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SYNOPSIS

Vibratory rate sensing devices operate by measuring the
vibrations induced by the Coriolis acceleration when a vibrating
inertia is rotated. A double torsion rate sensor is investigated
but it is shown to offer few advantages over the conventional

tuning fork.

The equations of motion are developed for a more fundamental
vibratory rate sensor consisting of a point mass with its motion
constrained to one plane and controlled by linear springs and
viscous dampers. Amplitude and phase angle relationships between
the excited vibrations and the quadrature vibrations, induced by
rotation and inherent coupling, demonstrate the possibility of
measuring the rate of turn about an axis perpendicular to the plane
of vibration by means of the phase angle in the regions where the
coupling results in very little variation in amplitude. In addition
the shape of the phase angle curve, unlike the amplitude curve, is
shown to be independent of damping, thus making it possible to have
a damping ratio - high enough to give an acceptable transient
response without affecting the sensitivity., This offers considerable
advantages over the conventional vibratory rate sensor in which the
rate is determined solely from the amplitude of the induced

vibrations.

Two possible methods of using a secord excitation source, in

quadrature with the original one, are consideredj it can be used



either to eliminate the Quadrature vibrations at zero rate input,

'in which case the rate of turn can be measured by the amplitude ratio,
or to eliminate the quadrature vibrations at all rates, in which

case the rate of turn is measured by the amplitude and phase

relationships between the two excitation forces,

Experiments carried out with a device approximating to the
fundamental rate sensor demonstrate the validity of the derived

theory.
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1.3.

1,

CHAPTER 1

Introduction

The requirement for an alternative to_the conventional gyroscope

The convertiznal rotating wheel gyroscope has played an increas-~
ingly important part in the navigation and guidance of vehicles
since its first commerical use as g gyrocompass in ships at the turn
of the century, Until the 1950's only relatively crude, and there-
fore inexpensive, gyroscopic devices were required for instruments
and automatic guidance controls but recently the increasing speed
of aircraft and rockets has demanded much more accurate control
and, consequehtly,,more sophisticated instruments, In particular,
the development of inertial navigation has depended upon the

availability of exceedingly accurate and sensitive Eyroscopes,

Industry has been able to fulfill this demand for accurate
instruments by continuous development of its manufacturing
techniques, but the extremely small tolerances and the rigoroug
testing that is required in a modern gyroscope has resulted in a
considerable escalation on its price. Consequently a lot of
research effort has gone into the development of other devices
capable of measuring rates of turn (see, for example the papers
by Langfordx and Stratton); one alternative to the conventional
gyroscope is a device sensing rotation by means of a vibratory

sensitive element,

* the references are listed alphabetically in the Bibliography,
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The basic principle of a vibratory rate sensing device is that,
if a mass vibrating in a straight line is subjected to an angular
rate of turn about an axis perpendicular to that line, the
resulting Coriolis accelerafion generates an alternating reactive
forcewhich induces motion in a direction perpendicular to both
the original vibration line and the turning axis; in a linear
spring-mass system the amplitude of the induced vibration is

proportional to the rate of turn.

Vibratory devices appeared to offer excellent prospects for
development into inexpensive, accurate and long lasting rate
sensing instrumsnts, the simplicity of the system and the lack of
bearings seemed to be the main advantates, As a result, a consider-
able amount of e.riort was put into trying to produce a practical
device of this type which would have an accuracy comparable to that
of an inertial quality conventional gyroscope; the net result of
all this work up tonow can be Judged hy noting that no instrument
of this type has been produced capable of giving this sort of

accuracy.,

The development of vibratory inertial sensors,

Although the Foucault pendulum (the original gyroscope) may
be considered to be a vibratory device, the first attempt at making
a small instrument employing a vibrating mass to measure rate of

turn was probably made by Meredith in 1942, however his paper,



3.

published by Nature in 1949, points out that an order of flying
insect known as the Diptera use a device of this kind; these insects
have a pair of small organs, called halteres, which take the place of
hind wings and vibrate at high frequency enabling them to fly in a

stable manner (the mathematical theory is developed by Pringle),

The main disadvantage of the sarly instruments, which employed
a single vibrator, was the difficulty of eliminating various errors,
particularly those due to motion of the complete instrument. To
overcome this problem most of the research has been concentrated
on systems using balanced oscillators, the tuning fork being the

most favoured device.

The developments in the United States led to the producﬁion of
the Sperry Rate Gyrotron in 1953, the characteristics of which are
described by Barnaby et al., Lywnan and Morrow, In this country the
majority of the work has heen carriedout by the Royal Aircrarit
Establishment at Farnborough and is coverad in reports by Hobbs,
Hunt, Pitt and Stratton. Some research has also besn carried out

in France and is reportsd by Mathey and Ettzeroglou,

The bibliography lists other raports and hooks covering various
types of vibratory rate sensors and papers by Chatterton and Newton
comparing vibratory and conventional rate sensors. The theory for
the tuning fork is covered in the book by Arnold and Maunder and
also in many of the papers listéd; the well known paper by Tearnside

and Briggs also discusses the possibility of instabilities occuring
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in this type of device,

As far as can be ascertained, all of thé vibratory sensors that
have been evaluated up to now have determined the rate of turn by
measuring the amplitude of the vibration that has been induced by
the Coriolis force; because the Coriolis force is comparatively
small this has meant that any unwanted forces due to unbalance or
other imperfections in the system have had to be reduced to a very
low order, otherwvise the measurement of very small rates of turn
is impossible. Thus the instruments have been manufactured neces-
sarily to very small tolerances: and a thdrough balancing procedure
had to he carried out before it was possible to measure small

rates,

The very small amplitudes that have to be measured and the
difficulty in eliminating errors due to imparfections have been
the main reasons why this type of instrument has not so far
achieved the accuracy that was hoped for. The amount of research
that has been carried out can be Judged from the number of
published papers, of which the bibliography doesn't claim to be
a complete list, and the continued interest can bhe assessed hy
noting that at the Symposium on Gyros h=ld in London in 1365,
there was more discussion on the paper by Hunt and Hobhs than on

most of the other papers that werc presented.
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l.3 Research at this University

The main difficulty in carrying out reséarch into gyroscopic
instruments at University level is the high cost of manufacturing
any inertial sensor to the accuracy necessary for present day
requirements, Therefore the main task must be to develop the
basic principles and to test out the theory with relatively
inexpensive apparatus which cannot be expected to have great

accuracy or sensitivity,

Research on a double torsion type of vibratory rate sensor as
an alternative to the tuning fork had been carried out here up to
1961 by McLean. A modified device of the same type was considered
as it appearsd to incorporate some improvements, however the
conclusion was reached that this type of instrument did not have
any significant advantages over the tuning fork (this is
discussed in more détail in chapter 2). However this work did
lead back to a consideration of the fundamental equations
governiing a vibratory rate sensing device, in particular the
consideration that these instruments possessed two degrees of
freedom; the theory, as it is usually presented, assumes that the
amplitude to the forced sensing vibrations remains constant (it
is normally maintained constant by a control system) this means that
only one equation. of motion is involved and the system effectively

posscesses only a single degree of fraedom,

Consideration of the equations of motion for a fundamental

vibratory ratesensor led to the theory descried in the main part



of this thesis and to the construction of a device capable of
measuring down to rates of the oraer of l,OOO‘O/hr° In order to
be of inertial quality a gyroscope must be capable of measuring
down to about 1 min. of arc/hr. i.c. a sensitivity 6 x lO4
greater than that achieved; however the device was not constructod
with the object of producing a practical instrument so that a

considerable improvement in accuracy and sensitivity should be

possiblas,



CHAPTER 2

Preliminary Investigation and First Experimental Set=Up

2.1 Preliminary Investigations

The previous work carried out by McLean had concen-—
trated on a double torsion type of vibrating gyro,
fig,2.141., which differed from a conventional rotating
wheel single axis rate gyroscope in that the rotor,
instead of being rotated at constant angular velocity,
was attached to a torsion shaft and excited at its natural
frequency about the axis Oz. This meant that rotation
about the input axis OY caused the system to vibrate about
the output axis 0X, the amplitude of the steady state
vibration being proportioned to the imposed rate of turn
’about oY.

It is the Coriolis acceleration that is employed in a
vibratory rate sensor and it seemed that McLeans device
suffered from the disadvantage that a considerable propor=
tion of the mass of the rotor, that adjacent to the OX
axis, wvas subjected to very little Coriolis acceleration
when rotation took place about 0Y, A dumbell shaped
sensitive element where the mass was concentrated around
the position of maximum Coriolis acceleration, viz. near
the input axis OY, would appear to have considerable

advantages,

7
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Theory

The device chosen is shown on the photograph, fig,
2.2.1,, and diagramicticnlly in fig.2.2.2. An additional
advantage of the design was that the conventional gimbal
of Mcleans device could be replaced by an internal gimbal,
consisting of a clamnping unit between the two shafts, with
a consequent reduction in weight and output axis inertia,
The sensitive element was vibrated about the Oz axis
through an angle o(= > sin¢~%t at the natural frequency
about that axis,oqa, and the angular deflection,/za about
the OX axis, measured.

Taking axes OXYZ fixed to the.vehicle and rotating at
angular velocity

T-T +0,T+0,K (2.2,1)
(where I, J, and K are unit vectors along 0X, OY and 0Z
resbectively) and axes Oxyz rotating with the sensitive
element throﬁgh an angl?/(5 about OX, so that their

angular velocity

— - - [;

W =Wt 0| ey (2.2.2)

(where 1 3, and k are unit vectors along 0x, Oy, and Ogz
2 ’

respectively) fosg%&&is given by

W, = 52, + /3

W, = Qz_ + ﬁ;ﬂ . (242,3)
Wy = S, — 525/3 )



Fige 2.2.1 Double torsion vibratory rate sensor
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FlG. 2.2.2

Double Torsion thrator_y Rate Sensor

FiG. 2.2.3
Moht+ Cilrcle for TRotation of the

CSencibive Element abkouE O>



If the sensitive .lement has principal moments of
inertia Al, Bl,' Gl’ the moment and product of iner'biAa,
Wer.t.0xyz, due to rotation X about the axis Oz are

determined from the Mohr circle, fig 2.2,3 to be:

A + B A - B
I§o< = 1 > 1 + - 5 cos 2c(
B A, -B '
I.g’.Y = ———:’L‘Al ; 2 5 1 cos 2 (2.2.4)
- B
Iécy = "Al ) 1 sin 2e¢
also Iz = ¢,
(242.5)
and I}'rz = Izx = O

The angular velocity of the sensitive element, assuming
that all the rotation relative to OXYZ takes place about
0X, is w + =« k so that, from Arnold and Maunder
equation 35 page 91, its relative angular momentum Hl =

Hl-{ + 1{23' + h3k has components:

] Lo (R, + 3) + Fe (R, + 5, 2)

fy
1

h, = Iﬁry(Slz-t—ﬁsﬁ)-t-'Fo((S?.\-*-/:é) (242.6)
h, = I'zz(ﬁ:,‘ﬂ;/'s +C;<\)
where F = A, =~ B (2.2.7)

From Arnold and Maunder equations 33 page 90 the torque

about the output azis is given by:

Tl = hl-h203 + h3¢.>2 ' (2.2.8)

9.



vhers hl,‘h2 and h3 include the angular momentem

of the clamping unit, i.e.

hy = b + A, (53,+4)

hy = h, + B, (5%,.4) (2.2,9)
4
by = by o+ G, (5, 8)
where A

X B2 and 02 are the principal moments of inertis

of the clamping unit about Ox, Oy and Oz respectively.
If the output shaft has viscous damping constant c

and stiffness k, from ocquation (2.2.8) we have:
Skp—cp - HLL P ANR A + (Ll v2)
-+F&(ﬁi+ﬂyé+ﬁye)+?&(ﬁifﬁ#@3
~§( Iéjmsz)(sz; R 2 2,-2, &)
+ Fx (52,+/é)(523—511/&)3
+ (T +C X, - Ry RN, + R )
+ 1 (5, + 523/:)2 (2.2.10)
Assuming that ««}, from (2.2.4):

= A

';'ét

1
|
Iy 3 B (2.2,11)
drs
XX — . * e .
It —(Al - Bl) 8in 24 . & =-2 Fxex
so that, taking A = A, * Ay, B = B, + B, and
C =6 + C, (the principal moments cf inertia of the

sensitive element and clanping unit combined about

10¢
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Ox, Oy and Oz when the system is not vibrating) and

rearranging (2.2,10):

LA+ S - 2F°<;(}ﬁ'+ fi + Fas'?.B +Ffl, - 135132

2 2 2 .
B+ PSR, + 0% 0N cldn;_%

EBQZRB—CRZQ;ﬁz * FxSi, B4

-Anl + 2F o¢ ml - Fozﬂ_z - Fo<.57.2 + 3522513

+

+ Fa N L, - G50, - Cpoe 3L, (2.2.12)
If k>> second order terms in = and S2 and if we can
neglect second order terms in =< andﬁé on the L.H.S.,
equation (2.2.12) reduces to:
=-AS2 + (B - C)SL 5,
+ FMSLBSll - (F+ Cl)o'dlz
- Fx L, + 2F ot R (2.2.13)
Examining the solution for the case when a2 is
constanf, so thatﬁ:ll = )"12 =5:13 = 0 and assuming that a
pick—-up sensitive to oscillatory motion only is employed,
so that the constant forcing functions (i.e. those not
containing o¢ ) can be neglected, we have:
IR

Fo<5?.3>’zl - (F + 01)04512 + 2Fo<od11

]

I

Foco}lBQl sinc t - (F + Cl)oc.oo..’)OSlz cos w t

2 .
* Fot ooo.Ql sin2w t

(2,2,14)
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This is a standard second order linear differential

equation having a steady state solution:

/6 _ Fxg Uy 52, M,n(w k- cp) (F+C)><Ow S, cos(wot - (())
A (-} +Q 7 w.s)

+ Fo(:coo U, sin (200,€ - ‘q,))

. 2 3 5.
A/(q‘wo~wf) +(4Zw.w,) (2.2.15)
where  , _[|, the undamped natural frequency of the
[ A

system abhout OX

-——L——.-—
Z = ZJ‘A le the damping ratio

— 28,0,
arclan |7 G252
O (__ 4.”_Z__‘:)_._9_&

“(’\)v\

u

®
L4

"

From (2.2.14) it can be seen that, for £& 1 , the

maximun response to the first term will occur when

O, = W, i.c. when the undampod natural frequency about
OX is approximately equal to that about Oz.
For the case W, ="

-f?-

P-F and Y=arctan (-%57)

0/6:_?10513{1, coc wot—(”d oK Iy cin et
28007 2AZ w,
2
+ F oy S,

sin [Zcoot — a+rckon (— %ZE

(2.2,16)

3A wo\/l - (53: z)z
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Notes on the steady statc response to a constant jz

1.

3.

Lo

5.

243

/é§ depends upon fl,and S}isas well as the value of jﬂ;z
in which we are interested,

The first term in S, 52, has a factor - in its denomi-
nator which will make it less significant than the

second term,

The third term in.Sl‘will not be very significant if ), = W
also it contains c(:' in the numerator which will be

very small. In any case it is possible to attenuate this
signal by employinga filter tunod to the frequency Qo
The first two terms are 90-O out of phase, so it is pos~
sible to discriminate between them by measuring the in-
phase and quadrature signals of the output/ﬂg.

The second term has its amplitude proportional to _flland
the dirsction of rotation can be determined by noting
whether the signal is in-phase or 180° out of phase with
the input o« ; therefore the device should be capable of
being used to determine the magnitude and direction of the

rate of rotation about 0Y.

Experimental Set-Up

Only a general description of the device itself will
be given as it didn't prove too successful and is not the
subject of the main part of this report. Referring to the
photograph, fig. 2,2,1 and the letters on the diagrammatic
sketch, fig, 2.2.2: the square sectioned output shaft and

clamping unit A was made in one picce, the shaft being
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clamped at B by heavy blocks to a baseplate with provision
for altering the clamping position to adjust the natural
frequency; the 'H!' shaped sensitive element unit, C, was
square sectioned and clamped at the centre of the hori-
zontal member into the clamping unit; two heavy blocks,
D, were attached to the top and bottom of the uprights to
provide the main sensing masses.,

Initially the device was excited to oscillate about
the 0z axis by the electromagnet shown in fig.2.2.1 but an
alternative method, consisting of a Goodmans moving coil
vibrator attached to the four legs at the top left of fig.
2¢2.1 with a rod passing through one of the clamping blocks
onto the upper mass D,was also employed later to give larger
amplitudes. The torsional oscillations about 0z and OX were
measured initially by strain gauges attached to the appro=
priate shafts but a more satisfactory method for laboratory
purposes was to use two Bruel and Kjaer accelerometers
mounted on the outer faces of the blocks D and aligned
along OX and Oz,

The necessary power for the electromagnet or the
Avibrator was supplied by a Goodmans power oscillator and,
when the accelerometers were being used, the signals could
be displayed directly onto a Solartron solarscope CD1014,
the amplitudes being measured by a Philips GM6012 valve

voltmeter.

The device itself was attached to a Bryans gyro instru-

ment test table mk.4A, capable of being rotated at up to 3 rpm,
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The power leads to the vibrator or electromagnet and the
output leads from the accelerometers were brought via an
overhead cantilever and no slip rings were employed; this
limited the number of rotations that the table could be

allowed to perform,

Results

The main difficulty that has been experienced with
vibratory rate sensing devices has been the unwanted

coupling that exists between the forced vihrations of the
sensitive element and the output shaft, resulting in out-
put signals when the device is not rotating (zero signals).
In this device the coupling could be caused, for example,
by a mass unbalance in the sensitive element, non-orthogonality
of the shafts or the misalignment of the excitor. It can be
shoun that the inertia coupling effects (proportional to
acceteration) can be balanced out by the addition of a suit-
able mass to the sensitive element but there is also the
possibility of damping coupling (proportional to velocity)
and stiffness coupling (proportional to displacement).

Consequently the device was first tested rigidly
attached to a banch and a balancing operation carried out
by means of adjustable weights attached to the blocks D
(figs2+2+2)e It was found possible to reduce the zero signals
but not eliminate them entirely.

The device was then mounted on the turntable and here a
major difficulty became apparent, viz, that the response of

the sensitive element to the exciting force varied



considerably with the turntable orientation; this was due to
the fact that the turntable itself was not very rigid and con-
sequently its receptance varied slightly with the turntable
position., In combination with the very low damping ratio of
the device, this meant that the position of the resonance
peak varied with turntable orientation causing the varying
response,

By mounting the device on a rubber pad it was possible
to minimise this effect a little and it could be demonstrated
that the output accelerometer signal increased fairly
linearly with time; however, the graphs obtained were not
sufficiently consistent to make them worth including in this
report,

The main characteristics of the system that could be
measured or calculated were:

Fundamental frequency w, = 140 Hz = 880 rads/aec -

0.,0028

N
<

Damping ratio

A % 0,105 Ib in sec’
Moments of inertia
2
B + 0,031 1b in sec

£ 0.080 1b in sec?

l v

of the sensitive 1
element ( C

Substituting these values into equation (2,2.16) the

expected response of the system would be:

/3 = -1.63 x 10‘4513521<><0 cos et

-0.29850, &, sinw,t

+5.55 x 10‘45‘Llo<02sin 2 Wt : (2e4.1)

It can be seen that, except in exceptional circumstances,

the second term should predominate and‘/éé_% -0.298522sinc£5t
¢, (2.7.2)
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It was apparent that the system would need substantial
modifications to make it work successfully so it didn't seem
worth while parsuing this line, particularly when the results
of the work on torsion oscillator gyroscopes at the R.A.E. by
Hunt and Hobbs were available: they show that only two basic
types of instrument of this type appear to have any practical
possibility of success, and both of those require a sensitive
element consisting of two bodies oscillating in anti-phase,
supported at a nodal point.

However, several things had been learnt from these experi-~
ments, and other reports on this type of instrument, which
eventually suggested a more fundamental line of research, .As
stated previously, the main difficulty in constructing an
instrument of this type with sufficient accuracy has been
the coupling effects causing unwanted zero signals, therefore
it seemed that a comprehensive study of the effects of the
various types of coupling was required.

The other aspect that seemed worth investigating was the
relationship between the output oscillations and the exciting
force: the work in this chapter, and most of the other
papers, assumes that the exciting force is controlled to keep
the forced amplitude éonstant; this effectively reduces the
system to one with only a single degree of freedom as only
one equation is involved (in this case the torque equations
about the output axis derived from (2.2,8) in which X, is

assumed constant). In fact the system possesses two degraes of
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freedom and if the -amplitude of the exciting force, rather
that the amplitude of > , remained constant a further equation
involving T3, the torque about thc axis 0z (fig.2.2.2) would
be involved., Rather than develop the second equation in this

case, 1t seemed prefergble to deal with this aspect for a

more fundamental system, along with the effcects of coupling.
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CHAPTER 3

Theory of the Fundamental System

Genergl Theory

Congider a point macs m constrained to move in the plane
Oxy of a rectangular set of axes Oxyz, which are rotating in
space at an angular velocity L= jlif +.5223'+ leE'about a
non-accelerating origin O (fig.3.1,1). When displaced froa O
the mass is subjected to a restoring force!:

~(cx + kx + Ciy + cd& + csyff

~(ey + ky + cX *eX + csx)}‘

assumed equcl in

"o is the damping cocfficient
the two directions

k 1is the spring constant

where c, is the inertia coupling cocefficient cqual in the

two dircetions
for a conserve
ative coupled
systoem.

¢. is the daaping coupling coefficient

¢_ 1s the spring coupling coefficient

The mass is excited by = force (PleJ“t)I of congtant
aaplitude Pl_and at frequency w.
The absolute acceleration 2 of the mass at position

-

r =xi +yj + zk w.r.t, Oxyz is given, in vector form, by:

c'l
N
1

a =

1
I N

where (}3_% Xi + yj + 8k

and sz

dt?

represent the velocity and acceleration of the mass relative

i

Xi + ¥ + 3k



kj-i—ci.j

+ C X + Cyx +cox

T:Lj 3.1.1 The Fundamental Systgm
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to Oxyz. In coapononts;with z =2z =3z =0,
A =a,1+*a,j*akboconos :
a a,1 + anJ + h3.< bccon
o - 2 2 .
O'l X+[-yﬂ3-x(5)-2 +ﬂ3 ) +yﬂlﬂ2 -2yﬁ3

1

. - 3 2 . .
a, =y +L X'QB - .}’(Q3 +Q’l ) + XQ;_-LQQ] * 2Xﬂ3 (3.1.2)

3 [(yﬁl - XQZ) +Q3(y_Q2 + Xﬂl)] + 2(,}"0»1 - X%

Applying Nowtons sccond law for notion along Ox and Oy,

a

the cquations of motion becones

Ploj“‘)t = (ex + kx + ci:y' + cdjr + csy) = ma,
, . , (3.1.3)
- (cy + ky + c X * X *+ csx) = m,
Substituting for a, and a, from (3.1.2) and rcarranging:
mx + cx + [k - m(Qz2 + ,\'132)})(
. ~ o . oo s A
*oy ot (cd 2n93)y + Lcs m(.Q ...1.12)
=P jwt
1 ¢ (3.14)

my + cy + [k - 1n(5232 +'Ql2)jy

+ ciii + (cd + Zm%)}k + [cs + 311(3‘73 ""'Ql.()Z)]X
Putting (3—:1(.)4) into the gencialiscd fora by dividing through
by m wo have:
%0 2w+ [0? - (5,2 + 0D
+uy+(wu ZQ)y{Qu-(ﬂ 51.19?}
=W, 2X cJ t
3;+2Z@y-+@ SOKRY
+ux+(mu +2S7.)x+[wu+(ﬂ.+ 92)]

(3.1.5)

=0
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-
where wn = / %ng the uncoupled undaaped natural frequency
_ c Qs .
Z = 2732‘ the damping ratio
= cl
u; :1- th¢ non-dimensional inoertia coupling ratio
%a
4 = 5 the non—diacnsional daaping coupling ratio
X
c
u, = _3 the non-~dimcnsional stiffncss coupling ratio
2 ¢ m
XS = ﬁ The deflection due to a static force Pl
k

From equations (3.1.5) we are intcrested in deteramining the

variation of x and 7 with 5.

Uncoupled system rotating about Oz under frce vibraticn

In this case u;, ug, u,, 511, 57_2 and X are all zero and
(] (S

i’
equations (3,1.5) rcduce to:

x+23wx+ (w - N )x—Z.Qy-.Q.By = 0
(3.2.1)
y+?Zcoy+(w -51 )y+2.Q.x+.Q.x: \
For an undamped system with QB constant we have:
%l - S - 205 = o
. 2 2 , (3.2.2)
y+(wn -'QB )y+29.3x = 0
Putting x = xoe’xt
, (342.3)
Xb
y =y,

o

into (3.2,2) gives:
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(N2 +wn2 —ﬂ32)xo - (293\)y0 = 0
) ) , (342.4)
(XN +w -2, )y0+<2513>)xo = o |
yielding the characteristic equation:
2 2 2.2 o~ 2 _
(X" + 0 =05 + (25L0)% =0 (3.2.5)
i.e.
N 23N (0 -0 =0

N T jQB * -5232 - (wn2 Q.3

J’(*ﬂ3 *tw,)

i.e. the four roots of (3.2.5) are :

M=t - w)am X, =230, v o) (3.2)

Substituting in (3.2.4): for >\l 5 <&) + 3
5 ,1,3

Xo

.yo _
for XZ,A, <__ J

Xo Rsd

so that the solution to equations (3.2.2) is:

X = A exlt“‘Age)\Zt + A e >\Bt + A e>\4t
1 3 4 (3.2.7)
= j3A xlt A e>\2t + A e>\3t A e>\4-t2
JTdME T~ Ay 3 TR )

which can be written :

X =Bl cos(S}3 - wn)t + B? sin(ﬁ3 - wn')t

+ B3 cos(QB + wn)t + B4

y =By sin(ﬂ3 - w )t + B, cos(SZ3 - )t

in(Se, + )t
SRS T (3.2.8)

- B3 sin(Q3 + wn)t + }3ZP cos(.Q3 + wn)t

where Al-A and Bl—A are initial value constants. If, at time
= 0, the mass is passing through the origin with unit velocity

along Ox (i.e. x=1, x=y=y=0 when t = 0) equations (3.2.8) become:
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X = '2-2‘:1‘:)-1; g— Siﬂ(QB - (A.)n)t + Sin(QB + (A-)n)t) -
- ~ (3.2.9)
y = -2'%% % - cos(QB - C«Jn)t + COS(QB + wn>t}
or x = c%‘- cosQBt sinwnt
n (3.2.10)
y= - (-j- SinQBt sinc t
n

i.e. the mass vibrates at frequency @y along a straight line
which is rotating at angular velocity —9.3 about Oz as shown in
fig. 3.2.1 ; this is the expected result viz. that the mass will

continue to vibrate in the same straight line in space.

From equations (3.2.8) it can be seen that the natural

frequencies of the rotating system ar'e‘s\c3 —('Jn‘ and
’QB + wn" Plotting the non-dimensional ratios"Qz -wn‘ =
)
n
‘QB - 1‘ and‘nz +wn\ = |Q3 + l‘ against S}} = 23 on
W, o

fige 342.2 shows how the natural frequencies vary with the

rate of turn.

For a damped system equations (3.2.1) can be solved, but
it is apparent that, for ZAL 1, the two natural frequencies will
be very close to those obtained in the undamped case aad the

amplitude will decrease exponentially with time,
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3.3 Uncoupled system rotating at a constant angular velocity about Oz

under forced vibration

In'thls case u,, g us"SzJR §2 5 and.fl3 are all zero and

equations (3.1.5) reduce to:

. : 2 2 co_ 20 jeot
x+2Zconx+(oon -57.3 )x—29-3y =, Xe ( )
. 3.3.1
. . 2 2 .
y+2zwny+(wn -Q3 )y+2523x = 0 )
The steady state solution will be of the form :
_ jwt
x = e (3.3.2)
¥ YeJcot
which, substituted in equations(3.3.1), gives:
[(—02 v - 52 2) + j(2Zwu )]x - j(2w93)Y = %X
t ! 3 Cn BT (3.3.3)

[(-co2 + wpz -57_32) + j(ZZuwn)]Y + j(szB)x = 0
Non~dimensionalising by putting r :=£§X the frequency ratio;, and
Qg= Eés we have:
A

[— (r? +Q32 -1) + j(2ZrﬂX - j(ngLB)Y = X,

[ (3-304)
EERY T 3% + s ) =0
From the seeand of these equations :
r _ il (3.3.5)

X (R 12 -1) - j@Zr)

- 2T Q3 — g(-ZZr) + J(I‘ +Q ? -1)j

(3.3.6)

3
i.c. the modulus ‘% 2rlﬁ ! (36347)

VS 2-1) + (24r)?
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N

2

and, for ﬂ3 positive, the phase anglef% =T - arc:tan,(r +'o§ 2 (3.3.8)
27r
2.1 2

and, for ,0.3 negative, the phase angle{% = 277~ arctack’ +{ -:9 (3.3.9)

\2Jr

The main intercest is the variation of

%\ and&. with QB and

it can be seen that, for Q:, 4& Z.’
N — ) 10
lxl éaz_l)@ . (221“)2}‘ 3‘ (3.3.10)

2
fx _ @-1) .
and X > TT - arctan 27+ if p3>0

(3.3.11)

r2 1
or —> 27~ arctan 1—?2 if J? 40

27r 3
From (3.3.1C) it is apparent that, for low values of 3 | X
varies linearly with IEB( and thercfore provides a simplc means
for determining its wvalue.

Il I .7

& as [ >ae, 5| =0 ana/i > 32T (3.3.13)

X
| X

(° + 4.2 - 1)+ (27x)?

/)

2
Werete QB’ when®

A ECRY IV ICY IR R FE R B LR (zzrﬁ}.zQB

i.e. QB = é/(rZ - 1%+ (27r) (3.3.14)

The peak value of

s as QB varies, occurs when |

is a minimum; i.e,, differentiating

I 2r _
leax VA RIE VRN CY SULRRTSAS)

and {% with ﬁB’ typical

curves are drawn on figs. 3.3.1 and 3,3.2 , the figures chosen

(3.3.15)

and this gives

To illustrate the variation of ‘%

being Z = 0.1 and r = 0.9, 1.0 and 1.1 (the curves were drawn from
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computer calculations as descrihed in Chapter 4). It can be scen

X
sensitivity to small values of Q,

3

the value of this maximum sensitivity is:

that decreases with increasing r but that the maximum

s le.e. the maximum slope of the

3

against‘QBl curve, occurs when r =1, from equation (3.3.10)

'%, = j? (3.3.16)
Tzﬂ ax for 73

Wske Z

From fig. 3.3.2 and equations (3.3.11) it is apparent that
there is a step change of 180° in the phase angle curve as Jz
passes through zero (it is indeterminate when 'QB =0 as‘%! = 0)
and this provides a means of determining the direction of
rotation., |

So far the investigation has been concerned with the variation
of % with QB but, returning to equations(3.3.4) and substituting

fromequation (3,3,5) it is possible to determine the variation of

Y X ,
X, and X, with 113. Substituting for X froam (3.3,5) into (3¢3.4)

we have:

v - j(erl)

Xs - g(r2+,0_32-1) - j(ZZr??}z +gj(2rQ3)?{2

(343.17)

This is a more complicated expression. to svaluate then the one
for % and the use of a digital computer, as described in Chapter 4,
is desirable; however it is possible to see from (3.3.17) that,

for the regions of primary interest,‘JzBlégzz
¥ -j(ZrQB)
Xs 5(:‘2-1) + j(2Zr.)22

(343418)
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2 |4, €
—_— 3.3019)
(r* = 1)% + (270)*" 3 .
The maximum sensitivity for low ,Q. 3 now occurs when

e =%§(1 ~27%t 2/1-772 e } (3.3.20)

its value is plotted on figure 3.3.3 and compared with the maxi-

>l

i.c, ’
s

mum sensitivity of

%{; it can be seen that is is greater for

Z < 0.53.
The variation of % with 'QB is obtained by. substituting from
s
(3-3-5) into (3.3.17) viz:
§ §
X Z(r L) - 5T (3.3.21)

g(r + Q. ~1) - J(ZZr)}Z ZJ(Zrﬁ?

In this case for {»63' 4(2

1 1
(r°-1) = §(2Lr)  (1-r°) + j(27+)

X o 1 -
t JaT @17 }

v e ‘ : (303.23)
and &—9 - arctan(-i-_zxz\) B

which is the expected responsé of a single degree of frecdom system

(3.3.22)

X
X"»w

or

to forced vibration.

Plots of % and % against 23 and a more detailed discussion
s 8

of the results are dealt with in Chapter 4.
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3e4e The effect of coupling on the system rotatingat constant angular

velocity about 0z under forced wvibration

In this caseﬂ.l,ﬂ.z and QB are zero and equations (3,1.5)
become:

X + 2an>.c + ((.Jn2 —QBZ)X

. : 2 2. jet
+ - =
¥ l‘liy ( wnud ZQB)Y * Qn Llsy wn Xse
v+ 2lwy+ (w2 -0y (3e4.1)
n n 3 2
*uxot (aonud + ZQ_B)X *fux = 0

For the steady state solution we again use the substituticm (343.2)
and non-dinensionalise [cf. equations (3.3.3) and (3.3.4)]to give:
[ « -1)+3(22r)]X+)_—ur+u)+3r(u-29)Y=X
[ 2 -l)+3(27r)]¥+[(-—ur+u )"‘JI‘(Ll +2£)X=O

S? (344.2)

From the second equation:

y (-ulr2+u)+3r(u +2}2_) (3.1.3)
Y I I s

and by substituting in the first equation the variation of% and
s

% as Q3 varies can be determined; however the analysis is rather

s

complicated so a computer program was considered advisable to ahalyse

these equations. As these results are the main point of interest,
the construction of the computer program and the analysis of the

theoretical results are dealt with in Chapter 4.
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345 Transient response of the uncoupled system

’ lls"Ql

Consider the effect of a change in .QB with ;s Uy

and 522 all zero. Equation (3.1.5) reduces to:
% o 3 2_N ? . ¢ _ 2, jet
X + ZZ.unx + (wn -)7_3 )x - 2513,}’ -57.3y = w\n Xse ( )
. 36501
y o+ Zanjr + (wn2 —QBZ)y + 2.57.3}2 +,Q3x = 0

These equations are very difficult to solve as they s;cand if
: QB varies with time; however, as we are mainly interested in small
values of ﬂ—B, we can make the assumptions for this investigation
that _Q32 can be neglected and that the amplitude of x remains
constant during the change [justified by equation (3.3.23)]. It
is them only necessary to consider the second of equations (3.5.1)

jeot (345.2)

with x = X'e
then, considering the response of y to a suddenly applied QB, we
have:

37: + ZZfAJny +C«.)n2y = - J(20J5).3)X'ejwt (3.503)

This now a second order linear differential equation with constant

coefficients, the solution being the sum of the particular integral:

. 1 Jwt . 4 .
-jRwf)xre’ o PGl gkt (34504)
(=) = 3(20ay)  (1=°) + 3(275)

ch. equation (3.3.5 ):]

and@ the complementary function which, for ZL 1l, is of .the form
-l nt » N
y =Ye Jeon cos (mn/l - Z t *»’"Pl) (3+54.5) _

where Yl and Q)l are initial value constant.

This means that the transient amplitude, given by (3.5.5),

- t
decreases as Yo Geon leaving the steady state response (3.5.4)
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As the primary concern here is with values of r close to unity
and small values of Z, consider the general solution for r =1,
and [ 4 1, then, taking x = X'cos wt, from (3.5.4) and (3.5.5) we

have:

wyt )
y =Yje -z cos(wnt - CPl) -2 % cos et (3e545)

4

a.ndify’-‘-y"Owhent-—O @—Oanle 'Z;X'

{ ant 3‘2 X'cos 6\) t (3-5.7

i.e. there is an expcnential lag of time constant Z—l- in the response

1

iee ¥y

of |y| to QB'

Response of the uncoupled system to a constant 392

In this case Ugs Ugs U and JL_ areall zero and equations

3
(3.1.5) reduce to:

X+ Zan}'c + [unz - (,Q22 +ﬂ32)]x - 293:} +5‘11Q2y'*—-(...>ansejLJt

' ) 7 (3.6.1)
y+ Zzwn.{r +[<on2 - (3L32 +5112)Jy + 285+ Shx

i
(@)

By comparison with equation (3.1.5) it can be scen that the terms in

51157.2 have the same effect on the system as a stiffness coupling ratio

Y
s - -w—z— 1 (3.642)
n
5 | N
where Ql =le and £2=-w—r21

so the result can be computed in the same way. However, by comparison
with equations (3.4.2), the steady statec solution of equations (3.6.1)

is given by :
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]
>4

["(r2+622+ ﬁsz_l) + j(2 Zr)]X + {Qlfzz-j(ZrQB)]Y
[-—(rZ_"_ ﬁ32+Q12_1) + J'(QZI‘)]Y +[ﬂ102+j(2r%)]x o (346.3)

From the second equation:

. L 0+ (2ed)

TR LA P - (2T

(3.6.4)

from which it is apparent that the resoonse to ’Q]_]ZZ is 900 out of

phase with the response to E3 and could therefore he déscriminated
against. The ’Ql2 term in the denominator will gffect the position
of the resonance peak; however, for the most interesting cases when

.—6_ is small (ﬁl’Q2 and QBAZ.-Z), the terms in ,QZ and Qlﬁ2 become

insignifican* and the QB term will be predominant,

Response of the uncoupled system to a sinusoidal input

As for the transient response in Section 3.5, the complete
equations (3.1.5) are effectively impossible to solve in the general
case for sinusoidally varying rotation of the form §_=ﬁ/sin W',
where ﬁ/= 52'1? +Q;:]_ +57_;Tc- is a constant, as time dependent co-
efficients of x and y are involved, However, if it can be assumed
ﬁ/ is sufficiently small, so that the amplitude of x remains
constant in the form x = X' sincst, from the second of equations
(341.5) we have:

y o+ Zan,}} + [wnz - (QJ" 2 +D_’3_2.)sin2‘-.)’t]y

= 208 X' 'sinw't coscwt - W' U Xeos 't sin eot

-Q;_ .Q;-X,' sinzw't sin wt (3.7.1)
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R 2 U2 2
or 3;+22wnj+[(mn2— —1—2—3— ) + _:1:___2_3__ cos ZQ‘Jy

= —wﬂ; X! Esin(w +o' )t = sin(w - ! )tg
et S X'Zsin(co+co' )t + sine = )tz %ﬂ'lﬁ;"x' sin et

+&-52£ ﬂ;flx‘gsin(w-* 2!t + sin(ew - 2w')t?) (347.2)

This is a modified non-homogeneous form of Mathieu's equation
and the variable coefficient of y on the IHS indicates the possibility
of ingtability if ! & e, (or more unlikely, whenco! % %;ur)l, ;—131% ete),
depending upon the values of Qi ,52/3 and Z o If! ,'f-wn, as ﬁ/_?
is sm.11,thz solution to cquaticn (3.7.2) should opproximste to that

of the reduced linear equation withthe IHS: §y + 2Zcon,§r +cdn2y

Confining our attention to the cacse when co= u.)n and ZL 0,2
(giving a high resonancs peak), by examining the RHS of the reduced

equation (3.7.2). it can be seen that, if co' is not very small, the
/
o

this is the only one varying near the resonant frequency; i.e. the

/
dominating response will be due to the term -%Ql S52.-X! sin oont as

steady statc response for co! ¥wn becomes:

s/ /
1 Yt s !
; & 2521 .Q2 X 4005 wnt _ QJ_'QZ X' cos w t (3.7.3)
27w, L7 n
/ .
g -k P,
where 1 = o, and 5 =,

For the case when u'&wn with w= w the steady state response,

from (3.7.2 ), approximates to:
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'X' cos W't
) cos wnt
ZZw
|Q 1yt

il

/ la 1
- 1.2 ' |>

(W- X! cos 2 o't COSC\)nt (3-704)

2,

predominate, i.e. the steady state value I y55| will be proportional

(Q 'X’ sincott
sin W t
n
1

cos c_)n t

and, as ﬁl; ! ana ' are all very small, the first term should
'Q3 :QB' sinco't
To summgrise for sinsuoidal response if o= wn; (y' will follow
QB for w'&wn, but for higher values of wy'! the output due to 10,3
is sharply attenuated and ]yl will approach a constant value
proportional to Ql' ,@2': in addition there is the possibility of an
instability if ! —> W, (or %oon; —%wn etc., but these are considered

unlikely).

The effect of an accelerating origin O

If the origin has acceleration A = Al—i- + A23- + A3—IE the absolute
accelerations a;, a, and a3 given by equation (3.1.2) contain
additional terms Al’ A2 and A3 respectively; therefore, comparing with

equations (3.1.5), for the uncoupled system the equations of motion

become
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X + 2an5c + [_wnz - (5222 +S).32):(y

. . ., 2, joot |

- 257_3y - (.{23 "-lezg)y —-Cdn XSe —Al (30801)
i+ 27wy +[‘“°n2 - (52 +ﬁ12)]y

f2fk e (S, +RNQ)x = -4,

If the system is not rotating and is subjected to a constant

acceleration A the steady state solution for x and y will contain
additional constant terms in Al and A2; i.es if x and y are measured
by pick-offs sensitive to oscillatory motion only, the results will
not be eaffected. However, if the system is rotating and accelerating,
then Al and A2 will be time dependent and can be considered as
additional forcing terms: for example if A is constant, or the system

is in a constant gravitational field, and SL is constant, then Al
and A2 will vary at frequency_ﬁl, but as long as co %=0Jn and

ST #Ckh the steady state motion due to A should be negligible.

The effect of applying an additional exciting force in the direction Oy

u. +
If an exciting force P?eJ&dt 1V), at the same frequency <o as the
force in the x direction, but leading it by an angle'u/, is apnlied in
the direction Oy, equations (3.1.5) become modified to:
.. . 2 2 2J
+ + -
X ZZAEX [ah 012 +Q3 " x
. . 2 S
+ . - - -
*uy (c.,nud 25?.3)y + [wn ug (57.3 ﬁlﬂz)]y
2, Jwt

= Xe (349.1a)
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:V. * Qanjr {wnz - (Q 32 +S}.12)]y
+ uiié + (c-.)nud + 2Q3)}'c +!:c,on2us + (QB +91Q,2)]X
_ ¢ (et y) :
- wngyse‘] v (349.1b)

P .
where Y’S = -k—2 the defleztion due to a static force P2.

Considering the case when 51 =;57_3—12 = constant; by comparison

with equations (3.4.2) the steady state solution is given by:
2 2 . 2 .
[—(r +£3 -1) + J(2ZI‘)]X + [(—uir + us) + JI‘(U.d - 2,{23)}{
=X
S [
[—(rZ +Q32 1) + j(ZZr):lY + {(—uirz + us) + jr(u.d + 223)}}(

/ J\V
Y e = Y a
S S (S y)

(3.9.2)

The additional exciting force can he employed in two ways viz.,
(a) to cancel out the zero errors due to U, Uy and g i.e. to make

Y =0 when . =0 or (b) to keep all the vibrations along Ox (i.e.

3
Y = 0) for all values of ,QB. Considering these two cases separately.
a) Making Y = O when ,Q,L =0
3
From equations (3.9.2), if X = X and Y =0 when ,QB =0 :
[-(r2 -1) + j(2Zr)]XO = X
(309»3)
2 . _
[(—uir + u.S) + Jlud]Xo = YS
(-—uir2 + us) + jrug
LeCo IS = 2 . XS (30904)
-(r~ -1) + J(2Zr)

Substituting this value into (3.9.2) and eliminating X_ wé have:
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[—(r2+232-1) + j(ZZr)j[-(rz—l) + j(2Zr)]
-[(—uir2+us) + jrua] [ (-uir2+us)*jr(ud-2 ,Q.B)])Y
= g[(-uir2+us) + jruq“,[—(r% QBZ—l) + j(ZZr)}
—I_—(rz—l) + j(2Zr)][(-uir2+uS.) + jr(ud+20.3)]2x
if u, Uy and u, are all small (£ 1) by ignoring 2nd order of small

quantities this equation reduces to:

v ~_1132[(-ulr2+us_)+‘-jrud] - jzr’%[j'(rz'l)*j(ZZr)l .
X ’:(r2+ ,0,32_]_) + 3(2Zr)][-(r2_1) . j(2Zr):) .9.

and if { , is sufficiently small to make Q;ui otc 4 fZB

j(2rQ3)
(r2 +Q32 -1) - j(QZr)

% (349.6)

This is identical to equation (3.3.5) which represents the solution

when u;y 1 and u, are all zero, so tho effects of the coupling,

d
provided it is sufficiently small, can be cancellcd out by the

exciting force in the direction Oy,

b) Making ¥ =0 for all values of ,QB

From oquations (3.9.2), if ¥ = O:

[—(1‘2 +ﬁ32 -1) + j(ZZr)]X

= X
) - 5 (3.9.7)
[(-uir +u) + el + 2Q3)]X = Y
Eliminating X we have:
.Y_s _ (-uir2+us)+jr(ud+2 23) :
X B 2.9 2 3+9.8)
s -(r +£3 -1) + j(2Zr)

which is identical to the value -% obtained in equation (3.4.3). In

consequence the results can be obtained from thosc. to be computed in

Chapter 4 by noting that:
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Y Y’ P
5 5 2 Y
‘—X'SI =5 =37 =3 (349.9)
S s 1 computed
Ys Y
and/ 3 = =¥ /2 (3.9.10)

3410 The effect of a small difference in stiffness and damping betweecn the

x and y dircctions

If the stiffnesses in the directions Ox and Oy are k, and k2

respectively and the damnping coefficients cy and ¢, respectively, the

modified equations of motion, by comparing with equation (3e.l.4), -

become:
mx + cl)E + [kl —m(S?.B'2 +Q22)]x

tof (o - 2Ry ¢ [cs - (L, _nl‘nz)]y

_ jot
= Ple

) (3.10.1)
my + ooy * [kz - m(ﬂlz +’Q32)]y

+ 2mﬂ3)5c + l_c + m(S'Z3 +511Q2)}x

+.e.x + (c
i

d 3

= 0

Putting (3.,10.1) into the generalised form and examiningthe frequency
response for the case when 3 = 523.15 is constant, by comparison with

(3e4e2) we have:
['(r12+ £312"1)*j (2211"1)]}( ¥ [(-uir12+usl)+jrl(udl—2f31)]y =4y

(3.10.2]
[-(r22+ ,0,322—1)+;j(2 :er2)]Y + [(-uir22+u82)+jr2(ud2+2 %2)]}( =0
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. L X . w _ w/[k
T Tm T 205 T T oag w
Ql_f} :3/_k1 5 ﬂz:w = 3/k2
3 nl m 3 n2 ;;
h Zl = clér— 3 Z:2 0:2/ ——
whiere B - =
mkl 2Jmk2

UL = __;§~ = =2 5 u = °s = %5
= — = ; = = s
sl gym K 52 o%m X
n2 2
From the seccond of equations (3.,10,.2)
2 . {
(ma,r.“vu ) + jr{u,.+27_.)
i _ i2 82 2 d2 32
X (3.10.3)

-(r22+ ‘0-322-1) + j(z erz)

which differs from equation (3.4.2) for % only in the additional sub-

script 2; i.e. the results obtained will be unafiected as long as the
stiffness considered is that in the direction Oy. The expressions for
% and % will involve terms with subscript 1 and therofore will not
b: identical to the results obtained in Chapter 4; however, as the
primary concern will be with %, it is not considerad necessary to

examine the other solutions here,

Considering the cases, discussed in section 3.9, with the additicnal
forcing terms in the direction Oy. In case (a) by-comparins with
equations (349.3) to (3.9.6):
2'Q32)

2 2

+ - + 7

(2,2 + £, - 1) + 32 F,r))

i (2r

i - (3.20.4)
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again only involving terms with subscript 2. In case (b) however, by

comparing with equations (3.9.7) and (3.9.8):

2

(~u,r.“+u ) + jr, (u +2ﬁ
2

12+ £ = (3010.5)

3
31 ~L) ¥ i(2 4Ty

1

Y

=

X -(rl

this is now K times the wvalue -f—( obtained in (3,10.3) where
-( +L _1) + J(Zerz)

K (3.10.6)
-( ry +E -1) +3(22,r)

As the main concern is with values of r close to unity

= + S
let b 1 * 1 S <
where Dy and , are small quantities (44 1)
r = 1+ g
2 2
then if ’,QB L Z
K § —oiees (3.10.7)
o1 7353

i.es for small differences hetween 81 and 5»2 and hetween Z and Z

57 +7,7

(k| = g2+72 v 1 (3.10.8)
\ 1 -1
and { K = { Y7 - arctan == - | YT = arctan =4
S S
Z 2 Z 1
1 2
= arctan —S— - arctan g—- (3.10.9)
1 2
From (3,10.8) and (3.10.9) it can be seen that the effect of the small
Y
differences on XS is negligible but could significantly affect the
8

value of/——

S .
/ ii T*L / | (3.10.10)
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3,11 Summary

This chapter has been concerned with a basic linear damped spring
mass system and it has been shown that it is possible to measure.sz,
the rate of turn about an axis perpendicular to the plane of vibration
of the mass Oxy. It appears from section 3.2 that a method enploying
a free vibration system could not be made to work practicably as the
damping would have to be negligible and any unwanted coupling would

make the calculations very difficult; therefore a forced wibration

system will be required.

For small values of SL., it has been shown in section 3.3.that

both , 4

and, 1 vary linearly with the magnitude off) whilst the
phase angle§Zi and Z{_ provide a means of determining the sign of
f2.. The factors which might affect the response have heen shown to be

3

the various couplings, cj» g and c (section 3.4), rotations fll
and §Z2 about the other two axes (section 3.6), oscillatory variations
in the rotation $L (section 3.7) and an accelerating origin (section
3.8). The transient response will be éffected by the value of the
damping ratic zg (section 3.5) and this might be the deciding factor

in the choice of its numerical value,

The advantage of applying an additional exciting force has been
discussed in section 3.9, it can be employed either to cancel out the
effects of ;s %4 and cg or to provide an alternative method of determ-—
ing QB by measuring the magnitude ratio ;% and the phase angle
between the two exciting forces; a mismatch of the natural frequencies

in the two directions Ox and Oy is shown in section 3.10 to have little

effect on the results, except in this last case, provided that they are



referred to the parameters in the direction Oy.

Before going on to congider how thig basic system can be realised
. ' . . < . Y X X . N .
in a practical device, the variation of XX and X with 3 will be
s
considered in more detail in the next chapter,



CHAPTER 4

The theoretical steady state vibration of the fundamental system due

to a constant angular rate of rotation about Oz

The equations ohe2) in computer language .

As stated in section 3.4, a computer program was considered
desirable to evaluate, from equations (3.4.2), the steady state
response of the fundamental damped-spring-mass system, fige3elel, to a

constant angular rate of rotation (2 = .Yzéi. We require to deter-

mine and analyse the variation in the modulus and phase angle

I X p.S :
(argument) of X? Xs and Xs for different values of 'QB when r,}f ’

Uy, Uy and U have particular values.
In order to conform to the computer language (Atlas Autocode)

it is necessary to redefine some of the symbols:

Let d - = 7

u(l) = u,
u(2) = U3 . (4.1.1)
u(3) = u

and Q, = /23 )
As several factors in equations (3.4.2) keep on recurring, it is

convenient to evaluate these initially:

Let v(1) = (u(3) - u(1)r?) = (u, - uirz)
v(2) = (a(2) + 2D)r = (ay +2 ﬁB)r
W3) = @) -2Dr = (g -2L) (4+1.2)
v(4) = 2+ fPo1) 2 (R ﬁ32 -1)

and v(5) = ~2dr

—ZEZr

~——
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8 2 (44133)
0
Y _ ow1) + iv(2)

X v(4) * jv(5) (holed)

Equations (3.4.2) now become:
L@+ u(s)]x v o) + vy
~[(a) + ju(s)|x + E/'(l) + jV(2):\X

From the second equation:

]
>4

Il

Substituting for X from (4.1..4) into (4.1.3) we have:

Y _ v(1) + ju(2)
X~ MLy (D+5v(3)T = [v(@)+5+(5) )2

v(1) + jv(2)

v(6) + jv(7) (4e1.5)

where v(6) = v(l)2 - v(2)v(3) - v(lp)2 + V(S)2 2

r (4e1.6)
and _v('?) = v(l)Lv(2) + v(B)] - 2v(4)v(5)
and from (4.1.4) and (4.1.5) we have: ”
X - w4)+ jv(5)
X, RN (441.7)

In the computer language:

redius (a,b) gz /a2 . b2

.h (40108)
arctan ( > \

a

so the results required are:

(mod % = radius(v(1),v(2))/rdius(v(4),v(5))
from(4.1.4) - (4el.9)
[arg g = arctan(v(1),v(2))-arctan(v(4),v(5))

(mod %s = radius(v(l),v(2))/radius(v(é),v(’?))2
fron(4.1.5) §
o (arg %s = arctan(v(1),v(2))-arctan(v(6),v(7)) }

and arctan (a,b)

i

(441,10)

X (4.1,11)

‘mod §s = radius(v(4),v(5))/radius(v(6),v(7))
from(4.1.7) .
arg X = arctan(v(A),v(S))-arctan(v(é),v(’?))“

The basic procedure in evolving the program was to declare a, u(1),

u(2) and u(3) and then vary ]L for a range of values of r.



Le2 A typical computer program

xAOXA

Jas

ENG 002/0000C151/LINNETT C/1
OUTPUT

O LINE PRINTER 1000 LINES

EXECUTIMN 3 MINUTES
CMPILER AA

uppor case delimiters

BEGIN

INTEGER h,i,j,k,n,%

REAL d4,1,m,r,8,11i,ri

REAL ARRAY u(1:3),v(1:7),a(1:3),b(1:3)

read(£,ri,s,h,1i,m,n)

CYCLE j=1,1,f

read(d,u(1),u(2),u(3))

CAPTIONAFDAMPING ggg RATIN ggg =g ; print £1(d,3)
CAPTIONASINERTIA gg COUPLING g=g; print £1(u(1),3)
CAPTIN/igDAMPING pg COUPLING g=g; print £1(u(2),3)
CAPTI(NASTIFFNESS g COUPLING g=g; print £1(u(3),3)

CAPTION Jjgpg 1 ppppgps MOD(Y/X)App ARG(Y/X)pggp MOD(Y/Xs)Ap
CAPTION ARG(Y/Xs)gggp MOD(X/Xs)gg ARG(X/Xs)

CYCLE i=0,1,h

r=ri+s*i

CMMENT r is increased from ri by s for h cycles
CAPTION pifi r g=g ; print £1(r,4); newline



v(1)=u(3)-u(1)*r?

v(5)==2d*r

CYCLE k=0,1,n

1=1li+m*k

COMMENT 1 is increased from 1li by m for n cycles
v(2)=(u(2)+21)r

v(3)=(u(2)-2)r

v(4)=r?+12-1

v(6)=v(1) 2-v(2)*v(3)--v(4) 2+v(5) *
v(7)=v(1) (v(2)+v(3))-2v(4)*v(5)
a(1)=radius(v(1),v(2))
a(2)=radius(v(4),v(5))
a(3)=radius(v(6),v(7))

IF v(1)=0 AND v(2)=0 THEN -> 2

b(1)=arctan(v(1),v(2))

...>3
2:b(1)=w/2
COMMENT b(1) -> /2 if v(1) = O+ and v(2) = O+

3:b(2)=arctan(v(4),v(5))
b(3)=arctan(v(6),v(7))

b(1)=57.3 b(1)

b(2)=57.3 b(2)

b(3)=57.3 b(3)

IF a(2) < 1=9 MR a(3) < 1a~Q THEN ->4
print (1,1,4); spaces(3)

print £1(a(1)/a(2),3); spaces(3)

print (b(1)-b(2),3,1); spaces(s)

print £1(a(1)/a(3),3); spaces(3)

print (b(1)-b(3),3,1); spaces(5)
print £1(a(2)/a(3),3); spaces(3)



print (b(2)-b(3),3,1); newline
4 :REPEAT L
REPEAT

REPEAT

END OF PROGRAM

9 0,95 0,03 2 =-0,015 0,001 30

0.1 © 0,01
0.2 0,01 0,01
0.4 0,01 0,01
0.1 0,05 0,01
0.1 0,01 0,02
0.1 0,05 0,02

©c 0 0 O O © ©

L2t A

A section of the print-out from this program is shown in fige 4e2.1.



1°2°% *31q

gno-qurad Jeqndwod 8yq JO UOT08g

DAMPING

RAT!O
INERTIA COUPLING
DAMPING COUPLING
STIFFNESS COUPLING
b MOD(Y /X
R s 9.5000p =1
«0,0189 20294y
=0,0140n 20261,
=0,0130 2230y
=«0,0120 2204,
5040110 Z‘laoﬁ
w0,0100 20160,
=0,0090 20143y
w0.0080 2.1305
»0,0070 2+121y
EQQOOQD 293155
«0,0050 20113p
w0,0040 £allby
»0,0030 Reall2ly
=0,0020 20130y
«0.,0010 20143,
«0,0000 20159,
0,00}0 20179
0,0020 2203,
0,0030 22230y
0,0040 20260,
0.,0080 20293y
0,0040 20329,
0,0070 20368y
090050 29409ﬂ
0,0090 20453y
0.,0100 2+500,
0.0110 24548,
N.0120 20599y
n,0130 24682,
0.,0140 20707,
n.0150 20764,

[ I LR i ]

0

)

-}
-l
-l
-l
-]
-l
-]
-l
.|
-l
-l
-l
-l
-]
-l
wl
-]
-l
-l
-l
-l
-l
=]
wl
-l
-l
-l
-l
ml
-l

ml

l;OQOw ql
5&900” qz
leDOOg el
02000p0maQ

ARG(Y/X)

=40,y
b2,
w4443
odbes
mwdBa7
w81a0
53,43
w5547
»58a0)
nbDe4
29742
29448
292¢4
2900
2874
28543
283,00
2808
27844
2T7bqe4
27403
27243
27044
26845
26608
26449
26322
261 e6
26000
25848
2870

MOD(Y/xSy ARG(Y/XS)
14022, © »10540
14009, O 1070
90954n 9‘ m109p0
G888, .1 mlltel
Q!759m nl QllaQa
0678y m! o]l 1845
0e61l, =1 el17.7
00560, ! 12040
90524y ! »122+4
92504, 1 212407
05300, &l 23249
2e512, wl 23046
99540m nl 225.2
2¢584, ! 22548
Deb44, ol 22345
Pe¢719s wl 22142
9;808m 51 21509
90913m wl Zlﬁﬂb
1003, O 21404
14016, O 21242
1031, O 21041l
1046, O 20800
1.063m 0 20600
1081, 0 20441
1100, 0 20242
1!120» 0 20004
1el4l, © 19806
12162, O 19609
1+188, O 19542
12208, O 1936
1.232m 0 1921

MOD(X/XS)

42456y
4'4ﬁ23
40467,
40472,
40477,
Aedfl,
40485y
40488,
40491,
4'4949
40496,
40498,
40499,
4¢500,
4500,
44501,
40500n
44500,
40499,
404935
40494,
40494,
4e491,
44488,
44488,
404615
40477,
40472,
40467,
404ﬁ2p
4.4559

O‘DC)O(DC)O(DC)O(DC)O{DC)OlDC’O(DC)O‘DC’O#DC)O‘DC)O

ARG(X/XS)

«b540
wb4e9
nb448
wb4de7
mb4eb
©b4e5
mbdad
wbdoed
wh4e3
wb4e3
wbdeld
wbd4oel
m6442
wb4e2
mb4el
nbdel
wbdel
nb402
mb4e2
LI X XYA
=642
w8403
mb4de3
mbded
mb4doed
LY YY)
wb4ab
wb4e?
LY YY:
nb449
nbSe0
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Le3 The solutions with zero couplin

Y {Y . - =
il and 3 with 'QB for Z = 0,1, r =0.9,
0

1.0 and 1.1, and u, = u, = u_ =
i d s

3.3.1 and 3.3.2. From equations (3.3.15) it was shown that the

The wvariation of

has already been plotted in figures

1

against 1,0,3, curve rose to a single peak, the height of which

decreased witis increasing r, but that the maximum slope for Q V72N

_ 3
was ? and occured when © = 1 Lsee equation (3.3.16)] .
. . s X X Y . Q .
Considering the variation of XX and 3 with 3 for various
s s

values of r: for r = 0, i.,e. a constant exciting force Pli’

equations (3.3.4) give:

X _ 1
X - P
s 1- 4 i (4e3a1)
Y ,
and 3( = 0 if QB );1 B

) = X _ I_%mé'_ 2r - (;) 40342
If 3 l) X r-—>0 -I‘2+j(22r). J Z (/ 3 )

As expected, equations (4.3.1) and (4.3.2) reveal that the modulus

curves plotted against ‘QBI for r =0 go to a peak at the critical
;e
X *

The modulus curves for OL’IQ,JL&O and O0<r « 1,6 are plotted

speed MB‘ = 1, the peak being infinite in the case of X and
s

on figures 4.3.1 =~ 4.3.3 for Z = 0.,1. From figures 4.3.1 and

4e3e2 it can be seen that, except in the cases when r =0 or ﬂg =0,

! XS XS

these peaks occur at approximately the two undamped natural frequencies

the curves for and

against Q or r have two peaks; for (441
3

of the system [cf. fig.3.3.2]. Figure 4«3.3 shows the single peak
in the variation of '%'wi‘ch I‘QBI s this occurs close to the lower

of the two undamped natural frequencies for ZL4 1 [_of.eqn.(B.B.lA)] .



WL“'\ ,Qsl o«nci_ - Jco?; Z: O-1

X
Xs

Variation of

FLi 4 3.1



\ with “2.3] ond + J[c"r’ Z’-‘-O‘l

Y
x.&

Ff.a. 4.3.2 Variabtion of



Fts 43.3 Variabtion of ‘;l with lQ;,( and + fo,,. Z:O-l



Loy

480

The phase angle curves for positive LB are plotted on figures
Le3eli = La3.6, they show the 180° phase change associated with each

peak of the modulus curves, In the case of /é and /% there 1is

S ——

a step change of 180° at Q,B = 0 so that the curves for negative 40.3

will differ from those drawn by this amount; the curves for /-)X{

are symmetrical about 23 = 0,

. The main concern here is with the measurement of small rates

of turn so we can concentrate on values of ,()3 L 1l and r = 1,

The effect of inertia or stiffness coupling

Inertia and stiffness coupling can be considered together as
they both appear only in the factor v(1) = (uS - uir2) in equations

(4e1.2). If the damping coupling u. = O, the modifications to the

d
uncoupled results due to u or u, can be assessed by considering
equations (4ele4), (4els5) and (4.1.7).

From equation (4ele.4):

Y _ x(1)+ jv(2)
X - 3(4) + 33(57 (4elod)

v(2), v(4) and v(5) [see equations (4.1.2)] will be the same as for

the uncoupled case so, considering the modulus and phase angle:

(1) + v(2)
v(4)% + v(5)*

arctan %‘;’—_% - arctan %&% (4ole?)

(hebel)

2
H ]
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%-—LS 4.3.4 Variabion of& wilh ‘23 anc‘. 1+~ for Z: o-1



F—{_s. 4 3.5 Va.r(.o.ti.on of %; with 13 omcL + fo"l" Z=O-1



2Zot°6

FLS 4.3.6 Varialion of& w(.“ﬂ 23 Ou\i % fo*f Z= o1
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Substituting from (4.1.2) into (4.4.1) gives:
\
4 (n, - uirz)z + (2 £3r)2

I
'XI (r2 +£32 ~1)% 4 (zzr)z
For .Q32 Z42]r
(0_~u,r2)? + (2 L)%
l%‘ . “i " . 3;' (4ebe3)
(r~ - 1)° + (2Zz)’ _—
= l(u - uirz)’ L R 231‘- \
Jrm=1)" + (2Zr)2 ug - uir2/
Expanding for (2.ﬂ3r)%éé (us - u.r2)2
R I G P
lll = e T Sl = él + 3 e (Loked)
X \/’(rz -172 (2Zr)é [ (ug - uirz)z_\

iece, for constant r, %' depends on the square of QB and, when

r = 1
H
X

Thus, for small values of QB and constant r, the coupling has the

|u

,s-ui| 24

57 1+ —2 (Lokie5)

2
(us - ui)

die

effect of giving Xl @ finite x;alue when EB = 0 compared with
zero in the uncoupled case, and it varies as the square of Q3
compared with the linear relationship: |
Xl - —L ( 6)
A= -

in the uncoupled case, This means that the simple method of

determining .(/,3 from l%l has been lost. However, examining the

phase angle/')YE , from (4e4.2) and (4.1.2):

2 4. r
/% # arctan {—'—12] - arctan ':'éizzr—-] (hokeT)
L Lus-uir J | r+ 13 -l‘!

which, for l2 ﬂ3r144 lus—uir2l and ,Q324< 27 r gives:
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if u D u..I‘2
s i

% =S l‘___ZZI‘ }13 + arctan [ gzr}

ju_ - u,r r -1
‘s i
. 2
and if u_<ZLu,r (Lela8)
S i
I = 1w - 2r ] y + arctan 2
X u.r2 -u 3 r2 -1
i s ! -
. Y . . . Ji
i.e., for constant r, 3 Vvaries linearly with 3 the slope:
Y
dZX; — 2r
al 2 (4eda9)

being independent of EZ; this compares with the uncoupled case in

3

angle % provides a simple means of determining ﬁB’ for suffici-

/
which there is a 180° step change at ‘13 = 0 and a constant %
for ¥.461 |cf. equations (3.3.11)|. This means that the phase

ently small values, when inertia or stiffness coupling is present.

Typical curves, derived from the complete equations, of

3
X and
[% against QB for r = 1 are shown on figures 4.4.]1 and 4.Le.2.

It can be seen that, for higher values of E the coupling term

3’
v(1) becomes insignificant compared with the other terms and the
modulus and phase angle curves approach those for the uncoupled
system,

From equation (4.1.5)

=/v(l)2 + y(2)?
v(6)2 + v(’7)2

2
= arctan 5%3% ~ arctan %%%% (4e4all)

(4e4e10)

I i
w

g
jol)
\

w
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U= U =Ug=0 -~ — — —~
Wg o u.;_=0-0l}

uy=0

Ug=2UL =0 g -
wy=0-0l

W, o+ U =00l
] e

Fig 4.41 Variation of ‘%, with ,9,3 for *=1 and

various valves of Wy, Uy

)

v S o-n&. Z '



————————————————— 1360

Uuyg=0 .
Ug =00l :
T T

T T T T { T L T T 1 T |}

~0-0l o ) o-0l
3
Fig. 44.2 Variation of /-\52' with 25 for + =1, various

VO.LLLCS o_f we, Wy ancl_ Ug a.nc‘. QU. val,ue_s of Z
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v(6) and v(7) are given by equation (4.1.6) for u; =0 as:

w(6) = (amu,x?)? + (2 Lr)*=(e® £ 24)%(27x)?

(4elal2)
wW7) =22+ L2 - 1)(2T ) )
If (2 1231')2[_L (uS - uir2)2 -
W6) % (a, - ur®)? (x*1)? + (271)? ?
. < (Lokel3)
v(7) = 4Zr(r2 + jL 2 B

Substituting lnto (4o4e10):

| / (u-ur) +(2[1,r)
l [(us—uir )P=(r2-1) +(22r)2}2+ LAZr(r2+ 1132-1)_1\2

vwhich reduces to:

NIH

Y . lu - u, rzl ( 21.2'232
R A N Y P R T o i (o -u,7%)
(hobels)
Thus the coupling has the same effect on 3| &s it had on ’-}Z
s

viz., that for small values of -/(; and constant r, itvaries as the square

of '23 and has a finite value at /EB =0 (see figure 4.5.1).

>

If r = 1:
12
- u. 2
)4 ’ s 45 — 3] <(1+ ——EL- (4elel5)
X > - 5 / p) elpe
s (ug =u)™ + (22) [ (ug = u;) \
From (4e4.11) B
£ & arctan | ———s ’ - arctan | ~ ' (Leldl6)
X 2 | v(6) |
u, - u,r l - -
L. S o
) i 2 .
which, for l2 RBI'!((lU.S - ur l glves:
if u >~ u. 1‘2
° 4
Y l Q -~ arctan I' 4. r(r = l) ‘, (Lekel?)

A=

’ (u -, T ) n(r -l) +(27 )

u—url

s ij
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. 2
and if u «<u.r
S i

y 2
/% = Y = _______gr J')‘B - arctan 24221‘:(21‘ 51) 2_i
[ ”s u.r -u (u_=u,r") " =(r"=1) +(ZZr)J
L s| |*7s i
(4e4018)
l.e., for oonstant r, /% also varies linearly with £3’ the slope

s
being independent of 7 (see figure 4.5.2).

The effect of damping and inertia coupling on % for the same
s
low values of /0,3 can be determined from the results for )X( and
Y
3 + From (4ee4) and (4e 4.14)-
s
X - 1)~ + (2
1= 2 (2\“; r)° 5 (4ebel9)
sl /(e -a,x®)? -(r 2)%+(27x) ] +[47x(x -1)]
or, if r = 1:
X | 2
3 S ) (4o 4e20)
S (us - ui) + 47
ilee. % remains constant for constant r.
s

From (4ede8), (4e4.9), (4elal7) and (4eha18):

{x _ /z - /z
X X X
8 ! s —
7 (R 1
= ~ arctan 5 Zé: rgr 5 1) 5| - arctan 2221'
(us-uir ) “=(r"=1)"+(27r) -

s

= arctan

27r((u -u, T 2) +(r ~1) +(2Zr).2
L(r -l)z(us—uir -(r —1)2—(22r)2§

B

2

(Lelel)

Ifr=1,

> g

S

again /}% is constent for constant r.
s

For higher values of ' )’Z tthe coupling terms are again insignifi-

cant and the curves for}% and % approach those for the uncoupled case,
s S
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4e5 The effect of damping coupling

With damping coupling u, included, from equations (4ela2)

v(2) = (ud -2 QB)r but v(1), v(4) and v(5) are unaltered, so that

substituting in equation (helol):
2 20
(u-ur) +(u+2Q )

il = = (405.1)
Xg ( 2 3 _ l) + (ZZI‘
For 232@221'
I /(u—ur)+(u+20)r
l - l) + (ZZ I‘) (4c5-2)
therefore the effect is to make |<| a minimum when ﬁB = -4

X 2
. , ) = - 22
instead of when Lg = O. Close to the minimum, for (ud+2 ,P,B) r L

(us-uir )2 we can approximate as in equation (4.4.4) to give:

v | o ~u,r% | (g + 20,0%7 s
ks % N + 40503
’ S+ (27007 (u -u,r°)?

so that the shape of the

%' curve and the value of the minimum

are unaltered.

In equation (4e4e2):

‘ _(u +2 0 )r_l A
E = grctan —-—d———%- + arctan —2—-2—2-2—1'—-— )
X (us_uir ) o+ Q'B __1 i (4—0504

As for eqations (4.4.7) to (4.4.9), & will vary linearly with EB

l
for ' uy * 2 Q_ lr /\<’ - uir2| » the slope being unaltered.

Typical curves, computed from the complete equations, showing
bhe effect of damping coupling on l%’ and /% for /€3 <L 1 are
shown on figures L.4.l and 4.4e2. When l£3l>>'ud, the curves will

approach those for the uncoupled case.
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To evaluate XJE from equation (4.1l.5) we have, from
s
equations (4.1.2) and (4.1.6):
2.2 2 i 24 2 2 2 2 2
v(6) (us-uir ) -(u.d -4 [/_3 )rT=(r"+ £3 -1) +(2Zr)

2ud1‘(us-uir2) - 2(r2+ 1&32-1)(-221*)
For 2 ZI‘>_'> lU-dI‘ y !QBr !and Q32

w(6)” - V(7_)2 ¥ [us'“irz)z-(r2—l)2+(2Zr)z] 2
[esgtagag®) + 4765)] (4s.0)

which is constant as 23 varies, so that, by comparison with equation

1l

(Le5.5)

]

v(7)

2

(4e543)3
X lus'uirzl (uy*2 23)21“ :
1 == 31+ 5 (4e547)
s \,v(6) + v(7) (u, = u.r)
s i
Y . T A B N
as for X the minumum is at 3% - > but its magnitude will
differ from the case when = O due to the Uy term in v(’?). | efe
equation (4.4.14)] . .
¥ (u 20 e C
= = arctan ———l—— - arctan —El; (4e5.8)
X v(6
s (u - ur ) . .

-t

and as, for the same small values of Iu ] and 'ﬂ

- [2u 4B(u =, r 2) +Zr‘r -1)
arctan[;é%{l = arctan[ 2)2 > (Le549)

(ll -u,r (r -1 + (29r)

which is ~onstant, then the slope is the same as when us= O but

the value at lB = - _éug differs from that when uy = 0 due to the

uy term in v(7)e 1In particular when r =1, from (4.5.9):

2u (u - u,)
arctan [%%8] = arctan 5 5 (4e5410)

'(U‘s - u_,L + (27r)

compared with O when u, = O. Typical curves showing the variation of
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'-% * and -'Yi with »g for r = 1 are shown on figures 4.5.1 and 4.5e2.
s [ “s

From (4.5.1) and (4.5.7), for ..ZZr > ludrg , !£3r|

and 232:
x| /Lr2—l)2+(22r)2‘
Xl w(6)* + w(7)? (4a5011)

wherel—_v(6)2 + v(’7)2:(is given by equation (4.5.6) and, from (4.5.4)
and (4.5.8):

B w(7)] [_22Zr '
/—% = - arctan [%J + gretan [(?-2——)] (4e5.12)

S, =1

again there is the slight difference from when u, = O due to the

d

0

4 term in v(7) [cf. equation (4.4.21%.

The combined effect of u , udL ui, r and Z on the variation of
©

Y . j

< with I 3

-

Consider only % for 11341 and r =1 + 3 where 'g’/\< 1.

Gathering together all the relevant relationships which a<fect the
modulus and phase angle curves as £3 varies.

() Modulus 1% l

From the equation (4.5.3) the minimum value, which occurs at

ﬂ = -——u-g- is:s
P P

'min ) \/-(/?' - 1)2_+ (2 Zr)z\

Neglecting small quantities this reduces to:

. lus-ui-Zuig‘
min 2\/{_%7+ 3

I
X

i

(44641)
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rba. 4.51 Variabtion of l)y(;l wibh ﬂs JCO’Y‘" =1,

Z:O'I, Ug= O and vVatious vaLues of W and Wy



—_—— 2704 W =001 Uy=0 — — —
Wy =0 Wy =00 —-—-

We =00 WUg=0-0l

L0085 Wy =00 —--—
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— I
F'Lﬁ. 4.5.2 Varcabion OJC & with ,0.3 \fo'r ™= |,

all valves of Z and various valves of uiand uy
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%! approaches asymptotically the curve for the

uncoupled cese which, from equation (3.3.10), is a straight line of

slope:

: |

X !
1Ly
asynptote

again neglecting small quantities,

5]
gij/ésymptote

Vhen 15

= 0, from

- —2r
S - 12+ G 7 r)?

this reduces to:

0o S (1.6.2)
£ (5> +1 02
YAVA

equation (4.5.1) neglecting small quantities:

u -u.--.’zu.g\2 +(
_s;;)

|

\
i) ?

—
2Z 2 /

\

T
/ X
(b) Phase angle /X

(446.3)

(5 -

From equation

(4e544), neglecting small quantities, the maximum

slope (at .= ) is:
3 2
/
o3 :
__—y.—___ ¥ RTINS (4eb4t)
T3 /0, =
d the val /X t 4 = == pecome
an e va.Lue i a /3 - - D) ccomes @
if u - u:r2:> 0
S 1
/Y\' . eon | £
ot - T arctan hroas
H :
3= "7
5 (446.45)

and if u_- uir £ 0

(k)
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and the value /% at J{B = 0 becomes:
— ) . z A
(E( } = arctan ('11_:_%23—59)] + arctan T (446e6)
- Ji} - s i i ; O
23— 0 - J

Equations (4.6.1) to (4.6.6) can be used to determine the values

of (us -u - ZuiS ), u,, & and £ for a particular system. In

most cases Z will be large enough to maka(;q L1 in which case

all the denomonators of equations(4.6.1) to (4+5.3) become unity:
then Z can be determined by the modulus asymptotic slope (4.6.2);

u
. !
(us -u; - 2uig ) from the phase angle maximum slope (4eb.4); (223

-

from the modulus at 1/,3 = - f_g (4.6.1); (-A—’> from the phase angk
H 2 \ é)

at k3 = ——l;g (4.6.5): the values obtained szan be checked from

(4e643) and (4.6.6) by computing the values of modulus and phase

when QB =0,

L7 Summary
The most important concept that has been established in this
chapter is the linear relationship, independent of 7 , between the
phase angle /% and /QB for low values of 123 vhen inertia or

stiffness coupling is present !’see equation (4.4.9)1. This means

that the phase angle relationship can he employed to determine very
small rates of turn where it is impracticaplle to use the modulus
relationship !)X(l with 49,3 due to its negligible slope. The non-
dependence on ? should also mean that the damping ratio can be
increased to improve the transient response without affecting the

sensitivity of the system; however, the value of Z must still be
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congiderad te ensurs that the minimun value of Y, approximately given

by
3, = 3| (407.1)
= = Le'le
I s} (us - ui)2 + (22)2

> i<

when r = 1, can be detected by the mocasuring cquipmont.

It wonld ceem that, in deuigning a practical uysten, the value
of Z wo1ld be determined by tho roquired trancicnt responce and
(uS - ui) by the minimum signal Y that cen be measured, r being made
as closc to unity as poucible for maximum response. It should be
posocible to adjust the valuc of (uS - ui)by'a balancing procedurc,
cither adjusting the macs or the stiffness, If it is not possible

to adjuct 4y this can be allowed for in the scaling of the instrument.,

As far as the cxpcrimental work to bc discussed here is
concerned, the basic idea was not ncceusarily to produce a practical
system but to test the validity of the theoretical results by a
design which approximated to the fundrimental system, described in

siction 3.1, ac cloucly as possible,
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CHAPTER 5

Experimental apparatus and test procedure

5.1 The sensitive elemcnt
In order to approximate to the fundamental system, described
in section 3.1, the main requirement is that the motion of the mass

should be constrained to the plane Oxy. The smplest way that could

be conceived of achleving this was tc mount the mass at the centre
of a slender rod which had both ends fixed and was under a small
tension; the restoring force, and therefore the spring constant,
should be reasonably linear provided that the amplitude is small
enough to prevent any significant increase in tension at the
maximum displacement. A simple load - deflection test carried out
with a spring balance, see figure 5.1.1, confirmed this linearity
below a deflection of 0,02 in. (the theory for the non-linear
vibrations of a comparahle system was covered in a wvaper by

Woinowsky - Krieger in 1950),

The sensitive element that was constructed is shown with its
principle dimensions on the isometric diagram figure 5.1.2. For
clarity only the items affecting the virations are shown and all
locking nuts and screws are omitted. The mass was 13" diameter x
1" and made of brass; 4" flats 90o apart were machined for
vibration measuring puposes. Attached to the mass for the later
experiments was a 5&" long alumimiun strip carrying two &" diameter

dural rods which projected into the two oil dampers as shown

(dimensions 1" x 2" x 23" deep).
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The mass was attached at the centre of a 12" long 6BA steel
rod which was screwed at both ends B into a stiffened 12" x 4"
steel channel section, provision being made for adjusting the
tension., The x and y Goodmans V47 electromagnetic vibrators
excited the system via 4 BA brass rods which operated in cone
bearings on a small block which was attached 1" from the bottom
connection on the 6BA rod; the vibrators were located well away
from the sensitive mass to minimise the effects of any additional

constraints that were introduced.

The photograph, figure 5.1.3, shows the sensitive element
before the oil dampers were incorporated; it can be seen that the
channel section and vibrators were mounted on a base plate and the
complete system was placed on a flexible mounting on the test
table; additional support, to prevent toppling, was supplied by
a rope attached to the laboratory roof. The flexible mounting was
incorporated to prevent, as far as possible, any external vibrations

affecting the system,

The photograph, figure 5.1.4, shows a detail of the mass
when the dampers were incorporated; the oil vessels could be
rotated about their vertical axes to alter the damping

characteristics if required.
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5.2 Ihe Test Table

In order to avoid the difficulties encountered when using the
Bryans test table as described in section 2.4, a more rigid turn-
tahle was employed, this was particularly necessary because of the
weight of the equipment that had to be rotated, An Elliot milling
machine 10" rotary table, with an 80:1 reduction ratio, bolted to
a lathe bed gave very good rigidity; it was driven via a 24:1
reduction gear by a Servomex Motor Controller type MC47, the
motor is rated at 0.5 H.P. and the speed range is 0 - 10,000 r,p.m,.
clockwise and anticlockwise. Because of the load on the motor,
the maximum speed that could be achieved in this case was 7,000 r.p.m,
giving a maximum table speed of %jg%% T 3.65 rep.m.

No difficulty was experienced with the ta=st table and the set
speed was maintained very accurately; clockwise rotation of the
motor corresponded to positive rotation of the test table., The
table and motor controller are shown on the layout photograph
figure 5.2.1 from which it can “e seen that the various leads
required to the sensitive element were brought in from above
without using slip-rings; this limited the number of rotations
that could be performed in any one direction but this did not

prove much of a handicap except at high table speeds.
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Scnsitive element and turntable

Advancc Countor typc TC2A

Muirhcad D~880-4 Two Phase L.F. Decade Oscillator
Southern Instruments Gauge Oscillator M785
Avomators »

Solartron CD1400 Oscilloscopc

Solartron Selarscopc CD1014.2

Servomex Motor Controller type MCA7

Muirhead D-788-A Low Frequency Analyser

Goodmans 5VA Power Oscillators

Wayne Kerr Probe Switch JB731B

Wayne Kerr Vibration Meter B731B

Servomex Waveform Generator LF141 and Variable Phase Unit VP142
Southern Instruments F.M, Pre-amplifier MR513
Philips GM6012 Valve Voltmeters

Honeywell 2106 Visizorder

Fige 5e2.1 Layout of the equipment for tests A, B and C
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53 The excitation system
Figure 5.3.1 is a schematic diagram showing the basic equipment

controlling the vihration of the sensitive element. The sinewaves
required were generated hy a Servomex Waveform Generator type LF141
and Variable Phase Unit VP142; to keep the periodic time constant
for tests A, B and C, carried out hefore the dampers were fitted to
the sensitive element, it was necessary to lock the LF141 to an
accurate frequency generator viz., a Muirh:ad D-880-A Two Phase

L.F. Decade Oscillator, For the majority of the later tests the
LF1/1 and VP142 were replaced by a Hewlett Packard Variable Phase
Function Generator model 203A, this had a more stahle periodic

time so that the D-880-A was not required.

The reference and variable phase sine wawes were each amplified
by the amplifier section of a Goodmans 5VA Powsr Oscillator, the
amplified reference and variabl. phasc signals respeetively peing
fed, via an Avomcter to mcasure the current, to the x and y
Goodmans vibrators on the sensitive clement. An Advance 1 MC/s
Timer Counter type TC2A measured the excitation single period

across the output of the x amplifier,

Because of the way in which the apparatus was set up the x
vibrator lies on the negative x axis and the y vibrator on the
positive y axis. In order to make the two applied forces in phase
when their currents were in phase the vibrators were connected to

their amplifiers in opposite ways (see figure 5.3.1).
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The current supplied to the two vibrators was measured as it
should be approximately proportional to thée exciting force for the
very small amplitudes involved and there was no method available

that could be used to measure the force directly,

The photograph, figure 5.,2.1, shows the arrangement of the

equipment for the first series of tests A, B and C,.

The measuring equipment

Fige. 5441 is a schematic diagram showing the equipment used

to monitor and measure the vibrations of the sensitive element.

For the first series of tests A, B and C the x vibrations
were measured by two probes viz. a Southern Instruments proximity
vibration pick-up G211A and a Wayne Kerr capicitance'probe, type
ME1l, measuring up to O.1 in. peak to peak, A similar Wayne Kerr
probe, type MD1, measuring up to 0.05 in, peak to peak measured

the y vibrations,

The GR11A pick-up signal was passed through its Gauge
Oscillator M785 to the F.M. Pre-amplifier MR513 (all Southern
Instruments), The pre-—amplifier output was measured by a Philips
GM6012 Valve Voltmeter and Qas displayed against a time base on a
Solartron Solarscope CD1014.2 and as the X traée on a Solartron

CD1400 oscilloscope set for X-Y operation,
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The output from the probes MD1 and MEl was measured by
matching Wayne Kerr equipmént, the Vibration Meter B731 gave
readings of peak to peak ampnlitude and mean distaaée of the probe
from the mass of the sensitive element and the Probe Switch
JB731B selected the required prohe; MEl was only used for
calibrating the Valve letmeter measuring the GR211A pick-up
signal so that, for most of the time, the probe MDl was connected
to the Vibration Meter., The output from the Vibration Meter was
passed through a Filter F731A to remove the carrier frequency and
then through a Muirhead D~788-A Low Frequency Analyser to amplify
the signal and remove the small amount of noise. The D-783-A
output was measured by another Philips GM6012 Valve Voltmeter and
displayed as a second trace on the CD1014.2 and as the Y signal on

the CD1400 oscilloscope.

A Honeywell 2106 Visicorder was available for connecting to
the MR513 output in order to measure the decrement in the x signal

following the switching off of the excitation.

The Southern instruments equipment gave an output voltage
that varied nonlinearly with the distance of the pick—off from the
sensitive element mass, this compared with the Wayne Kerr equipment
which had very linear characteristics; consequently, when a second
Wayne Kerr Vibration Meter became available, it was used to measure
the x vibrations and it was possible to reduce the amount of

measuring equipment considerably,



55

Referrin: to figure 5.4.1, it can he seen that all the Southern
Instruments equipment, the Low Frequency Analyser D-783-A and the
two Valve Voltmeters GM6012 were not required for the later series
of tests. The two Vibration Meters B731B gave direct readings of
the peak to peak amplitudes in the x and y directions, removing the
necessity for the valve voltmeters, and, although there was some
noise and higher harmonics on the output from the y filter F731A
which was evident as the output approached zero, it was quite
possible to get sufficient accuracy without incorporating the Low
Frequency Analyser., In addition it was found more convenient to
use a Kelvin ani Hughes single channel pen recorder MK5 with its
recorder amplifier, in place of the Visicorder, to record the

vibrations in a decrement test.

The Test Procedure

a) Decrement Test

This was carried out with the table stationary by exciting the
sensitive element in the x direction at an amplitude of approximately
30 thou. peak to peak and at a frequency close to resonance; the
Visicoraer or pen recorder was then started and the frequency
generator switched off giving a decreasing amplitude waveform trace

for evaluating the damping ratio,



b) Frequency response test with the table stationary

i) With only the x vibrator being excited, the excitation
frequency was adjusted to give the maximum amplitude in the x
direction.

ii) The x vibrator current was adjusted to give a peak to peak
amplitude of 30 - 40 thou. in the x direction, measured on the
Vibration Meter B731B, in order to keep the spring restraint linear
(see fig.5.1.1); this current was then read from the Avometer and
maintained constant for the remainder of the test.,

iii) The frequeﬁcy was lowerad until the x amplitude was
reduced to about 10 thou., peak to peak.

iv) The variable phase section of the waveform generator,
which controlled the y vibrator, was adjusted to make the amplitude
in the y direction zero, or as small as possible: this was carried
out by trial and error noting the variation in the oscilloscope
traces, in particular the X - Y trace on the CD1400, as the phase
and gain were altered in turn; final adjustments were made by
examining the peak to peak y amplitude reading on the Vibration
Meter. The y vibrator current was read‘off from the Avometer and
the phase angle between it and the x vibrator current from the
Waveform Generator; the excitation single period was read from
the Counter and the x peak to peak amplitude from the Vibration
Meter (or a Valve Voltmeter sultably calibrated in the case of the
earlier tests),

v) The frequency was raised step by step until the x amplituds
reached its peak and decreased again to approximately 10 thou. peak
to peak. For each frequency the same procedure as detailed in (iv)

was carried out.
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In test A the x amplitude was not restricted to 40 thou. peak
to peak, and the response curve (figure 6.3.1) shows evidence of

non-linearity.

c) Response test with the table rotating

i) With the tablestationary the desired excitation frequaicy
was obtained using the Counter and the x vibrator current adjusted
to give a 30 - 40 thou. peak to peak amplitude. The current and
frequency were noted and maintained for the remainder of the test.

ii) The amplitude in the y direction was reduced to zero using
the method already described in (b.iv) and the same readings were
taken,

iii) The tablewas rotated at a constant set speed in one
direction and the same procedure carried out and readings taken.

iv) The table was rotated at the same speed in the opposite
direction and then the speed was increased step by step the same
process heing repeated each time.

v) Finally, when the maximum required speed readings had been
obtained, the system was again tested with the table stationary to

note any changes that had taken place during the test.

This procedure applied to all therotation tests except test B
where (i) and (£i ) were carried out as detailedzbove but the v
vibrator current and the phase angle were thereafter maintained
constant. At each rotation setting Valve Voltmeter readinss were
taken to give the x and y amplitudes but no equipment was available

for measuring the phase angle hetween the x and y displacements.
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5.6 General Comments
Some difficulty was experienced in making the necessary

adjustments and taking the readings at high rates of table rotation;
the limit on the number of revolutions that was imposed by the
method of taking the leads into the sensitive element meant that
there was a very short time in which to carry out the required
procedure. It was particularly difficult during the early tests,
before the dampers were fitted to the sensitive element; any small
changes in the excitation frequency or any other factors affecting
the sensitive element caused a considerable chahge in the systems
vibration pattern due to operating near a very sharp resonance
peak. The presence of the dampers and the improved measuring
equipment availahle for the later tests overcame this difficulty,
aided by the increased experience of the operator in adjusting the
magnitude and phase of the current to the y vibrator in order to

maintain the oscillations in the one plane.

The oil dampers incorporated in the sensitive element were
rather crude as they were made from material available at the time
but they did have the considerable advantage of bzing adjustable;
rotation of the oil vessels about their vertical axis had a
considerable effect on ths coupling terms. It was possible to make
this adjustment while the sensitive element was vibrating so that,
with the table stationary and the x amplitude close to its maximum,
the y vibration amplitude could be reduced to a minimum by this

means bhefore the tests were carried out,
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Before the oil dampers were fitted attempts were made to
increase the damping ratio by sleeving the 6BA rod and by using
permanent magnet eddy current dampers, but neither of these methods
had a significant effect., However electrical damping could be
incorporated to give the required damping ratio and presumably

would be preferable to oil dampers in a practical system.
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CHAPTER 6

Experimental Results

Object
In order to verify the theoretical equations that have been
developed in chapters 3 and 4 three separate series of tests were

carried out.

Section 6.3 deals with tests A, B and C which were concerned
with the fundamental system with no viscous dampers., Test A
examines the response of the non-rotating system to various
excitation frequencies near resonance; tests B and C the response
of the system at various speeds of rotation using the y vibrator
to make Y = O when ‘QB =0 in test B, and to maintain Y =0 for all

values of QB in test C (ref. section 3.9).

Section 6./ deals with tests D and E in which the viscous
dampers have been introduced. The aim was to relate the variatioﬁ
in the response of the non-rotating system with frequency to the
variation in the response of the system, at a particular frequency,

with rate of turn.

Finally section 6,5 deals with tests F, G, H and J which
compare the variation in the response of the system with rate of
turn at four different frequencies, the other parameters remaining

constant.
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The readings taken in all tests, except test B, were:
Excitation period p (secs.)

1920 x table speed (r.p.m.)

- 1202609 (6.1.1)

Pn

Motor speed (r.p.m.)

X vibrator current (mA)
y vibrator current, magnitude (mA) and phase (°) relative to
the x vibrator current, required to maintain Y = O

2|X] in thousandths of an inch peak to peak (p. to p. thou.).

The readings, plotted on the figures against excitation

period p or motor ééee@ ares

X plotted as _ 21Xl (Q. to De thou)
XS x vibrator current amp
b. to p. thou)

or i
Eg = Y vibrator current (6.1.2)
Xs x vibrator current
Y ,
iﬁ = the phase angle between the y and x vibrator

s

currents (°).

642 The modified theoretical equations
It is convenient to modify the equations developed in chapters
3 and 4 to put them into a more convenient form for comparison with

the experimental results. With the exception of test B, all of the
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tests described employ the y vibrator to maintain Y = 0 for all
Y

£

X
S

measured: the relevant equation, allowing for different parameters

Y
readings, the ratio and the phase angle /-)-(—s- = ‘l{f being
/I s

in the x and y directions, derived in section 3.10 is:

2 .
Yoo (wyrp™ugy) + grp(uge2 L)) (3.10.5)
X 2 2 . e
S —(rl + 231 -l) + 3(2 erl)

where subscripts 1 and 2 refer to dirsctions Ox and Oy

respectively.,

For the experimental conditions of r close to unity, and QB’

Uss Uy and u, very small, dropoing the subscript 2 for simplicity,

let
p_-
nl
I e = /-
rp =2 =1+ él, (5,4 1) (6.2.1)
Pn .
and 1, =—% =1+ $ (54« 1) (6.2.2)
271 s o . . .
gp = 0 the periodic time of the excitation
where Py = {%TL the undamped periodic time in direction Ox
nl
(pn = i—"—r the undamped periodic time in direction Oy
~ n?
sothat(—ur2'+u ) ¥ u ~-u -2u.5
i2 s’ s i i
2u.p
= + - L 0
Us T YUy D (6.2.3)
then equation (3,10.5) becomes:
2u.p
Y (o, +u, -—=2) 4+ (0 +24)
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Y.’ (u_+u ln)2-*'(u+22)2
s _ 1 s p d 3
so that |==| = =
X ' 2 Zl g \2
5 1 + __l:
v u+2 £ Z
S _ d 3 1
and b = arctan o4 - arctan { —=
8 u_+a, - <P -5
it s i 1
p
o uy 2 23 Zl
= ~180" + arctan P + arctan|—=
us+ui— in 1
p
(642.46)
Equations (6.2.5) and (6.2.6) can be used to determine the
Y Y
variation in )-('é and '}-E'-S- either with 23 for a particular
's s
value of p or with p for Q = 0. In addition, from the first

3
of equations (3.10.2), for £31 =0 and Y = 03
1
2 .\2 2"
Jer P (27 x)

(6.2,7)°

=
=

| X
_IX
i S

ie.e. the same as the response of a simple single degree of freedom
system to forced excitation. Taking the approximation (6.2.1), for
r close to unity:

X |

X

qo

(642.8)

1
2 2!
S| 2(Sl+ Zl

and Zl can be estimated from the value of 51 at which
| = | - %(_1_
S| max 2 Z'l

In equation (6.2.8) this gives Zl = 3 —I

3

or Zl = é“‘ (pb . pa) (60209)

\/ pb+pa

of—
> I

S

b [b<




o

where P, and p, are the excitation periodic times when
X

X
s

p:e
X

| =3
!

s max
Equations (6.2.5), (6.,2.6) and (6.2.9) will be the ones used

in this chapter; the relevant expressions derived in section 4eb

gre only modified by the inclusion of the subscript 1 on & andz,

the replacement of ( us-ui-ZuiS ) by the more convenient

2u,p
(us"'ui- ;n ) and the additional angle Ti" in the phase angle
Y ~
due to measuring 3{-§ instead of /Il% | ref. equation (3.9.10)}

-

To compare the theoretical and experimental results for these

tests, the equations (6.2.5), (6.2,6) and (6.2.9) were used to

determinethe values of :[‘l’ Pn1’ (us+ui), u,p, and Uy from the
experimental curves by equating specific theoretical and experi-
mental values, the theoretical curves could then be drawn for
comparison with the experimental readings. The specific values
that were equated depended upon the ohject of the test; 1in tests
D and E the equating was carried out from the experimental readings
for 1/:3 =0 and thus enabled the theoretical curves for f3# 0
to be constructed; in tests F-J the precedure outlined in

section 4.6 was carried out on the experimental curves for

varying 23.

The effect of Earths rate is neglected in the calculations,
its component about the 0z axis is approximately 6.96 x lO-Z"sin 56°
¥ 5.8 X 10™%.p.n. which is of the order of one hundredth of

the lowest rate that could be measured with the present apparatus.
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6.3 Tests A, B and C - very low damping

A trace of the decrement, following the switching off of the
excitation, indicated a damping ratio jfl of the order of 2 x lO'_3
Test A

The variation in the response of the system with excitation
period p for £-3 = 0; the x vibrator current ..2s maintained constant
at A5mA,

The experimental readings are shown on figure 6.3.1; the graphs
show evidence of the non-linear stiffness with the bend-over near
resonance on the magnitude curves for 2|X].>>AD thou. (cf. figure
5.1.1) and the discontinuities on all the curves at p + 0.0315 secs.
The other interesting point was a tendency for the system to go
unstable at the discontinuity, the amplitude increased until the
mass hit the proximity pick-offs and it was impossible to maintain
Y =0 using the y vibrator. The possible explanation is that the
complete system, on its flexible mounting, was oscillating at the
exciting frequency, thus leading to the parametric instability

discussed in section 3.7 when y' = O = a)n.

Owing to the non-linzarity no calculations are made from these
graphs but they will be used for comparison in tests B and C which
examine the response of the system to rotation at a particular

value of n,

Test B
This test is included to illustrate the alternative method

[ref. section 3.9(ai] of using the y vibrator to make Y =0



when ,23 = 0 and measuring the rotation by means of the ratio

which should vary linearly with anglibar velocity ﬁ From

3.
equation (3,10.4) the slope for very small values of 1.3, using

the substitution (6.2,2) is:

Y
"_jj.' - 2 A s
, '3! (r2 1)<+ (2 _7_.'21'2) &< + L
The constants for this test were:
X vibrator current 49mA Y
X = 0,133
vibrator current 6,.,5mA s |

y

Ys o

X = ~-212
S -

p = 0.03173 secs. (fraquency 31.5 Hz)

The readings of l%l shown on figure 6.3.,2 lie reasonably

well on straight lines of slope 6ol x lO-5 per motor r.p.m,

I+

From equation (6,1.1), taking P, + 0.0315 secs (from test A):

5]

—;il, = 6.5%x 1070 x 3.64 x 10° = 23

, . |
Assuning £ = 4, % 2x107, in equation (6.3.1) this

gives: .
5 _
$= « /(232 - 4 x10 = + 0.,0038
Y
Comparing the constants —-' and X_S with the test A
Ls

S

%
X

76.

results on figure 6.3.1, it is apparent that p = 0,03173 secs, is

below resonance. So 3 = - 0.0038 which, from equation (6.2.2

gives p = 0.0316 secs.

)
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Test G

The variation in the response of the system to angular velocity
about Oz, With p = 0.03171 secs., the y vibrator was used to main-
tain ¥ = 0 and the x vibrator current was constant at 44m% making
21Xl = 37 thou. p.to p. The experimental values of ,;g! and
§§ for various values of motor r.p.m. are shown on ;iZure 6.3.3.

: From equation (6.1.1) taking p, = 0.0316 secs:
Motor speed = 3,64 x 1062:3

Comparing with equation (6.2,6) the phase angle curve indicates

that:
udf2.23 = 0 when Q’B = - ——-égg-—ﬁg =< 1,15 x 10_4
feec u, = 2.3 x 107
and the maximum slope:
Y
_s 2 _ =27 o 6
d/X = 2up. 1000 ¥ Tgo X 3+64 x 10
S u tu.~ i n
d £3 p
2u; P -3
i.es u_ *u, - 2 = - 1,16 x 10
s i p
Y o ; -
also iﬁ = <214 when 163 == 1.15 x 10 ™ giving:
S

-214° = -180° + 180° + arctar\{ :(1>
&1

7
ioe' (:’1 = - 0067
3 T

Comparing with equation (6.2.5), the asymptotic slope of the

modulus curves

Zl/l “-Z_i:??
Joo\ 4y,

9.1 x 107 x 3.64 x 10° = 331
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hence Zl = 0.0017

and &, = =0.0025 (giving Py = 0.03163 secs.)

Substituting these values into equations(6.2.5) and (6.2.6)

gives:

{

.
1 /1.34 x 100 4 (2.3 x107% + 2 £3)2
0,003/ 3.2

N|l<
u lu

2.3 x 1074 + 2123

-340 + arctan 3
"‘lol6 X .10

2.3 x 1074 + 2ﬁ3)

5
1}

= -2140 - arctan 3

These curves are plotted on figure 6.3.4 which also shows the
experimental readings; these follow the theoretical phase angle
curve very well, which might be expected as the phase angle. was
used to calculate the majority of the coastants, however there is
also very reasonable agreement in the case of the modulus curve,
the main discrepancy being for positive values of.g which would

3

seem to indicate a slightly lower value of Qqe
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6./ Tests D and E - viscous dampers incorporated

o D and E refer to the system with two different sets of values
of the parameters iZl, u, uy and us tests D1 and El examine the
variation in the response of the non-rotating system with excitation
period p; tests D2 and E2 examine the variation in the response of
the system with angular velocity about Oz for a particular value of
pP. The aim was to determine the values of the constants from tests
D1 and 51 and hence to compute the expected variation with EJSfbr

a particular value of p for comparison with the experimental

readings in tests D2 and E2.

Tests D

A decrement trace, following a switch-off of the excitation,
indicated a reduction in |X|of % over 6 cycles, i.e. e—lfoZl = 0.4
giving Zl = 0.0243.

Test D1 was conducted with an x vibrator current of 500mA

and the experimental readings and curves, as b was varied, are

Y Y -
shown: ')Eg on figure 6.4.13 /i-s- on figure 6,4.2; )i( on
s 8 s

figure 6.4.3.

From figure 6.4.3, using equation. (642.9):

_ 1/0.032 - 0,02955 _
4 = ﬁ‘(o.wz B 0.02955> = 0.023

which compares very well with the figure 271 = 00,0243 obtained

X
s

comparing with equation (6.2.8), that 811 = 0 when p = P, = 0.0306

from the decrement test, Also the peak value of indicates,

secs., l.e. from equation (6,2,1):

gl = 0.0306 _,
P
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Taking 2?1 = 0,023, arctan<<§i‘) can nov be evaluated and hence,
a1 Y3
from figure 6.4.2 and equation (6.2,5), arctan 2UiPn) ; the
S J_ p
variation of this angle with p is plotted on figure 6.4.4 and

2u1pn

b .

indicates that (;s+ui- = O when p = 0.03162 secs., i.e.

u_t u, "-—-2~—— 2 p,
s "1 0,03162 i
uq Is
Taking the values of arctan Zu; 7, ) and X vhen
u_*u, s
s 1 p

p = 0.03078 secs., the excitation period used for test D2, from

figure 6.4.43

ud °
arctan > S = 12445

1P, ( 0.03162 ~ 0.03078° |

ie.e, ud = <2452 uipn

and from figure 6.4.1 and equation (6.2.5):

2 ]_ ~\2‘
1 /TZ_ 0.03162 ~ 0 03078>u él F L2520 )

0.104 =
0.04 1,065
iece u,p = 1,61 x 1072
i*n -
giving u, = =4.06 x 10~ (644.1)
and u_*u, = 10,2 x 10~2
S 1 -

In equations (6.2.5) and (6.2.6), forﬂ3 = 0, these figures give:

2
=3 =6
¥ 1 [3 22 x 10 (o 5315 - W + 16,5 x 10
X 0.046 1. <%1)
Vv 44

s o -4.05 x 1073 1 'Z
7 = =180~ + arctan + arctan| 21

s ~3 — pt

3.22 x 10 (o 03162 ~ )J 1
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These curves are plotted to a base of S]_on figures 6.4.5 and
6.4.6 which also show the experimental readings for comparison.
There is very good agreement for negative ‘g 1 but some discrepancy
for positive glf which suggests that Py is possibly slightly

higher than 0.0306 secs.,

The constants for test D2 were : x vibrator current 500mA
making Z‘X! = 40 thou.peak to peak; excitation period p = 0.03078

secs, From equation (6.1.1), taking P, = 0.0306 secs:
{ & DMotor speed (repem.)

3 3075 X 106
L | s
The readings of T | and ¥ are shown to a base 2 L On
s: s -

figures 6.4.7 and 6.4.8 and cimpared with the theoretical curves

derived by substituting the values (6.4.1) and p = 0.0307% secs.

(&, = -0.0059) in equations (5.2.5) and (6.2.6) viz:
l ‘ AN\
Y 1 /7.7_x 10 4 (4,06 x 107 + 2L,
ES 0.046 1.065
Y . ~4.06 x 1070 + 2 ﬁB
and X = =75.57 + arctan =3
s ~2.78 x 10

~4.06 x 1C™2 + 2Q3

= —255.50 - arctan( =3
N\ 2.78 x 10

These graphs indicate a very good agreement between the derived

curves and the experimental points; it will be noted that the value

u Y
QB = - 2? giving minimum ig could not be achieved (it corresponds
5

to an angular rate of approximately 4 r.p.m.)
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Tests E

Following the same analysis as that for tests D. The decrement
trace indicated a reduction in ,Xi of %% over 5 cycles i.e,
e-lOTTZh- = %% giving ;Zl = 0,0328,
In test El the x vibrator current was 600mA; the readings are

again shown on figures 6.4.1, 6,442, and 6.4.3.

From figure 6.4.3, using equations (6.2.9):

_ 1 [0.03265 - 0.02915) _
Zl BNEX (0.03265 ¥ 0.02015,) = Q40327

(cf. 0.0328 from the decrement test),

X
8

Also the peak value of occurs at p = P = 0.0307 secs,

giving, from equation (6.2.1):

$. = 00307

1 P a \
Takingzg = 0.0328, arctan d is evaluated as
1 u_tu,- 2uipn
s i ——=
p

before and plotted to a hase p on figure 6.4.4, indicating that

2u,p
u, + u, —=2/ =0 yhen p = 0.03028 secs.
s i P

leee u_+ u =—2 u.p
s i 0.,03028 “i*n

From the values at p = 0,0308 secs., the excitation period

used for test E23%

~

Uy o
arctan 5 5 =~ 15
"1y (0.03028 B 0.0308>
i-e. u = - 00298 ll.p
d _ 1l n ) ) \
af 2 - ) u p;} + [;O 298 u,p ]
_ 1 10,03028  0,0308/ i * i*n
and 0,021 = 0.0858

1.01



83.

ieee u.p 1.2 x 1072
i*h ———

giving uy = =3.56 x 1074 (6.4.42)
and u*t u, = 7.9 x 1072

In equations (6.2,5) and (6.2.6), f‘or,z3 = 0, these figures

give: ! —\
/ 2
-6( 1 ;)] -3
XS, 0.,0656 SJ— 2
\ . 1 + i? 4
Y . -3.56 x 1074 ‘°1/ Z
and T = -180" + aretan 3 T T + arctan| —+
s 2.4 x 10 0.03058 -3 3

These curves are plotted on figures 5.4.5 and 6.4.6 and it can

be seen that the experimental results lie very close to them,

The constants for test E2 were: x vibrator current 600rA making

2’X| = 33 thou. peak to peak; excitation period p = 0.0308 secs.

Again:
Q . Motor speed (r.p.m.)
v V4
3 3.75 x 10°
Y Ys
The readings of X and X are compared on figures 6,4.7
5 { S

and 6.4.8 with the theoretical curves derived from equations(6.2.5)
and (6.2.6) for this value of p ( Sl = - 0,0033) and values (6.4.2)

viz:

Y -6
£

X
s

1.77 ® 107 + (=3,56 x 1074 + 2Q3)2

1
0.0656
V

1.01
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Y . 3,56 x 1074 + 2k,
and fﬁ = -84.5 + arctan 3
S 1033 x 10
There is a reasonable cgreement between the derived curves and
Y
the experimental points, although the discrepancy in X for
s

positive 4ﬁ3 suggeststhat the numerical value of Uy should be

greater.
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Tests F, G, H and J

An interesting point that emerged from tests D and E was the

possibility of adjusting the apparatus to give a change in the

2uipn

D ) at a value of p close to resonance, As
Y
the maximum slope of the phase angle ié curve as 'QB varies is

i big +ou, -
sign o (uS 5

-~

inversely proportional to this quantity i;ef, equations (42.6) and

(4.6.4)] 1t must also change sign and become infinite when
2u.p
p = —i1h
+
ugtu,

These tests were aimed at demonstrating this point and investi-

gating the variation in the response of the system with.z3 for four

2u,p
different values of p spanning the change in sign of (us+ui- ; 2.
The cnstants for the four tests were:
Tegt DxCitation period x vibrator current ZIXI
p (secs). (ma) thou. peak to peak
F 0.03071 700 29
G 0.03041 700 30
H 0.03000 700 26.5
J 0.02951 700 22

lo

Y { Y
‘iil and 3 for

various motor spe:ds are shown on figures 6.5.1 and 6.5.2 respectively.

and the experimental readings and curves for

w

The modulus curves all have a minimum at a motor speed of

approximately 800 r.pe.m. which makes ug = - %-gggggiaé = =427 X lO-4

(6.5.1)




86,

this assumes that Py ¥ 0.0306 in equation (6.1.1).

For test H the modulus curve is aporoximately linear and there
is a step change in the phase angle which, as p = 0,03 Secs.,

indicates that:

ug tu, = 3 L 0 (6.5.2)

2u.p ’
. in _ 1 1
le€, us + ui - = = Zuipn 0.03 ~ p>

This quantity can now be evaluated for the other three tests and

compared with the maximum slope of the phase angle curveé ]i 1
U‘lp (0.03 - B)
to give 4P . Taking the average value:
— .13 ‘
WP = L3 x10 (64543)
which, substituted in equation (6.5.2) gives:

= . =2
U.S+ui — 8.66 v lO (605.4)

The remaining constants Zl

the asymptotic slope of the modulus curves, which is L =
L+ (5%
1 1
L 7.

and P, are evaluated by comparing

from equation (6.2.5), with the phase angle at

\J1l/
ﬁB = - %4 which is, from equation (6.2.6):
2 ’Z 2u.p
-180° + arctan(:.,l if ug * u; - ; 21> ¢
21
2U’ipn
or arctan Zl iffu_+ u, - < 0
'S- S kR p
1
Averaging for the four tests:
2. = 0.043
P = 0.0306 secs, (6.5.5)
feend. = 20306

1 T p



Substituting the values (6.5.1), (6.5.3) and (6.5.5) into

equations (6.,2.5) and (6.,2.6);

Test F : p = 0.,03071 secs., 3 Sl = <0.00358
% i N2
_Y_§_ _ 1 /4XlO + (-4.27}(10 +2}L3)
XS 0.086 1,007
'y . ~4.27 x 1074 4 o ﬁ3
-8 = =85 + arctan 3
X 2 x 10
s
Test G : p = 0.03041 secs, 3 gl = +0,00625
ys 1 1.37 x lO"'6 + (=427 % 10-4 + 2,@_3)2
X = 0.086 1.021
Y /—4.27 x 107% + o f
S _ 0 3
X = 987 + arctan —
s \ 1.17 x 107~
Test H : p = 0,03 secs. H g 1 = +0.02
¥, ) ,—4.27 x 1074 + 2 QBI
XS 0.09.47
Y
£ = 205° ir QBA 2,135 » 1074
s
= ~25% if £3> 2.135 x 1074
Test J :+ p = 0.02951 secs. 3 81 = +0.037
Y 1 /2.05 x 107 + (=4427 x 1074 + 217,3)2
XS 0,086 \ 1.74
Y . 427 x 1074 + 5 fg
¥ = =131~ + arctan 3
s -1.43 x 10~



~4.27 x 1074 4 2ﬁ3

= -3110 - arctan 3
1.43 x 10

These curves are plotted against ﬂB on figures 6,5.3 and 6.5.4
which also show the experimental points demonstrating reasonable

agreement, particularly in the case of the phase angle curves., The

2uipn

effect of (uS + u, - ) on the phase angle curves can clearly

be seen with the slope becoming infinite at p = 0.03 secs. and then

changing sign.,
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6.6 Comments on the experimental results

Different values of damping ratio and natural frequency in the
directions Ox and Oy cannot be detected from the experimental results,
which determine(us + ui>and 0P s however, for particular values of
u and u;, the value of P, obviously affects the performance of the
system. Comparing the values of Ugs Uy Ugs P, and jzl for tests D,

E and F to J by assuming that b, =P gives the following table :

p_=p 7
Test > ol 53 s 4y _ %3
(secs).
-2 J4 -2 "'3
D 0.0306  0.023 4.9/ x 10 5.25 % 10 —4.06 x 10
E  0.0307 0.0328 4.0 x 1072 3.9 %1072 -3.56 x 10~%

F~J  0.0306  0.043 4.41 x 107 4.25 x 102 —1.27 x 1074

The only alteration made between these series of tests was in
the orientation of one of the dampers; the oil and its level were
the same in each case and the changes in the value of 2?1 are
presumably due to the differing temperatures in the laboratory. As
expected the values of p, are virtually the same in each case and
a and u, are of the same order, the small differences here
presumably heing due to the different orientations as the small
size of the oil vessels, in relation to the moving rods,must have g
slight effect on the inertia and stiffness coupling as well as

altering the damping coupling,

The presence of damping and stiffness coupling in the experi-
mental system is to be expected but the reason for the inertia

coupling is not quite so obvious; the probable explanation is that
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an unbalance in the mass causes torsional oscillations in phase with
the displacement oscillations, these torsional oscillations would
then produce forces in the quadrature direction proportional to the

linear acceleration.

All the experimental tests were carried out with the natural
frequency of the system at around 32 Hz; this frequecny was chosen
by trial and error at it was. high enough to give stable oscillations
and low enough to give a reasonably large .amplitude with the spring
system linear. The tendency for the system to go unstable at
resonance mentioned in test A was not encountered when the damping
was raised, this is to be expected since increassd damping will

reduce the chance of parametric instability,

In general the experimental results fit in very well with the
theoretical curves that were developed, any scatter or discrepancy
is probably due to small temperature changes in the laboratory

which, as has been shown, must have an effect on the damping ratio,

No attempt was made to increase the damping to that which might
be requiredin a practical instrument; as has been stated previously,
the object of the erperiments was not to produce a practical
instrument but to demonstrate the validity of the theoretical
equations that were developed in chapters 3 and 4. The good agreement
between the experimental and theoretical results confirms the
validity of the theory and therefore the fact that the shape of the

phase anglecurve asjgvaries is independent of damping, The two
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alternative methods of employing the y vibrator have been demonstrated,
in particular the more attractive method of maintaining the
oscillations in one plane and determining the angular velocity from
the magnitude and phase relationships between the currents supplied

to the two vibrators,



Tel

CHAPTER 7

Conclusions

Summary

The majority of this thesis has been concerned with a
fundamental type of vibratory rate sensing device and the theory
has been developed in chapters 3 and 45 the steady state and
transient response of the system to rotation and acceleration
have been considered with the main concentration, in chapter 4,
on the response to rotation about the input axis Oz, The
possibility of using the phase angle Z%é— to measure very small

rates of turn, when the variation in the modulus

%j is negligible,
suggests a way of improving the sensitivity of the system, This
improved sensitivity can be achieved without affecting the transient
response as the shape of the phase angle curve is independent of
the damping ratio ZZ « A possihle method of determining the
required system parameters has already been discussed in section

Lie'Te

The other important concept that has been developed is the
method of turning the system into a "null" device by employing an
additional vibrator in the direction Oy, in ordsr to maintain the
vibrations in the one plane Ozx; the magnitude ratio and the phase
angle between the two vihrator currents should provide a read-out

that can easily be converted to give the rate of turn.
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The experimental tests carried out, which are described in
chapter 6, indicated a reasonable agreement betwesn theory and
practice; some deviation is only to be expected in a very simple
pPiece of apparatus. Considerabls improvement in the accuracy of
the device would undoubtedly result from a better method of
construction and, in particular, from operating it in a constant

temperature environment.

Considerations in developing a practical instrument

The type of instrument that was constructed suffers from the
possible disadvantage of being unbalanced overall as this will induce
sinudoidal oscillations of the complete instrument at the operating
frequency. The errors that will result have been determined in
sections 3.7 and 3.3; sinusoidal variation in 5) at frequency

/ /
W' = W ggn will give output oscillations due to fll-flz and

. may possibly cause instability (see section 3.7); sinusoidal

variation in the acceleoration A at frequency W # OJn will give
output oscillations duc to Al and A2 [cf. equations (3.3.1)].
The sinusoidal variations in 5 may have been the cause of
the instability noted in test A but otherwise any errors due to
overall unbalance in the experimental device were too small to
have any detectable effect. However in attaining the sensitivity
that would be required from a practical instrument these errors .

may become significant and a balanced system may be required.
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The adjustment of the magnitude and phase of the current
supolied to the y vibrator would have to he carried out automati-
cally if it was desired to operatea practical system as a "null"
device. As there are two quantitics that have to be controlled by
measuring the y vibration amplitude in ordcr to reduce it to Zero,
a digital controller empléying a hill eclimbing technique (altering
magnitude and phase alternately) would probably be required; this
type of controller could also be made to give a read-out of the
rate of turn by comparing the magnitude and phase relationships

of the vibrator current with the known system characteristics.

Fig. 7.2.1 shovws schematically a possible arrangement for a
balanced rate of turn indicator. Two identical sensitive elements,
similar to the one on which the tests were carried out, are
mounted hack to back so that they vibrate in the same plane, The
vibrations of the two masses A and B are controlled at the same
amplitude and frequency, and 180° out of nhase; this control
could be achiceved as shown by taking maés A as a reference and
exciting it with the x vihrator (probably an electromagnet) fed
from an oscillator via a fixed gain aﬁplifier, the mass B is
excited by another x vibrator in a similar manner except that the
amplifier gain and phase are controllied to reduce to zero the
difference between the feedback signals from the two x pick-ofis.
The vibrations are maintained in the one plane Ozx by feeding the
v pick-off signals into phase and gain controllers which supnly the
current to the y vibrators. The phase and gain controllers also

measure the rate of turn which can be averaged between the two
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valucs to give the necessary read-out. The system would have to
be damped in the x direction and two possible ways of doing this
are by using eddy currcnts or by applying additional exeditation

proportional to % (measured by the x pick-offs) in the x direction.

It is quite possible that the tuning fork may still be the
best answer for a practical balancedsystem and this could be
operated in precisely the same manner. The cquations of motion
derived for a tuning fork will be similar to the general cquations
derived in chapter 3 for the fundamental system; in addition to
the usual tuning fork equation equating the torques about its
input axis there will be an equation equating thec exciting force
applied to the tines with the forces in the same direction due
to the motion of the system. If the fork is to be used as a
"null" device the fork would be prevented from oscillating about
its input axis bya torque ..otor, the phase and gain of the current

supplied to it giving the reqaired rate of turn.



,ﬂ\ﬁ

Y vibrator > vibrafors j_})(.ck-off

T

LPLck—off .
= ! x Lck-oﬁ
Mass B = Mass A ) -—I " t#;
= (q-,,fu-gme » Y vibralor

T

T
| | L

_pick-off
4-P [‘\—D
|

Phase and Conbrolled F=— ] Phase and
Gain A Am P Gain
Contvolte'r MP' ﬁ—i COV\ tfou.en—
L. _
\b Oscdlator

Avemaef

‘l’ .' - Control, Fatl\s A
_Re.o\cl.-m;t - - Fee.d.{)ac_‘»( ‘F&UAS

F_LS. 7 2 | A suajestecL La?/-out fo'r' a :P*r-acti.ccxl,.
_rat& of’ turn anl.ic.qtod"



W N

=1

=] K o

=

+d

B

%.

PRINCIPAL  NOTATION

subscript referring to direction Ox
n n n n Oy
n n n n OZ
= aiz + aé} + ajE absolute acceleration of m with O fixed
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\U phase lead between the y and x exciting forces

3k amplitude of oscillation of JSL
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