Energy disposal in the reaction of fluorine atoms with iodine.
by

John Ross Wheeler

PhD
University of Edinburgh
1982

Declaration

I declare that this thesis is my own composition and that the work described herein is my own or where done in collaboration with others contains a substantial contribution from me. Where reported work was done mainly by others due credit is given and references are given to all other sources of information.

The product internal energy distributions for the reaction $F+I_{2} \rightarrow I F+I$ have been investigated. Laser induced fluorescence technicues in a crossed molecular beam environment were used to obtain the relative populations of the vibrational levels. The $(6,0)$, $(5,0),(3,0),(8,1),(6,2)$ and $(8,3)$ bands of the $\operatorname{IF}(X) \operatorname{IF}(B)$ spectrum were probed by a nitrogen pumped dye laser in the region $460-500 \mathrm{~nm}$. Relative populations for the $v^{\prime \prime}=0,1,2,3$ levels are reported with the $v^{\prime \prime}=0$ level strongly favoured. Boltzmann like distributions were observed for the rotational distribution of the $\mathrm{v}^{\prime \prime}=0$ level with a temperature of $(230 \pm 10) \mathrm{K}$.

A classical triajectory study of the reaction is also reported, using nine LEPS potential energy surfaces at near thermal energies. The results suggest that a mechanism which is intermediate between direct and complex reaction dynamics is involved. Good agreement with the measured reaction cross section is obtained.

In order to explain the discrepancies in the experimental data two reaction branches are proposed. One which gives highly vibrationally excited products occurring on the ground state surface gives good agreement with the trajectory results. It is proposed that the second branch forms $I\left({ }^{2} P_{\frac{1}{2}}\right)$ products and accounts for the large $v "=0$ population.

Contents

Chapter Page
1 Introduction 1
2 Laser induced fluorescence study of $F+I_{2}$ 5
3 Classical trajectory study of $F+I_{2}$ 66
4 Discussion 126
Appendix
A Evaluation of expected signal rate. 146
B Program listings 148
C Publications 1980-1981 171
Bibliography 185

Chapter 1
Introduction

1 Introduction

Recent progress in molecular beam techniques has been reviewed by Grice (GRI81) and the theoretical tools for interpreting the resulting data is comprehensively covered in ref. BER79. In efforts to extend the scope of reactions studied in molecular beams much work since 1973 has gone into the construction of efficient non-metal atom beam sources. Vastly improved beam intensities over simple effusive sources have been achieved by supersonic nozzle sources working at high fach numbers (GRI75). This increase in intensity is essential for the production of highly reactive atomic species such as oxygen or fluorine where a large proportion of the beam is a buffer gas. Another direction in recent years has been to explore the internal energy disposal of bimolecular reactions. Two techniques which stand out in this field are arrested relaxation chemiluminescence (ANL67) and laser induced fluorescence (SCH72). Reviews of these methods are given in references CAM78 and KIN77 respectively.

Interpretation of the results of molecular beam studies usually relies on comparison of the results with simple kinetic and dynamic models. Often reactions are split into direct or complex reaction dynamics according to the angular product distribution. If an intermediate is formed with a lifetime of the order of its rotational period or greater, then a symmetric distribution of products is expected (FIS67). RRKM-AM theory has been used to explain the energy distributions in such reactions (SAF72, HOLT7). Some direct interactions
are explained in terms of simple reaction models with surprising success (POL74). Other systems require more sophisticated models, for example the DIPR (KUN70) and FOTO (PAT74) models, which require more detailed knowledge of the potential energy surface. However if the potential energy surface is known to a reasonable degree of accuracy it can best be probed by a classical trajectory stuḍy (MUC79).

As in other branches of chemistry, periodic trends exist and are looked for, molecular beam studies are no exception. Because of the relative ease of production of beams of halogen diatomics and hydrides systematic trends in such series have been observed, for example the series of reactions (CRU73)

$$
\mathrm{Ba}+\mathrm{HX} \rightarrow \mathrm{BaX}+\mathrm{H} \quad ; \quad \mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}
$$

Chlorine and bromine atom reactions with all the halogens and inter-halogens have been studied by angular distribution measurements. Most of these results were obtained with effusive beam sources (LEE69, BLA70), but velocity selection in the reaction $\mathrm{Cl}+\mathrm{Br}_{2}$ has shown little dependence of the cross section on the input energy (LEET7). In most cases the scattering is forward peaked with cross sections less than the hard sphere value. This suggested that the dominant process is short range attraction. Complex lifetimes determined from the angular distributions (FIS67) are consistent with the electronegativity ordering rule for triatomics (PEY68). Charge transfer from the central atom of the intermediate
stabilizes the orbitals of the complex. Thus the complex formed in the reaction $\mathrm{Br}+\mathrm{I}_{2}$ is longer lived than that of the similar reaction $\mathrm{Cl}+\mathrm{Br}_{2}$ (LEE68). In contrast the reaction

$$
\mathrm{Br}+\mathrm{ICl} \rightarrow \mathrm{Br} \mathrm{Cl}+\mathrm{I}
$$

gives a smaller cross section and is backward peaked (LEE69) showing the instability of the Br....Cl....I intermediate.

Angular scattering measurements have also been carried out on the reaction (CAR73, WON73).

$$
F+I_{2} \multimap I F+I
$$

Lee's results which exployed velocity selection of the reactants implied a complex mechanism which might be expected as $I_{2} F$ has been observed to be stable by $12 \mathrm{KJ}_{\mathrm{mol}}{ }^{-1}$ (VALT7). The two reports agreed on the average translational energy of 15% of the available energy but disagreement on the angular distribution led Grice to conclude that an appreciable energy dependence existed. Thése results suggested that this reaction would continue the trend observed in the other halogen - interhalogen reactions. However, the rate constant measured for this reaction and those for $\mathrm{F}+\mathrm{ICl} / \mathrm{Br}_{2}$ (APP75) are significantly larger than their counterparts in the series and are close to the hard sphere bimolecular collision frequency. This indicates that long range attraction dominates in the potential contrary to the behaviour in the reactions of $C 1$ and $B r$.

The spectroscopy of IF is known in great detail (CLY76, CLY78) and is well suited to the laser induced fluorescence technique. Preliminary studies of the reactions $F+I_{2}$ (DON80) and $F+I C l(S T E 79)$ reported non statistical vibrational energy distributions with internal energies similar to those for $\mathrm{Cl}+\mathrm{Br}_{2} / \mathrm{I}_{2}$ (70\%: LOE71). If the lifetime is sufficiently long to produce a statistical angular distribution then statistical energy distributions are usually expected which is not what was observed.

In chapter two improvements to the apparatus used in the early study of the $F+I_{2}$ reaction are described. New relative populations for the $v^{\prime \prime}=0,1,2,3$ states of IF are reported along with the rotational energy distribution for the $v^{\prime \prime}=0$ level.

In chapter three a classical trajectory study of the reaction is reported. It was hoped to show that the disparate results obtained to date could be explained by reactant energy variations in conjunction with the unusual mass combination.

The results of these two studies are discussed in detail in chapter four along with more detailed laser induced fluorescence data for the three reactions $F+I_{2} / I C I / I B r$ which was obtained in a concurrent study by the Garching group (TRI80). In order to explain the energy disposal in these reactions the possibility of a spin orbit excited atomic product is proposed. Some of the consequences for the potential energy surface are also assessed.

Chapter 2

Laser induced fluorescence study of $F+I_{2}$ reactive scattering.

2.1 Vacuum system

The vacuum system consisted of a cylindrical stainless steel tank (fig.2.1) 1m across and 0.45 m deep. It had eight ports sited radially around the walls and several in the base and the top. It was pumped by three 6 in oil diffusion pumps, Edwards EO6 (1400 1s ${ }^{-1}$) and one Leybold 501 pump ($6001 s^{-1}$), backed by two separate roughing lines, $4501 s^{-1}$ each. The main chamber was also pumped by five liquid nitrogen cryotraps (area approx. $1 \mathrm{~m}^{2}$) with another smaller one operating as the iodine beam stop.

Two of the diffusion pumps evacuated the main chamber while another differentially pumped a chamber which housed the atom beam source. The central (Leybold) pump acted principally as the atom beam dump. A large conical skimmer captured the beam and carried it with as little resistance as possible to the pump (KAH8O). The tank pressure was measured using an Edwards IG7 ion gauge with an Edwards IG5M gauge head. Pressures down to 4×10^{-7} Torr could be attained with rigorous cryotroapping.

The laser beam entered and lef't the tank through two windows attached to the tank by means of bellows which permitted some degree of alignment. The beam was then conducted to the reaction zone at the tank centre by baffle arms which reduced stray light and any scattered by the windows. The photo multiplier was mounted perpendicularly to the laser axis in a stainless steel arm which brought it close to the reaction zone. The vacuum seal was made between the face of

Figure 2.1 Vacuum system.
the photomultiplier and an ' 0 ' ring.
To reduce reflection from the metallic walls, much of the inside of the tank was painted black.

The atom beam source, housed in the differentially pumped chamber, was aligned vertically, perpendicular to the laser and photomultiplier axes. The iodine beam was horizontal and made an angle of about 30° with the photomultiplier. 2.2 Laser system
2.2.1 Nitrogen laser.

The pump for the dye laser was a nitrogen laser built at Edinburgh. It was of the parallel plate Blumlein design and was that described by Fernie (FER80) with a few modifications. The discharge was formed in a cavity 1 m long, 40 mm gap width and 3 mm electrode height. Gas pressures of 35 40 torr were used at the repetition rate of 100 Hz . The peak power under optimum conditions was measured as 35 kw with a pulse length of 6 ns fwhm.

Variations in the laser power are summarised for various operating conditions in figure 2.2 . 2.2.2 Dye laser

The dye laser based on the Hansch design (HAN72) was built on an Oriel 600 mm optical bench. The laser cavity was formed by a 50% transmitting, partially silvered concave mirror radius 37 cm and a diffraction grating ruled at 1200 lines per mm and lazed for a wavelength of 450 nm . The grating was mounted on a rotating table driven by a stepping motor, which changed the wavelength in $1.1 \AA$ steps.

Figure 2.2 Nitrogen laser power variation with pressure at different operating voltages.

The beam was expanded by a telescope (x10-Oriel) whose position was adjusted by four micrometer screws (fig. 2.3). The dye cell was positioned on a kinetic mount so that it could be placed exactly at the focus of the gas laser beam and its position in the cavity could be adjusted to optimise the dye laser output.

The dye cell (fig.2.4) consisted of a stainless steel block with a square slot machined in it and with two tubes which permitted the dye solution to circulate. The normal to the end windows made an angle of about 5° with the beam axis to prevent undesirable etalon effects. The windows

DYE LASER ASSEMBLY (scale 1:4)

Figure 2.4 Dye cell
were 2 mm fused quartz plate (Spectrosil) bonded to the cell body with IS 496 adhesive. A problem with this design was that the dye solvent dissolved the adhesive limiting the celi's lifetime. With ethanol as solvent the cell would last for up to 3 months but dioxin caused immediate collapse. This precluded the use of coumarin 152A dye whose peak gain occurs conveniently at 485 mm .

The length of the dye cell was found to be an important consideration. If the active region was too long (10 mm) then it gave rise to a considerable degree of super-radiance. This occurred preferentially at the peak in the dye's gain curve. The effect was most noticeable for the dye coumarin 307 whose peak occurs at 500 nm . When this dye was used the super-radiance caused fluorescence of the I_{2} beam giving typically a count of about 10 Hz . With the dye lasing at 500 mm the count rate was in excess of $10^{6} \mathrm{~Hz}$. The ratio of these values, 10^{5}, explains why attempts to measure the intensity failed but also gives an indication of the sensitivity of the apparatus. Reduction of the cell length to 4 mm and sharper focusing of the pump beam eliminated this signal almost completely while maintaining the laser power.

The dye laser beam profile was known to vary with the dye concentration (HAN72). Hansch managed to produce an almost circular beam cross section simply by adjustment of this concentration and varying the pump laser focusing system. Probably because of defects of the cell construction and very simple pump laser optics this procedure was not sufficient with our system. The addition of the pinhole (1 mm) to the
dye laser configuration was necessary to improve the beam shape. This resulted in a slight loss of power but reduced the effective beam divergence.

A later improvement in the dye cell construction was to use anti-reflection coated windows. These were 2 mm quartz plates coated on one side with two dielectric layers, 1.2 um of MgF_{2} over 0.1 um ZnS . This increased the output power and improved the beam profile by reducing spurious reflections.

Measurements carried out using a scanning Fabry-Perot etalon (HUT78) showed that the best line width attainable with the dye laser was 2.4 . This was sufficient to resolve vibrational bands in many diatomics but would allow only the envelope of the rotational structure to be obtained. The introduction of an etalon (Spectra Physics 0411-6503 10GHz) into the laser cavity reduced the linewidth to approximately 1.5凡. This was measured using a Jobin-Yvon HRS2 monochromator (1200 lines/mm; resolution $0.3 \AA$). The etalon reduced the bandwidth of the laser and improved the spectral line shape. (fig 2.5) by removing the asymmetry of the original line. The optimum position of the etalon was found to be between the dye cell and the telescope.

While the grating could be scanned under control of the PDP11/45 computer, the etalon had to be scanned manually. The procedure adopted when changing wavelength was to move the grating to the correct position and then rotate the etalon to obtain maximum output power.

Figure 2.5 Dye laser bandwidth variation with etalon.

The divergance of the beam was too great to use without some correction. Using simple geometric optics the beam was shown to diverge from a point near the telescope. Two lenses were used to focus the beam at the tank centre (fig.2.6). They were chosen to produce a long narrow beam which would not scatter from the baffles. An aperture after the lenses removed any diffraction rings generated by the pinhole. Finally the beam was aligned with the tank by an adjustable periscope.

The resulting dye laser beam had a low divergance (1 m rad) and a uniform diameter in the reaction zone. Dye laser parameters are summarised in table 2.1(a).

Bandwidth	$1.38 \mathrm{fwhm}(\mathrm{i})$
Pulse length	6 ns fwhm
Output power	$0.8 \mathrm{~kW} / \mathrm{pulse}$
Repetition rate	100 Hg
Divergance	1 m Rad
Beam cross section	$3.2 \mathrm{~mm}^{2}$

Table 2.1a Dye laser parameters
(i) with $10 G \mathrm{HHz}$ etalon (ii) measured at reaction zone; average power $=250 \mu W$.

The laser dyes used cover the range $450 \mathrm{~nm}-500 \mathrm{~nm}$. This allows several bands in the $\operatorname{IF}(X+B)$ spectrum to be studied. A slight gap did however exist at about 485 nm due to the unfavourable properties of the Coumarin 152A/dioxin solution. The ranges of individual dyes were dependent on

Figure 2.6 Collimating optics.
the adjustment of the dye laser and on the dye cell construction (GLE80). For a poor cell the maximum wavelength attainable for Coumarin 102 dye could be as low as 485 nm whereas for a good cell the range could extend to about 505 nm . Laser dyes used are listed in table 2.1(b).

Table 2.1b. Laser dyes suitable for the range 450-500nm
(1) Range of wavelength where the power is greater than $\frac{1}{2}$ peak.

2.23 Laser monitoring

The dye laser wavelength and intensity essential for normalisation, were measured after the beam left the tank (fig. 2.7). The wavelength was measured by diffusing the beam and using the monochromator. Measuring intensity however posed a problem. The average power as measured by the Laser Instrumentation Ltd. Power meter (154BTMK.II) and 14BT thermopile was unreliable because the thermopile was very sensitive to the external environment. The method used was to reduce the intensity with interference filters and use a photomultiplier. The resulting pulsed output current was smoothed and averaged using a diode pump circuit (fig.2.8).

Figure 2.7 Schematic diagram of the laser monitoringsystem.

Figure 2.8. Photomultiplier output averaging circuit.
The output from this was measured by a Keithly electrometer (model 602) which was monitored by the PDP11/45 by its analogue to digital convertor.

A portion of the nitrogen laser beam was detected by a photo diode (ITTIL Type FD125) and this was used to initiate the counting system.

2.3 Molecular beam formation

2.3.1 Iodine beam.

The molecular Iodine beam was formed by a glass microcapillary array of $10 \mu \mathrm{~m}$ pore diameter, 1 mm channel length and 75\% transparency. The array was mounted on a stainless steel stem suspended from the differentially pumped chamber. The oven, also of stainless steel, pushed into the stem and a seal was effected with two Viton '0'-rings (fig.2.9). The oven was sealed with a ptfe ring and had been vacuum tested to 10^{-5} Torr. The oven and stem could be heated separately so that the mic rocapillary array could be held at a slightly higher temperature to prevent blockage. The temperatures were monitored by two copper/constantan thermocouples.

Figure 2.9 Iodine oven and stem.

This arrangement of a removable oven enabled the oven to be fitted last in the assembly of the experiment, leaving more space in which to work and reducing I_{2} contamination of the apparatus.

The idea of the separate stem was that the cross beam reservoir was eventually to be situated outside the tank and connected by a heated glass pipe. The intention was that other gaseous reactants (e.g. $\mathrm{CH}_{3} \mathrm{I}, \mathrm{Br}_{2}$) could then be used, extending the scope of the apparatus.

Although the stem was heated at two points, one above and below the DPC baseplate, a cold spot occassionally formed. This should be taken into account in any future design. However it was possible to produce a good I_{2} beam by careful adjustment of the heater currents.

After leaving the reaction zone the I_{2} beam impinged upon a copper reservoir filled with liquid nitrogen and was thereby removed from the vacuum system. The lowest pressure attainable with the I_{2} beam running was less than 10^{-6} Forr but typically, running conditions were about 8×10^{-6} Torr. 2.3.2 Fluorine atom source.

The fluorine atom source was chosen to be a super-sonic nozzle beam source. The enhanced intensity of this type of source compared with an effusive beam (AND66) was necessary as only about 1% of the beam is atomic fluorine. Also, the improvements to directionality afforded by a glass permionic
array would have been more than offset by the attenuation in concentration due to the high reactivity of fluorine atoms with glass.

He/CF4 mixtures were prepared at atmospheric pressure in a twenty litre reservoir, the composition being determined by the pressure ratio. The mixture was then bled through to a low pressure ballast volume (5 litres) via a needle valve. Beam stagnation pressures were measured by a Monitorr 162 pirani gauge (with He correction) or an oil monometer for pressures greater than 4 torr.

Chlorine and Bromine seeded in inert gases have been produced in a graphite oven at 2000 K by dissociation of the parent molecules (VAL77). Fluorine, whose bond strength is much less, has been prepared by dissociation in a Nickel oven at the lower temperature of 1100K (PAR 72, FAR 75). Both ovens yielded better than 80% dissociation of the parent. The problem with this type of source is finding and machining suitably corrosion-resistant and thermally stable oven materials.

The alternative is to use a discharge through the parent gas. Miller and Patch (MIL69) first achieved an oxygen atom supersonic beam seeded in Helium buffer gas. The discharge was maintained by radio frequency excitation. Microwave excitation is of ten preferred over r.f. excitation due to stronger coupling to the discharge plasma, although Lee and co-workers have recently reported a supersonic $O\left({ }^{3} P\right)$ and $O{ }^{1}$ D) source formed by an r.f. discharge (SIB 80). Microwave discharges of $\mathrm{SF}_{6}, \mathrm{NF}_{3}$ and $\mathrm{N}_{2} \mathrm{~F}_{4}$ in buffer gases have all been used to produce F atoms (FOO 75) but $C F_{4} / \mathrm{He}$ and $\mathrm{F}_{2} / \mathrm{Ar}_{\mathrm{r}}$ mixture give very good results.
$\mathrm{F}_{2} / \mathrm{Ar}$ mixtures can under favourable conditions form 100% dissociation products (FOO 75) but require special handling. When CF_{4} is used, as in this study, other species will be present apart from F°. The principal contaminants are $\mathrm{F}_{2}, \mathrm{~F}^{-}, \mathrm{CF}_{2}$ and CF_{3} whose concentrations vary with discharge power (POL 72). The effects of F^{-}and its recombination rate are unknown but are not thought to be important. $\quad \mathrm{CF}_{3}$ radicals react rapidly forming $\mathrm{C}_{2} \mathrm{~F}_{6}$ ($K=3-5.3 \times 10^{12} \mathrm{~cm}^{3} \mathrm{~mole}^{-1} \mathrm{~s}^{-1}$; HIA72, BAS71) although $C F_{4}$ will also be reformed. $\quad C F_{2}$ is relatively long lived but is also relatively inert. Any $\mathrm{CF}_{3} \mathrm{I}$ formed will not be detected by the fluorescence technique as the lowest electronic transitions are in the u.v. (HER 51).

Many atom beams require for technical simplicity that the atom source and the reaction zone be separated by a considerable distance, e.g. RAD 75, STE 80. This involves a flow tube and for fluorine a reduction in atom concentration due to recombinations in the gas and, more critically, on the walls. This depletion can be severe, demanding low gas pressures and hence leading to loss of intensity. Attempts to reduce wall recombination with surface coatings have been successful to varying degrees. Phosphoric acid (POL 72) and boric acid (FOO 75) have both been recommended but teflon (BER 62) is generally regarded as the best (KOL 72). Homogeneous fluorine atom recombination is a 3 body process with a small rate constant ($K=8 \pm 5 \times 10^{14} \mathrm{~cm}^{6} \mathrm{~mole}^{-2} \mathrm{~S}^{-1}: \mathrm{FOO} 75$) which only becomes important for long flow tubes.

The F atom source described by Glen (GLE 80) and used to obtain preliminary results on the $F+I_{2}-I F+I$ vibrational specificity (DON 80) used a teflon dispersion to coat the flow system. (Du Pont FEP 856-200 in wetting agent Du Pont VM - 5336). To further reduce the F atom attenuation the nozzle diameter was increased to 1 mm . This increased the axial flow rate but forced a reduction in stagnation pressure in the source to about 1 torr.

A more productive beam could be formed if the source were situated directly over the nozzle as in Lee's r.f. source (SIB 80). Recently Gorry and Grice have constructed such a microwave source for an atomic oxygen super-sonic beam (GOR 80). Both groups report greatly increased atom beam fluxes over conventional sources i.e. $>10^{18}$ atoms $\mathrm{s}^{-1} \mathrm{~s}^{-1}$ and about 5×10^{17} atom $\mathrm{s}^{-1} \mathrm{~s}^{-1}$ respectively.

For the studies reported here a fluorine atom source has been constructed which is similar in design to Gorry and Grice's oxygen source.

The microwave cavity was based on the design of Fehsenfeld et al. (FEH 65) and was similar to the EMS 214 L cavity used previously. It was constructed of brass. The coupling scheme was identical to the commercial cavity and was simpler to use than that of GOR 80. It was cooled by water circulating in a jacket around its bulk (fig 2.10).

The impedance of the cavity was adjusted externally using a sealed bulb of gas and varied little with pressure. To permit fine tuning for different gas pressures and mixtures

Figure 2.10 Fluorine atom source.
the tuning stub was adjusted in situ by a stepping motor. The impedance matching gave very small reflected powers under favourable conditions, two watts or less, for incident powers of about 80W. No problems of damaged cables were encountered for these low powers.

The gas was supplied to the quartz discharge tube (13 mm o.d., 1 mm wall) via a stainless steel cap. The nozzle was immediately beneath the discharge region and the whole arrangement was sealed with four Viton 'g' rings. It was intended that the nozzle be mounted on a kinematic carriage. This was to allow optimisation of the nozzleskimmer distance. The carriage, mounted on ptfe linear bearings was driven by a second stepping motor with a $90: 1$ gear reduction. Unfortunately, under the vacuum and temperature conditions the ptfe distorted sufficiently to cause the carriage to twist out of alignment with the skimmer. A later design which would not distort was built, but the nozzle skimmer distance could only be adjusted manually.

The nozzle itseif was machined from ptfe rod. Its orifice was as small as could be reliably reproduced (0.3 mm) and its internal angle was 45°. As already mentioned teflon was not the best material for this environment but it was the only one which could be machined to such a delicate design. Metals being discounted, machinable glass and some ceramics were tried unsuccessfully.

The skimmer was constructed of stainless steel and had
a diameter of 0.5 mm . It had an internal angle of 25° and external angle of 35°. The skimmer to reaction zone distance was approximately 25 mm .

The stainless steel cap, as well as introducing the gas mixture, also housed a mechanism for initiating the discharge. (The vacuum system would not cope with a beam pressure high enough for the discharge to be self starting). To preionise the gas mixture a high voltage was applied to a tungsten pin mounted in a ceramic insulator in this stainless steel cap.

This pulse was supplied by a conventional tesla coil with the high step-up transformer mounted inside the vacuum system. This permitted ordinary high voltage feed-throughs to be employed without any arcing problems. Very little evidence of corrosion outside the discharge cavity indicated that the plasma was well confined, not extending through the nozzle as it can do (SIB 80).

The effective pumping speed of the DPC in the region of the source was calculated to be $4901 s^{-1}$ (conductance for the system was $7501 \mathrm{~s}^{-1}$, pump speed is $14001 \mathrm{~s}^{-1}$). This allowed an upper limit on the flux through the nozzle to be set. The maximum pressure allowed was chosen as 10^{-3} torr since pressures above this would overload the pump, reduce its efficiency and interact with the atom beam. This set the maximum flow rate, $\dot{\mathrm{N}}$, at $\dot{\mathrm{N}}=1.5 \times 10^{19}$ molecules s^{-1}.

The flow rate through the nozzle is

$$
\dot{\mathrm{N}}=\mathrm{n}_{0} A \overline{\mathrm{v}}_{0} \quad 2.1
$$

where n_{o} is the number density in the source, \bar{v}_{o} is the mean velocity in the source and A is the orifice area. The gas mixture was largely Helium for which $\bar{v}_{0}=10^{3} \mathrm{~ms}^{-1}$. With a nozzle diameter of 0.3 mm the maximum source-pressure was 13 mb bar. This agreed fairly well with the maximum running pressure measured of 15 mblar . This was much less than the pressures used by Gorry and Grice (260 m bar) and Lee (525 m Dar). This of course limited the atom flux but also impaired the degree of dissociation.

The behaviour of the noz_{z} le source was tested by observing the laser induced fluorescence from an $\mathrm{NO}_{2} / \mathrm{N}_{2}$ mixture. The resulting laser-induced fluorescence is shown in fig.2.11. The absolute values of the fluorescence were quite small as NO_{2} emits preferentially in the red, where the photomultiplier had little sensitivity, and the radiative lifetime is very long ($44 \mu \mathrm{~s}$) (HER 51). The graph does however show the transition from effusive to supersonic flow, which occured at around 8 m bar.
2.3.3 Estimation of signal strength
2.3.3.1 Iodine beam intensity

The flow rate \dot{N} of a gas with average molecular velocity $\overline{\mathrm{v}}_{0}$ and source density n_{0} through a tube is given by

$$
\dot{N}=\frac{2 \pi}{3} \cdot \frac{a^{3} n 0 \text { Vo }}{1} \quad 2.2
$$

where a is the tube radius and 1 the channel length. For a

Figure 2.11 Laser induced fluorescence signal from NO_{2} beam, variation with beam pressure. The transition from effusive to supersonic flow occurs at around 8 mbar.
single opaque tube, i.e. one whose length is greater than the mean free path in the source ($\lambda 0$), the forward intensity is given by (GIO 60)

$$
I_{1}(0)=\frac{1}{8 \sigma}\left(\frac{3 \bar{v}_{0} \dot{N} a}{\sqrt{2} \pi}\right)^{\frac{1}{2}}
$$

where $\sigma=$ molecular diameter. For an array of m tubes the forward intensity becomes $\operatorname{Im}(0)=m . I_{1}(0) . m$ is calculated from

$$
m=\frac{A \epsilon}{T a^{2}}
$$

where A is the area of the array and ϵ is its transparency (75%) . The angular half width at half maximum, $\Delta \theta_{\frac{1}{2}}$, for a single channel is calculated as (GIO 60)

$$
\Delta \theta_{\frac{1}{2}}=\frac{\sigma}{1.78}\left(\frac{8^{\frac{1}{2}} 3 \dot{N}}{\nabla_{0} a}\right)^{\frac{1}{2}}
$$

Empirically, however, these values must be corrected to account for interactions between tubes. The flow rate must be reduced by a factor of $\frac{2}{3}$ while $\Delta \theta_{\frac{1}{2}}$ increases by a factor of two (JOH 66).

Typical oven temperatures used were $60-70^{\circ} \mathrm{C}$. This is equivalent to a vapour pressure of 7-13 mBar. Taking 10 m Bar as an average and an orifice diameter of 1 mm , the following values were obtained from equations 2.2-2.5.

$$
\begin{aligned}
& \dot{\mathrm{N}}=7 \cdot 2 \times 10^{12} \mathrm{~s}^{-1} \\
& \mathrm{I}_{\mathrm{m}}(0)=8.7 \times 10^{16} \mathrm{sr}^{-1} \mathrm{~s}^{-1} \\
& \Delta \theta_{\frac{1}{2}}=38^{\circ}
\end{aligned}
$$

The collision diameter for I_{2} is assumed to be $6.5 \AA$. The total flow rate (m N) was $5.4 \times 10^{16} \mathrm{~s}^{-1}$ which was more than adequately handled by the diffusion pumps.
2.3.3.2 Fluorine atom beam intensity.

The limit on the source pressure was set by equation 2.1 and the pumping capacity of the DPC. This set the maximum flow rate $\dot{N} \leqslant 1.5 \times 10^{19} \mathrm{~s}{ }^{-1}$. The estimate for the F atom intensity given here is based on the arguments of Anderson and Fenn (AND 65) and only a resume of the calculation is offered.

The mean free path λ_{0} of F atoms in the source is to a good approximation that of He $10^{-2} \mathrm{~mm}$ at 10 mar . This is less than the nozzle diameter $d_{0}(0.3 \mathrm{~mm})$ and will give a Knudsen number $K_{\mathrm{n}}=\lambda_{0} / \alpha_{0}$ less than unity, indicating non-molecular flow conditions. From this the terminal Mach number is given by

$$
M_{T}=2.05\left(\frac{\epsilon}{K_{n}}\right) 0.4
$$

The parameter \in, less than one, describes the efficiency of translational energy transfer in the fluid. This gives M_{T} ~. 8. This is not as high as could be hoped; however Anderson and Fenn have found sources with such low Mach numbers work quite well (AND 65).

For a nozzle to skimmer distance $l_{s}=5 \mathrm{~mm}$ the atom density at the skimmer is calculated from

$$
n_{s}=0.157 \quad n_{o}\left(\frac{I_{s}}{d_{0}}\right)^{-2} \quad \text { if } \frac{I_{s}}{d_{0}}>42.7
$$

The flux through the skimmer, F_{s}, can be calculated from this and hence the forward intensity

$$
I(0)=F_{s} I_{s}{ }^{2}
$$

Taking a value for the degree of dissociation of 10% and a mixing ratio of $\mathrm{CH}_{4} / \mathrm{He}$ of 10% the density of F atoms is estimated to be 1% of the total gas mixture. The forward intensity is then found to be $I(0)=6.0 \mathrm{x}$ 10^{16} atoms $\mathrm{sr}^{-1} \mathrm{~s}^{-1}$.

This is an order of magnitude less than that measured by Gorry and Grice for their oxygen atom source ($\mathrm{a}_{0}=0.3 \mathrm{~mm}$) They measure the degree of dissociation of O_{2} molecules to be 35% and it would probably be larger for fluorine because of its low recombination rate. Even greater intensities could therefore be predicted for an F atom source showing the desirability of high differential pumping speeds. 2.3.3.3. Signal strength.

The estimation of the laser induced signal parallels that of Glen (GLE 80) using the revised estimates of beam intensities and the data from table 2.1. Details are given in the appendix.

The estimated count rate for the laser frequency λ_{l} close to the band head was determined to be

$$
s\left(\lambda_{l}\right)=5.9 \times 10^{3} p\left(v^{\prime \prime}\right) q_{v^{\prime}} v^{\prime \prime} s^{-1}
$$

where $q_{v} v^{\prime \prime}$ is the Franck-Condon factor for the transition, $p\left(v^{\prime \prime}\right)$ the relative population of the lower vibrational level. For wavelengths less than 500 nm the maximum Franck-Condon factor is 0.133 (for the $(5,0)$ band : CLY 76) and, assuming 10% of the total population was in the $v^{\prime \prime}=0$ state, the
expected count rate was of the order of 75 Hz . Due to the many approximations used this figure was likely to be an overestimate therefore low count rates are expected. 2.4 Noise reduction

Light scattered from the dye laser beam was a problem on two accounts. The instantaneous light pulse could be quite large, overloading the photomiltiplier. It also caused after-pulsing in the photomultiplier. Directly scattered light could be reduced by careful collimation of the beam combined with extensive baffling. 2.4.1 Baffles.

The collimation of the laser beam prior to entering the vacuum system has already been described (section 2.2.2). The baffle arms were each over 500 mm long, with two sets of baffle apertures (fig 2.12). There was a number (5) of 10 mm aperture secondary baffles along the length of the tube. The primary sets of baffles screwed directly on to the ends of the arms near the reaction zone. The design for these was loosely based on that of Pruettand Zare (PRU 76) although it was found that the actual arrangement of the apertures could only be settled by trial and error. The baffle arms could be allgned by means of three supporting screws in conjunction with the bellows.
2.4.2 Optics.

An optical system (fig. 2.13) consisting of two aspheric

Figure 2.12 Baffle arms used to eliminate stray light from the reaction zone.

Fig. 2.13 Fluorescence collection optics
lenses (30 mm dia., 25 mm focal length) focused the fluorescence through an aperture (2 mm) on to the photomultiplier. This arrangement enabled the p.m. to collect over a wide solid angle centred on the reaction zone while rejecting light from most other sources. With this arrangement the directly scattered light could be reduced to a few photons per pulse. Typically 10 photons per pulse, though with exceptional alignment as few as 2 or 3 per pulse, could be obtained. (This was measured using the pm and a Tektronix 7904 oscilloscope. The number of photons in a scattered light pulse was taken to be the ratio of pulse height to that of a single photon pulse.) The noise level although high compared with the signal could be completely overcome by the gating electronics described below. What could not be eliminated was the afterpulse induced by this scattered light, which arrived some 2 to 4 us afterwards. 2.4.3 Afterpulsing.

Afterpulsing is an effect which arises from the construction of the p.m. tube. The relatively large photocurrent induced by the scattered light ionises some of the residual gas in the p.m. The ions are accelerated towards and impinge on the photocathode, releasing secondary electrons (typically 4). The ions large mass compared with that of the electron means that the impact occurs, dependent on the p.m. construction, up to 10 us after the inducing photocurrent. These correlated p.m. pulses occurred in the
temporal region of interest (lifetime of IF $\left(B^{3} \Pi_{0_{+}}\right)=7 \mu s:$ CLY 74) and therefore cannot be discriminated against. The only possibility was to reduce the probability of afterpulsing. As this was a function of the p.m. itself, a tube selected by EMI (9824A) for low afterpulsing was purchased. (A 50mm tube would have been better but the geometry of the experiment would not allow this.)

Figure 2.14 shows the afterpulse behaviour of two p.m.s. A measure of the probability of one photoelectron inducing an afterpulse is obtained by integrating the area under that part of the curve above the random background. Figure 2.14 (a) was the trace obtained from the original p.m. tube while 2.14(b) was the low afterpulsing tube operated at the same gain, 5×10^{6}. 2.4.4 Discharge noise.

Because of the proximity of the discharge to the data collection optics, light from the discharge contributed a significant proportion of the noise level. This therefore required that the light from the discharge could not illuminate any surface that the p.m. could 'see'.

Light from the discharge passed through the nozzle and skimmer apertures and was thereby collimated to a degree. The F atom beam dump was a convenient dump for the discharge light and was used as such. A baffle eliminated any light striking the optics and as many surfaces as possible were painted black. It was difficult to apply any other measures to the problem as they would interfere with the atom beam itself.

Pig 2.14 Afterpulse distributions for two photomultipliers

There seemed to be a limit to this aspect of noise reduction and it was noticed that the noise varied dramatically with atom beam pressure. Increasing the pressure would reduce the noise significantly. e.g.

Pressure	Noise rate
4 m Bar	$11,400 \mathrm{~Hz}$
11 m Bar	40 Hz

As the noise rate also varied with $\mathrm{CF}_{4} /$ He ratio it was concluded that metastable species were being swept along in the beam. As the atom beam was run at its maximum pressure throughout, the noise was conveniently minimised. It is probable that inview of high pressures attainable in the atom source described by Gorry and Grice it would not suffer unduly from this particular noise problem. Lee's source on the other ihand, would probably give a poor S / N ratio in a laser induced fluorescence experiment as the plasma extended through the nozzle.

When the I_{2} source was run alongside the atom beam the discharge noise apparently increased. No absolute measurements were obtained for this but it is thought that the increase was due to emission from the discharge causing the I_{2} to fluoresce.
2.5 Data Collection

The aim of the data collection was to extract the
fluorescence signal from the measured count with a maximum signal to noise ratio. This required that the noise contributions be reduced (see above), isolated and measured.

2.5.1 Noise classification.

There were three principal types of noise contributing to the overall background signal:
(1) Ambient light entering the tank.
(2) Light scattered out of the laser beam.
(3) Light from the discharge.

Dark noise from the p.m. could be treated as type (1) noise but it was sufficiently small to be ignored.

The three noise types were present simultaneously only When the signal, if any, was also present. If there had been a constant noise level and the signal was much stronger, then the noise would have manifested itself merely as a nonzero base line to the spectrum. However as the signal was small it was easily lost in the random fluctuations of the background. Also, as the laser intensity varied with wavelength, so part of the noise varies across the spectrum. The different noise types therefore had to be measured independantly for an accurate estimate of the signal.

Type (1) noise was completely random giving a constant background. This contribution was the least important as it could be almost completely eliminated by the electronics.

Type (2) noise was correlated with the laser intensity and had a time constant short compared with the laser period (10 ms). Directly scattered light arrived instantly and must. not be collected. The resulting afterpulsing cannot be discriminated against and must be subtracted out. This
required counting with no product fluorescence present, that is with the discharge off. Noise arising from laser induced fluorescence of other species (e.g. I_{2}) could be treated similarly.

Type (3) noise was correlated with the discharge. This covered light scattered directly from the discharge, emission from metastable species and I_{2} fluorescence caused by emission from the discharge. Chemiluminescence from the reaction of $\mathrm{F}_{2}+\mathrm{I}_{2}$ has been reported (BIR 75). This has been attributed to the concerted reaction (KAH 80).

$$
F_{2}+I_{2} \rightarrow F+I_{2} F \rightarrow I F+I F^{*}
$$

Chemiluminescence has also been reported in a parallel molecular beam study of the $F+I_{2}$ system (TRI 81). This was reported as being very weak and was explained by secondary encounters of F atoms with a trihalogen complex. Any chemiluminescence involving F atoms or F_{2} molecules will be type (3) noise, would only be present when the discharge was running and, would be independant of laser intesity. 2.5.2 Electronics.

The output from the p.m. was immediately amplified (fig. 2.15) by a unity gain preamplifier, Keithly model 111A, response time 3 ns . This acted mainly as an impedance matching device and gave a tenfold increase in the voltage output. Further amplification was still required and a 4 ns pulse amplifier, Hewlett Packard model 462A, was used. This gave a single photon pulse height of 50 mV . With a

Figure 2.15 Block diagram of the data collection system.
discriminator threshold of 40 mV to limit the noise, the resulting digitised output was sent to the counting system. To further reduce noise all leads up to the discriminator were maintained as short as possible and all components were well shielded.

As the laser repetition rate 100 Hs and the lifetime of IF is about $7 \mu s$ more than 9.9 ms of the counting period was redundant. A system of delays and gates (fig.2.15) allowed signal to be collected for only a short period after the laser pulse.

The signal from the discriminator was shaped and sent to two gates, A and B. A photodiode detected the N_{2} laser pulse, which was shaped and initiated the count period. Delay A1 ($0.5 \mu \mathrm{~s}$) prevented the collection of scattered laser light while delay A_{2} set the time that the gate remained open (10 $\mu \mathrm{s}$). The amplifier inverted and shaped the delay pulse to drive the gate.

A similar arrangement of delays permitted one of the noise components to be counted. By setting delay B1 to 1.5 ms , which was much greater than the fluoresonce. lifetime, scalar B registers the signal when the laser is not present.

These gated signals were counted by separate scalers. Five diode gates (fig.2.16) allowed a selected scaler to be interogated by the PDP $11 / 45$.

Figure 2.16 Circuit diagram for the diode gates used to read scalers A and B.

2.5.3 Computer Control.

As there are 3 noise types collected along with the fluorescence signal, \varnothing, four measurements were required to extract that signal. From the total count, S_{3}, must be subtracted the total noise count.
S_{3} was the count recorded by scaler A with the laser on and the atom source running. Simultaneously the count, S_{2}, in scaler B recorded the signal between laser pulses. S_{2} was the sum of noise types (1) and (3). The experiment collected for a short period (usually 10 s) in this mode, then the discharge was switched off. The experiment then collected for the same length of time with only the laser running. The count, s_{1}, of scaler A then recorded types (1-) and (2) noise while scaler B recorded the ambient background, S_{0}. This procedure constituted a collection cycle.

The signal was given by the relationship

$$
\emptyset^{1}=s_{3}-\forall s_{2}-s_{1}+\forall s_{0} \quad 2.9
$$

where y was the ratio of delays $A_{2}: B_{2}$, i.e. the ratio of the duty factors. During each half of the collection cycle the laser intensity was monitored and averaged. This gave intensity values P_{1} with discharge on and P_{0} with discharge off. This allowed the signal to be determined with long term fluctuations in the laser intensity accounted for. The normalised signal was then given by

$$
\emptyset=\left(s_{3}-\gamma s_{2}\right) / p_{1}-\left(s_{1}-\forall s_{0}\right) / P_{0} \quad 2.10
$$

The collection cycle was repeated $N_{\text {co }}$ times and constituted a block of data. The average signal from a data block was given by

$$
\bar{\varnothing}=\frac{1}{N_{c o}} \sum_{i=1}^{N}\left[\left(S_{3 i}-\forall S_{2 i}\right) / P_{1 i}-\left(S_{1 i}-8 S_{0 i}\right) / P_{0 i}\right] \quad 2.11
$$

The standard error was calculated from the standard deviations of the individual counts, i.e.

$$
\epsilon=\frac{1}{\sqrt{N_{c o}}}\left(\frac{\left(\sigma_{3}^{2}+8 \sigma_{2}^{2}\right)}{\bar{P}_{1}}+\frac{\left(\sigma_{1}^{2}+8 \sigma_{0}^{2}\right)}{\bar{P}_{0}}\right)^{1 / 2}
$$

The signal to noise ratio η was obtained from

$$
\eta=\frac{\bar{\phi}}{\text { Total noise }}=N_{c o} \bar{\phi}\left(\sum_{i} \frac{\forall S_{2 i}}{P_{1 i}}-\frac{\left(S_{1 i}-\forall S_{0 i}\right)}{P_{0 i}}\right)^{-1} 2.13
$$

2.5.4 Programming.

Much of the data collection program was written by Robert Glen (GLE 80) but had been extensively amended as the experiment progressed. The most important change in the program was forced by the introduction of a second scalar. Another modification involved the separation of the program into three smaller units. The differences were large compared with the program described by Glen so the programs are listed in the appendix. Only those parts significantly altered are described in detail.

It was realised that the data collection routine spent 70 to 80% of its time waiting for the count to accumulate, while much of the remaining time was spent printing the results of the previous data block. The program was therefore divided into two main program units, one dedicated to collecting data, driving dye laser grating, etc., while the other
analysed the collected data blocks and performed other tasks not possible before. A third program unit was necessary to communicate between the two others and the teletype. Thus commands could be typed ahead without creating a bottle neck at the keyboard.
2.5.4.1 Interprogram communication.

Most of the input commands were entered to the programs through the interfacing unit **CDC3. The commands were simple, single alphabetic mnemonics and are listed in table 2.2 .
Command Action

K Stop programs W Put programs in wait queue. U Update experimental variables. D Drive to new wavelength C Collect data. M Mark a data block as defective. S Review the data collected against wavelength 0 Analyse a block from disc. T Clear input buffer.

H List Help information
Table 2.2 List of commands acceptable to **CDC3 program **CDC3 monitored the keyboard constantly and when it needed a command it told the relevant unit by setting flags contained in the store's common area. The structure of the program was given in the flow chart - fig. 2.17.

Figure 2.17 Diagram showing the structure of program **CDC3. C1 and C2 are variables used to communicate with the other programs which are stored in the common storage area.

2.5.4.2 Data collection program.

This program, ** CDA1, controls the data aquisition and was written so that once it started to collect data it would stop only when specifically told to. Routines to drive the grating, read the scalars, update experimental variables, etc., are basically unchanged from those of reference GLE80. The structure of the program was however very different and was detailed in the flow chart (fig.2.18). The common variable C1, written by **CDC3, introduced the commands. If the program was left idle for too long it prompted for a command every 10 seconds. 2.5.4.3 Collect data routine.

The sequence of operations executed when alock of data was collected is shown in the flow diagram of figure 2.19. The number of entries per block was input as the variable NCO. Alternate count periods were taken with the F atom discharge on, then off. The data was retained in arrays which are held in a common area of store. When the requisite number of blocks had been collected, the data arrays were written to the direct access disc file. The analysis program **ADO1 was notified that it was to examine the data and the collection program immediately started to execute its next task. An interrupt facility, which set bit 6 of the scalar to an impossible value, was introduced so that the progress of the experiment could be temporarily halted. If intermupted the routine would wait for a keyboard response.

Figure 2.18 Diagram showing the structure of the program **CDA1. C1 and C2 are variables stored in a common area. Commands for the program are input through C1.

Figure 2.19 Flow chart for the data collection routine. Setting the common area variable $\mathrm{C} 2=6$ tells the analysis program to analyse the block of data just collected.

This routine was also required to check for the continuity of the experimental conditions. Facilities for on-line tank pressure measurement and beam monitoring were not available and these parameters had to be entered through the keyboard. Only the laser intensity could be monitored and if this drifted outside predetermined values warning messages were printed. 2.5.4.4 Data analysis program.

The data analysis program **AD01, figure 2.20, was intended to provide on-line analysis of the incoming data so that the experimeter could decide how best to proceed. The initial analysis was done according to equations 2.11, 2.12 and 2.13 but without normalisation for laser intensity. The quantity of output was optional, every data entry - useful for diagnostic purposes - or a brief list of the salient quantities could be printed as required.

Data blocks from the current data file could be analysed for comparison purposes when necessary. To obtain a listing of the spectrum collected it was necessary to be able to reject blocks of data when faulty, e.g. if the discharge fails to strike. This was done by setting a flag for that block which allowed the program to ignore it. 2.5.6 The experiment as a whole.

Experiments could, latterly, run for many days, the limiting factor often being the loss of I_{2} beam pressure.

Figure 2.20 Flow diagram of the data analysis program.

After initial alignment of the laser and pumping down, the F beam source was checked for alignment by observation of NO_{2} laser-induced fluorescence.

The apparatus then started to collect data at wavelengths close to $I F(X) \mapsto I F(B)$ transition bandheads. Figure 2.21 shows a typical set of data. This particular data set was collected at a wavelength of 4782 A which is at the (5, 0) bandhead. The columns shown are (left to right) cycle number, $S_{0}, S_{1}, S_{2}, S_{3}, P_{0}, P_{1}$ (see section 2.5.3) and refer to a 10 s counting period. The average laser intensity was $357.5 \pm 0.3 \mathrm{mV}$.

Fluctuations in laser intensity were seldom greater than 1%.

The unnormalised signal for this data block is $36.5 \pm$ 2.2 counts in 10 s , i.e. the signal rate was nearly 4 Hz . This low count rate resulted in long count periods. 2.6 Results

The results given here are those collected during the week beginning $22 / 9 / 80$. The principal results are presented In table 2.3. It includes measurements that were intended to probe the $\mathrm{v}=0,1,2,3$ product vibrational levels of $\operatorname{IF}\left(X^{1} \Sigma^{+}\right)$. Franck Condon factors for the transitions accessible using the dyes of table 2.1 are shown in table 2.4 (CLY 76). All transitions involving the ground state were observed. Transitions not involving $v=0$ proved to be much less easy to observe and much time was spent trying to obtain a measure of the $v=1$ population from the (8,1) band.

FLUORESCENCE
SIGNAL / ARB.UNITS.
$4670.0+/-0.50$ $4673.0+/-0.50$ $4674.0+/-0.50$ $4675.0+/-0.50$ $4677.0+/-0.50$ $4680.0+/-0.50$ $4682.0+/-0.50$ $4684.0+/-0.50$ $4686.0+1-0.50$ $4689.0+/-0.50$ $4693.0+/-0.50$ $4695.0+1-0.50$ $4696.0+/-0.50$ $4698.0+1-0.50$ $4699.0+/-0.50$ $4700.0+/-0.50$ $4702.0+/-0.50$ $4705.0+/-0.50$ $4707.0+/-0.50$ $4708.0+1-0.50$ $4711.0+/-0.50$ $4713.0+/-0.50$ $4862.0+/-2.00$ $4864.0+1-2.00$ $4867.0+/-2.00$ $4871.0+/-2.00$ $4872.0+1-2.00$ $4874.0+/-2.00$ $4876.0+/-2.00$ $4945.0+1-0.50$ $4949.0+/-0.50$ $4951.0+/-0.50$ $4953.0+/-0.50$ $4955.0+1-0.50$ $4960.0+1-0.50$ $4963.0+1-0.50$ $4964.0+/-0.50$ $4965.0+/-0.50$ $4966.0+1-0.50$ $4967.0+1-0.50$ $4968.0+1-0.50$ $4975.0+/-0.50$ $4977.0+1-0.50$ $4979.0+/-0.50$ $4982.0+/-0.50$ $4982.0+/-0.50$ $4982.0+/-0.50$ $4982.0+/-0.50$
$1.338+/-3.748$
$0.173+/-1.686$
$0.701+/-2.160$
$-1.640+/-1.785$
$0.367+/-1.008$
$1.648+/-1.863$
$-2.373+/-1.717$
$-4.318+/-2.372$
$2.586+/-2.225$
$-3.256+/-1.921$
$-1.352+/-1.617$
$0.249+/-3.469$
$-1.065+/-1.637$
$2.877+/-1.579$
$32.399+/-3.347$
$25.104+/-2.643$
$19.337+/-2.443$
$14.274+/-1.683$
$11.582+/-1.777$
$9.766+/-1.578$
$2.752+/-1.502$
$3.751+/-2.111$
$-1.067+/-1.713$
$-2.606+/-1.859$
$1.561+/-1.809$
$26.117+/-2.177$
$25.625+/-1.729$
$27.344+/-2.203$
$27.981+/-3.022$
$-2.250+/-1.914$
$-1.722+/-2.054$
$-2.243+/-1.115$
$-0.648+/-1.105$

1. $660+/-1.379$
$0.746+/-1.675$
$4.310+/-1.509$
$27.140+/-2.827$
$20.218+/-2.030$
$20.853+/-1.684$
$8.884+/-1.590$
$14.824+/-1.907$
$5.012+/-1.851$
$7.553+/-1.555$
$3.930+/-1.834$
$6.680+/-1.239$
$5.808+/-1.649$
$4.818+/-1.196$
$2.069+/-1.953$

Table 2.3 Fluorescence signal collected at wavelengths in the range 467 nm to 499 nm .

Figure 2.21 Sample data block.
(

Table 2.4 Band origins (nm) and Franck Condon factors for IF $\left(B^{3} \Pi_{O_{+}}\right)-I F\left(X^{1} \Sigma^{+}\right)$transitions accessible with the
dyes of table 2.1 b and limited by the I_{2} fluorescence at 500 nm .

The actual count rate was an order of magnitude down on that estimated but this was perhaps not too surprising, considering the high degree of approximation made. The most likely cause of the overestimate was probably too optimistic a guess of the F atom density. The signal to noise ratio of individual data blocks was relatively poor. The maximum of less than 30 was obtained with fresh dye, working at its peak gain near a bandhead. Often the signal to noise ratio was less than 10.
2.6.1 Data fits.

Conventional methods for determining vibrational populations from low resolution spectra rely on integration of the area under the band profile (STE8O). For the quality of data presented here the preferred method of data fitting was by a simulation of the spectrum. The fit was then obtained by adjustment of vibrational and rotational distribution parameters (DAG 74, LIU 77). Ideally this procedure should involve parameterising the intensity function and using this for a non-linear least squares fit. This was not attempted as time did not permit and extensive adaptation of the simulation program necessary. Also lack of stability in such a procedure, for the data presented, could make any effort in this direction less than worthwhile.

The simulation program written by R. Glen is well documented and tested in reference GLE 80. It requires as input the spectroscopic constants of the molecule under consideration, its Franck Condon factors and the p.m. response function. The variable parameters governing the spectram include $n_{v^{\prime \prime}}$, the vibrational populations, $T_{R^{\prime \prime}}\left(v^{\prime \prime}\right)$, rotational temperatures, $\Delta \lambda_{l}$ laser linewidth. The resulting simulation can be compared with the data and a fit obtained by eye. A better approach is to vary the parameters manually and obtain the standard deviation of the data points. The best fit was that which gave the lowest deviation.
2.6.1.1 Rotational distribution.

The peak intensity for a vibrational band varies sharply with the laser linewidth and rotational temperature. As the linewidth measurements gave consistent values when the etalon was used $\Delta \lambda_{l}$ was fixed at $1.3 \AA$.

The rotational temperature for low lying vibrational bands is unlikely to vary much. It is frequently found that the energy disposal in rotation, $g_{R^{\prime}}$, follows (LEV72)

$$
g_{R^{\prime}}=\frac{f_{R^{\prime}}}{1-f_{v^{\prime}}}=\text { constant } 2.14
$$

with $f_{R^{\prime}}, f_{v^{\prime}}$ the fractions of total energy available in rotation and vibration respectively. For a highly exothermic reaction f_{v}, changes little for the low lying vibrational levels, implying $K .\left\langle T_{R^{\prime}}\right\rangle \simeq g_{R} \cdot{ }^{\prime} T_{0}=$ const. It was therefore assumed that the rotational temperature obtained for $v^{\prime \prime}=0$ held for the levels up to $v^{\prime \prime}=3$, all of which were
less well characterised.
The resulting best fits to the data are shown in figures 2.22 and 2.23. The rotational temperatures $T_{R^{\prime}}$, are

Vibrational Band	$\mathrm{T}_{\mathrm{R}^{\prime}} / \mathrm{K}$
$(5,0)$	240
$(6,0)$	227.5
$(3,0)$	227.5

As the deviation in the points cannot readily be related to the Boltzmann temperature the error in the temperature was estimated from the spread in the values for the three individual bands. 〈 T_{R} 〉 was therefore, after averaging and rounding, $230 \mathrm{~K} \pm 10 \mathrm{~K}$. 2.6.1.2 Vibrational distribution.

Because of the combination of the high efficiency of the dye Coumarin 307 and the Franck Condon factors for the $(8,3)$, $(3,0)$ and $(6,2)$ bands it was hoped to obtain their relative populations with some accuracy. The data, along with the best fit to the vibrational populations at the previously determined T_{R}, is shown in figure 2.23. This simulation corresponds to the populations n_{v} shown in table 2.5.

$V^{\prime \prime}$	$N_{Y^{\prime \prime}}$	Error Iimits
0	1.0	-
1	0.1	-
2	0.15	$0.13-0.20$
3	0.2	$0-0.3$

Table 2.5 Measured populations of product IF vibrational levels relative to the ground state.

Fig. 2.23 Best fit to the data for the $(8,3),(3,0)$ and $(6,2)$ vibrational bands.

Previous Page:
Fig. 2.22 Best fit to the data for the $(8,1),(6,0)$ and $(5,0)$ vibrational bands.

For overlapping bands the deviation of the points cannot be related to $n^{\prime \prime}$. The errors quoted in the table are maximum and minimum $n_{v^{\prime \prime}}$ consistent with the error limits of the data points.

As can be seen from the $(8,1)$ band (fig.2.22) the population in the $v^{\prime \prime}=1$ level must be very small. All that can be said from the data is that it is less than 10% of the $v^{\prime \prime}=0$ population. 2.6.2 Relaxation effects.
(a) Contribution of background.

IF could have formed a proportion of the residual gas background. Any present in the background could only be formed by reaction at the tank centre. The mole fractions would therefore be approximatay the same in the backgound as in the detection zone. The contribution of background IF was then given by the ratio of pressures in these two regions. However as cryotrapping efficiently pumps I_{2} vapour (vapour press $10^{-29} \mathrm{~m}$ Bar at 100 K) IF should be pumped with the same efficiency. This suggested that background contributions to the signal would be negligible.
(b) Quenching.

If the estimated reagent fluxes are converted to densities and a generous collision diameter of $10 \AA$ is assumed then the mean free path of molecular species is calculated to be about 50 mm at the reaction zone. As the size of the reac tion zone was approximately 5 mm across and the product vejocity was of the order of $10^{6} \mathrm{mms}^{-1}$ the fraction of molecules
which suffer a single collision was $1-\exp (-5 / 50) \simeq$ 10\%. Thus, at most, 10% of the observed rotational distribution may have suffered some relaxation. Vibrational quenching is much less efficient than its rotational counterpart and is probably several orders of magnitude smaller. As the cross section for rotational relaxation is likely to be less than the hard sphere cross section it is assumed that the measured distributions reflect the unperturbed populations. 2.6.3 Information theoretic analysis.

It is often helpful to compare a measured distribution with the prior distribution, a statistical model which . maximises the entropy of the distribution. The surprisal, I, is a measure of the deviation from this model, related to the entropy deficiency (BEN 72). The surprisal is given by

$$
I(v)=-\ln \left(\frac{P(v)}{P^{\circ}(v)}\right) \quad 2.15
$$

Where P is the measured probability distribution while P^{0} is the prior distribution.

In the vibrating rotor approximation for diatomics the expression for the rotational energy is tiruncated to $\mathrm{E}_{\mathrm{R}}=\mathrm{B}_{\mathrm{V}} J(J+1) \mathrm{hc}$ where the conventional notation has been used. This allows integration over the rotational quantum number, giving (LEV 75)

$$
\begin{aligned}
& P^{\circ}\left(E_{v}, \mid E\right)=\frac{B_{V^{\prime}}^{-1}\left(E-E_{V^{\prime}}\right)^{3 / 2}}{\sum_{V^{\prime}=0}^{v^{k}} B_{V^{\prime}}^{-1}\left(E-E_{V^{\prime}}\right)^{3 / 2}} \quad 2.16
\end{aligned}
$$

as the expression for the vibrational prior distribution at a total energy E. $\mathrm{V}^{\prime *}$ is the maximum accessible vibrational level.

The surprisal plot shown in figure 2.24 is derived from the data of table 2.5, normalised so that $P\left(v^{\prime}=0\right)$ $=P^{\circ}\left(v^{\prime}=0\right)$. This clearly shows that although there is a large uncertainty in the individual points, and contrary to many other reactive scattering results (LEV79), the plot is non-linear.
2.6.4 Comparison with other data.

Previous measurements on the $\mathrm{F}+\mathrm{I}_{2}$ system (DON8O) indicated a population inversion with the populations of $v^{\prime}=0,1,2$ approximately equal. These measurements agreed qualitatively with a similar study of the $F+I C L$ system (STET9) and with trajectory results (see chapter 3) which showed a peak at high v^{\prime}.

The results presented here are substantially different from those earlier measurements.

The results presented in reference DON80 prompted the construction of the atom source described in section 2.3.2. This was deemed necessary because the signal to noise ratios obtained with the previous atom source were extremely low and an increased atom concentration at the reaction zone was sought. Along with other modifications such as the counting technique and laser bandwidth, the improved apparatus gave a more reliable signal. In addition, by working with vibrational bands with larger Franck-Condon factors the uncertainty in assigning the relative populations was reduced.

In comparing the two sets of data (figure 1 of DON80 and

Figure 2.24 Surprisal plot of the first four vibrational levels of the IF product.
figures $2.22 / 2.23$) the latest results for the $(5,0)$ band are seen to give a much closer fit to the simulated spectrum. The previous result for the $(8,1)$ band rests almost entirely upon a single data point with that for the $(8,2)$ band not much better. While it is felt that the early results are most likely a misinterpretation of the data it is possible that a different distribution of vibrational energy could have arisen from different operating conditions such.as beam energies or atom beam composition.

Further evidence is given to the present results by the results of Wanner's group which have recently been extended and show that the vibrational energy distribution for $F+$ ICL also peaks sharply at $\mathrm{v}^{\prime}=0$ (TRI8O). This reference also reports a similar bimodal vibrational energy distribution for $F+I_{2}$ (and $F+I B r$) which agree in part with the more limited data presented here.

Chapter 3

Classical trajectory study of $F+I_{2}$ reactive scattering

3.1 Introduction

Quasi-classical trajectory calculations have been widely used in attempts to understand the energetics and dynamics of molecular reactions. Several reviews of trajectory studies have been published (BUN71, POR76, MUC79) giving details of the method and specific examples. The method has been extensively applied to reactive scattering systems but has also been used for in elastic/elastic systems and other studies which are strictly the domain of quantum mechanics e.g. surface hopping trajectories (TUL76, BLA81).

The calculation of a single trajectory involves the solution of the appropriate equations of motion. These are often the canonical equations of Hamilton (GOL50)

$$
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}} \quad: \quad-\dot{p}_{i}=\frac{\partial H}{\partial q_{i}}
$$

where q_{i}, p_{i} are generalised coordinates and conjugate momenta. The Hamiltonian, H, is defined classically as the sum of kinetic and potential energies. The evaluation of the trajectory then consists of integrating the 6 N first order differential equations until the trajectory has passed into a region of phase space identified with product states. This generates P_{r}, the probability of reaction as a function of the initial coordinates and momenta. To obtain the reactive cross section $\sigma_{R}(T, V, J)(P O R 76)$ for an atom-diatom collision P_{r} must be integrated with respect to the initial conditions and is given by

$$
\begin{aligned}
& \sigma_{R}(T, V, J)=\int_{0}^{\infty} 2 \pi b d b \int_{0}^{\frac{1}{2} \sin \theta d \theta \int_{0}^{2 \pi} \frac{d \phi}{2 \pi}} \\
& \int_{\int_{-}}^{\int_{+}} G\left(r_{B C} ; V, J\right) d r_{B C} \int_{\eta=0}^{2 \pi} \frac{d n}{2} P_{r}\left(T, V, J, b, \theta, \phi, r_{B C}, \eta\right)
\end{aligned}
$$

where $b=$ impact parameter

$$
\begin{aligned}
& f_{+}, J_{-}=\text {inner and outer classical turning points } \\
& G\left(r_{B C} ; V, J\right)=\text { density function for internuclear } \\
& \\
& \text { distance, } r_{B C} \\
& \theta, \phi= \\
& V, J=\text { spherical polar orientation angles } \\
& \eta=B C \text { rotation plane. }
\end{aligned}
$$

Because P_{r} (0 or 1) cannot be expressed analytically the multidimensional integral for σ_{R}, and other quantities, must be evaluated approximately. A numerical integration would be prohibitively expensive. Monte Carlo and Diophantine methods (POR76) however, permit many fewer trajectories to be calculated for the same accuracy and converge at a rate independent of the dimensionality of the integral. If the required integral is

$$
I=\int^{18} d x_{k} \ldots \ldots \int d x_{1} \cdot f\left(x_{k}, x_{k-1}, \ldots x_{1}\right) 3.3
$$

then the M.C. approximant to the integral is (HAM64)

$$
I=I^{\prime}=\frac{1}{N} \sum_{i=1}^{N} f_{i}\left(\eta_{i}\right)
$$

η_{i} is a vector whose elements are chosen randomly from a uniform distribution. The error inherent in this procedure is proportional to $\mathrm{N}^{-\frac{1}{2}}$ and is independent of the dimensionality of the integration.

3.2 Selection of variables and coordinate system

For a triatomic system there are 18 coordinates needed to describe the system. Six of these can be discarded as they govern the motion of the centre of mass which is a constant. To simplify the selection procedure some variables are often fixed or scanned, while others are selected in a truly random manner. Several authors have scanned variables that hold a particular physical significance. For example the vibrational energy of the diatomic is usually assigned a fixed value while less well defined quantities such as vibrational phase are randomly selected. This allows the selectivity of the reaction to be investigated.

Schemes for selection of initial variables exist which attempt to accelerate the convergence of the M.C. integral. Two such schemes are stratified sampling (PAR73) and importance sampling (FAI 78; FAI79). By biasing the initial distributions the variance of a particular reaction attribute (e.g. cross section) is reduced. This is undeniably useful but can lead to an increased variance in other reaction attributes (FAI76). As a more general approach is intended here the unbiased distributions were used.

The program used was based on that described by Fernie (FER80) which was developed for an investigation of the $0+I_{2}$ reaction. Details of the coordinate system along with expressions for the derived quantities such as energies, scattering angle etc. are given by Fernie.

The program was updated to accept the random number generators GO5CAF and GO5DDF of the mark 7 NAG library (NAG78), giving uniform and gaussian distributions respectively. These routines are called a fixed number of times per trajectory and a record is kept for backward integration checks.

3.3 Integration of the equations of motion

Algorithms for integrating classical trajectories vary from the comparatively simple, single step Runga Kutta Gill procedure (BLA65, RAF66) to multi-step predictor corrector methods up to eleventh order (MUC73). For very long-lived trajectories, demanding many integration steps, highly stable routines are required. Gear's 6 th order hybrid method (GEA71) has been used with some success (BRU73, FIT79). As many trihalogen molecules are known to be stable (VALT7) long lived trajectories involving a complex mechanism could have been expected for fluorine atom - iodine molecule reactions.

Fernie's program was adapted to utilise Gear's hybrid, variable step, variable order method. The NAG library routine (NAG78) DO2QBF appeared to be suitable as it allowed the trajectory to be monitored throughout the integration. The results were very disappointing in that the accuracy demanded to reproduce previous results required a substantial increase in CPU time over the more conventional Hamming's method. This inefficiency was attributed to the low maximum order of the routine (5 th c.f. 6th of BRU73) forcing an excessive number of steps to be taken. Also, being a library routine,
it was of a general nature and not available for adapting to a specific task. In particular the stability matrix (12 * 12) for the system of equations had to be evaluated to determine the order used for each step. The physics of the problem could have been used to speed up the calculation of this matrix, as 70% of the elements can be shown to be zero. Elements of the form

$$
\frac{\partial \dot{q}_{i}}{\partial q_{j}}=\frac{\partial}{\partial q_{j}} \cdot\left(\frac{\partial T\left(p_{i}\right)}{\partial p_{i}}\right)=0
$$

where $T\left(p_{i}\right)$ is the kinetic energy term which is independent of q_{j}, are identically equal to zero.

As no other version of Gear's algorithm was readily available it was decided to retain the routine used by Fernie. Hamming's algorithm (RAL60) is a modified version of Milne's predictor corrector method. It uses a special Runga Kutta Gill start up procedure, is fourth order and is stable for a wide range of step sizes. This method has been used for many cases e.g. long lived trajectories of $\mathrm{Li}_{2}+\mathrm{Na}$ (WHI76), surface hopping trajectories (TULT1) and large atom interations with laser fields (POP8O). The method is prone to suffer from a build-up of rounding errors when very many steps are required (FIT79) and therefore such trajectories need to be checked.

For the trajectories of $F+I_{2}$ Hamming's method was found to be sufficiently accurate. The initial step size and local truncation error were adjusted for optimum performance. The best value for the initial atep size was found to be 10^{-15} sec. This was a relatively large increment but allowed the
program to integrate the uncomplicated approach of the reactants very efficiently while a rigorous value for the relative error (10^{-5}) forced the step size to be reduced when necessary. Typically the integration step length was halved two or three times.

The accuracy of a trajectory integration is subject to differing definitions. Early results often quoted the degree of conservation of energy or angular momentum as a guide to the accuracy of a trajectory. While these are obviously necessary, they are seldom good measures of the quality of the integration. Other criteria exist for the accuracy but the most demanding condition is that of backward integration.

The trajectory is integrated to conclusion, the momenta reversed and integrated until the original coordinates and momenta are achieved.

If the starting point is not reached then the trajectory is discarded. This procedure is sometimes over rigorous in that the forward integration may be satisfactory while an error occurs on the backward section. It is also wasteful of CPU time as each trajectory would require double the time.

The optimum running conditions mentioned above gave energy conservation to better than one part in 10^{5} in most cases. A sequence of trajectories was run with full backward integration to see if this level of energy conservation was sufficiently accurate. It was found that the vast bulk of trajectories reproduced initial coordinates and energies to a good degree of accuracy, while under these conditions at 0.025 V about 4% of the trajectories did not. * As a proportion of the
integration errors could be seen to have occurred on the backward step (by observing the total energy changes) this was taken to be an acceptable accuracy for the calculation.

* A few trajectories were found for which it was impossible to recover the initial coordinates under any conditions. These possibly pass through a region of the surface where points adjacent in phase space diverge exponetially (DUF79).

3.4 Potential energy surface

The potential energy surface governs the nuclear motion of the system and numerous reviews of this interesting topic exist (KUN76, MUR78, TUL81) Some guidelines for any surface are
i) The surface must accurately describe the potential in the assymptotic limits, thus obeying the known thermodynamic data.
ii) It should smoothly connect the reactant and product states through the interaction region, obeying any symmetry properties.
iii) Any known data, expirical or otherwise concerning the interaction region should be incorporated and outside these regions it should behave in a physically reasonable manner.

Many potential energy constructs are very elegant but of little practical use for trajectory calculation. Recourse is often made to arbitrary methods. The switching functions and hyperbolic map functions devised by Bunker (BUN71) have been used extensively (BLA63, KAR64, FLU76, SAN77). They both allow manipulation of topological features of the surface and produce the correct asymptotic limits. While the switching function
formalism is often an adequate description of an $A+B C$ $A B+C$ system, it can be troublesome when $B C$ is an homonuclear diatomic. Although discontinuities in the derivafives at $r_{A B}=r_{A C}$ are not severe it can trigger instability in the integration routine.

The London equation (LON29) relates the ground state energy of three ${ }^{2} S$ atoms in terms of their respective diatomic singlet and triplet energies. This equation is appropriate for H_{3} but has been modified (SAT55) and extended (KUN66) to incorporate much empirical information. The resulting LEPS construction has been used to describe many triatomic and tetratomic systems (WHI75, SMI75 for example).

The LEPS potential for a triatomic system is given
in terms of the interatomic distances by
$V\left(r_{1}, r_{2}, r_{3}\right)=Q_{1}+Q_{2}+Q_{3}-\left(J_{1}{ }^{2}+J_{2}{ }^{2}+J_{3}{ }^{2}-J_{1} J_{2}-J_{2} J_{3}-J_{3} J_{1}\right)^{\frac{1}{2}}$
3.6
where $Q_{i}\left(r_{i}\right)=\frac{1}{2}\left({ }^{1} E_{i}+{ }^{3} E_{i}\right)$ is nominally associated with couloumb integral and $J_{i}\left(r_{i}\right)=\frac{1}{2}\left({ }^{1} E_{i}-{ }^{3} E_{i}\right)$ is nominally associated with the exchange term. ${ }^{1} E_{i}$ and ${ }^{3} E_{i}$ refer to the singlet and triplet energies of the separated diatomic fragments. As the ground state surface is sought, the ${ }^{1} E_{i}$ are chosen to best represent the asymptotic regions for which the Morse potential is adequate.

$$
\begin{aligned}
{ }^{1} E_{i}={ }^{1} D_{i}[1-\exp [& \left.\left.={ }^{1} \beta_{i}\left(r_{i}-{ }^{1} r{ }_{i}^{0}\right)\right]\right]^{2}-{ }^{1} D_{i} 3.7 \\
{ }^{1} D_{i} & =\text { dissociation energy } \\
{ }^{1} r_{i}^{0} & =\text { equilibrium bond length } \\
{ }^{1} B_{i} & =\left(\frac{\omega_{e i} \mu_{i}}{{ }^{1} D_{i}}\right)^{\frac{1}{2}}
\end{aligned}
$$

The repulsive ${ }^{3} E_{i}$ state is given by the so called anti Morse function.

$$
{ }^{3} E_{i}={ }^{3} D_{i}\left[1+\exp \left[-{ }^{3} \beta_{i}\left(r_{i}-{ }^{3} r_{i}^{0}\right)\right]\right]^{2}-{ }^{3} D_{i} \quad 3.8
$$

${ }^{3} \beta_{i}$ and ${ }^{3} r_{i}^{o}$ are often (as here) equated with their singlet values. $\quad{ }^{3} D_{i}$ is given by the prescription

$$
{ }^{3} D_{i}={ }^{1} \frac{D_{i}}{2} \cdot \frac{\left(1-s_{i}^{2}\right)}{\left(1+s_{i}^{2}\right)}
$$

s_{i} is an adjustable parameter allowing properties of the surface to be varied. $s_{i}=1$ eliminates the triplet component giving a deep well. Reducing s_{i} adds a repulsive component to the corresponding bond and changes the position of the potential minimum with respect to that band.

For $\mathrm{F}+\mathrm{I}_{2}$ symmetry requires that $\mathrm{s}_{1}=\mathrm{s}_{3}$. Allowing the proximity of the F atom to vary the ratio s_{1} / s_{3} could be a way of accounting to some extent for change transfer effects. However the complexities introduced may overwhelm any benefits and this was not tried.

The spectroscopic data for ground state I_{2} is quite detailed (COX72). In particular the RKR turning points are available to very high levels, nearly to the dissociation limit (LER70). The Morse curve obtained in the usual way from equation 3.7 gives a good fit to the part of the curve near the minimum but tends to deviate from the data points for the higher levels. This was particularly noticeable in the attractive portion of the curve. As the
repulsive part of the potential is never used for near thermal trajectories while the attractive part helps to form the exit channel, a least squares fit of the ${ }^{1} \beta_{i}$ parameter to the outer turning points alone was carried out. The resulting potential energy curve is shown in figure 3.1 giving good agreement with the measured data. The remaining spectroscopic constants are given in table 3.1.

	IF ($\left.\mathrm{X}^{1} \Sigma^{+}\right)^{(i)}$	$I_{2}\left(X^{1} \sum_{\mathrm{g}}^{+}\right)^{(i i)}$
$\begin{aligned} & \mathrm{De} / \mathrm{cm}^{-1} \\ & \mathrm{~B} / \AA^{-1} \\ & \mathrm{r}_{\mathrm{o}} / \AA \end{aligned}$	$\begin{aligned} & 22333 \text { (iii) } \\ & 2.021 \\ & 1.9089 \end{aligned}$	$\begin{aligned} & 12435 \\ & 2.33 \text { (iv) } \\ & 2.667 \end{aligned}$

Table 3.1 Spectroscopic parameters for $I F$ and I_{2}. From (i) CLY76, (ii) COX72, (iii) CLY78, (iv) see text.

Appleman and Clyne have measured the rate constant for reaction (1) (APP75) as (4.3 ± 1.1) $\times 10^{-10} \mathrm{~cm}^{3}$ molecule $\mathrm{e}^{-1} \mathrm{~s}^{-1}$. This is, within experimental error, equal to the hard sphere collision frequency indicating that there is effectively no activation energy, nor a strong steric effect. Scattering measurements (CAR73, WON73) for $F+I_{2}$ show an isotropic or sideways peaked angular distribution consistent with the formation of a complex, albeit short lived. $\quad I_{2} F$ has been observed as one of the products of the $F_{2}+I_{2}$ reaction (COG76) and is estimated to be stable by $12.6 \mathrm{KJ} \mathrm{mol}^{-1}$. (VAL77)

Figure 3.1 RKR turning points and Morse curve approximation as described in the text.

No 21 valence electron structures have been reported in the literature. $\mathrm{Cl}_{2} \mathrm{~F}, \mathrm{Br}_{2} \mathrm{~F}, \mathrm{CLF}_{2}, \mathrm{BrF}_{2}$ and tentatively $I_{2} F$ have been observed in matrix isolation studies (PRO78) where an angle of 150° was assumed for $\mathrm{Cl}_{2} \mathrm{~F}$. Walsh's mules are inconclusive for such systems and are even less reliable when the system contains iodine, well known for charge transfer effects. Lee predicts a bent configuration for the frihalogens they studied (VALT7) from the form of the distribution of the products. Schaefer has reported ab initio geometry optimisation calculations on the triatomic Cl F (UNG76). Although it was shown that the ground state was bent (148.8 ${ }^{\circ}$), the geometry changed between basis sets and has a low lying linear excited state. Inclusion of d orbitals on the central atom markedly improved the resulting energy and increased the bond angle for the ground state showing the importance of delocalisation.

Trajectories were run over nine LEPS surfaces details of which are shown in table 3.2. The surfaces are labelled S_{0} to S_{8} as indicated in the table. The only restriction on the adjustable parameters s_{i} was that the well depth be approximately $12.6 \mathrm{KJ} \mathrm{mol}^{-1}$. Only surface S_{0} has a barrier in the reaction coordinate, albeit small ($1.71 \mathrm{KJ} \mathrm{mol}^{-1}$).

Fixed angle scans of a few of the surfaces are plotted in figure 3.2 using mass weighted coordinates. (KUN76)

$$
\begin{aligned}
\rho_{I F} & =\beta r_{I} \cos \phi \\
\rho_{I F} & =r_{I F}+\beta r_{I F} \sin \phi
\end{aligned}
$$

Figure 3.2 Fixed angle scan contour plots of the potential energy surfaces using skewed and scaled coordinates. The contours are shown at 0.25 eV intervals. A slight barrier is apparent for surface $S_{O_{0}}$

with $\beta=\left(\left(M_{I}+M_{F}\right) / 2 M_{F}\right)^{1 / 2}=1.960$ and $\sin \phi=1 / 2 \beta$ such that $\phi=14.8^{\circ}$.

Surface	Sato Parameters		Well$\operatorname{depth}\left(\mathrm{KJ}_{\mathrm{mol}}{ }^{-1}\right)$	Well Position	
	${ }^{3}{ }_{\text {F }}{ }^{2}$	${ }^{s_{I_{2}}{ }^{2}}$		$\mathrm{r}_{\text {IF }} / \mathrm{A}$.	$\mathrm{r}_{\mathrm{I}_{2}} / \AA$
S_{0}	0.0	0.533	12.5	1.9152	2.924
s_{1}	0.1	0.515	12.7	1.9159	2.917
S_{2}	0.2	0.494	12.6	1.9165	2.904
S_{3}	0.3	0.473	12.6	1.9171	2.899
S_{4}	0.4	0.450	12.5	1.9177	2.86
S_{5}	0.5	0.420	12.5	1.9180	2.875
s_{6}	0.6	0.390	12.6	1.9182	2.859
S_{7}	0.7	0.355	12.6	1.9179	2.842
S_{8}	0.8	0.310	12.6	1.9168	2.825

Table 3.2 The nine surfaces used in the study labelled S_{0} to S_{8} with the Sato parameter $\mathrm{s}_{\mathrm{I}_{2}}$ adjusted so that the well depth was close to the experimental value $12.6 \mathrm{KJ} \mathrm{mol}^{-1}$ (VAL77).

Also shown are the well and positions of the well. Barrier in $s_{o}, 1.71 \mathrm{KJ} \mathrm{mol}{ }^{-1}$, at $r_{I F}=2.998 \AA$, $r_{I_{2}}=2.680 \%$.
From figure 3.2 and table 3.2 the surfaces are seen to satisfy the experimental criteria of well and activation energy. The situation of the well in the exit channel is physically plausible considering the strength of the I - Finteraction. The surface is very attractive implying a large cross section,
again agreeing with the measured data.
In figure 3.3 the variation of the well position is shown for the surfaces used. From S_{8} to S_{0} the well is seen to move further out into the exit channel, $r_{I_{2}}$ increasing with $s_{I 2}$. $r_{\text {IF }}$ initially increases with its Sato parameter $s_{\text {IF }}$ but decreases again for $s_{I F}{ }^{2}$ greater than 0.6 .

3.5.1 Colinear Trajectories

In Table 3.3 the rectilinear and trajectory classifications (KUN76) are used to describe the surfaces. In the colinear case the product vibrational energy V 'is usually proportional to $\% \mathrm{~A}_{\mathrm{T}}+\% M_{\mathrm{T}}$, the sum of the attractive and mixed energy release. If however the approaching atom is very light then V^{\prime} scales with $\% A_{\perp}$ and exhibits the light atom anomaly.

To prevent the repulsive components appearing negative $\% A_{T}, \%_{\perp}$ etc. have been calculated relative to the bottom of the well. . It is seen that the surfaces are very attractive in the rectilinear classification, even given the barrier of S_{0}. In the trajectory classification ${ }_{\%} A_{T}$ increases from S_{1} to S_{8} with a corresponding decrease in $\% M_{T}$ so that their sum is almost constant over the entire range. These values would suggest that a highly vibrationally excited diatomic product might be expected.

A caveat must be raised however when the one dimensional trajectory of figure 3.4 is considered. This trajectory, used to calculate $\mathscr{F A}_{T}$ (no reactant vibration), and the few run with reactant vibration were nearly always non-reactive. Because of the high attraction of the surface and the mass combination,

Figure 3.3 Variation of well position with Sato parameters for surfaces S_{0} to S_{8}.

Figure 3.4
Colinear Trajectory with no reactant vibration run at 0.025 eV translational energy.
the trajectory was reflected straight back along the entrance channel. This effect was not evident in the three dimensional studies showing the pitfalls of a one dimensional calculation.

Surface	$\% A_{T}$	$\% M_{T}$	$\% R_{T}$	$\% A_{1}$	$\% R_{\perp}$
S_{0}	-	-	-	90.6	9.4
S_{1}	40.1	56.7	3.2	90.7	9.3
S_{2}	51.0	46.6	2.4	90.8	9.2
S_{3}	57.2	40.1	2.7	91.0	9.0
S_{4}	65.4	30.9	3.7	91.2	8.8
S_{5}	69.7	27.2	3.1	91.3	8.7
S_{6}	77.1	19.2	3.7	91.6	8.4
S_{7}	82.7	14.2	3.1	92.0	8.0
S_{8}	84.3	14.3	1.4	92.2	7.8

Table 3.3 Energy release for surfaces S_{0} to S_{8} for colinear geometry, given for the trajectory and rectilinear classifications. For S_{0} the 0.025 trajectory used did not cross the RKR turning point of $I_{2}(v=0)$ so that $\% A_{T}$ is not available.

3.5.2 Reaction models

Simple physical models are widely used to try to gain an understanding of the more complex physics associated with collisions. Depending on the lifetime of the collision a reaction can be classed as either direct or complex. A direct trajectory is the result of a single encounter and 'remembers' its immediate past. Complex trajectories generally behave statistically and RRKM theory (SAF72, HOL77) and Phase Space

Theory, PST, (LIG67) have been used to describe such reactions. While models of direct reactions are numerous, they tend to be much less general. Several good models based upon repulsion in the retreat reaction coordinate exist, such as the Impulsive, Gradual Force (POL74) and DIPR (KUN70) models. Very few allow for any approach coordinate interaction. Those that do, such as the harpooning mechanism (MAG40) or the polarisation model of ion-molecule reactions (GIO58), tend to be very specific. Usually these models only give reaction cross sections and energy dependence, without attempting to predict any properties of the product.

Some of the models that could be applied to the $F+I_{2}$ system are shown in table 3.4 along with some of the properties that they would predict.
3.6 Results

Surfaces S_{o} and S_{1} both exhibited some characteristics of reactions with energy barriers. These surfaces were only investigated at a single energy. Surfaces S_{2} to S_{7} were investigated at four translational energies, $T, 0.25 \mathrm{eV}$, $0.06 \mathrm{eV}, 0.09 \mathrm{eV}$ and 0.2 eV . The narrow range was chosen to cover the experimental data. The trajectories were all run with a rotational energy corresponding to $J=55$ including a batch at $T=1.0 e V$ for surface S_{3}. One batch for surface S_{3} at $T=0.06 \mathrm{eV}$ was run at $J=150$.

Surface S_{8} introduces a deep well in the surface for the I - F - I configuration. This is a known defect of the LEPS formation (MUR78) and is unlikely to be a realistic representation. A restricted range of T was used for this surface.

	Model	T ${ }^{\prime}$	V'	R'	χ	σ_{R}	t_{c}	Comment
$\begin{gathered} \text { H} \\ 0 \\ 0.0 \\ 0 \\ 0 \\ 0 \end{gathered}$	RRKM (SAF72,HOL77)	$\begin{aligned} & \left\langle T^{\prime}\right\rangle=E / 3 \\ & P\left(T^{\prime}\right)=\left(E-T^{\prime}\right) \end{aligned}$	$\left\langle V^{\prime}\right\rangle=E / 3$	$\left\langle R^{\prime}\right\rangle=E / 3$	Symmetric about 90°	$\sigma_{R} \chi^{-\frac{1}{3}}$	$t_{c} \geqslant t_{r}$	
	PST/Prior (LIG67,LEv79)	$\begin{aligned} & \left\langle T^{\prime}\right\rangle=3 / 7 \mathrm{E} \\ & P\left(T^{\prime}\right)=T^{\frac{1}{2}}\left(E-T^{\prime}\right) \end{aligned}$	$\begin{aligned} & \left\langle V^{\prime}\right\rangle=2 / 7 E \\ & P\left(V^{\prime}\right)=\left(E-V^{\prime}\right)^{\frac{3}{2}} \end{aligned}$	$\left\langle\mathrm{R}^{\prime}\right\rangle=2 / 7 \mathrm{E}$	"	-	"	
$\begin{aligned} & + \\ & 0 \\ & 0 \\ & . \\ & . \\ & A \end{aligned}$	Impulsive (POL74)	$\begin{aligned} & \langle P\rangle= \\ & E-C_{a c} E_{R} \end{aligned}$	$\begin{aligned} & \left\langle V^{\prime}\right\rangle= \\ & C_{a c} E_{R} \cos ^{2} \alpha \end{aligned}$	$\begin{aligned} & \left\langle R^{\prime}\right\rangle= \\ & C_{a c} E_{R}-V^{\prime} \end{aligned}$	Backward peak	-	$\mathrm{t}_{\mathrm{c}}<\mathrm{t}_{\mathrm{r}}$	Often underestimates V'
	$\begin{aligned} & \text { Gradual Force } \\ & \text { (POL74) } \end{aligned}$	$\left\langle\mathrm{T}^{\prime}\right\rangle \geqslant\left\langle\mathrm{T}^{\prime}\right\rangle_{\text {imp }}$	$\left\langle V^{\prime}\right\rangle \leqslant\langle V\rangle_{\text {imp }}$	$\left\langle R^{\prime}\right\rangle \leqslant\left\langle R^{\prime}\right\rangle_{\text {imp }}$	"	-	"	DIPR model is in this category
	Spectator Stripping (HEN65)	$\langle\mathrm{T}\rangle=\mathrm{Cac}^{\text {T }}$	-	$\left\langle R^{\prime}\right\rangle=\text { fract. }$ of T.	Forward	large	"	No provision for H. Usually gives high energy limit.
	Colinear Surface (Kun70)	$\left\langle\mathrm{T}^{\prime}\right\rangle=\% \mathrm{R} . \mathrm{E}$	$\begin{aligned} & \left\langle V^{\prime}\right\rangle= \\ & \quad\left(\% A_{T}+\% M_{T}\right) E \end{aligned}$	-	-	-	-	See section 3.5.11

$C_{a c}=\frac{m_{A}}{m_{A}+m_{B}} \frac{m_{C}}{m_{B}+m_{C}}=0.065$ for $F+I_{2} ; \alpha=$ bond angle $; E_{R}=$ Repulsive energy release (POL74)
Table 3.4 Some reaction models and their predicted product properties.

Figure 3.5 Opacity functions for surfaces $S_{0}(a)$ and $S_{2}(b)$ showing the effect of the barrier in surface S_{0}.

3.6.1 Cross Sections and Opacity

The impact parameter, b, for the trajectories was scanned from 1 a.u. up to a maximum, b_{m}, in steps of 1 a.u. The number of trajectories run at each impact parameter was weighted according to $n(b)=b$. b_{m} was determined by a test batch and was found to be fairly constant for S_{3} to S_{8} but fell sharply from 10 a.u. for S_{2} to 7 a.u. for S_{0}.

Figure 3.5 shows the opacity functions $p_{r}(b)$ for surfaces S_{0} and S_{2} at 0.06 eV . Figure $3.5 a$ shows $p_{r}(b)$ decreasing with b which is characteristic of reactions proceeding via a barrier (GRI75), while figure 3.5 b shows the nearly constant behaviour expected from reactions with no activation energy. Figure 3.6 shows the behaviour of $p_{r}(b)$ for surface S_{3} across the range of energies used. These results are typical of all

the surfaces employed showing a decrease in b_{m} with translational energy input as would be expected.

The reactive cross section σ_{r} for the trajectory calculation is obtained from

$$
\sigma_{r}=b_{m}^{2} \frac{N_{r}}{N}
$$

where N is the number of trajectories $r u n$ and N_{r} is the number that react. The error in σ_{r} is given by

$$
\Delta \sigma_{r}=b_{m}^{2} \frac{N_{r}}{N} \frac{\left(N-N_{r}\right)^{\frac{1}{2}}}{N_{r} N}
$$

Results for the calculations are listed in table 3.5.
A monotonic decrease of σ_{r} with T is observed for all surfaces except S_{2}. These points qualitatively follow the statistical complex model (MIL67) that σ_{r} varies with $T^{-\frac{1}{3}}$ for reactions proceeding without activation energy. Log-log plots (fig. 3.7) are approximately linear with gradients given in table 3.5. Centrifugal narrowing of the reactant channel is probably the cause of the rising cross section obtained for surface S_{2} at low energies.

It is interesting to note that for most energies the cross section is a maximum for surface S_{6}. This parallels quite closely the position of the well with respect to the I - F coordinate, $r_{\text {IF }} \quad r_{\text {IF }}$ reaches a peak for the Sato parameter $s_{I F}=0.6$ (figure 3.3) while $\% A_{T}$ and $\% A_{\perp}$ continue to increase with $s_{\text {IF }}$. Quite why this occurs is uncertain as the potential energy along the reaction coordinate for S_{6} is greater than that for S_{7} for all $r_{I F}$ less than $10 \AA$.

Figure 3.7 Log-log plot of the reaction cross section against initial translational energy for surfaces S_{2} to S_{7}. The experimental result is also shown.
Key:

$$
\begin{aligned}
& \square-S_{2} \\
& x-s_{3}
\end{aligned}
$$

$$
\nabla-s_{4}
$$

$$
+-s_{6}
$$

$$
\Delta-S_{5}
$$

$$
\Delta-S_{7}
$$

T / eV	0.025	0.06	0.09	0.20	g
\mathbf{s}_{0}		2.99 ± 0.62			
\mathbf{s}_{1}	.	12.9	± 1.2		
\mathbf{s}_{2}	20.2 ± 1.1	23.2	± 1.2	23.3 ± 1.2	21.3 ± 1.3
\mathbf{s}_{3}	37.1 ± 1.3	32.1	± 2.3	30.8 ± 1.3	24.8 ± 1.2
\mathbf{s}_{4}	47.5 ± 2.1	40.4	± 2.0	36.3 ± 2.0	25.2 ± 1.8
\mathbf{s}_{5}	49.4 ± 2.0	42.5	± 2.0	36.8 ± 2.0	27.4 ± 1.8
\mathbf{s}_{6}	50.8 ± 1.5	43.3	± 2.0	40.5 ± 2.0	27.7 ± 1.8
\mathbf{s}_{7}	52.3 ± 2.1	42.5	± 2.0	39.7 ± 2.0	26.9 ± 1.8
\mathbf{s}_{8}		$41.9 . \pm 0.28$	-0.27		

Table 3.5 Reaction cross sections. (A^{2}) for aurfaces S_{0} to g_{8} for each energy used. The errors are calculated from equation 3.14. Also shown is the power dependence of o_{R} on the initial energy. At 1.0 eV and for $\mathrm{J}=150$ the crosa sections are $11.8 \pm 0.6 \mathrm{~A}^{2}$ and $31.0 \pm 1.3 \AA^{2}$ respectively.

T/ev	0.025	0.06	0.09	0.20	1.00	$0.06: \mathrm{J}=150$
s_{0}		$*$				
s_{1}		$*$				
s_{2}	1.4	1.4	1.1	1.0		
s_{3}	1.8	1.7	1.2	1.0	0.5	1.3
s_{4}	1.6	1.2	1.2	1.1		
s_{5}	1.7	1.4	0.9	0.8		
s_{6}	1.7	$*$	$*$	0.8		
s_{7}	1.5	1.2	0.9	0.8		
s_{8}		1.2	0.9			

Table 3,6 Collisional lifetimes (picoseconds) for surfaces s_{0} to S_{8} calculated from distributions of integration times.

- Statistics too poor to obtain a value for lifetime.

The measured value for the rate constant for the reaction is (4.3 ± 1.1) $\times 10^{-10} \mathrm{~cm}^{3}$ molecule $\mathrm{m}^{-1} \mathrm{~s}^{-1}$ (APP75), which corresponds to $\sigma_{R}=(43 \pm 11) \AA^{2}$. This result is plotted in figure 3.7. The agreement between this value and that of most of the surfaces explored is very good, with only surfaces S_{0}, S_{1} and S_{2} well outside the experimental bounds. These surfaces exhibit the least attraction, indicating that the large experimental result can be explained by an attractive surface.
3.6.2 Collision Lifetime

The lifetime of a collision is often determined by the time for which all internuclear distances are less than a fixed value. This value must be sufficiently large for the interaction to be complete. This definition can include some trajectories that are not truly long lived. Such trajectories form products which have very small translational velocities. and hence take a significant time to exit from the interation region. This effect was judged to be small in this study and such cases were not specially treated.

Lifetime distributions for different energies on a few surfaces are shown in figure 3.8(a). Statistical theories demand that any long lived species decay in a random manner. This implies that the distribution of integration times shoula decay exponentially with time. Plots of $\ln [P(t)]$ vs time can be used to assign a lifetime t_{c} to the collisional complex. Some of these are shown in figure 3.8(b). The shorter lifetime

Figure 3.8a Integration time distributions for surface S_{3} for energies 0.025 eV and 0.2 eV .

Figure 3.8b Log plots of the integration time distributions for surfaces S_{5} and S_{7}.
points arose mainly from direct trajectories and consequently did not behave statistically. The longer lived ones behaved approximately exponentially and the lifetime was taken from this portion of the graph. Lifetimes calculated in this manner are listed in table 3.6.

RRKM theory gives an estimate for the lifetime t_{0} as

$$
t_{0}=t_{v} \cdot\left(\frac{E+E}{E}\right)^{n} \quad 3.14
$$

where \in is the well depth with respect to the products
E is the total energy
t_{v} is a representative vibrational period for the complex.
For a tight complex, $n=3$ while $n=52$ for a loose complex. Modifications to this expression to include angular momentum effects can be introduced (MIL73) but for the case of $I_{2}+F$ the exoergicity is the dominant term in the expression. This gives the statistical lifetime of the complex as $t_{o}=0.13 \mathrm{ps}$ (if. t_{v} is taken as $10^{-13} \mathrm{~s}$). More information on t_{v} would be required for a detailed comparison however the values given in table 3.6 are on average an order of magnitude greater than t_{v}.

The critical lifetime for a complex is the rotational period, t_{R}. If the complex lifetime exceeds t_{R} then a statistical redistribution of energy along with a differential cross section peaked at the forward and backward poles can be expected (FLUT3). If t_{c} is approximately equal to t_{R} then their ratio can sometimes be inferred from the ratio of the forward peak intensity to that of the backward peak (MIL67). The rotational period can be calculated from the angular
momentum components of the reactants. Assuming all the translational energy appears as rotation then the following t_{R} are minimum for each T

$T / e V$	0.025	0.06	0.09	0.2	1.0	$0.06(J=150)$
t_{R} / ps	5.5	4.2	3.6	2.6	1.2	2.5

These are longer than any of the calculated lifetimes, implying that a direct mechanism is dominant for this system. 3.6.3.1 Scattering Angle

The angular distributions for the surface S_{3} are shown in figure 3.9 with average values and widths for all the surfaces listed in table 3.7. The distributions for stirface S_{3} are typical of all the surfaces employed. At low energies the distributions are very similar, mostly broad and symmetric about $\mathscr{Z}=90^{\circ}$. Only when $T=1.0 \mathrm{eV}$ does the symmetry disappear and a modest backward peak forms.

To facilitate the analysis of these results the data can be compared with the uniform phase space (UPS) distribution (MUC79). Equal volumes of phase space correspond to equal partitions of the solid angle Ω Transforming the scattering angle $\not \subset$ to u according to

$$
d u=\frac{1}{2} \sin \nsim d \mathscr{Z}
$$

and binning with respect to u gives each bin equal weight in phase space. Distributions over u are shown in figure 3.10. Here variations with scattering angle are more obvious. At $T=0.025 \mathrm{eV}$ the distribution is almost constant with u. As the energy increases towards 0.2 eV , peaks in the distribution appear at the forward and backward poles while retaining the

c/ev	0.025	0.06	0.09	0.2	1.0	0.06: J=150
${ }_{0}$		$\begin{gathered} 84 \cdot 3 \pm 7.2 \\ 34 \end{gathered}$				
s_{1}		87.9 ± 4.0	.			
8_{2}	$\begin{gathered} 91.1 \pm 2.5 \\ 40 \end{gathered}$	$\begin{gathered} 85.3 \pm 2.6 \\ 44 \end{gathered}$	80.7 ± 2.6	${ }_{43.3 \pm 3.4}^{48}$		
s_{3}	85.9 ± 1.9	$\frac{85.7 \pm 3.7}{44}$	87.2 ± 2.4	$\begin{gathered} 92.5 \pm 2.9 \\ 50 \end{gathered}$	$\begin{gathered} 104.0 \pm 4.2 \\ 51 \end{gathered}$	$\begin{gathered} 89.6 \pm 2.3 \\ 4 \end{gathered}$
s_{4}	$\frac{88.8 \pm 2.5}{43}$	96.2 ± 2.9	88.0 ± 3.1	95.2 ± 3.9		.
B_{5}	$\begin{gathered} 93.4 \pm 2.6 \\ 45 \end{gathered}$	88.5 ± 3.0	96.4 ± 3.1	$\begin{gathered} 97.4 \pm 3.6 \\ 47 \end{gathered}$		
s_{6}	$\begin{gathered} 95.7 \pm 1.8 \\ 44 \end{gathered}$	$92.2 \div 2.9$	94.8 ± 3.0	$\left\lvert\, \begin{gathered} 93 \cdot 3 \pm 3.7 \\ 48 \end{gathered}\right.$		
s_{7}	$\begin{gathered} 96.9 \pm 2.5 \\ 45 \end{gathered}$	$\begin{gathered} 92.5 \pm 3.0 \\ 49 \end{gathered}$	$\begin{gathered} 94.9 \pm 2.9 \\ 46 \end{gathered}$	$\begin{gathered} 97.5 \pm 3.6 \\ 46 \end{gathered}$	\therefore	
s_{8}		93.0 ± 1.3	$\begin{gathered} 94.5 \pm 1.3 \\ 45 \end{gathered}$.	

Table 3.7 Average values (upper figure) and widtha (standard deviation) in degrees of the angular acattering distributions for surfaces s_{0} to s_{8}.
Figure 3.10 Scattering distributions for surface S_{3} plotted against the transformed

symmetry about $\mathcal{X}=90^{\circ}$. At $T=1.0 \mathrm{eV}$ the backward peak is very evident in this UPS analysis.

The change in angular distribution occurs because of the increase in orbital angular mementum (OAM) of the system. The average OAM, L, for the different energies are

T / eV	0.25	.06	.09	.20	1.0
$\mathrm{~L} / \mathrm{T}$	49	75	92	137	259

compared with the rotational angular momentum (RAM) $J=55 \hbar$.
At very low T the major contribution to the angular momentum of the system is the rotation of I_{2}. If the products depart along the line of the dissolving I - I bond then the scattering angle will simply reflect the distribution of initial I_{2} orientations. This distribution is random in phase space, that is $P(u)=$ constant or $P(\mathcal{Z})=\frac{1}{2} \sin \mathfrak{Z}$ which is approximately what is observed at low energy. As the OAM increases, the total angular momentum increasingly correlates with I. This tends to force a correlation between $L!$ and L, similar to the statistical complex model (MIL67). This effect is slight and is only obvious in the UPS analysis.

This simple model would be quite sensitive to changes in I or J when they are nearly equal and could account for the difference in the measured angular distributions (CAR73, WON73). Increasing J from $J=55$ to $J=150$ had little effect at the energy used. A more extensive investigation of the rotational effects would be useful.

The measured angular distributions for $0+\mathrm{I}_{2} / \mathrm{Br}_{2}$ at nearly thermal energies gave similar distributions to those calculated here (RAD75). However at higher energy, 0.3 eV , the distribution for the similar mass combination of $O+I_{2}$ is backward peaked (CLO78) so that the $1.0 e V$ result obtained here is probably realistic. 3.6.3.2 Rotational angular momentum reorientation angle

Distributions of θ, the angle between the initial J and final J^{\prime} rotational angular momenta, are broad and peaked near 90° (figure 3.11, table 3.8) The similarity between these distributions and a sine distribution is very close, for higher energies in particular. For all the surfaces the similarity of the distributions at 0.2 eV to the sine distribution is statistically significant at the 10% level or greater. The lower energy results, while visually similar, have means significantly removed from 90°. A sine distribution would suggest J and $\underline{J}^{!}$were uncorrelated. A small correlation may therefore exist for the low T results but is lost as the OAM of the reactants increases. This is emphasised when the distributions for $T=1.0 \mathrm{eV}, \mathrm{J}=55$ and $T=0.06, J=150$ are considered. The former agrees extremely well with the sine distribution with a level of significance of more than 75%. The h igh RAM case seems to be biased towards $\theta=0^{\circ}$ and its level of significance is very much less than 0.2%. 3.6.3.3 Orbital angular momentum reorientation angle

In all cases the OAM reorientation angle, \varnothing the angle between \underline{L} and \underline{L}^{\prime} was peaked between 0° and 90°, decreasing with T as would be expected, figure 3.12, table 3.9.

T / eV	0.025	0.06	0.09	0.20	1.0	$0.06: \mathrm{J}=150$
$\mathrm{~s}_{0}$		70 ± 10				
s_{1}		82 ± 5				
s_{2}	79.9 ± 2.8	85.1 ± 2.5	84.5 ± 2.5	88.9 ± 2.7		
s_{3}	82.1 ± 2.1	86.7 ± 3.4	85.5 ± 2.1	86.1 ± 2.4	90.0 ± 3.5	79.2 ± 2.3
s_{4}	84.4 ± 2.6	84.1 ± 2.8	84.5 ± 2.7	96.6 ± 3.1		
s_{5}	85.5 ± 2.5	84.8 ± 2.8	87.6 ± 2.8	94.6 ± 3.2		
s_{6}	86.1 ± 1.9	85.0 ± 2.6	85.3 ± 2.8	92.4 ± 2.9		
s_{7}	88.1 ± 2.5	84.9 ± 2.7	85.7 ± 2.7	93.1 ± 3.0		
s_{8}		87.6 ± 1.2	84.4 ± 1.2			

Table 38 Average values (degrees) for the rotational angular momentum reorientation angle
$\langle\theta\rangle$, for surfaces
s_{0} to 8_{8}.

T / eV	0.025	0.06	0.09	0.20	1.0	$0.06: J=150$
s_{0}		53 ± 8				
s_{1}		50 ± 4				
s_{2}	60.3 ± 2.6	50.3 ± 2.2	49.5 ± 2.2	48.0 ± 2.4		
s_{3}	61.0 ± 1.9	50.0 ± 3.6	51.4 ± 1.9	$49.1 \pm \pm 2.1$	42.0 ± 2.7	72.9 ± 2.3
s_{4}	67.0 ± 2.6	56.1 ± 2.7	53.4 ± 2.4	53.0 ± 2.8		
s_{5}	66.4 ± 2.4	53.8 ± 2.5	56.3 ± 2.6	56.0 ± 2.8		
s_{6}	65.2 ± 1.7	57.9 ± 2.4	54.2 ± 2.3	49.6 ± 2.5		
s_{7}	67.4 ± 2.3	56.1 ± 2.4	59.4 ± 2.6	54.2 ± 2.8		
s_{8}		61.7 ± 1.1	55.6 ± 1.1			

Table 3.9 Average values (degrees) for the orbital angular momentum reorientation angle, $\langle\varnothing\rangle$, for surfaces s_{0} to s_{8}.

- \&ol -

From the diagram

$$
\varnothing=\tan ^{-1}\left(\frac{\left|\underline{J}-\underline{J}^{\prime}\right| / \sin \alpha}{L+\left|\underline{J}-\underline{J}^{\prime}\right| / \cos \alpha}\right) \quad 3.16
$$

with \propto the angle formed between $J-J^{\prime}$ and L. If \propto averages to 90°, as would be the case for $J-J^{\prime}$ randomly orientated with respect to L, then as θ is about 90°.

$$
\langle\phi\rangle \simeq \tan ^{-1} \frac{\left(J^{2}+J^{\prime 2}\right)^{\frac{1}{2}}}{I}
$$

Using the results for surface s_{3} to obtain J^{\prime}, values of $\langle\emptyset\rangle_{c}$ were calculated. They are compared with $\langle\phi\rangle_{T}$ obtained directly from the trajectories in table 3.10.

| 0.025 | 0.06 | 0.09 | 0.20 | 1.0 | $.06(\mathrm{~J}=150)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 56° | 46° | 41° | 36° | 27° | 62° |
| $61^{\circ} \pm 2$ | $60^{\circ} \pm 4$ | $51^{\circ} \pm 2$ | $49^{\circ} \pm 2$ | $42^{\circ} \pm 3$ | $73^{\circ} \pm 2$ |
| 62° | 64° | 60° | 60° | 60° | 83° |
| 57° | 56° | 45° | 38° | 24° | 67° |

Table 3.10

The agreement with the trajectory results is quite poor. Reanalysing the trajectories and producing separate distributions for impact parameters less than and greater than the average value gives $\langle\phi\rangle_{a}$ and $\langle\phi\rangle_{b}$. respectively. It is seen that $\langle\varnothing\rangle_{b}$ agrees very well with $\langle\varnothing\rangle_{c}$ while $\langle\varnothing\rangle_{a}$ does not, but is fairly constant across T.

The discrepancy between $\langle\phi\rangle_{a}$ and $\langle\phi\rangle_{c}$ must be explained by α not averaging to 90°. If α does not average to 90° this suggests that there is some correlation between L and J - \underline{J}^{\prime}, that is between J^{\prime} and L, for small L.

With hindsight it would have been more informative to have computed the angles $\underline{L} J^{\prime}$ and $J \underline{L}^{\prime}$ directly. 3.6.4 Energy distributions

The product energy distributions, along with the differential cross section, are very important to the experimentalist because of their relative accessibility. These kinematic effects are therefore a strong test of any model - although such effects may not be unique.
3.6.4.1 Translational energy

The translational energy distributions for surface S_{3} are shown in figure 3.13. The number of trajectories per bin is plotted against f_{t}^{\prime}, the fraction of available energy appearing as translation of the products. The distributions are peaked at low values of f_{t}^{\prime} with the distributions becoming wider as the incoming velocity is increased.

The trend across the range of surfaces is very similar to the behaviour shown by S_{3}. The average values of f_{t}^{\prime} are listed.

in table 3.11 and plotted in figure 3.14 showing a general increase in $\left\langle f_{t}{ }^{\prime}\right\rangle$ from S_{0} to S_{8}. The width of these distributions also increased along this series. For $T=0.06 \mathrm{eV}$ the standard deviations $\sigma_{S D}$ of the distributions are

Surface	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	s_{7}	s_{8}
$\sigma_{S D}$	0.11	0.13	0.17	0.18	0.23	0.23	0.22

For the colinear situation the highly attractive nature of the surface suggests that very little energy should appear as translation. Compared with the $\%$ values of table 3.3 the relatively large values of T^{\prime} must arise from nonlinear configurations. As with σ_{R} the increased $\left\langle f_{T}{ }^{\prime}\right\rangle$ across S_{O} to S_{8} may be accounted for by the increase in angular width of the well.

For a statistical distribution of T^{\prime}, distributions similar to those of figure 3.15 may be expected. Figure $3.45 a$ is the Prior distribution which assumes equal product density in phase space. The prior for translation is (BER75)

$$
P^{0}\left(T^{\prime}\right)=T^{\frac{1}{2}}\left(E-T^{\prime}\right) / E^{5 / 2}
$$

or

$$
P^{\circ}\left(f_{t}^{\prime}\right)=\frac{15}{4} f_{t}^{\frac{1}{2}}\left(1-f_{t}^{\prime}\right)
$$

Equal partitions in phase space are given by equal partitions of the variable $z_{t}{ }^{\prime}$ such that

$$
z_{t}^{\prime}=\int_{0}^{f_{t}^{\prime}} P^{0}\left(f_{t}^{\prime}\right) d f_{t}^{\prime}=5 / 2 f_{t}^{\prime}\left(1-3 / 5 f_{t}^{\prime}\right) 3.20
$$

T/ev	0.025	0.06	0.09	0.20	1.0	0.06:J=150
${ }^{8} 0$		$4.9 \frac{ \pm}{4} 0.8$				
81		$7.3 \pm \frac{.}{7}$				
s_{2}	$\begin{gathered} 11.3 \pm 0.8 \\ 13 \end{gathered}$	11.4 ± 0.7	$\begin{gathered} 14.0 \pm 0.8 \\ 13 \end{gathered}$	16.8 ± 1.0		
8_{3}	$\begin{gathered} 12.7 \pm 0.6 \\ 13 \end{gathered}$	13.6 ± 1.1	15.8 ± 0.8	$\begin{gathered} 19.5 \pm 1.1 \\ 18 \end{gathered}$	$\begin{gathered} 26.6 \pm 1.6 \\ 20 \end{gathered}$	$\begin{gathered} 15.6 \pm 0.7 \\ 13 \end{gathered}$
s_{4}	$13.6_{1 \frac{ \pm}{2}} 0.7$	$\cdot 18.0+\frac{+1.0}{6}$	$20.0_{17} \pm 1.1$	$24 \cdot 7_{19}^{ \pm} 1 \cdot 5$		
s_{5}	$19.9 \frac{1}{9}^{+1.1}$	22.6 ± 1.1	$23.2 \pm \frac{1.2}{18}$	24.9 ± 1.6		
3_{6}	$23.1 \underset{21}{ \pm} .0 .9$	$\frac{27.8}{23} \pm 1.4$	$24.7 \underset{21}{ \pm} 1.3$	$30.7 \underset{22}{ \pm} 4.7$		
3_{7}	$\frac{28.5}{24} \pm 1.3$	28.4 ± 1.4	27.4 ± 1.4	31.1 ± 1.7		
8_{8}		$30.8{ }_{2}^{\frac{+}{3}} 0.6$	$30.52^{\frac{+}{2}} 0.7$		-	

Table 3.11 < $\left.T_{T}{ }^{\prime}\right\rangle$ (upper figure) and widths (standard deviations) of the translational energy distribution - \% - for surfaces s_{0} to S_{8}.

Figure 3.14 f_{t}^{\prime} plotted against initial translational energy. For key see figure 3.7 .

The Prior distribution is then $P^{\circ}\left(Z_{t}{ }^{\prime}\right)=$ constant. The same results as in figure 3.13 are replotted in figure 3.16 against the transformed variable $\boldsymbol{z}_{\mathrm{t}}{ }^{\prime}$. These plots show the distributions to be strongly nonstatistical with this pattern repeated for all other surfaces.

The expected RRKM distributions are shown in figure 3.15b, given by (SAF72)

$$
P_{R R K M}\left(T^{\prime}\right)= \begin{cases}\left(\frac{T^{\prime}}{B_{m}^{\prime}}\right)^{\frac{2}{3}}\left(E-T^{\prime}\right) & T^{\prime} \leqslant B_{m^{\prime}} \\ \left(E-T^{\prime}\right) & T^{\prime}>B_{m}^{\prime}\end{cases}
$$

for a loose complex, where B_{m}^{\prime} is the centrifugal exit barrier. Again the calculated distribution disagrees with the trajectory results, although $\left\langle f_{t}{ }^{\prime}\right\rangle$ does seem (figure 3.14) to approach the $R R K M$ value $\left\langle f_{t}{ }^{\prime}\right\rangle=\frac{1}{3}$.
$\left\langle f_{t}{ }^{\prime}\right\rangle$ is consistently low for all surfaces investigated and is similar to the experimentally determined value, 15% (WON73, CAR73). The form of the distributions are also similar to the experimental distribution which is plotted in figure 3.13 alongside the data for surface S_{3}. These results are the best fit but those for surfaces S_{2} to S_{6} give results that are all close to the measured values.

3.6.4.2 Vibrational energy

The product vibrational energy distributions are plotted in figure 3.17 for surface S_{3}. They contrast sharply with the Prior distribution for vibration, which in the RRHO approximation is (BER75)

$$
P^{0}\left(f_{v}^{\prime}\right)=5 / 2\left(1-f_{v^{\prime}}^{\prime}\right)^{3 / 2}
$$

shown in figure 3.15(a). If a UPS analysis is done, as for translation the plots over the transformed variable

$$
z_{v}^{\prime}=\int_{0}^{f_{v}^{\prime}} 5 / 2\left(1-f_{v}^{\prime}\right)^{3 / 2} d f_{v}^{\prime}
$$

only emphasise the population inversion, figure 3.18. The degree of the inversion decreases with increased T, shown by the decrease in $\left\langle f_{v}{ }^{\prime}\right\rangle$ of table 3.12 and figure 3.19. This decrease occurs because the high velocities over the surface cause the trajectories to deviate more from the minimum path, the effect of which is to randomise the energy distribution. Also a large fraction of energy is forced into rotational and translational modes by angular momentum conservation.

A surprisal analysis, figure 3.20 , shows that the surprisal (IEV76) is approximately linear as is often the case (BER75, LEV79). The line may be slightly curved due to angular momentum constraints but the statistics are too poor to permit a full three parameter fit. For a linear surprisal plot the gradient λ_{V} can be related to a vibrational temperature

$$
\lambda_{v}=\frac{E}{K T}
$$

Gradients for all the trajectories are also listed in table 3.12. All the surfaces show $\lambda_{v} \ll 0$ indicating substantial population inversions.

Trajectories for surface S_{O} must pass close to the position of the barrier in the surface, probably close to the colinear geometry. This gives the trajectory a large value for f_{v}^{\prime} ', close to that predicted by $\% A_{\perp} \cdot \quad \sigma_{R}$ is also very small, as already

Figure 3.18 Vibrational energy dist. at 0.025 eV for surface S_{3} plotted against the variable z_{v}^{\prime} showing the non-statistical form of the dist.
Figure $3.19 \mathrm{f}_{\mathrm{v}}^{\prime}$ plotted against initial translational energy for surfaces S_{2} to S_{7}. See fig. 3.7 for key.

T/eV	0.025	0.06	0.09	0.2	1.0	$0.06: J=150$
s_{0}		$\begin{gathered} 92.9 \pm 1.0 \\ 5 \\ -42.5 \end{gathered}$				
s_{1}		$\begin{gathered} 88.2 \pm 0.9 \\ 9 \\ -9.8 \end{gathered}$				
s_{2}	$\left\|\begin{array}{c} 80.2 \pm 1.3 \\ 21 \\ -7.6 \end{array}\right\|$	$\begin{gathered} 77.2 \pm 1.2 \\ 21 \\ -7.9 \end{gathered}$	$\begin{gathered} 74.8 \pm 1.1 \\ 19 \\ -8.5 \end{gathered}$	$\begin{gathered} 63.5 \pm 1.5 \\ 21 \\ -6.5 \end{gathered}$	-	
s_{3}	$\begin{gathered} 76.3 \pm 1.0 \\ 21 \\ -7.7 \end{gathered}$	$\begin{gathered} 71.8 \pm 1.9 \\ 22 \\ -7.4 \end{gathered}$	$\begin{gathered} 69.2 \pm+.1 \\ 22 \\ -7.2 \end{gathered}$	$\begin{gathered} 61.5 \pm 1.2 \\ 21 \\ -6.4 \end{gathered}$	$\begin{gathered} 33.3 \pm 1.6 \\ 19 \\ -2.4 \end{gathered}$	$\begin{gathered} 71.3 \pm 1.0 \\ 20 \\ -7.8 \end{gathered}$
S_{4}	$\begin{gathered} 73.9 \pm 1.2 \\ 24 \\ -7.9 \end{gathered}$	$\begin{gathered} 67.9 \pm 1.3 \\ 21 \\ -7.8 \end{gathered}$	$\begin{gathered} 62.9 \pm 1.4 \\ 21 \\ -6.9 \end{gathered}$	$\begin{gathered} 52.3 \pm 1.7 \\ 22 \\ -4.7 \end{gathered}$		
s_{5}	$\begin{gathered} 66.1 \pm 1.4 \\ 25 \\ -6.8 \end{gathered}$	$\begin{gathered} 60.1 \pm 1.4 \\ 23 \\ -6.3 \end{gathered}$	$\begin{gathered} 59.8 \pm 1.5 \\ 22 \\ -6.5 \end{gathered}$	$\begin{gathered} 52.0 \pm 1.8 \\ 24 \\ -4.8 \end{gathered}$		
s_{6}	$\begin{gathered} 62.0 \pm 1.1 \\ 26 \\ -6.4 \\ \hline \end{gathered}$	$\begin{gathered} 54.0 \pm 1.6 \\ 26 \\ -5.4 \end{gathered}$	$\begin{gathered} 56.9 \pm 1.5 \\ 24 \\ -5.9 \end{gathered}$	$\begin{gathered} 46.9 \pm 1.8 \\ 23 \\ -3.9 \end{gathered}$		
37	$\begin{gathered} 54.9 \pm 1.6 \\ 28 \\ -5.1 \end{gathered}$	$\begin{gathered} 52.5 \pm 1.6 \\ 26 \\ -5.3 \end{gathered}$	$\begin{gathered} 51.0 \pm 1.6 \\ 25 \\ -5.1 \end{gathered}$	$\begin{gathered} 43.5 \pm 1.9 \\ 24 \\ -3.8 \end{gathered}$		
s_{8}		$\begin{gathered} 48.1 \pm 0.7 \\ 25 \\ -4.5 \end{gathered}$	$\begin{gathered} 46.9 \pm 0.7 \\ 25 \\ -4.4 \end{gathered}$			

Table $3.12\left\langle\mathrm{f}^{\prime}\right\rangle$ (upper figure) and widths (atandard deviations)

- $\%$ - for surfaces S_{0} to S_{8}. The lower figure is the surprisal I (I_{v}).

noted for colinear trajectories, and the distribution is sharply peaked near $f_{v}^{\prime}=1.0$ (figure 3.21(a)). At the other end of the scale, surface S_{8}, the distribution is quite broad and $\left\langle f_{v}{ }^{\prime}\right\rangle$ is about half of $\% A_{\perp}$. Noting that the measured distribution peaks at low f_{v}^{\prime} (figure 4.1), sixty batches of trajectories were run on this surface at $T=0.06 \mathrm{eV}$ and 0.09 eV to check that no peak in the distribution formed at low $\mathrm{f}_{\mathrm{v}}{ }^{\prime}$. None was observed in the distribution with respect to $\mathrm{f}_{\mathrm{v}}{ }^{\prime}$ (figure $3.21(\mathrm{~b})$) or $\mathrm{Z}_{\mathrm{v}}{ }^{\prime}$, nor was any discernable in the surprisal plot.

The vibrational energy distribution from RRKM theory is (WHI76)

$$
P_{R R K M}\left(V^{\prime}\right)= \begin{cases}\left(E-V^{\prime}-2 / 5 B_{\dot{m}}^{\prime}\right) B_{m}^{\prime \frac{2}{3}} & V^{\prime} \leqslant E-B_{\dot{m}}^{\prime} \\ \frac{3}{5}\left(E-V^{\prime}\right) 5 / 3 & V^{\prime}>E-B_{\dot{m}}^{\prime}\end{cases}
$$

and is plotted in figure 3.15(b). The vibrational distribution is obviously non-statistical when compared with both the RRKM and Prior distributions.

Comparis on of the trajectory results with other models is equally unproductive. The impulsive model (table 3.4) predicts at most $\left\langle\mathrm{f}_{\mathrm{v}}{ }^{\prime}\right\rangle=6.5 \%$, with this as the upper limit for the Constant Gradual Force model. The DIPR model (KUN7O) since it is basically a more sphisticated version of the gradual force family would give similarly low results for f_{v} '. The analysis which comes closest to predicting the energy distributions is the colinear classification of the potential energy surface.

3.6.4.3 Rotational Energy

The product rotational energy distributions are plotted in figure 3.22 for surface S_{3}. The distributions peak at low values of f_{R}^{\prime}, decreasing rapidly almost to zero. The distributions broaden with increased T so that the average value

Figure 3.21 Vibrational energy distributions for surfaces S_{0} and S_{8}.

$\left\langle f_{R}{ }^{\prime}\right\rangle$ also increases, table 3.13 and figure 3.23. This holds for all the surfaces and energies except that run at 1.0 eV . At this energy the distribution is broad, peaking at around $f_{R}{ }^{\prime}=$ 0.35. Low values for $\left\langle f_{R}^{\prime}\right\rangle$ are typical for this mass combination, forced on the system by the angular momentum constraints.

The rotational distributions are similar for all the surfaces although $\left\langle f_{R}{ }^{\prime}\right\rangle$ increases from surface S_{0} to S_{8}. Also across the range of surfaces the widths of the distributions increase as they do for translation. Again this can be explained by the greater angular width of the well in the surface. Smaller angles of the 'complex' when it breaks up permit larger angular momenta which in turn allow increased rotational energies.

Comparison with model distributions is again limited. Repulsive models - table 3.4 - do not in principle apply for this reaction although they give a better estimate for rotation than vibration. A surprisal analysis is not possible in this study because the Prior distribution for rotation (BER75) is conditional upon $f_{v}{ }^{\prime}$ i.e.

$$
P^{0}\left(f_{R}^{\prime}: / f_{v}^{\prime}\right)=\frac{\left(1-f_{V}^{\prime} \cdot-f_{R}^{\prime}\right)^{\frac{1}{2}}}{\left(1-f_{v}^{\prime}\right)}
$$

There were too few trajectories to analyse with respect to two variables. Another complicating factor is that the distribution is very dependent on the angular momentum.

Superficially the distributions are similar to a Boltzmann energy distribution and could be characterised by a rotational temperature, $T_{R}{ }^{\prime}=\left\langle R^{\prime}\right\rangle / K_{b}$. These temperatures are shown in

T / eV	0.025	0.06	0.09	0.20	1.0	0.06: J=150
s_{0}		$\begin{gathered} 2.2 \pm 0.5 \\ 330 \end{gathered}$				
s_{1}		$\begin{gathered} 4.6 \pm 0.5 \\ 5 \\ 680 \end{gathered}$				
s_{2}	$\begin{gathered} 8.5 \pm 0.8 \\ 13 \\ 1230 \end{gathered}$	$\begin{gathered} 11.3 \pm 0.9 \\ 14 \\ 1680 \end{gathered}$	$\begin{gathered} 11.3 \pm 0.7 \\ 12 \\ 1720 \end{gathered}$	$\begin{gathered} 19.7 \pm 1.1 \\ \frac{16}{3250} \end{gathered}$		
S_{3}	$\begin{gathered} 11.0 \pm 0.7 \\ 13 \\ 1590 \\ \hline \end{gathered}$	$\begin{gathered} 14.6 \pm 1.4 \\ 17 \\ 2170 \\ \hline \end{gathered}$	$\begin{gathered} 14.9 \pm 0.8 \\ 15 \\ 2270 \end{gathered}$	$\begin{gathered} 19.0 \pm 0.9 \\ 16 \\ 3140 \\ \hline \end{gathered}$	$\begin{gathered} 40.1 \pm 1.8 \\ 22 \\ 10.341 \end{gathered}$	$\begin{gathered} 13.1 \pm 0.8 \\ 15 \\ 2195 \end{gathered}$
S_{4}	$\begin{gathered} 12.5 \pm 0.9 \\ 15 \\ 1810 \end{gathered}$	$\begin{gathered} 14.0 \pm 0.9 \\ 14 \\ 1080 \end{gathered}$	$\begin{gathered} 17.1 \pm 1.1 \\ 1600 \end{gathered}$	$\begin{gathered} 23.0 \pm 1.4 \\ 18 \\ 3800 \end{gathered}$		
S_{5}	$\left[\begin{array}{c} 14.0 \pm 1.0 \\ 17 \\ 2030 \end{array}\right.$	$\begin{gathered} 17.3 \pm 1.0 \\ 17 \\ 2570 \end{gathered}$	$\begin{gathered} 17.0 \pm 1.0 \\ 15 \\ 2590 \end{gathered}$	$\begin{gathered} 23.1 \pm 1.3 \\ 16 \\ 3810 \end{gathered}$		
S_{6}	$\begin{gathered} 14.9 \pm 0.7 \\ 16 \\ 2150 \end{gathered}$	$\begin{gathered} 18.3 \pm 1.1 \\ \frac{19}{2720} \end{gathered}$	$\begin{gathered} 18.4 \pm 0.9 \\ 15 \\ 2800 \end{gathered}$	$\begin{gathered} 22.4 \pm 1.2 \\ 16 \\ 3700 \end{gathered}$		
S_{7}	$\begin{gathered} 16.6 \pm 1.0 \\ 18 \\ 2400 \end{gathered}$	$\begin{gathered} 19.1 \pm 1.0 \\ 17 \\ 2840 \end{gathered}$	$\begin{gathered} 21.6 \pm 1.2 \\ 18 \\ 3290 \end{gathered}$	$\begin{gathered} 25.5 \pm 1.6 \\ 21 \\ 4210 \end{gathered}$		
S_{8}		$\begin{gathered} 21.0 \pm 0.5 \\ 18 \\ 3130 \end{gathered}$	$\begin{gathered} 22.5 \pm 0.6 \\ 19 \\ 3430 \end{gathered}$			

Table $\left.3.13<\mathrm{f}_{\mathrm{R}}{ }^{\prime}\right\rangle$ (upper figure) and widths (standard deviations) - \% for surfaces. S_{0} to S_{8}. The lower figure is the rotational temperature $\mathrm{T}_{\mathrm{R}}{ }^{\prime}$ derived from $\left\langle\mathrm{f}_{\mathrm{R}}{ }^{\prime}\right\rangle$.

Figure $3.23\left\langle f_{R}^{\prime}\right\rangle$ plotted against initial translational energy. For key see figure 3.7.
table 3.13. Apart from surfaces S_{0} and S_{1} the rotational temperatures are all much higher than the experimental value of $230 K$ reported in chapter 2.

3.7 Conclusions

The trajectory study shows that some aspects of the reacinion suggest a complex mechanism. For example the reaction cross section varies approximately with $T^{-\frac{1}{3}}$ for most surfaces (fig 3.7), the angular distribution is almost symmetric about 90° (fig.3.9) and the complex lifetime seems to behave statistically (fig. 3.8). On the other hand the energy distributions are strongly non-statistical, in particular the vibrational energy distribution (fig 3.17). While the trajectory lifetimes (about 1 ps) are significantly larger than the RRKM Iifetime (0.1 ps) they are still less than the rotational period (5 ps). Obviously an intermediate region obtains where the lifetime is n long enough to give equipartition of energy in phase space (WHI75).

Whitehead has noted that σ_{R} and $\left\langle f_{v}{ }^{\prime}\right\rangle$ vary monotonically with the Sato parameter $s_{I F}$ (FLE82). Also, it was found that the position of the well in the $r_{I_{2}}$ coordinate increased with $s_{I F}$.

In this study σ_{R} was not found to be a monotomic function of $s_{\text {IF }}$ (table 3.5) but decreases again for s^{2} IF larger than 0.6. Although $\left\langle\mathrm{f}_{\mathrm{v}}{ }^{\prime}\right\rangle$ does decrease monotonically with s_{IF} (fig.3.19) σ_{R} seems to vary with the r_{IF} coordinate of the well position.*

Another difference between these results and FLE82 is the magnitude of the cross section ($19 \AA^{2}$ vs 20 to $50 \AA^{2}$ of section 3.6). Obviously σ_{R} is quite sensitive to changes in the attractive component of the I_{2} potential.

Detailed comparisons of the trajectory results with the experimental data is left to the next chapter. Suffice it to say however that there is a sizeable difference between the measured and calculated distribution of vibrational energy.

* The angle of the surface to the trajectory opposite the input channel is close to 90°. As the well moves towards the entrance channel this angle changes. This may cause fewer trajectories to be reflected back through the input channel, causing σ_{R} to vary with $r_{I F}$.

Chapter 4

Discussion

4.1 Summary of experimental work

Grice and co workers (CAR73) first reported angular distribution data for the reaction

$$
\begin{equation*}
F+I_{2} \rightarrow I F+I \tag{1}
\end{equation*}
$$

These results were obtained at a translational energy of 2. $9 \mathrm{Kig}^{-1}$ with Fluorine atoms generated by a microwave discharge source similar to that used for $0 / I_{2}$ reactive scattering (RAD73). At the same time Wong and Lee also reported results for reaction (1) (WON73). Here Fluorine atoms were produced by thermal dissociation of F_{2} in a Nickel oven with velocity selection giving a collision energy of $8.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Both sets of workers showed that the translational energy distribution peaks at 15% of the available energy, assuming ground state products. However there was disagreement over the angular distribution. Grice reported a broad range from sideways to backward scattering while Lee reported a nearly isotropic distribution with a mild forward peak. Grice concluded that the product distribution varies appreciably with initial translational energy in the range 3 to $8 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$.

The work of Appelman and Clyne gave rate constants for Fluorine atom reactions with some halogens and interhalogens (APP75). They showed that the activation energy was negligible and the reaction rate is close to the hard sphere collision frequency.

The vibrational energy distribution reported in chapter 2 shows a significant population in the ground state of IF.

This is confirmed in similar measurements by Wanner's group (TRI80), where vibrational energy distributions for

$$
\begin{align*}
& F+I C C \rightarrow I F+C L \tag{2}\\
& F+I B r \rightarrow I F+B r \tag{3}
\end{align*}
$$

are also reported. The distributions are bimodal, a substantial peak at $V=0$ with a smaller one at high vibrational quantum numbers. These results for reaction (1) are more extensive than those presented in chapter 2, high vibrational states were studied using a modulated atom beam to pick out the signal from I_{2} fluorescence. These results are displayed in figure 4.1

Vibrational product stace distribution in the $X^{1} \Sigma^{*}$ state of IF. The population of $v=19$ wes eatimated to be within the range of the broken arror bar.

Figure 4.1 Vibrational energy distribution obtained for reaction (1). Reproduced from.TRI81.

4.2 Comparison of Trajectory results with experiment

The results of chapter 3 for surfaces which agree with the known data, show that it is impossible to reproduce the measured vibrational energy distribution. Whitehead's recent results agree with this conclusion (FLE82)*

Essentially four properties of reaction (1) have been determined and a comparison of each with the trajectory calculations is attempted below.
a) The computed cross sections for many of the surfaces are nicely spanned by the experimentally obtained value. Those that give the best agreement are those which are most attractive. It is therefore reasonable to assume that no matter what the overall interaction, initially it occurs on the attractive ground state surface.
b) The fraction of energy channelled into translation of the products gives reasonably good agreement between the experimental and computed results (15% compared with 12% to 30%). A possible explanation of this low value is that it is constrained by the angular momentum. This is also suggested by the low rotational energy of the $v=0$ state measured in chapter 2.

* In this study the parameter for the I_{2} morse curve was not fitted to the RKR turning points but was calculated from ω_{e}. A smaller reactive cross section results but apart from this the study is almost identical to that of chapter 3.
c) The angular distribution from the calculations is approximately sideways scattered, corresponding to a random distribution in space, with a trend towards backward scattering at higher energies. The measurements of Wong and Lee were the better and gave an isotropic angular distribution with a slight forward peak. This suggests a long lived complex mechanism is the dominant process. By the ratio of forward to backward peaks (1:0.8) the complex lifetime is estimated (FIS67) to be one or two rotational periods ($4-8 \mathrm{ps}$). This is significantly longer than that given by RRKM theory - equation 3.14- and the values obtained from the trajectory calculations (less than 2ps). This tends to suggest that an intermediate is formed which is more stable, with respect to the products, than $12.6 \mathrm{KJ} \mathrm{mol}^{-1}$.
d) The form of the vibrational energy distribution produces the largest difference between calculations and experiment. For trajectories run on the LEPS surfaces of chapter 3 and reference FLE82 the vibrational distributions are very similar. They produced an inversion with the distribution peaking at high v. This is in sharp contrast to the measured distribution which shows the greatest proportion of the reaction produces low vibrational energies. Perhaps more surprising is the bimodal form of the measured distribution. Few bimolecular reactions produce this type of distribution, however Polanyi has shown that it occurs (POL77) for

$$
\begin{equation*}
\mathrm{H}+\mathrm{ICl}-\mathrm{HCl}+\mathrm{I} \tag{4}
\end{equation*}
$$

In this case the bimodality could be identified with two dynamically different reaction paths traced out on a single surface. A direct path produced low internal excitation while a migratory path gave higher internal excitation (POL80). In the indirect path the labile Hydrogen, after an initial interaction with the attractive Iodine end of the molecule, migrated to the Chlorine. The resulting distribution was very sensitive to the initial energy of the reactants. This mechanism cannot be involved for reaction (1) as the reactant molecule is symmetric to approach at either end and has no barrier comparable to that of H... CL...I. Any dynamical effect would be expected to show up in the trajectory results and if any exists it was not obvious. Most other bimodal distributions are found to have a dynamical explanation - see for example POL80, DIN73 and ref.s therein. Other distributions can however be formed by the action of more than one potential energy surface. (FLU73).

4.3 Energy conservation

Wanner's vibrational results give $\langle v\rangle=1$ unless there is a further peak between levels 1 and 10 i.e. $\left\langle f_{v}\right\rangle=9 \%$. As most of the reaction products are in the ground vibrational state, the average fraction of energy into rotation will be close to that measured in chapter 2 i.e. $\left\langle f_{R^{\prime}}{ }^{\prime}\right\rangle=2 \%$. Combining these results with the scattering results of Lee and Grice where $\left\langle f_{t^{\prime}}\right\rangle=15 \%$ leaves about 74% of the available energy unaccounted for. Although these results are the sum of three different experiments a discrepancy of this
magnitude cannot be attributed to any sum of errors.
A possible conclusion is that the excess energy appears as electronic excitation, first hinted at by Lee (WON73). The relevant energy levels are shown in figure 4.2. The only accessible excited electronic state is that of $I\left({ }^{2} \mathrm{P}^{\frac{1}{2}}\right)$ with ground state $\operatorname{IF}\left(X^{1} \Sigma^{+}\right)$. At 0.953 eV the formation of $I\left({ }^{2} \mathrm{P} \frac{1}{2}\right)$ (M0058) would account for 78% of the exoergrity of reaction (1) or approximately 75% of the available energy at the energies used. This shows remarkable agreement with the energy deficiency estimated above.

The bimodal form of the vibrational energy distribution of figure 4.1 suggests there are two reaction paths. The smaller peak at high quantum numbers is quite like the trajectory results of chapter 3. A surprised plot of the best fitting trajectory results - surface S_{4} - normalised to this date is shown in figure 4.3. The fit is very good and the two plots even exhibit the same curvature. Using the trajectory results to project to lower levels it is estimated that (9_{-}^{+})\% of the reaction contributes to this channel.

The mechanism therefore put forward is that the reaction has two branches. One occurring solely on the ground electronic surface producing vibrationally excited IF. The other, principal channel producing excited Iodine, ${ }^{2}{ }^{P} \frac{t_{2}^{2}}{}$ atoms. 4.4.1 Role of $F\left({ }^{2} \mathrm{P}_{\frac{1}{2}}\right)$

Without surface hopping $I\left({ }^{2} P \frac{1}{2}\right)$ can only be formed by the reaction of spin orbit excited Fluorine atoms, i.e.

$$
\begin{aligned}
& -I F\left(A^{3} \pi_{1}\right)+I\left({ }^{2} P_{1 / 2}\right) \\
& -I F\left(B^{3} \pi_{0+}\right)+I\left({ }^{2} P_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.-I F\left(X^{1} \Sigma^{+}\right)+I I^{2} P_{1 / 2}\right)
\end{aligned}
$$

$-I F\left(X^{1} \Sigma^{+}\right)+I I^{2} P_{3 / 2}$

$$
-I_{2} F\left({ }^{2} A^{\prime}\right)
$$

Figure 4.2 Electronic level scheme for the reaction showing the relative energies of the different states. The total available energy of the experiments to date is also shown.

Figure 4.3 Surprisal plot of the trajectory results for surface S_{4} at 0.06 eV normalised to the surprisal obtained from figure 4.1 .

$$
\begin{align*}
& F\left({ }^{2} \mathrm{P} 3 / 2\right)+I_{2}\left(X^{1} \Sigma \stackrel{+}{g}\right) \rightarrow I F\left(X^{1} \Sigma^{+}\right)+I\left({ }^{2} P 3 / 2\right) \tag{5a}\\
& F\left({ }^{2} P \frac{1}{2}\right)+I_{2}\left(X^{1} \Sigma \dot{g}\right) \rightarrow I F\left(X^{1} \Sigma^{+}\right)+I\left({ }^{2} P \frac{1}{2}\right) \tag{5b}
\end{align*}
$$

$F\left({ }^{2} P \frac{1}{2}\right)$ is present, at the energies used in concentrations of about 7% of the total Fluorine atom population. If the low energy vibrational peak corresponds to reaction (5b) then it must have a very large cross section to contribute 91% of the products. Crudely it could be estimated from the overall cross section (APP75) by

$$
\sigma_{R} \simeq 43 * \frac{91 \%}{7 \%}=560 \AA^{2}
$$

This is larger even than that for $K+B r_{2}\left(\sigma_{R}=200 \AA^{2}\right.$: LOS79) where a harpooning mechanism predominates. While F° has a large electron affinity ($3.5 \mathrm{eV}: \operatorname{COT} 72$) it is not expected to be sufficient to form an ion pair. (Chlorine has a larger electron affinity ($3.61 \mathrm{eV}: C O T 72$) and only short range attraction was found for $C l+I_{2}$ reactive scattering (LEE69).

Some studies have found that the electronic state of Fluorine atoms is unimportant in reaction (SUNT7). Others have found that in some instances $F\left({ }^{2} P^{\frac{1}{2}}\right)$ atoms were less reactive than $F\left({ }^{2} \mathrm{P} 3 / 2\right)$ (F0075). The relative reactivities of these two states must depend on any differences in the potential energy surfaces arising from the two electronic configurations.
4.4.2 Other systems

Reaction (1) is one of four bimolecular reactions whose exoergicity is sufficient to form $I\left({ }^{2} P \frac{1}{2}\right)$ as one of the products. An information theoretic study of this and the other three reactions (DIN75)

$$
\begin{array}{ll}
\mathrm{K}+\mathrm{I}_{2} \rightarrow \mathrm{KI}+I\left({ }^{2} \mathrm{P} 3 / 2\right) / I\left({ }^{2} \mathrm{P} \frac{1}{2}\right) & 6 a / b \\
\mathrm{D}+\mathrm{I}_{2} \rightarrow \mathrm{KI}+\quad 4 & 7 \mathrm{a} / \mathrm{b} \\
\mathrm{~F}+\mathrm{HI} \rightarrow \mathrm{HF}+ & n \\
8 a / b
\end{array}
$$

attempted to predict the branching ratios between excited and ground state products.

The experimental data for reaction (7) showed that channel (7a) dominates and no $I\left({ }^{2} P \frac{1}{2}\right)$ was detected. For reaction (8) the predicted branching ratio of $\Gamma_{8}=0.5 \mathrm{was}$ on the threshold for chemical laser action. Experimentally $I\left({ }^{2} P \frac{1}{2}\right)$ was detected for this reaction but was largely the result of secondary collisions with vibrationally excited HF (SUN77). While reaction (8) gave little $I\left({ }^{2} P \frac{1}{2}\right)$ directly the analogous reaction

$$
\mathrm{F}+\mathrm{HBr} \rightarrow \mathrm{HF}+\mathrm{Br}\left({ }^{2} \mathrm{P} 3 / 2\right) / \mathrm{Br}\left({ }^{2} \mathrm{P} \frac{1}{2}\right) \quad 9 \mathrm{a} / \mathrm{b}
$$

produced $10 \pm 4 \%$ in the excited branch. Here also vibrational to electronic energy transfer was important.

For reaction (1) the information theoretic value for the branching ratio was calculated to be $\Gamma_{1}=0.3$. Using this value a fit to the data of Wong and Lee was attempted with some success. However as some assumptions (DIN75) regarding the measured energy distribution were made, a quantitative agreement was not claimed.

The results for reactions (6) to (8) indicate that from energy considerations $I\left({ }^{2} P_{2}^{1}\right)$ would be expected as a significant branch in these reactions. The final outcome however must be governed by the exact nature of the electronic surfaces involved.

4.4.3 Correlation diagrams

Herschbach has argued the case for a triplet ground state for the $0-\mathrm{Br}-\mathrm{Br}$ complex (DIX73). This arises from the possibility suggested by Walsh (WAL53) that the a: ($\beta p)^{4 d}$ orbital crosses the $a^{\prime \prime}(3 \pi)$ and $a^{\prime}(3 \pi)$ orbitals and lies below them at large bond angles. (fig.4.4). This is explained by the strong $0-B r$ interaction and noting that the $a^{\prime}(\$) 4 \sigma$ orbital is partly $0-B r$ bonding and $\mathrm{Br}-\mathrm{Br}$ antibonding. -This gives the valence shell configuration

$\ldots\left(4 a^{\prime}\right)^{2}\left(2 a^{\prime \prime}\right)^{2}\left(5 a^{\prime}\right)^{2}\left(6 a^{\prime}\right)\left(3 a^{\prime \prime}\right)$	$C_{s}\left({ }^{3} A^{\prime \prime}\right)$
$\ldots(2 \pi)^{4}(4 \sigma)^{2}(3 \pi)^{2}$	$C_{\infty V}\left({ }^{3} \Pi\right)$

CNDO-UHF studies confirm that this configuration has the lowest energy for the linear case (DIX73).

The case for the trihalogens should provide a similar situation, with the lone electron in a 3 Torbital in the linear case. However the bent geometry is probably lower in energy with an angle of about 150° (UNG76, PRO78). This would have the electronic configuration

$$
\ldots\left(2 a^{\prime \prime}\right)^{2}\left(5 a^{\prime}\right)^{2}\left(6 a^{\prime}\right)^{2}\left(3 a^{\prime \prime}\right)^{2}\left(7 a^{\prime}\right) \quad{ }^{2} A^{\prime}
$$

A possible correlation diagram for the system is given in figure 4.5 It shows how the electronic state might vary with bond angle given the orbital ordering of figure 4.4. The avoided crossing allows the configuration to change to

$$
\ldots\left(2 a^{\prime \prime}\right)^{2}\left(5 a^{\prime}\right)^{2}\left(6 a^{\prime}\right)^{2}\left(7 a^{\prime}\right)\left(3 a^{\prime \prime}\right)^{2} \quad{ }^{2} A^{\prime}
$$

for angles close to 180°.
During the reaction the Fluorine atom and Iodine molecule "approach on the ground state ${ }^{2} A$ ' surface as would be

Figure 4.4 Walsh diagram for $A B B$ system which shows the avoided crossing of the 3π and 4σ levels after DIX73.
expected. The complex thus formed will have considerable vibrational energy. The lifetime of the complex as shown in chapter 3 is such that a few vibrational periods can be executed. It is thus quite likely that the complex will cross the linear geometry and that the electronic configura tion corresponding to ${ }^{2} \Pi_{\frac{1}{2}}$ will obtain. This doubly occupies an orbital which is I - I antibonding and would cause the complex to blow up. A second change of electronic configuration would be expected as the Iodine atom retreats so that the lowest energy surface is maintained. To form I* one or other of these avoided crossings must be followed diabatically. To account for the size of this channel the probability of surface hopping must be high. This probability, from the Landau Zener formula (BAT61), is

$$
P=1-\frac{2 \pi V_{12}}{\hbar v_{r}\left|S_{1}-S_{2}\right|}
$$

where V_{12} is the matrix element connecting the two states. $r_{I_{2}}$ is a strongly decreasing function of $r_{I_{2}}$. Hence $r_{I_{2}}$ increases on the surface the system is likely to behave diabatically at the second crossing. If it is the second crossing that is followed diabatically, the difference in gradients $S_{1}-S_{2}$ will be quite large (see fig 4.5). The radial velocity v_{r} can be large also and all of these conditions allow the probability to approach unity.

4.5 Reactions of Fluorine with interhalogens

Reactions (2) and (3) give vibrational energy distributions

Figure 4.5 (a)
Possible correlation diagram for $I_{2} F$ showing how the electronic states might vary with bond angle given the orbital scheme proposed by Herschbach.

Figure 4.5(b) Correlation diagram for colinear I-I-F given the orbital scheme proposed by Herschbach. At the circled crossing the difference in gradients of the potential surfaces will be large because of the large difference in the energy of the two atomic states of iodine. If spin orbit interactions are strong in $I_{2} F$ then these two states will adopt the same symmetry, $\sum_{\frac{1}{2}}$, and it becomes an avoided crossing.
(TRI 80) very similar to that of reaction (1). Bimodal distributions could be formed here by the migratory mechanism of Polanyi (POL8O) since there is a barrier for the F - X - I geometry. However the strong similarity of the three distributions suggests a mechanism similar to that of reaction (1) where no such migratory mechanism was found.

If the distributions are separated into two channels as before then the relative populations of the high energy (direct) branch and the low energy (complex) branch can be estimated. These values are given in table•4.1 where no obvious pattern seems to emerge. Fig. 4.6 shows surprisal plots for the three reactions taken from Wanner's data (TRI80). The high $f_{v}{ }^{\prime}$ points for the three reactions are very much alike. They have different intercepts but are otherwise similar, with the curvatures for $f_{v^{\prime}}$ near unity almost identical. For the nearly linear region of the plot between $f_{v^{\prime}}=0.5$ and $f_{v^{\prime}}=0.8$ the gradients are shown in table 4.1. The strong agreement within the error limits suggests that the reactions proceed on qualitatively similar potential energy surfaces. The gradients g_{c} for the complex region $v=0$ and $v=1$ are positive and increase along the series ICI, IBr, I_{2}. If however these surprisals are calculated using the energy available when X^{*} is formed (table 4.2), the gradients g_{c}^{\prime} agree very well. These points are also shown in figure 4.6. No error bars are plotted for these points, because the relative populations are likely to be close to the given values. The quoted error limits

IX	\% direct	\% complex	g_{d}	g_{c}	g_{c}^{\prime}
I_{2}	9 ± 2	91 ± 2	-8.1 ± 1.0	48 ± 12	12 ± 4
IBr	70 ± 10	30 ± 10	-7.0 ± 0.4	20 ± 10	11 ± 4
ICl	50 ± 10	50 ± 10	-7.1 ± 0.8	14 ± 4	11 ± 4

Table 4.1 Relative populations of the peaks in the vibrational distributions of reference TRI80. Also the gradients from the surprisal plots of figure 4.6 - see text for details.

	$I X$	I_{2}	B_{r}
PRODUCTS	ICI		
$I F+X$	-118	-90.3	-57.2
$I F+X^{*}$	-27.1	-46.1	-46.6

Table 4.2 Exothermicities in mol for each channel of reactions (1), (2) and (3).
(TRI 80) are probably large to take into account the normalisation to the higher v points which require different laser dyes and are masked by the fluorescence from IX.

Figure 4.6 Surprisal plots of the data from ref. TRI80. See text for details.

If these reactions follow the argument of section 4.4.3 then the energy release will appear as a repulsion in FI...X. The energy distributions might then be predicted by one of the many retreat coordinate models (POL 74). The simplest of these is the 'Impulsive Model'. An instantaneous force acts between $F I \div X$ which represents the sudden transition to a repulsive surface. The resulting vibrational energy is given by

$$
E_{V^{\prime}}=E_{\text {tot }}^{\prime} \cdot \frac{M_{F}}{M_{F}+M_{I}} \cdot \frac{M_{F}}{M_{I}+M_{X}} \cdot \cos ^{2} \propto
$$

with $\propto=0$ for the linear case. This model of ten underestimates E_{V}, but gives a guide to the effect of the mass combination. The predicted values, for linear systems, for reactions (1), (2) and (3) are then

IX	I_{2}	IB r	ICI
$E_{v^{\prime}}$	1.9	2.4	$2.8 \mathrm{KJ} \mathrm{mol}^{-1}$

all of which are less than the zero point energy of IF, $3.6 \mathrm{KJ} \mathrm{mol}^{-1}$. The expected distribution would therefore strongly favour $v=0$, which is observed.

The argument of section 4.4 .3 also suggests that the impulse occurs near the linear configuration. As E_{R}, from the impulsive model varies with $1-\cos ^{2} \alpha$, very little of the available energy would appear as rotation agreeing with the observed results for reaction (1) given in chapter 2.
4.6 Summary and Conclusions

The experimental results for reaction (1) either conflict with each other or they point to the formation of electronically excited Iodine. Comparison of the form of the laser induced fluorescence results for reaction (1) with those of reactions (2) and (3) suggests that excited Bromine and Chlorine are also formed. As ${ }^{2}{ }_{\mathrm{P}_{\frac{1}{2}}}$ products do not correlate with the electronic states of the reactants a surface hopping mechanism must be involved. A possible route to the excited state, outlined above, also accounts for the observed energy distributions.

It had been thought that the predicted inversion of the product IF vibrational energy distribution for reaction (1) could have been used for a far infra-red chemical laser. However if $I\left({ }^{2} F_{\frac{1}{2}}\right)$ is formed in the nine to one ratio inferred from the vibrational distribution, then a chemical laser working at $1.3 \mu \mathrm{~m}$ would be possible if it were technically feasible.

The observed chemiluminescence from $\operatorname{IF}\left(A^{3} \Pi_{1}\right)$ and IF ($B^{3} \Pi_{0+}$) in $F_{2}+I_{2}$ reactions (BIR 75 , KAH 80) and reactions (1), (2) and (3) (TRI 81) might be easier to explain if an electronically excited halogen was already present from one of the previous steps in any reaction chain.

Although the indications from the experimental data are that the excited state atomic product is highly likely in these reactions, there is no direct evidence. Measurements of the $I\left({ }^{2} P^{\frac{1}{2}}\right)$ to $I\left({ }^{2} \mathrm{P} 3 / 2\right)$ ratios, probably in a molecular beam environment, are needed to fully understand these interesting reactions.

Recently several papers have reported oxygen atom reactions with halogens and interhalogens (DAV82,FER82,DUR82,SMI82,HOF82). The reaction of oxygen with iodine could be expected to produce similar reaction dynamics to that of pluorine and iodine due to the similar mass combination. SMI 82 reports a transition from complex dynamics to rebound: scattering at higher energies, 0.45 ev , for this reaction. This is similar to the work already noted (CLO78) and to the trajectory study of chapter 3 where this transition was also noticed. SMI82 suggests that different mechanisms occur at different impact parameters. The trajectory results for surface S_{3} at 1.0 ev do show that small impact parameters tend to give backward scattering while large ones give a more symmetric distribution. $\langle\mathcal{Z}\rangle=120^{\circ}$ for impact parameters less than the average and $\langle\chi\rangle=88^{\circ}$ for those greater than average. Generally this was true for all the surfaces and energies used in the study but the difference was less pronounced at the lower energies. This effect did not lead to any bimodal energy distributions at a particular energy and it is thought unlikely to lead to any even if averaging over the reagent energy distributions is taken into account.

References.

DAV82 : F.E.Davidson, A.R.Clemo, G.L.Duncan, R.J.Browett, J.H.Hobson and R.Grice, Mole. Phys., 46, 33,(1982)

DUR82 : A.Duricin, D.J.Smith and R.Grice, Mole. Phys., 46, 55,(1982)
FER82 : D.P.Fernie,D.J.Smith, A.Durkin and R.Grice, Mole.Phys., 46, 41 ,(1982)
HOP82 : A.Durion, D.J.Smith, S.M.A.Hoffman and R.Grice, Mole.Phys., 46, $1261,(1982)$

SMI 82 : A.Durkin, D.J.Smith and R.Grice, Male. Phys., 46, 1251,(1982)

Appendix A. Evaluation of expected signal rate

The reactive collision rate

$$
\begin{equation*}
\dot{\mathrm{z}}=\mathrm{n}_{\mathrm{F}} \mathrm{n}_{\mathrm{I}_{2}} \sigma_{\mathrm{R}} \overline{\mathrm{v}}_{\mathrm{rel}} \tag{A1}
\end{equation*}
$$

is $2.4 \times 10^{14} \mathrm{~cm}^{-3} \mathrm{~s}^{-1}$ with $\mathrm{n}_{\mathrm{F}}\left(6 \times 10^{16} \mathrm{~cm}^{-3}\right)$ the fluorine atom density in the reaction zone, ${ }^{n} I_{2}\left(6 \times 10^{12} \mathrm{~cm}^{-3}\right)$ the iodine molecule density in the reaction zone, $\sigma_{R}\left(4.3 \times 10^{-15} \mathrm{~cm}^{2}\right)$ the reaction cross section and $\bar{v}_{\text {rel }}\left(1.4 \times 10^{5} \mathrm{~cm} \mathrm{~s}^{-1}\right)$ the relative velocity. The number density of product species n_{p} is given by

$$
\begin{equation*}
n_{p}=\frac{1}{2} \dot{z} \mathrm{C}=\frac{1}{3} \dot{\bar{Z}} \dot{\bar{r}}_{\mathrm{r}}^{\mathbf{r}} \tag{A 2}
\end{equation*}
$$

Where C is a dwell time for the product in the reaction zone \bar{r} is a representative dimension of the reaction zone, giving $n_{p}=2.7 \times 10^{8} \mathrm{~cm}^{-3}$. The fluorescence rate \dot{n} is the product of n_{p} with the laser energy density $\rho(t)$ and the transition probability $B(\lambda)$. If the laser pulse shape is assumed to be square then $\rho(t)=\rho_{0}=4.5 \times 10^{-12} \mathrm{~J} \mathrm{~cm}^{-3} \mathrm{MH}^{-1}$. The transition probability is determined from
$B\left(\lambda_{L}\right)=\left.q_{v^{\prime} v^{\prime}}| | R_{e}\left(\bar{r}_{v^{\prime} v^{\prime}}{ }^{\prime}\right)\right|^{2} \sum_{\Delta J^{\prime \prime}} S_{J^{\prime} J^{\prime \prime}} \exp \left(\frac{-J^{\prime \prime}\left(J^{\prime \prime}+1\right)}{Q_{R}\left(v^{\prime \prime}\right)}\right)$
where $q_{v} v^{\prime \prime}$ is the Franck-Condon factor and $R_{e}\left(\bar{r}_{v^{\prime}} v^{\prime \prime}\right)$ is the dipole moment. The summation over $\Delta J^{\prime \prime}$ in equation $A 3$ accounts for the finite bandwidth of the laser and the relatively close spacing of the rotational transitions. Near a bandhead the exponential is approximately unity and $S_{J} J^{\prime \prime}$, the line strength becomes $\left(2 J^{\prime \prime}+1\right)$. This then gives for a laser wavelength λ_{L} close to a bandhead $\dot{n}\left(\lambda_{L}\right)=2.1 \times 10^{14} \mathrm{p}\left(v^{\prime \prime}\right)$. $q_{v^{\prime}} v^{\prime \prime} \mathrm{cm}^{-3} \mathrm{~s}^{-1}$ where $\mathrm{p}\left(\mathrm{v}^{\prime \prime}\right)$ is the fraction of
product molecules in the $v^{\prime \prime}$ state. The absolute signal is then

$$
s\left(\lambda_{L}\right)=\dot{n}\left(\lambda_{L}\right) \cdot \Delta t_{L} \cdot V \cdot f . \in
$$

with $\Delta t_{L}(5 n s)$ the laser pulse length, $V\left(9 \mathrm{~mm}^{3}\right)$ is the probe volume, $f(100 \mathrm{~Hz})$ is the repetition rate and ϵ is the collection efficiency. The optics collect signal through a cone of full angle $\pi / 4$ radians and the photomultiplier efficiency is around 10% giving $\epsilon=0.6 \%$. Therefore Al gives $S\left(\lambda_{L}\right)=5906$, p ($v^{\prime \prime}$) , $q^{\prime} v^{\prime} v^{\prime \prime}$.

For the accessible bands of $I F, q_{v^{\prime}} v^{\prime \prime}=0.1$ is a reasonable value, then if $p\left(v^{\prime \prime}\right)$ is 10% (say) the expected count rate would be $55 \mathrm{~s}^{-1}$.

Appendix B. Listing of programs **CDA1
**CDC4
**ADO1
POTFUN

```
%BEGIN
!
%OWNINTEGERARRAY REPLY(1:11)='K','W','U','D','P','C','M','S','T','H','O'
%INTEGER BASE,I,P,FLAG1
%SWITCH SW(1:11)
!
BASE= -8 192
```



```
%ROUTINE HELP
    %PRINTTEXT' POSSIBLE REPLIES ';NEWLINE
    %PRINTTEXT'----------NWLINE
    %PRINTTEXT' K - KILL PROGRAM
    %PRINTTEXT, W - WAIT PROGRAM
    %PRINTTEXT' U - UPDATE VARIABLES IN DATA COLL. PROGRAM'
    %PRINTTEXT' D - DRIVE GRATING TO NEW WAVELENGTH*
    %PRINTTEXT, P - PRINT EXP. VAR. LIST'
    %PRINTTEXT, C - COLLECT DATA.
    %PRINTTEXT, S - REVIEW A SCAN WRT WAVELENGTH'
    %PRINTTEXT, M - MARK AN OLD BLOCK AS DEFECTIVE'
    %PRINTTEXT' O - ANALYSE AN OLD BLOCK'
    %PRINTTEXT' H - LIST THIS FILE'
    %END ; ! OF HELP
!
!
%PRINTTEXT'HELP INFORMATION?'
READSYMBOL(P);NEWLINE
%IF P='Y` %THEN HELP
CHECK 1:%IF INTEGER(BASE)=0 %THEN -> CHECK2
! CO = O IMPLIES DATA COLL.. PROG. LOADED
%PRINTTEXT' INSERT DATA COLLLECTION PROGRAM';NEWLINE
WAITPROG
->CHECK 1
CHECK2:%IF INTEGR(BASE+2)=0 %THEN -> PROMPT
! C1 = O IMPLIES DATA ANALYSIS PROGRAM LOADED.
%PRINTTEXT'. INSERT DATA ANALYSIS PROGRAM';NEWLINE
WAITPROG
->CHECK }
!
!
PROMPT:READSYMBOL(P)
%CYCLE I=1,1,11
%IF P#REPLY(I) %THEN -> PASS
NEWLINE
->SW(I)
PASS:%REPEAT
%IF P#10 %AND P#32 %THEN %PRINTTEXT'?'
NEWLINE;->PROMPT
!
!
SW(9):->PROMPT
!
SW(1):INTEGER(BASE )=1
INTEGER(BASE+2)=1
STOPPROG
!
SW(2):INTEGER(BASE)=2
INTEGER(BASE+2)=2
WAITPROG
->CHECK }
!
```

```
SW(3):INTEGER(BASE)=3
U:WAIT(50)
%IF INTEGER(BASE)=0 %THEN -> PROMPT
->U
!
SW(4):INTEGER(BASE)=4
D:WAIT(50)
%IF INTEGER(BASE)=0 %THEN -> PROMPT
->D
!
SW(5):INTEGER(BASE)=5
->PROMPT
!
SW(6):INTEGER(BASE)=6
->PROMPT
!
SW(7):INTEGER(BASE+2)=7
->PROMPT
!
SW(8):INTEGER(BASE+2)=8
->PROMPT
SW(10):HELP
    ->PROMPT
!
SW(11):INTEGER(BASE+2)=11
->PROMPT
!
%ENDOFPROGRAM
```

1 \#BEGIN
2 :NOLIST
3 \%ENDOFLIST
412 :.LIST
413 ZROUTINESPEC COLLECTDATA
414 ZROUTINESFEC SETOUTPUT
415 ZROUTINESFEC DECODE(\%INTEGERNAHE COUNTS,ERRCD,ZINTEGER AB)
416 ZROUTINESPEC STOFPROG
417 XROUTINESPEC URITETODISC
418 ZROUTINESPEC ANALYSE (ZREALARRAYNAME DI, ZREAL MI,LIM,ZZEALNAME MEAN,ZC SIGAA,\%INTEGERNAME NI)
ZROUTINESPEC WAITPROG
\%ROUTINESPEC CHECKINTERRUPT
ZROUTINESPEC LOADVARS
\%ROUTINESPEC INITIALISE(ZINTEGER CHECK)
ZROUTINESPEC MONITOR
\%ROUTINESPEC DRIVEGRATING
425 ZROUTINESPEC CHECKERROR(\%INTEGERNAME COUNTS,ERRCD,ZINTEGER AB)
426 \%REALFNSPEC READLASER
427 XINTEGER I, P,CTIME,COUNTSQ,COUNTSI,MINT,HONIT,T1,DTIME
428 ZINTEGER ERRCD,NSETS,ERRCDI,IHONIT,IFLAG
429 ZINTEGER FLAG1,FLAG3,FLAG4, BASE
436 ZINTEGER ISET,STEPS,SEQNO,IINST,NC,NCB,QFLAG,IE,RTI
431 ZREAL MM,LL,TIMEIN,TIMEOUT
432 \%IATEGER NBLOCK.FBLOCKS
433 \%INTEGER OLIJIR.NEUIIR
434 ZREALAFFAY P1(1:16)
435 ZREALARFAY FP1(1:16)
430 \%REALAREAY FQ(1:16)
437 KFEALARRAY PFQ(1:16)
438 \%REALARRAY ILASER (1:50)
439 ZREAL LFOW.LFOW1.LSIGMA,LFAC1.LFAC2.LSCALE

441 ZREAL HTIME, SUMERR,FFAULT,FTIME
442 ZINTEGERARRAY Sも(1:16)
443 \%INTEGERARFAY S1(1:16)
444 ZIMTEGERARFAY S2(1:16)
445 ZINTEGERARRAY S3(1:16)
446 \%INTEGERAFRAY FNAME (D:2)
447 ZINTEGERARFAY TNAME(0:2)
448 \%FEALARKAY EXFVAR(O:31)
449 ZSWITCH EXEC(1:9)
450 .SETFOT(256.256)
451 SETFOT(512.512)
452 SETFOT(1824.1824)
453 ICOAMON BLOCK ALIDEESS STARTS AT -8192
$454 \quad$ BASE $=-9192$
455 ! FIRST NO. IS CONTROL VARIAELE FOR COLLECT FROG
456 ! SECOND CONTROLS ANALYSIS FFOG (EASE 2)
457 ! THIRI CONTAINS. SEQNO(LIF*:*:k) (EASE +4)
458 ! 5 OURTH CONTAINS MOST RECENT BLOCK NO. (BASE+b)
459 ! ENTRY TO PFOGRAM HERE

```
! INITIALISE VARIABLES
IINST=6 ;! NO. OF POSSIBLE ACTIONS
ISET=0
NSETS=0
MBLOCK=1
STEPS=0
FLAG3=% :! SUPPRESSES ERROR MESSAGES FROM DECODE.
QFLAG=1 !!DEFINE DAFILE ON FIRST PASS
IFLAG= ;! INTERRUPT FLAG
LOADVARS ; IREADS DEFAULT VALUES OF EXFUAR FROM LIFggg
INITIALISE(8) ;!CHECKS THE VALUES OF EXPUAR ARE O.K.
zCYCLE I=1,1,16
SO(I)=0;Si(I)=0
PO(I)=O;P1(I)=0
PPG(I)=0;PP1(I)=\varnothing
ZREPEAT
PROMPT2:INTEGER(BASE)=0
WAIT(500)
PROMPT1:P=INTEGER(BASE)
ZIF P=% %THENSTART
    ZPRINTTEXT*COLLECTION PROGRAM AWAITING INSTRUCTIONS*
    RINGBELL(2);NEULINE
    UAIT(580)
    ->PROMPT1
    #FINISH
ZCYCLE IE=1,1,IINST
ZIF P=IE ZTHEN - \EXEC(IE)
ZREFEAT
ZFRINTTEXT: INVALID COMMON VARIABLE SNEWLINE
WAITPROG;->FROMPT2
EXEC(1):STOFFROG
!
EXEC(2):WAITPROG
-FFOMPT2
    !
EXEC(3):INITIALISE(1)
->FROMPT2
    !
    EXEC(4):DRIUEGRATING
    -) FROMPT2
    !
    EXEC(5):%PRINTTEXTVUARIABLE LISTING*:NEWLINE
    #CYCLE I=9.4.28
    %CYCLE F=0,1,3
    %RINTFL(EXFUAR(I+F),11);SFACES(6)
    ZREFEAT
    NEWLINES(2)
    ZREPEAT
    -PFROMPT2
    !
    EXEC(a):COLLECTDATA
    ->FROMPT1
    !
    %ROUTINE cOLLECTDATA
        ZINTEGER AB
        SELECTOUTFUT(G)
```

516
517
518
519
523
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
546
541
542
543
544
545
546
547
548
549
556
551
552
553
554
555
556
557
558
559

TIMEIN=RTIME
SUMERR=G
FLAG1=1 ;!ENTRY WITH BEAM ON
NC $=\mathrm{g}$;! MO OF PAIRS AT THIS H .
LPOH=1 ; LSIGMA=1 ;! SET LASER POWER=1 FOR MONITOR OFF
RESET:ZIF IFLAG=1 \&THENSTART
CHECKINTERRUPT
ZRETURNIF RTI=9
\%FINISH
\%IF FLAGI=1 ZTHEN NC=NC +1
SKIPINC:IFLAG=0
ERRCD $=\varnothing$
\%IF FLAG1=1 \%THENSTART
SETPOT(9,1924) ;!TESLA ON, DISCHARGE ON
WAIT(DTIME +12日) ; ! WAIT FOR TESLA OFF AND FEAM SETtLE gFINISH
SETPOT $(0,512)$
SETPOT(512,512) : ! RESET SCALAR
SETPOT(0,256)
SETPOT(256.256) ; ! START SCALAR
ERRCD $1=0$
ZIF IMONIT $=\mathrm{g}$ ZTHENSTART
WAIT(CTIME: $550+1$)
->NOLASER
\%FINISH
MTIME=RTIME
LPOUI = LPOW ; !OLD LASER FOUER
honitor
HTIME $=($ RTIME-MTIME) $* 3960$
TI=INTPT(CTIME*5g-MTIME)
WAIT(Ti+1) \%IF Tl>0
NOLASER:
\%IF FLAGI=1 \%THEN SETFOT(1024,1024) ; ! DISCHARGE OFF
$A B=1 \quad ;!$ SELECT SCALER A
decode (countso,errcd,ab) ;! read scalar a
zIF ERRCDAO ZTHEN CHECKERROR (COUNTSO, ERRCD,AB)
\%IF ERRCD\#\# \%THEN ->SKIPINC
$A B=0 \quad ;!\quad$ SELECT SCALAR B
decoile countsi, errcd.ab) ;! read scalar a
\%if ERFCU\#』 zTHEN CHECKERROR (COUNTS1, ERRCD,AB)
\%IF ERRCD\#G ZTHEN -> SKIPINC
ZIF ERRCD1>1 \%THENSTART
RINGBELL(3)
\%PRINTTEXT'LASER FOUER VARYING. :NEULINE
ERRCD1=ERRCD1-2;7FINISH
\%IF ERRCD $1=1$ \%THENSTART
RINGBELL(3)
\%PRINTTEXT/Laser fouer changed; ;nellinne
ZFINISH
zIF FLigGl=1 zthenstart
$\mathrm{Sa}(\mathrm{NC})=$ COLNTS
S2 (NC) = COUNTS 1
$\mathrm{P} 1(\mathrm{NC})=$ LPOW
PPI(NC) =LSIGMA
FLAGT=9;! DISCHARGE OFF
WAIT(109) ;! Walt for beam to settle

572

```
    -> FESET
```

 -> FESET
 ZFINISH
 ZFINISH
 ! FLAG1=g FOR THIS DATUM HERE,SO FROCESS ONE PAIR OF COUNTS
 ! FLAG1=g FOR THIS DATUM HERE,SO FROCESS ONE PAIR OF COUNTS
 S1(NC)=COUNTSO
 S1(NC)=COUNTSO
 SO(NC)=COUNTS1
 SO(NC)=COUNTS1
 PO(NC)=LFOW
 PO(NC)=LFOW
 PFG(NC)=LSIGMA
 PFG(NC)=LSIGMA
 ZIF NC=NCD %THENSTART
 ZIF NC=NCD %THENSTART
 TIMEOUT=RTIME
 TIMEOUT=RTIME
 SETPOT(0,512)
 SETPOT(0,512)
 SETPOT(512,512)
 SETPOT(512,512)
 URITETODISC
 URITETODISC
 IMTEGER(BASE+6)=NBLOCK-1 ; !THE NUMBER OF THE BLOCK JUST COLLECTED
 IMTEGER(BASE+6)=NBLOCK-1 ; !THE NUMBER OF THE BLOCK JUST COLLECTED
 INTEGER(BASE+2)=6 ; !TELL ANAL TO ANALYSE THE BLOCK JUST COLLECTED
 INTEGER(BASE+2)=6 ; !TELL ANAL TO ANALYSE THE BLOCK JUST COLLECTED
 %RETURN
 %RETURN
 ZFINISH
 ZFINISH
 ! PROCEED TO BEAN ON
 ! PROCEED TO BEAN ON
 FLAGI=1
 FLAGI=1
 ->RESET
 ->RESET
 ZEND ;! COLLECTDATA
 ZEND ;! COLLECTDATA
 !
!
%ROUTINE JECODE(ZINTEGERNAME COUNTS,ERRCD,ZINTEGER AB)
%ROUTINE JECODE(ZINTEGERNAME COUNTS,ERRCD,ZINTEGER AB)
!
!
ZINTEGER I,J,N,R,II,K
ZINTEGER I,J,N,R,II,K
ZOUNINTEGERARRAY FRIORITY(0:11)=1,1,0.1,0,1,0,1,0,1,0,1
ZOUNINTEGERARRAY FRIORITY(0:11)=1,1,0.1,0,1,0,1,0,1,0,1
ZOUNINTEGERARRAY IMAXD(0:5) = 7,6.7.2,3,8
ZOUNINTEGERARRAY IMAXD(0:5) = 7,6.7.2,3,8
ZINTEGERARRAY BIT(6:4)
ZINTEGERARRAY BIT(6:4)
ZINTEGERARRAY SETBIT(0:11)
ZINTEGERARRAY SETBIT(0:11)
zINTEGERARRAY IIGIT(9:5)
zINTEGERARRAY IIGIT(9:5)
ZINTEGERARRAY A(%:11)
ZINTEGERARRAY A(%:11)
ZINTEGERARRAY STORE(0:11)
ZINTEGERARRAY STORE(0:11)
%ROUTINE GETDATA
%ROUTINE GETDATA
! READS BINARY IATA (12 BYTES OF 5 BITS EACH) FROM INTERFACE
! READS BINARY IATA (12 BYTES OF 5 BITS EACH) FROM INTERFACE
\#INTEGERFNSPEC READBIN
\#INTEGERFNSPEC READBIN
ZINTEGER I
ZINTEGER I
ZCYCLE I=0.1,11
ZCYCLE I=0.1,11
STORE(I)=21
STORE(I)=21
%REFEAT
%REFEAT
%CTCLE I=0,1,11
%CTCLE I=0,1,11
STORE(I)=READEIN
STORE(I)=READEIN
WAIT(5)
WAIT(5)
%REPEAT
%REPEAT
ZINTEGERFN REAIIGIN
ZINTEGERFN REAIIGIN
* EMT -336
* EMT -336
:NOU+12. (R1),R1
:NOU+12. (R1),R1
*RTS+FC
*RTS+FC
\#END :!REAIJBIN
\#END :!REAIJBIN
gEND ;!GETIATA
gEND ;!GETIATA
!
!
SETPOT(AB*2048,2048)
SETPOT(AB*2048,2048)
gETIIATA
gETIIATA
ZCYCLE I=0,1,11
ZCYCLE I=0,1,11
ZIF STORE(I)=31 %THENSTART
ZIF STORE(I)=31 %THENSTART
NEWLINE
NEWLINE
RINGBELL(3)
RINGBELL(3)
%PRINTTEXT* HODE FAULT*SHEWLINE

```
    %PRINTTEXT* HODE FAULT*SHEWLINE
```

```
ERRCD=1
K=g
-> TRANSFER
ZFINISH
%REFEAT
ZCYCLE I=0.1,11
%IF STORE(I)=2g ZTHEN ->PERH ;!START CODE IN HIGHEST BYTE
%REPEAT
ERRCD=4
ZRETURNIF FLAG3=1
RINGBELL(3);%PRINTTEXT* STARTCOLE FAULT*
NEULINE
K=6
-> TRANSFER
PERH:
%CYCLE II=I.1.1才
A(II-I)=STORE(II)
%REPEAT
-> CHECK RANK %IF I=O ; ! NO CYCLING OF ELENENTS
K=11-I +1
TRANSFER:XCYCLE II=K,1,11
A(II)=STORE(II-K)
ZREPEAT
ZIF ERRCD#g %THEN ->DIAGS
CHECKRANK:
ZIF A(1)=10 %THENSTART
IFLAG=1 ;!INTERRUPT REQUEST CODE
ZFINISH
zCYCLE I= 2,1,11
ZIF FRIORITY(I)=0 %AND ((A(I)=0 %AND A(I+1)=0) %OR %C
(A(I)## ZAND A(I+1)#G)) KTHENSTART
ERRCD=2
%RETURNIF FLAG3=1
NEWLINE
RINGBELL(3)
ZPRINTTEXT` READOUT FAULT*
NEWLINE
->DIAGS
%FINISH
ZREPEAT
#CYCLE I=2,1,11 ;! SKIP STARTCODE
ZIF A(I)=G ZTHEN -> PASSBYTE
%CYCLE J=0,1,4
EIT(J)=A(I)<<J&16 :!GET EIT
ZIF EIT(J)=16 %THENSTAFT :!TEST FOR SET BIT
SETBIT(I)=4-J :!POSITFLAGI OF SET BIT
N=5-(I-(PRIORITY(I)))//2 ;!POWER OF TEN
DIGIT(N)=SETBIT(I)+5*(1-(PRIORITY(I)))
                                    :!VALUE OF BYTE
%FINISH
%REPEAT
FASSBYTE:%REFEAT
N=4
TESTDIGIT:R=DIGIT(N)-IMAXD(N)
ZIF F<< XTHEN - COUNTSOK
ZIF R=6 %AND N#G %THENSTART
```

```
    N=N-1
    -> TESTDIGIT
    %FINISH
    ERRCD=3
    ZRETURNIF FLAG3=1
    NEWLINE
    RINGBELL(3)
    ZPRINTTEXT* OUERFLOW FAULT`
    NEWLINE
    -`DIAGS
    COUNTSOK:COUNTS=6
    %CYCLE N=0,1.4
    COUNTS=COUNTS+DIGIT (N)*1G:**N
    ZREPEAT
    ERRCD=0
    FLAG3=9
    #RETURN
    IIAGS:ZRETURNIF EXPUAR(31)=6
    ZCYCLE I=0,1,11
    WRITE(A(I),4)
    ZREPEAT
    NEULINE
    ZEND ;! DECODE
!
#ROUTINE MONITOR
    ZINTEGER I
    ZREAL MMM,LL
    ZCYCLE I=1,1,MONIT
    ILASER(I)=READLASER
    WAIT(HINT)
    %REPEAT
    MM=0
    LL=39600
    ZIF HONIT=1 %THENSTART
    LPOU=ILASER(1)
    -\SKIFANALYSIS
    &FINISH
    ANALYSE(ILASER,MM,LL,LFOW,LSIGMA,MONIT)
    SKIPANALYSIS:
    ZIF ABS(1-LFOW/LFOU1))LFAC1 %THENSTART
    ZRETURNIF NC=1 :! NO IIIAG ON FIFST FASS
    EFRCD1=1
    %FINISH
    ZIF HONIT=1 %THENRETURN
    #IF LSIGMA`LPOU:RLFAC2 ZTHENSTART
    ERRCD1=ERRCD1+2
    ZFINISH
    ZEND :!MONITOR LASER
!
ZROUTINE ANALYSE(ZREALARRAYNAME II1,ZREAL M1,LIM,%FEALNAHE HEAN,ZC
                SIGNA,YINTEGERNAME NI)
    %Integer Na,Ny,C
    ZREAL E,H2.SD
    NA=1
    NB=N1
    SD=0.
```

zCYCLE I=NA,1,NB
$\mathrm{E}=\mathrm{D} 1(\mathrm{I})$
ZIF ABS (E-M1) <LIM zTHENSTART
$\mathrm{H} 2=\mathrm{H} 2 \mathrm{tE}$
C=C+1 ;! ACCEPTED ELEMENTS
2FINISH
\%REPEAT
->OK ZÜLLESS Cく2
RINGBELL(19)
NEULINE ;\%PRINTTEXT' DIUISION BY ZERO IN ANALYSE; ;NELLINE
URITE(C,4); WRITE(NA,4);URITE(NB,4)
NEULINE
PRINT(M1,6,4);PRINT(LIM,6,4);PRINT(E,6,4);NEULINE
MEAN $=1 ; S I G H A=1$
zPrinttext data collection stopped'
HAITPROG
zRETURN
OK: H2=h2/C ; ! NEW ESTIMATE OF MEAN
zcycle I=NA, 1 , NB
e=di(I) ; ! SUBTRACT MEAN TO AVOID LOSS OF PRECISFLAG1
ZIF ABS (E-K1) <LIH ZTHEN SD=SD $+(E-H 2) *(E-H 2)$
ZREPEAT
$\mathrm{N}=\mathrm{C}$
MEAN= H 2
SIGNA=SQRT(SD/(C-1)) ; ! STANDARD DEUN.
XEND ;!ANALYSE
$!$
zROUTINE STOPPROG
NEULINE;HRITE (NSETS,3)
zprinttext data sets created; ;nelline
yprinttextlast sea no. = ; ;URITE(SEQNo,4)
NELLINES(2)
*EMTH 372
ZEND ; !STOPPROG
!
zROUTINE INITIALISE(\%INTEGER CHECKONLY)
zinteger Idefn,imax,i,JJ
IDEFN=30
IMAX $=9$
$J J=1$
ZIF CHECKONLY=g ZTHEN --DCHECKUARS .
newline;yprinttext type index $=-1$ to end alterations-
READINDEX: NEHLINE
ZPRINTEXT'INDEX NO:';READII)
ZIF I<=0 ZTHEN \rightarrow CHECKUARS
ZIF I>31 \%THENSTART
zPRINTIEXT•OUT OF RANGE
-> READINDEX
ZFINISH
KIF I $>=23$ ZAND $\mathrm{K}=27$ \%THENSTART
NEWLINE;YPRINTTEXT' NOT ACCESSIBLE•
->READINDEX

ZFINISH
ZIF IDIDEFN ZTHENSTART
2PRINTTEXT WARNING-VARIABLE NO.';WRITE (I,3)
ZPRINTTEXT'NOT DEFINED*
ZFINISH
ZIF $I=18$ XTHEN OFLAG=1
\%IF I=11 \%THEN STEPS $=6$
READUARS:
\%PRINTTEXT UAR.SETTING: ; READF (EXPUAR(I))
ZIF I $\$ IHAX ZTHEN IHAX=I
$J J=J J+1$

- $)$ READINDEX

CHECKUARS: \%IF IMAX IDEFN ZTHEN ISET=IMAX ZELSE ISET=IDEFN
EXPVAR(6$)=$ ISET
! CHECK FOR FAULTY PARAMS
LSCALE=EXPUAR(7)
KIF LSCALE $\because 0.601$ \%OR LSCALE>10.0 ZTHENSTART
NEWLINE;ZPRINTTEXT'INUALID MONITOR FSD*
$I=9 ; J J=J J-1$
->READVARS
ZFINISH
DTIME = IMTPT (50:*EXPVAR (16) +9.001)
CTIME = INTPT(EXPVAR (17)+0.091)
ZIF CTIME\#1 ZAND CTIME\# 16 \%AND CTIME\# 106 \%THENSTART
NEULINE;ZPRINTTEXT•INUALID COUNT TIME ; NEWLINE
$I=17 ; J J=\mathrm{JJ}-1$
->READUARS
ZFINISH
SEQNO=INTPT $(E X P V A R(18)+0.891)$
ZIF SEQNO $=0$ ZOR SEONO>999 ZTHENSTART
NEWLINE;\%PRINTTEXT •INUALID SEQ.NO.‘;NEWLINE
$I=18 ; J J=J J-1$
->READVARS
ZFINISH
INTEGER (BASE+4)=SEQNO
MONIT = INTPT (EXPUAR(19) +.61)
GIF MUNITく \%OR MONITSSG ZTHENSTART
ZPRINTTEXT INUALID NO. OF MONITDKINGS\% ; NEWLINE
$I=19 ; J J=\mathrm{JJ}-1$

- \Rightarrow READVARS

ZFINISH
LFAC1 = EXPUAR(26)
LFAC2=EXPVAR(21)
NC $=$ INTFT $(E X F U A F(22)+\varnothing .001)$
ZIF NCD>16 \%OR NCछ《 1 \%THENSTART
:PRINTTEXT:INUALII NO OF DATA FOINTS: NEWLINE
$I=22 ; J J=J J-1$

- \rightarrow READVARS

XFINISH
FLAG4 $=\operatorname{INTPT}(E X P Y A R(28)+8.801)$
ZIF FLAG4\#g \%AND FLAG4\# 1 \%THENSTART
\%PRINTTEXT/INVALIU VAFIABLE 28-FLAG*;NEWLINE
$I=28 ; J J=J J-1$
\rightarrow - READUARS
ZFINISH
\%IF EXFUAR(29) \%OR EXFVAR(29) 30% THENSTART

```
        %PRINTTEXT INUALID SIGNAL GATE ;NELLINE
```

 %PRINTTEXT INUALID SIGNAL GATE ;NELLINE
 I=29;JJ=JJ-1
 I=29;JJ=JJ-1
 ->READVARS
 ->READVARS
 ZFINISH
 ZFINISH
 %IF EXPUAR(38)<1 %OR EXPUAR(38)\geqslant18 %THENSTART
 %IF EXPUAR(38)<1 %OR EXPUAR(38)\geqslant18 %THENSTART
 ZFRINTTEXT INUALIV NOISE GATE; NEULINE
 ZFRINTTEXT INUALIV NOISE GATE; NEULINE
 I=30;JJ=JJ-1
 I=30;JJ=JJ-1
 ->READVARS
 ->READVARS
 ZFINISH
 ZFINISH
 !
 !
 alter oUTPUT Streaif IF SEQNO HAS bEEN CHANGEd
 alter oUTPUT Streaif IF SEQNO HAS bEEN CHANGEd
 !
 !
 %IF OFLAG=1 ZTHENSTART
 %IF OFLAG=1 ZTHENSTART
 SETOUTPUT
 SETOUTPUT
 OFLAG=G
 OFLAG=G
 %FINISH
 %FINISH
 ZIF HONIT=0 ZTHENSTART
 ZIF HONIT=0 ZTHENSTART
 NEWLINE;ZPRINTTEXT LASER MONITORING OFF`;NEWLINE
 NEWLINE;ZPRINTTEXT LASER MONITORING OFF`;NEWLINE
 IMONIT = 8;ZRETURN
 IMONIT = 8;ZRETURN
 %FINISH
 %FINISH
 IHONIT=1
 IHONIT=1
 MINT=INTPT(CTIME/MONIT*50+9.001);! LASER MONITORING INTERUAL
 MINT=INTPT(CTIME/MONIT*50+9.001);! LASER MONITORING INTERUAL
 ZEND ;!INITIALISE
 ZEND ;!INITIALISE
 !
!
zROUTINE WRITE TO DISC
zROUTINE WRITE TO DISC
ZREALARRAY DA(0:127)
ZREALARRAY DA(0:127)
ZINTEGER I,K,ADR,KO,BASE1
ZINTEGER I,K,ADR,KO,BASE1
NEWLINE
NEWLINE
%CYCLE K=0,1,127
%CYCLE K=0,1,127
DA(K)=0
DA(K)=0
%REPEAT
%REPEAT
DA(0)=NBLOCK
DA(0)=NBLOCK
DA(1)=STEFS
DA(1)=STEFS
IA(2)=NC
IA(2)=NC
DA(3)=TIMEIN
DA(3)=TIMEIN
DA(4)=TIMEOUT
DA(4)=TIMEOUT
KB=5
KB=5
%CYCLE K=0,1,31
%CYCLE K=0,1,31
JA(K+KG)=EXFUAR(K)
JA(K+KG)=EXFUAR(K)
ZREPEAT
ZREPEAT
KD=KG+K
KD=KG+K
ADR=ADDR(SQ(1))
ADR=ADDR(SQ(1))
%CYCLE K=1,1,8
%CYCLE K=1,1,8
IA(K+KZ)=NAKEREAL (ADR)
IA(K+KZ)=NAKEREAL (ADR)
ADR=ADR+4
ADR=ADR+4
%REPEAT
%REPEAT
KD=KB+K
KD=KB+K
ADR=ADDR(S1(1))
ADR=ADDR(S1(1))
ZCYCLE K=1,1,8
ZCYCLE K=1,1,8
IIA(K+KD)=MAKEREAL (ADR)
IIA(K+KD)=MAKEREAL (ADR)
ADR=ADR+4
ADR=ADR+4
\#REPEAT
\#REPEAT
Kg=KD+K
Kg=KD+K
\#CYCLE K=1,1,16
\#CYCLE K=1,1,16
|A(K+KG)=F'g(K)
|A(K+KG)=F'g(K)
%REPEAT

```
    %REPEAT
```

```
    K0=K0+K
    ZCYCLE K=1,1,16
    |A(K+K8)=P1(K)
    ZREPEAT
    KB=KG+K
    ADR=ADDR(S2(1))
    ZCYCLE K=†.1,8
    DA(K+Kg)=MAKEREAL (ADR)
    ADR=ADR+4
    ZREPEAT
    KG=KG+K
    ADR=ADDR(S3(1))
    ZCYCLE K=1,1,8
    DA(K+KG)=MAKEREAL (ADR)
    ADR = ADR +4
    ZREPEAT
    URITEDA(NBLOCK,ADDR(DA(0)))
    NBLOCK=NBLOCK+1
    NSETS=NSETS+1
    BASEl=BASE+10
    COMMONSEND(ADDR(DA(6)),127,BASE1)
    ZENI ;!WRITETODISC
    !
    zROUTINE SETOUTPUT
    ZINTEGER N,I
    ZINTEGERARRAY DIG(0:2)
    SELECTOUTPUT(B).
    N=SEQNO
    ZCYCLE I=0,1,2
    DIG(I)=INTPT(N/1星:*(2-I))
    N=N-JIG(I)*10:**(2-I)
    IIG(I)=WIG(I)+48
    ZREFEAT
    ! DIG(I) CONTȦINS THE DIGITAL FAFT OF THE OUTfUT FILE NAME
```



```
    FNAME(1)=DIG(%)<<8+*F'
    FNAME(2)=DIG(2)`亿B+IIG(1)
    NEWLINE
    #FRINTTEXT* QUTPUTFILE IS LIF*
    ZCYCLE I=0,1,2
    FRINTSYMEOL(DIGSI))
    %REPEAT
    NEWLINE
    !OPEN FILE
    OPENDA(FNAME)
    FBLOCKS=FILESIZE(FNAME)
    NEWLINE:%FRINTTEXT* FILE CONTAINS*:WRITE(FBLOCKS;6)
    ZFRINTTEXT* BLOCKS'
    NBLOCK=FBLOCKS+1
    YPRINTTEXT* NEXT ELOCK NO.=`;URITE(NBLOCK,6)
    NEWLINE
    ZEND ;!SETOUTPUT
!
%ROUTINE LOADUARS
    ZINTEGEF I
    SELECTINFUT(21);!FILE LIF098
```

```
    #CYCLE I=0,1.31
    REAJF(EXPVAR(I))
    %REFEAT
    SELECTINFUT(20)
    CLOSESTREAM(21)
    ZEND ;!LOADUARS
!
%REALFN READLASER
    !
        READS LASEREEAM MONITOR ON AJC CHANNEL 5
        USES AUTO RANGING FOR MAX FIEECISION
    #UWNREALARRAY FACT(8:3)= 10.,5.,2.5,1.25
    ZINTEGER GAIN,VAL
    GAIN=3 ;! STAFT ON HOST SENSITIVE RANGE
    1:. VAL=VOLT(5,GAIN)
    ZIF MOD(VAL)>19g% %THENSTART
    GAIN=GAIN-1
    ->1 XIF GAIN>=0 ; ! KNOCK DOWN GAIN-
    NEULINE
    RINGBELL(40)
    ZPRINTTEXT OUTPUT CLOSE TO 10 VOLTS';NEULINE
    ZPRINTTEXT' LEVEL TAKEN AS 10 VOLTS*;NEWLINE
    GAIN=g
    VAL=1623
    ZFINISH
    ZRESULT=UAL:FACT(GAIN)/1g23:*LSCALE ; ! NULTIPLY IN RANGE FACTOR & NORMALISE
    ZEND ;! REAJLASER
!
%ROUTINE DRIVEGRATING
    ZINTEGER DSTEPS,DD
    ZROUTINESFEC DRIUEMOTOR(%INTEGER UNIT,STEFS)
    NEWLINE;%FRINTTEXT" STEFS:`;READ(DSTEPS)
    ZRETURNIF DSTEFS=6
    NEUDIR=DSTEFS//IABS(DSTEFS)
    !NEWDIR=+1:=>RED
    ! =-1:=>BLUE
    ZIF NEWDIR=OLDDIR ZTHEN DD=1 %ELSE DD=3
    STEPS=STEPS+DSTEPS
    DSTEFS=IJSTEPS+NEWDIR:DD ;!CDMPENSATION
    OLDDIR=NEWDIR
    IRIVEMOTOR(1,DSTEPS)
    !
    ZROUTINE DRIUEMOTOR(ZINTEGER UNIT,STEPS)
        *HOU&R1,-(SP)
        *HOV 14.(R1),RD
        *HOU 16.(R1),R1
        *EMT +355
        *MOU+(SF)+,Rt
        ZEND ;!DRIVEMOTOR
        !
        ZEND ;!IRIUEGRATING
        !
        %ROUTINE CHECKINTERRUPT
    ZINTEGER P,IREP
    NEWLINE;%PRINTTEXT` INTERRUPT REQUEST:`
```

READINT:READSYMBOL (P)
KIF P甘'X' KAND PH'C' ZTHEN \rightarrow READINT
NEWLINE
ZIF $P=X$, ZTHEN RTI $=Q$.
ZIF $P=1 C$ XTHEN RTI $=1$
IFLAG=0
ZEND : !CHECKINTERRUPT
!
ZROUTINE WAITPROG
NEWLINE
: E EMT+301
NEULINE
ZEND : ! WAITPROG
$!$
\%ROUTINE CHECKERROR(ZINTEGERNAME COUNTS,ERRCD,\%INTEGER AB)
ZINTEGER J,H
SETPOT(AB*2048,2948)
FLAG3 $=1 ; H=0$; ! DISABLE FAULT DIAG
H=CTIME ZIF ERRCD=1
KCYCLE $J=1,1,10$
ERRCD=6
WAIT(H)
DECODE(COUNTS,ERRCD,AB)
KIF ERRCD $=0$ \%THEN \rightarrow DIAG
ZREPEAT
SUMERR=SUMERR+1
FFAULT=SUMERR/NC
\%IF NC.>3 \%AND FFAULT>0.5 \%THENSTART
NEWLINE; XFRINTTEXT* FAULT RATE EXCEEUED*
WAITFROG
ZRETURN
ZFINISH

DIAG:FTIME=RTIME
\%PRINTTEXT'O.K.
LI:URITE(NC,4);WRITE(FLAG1,2) ; ! NC=WHICH PAIR,FLAG1 = DISCH ON/OFF
URITE (J,3); WRITE(AB,2);NEULINE ; !J=NO OF TIMES REAII, AB=SCALAR A/B
YEND ;!CHECKERROR
$!$
!
ZENDOFPFOGRAK

```
        %ROUTINESPEC SETOUTPUT(ZINTEGERARRAYAAKE F)
```

 ZROUTINESPEC SETINPUT(ZINTEGERARRAYMAME F)
 ZROUTINESPEC ANALYSEBLOCK (ZINTEGERNAHE N,YREALNAME M, S,E,LDA,BG,SN,L)
 ZROUTINESPEC INTANALYSE(ZINTEGERARRAYMAME A, ZREALNAME H,S, XC
 \%INTEGERNAME N,NO)
 ZROUTINESPEC SCANSPEC
 \%REALARRAY LAMBDA (1:200)
 ZINTEGERARRAY MARK (1:200)
 ZINTEGERARRAY FNAME (8:2)
 \%INTEGERARRAY FNAME1 (0:2)
 ZINTEGER BASE,P,N,SEQNO,FBLOCKS.TEXTNO,I
 ZREAL \(H, S, E, L D A, B G, S N, L A S E R\)
 BASE \(=-8192\)
 SEONO \(=-1000\)
 INTEGER (BASE +2) \(=0\)
 \(N=1\)
 WAIT(250)
 !
 PROMPT:P = INTEGER (BASE+2)
 ZIF PH1 ZAND P\#2 ZAND F\#6 ZAND P\#8 ZAND F\#7 \%AND F月9 ZTHENSTART
 WAIT(50)
 - PPROMPT
 ZFINISH
 INTEGER \((B A S E+2)=0\)
 ZIF \(P=1\) \%THEN STOFPROG
 \%IF \(P=2\) \%THENSTART
 HAITPROG:->FROMPT
 KFINISH
 \%IF \(\mathrm{P}=7\) \%THENSTART
 FAU: \#PRINTTEXT BLOCK NO: ; READ (N);NELLINE
 ZIF \(N \subset 2\) \% OR \(N>296\) \%THEN \(->F A U\)
 \(\operatorname{MARK}(N)=g\)
 ZPRINTTEXT"BLOCK MARKED AS DUD.":NEWLINE
 2FINISH
 KIF \(P=8\) KTHEN SCANSPEC
 ZIF \(P=9\) \%THENSTART
 *PRINTTEXT*BLOCK NO:
 READ(N):NEWLINE
 ->SAMEFILE
 7FINISH
 ZIF PH6 \%THEN - FFROMPT
 \(N=I N T E G E R(B A S E+6)\)
 ZIF SEQNO=INTEGER (BASE + 4) ZTHEN - \(\operatorname{ZSAHEFILE}\)
 SEQNO=INTEGER (BASE + 4)
 SETINPUT (FNAME)
 OFENREADDA (FNAME)
 ZCYCLE \(I=1,1,290\)
 LAMEDA \((I)=6 ; \operatorname{MARK}(I)=1\)
 : REPEAT
 SAMEFILE: ANALYSEBLOCK(N,H,S.E,LDA,BG,SN,LASER)
 LAKBDA(N)=LDA
    ```
    ZPRINTTEXT'BLOCK NO: `:URITE(N,3);NEWLINE
    ZPRINTTEXT'WAVELENGTH: ':PRINT(LIA,5,1);XFRINTTEXT'A
    ZPRINTTEXT'LASER: ':PRINT(LASER,2,3):NEWLINE
    ZPRIMTTEXT KEAN SIG= ';PRINT(M,3,3);ZPRINTTEXT`+/-`
PRINT(E,3,3);ZPRINTTEXT*S:N= ; ;PRINT(SN,3,3):NEWLINE
->PROMPT
!
!
ZROUTINE ANALYSEBLOCK(%INTEGERNAME BLOCKNO,ZFEALNAME SIG,DEV,ERR,ZC
    LDA,BG,SN,POW)
    %ROUTINESFEC READFROKDISC
    ZINTEGER NC,STEPS,CHBLOCK,ADR,ENTRIES,FBLDCKS
    ZINTEGER I,NO,N1,N2,N3
    ZREAL TIMEIN, TIMEOUT
    ZREAL H0,M1,M2,M3,E,SDPOW,X0,X1,X2,X3
    ZREALARRAY DA(0:127)
    ZINTEGERARKAY S0(1:16)
    ZINTEGERARRAY S1(1:16)
    ZINTEGERARRAY S2(1:16)
    #INTEGERARRAY S3(1:16)
    ZREALARRAY Pg(1:16)
    %REALARRAY PI(1:16)
    ZFEALARRAY EXPUAR(0:31)
    !
    READFROMDISC
    !
    %STOF %IF NC*2
    !
    %IF P=6 %AND EXPVAR(31)=2 %THENSTART
    ZCYCLE I=1,I,NC
    WRITE(S@(I),5);URITE(S1(I),5):WRITE(S2(I),5);WRITE(SJ(I),5)
    FRINT(Fg(I),2,3);PRINT(P1(I),2,3):NEWLINE
    #REPEAT
    #FINISH
    !
    E=EXPVAR(29)/EXPVAR(30)/1600
    !
    LDA=EXPVAR(11) + STEPS
    !
    POW=6 ; SUPOW=0
    zCYCLE I=1,1,NC
    FOW=POW+PG(I)+F1(I)
    SDPOU=SDPOW + FG(I):*PG(I) + P1(I):*P1(I)
    ZREPEAT
    ! SDPOW=SORT((SUPOW-POW*POW/NC/2)/(2:*NC-1))
    POW=POW/NC/2
    !
    INTANALYSE (SO,MO,XO,NO,NC)
    INTANALYSE(S1,M1,X1,N1,NC)
    INTANALYSE(S2,H2,X2,N2,NC)
    INTANALYSE(S3,M3,XZ,N3,NC)
    !
    EG=M1 + E#(M2-Hg)
    SIG=N3 - BG
    %IF BG## %THEN SN=SIG/SQRT(BG/NC) %ELSE SN=799
    E=E F E
```

```
    DEV=SQRT((X0*XG + X2:*X2):RE + X1:XX + X3:*X3)
    ERR=DEV/SQRT(NC)
    !
    ZROUTINE REAUFROMIISC
        ZIMTEGER BASEI
        ZIF P=6 %THENSTART
            BASE1=BASE+16
            COMMONREAD(ADDR(DA(8)),127,BASE1)
            #FINISH YELSE READDA(BLOCKNO,ADDR(DA(%)))
        CHBLDCK=INTPT(DA(0)+0.01)
        ZIF CHBLOCK#BLOCKNO ZTHENSTART
        NEULINE;ZPRINTTEXT* ELOCK CHECK ERROR*
        URITE(CHBLOCK,6);WRITE(BLOCKNO,6)
        ZFIMISH
        IA(1)=[AA(1)-1 %IF DA(1)<Q
        STEPS=INTPT(DA(1)+0.01)
        NC=INTPT (DA(2)+0.01)
        TIMEIN=DA(3)
        TIHEOUT=DA(4)
        ZCYCLE I=$,1,31
        EXFVAR(I)=DA(I+5)
        #REFEAT
        ADR=ADDR(DA(37))
        ZCYCLE I=1,1,16
        SO(I)=INTEGER(ADR)
        ADR=ADR+2
        %REPEAT
        #CYCLE I=1,1,16
        SI(I)=INTEGER(AINR)
        AIIR=ADR+2
        #REPEAT
        !
        %CYCLE I=1,1,16
        FO(I)=DA(I+52)
        %REPEAT
        %CYCLE I=1,1,16
        P1(I)=DA(I+68)
        ZREPEAT
        ADR=ADDR(DA(85))
        zCYCLE I=1,1,16
        S2(I)=INTEGER(ADR)
        ADR=ADR+2
        %REPEAT
        ADR=ADDR(DA(93))
        ZCYCLE I=1,1,16
        S3(I)=INTEGER(ADR)
        ADR=ADR+2
        ZREPEAT
        ZEND :!READFROMDISC
    !
    ZEND ; !ANALYSEBLOCK
I
%ROUTINE SETOUTPUT(%INTEGERARRAYNAME FNAME1)
    yINTEGER N.I
    %IMTEGERARRAY IIG(D:1)
    N=TEXTNO
```

```
    ZCYCLE I=0,1.1
    DIG(I)=INTPT(N/10:**(1-I))
    N=N-DIG(I)*10:**(1-I)
    DIG(I)=UIG(I)+48
    #REPEAT
        ! HIG(I) CONTAINS THE DIGITAL PART OF THE OUTPUT FILE NAME
        FNAME!(g)= 'A'<< 8+' D'
    FNAHE\(1)='A`<<<8+'T*
    FNAHE1(2)=DIG(1)<<<8+DIG(0)
    ZEND ;!SETOUTPUT
!
%ROUTINE SETINPUT(%INTEGERAFRAYNAME FNAME)
    ZINTEGER N,I
    ZINTEGERARRAY DIG(0:2)
    SELECTINFUT(20)
    N=SEQNO
    %CYCLE I=0,1,2
    |IG(I)=INTPT(N/10*:*(2-I))
    N=N-DIG(I)*10*:*(2-I)
    DIG(I)=DIG(I)+48
    ZFEPEAT
        ! gIG(I) CONTAINS THE DIGITAL PART OF THE INPUT FILE NAME
    FNAME(8)='I'<< 8+'L`
    FNANE(1)=DIG(0)<<<8+%F
    FNAME(2)=DIG(2)<<8+DIG(1)
    NEWLINE
    !OPEN FILE FOR READ ONLY
    OPENREADJA(FNAME)
    FBLOCKS=FILESIZE(FNANE)
    NEULINE
    #END :!SETINPUT
!
%ROUTINE SCANSFEC
    %REAL IL.LQ,LF,L,SH.SE,SBG
    ZREAL H,E,S,LIIA,GG,SN,LASER
    XINTEGER I,N,DISC
    !
    DL=1
    #PRINTTEXT`WRITE TO DISC?*
    READSYMBOL(I) ZUNTIL I='Y* ZOR I=*N*
    NEWLINE
    OISC=0
    %IF I = *Y %THENSTART
        DISC=1
        AGAIN:%FRINTTEXT`FILE NO.:`:READ(TEXTNO)
        ZIF TEXTNO>99 %OR TEXTNO<Q %THEN ->AGAIN
        SETOUTPUT(FNAMEI)
        DEFINEOUTPUT (FNAME1)
        ZFINISH
    %PRINTTEXT*START WAVELENGTH:`;READF(LD)
    ZPRINTTEXT` STOP WAVELENGTH:*;READF(LF)
    L=L
    !
    CLOSESTREAM(%)
    SELECTOUTPUT(DISC)
    NEWLINES(2)
```

```
    ZPRINTTEXT*WLENGTH ENTRIES SIGNAL B/G`
    NEULIMES(2)
    !
    FBLOCKS=FILESIZE(FNAME)
    L1:I=2
    N=0;SM=0;SE=0;SBG=0
    !
    L2:%IF L=LAMBDA(I):*HARK(I) ZTHEN ->L4
    !
    L3:I=I+1
    ZIF I.PFELOCKS %THEN ->LS
    ->L2
    !
    L4:ANALYSEELOCK(I,H,S,E,LDA,FG,SN,LASER)
    SH=5N+M
    SE=SE+E*E
    SHG=SBG+BG
    N=N+1
    -L3
    !
    L5:%IF N=6 XTHENSTART
    H=0;E=0;BG=0
    -L6
    %FINISH
    %IF N=1 %THEN ->LG
    M=SH/N
    E=SGRT(SE)/N
    BG=5.BG/N
    !
    L6:FRINT(L.5,1);SFACES(5)
    WRITE(N.2);SPACES(5)
    FRINT(M,3,3):%FRINTTEXT*/-;FRINT(E,3,3)
    SPACES(5);PRINT(BG,3,3);NEWLINE
    !
    L=L+ILL
    #IF L<=LF %THEN -`LI
    !
    CLOSESTREAM(IIISC)
    SELECTOUTFUT(0)
    NEULINE
    %FRINTTEXT*SPECTFUM COMFLETE*
    NEULINE
    !
    ZEND ; !OF SCANSPEC
!
%ROUTINE INTANALYSE(%INTEGERARRATNAME D,%REALNAME H,5 ZC
,%INTEGERNAME N,NG)
    ZREAL E,HO,SO
    ZINTEGER I
    M=0;N=0;S=0
    MO=0 ; SO=10000
    XCYCLE I=1,1,NO
    E=D(I)-D(1)
    #IF ABS(E)<S@ %THENSTART
        M=M+E
```

```
    S=S+E:E
    N=N+1
    %FINISH
    %REPEAT
    ZIF N<2 %THENSTART
        M=N+D(1);S=1;#RETURN
        %FINISH
    HE=M/N+D(1)
    Sg=SQRT ((S-N*(Mg-D(1)) #(Mg-I)(1)))/(N-1))
    N=g;H=g;S=S
    ZCYCLE I=1,1,NQ
    E=D(I)-H0
    #IF ABS(E)<=2:%SO %THENSTART
        H=H+E
        S=S+E:*E
        N=N+1
        %FINISH
    ZREPEAT
    M=H/N+Mg
    S=SQRT ((S-N* (H-MG):* (H-HG))/(N-1))
    ZEND
!
ZENUDFPROGRAM
```

```
    SUBROUTINE POTFUN(T,C,CDOT)
    IMPLICIT REAL*8(A-H,L,M,O-Z)
    COMMON/BLKO1/MA,MB,MC
    COMMON/BLKO2/MMOL,M, RMMOL,MU1,MU2,RMU1,RMU2
    COMMON/BLKO5/BETAAB, BETAAC, BETABC,DAB,DAC, DBC,RO1,RO2,RO3,SD1,SD2
    1,SD3,DD1,DD2,DD3
    COMMON/BLK 14/S,SS
    COMMON/BLK4O/IFLAG,ENDT
    COMMON/BLK99/ISUM1
    DIMENSION C(12),CDOT (12),PDOT (6),QDOT (6),DR1DQ(6),DR2DQ(6)
    DIMENSION DR3DQ(6)
    ISUM1=I SUM1 + 1
    Z1=C(1) + S*C(4)
    Z2=C(2) + S*C(5)
    Z3=C(3) + S*C(6)
    R1=DSQRT(Z1*Z1+Z2*Z2+Z3*Z3)
    X1=C(1) - SS*C(4)
    X2=C(2) - SS*C(5)
    x3=C(3) - SS*C(6)
    R3=DSQRT(X1*x 1+x2*X2+x3*x3)
    R2=DSORT (C(4)*C(4) + C(5)*C(5) + C(6)*C(6))
    RR1=1/R1
    RR2=1/R2
    RR3=1/R3
    XX1=DEXP(-BETAAB*(R1-RO1))
    XX2=DEXP(-BETABC*(R2-RO2))
    XX3=DEXP(-BETAAC*(R3-RO3))
    X21=XX1*XXi
    x22=x\times2* X X2
    X23=x\3*XX3
    EJ1=DD1**21 - 2*XX1*SD1
    EJ2=DD2*X22 - 2*XX2*SD2
    EJ3=DD3*X23 - 2*XX3*SD3
    DENOM=(EJ1-EJ2)*(EJ1-EJ2)+(EJ1-EJ3)*(EJ1-EJ3) +(EJ2-EJ3)*(EJ2-EJ3)
    DENOM=DSQRT (DENOM/2)
    ENTRY HAMPOT (HAM)
    QQ1=SD1*X21 - 2*XX1*DD1
    QQ2=SD2*\times22 - 2*x\times2*DD2
    QQ3=SD3*X23 - 2*XX3*DD3
    POT=QQ1+QQ2+QQ3 - DENOM
    S1=0
    S2=0
    DO 21 J=1,3
    S1=S1+(C(J+6)*TRED*O.529177D-8)**2
    S2=S2+(C(J+9)*TRED*O.529177D-8)**2
21 CONTINUE
    HAM=POT + 0.5*RMU1*O.103641D-11*S1 + 0.5*RMU2*0.103641D-11*S2
    IF(IFLAG.EQ.1) GO TO 7
    RETURN
7 DQ1DR1=-2*BETAAB*X21*SD1 + 2*BETAAB*XX1*DD1
    DQ2DR2 =-2*BETABC*X22*SD2 + 2*BETABC*XX2*DD2
    DQ3DR3 =-2*BETAAC*X23*SD3 + 2*BETAAC*XX3*DD3
    DJ1DR1=-2*BETAAB*X21*DD1 + 2*BETAAB*XX1*SD1
    DJ2DR2=-2*BETABC*X22*DD2 + 2*BETABC*XX2*SD2
    DJ3DR3=-2*BETAAC*X23*DD3 + 2*BETAAC*XX3*SD3
    DENOM2=DENOM*2
    DVDR1=DQ1DR1 - (2*EJ1-EJ2-EJ3)*DJ1DR1/DENOM2
    DVDR2=DQ2DR2 - (2*EJ2-EJ3-EJ1)*DJ2DR2/DENOM2
    DVDR3=DQ3DR3 - (2*EJ3-EJ1-EJ2)*DJ3DR3/DENOM2
8 DR1DQ(1)=RR1*Z1
    DR1DQ( 2)=RR 1*Z2
    DR 1DQ(3)=RR 1*Z3
    SRR1=S*RR1
    DR1DQ(4)=21*SRR1
    DR1DQ(5)=22*SRR1
    DR1DQ(6)=23*SRR1
    DR3DQ(1)=RR3*X1
    DR3DQ(2)=RR3*X2
    DR3DQ(3)=RR3*X3
    SSRR3=-SS*RR3
    DR3DQ(4)=x1*SSRR3
    DR3DQ(5)=x2*SSRR3
    DR3DQ(6)=X3*SSRR3
    DO 1 J=1.3
1 DR2DQ(J)=0.0DO
    DO 2 J=4,6
2 DR2DQ(J)=C(J)*RR2
    DO 3 J=1,6
3 PDOT(J)=-DVDR1*DR1DQ(J)-DVDR2*DR2DQ(J)-DVDR3*DR3DQ(J)
```

DO $4 J=1,3$
$4 \operatorname{ODOT}(J)=R M U 1 * C(J+6)$
DO $5 \mathrm{~J}=4.6$
$5 \operatorname{QDOT}(J)=R M U 2 * C(J+6)$
DO $6 \mathrm{~J}=1,6$
$\operatorname{CDOT}(\mathrm{J})=0 \mathrm{OOT}(\mathrm{J})$
$6 \operatorname{CDOT}(J+6)=\operatorname{PDOT}(J) / T R E D * * 2$
RETURN
END

Appendix C. Publications

ENERGY PARTITIONING IN THE REACTION $\mathbf{F}+\mathrm{I}_{2}$
R.J. DONOVAN, D.P. FERNIE, M.A.D. FLUENDY, R.M. GLEN, A.G.A. RAE and J.R. WHEELER
Department of Physics, University of Edinburgh, Edinburgh EH9 3JJ, UK

Received 8 November 1979

Abstract

The vibrational populations and rotational temperature of the IF product formed in the reaction $F+I_{2} \rightarrow I F+I$ have been measured using a crossed-beam laser-induced fluorescence technique. The relative collision energy was 90 meV . Measurements of the relative populations in the $v=0,1$ and 2 levels showed a strong population inversion with an effective temperature of -3000 K , corresponding to a fraction of the total energy, $\left(f_{v}\right)=0.6 \pm 0.1$, appearing in product IF vibration. In contrast, the product was rotationally cold with $\left\langle f_{R}\right\rangle \approx 0.02$. The results are consistent with a direct dynamical process for this reaction.

Introduction

The $\mathrm{F}+\mathrm{I}_{2}$ reaction is of interest as one of a series or which quite detailed dynamical information is now vailable. The reaction has been studied at thermal enrgies [1] and a rate constant corresponding to a reacon cross section $\sigma_{R}=43 \AA^{2}$ found. Molecular beam cattering experiments $[2,3]$ on this system have prouced rather disparate results. Grice et al. [2] observed redominantly backwards and sideways product scatering at an initial collision energy of 35 meV while at e higher collision energy of 100 meV Wong and Lee 3] observed a more isotropic distribution with some ccess forward scattering. Both groups reported a fracon $\left\langle f_{\mathrm{T}}\right\rangle \approx 0.15$ of the total energy appearing in prodct translation.
In the closely analogous reaction $\mathrm{F}+\mathrm{ICl}[4]$ sub. antial IF product excitation was observed with $\left\langle f_{v}\right\rangle$ 0.63 ıdicating a very nonstatistical energy disposal obably as a result of a direct dynamical process. The actions $\mathrm{Cl}+\mathrm{I}_{2}$ and $\mathrm{Cl}+\mathrm{Br}_{2}$ have also been studied beam scattering methods [5-7]. The former reacon showed stripping dynamics with $\left\langle f_{\mathbf{T}}\right\rangle \approx 0.3$, while e $\mathrm{Cl}+\mathrm{Br}_{2}$ reaction proceeded via a short-lived comex again with $\left\langle f_{\mathrm{T}}\right\rangle \approx 0.3$.
As might be expected from the greater density of cessible states the process $\mathrm{F}+\mathrm{CH}_{3} \mathrm{I} \rightarrow \mathrm{FI}+\mathrm{CH}_{3}$ has en shown to proceed via a long-lived complex at ermal collision energies and the lifetime of this com-
plex has been estimated from molecular scattering measurements for a range of initial collision energies [8,9]. In the long-lived complex regime approximately 30% of the total energy appeared as translational motion of the products. Laser-induced fluorescence measurements [10] confirmed the expected statistical distribution of energy, the CH_{3} fragment emerging with about 40% of the total energy and 30% being evenly divided between rotation and vibration in the IF product.

This family of reactions reveals an interesting graduation of behaviour at thermal collision energies, spanning the range from direct to long-lived complex dynamics. The system investigated here, $\mathrm{F}+\mathrm{I}_{2}$, will thus be of in. terest in exploring the effects of changes in the mass ratio and in revealing any novel features in the potential surface associated with fluorine atom reactions.

2. Experimental

The experiment was performed in a crossed molecular beam laser induced fluorescence apparatus. An effusive I_{2} beam was produced using a $10 \mu \mathrm{~m}$ microcapillary array with the reagents supplied from a reservoir at 370 K (≈ 10 Torr). F atoms were generated by a microwave discharge in a mixture of $10 \% \mathrm{CF}_{4}$ in He , at a total pressure of 5 Torr and were delivered to a nozzle of diameter 1 mm , mounted in a differentially pumped chamber, via a glass pipe coated in "Teflon" (Dupont

FEP 856-200) [11]. The reaction zone was approximately spherical in shape with diameter $\approx 5 \mathrm{~mm}$ and the IF concentration was estimated to be $\approx 10^{7} \mathrm{~cm}^{-3}$. The background pressure with beams running was $\approx 4 \times 10^{-5}$ Torr. The reaction zone was illuminated by a tuneable dye aser. This was pumped by a nitrogen laser of original design [12] operated at a 50 Hz repetition rate. The dye laser pulse was $<5 \mathrm{~ns}$ (fwhm) in duration and had a band width of $2-3 \AA$. Rotational structure was thus not resolvable. The dyes used were Coumarin 47 and Coumarin 102 (Applied Photophysics Ltd.) covering the region $460-490 \mathrm{~nm}$. In this region the $(5,0),(6,0),(7,0),(8,1),(8,2)$ bands have Franck-Condon factors >0.03 [13]. Beyond 500 nm fluorescence from IF is obscured by that from the I_{2}. The fluorescence from the product was viewed at right angles to the laser beam through an aspheric lens and aperture system and was detected by a photomultiplier (EMI 9824). The photon-counting system was gated open $2 \mu \mathrm{~s}$ after each laser flash and closed 10μ s later. Since the $\operatorname{IF}(B)$ lifetime is about $8 \mu \mathrm{~s}$ [14] this technique helps to discriminate against noise from other species and against after-pulsing in the photomultiplier. Data was accumulated in this way for 10 or 100 s periods with the laser and F atom discharge each alternately on and off. The count accumulated in each mode together with a measurement of the laser intensity, taken with a sample and hold A-D converter, was captured by a PDP11/45 computer.
Noise from both photomultiplier dark count and stray light was negligible ($<0.1 \mathrm{~s}^{-1}$) and the main noise arose from laser-induced after-pulsing in the photomultiplier. This resulted from a rather poor beam profile and amounted to about $1 \mathrm{~s}^{-1}$. The signal rate was also low, due principally to the low mean laser power $(\approx 100 \mu \mathrm{~W})$, being comparable with or less than the noise rate. Counting times were therefore long and data could only be collected at a few selected wavelengths to map out the gross features of the vibratonal distribution. Bands with $v=0$ were relatively easy to see but $v=1$ and 2 were more difficult due to the small Frank-Condon factors from these levels.

3. Results

The $(5,0),(6,0),(8,1)$ and $(8,2)$ bands have been bserved. The net signal, the difference in the signals

Fig. 1. Fluorescence intensity in the $(5,0),(8,2),(8,1)$ and $(6,0)$ bands of IF product as a function of the wavelength of the incident laser light.
with the F atom discharge on and off, was corrected for background and normalised using the recorded laser intensity (corrected as necessary for wavelength sensitivity). The results are shown as a function of wavelength in fig. 1 . The error bounds are largely determined by the after-pulsing effects discussed previously.

The data have been fitted to a simulated spectrum [15] calculated by convoluting the line frequencies with a triangular laser bandwidth function determined experimentally and using the Franck-Condon factors reported by Clyne et al. [13]. A Boltzmann distribution of rotational states was assumed and all the bands were constrained to the same rotational temperature. The only variable parameters in the fit were the level populations, $N(v)$, which are proportional to the cross sections for the reaction into that channel. The population ratios calculated in this way, relative to $N(0)$ $=1.0$, are shown in table 1 . Good agreement is observed for independent estimates via the $(6,0)$ and $(5,0)$ bands and a rotational temperature of about 200 K satisfactorily describes all the observed levels. The rotational temperature could not be determined to better than 100 K .

able 1

opulation observed in various vibrational levels

| Band
 $v^{\prime} \leftarrow v^{\prime \prime}$ | $N\left(v^{\prime \prime}\right)$ |
| :--- | :--- |
| $(5,0)$ | 1.00 ± 0.15 |
| $(6,0)$ | 1.16 ± 0.12 |
| $(8,1)$ | 1.38 ± 0.28 |
| $(8,2)$ | 1.60 ± 0.24 |

Discussion

The relative populations in the 0,1 and 2 vibrational ates of the IF product, as shown in table 1 , reveal a bstantial population inversion. Higher states, up to v 19 are energetically available but are not measurable perimentally due to predissociation, which sets in at $=9$, and interference by fluorescence from the I_{2} re. ent. Nevertheless, an effective vibrational temperare for the product can be estimated via the surprisal ot, fig. 2. Such plots are very frequently linear [16] rer most of the energetically accessible range and so in provide an estimate of the population in the higher ates. The gradient in fig. 2 corresponds to an effecve vibrational temperature of -3000 K and a most obable vibrational state of $\dot{v}=13-14$ in the product. his extrapolation then yields a fraction of total energy vibration $\left\langle f_{v}\right\rangle=0.6 \pm 0.1$.
The rotational temperature is less well defiñed since dividual rotational transitions cannot be resolved. owever, information on the average rotational temrature is available from the band profile. The accuracy this estimate is contingent on relaxation effects but

Fig. 2. Plot of the surprisal - $I\left(f_{v}\right)$ against f_{v} for the four observed bands of IF.
except in the case of the $v=0$ state, where signals from cold product in the background might interfere, this should not be a substantial effect. The average rotational temperature observed, about 200 K , is equivalent to a rotational fraction $\left\langle f_{\mathrm{R}}\right\rangle \approx 0.02$. The energy disposal estimated from these measurements is compared with that for analogous reactions in table 2.

The $\mathrm{F}+\mathrm{I}_{2}$ reaction releases the major fraction of its exothermicity as product vibration and in this respect is similar to the ICl reaction. The disposal is highly nonstatistical and this pattern is characteristic of direct dynamics of reaction with a substantial attractive energy release in the entrance valley of the potential surface. For $\mathrm{L}+\mathrm{HH}$ mass ratios the relative vibrational and translational disposals can be expected to correlate with the attractive entrance and repulsive exit behaviour of the potential.

The rotational excitation observed is much smaller than in ICl. This may arise from the mass ratio since the exit I atom carries away most of the incident angular momentum associated with I_{2} rotation as orbital
ble 2
nergy disposal

| isposal action | System | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | F+ I_{2} | $\mathrm{F}+\mathrm{ICl}$ | $\mathrm{Cl}+\mathrm{I}_{2}$ | $\mathrm{Cl}+\mathrm{Br}_{2}$ | $\mathrm{F}+\mathrm{CH}_{3} \mathrm{I}$ |
| ,) | 0.6 | 0.55 b) | - | - | $0.15 \mathrm{~d})$ |
| R) | 0.02 | $0.14{ }^{\text {b }}$) | - | - | 0.14 d) |
| T) beam measurement | 0.15 a) | - | $\approx 0.3 \mathrm{c}$) | $\approx 0.3 \mathrm{c}$) | ≈ 0.3 e) |
| T ${ }^{\text {b }}$ by difference | 0.4 | 0.31 | - | - | (0.4 in $\left.\mathrm{CH}_{3}\right)^{\text {d }}$) |

Refs. [2,3]. b) Ref. [4]. c) Ref. [6]. d) Ref. [10]. e) Ref. [8].
gular momentum and acts as an effective sink for yular momentum. The low rotational excitation obved may also be associated with a much slower relaxon, compared with ICl , of the I_{2} bond during the lision.

ferences

] E.H. Appelman and M.A.A. Clyne, J. Chem. Soc. Faraday 171 (1975) 2072.
| C.F. Carter, M.R. Levy, K.B. Woodall and R. Grice, Faraday Discussions Chem. Soc. 55 (1973) 381.
Y.C. Wong and Y.T. Lee, Faraday Discussions Chem. Soc. SS (1973) 383.
L. Stein, J. Wanner, H. Figger and H. Walther, in: Laser induced processes in molecules, Springer series in chemical phys. Vol. 6, eds. K.L. Kompa and S.D. Smith (Springer, Berlin, 1974) p. 232.
Y.T. Lee, P.R. LeBreton, J.D. McDonald and
D.R. Herschbach. J. Chem. Phys. 51 (1969) 455.

6] H.J. Loesch and D. Beck, Ber. Bunsenges. Physik. Chem. 75 (1971) 736.
[7] Y.T. Lee, J.D. McDonald, P.R. LeBreton and D.R. Herschbach, J. Chem. Phys. 49 (1968) 2447.
[8] J.M. Farrar and Y.T. Lee, J. Chem. Phys. 63 (1975) 3639.
[9] J.J. Valentini, M.J. Coggiola and Y.T. Lee, Faraday Discussions Chem. Soc. 62 (1977) 232.
[10] L. Stein, J. Wanner and H. Walther, J. Chem. Phys., to be published.
[11] H.C. Berg and D. Kleppner, Rev. Sci. Instr. 33 (1962) 248.
[12] D.P. Fernie, unpublished.
[13] M.A.A. Clyne and I.S. McDermid, J. Chem. Soc. Faraday II 72 (1976) 2242.
[14] M.A.A. Clyne and I.S. McDermid, J. Chem. Soc. Faraday II 74 (1978) 1644.
[15] R.M. Glen, Ph.D. Thesis, University of Edinburgh, to be published.
[16] R.D. Levine and J.C. Kinsey, in: Atom-molecule collision theory, ed. R.B. Bernstein (Plenum Press, New York, 1979).

Efficient Calculation of Bands of Eigenvalues and Eigenvectors in One Dimension

By Kenneth Lawley* and Ross Wheeler
Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ

Received 22nd September, 1980

Abstract

It is suggested that the most efficient way of calculating large numbers of sequential eigenvalues and eigenvectors lying between specified limits is through the replacement of the second-order differential operator by the second central difference, followed by a matrix formulation of the eigenvalue problem. The capabilities of this neglected method are illustrated by the calculation of shape resonances in scattering and of Franck-Condon factors in the spectroscopy of high vibrational states.

1. INTRODUCTION

The numerical solution of the Schrodinger equation in one dimension,

$$
\begin{equation*}
\left\{-\mathrm{d}^{2} / \mathrm{d} r^{2}+V^{*}(r)\right\} \psi(r)=E^{*} \psi(r) \tag{1}
\end{equation*}
$$

[$E^{*}=2 \mu \sigma^{2} E / \hbar^{2}, r=R / \sigma, V^{*}(r)=2 \mu \sigma^{2} V(R) / \hbar^{2}$ where σ is any convenient length parameter] presents no particular problem nowadays, but it remains a time consuming operation when carried out repeatedly. Popular methods are those of Numerov or a predictor-corrector based algorithm ${ }^{1.2}$ which often yield eigenvalues and eigenfunctions of unnecessarily high precision. The main alternatives are spectral decomposition (Rayleigh-Ritz) methods ${ }^{3.4}$ and the use of various semi-classical solutions, either in the form of the Bohr-Sommerfeld quantisation rule ${ }^{5}$ for eigenvalues and the classical action integral for the phase, ${ }^{6.7}$ or in the form of various uniform WKB treatments. In 1974 Tobin and Hinze ${ }^{8}$ suggested using an old finite difference method whereby the problem is converted to a matrix eigenvalue one in which the basic vectors are essentially Dirac delta functions $\delta\left(r-r_{n}\right)$ for a finite number of grid points, r_{1}, \ldots, r_{N}.

While there cannot be any uniquely best method of tackling the general eigenvalue problem, eqn (1), it is the purpose of this paper to suggest that for large scale calculations, those involving wide bands of eigenstates, the hitherto rather neglected matrix method is the preferred one. We briefly outline the method in section 2 and then apply it to two problems where it seems particularly well suited: the calculation of resonances in elastic scattering (section 3) and of Franck-Condon factors (section 4).

2. OUTLINE OF THE METHOD

The operator $\mathrm{d}^{2} / \mathrm{dr} r^{2}$ is replaced by an expansion in central differences δ^{n} and only the leading term retained;

$$
\begin{align*}
\mathrm{d}^{2} \psi / \mathrm{d} r^{2} & =\xi^{-2}\left[\delta^{2}-\frac{1}{12} \delta^{4}+O\left(\delta^{6}\right)\right] \psi(r) \\
& \approx \xi^{-2}\left[-\psi\left(r_{i+1}\right)+2 \psi\left(r_{i}\right)-\psi\left(r_{i-1}\right)\right] \tag{2}\\
& 1133
\end{align*}
$$

where $\boldsymbol{\xi}$ is the grid spacing ($r_{i+1}-r_{i}$) and the wave function is replaced by a one-dimensional array containing the values at the grid points. The differential equation, eqn (1), then becomes a matrix eigenvalue equation

$$
\begin{equation*}
{ }^{(2)} \mathbf{H} \psi^{(2)}=\left\{\xi^{-2} \delta^{(2)}+\mathbf{V}\right\} \psi^{(2)}={ }^{(2)} \mathbf{E}^{*} \psi^{(2)} \tag{3}
\end{equation*}
$$

where

$$
\boldsymbol{\delta}^{(2)}=\left(\begin{array}{rrrr}
2 & -1 & 0 & 0 \tag{4}\\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right)
$$

and \mathbf{V} is the diagonal matrix containing values of the potential at the grid points. The superscript (n) indicates that the eigensolutions refer to an nth finite difference operator. H is thus tridiagonal and, as Tobin and Hinze pointed out, the roots (eigenvalues) are very readily found by the standard method of bisection based upon the Sturm sequence. ${ }^{9}$ The fact that the off-diagonal elements in \mathbf{H} are all equal to -1 makes the coding of the problem particularly simple and the storage space small. Among the many advantages we would only draw attention to the well known fact that for tridiagonal matrices the time taken to find a root is proportional to N (the dimension of the matrix) rather than to N^{2} for the general eigenvalue problem. If eigenvectors are required, these can be obtained by only two cycles of inverse iteration. The time taken for this is again proportional to N and is anyway inherently faster than the first stage of finding the eigenvalues. The factoring into upper and lower triangular form proceeds without pivoting.

The great advantage of the method over the Rayleigh-Ritz approach (expansion of ψ in known eigenfunctions of a model Hamiltonian) is that no preliminary quadrature is necessary in setting up \mathbf{H}.

In his comparison of matrix methods, Shore ${ }^{10}$ missed the decisive numerical advantage of the finite difference method in allowing the method of bisection to be used. However, he correctly identified the weakness of the Rayleigh-Ritz approach from a computational point of view.

The radial boundaries, $r_{\text {min }}$ and $r_{\max }$ [at which $V(r)$ is effectively infinite], are placed so that they lie just outside the inner and outer classical turning points of the highest quantum state to be included. The grid spacing is assigned so that the highest frequency oscillation in ψ is spanned by ca. 10 grid points. In the problems to be described, N typically lies between 1000 and 2000 . The energy range in which the eigenvalues are required is then decided. It is another advantage of the method of bisection that the number, although not the position, of quantum states in the pre-assigned energy range is obtained after only two cycles of bisection. Use of this knowledge of the average density of states makes the search for eigenvalues very efficient when a band of eigenvalues is to be calculated.
"Exact" eigenvalues are not required for the method of inverse iteration. The number of stages of bisection needed to produce an eigenvalue of sufficient quality depends on the density of states. For the rather closely spaced quantum states studied below, we have found that $4-6$ bisections are adequate, giving an error in the eigenvalue of ca. 1% of the local level spacing.

The error in eigenvalues obtained in this way comes from the neglect of the fourth- and higher-order differences in eqn (2) (assuming that the machine arithmetic is carried out to the necessary precision).

Tobin and Hinze used a quadratic extrapolation of ${ }^{(2)} E(\xi)$ to obtain the true eigenvalue $E^{*}\left[\equiv^{(2)} E^{*}(0)\right]$. However, if eigenfunctions are also to be calculated, the effect on the eigenenergy of the first neglected term in eqn (2), δ^{4}, can be obtained to $O\left(\xi^{4}\right)$ by first-order perturbation theory

$$
E^{*}={ }^{(2)} E^{*}(\xi)+{ }^{(4)} E^{*}(\xi)+\mathcal{O}\left(\xi^{4}\right)
$$

where

$$
\begin{equation*}
{ }^{(4)} E^{*}(\xi)=-\left(12 \xi^{2}\right)^{-1} \Psi^{(2)} \delta^{(4)} \psi^{(2)} \tag{5}
\end{equation*}
$$

and $\delta^{(4)}$ is the matrix

$$
\left(\begin{array}{rrrrrc}
-6 & 4 & -1 & 0 & 0 & \cdot \\
4 & -6 & 4 & -1 & 0 & \cdot \\
-1 & 4 & -6 & 4 & -1 & . \\
0 & -1 & 4 & -6 & 4 & -1 \\
\cdot & \cdot & . & . & . & .
\end{array}\right)
$$

3. PHASE SHIFTS AND RESONANCES

A resonance in the l th partial wave is marked by a rapid rise of π in the phase shift as the resonance energy E_{n} is passed through. The general behaviour is

$$
\begin{equation*}
\eta_{l}=\eta_{l}^{(0)}+\tan ^{-1}\left\{\frac{\Gamma_{n t}}{2\left(E-E_{n t}\right)}\right\} \tag{6}
\end{equation*}
$$

where $\eta_{l}^{(0)}$ is the smooth outer branch contribution and the width $\Gamma_{n l}$ can be found from the Breit-Wigner formula

$$
\begin{equation*}
\frac{\mathrm{d}\left(\eta_{l}-\eta_{l}^{(0)}\right)}{\mathrm{d} E}=\frac{\Gamma_{n l}}{2\left(E-E_{n t}\right)^{2}+\Gamma_{n l}^{2} / 2} . \tag{7}
\end{equation*}
$$

The search for resonances by conventional methods is time consuming. The complete range of positive E below the orbiting limit for a particular l value must be scanned fairly densely in order to locate the regions of anomalous phase shift and then each of these regions scanned more carefully so that the phase shifts can be fitted by the functional form, eqn (6). Milne's method ${ }^{\text {r1 }}$ has been used for this problem, but requires one quadrature and the solution of a transcendental equation for each phase shift.

Using the present method, the outer boundary is placed slightly beyond the maximum in the centrifugal potential where the true potential can be regarded as essentially zero. The continuum of positive energy states is thereby quantised with a density that is sufficiently great for adjacent resonances to be resolved. The eigenvectors are not explicitly needed in this problem since they are all characterised by having a node at $r_{\text {max }}$, where we can write

$$
\begin{align*}
\psi\left(r_{\text {max }}\right) / r_{\text {max }} & =A_{i} j_{l}\left(k r_{\text {max }}\right)+B_{i} n_{i}\left(k r_{\max }\right) \tag{8}\\
& =0
\end{align*}
$$

and so the phase shift is given by

$$
\begin{equation*}
\tan \eta_{l}=-B_{l} / A_{l}=j_{l}\left(k r_{\max }\right) / n_{l}\left(k r_{\max }\right) . \tag{9}
\end{equation*}
$$

η_{t} is thus obtained in the interval ($0,2 \pi$) (making use of the signs of j_{t} and n_{l}). In the present context of shape resonances, all the relevant η_{l} are positive. We can then use Levinson's theorem, ${ }^{12}$

$$
\begin{equation*}
\eta_{l}(k=0)=n \pi \tag{10}
\end{equation*}
$$

to locate η_{l} within the complete interval $(0, \infty)$.
Taking as a model calculation the resonances supported by the Lennard-Jones potential having $\varepsilon=1 \times 10^{-21} \mathrm{~J}, \sigma=3.61 \AA, \mu=6.33 \times 10^{-26} \mathrm{~kg}$, we consider the partial wave $l=10$. A portion of the eigenenergy spectrum for a sequence of outer boundary positions is displayed in fig. 1 , many more than would be used in an actual

Fig. 1.-Behaviour of a band of roots of the second difference Hamiltonian matrix as a function of $r_{\text {max }}$. The potential is a Lennard-Jones one, reduced well depth $200 ; i=10$ and the reduced centrifugal barrier height is 8.7 . The boundary positions are indicated on the lowest plot.
calculation ($r_{\text {min }}=0.982 ; r_{\text {max }}=10-12 ; N=600$). At any boundary position one anomalous eigenvalue is apparent at around $\varepsilon=7$. In contrast to the other roots, this one is insensitive to $r_{\max }$, whereas the others show the $r_{\max }^{-2}$ behaviour characteristic of the particle in a box problem. This behaviour is quite general for resonances; because such states have a large amplitude inside the centrifugal barrier, their energy is essentially determined by the expectation value of \mathscr{H} in this restricted region of space (this is the basis of the stabilisation method of Hazi and Taylor ${ }^{13}$). In the present example, only one resonance is seen (and can be approximately located from only one position of the outer wall). The phase-shift function for this resonance can be adequately fixed from four values of $r_{\text {max }}$, fig. 2 ; from the value of the phase shift extrapolated to zero energy, $\eta_{10}(k=0) \rightarrow 4 \pi$, there are clearly four bound states remaining in the well for the tenth partial wave and one metastable state having an energy $E_{0}^{*}=6.95$.

Turning to a slightly larger-scale problem, we investigated all the resonant states for the Ar + Ar scattering problem using the Lennard-Jones potential with $\varepsilon=$

Fig. 2.-Schematic behaviour of the reduced energy behaviour of a phase shift in radians. The energy scan is induced by moving the outer boundary and four values of $r_{\text {max }}$ are shown. Each position results in a coarse energy scan equivalent to a vertical cut through fig. 1 ; the eigenvalues at the first boundary position are arrowed.
$1.7 \times 10^{-21} \mathrm{~J}, \sigma=3.418 \AA, \mu=3.145 \times 10^{-26} \mathrm{~kg}$. A portion of the family of $\eta_{l}(E)$ plots is illustrated in fig. 3, again obtained with four values of $r_{\text {max }}$. Of the five resonances that are visible, only the one for $l=23$ will have a measurable width Γ. Using eqn (7) gives $E_{2,23}=49.7 \mathrm{~cm}^{-1}, \Gamma_{2,23}=0.67 \mathrm{~cm}^{-1}$.

As a final example, we turn to the $\mathrm{H}_{2}+$ Ar system, where three resonances have been detected experimentally. The favoured potential is a Lennard-Jones one of LeRoy and van Kranendonk ${ }^{14}$ having $D_{e}=52.2 \mathrm{~cm}^{-1}$ and $R_{\mathrm{c}}=5.557 \AA$. In order to obtain the highest accuracy for the resonance energy, we have extrapolated from values at $\xi=0.03,0.02,0.015$ to zero step length to obtain the value $E_{\text {res }}=$ $13.25 \pm 0.02 \mathrm{~cm}^{-1}$ for the $l=8$ partial wave. This value is in better agreement with the observed value of $13.45 \pm 0.45 \mathrm{~cm}^{-1}$ than the calculated (by an unspecified method) value of Toennies et al. ${ }^{15}$ While not ideal for work of the highest accuracy, the method nevertheless gives results of "experimental" accuracy in times faster than that of the Numerov routine when the position of the resonance is initially completely unknown.

Fig. 3. - Extended diagram of $\eta_{t}(E)$ for $\mathrm{Ar} \rightarrow \mathrm{Ar}$. Partial waves $l=21-27$ are shown and each phase-shift curve is broken off when E^{*} reaches the centrifugal barrier height for the l value. Four resonances are visible, but only one has an appreciable width.

The width of the resonance in the $\mathrm{H}_{2}+\mathrm{Ar}$ system for $l=8$ is calculated to be $2 \mathrm{~cm}^{-1}$, a typical value for levels close to the top of the centrifugal barrier. An appreciably larger value of Γ (or a shorter time delay $\tau=2 \hbar \partial \eta_{l} / \partial E$) would be associated with an energy just above the centrifugal barrier height.

4. FRANK-CONDON FACTORS

For the purpose of numerical evaluation, a Franck-Condon (FC) factor essentially involves a single quadrature of the product of two functions which are rapidly oscillating when initial and final states are highly excited vibrationally. We concentrate on the efficient generation of the wave functions appearing in the matrix element of the dipole moment operator, $\mu(R)$:

$$
\begin{align*}
& f_{n^{*} \cdot n^{\prime}}=\frac{64 \pi^{4} \nu^{3}}{3 h} S_{n^{*} n^{\prime}} \tag{11}\\
& S_{n^{\cdot} \cdot n^{\prime}}=\left\{\int \psi_{n^{\prime}}^{(1)}(r) \mu_{n}(r) \psi_{n^{(2)}}^{(2)} \mathrm{d} r\right\}^{2} . \tag{12}
\end{align*}
$$

Various stationary-phase methods naturally suggest themselves in the evaluation of eqn (12) and some of these are explored in a subsequent paper. ${ }^{16}$ As in scattering theory, these methods are at their most useful in delineating and classifying the broad features of interference phenomena. However, laser-induced fluorescence studies tend to produce rather extensive high resolution spectra spanning a wide band of final vibrational states. In order to extract the details of the potential energy curves from such data by trial and error fitting, what is needed is an accurate and rapid method of generating the eigenfunctions appearing in eqn (12) from, probably, a tabulated rather than an analytical potential. If the lower state is a continuum, then perhaps 50 different final state energies will have to be included in order to reproduce the spectrum, $I(\nu)$. We suggest that the matrix method is ideally suited for this problem. The eigenvectors can be used directly to evaluate the integral in eqn (12) using Simpson's rule.

In the bound \rightarrow free case, the outer wall at $r_{\text {max }}$ discretizes the continuum states and introduces a graininess into the simulated spectrum. The choice $5 \leqslant R_{\text {max }} / \AA \leqslant 6$ usually leads to an adequate density of states for heavier systems. Perhaps the most attractive of alternative approaches is the uniform WKB method of generating wave functions proposed by Eu^{17} and applied to the FC factor problem by Golde and Kvaran ${ }^{18}$ (a very similar method has been used by Kruger ${ }^{19}$ based on the work of Miller and Good ${ }^{20}$). The method, however, suffers from two minor disadvantages. The first is one of speed; at each point in the quadrature, eqn (12), the wave functions themselves have to be obtained by a quadrature followed by the solution of a transcendental equation then the generation of the appropriate Hermite polynomial or Bessel function. The second disadvantage is that convergence to the exact solution cannot be tested; the convergence of the quadrature with respect to step length can certainly be demonstrated, but the wave functions converge on the WKB solutions, not the exact eigenfunctions. We have carried out a comparison of the wave functions obtained by the uniform WKB method, supplied by Dr. Kvaran, and those obtained by the matrix method for the $v^{\prime}=133$ level of the D state of I_{2}. The matrix wave function was constructed from 1750 and 3500 grid points and was found to be effectively converged at the larger grid spacing. The nodal positions of the two functions were identical to $0.005 \AA$, but the overall appearance of the envelope of the JWKB wave function was much flatter than the matrix function. The ratio of the
first maximum, near the inner turning point, to the mid-point amplitude was larger by ca. 30% in the matrix function case and the discrepancy was even more marked at the outer turning point. This would have a noticeable effect on calculated FC factors if the classical turning point of transition lay close to a turning point of the motion, or involved interference between the turning and mid points.

We illustrate the matrix method by simulating the $B\left(n^{\prime}=43\right) \rightarrow X\left(n^{\prime \prime}=1, \ldots, 9\right)$ spectrum of I_{2}. While not a large scale calculation, only nine final vibrational states are included, the results of the present approach can be compared with the Numerov "shooting" technique used for this system by Allegrini et al. ${ }^{21}$ For the B state potential, the RKR data of Barrow and Yee ${ }^{22}$ were interpolated at the grid points and the X state potential obtained in the same way from the results of LeRoy. ${ }^{23}$ The classical turning points for $n^{\prime}=43$ are at 2.65 and $4.47 \AA$; the boundary positions $R_{\min }=2.5 \AA, R_{\max }=5 \AA$ were used, with 1250 grid points. A dimension of 600 points would suffice for a reliable picture of the relative line strengths, but the use of the finer grid spacing of $0.002 \AA$ allows the effect of small displacements of the upper and lower potential curves to be explored. The results are illustrated in fig. 4 with

Fig. 4.-Overiap integral for a portion of the $B \rightarrow X$ spectrum of I_{2}. The upper histograms are the observed intensities (divided by ν^{4}) and the results of Allegrini et al. ${ }^{21}$ normalised to the observed intensity for the $(43,2)$ band. The lower histograms are computed by the present method for three, $(a)-(c)$, sequential radial displacements of the B state with respect to the X state. Position (a) clearly gives the best fit to the observed intensity profile.
$\mu(R)=1$. The lower state was shifted by +0.002 and $+0.004 \AA$ from the initial choice dictated by the published potentials. It is clear that a displacement of roughly $-0.002 \AA$ would bring the calculated and observed line intensities into even better agreement. For any particular line, the variation in intensity with relative displacement of upper and lower states is cyclical with a periodicity, in the present case, of $c a$. $0.03 \AA$. This is simply the result of the upper and lower state eigenfunctions passing
in and out of phase at the classical point of transition (where the momenta in the two states are equal) as the potential wells are displaced.

The method has been extensively used for the bound \rightarrow free transitions from the $n^{\prime}=195$ and 133 levels of the D state with, typically, 1000-1500 grid points. Extrapolation to zero step length does not alter the pattern of intensities, though a slight shift of $c a .10 \mathrm{~cm}^{-1}$ in the peak positions can be seen. For the $B\left(n^{\prime}=43\right)$ state, the first-order perturbed energy, defined in eqn (5), was $7 \mathrm{~cm}^{-1}$ and the eigenvalue $E_{0}=3765 \mathrm{~cm}^{-1}$. The observed energy is $3771.72 \mathrm{~cm}^{-1}$. It is a general observation that the sum of the unperturbed and first-order perturbed energy of $\delta^{(4)}$

$$
\begin{equation*}
E^{*}={ }^{(2)} E^{*}(\xi)+{ }^{(4)} E^{*}(\xi) \tag{13}
\end{equation*}
$$

is nearly independent of step length and may be taken as the converged eigenvalue to 1 part in 10^{5}. We report these calculations of FC factors associated with higher vibrational states in a following paper.

5. CONCLUSIONS

The sample calculations presented above illustrate the high quality of the wave functions and eigenvalues obtained from a simple central difference formulation of the wave equation. The numerical algorithms are all exceptionally simple, fast and well tried in other fields. We have not found them to exhibit any instability in classically forbidden regions and parasitic solutions cannot appear. The only requirement is, naturally, that the grid spacing be small compared with the local wavelength of the motion, but this is also true of step-wise integration methods. Eigenfunctions obtained after only two stages of inverse iteration from crude eigenvalues bear a strong resemblance to the fully converged functions and are adequate for many purposes where the solutions obtained by step-wise integration are unnecessarily precise.

The potential functions need not be in analytical form and exactly the same routines can be applied to either discrete or continuum states. The great strength of the method is that it proceeds directly to eigenvalues and the general disposition of states can be seen at a glance. A particularly simple application would be in the evaluation of partition functions where even semi-classical methods ${ }^{24}$ can be time consuming. Anomalies due to resonances can be picked out from anomalies in the eigenvalue spacing in the discretized continuum. Observed energy levels can be fitted by adjusting the potential energy parameters before proceeding to eigenfunctions.

For single-shot applications, the finite difference method has no particular advantages but we suggest that for wide-scale applications involving many eigenstates or a dense sampling of the continuum, the present method is the preferred one.

[^0]${ }^{9}$ J. H. Wilkinson, The Algebraic Eigenvalue Problem (Clarendon Press, Oxford, 1965)
${ }^{10}$ B. W. Shore, J. Chem. Phys., 1973, 59, 6450.
${ }_{11}$ S-Y. Lee and J. C. Light, Chem. Phys. Lett., 1974, 25, 435.
12 M. S. Child, Molecular Collision Theory (Academic Press, London, 1974).
13 A. U. Hazi and H. S. Taylor, Phys. Rev. A, 1970, 1, 1109.
14 R. J. LeRoy and J. van Kranendonk, J. Chem. Phys., 1974, 61, 4750.
15 J. P. Toennies, W. Welz and G. Wolf, J. Chem. Phys., 1976, 64, 5305
${ }_{17}$ R. J. Donovan, A. Kvaran and K. P. Lawley, to be submitted.
${ }_{17}$ U.-I. Cho and B. C. Eu, J. Korean Chem. Soc., 1974, 18, 307.
18 M. F. Golde and A. Kvaran, J. Chem. Phys., 1980, 72, 442.
19 H. Kruger, Theor. Chim. Acta, 1979, 51, 311.
${ }^{20}$ S. C. Miller and R. H. Good, Phys. Rev., 1953, 91, 174.
${ }^{21}$ M. Allegrini, G. Alzetta and M. Civilini, Chem. Phys. Lett., 1980, 70, 454.
${ }_{22}$ R. F. Barrow and K. K. Yee, J. Chem. Soc., Faraday Trans. 1, 1973, 69, 684.
${ }_{23}$ R. J. LeRoy, J. Chem. Phys., 1970, 52, 2686.
24 W. W. Witschel, Chem. Phys., 1980, 50, 265.

THE MOLECULAR AND ELECTRONIC STRLCTLRE OF TETRASULPHURDINITRIDE; A STUDY BY AB INITIO MOLECULAR ORBITAL METHODS

MICHAEL H. PALMER*, J. ROSS WHEELER and ROBERT H. FINDLAY
Department of Chemistry, University of Edinburgh, West .Iains Road, Edinburgh EH9 3 IJ (Scotland)
N. P. C. WESTWOOD and W. M. LAU

Department of Chemistry, U'niversity of British Columbia, 20.36 Main .Mall, Vancouver V6T 1 Y6 (Canada)
(Received 27 May 1981)
i

The low melting red compound $\mathrm{S}_{4} \mathrm{~N}_{2}$ occurs widely in reactions of sulphurnitrogen compounds, and has been known for many years. It appears that only one isomer is as yet known, and that three different environments can be postulated for the S atoms on the basis of its reactivity. The nitrogen atoms appear to be equivalent [1]. This has led to the proposal that the molecule is a 6 -membered ring (1).
The use of Hückel rule arguments $[2,3]$ and aromaticity (as a 10π electron system) have indicated a pianar $C_{2 v}$ structure, but an alternative ooat (or chair) form (C_{s} symmetry) has been proposed [4]. No molecular structure has yet been published, which is remarkable for such a small nolecule.
The present paper gives the results of ab initio molecular orbital studies n which the two structural forms, $C_{2 v}$ and C_{s}, were completely optimised oy a full gradients procedure. The principal results are shown in Table 1, nd the final structure in Fig. 1.
The non-planar C_{s} structure is found to be the most stable by about 60 kJ -mol^{-1}; five of the atoms are nearly co-planar, with only the para-S atom (S-4) narkedly away from this plane. This is in good agreement with the predictions Jolly [4], and suggests that aromaticity is not present in $\mathrm{S}_{4} \mathrm{~N}_{2}$. Indeed, 4 can be argued that for $C_{2 v}$ symmetry the distinction between $4 n$ and ($4 n+2$) electron systems is not fundamental, since the Hückel rule is based upon Hund's rule of maximum multiplicity coupled with the presence of degenerate evels in the cyclic hydrocarbons for which it is normally invoked. There are 10' degenerate levels in $C_{2 v}$ molecules.

Author for correspondence.

$=\operatorname{sinar} c_{2 v}$

Von-pianor C_{s}

Fig. 1. Final geometries (HONDO Program).
Conversion of the delocalised MO's to a localised orbital system [5] yields a bonding system of classical type (1) with the 3 contiguous S atoms having normal covalent σ-bonds and two lone pairs each. The nitrogen atoms are each doubly bound to the single S(IV) centre and each of these three has a

TABLE 1

Best total energies (a.u.). Optimised geometry starred

| Symmetry | $C_{\text {ev }}$ | $C_{\text {s }}$ |
| :---: | :---: | :---: |
| Basis set | | |
| N | | |
| MB 10s $6 p 1 d \quad 7 s 3 p$ | -1695.6347* | -1695.6571* |
| $\mathrm{DZ} 12 s 9 p 1 d \quad 9 s 5 p$ | -1698.8251 | -1698.8301 |
| Virial theorem (DZ) | 1.9999 | 1.9994 |
| Dipole moment (Debye) (DZ) | 0.560 | 0.823 |
| Atomic populations (DZ) | | |
| S. 1 | 15.5054 | 15.5047 |
| S-3/5 | 15.8554 | 15.8637 |
| S-4 | 16.0719 | 16.0388 |
| N.2/6 | 7.3568 | $7.36+6$ |
| Orbital energies (eV) (DZ) | 8.62 (3as) | 8.61 (${ }^{\prime \prime}$) |
| | 9.46 (6b,) | 9.44 (a^{\prime}) |
| | 11.81 (12b ${ }^{\text {) }}$) | 11.96 (a") |
| | 13.11 (18a $)$ | 13.06 (a') |
| | 13.43 (5b, | 13.97 (${ }^{\prime}$) |
| | 13.52 (17a ${ }_{1}$) | 14.16 (a°) |
| | 14.41 (11 b_{\imath}) | 14.32 (a") |
| | 14.80 (2as) | 14.87 (${ }^{\prime \prime}$) |

single lone pair. The molecule is found to have a highly polarised structure (Table 1). The $3 d_{\mathrm{s}}$ orbital populations are never high, bearing in mind that six $3 d_{s}$ cartesian functions implicitly include a further $3 s$ orbital together with the usual five "chemical" $3 d_{\mathrm{s}}$ orbitals. Total $3 d_{\mathrm{s}}$ populations are: S-1, $0.7330 ; S-3 / 5,0.4784$; and $\mathrm{S}-4,0.4364$ electrons. The higher value at $\mathrm{S}-1$ is consistent with the cumulative nature of the bonding, but is much lower than might be expected on spd hybridisation grounds.

When the basis sets are markedly increased to better than double zeta [5], the effect of the $3 d_{s}$ orbitals on the total energy are nearly halved from 0.6232 a.u. to 0.3300 a.u. (1 a.u. $=2626 \mathrm{kJmol}^{-1}$). The largest basis set consisting of an $\mathrm{S}(12 s 9 p 1 d)$ and $\mathrm{N}(9 s 5 p)$ contracted as in our previous work [6] yielded a total energy of -1698.83018 a.u. and a Virial theorem value of 1.99935 to be compared with the theoretical value of 2.00000 .

Further details of these calculations and the results of extended basis set calculations will be given in a further paper together with an interpretation of the UV-photoelectron spectrum.

REFERENCES
H. G. Heal, The Inorganic Heterocyclic Chemistry of Sulfur, Nitrogen and Phosphorus, Academic Press, 1980, Chap. 6, p. 115.
A. J. Bannister, Nature, 237 (1972) 92.
H. W. Roesky, Angew. Chem. Int. Ed. Engl., 18 (1979) 91.

1 W. L. Jolly; Sulfur Research Trends, Adv. Chem: Ser., 110 (1972) 92.
'R. H. Findlay, M. H. Palmer. A. J. Downs, R. G. Egdell and R. Evans, Inorg. Chem., $1980,19,1307$.
M. Redshaw, M. H. Palmer and R. H. Findlay, Z. Naturforsch., Teil A $34(1978) 220$.

Gas-Phase Tautomerism in the Triazoles and Tetrazoles:
 A Study by Photoelectron Spectroscopy and ab Initio Molecular Orbital Calculations

Michael H. Palmer, Isobel Simpson, and J. Ross Wheeler
Department of Chemistry, University of Edinburgh, Edinburgh, Scotland

Z. Naturforsch. 36 a, 1246-1252 (1981); received September 28, 1981

The photoelectron spectra of the tautomeric 1,2,3,- and $1,2,4$-triazole and $1,2,3,4$-tetrazole systems have been compared with the corresponding N-methyl derivatives. The dominant tautomers in the gas phase have been identified as $2 \mathrm{H} \cdot 1,2,3$-triazole, $1 \mathrm{H} \cdot 1,2,4$-triazole and $2 H$-tetrazole.

Full optimisation of the equilibrium geometry by ab initio molecular orbital methods leads to the same conclusions, for relative stability of the tautomers in each of the triazoles, but the calculations wrongly predict the tetrazole tautomerism.

Introduction

In a previous study [1] one of us reported the gas phase $H e(I)$ photoelectron spectra for the aza derivatives of pyrrole (1 a), derived by progressive substitution of $\geqq C H$ by $\geqq N$, namely pyrazole (2a), imidazole (3a), 1,2,3-triazole (4a), 1,2,4triazole (5a) and tetrazole (6a). The spectra obtained in the latter three cases relate to tautomeric mixtures, namely $4 \mathrm{a} \leftrightharpoons 7 \mathrm{a}, 5 \mathrm{a} \leftrightharpoons 8 \mathrm{a}, 6 \mathrm{a} \leftrightharpoons 9 \mathrm{a}$, and it had been assumed that the tautomer present in the gas phase would be the same as in the solid state or solution, there being no evidence to the contrary; thus we assigned the spectra on the basis of $4 a, 5 a$ and $6 a$ rather than $7 a, 8 a$ or $9 a$, respectively [2, 3, 4].

Two pieces of information have subsequently made us reconsider this topic. The dominant tautomer present in the (gas-phase) microwave spectrum of $1,2,3$-triazole is now thought to be the 2 H -form (7a), previously not identified because of its very low dipole moment (relative to 4a) [5]: Secondly, as part of an investigation of nuclear quadrupole coupling using large basis sets [6], we unexpectedly found that assigned geometries for some of the un-observed tautomers ($7 \mathrm{a}, 8 \mathrm{a}, 9 \mathrm{a}$) led to energies very similar to those using known structures for the other compounds (e.g. 4a und 5 a) ; optimisation could lead to a reversal of assignment for the thermodynamically most stable tautomer.

Reprint requests to Dr. M. H. Palmer, Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland.

In the present paper we report (a) a comparison of the photoelectron spectra of the tautomeric mixtures with the corresponding N -methyl com. pounds of each type, e.g. 1,2,3-triazole with $4 b$ and 7 b ; (b) ab initio calculations of the optimum geometry for each tautomeric form, with a view to determining the calculated equilibrium ratio from the energy difference (Figure 1).

1

4

2

3

5

6

7

8

10

11

Fig. 1. Molecular structures. 1-9: (a) $R=H$, (b) $R=M e ;$ 10, 11: (a) $R=H, X=O$, (b) $R=H, X=S$, (c) $R=M e$, $X=O$, (d) $R=M e, X=S$.

Methods

(a) The Photoelectron Spectra

These were obtained from the previous samples [6] on a Perkin Elmer PS 16 Spectrometer, modified by incorporation of a Helectros hollow cathode lamp and Vacuum Science Workshop power supply. A Varian C1024 signal averaging device was used to repetitively scan and increase signal-to-noise for some of the compounds, which have comparatively low vapour pressure at normal temperatures, but which require to be drawn into the spectrometer from an external reservoir. Calibration was by means of $\mathrm{Xe} / \mathrm{Ar} / \mathrm{N}_{2}$ mixtures (IP's 12.13, 15.75 and 18.6 eV , respectively) and He^{+}self-ionisation $(26.2 \mathrm{eV})$.

(b) Ab Initio Electronic Structure Calculations

These proceded in stages as follows: - (i) a minimal basis ($7 \mathrm{~s} 3 \mathrm{p} / 3 \mathrm{~s} ; \mathrm{MB}$) for ($\mathrm{C}, \mathrm{N} / \mathrm{H}$) was used for a full gradients procedure search for the lowest energy structure. This is a different procedure to that adopted in our recent paper on 9 -membered ring heterocycles [7] where the method involved gradients of total energy with respect to cartezian coordinate followed by up-dating of a Hessian matrix; the new method, using the HONDO program [8, 9], uses a gradient procedure based upon derivatives of the integrals over the gaussian basis [9]. The program was implemented on an ICL 2972 computer; optimisation was started from an assigned geometry [6] and cycled until the energy had converged to 0.00001 a.u. (1 a.u. $=2626 \mathrm{~kJ} \mathrm{~mol}^{-1}$) and the bond lengths and angles to 0.001 A and 0.01° respectively. A recent example of the power of this method using our basis for nitrogen is for
$\mathrm{S}_{4} \mathrm{~N}_{3}$ [10] where a crystal structure has recently been reported [11]; the two structures are nearly identical. (ii) At the end of the optimisation phase the calculations were extended to a double zeta (DZ) basis [6, 12] at the previously computed equilibrium geometry. This was to confirm that (a) no major change in either orbital ordering had occurred in the region of interest to the present photoelectron spectra, and (b) to check that the electric field gradients (c.f. [6]) (EFG) were not markedly effected by the geometry optimisation. These are discussed below (and elsewhere for the EFG), but we note that energy differences between tautomers must ideally be determined at the equilibrium geometry, and hence refer to the minimal basis calculations in the present work.

Results and Discussion

(a) The Final Equilibrium Geometries

The final equilibrium (computed) geometries for each tautomeric pair are shown in Fig. 2, and the total energies in Table 1. Both MB and DZ bases predict the $2 H$-tautomer to be more stable than the 1 H - for $1,2,3$-triazole, in agreement with the microwave data [5]. The ratio is predicted to be $(2 \mathrm{H} / 1 \mathrm{H}) 1.68$ from the MB calculations, while the less rigorous value from the DZ ones is 586 ; the two values thus bracket the experimental estimate (~ 100). To date 4 H -1,2,4-triazole has not been detected experimentally, and the present calculations suggest that the 1 H -isomer is more stable than the 4 H by $11.3 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}(\mathrm{MB}$), (or 21.4 kJ - mol^{-1} from the DZ calculations). These lead to equilibrium constants of 93 and 5300 respectively, the former being more rigorous. The results for the

Table 1. Total Energies in the Optimisation Process (a.u.).

| | Starting Geometry | | Final Geometry | |
| :---: | :---: | :---: | :---: | :---: |
| | Minimal Basis | Double Zeta Basis | $\begin{aligned} & \overline{\text { Minimal }} \\ & \text { Basis } \end{aligned}$ | Double Zeta Basis |
| $1 \mathrm{H}-1,2,3$ Triazole (4a) | -240.0154 | - 240.6370 | -240.0659 | -240.8571 |
| $2 \mathrm{H}-1,2,3$-Triazole (5a) | - 240.0227 | - 240.6644 | -240.0679 | - 240.6631 |
| Energy difference ($2 \mathrm{H}-1 \mathrm{H}$) ($\mathrm{kJ} \mathrm{mol}^{-1}$) | - 19.2 | - 72.0 | - 1.3 | - 15.9 |
| 1 H-1,2,4-Triazole (6a) | - 240.0818 | - 240.6909 | -240.0834 | - 240.6871 |
| $4 \mathrm{H}-1,2,4$-Triazole (7a) | - 240.0889 | - 240.6773 | - 240.0791 | -240.6789 |
| Energy difference ($4 \mathrm{H} \cdot 1 \mathrm{H}$) (kJ mol ${ }^{-1}$) | - 13.4 | + 35.7 | + 11.3 | + 21.4 |
| 1H-Tetrazole (8a) | -255.9109 | - 258.8034 | - 255.9708 | - 256.6169 |
| 2 H -Tetrazole (9a) | - 255.8959 | - 258.6182 | -255.9697 | -258.8168 |
| Energy difference ($2 \mathrm{H}-1 \mathrm{H}$) ($\mathrm{kJ} \mathrm{mol}{ }^{-1}$) | + 39.4 | - 38.9 | + 3.0 | + 0.70 |

Fig. 2. Final optimised molecular structures (A, Deg.).
tetrazoles are more nearly equal, with the 1 H . somer being preferred by $3.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (MB) and $0.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (DZ), leading to equilibrium constants of 3.3 and 1.3 , respectively; this is in agreement with previous solution and crystal data [4], but not with the new spectral information below.

(b) Assignment of the Dominant Tautomers from the Photoelectron Spectra

Provided substitution of NH by NMe does not ead to a major change in spectrum, it should be oossible to assign the NH-compound spectra of the misture to a particular tautomer; this has been lone previously for the pyridinone-hydroxypyridine ystems (10a-d, 11a-d) [13]; previous studies of he pyroles ($1 a, b$) and imidazoles ($3 \mathrm{a}, \mathrm{b}$), where no automerism is possible [14] have shown the low oinding region to be very similar for the NH and NMe compounds.
Replacement of an NH.delocalised bonding rbital by NMe leads to the introduction of three new valence shell orbitals of $\left(A_{1}+E\right)$ symmetry, n the local $\mathrm{C}_{3 \mathrm{v}}$ framework. In aromatics, the E evels are split into E_{σ} and E_{π}, and are near 14 eV
in toluene and related compounds [15]. The $\mathrm{A}_{1} \mathrm{Me}$ level has high 2 sc character and lies near 21 eV in such compounds. Thus all these group orbitals lie outside the present region of interest. It is convenient [1] to divide the spectra into regions A , B, C ... (low to high binding); the region of primary interest in the present work is Region A, containing most of the π - and lone pair levels [1]; it extends from about $8-10 \mathrm{eV}$ for pyrrole (1a), with progres. sive shift to higher binding energy on aza-substitution, to $10-13 \mathrm{eV}$ for tetrazole. Comparison of the spectra of $1 \mathrm{a}, \mathrm{b}-3 \mathrm{a}, \mathrm{b}$ shows there is a general shift to lower binding energy in the N -methyl compounds [14]; this is attributable in part to electron donation from the Me group, and in part from antisymmetric combinations of ring and Me group levels.

1,2,3-Triazole

It is apparent that the spectrum of the tautomeric misture (Fig. 3) is much more similar to that of the 2 -methyl- (7 b) than the 1 -methyl tautomer (4b); the width and placing of the IP's is such that it is not possible to say whether the minor compo-

Table 2. Orbital Energies (eV).

| Pyrrole (1a) | Pyrazole (2a) | | Imidazole (3a) | 1H-1,2,3-triazole (4a) |
| :---: | :---: | :---: | :---: | :---: |
| - $8.211 \mathrm{ag}^{2}$ | - 9.678 | $\mathrm{a}^{\prime \prime}(x)$ | - $9.020 \mathrm{a}^{\prime \prime}$ | $-10.212 a^{\prime \prime}$ |
| - $9.579 \mathrm{~b}_{1}$ | - 10.248 | $a^{\prime \prime}$ | - $11.065 \mathrm{a}^{\prime \prime}$ | $-11.782 \mathrm{a}^{\prime}\left(\mathrm{LP}_{\mathbf{Y}}{ }^{-}\right)$ |
| - $14.453 \mathrm{a}_{1}$ | - 12.456 (LP_{N}) | $a^{\prime}(\sigma)$ | - $11.758 a^{\prime}($ (LPN $)$ | - $11.941 \mathrm{a}^{\prime \prime}$ |
| - $14.920 \mathrm{~b}_{2}$ | - 15.624 | a^{\prime} | $-15.724 \mathrm{a}^{\prime}$ | $-13.873 \mathrm{a}^{\prime}\left(\mathrm{LP}_{\mathrm{N}}{ }^{+}\right)$ |
| $-15.630 b_{1}$ | - 16.200 | $\mathrm{a}^{\prime \prime}$ | $-16.586 \mathrm{a}^{\prime \prime}$ | - $17.297 a^{\prime}$ |
| $-15.942 \mathrm{~b}_{2}$ | - 16.803 | 8, | $-16.646 \mathrm{a}^{\prime}$ | - $17.807{ }^{\text {a }}$ |
| $16.307 \mathrm{a}_{1}$ $-20.181 \mathrm{a}_{1}$ | -16.904 -20.466 | \mathbf{a}^{\prime} \mathbf{a}^{\prime} | - $16.778 \mathrm{a}^{\prime}$ | - $18.033 \mathrm{a}^{\prime \prime}$ |
| - $20.181 \mathrm{a}_{1}$ $-20.979 \mathrm{~b}_{2}$ | -20.466 | $\stackrel{a}{\text { a }}$ | -21.991 ${ }^{\prime}$ | - $23.612 \mathrm{a}^{\text {a }}$ |
| - $21.794 a_{1}$ | - 22.688 | \mathbf{a}^{\prime} | - $22.879 \mathrm{a}^{\prime}$, | - $23.649 \mathrm{a}^{\prime}$, |
| - 26.825 bz | - 29.113 | a^{\prime} | $-27.857 \mathrm{a}^{\prime}$, | $-30.335 \mathrm{a}^{\prime}$, |
| -28.647 $-35.578 a_{1}$ | -30.339 -38.155 | \mathbf{a}^{\prime} \mathbf{a}^{\prime} | -32.236 a^{\prime} | $\begin{aligned} & -33.499 a^{\prime} \\ & -40.557 a^{\prime} \end{aligned}$ |

| | $\left(\mathrm{C}_{2} \mathrm{~V}\right)$ | $\left(\mathrm{C}_{2} \mathrm{~V}\right)$ | | |
| :---: | :---: | :---: | :---: | :---: |
| $1 \mathrm{H}-1,2,4$-triazole (5a) | 2H-1,2,3-triazole (6a) | 4H-1.2,4-triazole (7a) | 2H-tetrazole (8a) | 1 H -tetrazole (9a) |
| - $10.728 \mathrm{a}^{\prime \prime}$ | - $10.885 \mathrm{a}_{2}$ | -10.783 a | $-11.990 \mathrm{a}^{\prime \prime}$ | $-11.809 \mathrm{a}^{\prime \prime}$ |
| - $11.841 \mathrm{a}^{\prime \prime}$ | $-11.181 b_{1}$ | - $11.474 \mathrm{~b}_{1}$ | - $12.720 \mathrm{a}^{\prime \prime}$ | - $12.636 \mathrm{a}^{\prime}$ (LPPs) |
| - $12.173 \mathrm{a}^{\prime}\left(\mathrm{LP}_{\mathrm{N}^{-}}\right)$ | - $12.868 \mathrm{~b}_{2}\left(\mathrm{LP}^{-}\right)$ | $-12.394 \mathrm{a}_{1}\left(\mathrm{LP}_{\mathrm{s}^{+}}\right)$ | - $12.380 \mathrm{a}^{\prime}(\mathrm{LP} \mathrm{P}$) | -13.077 $\mathrm{a}^{\prime \prime}$ (${ }^{\text {a }}$ |
| $-13.616 a^{\prime}\left(\mathrm{LP}_{\mathrm{N}^{+}}\right)$ | $-13.741 \mathrm{a}_{1}\left(\mathrm{LP}_{\mathrm{x}}{ }^{+}\right)$ | - $12.558 \mathrm{~b}_{2}\left(\mathrm{LP}_{\mathrm{N}^{-}}\right)$ | - $13.545 \mathrm{a}^{\prime}$ (LP $\mathrm{LP}_{\text {s }}$) | $-13.319 a^{\prime}\left(L P_{N}\right)$ |
| -16.687 a^{\prime} | - $17.035 \mathrm{~b}_{2}$ | $-17.001 \mathrm{a}_{1}$ $-17.310 \mathrm{~b}_{3}$ | - $15.686 \mathrm{a}^{\prime}$ (LP ${ }^{\text {L }}$) | - $15.443 \mathrm{a}^{\prime}\left(\mathrm{LP}_{\mathrm{N}}\right)$ |
| - $18.072 \mathrm{a}^{\prime}$ | - $17.491 \mathrm{~b}_{1}$ | $-17.645{ }^{\text {b }}$ | - $19.025 \mathrm{a}^{\prime \prime}$ | - $19.458 a^{\prime}$ |
| - $21.364 a^{\prime}$ | $-20.335 a_{1}$ | - $21.762 \mathrm{a}_{1}$ | - $21.460 a^{\prime}$ | - $21.945 \mathrm{a}^{\prime}$ |
| - $22.654 a^{\prime}$ | - $22.719 \mathrm{~b}_{2}$ | $-22.997 \mathrm{a}_{1}$ | - $24.082 \mathrm{a}^{\prime}$ | - $24.929 \mathrm{a}^{\prime}$ |
| - $24.159 a^{\prime}$ | $-23.437 \mathrm{a}_{1}$ | $-23.677 \mathrm{~b}_{2}$ | - $25.585 a^{\prime}$ | - $25.404 a^{\prime}$ |
| - $31.081 \mathrm{a}^{\prime}$ | $-30.320 a_{1}$ | - $30.867 \mathrm{~b}_{2}$ | -33.39 a^{\prime} | - $33.568 \mathrm{a}^{\prime}$ |
| - $33.479 \mathrm{a}^{\prime}$ | $-32.911 \mathrm{~b}_{2}$ | $-32.968 \mathrm{a}_{1}$ | $-34.98 \mathrm{a}^{\prime}$ | - $35.273 \mathrm{a}^{\prime}$ |
| - $39.392 \mathrm{a}^{\prime}$ | $-39.413 \mathrm{a}_{1}$ | $-38.942 a_{1}$ | -42.239 a^{\prime} | - $42.497 \mathrm{a}^{\prime}$ |

| $\begin{aligned} & \text { 1-methyl-1,2,4- } \\ & \text { triazole (} 5 \mathrm{~b} \text {) } \end{aligned}$ | $\begin{aligned} & \text { 2-methyl-1,2,3- } \\ & \text { triazole (6b) } \end{aligned}$ | $\begin{aligned} & \text { 4-methyl-1,2,4- } \\ & \text { triazole (7b) } \end{aligned}$ | 2-methyltetrazole
 (8b) | 1-methyltetrazole (9b) |
| :---: | :---: | :---: | :---: | :---: |
| - $10.390 \mathrm{a}^{\prime \prime}$ | - $10.281 \mathrm{a}^{\prime \prime}$ | - $10.604 \mathrm{a}^{\prime \prime}$ | - $11.718 \mathrm{a}^{\prime \prime}$ | - $11.585 \mathrm{a}^{\prime \prime}$ |
| - $11.281 \mathrm{a}^{\prime \prime}$ | - $11.027 \mathrm{a}^{\prime \prime}$ | - $10.878 \mathrm{a}^{\prime \prime}$ | - $12.007 \mathrm{a} \mathrm{\prime} \mathrm{\prime}$ | - $12.322 \mathrm{a}^{\prime \prime}$ |
| - $11.928 \mathrm{a}^{\prime}\left(\mathrm{LP}_{\mathrm{s}^{-}}\right.$) | $-12.724 a^{\prime}\left(\mathrm{LPP}^{-}\right)$ | - $12.190 \mathrm{a}^{\prime}\left(\mathrm{LP}_{\mathrm{N}^{+}}\right)$ | - $12.572 \mathrm{a}^{\prime}\left(\mathrm{LP}_{\mathrm{v}}\right)$ | - $12.344 \mathrm{a}^{\prime}$ (LPPs) |
| - $13.346 \mathrm{a}^{\prime}\left(L \mathrm{LP}^{+}{ }^{+}\right)$ | - $13.603 \mathrm{a}^{\prime}\left(\mathrm{LPr}^{+}\right)$ | - $12.320 \mathrm{a}^{\prime}\left(\mathrm{LP} \mathrm{N}^{-}\right)$ | - $13.309 \mathrm{a}^{\prime}\left(\mathrm{LP} \mathrm{Pr}^{\prime}\right)$ | $-13.074 \mathrm{a}^{\prime}(\mathrm{LPN})$ |
| - $15.813 \mathrm{a}^{\prime \prime}$ | - $15.441 \mathrm{a}^{\prime}$ | - $15.698 \mathrm{a}^{\text {a, }}$ | - $15.398 \mathrm{a}^{\prime}\left(\mathrm{LPP}_{\text {M }}\right)$ | $-15.128 \mathrm{a}^{\prime}(\mathrm{LPM})$ |
| - $16.008 \mathrm{a}^{\prime}$ | - $15.480 \mathrm{a}^{\prime \prime}$ | - $16.370 \mathrm{a}^{\prime}$, | - $16.329 \mathrm{a}^{\prime \prime}$ | - $16.835 \mathrm{a}^{\prime \prime}$ |
| - $16.594 \mathrm{a}^{\prime}$ | $16.537 \mathrm{a}^{\prime}$ | $-16.501 \mathrm{a}^{\prime}$ | - $16.506 \mathrm{a}^{\prime \prime}$ | - $17.027 \mathrm{a}^{\prime}$ |
| - $17.183 \mathrm{a}^{\prime}$, | - $17.310 a^{\prime}$ | - $17.782 \mathrm{a}^{\prime}$ | - $17.923 \mathrm{a}^{\prime \prime}{ }^{\prime}$ | - $18.743 \mathrm{a}^{\prime}$ |
| 二 $18.375 \mathrm{a}^{\prime \prime} \mathrm{Me}(\mathrm{e})$ | - $18.267 \mathrm{a}^{\prime \prime} \mathrm{Me}(\mathrm{e})$ | - $18.456 \mathrm{a}^{\prime \prime} \mathrm{Me}(\mathrm{e})$ | - ${ }^{19.415 a^{\prime \prime}} \mathbf{} \mathrm{Me}(\mathrm{e})$ | |
| - $22.647 \mathrm{a}^{\prime \prime}$ | - $2.125 \mathrm{a}^{\prime}$ | - $21.988 \mathrm{a}^{\prime}$ | - $3.682 \mathrm{a}^{\prime}$ | - 23.65. a^{\prime} |
| - $22.844 \mathrm{a}^{\prime \prime}$ | - $22.752 \mathrm{a}^{\prime}$ | - $23.744 \mathrm{a}^{\prime}$ | - $24.058 \mathrm{a}^{\prime}$ | - $25.210 \mathrm{a}^{\prime}$ |
| - $26.817 \mathrm{a}^{\prime} \mathrm{Me}(\mathrm{a})$ | - $26.372 \mathrm{a}^{\prime} \mathrm{Me}(\mathrm{a})$ | - $27.181 \mathrm{a}^{\prime} \mathrm{Me}(\mathrm{a})$ | - 28.329 a a $\mathrm{Me}(\mathrm{a})$ | - $28.394 \mathrm{a}^{\prime} \mathrm{Me}(\mathrm{a})$ |
| - $31.306 \mathrm{a}^{\prime}$ | - $31.211 \mathrm{a}^{\prime}$ | - $30.683 \mathrm{a}^{\prime}$ | - $33.403 \mathrm{a}^{\prime}$ | - $33.381 \mathrm{a}^{\prime}$ |
| - $33.463 \mathrm{a}^{\prime}$ | - $32.754 \mathrm{a}^{\prime}$ | - $33.225 \mathrm{a}^{\prime}$ | - $34.978 \mathrm{a}^{\prime}$ | - $3.5 .516 \mathrm{a}^{\prime}$ |
| - $39.228 \mathrm{a}^{\prime}$ | - $39.377 \mathrm{a}^{\prime}$ | - $38.116 \mathrm{a}^{\prime}$ | - $42.009 \mathrm{a}^{\prime}$ | - $42.270 \mathrm{a}^{\prime}$ |
| - $307.577 \mathrm{a}^{\prime}$ | - $307.093 \mathrm{a}^{\prime}$ | - $308.093 \mathrm{a}^{\prime}$ | - $308.081{ }^{\prime}{ }^{\prime}$ | - $308.437 \mathrm{a}^{\prime}$ |
| - $307.697 \mathrm{a}^{\prime}$ | - $307.122 \mathrm{a}^{\prime}$ | -308.478 a' | - $308.113 \mathrm{a}^{\prime}$ | -308.594 a' |
| - $308.321 \mathrm{a}^{\prime}$ | - $307.421 \mathrm{a}^{\prime \prime}$ | - $308.478 \mathrm{a}^{\prime}$ | - $425.058 \mathrm{a}^{\prime}$ | - $424.806 \mathrm{a}^{\prime}$ |
| - $423.491 \mathrm{a}^{\prime}$ | - $425.486 \mathrm{a}^{\prime}$ | -424.685 a^{\prime} | -425.661 ${ }^{\prime}{ }^{\prime}$ | - $426.073 \mathrm{a}^{\prime}$ |
| -425.141 a^{\prime} | -425.487 ${ }^{\prime}$ | - $424.696 \mathrm{a}^{\prime}$ | - $426.837 a^{\prime}$ | - $426.506 \mathrm{a}^{\prime}$ |
| - $426.149 \mathrm{a}^{\prime}$ | -428.651 ${ }^{\prime}$ | -425.786 a^{\prime} | - $427.514 \mathrm{a}^{\prime}$ | - $428.999 \mathrm{a}^{\prime}$ |

Cable 2. (continued).

| -methylpyrrole
 1 b) | 1-methylpyrrole ${ }^{\text {D }}$ (1b) | 1-methylpyrazole (2b) | 1-methylimidazole (3b) | 1-methyl-1,2,3-triazole (4b) |
| :---: | :---: | :---: | :---: | :---: |
| $8.106{ }^{\prime \prime}$ | - $8.099 \mathrm{a}^{\prime}$ | - $9.5059 \mathrm{a}^{\prime \prime}$ | - $8.8588^{\prime \prime}$ | - $10.031 \mathrm{~s}^{\prime \prime}$ |
| 9.158 8" | $9.152 \mathrm{a}^{\prime}$ | - $9.798 \mathrm{a}^{\prime \prime}$ | - $10.529 \mathrm{~s}^{\prime \prime}$ | - $11.329 \mathrm{~s}^{\prime \prime}$ |
| $14.286 \mathrm{a}^{\prime \prime}$ | - $14.306 \mathrm{a}^{\prime}$ | - $12.377 \mathrm{a}^{\prime}\left(\mathrm{LP} \mathrm{P}_{\mathrm{N}}\right)$ | - $11.550 \mathrm{a}^{\prime}\left(\mathrm{LP} \mathrm{P}_{\mathrm{y}}\right)$ | - $11.533 \mathrm{a}^{\prime}\left(\mathrm{LP} \mathrm{P}^{-}\right)$ |
| - $14.360 \mathrm{a}^{\prime}$ | $14.324 \mathrm{a}^{\prime \prime}$ | - $14.184 \mathrm{~g}^{\prime \prime}$ | - $15.159 \mathrm{a}^{\prime \prime}$ | - $13.683 a^{\prime}\left(L \mathrm{LP}_{\mathrm{N}^{+}}{ }^{+}\right.$ |
| - $14.402 \mathrm{a}^{\prime}$ | - $14.408 \mathrm{~B}^{\prime \prime}$ | - $15.057 \mathrm{a}^{\prime}$ | - $15.345 \mathrm{a}^{\prime}$ | - $16.031 \mathrm{a}^{\prime \prime}$ |
| $15.504 \mathrm{~s}^{\prime}$ | - $15.497 \mathrm{a} \mathrm{\prime} \mathrm{\prime}$ | - $15.662 \mathrm{a}^{\prime}$ | - $15.871 \mathrm{a}^{\prime}$ | - $16.103 a^{\prime}$ |
| $15.517{ }^{\text {a }}$ | - $15.522 \mathrm{a}^{\prime \prime}$ | - $16.125 \mathrm{a}^{\prime}$ | - $16.071{ }^{\prime}{ }^{\prime}$ | - $17.129 a^{\prime}$ |
| $16.469 \mathrm{a}^{\prime}$ | - $16.469 \mathrm{a}^{\prime \prime}$ | - $16.695 \mathrm{a}^{\prime}$ | - $17.018 \mathrm{a}^{\prime}$ | - $17.855 \mathrm{a}^{\prime}$ |
| $17.318 \mathrm{a} \mathrm{\prime} \mathrm{\prime}$ Me(e) | - $17.319 \mathrm{a}^{\prime} \mathrm{Me}(\mathrm{e})$ | - $17.465 \mathrm{a}^{\prime \prime} \mathrm{Me}$ (e) | - $17.879 \mathrm{a}^{\prime \prime} \mathrm{Me}$ (e) | - $18.788 \mathrm{a}^{\prime \prime} \mathrm{Me}$ (e) |
| $19.378{ }^{\text {a }}$ | - $19.377 \mathrm{a}^{\prime \prime}$ | - $19.785 \mathrm{a}^{\prime}$ | - $19.735 \mathrm{a}^{\prime}$ | - $20.298 \mathrm{a}^{\prime}$ |
| $20.429 \mathrm{a}^{\prime}$, | $20424 \mathrm{a}^{\prime \prime}$ | - $21.138 \mathrm{a}^{\prime}$ | - $21.445 a^{\prime}$ | - $22.274 \mathrm{a}^{\prime}$ |
| $21.103 \mathrm{a}^{\prime}$ | $21.100{ }^{\prime \prime}$ | - $22.209 \mathrm{a}^{\prime}$ | - $22.092 \mathrm{a}^{\prime}$ | $23.622 \mathrm{a}^{\prime}$ |
| $25.558 \mathrm{a}^{\prime} \mathrm{Me}$ (a) | $25.559 \mathrm{~B}^{\prime \prime}$ | - $25.744 \mathrm{a}^{\prime} \mathrm{Me}(\mathrm{a})$ | - $28.548 \mathrm{a}^{\prime} \mathrm{Me}(\mathrm{a})$ | - $27.611 \mathrm{a}^{\prime}$ |
| $26.767{ }^{\text {a }}$ | - $26.762 \mathrm{a}^{\prime \prime}$ | - $29.243 \mathrm{a}^{\prime}$ | - $27.978 \mathrm{a}^{\prime}$ | - $30.168{ }^{\text {a }}$ |
| $29.353 \mathrm{a}^{\prime}$ | - $29.351 \mathrm{a}^{\prime \prime}$ | - $30.766 \mathrm{a}^{\prime}$ | - $32.486 \mathrm{a}^{\prime}$ | - $33.901 \mathrm{a}^{\prime}$ |
| $35.664 \mathrm{a}^{\prime}$ | - $35.661 \mathrm{a}^{\prime \prime}$ | - $38.166 \mathrm{a}^{\prime}$ | - $37.147 \mathrm{a}^{\prime}$ | - $40.419 \mathrm{a}^{\prime}$ |
| - $305.257{ }^{\text {a }}$ | $-305.243 \mathrm{a}^{\prime \prime}$ | - $305.829 \mathrm{a}^{\prime}$ | $-306.255 \mathrm{a}^{\prime}$ | $-306.687{ }^{\prime}$ |
| - $305.288 \mathrm{a}^{\prime}$ | -305.284 $\mathrm{a}^{\prime \prime}$ | - $306.552{ }^{\text {a }}$ | - $306.872 \mathrm{a}^{\prime}$ | - $307.216 \mathrm{a}^{\prime}$ |
| - $306.428 \mathrm{a}^{\prime}$ | - $308.376 \mathrm{a}^{\prime \prime}$ | - $307.296 \mathrm{a}^{\prime}$ | - $307.643 \mathrm{a}^{\prime}$ | -307.974 a^{\prime} |
| - $308.428{ }^{\text {a }}$ | - $308.463 \mathrm{a}^{\prime \prime}$ | - $307.560 \mathrm{a}^{\prime}$ | - $307.678 \mathrm{a}^{\prime}$ | -424.531 ${ }^{\prime}$ |
| $307.224 \mathrm{a}^{\prime}$ | - $307.234 \mathrm{a}^{\prime \prime}$ | - $424.434 \mathrm{a}^{\prime}$ | - $423.307 a^{\prime}$ | -425.768 a^{\prime} |
| $424.698 \mathrm{a}^{\prime}$ | - $424.694 \mathrm{a}^{\prime \prime}$ | - $425.744 \mathrm{a}^{\prime}$ | -425.281 a^{\prime} | -428.359 a^{\prime} |

All methyl "H's" out of plane of molecule.
D All methyl " H ' s ' ${ }_{2}$ in plane of molecale.
ent is present in small amounts or below the detecion limit for the technique (say 0.1%). The doainance of the 2 H -tautomer is, however, consistent rith recent microwave studies [5] and the computed elative energies of the present study.

,2,4-Triazole

The spectrum of the 4 -methyl isomer (8 b) Fig. 4 3 markedly different in the low binding Region A Then compared with either the 1 -methyl compound \bar{b}) or the tautomeric mixture; we conclude that he latter is almost entirely in the 1 H -form (5a) in he vapour phase, and thus is the same in solution nd solid state measurements made to date. This is onsistent with the high difference in computed nergy between 5 a and 8 a .

etrazole

The assignment for tetrazole shows the 2 Hautomer (9 a) to be dominant; the almost complete bsence of the 1 H -form (6a) can be assumed from he absence of a broad band near 12.8 eV which ccurs in the $1-\mathrm{Me}$ spectrum. The presence of arked vibrational structure on the tautomer pectrum and that of the 2 -methyl compound (9 b) very evident (Figure 5).

Conclasions

The present results confirm the earlier sugges. tions that the most stable tautomer for 1,2,3-triazole in the gas phase is the 2 H -one (4 a), and that photoelectron spectroscopy can be used to differentiate between tautomers in cases of this type. 1,2,4Triazole appears to be in the $1 H$-form under all conditions so far investigated, and the calculations suggest that this is likely to be true for most circumstances. In contrast, the energy difference between the tautomers of tetrazole is clearly small, and either tautomer can be anticipated, depending upon conditions. The 2 H -tautomer is dominant in the gas phase at low pressures. It seems probably that the assumption of particular tautomeric structures for the vapour phase based upon solution or crystal data is likely to be hazardous, since further examples in the hydroxypyridine-pyridinone (10 11) systems have led to be the same conclusion [13]. Relative energies based upon arbitrary choices of geometry seem particularly suspect, and the failure of the present ab initio minimal calculations for tetrazole make the use of even more restricted basis sets, such as in semiempirical calculations even less reliable.

Fig. 3. Photoelectron spectra (HeI) of $1,2,3$-Triazole (A) and its 1-and 9-Methyl compounds (C \& B, respectively).

Fig. 4. Photoelectron spectra (HeI) of 1,2,4-Triazole (A) and ita 1-and 4-Methyl compounds (B and C, respectively).

Fig. 5. Photoelectron spectra (HeI) of Tetrazole (A) and ts 1. and 2-Methyl compounds (C and B, respectively).
[1] M. H. Palmer, S. Cradock, and R. H. Findlay, Tetrahedron 29, 2173 (1973).
[2] T. L. Gilchrist and G. E. Gynerin, Adv. in Heterocyclic Chemistry 16, 33 (1974); Ed. A. R. Katritzky and A. J. Boulton, Academic Press, London.
[3] L. T. Creagh and P. Truitt, J. Org. Chem. 30, 1892 (1968).
[4] (a) M. F. Kaufman, F. M. Ernsberger, and W. S. McEwan, J. Amer. Chem. Soc. 78, (1956); (b) M. Witanowiski, L. Stefaniak, H. Januszewski, Z. Grabowski, and G. A. Webb, Tetrahedron 98, 637 (1972); G. A. Webb, M. Witanowski, and L. Stefaniak, J. Magnetic Resonance 36, 232 (1979).
[5] C. J. Nielsen, L. Nygaard, and G. O. Sorensen, IVth European Microwave Spectrosc. Conference, Tübingen 1977; L. Nygaard, Personal communication.
[6] M. H. Palmer, I. Simpson, and R. H. Findlay, Z. Naturforsch. $36 \mathrm{a}, 34$ (1981).
[7] M. H. Palmer and J. D. Nisbet, J. Molecular Struc. ture 67, 65 (1980).

Appendix

The present double zeta calculations yielded the orbital energies shown below. In this present paper we are primarily concerned with the gas-phase tautomers rather than assignment of the photoelectron spectra. We will be continuing this latter topic in a further paper involving configuration interaction calculations for the ionised states of 1-9; since however Koopmans' theorem is widely utilised in this field, the orbital energies give a provisional assignment for the lower IP's, and are included. Very few differences in the calculated order (by symmetry and nature of orbital) occur between the present and our previous work [1], except that the inner-most π-level is often more shifted to lower binding energy relative to some σ-levels on going from MB to DZ.
[8] M. Dupuis, J. Rys, and H. F. King, J. Comp. Phys. 21, 1, 144 (1976).
[9] M. Dupuis, J. Rys, and H. F. King, J. Chem. Phys. 65, 111 (1976); program distributed by Q.C.P.E., In diana University, Q.C.P.E. Bulletin 13, 403 (1981).
[10] M. H. Palmer, J. R. Wheeler, R. H. Findlay, N. P. C. Westwood, and W. M. Lau, J. Molecular Structure, "THEOCHEM", 85, 193 (1981).
[11] T. Chivers, P. W. Codding, and R. T. Oakley, Chem. Comm. 584 (1981).
[12] T. Dunning, J. Chem. Phys. i33, 2823 (1970).
[13] M. J. Cook, S. El-Abbady, A. R. Katritzky. C. Guimon, and G. PGister-Guillouzo, J.C.S. Perkin II, 1652 (1977).
[14] L. Klasinc, B. Rušcić, F. Kajfeź, and V. Sunjić, Int. J. Quantum Chem. Quant. Biol. Symp. 5, 367 (1978); A. D. Baker, D. Betteridge. N. R. Kemp, and R. E. Kirby, Anal. Chem. 42, 1064 (1970).
[15] M. H. Palmer, W. Moyes, and M. Spiers, J. Molec. Struct. 49, $10 \overline{5}$ (1978); ibid. $\overline{3}$, 235 (1979); ibid. $\overline{55}$, 243 (1979).

Bibliography

AND 65: J. B. Anderson and J. B. Fenn, Physics of Fluids, 8, 780 (1965)

AND 65: J. B. Anderson, R. P. Andres and J. B. Fenn, Adv. Chem. Phys. 10, 275 (1966)

ANL 67: K. G. Anlauf, P. J. Kuntz, D. M. Maylotte, P. D. Pacey and J. G. Polanyi, Faraday Disc. Chem. Soc., 4 4,183 (1967)

APP 75: E. H. Appelman and M. A. A. Clyne, JCS Faraday I, 71, 2072 (1975)

BAS 71: N. Basco and F. G. M. Hathorn, Chem. Phys. Letts. 8, 291 (1971)

BAT $61:$ D. R. Bates, Ed. (1961), Quantum Theory. 1. Elements, Academic Press, London

BEN 72: A. Ben-Shaul, R. D. Levine and R. B. Bernstein, J. Chem. Phys. 57, 5427 (1972).

BER 79: Atom molecule collision theory: A guide for the experimentalist, Ed. R. B. Bernstein, Plenum, New York (1979).

BIR 75: J. W. Birks, S. D. Gabelnick and H. S. Johnston, J. Mol. Spectrosc. 57, 23 (1975)

BLA 63: N. C. Blais and D. L. Bunker, J. Chem. Phys., 32, 315, (1963)
BLA 64: N. C. Blais and D. L. Bunker, J. Chem. Phys., 41,
BLA 70: N. C. Blais and J. B. Cross, J. Chem. Phys., 55, 3580 (1970)

BLA 81: G. W. Black, PhD. thesis, Edinburgh University 1981.
BRU 73: P. Brumer and M. Karplus, Faraday Disc. Chem. Soc., 55, 80 (1973).

BUN 71: D. L. Bunker, Methods in Computational Physics, Vol.10, 287 (1971)

CAM 78: I. M. Campbell and D. L. Baulch, Spec. Per. Report to the Chem. Soc.: Gas Kinetics and Energy transfer Vol. 3, p 42 (1978)

CAR 73: C. F. Carter, M. R. Levy, K. B. Woodall and R. Grice, Faraday Disc. Chem. Soc., 55, 381 (1973)

CLO 78: P. N. Clough, J. Geddes and G. M. O'Neil, J. Chem. Phys., 69, 3128 (1978)

CLY 76: M. A. A. Clyne and I. S. McDermid, JCS Faraday II 72, 2242, (1976)

CLY 78: M. A. A. Clyne and I. S. McDermid, JCS Faraday II 74, 1644, (1978)

COT 72: F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 3rd Edition, Wiley, New:York (1972)

COX 72: J.A. Coxon, Spec. Per. Reports to the Chem. Soc. : Molecular Spectroscopy, Vol. 1, p 177, (1973)

CRU 73: H. W. Cruse, P. J. Dagdigian and R. N. Zare, Faraday Disc. Chem. Soc., 55, 277 (1973)

DAG 74: P. J. Dagdigian, H. W. Cruse, A. Schultz and - R. Zare, J. Chem. Phys. 61, 4456, (1974).

DIN 73: A. M. G. Ding, L. J. Kirsch, D. S. Perry, J. C. Polanyi and J. L. Schreiber, Faraday, Disc. Chem. Soc., 55, 252 (1973)

DIN 75: U. Dinur, R. Kosloff, R. D. Levine and M. J. Berry, Chem. Phys. Letts, 34, 199 (1975).

DIX 73: D. A. Dixon, D. D. Parrish and D. R. Herschbach, Faraday Disc. Chem. Soc., 55, 385 (1973)

DON 80: R. J. Donovan et al., Chem. Phys. Lett, 69, 472 (1980)
DUF 79: J. W. Duff and P. Brumer, J. Chem. Phys., 712693 (1979)

FAR 75: J. M. Farrar and Y. T. Lee, J. Chem. Phys. 63, 3639 (1975)

FAI 76: M. B. Faist, J. Chem. Phys., 65, 5427, (1976)
FAI 78: M. B. Faist, J. T. Muckermann and F. E. Schubert, J. Chem. Phys., 69, 4087 (1978)

FAI 79: J. T. Muckermann and M. B. Faist, J. Phys. Chem., 83, 79 (1979)

FEH 65: F. C. Fehsenfeld, K. M. Everson and H. P. Broida, Rev.Sci. Instr. 36, 294 (1965)

FER 80: D. P. Fernie, PhD. Thesis, Edinburgh University 1980

FIS 67: G. A. Fisk, J. D. McDonald and D. R. Herschbach, Faraday Soc. Disc., 44, 228 (1967)

FIT 79: D. E. Fitz and P. Brumer, J. Chem. Phys., Z0, 5527 (1979)

FLE 82: I. W. Fletcher and J. C. Whitehead, J. Chem. Soc. Faraday Trans. II, 78, 1127 (1982).

FLU 73: M. A. D. Fluendy and K. P. Lawley, Chemical Applications of Molecular Beam Scattering, Chapman and Hall, London (1973).

FLU 76: M. A. D. Fluendy, I. H. Kerr, K. P. Lawley and D. R. MacDonald, Chem. Phys.Letts., 13, 452, (1976).

FOO 75: R. Foon and M. Kaufman, Prog. Reaction Kinetics, 8, 81 (1975).

GEA 71: C. W. Gear, Numerical Initial Value Problems in O.D.E.s!, Prentice Hall, New York (1971).

GIO 58: G. Gioumousis and D. P. Stevenson, J. Chem. Phys., 22, 294 (1958).

GIO 60: J. A. Giordmaine and T. C. Weng, J. Appl. Phys. 31, 463 (1960)

GLE 80: R. M. Glen, Ph.D. Thesis, Edinburgh University, 1980.
GOL 50: H. Goldstein, Classical Mechanics, Addison Wesley, Reading Mass (1950)

GOR 79: P. A. Gorry and R. Grice, J. Phys. E, 12, 857 (1979)
GRI 75: R. Grice, Advan. Chem. Phys., 30, 247 (1975).
GRI 81: R. Grice, Spec. Per. Reports to the Chem. Soc.: Gas Kinetics and Energy transfer Vol.4, Chapt. 1, (1981)

HAM 64: J. M. Hamersley and D. C. Hanscombe, Monte Carlo Methods, Methuen, London (1964).

HAN 72: T. W. Hansch, App. Optics, 11, 895 (1972)
HEN 65: A. Henglein and G. A. Muccini, J. Chem. Phys., 43, 1048, (1965)

HER 51: G. Herzberg Spectra of polyatomic molecules, Van Nostrand, Reinholt (1951)

HIA 72: R. Hialt and S. W. Benson, Int. J. Chem. Kinetics, 4. 479 (1972).

HOL 77: L. Holmlid and K. Rynefors, Chem. Phys., 19, 261, (1977).

HUT 78: I. Hutchinson, Carneigie Trust vacation scholarship report (1978).

JOH 66: J. C. Johnson, A. T. Stairs and S. L. Pritchard, J. App. Phys. 37, 1551 (1966)

KAH 80: C. C. Kahler and Y. T. Lee, J. Chem. Phys. 73; 5122 (1980).

KAR 64: M. Karplus and L. M. Raff, J. Chem. Phys., 41, 1267, (1964).

KIN 77: J. L. Kinsey, Ann.Rev. Phys. Chem., 28, 349 (1977)
KOL 72: C. E. Kolbe and M. Kaufman, J. Phys. Chem. 76, 947 (1972)

KUN 66: P. J. Kuntz, E. M. Nemeth, J. C. Polanyi, S. D. Rosner and C. E. Young, J. Chem. Phys., 44, 1168 (1966).

KUN 70: P.J. Kuntz, Trans. Faraday. Soc., 66, 2980, (1970)
KUN 76: P. J. Kuntz, Modern Theoretical Chemistry, Vol. 2 , Part B, Chapt. 2. Ed. W. H. Miller, Plenum, N.Y. (1976)

LEE 68: Y. T. Lee, P. R. LeBreton, J. D. McDonald and
D. R. Herschbach, J. Chem. Phys., 42, 2447 (1968)

LEE 69: Y. T. Lee, P. R. LeBreton, J. D. McDonald and D. R. Herschbach, J. Chem. Phys. 51, 455, (1969)

LEE 77: J. J. Valentini, Y. T. Lee and D. R. Auerbach, J. Chem. Phys., 67, 4866 (1977)

LER 70: R. J. LeRoy, J. Chem.Phys., 52, 2683, (1970).
LEV 72: R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics, Oxford University Press, New York, (1972)

LEV 75: R. D. Levine and R. B. Bernstein, Adv. At. Mol. Phys. 11, 216 (1975).

LEV 79: R. D. Levine and J. L. Kinsey, Atom-Molecule Collision Theory - a Guide for the experimentalist, R. B. Bernstein Ed., Flnum Press, New York. (1979).

LIG 67: J. C. Light, Faraday Disc. Chem. Soc.; 44, 14, (1967)
LIU 77: K. Liu and J. M. Parson, J. Chem. Phys. 67, 1814
LOE 71 : H. J. Loesch and D. Beck, Ber. Bunsenges, Phys. Chem. 75, 736 (1971).

LON 29: F. London, Z. Elektrochem., 35, 552, (1929).
LOS 79: J. Los and A. W. Kleyn, Ion Pair Formation in Alkali Halide Vapours, P. Davidovitz and D. McFaddon Ed.s, A. P., New York (1979).

MAG 40: J. L. Magee, J. Chem. Phys., 8, 687 (1940)
MIL 67: W. B. Miller, S. A. Safron, D. R. Herschbach, Faraday Disc. Chem. Soc., 殅, 108, (1967).

MIL 69: D. R. Miller and D. F. Patch, Rev. Sci. Instr. 40, 1566 (1969).

MIL 73: W. B. Miller, S. A. Safron and D. R. Herschbach, J. Chem. Phys., 56, 3581, (1973).

MOO 58: C. E: Moore, Atomic Energy Level.Tables, Nat.Bur. Stand. Cir., p. 467 (1958).

MUC 73: J. T. Muckermann, QCPE 229, Indiana University (1973)
MUC 79: J. T. Muckermann and D. G. Truhlar, Atom - Molecule Collision Theory: A Guide for the Experimentalist, Ed. R. B. Bernstein, Plenum, New York (1979).

MUR 78: J. N. Murrell, Spec. Per. Reports to the Chem Sec.: Gas Kinetics and Energy Transfer, Vo.3, p.200 (1978)

NAG 78: NAG-Version 7, Nun engadia Algorithms Group, 7 Banbury Road, Oxford.

PAR 72: J. M. Parson and Y. T. Lee, J. Chem. Phys. 56, 4658(1972)

PAR 73: C. A. Parr, J. C. Polanyi and W. H. Wong, J. Chem. Phys., 58, 5(1973)

PAT 74: M. D. Pattengill and J. C. Polanyi, Chem. Phys., 3, 1 (1974)
PEY 68: S. D. Peyerimhoff and R. J. Buenker, J. Chem. Phys., 42, 2473 (1968).

POL 72: J. C. Polanyi and Woodall, J. Chem. Phys. 57, 1574 (1972)

POL 74: J. C. Polanyi and S. L. Schreiber, Physical Chemistry an Advanced Treatise, Ed.s H. Eyring, D. Henderson and W. Jost, A.P., New York, Vol.VIA, p. 383 (1974).

POL 77: J. C. Polanyi and W. J. Skrlac, Chem.Phys., 23, 167 (1977)

POL 79: J. C. Polanyi, J. L. Schreiber and W. J. Skrlac, Faraday Disc.Chem.Soc. 67,66 (1979)

POP 80: D. Poppe, Chem. Phys. 45, 382, (1980).
POR 76: R. N. Porter and L. M. Raff, Modern Theoretical Chemistry, Vol.2, Part B, Chpt. 1, Ed. W. H. Miller, Plenum New York (1976).

PRO 78: E. S. Prochaska, L. Andrews, A. Smyrl and G. Mamantor, Inorg.Chem., 17975 (1978)

PRU 76: J. Go. Pruettand R. N. Zare, J. Chem. Phys. 64, 1774 (1976)

RAD 75: D. St. A. G. Radlein, J. C. Whitehead and R. Grice, Mol. Phys. 29, 1823 (1975)

RAF 66: L. M. Raff, J. Chem. Phys., 44, 1202, (1966)
RAL 60: A. Ralson and H. S. Wilf, Mathematical Methods for Digital Computers, Vol. 1., Chapt. 8, Wiley New York (1960)

SAF 72: S. A. Safron, N. D. Weinstein, D. R. Herschbach and J. C. Tully, Chem. Phys. Letts. 12, 564, (1972)

SAN 77: J. Santamaria and D. L. Bunker, Chem. Phys. 23, 243, (1977)

SAT 55: S. Sato, J. Chem. Phys, 23, 2465 (1955).
SCH 72: A. Schultz, H. W. Cruse and R. N. Zare, J. Chem. Phys. 57, 1354 (1972)

SIB 80: S. J. Sibener, R. J. Buss and Y. T. Lee, Rev.Sci. Instre 51, 167. (1980)

SMI 75: I. W. M. Smith, J. Chem. Soc. Faraday Trans II, 71, 1970, (1975)

STE 79: L. Stein, J. Wanner, H. Figger, and H. Walther, Springer Series in Chemical Physics Vol. 6; Laser Induced Processes in Molecules. Springer Verlag, Berlin, (1979), P.232.

STE 80: L. Stein, J. Wanner and H. Walther, J. Chem. Phys. 72, 1128 (1980).

SUN 77: T. P. Sung and D. W. Setser, Chem. Phys. Letts., 48, 413 (1977).
TRI 80: T. Trickl, and J. Wanner, Poster Session, 6th Int. Symposium on Gas Kinetics, Southampton, July 1980.

TRI 81: T. Trickl, and J. Wanner, J. Chem Phys. Z4, 6508 (1981)

TUL 71: J. C. Tully and R. K. Preston, J. Chem. Phys, 55, 562 (1971).

TUL 76: J. C. Tully, Modern Theoretical Chemistry, Vol.2, Part B, Chapt. 4, Ed. W. H. Miller, Plenum N.Y.(1976).

TUL 81: J. C. Tully, Adv. in Chem. Phys., Vol.42, p.63. Ed. K. P. Lawley.

UNG 76: S. R. Ungemach and H. F. Schaefer III, J. Am. Chem. Soc.; 28, 1658 (1976)

VAL 77: J. J. Valentini, M. J. Coggiola and Y. T. Lee, Rev. Sci. Instr. 48, 58 (1977).

WAL 53: A. D. Walsh, J. Chem. Soc., p.2288, (1953).
WHI 75: J. C. Whitehead, Mole. Phys., 29, 177, (1975).
WHI 76: J. C. Whitehead, Mole. Phys., 31, 549, (1976)
WON 73: Y. C. Wong and Y. T. Lee, Faraday Disc. Chem. Soc., 55, 383, (1973).

[^0]: J. W. Cooley, Math. Comp., 1961, 15, 363.
 S. M. Roberts and J. S. Shipman, Two-Point Boundary Value Problems: Shooting Methods (American Elsevier, New York, 1972). For a sample application to the orbiting resonances problem, see R. I. Price, Mol. Phys., 1977, 33, 559, and to FC factors, see J. Tellinghuisen, J. Quant. Spectrosc. Radiat. Transfer, 1978, 19, 149.
 ${ }^{3}$ C. S. Lin and G. M. F. Drake, Chem. Phys. Lett., 1972, 16, 35.
 ${ }^{4}$ J. Romelt and R. Runau, Theor. Chim. Acra, 1980, 54, 171.
 5. The method is widely used. Two representative medium scale calculations are: P. D. Gait, Chem. Phys. Letr., 1977, 51, 506 and J. P. Flamme and J. Momigny, Chem. Phys., 1978, 34, 303.
 ${ }^{6}$ W. I. Newman and W. R. Thorson, Can. J. Phys., 1972, 50, 2997.
 ${ }_{8}$ M. V. Berry, Proc. Phys. Soc. London, 1966. 80, 479.
 ${ }^{8}$ F. L. Tobin and J. Hinze. J. Chem. Phys., 1975, 63, 1034.

