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Abstract

This paper presents trainable methods for extracting ipédhcontent words from voice-
mail messages. The short text summaries generated arblsuiba mobile messaging
applications. The system uses a set of classifiers to igehtfsummary words, with each
word being identified by a vector of lexical and prosodic fieas. We use an ROC-based
algorithm, Parcel, to select input features (and classjfiaiVe have performed a series of
objective and subjective evaluations using unseen data finm different speech recogni-
tion systems, as well as human transcriptions of voicerpaiésh.

keywords: voicemail, automatic speech recognition, automatic surimation, pattern clas-
sification, prosody, feature subset selection, receiveratjng characteristic, short message
service, wireless application protocol, evaluation, ilgtesting.

1 Introduction

The increased proliferation of audio content has recentyivated several projects in the
field of extracting and accessing information from audidares. Some notable successes
have been spoken document retrieval (SDR) and named eRfydxtraction. A number
of SDR systems, operating on an archive of broadcast news &@luated as part of
the Text REtrieval Conference (TREC) from 1997-2000, givihe important result that
retrieval performance on ASR output was similar to that imlef@ using human-generated
reference transcripts, with little or no dependence onstraption errors (Garofolo et al.,
2001). This is not the case for all tasks which involve adogssformation in spoken
audio: it has been observed that the accuracy of NE idertidites strongly correlated with
the number of transcription errors (Kubala et al., 1998;dBa@nd Renals, 2000; Palmer
et al., 2000).

This paper is about the generation of short text summariesioémail messages. Au-
tomatic summarization may be defined as the distillatiomefrhost important information
from a source, producing an abridged version, given a paatiaziser and task (Mani and
Maybury, 1999). The majority of research in this area has lbeacerned with the summa-
rization of written text, reviewed by Mani (2001). The gréwef information and commu-
nication systems that deal with audio and visual media hasikited the need to expand
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summarization systems from text to multimedia. For exanple existence of automatic
speech summarizers would enable many practical applitatioch as the construction of
automatically annotated audio archives, integrated miredia communication systems
and innovative multimodal interfaces.

A complete speech summarization system demands both sfaiguege understand-
ing and language generation, and is well beyond the curtate-sf-the-art. However,
it is possible to use simpler techniques to produce summ#net are of some use. The
earliest reported work in speech summarization concermedyéneration of crude sum-
maries based on acoustic emphasis (Chen and Withgott, EfiP}he classification of
parts of dialogue (Rohlicek et al., 1992). More recentlfthwvthe advent of large vocabu-
lary speaker-independent continuous ASR, speech sumatiarizesearch has focused on
the application of text-based methods to ASR output (Vaestzal., 1999; Hori and Fu-
rui, 2000; Zechner, 2001). At the same time, researchers hagun to combine prosodic,
acoustic and language information in an attempt to achiesgts that are more robust than
those of single sources. Application domains include ifieation of speech acts (Warnke
et al., 1997), sentence and topic segmentation (HirschdredgNakatani, 1998; Shriberg
et al., 2000) and NE identification (Hakkani-Tur et al., 229

Voicemail involves a conversational interaction betwedmman and a machine, with
no feedback from the machine. Voicemail systems can reawddstore voice messages
digitally while the user is away or simply unavailable and t& reviewed upon the user’s
return. Alternatively, the user can call in on a touch tonerghand review stored messages.
Voicemail messages are typically short, conveying thear#ar the call, the information
that the caller requires from the voicemail recipient andtann telephone number.

The slow, sequential nature of speech makes it hard to finaitapt information
quickly. Although, several advances in voicemail retrlesehemes related to pause re-
moval for faster playback and efficient audio coding havelpgeposed (Kato, 1994; Pak-
soy et al., 1997), the limitations of the old paradigm remaisers of voicemail systems
on the receipt of a notification have to call their voicemg#tem and download/listen to
their actual/compressed messages. The ScanMail systestliderg et al., 2001) allows
users to browse and search the full message transcriptittremfvoicemail messages by
content through a graphical user interface. However, voaikusers are likely to want to
receive their messages on handheld devices — especiallgdssages taken by voicemail
systems other than the one provided by the network opegatprhome or corporate voice-
mail system. In general, there is a lot of time sensitive eohin voicemail, but which the
user cannot access either because it is not known when itteecavailable (i.e. lack of
notification mechanism), or because the notification redatg to changes in status (e.g.
arrival of new messages) and not to actual content.

We have proposed an efficient voicemail retrieval schemeu(ifas et al., 2001a)
which ‘pushes’ text summaries of incoming messages to thdhmld device directly from
a server without an explicit user request. Figure 1 compghretwo approaches for access-
ing voicemail content. In our architecture the spoken mgssaollected by the voicemail
system are forwarded to the content server where they aoenatitally transcribed and
summarized. There is no restriction on the location of theamail system, so access to
answering services other than the one provided by the nktemerator is possible. The
message initiator contacts the gateway over the Interrtbefivers the messages. The
gateway examines the message and performs the requiredieg@nd transformation.
The messages are then transmitted hop-by-hop in the madtileork to the mobile client.
The message initiator is then notified by the gateway abeufitial outcome of the opera-
tion.

Automatically produced text summaries from voicemail nages may serve multiple
goals such as the rapid digest of content, and the indexingeskages with the intention
of retrieving the original recordings when more informatie needed. Voicemail summa-
rization has several features that differentiate it fromvamtional text summarization.
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Figure 1: ‘Pull’ and ‘push’ service models for accessingceonail. The ‘pull’ model
employs a conventional request/response approach similaat of the web — a user enters
a URL (the request) which is sent to a server, and the sensvexs by sending a web
page (the response) — while in the ‘push’ model content iselad to the handheld device
without a specific user request.

1. Typical voicemail messages are short: the average darafia voicemail message
is 40s in the work reported here.

2. The summaries are extremely terse, in this case desigrfédrtto a 140 character
text message and therefore coherence and document flow)(atgl less important
than content.

3. Only one speaker speaks at a time and due to the relatikiely message length,
segmentation is unnecessary (in contrast to spoken diasogiubroadcast news).

4. Since the voicemail messages are transcribed by an atitospaech recognition
(ASR) system, a significant word error rate (WER) must beragsl

A number of techniques have been proposed to extract kegpifanformation from
voicemail messages. Huang et al. (2001) discuss three agme to extract the identity
and phone number of the caller: 200 hand-crafted rules; gratimal inference of subse-
guential transducers; and log-linear classifiers using afse) 000 bigram and trigram fea-
tures. Jansche and Abney (2002) proposed a phone numbartextrased on a two-phase
procedure that employed a hand-crafted component deneed émpirical data distribu-
tions, followed by a decision tree. These techniques repliexy on lexical information
and the best performing methods are based on hand-craféesd ru

In this paper we present an approach to voicemail summamizbased on the extrac-
tion of content words from the message transcription. Eamtuvis characterized by a set
of lexical and prosodic features, and we have trained ¢lasson these feature vectors to
discriminate “summary words” from non-summary words. Teedf features that we use
for the classification was obtained using Parcel (Scott.ei8B8), an ROC-based feature
selection methodology. We have carried out a number of é@xjgerts using a corpus of
Voicemail speech, collected and transcribed by IBM (Padabhaan et al., 1998), in which
the behaviour of our summarization approaches, using bpeeognizers with varying er-
ror rates, was evaluated using both objective error meammts (with respect to a human
generated reference) and subjective user tests.

2 Summarization as a classification problem

We have adoptedaord-extractive approach to voicemail summarization (Koumpis et al.,
2001Db), in which a summary is defined as a set of content wottdsated from the original
message transcription. Given a spoken messagfee word-extractive summarization can
be framed as the mapping of each transcribed word into a finedesummary class. This
classification problem is hard since there can be a largesdagfrwithin-class variability,
relative to the between-class variability. Increasingdimeensionality of the feature space
can enhance the training set discrimination but at a cosétemlization performance. If
a “gold standard” reference is available, with summary<labels for each word, then



this approach can be evaluated using standard metrics basthe true positive and true
negative rates, also known as sensitivity and specificity:

e TP "
sensitivity= TPIEN - true positive rate (1)
- N .
specificity= TINTFP true negative rate (2)
3)

where TP is the number of true positives (when a word is ctyretassified as belong-
ing to a class), TN is the number of true negatives, and FP &hdrE the numbers of
false positives and false negatives, respectively. A vecaiperating characteristic (ROC)
curve gives a compound representation of sensitivity aediipity, by plotting sensitiv-
ity against [1-specificity] (Zweig and Campbell, 1993; Rystvand Fawcett, 2001). For a
binary classifier, the sensitivity and specificity are tylli¢ controlled by an acceptance
threshold: for a strict threshold the sensitivity will beMavhile the specificity very high.
If the threshold is lowered, specificity will fall while setigity will rise. In this way we
can compare classifiers at particular operating points.

For a given task, two classifiers may be compared using tH@C Burves. One clas-
sifier dominates another classifier if it has a higher sefitgitat all specificities; in other
circumstances one classifier may be more sensitive at soeedisjties and the other may
be more sensitive at others (i.e., the curves cross). Tdrobtaximal sensitivity at all
specificities, Provost and Fawcett (2001) showed that afssiroponent classifiers could
be combined to give a composite classifier whose ROC curvefisat! by the convex hull
of the component classifier ROC curves. This convex hullfesred to as the maximum re-
alizable ROC (MRROC) curve. Any operating point on the MRR@®@ve can be achieved
by switching between the classifiers corresponding to tinéces of the convex hull.

3 The Voicemail corpus

We have used the IBM Voicemail Corpus-Part | (Padmanabhah, €1998), distributed by
the Linguistic Data Consortium (LDC). This corpus contali®®1 messages (14.6 hours,
averaging about 90 words per message). We used two testlset42 message develop-
ment test set distributed with the corpus (referred to d42¢and a second 50 message test
set provided by IBM (test50). The messages in test42 areratiort, averaging about 50
words per message, whereas the messages in test50 ardalbsetraining set average of
90 words per message. The messages in this corpus may bercagdags 27% business-
related, 25% personal, 17% work-related, 13% technicatl®d in other categories.

We built a hybrid multi-layer perceptron (MLP) / hidden Makkmodel (HMM) speech
recognizer for the voicemail task (Koumpis and Renals, 2Q@001). The essence of the
hybrid approach is to train neural network classifiers tareste the posterior probability
of context independent phone classes, then to use thesahjlities (converted into like-
lihoods by dividing with the priors) as inputs to a HMM decod@®lorgan and Bourlard,
1995). The system used two MLPs, one trained using perddptaar prediction acous-
tic features, the other using modulation filtered spectaogfeatures. The log posterior
probabilities estimated by the two networks were averaggdaduce an overall log pos-
terior probability estimate. During speech recogniticirting, we reserved the last 200
messages of the corpus as a development set, resulting ilami€ssage training set. An
initial trigram language model was estimated using thaingjtranscriptions. This training
set was augmented with those sentences from the Hub-4 Basialdews and Switchboard
language model training corpora which had a low perplexith wespect to the initial lan-
guage model, and the language model reestimated. We usexhangiation dictionary
containing around 10 000 words derived from the trainin@daiith pronunciations ob-
tained from the SPRACH broadcast news system (Robinson, &0412), plus 1 000 new



Training | Development| Test42| Test50

Messages 800 200 42 50
Transcribed words | 66 049 17676| 1914| 4223
Total content wordg 20555 5302 561 820
Proper names 2451 666 111 170
Phone numbers 3007 577 120 190
Dates and times 1862 518 46 81
Other 13235 3541 284 379
Compression rate 31% 30% 29% 19%

Table 1: Voicemail content word annotation.

words with pronunciations mainly constructed following trules used to construct the
broadcast news dictionary. The OOV rates were 1.6% on testd2.0% on test50. Addi-

tionally we used 32 manually designed compound words (SadiPadmanabhan, 2001).
The average test set WERs were 41.1% on test42 and 43.8%t50.t&8e denote these

transcriptions SR-SPRACH. Additionally, we obtained aosetset of transcriptions (de-
noted SR-HTK) using the more complex HTK Switchboard systedapted to the Voice-

mail corpus (Cordoba et al., 2002). The WER for SR-HTK was 3&fboth test sets.

We annotated summary words in 1000 messages of the \oiceorailils. The first
800 messages were used as a summarization training sethardast 200 used as the
development set. The transcriptions supplied with the &fiail corpus include marking
of NEs, and we built on this using the following scheme:

1. Pre-annotated NEs were marked as targets, unless uraviarkater rules;

2. The first occurrences of the names of the speaker andeatipere always marked
as targets; later repetitions were unmarked unless thelvezsambiguities;

3. Any words that explicitly determined the reason for calincluding important
dates/times and action items were marked,;

4. Words in a stopword list with 54 entries were unmarked;

All annotation was performed using the human transcripoioly (no audio).

As shown in Table 1 the compression rate in our training, igreent and testing ma-
terial was in the range of 19% to 31%. To assess the level ef-arinotator agreement we
compared the performance of 16 human annotators askeddte axerd-extractive sum-
maries for five messages, at a compression rate of 20-30%utbf 6 of the annotators
produced their summaries by progressively eliminatingléwant words (rather than select-
ing content words), and in nearly all cases the annotatadetkto a compression rate of
29-30%. Inter-annotator agreement may be measured lxydtadistic:

Po— Pe
- 4
“=1-P @

where B is the proportion of times the annotators agree, angsPhe expected chance
agreement. In this cagseaveraged 0.48, indicating a relatively good level of agreem

4 Lexical and prosodic features

The architecture of the voicemail summarization systemhmas in Figure 2. Lexical
information is obtained from the ASR transcriptions, whilesodic features are extracted
from audio data using signal processing algorithms or @dhse of pause and durational
features) may be extracted by the speech recognizer. Eamhiwdhe transcription is
represented by a set of lexical and prosodic featuresdlist&able 2).



Lexical Features

ac: acoustic confidence

cfy: collection frequency

cfy: collection frequency (stem)

(
(
(nam’ Proper names match*
(nam: Proper names match (stem)*
Néyel): telephone numbers match*
(
(
(
(

neyqy): dates and times match*
Neqy): dates and times match (stem)*
oth): other NEs match*

N&oth): Other NEs match (stem)*

pos: word position in message

Prosodic Features

dury: duration norm. over corpus

dury: duration norm. over message ROS
pp: preceding pause*

fp: succeeding pause*

e: mean RMS energy norm. over message
AFg: delta of i norm. over message

Fo: average norm. over message
Fo(ran): Fo range

FO(on): Fo onset

Foofr): Fo offset

Table 2: Lexical and prosodic features calculated for eastdvn the voicemail training,
development and test sets for the summarization tasks.€Bt@res marked with an asterisk
(*) are represented by binary variables.
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Figure 2: An overview of the word-extractive summarizatigproach based on systematic
comparisons and combination of patterns present in spakdin.a

4.1 Lexical features

For each word in the training, development and test sets lealated scores corresponding
to collection frequency, NE matching, word positioning @adustic confidence.

4.1.1 Collection frequency

Collection frequency (Robertson and Sparck Jones, 19%#) isformation retrieval mea-
sure which models the fact that words which occur only in a fegssages are likely to
be more informative than words which occur often in the entirpus. For a termwhe
collection frequency is defined as:

N
CFW,, = Iogm ®)

i
where N is the number of messages in the training data gnid the number of messages
that word w occurs in.

4.1.2 Named entity matching

Often the most important pieces of information in a messagéhe named entities (NES):
people, places, organizations, numbers and dates. |datitih of NEs in voicemail is less
straightforward than for text. Rather than train or adaptasisgical NE identifier (Gotoh

and Renals, 2000) for voicemail, we used matches with an $tB1i3 400 entries, 2 800
of which were derived from the Hub-4 BN corpus (Stevenson@aizauskas, 2000), the
remainder derived from the Voicemail training data traipgons.

4.1.3 Word positioning

It is well known (Edmundson, 1969) that the location of teramsl sentences within a
document can be a good indicator of their relevance to itsecan We thus derived a
related feature by associating each word in the voicemailsitriptions with a position
index which was normalized across messages.



4.1.4 Acoustic confidence

Ideally, we would like to extract only those words that wezeagnized correctly. Acous-
tic confidence measures, which may be extracted directiy filee acoustic model for
MLP/HMM speech recognizers (Williams and Renals, 1999amdify how well a rec-
ognized word matches the acoustic data, given the model.

4.2 Prosodic features

Prosodic features concern the way in which sounds are acallgrealized and can dis-
ambiguate a text transcription (e.g. question or statenoemtdd new information (e.g. the
speaker’s emotional state). The main focus of existing adatfpnal theories of prosody
is on stress and intonation, primarily as reflections of théchl, syntactic and informa-
tion structures. One such theory developed by Pierrehumabercolleagues (Pierrehum-
bert, 1980; Beckman, 1986) has three main distinguishiatufes. First, it assumes that
phrasal intonation is comprised of a string of tones gepdrhy a finite-state automaton.
In general, this will consist of an optional boundary tonsegsges of pitch accents, a phrase
accent, and an optional final boundary tone. The secondréeafuthe theory is the de-
composition of the text to be associated with the tune intnesmetrical representation,
indicating stressed and unstressed syllables. The thatdrie of the theory is the system
of rules for associating tune with text. Thus, given someritatrepresentation of the
text and intonational string of tones, there is a mechanisichvassociates the two. Ladd
(1996) made another distinction for intonation, betweendbntour interaction theories,
which treat pitch accents on words as local differences dbbaj contour for the phrase,
and the tonal sequence approaches, which treat phrasahsucempositional from a se-
guence of elements associated with the word. Computatibaaties of prosody however
have not yet progressed to a point where interesting genatiahs can be made for an
engineering approach to voicemail summarization. Heneadecided to use raw prosodic
features without addressing any formal theory of prosodyinmodelling.

The manual annotation of prosody can be a very complex taskiinng a great deal
of time and training. Most linguistic prosody researchl stlies heavily on the hand-
labelling of speech, augmented by semi-automated compagdysis tools, since this is
by far the most accurate way to obtain precise estimatesosiyplic features. However, a
machine learning approach to automatic speech summarizaiuires large quantities of
data for training purposes, for which prosody can not be glypteanscribed. Using signal
processing algorithms or the output of the speech recognieeautomatically extracted
and computed the correlates of basic prosodic featuresiagst with each transcribed
word. These features can be broadly grouped as referringdo, gnergy, word duration
and pauses. Various versions for some features were usetlrande detailed description
of them follows.

4.2.1 Durational features

The durations of the recognized words and phones may bectedrom the speech rec-

ognizer output (assuming that Viterbi decoding is used},rarmalized within a message.
Phone durations were expressed relative to the expectati@umormalizing to zero mean

and unit variance. Word durations were normalized in a similay, with expected dura-

tions computed as a sum of the expected durations of coamstiphones (using the pronun-
ciation dictionary). We also extracted rate-of-speech$R@formation using the enrate

tool (Morgan et al., 1997) which calculates the syllable tised on the computation of the
first spectral moment of the low frequency energy wavefororsesponding to a chosen

time series segment.
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Figure 3: The ROC curves produced by linear classifiers wipect to the development set
for voicemail summarization, using the features listedabl& 2 (excluding those referring
to class specific NE matching).

4.2.2 Pause features

Typically, pauses reflect the speaker’s uncertainty in fdating utterances marking a con-
flict between speech planning and speech production. ASieregsn general treat silence
as an additional subword unit and recognize it in the same agagther phone models.
Therefore, from a practical perspective pauses may be setreauration of the silence
models, which are easily extracted from the recognizerwuipue to the spontaneous na-
ture of speech in Voicemail corpus we decided not to use rawedurations themselves.
Instead we defined binary features for preceding and susweeduse, which took non-
zero values if non-speech regions preceding or succeediayéhexceeded a duration of
30 mg. Although we did not explicitly consider filled pauses, t@sight be informative
about important words (Maclay and Osgood, 1959; Shribe¥g1»

4.2.3 Fgfeatures

The fundamental frequency {f; was computed using the pda function of the Edinburgh
Speech Tools (Taylor et al., 1999). This function implersensuper resolution pitch de-
termination algorithm proposed by Medan et al. (1991). Toex for estimation errors,
we smoothed the output values using a 5—frame median filter.

We used a number of features derived from the estimateyoftfe mean, range and
slope of the G regression line over a window ranging three frames pregeatial following
each word; the fronset (the first non zero value in segment); and theffSet (the last non
zero value in segment). In case there were not enoyghamiples in the examined window
to calculate an adequate feature value (e.g. for short wurds as articles), each missing
value was set to the minimum available value from the wordhénwvindow’s vicinity.

4.2.4 Energy features

Energy features were calculated using the energy funcfidimburgh Speech Tools (Tay-
lor et al., 1999). This function calculates the RMS energyefach frame of the waveform.

1The selection of 30 ms as a threshold to identify pauses mithinessage is somewhat arbitrary and was
derived by studying a subset of forced alignments of thaitrgidata.
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Figure 4: The ROC curves produced by linear classifiers veiipect to the development
set for the four target classes using the individual featlisted in Table 2.

5 Feature selection

Each word in a transcribed voicemail message was reprekbpte vector of lexical and

prosodic features, as described above. Some of thesedegitavide more information for
the task at hand than others, and some features may be redgidan other features. In

this section we assess the informativeness of these fedturte voicemail summarization
task first by considering single feature classifiers, therelig@ing optimal feature subsets
using an ROC-based algorithm, Parcel.

5.1 Performance of individual features

We investigated the informativeness of each of the lexiodl prosodic features listed in
Table 2 for the voicemail summarization task by trainingén classifiers on each feature
in turn.

5.1.1 Single summary class

In Figure 3 we show the ROC curves given by linear classifiachdrained on a single
feature, testing on a development set. The best featuresxfoaicting summary words
were lexical: collection frequency and NE matching. Of tmespdic features, the most
important were durational, followed by energy. Featureseldaon Iy information did not
offer significant discrimination, when used alone.

5.1.2 Separate summary classes

In Figure 4 we consider each of the summary classes (namexars, dates/times, other)
separately and show an ROC curve for each feature and eachasyruolass.
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Proper names were identified very accurately by matchingatoed entity lists. In
particular, matching with the unstemmed proper name Isilted in a very high true pos-
itive rate with low false positive rate. The unstemmed gahME list also performed well,
with stemmed variants being rather less accurate. Calledtequency also offered good
discrimination with the stemmed variant performing sllghiut consistently better than
the unstemmed variant f Word position (pos) had strong negative correlation with
this summary class, indicating that proper names are mpstitioned at the beginning
of voicemalil transcriptions where the position featuregehlw values. Regarding the
prosodic features, mean RMS energy, features based @md-duration (in descending
order) gave useful discrimination. A weak correlation withowing pauses (fp) was also
observed.

Telephone numbers were also identified accurately by spexifined entity lists. The
date/time specific named entity lists also matched welHisrdlass (both name lists contain
digits). Word position (pos) offered a good discriminatamtelephone numbers typically
appear towards the end of a message. Collection frequemcgrhateresting correlation
with this class. For words with low collection frequency tterelation was strongly nega-
tive, while the correlation was slightly positive for wondgth a collection frequency above
the average. It is also notable that the telephone numbass tlad the highest acoustic
confidence among all summary classes. Of the prosodic satumy the durational ones
proved to be correlated with telephone numbers. The resbsiylic features did not offer
any useful discrimination.

The remaining two classes (dates/times and other) werealasgately identified by
name matching. For dates and times, the specific named Bsttityas a good predictor, as
were the collection frequency features. The prosodic featwere not particularly good
predictors for this class, with the best being following paand the durational features. For
the other class, matching to named entity lists was not Usefth the most informative
features being the collection frequencies. Among the phosfeatures the most useful
were the word durations, energy and the&nge.

5.2 Selection of multiple features

We used a feature selection approach, in which the data vealstoguide us to an optimal
feature subset. Instead of demanding a single classifiefeatdre set (which would be
optimized for a particular operating point in ROC space) wepded an approach that
maintained a set of classifiers and feature sets, enablitigalperformance at all points
in ROC space. This approach, referred to as Parcel (Scdtt #888), builds on the notion
of the MRROC curve formed as the convex hull of component RO@es (section 2).

Parcel is an iterative algorithm that selects those classifind feature sets that can
extend the MRROC. It does not select a single feature subsetassifier), but selects as
many feature subset/classifier combinations required t&imiae performance at all op-
erating points. The operation of Parcel for feature sededs illustrated in Figure 5. In
this example, the objective is to find a MRROC for a problemhveitdata set described
by the featurega},{b} and{c}. Sequential forward selection (SFS) is used in our imple-
mentation to search the feature space but any combinasedath algorithm could be used
instead. SFS starts with an empty set of features and at taekion adds to the current
subset the feature from those remaining that best satibfiesvaluation criterion.

Phase A: estimate single feature classifiers and generate the RO@<stor each candi-
date feature. For continuous output classifiers vary aliotdover the output range
to plot the ROC curve. The MRRQgy is the diagonal.

Phase B: form the convex hull of the ROC curves and retain those diassithat corre-
spond to the vertices of the convex hull. If MRR@&y, differs? from MRROGq),

2Each new classifier/feature either extends the existingecohull or does not. The degree of difference
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the algorithm proceeds. Set MRR@fg equal to MRROG,,. In the example
of Figure 5, as classifiers produce a continuous output tehviifferent thresholds
have been applied to predict class membership, the conVeXMRROC ey, has

five vertices? Two use feature subséb}, and three uséa}.

Phase C: for each retained classifier c in the vertices of MRRQ(Cif there are N total
features and ¢ has rieatures, then form N-n; new classifiers, each with.a-1
features, formed by adding each remaining feature to tha iigature set. Generate
ROC curves for the new classifiers and recompute the convéx hu

Phase D: retain those classifiers that are used to form the verticéseofonvex hull (In
Figure 5 two use feature subdet, c}, the others usingb}, {a, b} and{b, c}). Ifthe
new convex hull does extend the old convex hull go to Phasel@r@ise, terminate
and return the set of classifiers that are the vertices ofaheex hull.

01 11 01 11
phase A {a

[y

{a}

1-specificity

)
¥

1-specificity

MRROC(new)

MRROC(old) MRROC(old)

b}

0,0 sensitivity 1,0 0,0 sensitivity 1,0

01 11 01 11
phase D 2N

fac

{b.c}

1-specificity
1-specificity

MRROC(new)

MRROC(old) MRROC(old)

o b

0,0 sensitivity 1,0 0,0 sensitivity 1,0

Figure 5: The operation of the Parcel algorithm in searcfonthe feature subsets that pro-
duce the MRROC, after Scott et al. (1998). Only those systhatstheir operating points

lie on the MRROC are saved, as the rest can never be optimaar €isual comparisons

and sensitivity analysis can be performed at each step @lgloegithm’s operation.

Using Parcel, it is possible to use multiple classificatitqodathms and to carry out
the search for suitable classifiers to form the MRROC by ndy earying the feature
subset, but also the classification algorithm. We used fagstfiers within this framework:
k-nearest neighbour (knn, k=5); Gaussian classifier (géngje layer network (sIn); multi-
layer perceptron (mlp); and Fisher linear discriminant)(fld

The training performance of the Parcel algorithm is showRigure 6, which graphs
the MRROC curves of the development set for each of the fieiss{left), and selecting
from lexical only, prosodic only and all features (right)hd classifiers in this case were
trained on the human transcriptions. The k-nearest neigisbdassifier gave very good

is implementation dependent. In our experiments we requar€% minimum difference for the algorithm to

proceed.
3The convex hull of a set of points is the smallest convex Inalt tontains the points.
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Figure 6: The MRROC curves produced by Parcel on the devedapset, using the fea-
tures listed in Table 2 (excluding those referring to clgssc#fic NE matching). The left
graph compares the role of the five classifiers employed whéleight one depicts the MR-
ROC produced by all classifiers from lexical only, prosoditypand lexical and prosodic
features. Classifier A is optimal at moderate precisioltéradeoff; B is optimal at high
precision; and C is optimal at high recall.

trade-off between TP and FP for all four sizes of availabdéntng data. The Gaussian
classifier produces relatively high number of both TP and &®ing a wide range of
operating points. Finally, the results from the single tayetwork were relatively poor.

Although selecting from lexical features alone dominatdeding from prosodic fea-
tures alone at all operating points, it can be seen that therelear benefit to augmenting
the lexical features with prosodic features such as pitogeand pause information. We
note that named entity matching and collection frequenagew®e most important single
features. Given a desired operating point in ROC spaceePanmables us to choose a
classifier that is optimal (with respect to the developmefjtf®r that point.

6 Evaluation

The design of the automatic voicemail summarization sydtammobile messaging re-
quires trade-offs between the target summary length ancetaming of essential content
words. The way message transcriptions are processed ttrucirsummaries can affect
everything from a user’s perception of the service to thecallion and management of
the mobile network’s resources. Summaries are inhereatlgf to evaluate because their
quality depends both on the intended use and on a number ef fatttors, such as how
readable an individual finds a summary or what informatiomaividual thinks should be
included in it.

The following experiments were conducted using unseend@st and the questions
we are looking to answer are the effects of speech recogniti&R and of automatic
summarization. Speech recognition WER was varied usingamumanscriptions (denoted
SR-Human with 0% WER) and the speech recognition transoriptlescribed in section 3:
SR-SPRACH (41-44% WER) and SR-HTK (31% WER). The effect edmatic summa-
rization was obtained by comparing the automatic systeroritesd above with manual
summarization, and baseline automatic approaches (rasdtaution of words, and first
30% of the message).
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Figure 7: Extractive summarization scores on test42 aflddsr SR-SPRACH, SR-HTK
and SR-Human input, respectively.

6.1 Objective evaluation

We have used the slot error rate (SER)(Makhoul et al., 1998pmpare an automatically
generated summary against a human generated gold staftier8ER is analogous to the
WER, and treats substitution errors (correct classificatieorong transcription), insertion
errors (false positives) and deletion errors (false negsafiequally. Of the classifiers form-
ing the MRROC in the right of Figure 6, classifier A (using naheatity match, collection
frequency, b range and following pause features) was used, since it leashthrtest Eu-
clidean distance from the perfect classifier, and is mostagpiate if the aim is to minimize
SER. Figure 7 shows these errors for summarization usirggifler A applied to human
(SR-Human), SR-SPRACH and SR-HTK transcriptions for t2stdd test50. Increasing
speech recognition WER results in an increased SER. Thee$siigh'ER system, based
on SR-SPRACH, has a significantly higher deletion rate cosgavith SR-Human and
SR-HTK which may arise due to more summary words being migneized. Recognition
errors also give rise to substitutions in the summaries f@yad with the gold standard)
and this can be seen by comparing the low level of substitatfor the system based on
human transcriptions, compared with the systems based éBPFRACH and SR-HTK.

For SR-Human, 80% and 72% correct content and classificatisrachieved on test42
and test50, respectively. For the SR-SPRACH transcriptié8% and 47% correct classi-
fication was achieved on test42 and test50, respectivelhetsame time, for the SR-HTK
transcription scores were consistently higher, 60% and &&%ect content and classifica-
tion on test42 and test50, respectively. Deletion errore\@6% and 33% for SR-SPRACH
while for SR-HTK these were lower at 15% and 22%. SER scorete&i50 follow the
same patterns with those for test42 while being slightlyrpoprimarily due to a higher
deletions rate as a result of the relatively short gold stethdummaries of the messages
contained in the test50.
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Figure 8: Average MOS on 8 summaries for 5 messages fron2tgatfiged by 10 subjects.

Question SR-Human| SR-SPRACH
caller name 94% 57%
reason for calling 78% 78%
priority 63% 58%
contact number 82% 80%

| retrieveaudio | 30% | 53% |

Table 3: Average percentage of correct answers in messaggrebension.

6.2 Subjective and usability evaluation

The quality of a service cannot be represented by a singlsunegbut it is rather a com-
bination of several factors, including learnability, effieeness and user satisfaction. Such
factors must be assessed by having representative usaecinith each application built.
Usability testing ensures that application designs areagyet and allow users to accom-
plish their tasks with ease and efficiency. Poor usability@temail summarization ap-
plications has a direct cost. Each time a user cannot deterthe key content from a
summary, they have to retrieve the original audio recording

We have conducted some subjective and usability tests osystem in a controlled
environment. These tests compared manual and automatioaties presented in random
order from SR-Human, SR-SPRACH and SR-HTK transcriptiaftsg with the first 30%
and a random (but sequentially ordered) set of the wordsarntiman transcription. The
mean opinion score (MOS) determined by 10 human subject fioessages summarized
in these 8 ways are shown in Figure 8. We found that subjentietkto agree more on
which summaries are of low rather than high quality and therallk statistic was in the
range 0.26 to 0.41. The scores indicate that the automatitnsuies are considered to
be better than selecting the first 30% of words or random Befedut are inferior to the
corresponding human-generated summaries. Moving fromahumautomatic summaries
reduces the MOS by about 0.6, whereas moving from a humasctigtion to a speech
recognizer with 30-40% WER reduces the MOS by over 1 point.

A second set of tests aimed to assess the summary qualitymis tf comprehension.
Subjects answered questions about message contenti(‘faliee?”, “reason for calling?”,
“message priority?”, “contact number?”) based on the aadid the text summaries. We
used a WAP phone emulator to simulate transmitted summarelsthe audiovisual inter-
face is shown in Figure 9. The tests were carried out by 1éestbjvho were presented
with the summaries and audio of 15 voicemail messages. Thenswies used the human
and SR-SPRACH transcriptions, and the results are showatiteB. Human transcription
was considerably more reliable in determining caller idgr(®4% vs. 57%), but there
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Figure 9: Audiovisual interface used for summarizatioreasment allowing users to ac-
cess the original audio and the text summaries.

was less difference in determining the contact phone nur@at vs. 80%). The users
were able to determine the reason for calling with equal eayu(78%) for both types
of transcriptions. The above results indicate that sumesagproduced using automatic
transcriptions are particularly useful for tasks such asrdeining the reason for calling,
priority of messages and contact numbers. It seems that wssre able to associate the
words included in summaries to make global judgements abeunessage content. The
above supports the hypothesis that even a few relevant veatdscted from a transcription
can lead to good message perception and allow potentialnatctibe taken. This evalua-
tion also showed that the users were much more likely to Idbe message audio, when
presented with summaries generated from the speech reesgmessage, compared with
summaries generated from human transcriptions (53% vs).30%

Message priority could be determined relatively accuydteim the summaries: classi-
fying priority as high/medium/low, the priority obtaineeb the summary agreed with that
obtained from the audio 58% of the time for SR-SPRACH and 68#etime for human
transcriptions. The cases where the subjects completajpdged the message priority
from the text summaries were 2% (judged as high, while froerstimmary they thought it
was low) and 5% (judged as low, while from the summary thewgfin it was high). The
above results suggest that transcription errors affeatigntie identity of the caller while
they lead to 23% more retrievals of audio recordings as weerns not confident that the in-
formation they read in a summary corresponded to the fullcamdect content of voicemail
messages.

Figure 10 summarizes the time taken by users to answer thpretiension questions
about the voicemail messages, comparing summaries basednoen and SR-SPRACH
transcriptions, and the original audio. Although not difecomparable (since each mes-
sage was used in one form only), the average comprehensierfar speech recognition
summaries was about 30% greater than for the human tratisorg@se. These times are
about 1.5 times longer than performing the same task usie@utiio. Note that these
figures include the time required to type the answers in thprggpiate template fields
(Figure 9). This favours the audio retrieval scenario, whesers can listen to the recording
while typing their answers. At the same time, while retngythe text summaries they
had to browse the mobile display to find the appropriate bibfifrmation prior to typing
it. In practice, retrieving the audio would also involve cestion overheads, such as typ-
ing a PIN. Despite the fact that in the above experiment tgestion of text summaries
was not found to be as rapid as that achieved by listeningeatidio, the advantages of
summarization e.g. indexing and uninterrupted infornratiow in noisy places need to be
considered.

Finally, 13 out of the 16 subjects (81%) who took part in thialeation would likely
use such a service regularly to access their voicemail gessahile away from office or
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Figure 10: Message comprehension times comparing acgessiroriginal audio to sum-
maries produced from human and SR-SPRACH transcripts.

home. This suggests that even average quality automatimauies might be preferable
given the elaborate nature of accessing spoken audio.

6.3 Discussion

Engineering-oriented metrics and user input can be caehith system properties to
identify what components of the system affect usability tingredict how user satisfaction
will change when other trade-offs are made (Walker et aB8)9This evaluation frame-
work was extended in Koumpis (2002) with the aim to determihe&ch metrics maximize
summary quality and minimize delivery costs within this@uatic voicemail summariza-
tion system for mobile messaging. One disadvantage of thiedwork is the amount of
data required from subjective evaluations. Instead ofisglfor weights on the success
and cost measures using multivariate linear regressian\agiker et al. (1998), one could
use Parcel to calculate the role of each metric to the ovgyatem performance. This is a
straightforward and possibly much more robust processeasiétrics are numerical values
that can be used as inputs to simple classifiers that willdieed and validated using task
completion as perceived by human subjects as an extertetiani.

Although treating transcribed words independently prawedork relatively well and
allowed us to study the correlation between word classesaavatiety of features, it is
expected that if modelling is extended beyond the word leasisification can be based on
the expectations from syntax, semantics and pragmaticteaddo better text coherence.
HMMs are a well developed probabilistic tool for modellinggsiences of observations,
although the amount of annotated data requirements witl teebe addressed.

It remains to be seen whether a similar approach can be usexshtbine acoustic and
lexical features to rank messages by accuracy. This wowe &pplications in filtering in
order to deliver only the summaries of preselected messpgsi.e., personal, or profes-
sional.

7 Conclusion

In this paper we have presented a framework for voicemailnsarization, based on the
extraction of words from speech recognition transcrigioihe word extraction process
operated by training classifiers to identify words as sunymanrds or not, with each word
represented by a vector of lexical an prosodic featuresf@dteres used in the summarizer
were selected using Parcel, a method based on ROC curvesh vaturned a collection
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of feature sets and classifiers which together were optitall points in ROC space.
Although lexical features (named entity list matching antlection frequency) were most
informative, we found that a significant improvement couéldbserved by augmenting
with some prosodic features.

We evaluated the resultant voicemail summarization sysiteaugh comparison with
human-generated gold standard summaries (using slot rateyrand through subjective
user testing. We assessed the effect of transcription woad ete, comparing the per-
formance of automatic summarization approaches with méspdranscriptions produced
by hand and produced by recognizers with average word eates rof 31% and 42%.
The summarization slot error rate was dependent on the woodrmate, but the difference
between the two speech recognition systems was small; foywe human transcribed
system was significantly better. We conducted a set of ugatebts, using human sub-
jects, based on mean opinion score of summaries, and on d setprehension tests.
The main results from these experiments were that the atimsmanmaries were inferior
to human summaries, but there was a greater perceivedygddfégrence between sum-
maries derived from hand- and automatically-transcribedsages, than between manual
and automatic summarization.
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