 

solve the governing equations of the fluid motion which consist of (4.15) to (4.17) 

for the linear equation of state, or (4.31) to (4.33) for the quadratic equation of 

state, is given. The numerical scheme used is a finite-difference method and is 

based on the methods presented by Moore, Peckover & Weiss [38] and Moore 

& Weiss [39, 401. Furthermore, a description of how the numerical scheme may 

be adapted to take account of the quadratic equation of state that occurs when 

water is frozen is included (see sub-section 4.1.1). Finally, the procedure for 

numerically solving two-phase Stefan problems with fluid flow is presented. This 

new numerical method is an extension of that presented in Chapter 3 to include 

the fluid motion ahead of the phase change front. 

The governing equations for fluid motion for the temperature T,, vorticity w 

and streamfunction ' are solved numerically on a rectangular grid ahead of the 
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phase change front B,,; see figure 4.2. The grid is applied over the entire region 

R. Initially at time t = 0, the phase change front B,, and the fixed boundary 

B f  coincide. However, at subsequent times t > 0, the phase change front lies 

between the fixed boundary B1  and the centre of the region R. Hence at times 

t > 0, grid points can be behind the phase change front. As the fluid flow does 

not need to be calculated behind the phase change front each point of the grid 

that lies either ahead of or on the phase change front B,, is retained as an active 

grid point. The remaining grid points that lie behind the phase change front are 

considered inactive. In this way the grid of points on which the fluid motion is 

calculated is reduced at each time step until the region 11 consists entirely of solid 

with no liquid phase remaining. If the space variables are simply discretised by 

equally spaced grid points, then at any particular time step, with time t > 0, 

the phase change front could fall between grid points. To overcome this, at each - 

time step the grid solved on is extended to include points on the phase change 

front. The extra distances from the closest grid points to the phase change front 

itself are & Ax in the x direction and 01  Az and /2  Az in the z direction. The 

values of e, ,31 and /2 will in general vary around the edge of the active grid. The 

orientation of e Ax, /31  Az and $2  Az are shown in figure 4.3. Each of e, ,31  and $2 

lie in the range (0, 1]. There are no extra points required for grid points to the left 

in the x direction since the region 11 has been reduced by symmetry (see figure 

4.2) and the left hand boundary of the computation region is the z axis, which 

is fixed. This formulation of the spatial discretisation assumes, to some degree, 

that the moving phase change front B,, is suitably convex. If this is not the case, 

then a new strategy to include points on the phase change front must be devised. 

For the problems considered in section 4.3 the meshing strategy outlined above 

is sufficient since for stable Stefan problems the phase change front is convex. 

Let us now derive finite difference approximations on a non-uniform mesh for 

the partial derivatives needed for the fluid flow equations. These approximations 

will not be used across the phase change front, where there is a discontinuity in 

temperature derivative, and consequently the assumptions on the properties of the 

function are valid. Using the parameters e, 01  and $2,  the Taylor series expansions 

about the point (x, z) of an arbitrary function f(x, z) with continuous and single 

valued derivatives are given by the following expressions in the x direction 

f(x + eAx, z) = f(x, z) + &Axf(x, z) 
+ 2!

(&Ax)2 f,(x, z) +. 

AX  
f(x - Ax, z) = f(x, z) - Axf(x, z) + ——f(x, z) + 
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Figure 4.3: Orientation of spatial discretisation parameters e, )31  and 32 around 

a typical point (j, k) 

and 

f(x, z + /32Az) = f(x, z) + ,B2Azf(x, z) +
(P2 Az 

)2

f (x, z) +  
2! 

f(x, z - fl jAz) = f(x, z) - /3iAzf(x, z) + 
2!

(/3jAz)2 f
2(x, z) + 

in the z direction. The Taylor series expansions in the x direction can now be 

combined to give second order approximations to the first and second derivatives 

with respect to x 

Of(x, z) 
- 

f(x + sAx, z) - s2 f(x - Ax, z) - (1 - 62) f  (X, z) 
+ (Ax2  (442) 

Ox - sAx(1+s) k J 

and 
02 f  (X, z) 

- 

2 [f (x + sAx, z) + €f (x - Ax, z) - (1 + 6)f (x, z)] 

Ox2 - s(i + s)Ax2  

+ o (Ax2) (443) 

In a similar manner, second order approximations to the first and second z deriva-

tives can be found using theses Taylor series as 

Of(x,z) 
- 

/3?f(x,z +82Az) — Øf(x,z — i Az) 

tJz - 0102AZ(Ol +02) 

(P?—)f(x,z) +o(AZ2) (4.44) 
- P102AzU9i +P) 

and 

02 f(x,z) 
- 

2 [$if(x,z+)32Az)+02f(x,z — P1Az)1 
0z2 - 3102(01+P2)Az2  

2 (th + 02)f (x, z) + 
o (Az2) . (4.45) 

- 01P2(01 + 02)Az2  
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The spatial derivatives that occur in the governing equations for fluid motion are 

then approximated using these finite difference approximations. 

If the arbitrary function f is also taken to be a function of time, then in a 

similar manner to the spatial derivatives, we can obtain 

Df(x, z, t) 
= 

f(x, z, t + At) - f(x, z, t) + 
o (At) (4.46) 

at At 

as a first order approximation to the time derivatives that occur in the govern-

ing equations of fluid motion. The DuFort-Frankel method (see Smith [51] and 

Roberts & Weiss [47]) is then applied to the convective terms in the fluid flow 

equations. This method gives unconditional stability for the scheme and further-

more the order of the error for the time derivatives is reduced to 0 (At2) which 

concurs with the spacial approximations. 

Let us now consider in detail the numerical solution of the governing equations 

for fluid flow in the liquid region. Let time be discretised into intervals of length 

At, so that t = it At, and let the x and z directions be discretised into intervals 

of length e Ax and /3 Az respectively, where C is the scaling parameter in the 

positive x direction and /3 represents either ,31  or /2,  the scaling parameters for the 

negative and positive z directions respectively. It is noted that 6 = = /32  = 1, 

except adjacent to the phase change front B. The grid points in the x and z 

directions are x, j = 0, 1,2,. . . , N. and zk, k = 0,1,2,.. . , N0, respectively. The 

temperature T1 , vorticity w and the streamfunction ' are calculated on the mesh 

in space-time and are denoted at the grid points by 

= T'k , w(x,zk,t) = WYk  and b(x,zk,t) =  Oikl 

at time step it respectively. 

Applying the finite difference approximations (4.42) to (4.46) to the 

convection-diffusion equation (4.15), the numerical approximation 

2At tT"2  - e2T -(1
Tf' + Dt 

I  
e(1+e)Ax )j+1,k

thfl2Az2  

2 n+1/2 
- 

(/32 - 
- P2'j,k-1 

p2),fl+1/2'\ (020n+1/2 
1 j,k+1 

J 
n,+1/2 

- - 

(02  
 - 1 j,k+1 — 

(02  

) 
4

n+1/2 2 
- C - (1 62 n+1/2\ 

ik ('j+l,k 
x k

/ 

J 

+ - (1 + 

(T2 
+ 2 D, 

e(1 + e)Ax2  ) 
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j,k-1 

P(P+P2)Az2 )] (4.47) 
Pi 

+ 2 D, (a
iT; (2  + 32T""2  - (Ph + P)2 

is obtained. In a similar manner, the discretised form of the Helmholtz vorticity 

equation (4.16) is found as 

n+1/2 2 n+1/2 (1 2\ n+1/2 
n+ 1 ________________ 

LAt I e(1+e)Ax 
)Wj,k 

) 
2At ' 

(wj+u 

- - 

= "j,k + 
'Lt -'7 L 

lk+l - P';:t± 2  _ P1 (ii ? - (020,n,
+1/2 

 
n+1/2 - - (P1 - 2' - (p2 

k+' iP2Az(Pi+P2) 

/2) 

m
+1k 
+1/2 2 n+1/2 (1 e?bfl+t2 

'j-I,k - - x ( —6 

 e(1 + e)Ax 
j,k 

 ) 
I + , 

Th+l/2  €T 1  . ( -&) 
 - k 

T)  
- 

cAx(1+c) 
+ n.4-1/2 2

- (1 + 
+ 2v4 (w+1'!k2 

+6Wj_l,k 

6(1 + c)Ax2  
n+1/2 + 

n+1/2 
2Wj,k_l -(P +P2)wk 

+ 2vj 
(P1WJ.k__

P1P2(Pi+P2)Az2 )]. (4.48) 

Before the finite difference equations for temperature (4.47) and vorticity (4.48) 
can be solved explicitly ahead of the moving phase change front (subject to any 

boundary conditions), the equation for the streamfunction (4.17) must also be 
expressed in finite difference form. The finite difference approximations (4.42) to 

(4.46) give that the finite difference form of equation (4.17) for the streamfunction 

is 

+ Ej_1,k - (1+ e),k\ 

) 
+ 

(014i.k+i+ 020j,k.1 -(01+ )32)0,k'\ 
= 

1 

01 02 (01 + 02) AZ' ) 
Wik. (4.49) 

This is just the five-point Laplacian representation of Poisson's equation in terms 

of the scaling parameters s, Pi and  02.  This equation relates the values of the 

vorticity and the streamfunction at all points on the mesh at each time step. 
Now that the equations of fluid motion have been expressed in finite difference 

form they can be solved numerically in the following manner. At t = 0 it is 

assumed that the temperature T,, vorticity w and streamfunction 0 have known 

initial values. The boundary conditions to be used are given in sub-section 4.1.2. 
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At the first intermediate fluid flow time step, time t = 1/2 At, the equations 

for temperature (4.47) and vorticity (4.48) in the form given are not applicable, 

since they require information at two different time levels and currently we have 

information at time t = 0 only. To overcome this problem, the modified Euler 

method (2nd order Runge Kutta), see Burden, Fakes and Reynolds [6], is used to 

provide an initial time discretisation of the temperature and vorticity equations. 

The discretised space derivatives in the temperature equation (4.47) and vorticity 

equation (4.48) are, of course, not changed. The modified Euler scheme is second 

order and so is compatible with the time discretisation in (4.47) and (4.48). The 

temperature T, and the vorticity ca can then be calculated at time t = 1/2 At. 

Then since we now know the values of the vorticity across the mesh from the 

modified Euler method, we use the streamfunction equation (4.49) to formulate 

a linear system of unknowns of & at each of the interior mesh points. This linear 

system takes the standard form 

Ax = k, (4.50) 

where the matrix A is a banded matrix of coefficients of the streamfunction in 

(4.49), the vector x contains the unknown values of the streamfunction and the 

right hand side vector k contains the values of the vorticity w at each interior point 

of the mesh. Since the relationship between the vorticity and the streamfunction 

is described by Poisson's equation (4.17), with corresponding finite difference 

form (4.49), the banded structure of matrix A will be penta diagonal. Matrix 

A has dimension N x N, and so, in general, will be large. Faced with such a 

large linear system to solve, the most attractive method of solution is an iterative 

method, see [6, 18]. In the cases considered in section 4.3 it was found that 

successive-over-relaxation (SOR) had difficulty converging to a stable solution. 

For this reason a simpler iterative method was chosen to solve the linear system; 

the Jacobi iterative method [6, 18] which proved to be sufficient for the problems 

considered in section 4.3. 

Now that the temperature, vorticity and streamfunction are known in the 

liquid phase at times t = 0 and t = 1/2 At, the standard finite difference ap-

proximations (4.47) to (4.49) to the governing equations of fluid flow are applied 

at successive intervals of time of 1/2 At. The streamfunction equation (4.49) is 

solved at each time step using the Jacobi iterative method. In this manner, the 

fluid flow equations can be marched forward in time. 

The numerical scheme presented here is based upon the formulation given in 

the paper by Moore, Pecicover and Weiss [38]. Since they were not concerned with 

Stefan problems, they solve the fluid equations on an equally spaced grid, so that 
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Figure 4.4: Staggered mesh on the x - t plane: Known values of w are marked 
with dark circles with required values of w shown by white circles. 

& = = $2 in our notation. Furthermore, they solved the finite difference forms 

of the fluid flow equations on a staggered mesh at each time step; see Roberts 

and Weiss [47]. The main advantage of adopting this strategy is that it results 

in the quantities T, and w being evaluated at only half the grid points at each 

time step, with a consequent decrease in storage and computation time. The idea 

behind this staggered mesh is as follows. Let us assume that a quantity, say the 

vorticity Wj,k, is known at times t, and t,.1 and that its neighbours Wj_1,k and 

Wj+1,k are known at the intermediate time step tn+1/2; see figure 4.4. Then from 

equations (4.47) to (4.49) with e = #1 =  /2 = 1, it can be seen that can 

be calculated. The same holds true for temperature Tj,k. Hence to calculate the 

solution at time step ii + 1, the solution has to be known at odd grid points only 

at time step n + 1/2 and even grid points only at time step ii. To facilitate this, 

a parameter q is introduced such that q = 2n = 0,1,2 ..... Then for j + k and q 

even, the temperature T1  and the vorticity w are calculated explicitly and stored 

only at integral time steps. For j + It and q odd, the temperature and vorticity 

are calculated at intermediate time steps t,+1/2  only. However, when a staggered 

mesh is used, the vorticity is defined on half the mesh points at each time step 

only and the finite difference form (4.49) of the streamfunction equation cannot 

be solved. The solution for the streamfunction (4.49) is instead found by solving 

for the streamfunction at the grid points where the vorticity is available. Then 

by means of interpolation, the streamfunction can be obtained at all other grid 

points. This numerical procedure using a staggered mesh would seem to be a good 

choice. However, when there is a moving boundary, we need to add points to our 

mesh to incorporate the phase change front as we refine the grid. This process 

introduces the spatial orientation parameters e, )31  and $2,  and upon examination 

of the governing fluid equations (4.47) to (4.49), it is clear that unless e = $' = 
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02 = 1 the staggered mesh method will not work. In general, the parameters e, $i 

and /2  will not all be equal to one, forcing the use of a more computationally 
intensive grid. Thus the finite difference approximations to the equations of fluid 
motion are applied across the whole active computational grid ahead of the phase 
change front using the method outlined previously. 

4.2.1 Water Equations 

In this section we present the amendments that are required to the finite difference 
equations when a quadratic equation of state is used. 

For the examples considered in section 4.3, we are interested in modelling the 
freezing of water and, as was shown in sub-section 4.1.1 a quadratic equation of 
state provides a better model. The governing equations of fluid flow in the case 
of a quadratic equation of state are given by equation (4.31) for the temperature, 
(4.39) for the vorticity and (4.33) for the streamfunction. Following the notation 
introduced in section 4.2 for discretised space and time and applying the finite 
difference approximations (4.42) to (4.46) to the convection-diffusion and stream-
function equations, we obtain the same finite difference approximations as for 
the linear equation of state, equations (4.47) and (4.49) respectively. However, 
the non-dimensional coefficients in these finite difference equations are not the 
same in the case of a quadratic equation of state. The appropriate forms of the 
coefficients are given in sub-section 4.1.1. The vorticity equation (4.39), however, 
contains a quadratic forcing term which can be expressed in the form 

(T4  - 0.355257)2 = 2 (7 - 0.355277) . (4.51) 
YX_ 

Using this form of the the forcing term (4.51) and applying the approximations 
(4.42) to (4.46) for space and time discretisations, the finite difference approxi-

mation to the Helmholtz vorticity equation (4.39) becomes, 

2 M 
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It is this form of the vorticity equation, together with the corresponding equations 

for temperature (4.47) and (4.49) for the streamfunction that are solved in section 

4.3 to model the freezing of water. 

4.2.2 The Solid Phase 

In Chapter 3, the strategy for solving two-phase Stefan problems was to obtain a 

set of coupled integral equations for the solid and liquid phases (see section 3.2), 

which together with the Stefan condition were solved via a boundary integral 

method (see section 3.3). Since we are now taking account of the fluid motion in 

the liquid phase of the region, the numerical strategy must be revised. Essentially, 

the approach will be to use the boundary integral formulation that was presented 

in the previous chapter for the solid phase, while the finite difference method 

outlined in the present chapter will be used to solve for the fluid flow in the liquid 

region ahead of the phase change front. 

Let us suppose that the geometry of the region R, along with the boundary 

conditions to be used are those specified in sub-section 4.1.2. Ahead of the moving 

boundary B, in the liquid phase, we require the solution to the equations of 

fluid motion. In the case of density being linearly dependent on temperature 

this would entail solving equations (4.15) for the temperature, (4.16) for the 

vorticity and (4.17) for the streamfunction. For quadratic density dependence on 

temperature however, the solution of equations (4.31) for the temperature, (4.39) 

for the vorticity and (4.33) for the streamfunction are required. In the solid phase, 

behind the phase change front, the solution of the heat equation (4.18), with the 

Stefan condition (4.20) providing a link between the two phases at the moving 

boundary, is required in the linear case. While for quadratic density dependence 

the heat equation (4.34) and the Stefan condition (4.36) are required. 

The integral equation describing the temperature distribution in the solid 

phase behind the phase change front, 

r t+O 
= D8  / I ( G, ) ds'di' (4.53) 

Jo jpj k On'  

—D, [ G3(,v', t, f(x', z')) V'T. V'fIt'=f(',2') dx' dz', JB5  
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is obtained from the governing equation of heat flow in the solid phase, by util-

ising the Green's function formulation of section 3.2. The requirements for the 

solution of integral equation (4.53) are threefold. Firstly, since equation (4.53) 

involves both the temperature T. and the normal temperature gradient 3T3/09n 
on the fixed boundary B f  and only the temperature or normal temperature gra-

dient is known at each point, the unknown boundary data T. or O7'8/09n must be 

determined as part of the solution process. In the problem specified in sub-section 

4.1.2, a fixed boundary temperature T5  = T36  is imposed on B1. Hence the normal 

temperature gradients form the unknowns on the fixed boundary and must be de-

termined. Furthermore, the position of the phase change front B is also required 

and will be determined by the same process described in section 3.3. That is, for 

each new front position we will provide an initial estimate of the position of the 

front by extrapolation and repeatedly refine this estimate until it falls within an 

accepted tolerance. Finally, the temperature gradients V'T. V'fIt'=f(',') behind 

the phase change front are required. The numerical formulation of the solution 

of the integral equation for the temperature distribution in the solid phase (4.53) 

will follow that presented in section 3.3. 

The way in which we obtain the gradients V'T. V'flt'f(Xs,Za)  forms one of the 

key differences between the treatment of the integral equations given in section 

3.3 and the procedure to be detailed here. These unknown gradients are related 

to the same gradients ahead of the phase change front by the Stefan condition 

(4.20), from which the relationship 

KV'T V'f = S + V'T( - V'f, (4.54) 

is obtained, where St  is the Stefan number (4.21). A similar expression is obtained 

in the case of a quadratic equation of state. The gradients V'T[ . V'f that occur 

explicitlyin the integral equation 

—A T1(, t) = 
- 

T Cc', 0)  '(, r', 1,0) dx' dz' (4.55) 

+f  B, 

that was derived in section 3.2 to describe the temperature distribution ahead 

of the phase change front are obtained by solving a linear system of equations 

(see section 3.3). However, when we consider the equations of fluid motion, 

these gradients do not appear explicitly in the convection-diffusion equation that 

describes the temperature distribution in the liquid phase. These gradients for 

the liquid phase when there is fluid flow can be expressed as 

7T1' -  V'f = IV! I(a- V'T[), (4.56) 
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Figure 4.5: A typical space mesh in the liquid region (first quadrant) spatial 

derivatives and are evaluated on the dark circles X'Z 

where ii is the outward unit normal to the phase change front. Using expression 

(3.25) the normal velocity of the phase change front is found to be 

n.y = 
1 

(4.57) 
Iv,f I' 

where V is the velocity of the phase change front (see section 3.2), we can evaluate 

the unknown gradients at the phase change front B, as is now outlined. 

The following procedure is employed to obtain the gradients V'77. V'f when 

there is fluid motion in the liquid phase. We require the gradients V'T/ . V'f 

to be available at each grid point on the moving phase change front B. In the 

integral formulation of the last chapter, the grid points on the phase change front 

for the solid and liquid regions matched up exactly. However, if we use the spatial 

discretisation proposed for the equations of fluid motion, there is no guarantee 

that mesh points in the solid phase will coincide with the mesh points of the 

liquid phase at the moving phase change front. Thus at a given time it after the 

mesh for the fluid motion equations has been reduced to active and inactive grid 

points, the following strategy is employed. We evaluate the spatial derivatives 

and - (4.58) 
ax Uz 

using the finite difference approximations (4.42) and (4.44) respectively at the 

nearest two grid points closest to the moving phase change front B. A typical 

distribution of points is shown in figure 4.5 for the first quadrant. At the points 
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where the phase change front intersects the z axes, 

Ox 

due to symmetry; see sub-section 4.1.2. Once the derivatives have been evalu-

ated at each of the required interior fluid flow mesh points, linear extrapolation 

is employed to obtain the value of the given derivative at the mesh points on 

the moving phase change front B. In general this is achieved by applying the 

following formulae for the x and z derivatives 

OT[oTlafl (aTb  _ OTa 

Ox Ox Ox Ox 

and 

Oz Oz 

(aTb  _ aTa) 

az Oz 

where Il represents one of the scaling parameters of the space variables, 01, 02 

for z < 0 and z > 0 respectively or e for x > 0. Once the values of the spatial 

derivatives (4.58) are known at each of the finite difference grid points on the phase 

change front (see figure 4.5), we parameterise two curves through (x, OTt/Ox) and 

(x, OT1/Oz) respectively, by the arclength formulae 

+ 
ml i OT,' Y

+ (x1  - x')2  , (4.59) " 

X

I

aTl 

5T1'" 2 
+ + (x - x11)2 , (4.60) 

for i = 0,1,2,.. J1j, with sox = = 0, where -fif is the number of finite difference 

grid points on the phase change front. Thus for each value of x there is a 

corresponding value of sf  and sf; see figure 4.6. Fitting a cubic spline through 

the points (sf , OT//Ux) and (sf, x) allows us to determine the values of OTt /Ox 

at any point on the phase change front. Similarly fitting a cubic spline through 

(sf, (9T//Oz) and (s, x') will produce a value for OT1 /Uz at any point on the phase 

change front. Thus by expressing the position of the boundary integral mesh 

points on the phase change front in terms of the respective arclengths (4.59) and 

(4.60),. the required spatial derivatives (4.58) can be evaluated from the cubic 

spline approximations. Thus the elements of the V'T, term appearing in equation 

(4.56) can now be calculated. 

In this formulation, a given value of x, x = x(s*) say, has a one-to-one cor-

respondence with a particular f value, for z > 0 and z < 0. If this is not the 
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Figure 4.6: Plot of the arclengths s' and s7 against x' 

case and we obtain multiple values of z for a given x, greater care is required in 

determining the correct arclength C. This may be achieved, for example, by pa-

rameterising the curves (z, DTI /0x) and (z, DT,/Dz) by their respective arclengths 

and ensuring that correct values of f, OTt /Ox and OT,/Oz are selected. 

The outward unit normal n is also required at each boundary integral grid 

point on the phase change front. The procedure employed here to evaluate the 

normals is discussed in the paper by Henshaw et al [29]. Firstly the boundary 

integral grid points on the phase change front are parameterised by 

0 ifi=O 
- 

si-i + —xi-11 if i = 
(4.61) 

Here si  is the arclength on the front and ; = (xi, z) is the ith boundary integral 

grid point on the phase change front, z = 0, 1,2,... , Yit,. The normal n to the phase 

change front is determined by differentiating two cubic splines fitted through 

the data (si, x) and (si,  z1), i = 0,1,2,... Jib. Let these two cubic splines be 

denoted by f(s) and 2(s) respectively. The smooth curve ((s),7(s)) is then an 

approximation to the phase change front and therefore the normal nj,  at the ith 

point, is given by 

— '(s)) 
ni = I 

(4.62) 
1(x —, (si))2 

 + 
(-2,(S,))2] 5 

where the primes denote differentiation with respect to a. The normal velocity of 

the phase change front is then evaluated at these same points as 

nix e Ax + nix P Az 

At 
(4.63) 

Once these normal velocities have been calculated, equation (4.57) can be used 

to obtain IV'fL Thus using the numerical approximations obtained by extrapo-

lation to the spatial derivatives (4.58) on the phase change front, we can obtain 



numerical estimates of the gradients (4.56) to be used in the Stefan condition 

(4.54) that links the two regions of different phase. This process is repeated each 

time a new front position is calculated. 

In general, for stability the time step used in the numerical approximation of 

the fluid flow equations is smaller than that used in the integral equation (4.53) 

for the solid phase. To make the two time steps compatible, a step for the solid 

phase At. and a suitable time step At, for the liquid phase are chosen such that 

At, = C At,, where the constant C € V. If the same time steps were used in the 

boundary integral and fluid flow numerical schemes so that At, = At,, then the 

areas of the quadrilaterals used in the boundary integral method would become so 

small that they would become of the same order as the rounding error. A detailed 

discussion of the stability of the convective difference scheme used here can be 

found in Roberts and Weiss [47]. The stability of the numerical approximations 

of the fluid flow equations is discussed by Moore, Peckover and Weiss [38]. It was 

shown by those authors that the numerical scheme for the fluid flow equations is 

stable for 

V1 At 1 DI  At 1
(4.64) and 

As2 — 2 As2  

where As is the minimum of (Ax, Az). 

4.2.3 Numerical Implementation 

The numerical procedure to solve the integral equation (4.53) in the solid phase 

together with the convection-diffusion equation (4.47), vorticity equation (4.48) 

and the streamfunction equation (4.49) in the liquid phase is now discussed. In 

addition the numerical procedure to be discussed here also applies to the equations 

of fluid motion with a quadratic equation of state. 

The boundary conditions are taken to be those given in sub-section 4.1.2. It 

is assumed that the temperature gradients V'T/ . V'f are known on the moving 

phase change front B for times 0 up to (k - flAt3. The position of the phase 

change front at time kAt3  is then approximated by extrapolating from its previ-

ous positions. The mesh for the fluid flow equations is then reduced to active and 

inactive grid points. On the active grid points the finite difference approximations 

of the governing equations of fluid flow are applied. The difference in magnitude 

of the fluid flow time step and boundary integral time step, At, = C At,, neces-

sitates that for each boundary integral time step we have to perform C fluid flow 

time steps for the total time to concur. The unknown gradients V'T[ . V'f on the 

phase change front at time kAi3  can now be found using the cubic splines approx-

imation, as outlined in sub-section 4.2.2. From these gradients and the Stefan 
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condition (4.20), the gradients behind the phase change front V'T V'f can then 

be determined. Substituting these gradients into the linear system that results 

from the integral equation (4.53), the unknown boundary data, in this case the 

normal temperature gradients 02'5/On, on the boundary B1  can be found. Once 

the unknown boundary data is found, Newton's method is employed, with the 

temperature 7' given by the discretised form of (4.53), to locate where the tem-

perature T. is zero. This provides a revised position of the phase change front 

at time kAt3. The whole process is repeated until successive estimates of the 

front positions lie within a prescribed tolerance. As in section 3.3, the first front 

position and gradients V'T/ . V'f at time I = At. are obtained from the one-

dimensional solution, equations (2.9) and (2.10). To keep the phase change front 

smooth, when the iterations have converged the points on the phase change front 

are passed through a three point smoothing scheme. As in section 3.3, Newton's 

method is employed in the location of where the temperature T3  = 0, unless D3  is 

large, in which case Newton's method converges slowly. For A large a bisection 

method is then used to determine the position of the phase change front. Thus if 

Newton's method has not converged within a specified number of iterations, the 

front finding method is switched to the bisection method. 

4.3 Results 

The numerical method presented in sections 4.2 to 4.2.3 was applied to a number 

of examples of the freezing of a region which includes fluid motion in the liquid 

phase. For simplicity and comparison with the previous examples of Chapter 

3 the constant boundary condition T36  < 0 on the fixed boundary B1  and the 

constant initial condition T10  > 0 are used. Furthermore, in order to induce the 

instability in the rest state of the fluid, the vorticity co was given a small initial 

value w, with ILoo l << 1. A more detailed discussion of the formulation of the 

problems presented in this section is given in sub-section 4.1.2. 

In the following examples the contour plots were drawn using N.C.A.R. graph-

ics version 2.0 [11]. The surface and the (x, y) type two dimensional plots where 

drawn using GNUplot version 3.5. 

As a means of validating the finite difference scheme for solving the fluid 

motion equations we compare the results of the present scheme with the solution 

of the classical Bénard convection problem presented by Moore et al. [38]. In 

this context, the fluid equations are solved on a square of side length 1.0 with 

the origin located at lower left hand corner. The lower boundary along z = 0 is 

maintained at a temperature of T j(x,0,t) = 1.0 whilst on the upper boundary 
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along z = 1 the temperature is Tj(x, 1,1) = 0.0. On the sides of the square along 

x = 0 and x = 1 the zero-flux (insulated) boundary condition is imposed. The 

region was discretised with a spatial step of As(= Ax = Az) = 1/90 and a time 

step of At = 7.5 x iO. The initial conditions for temperature and vorticity are 

taken to be Tm = 0.25 and w0  = 7.5 x 10 respectively. A Rayleigh number 

Ra = 657.5 x io and Prandtl number Pr = 1.0 were chosen. In this case 

the Rayleigh number is 1000 x Rae, where Ra is the critical Rayleigh number 

for instability. Using a value of the Rayleigh number which is greater than the 

critical value Ra induced convective motion in the fluid due to instability. The 

fluid equations (4.47) to (4.49) were solved using these parameters until steady 

convection was reached and this steady flow was found to compare favourably 

with the results of Moore et at [38]. 

Figure 4.7 shows contour and surface plots of the vorticity at steady state with 

a single steady vortex formed. The lozenge shaped distribution of vorticity is in 

good agreement with that obtained by Moore ci at [38]. Figure 4.8 shows surface 

and contour plots for the temperature distribution, also at steady state. In this 

case two vortices are shown to distinguish more clearly the transport of heat from 

the top to the bottom of the region. It should be noted that the orientation of 

the surface plot is different to that of the contour plot to highlight the features 

of this plot more clearly. In this case the temperature remains roughly constant 

in the centre of each vortex with two horizontal boundary layers formed at z = 0 

and z = 1. The rise of hot fluid from the boundary layer at z = 0 and the fall 

of colder fluid from the boundary layer at z = 1 is clearly visible in both of these 

plots. This exchange of hot and cold fluid results in the convective motion which 

characterises Bénard convection problems. Finally figure 4.9 shows surface and 

contour plots for the streamfunction at steady state with a single steady vortex 

formed. 

The full numerical scheme for two-phase Stefan problems that includes fluid 

motion, presented in the previous sections, was applied to the freezing of wa-

ter which is contained in a square region of non-dimensional side length 2.0. 

In particular three different non-dimensional initial conditions were investigated 

Tm = 0.40 (4 00), T10  = 0.75 (7.5°C) and Tw = 1.50 (15°C). As far as possible 

the other parameters were kept the same for each of the three initial conditions 

for the purpose of comparison. It was, however, found necessary to change the 

time steps in each of the three simulations as this proved the best way in which 

to capture the dynamics of the fluid motion in each case. The computational 

region is reduced by symmetry from solving on a square of side 2.0 to solving on 

a rectangle with width in the x direction of 1.0 and height in the z direction of 
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(b) Surface plot of vorticity w at alternate (x, z) grid points for a single 
vortex 

Figure 4.7: Vorticity distribution at steady state with initial conditions T10  = 0.25 

and w0  = 7.5 x 10. The spatial step is As = 1/90 and the time step is 

At = 7.5 x 10* The dimensionless constants are Ra = 657.5 x io and Pr = 1.0 
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(h) Surface plot of temperature distribution over two vortices at alternate 
(r, z) grid points 

Figure 4.8: Temperature distribution at steady state with initial conditions TO = 

0.25 and w0  = 7.5 x 10. The spatial step is As = 1/90 and the time step is 

At = 7.5 x 10* The dimensionless constants are Ra = 657.5 x io and Pr = 1.0 
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Figure 4.9: Streamfunction distribution at steady state with initial conditions 
T10  = 0.25 and w0  = 7.5 x 10* The spatial step is As = 1/90 and the time 
step is At = 7.5 x 10* The dimensionless constants are Ra = 657.5 x io and 
Pr=LO 
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Quantity Symbol Value 

Thermal diffusivity (liquid) D, 4.280784 x 10' 
Thermal diffusivity (solid) D3  3.837696 x 10 
Thermal conductivity K 4.151624 
Prandtl number Pr 7.519227 
Rayleigh number Ra 7.257384 x io 
Stefan number St 1.669446 x io 
Kinematic viscosity  3.218819 x 10 

Table 4.1: Values of non-dimensional parameters for water generated with length 
scale d6 ; see Appendix A : table A.1 

2.0. A schematic representation of the computational region is shown in figure 

4.2 in sub-section 4.1.2. One should note that for this type of problem there may 
be symmetry breaking solutions due to the inherent nonlinearity of the problem. 

However for the problems considered in this section this was not found to be the 

case. 
Figures 4.10 to 4.15 show contour and surface plots of vorticity, temperature 

and streamfunction at non-dimensional times I = 20.0 (40.23 secs) and t = 40.0 

(80.47 secs) for an initial condition of To  = 0.40 (4 0C). The boundary condition 

was taken to be fT36 = -2.0 (-20 °C) and the initial vorticity was &ao = 5.0 x iO. 

The region was discretised with spatial steps for the solid and liquid regions of 

As = 5.0 x 10_2  and As, = 1.25 x 10_2  respectively. The solid and liquid 

time steps were At, = 10.0 and At, = 5.0 x iO respectively. The dimensional 

parameters for water are shown in Appendix A, table A.1 and the non-dimensional 

parameters are given table 4.1. 
Figures 4.10 and 4.13 show the vorticity profiles at times I = 20.0 (40.23 secs) 

and I = 40.0 (80.47 secs) respectively. It should be noted that the orientation of 

the surface plot in both cases is different to that of the contour plot to highlight 

the features more clearly. Furthermore the ragged edge that is found at the zero 

contour is a consequence of the fact that we are trying to describe a curve with a 

square mesh. All grid points that occur behind the phase change front as part of 

the inactive grid have been assigned the value zero. This is found necessary since 

a regular mesh is required by both the contour and surface plot packages. In each 

of these plots two dominant vortices, one positive and one negative, can clearly be 

seen. They are formed by some fluid being above and some below the temperature 

at which water attains its maximum density; 3.98°C experimentally and 3.55°C 

for our model (see sub-section 4.1.1). For water with temperature above 3.55°C 

located at the left of the region 0 < x < 1, the hot fluid in the middle of the liquid 
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region rises and the cold water near the phase change front descends carrying a 

clockwise rotating vortex. Conversely for water with temperature below 3.55'C, 

this water being located at the right hand side of the liquid region, the hot fluid in 

the middle of the region descends and the cold fluid near the phase change front 

rises carrying an anticlockwise rotating vortex. Once the temperature ahead of 

the phase change front falls below 3.55 °C everywhere in the liquid region there 

are no longer any counter rotating vortices within the fluid. A single anticlockwise 

rotating vortex will dominate the fluid motion until the fluid is completely frozen. 

Furthermore along the upper and lower sides of the liquid region in both figures 

4.10 and 4.13 the boundary layers occurring there can be clearly seen. 

Multiple vortices would not occur for this problem if the density of water was 

modelled using a linear equation of state i.e. as a linear function of temperature. 

This is because there no longer exists a value of temperature T, (= 3.55 °C in 

this case) that produces an anticlockwise rotating vortex when t, c T, and a 

clockwise rotating vortex for 1C < 1',. For a linear equation of state a small 

anticlockwise vortex is formed and remains for the duration of the freezing. 

Figures 4.11 and 4.14 show the temperature profiles both ahead of and behind 

the phase change front at times t = 20.0 (40.23 secs) and t = 40.0 (80.47 secs) 

respectively. A three point smoothing routine has been applied at the interface of 

the solid and liquid regions to eliminate the ragged mesh points there. The initial 

condition for temperature in the case, Tjo  = 0.40 (4°C), was taken as an example 

close to the density maximum of water. Below this temperature density is as an 

increasing function of temperature (see sub-section 4.1.1). We thus expect the 

hot fluid to sink towards the bottom of the liquid region and the colder fluid to 

rise, which is apparent in figures 4.11 and 4.14. The colder fluid on the right 

hand side of the liquid region is rising towards the top with the hot fluid at the 

top of the liquid region being cooled by the rising fluid and by the phase change 

front. This hot fluid then descends to the left of the liquid region since the cold 

fluid is rising from the right. This continuing exchange of hot and cold fluid 

forces the circulation in an anticlockwise direction. The increasing penetration of 

colder fluid on the left hand side of the liquid region caused by this circulation 

can be seen quite clearly at I = 40.23 secs in figure 4.11 and to a greater extent 

at I = 80.47 secs in figure 4.14. 

Figures 4.12 and 4.15 show the streamfunction profiles at times i = 20.0 (40.23 

secs) and I = 40.0 (80.47 secs) respectively. The orientation of the surface plots 

is again different to the contour plots to highlight the features of these plots more 

clearly. A single vortex is formed in the corner of the liquid region in figure 4.12 

and it moves to a more central position in figure 4.15. At subsequent time steps 
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Figure 4.10: Vorticity distribution at time t = 20.0 with initial conditions To = 

0.40 and wo = 5.0 x 10. The spatial and time steps for the solid and liquid 
regions are As, = 5.0 x 10_2,  As, = 1.25 x 10_2,  At, = 10.0 and At, = 5.0 x 10-3 

respectively. The dimensionless constants for water are given in table 4.1 
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Figure 4.11: Temperature distribution at time t = 20.0 with initial conditions 

To = 0.40 and w0  = 5.0 x 10. The spatial and time steps for the solid and liquid 
regions are As, = 5.0 x 102,  Asj = 1.25 x 10_2, At, = 10.0 and At, = 5.0 x 10 
respectively. The dimensionless constants for water are given in table 4.1 
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Figure 4.12: Streamfunction distribution at time t = 20.0 with initial conditions 
To  = 0.40 and w0  = 5.0 x 10* The spatial and time steps for the solid and liquid 
regions are As, = 5.0 x 102,  As = 1.25 x 10_2,  At, = 10.0 and At, = 5.0 x 10 
respectively. The dimensionless constants for water are given in table 4.1 
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Figure 4.13: Vorticity distribution at time t = 40.0 with initial conditions 7'10 = 

0.40 and we  = 5.0 x 10. The spatial and time steps for the solid and liquid 

regions are As, = 5.0 x 10_2,  As, = 1.25 x 10_2,  At, = 10.0 and At, = 5.0 x io 
respectively. The dimensionless constants for water are given in table 4.1 

79 



x 1. 

(a) Isotherms from —2.0 to 0.30 at intervals of 0.10 

Ii 

1. 

FA 

1. 

0.5 

0. 

-0.5 

-1. 

-1:5 

IN 

ii 

-' 1. 

(b) Surface plot of temperature T at alternate each alternate row 
of mesh 

Figure 4.14: Temperature distribution at time I = 40.0 with initial conditions 
To  = 0.40 and wo  = 5.0 x iO. The spatial and time steps for the solid and liquid 
regions are As, = 5.0 x 102,  L1s, = 1.25 x 10_2, At, = 10.0 and At, = 5.0 x iO 
respectively. The dimensionless constants for water are given in table 4.1 
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Figure 4.15: Streamfunction distribution at time t = 40.0 with initial conditions 

TO  = 0.40 and wo = 5.0 x iO. The spatial and time steps for the solid and liquid 

regions are As, = 5.0x 10 2, As,  = 1.25 x 10_2, At, = 10.0 and At, = 5.0 x iO 
respectively. The dimensionless constants for water are given in table 4.1 



the single anticlockwise rotating vortex remains roughly in this central position. 

The previous simulation was repeated with an initial temperature condition 

of T,0  = 0.75 (7.5 0C). In this case the time steps for the solid and liquid phases 

were taken as At. = 15.0 and tXt, = 6.0 x iO respectively. Figures 4.16 to 4.21 

show contour and surface plots of the vorticity, temperature and streamfunction 

at times t = 30.0 (60.35 secs) and t = 60.0 (120.70 secs) for this initial condition. 

The vorticity profiles at times t = 30.0 (60.35 secs) and t = 60.0 (120.70 

secs) are shown in figures 4.16 and 4.19 respectively. The surface plots have 

again been orientated differently to the contour plots to enable the details of 

these plots to be seen more clearly. In figure 4.16 four separate vortices can be 

seen; two positive and two negative. For the positive vortex in the top right 

hand corner of the computational region ahead of the phase change front the 

temperature is greater than TA, (= 3.55°C). Therefore hot fluid is rising and cold 

fluid is falling, resulting in clockwise rotation. The other positive vortex also has 

a clockwise rotation. However the temperature in this vortex is less than Tz and 

so cold fluid is rising from the lower boundary and hot fluid is falling. In the 

bottom right hand corner of the liquid region the negative vortex is occurring in 

an area where the temperature of the fluid is below Ti as the temperature is less 

than that for the maximum water density colder fluid rises and hotter fluid falls, 

resulting in an anticlockwise rotation of fluid. The remaining negative vortex, 

which has an anticlockwise rotation, occurs roughly in the centre of the region 

and is being pulled down by the effects of temperature and the two clockwise 

rotating vortices. In contrast the fluid flow at the later time in figure 4.19 is 

dominated by three vortices, two positive and one negative. On the right hand 

side of 0 j  x < 1 the fluid is being cooled by the phase change boundary of 

the liquid region. Consequently the temperature of the fluid there has cooled 

quite rapidly, forcing it below i. This results in circulation with cold fluid rising 

and hot fluid falling resulting in an anticlockwise rotating vortex. The second 

dominant vortex ahead of the phase change front occurs at the bottom left hand 

corner of the liquid. Here the temperature is below Dj and the cool fluid is 

rising from the lower boundary and the hot descending, resulting in a clockwise 

rotating vortex. Finally the the remaining positive vortex is formed in quite a 

central location where the temperature of the fluid is close to or below TA,.  As 

the fluid cools in this part of the liquid region it begins to rise towards th upper 

boundary resulting in a clockwise rotating vortex. In both figures 4.16 and 4.19 

the boundary layers occurring at the top and bottom of the liquid region cn be 

clearly seen. 

The long term behaviour of the vortices in this case is the same as in the 
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previous example, for which T,0  = 0.4 (4°C). That is, once the fluid ahead of the 

phase change front is cooled below the critical temperature Tfl  everywhere, a single 

clockwise rotating vortex is formed and this vortex will dominate until freezing is 

complete. This is achieved much more rapidly when the initial temperature Tm 

is close to the critical temperature Ih, since less heat needs to be removed from 

the liquid phase before the single vortex is formed. 

The temperature profiles both ahead of and behind the phase change front 

are shown at times t = 30.0 (60.35 secs) and t = 60.0 (120.70 secs) in figures 4.17 

and 4.20 respectively. Again a three point smoothing routine has been applied at 

the interface of the solid and liquid phases to eliminate the ragged mesh points 

there. The initial condition in this case is larger that the critical temperature Tz 

and therefore we expect that for most of liquid region (i.e. except near the phase 

change front) the hot fluid to rise and the cold fluid to descend initially. This 

distribution of hot and cold fluid in the liquid phase is shown in figure 4.17. The 

twisting of contours that is occurring in the corners of the liquid region shows 

the effect convection is having on the temperature distribution. In contrast figure 

4.20 shows the fluid motion 30 time units later and the temperature distribution 

is quite different. In this case the temperature of the fluid is rapidly approaching 

the critical temperature Tk everywhere, with only a small area in the centre of 

the liquid region which is above this value. The fluid in the half region 0 < x < 1, 

—1 < z < 1 is being cooled on three of its boundaries and therefore it is these three 

sides of the liquid region which will cool most rapidly. The resulting distribution 

which has a pocket of warmer fluid residing in the centre of the region is therefore 

expected. Furthermore, in the bottom left hand corner of the liquid region in 

figure 4.20 a small vertical plume of cold fluid can be seen rising from the lower 

boundary. The fluid motion around the region of hot fluid and the rising plume 

of cold fluid can be seen in the vorticity and streamfunction plots as two vortices. 

Figures 4.18 and 4.21 show the streamfunction profiles at times t = 30.0 (60.35 

secs) and t = 60.0 (120.70 secs) respectively. The orientation of the surface plot is 

again different to the contour plots to enable the details to be seen more clearly. In 

figure 4.18 four vortices are shown; two positive with clockwise rotation and two 

negative with anticlockwise rotation. As time increases the liquid region continues 

to cool down, resulting in the temperature approaching T, everywhere. Figure 

4.21 shows the streamfunction 30 time steps later and three vortices can be seen, 

two positive with clockwise rotation and the other negative with anticlockwise 

rotation. At subsequent time steps the temperature in the liquid region will be 

below T1 everywhere, resulting in the formation of a single anticlockwise rotating 

vortex that will remain until the whole region freezes. 
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Figure 4.16: Vorticity distribution at time t = 30.0 with initial conditions To = 

0.75 and w0  = 5.0 x 10. The spatial and time steps for the solid and liquid 
regions are As, = 5.0 x 10_2,  Asj = 1.25 x 10_2, At, = 15.0 and At, = 6.0 x 10 
respectively. The dimensionless constants for water are given in table 4.1 
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Figure 4.18: Streamfunction distribution at time t = 30.0 with initial conditions 

TO  = 0.75 and w0  = 5.0 x iO. The spatial and time steps for the solid and liquid 

regions are As, = 5.0 x 102,  a.s1  = 1.25 x 10 2,  At, = 15.0 and At, = 6.0 x 10 

respectively. The dimensionless constants for water are given in table 4.1 
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Figure 4.19: Vorticity distribution at time t = 60.0 with initial conditions T10  = 

0.75 and w0 = 5.0 x 10* The spatial and time steps for the solid and liquid 

regions are As, = 5.0 x 10_2,  As1  = 1.25 x 10_2, At, = 15.0 and At, = 6.0 x  10-3 

respectively. The dimensionless constants for water are given in table 4.1 
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Figure 4.20: Temperature distribution at time i = 60.0 with initial conditions 

To  = 0.75 and w0  = 5.0 x10 3. The spatial and time steps for the solid and liquid 

regions are As, = 5.0 x 10_2,  Asj  = 1.25 x 102,  At3  = 15.0 and At1  = 6.0 x 10 

respectively. The dimensionless constants for water are given in table 4.1 
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Figure 4.21: Streamfunction distribution at time t = 60.0 with initial conditions 

TIO  = 0.75 and w0  = 5.0 x 10* The spatial and time steps for the solid and liquid 

regions are As, = 5.0 x 102,  As j  = 1.25 x 10 2, At, = 15.0 and At, = 6.0 x 10 

respectively. The dimensionless constants for water are given in table 4.1 



Finally, an initial temperature condition of T10  = 1.50 (15°C) was considered. 

The other parameters for this simulation were taken to be the same as those given 

for the initial condition T10  = 0.40 (4°C), except that the time steps for the solid 

and liquid phase calculation were taken to be At. = 18.0 and At, = 9.0 x iO 

respectively. 

In this case the initial temperature was chosen to be considerably larger than 

the critical temperature i = 3.55°C to allow the fluid to circulate for a longer 

period of time. As the fluid is cooled the fluid flow behaviour exhibited in this case 

is similar to that of the previous simulations for T10  = 0.40 (4°C) and T,0  = 0.75 

(7.5°C). Here, as in the previous examples, a single vortex is not expected to 

form initially since the fluid close to the phase change front will be cooled to 

below T1, almost immediately. This forces the fluid there to form vortices that 

are counter rotating to the bulk of the hotter fluid in the centre of the region. 

Figures 4.22 to 4.30 show contour and surface plots of vorticity, temperature and 

streamfunction at non-dimensional times t = 36.0 (72.42 secs), t = 54.0 (108.63 

secs) and t = 90.0 (181.06 secs) for an initial condition of T,0  = 1.50 (15°C). 

The vorticity profiles at times t = 36.0 (72.42 secs), t = 54.0 (108.63 secs) 

and t = 90.0 (181.06 secs) are shown in figures 4.22, 4.25 and 4.28 respectively. 

The surface plots have again been orientated differently to the contour plots to 

enable the features of these plots to be seen more clearly. In figure 4.22 there 

are six distinct vortices; three positive with clockwise rotation and three negative 

with anticlockwise rotation. The more dominant of these vortices can be seen 

more clearly in the associated streamfunction plots in figure 4.24. Freezing the 

region for a further 18.0 time units results in the number of vortices in the liquid 

region being reduced to four, which can be seen in figure 4.25. Here there are 

two negative vortices with anticlockwise rotation and two positive vortices with 

clockwise rotation. The freezing of the right hand boundary of the liquid region 

forces the temperature there down below the critical temperature Tj very rapidly. 

Consequently an anticlockwise rotating vortex is formed there that dominates 

the flow. As the temperature of the region decreases, the anticlockwise rotating 

vortex formed from cold water increases in size and the clockwise vortices formed 

from warm water disappear. The distribution of vortices in this case is similar 

to that at time I = 120.70 secs for an initial condition of Tio  = 0.75 (7.5°C) 

shown in figure 4.19. Furthermore the small clockwise rotating vortex occurring 

in the bottom left hand corner of the liquid region in figure 4.25 also appears as 

a significant feature in figure 4.19. Figure 4.28 shows the vorticity profiles after a 

further 36.0 time units. In this case there are only two vortices; one negative with 

anticlockwise rotation and one positive with clockwise rotation. At this time the 
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temperature distribution is below the critical temperature T, everywhere in the 

liquid region. This results in the vorticity distribution approaching that of figure 

4.10 at time I = 80.47 secs with the exception of the clockwise rotating vortex in 

the bottom left hand corner of the liquid region in figure 4.28. This second vortex 

is rapidly decreasing in size as the liquid cools. Furthermore the small positive 

vortex occurring in figure 4.10 is also present in figure 4.28 however, its presence 

is dominated by the larger positive vortices occurring in the liquid region. 

The temperature profiles both ahead of and behind the phase change front 

at times I = 36.0 (72.42 sees), I = 54.0 (108.63 secs) and I = 90.0 (181.06 

secs) are shown in figures 4.23, 4.26 and 4.29 respectively. Again a three point 

smoothing routine has been applied at the interface of the solid and liquid phases 

to eliminate the ragged mesh points there. Since the initial condition is larger 

than the critical temperature T1 we expect the bulk of the hot fluid to rise and 

the cold fluid to descend, except at the phase change front where the temperature 

is less than T1. This distribution of hot and cold fluid in the liquid phase is shown 

in 4.23. A similar distribution is shown at time I = 60.35 secs in figure 4.17 for 

an initial condition of T,0  = 0.75 (7.5 0C). The distribution of temperature in 

the region is shown after a further 18.0 time units in figure 4.26. In this case a 

small area of fluid with temperature greater than the critical temperature T, is 

located in the top left hand corner of the liquid region. This pocket of hotter 

fluid has been forced to this region by the cold fluid, which is below the critical 

temperature T1 and on the right hand side of the region and is rising towards 

the upper boundary. Furthermore in the bottom left hand corner of the liquid 

region a small plume of cold fluid is rising with a clockwise rotation from the lower 

boundary to buoy up the pocket of hot fluid. Figure 4.29 shows the temperature 

distribution after a further 36.0 time steps. At this time the entire fluid is below 

the critical temperature T,. Thus the cold fluid is rising and the hotter fluid 

is descending towards the bottom of the liquid region. The small plume of cold 

fluid that was rising from the lower boundary in the bottom left hand corner of 

the liquid region in figures 4.23 and 4.26 can still be seen in figure 4.29. However 

the size of this pool of fluid has decreased. This is because the warmest part 

of the liquid region is to be found just above the lower boundary and the cold 

plume need not penetrate too far upwards into the region to be warmed itself and 

descend. 

The streamfunction profiles at times t = 36.0 (72.42 sees), I = 54.0 (108.63 

sees) and I = 90.0 (181.06 sees) are shown in figures 4.24, 4.27 and 4.30 respec-

tively. The surface plots have again been orientated differently to the contour 

plots to enable the features of these plots to be seen more clearly. In figure 4.24 
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Figure 4.22: Vorticity distribution at time t = 36.0 with initial conditions To  = 

1.50 and w0  = 5.0 x 10. The spatial and time steps for the solid and liquid 

regions are As, = 5.0 x Asj  = 1.25 x 10_2, At, = 18.0 and At, = 9.0 x 10 
respectively. The dimensionless constants for water are given in table 4.1 
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Figure 4.24: Streamfunction distribution at time t = 36.0 with initial conditions 

= 1.50 and w0  = 5.0 x iO. The spatial and time steps for the solid and liquid 
regions are As, = 5.0 x 10_2,  AS, = 1.25 x 10-2, At, = 18.0 and At, = 9.0 x 10 
respectively. The dimensionless constants for water are given in table 4.1 
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Figure 4.25: Vorticity distribution at time t = 54.0 with initial conditions To = 

1.50 and w0 = 5.0 x iO. The spatial and time steps for the solid and liquid 
regions are As, = 5.0 x 10_2,  As = 1.25 x 102,  At = 18.0 and At1  = 9.0 x 10-3 

respectively. The dimensionless constants for water are given in table 4.1 
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Figure 4.26: Temperature distribution at time t = 54.0 with initial conditions 

TIO  = 1.50 and w0  = 5.0 x 10. The spatial and time steps for the solid and liquid 
regions are As, = 5.0 x 102,  As j  = 1.25 x 10_2,  At, = 18.0 and Atj = 9.0 x 10 
respectively. The dimensionless constants for water are given in table 4.1 
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Figure 4.27: Streamfunction distribution at time t = 54.0 with initial conditions 
To  = 1.50 and w0  = 5.0 x 10* The spatial and time steps for the solid and liquid 

regions are As, = 5.0 x 102,  Asj = 1.25 x 102,  At, = 18.0 and At, = 9.0 x iO 
respectively. The dimensionless constants for water are given in table 4.1 
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Figure 4.28: Vorticity distribution at time t = 90.0 with initial conditions flo = 

1.50 and wo = 5.0 x iO. The spatial and time steps for the solid and liquid 
regions are As, = 5.0 x 102,  As, = 1.25 x 10-2, At, = 18.0 and At, = 9.0 x 10 
respectively. The dimensionless constants for water are given in table 4.1 
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Figure 4.29: Temperature distribution at time t = 90.0 with initial conditions 

TIO = 1.50 and w0  = 5.0 x 10. The spatial and time steps for the solid and liquid 
regions are As, = 5.0 x 10_2,  ASI  = 1.25 x 102,  At, = 18.0 and tXt1  = 9.0 x 10T 
respectively. The dimensionless constants for water are given in table 4.1 
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Figure 4.30: Streamfunction distribution at time t = 90.0 with initial conditions 

To  = 1.50 and w0  = 5.0 x 10. The spatial and time steps for the solid and liquid 
regions are As, = 5.0 x 102,  As1  = 1.25 x 10_2,  At, = 18.0 and At, = 9.0 x 10 
respectively. The dimensionless constants for water are given in table 4.1 
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Quantity Symbol Value 

Thermal diffusivity (liquid) D, 1.513486 x 10- 
4-Thermal diffusivity (solid) D3  1.356830 x iO 
Thermal conductivity K 4.151624 
Prandtl number Pr 7.519227 
Rayleigh number Ra 5.805997 x 106  

Stefan number St 4.721908 x io 
Kinematic viscosity  1.138024 x iO 

Table 4.2: Values of non-dimensional parameters for water generated with length 
scale da; see Appendix A : table A.1 

four vortices are shown; two positive with clockwise rotation and two negative 

with anticlockwise rotation. After a further 18.0 time units the temperature 

in the liquid region has cooled down further, resulting in a reduction in the 

number of vortices to only the two shown in figure 4.27. In this case there is 

a dominant negative vortex with anticlockwise rotation, corresponding to fluid 

below the critical temperature PLC on the right hand side of the liquid region, 

and a, positive vortex with clockwise rotation, corresponding to the cold fluid 

also below PL, rising from the lower boundary. Finally figure 4.30 shows that 

after a further 36.0 time units the two vortices have persisted. In this case the 

temperature everywhere in the region is below the critical temperature i).,. The 

negative vortex continues to dominate the flow with the positive vortex being 

reduced in size. Figure 4.21 shows the streamfunction plot for an initial condition 

of T13  = 0.75 (7.5 °C) at time I = 120.70 secs. In this case there is a similar pair 

of vortices to those of figures 4.27 and 4.30 with an additional positive vortex 

which is rapidly diminishing in size. The magnitude of the vortices in figures 4.27 

(I = 108.63 secs) and 4.30 (I = 181.06 secs) are slightly larger than those shown 

in figure 4.21 (1 = 120.70 sees). However of these vortices are rapidly approaching 

the magnitude of those shown in figure 4.30 and at subsequent times the only real 

difference being the position of the phase change front. 

For each of the three different initial conditions the previous simulations were 

repeated with a refined mesh to confirm that the number of vortices occurring in 

each case was not scaling with the size of the grid. It was found that in each case 

on the refined mesh the problem yielded exactly the same numerical results with 

the only difference being an improvement in the definition of the phase change 

fronts in each of the vorticity, temperature and streamfunction plots. 

The numerical method for two-phase Stefan problems with convection was - 

applied for different values of the initial temperature T,0, in the range 0°C to 

101 



(I, 

0 
-C 

° 
C) 

Figure 4.31: Plot of freezing time if as a function of the initial temperature 2)o  for 
a square region of non-dimensional side length 2.0. The boundary temperature 
is 7'sb = —2.0 (-20 0C) and the non-dimensional parameters for water are given 
in table 4.2 

20°C, in order to determine the effect convection has on the freezing time. The 

computational region was a square of non-dimensional side length 2.0 which was 

then reduced by symmetry to a rectangle of length 1.0 in the x direction and 

height 2.0 in the z direction (see sub-section 4.1.2). The boundary condition 

was taken to be T3b = —2.0 (-20°C) and the initial vorticity was taken as 

Loo  = 5.0 x iO. The region was discretised with spatial steps for the solid and 

liquid regions of = 0.05 and L\sj = 1/60 respectively. The time steps in the 

solid and liquid phases were At, = 15.0 and At, = 7.5 x 10 respectively. The 

dimensional parameters for water are shown in Appendix A, table A.1 and the 

non-dimensional parameters are given in table 4.2. 
Figure 4.31 shows the variation of the freezing time if  (in hours) as a function 

of the initial temperature to  (in °C). For 10  between 0°C and 3°C we see a 

steady increase in the freezing time if  as in figure 3.12, which shows the freezing 

time when fluid motion is neglected. This is because for initial temperatures 

in the range 0°C to 3°C there is little motion of the freezing fluid. Above 

TIO  = 0.3 (3°C) fluid motion effects are starting to have a stronger influence on the 

freezing time i f. This was demonstrated in previous simulations for fflo = 4°C, 

Tm = 7.5°C and io = 15°C (see figures 4.10 to 4.30). For initial temperatures 

in the range 4°C to 20°C the freezing time shows an incensing trend with initial 

temperature. At the low temperature end of this interval there is a considerable 

drop in the freezing time from that of the initial interval from 0°C to 3°C. This is 
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associated with the convection starting to make a sizeable difference to the front 

motion and because of this the liquid phase is starting to lose heat more quickly, 

leading to the decrease in freezing time shown in figure 4.31. The bumpy nature 

of figure 4.31 for initial temperatures above to  = 3 0C is associated with the 

numerical difficulties in exactly locating the final front position before freezing. 

Close to the centre of the region the movement of the phase change front between 

each time step is small. The numerical difficulties in dealing with the front just 

before complete freezing are resolved by stopping the numerical integration when 

the phase change front is a distance e from the centre of the region. The time to 

completely freeze is then estimated by extrapolating from the previous two front 

positions to the centre of the region. The freezing time is therefore calculated by 

adding this extrapolated time to obtain the final estimate of the freezing time if 
for the region. The size of the small bumps in figure 4.31 are of the order of the 

error of this extrapolation. 

The mean ice crystal sizes that are obtained from the complete freezing of the 

region for initial temperatures in the range 0°C < Io :< 20°C are presented in 

the next sub-section. 

4.3.1 Crystal Formation 

The numerical method (for two-phase Stefan problems with convection in the 

liquid phase) given in the previous sections 4.2 to 4.2.3 can be used with a simple 

model of crystal growth to predict the sizes of crystals formed when a liquid 

freezes. The model employed here is the same as that described in section 3.5. In 

modelling terms the inclusion of convection simply introduces new scalings into 

the crystal growth model. 

To recap, if the growth of an individual crystal is assumed to be radially 

symmetric, then the size of the crystal formed when a liquid freezes is given in 

dimensional units by 

(4.65) 

see Frank [27] and Coriell & McFadden [15]. Here k, is the thermal conductivity 

of the liquid, L is the latent heat, i'jj is the freezing temperature of the liquid 

and T is the temperature far ahead of the growing crystal. This expression 

applies only to a single crystal which has been growing for a time 1. To apply it 

to the freezing of a region, as in the numerical solutions of the last section, this 

expression must be applied to each individual crystal that is formed i.e. at each 

point of the region. Each crystal at a given point is then formed when the moving 

phase change front passes through that point. 
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The strategy adopted here is to replace the time I in the size expression by 

the velocity of the phase change front. This is in agreement with models of 

microstructure formation, for which the crystal size is primarily determined by 

the front velocity [44, 451. The time and temperature scales have been non-

dimensionalised using 

= 1= 
N d 

and T, — - - 
 Tif  (4.66) 

tt 

where is the gravitational acceleration, & is the coefficient of thermal expansion, 

D is a typical temperature of the liquid phase and d is a typical length scale for the 

region. Non-dimensionalising the time and temperature scales allows the values 

calculated by the numerical procedure of the previous section to be used directly 

without having to transform them to dimensional form. 

Expressing quantities in non-dimensional variables using (4.66) and replacing 

the time it by the front velocity V in the crystal size expression (4.65), (see section 

3.5), the alternative crystal growth expression is given in dimensional variables 

as 

_1 I  JiOq i(TuToo) 
V 2fiL 

(4.67) 

Here is the root of the transcendental equation (2.10), V is the non-dimensional 

velocity of the phase change front, T11  is the non-dimensional fusion temperature 

of the liquid and T. is the non-dimensional temperature far ahead of the growing 

crystal. It is this form of the crystal size expression that will be used in the 

present work to calculate the sizes of crystals formed from the freezing of a two-

dimensional region. 

The crystal sizes are then calculated in the same manner as that described 

in section 3.5, except that the numerical procedure used to solve the governing 

equations will be that previously described for two-phase Stefan problems with 

convection. 

Figure 4.32 shows the mean crystal size 3 (in mm) as a function of the initial 

condition T10  (in °C) with and without the inclusion of fluid motion ahead of the 

phase change front. The solid line shows the crystal size when convection in the 

liquid phase is included and is obtained using the numerical techniques given in 

this chapter. The dashed line is for the same example when no convection effects 

are included and is obtained using the double boundary integral method (BIM) 

of Chapter 3. The non-dimensional parameters for water in the BIM example 

are D. = 8.9649, D1  = .1.0, St = 3.5732 and K = 4.1516 for Tt  = 20°C with 

boundary condition T,6  = —1.0 (-20°C). The non-dimensional parameters for 
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Figure 4.32: Plot of the mean crystal size 5 as a function of the initial temperature 
TIO  for the freezing of water. Fora square region of non-dimensional side length 
2.0 with boundary temperature T36  = —20°C 

the fluid data are given in table 4.2 for it  = 10°C with boundary condition 

Lb = —2.0 (-20 °C). The length scale for both these examples is d = 5.0 cm. 

In figure 4.32 the boundary integral data shows a strong positive linear re-

lationship between mean crystal size S and initial condition flo  with ice crystal 

sizes in the range 5.88 mm < S C 7.77 mm. A plot of the freezing time tf  as a 

function of the mean crystal size S is shown in figure 3.13 for the same parameter 

values. In that case, the mean crystal size increases almost linearly with tj except 

near tf  = 0.34 (corresponding to an initial condition of Tio = 20°C) where there 

is a sharp increase in the size; see section 3.5. Including convection in the liquid 

phase clearly reduces the sizes of the ice crystals formed. When convection is 

included the mean ice crystal sizes lie in the range 5.88mm < S < 6.13mm. 

Initially there is a steady increase in the crystal size when flo  is between 0°C 

and 3°C with a drop between 3°C and 4°C. Thereafter however, the crystal size 

shows a steady increase up to an initial temperature of 20°C. This is because for 

initial temperatures in the range 0°C to 3°C there is little motion in the freezing 

fluid. Above 4°C however, the convection effects are starting to make a difference 

to the front motion and hence to the overall mean crystal sizes. The liquid phase 

is starting to lose heat more quickly due to convection, leading to lower freezing 

times (see figure 4.31). Consequently the crystal sizes are in turn reduced. 

As the phase change front moves into the region it slows down and moves - 

very slowly when it is near the centre of the region. Hence the crystal sizes are 
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relatively small near the boundary of the region and relatively large near the 

centre of the region (see figures 4.33 and 4.34). However as the larger crystal 

sizes are in a small sub-section of the region near its centre, they will not have a 

large effect on the average crystal size. 

A plot of the dimensional crystal size S (mm) over the region is shown in 

figures 4.33 and 4.34. The non-dimensional parameters for water used in this 

example are given in table 4.2 and the crystal sizes have been calculated with 

fluid motion ahead of the phase change front. The boundary condition was taken 

to be fl,6  = —20°C and the initial condition was 1'rn = 15°C. The crystal size S 

was evaluated using as before equation (4.67). However rather than applying the 

formula over each mesh box (see section 3.5) the crystal size was simply calculated 

at each point of the computational mesh. 

It is expected that the largest crystals will be formed in those areas of the 

region where the phase change front is moving slowest. Conversely the smallest 

crystals will be located where the phase change front is moving fastest. It can be 

seen from figure 4.34 that initially the largest crystals are located at the sides of 

the region and the smallest crystals at the corners. This distribution of crystal 

size makes physical sense since initially the corners of the phase change front are 

moving faster than the sides, resulting in the humped distribution of crystal sizes 

shown in figure 4.34. As the region continues to freeze the phase change front 

becomes circular, which results in more uniform freezing rates and consequently 

crystal sizes in conformity with the results shown in figures 4.33 and 4.34. 

The rippling effects that can be seen in both figure 4.33 and 4.34 are caused 

by numerical errors, these errors being of the order of the mesh box size used in 

the boundary integral solution. 
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Figure 4.33: Contour plot of the crystal size 8 (mm) in a square region of non-
dimensional side length 2.0 for the freezing of water. Contour lines begin at 0.5 
and finish at 11.0 with an increment of 1.0 between each contour. The initial 
temperature is to  = 15'C and the boundary temperature is 11b = —20 'C' 

Figure 4.34: Surface plot of the crystal sizes 8 (mm) in a square region of non-
dimensional side length 2.0 for the freezing of water. The initial temperature is 
To = 15 00 and the boundary temperature is Ti5,, = —20°C 
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Chapter 5 

Conclusions and Further Work 

5.1 Double Boundary Integral Method 

It has been shown in Chapter 3 that a boundary integral method can be used 

to find a numerical solution of the Stefan problem when heat flow both ahead of 

and behind the phase change front is taken into account. This forms an extension 

of the work of Coleman [12] which considered heat flow behind the phase change 

front only. It was found that this boundary integral method formulation of the 

Stefan problem has the advantages of (i) being a fast numerical method which 

yields accurate solutions and (ii) that it can easily incorporate non-rectangular 

boundaries. Furthermore when parameter values appropriate for water were used, 

it was found that the standard method for determining the front position, based 

on Newton's method, was unstable and so a new method for determining the 

front position, based on the bisection method, was developed. 

Points (i) and (ii) in the previous paragraph are in some sense related. One 

of the reasons that the boundary integral method is fast computationally is that 

the dimension of the integral equations to be solved is one dimension less than 

the dimension of the region itself. For example, in Chapter 3 the phase change 

problems considered were two-dimensional, but the resulting integral equations 

were solved as two one-dimensional problems on two curves; namely the fixed 

boundary and the phase change front. Upon assuming appropriate boundary 

conditions on these curves, the equations can be discretised on a mesh that is one 

dimension less than that of the region itself. This results not only in a reduction 

in computational effort but since the boundaries can be discretised in a simple 

and straight forward manner, the method can accommodate complex geometries 

with relative ease. 

Another feature of the boundary integral method is that it provides a great 

saving in computation time and computer storage due to the structure of the 

linear system for the unknown boundary data on the fixed boundary B1  (see 
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section 3.3). The block structure of the coefficient matrix in this case dictates 

that at each time step it is the same set of block elements in the coefficient matrix 

that requires inversion. Consequently only one matrix inversion is carried out per 

solution simulation. Furthermore the coefficient matrix has the same set of block 

matrices repeated in each block column and so the computer storage requirements 

are greatly reduced by requiring only the first column of blocks of the coefficient 

matrix to be stored. The savings made in solving the linear system in this case 

are a consequence of the presence of a fixed boundary for the region. 

The boundary integral method does however have the drawback that it can 

only be applied to well-posed Stefan problems and not to heat problems for which 

there is supercooling. In the following sub-section we briefly outline what is meant 

by supercooled problems and the implications of this for numerical solutions. 

5.1.1 Mushy Regions 

There is a class of heat conduction problems which the heat needed to produce 

melting comes from heat sources distributed throughout the material rather than 

from heat input from the boundaries of the region. An example is the Joule 

heating associated with electric currents within a conduction. In such cases the 

melting does not need to occur at an interface as in the classical Stefan problem. 

Instead an extended region can occur which is at the melting temperature of the 

material and in which the solid and liquid phases both coexist. This region is 

sometimes refered to as a mushy zone. A further example for which a mushy re-

gion occurs is that of alloy solidification in which case the change of phase occurs 

over a range of temperatures, leading to the formation of a mushy region with 

coexisting phases. Typically the formation of these regions is also associated with 

the superheating or supercooling of a particular part of the phase. A supercooled 

fluid is one which still exists in its liquid state when its temperature is lowered 

below its freezing temperature e.g. water that exists as a liquid below 0°C. Con-

versely a superheated fluid exists in its solid state when it is above its melting 

temperature. Hence for well-posed Stefan problems there exists distinct solid and 

liquid phases separated by a distinct front which persists until the phase change 

is complete. 

For supercooled (or superheated) problems however the phase change region is 

less distinct and can exist as a mixture of solid and liquid phases and is bounded 

by a not necessarily smooth or continuous interface. A review of the modelling 

of mushy zones is given in the paper by Crowley and Ockendon [14] and in the 

book by Elliott and Ockendon [23]. 

The classical Stefan problem model in one dimension given in Chapter 2, and 
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in two dimensions, given in Chapter 3, are incapable of including regions of mixed 

phases [14]. Inherent in the formulation of these models is the assumption that 

the material to be frozen is pure and that it can exist in either the solid or liquid 

phase, but not both at the same temperature. In other words once the material is 

above the freezing temperature, the liquid phase is obtained, and below, the solid 

phase is obtained. Should the boundary integral method of Chapter 3 be applied 

to problems that are capable, of yielding a mushy zone some additional modelling 

and numerical formulation would be required to deal with the formation of such 

a region. 

5.1.2 Crystal Growth Modelling 

Using a simple model for the growth of a crystal from a freezing liquid, the numer-

ical method of Chapter 3 was extended to predict the sizes of the crystals in the 

crystalline microstructure formed when a liquid region freezes. The predictions of 

this model were found to be in qualitative agreement with experimental results. 

While this method for predicting crystal sizes was developed in the context of 

water, it can easily be applied to other areas in which the prediction of crystal 

sizes is important, for example the growing of silicon crystals for the computer 

industry. The crystal growth model used was basic. While there exists improved 

models for crystal growth (see [15, 25, 27]), it is not clear that the increased 

complexity resulting from them is justified by the crude experimental results for 

crystal sizes formed from a freezing liquid. 

5.2 Inclusion of Fluid Motion 

In Chapter 4 was shown that the boundary integral method and the equations 

of fluid motion can be combined to obtain the numerical solution of two-phase 

Stefan problems with fluid motion in the liquid phase. This further extends the 

work of Chapter 3 and that of Coleman [12] for which no fluid motion effects were 

included. It was found that inclusion of the fluid motion results in a reduction in 

freezing time and, furthermore, the crystal growth model predicted a reduction in 

crystal sizes from that of similar examples without fluid motion in Chapter 3. The 

sizes of the crystals are then in accord with experimental data [37]. The bisection 

method for determining the front position employed in the numerical procedure 

of Chapter 3 was again retained and employed when the standard method, based 

on Newton's method, was found to be unstable. 

The numerical method for Stefan problems with fluid motion given in Chapter 

4 was found to be accurate, but computationally quite slow for the fine meshes re- 
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quired for proper inclusion of the boundary layer. The method still exploited some 

of the computationally useful features of the boundary integral method; namely 

the reduced dimensionality of the integral equations and the block coefficient ma-

trix structure of their numerical approximation. The reduction in computation 

time is due to these features is outweighed by the increase in computation time 

due to the fine mesh required to adequately approximate the boundary layer. 

In order to capture the boundary layers for the problems considered in Chapter 

4 the minimum number of mesh points is of the order of 1/fri, where vi is the 

non-dimensional kinematic viscosity. Choosing a uniform space step of an order 

required to capture the boundary layer leads to large systems of equations to be 

solved and long computation times. A non-uniform mesh which is fine near the 

boundaries to capture the boundary layer and course away form the boundaries 

would reduce system size and hence computation times, as explained in the next 

sub-section. 

5.2.1 Meshing Strategy 

In the numerical procedure of Chapter 4 for solving Stefan problems with fluid 

flow in the liquid phase the meshing strategy for the governing equations of fluid 

motion was found to be effective for the problems considered, but resulted in 

rather large computation times due to the large number of grid points. The mesh 

points were distributed evenly throughout the liquid region, except near the phase 

change front where, if necessary, the mesh was extended to include points on the 

phase change front itself (see section 4.2). Close to the phase change front the 

density of the mesh points was required to be high so as to capture the dynamics 

of the boundary layers occurring there. Therefore the equally spaced distribution 

of mesh points throughout the region resulted in a large number of grid points. 

In the interior of the liquid region however, away from the phase change front, 

the density of mesh points need not be as great and a courser mesh would suffice. 

Figure 5.1 shows a possible boundary layer fitted distribution of mesh points for 

the liquid region in the first quadrant of the (x, z) plane. In this case denser bands 

of mesh points can be seen at a distance S from the phase change front, where S is 

a measure of the boundary layer thickness, with the courser mesh occurring in the 

interior of the liquid region. The grid close to the phase change front in this case 

is known as a boundary fitted mesh [49]. In order to obtained this mesh structure 

near the phase change front a regular two-dimensional mesh was deformed in 

some way such that the mesh cells conform with the shape of the front. The 

obvious advantage of this is that the mesh will conform with the geometry of the 

phase change front more accurately and, furthermore, any boundary data there 
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Figure 5.1: Plot of boundary fitted mesh in first quadrant of the (x, z) plane 
ahead of the phase change front at time t > 0 

will be better approximated. Some interpolation of the quantities T,,w and b 

between the boundary layer and interior mesh will be required [48]. 

If the boundary fitted mesh strategy outlined above is employed the mesh 

will no longer have to be extended to include points on the phase change front. 

However since there is a non-uniform mesh in the x direction (see section 4.2) the 

Taylor series expansion, given in section 4.2, of 

f (x - Ax, z) now becomes f(x - ei Ax, z) 

where 61  E [0, 1). This results in different forms for the finite difference approxi-

mations of the equations of fluid motion. Otherwise the numerical procedure will 

be the same as that given in Chapter 4 for two phase Stefan problems with fluid 

motion. 

As an alternative to applying a remeshing procedure to the fluid motion equa-

tions, a transformation of the liquid region to a fixed rectangular domain could 

be employed. For instance if we consider the liquid region in the (x, z) plane the 

Schwarz-Christoffel transformation (see [10]) allows an sided polygon, namely the 

phase change front, to he mapped to the real axis of the complex plane, whilst its 

interior is mapped to the upper half plane. The upper half plane can be mapped 

to a rectangular domain using a standard conformal mapping. The equations of 

fluid motion could then be solved in this rectangular domain, with the solution 

being returned to the physical domain by an inverse mapping. However as a 
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new conformal mapping needs to be determined at each time step, this mapping 

technique for solving the fluid equations on a simpler domain may be less efficient 

than the boundary fitted mesh technique. 

5.2.2 Parallelisation 

The existing computer programme for solving two-phase Stefan problems with 

fluid motion was written in serial code using the Fortran 77 language. The pro-

gramme was found to be effective for the problems considered in Chapter 4 but 

the computation time was quite long for fine meshes. A further possibility for 

increasing the efficiency of the numerical procedure and for decreasing the com-

putation time is to parallelise the computer programme. This parallel code could 

be written using High Performance Fortran [34] or F--, a parallel extension of 

Fortran (see [41]). One obvious area in which parallelisation could be used is to 

separate out the fluid motion programme and the boundary integral programme, 

thereby allowing each of them to be executed freely with as few communications 

between them as possible. Indeed, only the normal temperature derivatives at the 

phase change front need be communicated. Within each of these two programmes 

there are further areas where parallelisation may be applicable e.g. LU decom-

position and Jacobi iteration. In each of these numerical routines, particularly 

those that form part of the fluid motion programme, the routines are accessed 

repeatedly at each time step. Therefore any resulting speed up in calculation 

time would have a significant effect on the overall computation time for a freezing 

simulation. 
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Appendix A 

Dimensional Parameters for 
Water 

Quantity Symbol Value Units 

Specific heat (liquid)  2106.0 J kg' OK_i 

Specific heat (solid)  4174.0 Jkg_i OK_i 

Length scale (a)  0.050 in 
Length scale (b)  0.025 in 

Thermal diffusivity (liquid)  1.3299 x iO in2  s 
Thermal diffusivity (solid)  1.1923 x iO 
Gravitational acceleration 4 9.81 m  8-2  

Thermal conductivity (liquid) K1  0.554 
______ 

Thermal conductivity (solid) IC 2.30 Wrn' J< 1  

Latent heat L 3.25 x 105 J kg-  ' 
Freezing temperature T11  0.0 
Temperature scale Tt 10.0  OC  

Thermal expansion coefficient &1  1.177202 x 10  0 K_1  

Thermal expansion coefficient &q  6.296770 X 10 OK -2 

Density (solid & liquid)  916.0 kg M-3 
Kinematic viscosity 10_6  2 3i 

Table A.1: Values of the dimensional parameters for water 
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