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Abstract

The formulation of the Theory of General Relativity and the observational evi¬
dence for the expansion of the universe provided the basis for much of the work
carried out in the field of cosmology over the past hundred years. Huge volumes of
research have been conducted to find reliable values for cosmological parameters
and to describe the amount and nature of the matter in the universe. Chapter 1
of this thesis attempts to summarise current theoretical and observational think¬
ing on these matters and, in particular, examines the wide-ranging application of
gravitational lensing to the search for so-called dark matter. The use of gravita¬
tional microlensing to investigate a cosmological population of compact objects,
their effects on the long term variability of the apparent luminosity of quasars
and on the results of the on-going observations of high redshift supernovae is
discussed. Such investigation forms the basis for this thesis.

The main tool for this investigation is a computer model which simulates the
gravitational lensing effect of a population of compact object over a period of
time. Chapter 2 sets out the theoretical background for this simulation. In
particular, the methods used to set the physical parameters of the simulation,
such as its volume, the redshifts of the lenses and their masses, are outlined.

Chapter 3 presents the implementation of the computer model. Modelling tech¬
niques used by other researchers are discussed, as are alternative approaches
considered for the implementation of this model. In order to simulate the evolv¬
ing distribution of the lensing objects over time, the simulation was designed to
run on high performance parallel supercomputers. The method by which the
simulation was designed to take advantage of this type of computing platform is
also discussed.

In order to examine the effects of a cosmological distribution of compact objects
on high redshift sources properly, it is necessary to have observational data. For
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this thesis, the observational data consists of a set of lightcurves from high redshift
quasars observed over a 25 year period. This data set is outlined in Chapter 4.
The results from the computer simulation are then presented, including both ex¬

ample light curves and power spectra for a variety of cosmological models, source
sizes, source redshifts and lens masses. This observational data is compared with
the simulation data and is found to have comparable levels of power for a number
of simulation models.

Chapter 5 examines the effect of a cosmological population of compact objects
on the ongoing high redshift supernovae searches. The effects of such objects are

modelled for a number of cosmological models for the range of redshifts proposed
for the SNAP and VISTA searches. It is found that the proposed number counts
for supernovae detection in each redshift bin are sufficient to differentiate between
the different cosmological models.
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Chapter 1

Introduction

One of the outstanding questions in current cosmological theory is the nature
and origin of dark matter in the universe. The aim of this thesis is to explore
the possibility that dark matter is made up, in a large part, by a cosmological
distribution of compact objects. In particular this thesis will investigate whether
the microlensing effects of such a population could explain the long term variation
of the apparent luminosity of quasars. Further, it will explore how observations
of high redshift supernovae could be used to constrain estimates of the amount
of matter in this form.

1.1 Basic Cosmology

This section outlines the cosmological background for this thesis.

1.1.1 The expanding Universe

One of the major breakthoughs in the field of cosmology during the 20th century
was the discovery by Edwin Hubble that the Universe is expanding (Hubble,
1929). This expansion means that, ignoring the local peculiar velocity, galaxies
are receding from us in every direction with a velocity which depends directly on

their distance from us. This result is known as Hubble's Law and can be expressed
quantitatively for a galaxy with a velocity fat a distance r as:

v = H(t) f (1.1)
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where H(t) is the Hubble constant. The observable value of H(t) in the present
epoch is generally denoted by H0. Throughout this thesis the subscript 0 will
indicate the value of the variable in the present epoch.

At first sight Hubble's Law appears to imply that we occupy a special place in the
Universe at the centre of the expansion. This would contradict the Cosmological
Principle which states that the Universe is both isotropic and homogeneous and
hence that there can be no favoured observers. However, consider two galaxies
which are sufficiently distant from each other that the effects of gravitational
binding and peculiar motion can be neglected. As the Universe expands over

time, the proper physical distance between the two galaxies increases with ob¬
servers in both galaxies seeing the same recession law, Equation 1.1. In fact,
Equation 1.1 holds for all comoving observers, i.e., observers who move along
with the expansion. Hence there are no favoured observers and Hubble's law is
in agreement with the Cosmological Principle.

A general metric to describe a dynamic, homogeneous and isotropic universe was

put forward by Id. P. Robertson and A. G. Walker in 1936 (see Weinberg (1972)
for example):

This is known as the Robertson-Walker metric. It enables the definition of the

interval ds2 between events at any epoch or location in the expanding universe.
The coordinates (r, 6, </>) are comoving spherical polar coordinates, k is the
curvature constant and takes the value 1, 0 or —1 depending on whether the
Universe is closed, flat or open. R(t) is the scale factor which describes how the
spatial dimensions scale with time, t. The scale factor is related to the Hubble
constant through the relation:

ds'2 — c2dt2 — R2(t) -—- + r2d02 + r2 sin2 9d<f21 — krz
(1.2)

Redshift

The expansion of the Universe causes a shift in the frequency of spectral lines
seen by an observer. This is known as redshift. The Robertson-Walker metric
can be used to relate redshift to the scale factor of the expanding Universe.
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Consider a light wave of frequency ve which leaves a distant galaxy at time te to
arrive at an observer at time tQ (see Weinberg (1972)). Defining the co-ordinate
system such that the observer sits at the origin, the wave travels towards the
observer in the —r direction with constant 9 and 4> co-ordinates. This allows the
Robertson-Walker metric given by Equation 1.2 to be written as:

ds2 = 0 = dt2 - R2(t) 1 — krz

Integrating along the radial coordinate gives:
dt

Jt„ R(t)
= F(r,) (1.3)

where

F(re) = r
Jo

, i sin 1 re k = +1dr
= I r, k = 0

sinh-1 ry k — — 1y/l — kr2

Assuming that the expansion of the Universe can be ignored on the timescale of
the wavelength of light, the next light ray leaves the galaxy with the same r, 9
and cf> coordinates at time te + 5te. The time tQ + St0 at which the second light
ray arrives can be written in a similar manner to Equation 1.3:

rto+Sto ji

L,m=f(r-' (L4)
As the scale factor R(t) is taken to be constant between the emission of the two
light rays, Equation 1.3 can be subtracted from Equation 1.4 to give:

St q 6te
R{t0) R(te)

Thus the frequency of the emitted light ray, uei is related to the frequency of the
observed light ray, f0, by:

rq Ste R(te)
ue 6t0 R(ta)

Redshift is defined as:

- vn

v0

Thus the redshift is related to the expansion of the Universe through the scale
factor as:

2 = MU_i
R(te)
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The redshift can therefore be thought of as providing a measurement of how the
wavelength of light stretches as the Universe expands. Thus, redshifts of distant
galaxies can be obtained by observing the spectra of the light emitted by the
elements they contain.

1.1.2 The Friedmann Equations

The expansion of the Universe can be expressed through the Einstein field equa¬

tion:

qhu _ 8nGTUl/
c2

which relates space-time curvature to energy density. Here is the Einstein
tensor, TMi/ is the energy-momentum tensor and G is the gravitational constant.
When Einstein first developed the theory of general relativity, it was thought that
the universe was static. In order to allow a static solution to the field equations,
Einstein added an addition term involving a new physical constant A, known as

the cosmological constant:

G^-Ag^ = ^-T^ (1.5)c2

This new term was an ad hoc addition to the field equations and was quickly
dropped by Einstein once the expansion of the universe was established. However,
it has continued to reappear over the years and is now interpreted in terms of
the energy density of the vacuum. As a consequence of this interpretation, the
Ag^ term nowadays typically appears on the right hand side of Equation 1.5. A
review of the cosmological constant is given in Carroll et al. (1992).

Substituting the Robertson-Walker metric (Equation 1.2) into Equation 1.5 and
assuming a perfect fluid leads to a pair of coupled equations known as the Fried¬
mann equations:

AttG / p\ Ac2

2 8ttG Ac2 kc2
= H <L7)

where p is the pressure and p represents the mass and radiation density. At the
present epoch the radiation density is negligible and p will be taken to represent
the mass density of the universe.
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The three terms which drive the expansion of the Universe can be thought of,
respectively, as a mass term, a cosmological constant term and a curvature term.

Re-writing equation 1.7 to make these terms explicit with respect to their values
in the current epoch gives:

1 = -f- Oa + fR

where

_ 8ttG _ Ac2 _ kc2
M ~ ZHlPl A - 3H2' k ~ R2H2

Thus the dynamics of the expansion of the Universe are described by just a few
parameters. One of the main aims of astronomy is to try to obtain accurate
values for the Hubble constant Hq, the density of matter in the Universe p and
the cosmological constant A.

Hubble's Constant

Although Hubble's constant appears in many astrophysical calculations, it has
proved to be difficult to obtain an accurate value for it. This is primarily due
to the requirement for accurate distance measurements for cosmologically distant
objects. Hubble's first measurement of Hq = 500 kms~l Mpc~l resulted from his
underestimation of galaxy distances. Indeed, it is only in the past few years that
the various methods of measuring the Hubble constant have begun to produce a

consistent value of Ho = 72±8fcms_1 Mpc~l (Freedman (2000), Freedman et al.
(2000)).

The most common method of estimating distances to relatively nearby objects
makes use of standard candles. These are objects whose luminosity is either con¬
stant or related to some property which is independent of distance, e.g., colour or
period of oscillation. The objects used as standard candles are calibrated against
objects whose distance can be calculated from other observations. Clearly the
accuracy of such a method depends on the accuracy of the calibration which, in
turn, depends on understanding the underlying physical processes in the standard
candle.

Among the most commonly used standard candles are Cepheid variables (Tanvir,
1999). These are variable stars whose periods generally vary between 2 to 100
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days. The period of a Cepheid variable is directly related to its luminosity, provid¬
ing a distant-independent method of obtaining its absolute luminosity. Cepheid
variables are considered to provide a good distance indicator out to a range of
around 20 Mpc. Beyond that, brighter objects, such as Type la supernovae or

entire galaxies are required.

Type la supernovae are believed to result from the explosion of a carbon-oxygen
white dwarf. Their high luminosity - comparable to that of moderately bright
galaxies - means that they can be observed at far greater distances than can

Cepheid variables (Branch, 1998). Their use as standard candles derives from
the fact that they have a narrow spread of maximum luminosities and there
appears to be a close relationship between the maximum luminosity and the rate
at which the luminosity drops from this maximum. Currently the evidence for this
relationship is purely empirical, as the mechanism which triggers the supernovae

has yet to be established (Hillebrandt & Niemeyer, 2000). A further discussion
of Type la supernovae as standard candles can be found in Chapter 5.

Techniques have also been developed for using galaxies as standard candles. The
Tully-Fisher relation (Tully & Fisher, 1977) for spiral galaxies gives a correlation
between the total face-on luminosity and the maximum rotational velocity of the
galaxy. The relationship derives from the fact that more massive - and therefore
more luminous - galaxies have to rotate more rapidly in order to support them¬
selves. As rotation rate is independent of a galaxy's distance, it can be used to
obtain a measurement of the absolute luminosity (Sakai et al., 2000). A similar
relationship exists for elliptical galaxies between the stellar velocity dispersion
and luminosity (Faber & Jackson, 1976).
The methods for measuring H0 outlined above are all indirect methods in that
they rely on accurate calibration of the effect being measured. In contrast, grav¬
itational lensing provides a method of measuring H0 directly. Different images
of the single source have the same underlying variations in luminosity. However,
the difference in the paths of light in each image can lead to the apparent varia¬
tions in luminosity being offset relative to other images. This time delay between
different images can be measured to give a geometric estimation of Ho (see §1.2.1
for further details of this method).
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The density of matter in the Universe

The first estimates of the amount of matter in the universe (Hubble, 1926) were

based on counts of galaxies and estimates of their mass derived from the grav¬

itational energy required to keep the stars and gas within the galaxy. It was,

however, obvious that this method failed to take into account matter outside the
luminous parts of galaxies. Within a decade of Hubble's initial estimates, Zwicky
(1933) and Smith (1936) measured of the velocities of galaxies within the Coma
and Virgo clusters. These measurements allowed them to estimate the amount
of mass required to gravitationally bind the galaxies moving at the observed ve¬

locity dispersions. Their results showed that if the Coma and Virgo clusters are

gravitationally bound then their masses are about two orders of magnitude larger
than can be accounted for by summing the luminous mass in their constituent
galaxies. To account for the observations galaxies must contain dark matter in
addition to the observed luminous matter.

Smith (1936) suggested that a more accurate estimate of the mass of a galaxy
could be obtained by measuring the motion of material in the galactic halo. If a
galaxy is in virial equilibrium then the mass within a distance r of the centre of
the galaxy, M(r), is related to its rotational velocity, v, as:

v2r
M(r) oc —

The rotational velocity can be measured from the 21cm emission lines in HI
regions. If most of the mass in the galaxy is associated with its luminous region,
then M(r) would be constant and v2 oc 1/r outside this region. In practice this
is not the case: many galaxies show almost flat rotation curves (Trimble, 1987)
where v constant.

Evidence for dark matter in elliptical galaxies comes from X-ray emitting hot gas.
Fabricant & Gorenstein (1983) and Stewart et al. (1984) mapped out detailed
profiles of the temperature and density of the hot X-ray emitting gas regions in
M87. These measurements can be used to determine the overall mass distribution

in the galaxy necessary to bind the hot gas. Again, the total mass for the galaxy
found by these measurements is far greater than the mass which can be directly
observed. This discrepancy has been confirmed by similar estimates made for
other elliptical galaxies.

Mass estimates for clusters of galaxies can also be made using gravitational lensing
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techniques. As discussed in §1.2.1, distribution in the shapes of images of lensed
galaxies can be used to produce a two-dimensional mass map for the cluster.
As with the earlier work of Zwicky (1933) and Smith (1936), such mass maps

show that clusters contain significantly more mass than can be accounted for by
summing the mass estimates for individual galaxies.

On even larger scales, recent work on high redshift Type la supernovae and the
results from the Boomerang and Maxima experiments have constrained the value
for Qm to values far larger than can be accounted for by matter which can be
directly observed. Both these experiments are discussed in more detail in the
next section.

Estimates for values of Om can be also be obtained from galaxy redshift surveys.
Such surveys are distorted by the peculiar velocities of the galaxies along the line
of sight. On large scales, where linear theory can be applied, the amplitude of
these distortions can be used to measure the linear redshift distortion parameter,

/3 (see Hamilton (1996)). /3 is related to through the equation:

where b is the light-to-mass bias and provides an estimate of how closely the mass

distribution follows the light distribution. Recent results based on the IRAS Point
Source Catalog Redshift Survey (PSCz) give values of f3 of 0.411q'i2 (Hamilton
et a/., 2000) and 0.4 ± 0.1 (Ballinger et al., 2000).

Having considered the observational evidence for the existence of dark matter in
the universe, the obvious question becomes: What does dark matter consist of?
The simplest answer is that it is baryonic material which is in some form other
than visible stars. A number of candidates for dark baryonic matter, such as

snowball-like objects made of hydrogen gas and hot and cold gas, were ruled out

by Hegyi & Olive (1986) as they were either unstable or ruled out by observational
evidence. The remaining possible candidates for baryonic dark matter can be
divided into three main categories:

• Very faint stars. Estimates of the amount of baryonic matter in stars are

based on counts of visible objects. Clearly there is some lower limit on the
luminosity of observable objects below which they are not bright enough to
be seen. Whether or not such 'invisible' stars contribute significantly to the
amount of dark matter within a galaxy halo depends on the distribution
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of mass in stars. Richer & Fahlmann (1992) found that, while the number
of stars increases for smaller masses, there appears to be an insufficient
amount of mass in this form to account, on its own, for the amount of dark
matter implied by rotation curves.

• Sub-stellar objects with insufficient mass for fusion to occur. In order for
fusion to occur, a star must have a mass of greater than 0.08 ± 0.01M®
(Peacock, 1999). If its mass is smaller than this limit, then an object can
only generate energy gravitationally. Such objects are known as brown
dwarfs. Limits on the amount of matter contained in brown dwarfs have
been obtained from microlensing surveys. The results of these surveys are

discussed in §1.3.

• Stellar remnants. Objects such as white dwarfs, neutron stars and black
holes are formed at the end of the life-cycle of massive stellar objects. When
stars leave the main sequence they eject heavy elements. Thus, the exis¬
tence of a large population of stellar remnants would effect the chemical
composition of the inter-stellar medium and of new stars.

A major constraint on the amount of dark matter which could be in any of
the forms outlined above comes from Big Bang Nucleosynthesis (BBN). Nucle¬
osynthesis arguments set a limit on the baryon density of O# ~ 0.03 — 0.05 for
Hq = 70 km s"1 Mpc~x (Olive et al., 2000). However, the observational evidence
suggests that is at least 0.2 (Peacock, 1999). Thus some form of non-baryonic
matter is required to bridge the difference between the amount of baryonic matter
allowed by BBN arguments and the observational evidence for Dm-

A number of non-baryonic particles have been proposed. These range from mas¬

sive neutrinos to more exotic particles such as axions. Non-baryonic particles can

be grouped according to when they decouple. Decoupling occurs when a particle's
mean free path exceeds the horizon size at that time. This results in the parti¬
cle's abundance being frozen at its thermal equilibrium value at the time when
decoupling occurred. Non-baryonic particles can be divided into three general
classes:

• Hot Dark Matter (HDM). In this case particles decouple when they are still
relativistic and their number density is similar to that of photons. They are
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called hot to denote their large velocities. The velocities of non-baryonic
particles in HDM models has implications for the formation of structure
in the Universe. High velocity particles tend to stream towards under-
dense regions resulting in a more uniform density. This results in structure

forming from the top down.

• Warm Dark Matter (WDM). In the WDM model particles are still rela-
tivistic when they decouple but they decouple much earlier. This allows
the relative number of photons to be increased by particle interactions.
That larger proportion of photons results in non-baryonic particles with
mass roughly an order of magnitude higher than for HDM and a number
density roughly an order of magnitude lower. More density fluctuations
survive than within the HDM model and thus structure formation begins
with smaller structures.

• Cold Dark Matter (CDM). Within CDM models the non-baryonic particles
decouple while non-relativistic and streaming of particles into low density
regions no longer occurs. This means that structure formation can occur

from the bottom up with the initial formation of small structures which can

then merge to form larger ones.

A number of potential new particles have been put forward as possible candidates
for non-baryonic dark matter. These can be combined with the models outlined
above (or some combination of these models) to mimic a structure formation
hierarchy which matches current observations. Discussions about the different
particles proposed as candidates for non-baryonic dark matter are likely to con¬

tinue until their existence (or absence) can be established experimentally.

A cosmological population of compact objects such as primordial black holes
(PBHs) could provide an alternative solution to the question of the nature of
non-baryonic dark matter. PBHs can be formed during the quark-hadron phase
transition when dense regions collapse (Crawford & Schramm, 1982). While
PBHs are made of baryonic material, they are formed before nucleosynthesis
occurs. This means that they are exempt from the limits placed on the amount
of baryonic material in the Universe.
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The Cosmological Constant

The cosmological constant was originally introduced by Einstein in order to obtain
a steady state solution to the field equation. However, once the expansion of the
Universe had been established it fell out of favour, with Einstein himself famously
describing it as "the biggest blunder of my life."

Over the last few years, the cosmological constant has again re-appeared as a

means of reconciling theory with observation. The motivations for re-introducing
the cosmological constant are outlined in Lahav et al. (1991):

• The value for the age of the Universe for Ha = 0 models with Ho ~

70 kms~l Mpc~l is less than the age of globular clusters (Reid, 1997). For
a fixed value of Hat, increasing Ha increases the age of the Universe.

• The theory of inflation requires that k = 0 in Equation 1.7. Observational
evidence (Perlmutter et al. (1999), Riess et al. (1998) and Susperregi (2001))
seems to indicate that Hat fx 0.3. Thus a positive value for Ha is necessary

to fit with inflation's k — 0 requirement.

• The number counts of galaxies at high redshift are incompatible with Ha/ =
1. As discussed in detail in Carroll et al. (1992), the variation of spatial
volume with redshift varies considerably with Ha-

• 'Standard' CDM models with Ha/ = 1 produce substantially less large scale
structure than is indicated by observations (Efstathiou et al., 1990).

Thus, there are both observational and theoretical motives for including a positive
value of Ha in cosmological models. In addition, there exist a number of methods
for estimating the value of Ha: these include high redshift supernovae and mea¬

surements of the angular power spectrum of the Cosmic Microwave Background
(CMB).

• High redshift supernovae
The idea of using high redshift Type la supernovae to constrain the values
of Ha/ and Ha was first put forward by Goobar & Perlmutter (1995). The
technique is based on the relationship between the absolute magnitude, M,
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and the apparent magnitude, m. These two quantities are related through
the luminosity distance, <2/. The relationship can be expressed as:

m = M + 5 log di + K + 25

where I< is a correction due to the difference in wavelengths between the
emitted and detected photons from the receding source. The luminosity
distance gives the relation between the rest frame luminosity of an object,
C, and its apparent flux, T, (Carroll et al., 1992):

c y/2
47tTJ

di is related to the angular diameter distance, dA, through the relation
di = (I + z)2dA (see Appendix A for a derivation of the angular diameter
distance, dA). The luminosity distance can be written in terms of VIm and
0A:

di =

where

(1 + z) ■

-smn

y/Wk ViiSi rJo (1+2)

sinh if k = — 1

sinn = ( 0 if k = 0
sin if k = 1

Perlmutter et al. (1997) and Perlmutter et al. (1999) analysed the light
curves from 42 Type la supernovae at redshifts of 0.18 < z < 0.86. This
data was combined with results from the low-redshift Calan/Tololo survey

(Hamuy et al., 1996) to obtain a value for Qm of 0.28 for 12m + a = 1
models. Similar results were obtained by Riess et al. (1998) for a set of 16
Type la supernovae at redshifts of 0.16 < z < 0.62.

• Angular power spectrum of the CMB
Primordial fluctuations in the early universe show up as anisotropics in the
CMB. Density perturbations at the time of last scattering cause photons in
high density regions to expend more energy escaping from deeper potential
wells than photons in low density areas. This is observed as fluctuations
in the temperature of the CMB. These fluctuations are thought to have
grown through gravitational instability to form the large scale structure
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seen today. Experiments such as Boomerang and Maxima measured the
CMB anisotropics at a resolution of 10' (Mauskopf et al. (2000) and Hanany
et al. (2000)).

The results from these experiments were used to generate a power spectrum
for the CMB. Sets of theoretical spectra were generated for a range of values
of the various cosmological parameters. These sets were then compared with
the experimental spectrum by evaluating a likelihood function for each of
the model power spectra. This evaluation gives a measure of the probability
of a particular set of model parameters being correct given the experimental
data (Melchiorri et al. (2000), Balbi et al. (2000)).

The results from Boomerang and Maxima combined with earlier data from
COBE/DMR (Bennett et al., 1996) give fIm = 0.49 ± 0.13 and Ra —

0.631q!o9 (Jaffe et al., 2000). When this CMB data is combined with the
Type la supernova results discussed above they give a combined value of
RM = 0.37 ± 0.07 and Ra = 0.71 ± 0.05 (Jaffe et al., 2000).

1.2 Gravitational Lensing

There are a number of different observational techniques used to investigate the
distribution ofmatter within the Universe. However many of them, such as X-ray
emission from hot gas, only deal with matter in certain specific forms. Gravita¬
tional lensing provides a method of directly investigating the gravitational poten¬
tial of matter. As such it is independent of the properties of matter. This feature
has led to it becoming a widely used tool for understanding the fundamental
parameters of the Universe.

Consider an observer looking at a distant quasar through a telescope. Light
from the quasar may be bent by the gravitational potential of a galaxy situated
along the line of sight between the observer and the quasar. This can result in the
observer seeing multiple images of the quasar (see Figure 1.1). This effect is known
as gravitational lensing with the intervening galaxy acting as a gravitational lens.

The theory of gravitational lensing remained an intellectual curiosity until the
discovery in 1979 of the double lensed quasar Q0957+561 by Walsh et al. (1979).
This lensing system consists of two images, A and B with a redshift of 1.41,
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Figure 1.1: Light from a distant quasar is bent by the intervening galaxy.

separated by 6". This discovery showed that gravitational lenses existed and
could be observed. Since then lensing has become one of the most important
tools for understanding the Universe.

1.2.1 Applications of Gravitational Lensing

As mentioned above, the gravitational lensing effect depends on the gravitational
potential of matter and is independent of the form of the matter. These proper¬

ties have made lensing an effective tool for increasing our understanding of the
Universe. This section outlines some of the applications of lensing.

For general reviews of gravitational lensing and its applications, see Blandford
& Narayan (1992), Refsdal & Surdej (1994), Wu (1996), Wambsganss (1998)
and Claeskens & Surdej (2000). Schneider et al. (1993) set out the theoretical
background for gravitational lensing.

Modelling individual lensing systems

Observations of lensed quasars can be used to determine the mass of the lensing
galaxy. However, it is important to establish how objects can be identified as
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images of a single source rather than simply quasars which happen to be located
close to each other. Wambsganss (1998) lists five criteria which can be used to
establish if objects are lensed:

• There are two or more point-like images of similar optical colour.

• The redshifts of the images are identical or very similar.

• The images' spectra are also identical or very similar.

• A lensing object can be identified between the images. The potential lens
should have a much smaller redshift than the images.

• The images should have similar patterns of variability, although there may

be a lag between the images.

Most identified lensing systems meet only a subset of these criteria. There are

a number of reasons why not all the criteria cannot be met. For example, dust
absorption may affect the spectra of one of the images or the lensing galaxy may
be too faint to observe. A list of ~ 60 lensing candidates together with their
observational parameters and theoretical models has been made available by the
CASTLES survey (Kochanek et al., 1999).

Once the images have been identified as part of a lensing system, the mass of the
lensing galaxy can be estimated. In the case where a source is located directly
behind a spherically symmetric deflector, a ring shaped image, known as the
Einstein ring, will be formed (see §2.1.1). The radius of the Einstein ring, Og,
gives a direct measurement of the amount of mass located within the Einstein
radius. Even in cases where the lensing system is not sufficiently aligned to have
an Einstein ring as an image, 9e remains a fundamental parameter of the lensing
system and its value can be estimated from the position of the images.

The small size of quasars makes it highly unlikely that there will be sufficient
alignment within a lensing system to produce an Einstein ring image. However,
more extended radio sources have produced Einstein rings. The first radio ring,
MG 1131+0456 (Hewitt et al., 1988), has a diameter of around 1.75 arcsec. The
source has been identified as a radio lobe at 2 = 1.13 with the lens a galaxy at
2 = 0.85. A number of radio rings have now been found (Langston et al. (1989),
Jauncey et al. (1991), King et al. (1998) and Kochanek et al. (2000)), some
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with optical or infrared counterparts. Many of the sources identified have both
compact and extended components. Some of the compact sources are variable -

providing a means to measure time delay and the Hubble constant H0 (see below).

Number Counts

As well as providing information on the mass of the lensing galaxy, the distribu¬
tion of lensing systems and their observational parameters can be used to provide
information on cosmological parameters.

For example, the frequency of lensing events can be used to constrain Ha/ and
fl\. The angular diameter distance to the source and lens depends on both Ha/
and fl\. For an object at a particular redshift, lowering the value of Hm increases
the distance to the object, while lower values of Ha decrease the distance. Thus
the volume in which lensing can occur varies with Ha/ and Ha-

The first theoretical study of the distribution of gravitational lenses was carried
out by Turner et al. (1984). Fukugita et al. (1992) extended this work to in¬
clude cosmologies with a non-zero cosmological constant. The first comparisons
between theory and observation were made by Maoz et al. (1993), Surdej et al.
(1993) and Kochanek (1993) who all found that roughly 1% of all quasar images
have been lensed. However, the small number of lensing systems found made
it difficult to extract values for Ha/ and Ha- For example, Maoz et al. (1993)
concluded that the frequency of lensing events is inconsistent with large values of
Ha; Kochanek (1993) suggests an upper bound for Ha of between 0.45 — 0.8; and
Surdej et al. (1993) felt that it was hazardous to use the data available at that
time to estimate Ha-

More recent surveys, such as CLASS (Browne & Myers, 2000), JVAS (King et al.,
1999) and CASTLE (Falco et al., 1999) have increased the number of confirmed
gravitational lenses. Results from these surveys give lower and upper bounds on

Ha — Ha/ of —1.78 and 0.27 respectively (Helbig et al., 1999). For a flat universe,
this leads to an upper limit on Ha of 0.64, close to the values obtained from high
redshift supernovae and CMB anisotropics.
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Measuring the Hubble constant H0

The idea of using gravitational lensing systems to measure Ho was first put for¬
ward by Refsdal (1964). Refsdal realised that the time delay between the two
lensed images of a variable source is proportional to the absolute scale of the lens¬
ing system. Thus, the time delay provides an independent method of measuring
Ho which does not rely on standard candles.

In principle, Ho can be determined simply by monitoring the variation in appar¬

ent luminosity between images over some period of time. If the monitoring period
is longer than the time delay it should be possible to obtain an accurate mea¬

surement of the time delay. However, it is not always straightforward to obtain
good quality, comparable light curves for different images. The light curves are

discretely sampled and different images may be sampled at different intervals. In
addition microlensing by individual stars within the lensing galaxies (see §1.3)
can cause additional variations in the apparent luminosity. One of the most in¬
tensively studied gravitational lensing systems is the double lens Q0957+561 A,B,
the 'original' lensing system discovered in 1979. This system has been extensively
monitored for over 20 years. However, it was only after the observation that an
unusually distinctive event in image A was repeated in image B that a value for
the time delay of 417 days was established (Kundic et a/., 1997).

Even after the time delay for a system has been established, the value obtained
for Ho depends on the lensing model used. While the error due to the lack of
firm values for Om and Ha is not large for source and lens redshifts of less than
~ 2.0 and ~ 0.5 respectively (Claeskens & Surdej, 2000), the requirement of
accurate knowledge of the lens mass distribution can difficult to fulfil. Frequently
a number of different lens models will reproduce the observed parameters of the
lensing system but result in different values of Ho.

While there are a number of difficulties in using gravitational lensing systems
to measure Ho, the method has a number of advantages over the other methods
outlined in §1.1.2:

• The lensing systems are at high enough redshifts that the effects of peculiar
velocity can be ignored.

• Gravitational lensing provides an independent measure of Ho- Other meth¬
ods which rely on distance ladders to get to high redshift are prone to errors
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in calibration.

• It is based on fundamental physics. Other methods rely on the correct
models for standard candles.

The most promising method of obtaining a value of Ho from lensing systems
comes from monitoring lensed radio sources. Radio sources have a more extended
structure than quasar sources, permitting the observation of complete and partial
Einstein rings. The structure observed in the images of radio sources provides
additional information on the mass distribution of the lensing system, helping
to constrain the lensing model. Also, the images of the radio sources so far
studied have smaller separations than those obtained from quasar sources and
thus smaller time delays. As long as the source varies intrinsically on a smaller
timescale than the time delay, such systems should require less monitoring to
obtain a value for the time delay. Finally, the size of the radio sources makes
it unlikely that microlensing will affect the light curves. Thus, the light curves
obtained from different radio images should be in reasonable agreement.

Current estimates of Ho from lensing include 69t}g km s_1 Mpc~l from B0218+357
(Biggs et al., 1999), 601^2 kms~l Mpc~l from B1600+434 (Koopmans et ai,
2000) and 63tg km s_1 Mpc~l from B1608+656 (Koopmans & Fassnacht, 1999)
with f\m = 0.3 and Oa = 0.7. These values are in close agreement with those
obtained using standard candles (see §1.1.2).

Lensing in clusters

The existence of giant arcs in galaxy clusters was first reported by Soucail et al.
(1987) and Lynds &; Petrosian (1986). The idea that these arcs could be the
images of background galaxies lensed by the foreground cluster was put forward
by Paczyhski (1987). Subsequent measurements of the redshifts of both the arc

and the galaxy cluster (Soucail et al., 1988) confirmed that the redshift of the arc

was significantly higher than the cluster.

To make an effective lens, a cluster of galaxies must be sufficiently centrally con¬

centrated to produce critical curves. Prior to the discovery of giant arcs it had
been thought that the cores of clusters were not sufficiently dense to produce
critical curves. Such arcs lie close to the critical curve which marks the Einstein

ring and can be used to estimate the value of 9#. As with single galaxy lensing



1.2: Gravitational Lensing 37

systems, if the redshifts of the cluster and the arc are known, a good approx¬

imation should be obtainable for the mass of the core of the cluster. Initially,
estimates of the central mass of clusters derived from X-ray observations proved
to be 2-3 times smaller than the gravitational lensing results suggest (Miralda-
Escude &; Babul, 1995). However, these discrepancies have been resolved with
the development of more complex models which account for the effects of cooling
flows on X-ray data (Allen, 1998).

While giant arcs can be used to measure the core mass of a cluster, the distribution
of weakly lensed galaxies can be used to construct a detailed map of the mass

distribution of the cluster. These weakly lensed galaxies, commonly referred to as

arclets, were first identified by Fort et al. (1988) who noticed a number of faint,
elongated objects in a study of A370. While a change in shape might not be
obvious for an individual arclet, the effect of the weak lensing on each object is
not independent - it produces a coherent deformation over a number of objects.
This makes it possible to measure the effect over a group of arclets. A technique
to use the correlation in the ellipticity and orientation of cluster galaxies to map

the dark matter distribution of the cluster was put forward by Tyson et al. (1990)
and Kaiser & Squires (1993). Since then, weak lensing has been used to estimate
the mass distributions of a number of clusters (see, for example Bonnet et al.
(1994), Broadhurst (1995), Smail et al. (1997a) and Clowe et al. (2000)). A
review of weak lensing and its applications can be found in Mellier (1999).

In addition to providing a direct measurement of the mass of a cluster, the struc¬
ture of the arcs can also be used to study the structure of a high redshift source
galaxy. Galaxies lying close to critical curves along our line of sight will be
strongly magnified, making it possible to observe galaxies which would otherwise
be too faint to see. Thus, the study of high redshift lensed galaxies can provide
important information on the formation and evolution of galaxies (Smail et al.
(1997b), Pello et al. (1999)).

Weak Lensing by Large Scale Structure

Understanding the large scale distribution of matter in the universe is a major
goal for cosmology. However, most observational techniques only provide mea¬

surements for luminous matter, although it is known that the majority of the
matter in the universe is in some form of dark matter. Gravitational lensing
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provides a method of directly measuring the gravitational effect of both luminous
and dark matter. This idea - that the large scale structure of the universe could
cause distortions in the images of galaxies - was first put forward by Kristian &;
Sachs (1966) and Gunn (1967).

Kaiser (1992) showed that the power spectrum of the weak lensing distortion
can be directly related to the mass fluctuation power spectrum. This means that
weak lensing can provide a direct measurement of the mass fluctuations predicted
by different cosmological models without making any assumptions about their
origins. However, the effect of lensing by large scale structure is very weak and
a large number of galaxies have to be imaged with great care before a coherent
effect can be observed.

The first theoretical predictions of the statistical distribution of distortions ex¬

pected from the large scale structure were carried out by Jaroszynski et al. (1990),
Bartelmann Sz Schneider (1991), Blandford et al. (1991) and Miralda-Escude
(1991) for an Einstein-de Sitter universe. These results were generalised for dif¬
ferent cosmological models by Villumsen (1996). More recently, the increase in
sophistication of N-body simulations has resulted in more complex models of dark
matter distribution which can be used to simulate the effects of weak lensing (for
example Wambsganss et al. (1998) and Jain et al. (2000)).
The weakness of distortions caused by lensing by the large scale structure makes
the effect susceptible to noise and observational distortions. Nevertheless, recent
observational surveys have detected the effects of weak lensing (Bacon et al. (2000)
and Van Waerbeke et al. (2000)). These results seem to be in agreement with the
current popular cosmological model with 12m = 0.3 and Ha = 0.7. Results from
future, larger surveys should improve the constraints on the cosmological models.

1.3 Microlensing

The images of lensed quasars were discussed in the previous section as though
they resulted from lensing by a smooth distribution ofmatter. However, we know
that this is not the case and that galaxies consist, in part at least, of a collection
of compact objects such as stars, planets and brown dwarfs. In addition, the
typical separation of the quasar image from the centre of the lensing galaxy is
in the order of 1", smaller than the radius of a typical lensing galaxy. Thus the



1.3: Microlensing 39

light from the quasar image must pass through the edge of the galaxy. As the
separation of the images formed by individual stars is proportional to the mass of
the star, for a typical star the image separation would be ~ 10~6" - too small to
resolve. However, the presence of a number of such objects, each moving relative
to the quasar image, leads to a variation of the apparent brightness of the quasar

images with time. This effect, first described by Chang & Refsdal (1979), is
known as microlensing. The microlensing objects were christened MACHOs1 by
Griest (1991) as an alternative to the WIMP2 class of dark matter.

Variations in the apparent brightness of quasar images caused by microlensing
are independent of the intrinsic variation of the quasar. In addition, as light
rays from different images pass through different regions of the lensing galaxy,
the effects of microlensing will be different in each image. As discussed in the
previous section, microlensing can cause difficulties in measuring the time delay
in the intrinsic variation of the source quasar between different images.

Gott (1981) suggested using microlensing of quasar images to study the popula¬
tion of the lensing galaxy's halo. The recent agreement on a time delay of 417 days
for the lensed quasar 0957+561 A,B (Kundic et al., 1997) has enabled the intrin¬
sic variability of the quasar source to be subtracted from the image variability to
produce microlensing lightcurves. These results have been used to investigate the
mass and number density of MACHOs. For example, Refsdal et al. (2000) looked
at a number of different microlensing population models. They found that, for
cases with between 100% and 10% of the halo mass modelled as MACHOs, lens
masses could only be constrained to the range of Mg6 to 5M0. Wambsganss et al.
(2000) used shorter time scale data for Q0957+561 A,B to exclude MACHOs in
the mass range Mq to Mg2.
The idea that it might be possible to measure microlensing events caused by
lenses within our own galaxy was put forward by Paczynski (1986). He suggested
that it would be possible to investigate the population of MACHOs in the Milky
Way halo by monitoring the variation in the apparent brightness of stars in the
Large Magellanic Cloud (LMC). If such a population exists, a MACHO's critical
curve should intermittently pass close to the line of sight to a background star,
causing a variation in that star's apparent brightness on a timescale which is
dependent on the mass of the MACHO. Such events have a number of features

1 Massive Astrophysical Compact Halo Objects
2 Weakly Interacting Massive Particle
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which allow them to be distinguished from variable stars:

• The density of MACHO objects in the galactic halo is such that there should
only be one microlensing event observed in any given star's light curve. In
contrast, the light curves of variable stars vary periodically.

• Gravitational lensing is independent of wavelength. Thus the colour of the
star should not change during the microlensing event. Variable stars, in
contrast, tend to change colour as their temperature changes during their
period of variation.

• Microlensing events have characteristic shapes with sharp peaks and broad
wings (see Figure 1.2).

t/t,

Figure 1.2: Variation in magnification for a microlensing event.

In addition to showing the existence of compact objects in the galactic halo,
measurements of the characteristics of microlensing events can be compared with
predictions from different models of the galaxy. The number of microlensing
events observed can also be used to measure the optical depth of microlensing
through different parts of the Milky Way. The optical depth gives the mean

number of lenses where the line of sight between observer and background source
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passes within an Einstein radius of a lens. Thus it provides a measurement of
the density of lenses along a particular line of sight. The theory and practice of
microlensing studies within the Milky Way and neighbouring galaxies is reviewed
in Paczynski (1996)

Paczyiiski's proposal led to the MACHO3, EROS4 and OGLE5 observational sur¬
veys being instigated in an attempt to identify microlensing events in the light
curves of background stars in the LMC and towards the galactic bulge. The
first microlensing events were reported by Alcock et al. (1993) (MACHO) and
Aubourg et al. (1993) (EROS) towards the LMC and by Udalski et al. (1993)
(OGLE) towards the galactic bulge. These were followed by the first detection
of microlensing by a binary system (Udalski et al., 1994) and detections towards
the Small Magellanic Cloud (SMC) (Alcock et al., 1997) and in the Galactic disk
(Derue et al., 1999).

In addition, a number of other collaborations have been set up: AGAPE6 are

trying to detect microlensing events towards the Andromeda galaxy; PLANET7
are looking for "wiggles" in the light curves of the microlensing events caused by
planets orbiting the lens; DUO8 are monitoring microlensing events towards the
Galactic bulge.

The MACHO consortium have now looked at 11.9 million stars in the LMC and

found between 13 and 17 microlensing events (Alcock et al., 2000). From their
observations they estimate the optical depth towards the LMC to be 1.2^0)3 x 10~'
with an additional systematic error of around 20% to 30%. From this data they
find the best fit model predicts around 20% of the dark matter content of the
Galactic halo in the form of MACHOs in the range 0.15 — O.9M0. The EROS
collaboration found 3 microlensing events towards the LMC and 1 towards the
SMC. Their results constrain the amount of mass in the range 1O~7M0 —4M0 and,
in particular, exclude the possibility that the Galactic halo consists of more than
40% MACHOs with a mass of up to 1M0 (Lasserre et al., 2000). Although the
small number of microlensing events detected make analysis of the data prone to

,!http : //wwwmacho . mcmaster. ca/
4Experience de Recherche d'Objets Sombres, http://www.lal.in2p3.fr/recherche/eros
5Optical Gravitational Lensing Experiment, http://bulge.princeton.edu/~ogle/
11 Andromeda Galaxy Amplified Pixel Experiment,

http://cdfinfo.in2p3.fr/Experiences/AGAPE/
7Probing Lensing Anomalies NETwork, http://www.astro.rug.nl/~planet/
8Disk Unseen Objects
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statistical errors, the results from both MACHO and EROS collaborations agree

surprisingly well. In particular, both sets of results rule out the possibility that
the Milky Way halo consists entirely of MACHOs. Thus, some other form of dark
matter is still required to explain observed rotation curves.

Such microlensing search programmes have provided direct evidence that mi-
crolensing can be observed in the lightcurves of background objects. The data
from these searches has been used to constrain the total mass and the mass range

of the lensing objects within our galaxy. This thesis investigates whether sim¬
ilar techniques can be used to determine whether a cosmological population of
primordial black holes could be detected via microlensing of background objects
and whether this could be used to determine the fraction of Hat which exists in
this form.

1.4 Microlensing by a cosmological population
of compact objects

As discussed in §1.1.2, it is not yet possible to observationally account for all the
mass measured in the Universe. One possible explanation is the existence of a
population of compact objects such as primordial black holes (PBHs). Such a

population, distributed on a cosmological scale, could account for a significant
proportion of the so-called dark matter.

The possibility of using gravitational lensing to detect a cosmological population
of compact objects was first proposed by Press & Gunn (1973). They considered
the possibility of detecting such objects by looking foi image splitting in high
redshift quasars. A lensing mass of 104M® would result in the image being split
by 10 4 arcsec and would be detectable by radio VLBI. They considered a

number of different values of Hat finding that the lensing effect was small for
Hm 1 due to the corresponding low probability of lenses along the line of sight
to the quasar. The lensing effect becomes larger as Ha/ increases, with practically
every line of sight to z ~ 1 being lensed in an Qm = 1 universe. In particular,
they showed that for fixed values of Ha/ the lensing effect of compact objects in
a particular mass range is directly proportional to the density of objects in that
mass range. They concluded that it should be possible to constrain the density
of compact objects with a mass greater than ~ 104M® in this way.
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Canizares (1982) looked at the effect of a cosmological population of compact
objects in the mass range 0.01 < M < 105M& on the properties of high redshift
quasars. For this range of masses the quasar can be treated as extended sources

and lensing effects should show up through asymmetries in line profiles and vari¬
ations in the line-to-continuum ratios as well as producing large-amplitude vari¬
ations in flux. Canizares concludes that the widespread absence of such effects
from observations excludes a density of (1m = 1 in such objects.

The aim of this thesis is to investigate the effect of a population of compact
objects on both the long term variability of the apparent luminosity of quasars and
on the on-going efforts to measure cosmological parameters using high redshift
supernovae.

1.4.1 The long term variability of quasars

As discussed in §1.3, it is now generally accepted that some quasar variability is
caused by microlensing. There have been a number of investigations into this ef¬
fect (see Kayser et al. (1986), Schneider & Weiss (1987), Refsdal & Stabell (1991),
Refsdal et al. (2000) and Wambsganss et al. (2000) for examples). Such studies
have, however, concentrated on the short-term variation caused by microlensing
effects in a lensing galaxy. In addition to the short-term variation in the apparent
luminosity of quasars there is also a longer term variation, with a period of ~ 10
years. The short-term variability is typically accompanied by other phenomena
such as radio emission which indicates that the variability of the apparent lumi¬
nosity is linked to the intrinsic properties of quasars. The long-term variability,
however, is not linked with such phenomena and its origin is less well understood
(Rees, 1984).
The idea that the long-term variation of the apparent brightness of quasars was

due to lensing by a population of PBHs was put forward by Hawkins (1993). This
proposal was based analysis of the data from a long term monitoring program of
~ 300 quasars (Veron h Hawkins, 1995). Hawkins (1996) identified a number
of features which were difficult to interpret in terms of an intrinsic mechanism.
These features, discussed in detail in Hawkins (1996), include:

• The timescale of the long-term variation appears to be independent of red-
shift. If the variation were due to some intrinsic property of the quasar then
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it would be expected that time dilation effects would cause the timescale
of the variation to increase with redshift by a factor of (1 + z). However, if
the effect were due to microlensing, the timescale would increase with the
redshift of the lens, not the quasar. It has been argued that as the most
effective lenses are at a redshift of z m 0.5 (Turner et a/., 1984), one would
not expect to see a significant time dilation in the quasar survey. However,
lensing can be effective over a wide range of redshifts (Turner et al., 1984)
so some change in timescale with quasar redshift would be expected.

An investigation into the effect of microlensing on the relationship between
redshift and variability was carried out by Alexander (1995). Although
he concluded that his results ruled out microlensing by a uniform distri¬
bution of microlenses, this was based on fitting to a reported decrease in
the timescale with redshift (Hawkins, 1993). More recent results (Hawkins,
1996) reduce the significance of this decrease to the point where it may be
possible to fit Alexander's model to the observed data.

Baganoff & Malkan (1995) proposed a model in which the lack of depen¬
dence of the timescale of variability on redshift could be explained in terms
of intrinsic properties of the quasar. This model results in the timescale
of the variations increasing with decreasing optical wavelength, thus can¬

celling out the effect of time dilation at high redshift. As pointed out in
Hawkins & Taylor (1997) such an model would also result in a change in
the structure of quasar lightcurves with wavelength. However, as discussed
below, the majority lightcurves for the quasar samples are achromatic.

• There is evidence of a correlation between the amplitude of the variation
and the luminosity but not between the amplitude and redshift. Attempts to
model quasar variability either through propagation of instabilities across

a quasar accretion disk or through supernovae powered quasars do not re¬

produce the observed correlations with luminosity and redshift (Hawkins,
2000). For the microlensing model, the lightcurves are considered to be
a non-linear combination of the effects of the individual lenses. Schneider

& Weiss (1987) showed that with microlensing by a large optical density
of lenses, even though the overall magnification is large, the variation in
magnification is generally small, ~ 0.5 magnitudes. This is similar to the
observed data (see Hawkins (2000)).



1.4: Microlensing by a cosmological population of compact objects 45

• Nearby quasars do not appear to exhibit long-term variation. For microlens¬
ing to have a significant effect there must be a reasonable density of lenses.
For low redshift quasars, the probability of lensing would decrease and the
effect of microlensing on the luminosity of the quasar would become pro¬

gressively smaller. The survey data shows that for quasars with 2 < 0.3
there is little evidence of variation on timescales longer than a year. As the
redshift increases to z > 0.5, the long-term variation becomes increasingly
clear. This is about the same redshift at which any microlensing effects
would become apparent.

• There is a statistical symmetry between the rising and falling parts of the
light curves. The light curves of individual microlensing events are ex¬

tremely symmetrical, see Figure 1.2. While such strong symmetry would
not be expected in the individual features of lightcurves for objects with a

large optical depth, there should be some statistical symmetry between the
rising and falling parts of the lightcurves. Analysis of the light curves show
that there is a very close symmetry between increasing and decreasing mag¬

nitudes. Mechanisms for intrinsic variability tend to produce asymmetric
features in the lightcurves and symmetry between rising and falling parts
of the lightcurves would not be expected.

• The quasar lightcurves are achromatic. As discussed in §1.3, one of the
main features of microlensing events is that the lightcurves are achromatic.
Conversely, mechanisms for intrinsic variation would tend to produce dif¬
ferent lightcurves at different wavelengths. The majority of quasars in the
sample have achromatic lightcurves. The few which aren't achromatic have
features which are consistent with a colour gradient across the quasar disk.

While it is clearly difficult to make detailed observations of objects whose period of
variability is ~ 10 years, the quasar survey of Veron & Hawkins (1995) provides an

excellent observational basis for investigating the long-term variability of quasars.
Moreover, the data shows a number of features which are not easily explained by
quasar models but could be consistent with the quasars undergoing microlensing
by a cosmological population of compact objects.

An initial study of the effects of microlensing by a cosmological population of
compact objects was carried out by Schneider (1993) who looked at the effect of
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a random population of compact objects on an extended source. The simulation
results showed that the existence of a cosmological distribution of compact objects
would indeed cause a variation in the apparent luminosity of background quasars.

Taking the results of Hawkins & Veron (1993) to represent an upper bound on

the long-term variability of quasars, Schneider finds that the upper bound on the
mass of compact objects in the mass range 10-3Mg < M < 10~2M& is about
O.IHat. However, these simulations assumed that the magnification of individual
lenses can be multiplied to give a total magnification. Pei (1993) showed that
for some situations this is a reasonable approximation and it has been widely
applied. However there are a number of simple lensing situations where it fails.
In addition, the results are based on only on the maximum flux variation over

a 10 year time period published in Hawkins Veron (1993) rather than on the
lightcurves themselves.

In order to extend the work presented by Schneider (1993), a computer model has
been developed to simulate a 3-dimensional cosmological distribution of compact
objects. The simulation has been designed to make use of massively parallel
computers allowing for more realistic simulations. In particular, this has allowed
the assumption that magnifications can be multiplied to be avoided. Chapter 2
outlines the theoretical background to the model, while the implementation itself
is described in Chapter 3. A detailed comparison of the lightcurves produced by
the simulation with those from the observational survey is presented in Chapter 4.

1.4.2 Measurements of high redshift supernovae

The existence of a cosmological population of compact objects would have con¬

sequences for observations of high redshift objects. The microlensing effects of
such objects would result in an additional variation in apparent luminosity on top
of any observational and intrinsic effects. The idea that supernovae can be used
to investigate the presence of compact objects was put forward by Linder et al.
(1988) and Rauch (1991). The recent publication of results from high redshift
supernovae projects (Perlmutter et al. (1999) and Riess et al. (1998)) has resulted
in a number of investigations into the effect of lensing on the results (Seljak &
Holz (1999), Metcalf & Silk (1999) and Barber (2000) for example).



Chapter 2

Lensing by a 3D Mass
Distributions

2.1 An Introduction to Gravitational Lensing

This section reviews the basic theory of gravitational lensing used in the im¬
plementation described in Chapter 3. A complete overview of the theory of
gravitational lensing can be found in Schneider et al. (1993).

The first mathematical formulation of gravitational lensing was published by
Soldner (1804). He used Newton's corpuscular theory of light, in which light rays
are considered to be made up of a stream of tiny particles, to derive the angle of
deflection, a, by which the path of a particle travelling at a constant velocity, v,
would deviate when passing a spherical mass, M, at a distance of r:

a GM
tan o" = ~~rZ vzr

For small values of a this becomes:

2GM
c\ ~

v2r

However, calculating the effect of a gravitational field on the path of light rays
requires the use of General Relativity. Using General Relativity to derive a, the
following value is obtained:

4GM

This is twice the value obtained from the classical derivation. Subsequent obser¬
vational measurements of the deviation of light rays round the Sun during eclipses
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have verified the relativistic value to within 1%. The story of the measurements
of the bend angle of light during the 1919 eclipse and surrounding events are

given in Coles (2001).

2.1.1 The Single Lens Equation

A simple gravitational lens system, such as the one illustrated in Figure 2.1,
consists of a source, a lens and an observer. A coordinate system is chosen with
the origin at the observer and the z-axis lying along the line of sight between the
source and the observer.

Figure 2.1: A simple gravitational lensing system

Consider a light ray which leaves the source at an angle 9. It is deflected by an

angle a by a lens situated at a distance Dai from the observer. The light ray then
travels a distance Du before arriving at the source plane. The final position of
the light ray on the source plane is at an angle 0 at a distance of Dos from the
observer.

Considering the geometry of the system shown in Figure 2.1, it can be seen that:

9DqS — aDls T

As a is a function of r — D0i9, this equation can be rearranged to give 0 as a
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function of 6:

(2.1)
U c>'OS

for a fixed source position </>. Equation 2.1 is known as the lens equation. It
should be noted that this equation may have multiple solutions. Each solution
corresponds to an image position for a lensed source.

Due to the large scale of gravitational lensing systems, the distances in Equa¬
tion 2.1 are angular diameter distances, for which in general Dos ^ D0i + D/s.
§2.5 outlines the relationship between the angular diameter distance of an object
and its redshift.

The deflection angle a in Equation 2.1 depends on the mass distribution of the
lens and the relative positions of the ray and lens. In the most general case of an
extended object of density p(rx,ry,rz) the thickness of the lens can be ignored as

long as it is small relative to observer-lens-source separations. This approximation
holds good for a large number of gravitational lensing cases where the majority
of the deflection occurs when the light ray is closest to the lens and the path of
the light ray can be closely approximated by two asymptotes. This is known as

the thin screen approximation.

Approximate path of ray

Figure 2.2: The path of the light ray is calculated using the thin screen approxi¬
mation.

Using the thin screen approximation, the extended mass distribution can be pro¬

jected onto a lens plane orthogonal to the line of sight. The surface mass density
of this lens plane is given by:

Z{rx,ry) = J p(rx,ry,rz)drz
For a general two-dimensional mass distribution, the angle a by which a light ray
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would be deflected is:

-» AG C —* v — v'

a(r) = —j- / S(r')— ^d2r1 (2-2)r' 12

In the case of a circularly symmetric lens, the deflection angle points towards
the centre of the lensing mass. If r is the distance between the light ray and the
centre of the mass distribution and M(r) is the mass contained in radius r then:

- AGM(r) ra(r) = 2 2 2"3ci

From the definition of the angular diameter distance (see Equation A.l) r = Doi0.
Thus the final position of a ray on the source plane can be calculated directly
using Equations 2.1 and 2.3 if the following quantities are known:

• the angle at which the ray leaves the observer,

• the angular position and redshift of the lens,

• the redshift of the source plane.

While Equations 2.1 and 2.3 are straightforward to solve directly, inverting the
lens equation, for example to find all the images of a given source, is not trivial.
It involves finding all the roots for a 2 dimensional system of equations without
necessarily knowing in advance the number of solutions. Thus, where possible,
simulations of gravitational lens systems trace the paths of rays from the observer
to the source.

Einstein Radius

A special solution of the lens equation can be obtained for a circularly symmetric
lens lying along the line of sight between the source and observer. Choosing the
coordinate system to lie along the line of sight, Equation 2.1 can be expanded for
q to give:

r S 4GM(< r) f D„+ = "—7^
4GM(< 9) 6 Pis

c2 92 Dos D0i
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In this particular case, the deflection of the light rays by the lens is rotationally
symmetric around the line of sight. Thus the image of the souxxe when <j> = 0 is
a circle. The radius of this image, 8e, can be obtained by setting (j> = 0:

= 4GM(0e) D„
V c "... iij 1 '

0E is known as the Einstein radius. The Einstein radius can be used to define
a dimensionless form of Equation 2.1. Multiplying Equation 2.1 by 1/9e and
defining:

x =

a =

9_
0E

a Pis
Of, Dns

gives the dimensionless lens equation-.

y = x — a(x) (2-5)

The Deflection Potential

An alternative formulation for the deflection angle can be obtained using the
identity Vln |x| = x/\x\2. As shown in Blandford & Narayan (1986) and Schnei¬
der (1985), this allows a to be expressed as the gradient of a scalar potential T.
Thus Equation 2.2 for the deflection angle can be written as:

a(x) = VT(x)

where:

T(T) = f E(x') In \x — x'\d2x'

Thus the lens equation can be written as:

y = V f^x2 - T(T)
or:

V<1»(T, y) = 0 (2.6)
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where <£(;?, y) is the scalar function:

${x,y) = o (*-y? ~

y) is known as the deflection potential. With this formulation of the lens
equation images of the source are formed at coordinates where 4>(i?, y) is a mini¬
mum, maximum or saddle point.

2.2 Simulation Overview

The computer model used to simulate the effects ofmicrolensing by a cosmological
distribution of compact objects on high redshift sources requires a more complex
situation that that described thus far. In particular, the model is required to
simulate a three dimensional distribution of lensing objects. It is useful, at this
stage, to outline the basic method by which is achieved. The volume in which the
simulation takes place is divided in to a number of equal comoving sub-volumes
(see Figure 2.3). A lens plane is placed at the centre of each sub-volume and a

number of lenses are placed randomly onto the lens planes in such a way that
each subvolume contains an equal density of lenses equivalent to the proportion
of Dm in lenses specified for the simulation.

Source plane

Observers plane

Figure 2.3: A schematic overview of the computer simulation.

Once the lensing distribution is in place a series of rays are 'fired' from the
observer through the lens planes. The rays pass through each of the lens planes
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in turn until they reach the source plane. At the source plane their position is
recorded. Once all the rays have reached the source plane, the change in solid
angle between rays due to their passage through the lens planes can be used to
calculate a magnification pattern.

This process is repeated as the simulation evolves over time. The lenses each have
a random velocity drawn from a gaussian velocity, with the lens planes period
boundaries mimicking the effect of a continuous distribution of lenses.

The remainder of this chapter discusses the theoretical background to the simu¬
lation. Chapter 3 discusses the implementation of the simulation in detail.

2.3 Multiple Lens Planes

In many gravitational lensing systems one would expect to find more than one

lens affecting the path of a light ray. Each lens will contribute to the final position
of the light ray depending on its mass and the distance at which the ray passes

the lens. Rather than evaluating the lens equation separately for each lens, the
lenses are divided into two groups:

• Lenses whose separation along the line of sight is sufficiently small that they
can be considered to make up a single thin lens.

• Lenses whose separation along the line of sight is sufficiently large that they
deflect the light rays independently of each other.

In practice this allows the lenses to be grouped into a series of thin lenses, or lens
■planes, which can be considered independently (Blandford &; Narayan (1986) and
Kovner (1987)).

The angle at which a ray approaches a lens plane depends on how its path has
been altered by its passage through previous lens planes. Consider the situation
shown in Figure 2.4 where a ray has passed through three lens planes before
approaching the source:

By considering the geometry of the system, itself similar to §2.1.1, it can be seen

that:

QDos = 4>Dos + a\D\s + CX2D2S + a^D^s
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Observer

Figure 2.4: A multiple lensing system.

Rearranging:

9-
&lDis + CX2D2S + »3-D3s

l)Z

This can be written in a more general form as:

Ef=i A4>N = $
Z>« (2-7)

where D{s is the angular diameter distance from plane i to the source plane.

The vector if denoting the angle at which the ray intersects a lens plane can be
found from

{ = 6- SS ZD
Dn

IJ (2.8)

Equation 2.8 agrees with Equation 2.7 when j = s = N + 1.

As in the case of the single lens equation, the position of the ray on the source

plane and any intermediate lens planes can be directly calculated. The inverse
lens equation becomes significantly harder to solve numerically as additional lens
planes are added.

2.4 Magnification

A consequence of the gravitational deflection of light rays is the change in mag¬

nification of the image of a source seen by an observer relative to an unlensed
image. The magnification effect can be illustrated by considering a bundle of four
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Source plane

Figure 2.5: Gravitational lensing changes the area of a ray bundle.

rays, as illustrated in Figure 2.5. The rays closest to the lens are deflected more

than those further away, leading to an increase in the area of the ray bundle.

The flux of an image, Sv, at frequency v is related to the solid angle Acu of the
image by:

Sv = IvAto

where Iv is the surface brightness of the image at frequency v. As surface bright¬
ness is unaffected by gravitational lensing, the surface brightness of the image is
identical to that of the source. The magnification of a source, /i, is given by the
ratio of the lensed to unlensed flux:

Sv Acu
^ = (Sv)~0 = (A^y

where 0 denotes the unlensed quantity.

To allow comparison the observational data, the magnification is converted into
magnitudes:

m = -2.51og10^ (2.9)

It should be noted that the convention for m is such that negative values represent
magnification and positive values de-magnification.

2.5 Angular Diameter Distance

The distances used in the lens equation are angular diameter distances. In order
to calculate the path of a light ray through a series of lenses, an expression
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for the angular diameter distance between two arbitrary redshifts, z\ and z2l is
required. Since this methodology is not covered in standard cosmology textbooks,
the expressions are derived in Appendix A for models which include a cosmological
constant. To summarise, for a flat universe the expression for angular diameter
distance is:

d,A = -j-— r [ [(1 4-z)2(l + — 2(2 + z)Da] ^ dz (2.10)(1 + z2) JZl

For open and closed universes the expression becomes:

1
cla = . sinn

\7|Dfc|(l -f z2)
[(1 + Dm2/ — z(2 + z)Da] ^

e ^ LM T ^ T dz(1 4- z)
(2.11)

where

sinn = sinh for an open universe

sin for a closed universe

2.6 Lenses

The microlensing simulation described in Chapter 3 is characterised by the density
parameter, D = Da 4-Dm- A number of cosmological models were considered with
varying values for Da and Dm, but all with D = 1. The lensing mass within the
simulation consists of Niens lenses each of mass Mi which makes up a fraction
/ < 1 of the total mass, Dm- The angular size and redshift of the lensing
planes are set to ensure that the total lensing mass within the simulation volume
corresponds to a lensing mass of /Dm-

Considering the density of lenses in the simulation, p, as a fraction of the critical
density, pc, gives:

P = ftlMPc =
07t(_t

The simulation volume Vsim can be found by calculating the fraction of the volume
out to the source redshift, V(< zs), contained within the solid angle subtended
by a plane of size 6piane, where 9piane -C 1:

Q2
t/ \r( \ P^neVsim = V{ZS)—

47T
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If the lensing mass content of the universe is made up

Mi,then:

o tt2 ffi niens

2=1

Thus the size of the lens and source planes in the simulation can be obtained
directly from Equation 2.12, while the redshifts of the planes can be obtained by
considering the volume required to contain the mass of the lens plane for a given

and Ojvf.

2.6.1 Volume

The comoving volume out to a redshift Z{ can be obtained by integrating the
comoving volume element of the Robertson-Walker metric:

r2
dV = Rp , drdtt (2.13)

vl — kr2

where dfl is the solid angle element.

Again consider the three values for k individually.

k = 0: Flat universe In this case equation 2.13 reduces to:

dV = R^r2drdCl

which can be integrated to give:

Ajr
V(zi) = R3oTr(2i)3

This can be expressed in terms of the angular diameter distance, using
equations A.2 and A.3:

A ■TT-

V(zi) = Y(l+zi)3d3A (2.14)
k — — 1: Open universe Making the substitution r = sinhu,dr = cosh udu in

equation 2.13 gives:

3sinh2udV = R0 :—coshududilcosh u

of lenses of variable mass,

(2.12)
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Thus:

V(zi) = Rq I / sinh2 ududtt

This can be integrated to give:

V{zi) = A-kRI

= ATIRI

sinh 2u u

4 2

2 sinh u cosh u u

4 2

= 27ri?Q [sinh u(l + sinh2 u)1/2 — u)]
= 2ttRq [r(l + r)1//2 — sinh-1 r]

This formula can be expressed in terms of the angular diameter distance,
cIa, using equations A/2 and A.3:

\2\ 1/2

V(Zi) = 2ttRq
aU(L±D / i+ Ail+iT) _ sinh-. (Mi+DtRo \ Rq J \ Ro J

V(zi) then can be expressed in terms of Qk using equation A.6:

2tt
V(*i) = mno "fc

^a( 1 + + d2A{ 1 + Zi)2Rlk —

|D,|-1 sinh-1 + Zi)H0\nk\1,2)\ (2.15)

k = 1: Closed universe Making the substitution r

equation 2.13 gives:
2

= sinu,dr = cos udn in

Thus:

3 sm udv = R0 cos ududU
cos u

V(zi) = /?o sin2 ududfl

This can be integrated to give:

V(zt) = AttRq
sin 2u

= 47tRq
2 sin u cos u u

4 9

= 2ttRq [sin u(l + sin2 u)1^2 — tt)]
= 2ttRq [r(l + r)ly/2 — sin-1 r]
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This formula can be expressed in terms of the angular diameter distance,
dA, using equations A.2 and A.3:

V(zi) = 2ttR30 dA(l + Zi)f d\(l + Zif\1/2 . _! (dA{\ + Zi)1 H — I — sin
RQ Rlto \ ei0 / \ Ro

V(zi) then can be expressed in terms of flk using equation A.6.
27r

V(zi) HKl dA{ 1 + Zi)H0yJ 1 + d?A{\ + ztynk-
lOfcl"1 sin_1(dJ4(l + Zi)H0\ttk\1/'2)] (2.16)

Equations 2.15 and 2.16 can be combined using the definition given for sinn in
equation A.8:

27T
V(zi) dA{\ + Zi) Ho yj 1 + + Zj)2fifc—

|—1 sinn-1 (</^i (1 + Zl)H0\nk\1/2)\ (2.17)

2.6.2 Size of Lens Plane

Once an expression has been obtained for the volume out to the source redshift,
V(zs), the angular size of the lens planes can be obtained by re-arranging equa¬

tion 2.12 to give:

9
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2.6.3 Plane Redshifts

The redshifts for the planes can be calculated by considering the number of lenses
on each plane. While the number of lenses per plane can vary, the density of
matter in lenses is fixed by the amount of Hm specified in lenses, /L1m- The
plane redshifts are obtained by considering the volume difference, AV(zi,zj),
between two redshifts zt and Zj, where z} > zt. AV(zj,Zj) is the volume required
to hold the number of lenses for the plane, given the density /Q,m-

The volume difference can be calculated using the relationship between density,
volume and mass:

Ni,v lenses/plane

AV(zi,Zj) = V(Zj) - V{Zi) = M'
47T 87TG'

1=1 WM
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Redshifts are calculated by starting from the observer at = 0 and stepping
through the redshifts until the correct number of planes are obtained and Zj = zs.
For a k = 0 universe, equation 2.14 can be inverted to give Zj. In the case of a
k — 1 or a k = —1 universe, equation 2.17 is solved numerically to give Zj.

2.6.4 Lens Parameters

In order to ensure that the parameters for the simulation are consistent with
each other, the number of lenses on each plane along with their individual masses
are specified along with the cosmological parameters. The simulation uses this
information to calculate a size for the planes which ensures that the total mass
specified in lenses is consistent with the mass density specified by /Dm- Once a

size, dpianei has been calculated, the total lens mass on each individual plane is
used to divide the simulation volume in to a number of sub-volumes, each with
the same density of lenses. Finally a redshift is calculated such that each plane is
positioned at the centre of each volume (see Figure 2.6). The lenses themselves

Figure 2.6: The total mass in lenses is used to calculate the size of the simulation
planes. The lens planes are then positioned at redshifts which ensure a constant
density of lenses throughout the simulation.

are randomly positioned on the planes. In the absence of any observational
data, a random distribution was deemed the most appropriate for a cosmological
population of compact objects.

Each lens was also assigned a random velocity taken from a Gaussian distribution
with a mean velocity of 300 ferns-1. Again there is no observational evidence to
back up this value. This value is similar to the typical velocities of stars in

e,plane
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a galaxy and of galaxies themselves. It seems unlikely that any cosmological
distribution of compact objects would have a radically different velocity profile.
It should be noted that previous lensing simulations, such as Schneider (1993)
and Lewis et al. (1993) for example, considered a source moving behind a field
of lenses with fixed positions. Thus a magnification pattern was modelled for
a single lens distribution and the lightcurves generated by moving the source

(and possibly the observer) across the magnification patterns. This avoided the
need to model the evolution of the lensing field over time and was done in order
to reduce the computational overhead. In order to avoid this simplification, the
simulation described in detail in the next section has been designed to run on high
performance computers. This has provided the necessary performance to allow
the positions of lenses to evolve over time, producing a more realistic simulation.

The lenses in the simulation either had an identical mass or a mass taken from

the power law:

N(M)dM oc M~ldM (2.18)

where N(M) is the number of lenses in the mass range dM. Such a power law
produces a lens mass distribution with more lenses towards the lower end of the
distribution. To reduce computation time the lower end of the mass range was

set to be an order of magnitude below the upper range.

As mentioned above, the simulation was allowed to evolve over a number of
timesteps. Each timestep was set to be some multiple of an Einstein radius.
Thus, from Equation 2.4, for a particular set of cosmological parameters, the
Einstein radii and therefore the simulation timestep is directly proportional to
\f~M where M is the mass of the lens. Thus, reducing the lens masses by a factor
of 100 simply reduces the timescale of the simulation by a factor of 10. Therefore,
only a single simulation is required for each set of lens masses.
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Chapter 3

Numerical Simulations of

Microlensing

To test the hypothesis that long term variability in the apparent luminosity of
quasars is due to microlensing, observational light curves were compared with
light curves generated by a computer simulation. This chapter describes previous
approaches to microlensing simulations and discusses their applicability to this
problem. §3.2 describes in detail the algorithm used to generate the results for
this thesis.

3.1 Microlensing Simulations

A number of different methods have been implemented to calculate the effect of
microlensing. Most are variations on one of two strategies:

1. methods that identify microlensing images by solving the lens equation.

2. methods that follow the path of light rays through a distribution of lensing
objects.

This section outlines some of the approaches taken within each category and
discusses them in relation to the approach taken for the simulations described in
this thesis.
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3.1.1 Solving the Lens Equation

While the form of the lens equation is simple, its direct solution is far from
trivial to perform. Microlensing typically involves complex mass distributions
such as stars within a galaxy. This makes it impossible to obtain the images of a
source analytically by inverting the lens equation. In consequence, microlensing
simulations which involve finding images by directly solving the lens equation use

numerical rather than analytical solutions. An implementation of this approach
was outlined by Paczynski (1986).

In this paper Paczynski investigated the effect of the individual stars within a

lensing galaxy on the final image. The model simulates a random distribution
of stars within a circular galaxy. Microlensed images, referred to as microimages
by Paczynski, are identified for a subset of these stars by searching for possible
image positions and iteratively solving the lens equation. A number of different
search types were used to determine the positions of the microimages. However,
all involve making an initial guess for the microimage position and then iterating
until a solution for the lens equation is found. Once a microimage is found, its
position is compared to a list of previously identified microimages. If it proves

to be a previously unidentified microimage then the new microimage position is
added to the list.

While this approach has the attraction of using the direct solution of the lens
equation to identify images, it is computationally expensive to carry out. In
addition, as the number of microimages cannot be predicted in advance, it is
impossible to tell if all the microimages have been identified. Thus a very detailed
search is required to ensure that sufficient microimages are detected. In the model
outlined in Paczynski (1986), the search criteria is set so that the combined
microimages identified should account for at least 95% of the total intensity.
However, in general, the higher the density of stars, the more microimages there
are and the more detailed the search required to meet this criteria.

An interesting refinement on Paczynski's approach was put forward by Lewis et al.
(1993). Rather than trying to find the images of a point source, they looked at the
image plane for images of a straight line. They show that the image of a straight
line consists of one curve of infinite length and a series of closed loops, all of which
are connected to stars. The infinite curve can be identified by looking outside
the star field where the position of the image curve approaches the position of
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the original line. The image curve can then be followed through the star field
using an adaptive step size with the position of the next point estimated from
the tangent to the image line. The closed loops are then identified by searching
all the stars within a predefined radius which do not intersect with the infinite
curve. When a closed loop is identified it is followed in a similar manner to the
infinite curve until it arrives back at the star it started from.

The simulation repeats this process for a number of lines until a magnification
pattern is obtained for the source plane. While this approach can be applied
successfully to microlensing within a galaxy, where all the lenses are at the same

redshift, the simulation described in this thesis requires a three dimensional cos-
mological distribution of lenses. This requires the use of multiple planes of lenses.
In this case the image of the straight line would be calculated for the first plane.
The resulting infinite curve and loops would then be lensed by the second lens
plane. As there is no solution equivalent to that for a straight line for the infinite
curve and loops, this method is infeasible for multiple plane simulations.

In summary, the inverse lens equation can only be solved analytically for the
simplest cases. For point mass lenses it is impossible to know in advance the
number of images present. This makes searching for lens images computationally
intensive due to the fine grain search required to ensure that a sufficient number
of the images are identified. This problem can be avoided by searching for images
of a straight line where the image properties are known in advance, making the
image search section of the algorithm less computationally intensive. However,
this approach only works for a single lens plane and is not suitable for the multiple
lens plane case described in this thesis.

3.1.2 Ray Shooting

Ray shooting algorithms approach microlensing simulations in a very different
manner to the methods described in §3.1.1. They make no attempt to identify
the individual images of a source but instead calculate the path taken by a light
ray through a specified mass distribution. In general, the light ray's path is traced
from the observer to the source redshift. This is numerically equivalent to tracing
the ray's path from the source to the observer but has the advantage of ensuring
that all the light rays reach the observer. The area the rays 'land on' at the source

redshift is then divided up into a number of pixels. A magnification pattern is
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generated from the number of light rays in each source plane bin. Light curves
can then be generated for both point and extended source by recording changes
in magnification patterns over a period of time.

A simple ray shooting method was first outlined by Kayser et al. (1986). They
traced the paths of a grid of rays through a field of 100 randomly distributed equal
mass lenses and generated light curves for extended constant surface brightness
sources. However, to accomplish such a simulation for more than ~ 100's of
lensing masses would require a large amount of computational time. In order
to reduce the computational requirements of the algorithm, the ray shooting
technique is commonly used in combination with methods to reduce the number
of deflection angle calculations required for each ray. These methods typically
calculate accurately the contribution of lenses close to the light ray and estimate
the contribution of lenses greater than some predetermined distance from the
light ray. As the major details in the light curves are caused by interactions of
the light rays with nearby lenses, this method of approximating the deflection
angle for a light ray can give statistically satisfactory results.

An implementation of this type of approach was given by Schneider & Weiss
(1987) and extended in Schneider & Weiss (1988). The ray shooting area was

divided into a series of squares. The deflection angle was calculated for individual
stars within an area of ~ 15 times the area of the squares. This result was then
combined with an estimate of the contribution of the remaining stars outside that
perimeter. Schneider & Weiss obtained further performance benefits by testing
whether or not rays within the squares reached the collecting area in the source

plane.

Another variation on this method is the hierarchical tree. Originally developed for
calculating gravitational forces in N-body simulations by Barnes & Hut (1986),
this algorithm provides a computationally efficient way to store different group¬
ings of lenses. The algorithm was first applied to lensing simulations in by Wamb-
sganss et al. (1990b). The lenses are stored in an inverted tree structure (see
§ 3.4.1 for details) which can quickly be traversed in either direction. Different
groupings of lenses are used to calculate the deflection angle depending on the
impact parameter between the light ray and the lensing mass.

All of the applications outlined in this section so far have examined microlensing
by stars within a galaxy. In such cases, the lensing stars are all at the same
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redshift and can be represented within the simulation by a mass distribution on

a single lens plane. However, when considering lensing by a cosmological mass
distribution, the lensing mass is at a range of redshifts. In this case, multiple
planes must be used to approximate the mass distribution's three-dimensional
nature. One possible approach was proposed by Wambsganss et al. (1998). They
investigated the gravitational lensing properties of cosmological simulations. The
mass distributions from simulations were divided into a series of mass cubes and

then collapsed onto a single plane. The mass plane was then divided into a

grid with each pixel treated as a point mass lens. This approximation would
break down if the impact parameter tended towards zero because the deflection
angle then diverges. In order to ensure that this approximation remained valid
throughout the simulation, the deflection angle was calculated at the centre of a
group of four of these point mass lenses and was then interpolated to give the
value at the ray position. This method ensured that the relative positions of
the masses and the points at which the deflection angle is calculated remained
constant for each plane, leading to computational savings.

Ray shooting provides a simple method ofmodelling complex lens distributions for
both single and multiple lens planes. Its assumption that most of the deviation
in the light ray's path is caused by lenses close to the light ray allows for the
algorithm to be optimised by approximating the contribution for distant lenses.
The ability to implement this the ray shooting method effectively for multiple
lens planes makes it ideal for the simulation described in this thesis.

3.2 Implementing the Ray Shooting Algorithm

To generate a statistically significant set of light curves which can be compared
with observational data, the microlensing simulation must meet three require¬
ments:

1. The resolution of the ray grid must be sufficiently fine to resolve the lensing
effect of a single lens, regardless of the plane it is on.

2. The simulation must cover a large enough volume that a statistically sig¬
nificant number of independent light curves can be obtained for a range of
source sizes. As the density of lenses is specified through the cosmologi-
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cal parameters for the simulation, this requires the simulation to contain a

large number of lenses.

3. The microlensing system must evolve over a period of time long enough
to ensure that the long timescale features are fully sampled but with suffi¬
ciently short timesteps that individual high magnification events are fully
resolved.

Independently, each of these criteria is computationally difficult to meet. The
following three sections describe the approach taken to combine the three re¬

quirements in such a way that all three can be met without compromising the
accuracy of the simulation.

3.3 Ray grid

The grid of rays to be traced through the lensing mass distribution must be fine
enough to ensure that the effect of a single lens can be resolved. The microlensing
simulation includes a number of lens planes and, for some of the simulation runs,

a range of lens masses. Quantitatively, this criterion was set to ensure that the
grid spacing is at least as large as the Einstein radius of the smallest mass lens
on the highest redshift lens plane.

In addition to fine grid resolution, a large grid is also required to ensure that
a sufficiently large number of independent light curves can be obtained. One
advantage of the ray shooting technique is that the calculations of the paths of
the individual rays are independent of each other. Whilst the path a ray follows
will, in general, be closely related to the paths of the neighbouring rays on the
grid, the calculations of the ray's position at each point throughout the simulation
do not depend on the position of other rays. This property can by exploited by
implementing the algorithm on a parallel computer.

3.3.1 What is parallel computing?

Most common desktop computers consist of one processor with some memory

attached to it (see Figure 3.1). This is known as a sequential computer as it
executes one instruction at a time. Even programs such as UNIX and Windows
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NT which give the illusion of multitasking are serial in nature and thus executed
one instruction at a time.

FOR i

A(i)
END

1, 100
B (i ) * C (i )

Figure 3.1: Schematic diagram of serial machine.

In contrast a parallel machine consists of multiple instances of the processor and
memory combination. There are a number of different architectures for paral¬
lel machines. The work described here was carried out on distributed memory

parallel computers (see Figure 3.2).

Figure 3.2: Schematic diagram of a distributed memory parallel machine.

These consist of a number of processors, each of which has its own private local
memory. All the processors are connected using some interconnect mechanism
which allows processors to communicate with each other. This class of parallel
architecture can be applied to a variety of machines ranging from networks of
workstations to specialised Massively Parallel Platforms.

3.3.2 Problem Decomposition

The microlensing simulation consists of a grid of rays travelling through a se¬

ries of lens planes. The path of each ray is independent of the other rays in
the simulation. Thus the most effective method of running the simulation on a

parallel machine is to divide the rays equally between the processors as shown in
Figure 3.3.
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Figure 3.3: Grid divided between the processors.

Each processor is given a block of rays to work on and the results are gathered
together at the end. The paths of the rays in each block are calculated indepen¬
dently. The program is designed so that each process has access to the entire set
of lenses on each lens plane. Thus each process can calculate the ray path to the
accuracy specified in the simulation.

The Message Passing Interface (MPI) standard (Message Passing Interface Fo¬
rum, 1995) was used for communication between processors with the simulation
itself written in C. The use of MPI enabled the simulation to be run on a variety
of parallel platforms, including networks of workstations, requiring only recom-

pilation to work on each machine.

3.4 Large numbers of lenses

To ensure that the simulation produces a statistically significant number of light
curves, the simulation must be run with a large number of lenses. The size of the
area on which the rays land at the source plane is determined by the total mass
of lenses. This mass must be in agreement with the specified total mass density.
In practice, the majority of CPU time for the simulation is spent calculating the
deflection angle for the light rays. Thus the computation time depends on the
number of lenses in the simulation and is only indirectly related to their mass. The
number of lenses required for these simulations varies between ~ 3000 to 100, 000
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depending on the simulation parameters and the mass distribution between the
lenses (see Chapter 4 for a detailed description of the simulation parameters).

An initial implementation was developed using the idea of a cutoff radius, r3,

for the lens calculation. The lens planes were divided into a series of boxes with
sides the same length as the cutoff radius (see Figure 3.4). This means that all
the lenses on the plane within a distance rs of the light ray will either be in the
box that the ray lands in or its neighbouring boxes. The deflection angle is then
calculated for lenses where the impact parameter is less than rs.
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Figure 3.4: The lens planes are divided into boxes the same size as the search
radius, rs.

This idea of dividing the lens plane into boxes is similar to the approach taken
by Schneider & Weiss (1987). However they used much smaller size boxes and
therefore had a larger number of boxes to search.

In addition to the mass in lenses on the plane, an additional smooth negative
mass distribution, —E*, was introduced. This was set so that the integral of E*
over the lens plane equals the total mass in lenses, giving a total mass of zero for
the lens plane. The effect of — E* is to ensure that while lenses close to the light
ray continue deflect the path of ray, lenses a large distance away have no effect. In
other words, the mass fluctuations caused by the combination of point mass lenses
and —E* is a small scale effect which cancels out over much of the lens plane.
As mentioned in §3.1.2 the majority of the interactions which make up the light
curves involve lenses which are close to the light ray. Such an approach reduces
the number of lenses involved in the simulation without altering the statistical
properties of the light curves.

The idea of a smooth negative surface density was introduced by Lewis et al.
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(1993) for modelling microlensing within a lensing galaxy. However, unlike mi¬
crolensing in galaxies, this simulation of a cosmological distribution of microlens¬
ing bodies did not have a finite extent. Infinite planes were simulated by copying
the lenses in the planes onto a repeating pattern of 'virtual' lens planes.

When the light rays reach the source plane their positions are recorded. However,
many rays from the edge of the original ray grid will have moved outside the
lens planes and been traced through the virtual planes. Most of these rays will
therefore be outside the area of the source plane when they reach the source

redshift. In addition rays which, were the grid was larger, would have moved into
the source plane are missing from the simulation. This leads to the edge area of
the source plane having, on average, a lower magnification than the interior of
the source plane.

One method of avoiding this situation is to allowed the simulation to conserve rays

by wrapping the positions of any rays which fall outside the source plane back onto
it. This is possible as the virtual planes have the same lens distribution as the lens
plane. Figure 3.5 illustrates the wrapping technique. The solid arrow represents
the original ray position and the dotted arrow the wrapped ray position.

y

Figure 3.5: Rays whose coordinates at the source redshift fall outside the area of
the source plane are wrapped back into the source plane.

However, this technique of wrapping rays back into the source plane cannot be
used in conjunction with the smooth negative mass density. For the wrapping to
be correct the mass lensing the ray must be the same on the virtual plane as for
the source plane. While this is true for the lenses, it is not true for the smooth
negative density. The contribution of the negative density depends on the ray's
distance from the origin. This is clearly different for rays on the virtual plane than
for rays on the lens plane. The microlensing simulation therefore gave inaccurate
results when the two techniques were combined. While the smooth negative
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density reduced the time required for the microlensing simulation, the inability
to combine this with ray wrapping on the source plane led to the generation of
significantly smaller magnification patterns and thus fewer light curves.

As this does not meet the criteria set out at the start of this section, the smooth
negative density model was rejected and the hierarchical tree algorithm imple¬
mented instead.

3.4.1 Hierarchical Tree

The hierarchical tree algorithm is widely used in cosmological simulations (Barnes
& Hut, 1986). It provides a method whereby masses close to the point of interest
are considered individually while masses further away are clustered together and
treated as a single object. This ensures that nearby masses, which provide most
of the detail, are calculated exactly while the effect of more distant masses are

approximated. Therefore, rather than using negative mass to 'remove' distant
lenses from the simulation, an estimate of the effect of distant lensing mass is
included in the deflection angle calculation.

In two dimensions the algorithm works by recursively dividing the plane into
four equally sized sections until each section contains either one or zero lenses.
For example, consider the plane of lenses shown in the left of Figure 3.6 which
contains 20 randomly placed lenses.
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Figure 3.6: The hierarchical tree algorithm recursively divides the lens plane into
four sections until each section either contains one or zero lenses.

The hierarchical tree algorithm divides the plane into four sections. If a given
section contains more than one lens then it in turn is divided into four further

sections. This process continues until each section contains either one or zero

lenses. The right diagram in Figure 3.6 shows the final division of the example
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plane.

The structure of the divided lens plane is stored in an inverted tree, from which
the algorithm takes its name. Each recursive division of the plane is represented
as a division of the tree into four new branches. Thus the tree structure contains

a hierarchy of individual and clustered lenses. The tree structure for the lens
plane in Figure 3.6 is shown in Figure 3.7.

Figure 3.7: The lenses from Figure 3.6 are stored in a tree structure.

There are two main advantages to this type of structure:

1. Each branch point stores information on the total mass of the lenses below
it in the tree hierarchy as well as the position of the centre of mass. Thus,
for approximate calculations of the bend angle of a cluster of masses beyond
some specified distance from the ray, the branch point can be treated as a

lens in the calculations.

2. While the tree structure appears complicated at first glance, if efficiently
implemented the time required to initially construct and then to search
the tree is relatively small. In particular, the pointer feature of the C
programming language enables the structure to be efficiently constructed
and searched with minimal memory requirements.

The microlensing simulation produces a single tree for each plane of the simu¬
lation. As each lens in the simulation has an associated velocity the positions
of the lenses change as the simulation evolves over time. This requires the tree
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structure to be updated for each time-step. Rather than attempting to move

lenses between different branches of the tree as their positions change, the tree
structures are generated anew for each time-step. In order to reduce the memory

required to store the trees, the positions of the lenses are pre-calculated for each
time-step. The resulting reduction in memory requirements is significant and
allows the parallel version of the simulation to store copies of the whole trees in
each processes' memory. This avoids the need to distribute the tree structure
between processes and reduces communications overheads.

Once the hierarchical tree has been constructed, the light rays are 'fired' from the
observer through each of the lens planes until they reach the source redshift. The
position of the light ray on each lens plane is obtained from Equation 2.8. The
bend angle, a, can then be calculated by summing Equation 2.3 over the mass

in the plane. The mass used in this calculation is either the mass of individual
lenses or the plane sections generated by the hierarchical tree algorithm. The
decision about which mass to use is based on the angle subtended by the section
of the lens plane at the light ray. This angle is known as the opening angle, 9.
Figure 3.8 shows the opening angle for two sections of the lens plane in Figure 3.6.
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Figure 3.8: For each ray in the simulation, the tree is searched until the opening
angle meets a predetermined accuracy criteria.

The tree is searched from the top down and at each level the value of the opening
angle, 9, is compared with a predetermined value, 9C. If 9 < 9C then the mass and
centre of mass position of the plane section is used in the calculation. However,
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if 9 > 6C the search algorithm moves down to the next level of the tree and the
opening angles are calculated for this new tree level. This procedure continues
until all the plane mass has been included in the calculation of a. The tree
search algorithm is constructed to ensure that no mass is counted more than
once. Clearly the value of 9C is critical to the accuracy of the algorithm. The
determination of 9C for this microlensing simulation is discussed in §3.8.

The tree search algorithm repeats the calculation of a on these virtual planes out
to a predetermined search radius, rs, from the light ray as shown in Figure 3.9.
The hierarchical tree structure need only be generated for the original lens plane
as the positioning of the lenses on the virtual planes is identical to the original
plane. The value for the search radius was determined experimentally and is
discussed in more detail in §3.8.

/Light ray

Figure 3.9: The bend angle is calculated over a series of virtual planes out to a

specified distance, rs.

One issue which must be considered when implementing a search radius for a

lensing simulation is that the bend angle calculated for the light ray drops to
zero at the edge of the search radius. The final result of the simulation is a

series of magnification patterns which will be used to generate light curves. As
the magnification is dependent on the gradient of the bend angle, the fact that
it drops to zero at the edge of the search radius leads to negative magnification
spikes at the edge of each ray's search radius. In order to avoid this effect, the
bend angle for mass-lens separations of 95%rs < r < rs is multiplied by a cosine
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function which curves the bend angle towards a zero value at the search radius.

3.5 Long time period

The light curves will be analysed using spectral analysis techniques to determine
the power over a range of frequencies (see §4.4). As described in §2.6.4, for a lens
of mass, M:

M oc t2

where t is the simulation timestep. For simulations for lenses with identical mass,
the power spectra can be moved around on the frequency axis to get the best fit
to the observational data. This is then equivalent to scaling the mass of the lenses
in the simulation.

The highest frequency for which the power can be determined is known as the
Nyquist critical frequency. This is the frequency for which there are two data
points per cycle. If N data points are sampled over a time interval T, then the
Nyquist critical frequency, cuc, is:

7lN

The complete set of frequencies within the data set are:

2irk N

rj-} ? 1, . . . ^

Rather than attempting to cover the whole of the required sample range with one

simulation run which would be prohibitively expensive in computational time, the
frequency ranges were divided into between 3-5 overlapping regions. These were

used to determine the time interval covered by the simulation and the number of
sample points required.

3.6 Magnification patterns

The final result of the microlensing simulation is a coordinate position for each
light ray at the source redshift. In order to compare the simulation results with
observed data, the series of ray coordinates must be converted into light curves
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showing the variation in the apparent brightness of a source over a period of time.
This is done by generating magnification patterns for each simulation time-step.

In order to obtain the magnification pattern a pixel grid is positioned at the
source redshift. The size of the pixels in the grid is the same as the separation
between the light rays when they leave the observer. Thus if the intervening
lenses were removed from the simulation, the area between any bundle of four
adjacent rays would be the same at both the observer and the source. The value
of the magnification in the presence of lenses can be obtained by calculating the
relative area of the same ray bundle with and without lenses, as illustrated in
Figure 3.10. In practice this is done by looking at each source plane pixel and
estimating the fraction of the area of each ray bundle which covers the pixel. If
the magnification for the un-lensed pixel is taken to be 1 then the fractions from
each ray bundle can simply be summed to obtain the magnification for the pixel.
This method automatically accounts for multiple images.

Lenses

/ ' /V
-7 *

/

Observer

Figure 3.10: The magnification pattern is generated by summing the percentage
area of a pixel covered by a ray bundle.

For a magnification pattern to be properly, resolved neighbouring light rays must
follow similar paths through the lenses, i.e., their paths are correlated. From this
it is assumed that if any additional rays were placed between the neighbouring
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rays, their final positions in the source plane could be interpolated. Light rays
which fall outside the area of the pixel grid are wrapped round to fall in the
opposite side of the grid, ensuring that the magnification pattern is periodic and
that no rays are lost from the simulation. Each ray bundle is subdivided into Nv
virtual' rays. Taking the magnification of the un-lensed ray bundle to be 1 each
'virtual' ray is allocated a magnification of 1 /Nv. The number of virtual rays from
a ray bundle falling within a source plane pixel gives an estimate of the fractional
area of the ray bundle which falls over each pixel. The full magnification pattern
can be built up by summing the number of virtual rays which fall into each pixel
for all the ray bundles.

This section of the simulation was also carried out using parallel computers to re¬

duce the time required to generate the magnification patterns. Unlike calculation
of the final positions of the light rays at the source plane, the grid points for the
magnification calculations are not independent. As described above, the calcula¬
tion considers ray bundles consisting of four neighbouring light rays. Thus each
light ray in the bundle is required for four separate magnification calculations.
This needs to be taken into account when the ray grid is divided up between the
processes and the edge data replicated on different processes as required. This
was implemented using the MPI-2 parallel file I/O routines and also using the
C language's file pointer routines to offset file I/O on different processes. The
two implementations were necessary: although the MPI-2 parallel file routines
provide significant performance benefits over hand code I/O routines, they were

not available on all the platforms on which the simulation was run.

Each parallel process then calculates a partial magnification pattern using the
ray bundles in its memory. Once this has been completed, the processes perform
a parallel reduction operation to obtain the final magnification patterns.

Once the magnification patterns have been calculated for each time-step, the
magnitude is then calculated for each pixel using equation 2.9. The light curves
themselves are then generated for a range of source sizes. This is discussed in
§4.3.

3.7 Simulation Program

The final version of the simulation program consists of three separate programs:
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• A setup program with calculates the plane redshifts, the size of the ray grid,
the timestep and the position and velocities of the lenses.

• The main raytracing program which calculates the positions of the rays on

the source plane for a specified number of timesteps.

• A final program with generates magnification patterns from the final ray
positions.

The total set of programs consist of roughly 5000 lines of code programmed in the
C language. There were a number of reasons for choosing the C programming
language over the more traditional scientific programming language, Fortran.
These include:

• The hierarchical tree algorithm results in a non-uniform memory access

pattern for the program. The C languages pointer feature allows the pro¬

grammer direct access to the memory addresses where data is stored. In
particular, pointers within the tree structure are used to hold the next mem¬

ory address to be searched. The memory addresses held in pointers can be
altered to reflect the changing structure of the tree as the lenses move over¬

time. Thus a complex memory access pattern can be represented in a rela¬
tively simple manner.

• The program was required to be portable across a range of platforms. While
Fortran 90 would have provided the pointer functionality outlined above, at
the time the program was developed, Fortran 90 compilers weren't widely
available. In addition there are complications in using Fortran 90 with MPI.
While an interface definition exists for Fortran 90 in MPI, the compiler
implementation of a number of Fortran 90 features, such array subscripts,
can lead to incorrect results when used with MPI calls. In contrast, C is a

small and tightly defined language which is easily portable and has a robust
MPI interface.

• A quality C implementation of a hierarchical tree algorithm is freely avail¬
able1. This code forms the basis of the hierarchical tree section of the

program.

1http://www.ifa.hawaii.edu/barnes/software.html
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These three issues combined to make C the preferred language for this simulation.

The program has been run on a number of different platforms including a Cray
T3D, Meiko CS-2, Sun HPC 3500/6500 and networks of Sun and Compaq work¬
stations. C compiler directives were used to compile in platform specific details
such as file path names and to switch between parallel and sequential versions of
the program. The final simulations were carried out on a Hitachi SR2201.

The SR2201 used consisted of 16-processors and is based on the HP PA-RISC
architecture. A number of extensions have been made to the PA-RISC architec¬

ture. In particular the pseudo-vectorisation extensions allow the processors to
mimic vector processors giving a per processor performance in the 250-300 Mflop
range for certain operations. While this number is low compared to most desk¬
top machines today, the SR2201 is an old machine and was a couple of years ago

replaced by the SR8000. In addition the uneven memory access pattern in the
main program reduces the effectiveness of the psuedo-vectorisation extensions.
This has led to a per-processor performance of around 100 Mflops per processor,

substantially below optimal. Initial tests on a state of the art SUN HPC 6500 sys¬

tem, indicates a performance increase of around an order of magnitude compared
to the Hitachi SR2201 system. In addition to faster processors, the Sun HPC
system has a much more efficient hie access system than the SR2201. As there is
a significant amount of hie access carried out in the program, these two features
are probably equally responsible for such a substantial increase in performance.
While the SR2201 gave less than optimal performance for the program, the sys¬

tem was little used and so there was the opportunity to run the simulations for
a considerable amount of cpu time.

3.8 Simulation Parameters

The simulation program has a number of parameters which can be adjusted to give
the required balance between accuracy and computation time for any cosmological
model. These parameters are:

• The number of lenses in the simulation. This parameter sets the size of the
lens and source planes. Too large a number of lenses and the source plane
pixels will be too large to resolve detailed features.
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• The search radius for each ray. This value set the maximum impact param¬
eter which is searched for each ray. The search radius must be sufficiently
large that all the lenses which make a significant contribution to the bend
angle are included.

• The opening angle for each ray. This parameter controls the depth to which
the hierarchical tree is searched. If its value is too large then the effect of
individual lenses on the deviation angle will be smoothed out.

• The number of lens planes included in the simulation. If the lenses are

distributed across too small a number of planes then the simulation is ef¬
fectively modelling a single massive feature, such as a galaxy, rather than
a 3-dimensional distribution of lenses.

With this type of large numerical simulation there is, in practice, some compro¬

mise required between the level of accuracy of the simulation and the computa¬
tional resources available. The vast majority of the computing time will be used
to calculate lightcurves for comparison with observational lightcurves of quasars
(see Chapter 4). The analysis of these simulated lightcurves involves a study of
their power spectra. Thus, rather than focussing on the accuracy of individual
timesteps, the parameters of the simulation were set to ensure that the power

spectra did not vary significantly from the best available calculation. A 'best'
power spectra was calculated by setting all the parameters to the maximum ac¬

curacy possible.

In practice, the limit on the maximum accuracy was determined by the largest
time-slot available on the Hitachi SR2201 used for the simulations2. A single
timestep was calculated by this method and pseudo-lightcurves generated by
moving a source across the source plane. The power spectrum for these lightcurves
was then generated using the method outlined in §4.4.

It is clear from the power spectra plotted in graph d) of Figure 3.11 that the
number of lens planes used in the simulation has a significant effect on the power

spectra. In particular, a simulation with all the lenses on one plane (dotted
line) has significantly lower power at virtually all frequencies than the multiple
plane simulations. While there is clearly a difference between the power spectra

2The maximum run time available was 16 hours on the full 16-processor machine which is
equivalent to almost 11 days worth of CPU time.
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Figure 3.11: The simulation parameters. The parameters were initially set to give
a high degree of accuracy (solid line). The final value for the parameter is set to
the point just before the results diverge (dashed line). The parameters used to
obtain the solid and dashed lines are shown in Table 3.1. In graph d), results for
a single lens plane are also shown (dotted line).

for 10 planes (dashed line) and 5 planes (solid line), the accuracy of the other
parameters had to be reduced to compensate for the extra computational time
required to calculate the paths of the rays through the additional planes. It was
felt that the extra accuracy gained by using 10 planes was not sufficient to justify
an almost 4-fold increase in the time required to compute a single timestep. The
number of lens planes was therefore fixed to 5. In order to test the accuracy of
this number of lens planes further, a subset of timesteps for simulation i (see §4.2)
were re-calculated with 10 planes. The results of both simulations are shown in
Figure 3.12. It is clear from these results that there is little difference between
the two power spectra.

The value of the other parameters were then altered and new power spectra

produced. This process continued until the power spectra diverged. A final value
for each parameter was chosen at a point were there was little or no different
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Figure 3.12: A section of simulation i (solid line) was re-calculated with with 10
planes (dotted line).

Long timescale
lightcurves

Single timestep

Max number of lenses
Search radius3
Opening angle

Number of lens planes

100000

500E
0.20 radians

5

4000

meE
0.002 radians

5

Table 3.1: The parameter values used for the simulation of microlensing
lightcurves.

between the power spectra. The power spectra for the chosen parameter values
are shown as the dashed line in Figure 3.11, with the values themselves listed
in Table 3.1. For this final set of parameters, each timestep of the simulation
required on average ~ 30 minutes on the full 16 processor Hitachi SR2201. The
full set of timesteps calculated for the simulations described in Chapter 4 required
roughly 7 years of CPU time.

As the time required to calculate the lightcurves is significant, a comparison
was made between the power spectrum obtained for simulation i (see §4.2) and a



3.8: Simulation Parameters 85

power spectrum calculated from a set of pseudo-lightcurves generated by moving a

source across a single source plane of simulation i. As can be seen in Figure 3.13,
there are significant differences in the slope and the peaks of the two power

spectra. The graph shows the average power for 800 independent lightcurves4.
The error bars are calculated from the scatter of the individual power spectra used
to calculate the average power. The error bars for the power spectra calculated
from the pseudo-lightcurves have significantly larger error bars than the power

spectra for simulation i. The differences between the power spectra and the
relatively large error bars for the 'moving source' power spectra justify the decision
to generate lightcurves from long timescale simulations of a moving population
of lenses.

1 1 '—1 1 1 1 1 1 I 1 1—1 ' 1 1 1 1 | ' '—1 1 ' 1 ' i | ' ' ' I

10 4 1CT3 0.01 0.1 1 10 100

w-

Figure 3.13: The power spectra of simulation i (solid line) and a power spectrum
from lightcurves generated by moving a source across a single source plane (dashed
line). It should be noted that the values for lo for the 'moving source' power
spectra depend on the conversion from source position to timestep.

4Sources more than 4 Einstein radii apart are taken to be independent.
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In Chapter 5, single timestep simulations are performed for different models over a
range of redshifts. The distribution in the magnifications is then used to calculate
a series of probability distribution functions (pdfs) for the different models. In
this case a high degree of accuracy is required in the magnification patterns

generated by the simulation. The parameters for this simulation were set to the
most accurate value for which it is possible to calculate a single timestep in the
maximum time-slot available on the SR2201. In addition, the number of lenses
was reduced to ensure that the high amplification events were sufficiently resolved
in the magnification patterns. The set of parameters used for these simulations
are also shown in Table 3.1.



Chapter 4

Microlensing Simulation Results

This chapter provides an overview of the observational data. A detailed study
of the results of the microlensing simulation is presented. These results are then
compared with the observational data.

4.1 Observational Data

The observational data used in this analysis was produced by an ongoing large
scale survey and monitoring program which began in 1975. The survey is based
on plates taken with the UK 1.2m Schmidt telescope at the Siding Spring Obser¬
vatory in Australia. The field used for the survey is ESO/SERC 287 centred on

21h2Smtn, —45° (1950), at galactic latitude —47°. Although the total area of the
Schmidt field is ~ 40deg2, only the central 18.8deg2 was used in order to minimise
the effect of changes in sensitivity at large distances from the field centre.

The Schmidt plates produced a catalogue of some 200, 000 objects. Quasars were

selected from the Schmidt plates on the basis of variability. This selection method
has the advantage of being independent of the colour of the quasar candidate.
This means that it can be applied over a broad range of redshifts (see Figure 4.1 for
the redshift distribution of quasars in the survey and Figure 4.2 for the variation
in apparent magnitude with redshift.). The selection criteria require that quasars
vary over a time scale of ~ 1 year and that they should not vary significantly
within this period. This ensures that short period variables such as RR Lyrae
stars are excluded. However, it will also eliminate quasars which vary significantly
over short periods. In addition to variability, quasars which were detected in radio
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and objective prism surveys of the field were also included. Further details on

the survey can be found in Hawkins (1996).

—.—i—i—i—l—»—i—i—i—I—i—.—i—i—I—.—.—i—i l i i i i l , i i , I , . , i l , , , ,
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Redshift

Figure 4.1: Distribution of quasar redshifts for observational data.

Figure 4.2: The variation of the apparent magnitude ma with redshift is shown
for the quasar sample.
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Initial observations of the quasars selected for inclusion in the survey1 identified
a long term variability in the apparent luminosity of the quasar with a period
of roughly 10 years (Hawkins, 1993). As discussed in §1.4.1, variability on this
timescale does not appear to be linked with phenomena such as radio emission,
which typically accompanies short term quasar variability. In particular, the
timescale of the variability appears to be independent of the redshift of the quasar,

suggesting an external cause for the variation.

Lightcurves are generated for the quasars identified by the survey. As different
years have varying numbers of plates, the magnitude for each year is taken as the
average over the plates for that year. Figure 4.4 shows some example lightcurves
from quasars in the survey. The lightcurves show the variation in apparent lumi¬
nosity around the mean quasar magnitude for the same 20 year period. The top
two lightcurves are for quasars with a redshift of z ~ 3.0, the next two z ~ 2.0,
then z ~ 1.0, z ~ 0.5 with the bottom row containing lightcurves for quasars

with 2 ~ 0.1. For quasars with redshifts of z > 0.5, the lightcurves clearly show
a long term variation with a period of roughly 10 years. Further, the period
of variation does not appear to change systematically with the redshift of the
quasars. The lowest redshift quasars, with z ~ 0.1 show little variation on this
timescale. These observations are consistent with the optical depth for microlens-
ing increasing with redshift. Comparisons are made in §4.3.1 and §4.3.2 between
these observational lightcurves and lightcurves from microlensing simulations.

In order to make a quantitative comparison between lightcurves from the observa¬
tional survey and those produced by the microlensing simulation, a measurement
of the statistical properties of both data sets is required. In the analysis described
in §4.4, power spectra are used to compare the observational and simulation data
sets. Power spectra for the observational survey data are shown in Figure 4.3,
where the power for a particular angular frequency u is given by P(uj). The ob¬
servational data was divided into redshift bins of 0.5 < 2 < 1.5 and 1.5 < z < 2.5

and luminosity bins of with apparent magnitude ma < 20 and ma > 20. The
power spectra shown are the mean spectra for the set of lightcurves in the sample.
The error bars show the error on the mean of the power spectra.

The power spectra for the most luminous quasars is significantly lower that for the
full sample. In the simulation power spectra (see §4.4), a similar drop in power

xThe initial sample contained ~ 300 quasars. This number has now risen to over 600.
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0.5 § z < 1.5 1.5 § z < 2.5

. (2it / r^)

Figure 4.3: Power spectrum for observational data. The top two graphs show the
variation in power for two different apparent magnitude samples in a low redshift
bin (left graph) and a high redshift bin (right graph). In both graphs the solid
line represents quasars with an apparent magnitude ma > 20 and the dashed line
quasars with ma < 20. The bottom two graphs show the power for two different
redshift bins in a sample with ma > 20 (left graph) and ma < 20 (right graph).
In both graphs the solid lines represent the low (0.5 < z < 1.5) redshift bin and
the dashed line the high (1.5 < z < 2.5) redshift bin.

is observed for increasing source size. This would fit with the interpretation
that more luminous objects are generally larger if the variability is caused by
microlensing. A comparison between the power spectrum for the observational
data and those for the different microlensing simulations can be found in §4.4.

4.2 Numerical Simulation Models

The microlensing simulation was repeated for a number of variations on two

cosmological models. These models were the Einstein-de Sitter model and a

flat, non-zero cosmological constant model. In the case of the model with a

positive cosmological constant, the current favourite values of a total mass density
Dm = 0.3 and a cosmological constant of = 0.7 were chosen. This model was
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Figure 4.4: Observational lightcurves for quasars with redshifts of z ~ 3.0 (top
row), 2.0, 1.0, 0.5 and 0.1 (bottom row).
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Number No. Lenses No. Planes Lens Mass 7
^source L!M f'Lens f^A

i 100000 5 1M® 2.0 1.0 1.0 0.0
ii 100000 10 1M© 2.0 1.0 1.0 0.0
Hi 87875 5 1M© 2.0 0.3 0.3 0.7
iv 23000 5 1M® 1.0 0.3 0.3 0.7

V 29291 5 1M© 2.0 0.3 0.1 0.7

vi 2929 5 1M© 2.0 0.3 0.01 0.7

vii 20000 5 0.1Mq < M < Mq 2.0 0.3 0.1 0.7

Table 4.1: Simulation parameters

used as the basis for a number of simulations with varying proportions of Qm in
lenses. The parameters are summarised in Table 4.1.

As discussed in §3.5, each simulation of a particular cosmology and value of flLens
is repeated with a number of different timesteps. Varying the timestep of the
simulation allowed for a greater range of frequencies to be covered than would
otherwise have been computationally feasible. In general, three different time
periods were covered for each cosmological model giving a coverage of around
3-4 orders of magnitude in the frequency scale depending on the source profile
(see §4.4).

The exceptions to this are the Einstein-de Sitter model which was run initially for
5 different timesteps. This was done in order to establish a set of timesteps which,
as well as covering as wide a frequency range as possible, also provided sufficient
overlap in frequencies to allow the individual power spectra to be joined together
accurately. In addition, the first timestep setting for the Einstein-de Sitter model
was repeated with twice the number of lens planes. This was carried out in order
to confirm the number of planes selected in §3.8.

A detailed summary of the time periods for the different simulations is shown in
Table 4.2. The time periods shown are for a lens mass of 10_4M0.

For each timestep in the simulation, the paths of a 10242 grid of rays are followed
through the simulation and their final positions at the source redshift recorded.
These positions are then used to generate magnification patterns using the ap¬

proach outlined in §3.6. Examples of magnification patterns from simulation Hi
are shown in Figures 4.5 - 4.7. The lightcurves produced from these magnification
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No of Timesteps Simulation Period (years)

Simulation i

(a) 251 0.00 4.92

(b) 341 0.52 ->• 0.82

(c) 501 0.00 -> 118.31

(d) 241 0.00 -> 685.61

(e) 251 0.00 -» 42.56

Simulation ii

(a) 201 0.000 -> 41.12

Simulation Hi

(a) 261 0.000 81.58

(b) 261 0.000 -> 6.79

(c) 251 0.000 -> 39.20

Simulation iv

(a) 231 0.000 5.94

(b) 261 0.000 -> 80.66

(c) 261 0.000 -> 40.30

Simulation v

(a) 261 0.000 -> 30.48

(b) 261 0.000 5.14

(c) 261 0.000 -> 61.73

Simulation vi

(a) 301 0.000 -> 46.65

(b) 361 0.000 -> 9.33

(c) 361 0.000 -> 112.03

Simulation vii

(a) 1461 0.000 ->• 122.50

(b) 361 0.000 15.09

(c) 361 0.000 -)■ 2.51

Table 4.2: The simulation of a particular set of cosmological parameters is re¬
peated for different sampling rates.

patterns form the data set used in the analysis of the simulation data.
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Figure 4.5: Magnification patterns for areas of ~ 6OO20e (top) and ~ 602## (bot¬
tom) of simulation i. The colour represents magnitude with black corresponding
to m < —2, yellow —2 < m < — 1, red —1 < m < 0, green 0 < m < 1, cyan
1 < m < 2 and blue m > 2.
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Figure 4.6: Magnification patterns for areas of 6OO20e (top) and ~ 6026e (bot¬
tom) of simulation Hi. The colour represents magnitude with black corresponding
to m < —2, yellow —2 < m < — 1, red —1 < m < 0, green 0 < m < 1, cyan
1 < m < 2 and blue m > 2.



96 4: Microlensing Simulation Results

Figure 4.7: Magnification patterns for areas of ~ 60026e (top) and ~ Q029e (bot¬
tom) of simulation v. The colour represents magnitude with black corresponding
to m < —2, yellow —2 < m < — 1, red — 1 < m < 0, green 0 < m < 1, cyan
1 < m < 2 and blue m > 2.



4.3: Lightcurves 97

4.3 Lightcurves

Once a set of magnification patterns is generated for each model under investi¬
gation, they are used to produce lightcurves showing the variation of a source

due to microlensing over a period of time. A single set of magnification patterns
can be used to generate light curves for a variety of source profiles. This section
presents light curves generated for pixel sized sources and extended sources with
gaussian and constant surface brightness profiles.

4.3.1 Pixel Sources

The resolution of the magnification pattern is limited by the size of the source

plane pixels. Thus the smallest source available is the single pixel source. The size
of the pixel is significantly smaller than the extended sources under consideration
and for all practical purposes can be treated as a point source.

Lightcurves for the point sources are generated by picking a set of random coor¬

dinates from the pixel plane. These coordinates are checked to ensure that none
are closer than 4 Einstein radii apart. This ensures that the lightcurves obtained
are independent. Once the coordinates for the pixel sources have been obtained,
the magnification for the coordinates are recorded for each of the timesteps to
produce the light curve. Repeating the simulations with different timesteps pro¬

duces multiple versions of sections of the lightcurves each sampled at a different
rate.

A selection of lightcurves is shown for different cosmological models in Fig¬
ures 4.8-4.12. In each figure the left hand column shows the different timesteps
generated in each simulation. For the sections where the shorter timestep data
overprints the longer timestep data, it can be seen that the same broad features
are present in both lightcurves. The shorter timestep data can be seen to add
addition fine detail to the lightcurve. The right hand column shows the same

light curves sampled on a yearly basis. This is the same sampling rate used for
the observational data.
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Figure 4.8: Simulation i. The left column contains example light curves from an
Einstein-de Sitter model with zsrc — 2.0. The lightcurve is overprinted with two
shorter timestep lightcurves. The right column shows these light curves sampled
on a yearly basis.
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Figure 4.9: Same as Figure 4.8 for simulation Hi (f\m = 0.3, 14a = 0.7, zsrc = 2.0).

A number of general comparisons can be made from the lightcurves shown in
Figures 4.8-4.12. Details of the cosmological parameters used for each of the
simulations can be found in Table 4.1.
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Figure 4.10: Same as Figure 4.8 for simulation iv = 0.3, Oa = 0.7, zs

1.0).

The lightcurves for the Einstein-de Sitter cosmology of simulation i (Figure 4.8)
show a much greater variance than those for the non-zero cosmological constant
model of simulation Hi shown in Figure 4.9. In both models all the mass in
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Figure 4.11: Same as Figure 4.8 for simulation v (fIm — 0.3 (0.1 in lenses),
= 0.7, ^src = 2.0).

the simulation is in the form of lenses. The larger mass density of simulation i
therefore corresponds to a greater optical depth. In fact, it can be seen from the
lightcurves that all the light rays are lensed to some extent. Thus a light ray
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Figure 4.12: Same as Figure 4.8 for simulation vii (£Im = 0-3 (0.1 in lenses with
mass distributed according to Equation 2.18, 12a = 0.7, zsrc = 2.0).

passing through simulation i will be deflected, on average, by a larger number of
lenses than a light ray in simulation Hi. In both cases, the lightcurves consist of a
non-linear combination of multiple lensing deflections, although some individual
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lensing events can be seen in simulation Hi.

For a fixed cosmological model with fIm = 0.3 and = 0.7, the lightcurves
of simulation Hi (Figure 4.9) and simulation v (Figure 4.11) show the effect of
lowering the proportion of Qm in lenses. As the amount of mass in lenses drops
from all of VLm in simulation Hi to 1/3 in simulation v, the optical depth is also
reduced. Again, this results in a smaller variance for the lightcurves of simulation
v relative to simulation Hi. Also individual lensing events are clearly visible in
simulation v.

A similar effect can be observed for the lightcurves of simulation Hi (Figure 4.9)
and simulation iv (Figure 4.10). In this case proportion of fIm in lenses is held
constant while the redshift of the source plane is reduced from zsrc = 2.0 to
zsrc — 1.0. As discussed in §1.4.1, while the most effective lenses are found
at a redshift of z « 0.5, lenses at other redshifts will also contribute to the
final magnification. Thus, a variation with source redshift would be expected if
microlensing were the cause of the variation. It would be interesting to compare

in detail whether there is any variation in the observational power spectra for
samples selected at different redshifts.

The lightcurves of simulation v (Figure 4.11) and simulation vii (Figure 4.12)
illustrate the effects of changing the distribution of lens masses in the simulation.
The two simulations use the same cosmological model, again VIm = 0.3 and
14a = 0.7 and source redshift. In both cases, 1/3 of is in the form of lenses.
The lenses in simulation v all have the same mass, while those in simulation vii are
distributed according to the power law in Equation 2.18. This mass distribution
results in more low mass lenses than high mass lenses. The effect of this can be
seen in the two sets of lightcurves. The lightcurves of simulation vii show the
occasional distinct high amplification events due to a small number of high mass

lenses with an underlying variation due to the much larger population of small
mass lenses.

As well as the complete lightcurves for the first 30 years of the simulation pe¬

riod, the right column of Figures 4.8-4.12 shows the same lightcurves sampled
on a yearly basis. These can be compared with the observational lightcurves of
Figure 4.4. While some of the simulation lightcurves show the same level of long
term variation as the observation lightcurves, it is clear that the high amplifi¬
cation events present in simulation lightcurves are not seen in the observational
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lightcurves. These high amplification events are present due to the small size
of the sources, i.e., a single pixel source. As quasars are extended sources, the
absence of high amplification events from the observational lightcurves is unsur¬

prising. The following section examines the effect of extended sources on the
simulation lightcurves.

4.3.2 Extended Sources

In addition to the pixel sized sources, two types of extended sources were con¬

sidered: a source with a constant surface brightness profile (Refsdal & Stabell,
1991) and a source with a gaussian surface brightness profile (Wambsganss et al.
(1990a) and Wambsganss et al. (1990b)).

With the constant surface brightness profile, the source has a surface brightness
of 1.0 everywhere. The sources modelled have a radius of 3, 6, 12, 24 and 48
pixels.

For the gaussian surface brightness profile a source has a surface brightness F(r)
a distance r from the centre.

F(r) = F0e~r2/2a2

where a is the halfwidth of the source and F0 is chosen so that the maximum
surface brightness is 1.0. Five different source sizes with values of a of 1, 2, 4, 8
and 16 pixels were used. Each source has a radius of 3a. Thus the constant and
gaussian profile sources cover the same total area of the source plane. The source

profiles for the different values of a are shown in Figure 4.13.

For each of the surface brightness profiles, the source positions are chosen so that
each source is separated from the neighbouring source by at least four Einstein
radii. This ensures that each lightcurve generated is independent. The source

positions are fixed for each lightcurve. The lightcurves are generated by convolv¬
ing the source profile with the pixels it covers in the magnification patterns. The
resulting magnification are then integrated over the surface of the source. This
process is repeated for each magnification pattern in the simulation.

Figures 4.14 and 4.15 show lightcurves for the gaussian and constant surface
brightness profiles. In each case, the left hand column of the figure shows the
change in the lightcurves for sources with the same central coordinates as the
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Figure 4.13: Gaussian source brightness profiles for different values of a. The
inner profile is for a = 1 and the outer is for a = 16.

source size increases. It can be clearly seen in both sets of lightcurves that, as

expected, the peaks in magnification are smoothed out as the source size increases.
Also the individual lensing features remain prominent in the gaussian source

profile for larger sources than with the constant source profile. This is because
with the gaussian source brightness profile, the majority of the magnification
for the source comes from roughly the central third of the source. Thus the
high amplification events aren't smoothed out by surrounding lower magnification
pixels when compared to the constant surface brightness profile.

Again, it is interesting to compare the sampled lightcurves shown in the right had
columns of Figures 4.14 and 4.15 with lightcurves from the observational survey
(see Figure 4.4). The absence of the high amplification events from both sets of ex¬
tended source lightcurves, when compared to the point source lightcurves, clearly
increases the similarity between the observational and simulation lightcurves.
In particular, the simulation lightcurves in Figures 4.14 and 4.15 both show evi¬
dence of an underlying long term variation of a similar period to the observational
lightcurves.

While the lightcurves illustrate a number of features of the different simulations
and source sizes, it is difficult to compare them quantitatively with the obser¬
vational data. The following section outlines a more rigorous power spectral
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10 15 20 25

Time (yeara)

Figure 4.14: Simulation vii with gaussian source profiles. The left column shows
the lightcurves of sources with the same central coordinates as the source size
increases. The top lightcurve is for a = 1 pixel and the bottom is for a — 16
pixels. The right column shows the lightcurves sampled on a yearly basis.
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Figure 4.15: Simulation vii with constant source profiles. The left column shows
the lightcurves of sources with the same central coordinates as the source size
increases. The top lightcurve has a source radius of 3 pixels and the bottom
lightcurve has a source radius of 48 pixels. The right column shows the lightcurves
sampled on a yearly basis.
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analysis which was used to compare the statistical properties of the observational
and simulation data sets.

4.4 Power Spectra

Power spectra provide a reliable statistical method for comparing different sets of
data. While individual lightcurves may differ dramatically for the same cosmo-

logical model, the overall power spectra should remain consistent. If a signal is
considered to be made up of a combination of different frequency sine waves, the
power spectra measures the amount of power in the signal from a given frequency.
Power spectra have the advantage that power values at different frequencies are

uncorrelated. This is particularly important if, as in this case, models are going
to be fitted to the power spectra, as it ensures that there is no systematic shift
in the data caused by correlated data points.

The lightcurves A0(t) produced by the numerical simulations consist of N dis¬
cretely sampled data points taken over a period of time T. The discrete lightcurve,
Ao(t), is an approximation of the underlying continuous lightcurve A{t). Thus,

A0(t) = A(t)W(t)

W(t) is the sampling window function for measurements taken at times t — 2,-:

N

W(t) = J2SD(t~ti
2—1

where 8D[x) is the Dirac delta function.

The underlying power spectrum for a set of discretely sampled data can be ex¬

pressed as:

TdAoMP)

where ui is the angular frequency u = 2irk/T1 k = 1, IV for a simulation with a

duration of time T. This expression is derived in Appendix B.

A power spectrum is calculated for each simulation lightcurve. As each simulation
was repeated for a number of different timescales, this results in a set of power
spectra, with each set covering a different range of frequencies. The mean power
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spectrum, P, for each range of frequencies is found by taking the average of the
individual power spectra. The error on P is taken as the variance of the power

spectra which make up P (see Appendix B.l).
As each simulation was repeated over different timescales, a different P is obtained
for each timescale. Figure 4.16 shows the different Ps obtained for the pixel
source of simulation vii. It is clear from this graph that the method of calculating
different Ps individually for different timescales can be used to obtain an accurate
measure of the power over a large range of frequencies. The same plots for
the other simulations and source sizes show a similar agreement between Ps for
different timescales.

Figure 4.16: The power spectra obtained for each of the three different timesteps
modelled for the point source in simulation vii are plotted. For each simula¬
tion and source profile, a final power spectrum is calculated by combining the
individual power spectra from each of the different timescales modelled.

The Ps for different timescales are combined to give the final underlying power

spectrum for each simulation. A yp fit is then calculated for the final power
spectra using the function:

P(U)uj
Aua

1 + (-*-)\cxlQ -1
a+6

(4.1)
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Figure 4.17: The final power spectrum for the point source profile of simulation
vii is plotted (dashed line) along with the best fit from Equation 4.1 (solid line).
This fitting process is repeated for each of the source profiles and simulations.

The fit for the power spectrum in Figure 4.16 for the combined power spectra of
simulation vii is shown in Figure 4.17.

The final power spectra for each of the different source sizes and simulations were

fitted using Equation 4.1. The resulting best fits are shown as graphs in Fig¬
ures 4.18 and 4.19. The best fit parameters are listed in Appendix C, Tables C.l,
C.2, C.3 and C.4.

The power spectra shown in Figures 4.18 and 4.19 show a number of interesting
features. The most obvious feature in each of the simulations is the drop in power

across all frequencies as the source size increases. In each graph, the source size
increases moving down from the pixel sized source in the top line. This reduction
of power with increasing source size can be predicted from the lightcurves for the
different source sizes shown in Figures 4.14 and 4.15. As the source size increases,
the variation in magnitude of the sources decreases, reducing the variance of the
lightcurve. As the area under the power spectra is the variance of the data, this
drop in variance is seen in the power spectra as a reduction in the level of power
for larger source sizes. A similar effect can be seen in the observational power
spectra (Figure 4.3) if the high luminosity quasars with ma < 20 are interpreted
as corresponding a larger source size.
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Simulation i: 0M=1.0 (all in lenses). 0A=0.0, Z,=2.0 Simulation iii: 0M=0.3 (all in lenses). 0A=0.7, Zt=2.0

10 100 0.01 0.1 1 10 100

Simulation v: 0U=0.3 (0.1 in lenses). 0A=0.7. Zs=2.0 Simulation iv: 0M=0.3 (all in lenses), 0A=0.7, Zt=1.0

10"J 0.01 10 100 10"4 10"3 0.01 0.1 10 100

Simulation vi: 0M-0.3 (0.01 in lenses). 0A-0.7. Z.-2.0 Simulation vii: C1M«0.3 (0.1 in lenses, power law). QA—0.7, Zt-2.0

Figure 4.18: Graphs of the best fit to Equation 4.1 for the different simulations
and gaussian source profile sizes. For each of the simulations the top most line
on the graph is the pixel sized source with the source sizes increasing with each
line clown the graph through the five different gaussian source profiles under
consideration.
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Simulation i: flM=1.0 (all in lenses), 0A=0.0, Zg=2.0 Simulation iii: 0U=0.3 (all in lenses), 0A=0.7, Zt=2.0

10"* 10"J 0.01 0. 00 *10"* 10~J 0.01 0. 10 100

Simulation v: QM=0.3 (0.1 in lenses), 0A=0.7, Zt=2.0 Simulation iv: Qu=0.3 (all in lenses). 0A=0.7, Zt=1.0

10""5 0.01 0.1 10"J 0.01 0.1 10 100

Simulation vi: 0M=0.3 (0.01 in lenses), 0A«0.7, Z3=2.0 Simulation vii: 0M«0.3 (0.1 in lenses, power law), 0A=0.7, Z3—2.0

Figure 4.19: Graphs of the best fit to Equation 4.1 for the different simulations
and constant source profile sizes. For each of the simulations the top most line
on the graph is the pixel sized source with the source sizes increasing with each
line down the graph through the five different constant source profiles under
consideration.
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Also, as the source size increases, the high frequency side of the power spectra
drops off more rapidly than at the low frequency end. This is due to the increas¬
ing source sizes smoothing out the fine detail in the lightcurves which largely
contributes to the high frequency component of power spectra. It is interesting
to note that this drop off is more pronounced in the sources with a gaussian sur¬

face brightness profile than those with a constant surface brightness profile. This
is probably due to the sharp drop in magnification at the edge of the constant
surface brightness profile source introducing high frequency artifacts components
which artificially increase the power at the high frequency end of the range.

It is difficult to make detailed comparisons between different models as the source

sizes vary between each cosmology. Each source is specified in terms of the number
of pixels it covers on the source plane. As the angular diameter distance to the
source plane at a specified redshift depends on both Om and (Equation 2.11),
the proper size of the source varies between cosmologies. The variation of the
power with different proper source sizes is discussed in detail in §4.5.

Within a fixed cosmology, the proportion of VIm in the form of lenses also affects
the power spectra. For the CIm = 0.3 and Oa = 0.7 cosmology, as the amount
of mass in lenses drop from the whole of VIm to 12a//3 and finally to 12^/30 the
power levels drop also.

The distribution of the mass between the lenses within the simulation also affects

the form of the power spectra. Comparing the power spectra for simulations v

and vii, the peak of the power spectra are at roughly the same level for the pixel
sized sources. However, the reduction in power as the source sizes increase is
much less for the power law mass distribution of lenses in simulation vii than for
the single mass lenses in simulation v. Also, the peaks occur at a higher frequency
in simulation vii than the corresponding peaks in simulation v.

4.5 Comparison of Observational and Simula¬
tion Power Spectra

In order to compare the power spectra from different microlensing simulations
with the observational power spectrum, it is important to take into account the
effects of the relatively short timescale of the observations and the discrete sam¬

pling of the lightcurves. Therefore the discrete observational power spectra of
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Figure 4.3 can not be directly compared with the continuous power spectra of
Figures 4.18 and 4.19. Instead the simulation power spectra are convolved with
a window function which mimics the yearly sampling of the observational data.

The observational power spectra of Figure 4.3 vary depending on the objects in¬
cluded in the sample. For the purpose of this analysis data is binned in luminosity
and redshift. The redshift bins include objects in the ranges 0.5 < z < 1.5 and
1.5 < 2 < 2.5 while the luminosity bins split the data into between objects which
have an apparent magnitude of ma < 20 and those with ma > 20.

As discussed in §2.6.4, the timescale of the microlensing lightcurves, and therefore
the power spectra, only depend on the mass of the lenses in the simulation. For
a simulation of timescale T, the mass M of the lenses varies as T oc \[M. Thus
the power spectra can be scaled to different lens mass ranges by moving it along
the frequency axis.

The graphs shown in Figures 4.20 to 4.25 show the results of scaling the power

spectra for the gaussian source brightness profiles to different mass ranges and
convolving with the window function. Figures 4.26 to 4.31 illustrate the same for
the constant source brightness profiles.

The solid lines in the graphs represent the convolved power spectra from the
microlensing simulation, while the dashed line is the power spectra obtained from
the observational data sample with 1.5 < 2 < 2.5 and ma < 20. Each graph shows
the convolved power spectra for lens masses ranging from 10~5M@ to 1M®. It
should be noted that, as scaling the mass also scales the size of the simulation
source plane, sources containing the same number of pixels correspond to different
proper source sizes for different lens masses. The proper sizes of the pixels for
each lens mass is shown in Table 4.3. The relation between proper source size
and lens mass will be discussed later in this section.

The first observation to make about the graphs shown in Figures 4.20 to 4.31 is
the difference in shape between the simulated power spectra and the observational
one. In all the cases considered the peak of the power spectra is narrower than
the frequency range covered by the observational data. Thus, while each of
the observational power spectra is roughly flat, the simulated spectra show an

appreciable turn down.

It is useful to consider the relative levels of power between the observational
and simulation spectra. With the exception of simulation vi, for each simulation
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Figure 4.20: Simulation i: The solid lines show the power spectra of the pixel
sized source and a range gaussian surface brightness profile sources convolved
with the window function for different lens masses. The dashed line is the power

spectra for the observational data sample with 1.5 < 2 < 2.5 and ma < 20.
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Figure 4.21: Same as Figure 4.20 for simulation iii.

some combinations of source size and lens mass reproduces a similar power level
to each of the observational datasets. Simulation vi contains O.OIOm in the form
of lenses and the low levels of power reflect the low probability of lensing of
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Figure 4.22: Same as Figure 4.20 for simulation iv.

individual quasars in such a model. The long term variation in the apparent
luminosity of quasars is seen in the vast majority of quasars with a redshift of
z > 0.3. If this effect is due to microlensing, the low optical depth in simulation
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Figure 4.23: Same as Figure 4.20 for simulation v.

vi would not be able to account for such a widespread effect.

It is difficult to interpret the results further without considering the proper sizes
of the sources. In order to investigate the relationship between the proper source
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Figure 4.24: Same as Figure 4.20 for simulation vi.

sizes and the lens masses, a x2 fit was calculated between each of the convolved
simulation power spectra and the four observational power spectra. The number
of source sizes covered was increased by interpolating the power spectra shown
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Figure 4.25: Same as Figure 4.20 for simulation vii.

in Figures 4.18 and 4.19 to fill in source sizes for which lightcurves were not
calculated.

Figures 4.32 - 4.35 and and 4.36 - 4.39 show the results of this fit for the gaussian
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Figure 4.26: Simulation i: The solid lines show the power spectra of the pixel
sized source and a range constant surface brightness profile sources convolved
with the window function for different lens masses. The dashed line is the power

spectra for the observational data sample with 1.5 < z < 2.5 and ma < 20.
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Figure 4.27: Same as Figure 4.26 for simulation iii.

and constant surface brightness profile sources to different subsets of the obser¬
vational data. The x-axis of these graphs shows the proper size of the source (in
metres) with each line representing a constant lens mass. The left most line is for
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Figure 4.28: Same as Figure 4.26 for simulation iv.

the smallest lO_5Af0 lens with the mass increasing to 1M0 in the furthest right
line. Tables of the best fit parameters for each of the cases considered are shown
in Appendix D.
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Figure 4.29: Same as Figure 4.26 for simulation v.

With the exception of simulation vi, all the models under consideration have a

reasonably low reduced %2 value for some combination of source size and lens
mass, although none of the best fit parameter values gives a formally acceptable
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Simulation vi, Pixel src Simulation vi, source radius = 3 pixels
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Figure 4.30: Same as Figure 4.26 for simulation vi.

fit. The lowest x2 values relate to the gaussian source brightness profile simu¬
lations and the sampled observational data with 0.5 < 2 < 1.5 and ma > 20
(see Table D.l). The \2 fits for simulation vi confirm that this model can be
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Figure 4.31: Same as Figure 4.26 for simulation vii.

excluded from consideration as its low proportion of lensing mass results in an

optical depth which is too low to match observations.

The reduced x2 fits f°r the remaining 5 simulations all suggest a best fit for the
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Simulation Lens mass (M©) Pixel size (m)

i 1.0 2.1 x 1014
0.1 6.6 x 1013
0.01 2.1 x 1013
io~3 6.6 x 1012
O

1

2.1 x 1012
10~5 6.6 x 1011

Hi, v, vi 1.0 3.0 x 1014
0.1 9.4 x 1013
0.01 3.0 x 1013
10~3 9.4 x 1012

T1

o 3.0 x 1012
10~5 9.4 x 10u

iv 1.0 2.9 x 1014
0.1 9.0 x 1013
0.01 2.9 x 1013

CO1

o 9.0 x 1012
1

o 2.9 x 1012
10~5 9.0 x 1011

vii 1.0 7.9 x 1013
0.1 2.5 x 1013
0.01 7.9 x 1012
10~3 2.5 x 1012

rr1

o 7.9 x 1011
10~5 2.5 x 1011

Table 4.3: The proper size of a pixel in the source plane for each simulation.

lens mass of 10~5 < Miens < 10-4 and for the source size of between roughly
1.0 - 3.6 x 1013m across the different observational data samples. The different
source surface brightness profiles make little difference to the results. Sampling
the observational data in redshift and luminosity bins makes little difference to
the x2 values. This result is unsurprising as it is clear from Figure 4.3 that
the underlying shape of the observational power spectra is reasonably constant
between the different samples with the main difference between the observational
data sets being the level of power. The small variations in the x2 values of each
of the sampled observational datasets for the same simulations may well be due
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to fitting the observational data to discrete rather than continuous values of lens
mass and source size. Thus, the following discussion will focus on differences
between the \2 results for the simulation data. Tables summarising the best fit
parameters for the gaussian and constant source brightness profiles are shown in
Table D.l - D.4 and D.5 - D.8.

In both the Einstein-de Sitter model of simulation i and the = 0.3 and

Ha = 0.7 model of simulation m, the best fits are provided by lenses with a

mass of 10~5M0. The lower limit on the lens mass considered is set by the lower
frequency end of the simulation. Extending the power spectra beyond this point
would require extrapolating the fit significantly beyond the end of the data. While
there is no sign in any of the power spectra of a break at the low frequency end,
it was decided not to do this. Thus it is not possible to test whether lenses with
masses < 1CF5 would provide a better fit to the observational data for simulations
i and Hi.

For a fixed cosmology of = 0.3 and 12a = 0.7, a drop in the proportion of
mass in the form of lenses appears to have the same effect on the two source

brightness profiles. In both cases, a higher mass lens of lO~4Af0 is favoured by
simulation v. The effect of reducing the lens mass is to move the power spectra
shown in Figures 4.18 and 4.19 to the right. Thus different lens masses sample
different sections of the power spectra's curve. It seems likely that the best fit for
both the gaussian and constant sources for simulation v occurs for a power level
at which the lens masses between 1O~5M0 and 10~4M0.
For this same cosmology, the lower redshift sources of simulation iv also favours
lenses with a slightly higher mass of 10~4M0. The exception is for observational
data in the 1.5 < z < 2.5 and ma < 20 range where the 10~5 lens mass provides
a slightly better fit. However, for each of the observational power spectra, the
difference in y2 values between 10~5 and 1O-4M0 lenses is small and, again, it
seems likely that the best fitting mass lies between these two values.

For models with the same cosmology and the same proportion of in lenses, the
X2 fits are either better for simulation vii than simulation v, or about the same.

Lens masses of 1O_4M0 give a better fit than 1O~5M0. However, as the mass

quoted for simulation vii is the upper end of the mass range used in the simulation,
the low x2 values for 10~5 and 1O~3M0 lenses may indicate that a wider range of
lens masses should also be considered. However this would significantly increase
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the computational time required for the microlensing simulations.

The main conclusion of this chapter is that microlensing may account for the long
term variability of quasars. The sole case where the simulation power spectra
cannot be fitted to the observational data to some degree is a very low mass

12m = 0.3 and 12a = 0.7 model with only 0.0112m in the form of lenses. The
remaining models all produce broad fits to the different ranges of observational
data.

In general, there is a remarkable degree of agreement between the different cos¬

mologies, source profiles and observational data samples. From the results pre¬

sented in this chapter it is possible to conclude that although we have been unable
to find a model which fits the complete observational sample adequately, if mi¬
crolensing is the cause of the long term variation in the apparent brightness of
quasars, the lens mass is in the range 10~5 - 10~4Mq and the source size in the
range 1.0 x 1013 - 3.6 x 1013 metres.
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Figure 4.32: Reduced y2 fits °f the gaussian surface brightness profile sources to
observational data in the range 0.5 < 2 < 1.5 and ma > 20. Each line shows the
fit for a constant lens mass. The left hand line represents lenses with masses of
1O~5M0 with the mass increasing by an order of magnitude with each line to the
right up to 1Mq.
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Figure 4.33: Same as Figure 4.32 for observational data in the range 0.5 < z < 1.5
and ma < 20.
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Figure 4.34: Same as Figure 4.32 for observational data in the range 1.5 < z < 2.5
and ma > 20.
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Figure 4.35: Same as Figure 4.32 for observational data in the range 1.5 < z < 2.5
and ma < 20.
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Figure 4.36: Reduced x2 fits of the constant surface brightness profile sources to
the observational data in the range 0.5 < z < 1.5 and ma > 20. Each line shows
the fit for a constant lens mass. The left hand line represents lenses with masses
of 10~5Mq with the mass increasing by an order of magnitude with each line to
the right up to 1M®.
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Figure 4.37: Same as Figure 4.36 for observational data in the range 0.5 < z < 1.5
and ma < 20.



136 4: Microlensing Simulation Results

Simulation i Simulation iii

Source size (m)

Simulation v

10iA 10

Source size (m)

Simulation vi

101A 10

Source size (m)

1011 10l" 101J 10

Source size (m)

Simulation iv

Source size (m)

Simulation vii

101C 101

Source size (m)

Figure 4.38: Same as Figure 4.36 for observational data in the range 1.5 < 2 < '2.5
and ma > 20.



4.5: Comparison of Observational and Simulation Power Spectra 137

Simulation i Simulation iii

10u 1012 1013 1014 1015 1016 10'

Source size (m)

Simulation v

1011 lO1* 101J 101* 1010 10iO 101

Source size (m)

Simulation vi

10" 1012 1013 1014 1015 101

Source size (m)

"»12 1013 1014 1015 1016 1017

Source size (m)

Simulation iv

1011 101* 101J 101* 10iO 10XD 10

Source size (m)

Simulation vii

Source size (m)

Figure 4.39: Same as Figure 4.36 for observational data in the range 1.5 < z < 2.5
and ma < 20.
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Chapter 5

Testing Dark Matter with
High-redshift Supernovae

One of the classic tests of the geometry of the Universe involves the construction of
a flux-redshift diagram, known as a Hubble diagram. At high redshifts the model
lines for different values of CIm and begin to diverge and, in theory, it becomes
possible to use observations of high redshift objects to constrain the geometry
of the universe. However, until recently it has proved difficult, in practice, to
obtain reliable independent distance measurements at a sufficiently high redshift
to distinguish between cosmological models. But, in recent years there has been a

resurgence of interest in this method of measuring the geometry of the Universe.
This is due to success of the high redshift Type la supernovae searches.

As discussed in §1.1.2, Type la supernovae are thought to act as standard can¬

dles and therefore their Hubble diagram may be used to constrain cosmological
models. Dedicated discovery and follow-up programmes (Perlmutter et al. (1997),
Perlmutter et al. (1999), Schmidt et al. (1998)) have established their Hubble di¬
agram to z ~ 1, leading to the constraints on Ho, Qm and fix, discussed in §1.1.2.
Most notable of their findings is the requirement for a positive cosmological con¬
stant (Riess et al., 1998). However, it was soon realised that the Hubble diagram
for the supernovae would be affected by gravitational lensing if significant quanti¬
ties of dark matter existed in the form of a cosmological distribution of compact
objects such as PBHs (Holz & Wald (1998), Metcalf & Silk (1999), Weller &
Albrecht (2000), Huterer & Turner (2000)). Such a population had already been
proposed to account for the long-term variability of quasars (Hawkins, 1993).
Measurements of supernova lightcurves have also been proposed as a means of
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searching for microlensing events within the Large Magellanic Cloud (Graff &
Kim, 2001).

These studies have shown that lensing can have a significant effect on estimates
of cosmological parameters. In addition, the authors have also suggested that
the distribution of supernova fluxes could be used to determine the amount of
dark matter which exists in the form of compact objects. Metcalf & Silk (1999)
showed that, provided the cosmology was known, microscopic dark matter, such
as weakly interacting particles, could be distinguished from macroscopic dark
matter, such as PBHs, with relatively small numbers of supernovae. The reason

for this sensitivity is that, in a universe of reasonable density dominated by
such macroscopic dark matter, most bunches of light rays do not undergo large
magnifications and the most probable flux received is close to that expected in
empty-beam models (Dyer & Roeder, 1974). This shifts the most probable Hubble
diagram systematically, changing the estimates of the cosmological parameters
(Holz & Wald, 1998). Thus both the underlying cosmology and the amount of
the matter density in the form of lenses effect the Hubble diagram and both
quantities need to be taken into account when fitting observational data. While
this is ambitious, it seems likely to be attempted once larger supernova searches
such as those proposed by SNAP1 and VISTA2 are underway.

In this chapter, the study is more limited and focuses on how extra scatter due to
lensing in supernova fluxes can be used to constrain the quantity of dark matter
in the form of compact objects. The variance in the supernovae measurements
will have contributions from intrinsic variations in the supernova properties, in¬
strumental error, and lensing by a cosmological population of compact objects.
The first two of these should be virtually independent of the cosmological model,
so we are directly testing the contribution from macroscopic compact objects by
including the lensing effect.

The level at which this test can detect dark matter candidates depends on the
accuracy with which the variance can be estimated from sets of supernovae data.
For gaussian distributions, this is straightforward. However, although it may

be a reasonable approximation to model the intrinsic and instrumental effects
as gaussian, the lensing effect is highly skewed towards rare high-magnification
events. Thus a gaussian distribution would not provide an accurate measure of

^ttp://snap.lnl.gov
2http://www.vista.ac.uk



5.1: Method 141

the variance due to lensing. The numerical ray-tracing simulations outlined in
Chapter 3 were used to model the effects of lensing and the results were analysed
using a Bayesian method (§5.1.1).

Lensing induces an extra scatter which rises with redshift, contributing as much
as 0.5 magnitudes at a redshift z = 1.5 for an Einstein-de Sitter model with
all the matter in the form of compact objects. Thus it should be possible to

distinguish this from a no-lensing model, provided data is available for sufficient
supernovae. This study shows, in general, that with ~ 2600 supernovae uniformly
selected from 0.1 < z < 1.7, as proposed by SNAP, the scatter alone can select
between several cosmological models at 99.9% confidence level. This method of
distinguishing between different models has the advantage that it is insensitive
to any evolution in the mean luminosity of supernovaa. However it would be
dependent on any evolution in the scatter of intrinsic properties.

5.1 Method

As discussed in Chapter 4, the effects of microlensing on sources at high redshifts
result on average from a non-linear combination of a number of individual lensing
events. Thus the microlensing effect on the brightness of a supernova at a redshift
of z ~ 1 is not necessarily accurately modelled by a single-scattering event.
Therefore, the computer simulation outlined in Chapter 3 is used to model the
lensing of distant supernova. For this simulation the model uses high accuracy

model parameters set out in Table 3.1 for single timestep simulations. This
ensures that the sampling of the magnification pattern is sufficiently accurate to
detect high amplification events and that small changes in the deflection angle
due to lenses with a large impact parameter are included. While such details
have little effect on the power spectra outlined in Chapter 4, they are necessary

for these simulation in order to obtain an accurate probability of distinguishing
between different cosmologies and lens populations.

As in Chapter 4, the Universe is assumed to be populated with compact dark
matter candidates of a single mass randomly distributed over a series of planes.
The results of the simulations are independent of the lens mass provided the
source is small compared to the Einstein radius.

Four separate models are considered, one with no lensing, one an Einstein-de
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Model Matter density Cosmological constant Density in lenses
Dm Da D^ens

1 0
2 0.3 0.7 0.1

3 0.3 0.7 0.3
4 1.0 0.0 1.0

Table 5.1: Models considered. Model 1 includes scatter only from measurement
error and intrinsic variations.

Sitter model with all matter in lenses, and two flat models with Dm = 0.3 and

cosmological constant Da = 0.7. These last two models differ in the proportion
of the matter in lenses. The models are detailed in Table 5.1 and are listed in

order of increasing DLens- While this is a small number of models, it covers the
cases of most current interest and should provide a useful indication of the ability
of searches like SNAP to distinguish different models.

Two analyses are performed - a preliminary study of the 42 high-redshift su¬

pernovae in the Supernova Cosmology Project and a second study investigating
whether SNAP should be capable of distinguishing between the different models.
In the former case, the errors are taken from the observational data given in Perl-
mutter et al. (1999). For the SNAP study, it is assumed that there is an intrinsic
variation in supernovae properties of 0.157 mag (Perlmutter et al., 1999), and a

measurement error of 0.08 mag (Metcalf & Silk, 1999). These errors (measured
in magnitudes) are assumed to be gaussian, and independent of redshift and cos¬

mology, although these assumptions could be relaxed if desired. Model 1 contains
only these components of variance.

Figure 5.1 shows the scatter in the magnitudes induced by lensing for models
2-4, as a function of redshift. The r.m.s deviation has been shown as symmetric
around the mean. In practice the distribution is highly skewed towards high
amplifications. Given that the intrinsic plus instrumental scatter is ~ 0.2 mag,

it can be seen that the additional variance from lensing becomes very significant
at redshifts > 1.

5.1.1 Statistics

It is anticipated that SNAP will result in data for N ~ 170 supernovae per

redshift interval of Az = 0.1. The statistical analysis uses the r.m.s. of the
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Figure 5.1: Mean and r.m.s. deviation of supernova brightness vs. redshift, due
to lensing alone.

supernovae brightness in each bin. Thus the ability of SNAP and other surveys
to discriminate between the different models listed in Table 5.1 depends on the
accuracy with which Lire r.m.s. of the supernovae brightness can be measured from
N supernovae. For gaussian distributions, this can be calculated analytically.
However, a,s can be seen in Figure 5.2, the distribution of magnifications induced
by lensing is far from gaussian. Thus a numerical approach is applied in order
to generate a set of probability distribution functions (pdfs) for the data which
can then be used to calculate the probabilities of distinguishing between different
models for different sizes of supernova data sets.

For each model listed in Table 5.1, magnification patterns are generated for
redshifts in the range 0.5 < 0 < 1.7. For each model, N magnitudes are re¬

peatedly drawn at random from the magnification patterns for the various red-
shifts, noting that the probability of a supernova lying in a distorted pixel in
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Magnification (mag)

Figure 5.2: The distribution of magnifications arising from lensing in the three
lensing models at redshift z = 1.7.

the source plane is proportional to the solid angle of the pixel. These magni¬
fications are applied to magnitudes drawn from gaussian distributions of width
O = (JIntrinsic + Observational- For the proposed SNAP survey, the values are
taken as aintrinsic = 0.157 mag (Perlmutter et al., 1999) and aobservational = 0.08
mag. For the current data, a is taken to be the measured r.m.s. given in Perl-
mutter et al. (1999), which includes both intrinsic and observational errors. This
calculation is repeated many times and the results used to compute the distri¬
bution of the sample variance as a function of redshift. Some representative
distributions are shown in Figure 5.3 for a redshift of z = 1.7.

The probability distribution of the variance estimator Dt can be computed.

Di = YXmjti - fhi)2/(N - 1)
j

where the sum extends over j = 1 ... N supernovae in a redshift bin i. fhi is
the mean magnitude in bin i. Di is computed by Monte-Carlo simulation of N
supernovae drawn from the ray-tracing simulations. This gives, for a given model
Mfc, the probability of obtaining a set of variances {Th},

p({Di}\Mk,N).

As the bins are independent, the probability of the set of variances is the product
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Figure 5.3: The distribution of the r.m.s. scatter of N = 150 supernovae at
redshift z — 1.7, for the four models (1-4, from the left).
of individual probabilities for each redshift,

p{{Di}\Mk,N) = l[p(Di\Mk,N)
i

From now on, N is suppressed in these probabilities.

The complication arises because there is, as yet, no data from the surveys. In
order to distinguish between the different models, the probability of deducing the
correct model Mcor is required. Marginalising over the (unknown at this stage)
true model, this is

p{Mcor) = Y^P(Mcor,Mk)
k

= Y p(Mcor | Mk)p(Mk)
k

=

~j\j~ } ] P(Mcor | Mk )Nk
K

where the last step follows if equal prior probabilities are assumed for the models.
Nk is the number of models considered.

To compute the conditional probability in the last equation, the distribution of
sets of variances {Dj} is used, given that the true model is Mt:

P{Mcor\Mt) = / rf{A}p(Mcor|{A-}))p({A}|Mf) (5.1)
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Now, using Bayes' theorem,

pW{Di])= pAMMiMMil
P[{Dt})

Thus the probability of getting the correct model, given a set of data is

p[Mcor\\Dl}) — (s n \ \ m \ (\r \2^kP({Di}\Mk)p(Mk)

where the evidence p({Di}) cancels out top and bottom. If uniform priors are

assumed for the models, the probability simplifies, and substitution into Equa¬
tion 5.1 gives

P(Mcor\Mt)= / _ V/ W

p({Di}\Mt"
J EkP({Dl}\Mk)p(Mky

Approximating the integral over sets of data by a set of Nr random drawings
(labelled by a), gives:

p(Mcor) - y, nJ2K
Mt a

p({Di}a\Mt)
LEkP({Di}«\Mk)p(Mk]

5.2 Results

The relative likelihood of the four models considered is computed for the exist¬
ing 42 high-redshift supernova published from the Supernova Cosmology Project
(Perlmutter et al., 1999). The data used is the stretch luminosity-corrected effec¬
tive B-band magnitude. The expected magnitude for model 2 (or 3) is subtracted
from the magnitude of the data and the variance computed using the standard
estimator for 4 bins between z — 0.45 and 2 = 0.85. The reason for subtracting
the expected magnitude of the model is that the redshift bins for which we have
microlensing amplification distributions are quite broad and the mean apparent

magnitude varies substantially over the bin (see Figure 5.4). For the Einstein-
de Sitter model, the additional variance from subtracting the wrong evolution is
negligible. Figure 5.5 shows the results of removing the expected magnitude from
the data.

The variances in the four bins are 0.064, 0.170, 0.076 and 0.043, containing 11, 8,
3 and 3 supernovae respectively. Various effects conspire to make the 0.55 < 2 <

0.65 bin the crucial one: first, at lower redshift, the lensing makes little difference
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Figure 5.4: Distance redshift relation for the Supernova Cosmology Project data
(Perlmutter et a/., 1999). The vertical lines show the redshift ranges in which the
data was binned for analysis.

Figure 5.5: The scatter of the Supernova Cosmology Project data around the
Dm = 0.3, Da = 0.7 cosmological model.

to the variance; second, at higher redshift, there are very few supernovae in the
bins; finally, the observed variance is high in the second bin. Thus the second
redshift bin favours models with more microlensing, since the expected no-lensing
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Model Dm Da Dnens Relative likelihood SN1997K removed
1

2

3

4

0 0.58

0.92
0.96
1.0

1.0

0.88
0.66
0.32

0.3 0.7 0.1

0.3 0.7 0.3

1.0 0.0 1.0

Table 5.2: Relative likelihood for the four models, from the high-redshift super-
novae observed as part of the supernova cosmology project.

variance is only 0.04. Combining the results gives the relative likelihoods shown
in Table 5.2, where the likelihood of the favoured model is set to unity. The
variances in the data have a slight preference for a population of compact objects,
but the significance is low. In fact, removing a single supernova (SN1997K) from
the dataset reduces the variance to 0.053, reversing the conclusions and making
the no-lensing model the preferred choice (see Table 5.2). There is little a priori
justification for removing this point. In fact it is anomalously faint, so it is not
a good candidate for a lensing event. Thus, unsurprisingly, there is little to be
learned from this test on current data.

Future experiments should be able to do this task with greater success. In Ta¬
ble 5.3, the conditional probabilities of selecting models are shown for varying
numbers of supernovae per redshift interval of A2 = 0.1, for supernovae in the
range 0.1 < 1.7. SNAP expects ~ 167 per bin. Probabilities less than 0.0005 are

set to zero in the table.

In Figure 5.6 we show how the probability of obtaining the correct model changes
as we increase the number of sources per Az = 0.1 bin. A uniform prior is
assumed: i.e., all models are equally likely a priori.

It can be seen that SNAP should be able to distinguish between these models
with 99.9% confidence, provided systematic errors can be controlled.

The work presented in this chapter demonstrates how the scatter in supernova

fluxes can be used to support or rule out models with dark matter in the form
of a cosmological population of compact objects. Lensing by compact objects
increases the variance in the fluxes, and for models with a high density dark
matter in this form, the variance can be increased by a factor greater than 3 at
redshifts accessible by supernova searches. Simply put, if the observed variance
in supernova magnitudes is too small, it can eliminate a population of compact
objects as the dominant dark matter candidate. The existing data from the
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Correct model Model Number per Az = 0.1
25 50 75 100 125 150 175

1 1 0.998 1.000 1.000 1.000 1.000 1.000 1.000
2 0.002 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 1 0.004 0.000 0.000 0.000 0.000 0.000 0.000
2 0.927 0.986 0.996 0.998 0.999 1.000 1.000
3 0.069 0.014 0.004 0.002 0.001 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.065 0.014 0.004 0.002 0.001 0.000 0.000
3 0.838 0.949 0.977 0.990 0.996 0.999 1.000
4 0.097 0.037 0.019 0.008 0.002 0.001 0.000

4 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.088 0.032 0.016 0.006 0.003 0.001 0.000
4 0.902 0.968 0.984 0.994 0.997 0.999 1.000

Table 5.3: Probability of deducing correct and incorrect models given the true
model.

Supernova Cosmology Project data do not rule out dark matter in this form and
conclusions about whether compact objects are preferred or not are sensitive to
inclusion or exclusion of individual supernovae. Future planned surveys, such
as the proposed SNAP survey should be able to distinguish models readily, and
in principle provide an accurate measurement for the quantity of MACHO dark
matter.
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Figure 5.6: The probability of obtaining the correct model, plotted against the
number of supernovae per redshift interval Az = 0.1. In all cases it is assumed
that supernovae are observed up to z = 1.7. SNAP expects about 167 (dotted
line).



Chapter 6

Conclusions

Developments in the field of cosmology over the last hundred years have radi¬
cally changed our view of the Universe. However, there is still one fundamental
question we cannot answer - of what does the majority of the mass of the Uni¬
verse consist? Observational data on all scales provide substantial evidence that
luminous matter which can be directly observed constitutes a relatively small
proportion of the matter in the universe. A number of theories have been put
forward to explain this, offering so-called 'dark matter' in forms such as new

fundamental particles, PBHs, brown dwarves, etc.. However, the sheer range of
candidates and the mass ranges postulated provide perhaps the best illustration
of how little is actually known.

This thesis investigates two methods by which it may be possible to observation-
ally identify dark matter in the form of a cosmological distribution of compact
objects such as PBHs. In particular, it explores the effect of the existence of this
type of dark matter on quasar lightcurves ancl high redshift supernova observa¬
tions. In both cases this investigation is carried out by simulating the effects of
a cosmological distribution of compact objects and comparing the results with
existing observations.

6.1 Long term variability of quasars

Observations from a large scale survey and monitoring programme of ~ 600
quasars provide evidence for a long term variation in the apparent luminosity
of quasars (Hawkins, 1993). This variation appears to be unaccompanied by
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phenomena usually associated with intrinsic variability such as radio emission
and changes in colour, leading to the suggestion that its origin may be external
to the quasar. One possible explanation for the observations is that the light
emitted by the quasars is being microlensed by a cosmological population of
PBHs.

In order to test this hypothesis, a computer model was designed to simulate the
effects of such a population on the quasar lightcurves. The model simulates the
effect ofmicrolensing by a three dimensional distribution of point mass lenses over
a long time period. A number of different simulations were run to investigate a

number of different scenarios. These can be summarised as follows:

• An Einstein-de Sitter model with all the mass in lenses.

• An 17m = 0.3 and 17a = 0.7 model with 1.0, 0.1 and 0.01 of 17m in lenses.

• = 0.3 and 17a = 0.7 models with sources at redshifts of z = 1.0 and
z = 2.0.

• 17m = 0.3 and 17a = 0.7 models with different distributions of lensing mass.

For each cosmological model, simulated lightcurves were generated for a number
of different source sizes. These were used to produce power spectra which could
be directly compared to the observational data. The observational data consists
of the average power spectra of quasar lightcurves monitored over a 25 year

timescale (Hawkins, 1993). The data was divided into redshift bins in the ranges

0.5 < z < 1.5 and 1.5 < z < 2.5 and luminosity bins ma < 20 and ma > 20.
A series of reduced y2 fits were calculated between the simulated data and the
different observational data sets. Although none of the models considered fits the
complete sample adequately, the results of these comparisons can be summarised
as follows:

• An 17m = 0.3 and Ha = 0.7 cosmology with 0.0117m in lenses is ruled out.

• The remaining models provide a best fit to the observational data sets with
lenses with masses 1O_5M0 < M < 1O~4M0.

• The best fit for source sizes is found to be in the range 1.0 x 1013m and
3.6 x 1013 m.
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While none of the models considered gives a formally acceptable fit to the com¬

plete observational data set, the simulations show that there are a range of cos¬
mologies and mass ranges where PBHs could account for the long term variation
in the apparent luminosity of quasars. In addition, the lens mass and source size
ranges are surprisingly consistent between the different cosmologies and lens mass

fractions of H^f studied.

While the computer model used to generate the simulated lightcurves required
a substantial amount of development time there are, as always, a number of im¬
provements which could be made to the algorithm. These include extending the
distribution of lenses both in terms of lens masses and positions, increasing the
use of knowledge of the paths of previous rays in calculations and a more effi¬
cient distribution of the hierarchical tree used to store the lens positions between
processes.

6.2 High redshift supernova

The use of standard candles to measure distances is one of the classic methods for

measuring the cosmological parameters. The extension of observations for Type
la supernova to high redshifts has been one of the corner stones of the current

popular Hm = 0.3 and Ha = 0.7 cosmological models. If dark matter is, at least
partially, made up of a cosmological population of compact objects, then there is
the possibility that magnitude measurements for the high redshift supernova are

affected by gravitational lensing.

Chapter 5 looked at the likely strength of such an affect and whether it might
be possible to use the results to differentiate between different cosmologies and
proportions of dark matter in the form of compact objects. Specifically, the
probability of differentiating between the following models was calculated.

• A model where there is no lensing and all the scatter in the data is due to
intrinsic and observational effects.

• Two models with Ha/ = 0.3 and Ha = 0.7. These models differed in the
proportion of Hm in lenses.

• An Einstein-de Sitter model with all of Hm in lenses.
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A computer simulation was used to produce highly accurate simulations of the
effects of the models listed above on supernova observations at a redshifts in the
range 0.5 < z < 1.7. The results of these simulations were used to generate a

series of pdfs.

Calculations using these pdfs were made based on the current data published by
the Supernova Cosmology Project (Perlmutter et al., 1999) These calculations
showed a preference for models with some lensing mass. However this prediction
could be reversed by excluding a single point from the calculation. It is clear
from these results that there is, as yet, insufficient data to distinguish between
the proposed models.

The current data set of observations of high redshift supernova should be greatly
enlarged if proposed surveys such as SNAP and VISTA go ahead. The amount of
observational data recpiired from these surveys to differentiate between different
models was investigated. The pdfs generated from the simulations were used to
calculate the probability of deducing the correct model for a variety of different
sizes of data sets with sizes ranging from 25 per Az = 0.1 bin to 175. The results of
these calculation show that the 167 data points per Az = 0.1 proposed for SNAP
should be sufficient to differentiate between different models at a confidence level

of 99.9% provided systematic errors can be controlled.

With future surveys proposing to find ~ 170 per Az = 0.1, it is clear that they
should provide an excellent observational data set for determining the amount of
dark matter in the form of compact objects.

In summary, the work presented in this thesis has shown that describing dark
matter as a cosmological distribution of compact objects such as PBHs is in rea¬

sonable agreement with the observational results of a long term survey of quasars.
While it appears from these results that this method cannot distinguish to any

great degree between different cosmological models and lensing populations, it
does make strong deductions about the mass of the microlensing objects and the
source sizes of quasars. The lensing masses are constrained to the mass range

1CT5 < Miens % 10~5. In addition, the proposed high redshift supernova searches
will also provide a method for probing dark matter in this form. In particular,
it should prove possible to use data from these searches to differentiate between
different cosmological and lens population models to a high degree of accuracy.
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Appendix A

Angular Diameter Distance

The angular diameter distance is defined as:

, ell
A~d4> (A.l)

where ell is the proper size of an object and cl9 is its apparent angular size as

shown in Figure A.l.

Figure A.l: The angular diameter distance relates the proper size of an object dl
to its angular size dO

Starting from the Robertson-Walker metric (Equation 1.2) and taking c = 1:

dr2
ds2 = dt2 - R2{t) + r2d62 + r2 sin2 Odef)2

1 — kr2

the proper size of the object, dl, can be expressed as:

dr2
dl2 = R2(t) 1 — kr2

+ r2eW2 + r2 sin2 Odej)2

If dl is taken to lie along the 9 axis, such that dr
distance can be expressed as

d9

— 0, the angular diameter

df = R(t)r
= R(t)r

d9

(A.2)
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Equation A.2 can be used to obtain the expression for the angular diameter
distance from an observer at r = 0 to an object at r = rq. It can also be
generalised to obtain an expression for the angular diameter distance between
two points at r = rq and r = r2 by changing the coordinate system so that the
origin is at r = rq. This coordinate change does not affect the Robertson-Walker
metric (equation 1.2).

Considering a light ray moving radially from r2 through ?q towards the observer,
gives ds = d6 = dcf) = 0. If the separation of rq and r2 is r then:

An expression for the look-back time for a universe with negligible radiation
density can be obtained from (Carroll et al., 1992):

dr \/l — kr2
dt R(t)

to ~ t
Zl [(1 T z)2(l + $Imz) — -2(2 + 2:)Da] ^

(TTIj
dz

Thus:

dr dr dt

dz dt dz

-\/l - kr2 F(z)
R(t) Ho(l + z)

Substituting the relation:

R(t) — Rq/(1 + z) (A.3)

gives:

(A.4)

Then, considering the three values for k individually:

k = 0: Flat universe In this case the left hand side of equation A.4 is simply
H0R0r. Using the expression for the angular diameter distance given in



169

equation A.2, this gives:

dA = R(t2)r = -
i r2

———- / F(z)dz
(1 + z2) JZl

(1 + Z2)
f [(1 + 2)2(1 + ^Mz)~
J Z\

z[2-\-z)Vl\] 1//2 dz (A.5)

— 1: Open universe In this case the left hand side of equation A.4 becomes:

f HqRo ,~
-dr

J vTT

Making the substitution f = sinhu, dr = cosh udu and using the relation
cosh2 u — sinh2 u = 1 gives:

f HqR0 cosh u
cosh u

-du = HqRqu = H0R0 sinil 1 r

Thus the angular diameter distance becomes:

Defining:

H0d,

= H

H0R(t)f
Ro

-H

(1 + z2)
Ro

(1 +Z2)
sinh

Hkj dzF(z)

gives:

d/1 =

f\i
HqRQ

1

Ho\/\Qk\(l + Z2)
1

Hoy/\Sh\(l + z2)

sinh VThtl / dzF(z)

(A-6)

sinh /,n | f~2 [(1 + Qmz) — z(2 + 2)Da] ^ .VmL (TTT) dz
k = 1: Closed universe For a closed universe, the left hand side of equation A.4

becomes:

H(]R.Q
J y/l — r '

df
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Making the substitution r = sinu, dr = cos udu and using the relation
cos2 u + sin2 u = 1 gives:

H0R0 cos uI cos u
-du = HqRqu = HoRosln 1 f

The angular diameter distance becomes:

Hoda = H0R(t)r
= a, Ro -

= -H,

(1 + z2)
Ro

sin
1

Ho Ro dzF(z)
'A + z2)

This can be expressed in terms of D^ using equation A.6 as:

1

H0y/\Slk\(l + z2)
1

Ho \/jD^ | (1 + z2)

sin

sin

\/|D/c| j dzF(z)
[(1 + D^z) ~ z(2 + Z)DA] ^\/fDA

r Zl (1+z)
dz

It is useful to define the function sinn which represents sinh for an open universe
and sin for a closed universe:

sinn = sinh ifA; = — 1

sin ifA; = 1

Thus the angular diameter distance, in these two cases, becomes:

A.7)

d.
1

vW(i +
-smn

^2 J
Vtthl

' z1

[(1 + Da/z) — z(2 + z)Da] ^
0+^)

dz (A.8)

In addition to the general expression for d.4 given in equations A.8, two special
cosmological cases can be considered where the values of parameters allow the
expression for to be simplified. These two cases are the Friedmann-Robertson-
Walker model with Da = 0 and the Einstein-de Sitter model.

A.l Friedmann-Robertson-Walker Model with
= 0

In the case where Da = 0, equation A.8 can be simplified to:

d,
1

vW(l + z2)H0
sinn \/K^

i»Z2 dz

' Z\ (1 -f- z)-\/l + D^fZ
(A.9)
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Taking the case for k = 1, the above integral can be solved analytically by making
1

&m( 1+z')
the substitution u2 = ,1 /\ to give:

r*2

JZ\

clz »u2 —2du

(1 + Z)yj 1 + nMZ JUl - 1 ~ 1

-2 fU2
\/FIm 1 Ju\

du

\/\ — u2

Making the substitution u = sinx gives:
_2

vTJM — 1

rx2

/ da
J X\

dx —

1

\A2m — 1

_2

— 1

[sin 1 U2 — sin 1 iti]

1 / (^M — 1) • _1 / (^M — 1)sin i / — sin
^m(1 + zi) 1 + zi)

Using the relation fIm + fR = 1 when = 0, equation A.9 for k = 1 becomes:

dA =
\/l — J2m(1 + z2)Hq

a/1 — J2M(1 + z2)Hq

sm

sm

\/l — Hm /
9 21 (1 + 2:)\/l + fImz

2 sin -1 (Um ~ 1)
Um(1 + ^2)

: sin
(f^M — 1)
UM(1 + ^I)

Using the trigonometric relation sin(A — B) — sin A cos 5 — cos A sin F3 this be¬
comes:

dA ~ — •yi-Q.M(\+z2)H0
sm 1 2sin_1 >/n("u+2)) cos (2sin_1 \/n(Mfi+'!)) ~
cos ,'2sin_1 /SI) sin (2sin_1 VSS7)

This can be expanded using the trigonometric relations sin 29 = 2 sin 6 cos 9 and
cos 29 = cos2 9 — sin2 0 = 1 — 2 sin2 9 to give:

d/ vl—Am (1+22)^0
9 / (^M-1) /1 _ (nM-i) \ ^ (\ _ 2(17^-1) \
"V ^m(1+22) \ ^M(1+Z2)/ \ W/(l+2l)/

1 2(f2M-l) h 9 / /i
^M(1+22)/ V ^m(1+2I) \ ^m(1+2I )

With some rearrangement this gives

2x/f/w — 1
dA — „ , : r^T" x

\/l ~ ^m(1 + Z2)Hq
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(1 + f^A^-2r2) 1/,2(2 — DM + DjV/Zi) — (1 + D^Z2)1^2(2 — DM + DM-Z2)
DL(1 + 2l)(l + ^2)

2 (1 + HM22)^2(2 — DM + DM-ZI) — (1 + DM-Zi)1/'2(2 — DM + DM^2)
#0 Dm(1 + 2i)(l + 22)"

A similar analysis for k = — 1 leads to the same result.

A.2 Einstein-de Sitter Model

For an Einstein-de Sitter universe Da = 0 and Dm = 1. In this case equation A.5
reduces to

d.4 =
(1 +

rz2l—~ (1 +z)-^dz
22)7/0

(l+22)-1/2-(l+21)1/2
(1 + 22)7/O

2

-1/2
(l+21)(l + 22)1/2-(l+21)1/2(l+22)

(1 + 2i)(l + 22 )2

in agreement with Blandford & Kochanek (1987).

(A.10)



Appendix B

Power Spectra

The lightcurves can be considered as the product of the underlying continuous
lightcurve with a window function. If A(t) is the underlying light curve, then the
discrete simulation light curve Ao(t) can be written as

A0{t) = A(t)W(t)

The window function W{t) for the N timesteps in the simulation is
n

W(0 =
2= 1

where SD(x) is the Dirac delta function.

The following conventions will be used for the fourier transform and its inverse:

A{u) = [ dtA(t)e~iujt (B.l)

A(t) — f duA{u)eiwt (B.2)2tx i

Thus,

Aq(u}} = f dtAo(t)e lujt

dte~iujt f ^-A{u/)e^ fJ 27r J 2tt

Using the relation J elxt = 2-k6d(x) this can be rewritten as

Aq(u) = I ——A(u>') f dui"W(u>")SD(uj' + u" — u)
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Substituting,

J 8d(U" - (u - u'))W{u") = W{u - u)
leads to the relation

AQ(uj) = J -^A(u)'}W(u) — a/)
The expectation value of Aq{lo) is

(|To(cu)|2) = J 7^7-7^7 (A(u')A*(uj")) W(u — u>')W*(u — co")
By definition,

(A(y')A*{u")) = 2TTP(uji)8d(IJJ' — u>")

where P(ui') is the underlying power spectrum. Thus,

(|A„H|2)= /

Making the assumption that P{uj') is constant across the width of the window
function, this can be rewritten as:

<|AoH|2) = P(w) j— \W(to - u/)|2
2

. l OJ — u>i
Z7T

For a simulation of length T, 8lo = 2n/T. Thus,

(|/l„(a,)|2)~^bO^|W(a,-^)|2 (B.3)

Each simulation produces Np independent lightcurves for each of the range of
source sizes. A final power spectrum for a particular source size is obtained by
averaging the individual power spectra to give the mean power spectra P. Thus:

p=wSp- (R4»H t=l
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B.l Error Analysis

The errors in the final power spectrum for a particular simulation and source size
are estimated from the spread of the power spectra generated from the individual
light curves. The variance on the mean power spectrum, a2 is

"l = ((p-P?
= /P2-2PP + Pr

where P is the true mean value. Using the fact that ( P ) = P,"l

= (r2\ - P2
Substituting in Equation B.4,

1
Np " 2>

2
p \ N2 E« )-p2

,2—1

^EE^)-'32
p i=i j=i

If Pi and Pj are independent then (PiPj) = (Pi) (Pj) when i / j, and:

Np Np

4et2>+4 E p2-p2<r! =
N2 1 ' n2

P i= 1 P j=lj&

1
(V T2N , P2Np Nl-Np

Jp (NPa ) + + N2 P - P
p p p

iVp

where

a2 = (Pf) - P2

is the variance of the data in the sample.
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Appendix C

Power Spectra Fit Parameters

The following tables list the best fit parameters obtained by fitting the power

spectra from the microlensing simulations to Equation 4.1.
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Source diameter (pixels) A a b c

1 (unresolved) 39.48 0.98 6.8 x 10~7 0.029 2.12
6 27.69 0.95 0.40 0.030 2.33
12 18.30 0.91 0.57 0.027 2.66
24 11.97 0.90 0.76 0.017 2.74

48 2.14 0.73 0.99 0.015 3.63
96 1.21 0.81 1.69 0.0066 2.43

Source diameter (pixels) A a b CJQ c

1 (unresolved) 14.84 0.90 0.76 0.020 1.00
6 12.44 0.88 0.62 0.032 2.25
12 11.51 0.90 0.46 0.036 3.79
24 2.29 0.73 1.52 0.014 1.73
48 0.37 0.55 1.40 0.013 3.32
96 0.17 0.59 2.26 0.0057 2.01

Source diameter (pixels) A a b UJo c

1 (unresolved) 2.03 0.75 2.01 0.025 0.60
6 2.63 0.79 0.95 0.036 2.00
12 1.41 0.72 1.26 0.029 2.13
24 11.80 1.10 0.010 0.056 11.11

48 5.42 1.04 0.010 0.056 18.67
96 15.25 1.33 0.12 0.0066 5.20

Table C.l: Gaussian source profile parameters for a) Simulation i, b) Simulation
Hi and c) Simulation iv
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Source diameter (pixels) A a b UJ0 c

1 (unresolved) 1.88 0.72 1.56 0.028 0.68
6 11.31 1.02 1.1 x 10"5 0.088 6.27
12 4.21 0.90 0.41 0.043 4.48
24 1.91 0.86 0.64 0.026 4.58
48 0.73 0.79 0.70 0.017 5.70
96 0.19 0.75 1.48 0.0068 3.29

Source diameter (pixels) A a b <x>o c

1 (unresolved) 0.32 0.83 1.42 0.036 0.81
6 1.01 1.01 7.8 x 10~5 0.16 9.52
12 1.13 1.04 1.0 x 10~4 0.091 9.58
24 0.34 0.94 0.51 0.024 4.44

48 0.23 0.98 0.46 0.018 6.43
96 0.010 0.68 2.09 0.0064 2.46

Source diameter (pixels) A a b UJ0 c

1 (unresolved) 5.05 0.97 0.18 0.059 2.07
6 5.24 0.97 0.049 0.16 4.99
12 6.34 0.99 0.010 0.23 8.63
24 3.23 0.91 0.41 0.092 5.56
48 1.33 0.84 0.84 0.045 4.09
96 0.58 0.79 1.10 0.023 3.64

Table C.2: Gaussian source profile parameters for a) Simulation v, b) Simulation
vi and c) Simulation vii
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Source diameter (pixels) A a b Ll)o c

1 (unresolved) 39.48 0.98 6.8 x 10~7 0.029 2.12

6 20.27 0.92 0.65 0.025 2.07
12 10.61 0.86 1.07 0.015 1.70
24 6.57 0.87 1.48 0.0073 1.32
48 1.63 0.78 2.01 0.0040 1.00

96 5.51 1.18 1.89 0.0025 1.00

Source diameter (pixels) A a b CJo c

1 (unresolved) 14.84 0.90 0.76 0.020 1.00

6 9.66 0.86 0.81 0.026 2.09
12 3.25 0.75 1.63 0.013 1.27
24 2.97 0.83 1.49 0.0068 1.27
48 0.84 0.76 1.89 0.0034 1.00

96 49.95 1.54 0.56 0.0018 1.56

Source diameter (pixels) A a b u>o c

1 (unresolved) 2.03 0.75 2.01 0.025 0.60

6 2.35 0.78 1.01 0.030 2.06
12 0.53 0.60 2.67 0.014 0.87
24 25.50 1.27 0.33 0.0062 2.20
48 49.99 1.46 0.47 0.0028 1.77
96 49.97 1.65 0.37 0.0019 1.74

Table C.3: Constant source profile parameters for a) Simulation i, b) Simulation
Hi and c) Simulation iv
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Source diameter (pixels) A a b UJO c

1 (unresolved) 1.88 0.72 1.56 0.028 0.68
6 3.89 0.88 0.83 0.026 2.05
12 1.11 0.75 1.77 0.013 1.15

24 0.72 0.79 1.59 0.0072 1.18
48 0.13 0.63 2.70 0.0035 0.73
96 0.27 1.04 2.70 0.0026 0.73

Source diameter (pixels) ,4 a b LOQ c

1 (unresolved) 0.32 0.83 1.42 0.036 0.81
6 0.51 0.93 0.47 0.041 3.45

12 0.34 0.91 0.97 0.013 1.78
24 0.22 0.93 1.06 0.0065 1.50

48 0.032 0.79 2.70 0.0034 0.73
96 0.10 1.15 0.73 0.0022 1.52

Source diameter (pixels) A a b UQ c

1 (unresolved) 5.05 0.97 0.18 0.059 2.07
6 5.75 0.98 0.039 0.17 5.86
12 2.96 0.89 0.84 0.049 2.29
24 1.73 0.85 1.28 0.026 1.68
48 0.75 0.80 1.49 0.014 1.40

96 9.58 1.23 0.071 0.0069 2.80

Table C.4: Constant source profile parameters for a) Simulation v, b) Simulation
vi and c) Simulation vii



182 C: Power Spectra Fit Parameters



Appendix D

Reduced yfits for observational
data

This appendix shows the best fit parameters for the reduced y2 fits °f the
crolensing simulation to the observational quasar survey data. The data from
the observational quasar survey is divided into four subsets based on redshift and
apparent magnitude. Each subset is individually fitted with the microlensing
simulation data. The four subsets of the observational data used are:

• 0.5 < z < 1.5 and ma > 20.

• 0.5 < z < 1.5 and ma < 20.

• 1.5 < z < 2.5 and ma > 20.

• 1.5 < z < 2.5 and ma < 20.

The following tables show the best fits for each of these datasets with the data
for the gaussian and constant surface brightness profile simulation data.

Simulation MlenslMq Source size (m) Reduced y2
i 10~5 2.0 x 1013 3.6
Hi 10-5 1.7 x 1013 4.2

iv 10-4 1.7 x 1013 CO -<I
V 10"4 1.7 x 1013 3.2
vii

1

o 1.4 x 1013 3.7

Table D.l: Best fit reduced y2 values for gaussian source profile simulations and
observational data in the range 0.5 < z < 1.5 and ma > 20.
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Simulation Mlens/MQ Source size (m) Reduced \2
i o

1 cn 2.4 x 1013 5.0
Hi io-5 2.3 x 1013 6.9
iv 10~4 3.4 x 1013 4.3
V 10~4 3.6 x 1013 5.9
vii 10"4 2.4 x 1013 5.1

Table D.2: Same as Table D.l for observational data in the range 0.5 < z < 1.5
and ma < 20.

Simulation Miens/MQ Source size (m) Reduced \2
i 1—1 o

1 cn 2.4 x 1013 4.0

Hi 10~5 2.3 x 1013 4.5

iv o
1

3.4 x 1013 4.3

V o
1

3.6 x 1013 5.9
vii 10-4 1.9 x 1013 4.6

Table D.3: Same as Table D.l for observational data in the range 1.5 < z < 2.5
and ma > 20.

Simulation Miens/M@ Source size (m) Reduced \2
i 10~5 2.8 x 1013 5.6
Hi io-5 2.8 x 1013 6.1

iv io-5 1.6 x 1013 8.3
V 10~4 3.6 x 1013 5.2
vii O

1 4^ 2.8 x 1013 5.4

Table D.4: Same as Table D.l for observational data in the range 1.5 < z < 2.5
and ma < 20.

Simulation M[ens/Mq Source size (m) Reduced x2
i 10~5 1.2 x 1013 4.0

Hi 10"5 1.1 x 1013 4.0
iv io-4 1.7 x 1013 4.5
V io-4 1.8 x 1013 5.5
vii io-3 9.5 x 1012 3.9

Table D.5: Best fit reduced \2 values for constant source profile simulations and
observational data in the range 0.5 < 2 < 1.5 and ma > 20.
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Simulation Mlens/Mq Source size (m) Reduced \2
i 10~5 1.6 x 1013 4.7

Hi 10"5 1.7 x 1013 5.7
iv 10-4 1.7 x 1013 6.8
V 10-4 1.8 x 1013 5.3
vii 10-4 1.4 x 1013 5.3

Table D.6: Same as Table D.5 for observational data in the range 0.5 < 2 < 1.5
and ma < 20.

Simulation Miens/M@ Source size (m) Reduced \2
i 10~5 1.6 x 1013 4.7
Hi 10-5 1.7 x 1013 5.7
iv 10-4 1.7 x 1013 4.5
V 10"4 1.8 x 1013 4.0
vii 10-4 1.4 x 1013 4.5

Table D.7: Same as Table D.5 for observational data in the range 1.5 < 2 < 2.5
and rna > 20.

Simulation Mlens 1Mq Source size (m) Reduced x2
i 10-5 2.0 x 1013 5.4
Hi 10-5 1.7 x 1013 9.8
iv 10-5 1.1 x 1013 8.4
V 10-5 1.1 x 1013 10.7
vii 10-4 1.9 x 1013 5.4

Table D.8: Same as Table D.5 for observational data in the range 1.5 < 2 < 2.5
and ma < 20.
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Appendix E

The double quasar Q2138-431:
lensing by a dark galaxy?

In addition to work outlined in the main body of this thesis, a small contribution
was made to a paper investigating the possibility that the lens for the double
quasar Q2138-431 is a dark galaxy. This work involved calculating the lens mass

and mass-to-light ratio for the observed parameters as a function of redshift.
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ABSTRACT

We report the discovery of a new gravitational lens candidate Q2138 —431AB,
comprising two quasar images at a redshift of 1.641, separated by 4.5 arcsec. The
spectra of the two images are very similar, and the redshifts agree to better than 115
km s"1. The two images have magnitudes B, = 19.8 and 21.0, and, in spite of a deep
search and image subtraction procedure, no lensing galaxy has been found with
R < 23.8. Modelling of the system configuration implies that the mass-to-light ratio
of any lensing galaxy is likely to be around 1000 M0/L0, with an absolute lower limit
of 200M0/L0 for an Einstein-de Sitter universe. We conclude that the most likely
explanation of the observations is gravitational lensing by a dark galaxy, although it
is possible we are seeing a binary quasar.

Key words: galaxies: haloes - quasars: individual: Q2138—431 - gravitational
lensing.

1 INTRODUCTION

The first secure example of a gravitational lens
(Q0957 + 561) was discovered by Walsh, Carswell & Wey-
mann (1979), and comprised two images of a quasar at
redshift z = 1.41 leased by a bright cluster galaxy at z = 0.36.
Since then, many manifestations of gravitational lensing
have been observed, including multiply lcnsed quasars,
giant arcs around galaxy clusters, and distortions of the
distant galaxy distribution. Historically, systems comprising
a pair of quasar images have always had a special signifi¬
cance in the catalogue of lensing phenomena because of the
simplicity of the geometry, and the plausibility of using them
to measure the Hubble constant (Refsdal 1964). There are
at present seven wide-separation ( > 2 arcsec), two-compo¬
nent lens candidates known, but progress towards finding a
value of the Hubble constant has been slow for several
reasons. These include the lack of high-quality light curves
over a sufficiently long period of time, the uncertainty of the
lensing geometry, the effects of microlensing, and the
failure to find the lensing galaxy. In this paper we report the
discovery of a new gravitational lens candidate which high¬
lights some of these problems.

© 1997 RAS

This eighth wide-separation system was discovered as
part of a systematic survey for lens candidates. It has a
separation of 4.5 arcsec, and the two components had B
magnitudes of 19.8 and 21.0 in 1995. There is extensive
archival photometry of the system over 20 yr, and it appears
to be clear of any nearby galaxy concentrations. The two
images are strongly variable, but, as for all but two of the
other lenown systems, the lensing galaxy has not so far been
detected. The large mass-to-light ratios of the order of
several hundred to a thousand implied by these non-detec¬
tions have prompted several authors to speculate about the
possibility of 'dark galaxies'. In this paper we report a
variety of observations of the new system, and conclude that
in this case too the most probable expanation is that the
quasar is being gravitationally lensed by a dark galaxy.

2 OBSERVATIONS

2.1 The lens survey

The survey for gravitational lenses was carried out in the
ESO/SERC field 287 centred on 21h28m, -45° (1950).
Extensive plate material from the UK Schmidt telescope

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System
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exists in this field, which has formed the basis for the large-
scale quasar survey and monitoring programme of Hawldns
& Veron (1995,1996) and Hawkins (1996). The selection of
oubsnmples of quasars in different redshift bands typically
used colour limits togetherwith variability and compactness
criteria, but in all cases the quasar images were required to
be round. This was to eliminate overlapping images which
might masquerade as quasars, or even quasars merged with
stars or galaxies where the photometry would give mislead¬
ing results. One consequence of this was to reject any grav-
itationally lensed quasars from consideration, where the
split image would appear elongated. To rectify this, a search
was designed specifically to look for gravitationally lensed
systems. The requirements were that the images should
have a major-to-minor axis ratio greater than 1.5, and an
ultraviolet excess U —B< —0.4. Of the 200 000 objects in
the field, 500 have U—B< —0.4, of which 23 were elon¬
gated. Of these, 12 were variable according to our usual
criteria (Hawkins & Veron 1995), with an amplitude greater
than 0.35 mag. Four of the sample were quasars with over¬
lapping galaxies previously found by Morris et al. (1991),
and so we set about obtaining spectra for the remainder,
several of which appeared to be excellent candidates for
lensed systems. It also seems possible that some lensed
quasars will be found among the non-variable objects.

2.2 The double quasar Q2138 — 431
The first candidate to be studied in detail appeared as two
star-like images separated by 4.5 arcsec. Spectra of the two

components were obtained on the ESO 3.6-m telescope at
La Silla by aligning the slit along the line of centres. The
spectra were very similar, and the redshifts appeared to be
the same, z—1.64. There seemed to be aprima facie case for
a gravitationally lensed system, and so a few nights later we
obtained a second, higher signal-to-noise observation in
both blue and red wavelength bands covering a combined
spectral range from 3700 to 10 000 A. The spectra are shown
in Fig. 1, and it will be seen that they closely resemble each
other. Fig. 2 shows the quotient of the two spectra which is
almost flat, implying no significant differences.
The redshifts were first calculated by measuring the emis¬

sion lines in each spectrum, which gave 2 = 1.638 ±0.004
and 1.644 ± 0.005 for the two components, the same within
the errors. In order to obtain a more accurate measurement,
a cross-correlation routine was applied. This gave identical
redshifts within the errors, and a velocity difference of
0 + 114 km s-1.
Optical photometry of the system was obtained with a

CCD camera on the ESO 2.2-m telescope at La Silla in 1995
August. The pixel scale was 0.336 arcsec pixel-1, and the
seeing averaged 1.2 arcsec, which allowed a clear separation
of the images. The R-band frame is shown in Fig. 3, where
the faintest visible objects have magnitude R > 24. The
results are shown in Table 1, where the five columns are the
colour passband, the apparent magnitudes of the two com¬
ponents, the flux ratio and the lower limit to the magnitude
of any lensing galaxy. It will be seen that at the time of
observation the magnitude difference between the two com¬
ponents was 5m = 1.2, with no significant dependence on
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Figure 1. Spectra for the two images of the double quasar Q2138 —431AB in red and blue passbands.
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2. Spectrum of component A divided by that of component B from Fig. 1.

colour. Fig. 4 shows the V— R and R I colours for the two
components of Q2138 431, together with photographic
measures for 10 other quasars from the sample with very
similar redshift. The colours of the double quasar are identi
cal within the errors of the CCD observations, whereas the
other 10 quasars in the sample illustrate the wide range of
colours which quasars at this redshift can exhibit.

2.3 Search for the lensing galaxy
To understand a gravitational lens system fully, and more
specifically to use it to measure the Hubble constant, the
lensing galaxy must be located. It is then necessary to
measure its rcdshift, and to estimate the mass distribution
relative to the quasar images. In fact, of the seven double
quasar systems so far discovered with image separation
greater than 2 arcsec, lensing galaxies have been found for
only two.
To detect the lensing galaxy for Q2138 — 431, we used the

deep CCD frames described above for the photometric
measurements. Initial examination of the area around the

quasar system showed no objects which might act as gravita
tional lenses. We obtained a more useful limit by using stars
in the vicinity of the quasar images to obtain an accurate
measure of the point-spread function (PSF). This was then
subtracted from each of the quasar images in the hope of
revealing an underlying lensing galaxy. There is an element
of uncertainty in the normalization of the PSF in this pro¬
cedure, but in the event we found that both quasar images

© 1997 RAS, MNRAS 291, 811-818

subtracted out exactly. To put an upper limit on the magni
tudo of a possible lensing galaxy, we extracted the faint
galaxy visible to the south-east of the quasar in Fig. 3. We
then placed it at various points between the two quasar
images, varied its brightness and carried out the PSF sub¬
traction procedure. This enabled us to put an upper limit of
R > 23.8 for a potential lensing galaxy. We also obtained a
A"-band image of the field with the IRAC2 infrared camera
on the ESO 2.2-m telescope. A 5-h integration failed to
reveal a lensing galaxy between the two images, although
there was evidence for additional K band flux associated
with the brighter component. This observation raises the
possibility that a very red lensing galaxy may be lying close
to the brighter quasar image, a configuration which requires
fine-tuning of the model parameters.
One can now ask what limits can be put on the mass-to-

light ratio of a lensing galaxy capable of producing the
observed image splitting and flux ratio, but constrained to
be fainter than the observed magnitude limit. We have
modelled the system assuming both a point mass and a more
realistic galaxy profile, and have thus derived a lower limit
to the mass to light ratio as a function of rcdshift. If the lens
can be modelled as a point mass, the brightness ratio R > 1
of the two images and the separation Ad on the sky can be
used to calculate the Einstein radius

6E = V4GMDJ(DolDosc>),
where M is the lens mass, and the Ds are the angular
diameter distances between observer, lens and source.
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(a) Q2138-431

o
oo
CD

o
CD
CO

o
"3-
co

o
CNJ
CO

o
o
CO

o
oo

^00 520 540 560 580 600

Figure 3. (a) Part of an R-band CCD frame of the field around the double quasar Q2138 — 431. The plot is 50 arcsec on a side, and north
is up the page, east to the left. The centroid of the two quasar images is at 21h38™6f66, — 44°10'507 (1950), and they are separated by 4.5
arcsec. The star about 20 arcsec to the south was used for the image subtraction, the effect of which is illustrated in the second panel (b).

withM( < rc) =M/3. Here one needs to search for a solution
with the correct brightness ratio and separation, and we see
from Fig. 5(a) that for rc appropriate for galaxies, the
required mass is similar to the point-mass calculation. In
view of the relatively large masses required if the lens is near
the source, it is worth exploring a larger core radius, appro¬
priate for a cluster. However, the only Hemquist profiles
which are able to produce split images with the required
amplification ratio have core radii less than 7 h~l kpc, so we
are restricted to galaxy-like objects (Fig. 5a also shows the
mass required for a core radius of 5 h ~1 kpc). It is also worth
noting that it requires an astonishing degree of fine-tuning
for the faint third image in the Hernquist model to alter
significantly the brightness ratio by merging with another
image.
It will be seen from Fig. 5(a) that there is an absolute

lower limit of 200Mo/Lo when the lens is at a redshift
2= 1.5 for an Einstein-de Sitter universe, and a slightly
lower limit if the Universe is open. In fact, this configuration

© 1997 RAS, MNRAS 291, 811-818

It is straightforward to show, from the lensing equations
(see, e.g., Schneider, Falco & Ehlers 1992), that 0E=
JT^p/Sd/2, where/= (R + 1 - ^4R)/(R -1). dE is 2.1 arc¬
sec, and the required mass is shown in Fig. 5(a) for two
different cosmologies (solid line: Einstein-de Sitter, dashed
line: f2o= 0.1). Also shown (dot-dashed) is the mass
required in a more realistic Hernquist mass profile (Hern¬
quist 1990), with a density run p(r)=M/[2nr^(l+5)3],
where s =r/rc, and the core radius is taken to be rc= 1.7 h'1
kpc. An advantage of this profile is that the bending angle
may be written in closed form; the enclosed mass within a
projected radius rrc is

M(<rrc) r2 r2 _Jl\
; cos 1 - r>l (1)1

— 1 (r2- If2 \r
r2

r2-1 (1 -r2Yn \l-JT=
In '<1,(2)
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Q21 38-431 psf subtracted
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Figure 3 - continued
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Table 1. CCD photometry for Q2138 — 431AB.

colour ma mB /a/Ib mgai >

Quasars 1.58 < z < 1.70

B
V
R
I

21.02
20.85
20.43
20.12

19.83
19.57
19.18
18.86

0.33
0.307

0.318
0.313

23.
23.5
23.8

22.8

is highly improbable, and the most likely position for the
lens is at around z = 0.5 (Turner, Ostriker & Gott 1984),
implying a minimum mass-to-light ratio of 1000M0/L0. In
this case the lensing object would presumably be some form
of 'dark galaxy', or perhaps a dark matter galactic halo.
Another approach is to consider the possible effect of

shear or convergence produced by a nearby group or cluster
of galaxies. This is a model which has been used to describe
Q0957 + 561 (Bernstein, Tyson & Kochanek 1993), and also
for the wide separation lens Q2345 + 007 (Pello et al. 1996).

V-R

Figure 4. The v—r versus r — i relation for quasars with z «1.64.
The two components of Q2138 —431 are shown as open circles,
and 10 other quasars from the field 287 sample as closed circles.

' 1997 RAS, MNRAS 291, 811-818
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Lens redshift z

Lens redshift z

Figure 5. (a) The mass of the postulated lens for the double quasar
Q2138 — 431AB as a function of the lens redshift. The solid line
assumes a point-mass lens and an Einstein-de Sitter universe; the
dotted line assumes that Qo= 0.1 and no vacuum energy. The dot-
dashed line shows the required mass if the density distribution
follows a Hernquist profile with core radius 1.7h"1 kpc (corre¬
sponding with an effective radius of 3 h -1 kpc), and the dotted line
assumes a core radius of 5 h_1 kpc. The last two curves assume
Q0=l. (b) The minimum mass-to-light ratio for a lens for the
double quasar Q2138 — 431AB. Lines as in (a).

In both of these cases a group of galaxies is detected close to
the quasar images, and the splitting is attributed to the
resulting shear field. We are in a much worse position here
to model such a situation, as wo cannot even establish where
the lensing galaxy is (if present). The addition of a uniform
screen, representing a smooth cluster, would reduce the
mass estimates by a factor 1 — S/2C, where the critical sur¬
face density is Zc=c2T>os/(4tiGDolDls). The mass require¬
ment is thus eased if the cluster has a substantial fraction of
the critical surface density. Numerical modelling of clusters
(Bartelmann & Weiss 1994) indicates that this may be pos¬
sible, but modelling of observed arcs routinely requires a
contribution from a central galaxy (Miralda-Escude &
Babul 1995). Although a significant cluster contribution
remains an open possibility, the very small core radius
required argues against it, and there is no evidence apparent
in the images. Fig. 6 shows an area of approximately 8
arcmin on a side centred on the double quasar. The frame is
taken from a digital stack (Hawkins 1994) of 64 UK Schmidt

plates in the IIIa-J/GC395 passband with effective wave¬
length 4500 A. The limiting magnitude is B, ~ 24, and there
is no sign of a cluster within 2 arcmin of the quasar. In fact,
judging by the surrounding background, the system lies in a
particularly clear region of sky, the nearest cluster being in
the top right-hand corner of the field.

3 DISCUSSION

The properties of the double quasar Q2138 — 431AB may
be summarized as follows:

Redshift z = 1.641.

Velocity difference 5n = 0 + 115 km s~\
Separation = 4.5 arcsec.
B magnitudes: mA=19.8, mB = 21.0.
Variability amplitudes: SmA= 1.1, 5mB = 0.6.
We now address the question of the underying nature of

the system. There seem to be three possibilities:

(1) a chance association of two separate quasars, possibly
made more likely by the effects of clustering;
(2) a pair of quasars in a bound orbit, forming a binary

system, and
(3) a single quasar gravitationally lensed by a dark galaxy

or galactic halo with a mass around 1012-10'3 M0.
The likelihood of a chance coincidence can first be

assessed by considering the surface density of the parent
population of quasars in the field and asking what is the
probability P that two will lie within 4.5 arcsec of each other.
The parent population of single quasars with similar charac¬
teristics to the lens candidate comprised 310 objects with
U—B< — 0.4 and B < 21 in an area of 18.8 deg2, This gives
a surface density of quasars of about 16 per deg2, which
implies a probability of about 1 per cent for any companions
within 4.5 arcsec, for the parent sample of ~310 quasars. In
practice, one would expect this figure to be modified by
clustering, which enhances the probability, and by the red-
shift information, which reduces it. The small-scale cluster¬
ing of quasars is poorly constrained, but, assuming that it
follows the galaxy correlation function £(r)~(r/r0)~*, with
r0^5h~' Mpc and y 1.8 (Collins, Nichol & Lumsden 1992;
Vogeley et al. 1992), boosted by a relative bias b q, we can
calculate the probability of a pair within 50 h~' kpc (the
comoving separation corresponding to 4.5 arcsec at z = 1.6 if
fl0 = l). Using the comoving number density of 1.7 x 10~5/j3
Mpc-3 obtained from the redshift distribution in the sample
at redshifts around 1 to 1.5, we find this probability to be
about 1.5 per cent if bQ = 1 and the clustering does not
evolve. This is, however, an underestimate for lensing candi¬
dates, since the radial separation can far exceed 50 /i~' kpc
and still be considered a good lensing candidate. For illus¬
tration, a velocity difference of 100 km s_1 at a redshift of
1.6 corresponds to a comoving separation of around 600 h ~1
kpc in an Einstein-de Sitter universe, and this could easily
be lost in the uncertainties of redshift determination. If,
instead of a radial separation of 50 h~l kpc, we use this
larger figure of 600 h~l kpc, the probability would be
increased to around 2.5 per cent. Peculiar velocities modify
this in a model-dependent manner, reducing the chance of
good agreement in the redshifts for virialized systems and
increasing it for collapsing systrems, but the point is that the

© 1997 RAS, MNRAS 291, 811-818
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Field of Q21 38-431

Figure 6. Plot of the area centred on Q2138 — 431. The frame is approximately 8 arcmin2, and is derived from digitally stacked photographic
plates with a limiting magnitude of jB,~24. North is up the page, east to the left.

probability of a close separation in angular and redshift
terms is small but not negligible.
The idea that the quasars form part of a gravitationally

bound binary system is much harder to test, mainly because
the circumstances surrounding the formation and evolution
of such a system are largely a matter of speculation. There
are a number of observations which appear to count against
this possibility, such as the extreme similarity of the spectra
and colours of the two components and the small differen¬
tial velocity. It is also clear from the discussion in the pre¬
vious paragraph that, from a statistical point of view, binary
quasars might just be part of a clustering hierarchy. How¬
ever, none of these arguments is sufficient to rule out the

essentially unconstrained concept of binary quasars, and it
must remain a possible explanation.
A plausible justification for the binary, or clustered,

model is that quasar activity maywell be triggered by a close
encounter between two galaxies, with a small probability of
triggering. The possibility then arises that, in rare cases,
quasar activity may be initiated in both galaxies in the
encounter. The explanation of the similarity of the spectra,
which are not absolutely identical, might then lie in the fact
that the quasars would have the same formation epoch, and
would be observed at the same time after formation. As part
of a common system, their abundances might not signifi¬
cantly differ.

-1997 RAS, MNRAS 291, 811-818

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System



818 M. R. S. Hawkins et al.

The third possibility, that the system is gravitationally
Iensed, is well supported by most of the available observa¬
tions. The similarity of the spectra and colours and the small
velocity difference between the two components are to be
expected from a gravitationally lensed system. The problem
is the failure to find the lensing galaxy. Given the apparent
absence of a shear field, this means that to make a case for
a gravitationally lensed system one must postulate a dark
galaxy as the lens. Although this may seem a radical step, it
is, in fact, a position which several other groups have
adopted when analysing double quasar systems (e.g. Tyson
et al. 1986). An obvious possibility is that the lensing object
is a low surface brightness galaxy, which fails not because of
the surface brightness limit corresponding with the R limit
of 23.8, but rather because known low surface brightness
galaxies do not have the very large mass-to-light ratio
required (Sprayberry, Bernstein & Impey 1995). We are left
with the conclusion that, unpalatable though the idea of
dark galaxies may be, it seems to promise the most plausible
explanation for the observations.

4 CONCLUSIONS

We have reported the discovery of a new double quasar
Q2138 — 431, which we have observed in some detail with a
view to establishing whether it is a gravitationally lensed
system. It comprises two images with magnitudes B = 19.8
and 21.0, separated by 4.5 arcsec. The spectra and colours of
the two components are very similar, with a redshift of
z = 1.461 and velocity diference <5t> = 0 + 115 km s-1. In spite
of an intensive search, we have failed to find a lensing
galaxy, which must have a magnitude R > 23.8. This has
enabled us to put a lower limit on the mass-to-light ratio of
any lensing galaxy in the range 200 to 1000 MQ/L0, depend¬
ing on its redshift. We have considered three possible inter¬
pretations of the system.

(1) Chance coincidence of the two images, which we rule
out on statistical ground.

(2) A gravitationally bound binary quasar. The similarity
of the two components and the small velocity difference
count against this possibility, but we feel that we cannot rule
it out.

(3) A gravitational lens. Most of the observations favour
this picture, but the lensing object would have to be a dark
galaxy or a dark matter halo. This would clearly require a
departure from the conventional idea of the galaxy popu¬
lation.
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