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SYNOPSIS 

Vibratory rate sensing devices operate by measuring the 

vibrations induced by the Coriolis acceleration when a vibrating 

inertia is rotated. A double torsion rate sensor is investigated 

but it is shown to offer few advantages over the conventional 

tuning fork. 

The equations of motion are developed for a more fundamental 

vibratory rate sensor consisting of a point mass with its motion 

constrained to one plane and controlled by linear springs and 

viscous dampers. Amplitude and phase angle relationships between 

the excited vibrations and the quadrature vibrations, induced by 

rotation and inherent coupling, demonstrate the possibility of 

measuring the rate of turn about an axis perpendicular to the plane 

of vibration by means of the phase angle in the regions where the 

coupling results in very little variation in amplitude. In addition 

the shape of the phase angle curve, unlike the amplitude curve, is 

shown to be independent of damping, thus making it possible to have 

a damping ratio high enough to give an acceptable transient 

response without affecting the sensitivity. This offers considerable 

advantages over the conventional vibratory rate sensor in which the 

rate is determined solely from the amplitude of the induced 

vibrations. 

Two possible methods of using a secod excitation source, in 

quadrature with the original one, are considered; it can be used 



either to eliminate the quadrature vibrations at zero rate input, 

in which case the rate of turn can be measured by the amplitude ratio, 

or to eliminate the quadrature vibrations at all rates, in which 

case the rate of turn is measured by the amplitude and phase 

relationships between the two excitation forces. 

Experiments carried out with a device approximating to the 

fundamental rate sensor demonstrate the validity of the derived 

theory. 
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1. 

CHAPTER 1 

Introduction 

1.]. 

 

The requirement for an alternative to the conventional gyroscop e  

The conventional rotating wheel gyroscope has played an increas-

ingly important part in the navigation and guidance of vehicles 

since its first commerical use as a gyrocompass in ships at the turn 

of the century. Until the 1950's only relatively crude, and there-

fore inexpensive, gyroscopic devices were required for instruments 

and automatic guidance controls but recently the increasing speed 

of aircraft and rockets has demanded much more accurate control 

and, consequently, more sophisticated instruments. In particular, 

the development of inertial navigation has depended upon the 

availability of exceedingly accurate and sensitive gyroscopes. 

Industry has been able to fulfill this demand for accurate 

instruments by continuous development of its manufacturing 

techniques, but the extremely small tolerances and the rigorouc 

testing that is required in a modern gyroscope has resulted in a 

considerable escalation on its price. Consequently a lot of 

research effort has gone into the development of other devices 

capable of measuring rates of turn (see, for example the papers 

by Langford and Stratton); one alternative to the conventional 

gyroscope is a device sensing rotation by means of a vibratory 

sensitive element, 

the references are listed alphabetically in the Bibliography. 



2. 

The basic principle of a vibratory rate sensing device is that, 

if a mass vibrating in a straight line is subjected to an angular 

rate of turn about an axis perpendicular to that line, the 

resulting Coriolis acceleration gonerates an alternating reactive 

forcewhjch induces motion in a direction perpendicular to both 

the original vibration line and tha turning axis; in a linear 

spring-mass system the amplitude of the induced vibration is 

proportional to the rate of turn. 

Vibratory devices appeared to offer excellent prospects for 

development into inexpensive, accurate and long lasting rate 

sensing instruments, the simplicity of the system and the lack of 

bearings seemed to be the main advantates. As a result, a consider- 

able amount of c-. fort was put into trying to produce a practical 

device of this type which would have an accuracy comparable to that 

of an inertial quality conventional gyroscope; the net result of 

all this work up to now can he judged by noting that no instrument 

of this type has been produced capable of giving this sort of 

accuracy. 

1.2 The development of vibratory inertial sensors, 

Although the Foucault pendulum (the original gyroscope) may 

be considered to be a vibratory device, the first attempt at making 

a small instrument employing a vibrating mass to measure rate of 

turn was probably made by Meredith in 1942, however his paper, 
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published by Nature in 1949, points out that an order of flying 

insect known as the Diptera use a device of this kind; these insects 

have a pair of small organs, called halteres, which take the place of 

hind wings and vibrate at high frequency enabling them to fly in a 

stable manner (the mathematical theory is developed by Pringle). 

The main disadvantage of the early instruments, which employed 

a single vibrator, was the difficulty of eliminating various errors, 

particularly those due to motion of the complete instrument. To 

overcome this problem most of the research has been concentrated 

on systems using balanced oscillators, the tuning fork being the 

most favoured device. 

The developments in the United States led to the production of 

the Sperry Rate Gyrotron in 1953, the characteristics of which are 

described by Barnahy et al., Lyaan and Morrow. In this country the 

majority of the work has been carried out by the Royal Aircraft 

Establishment at Farnborough and is covered in reports by Hobbs, 

Hunt, Pitt and Stratton. Some research has also been caIried out 

in France and is reported by Mathey and Ettzeroglou. 

The bibliography lists other r3ports and books covering various 

types of vibratory rate sensors and papers by Chatterton and I'Teron 

comparing vibratory and conventional rate sensors. The theory for 

the tuning fork is covered in the book by Arnold and Maunder and 

also in many of the papers listdd; the well known paper by Fearnside 

and Briggs also discusses the possibility of instabilities occuring 
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in this type of device. 

As far as can he ascertained, all of the vibratory sensors that 

have been evaluated up to now have determined the rate of turn by 

measuring the amplitude of the vibration that has been induced by 

the Coriolis force; because the Coriolis force is comparatively 

small this has meant that any unwanted forces due to unbalance or 

other imperfections in the system have had to be reduced to a very 

low order, otherrise the measurement of very small rates of turn 

is impossible. Thus the instruments have been manufactured neces-

sarily to very small tolerancë and a thorough balancing procedure 

had to be carried out before it was possible to measure small 

rates. 

The very small amplitudes that have to be measured and the 

difficulty in eliminating errors due to imporfections have been 

the main reasons why this type of instrument has not so far 

achieved the accuracy that was hoped for. The amount of research 

that has been carried out can he judged from the number of 

published papers, of which the bihlioraphy doesn't claim to be 

a complete list, and the continued interest, can be assessed, by 

noting that at the Symposium on Gyros held in London in 1965, 

there was more discussion on the paper by Hunt and Hobbs than on 

most of the other papers that were presented. 
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1.3 Research at this University  

The main difficulty in carrying out rocéarch into gyroscooic 

instruments at University level is the high cost of manufacturing 

any inertial sensor to the accuracy necessary for present day 

requirements. Therefore the main task must be to develop the 

basic principles and to test out the theory with relatively 

inexpensive apparatus which cannot be expected to have great 

accuracy or sensitivity. 

Research on a double torsion type of vibratory rate sensor as 

an alternative to the tuning fork had been carried out here up to 

1961 by McLean. A 'riodified device of the same type was considered 

as it appeared to incorporate some improvements, however the 

conclusion was reached that this type of instrument did not have 

any significant advantages over the tuning fork (this is 

discussed in more detail in chapter 2). However this work did 

lead back to a consideration of the fundamental onuatjons 

governing a vibratory rate sensing device, in particular the 

consideration that these instruments possessed two degrees of 

freedom; the theory, as it is usually presented, assumes that the 

amplitude to the forced sensing vibrations remains constant ( it 

is normally maintained constant by a control system) this means that 

only one equation.. of motion is involved and the system effectively 

possesses only a single degree of freedom. 

Consideration of the equations of motion for a fundamental 

vibratory rate sensor led to the theory descrijed in the main part 
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of this thesis and to the construction of a device capable of 

measuring down to rates of the order of 1,000 °/hr. In order to 

be of inertial quality a gyroscope must be capable of measuring 

down to about 1 mm. of arc/hr. i.e. a sensitivity 6 x 104  

greater than that achieved; however the device was not constructed 

with the object of producing a practical instrument so that a 

considerable improvement in accuracy and sensitivity should be 

possible. 
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CHAPTER 	2 

Preliminary Investigation and First EerimentalSetp 

2.1 Preliminary Investigations 

The previous work carried out by McLean had concen-

trated on a double torsion type of vibrating gyro, 

fig,2.1,1., which differed from a conventional rotating 

wheel single axis rate gyroscope in that the rotor, 

instead of being rotated at constant angular velocity, 

was attached to a torsion shaft and excited at its natural 

frequency about the axis Oz. This meant that rotation 

about the input axis OY caused the system to vibrate about 

the output axis OX, the amplitude of the steady state 

vibration being proportioned to the imposed rate of turn 

about OY. 

It is the Coriolis acceleration that is employed in a 

vibratory rate sensor and it seemed that McLeans device 

suffered from the disadvantage that a considerable propor- 

tion of the mass of the rotor, that adjacent to the OX 

axis, was subjected to very little Coriolis acceleration 

when rotation took place about OY. A dumbell shaped 

sensitive element where the mass was concentrated around 

the position of maximum Coriolis acceleration, viz, near 

the input axis 0!, would appear to have considerable 

advantages. 
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2,2 Theory 

The device chosen is shown on the photograph, fig. 

2.2.1,, and diagram itici1y in fig.2.2.2. An additional 

advantage of the design was that the conventional gimbal 

of McLeans device could be replaced by an internal gimbal, 

consisting of a clamping unit between the two shafts, with 

a consequent reduction in weight and output axis inertia. 

The sensitive element was vibrated about the Oz axis 

through an angle 0< = 	sin &t at the natural frequency 

about that axis, 	' and the angular deflection, /S about 

the OX axis, measured. 

Taking axes OXYZ fixed to the .vehicle and rotating at 

angular velocity 

+ 	-I-- SI 	 (2.2.1) 

(where I, J, and K are unit vectors along OX, OY and OZ 

respectively) and axes Oxyz rotating with the sensitive 

element through an angle / about OX, so that their 

angular velocity 

- 	+ 	
(2.2.2) 

(where i, j, and k are unit vectors along Ox, Oy, and Oz 

respectively) for,, 1is given by 

SL - 

- 	•• 	

(2.2.3) 

3 . 
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If the sensitive lernent has principal moments of 

inertia A1 , B1; 01,  the moment and product of inertia, 

w.r.t.Oxyz, due to rotation o( about the axis Oz are 

determined from the Mohr circle, fig 2.2.3, to be: 

Ioc 	
A1  + B1 

2 	

+ A 2 
- B1 cos 2c, 

Iy 
 

lky
- B1 	

2o 	

cos 2o 	(2.2.4) 
2 	 2 

also Iz 

(2.2.5) 
I 	 I 

and Iyz = Izx = 0 

The angular velocity of the sensitive element, assuming 

that all the rotation relative to OXYZ takes place about 

Ox, is 3 + 	k so that, from Arnold and Maunder 

equation 35 page 91, its relative angular momentum 	= 

+ h23 + 	has components: 

h = 

h2 = 	 (2.2.6) 

h3  = Iz(fl3S,4 +) 

where F = A1  - B1 	 (2.2.7) 

From Arnold and Maunder equations 33 page 90 the torque 

about .the output axis is given by 

T1  = 	- h2&, 3  + h3 t)2 	 (2.2.) 

9 . 



where h1, h2 
 

and h3  include the angular momentem 

Qf the clamping unit, i.e. 

h1 	= h 	+ A2  (S+,4) 

h2 	= h'2 	+ B2  (YL+S,) 	 (2.2.9) 

h3 	= h 	+ 02 -5,d) j. 
where A2 , B2  and 02  are the principal moments of inertia 

of the clamping unit about Ox, Oy and Oz respectively. 

If the output shaft has viscous damping constant c 

and stiffness k, from equation (2.2.3) we have: 

-L/ - /  

-I- 

 

	

+ S1 + 	 51 +sa) 

- (IrL* 

~ i (s 1 +X-3 11  

	

-f-(I+c2 X23 - 	Xt-5,L) 

(2.2.10) Z:  

Assuming that L4, from (2.2.4): 

lxx 4 AL 

Iry 4 B1 	 (2.2.11) 

dldtxx 
= - (A1  - B1 ) sin 2 

so that, taking A = A1  + A2 , B = B1  + B2  and 

O 	= 	
0 1 + 	02 (the principal moments of inertia of the 

sensitive element and clanping unit combined about 

10 4  



Ox, Oy and Oz when the system is not vibrating) and 

rearranging (2.2.10): 

A/-'- + 	- 2F}A+ k + Fo 3  + F 3  - B 32  

• B A + FoS212  + c S1 2 - 	 + 

• ~B SI 	 - 
cs2i,,2 + F 

 

= -A2. 
1 	 1 
+2F.5t - F5L 

2 
-FJ2  2  + BR 2-  SL  

+ F c< Y. 35L1  - c523 9_2  - C1c51 2 	 (2.2.12) 

If 	second order terms in c4 and ~ and if we can 

neglect second order terms inand/ on the L.H.S., 

equation (2.2.12) reduces to 

A+c 	+ 

= 
- 	 + (B 

- c) 23  

+ Fc,J 3S1 1  - (F + c1 )ft 2  

- F5? 2  + 2F2 1 	 (2.2.13) 

Examining the solution for the case when TL is 

constant, so thatS?.1 =2 51 3  = 0 and assuming that a 

pick-up sensitive to oscillatory motion only is employed, 

so that the constant forcing functions (i.e. those not 

containing o ) can be neglected, we have: 

A 	+4 ±k4 

= F oc 5L 35? 1  - (F + c1 )S? 2  + 

F5?. 3 52 1  sin w t - (F + C1 )c c) S 2  cos Jt 
0 

+ F oe 2 jSZ 1  sin 2' 0t 
(2.2,14) 

11. 
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This is a standard second order linear differential 

equation having a steady state solution: 

/3 = F 0 5?S 1 	 p)— (I: 4C) 0 )0 5 co(k 	-cp) 
2 
-(-Jvj LO 

(zt  

(2.2.15) 

where 	 the undamped natural frequency of the 

/ A 	 system about OX 

Z/A L the damping ratio 

(_ 2-Jor 

0 W') 

From (2.2.14) it can be seen that, for '6~ 1 , the 

maximum response to the first term will occur when 

i.e. when the undamped natural frequency about 

OX is approximately equal to that about Oz. 

For the case 

11-  

P GY\Cj. 14) 

- 	 cos Cio s 
2A 0  

± 	 sL42C.30 - 

. 1/t (± 
(2.2.16) 

-1- 



Notes on the steady state response to a constant 

/S depends upon 	and SL 3 as well as the value of 

in which we are interested. 

The first term in S2Q. 1 has a factor c,), in its denomi-

nator which will make it less significant than the 

second term. 

The third term inSL 1 will not be very significant if 

also it contains 	in the numerator which will be 

very small. In any case it is possible to attenuate this 

signal by employing a filter tuned to the frequency (.3 

The first two terms are 90 out of phase, so it is pos-

sible to discriminate between them by measuring the in-

phase and quadrature signals of the output /S 
The second term has its amplitude proportional to SLand 

the direction of rotation can be determined by noting 

whether the signal is in-phase or 180 °  out of phase with 

the input c' ; therefore the device should be capable of 

being used to determine the magnitude and direction of the 

rate of rotation about OY. 

2.3 	perimental Set-U 

Only a general description of the device itself will 

be given as it didn't prove too successful and is not the 

subject of the main part of this report. Referring to the 

photograph, figs 2.2.1 and the letters on the diagrammatic 

sketch, fig. 2.2.2: the square sectioned output shaft and 

clamping unit A was made in one piece, the shaft being 

13. 



clamped at B by heavy blocks to a baseplate with provision 

for altering the clamping position to adjust the natural 

frequency; the ?H? shaped sensitive element unit, C. was 

square sectioned and clamped at the centre of the hori-

zontal member into the clamping unit; two heavy blocks, 

D, were attached to the top and bottom of the uprights to 

provide the main sensing masses. 

Initially the device was excited to oscillate about 

the Oz axis by the electromagnet shown in fig.2 2.1 but an 

alternative method, consisting of a Goodmans moving coil 

vibrator attached to the four legs at the top left of fig. 

2.2.1 with a rod passing through one of the clamping blocks 

onto the upper mass D.was also employed later to give larger 

amplitudes. The torsional oscillations about Oz and OX were 

measured initially by strain gauges'attached to the appro-

priate shafts but a more satisfactory method for laboratory 

purposes was to use two Bruel and Kjaer accelerometers 

mounted on the outer faces of the blocks D and aligned 

along OX and Oz, 	 - 

The necessary power for the electromagnet or the 

vibrator was supplied by a Goodmans power oscillator and, 

when the accelerometers were being used, the signals could 

be displayed directly onto a Solartron solarscope CD1014, 

the amplitudes being measured by a Philips GM6012 valve 

voltmeter. 

The device itself was attached to a Bryans gyro instru-

ment test table mk.4A, capable of being rotated at up to 3 rpm. 

14. 
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The power leads to the vibrator or electromagnet and the 

output leads from the accelerometers were brought via an 

overhead cantilever and no slip rings were employed; this 

limited the number of rotations that the table could be 

allowed to perform. 

2.4 Results 

The main difficulty that has been experienced with 

vibratory rate sensing devices has been the unwanted 

coupling that exists between the forced vibrations of the 

sensitive element and the output shaft, resulting in out- 

put signals when the device is not rotating (zero signals). 

In this device the coupling could be caused, for example, 

by a mass unbalance in the sensitive element, non-orthogonality 

of the shafts or the misalignment of the excitor. It can be 

shown that the inertia coupling effects (proportional to 

acceleration) can be balanced out by the addition of a suit-

able mass to the sensitive element but there is also the 

possibility of damping coupling (proportional to velocity) 

and stiffness coupling (proportional to displacement). 

Consequently the device was first tested rigidly 

attached to a banch and a balancing operation carried out 

by means of adjustable weights attached to the blocks D 

(fig.2.2.2). It was found possible to reduce the zero signals 

but not eliminate them entirely. 

The device was then mounted on the turntable and here a 

major difficulty became apparent, viz, that the response of 

the sensitive element to the exciting force varied 



considerably with the turntable orientation; this was due to 

the fact that the turntable itself was not very rigid and con-

sequently its receptance varied slightly with the turntable 

position. In combination with the very low damping ratio of 

the device, this meant that the position of the resonance 

peak varied with turntable orientation causing the varying 

response. 

By mounting the device on a rubber pad it was possible 

to minimise this effect a little and it could be demonstrated 

that the output accelerometer signal increased fairly 

linearly with time; however, the graphs obtained were not 

sufficiently consistent to make them worth including in this 

report. 

The main characteristics of the system that could be 

measured or calculated were: 

Fundamental frequency 

Damping ratio 

(Al 
Moments of inertia 

of the sensitive 	/ B1 

element 	 L C1 

140 Hz = 880 rad/ac 

'V  0,0028 

0.105 lb in sec2  

0.031 lb in sec2  

0.080 lb in sec 2  

Substituting these values into equation (2.2.16) the 

expected response of the system would be: 

= -1.63 x 10 4 51 35210< 0  cos (,).t 

-0.2985.2 c sinL)0 t 

+5•55 x 10 45110< 2sjn 2 Wot ' 	(2,4.1) 

It can be seen, that, except in exceptional circumstances, 

the second term should predominate and/3 	298S?.2sint 

(2.h..2) 



2.5 Conclusions 

It was apparent that the system would need substantial 

modifications to make it work successfully so it didn't seem 

worth while pursuing this line, particularly when the results 

of the work on torsion oscillator gyroscopes at the R.A.E. by 

Hunt and Hobbs were available: they show that only two basic 

types of instrument of this type appear to have any practical 

possibility of success, and both of those require a sensitive 

element consisting of two bodies oscillating in anti-phaa, 

supported at a nodal point. 

However, several things had been learnt from these experi- 

ments, and other reports on this type of instrument, which 

eventually suggested a more fundamental line of research. As 

stated previously, the main difficulty in constructing an 

instrument of this type with sufficient accuracy has been 

the coupling effects causing unwanted zero signals, therefore 

it seemed that a comprehensive study of the effects of the 

various types of coupling was required. 

The other aspect that seemed worth investigating was the 

relationship between the output oscillations and the exciting 

force: the work in this chapter, and most of the other 

papers, assumes that the exciting force is controlled to keep 

the forced amplitude constant; this effectively reduces the 

system to one with only a single degree of freedom as only 

one equation is involved (in this case the torque equations 

about the output axis derived from (2.2,8) in which 	is 

assumed constant). In fact the system possesses two degrees of 



freedom and if the amplitude of the exciting force, rather 

that the amplitude of , remained constant a further equation 

involving T3, the torque about the axis Oz (fig.2.2.2) would 

be involved. Rather than develop the second equation in this 

case, it seemed preferable to deal with this aspect for a 

more fundamental system, along with the eff3cts of coupling. 
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CHAPTER 	3 

Theory of the Fundamental System 

3.1 Genorpi Theory 

Consider a point mass m constrained to iovo in the plane 

Oxy of a rectangular set of axes Oxyz, which are rotating in 

space at an angular velocity SL = 5i +SI2  + 'q 3kabout a 

non—accelerating origin 0 (fig.3.1,1). When displaced from 0 

the mass is subjected to a restoring force: 

+ kx + cy + CdY + cy)T 

—(cy+ky+c 
1 	ci
.+o1+c x)T 

Ic is the damping coefficient 
assumed equal in 

k is the spring constant 	the two directions 

whore 	c  i is the inertia coupling coefficient, equal in the f 
i • is the damping coupling coefficient two directions 

for a conserv- 
I c  is the spring coupling coefficient 	ative coupled 

system. 

The mass is excited by a force (P 
1  e

jct 
 )t of constant 

amplitude P 1  and at frequency c. 

The absolute acceleration 7 of the mass at position 

= xi + y + zk w.r.t. Oxyz is given, in vector form, by: 

— 	
[d2 — a = 
	+ 	

X r +  dt 

3i 
where 	= Xl + yj + zk 

j: 
x (Ti x)] l2S 	(3.1.1) 

and 
t2  

represent the velocity and acceleration of the mass relative 



3.1.1 	Tk 	V 	 Stern 

-f- C l  



20. 

to Oxyz. In conpononts; with z = = i = 0, 

aj + a j + a kbuconos 

= K + [—YSI 
- 

X(R 2 + 	+ y1R21 - 253 

) 

a2 	4 x 3  - y( 33  + i2 ) + x 21 + 2x 513 C(3.1.2) 

a3 
- 	 - xfl2 ) +3(y2 + xl)1 + 2( 	-  ky!~l 

Applying Newtons socond law for notion along Ox and Oy, 

thu oquations of :notion bocono: 

P jot
- (cc + kx + C  

+ CdY + cy 	-.,na1 	) 
- (cy + icy + c 	+ c d X + cx) 	ma  

Substituting for a1  and a2  from (3.1.2) and roarranging: 

m+ c+[1c _m(S.22 +Q2)Jx 

+ c. + (Cd - 2rncl3 )r + [c - m(S 3  _2 2 )]y 

my + c 	+ [k - in S 32  + S12 
3  .1.4 

+ c + (Cd + 2m)* + 
I c 

+ nS5 +S2Q)1x 

Putting (3.1.4) into th 	gonoxalisud fora by dividing through 

by m wo hav: 

+ 2j n k +[)n2  - 	 22 + Q2)} 

+ui+(u —23)3 )y*L2u _(ft -5L1S y  nd 	 3 
2 	(A)t 

&) X e 
J 

 
n s 

+ 20 £ 2 - ( 2 + 	2 )J 
Ln 

+ u. + (co u + 2S. ) + 12u + (5'). + 1 	nd 	3 

=0 
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where cj the uncoupled undamped natural frequency = 
= 	2j the damping ratio 

- the non—dimensional inertia coupling ratio 

Ud the nonimcñiional daping coupling ratio 

u 
S 

= the nonimoneional stiffness coupling ratio 

X = The deflection due to a static force P 
1 

From equations (3.1.5) we are interested in deter:nininC th 

variation of x and y  with 5), 

3.2 Uncoupled System rotating about Oz under free vibration 

In this case u, Ud  u0 , 5, ft 2  and X S  are all zero and 

equations (3.1.5) reduce to: 

22 + 2 	+ 	- () - 2S3 - S13y 	o 

+ 	+ ( 2 	2) + 
2 3  + 3X = 	

( 3.2.1) 

For an undamped system with L 3  constant we have: 

x 2S1 2 - ç 2 	 = 0 	
(3.2.2) 

n 	3 
+ (2 	

+ 2 3k = 0 

Putting x 	
0  e 
	

/ 
(3.2.3) 

y=ye 	
) 0 	- 

into (3.2.2) gives: 



(A\ 2 +W  2 
- 	- (2 3 )y = 0 

2 ~ 2 
_32 0  + (2S 3 )x = 0 

yielding the characteristic equation: 

()¼22 2 2 
+ 	- + (2S3 )2 = 0 n 

22. 

(3.2.4) 

(3.2.5) 

i.e.\2 
± j(23) 	+ 	

2 	2 

	

fl 	
=0 

or 	
= 	j3 

+J2 	2 
n 

= j(;5 .3  ± 

i.e. the four roots of (3.2.5) are 

l,2 -W ) and = +3,4 	- j(S1 3  + 	 (3.2.6) 

Substituting in (3.2,4): for 	 yo / 

' (o!i, 

= 	
+ 3 

for\ 	, fyo\ =-j 2,4 	
X0 

4 

so that the solution to equations (3.2.2) is: 

x = A1e it 	>. 
+Ae 

 2 +A e \3t + A e 4t 

jA1el 	

>\2t 	 ' t) = 	- A2 e 	+ A3e 3 - A 
 4 
 e 4 

which can be written: 

x = B 1  cos(51 3  -W )t + B2  sin(S) - CO 
3 	n 

+ B3  cos(S 	+ t)t + B4  sin(S 3  + 

y = -B1  sin(52. - 	)t + B2  Cos (5l - n )t  

- B3  sin(SL3 + 	)t + B4  cos(S), 3  + 

(3.2.7) 

(3.2.8) 

where A14  and B14  are initial value constants. If, at time 

t = 0, the mass is passing through the origin with unit velocity 

along Ox (i.e. cl, xzy-D when t = 0) equations (3.2.8) become: 
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X 	 - sin(S 3  - 	 + sin(S2 3  + 

(3.2.9) 
y -  cos( ~?..3 - 	 + cos(S). 3  + c)t} 

or x 	-- 	 sin cz  
L) 	 3 

(3.2.10.) 

y 	sin c2 t sin L.) t Ci 	 3 n 

i.e. the mass vibrates at frequency(-) along a straight line 

which is rotating at angular velocity S 3  about Oz as shown in 
fig. 3.2.1 ; this is the expected result viz, that the mass will 

continue to vibrate in the same straight line in space. 

From equations (3.2.8) it can be seen that the natural 

frequencies of the rotating system are. 3  -c3 	and 

+
. Plotting the non-dimensional ratio s  3 	n Ln 

Qn  

(Q3 	and3 	fl\ = I 3  + 	against 	= 	on 

fig. 3.2.2 shows how the natural frequencies vary with the 

rate of turn. 

For a damped system equations (3.2.1) can he solved, but 

it is apparent that, for L -  1 1  the two natural frequencies will 

be very close to those obtained in the undamped case ad the 

amplitude will decrease exponentially wth time. 
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3.3 Uncoupled system rotating at a constant angular velocity about Oz 

under forced vibration 

In this case a1, Ud J, u,5?1,52 2 and $L 3  are all zero and 

equations (3.1.5) reduce to: 

x+2+( 2 5 2 )x _29 	cJ 2X e3t n 	n 	3 	 n 5 

+ 2 Zcjj + ( 2 - 
	+ 2 3 	0 	

(3.3.1) 

The steady stata solution will be of the form 

jct X 	Xe 	
(3.3.2) jc4t yYe 

which, substituted in equations(3.3.1), gives: 

F(2 + n2 5) + (2)]X -j(2)y =Q2x 

2 	2 	2 	
fl S 

+ 3 
) + (2)]Y + j(2 3 )X 	0 

 J 
Noniensionalising by putting r =, the frequency ratio, and 

we have: 
[2 - (r + 	- 1) + j(2r)1X - j(2rL3 )Y = X5  

(r +Q
2 	

3 
2

l) + j(2rY + j(2r 3 )X -0 3 [ 

From the 306and of these equations 

Y - 	j(2r 3 ) 
X 	

(r2+932-1)-j(2r) 

= 	2rQ 3  

(r2 +2 - 1)2 + (2r) 2  
(-2r) +j(r2+ 

(3.3.5) 

(3.3.4) 

.3. the modulus 1XI 
- 

- 	2rIL 1 
XI 

 +Q 	 (2r)2  

(3.3.6.) 

(3.3.7) 
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11- - _ 	Ctfl( 	3 
(2+g 2,.i" 

(3.3.8) and, 	 Afor £ 3  positive, the phase angle= _)  

and, for 	negative, the phaste angic/j= 2Tr- arcta 
 i\  27Z —r ) 

The main interest is the variation of 	and 	and 

it can be seen that, for 

_(2r)31 	 (3.3.10) 

and 	 - ctan _r1)  if P 	0 
-l) 

 
or 	- 2'ft- arctan (r2 	if x L.  

2'r 	3 	
0 

From (3.3.10) it is apparent that, for low values of i, 

varies linearly with I 3 1 and therefore provides a simple means 

for determining its value. 

As 1 3 oó 	-- 0 and/j - 	 (3.3.12) 

& as 	)' 1 0 and 	 (3.3.13) 

The peak value of f , as 	varies, occurs when: 

( 2 	2_ 1)2 + ( 2 Zr)2  
2 	 is a minimum; i.e., differentiating 

w.r.t. £3 , when 

3 	k3
22(2+ 	- i)(2Q 3 )} 	(r2 + 	- 1)2 + (2r2 3  

i.e. 	41(r - 1)2 + (2r)2 	 (3.3.14) 

and this gives 	 2r _ 0 	 (3.3.15) 

To illustrate the variation of III and /j with 3 , typical 

curves are drawn on figs. 3.3.1 and 3.3.2 , the figures chosen 

being I = 0.1 and r = 0.9, 1.0 and 1.1 (the curves were drawn from 
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computer calculations as described in Chapter 4). It can be seen 

that 	decreases with increasing r but that the maximum X max 

sensitivity to small values of 	i.e. the maximum slope of the 

Rd against 	curve, occurs when r = 1, from equation (3.3.10) 

the value of this maximum sensitivity i: 

I/ x \\ 
IxI 	 = 

fJrax for 
(3 -3-16) 

From fig. 3.3.2 and equations (3.3.11) it is apparent that 

there is a step change of 180°  in the phase angle curve as J_ 3  
passes through zero (it is indeterminate when i = 0 asj} = a) 

and this provides a means of determining the direction of 

rotation. 

So far the investigation has been concerned with the variation 

of X  with 	but, returntng to equations(3.3.4) and substituting 

from equation (3.3.5) it is possible to determine the variation of 
() 

and X. with . • Substituting for X from (3.3.) into (3.3.4) 

we have: 

- j(2rQ) 

2 32_i) - j(2r2 +j(2r3)2 	 (3.3.17) 

This is a more conplicated oxpressiofl to evaluate than the one 

for Y  and the use of a digital computer, as described in Chapter 4, 
is desirable; however it is possible to see from (3.3.17) that, 

for the regions of primary interest, 

Y 	—j(2r.3) 	
(3.3.18) 

S 	 1( r2 1) + j(2r)2 
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Y 	2r 	 (1 i.e. - 	 (3.3,19) 
s 	r -1 

The maximum sensitivity for low 	now occurs when 

r2 =k(i - 22) ± 2Z 2  1Z 4 	 (3.3.20) 

its value is plotted on figure 3.3.3 and compared with the maxi-

mum sensitivity of ( XI ;  it can be seen that is is greater for 
- 0.53 

The variation of 1  with 	is obtained by substituting from 

(3.3.5) into (3.3.17) viz: 

X 
- 	

(r2+2_l) - j(2Zr)} 	 (3.3.21) 
 (r+ 	2) - j(2r)+ 'j (2r 

In this case for K1 ,14  ? 
 

X 	
(r 

2
_1) - j(2r) 	(l_r2) + j(2) 	

(3.3,22) 
S 

or 

 
- 	 (3,3.23) 

and - arctan ( 2') 

Lxx;---- 	1-rz 

which is the expected response of a single degree of freedom system 

to forced vibration. 

Plots of Y 	X 	 U and 	against t. and a more detailed discussion 
S 	S 	 .1 

of the results are dealt with in Chapter 4. 

Ij 
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3.4, The effect of coupling on the system rotatjat constant angular 

velocity about Oz under forced vibration 

In this case S,1 2  and Q3  are zero and equations (3.1.5) 

become: 

+ 2'ci + 
( 2 - 	

) 

+ uj + ( cud - 2c'L3)- + n s =  
2 

y + 2)r + ( 
n 	n 

+u+(u +2)x+ 2ux = 
1 	 nd 	3 

c:2 
	jc)t 

) Xe 
n S 

(3.4.1) 

0 

For the steady state solution we again use the substitution (3.3,2) 

and non-dimensionalise [Cf. equations (3.3,3) and (3-3-4)] to give: 

{_(r2+32_1) + j(2rX + (_ur2+u5) + jr(u_2 3 )]Y = X5 

(3.4.2) [_(r 	i) + j(2r)]Y +[(_ur +u5) + jr(ud+2 3)]X 0 

From the second equation: 

(-u.r2  + u ) + jr(u + 2 2. ) 
- 	2 	

d 	3 
X 	

-(r 
2 
 +i 3  -1) + j(2 r) 

and by substituting in the first equation the variation of Y  and 
X 

Ys 
 as 	varies can be determined; however the analysis is rather 

complicated so a computer program was considered advisable to analyse 

these equations. As these results are the main point of interest, 

the construction of the computer program and the analysis of the 

theoretical.results are dealt with in Chapter 4. 
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3.5 Transient response of the uncoupled system 

Consider the effect of a change 	with u.k, u, u8 ,SL 1  

and S22  all zero. Equation (3.1.5) reduces to: 

x + 2j + 	
2 	2 \  

n 	n 	3 
,x - 	- 	=(J 2X5 e j 

Wt 

+ 	+ (2 	
32)y + 2J 3 	= 

These equations are very difficult to solve as they stand if 

varies with time; however, as we are mainly interested in small 

values of fl.3 , we can make the assumptions for this investigation 

that 51.32  can be neglected and that the amplitude of x remains 

constant during the change [justified by equation (3.3.23. it 

is thQu only necessary to consider the second of equations (3.5.1) 

with x = Xte3t 	 (3.5.2) 

then, considering the response of y to a suddenly applied S2. 3  we 

have: 

+ 2J3 +ci 2 y- j(2Y 3 )X'e' t 
	

(3.5.3) 

This now a second order linear differential equation with constant 

coefficients, the solution being the sum of the particular integral: 

= 	_j(2)Xte3t 	- 	—j(2r43) 	Xtet 
22 

CO — 'i) 	j(2) 	(1r2) + j(2) n 

[of. equation (3.3.5)] 

and the complementary function which, for Z'/— 1, is of..the form 
y =Y1ent 	(Jl — 	 t 	 (3.5.) 

where Y and 	are initial value constant. 

This means that the transient amplitude, given by (3.5,5) 2  
-7t 

decreases as Y1e - n leaving the steady state response (3.5.4 
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As the primary concern here is with values of r close to unity 

and small values of , consider the general solution for r = 1 1  

and 	L' 1, then, taking x = XI cos tit, from (3.5.4) and (3.55) we 

have: 

_nt  
y Y1e

'I 	
cos(t - ) - 	 cos j t 	 (3.5.6) n 

andify==0 when t=Q; 1=o and y1 =xt 

i.e. y = {e—  'C.)t 	
X'cos W t 	 (3,5.7 

i.e. there is an expcnential lag of time constant 	in the response 

of tI to 

3.6 Response of the uncoupled system to a constant P.. 
In this case ii., 

"d 
, u and J  areall zero and equations 

(3.1.5) reduce to 

x + 	~ [2 
- ( 2 2  +SL)]x - 2S 	+y2eiwt 

+ 
Ywn   + i 2 

- 
(j 2 +12)]y 

+ 2 	t 12x = 0 	
(3.6.1) 

3 

By comparison with equation (3,1.5) it can be seen that the terms in 

have the same effect on the system as a stiffness coupling ratio 

u 	P.12 	
12 	 (3.6.2) 

I) 	 _a.where 	 and 	
- n 

so the result can he computed in the same way. However, by comparison 

with equations (3.4.2), the steady state solution of equations (3.6.1) 

is given by 
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[_(r2+22+ 3 _1) + j(2r)]X +  ~ilk2-j(2d 3 dY = 

[_(r232+212_1) + j( 2 Zr)JY +[ 1Q2+i(2r)]X _ 	
(3.6.3) 

From the second equation: 

- 	 1P+j(243 ) 

X 
- (r2+ 	+ i2_1) - j(2 r) 	

(3.6.4) 
 

from which it is apparent that the response to 	is 900  out of 

phase with the response to 	and could therefore he discriminated 

against. The IL 2  term in the denominator will affect the position 

of the resonance peak; however, for the most interesting cases when 

IL is sma]1C 1 , 2  and E 3&7), the terms in  J2  and 212 become 
insignificant and the P  term will be predominant. 

3.7 Response of the uncoupled system to a sinusoidal input 

As for the transient response in Section 3.5, the complete 

equations (3.1.5) are effectively impossible to solve in the general 

case for sinusoidally varying rotation of the form 5=5? '  sin j't, 

where SR 	ST +Sj +5k i a constant, as time dependent co- 

efficients of x and y are involved. However, if it can be assumed 
—•1 

fl. is sufficiently small, so that the amplitude of x remains 

constant in the form x = XT sinct, from the second of equations 

(3.1.5) we have: 

+ 	
+ 

n [Wn 
—2.iQ3  x' 

_S?1  uix  

-  ç i 
2 

1 	
+ ~) 

3 
 .)sin ..), 

tj y 

sin .j't cost - 	 t5?. X'cosj't sin 	t 

sin  2 c)'t sin L)t (3.7.1) 
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r 2 	s' 2ç' 2 	 1 
or 	;;+2Z4)n+L(&.)n2_ 	2 	

+ 	
2 	cos 2ttjY 

= 	x' sin(c+')t - sin(c_  co l )t} 

—*CJ'S?.3 X'sin(c+')t + sin(_t)t435çx '  sint 

~*5  S'Xtsjn(L)+ 2')t + sin(— 2c)t)t 	 (3.7.2) 

This is a modified non—homogeneous form of Mathieu's equation 

and the variable coefficient of y on the IRS indicates the possibility 

of instability if w T 	 (or more unlikely, when' 	- 	 etc.), 

depending upon the values of S?.1  ,5 	 . rn1 	, If 	j, as 

is sm.dl.thn solution to equation. (3.7.2) should, appxirntc to that 

of the rediced linear bqurttion withthe LHS: 	+ 	+i 2y 

Confining our attention to the case when ci= c 	and L. 0.2 

(giving a high resonance peak), by examining the RHS of the reduced 

equation (3.7.2). it can be seen that, if W ' is not very small, the 

dominating response will be due to the term 4S 54.x' sint as 

this is the only one varying near the resonant frequency; i.e. the 

steady state response for L'O becomes: 

	

 
.L 	212 c2.' Xt Cos (..) t 

n y 	
- 

where 	t 	 and22' Cin  1 

_ 
_12 X cos L) t 47 	n 

/ 

- Wn 

For the case whenj'2, with w = w the steady state response, 

from (3.7.2),approxiinates to: 
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sinC)?t 
lsin L)t 7 	J 

	

+ (tQtx COS(Jtt) 	
(A) t 

\2 bin/ 

'\ 4:J 	
n 

-C1 I - 1 
14  U42 X I cos 2 ej !t) cost 	 (3.7.4) 

and, as 	
2 1  3 and 	are all very small, the first term should 

predominate, i.e. the steady state value 	yj will be proportional 

to 	 sin't 

To summarise for sinsuoidal response if w = c); (Y1 will follow 
23  for 	 but for higher values of w I the output due to 

is sharply attenuated and ly l will approach a constant value 

proportional to ' 12 in addition there is the possibility of an 

instability if 	'Cj(or -; -) etc., but these are considered 

unlikely). 

3.8 The effect of an accelerating origin 0 

If the origin has acceleration A = Ai + A 23 + A 3 k the absolute 

accelerations a1 , a2  and a3  given by equation (3.1.2) contain 

additional terms A1, A2  and A3  respectively; therefore, comparing with 

equatior(3.1,5), for the uncoupled system the equations of motion 

become: 
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1 2 (p22 +S3)1y x+2ZLx+.) - 
n 	n 

- S'Y - ( 3  - 1r) 	n2Xe3t  A1 
 

L n 
+ 2y f 	

- 
2 (2 	 - 

+ 2S 3 c + (fl 3  + 1Q2 )x 	= 	A2  

If the systen is not rotating and is subjected to a constant 

acceleration A the steady state solution for x and y will contain 

additional constant terms in A1  and A2 , i.e. if x and y are measured 

by pick-.offs sensitive to oscillatory motion only, the results will 

not be affected. However, if the system is rotating and accelerating, 

than A1  and A2  will be time dependent and can be considered as 

additional forcing terms; for example if -! is constant, or the system 

is in a constant gravitational field, and ft is constant, then A1  
and A2  will vary at frequency S2.., but as long as c. 	) and 

oi the steady state motion due to A should be liegligible. 

3.9 The effect of applying an additional excitingforce in the direction Cy 

If an exciting force P2ej(it+ 
- 
T
ill) 

at the same frequency w as the 

force in the x direction, but leading it by an angle J, is aplied in 

the direction Oy, equations (3.1.5) become modified to: 

+ 2i +{2 - 	22 +pL2)j 

+uiY + (cud - 2 3 ) + [Wn2us - ( 3  - 

2 = Q X e j t 	 3.9.1a n S 
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y + 	
2 - (2 +)]y 

+ u. 
1 	n 

+ ( i U
d 
 + 2 SI 

3 
)• 	n s 

2 	
+ 

= CO 
2yij()t+1J/) 

n S 	 (3.9.1b) 

where Y' = 	the defleotion due to a static force P2 . 

Considering the case when SI = JI 	constant; by comparison 

with equations (3.4.2) the steady state solution is given by: 

[_(r2 	1) + j(2r)]X + k -u i r 2 + u5 ) + jr(u - 2 3 )JY 

(3.9.2) 
[_(r2 +i 32  -i) + i(2Zr)]Y + [(-u.r2 + u5 ) + jr(ud + 2 3 )]X 

= 	= Y 	(say) 

The additional exciting force can be employed in two ways viz. 

(a) to cancel out the zero errors due to u., ud  and u5 , i.e. to make 

Y = 0 when 13  = 0 or (b) to keep all the vibrations along Ox (i.e. 
Y = 0) for all values of Considering these two cases separately. 

a) Making Y = 0 when 	0 

From equations (3.9.2), if X = X and Y = 0 when Q. = o 

- i) + j(2r)]X = x 
(3.9.3) 

[(_u.r2+u)+jrulX = Y 
L 1 	5 	djo 	s 

(-.0 .r + u ) + jru 
= 	

i 	s 	d x 
	 (3-9-4)  S 	

L_(r2  l) + j(2r) j 

Substituting this value into (3.9.2) and eliminating  X wd have: 
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L(r2321) + j(2 	)][(r21) + j(2Zr)] 

r [(_ujr2+u) + jru L (—u.r 2  

[(—U i r 2+U 
s 
 ) + jru][_(r2+32_l) + j (2r)] 

[_(r2_l) + j(2r)]{(_ujr2+u) + jr(u+2 3 )]X 

If U• 'd and u are all small (/- 1) by ignoring 2nd order of small 

quantities this equation reduces to: 

Y 	A2[( —ulr 2) +us)+jrud] 
 - j2r2. _ ( r2_l)+j(2r)] 

X - 	(r2+32_l) + j(2r)J[_(r2_1) + j(2r)] 

and if 2 3  is sufficiently small to make 32u.  etc L4  k 
3 

— 	j(2rJ2 3 ) 

X - ( 2 +k 
3 
2 
- i) - j(2r) 

(3.9.6) 

This is identical to equation (3.3.5) which represents the solution 

when u 
iY

Ud and u3  are all zero, so the effects of the coupling, 

provided it is sufficiently small, can be cancelled out by the 

exciting force in the direction Oy. 

b) Making .Y = 0 for all values of 

From oquations (3.9.2), if Y = 0: 

1_(r2 	- i) + j(2r)]X x 

[(_u.r2 + u) + jr( Ud + 2 3 )jx = 

Eliminating X we have: 

Y 	 (.-u. 
1 

2 r +u 
5 - 

(3.9.8) 
S 

X 	- 	_(r2+32_l) + j(2r) 

which is idontical to the value 4 obtained in equation (3.4.3). in 

consequence the results can be obtained from those. to be computed in 

Chapter 4 by noting that: 
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Y .9 s 	s 	2 	1 Y I I  
- x - p = x 	 3.9.9 

1 	computed 

and/i! 	- I) 	 (3.9.10) 

3.10 The effect of a small difference in stiffness and damping between the 

x and y directions 

If the stiffnesses in the directions Ox and Oy are k, and 

respectively and the damping coefficients c 1  and c2  respectively,- the 

modified equations of motion, by comparing with equation (3.1.4), 

become: 

mx + c1  + [k1  —m(32 
+1x 

	

+ c 	+ (Cd - 2inS 3 )r + 	- m(.ft 3  _1L 2 )]y 

jcJt 
P1e 	

/ 

my + c2y + 	- m(12 +)ly 

+(Cd + 2mS 3 ) + c3  + m(S 3  +S)]x 

Putting (3.10.1) into the generalised form and'exaininingthe freqiency 

response for the case when -TL = S,. 3 ic is constant, by comparison with 

(3.4.2) we hive: 

	

PrX + 	 3l)Y12+1312_1)+j(2Ziri)J 2+u[(—uir  1 si )+jr1(u 1_2 
 

(3.1o.2 

P r22+322_1)+j(272r2)]y + [(-u ir22+u 2 )+jr2 (ud2+2 2 )1X = 0 



	

r1 
 =

= 	kl ; 	r 
Jm 

3 	 32 1 = ni 

= c 	 '7 
where 	1 5 2 

Cd 

	

= 	
; 

cs- s 
U U  1)? 	

- 	 s2 nl 

(-&) 

n2 - j
/F

m
k' 

 

n2 	 7 

2 
'2Jmk2 

Cd 	= Cd 
6) 
n2  m 	/mk 2

' 

C 	 C 
S 	= S 

n2 	2 
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From the second of equations (3.10.2) 

= 
- (-u.r22+u 2 ) + r2%2+2 32 

	

 
X 	

-(r 	
(3.10.3) 

2 	32 -1) ~ j(2 	r 2 ) 

which differs from equation (3.4. 2 ) for X  only in the additional sub-

script 2; i.e. the results obtained will be unafiected as long as the 

stiffness considered is that in the direction Oy. The expressions for 

	

and 	will involve terms with subscript 1 and thercfore will not 

be identical to the results obtained in Chapter 4; however, as the 

primary concern will be with , it is not considered necessary to 

examine the other solutions here. 

Considering the cases, discussed in section 3.9, with the additthnal 

forcing termsin the direction Oy. In case (a) by.co'nparinr: with 

equations (3.9,3) to (3.9.6): 

	

j (2r 	) 

- 	 2 	 (1.4 10 ) 
(r 

+ 	32 - i) + j(22r2) 
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again only involving terms with subscript 2. In case (b) however, by 

comparing with equations (3.9.7) and (3.9.8): 

(—u.r 2 + 	+ jr2(ud2+232) 	
(3.10.5) 

	

- 	 -  

	

X 	 2 

	

S 	—(r1 + L31 -i + j(2 1r1 ) 

this is now K times the value 	obtained in (3.10.3) where 

K 
—(r2 2 
	 + j(2 2r2 )

32  
-  

—(r1 2 +31_1) + j(2 1r1) 	
(3.10.6) 

As the main concern is with values of r close to unity 

+ 
let 1 

1 	
1 	

where S  and S
2  are small quantities (L 1) L r2  = 1+ 

then if 1-3k- r  

± - 2 +j 2  
K 

.- 

i.e. for small differences between 

/~ l

2 
+ 

-i2 

jKI 	
\ l 	

1 

(3 - 10.7) 

01 and 0 
2 
 and between £ 1 and 

(3 - 10 . 8) 

and 	 (YT - arctan 	- 	 - arctan r 
= arctan

( ---  ) 	

- arctan 	 (3.10.9) 

	

' i' 		(S 2) 
From (3,10.8) and (3.10.9) it can be seen that the effect of the small 

differences on 
Ys 

 is negligible but could significantly affect the 

value of/? as 

LIXL.SI. = +Lix  L + (3.10.10) 
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3.11 Summary 

This chapter has been concerned with a basic linear damped spring 

mass system and it has been shown that it is possible to measure 5L 3 , 

the rate of turn about an axis perpendicular to the plane of vibration 

of the mass Oxy. It appears from section 3.2 that a method employing 

a free vibration system could not be made to work practicably as the 

damping would have to he negligible and any unwanted coupling would 

make the calculations very difficult; therefore a forced vibration 

system will be required. 

For small values of S. 3 , it has been shown in section 3.3. that 

both / 
	

and X I vary linearly with the magnitude of Q3  whilst the 
/y 

phase angles 	arid 	provide a means of determining the sign of 

Q 3 . The factors which might affect the response have been shown to be 

the various couplings, c, cd and c (section 3.4), rotations 5L 1  
and R 2  about the other two axes (section 3.6), oscillatory variations 

in the rotation S (section 3.7) and an accelerating origin (section 

3,8). The transient response will be affected by the value of the 

damping ratic '2 (section 3.5) and this might e the deciding factor 

in the choice of its numerical value. 

The advantage of applying an additional exciting force has been 

discussed in section 3.9, it can be employed either to cancel out the 

effects of c., 
1
, c

d 
 and c

a  or to provide an alternative method of determ- 

ing 	
P2  

by measuring the magnitude ratio 	and the phase angle 

between the two exciting forces; a mismatch of the natural frequencies 

in the two directions Ox and Oy is shown in section 3.10 to have little 

effect on the results, except in this last case, provided that they are 
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referred to the parameters in the direction Oy . 

Before going on to coniider how this basic system can be realised 

in a practical device, the variation of YY 	X and 	with R will be 
S 	S 	 -) 

considered in more detail in the next chapter. 
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CHAPTER 	4 

The theoretical steady state vibration of the fundamental system due 

to a constant angular rate of rotation about Oz 

4.1 The equations (3.4.2) in computer language 

As stated in section 3.4, a computer program was considered 

desirable to evaluate, from equations (3.4.2), the steady state 

response of the fundamental damped-spring-mass system, fig..3,1.1, to a 

constant angular rate of rotation .Q.. = S) 3k. We require to deter-

mine and analyse the variation in the modulus and phase angle 

(argument) of , 
	

and X  for different values of £3  when r, , 

UjJ, a  and u3  have particular values. 

In order to conform to the computer language (Atlas Autocode) 

it is necessary to redefine some of the symbols: 

Let 	d 7 

u(l) U. 

 u 

 us  

and 	j :13 ) 

As several factors in equations (3.4.2) keep on recurring, it is 

convenient to evaluate these initially: 

Let 	v(1) = 	(u(3) - u(l)r2 ) (U - u.r2 ) 

 = 	(u(2) + 2.Pr (ud + 2 13 )r 

 = 	(u(2) - 2)r (u - 2 3 )r 	 (4.1.2) 

 = 	(r2 + £2 - 1) (r2 + I 	- 
and 	v( 5) = 	-2dr -2_Zr 	 - 



J JO SOtY[3A JO e2UDJ V JOJ 	AJ1A UGT.fl pui ()n pui ()rt 

'(T)ri 'P exoioep Oq sum Ufl2JCJd Gqq OUTATOAG UT e.xripeod orstq e 

1 

(ui) x 
(LT7)1uoxJ 

= porn 

(orT) 

= pow) 

(z5)A4 MA)U13-1~0J-0= - 	J1 	J (6i) 
P'GJ= 

(T)woJJ 
Porn) 

:eni PGJTnbea sqlnseaet 	Os 

c 	
()uo 	(q't) root  PM 

CL  + tlf 	(q't) 

:otnuuI JoWdrnoo  eq.  u 

+ (9)A 
- 

:eq eii (ci') Pm3 (T') rno.xj put 

ç 	(g)A()A - [()A + (1(T)A = (L)A'  
(9r) 	- 

(ç)A + ()A - 	- (T)A = (9)\ eJot 

(Y-r') 	+ (9A - 

()AL + (T )A 

.ft)zC+()A] - j(C)AC+(T)Ai[()AC+(T)A1 
- sx  

+ (i)' 	- 

OA1L GM ('i') oqt (7T') uJoJJ x .xoj ur14ç.sqn 

+ 	- x ( 	
/ 

:UOTflbe puooes etq. wo.xd 

C.  o = 	+ (T)A] + 	+ 
(01147) 

= 	+ (T)A1 + x[(c)AC +  (47)A]— 

:owooeq iou 	suoTrnth 



4.2 A typical computer program 

JE 

ENG 002/0000C181/LINNETr C/i 

OUTPUT 

0 LINE PRINTER 1000 LINES 

EXECUTIQI 3 MINUTES 

C1PILER AA 

•uppor case delimiters 

BEGIN 

INTEGER hj,k,n,f 

REAL d,l,m,r,s,li,ri 

REAL ARRAY u(1:3),v(1:7),a(1:3),b(1:3) 

read(f ,ri ,s,h, li,m,n) 

CYCLE j=1,1,f 

read(d,u(1),u(2) ,u(3)) 

CAPTI(IDAMPING Ø RATIO 	=0 ; print fl(d,3) 

CAPTIQ$INERTIA % COUPLING j=0; print fl(u(1),3) 

CAPTICN$ØDAMPING 	COUPLING =Ø; print fl(u(2),3) 

CAPFI$STIFFNESS COUPLING Ø=Ø; print fl(u(3),3) 

CAPTIcE $t 	1 $ØØ MOD(Y/x)ØØØ ARQ(Y/x)Ø M00(Y/xs) 

CAPTIa A1w(y/xs)ØØØj MOD(X/Xs) ARG(x/xs) 

CYCLE i=0,1,h 

r=ri+s*i 

C4ENT r is increased from H by s for h cycles 

CAPTI11 4$ r =Ø ; print fl(r,4); newline 

44. 



v (1) =u(3 ) -u( 1) *r2 

v(5)=-2dr 

CYCLE k=0,i,n 

1=1 i+m*k 

CENT 1 is increased from ii by m for n cycles 

v(2)=(u(2)+21)r 

v(3)=(u(2)-.21)r 

v(4)=r2+1 2_1 

v(6)=v(1) 2_v(2)*v(3)..v(4) 2+v(5) 2  

v(7)=v(x) (v(z)+v(3) )_2v(4)*v(5) 

a(1)=radius(v(1) ,v(2)) 

a(2)=radius(v(4) ,v(5)) 

a(3)=radius(v(6) ,v(7)) 

IF v(1)=O AND v(2)=0 THEN -> 2 

b(1)=arctan(v(1) ,v(2)) 

->3 

2:b(1)=r/2 

C11MENT b(i) -> ir/2 if v(1) = 0+ and v(2) = 0+ 

3:b(2)=arctan(v(4) ,v(5)) 

b(3)=arctan(v(6) ,v(7)) 

b(1)=57,3 b(l) 

b(2)=57,3 b(Z) 

b(3)=57.3 b(3) 

IF a(2) < 1a-9 OR a(3) < ic-9 THEN >4 

print (1,1,4); spaces(3) 

print fl(a(1)/a(2),3); spaces(3) 

print (b(1)-b(2),3,1); spaces(5) 

print fl(a(i.)/a(3),3); spaces(3) 

print (b(1)-b(3),3,1); spaces(5) 

print f1(a(2)/a(3),3); spaces(3) 

45. 



print (b(2)-b(3),3,1); newiine 

4 :REPEAT 

REPEAT 

REPEAT 

END OF PROGRAM 

9 0.95 0,05 2 -0,015 0,001 30 

0.1 0 11 01 0.002 0 

0.1 0.01 0.005 0 

0.1 0,01 0,01 	0 

0.1 0 0.01 	0 

0,2 0.01 0.01 	0 

0,4 0.01 0.01 	0 

0,1 0.05 0.01 	0 

0,1 0,01 0.02 	0 

0,1 0.05 0,02 	0 

46.' 

A 3ection of the print—out from this program is shown in fig. 4.2.1. 



DAMPING RATIO a 1*000 	1 
INERTIA COUPLING Q 5000 	.2 
DAMPING COUPLIrG ; 1O00 	.2 

STIFFNESS COUPLING a O*00O.40 

L rioDy/x AGY/x) M0D(y/XS) ARG(Y,XS) MQ0(X/XS) ARG(X/XS) 

R 	9,5000, 	.1 
0.0150 2.94, .1 .4001 i.ozz, 0 .1 0 5. 0  4,456, 0 .6590 w0.0140 2.261, '.1 9?42,1 14009, 0 .107.0 4.462, 0 .64.9 .00130 

.0,0120 
2.230, .1 .44,3 9,964, .1 0109.0 4.467, 0 .64.8 

.0 4 0110 
2.204, 
201800 

.1 

.1 
.46.5 
.48,7 

9.855, 
9,759, 

.1 
.1 

.1191 

.11393 
49472 0  
4.477, 

0 
0 

-64.7 

00,0100 
0,0090 

2.160, .1 .51.0 9.678, .1 ells.5 9 
.64.6 
.64.5 

.0.0080 
2.143, 
2.0, 

.1 

.1 
.53.3 
.55.7 

9,411, 
9.560, 

.1 

.1 
.117,7 
.12o,o 

4.485, 
4,43, 

0 
0 

.44,4 

o ,0,0070 2.121, .1 .5600 9.524, ..i 9,12294 4.4910 0 
.64.4 
.64,3 .0,0060 

.0,0050 
2.115, 01 .60.4 9.504, .1 .124.7 4.494, 0 .64,3 

CD  '0,0040 
2.113, 
2.115, 

.1 

.1 
297.2 
294.8 

90500, 
9.512, .1 

23299 
230.6 

4,496, 
4.498, 

0 
0 

.44,2 

8 .o.003o 
-0 4 0020 

.1 292,4 9.540, ,1 228,2 49499, 0 
.64,2 
.6492 

0,0010 
20130 4  
2.143, 

.1 

.1 
290.0 
287,4 

9,5840 .1 225.8 4.SOQ, 0 .64.2 

Fj  
,fl.000Q 2,159, .1 285.3 

9.644, 
.719, 

.1 

.1 
223,5 
221,2 

4.500, 

49501, 
0 
0 

.64,1 

.64.1 0 1 000 
0 0 0020 

2.179, 
2,203, 

.1 

.1 
28390 
280 0 6 

90808 .1 21849 4.500, 0 .6491 

0,0030 2.230, .1 278.6 
90913, 
1.003 0  

.1 
0 

216,6 
21494 

4,500, 
4.499 0  

0 
0 

.64,2 

.44,2 0,0040 
0,0050 

2060, .1 27694 1.014, 0 212.2 4*498 m  0 .64.2 

0,0060 
2.293, 
20329 4  

.1 
wl 

274,3 
272,3 

1.031, 
1.046, 

0 
0 

210.1 
208,0 

49494 w  0 .64,2 

0,0070 2.368, .1 27094 0 206.0 
4,494, 
4.491, 

0 
0 

.64,3 

.640 060080 
0,0090 

2.409, 
2,453, 

.1 

.1 
268.5 
266.e 

1,081, 
i,ioo, 

0 
0 

20491 
20202 

49488, 0 .6494 

0010O 2.500, 1 264.9 16120, 0 200.4 
4,485 0  
49481, 

0 
0 

.64.4 

.640 0,0110 
0,0120 

2.48, .1 263.2 1,141, 0 19896 4,477, 0 96446 

0100130 
2.599, 
20452 0  

.1 

.1 
261.6 
26090 

19162, 
1,185, 

0 
0 

196.9 
19502 

49472, 0 .64.7 

0,0140 ,707, .1 258*5 10208, 0 19396 
4.467, 
4,462, 

0 
0 

.6448 

.64,9 0,050 2.764 .1 257.0 1,232, 0 192.1 4.456, 0 .65,0 
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4.3 The solutions with zero coaplin 

The variation of III and 	with 	for 	= 0.1, r = 0.9, 

1.0 and 1.1, and u i = U  = u5  = 0 has already been plotted in figures 

3.3.1 and  3.3.2.  From equations (3.3.15)  it was shown that the 1 XI 
against lk curve rose to a single peak, the height of which

3 1 
decreased with increasing r, but that the maximum slope for Q3 z 1 

was 	and occured when z = 1 [see equation (3.3.16)]. 

x 	Y 	 Ii Considering the variation of , 	and Y  with 	for various 
S 	5 	 -i  - 

v.1ues of r: for r = 0, i.e. a constant exciting force P 1i, 

equations (3.3.4) give: 

X 	1 

-S 	1 - 
	

(4.3.1)3 
2 

and Y
= 0if 3 1 

If 9 3  - 1 i 	Lim 	2r 	) 	(1 \ 
- ' x 	r-0 	2 

—r + j(2r) 	
i) 	(4.3.2) 

As expected, equations (4.3.1)  and (4.3.2) reveal that the modulus  

curves plotted against k 31 for r = 0 go to a oeak at the critical 
speed 1.Q 3  = 1, the peak being infinite in the case of f  5 

The modulus curves for 0jLI. 2 .0 and 0r<1.6 are plotted 
on figures 4.3.1 - 4.3.3 for 	= 0.1. From figures 4.3.1 and 

4.3.2 it can be seen that, except in the cases when r = 0 or 	0, 

the curves for St and 	against 	or r have two peaks; for1  31 
these peaks occur at approximately the two undamped natural frequencies 

of the system [of. fig.313.2]* 

in the variation of 111with 11 X 	31 ' 

Figure 4.3.3 shows the single peak 

this occurs close to the lower 

of the two undamped natural frequencies for '- i [cf.eqn.(3-3- 14 11 - 



0 

4.3.1 	Vo p 	of I  ~~ i  

0 
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The phase angle curves for positive 	are plotted on figures 

4.3.4 - 4.3.6, they show the 180 °  phase change associated with each 

peak of the modulus curves. In the case of/i and / there is 

a step change of 1800  at L3  = 0 so that the curves for negative 13 
will differ from those drawn by this amount; the curves for AS 
are symmetrical about 13  = 0. 

.The main concern here is with the measurement of small rates 

of turn so we can concentrate on values of 23  L4 1 and r 1, 

4,4 The effect of inertia or stiffness coupling 

Inertia and stiffness coupling can be considered together as 

they both appear only in the factor v(1) = (u 	u1r ) in equations 

(4.1.2). If the damping coupling ud. = 0, the modifications to the 

uncoupled results due to a or U. can be assessed by considering 

equations (4.1 .4), (4.1.5) and (4.1.7). 

From equation (4.1.4): 

Y - v(i) + .jv(2 
X 	v(4) + jv(5) 	 (4.1.4) 

v(2), v(4) and v(5) [see equations (4.1.2)] will be the same as for 

the uncoupled case so, considering the modulus and phase angle: 

/vv(4

(12 	
(4.4.1) X 	)2 + v(5)2 

v(2 	 v(5 arctan v(l) - arctan 
v45 	 (4.4.2) 



4.3.1- V-LcLon O5/ VI/ Ltk 	3 O.VCL iJo-.-=o.i 



2O 

4.3.5 Vci-cb.or of/k 	Lk 13 	-- for 



Z•o 

V.-L0 ri of/j wU 	0-11 1 t Jor 	0. 1 
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Substituting from (4.1.2) into (4.4.1)  gives: 

,(u 

 

722  +/   	(2    L3r)1XI= /   S 

XIJ   (r2   + 	+ (2 r ) 2  

For 32 L-2'r 

1XI /_22 _(2L3r)2 /(tL-ur) + 
i.s I V (r - 1)2 + (2 Zr)2 	 (4.4.3) 

2 

I (U
21

_ur)I 	 23r. = 	

+_(2 __ /1 + (:u: 2
r) I 	-ur 

22 
U —Ur) Expanding for (2 i3  r) 2  ( 

lu - u.r I 
ffl .±_ 	'S 1 I 

 (r2 - )2 + ( 	

+ 	
3_2_2R 

	

2r) 	( 	(a - ur\ S 

i.e., for constant r, 1XI depends on the square of k and, when 

r = 1: 

s 	 _____ -u  i I 	2 
1 _ 2} 

lxH 	2' 	 2 
(u - a) 

S 	j 

Thus, for small values of IL 3  and constant r, the coupling has the 
1XI effect of giving 	a finite value when 	= 0 compared with 

zero in the uncoupled case, and it varies as the square of 

compared with the linear relationship: 

2r 3  1XI
x 	

= / 	1) + (2r)' 	
(4.4.6) 

in the uncoupled case. This means that the simple method of 

ii 	1 1 1determining M 3  from 	has been loss. However, examining the 

phase angle/i, from (4.4.2) and (4.1.2): 

[2r1 
3 aretan 	2 - arctan 2 	2 

-2sr 	
(4.4.7) 

+ 	-1 u s-u 
i  r j 	

r

r 
	 3 	Ji 

which, for 12 A3  r 	I u  S-u  i r 2  and 	2 Z r gives: 
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if 	u..r 2 
S 	1 

_ 	
2r 	1 	

I r

1   + arctan 	2 

	

S
u 	u j  n 	-1 

j 

and if u 	ar 
2 

•S 	:1 

Li- 	r 2r 	IQ + arctan [~2 
2r

13  fur -u
Li 	sj 	-1] 

(4.4.8) 

I) i.e., for constant r, IY 
varies linearly with 	the slope: 

dL 	
- 	 2r 

3 	u - ur 

being independent of 	this compares with the uncoupled case in 

which there is a 180°  step change at I = 0 and a constant  Ly 
for 31 L. equations (3.3.11). This means that the phase 

LYXX 1)angle provides a simple means of determining L3 , for suffici-

ently small values, when inertia or stiffness coupling is present. 

Typical curves, derived from the complete equations, of 	and 

against for r = 1 are shown on figures 4.4.1 and 4.4.2. 

It can be seen that, for higher values of £3  the coupling term 

v(l) becomes insignificant compared with the other terms and the 

modulus and phase angle curves approach those for the uncoupled 

system. 

From equation (4.1.5) 

I
IIv(l

Is 	V 

	+ v(2j2  
(4-4-10)lo) 1(6)2  + V (7 2  

and 
	

arctan / \ 
/ 	

v(2 	
(4.4.11) - vl, 	arctan v6) 
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and if U 
.5 _____ 	

I 	 r ( r2 l) 1 
/]X 	

2r 	 41 	
arctan 2 2 	)2 (2)2j  3 = 	I 	2 	J 	(us-u.r)-(r 2-1 ur 	u 

Ls 1  

(4.4.18) 

i.e., for constant r, 
/ 
	

also varies linearly with 
	

the slope 

being independent of 7 
	

(see figure 4.5.2). 

The effect of damping and inertia coupling on 

low values of 1, can be determined from the results for 

• From (4.4.4)  and (4.4.14): 

- / 	 ( r2  - 1)2  + (2 r ) 2  
x5 - J s_ir2)2_2_2+(22]221)Ii2 

for the same 

Y - and 

(4.4.19) 

or, if r = 1: 

I i 	 2 
x  s 	(u - 	+ 4-7 2 

I x 
si 

remains constant for constant r. 

(4.4.20) 

From (4.4.8), (4.4.9), (4.4.17) and  (4.4.18): 

= ! 	Li Lis 	IX 	/X La 
',' 	2 

	

- arctan[ 	.4r(r - 1) 	1 	12r1 

	

.-(
u -u.r 	-(r -1) +(2 	

- arctan 

	

( 	2. 	 ) 
2 	2 	2 

Us  
-u  

(u -u.r ) + 
Si 

	

= arctan_2 	 2 2 (r2-l)2+(2r).2 1 
)2(2)2J 	(4.4.21) 

L(rl) 	
22 	2 

- >(u -u.r ) -(r -1 
L 5 1 

Lis 	2 = 	- 

again Ix is constant for constant r. 

For higher values of f ! the coupling terms are again insignifi-

cant and the curves for i  and 1  approach those for the uncoupled case. 
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4.5 The effect of damping coujDling 

With damping coupling u  included, from equations (4.1.2) 

v(2) = (ud - 2 Q3 )r but v(1), v(4) and v(5)  are unaltered, so that 

+ r 

substituting in equation (4.4.1): 

X. 	

I 	2 
 ) 2 
	

(ud+ 2)2r2 I(u. 	. 
fS 

-u 
1  

(4.5..1) 

	

+ 	- 1) 2  + (2 r )2  

For 1 32 2r 
/ 	

2)2 + (ud+  
X 	

2 3) 2 r
2' /(u. .-u r 

.!-  
2 I 	(r 	)2 + (2)2 	 (4.5.2) 

- therefore the effect is to make 1XI a minimum when 	- 
- 2Ld 

instead of when £ 3 = 0. Close to the minimum, for (ud +2  13 ) 2r2  

(u 
	
22 

u -u r ) we can approximate as in equation (4.4.4) to give: S 
IU S  -u i  r 

2 	
(ud+21)2r2) 

	

+ 	2 2 (u -ur ) 
5 1 

so that the shape of the Iii  curve and the value of the minimum 

are unaltered. 

In equation (4.4.2): 
1 

Li = arctan I(ud+2
Q _) 	

an arc 
r 	 I_2r 

	

+ 	t I (u -u.r ) J 	r2+ 
3 
21 

- L 	' 

As for eqions (4.4.7) to (4.4.9), 	will vary linearly with £ 3  

for u  + 2 £3Ir 
21 

u - u.r 1, the slope being unaltered. 

Typical curves, computed: - from the complete equations, showing 

the effect of damping coupling on 111  and 
/ 	for 	1 are 

shown on figures 4.4.1  and 4.4.2. when I3I>>IudJ the curves will 

approach those for the uncoupled case. 



54. 

To evaluate X from equation (4.1.5) we have, from 'Cs  

equations (4.1.2) and (4.1.6): 

S i 
(
u —u 2 ) 2 

r -( u 2 
d 	3 

2 ) 2
_(r —4 	r —(r + 132_1) 2+(2 r ) 2  

= 2u
d  r(u s —ui  r2 ) - 2(r2+ 32-1)(-2r) 

For 2r>Judrj, J.23r and j 
2 

2 	2 v(6) + (7) • 	r —u 

	

u 	) 
[( 	

2 2—(r2-1)2+(2 	21 
2 

+ [2 d r(u 
S i 

—u r 2 ) + 4?r(r21)] (4.5.6) 

which is constant as 2 3  varies, so that, by comparison with equation 
(4.5.3): 

l u S 	
21 

_____ 

	

—u 
i  r 
	+ (u+2 3 ) 2r2  

(4.5.7) 2 2 I X8 	Jv(6)+v(?)2' 	(u - u r 
S 	j 

as for 	the minuinwii 15 at 	= 
-2  but its magnitude will 

differ from the case when ud= 0 due to the u  term in v(7). rcf. 

equation (4.4.14)]. 

	

1 (u

(ud+2 L)r  	v-arctan 	2 - arctan 
 - u r j 
	V(6)  

	

L. 	 j 

and as, for the same small values of lud! and 11 4 
2 

[v(7 	
[2udr(umu.r2 ) + 4Zr(' —1) 

arctanL 6) 	arctan 	22 	
(r2-1)2 + (2 r )2J (45'9)  V 	

[ ( u_u.r) - 
Si 

which is 'onsthnt, then the slope is the same as when ud= 0 but 

	

the value at i =- 	differs from that when Ud - 0 due to the 

Ud term in v(7). In particular when r 1, from (4.5.9): 

Iv(7?1 arct 	
r 2u (u - u 

1 
.) 	

21 	(4.5.10) 
__ 	 ds 

an Lv(6)J = arctan I(us - u.) 2  + (2r) j 

compared with 0 when u  = 0. Typical curves showing the variation of 
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L,x
, with 	for r = 1 are shown on figures 4.5.1 and 4.5.2. 

From (4.5.1) and (4.5.7), for ..2r - >> I, I 3r 
1  and L 

2 

x 
x 

S 

- /( r2_1) 2+(2Z r ) 2  

\/ v(6) + v(7) 2  

where [v( 6 ) 2  + v(7)2]is given by equation (4.5.6) and, from (4.5.4) 
and (4,5,8): 

/x 	 R7? 1 	[_-2Zrl /1 = - arctan 
N(6J ~ 	

I (r 
2  i)j 	

(4.5.12) 
LQ 

again there is the slight difference from when u d  = 0 due to the 

ud term in v(7) [Cf. equation (4-4.21 1. 

4.6 The combined effect of  r and  7 on the variation of 

with 

Consider only 	for .Q3 ~ i and r = 1 + S  where 

Gathering together all the relevant relationships which affect the 

modulus and phase angle curves as £3  varies. 

(a) Modulus  IYI 
From the equation (4.5.3) the minimum value, which occurs at 

£= 
-, is: 

3 	2
u - u.r 

2 

ly ! min 	f21 1)2 (2?r) 

Neglecting small quantities this reduces to: 

.-2u.J  u-u 1  
i(4.6.1

1 XI
Xm 	

2/(4+ 1 
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1 As 1) 	
increases 	approaches asymptotically the curve for the 

uncoupled case which, from equation (3.3.10), is a straight line of 

slope: 

- 	 2r 

- 	3i2  
\I 

3/asymptote 

again neglecting small quantities,this reduces to: 

Y   U c (4.6.2) 31/asymptote + 1 

)hen 	= 0, from equation (4.5.1) neglecting small quantities: 

—2u.9\2/ 	2' Si 	i) 

k3—o 
27 	2 L_ 
(\2 (4.6.3) 

- +1 

(b) 	Phase angle /_X- 

From  equation (4.5.4), neglecting small quantities, the maximum 

slope 	(at 	2. ) is: 3j 

ril- 

- 2u (4.6.4) 

13 _—ua 
- 3 

ud  and the value 	at 	- 	becomes: A 	3 	2 
' if u 	—u.r2 0 5 	1 

/ 	\ 
jIY\ 

arctan LtJ 
32 

if and 	u - ti r2Z 0 
(4.6.5) 

Si 

(

,/ 
X—),

+ arctan LrJ ;Ud 
-3 	2 
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lY 	I and the value 	at (
= 0 becomes: 

arctan 

)~3 
= 0 	 -1 

	

[UU:.)1 	
+ arctan[] (4.6.6) 

Equations (4.6.1) to (4.6.6) can be used to determine the values 

of (u - u. 

' 

- 2u. ), a , 	and z for a particular system. In 

most 

(us 

 will be large enough to rna1c)1 in which case 

all the deno'nonators of eqaations(4.6.1) to (4.6.3) become unity: 

then Zcan be determined by the modulus asymptotic slope (4.6.2); 

(u5  - u - 2u 	) from the phase angle maximum slope (4.6.4); 

from the modulus at £3  = - ud (4.6.1); 
() 

from the phase ang 

at P.. 3  = - 	 (4.6.5): the values obtained .an be checked from 

(4.6.3) and (4.6.6) by computing the values of modulus and phase 

when 9 3  =0. 

4.7 Sujniñary 

The most important concept that has been established in this 

chapter is the linear relationship, independent of ', between the 

phase angle/ and £ 3  for low values of 	when inertia or 

stiffness coupling is present [see equation (4.4.9)1. This means 

that the phase angle relationship can be employed to determine very 

sr11 rates of turn where it is impracticale to use the modulus 

relationship 1 1 1  with A. 3  due to its negligible slope. The non—

dependence on 7 should also mean that the damping ratio can be 

increased to improve the transient response without affecting the 

sensitivity of the system; however, the value of '7 must still be 
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considered to ensure that the -minimu- value of 1, approximately given 

by 

U -u. 

X 	(u _u)2+ (27)2 
 

when r = 1, can be detected by the measuring equipment. 

It would cuom that, in designing a practical system, the value 

of 	would be determined by the required transient response and 

(U r, - u.) by the minimum signal Y that con be measured, r being made 
1 

as close to unity as possible for maximum response. It should be 

possible to adjust the value of (u - u)bya balancing procodure, 

either adjucting the mass or the stiffness. If it is not possible 

to adjust 
u   this can be allowed for in the scaling of the instrument. 

As far as the experimental work to bb discussed hero is 

concerned, the basic idea was not noco:.: sarily to produce a practical 

system but to test the validity of the theoretical results by a 

design which approximated to the fun±-imental system, described in 

sction 3.1, as closely as possible. 
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CHAPTER 5 

Experimental apparatus and test ppcedure 

5.1 The sensitive element 

In order to approximate to the fundamental system, described 

in section 3.1, the main requirement is that the motion of the mass 

should be constrained to the plane Oxy. The simplest way that could 

be conceived of achieving this was to mount the mass at the centre 

of a slender rod which had both ends fixed and was under a small 

tension; the restoring force, and therefore the spring constant, 

should be reasonably linear provided that the amplitude is small 

enough to prevent any significant increase in tension at the 

maximum displacement. A simple load - deflection test carried out 

with a spring balance, see figure 5.1.1, confirmed this linearity 

below a deflection of 0.02 in. (the theory for the non—linear 

vibrations of a comparable system was covered in a oaper by 

Woinowsky - Krieger in 1950). 

The sensitive element that was constructed is shown with its 

principle dimensions on the isometric diagram figure 5.1.2. For 

clarity only the items affecting the viirations are shown and all 

locking nuts and screws are omitted. The mass was l" diameter x 

1" and made of brass; -" flats 90 °  apart were machined for 

vibration measuring puposes. Attached to the mass for the later 

experiments was a 50" long alumimiun strip carrying two 	diameter 

dural rods which projected into the two oil dampers as shown 

(dimensions l--" x 	x 2" deep). 
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The mass was attached at the centre of a 12" long 6BA steel 

rod which was screwed at both ends B into a stiffened 12" x 4 11  

steel channel section, provision being made for adjusting the 

tension. The x and y GoodrnarisV47 electromagnetic vibrators 

excited the system via 4 BA brass rods which operated in cone 

bearings on a small block which was attached 1" from the bottom 

connection on the 6BA rod; the vibrators were located well away 

from the sensitive mass to minimise the effects of any additional 

constraints that were introduced. 

The photograph, figure 5.1.3, shows the sensitive element 

before the oil dampers were incorporated; it can be seen that the 

channel section and vibrators were mounted on a base plate and the 

complete system was placed on a flexible mounting on the test 

table; additional support, to prevent toppling, was supplied by 

a rope attached to the laboratory roof. The flexible mounting was 

incorporated to prevent, as far as possible, any external vibrations 

affecting the system. 

The photograph, figure 5.1.4, shows a detail of the mass 

when the dampers were incorporated; the oil vessels could be 

rotated about their vertical axes to alter the damping 

characteristics if required. 
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Fig. 5J.1 	The sensitive element without oil dampers 
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Fig. 5.1.4 	Detail of the sensitive element showing 

the oil dampers 
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5.2 The Test Table 

In order to avoid the difficulties encountered when using the 

Bryans test table as described in section 2.4, a more rigid turn-

table was employed, this was particularly necessary because of the 

weight of the equipment that had to be rotated. An Elliot milling 

machine 10" rotary table, with an S0:1 reduction ratio, bolted to 

a lathe bed gave very good rigidity; it was driven via a 24:1 

reduction gear by a Servomex Motor Controller type MC47, the 

motor is rated at 0.5 H.P. and the speed range is 0 - 10,000 r.p.m. 

clockwise and anticlockwise. Because of the load on the motor, 

the maximum speed that cold be achieved in this case was 7,000 r.p.m. 

A. giving a maximum table speed of 7,000 -r 3. 6 5 r.p.m. 1 1 920 - 

No difficulty was experienced with the test table and the set 

speed was maintained very accurately; clockwise rotation of the 

motor corresponded to positive rotation of the test table. The 

table and motor controller are shown on the layout photograph 

figure 5.2.1 from which it can be seen that the various leads 

required to the sensitive element were brought in from above 

without using slip—rings; this limited the number of rotations 

that could be performed in any one direction but this did not 

prove much of a handicap except at high table speeds. 
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A 	Snsitive clement and turntable 

B 	Advance Counter typo T02A 

C 	Mujrho 	Two Phase L.F. Decade Oscillator 

D 	Southern Instruments Gauge Oscillator M785 

E 	Avoccters 

F 	Solartron CD1400 Oscilloscope 

G 	Solartron Slarscopc CD1014.2 
} 	Servomex Motor Controller type ITO 
J 	Muirhead D-758-A Low Frequency Analyser 
K 	Goodnians 5VA Power Oscillators 
L 	Wayne Kerr Probe Switch JB731B 
M 	Wayne Kerr Vibration Meter B731B 
N 	Servomex Waveform Generator LF141 and Variable Phase Unit VP142 
0 	Southern Instruments F.M. Pro-amplifier I513 
P 	Philips G012 Valve Voltmeters 

Q 	Honeywell 2106 Visicorder 

Fig. 5.2.1 	Layout of the equipment for tests A. B and C 
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5.3 The excitation system 

Figure 5.3.1 is a schematic diagram showing the basic equipment 

controlling the vibration of the sensitive element. The sinewaves 

required were generated by a Servomex Waveform Generator type I'l41 

and Variable Phase Unit 1TP142; to keep the periodic time constant 

for tests A, B and C, carried out before the dampers were fitted to 

the sensitive element, it was necessary to lock the LF141 to an 

accurate frequency generator viz, a Mairhad D-80-A Two Phase 

L.F. Decade Oscillator. For the majority of the later tests the 

LF141 and VP142 were replaced by a Hewlett Packard Variable Phase 

Function Generator model 203A, this had a more sta'le periodic 

time so that the D-380-A was not required. 

The reference and variable phase sine waves were each amplified 

by the amplifier section of a Goodnians 5VA Power Oscillator, the 

amplified rcfronce and variabl has: signals rospuctivly oeing 

fed, via an vonitor to .rnasuro th current, to the x and y 

Goodmans vibrators on the sensitiTo clement. An Advance 1 Mc/s 

Timer Counter type TC2A measured the excitation single period 

across the output of the x amplifi'r. 

Becauo of the way in which the apparatus was set up the x 

vibrator lies on the negative x axis and the y vibrator on the 

positive y axis. In order to make the two applied frrces in phase 

when their currents were in phase the vibrators were connected to 

their amplifiers in opposite ways (see figure 5.3.1). 
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The current supplied to the two vibrators was measured as it 

should be approximately proportional to the exciting force for the 

very small amplitudes involved and there was no method available 

that could be used to measure the force directly. 

The photograph, figure 5,2.1, shows the arrangement of the 

equipment for the first series of tests A, B and C. 

5,4 The measuring equipment 

Fig. 5.4.1 is a schematic diagram showing the equipment used 

to monitor and measure the vibrations of the sensitive element. 

For the first series of tests A, B and C the x vibrations 

were measured by two probes viz, a Southern Instruments proximity 

vibration pick-up G211A and a Wayne Kerr capicitance probe, type 

MEl, measuring up to 0.1 in. peak to peak. A similar Wayne Kerr 

probe, type MD1, measuring up to 0.05 in. peak to peak measured 

the y vibrations. 

The G2IIA pick-up signal was passed through its Gauge 

Oscillator M'785 to the F.M. Pre-amplifier 1MR513 (all Southern 

Instruments). The pre-amplifier output was measured by a Philips 

GM6012 Valve Voltmeter and was displayed against a time base on a 

Solartron Solarscope CD1014.2 and as the X trace on a Solartron 

CD1400 oscilloscope set for X-Y operation. 
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The output from the probes I'flJl and €l was measured by 

matching Wayne Kerr equipment, the Vibration Meter B731 gave 

readings of peak to peak amplitude and mean distance of the probe 

from the mass of the sensitive element and the Probe Switch 

JB731B selected the required probe; Ml was only used for 

calibrating the Valve Voltmeter measuring the G211A pick-up 

signal so that, for most of the time, the probe IAD1 was connected 

to the Vibration Meter. The output from the Vibration Meter was 

passed through a Filter F731A to remove the carrier frequency and 

then through a Muirhead D-780-A Low Frequency Analyser to amplify 

the signal and remove the small amount of noise. The D-78-A 

output was measured by another Philips GM6012 Valve Voltmeter and 

displayed as a second trace on the CD1014..2 and as the Y signal on 

the 0D1400 oscilloscope. 

A Honeywell 2106 Visicorder was available for connecting to 

the MR513 output in order to measure the decrement in the x signal 

following the switching off of the excitation, 

The Southern Instruments equipment gave an output voltage 

that varied nonlinearly with the distance of the pick-off from the 

sensitive element mass, this compared with the Wayne Kerr equipment 

which had very linear characteristics; consequently, when a second 

Wayne Kerr Vibration Meter became available, it was used to measure 

the x vibrations and it was possible to reduce the amount of 

measuring equipment considerably. 
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Referrinrl. to figure 5.4.1, it can be seen that all the Southern 

Instruments equipment, the Low Frequency Analyser D-788—A and the 

two Valve Voltmeters GM6012 were not required for the later series 

of tests. The two Vibration Meters B731B  gave direct readings of 

the peak to peak amplitudes in the x and y directions, removing the 

necessity for the valve voltmeters, and, although there was some 

noise and higher harmonics on the output from the y filter F731A 

which was evident as the output approached zero, it was cp.ite 

possible to get sufficient accuracy without incorporating the Low 

Frequency Analyser. In addition it was found more convenient to 

use a Kelvin a; Hughes single channel pen recorder 4C5 with its 

recorder amplifier, in place of the Visicorder, to record the 

vibrations in a decrement test. 

5.5 The Test Procedure 

a) Decrement Test 

This was carried out with the table stationary by exciting the 

sensitive element in the x direction at an amplitude of approximately 

30 thou. peak to peak and at a frequency close to resonance; the 

Visicorder or pen recorder was then started and the frequency 

generator switched off giving a decreasing amplitude waveform trace 

for evaluating the damping ratio. 
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b) Frequency response test with the table stationary 

With only the x vibrator being excited, the excitation 

frequency was adjusted to give the maximum amplitude in the x 

direction. 

The x vibrator current was adjusted to give a peak to peak 

amplitude of 30 - 40 thou, in the x direction, measured on the 

Vibration Meter B7318, in order to keep the spring restraint linear 

(see fig.5.1.1); this current was then read from the Avonieter and 

maintained constant for the remainder of the test. 

The frequency was lowerd until the x amplitude was 

reduced to about 10 thou, peak to peak. 

The variable phase section of the waveform generator, 

which controlled the y vibrator, was adjusted to make the amplitude 

in the y direction zero, or as small as possible: this was carried 

out by trial and error noting the variation in the oscilloscope 

traces, in particular the X - Y trace on the CD1400, as the phase 

and gain were altered in turn; final adjustments were made by 

examining the peak to peak y amplitude reading on the Vibration 

Meter. The y vibrator current was read off from the Avometer and 

the phase angle between it and the x vibrator current from the 

Waveform Generator; the excitation single period was read from 

the Counter and the x peak to peak amplitude from the Vibration 

Meter (or a Valve Voltmeter suitably calibrated in the case of the 

earlier tests). 

The frequency was raised step by step until the x amplitude 

reached its peak and decreased again to approximately 10 thou. peak 

to peak. For each frequency the same procedure as detailed in (iv) 

was carried out. 



In test A the x amplitude was not restricted to 40 thou, peak 

to peak, and the response carve (figure 6.3.1) shows evidence of 

non—linearity. 

c) Response test with the table rotating 

With the table stationary the desired excitation frequacy 

was obtained using the Counter and the x vibrator current adjusted 

to give a 30 - 40 thou, peak to peak amplitude. The current and 

frequency were noted and maintained for the remainder of the test. 

The amplitude in the y direction was reduced to zero using 

the method already described in (b.LLv) and the same readings were 

taken. 

The table was rotated at a constant set speed in one 

direction and the same procedure carried out and readings taken. 

The table was rotated at the same speed in the opposite 

direction and then the speed was increased step by step the same 

process being repeated each time. 

Finally, when the maximum required speed readings had been 

obtained, the system was again tested with the table stationary to 

note any changes that had taken place during the test. 

This procedure applied to all the rotation tests except test B 

where (i) and (3. ) were carried out as detailed above but the y 

vibrator current and the phase angle were thereafter maintained 

constant. At each rotation setting Valve Voltmeter readinrs were 

taken to give the x and y amplitudes but no equipment was available 

for measuring the phase angle between the x and y displacements. 
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5.6 General Comments 

Some difficulty was experienced in making the necessary 

adjustments and taking the readings at high rates of table rotation; 

the limit on the number of revolutions that was imposed by the 

method of taking the leads into the sensitive element meant that 

there was a very short time in which to carry out the required 

procedure. It was particularly difficult during the early tests, 

before the dampers were fitted to the sensitive element; any small 

changes in the excitation frequency or any other factors affecting 

the sensitive element caused a considerable change in the systems 

vibration pattern due to operating near a very sharp resonance 

peak. The presence of the dampers and the improved measuring 

equipment available for the later tests overcame this difficulty, 

aided by the increased experience of the operator in adjusting the 

magnitude and phase of the current to the y vibrator in order to 

maintain the oscillations in the one plane. 

The oil dampers incorporated in the sensitive element were 

rather crude as they were made from material available at the time 

but they did have the considerable advantage of being adjustable; 

rotation of the oil vessels about their vertical axis had a 

considerable effect on tho coupling terms. It was possible to make 

this adjustment while the sensitive element was vibrating so that, 

with the table stationary and the x amplitude close to its maximum, 

the y vibration amplitude could be reduced to a minimum by this 

means efore the tests were carried out. 



Before the oil dampers were fitted attempts were made to 

increase the damping ratio by sleeving the 6BA rod and by using 

permanent magnet eddy current dampers. but neither of these methods 

had a significant effect. However electrical damping could be 

incorporated to give the required damping ratio and presumably 

would be preferable to oil dampers in a practical system. 

U7. 
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CHAPTER 6 

Experimental Results 

6.1 Object 

In order to verify the theoretical equations that have been 

developed in chapters 3 and 4 three separate series of tests were 

carried out. 

Section 6.3 deals with tests A, B and C which were concerned 

with the fundamental system with no viscous dampers. Test A 

examines the response of the non-rotating system to various 

excitation frequencies near resonance; tests B and C the response 

of the system at various speeds of rotation using the y vibrator 

to make Y = 0 when k = 0 in test B y  and to maintain Y = 0 for all 

values of 	in test C (ref. section 3.9). 

Section 6.4 deals with tests B and E in which the viscous 

dampers have been introduced. The aim was to relate the variation 

in the response of the non-rotating system with frequency to the 

variation in the response of the system, at a particular frequency, 

with rate of turn. 

Finally section 6.5 deals with tests F. G, H and J which 

compare the variation in the response of the system with rate of 

turn at four different frequencies, the other parameters remaining 

constant. 



The readings taken in all tests, except test B. were: 

Excitation period p (sacs.) 

Motor speed (r.p.m.) = 1920 x table speed (r.p.m.) 

l920x60 
13 Pn-  

x vibrator current (mA) 

y vibrator current, magnitude (A) and phase (0) 
relative to 

the x vibrator current, required to maintain Y = 0 

21XJ in thousandths of an inch peak to oeak (p. to p. thou.). 

The readings, 	plotted on the figures against excitation 

period p or motor speed, are: 

iz 

	

 J 	
21X1 	P. to D. thou 

xs  plotted as x virator current 	amp 

or 	(P. to P. thou) 
mA 

/ 

	

l ysi 	vibrator current 	 (6.1.2) 

	

X 
S 	

x vibrator current 

	

LXSS 	

the phase angle between the y and x vibrator 

currents ( 0 ). 

6.2 The modified theoretical equations 

It is convenient to modify the equations developed in chapters 

3 and 4 to put them into a more convenient form for comparison with 

the experimental results. With the exception of test B, all of the 

71. 



72. 

tests described employ 
Y 

readings, the ratio 

measured: the relevant 

the y vibrator to maintain Y = 0 for all 
/Y 

and the phase angle 
/ 	

1f being 

equation, allowing for different parameters 

in the x and y directions, derived in section 3.10 is: 

Y 	(-u.r 2+u ) + jr2(ud2 +2  1 32) s 	i2 	s2 
X 

S 	-(r12+ £31 -i) + j(2 1r1 ) 
(3.10.5) 

where subscripts 1 and 2 refer to directions Ox and Oy 

respectively. 

For the experimental conditions of r close to unity, and 1 
31 

u, Ud  and u5  very small, dropoing the subscript 2 for simplicity, 

let 

Pnir1  = 1 +  

and 	r2  1 + (Si) (6.2.2) 

I 2-rr 
( p 

= 	the periodic time of the excitation 

wherep the undamped periodic time in direction Ox 
nl 

( p = 	the 
n2 

undamped periodic time in direction Oy 

so that (-u .r 	+ u 	) s2 u 	- u. 	- 2u. s 	a. 	1 
2u. 

3-pn = 	U 	+u. 
s 	1 	p  1, 

then equation (3.10.5) becomes: 

(u +_ in 
- 	 1 	 2u.p)+j(+2A?) 
x 	•'- 	-(2S 1 ) + j(2) 	 (6.2.4) 

5 
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i Y. t 
SO that 	

I 
	
(a +U 1 _ 	 )

2 + (u d+2 9 _ ) 

	

Y- 	
p 

l 	 -  

(r 

\.) 

1 + 61 1 

	

s 	2 Z1 

/ 	

S 	

(6.2.5) 

(+2 
and 

+Ii. 
2UjPn) - arctan 	

) 
X 	 arctan 

	

- 	
p 
 1 

=-180 + arctan (u_+ 2 
	

11 
2u o I + arctan — 

 

a+u. - Lnj 81 

(6.2.) 

Equations (6.2.5) and (6.2.6) can be used to determine the 

variation in 	and LLXS  either with 13  for a particular 
value of p or with p for 	1 3 =0. In addition, from the first 
of equations (3.10.2), for £31 0 and Y = 0; 

xs 	
1 	

(6.2.7)' 

i.e. the same as the response of a simple single degree of freedom 

system to forced excitation. 

r close to unity: 

A. 1 
IxI sI 	2 

Taking the approximation (6.2.1), for 

(6.2.8) 

and 	can be estimated from the value of S at which 

- 
2 f 	max 

In equation (6.2.8) this gives 	+ Ll 

- 

or 	 I
1  

(Pba) 
(6.2.9) 
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where pa  and Pb  are the excitation periodic times when 1 1 1 -
I 2 x s Max 

Equations (6.2.5), (6.2.6) and (6.2.9) will be the ones used 

in this chapter; the relevant expressions derived in section 4.6 

.re only modified by the inclusion of the subscript 1 on 8 and7, 

the replacement of (u5_u2u1 S ) by the more convenient 
2u.p 

(u ku.- '_" ) and the additional angle 11 in the phase angle 

du: to measuring / 
	

instead of / 	Lref. equation  (3,9.10  LL 

To compare the theoretical and experimental results for these 

tests, the equations (6.2.5), (6.2.6) and (6.2.9) were used to 

determinethe values of 7, p, (uu), uipn  and ud  from the 

experimental curves by equating specific theoretical and experi-

mental values, the theoretical curves could then be drawn for 

comparison with the experimental readings. The specific values 

that were equated depended upon the object of the test; in tests 

D and E the equating was carried out from the experimental readings 

for i = 0 and thus enabled the theoretical curves for 	, 0 

to be constructed; in tests F-J the precedure outlined in 

section 4.6 was carried out on the experimental curves for 

varying 

The effect of Earths rate is neglected in the calculations, 

its component about the Oz axis is approximely 6.96 x 10-4  sin 56°  

Ir 5.8 x 10 4r.p.i. which is of the order of one hundredth of 

the lowest rate that could be measured with the present apparatus. 
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6.3 Tests A. B and C - very low damping 

A trace of the decrement, following the switching off of the 

excitation, indicated a damping ratio 7 of the order of 2 x 10-3  

Test A 

The variation in the response of the system with excitation 

period p for 	= 0; the x vibrator current ..as maintained constant 

at 45mA. 

The experimental readings are shown on figure 6.3.1; the graphs 

show evidence of the non-linear stiffness with the bend-over near 

resonance on the magnitude curves for 21X1 	40 thou. (cf. figure 

5.1.1) and the discontinuities on all the curves at p 0.0315 secs. 

The other interesting point was a tendency for the system to go 

unstable at the discontinuity, the amplitude increased until the 

mass hit the proximity pick-offs and it was impossible to maintain 

Y = 0 using the y vibrator. The possible explanation is that the 

complete system, on its flexible mounting, was oscillating at the 

exciting frequency, thus leading to the parametric instability 

discussed in section 3.7 when j' = 

Owing to the non-linarity no. calculations are made from these 

graphs but they will be used for cuinparison in tests B and C which 

examine the response of the system to rotation at a particular 

value of p. 

- 	 Test  

This test is included to illustrate the alternative method 

[ref. section 3.9(a)1 of using the y vibrator to make Y = 
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when 	= 0 and measuring the rotation by means of the ratio Ix 
which should vary linearly with angtliihar velocity .. 

	
From 

equation (3.10.4) the slope for very small values of £3 , using 

the substitution (6.2.2) is: 

1 11 	 2r2 	 _____ 

3i
= 	(r22_l)2 + (22r2)2 	J 2 + 	(6..i) 

The constantsfor this test were: 

x vibrator current 49mA 

y vibrator current 6.Snj 	
= 0.133 

LLX SS  - 

= -212°  

P = 0.03173 secs. (frequency 31.5 Hz) 

The readings of JILI shown on figure 6.3.2 lie reasonably 

well on straight lines of slope 	6.4 x 10 per motor r.p.m. 

From eq'iation (6.1.1), taking p 	0.0315 secs (from test A): 

YJ 
= 6.5 x lO x 3.64 x 106 = 232 

3. 

Assuming 	
= 	 2 x 10 -3  , in equation (6.3.1) this 

gives: 

/12 - 4 x10 	= ± 0,0038 

Comparing the constants 	and 	with the test A 

results on figure 6.3.1, it is apparent that p = 0.03173 secs. is 

below resonance. So S = - 0.0038 which, from equation (6.2.2), 

gives Pn  0.0316 secs, 
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Test C 

The variation in the response of the system to angular velocity 

about Oz. With p = 0.03171 secs., the y vibrator was used to main-

tain Y = 0 and the x vibrator current was constant at 42iA making 

21Xt = 37 thou. p.to  p. The experimental values of I T 	and 

Lf for various values of motor r.p.m. are shown on figure 6.3.3. 

From equation (6.1.1) taking p = 0.0316 secs: 

Motor speed = 3.64 x 106
j 

3 

Comparing with equation (6.2.6) the phase angle curve indicates 

that: 

ud2i3=O when i3__ 	420 6 =1.15x104 
3.64 X 10 

i.e. ud = 2.3 x 10-4  

and the maximum slope: 

/I 
/s 	 2 	 -27 	fl 

d/r 	 2up 	i000 xx3.64x106 u+u. - in 1870 

d 	 1 
p 

2u p 

S 	i 	p 

Lix:also -214° when 

-2140  = -100  + 1800  + arcta1 

(7 
i.e. 	 - 0.675 

Is l  
Comparing with equation (6.2.5), the asymptotic slope of the 

modulus curve: 

d 
I 	 \7 

I 
= 9.1 x 10 x 3.64 X 106 = 331 

- 1.16 x 10 

= - 1.15 x 10 giving: 
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hence 	1 = 0.0017 

and 	
1 = 0.0025 (giving p 1  = 0.03163 secs.) 

Substituting these values into equations'  6.2.5) and (6.2.6) 

gives: 

/1.34x10+(2.3 X 10-4 +2)2  

X 	- 0.0034j 	 3.2 

/2.3x1o+2 
and= -34°  + arctan 

L.  

= -2140  - arctan ( 

These curves are plotted on figure 6.3.4 which also shows the 

experimental readings; these follow the theoretical phase angle 

curve very well, Vjhich might be expected as the phase angle was 

used to calculate the majority of the coflstants, however there is 

also very reasonable agreement in the case of the modulus curve, 

the main discrepancy being for positive values of .2 3  which would 
seem to indicate a slightly lower value of ud. 
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6.4 Tests D and E- viscous dampers incorporated 

D and E refer to the system with two different sets of values 

of the parameters 	, u., u and a; tests Dl and El examine the 

variation in the response of the non-rotating system with excitation 

period p; tests D2 and E2 examine the variation in the response of 

the system with angular velocity about Oz for a particular value of 

p. The aim was to determine the values of the constants from tests 

Dl and El and hence to compute the expected variation with £ 3  for 

a particular value of p for comparison with the experimental 

readings in tests D2 and E2. 

Tests D 

A decrement trace, following a switch-off of the excitation, 

indicated a reduction in Ix! of 	over 6 cycles, i.e. e2'l 0.4 
giving 	= 0.0243. 

Test Dl was conducted with an x vibrator current of 500mA 

and the experimental readings and curves, as p was varied, are 
Y 	

L7SS_ 	

- 
shown: 	on figure 6.4.1; 	 on figure 6.4.2; I X sl on figure 6.4,3. 

From figure 6.4,3, using equation. (6.2.9): 

1 - jc0.032 + 0.02955) 	.023 

which compares very well with the figure Z i  0.0243 obtained 
from the decrement test. Also the peak value of IL indicates, 

comparing with equation (6.2.8),. that 	0 when p = p = 0.0306 

secs., i.e. from equation (6.2.1): 

S = O•o3o6 _ 1 	p 
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Taking 	= 0.023, arctan(.1can now be evaluated and hence, 

	

1J 	I Ud  
from figure 6.4.2 and equation (6.2.5), arctan( 	2uipn 

. 	; the lu+u- 	
/ 'S 1 	p 

variation of this angle with p is plotted on figure 6.4.4 and 

indicates that 
(US i 

u - 2u p ) 
i 	

= 0 when p = 0.03162 secs., i.e. p, 

S 1 0.03162 u ipn 

Taking the values of arctan 	 ) and lysl  when 
P = 0.0307E secs., the excitation period used for test D2, from 

figure 6.4.4: 

F 	u 	 1 
arctan 	

2 d 
	

2 	 -124,5° 

L u.p( 0.03162 - 0.03078' - 
i.e. u. 	

i 
-2.52 up d 	 n 

and from figure 6.4.1 and equation (6.2.5): 

	

0 104 	1 /ft
_Q.03162 0.O3078/ui 	+ L 2 .S2 uiP 

	

0.04l 	
1.065 

i.e. u.p 	= 1.61 x 10 

giv.ingu 	= 	
(6.4.1) 

and  5  +u 1  
. 	10.2x10 

In equations (6.2.5) and (6.2.6), for £3  0, these figures give: 

	

1 	1 ly 
 I 0.03162 

	
)2+ 16.5 x 106 

	

 0.046 	

[3.22
- 

 
2 

(Z11_  i 

-180° 

 + arctan[ 	

-4.06 x 	 1+ 
arctan(1) 

3.2210( 	1 	1 I 
0.03162 -)j 
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These curves are plotted to a base of 9 on figures 6.4.5 and 

6.4.6 which also show the experimental readings for comparison. 

There is very good agreement for negative £ 1 but some discrepancy 

for positive 	, which suggests that pis possibly slightly 
nl 

higher than 0.0306 secs, 

The constants for test D2 were : x vibrator current 500mA 

making 2Xf = 40 thou.peak to peak; excitation period p = 0.03078 

sees. From equation (6.1.1), taking p 	0.0306 secs: 

Motor speed (r.p.m.,) 

3.75 x106  

The readings of I Ls I and are shown to a base 	on 

figures 6.4.7 and 6.4.8 and cmpared with the theoretical curves 

derived by substituting the values (6.4.1) and p = 0.03078 sees. 

-0.0059) in equations (6.2.5) and (6.2.6) viz: 

7.7 x 10 + (-4.06 x 10 + 2 3 ) 2  

iX 	- 0.046/ 
- 1 	 __ 

5' 	 V 	 1.065 

/-4.06 x 10 + 2 
and LLXs = 7550 + arctanl 

 -2.78 x 10 

= -255.5° 
- arctanf_406 x 1C 3  + 2 3  

2.78 x 10-  

These graphs indicate a very good agreement between the derived 

curves and the experimental points; it will be noted that the value 

Ud Y 
L 3  - -- giving minimum 	could not he achieved (it corresponds 

to an angular rate of approximately 4 r.p.m.) 



arctan ( 

	
2u.p 	evaluated as  

3- 
u+u._ in! 

p__I 

0.0307 - 1 
p 

Taking 	= 0.0328 .9  

Si  
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Tests E 

Following the same analysis as that for tests D. The decrement 

	

trace indicated a reduction in fx I of 	over 5 cycles i.e. 

e 	= L02 giving Z 1  = 0.0328. 56 

In test El the x vibrator current was 600rnA; the readings are 

again shown on figures 6.4.1, 6.4.2. and 6.4.3. 

From figure 6.4.3, using equations (6.2.9): 

, (o.o 	- 0.02915") 
TT  

	

L0.03265 + O.O29l5, 	0.0327 

(cf. 0.0328 from the decrement test). 

Also the peak value of IX  I occurs at pnl = 0.0307 secs. 
S 

giving, from equation (6.2.1): 

before and plotted to a base p on figure 6.4.4 1  indicating that 

(LI 	

2u.p\ 
 + U. 	

1 fl 
j 0 when p = 0.03028 sacs. 

	

1 	
p / 

	

i.e. u + u 	2 . = 	u.p 5 	1 0.03028 	j n 

From the values at p = 0.0308 secs., the excitation period 

used for test E2 

	

arc 	
Ud 

	

L i n 	
15° an 	

(0-03028 - 0 0 30)j - 

	

i.e. 	u  = - 0.298 u. 
3-p n 

J_ 	
- 	_uP_2+ 	_U and 0.021 	 03028 O.O8    _j_ 	 _p 

	

o. 	 _ _ S  

1.01 
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i.e. up 	1.2 x 10 

giving u 	= 	-3.56 x 10 

	

= 	

(6.4.2) 

and u
5 1 

U. 	= 	7.9c 10  -2 

In equations (6.2.5) and (6.2.6), for , 3  = 0, these figures 

give: 	 -- 

2-4  x 10OO28 - 	+ 12.7 x 10-8  
- 0.0656/

.
2 

-3.56 10 	
1' 1 	/7 and I— = -180 + artan I 	 1+ arctanl - 

L2.4 x 103QQQ28 p 

These curves are plotted on figures 6.4.5 and 6.4.6 and it can 

be seen that the experimental results lie very close to them. 

The constants for test E2 were: x vibrator current 600nA making 

21X = 33 thou, peak to peak; excitation period p = 0.0308 secs. 

Again: 

Motor speed (r.p.m.) 

3.75 X 100 
Y 	/Y 

	

The readings of 	and!? are compared on figures 6.4.7 

and 6.4.8 with the theoretical curves derived from equations(6,2.5) 

and (6.2.6) for this value of p ( S = - 0.0033) and values (6.4.2) 

viz: 

Y I 	 1.77 x 10 + (-3.56 x 	+2k) 
Xs 
 I - 0.0656/ 

1 ____________________ 

1.01 
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/ 	 (_3.56x 10-4 +2 
and /? 	= -84.5 0  + arctan L/ s 	 1.3310 	I 

There is a reasonable agreement between the derived curves and 
Y 

the experimental points, although the discrepancy in l s  I for 

positive L 3  suggests that the numerical value of U  should be 

greater. 
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this assumes that p 	0.0306 in equation (6.1.1). 

For test H the modulus curve is approximately linear and there 

is a step change in the phase angle which, as p = 0.03 sacs., 

indicates that: 
p 
n U + 	

2u i 
 

S 	I - 0.03 
2u.p in i.e. U + U. 

- 	
2u1p(003 p) 

(6.5.2) 

This quantity can now be evaluated for the other three tests and 

	

compared with the maximum slope of the phase angle curv 	
(____ —j 

U.P0Q3 - P) 
to give u.p. Taking the average value: 

u ipn 
	jx 10 	 (6.5.3) 

which, substituted in equation (6.5.2) gives: 

u S+ui  . = 8.66 v lO_2 
	

(6.5.4) 

The remaining constants 	and P., are evaluated by comparing 

	

the asymptotic slope of the modulus curves, which is 	
1 1 
 + from equation (6.2.5), with the phase angle at 

= - 
3 	Ud which is, from equation (6.2.6): p / 

—180°  + arctan 	if(u + u - 	n 	0 
) 

2u p 
_i n) 	

0 or 	arctan( 1 ) 	if(u + u. - 	Z- 
S 

Averaging for the four tests: 

0.043 	

(6.5,) 
P111 	= 	.022 secs, 

=0.0306- 1 

p 



Substituting the values (6.5.1), (6.5.3) and (6.5.5) into 

equations (6.2.5) and (6.2.6); 

Test F : p = 0.03071 secs, ; 	= -0.00358 

ly  P-  1 1 	/4x 10 	+ (-4.27 x 10 	+ 2 3 )2  

	

= 0.086 j 
	 1.007 

-. LS= -850  + arctan ( 4 27 x 
	+ 2 

21O 	/ 

Test G : p = 0.03041 secs. ; 	= +0.00625 

y 	 1.37 	
_____ 

r 	0.086J 
	

x 10 	

1.021 

+ (-4.27 x 	+ 2 3 ) 2  

S 

LL (

_4.27 x 	+ 2 /5  

x 
= . 980 + arctan 

	

s 	 1.17x103 	I 

	

Test H : p = 0.03 sees. 	 = +0.02 

l Y5 j_4.27 x 10 	+ 2 
X -S 	 0.0947 

	

/s S = -205 0  if 	2.135 Y 10 

	

= - 25
0 
 if 	2.135 x 10 

	

Test J 	p = 0.02951 sees. ; 	S = +037 

ly 	 /2.05 x 10 + ( -4.27 x 	+ 23 )2 

	

=S 	0.086 1.74 

= 

	

0 	 (__4.27 10-4 21 )
-131 + arctan 	

__ 	_ 

	

L 	 -1.43 x103 

87. 



= —311° - arctan(_27 x 10 + 2
3) 

1.3 x lo 

These carves are plotted against 	on figures 6.5.3 and 6.5.4 

which also show the experimental points demonstrating reasonable 

agreement, particularly in the case of the phase angle curves. The 
2u .p 

effect of (a, + u. - 	n on the phase angle curves can clearly 

be seen with the slope becoming infinite at p = 0.03 secs. and then 

changing sign. 
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6.6 Comments on the experimental results 

Different values of damping ratio and natural frequency in the 

directions Ox and Oy cannot be detected from the experimental results, 

which determine(u 
S 

+ u 
1) 	i
. and up n , however, for particular values of '-  

u and U., the value of p obviously affects the performance of the 

system. Comparing the values of u, u, ud , p and 	for tests D,-71 
E and F to J by assuming that p = nl gives the following table 

pn  
T 	= '-'1 	 u 	 u Test S 	 i (secs). 	 d  

D 	0.0306 0.023 	4.94 x lO 5.26 x 10_2  -4.06 x lO 

E 	0.0307 0.0328 	4.0 	x 102 3.9 	x 102 -3.56 x lO 

F-J 	0.0306 0.043 	4.41 x lO 4.25 x 10_2  -4.27 x lO 

The only alteration made between these series of tests was in 

the orientation of one of the dampers; the oil and its level were 

the same in each case and the changes in the value of 	are 

presumably due to the differing temperatures in the laboratory. As 

expected the values of p 1  are virtually the same in each case and 

u 
S 	1 . and u. are of the same order, the small differences here 

presumably being due to the different orientations as the small 

size of the oil vessels, in relation to the moving rods, must have a 

slight effect on the inertia and stiffness coupling as well as 

altering the damping coupling. 

The presence of damping and stiffness coupling in the experi-

mental system is to be expected but the reason for the inertia 

coupling is not quite so obvious; the probable explanation is that 
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an unbalance in the mass causes torsional oscillations in phase with 

the displacement oscillations, these torsional oscillations would 

then produce forces in the quadrature direction proportional to the 

linear acceleration. 

All the experimental tests were carried out with the natural 

frequency of the system at around 32 Hz; this frequecny was chosen 

by trial and error at it was. high enough to give stable oscillations 

and low enough to give a reasonably large amplitude with the spring 

system linear. The tendency for the system to go unstable at 

resonance mentioned in test A was not encountered when the damping 

was raised, this is to be expected since increased damping will 

reduce the chance of parametric instability. 

In general the experimental results fit in very well with the 

theoretical curves that were developed, any scatter or discrepancy 

is probably due to small temperature changes in the laboratory 

which, as has been shown, must have an effect on the damping ratio. 

No attempt was made to increase the damping to that which might 

be requiredina practical instriment; as has been stated previously, 

the object of the e:periments was not to produce a practical 

instrument but to demonstrate the validity of the theoretical 

equations that were developed in chapters 3 and  4. The good agreement 

between the experimental and theoretical results confirms the 

validity of the theory and therefore the fact that the shape of the 

phase angle curve as 9varies is independent of damping. The two 
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alternative methods of employing the y vibrator have been demonstrated, 

in particular the more attractive method of maintaining the 

oscillations in one plane and determining the angular velocity from 

the magnitude and phase relationships between the currents supplied 

to the two vibrator's. 
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CHAPTER 7 

Conclusions 

7.1 LqLmarZ 

The majority of this thesis has been concerned with a 

fundamental type of vibratory rate sensing device and the theory 

has been developed in chapters 3 and 4; the steady state and 

transient response of the system to rotation and acceleration 

have been considered with the main concentration, in chapter 4, 

on the response to rotation about the input axis Oz. The 

possibility of using the phase angle 	to measure very small 

rates of turn, when the variation in the modulus 71 is negligible, 
suggests a way of improving the sensitivity of the system. This 

improved sensitivity can he achieved without affecting the transient 

response as the shape of the phase angle curve is independent of 

the damping ratio 	• A possible method of determining the 

required system parameters has already been discussed in section 

4.7. 

The other important concept that has been developed is the 

method of turning the system into a "null" device by employing an 

additional vibrator in the direction Oy, in order to maintain the 

vibrations in the one plane Ozx; the magnitude ratio and the phase 

angle between the two vibrator currents should provide a read-out 

that can easily be converted to give the rate of turn. 
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The experimental tests carried out, which are described in 

chapter 6, indicated a reasonable agreement between theory and 

practice; some deviation is only to be exoected in a very simple 

piece of apparatus. Considerable improvement in the accuracy of 

the device would undoubtedly result from a better method of 

construction and, in particular, from operating it in a constant 

temperature environment. 

7 • 2 Considerations in developing a practical instrument 

The type of instrument that was constructed suffers from the 

possible disadvantage of being unbalanced overall as this will induce 

sinudoidal oscillations of the complete instrument at the operating 

frequency. The errors that will result have been determined in 

sections 3.7 and 3.3; sinusoidal variation inS)...at frequency 

L) £) will give output oscillations due to S.. ft and n 	 1 2 

may possibly cause instability (see section 3.7); sinusoidal 

variation in the acceleration A at frequency c 	C 	will give 

output oscillations due to A1  and A2  [cf. equations (3.3.1)1. 

The sinusoidal variations in 5t may have been the cause of 

the instability noted, in test A but otherwise any errors due to 

overall unbalance in the experimental device were too small to 

have any detectable effect. However in attaining the sensitivity 

that would be required from a practical instrument these errors 

may become significant and a balanced system may be required. 
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The adjustment of the magnitude and phase of the current 

supolied to the y vibrator would have to be carried out automati-

cally if it was desired to operatea practical system as a"null" 

device. As there are two quantities that have to be controlled by 

measuring the y vibration amplitude in order to reduce it to zero, 

a digital controller employing a hill climbing technique (altering 

magnitude and phase alternately) would probably be required; this 

type of controller could also be made to give a read-out of the 

rate of turn by comparing the magnitude and phase relationships 

of the vibrator current with the known system characteristics. 

Fig. 7.2.1 shows schematically a possible arrangement for a 

balanced rate of turn indicator. Two identical sensitive elements, 

similar to the one on which the tests were carried out, are 

mounted back to back so that they vibrate in the same plane. The 

vibrations of the two masses A and B are controlled at the same 

amplitude and frequency, and 180°  out of phase; this control 

could be achieved as shown by taking mass A as a reference and 

exciting it with the x vibrator (probably an electromagnet) fed 

from an oscillator via a fixed gain amplifier, the mass B is 

excited by another x vibrator in a similar manner except that the 

amplifier gain and phase are controlled to reduce to zero the 

difforenco between the feedback signals from the two x pick-offs. 

The vibrations are maintained in the one plane Ozx by feeding the 

y pick-off signals into phase and gain controllers which supply the 

current to the y vibrators. The phase and gain controllers also 

measure the rate of turn which can he averaged between the two 
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values to give the necessary read-out. The system would have to 

be damped in the x direction and two possible ways of doing this 

are by using eddy currents or by applying additional excitation 

proportional to * (measured by the x pick-offs) in the x direction. 

It is quite possible that the tuning fork may still be the 

best answer for a practical balanced system and this could be 

operated in precisely the same manner. The equations of motion 

derived for a tuning fork will he similar to the general equations 

derived in chapter 3 for the fundamental system; in addition to 

the usual tuning fork equation equating the torques about its 

input axis there will be an equation equating the exciting force 

applied to the tines with the forces in the same direction due 

to the motion of the system. If the fork is to be used as a 

"null" device the fork would be prevented from oscillating about 

its input axis bya torque Lotor, the phase and gain of the current 

supplied to it giving the required rate of turn. 
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PRINCIPAL NOTATION 

1 	subscript referring to direction Ox 

2 	 II 	 If 	 It 	 Oy 

Oz 

a 	= a1i + a 2  j + a 3 k absolute accleration of m with 0 fixed 

A= Ai + A 2 + A 
3  k absolute acce1ejatjon of ci 

c 	viscous damping coefficient 

0 	damping coupling coefficient 

C. 	 inertia 
.1 

o 	stiffness 
S 

i,j,k 	unit vectors along Ox, Oy, Oz 

k 	spring constant 
- 	 1'- 2- 	3 -  p 	= 	+ 1L + £3k

W  
-  

31 	CO nl 	32 	n2 
M 	 point mass 

Oxyz 	rectangular set of axes, origin 0 

2i1-  
p 	 excitation period (secs) 

21r 
p 	 - undamped natural period 

n 
P 	amplitude of the exciting force 

r 	 = xi + yj + zk position vector of m 

r 	 non-dimensional frequency ratio 

t 	time (secs) 

cd  
ud 	 non-dimensional damping coupling 

Ui 	 inertia 	" 
1 	 m 
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C 

u 	= 	non-dimensional stjff 	coupling 

X 5  y, z 	rectangular coordinates of r 

IXI 	amplitude of forced vibrations in dirction Ox 

J YJ 	 If 	 71 	 71 	 77 	it 	 Oy 

/  1: 	
phase lead between the y and x forced vibrations 

Pi X 
S 	

1 
= 	deflection along Ox due to a static force P 1  

yt 	 = P2- 	if 	 77 0y 	It 	7? 	17 	H 	 I? 	p s 	 2 

:ei 

k, 	P2 	P.- 
fk 	£k 

 

- 	X5 	- 	P1 	 1 

) • 	 j 	2 

( 

Iy 
/J 	phase lead between the y and x exciting forces 

= 	r-1 

damping ratio 

root of a characteristic equation 

LLXS 

excitation frequency (rads./sec) 

41 Fk 7 	
undamped natural frequency 

frequency of oscillation of S. 

+2 	 + 
SL3ic 	angular velocity of Oxyz 

S J  c4i + Sj 	+R 
3 
k 	amplitude of oscillation of 
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