
SCHOOL OF INFORMATICS

EDINBURGH UNIVERSITY

PHD THESIS

Increasing the Efficacy of Automated Instruction Set Extension

Author:

Richard Vincent BENNETT

Supervisor:

Prof. Nigel TOPHAM

Secondary Supervisor:

Dr. Björn FRANKE

July 14, 2011

Abstract

The use of Instruction Set Extension (ISE) in customising embedded processors for a specific

application has been studied extensively in recent years. The addition of a set of complex

arithmetic instructions to a baseline core has proven to be a cost-effective means of meeting

design performance requirements. This thesis proposes and evaluates a reconfigurable ISE

implementation called “Configurable Flow Accelerators” (CFAs), a number of refinements to

an existing Automated ISE (AISE) algorithm called “ISEGEN”, and the effects of source form

on AISE.

The CFA is demonstrated repeatedly to be a cost-effective design for ISE implementation.

A temporal partitioning algorithm called “staggering” is proposed and demonstrated on average

to reduce the area of CFA implementation by 37% for only an 8% reduction in acceleration.

This thesis then turns to concerns within the ISEGEN AISE algorithm. A methodology

for finding a good static heuristic weighting vector for ISEGEN is proposed and demonstrated.

Up to 100% of merit is shown to be lost or gained through the choice of vector. ISEGEN

early-termination is introduced and shown to improve the runtime of the algorithm by up to

7.26x, and 5.82x on average. An extension to the ISEGEN heuristic to account for pipelining

is proposed and evaluated, increasing acceleration by up to an additional 1.5x. An energy-

aware heuristic is added to ISEGEN, which reduces the energy used by a CFA implementation

of a set of ISEs by an average of 1.6x, up to 3.6x. This result directly contradicts the frequently

espoused notion that “bigger is better” in ISE.

The last stretch of work in this thesis is concerned with source-level transformation: the ef-

fect of changing the representation of the application on the quality of the combined hardware-

software solution. A methodology for combined exploration of source transformation and ISE

is presented, and demonstrated to improve the acceleration of the result by an average of 35%

versus ISE alone. Floating point is demonstrated to perform worse than fixed point, for all

design concerns and applications studied here, regardless of ISEs employed.

Acknowledgements

Special thanks is given to the following people:

“A master can tell you what he expects of you. A teacher, though, awakens your own expecta-

tions.”

– Patricia Neal

Nigel Topham; for the opportunities, understanding, and sage advice.

Björn Franke; for front-line support, patience, and keen insight.

Without both of your help I would not have been able to navigate the strange world of academic

computer science.

“I love being married. It’s so great to find that one special person you want to annoy for the

rest of your life.”

– Rita Rudner

To Kate Weaver-Bennett; for making me whole.

“A scientist’s aim in a discussion with his colleagues is not to persuade, but to clarify.”

– Leo Szilard

Oscar Almer, Igor Böhm, Christophe Dubach, Salman Khan, Stephen Kyle, Hugh Leather,

Alastair Murray, Mike O’Boyle, Freddie Qu, Chris Thompson, George Tournavatis, and Marcela

Zuluaga; for providing countless hours of productive discussion, countless further hours of un-

productive discussion, and travelling companionship across the world.

“You are the bows from which your children as living arrows are sent forth.”

– Kahlil Gibran

Paul and Wendy Bennett; for getting me as far as you did, and many words of encouragement.

Patricia Curtis and Brian Weaver; for raising your daughter, and for providing a level of support

that astounds me on a daily basis.

“A good friend is a connection to life - a tie to the past, a road to the future, the key to sanity

in a totally insane world.”

–Lois Wyse

Luke Bennett, Gemma Bennett, Thomas James, Jonathan Gray, Tom Feist, Charles Leahy,

Thomas Haddow, James Hanlon, Alexandra Nagy, Douglas Llewellyn, Barbara Hind, John

Turner, Rachel McKerrow, Eugene Hopkinson, Andreas Learch, David Weigl, James Addi-

son, Courtney Fox, Matthew Mossman, Ryan Barton, Erin Roherty, Taylor Seymour, Colin

McEwan, Adam Lion, Jim Rutherford, Glynn Weaver, Amanda Weaver, and countless others.

i

This thesis is dedicated to the memories of Colin Bennett and Alan Smith

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my own

except where explicitly stated otherwise in the text, and that this work has not been submitted

for any other degree or professional qualification except as specified. The following work with

which this thesis shares content was published:

• R.V. Bennett, A.C. Murray, B. Franke, and N. Topham “Combining source-to-source

transformations and processor instruction set extension for the automated design-space

exploration of embedded systems”. In: Proceedings of Languages Compilers and Tech-

nology for Embedded Systems (LCTES), 2007.

• O. Almer, R.V. Bennett, I. Böhm, A.C. Murray, X. Qu, M. Zuluaga, B. Franke and

N.P. Topham “An End-to-End Design Flow for Automated Instruction Set Extension and

Complex Instruction Selection based on GCC”. In: Proceedings of the 1st International

Workshop on GCC Research Opportunities (GROW), 2009.

(Richard Vincent Bennett)

iii

Document Conventions

Throughout the text of this document, the use of the following terms and abbreviations are

made use of in an effort to increase its accuracy and clarity.

• AISE - Automated Instruction Set Extension.

• ASIC - Application Specific Integrated Circuit.

• ASIP - Application Specific Instruction-set Processor.

• CCA - Configurable Compute Accelerator.

• CFA - Configurable Flow Accelerator.

• CDFG - Control and Data Flow Graph.

• DFG - Data Flow Graph.

• DII - Data Initiation Interval (issue latency).

• DSE - Design Space Exploration.

• FPGA - Field Programmable Gate Array.

• ILP - Integer Linear Programming.

• ISA - Instruction Set Architecture.

• ISE - Instruction Set Extension.

• LUT - Look Up Table.

• NoC - Network On Chip

• OLP - Operator Level Parallelism (sometimes referred to as Instruction Level Parallelism

in other works, but herein we refer to the phenomenon at a higher level in the IR).

• ML - Machine Learning.

• RFU - Reconfigurable Functional Unit.

• SoC - System On Chip

The meaning of some of these terms is expanded in the text of the document where appropriate.

iv

v

CONTENTS

1 Introduction 1
1.1 Instruction Set Extension . 3

1.2 The Problem . 4

1.2.1 Engineering Time . 4

1.2.2 Acceleration . 5

1.2.3 Area . 6

1.2.4 Energy . 7

1.3 Contributions . 8

1.4 Document Structure . 11

1.5 Summary . 11

2 Background 14
2.1 Embedded Processors . 14

2.1.1 Extensible Processors . 15

2.1.2 Reconfigurable Processors . 16

2.2 Design Space Exploration . 17

2.3 Instruction Set Extension . 18

2.3.1 Abstract Problem Definition . 19

2.3.2 The Software Emulation Fallacy . 20

2.3.3 Separation of Concerns . 21

2.3.4 Amdahl Limit . 23

2.3.5 Micro-architecture . 23

2.3.6 ISE Example . 27

2.4 Automated Synthesis . 29

2.4.1 Automated Instruction Set Extension 29

2.4.2 ISEGEN Algorithm . 31

2.4.3 HDL Synthesis and Analysis . 36

2.5 Resource Sharing . 37

2.6 Compiler Transformations . 38

2.7 Summary . 39

3 Related Work 41
3.1 ASIP Design Space Exploration and Co-Design Frameworks and Languages . . 41

3.1.1 Verilog . 41

3.1.2 VHDL . 42

vi

3.1.3 SystemC . 43

3.1.4 SA-C . 44

3.1.5 Handel-C . 45

3.1.6 ROCCC . 46

3.1.7 SPARK . 47

3.1.8 DWARV . 47

3.1.9 LISA . 48

3.1.10 MESCAL . 49

3.1.11 Lime & Liquid Metal . 50

3.1.12 Trimaran . 51

3.1.13 Other Languages and Frameworks . 52

3.2 Automated Instruction Set Extension . 53

3.2.1 Linear-Complexity MISO Identification 53

3.2.2 Linear-Complexity MIMO Identification 54

3.2.3 Integer-Linear Programming Methodology 55

3.2.4 Fast Clustering AISE Algorithm . 56

3.2.5 Polynomial-Complexity Identification and Selection 57

3.2.6 Tensilica XPRES . 58

3.2.7 Other Algorithms . 59

3.3 Microarchitectural Solutions . 62

3.3.1 Field Programmable Gate Arrays . 62

3.3.2 MOLEN . 63

3.3.3 Custard . 64

3.3.4 ADRES . 65

3.3.5 Annabelle and Montium: Chameleon 65

3.3.6 QuickSilver Adaptive Computing Machine 66

3.3.7 XTENSA . 67

3.3.8 Stretch . 69

3.3.9 Other Microarchitectures . 70

3.4 This Work In Context . 70

3.4.1 The Need For Predictable Microarchitecture Cost and Benefit 71

3.4.2 Reducing Engineering Time . 71

3.4.3 Reducing Area . 72

3.4.4 Improving Acceleration . 72

3.4.5 Reducing Energy Requirements . 73

3.4.6 Software and Hardware: Chicken and Egg 73

3.5 Summary . 74

vii

4 The Real World: Enabling and Optimising Hardware Synthesis 76
4.1 Introduction . 76

4.2 Configurable Flow Accelerators . 78

4.2.1 Introducing the CFA . 78

4.2.2 CFA Design Space Exploration Methodology 83

4.2.3 Analysis of the Efficacy of CFA . 86

4.2.4 Conclusions . 93

4.3 CFA Staggering Methodology . 94

4.3.1 Trading off Space for Time . 94

4.3.2 Comparison to Other Techniques . 96

4.3.3 Determining the Efficacy of Staggering 98

4.3.4 Evaluation of Staggering Efficacy . 99

4.3.5 Conclusions . 104

4.4 Summary . 105

5 Bridging the Gap: Improving ISE Identification 107
5.1 Introduction . 107

5.2 ISEGEN Heuristic Weighting Analysis . 109

5.2.1 The ISEGEN Heuristic Weighting Vector 109

5.2.2 Weighting Vector Space Exploration Methodology 110

5.2.3 Evaluation: Analysis of Parameter Space 112

5.2.4 Conclusions . 121

5.3 Search Early Termination . 122

5.3.1 Faster ISE Analysis Through Shortcuts 122

5.3.2 Validation and Evaluation of Early Termination Approach 125

5.3.3 Evaluation of Validatory Results . 127

5.3.4 Conclusions . 134

5.4 Pipeline Aware Identification . 135

5.4.1 When Serial is also Parallel . 135

5.4.2 Pipeline Model and Scheduling Heuristic 137

5.4.3 Determining the Efficacy of the Pipelining Heuristic 138

5.4.4 Pipeline Heuristic Results and Evaluation 140

5.4.5 Conclusions . 153

5.5 Energy Aware Identification . 155

5.5.1 Better Value ISE: Making ISEGEN Optimise for Energy 155

5.5.2 Determining the Efficacy of the CFA Energy Optimisation Heuristic . . 156

5.5.3 Energy Heuristic Results and Evaluation 157

5.5.4 Conclusions . 167

viii

5.6 Summary . 169

6 Form Over Function: Source Transformation 171
6.1 Introduction . 171

6.2 Transform Space Exploration . 173

6.2.1 The Need for Source-to-Source Transformations in ISE 173

6.2.2 Transform Space Exploration Methodology 175

6.2.3 Evaluation . 181

6.2.4 Conclusions . 192

6.3 Floating versus Fixed Point . 193

6.3.1 Introduction . 193

6.3.2 Methodology . 194

6.3.3 Evaluation . 195

6.3.4 Conclusions . 215

6.4 Summary . 216

7 Conclusions 217
7.1 Contributions . 217

7.2 EnCore and CFA integrated: Castle . 220

7.3 Further Work . 221

Bibliography 225

ix

1 INTRODUCTION

“The last thing one knows in constructing a work is what to put first.”

– Blaise Pascal

We are now living in the Information Age, where those who cooperate with the legion of

digital information services can improve both productivity and quality of life. There is a trend

towards increasingly more personalised management and delivery of information. The markets

have concluded the only logical outcome of this trend is the development of more ubiquitous

and faster embedded computing. Moving away from the “Desktop Model” created by such

companies as Microsoft, IBM, and Intel has begun to dominate the microelectronics market.

The struggle between high performance and low cost will continue for the foreseeable future,

and will only be mitigated with the introduction of new, more cost-effective design innovation

and automation.

The progression of commercially adopted computer architecture has always been largely

guided by two factors:

• The productivity of the applications programmer.

• The maximum throughput or speed of execution obtainable.

The maximisation of both of these factors is the principle concern, as they govern two critical

financial concerns to stakeholders in application development, namely:

• The cost of developing the application.

• The size and quality or domain of applications which may be developed; hence the mar-

kets which may be exposed and exploited by application development.

Computers exist solely for the purpose of the applications which run on them. Such applica-

tions were originally written directly in the machine code, and later the assembly languages of

the machines which they ran on. This small addition of mnemonics as assembly language was

a small luxury afforded by the feasibility of creating assemblers, the possibility itself created

by advances in the hardware architecture. This was the first iteration of the evolutionary cycle,

wherein we connected streams of ones and zeroes to Hindu-Arabic numerals and letters in the

Roman alphabet.

Next came compilers, and the ensuing language debate. Whilst the issue of which language

to use in software design is far from resolved, at least in our particular branch of this story there

is a clear winner in terms of tried and tested efficacy; the imperative language C. Imperative

programming in general has several advantages over other language paradigms from a practical

point of view, for example:

1

• Imperative programming lends itself to natural, object-oriented, behavioural descrip-

tions.

• Imperative programming is readily mapped to RISC execution, which are essentially

imperative execution engines.

For these reasons and more, the majority of compiler research efforts at present focus on object-

oriented and/or imperative languages such as C, C++, and Java. As the hardware which runs

a compiler evolves, the ability to map from our high level languages to complex computer

systems grows also.

The success of RISC is largely as a product of the increase in compiler design complexity

and the decrease in memory cost, allowing the necessary fine grain control. Further along the

explicit control axis, one finds architectures such as VLIW. With VLIW more effort must be

put into code quality and scheduling in order to obtain greater performance (speed) for less cost

(power, die area) [1]. Around the time that VLIW architectures were being commercialised,

the idea of Hardware/Software co-design [2] came to light as a good engineering formulation,

when designing embedded systems with performance constraints. Design becomes a process

of mapping between the hard and soft elements of the system; allocating hardware resources

where performance is critical, and software otherwise especially where flexibility is required.

During the 1990’s there was a move towards electronic system design, utilising a degree

of design automation in order to perform tasks which were becoming less and less tractable

to human engineers due to their sheer size and complexity. The Verilog language became

the industry standard for ASIC design specification and verification, largely as a product of

its support for fast simulation of a design which allowed for engineers to test their designs

before they were committed to silicon. More importantly, the language was able to be directly

synthesised, meaning that a single description of an ASIC could be used throughout the design

process. From this basis comes the idea of an iterative process of design, whereby the concerns

of a design are worked in from the top level of abstraction (the system level view) down to the

bottom (silicon layout, i.e. GDS-II). This is achieved through compiling a language such as

Verilog down to a lower level of abstraction, then examining what further efforts are needed to

make the design meet the more complex requirements of the lower levels of abstraction.

The previous GPP stage of evolution has failed in recent years; we are unable to arbitrarily

increase clock speed, and so we must map more hardware instead. General purpose execution

has very much taken the high(-level) road, in that it looks to byte-code languages such as Java,

and C#, choosing C or C++ only when performance is absolutely critical. This constant raising

of the abstraction level makes an efficient mapping to thread-level parallelism more readily

accessible to programmers, but is expensive. Over-specification in the multi-core dimension is

both costly and hard to program. Methods such as clock gating [3] have been proposed to help

reduce the problem in terms of power and energy efficiency, but these do nothing to address

2

the ever increasing GPP real-estate.

It is as of yet unclear whether the multi-core trend will ultimately be the saviour of GPP. The

big players like AMD and Intel are embracing the multi-core idea, putting more and more cores

on a chip in an attempt to exploit the available silicon. One fact remains that prevent GPPs from

gaining extensive foothold in the embedded domain: their performance is extremely expensive

in terms of both power and die area.

The techniques and skill that have gone into GPP design have been both forward-looking

and effective in achieving their goal: performance at whatever cost. The trend towards low

power, limited function, mobile devices does require a rethink of this entire methodology.

Suddenly engineers are presented with a very concrete limit to the amount of silicon and energy

that may be used. The situation is now that for the specific functions of a mobile device the

execution speed is expected to be at least equal to GPP. Audio and video decoding, encryption,

rendering in both 2D and 3D, and automated control purposes are all good examples of domains

which are driving the need for faster, cheaper embedded processing.

The focus of this thesis is therefore that of embedded applications hardware-software co-

design, that having been one basic remit of ICSA for the last nine years. The inclusion of

the compiler into the hardware-software co-design process has brought about a new way of

thinking about architectural design; that of using an application to guide the design process

automatically based on features and structures used in its execution. This design methodology

is now introduced in more depth in the following section.

1.1 Instruction Set Extension

Many methodologies for hardware-software co-design will include Instruction Set Extension

(ISE) as a core component of their design space [4]. ISE is a technique for processor customi-

sation wherein the architecture (and often also the microarchitecture) are extended specifically

with the computing requirements of the application software in mind. The architectures used

with ISE are most often Reduced Instruction Set Computers (RISC), and hence the complexity

of the instructions in the baseline core will be low, maintaining the generality of the instruction

set in question. Low-complexity RISC-style instructions are also generally not the most effi-

cient way of executing a given application, and so additional instructions (ISEs) will be added

to this baseline in order to provide a better fit between the application in question, and the tar-

get architecture. ISE design introduces a dependency between the software and the hardware,

requiring that the application software or at least its critical kernels be somewhat stable before

hardware design gets underway. More stability is generally required with larger ISEs; smaller

ISEs can be retargeted more readily due to lower complexity. This is generally at odds with

the “old-fashioned” embedded application development methodology, wherein a prefabricated

target architecture would be selected on the basis of much more high-level specifications, such

3

as the potential for executing DSP or control-flow dominated algorithms well. ISEs are gen-

erally far more specific than this, although the selection of a suitable prefabricated baseline is

still important. ISEs require fine-grain structural design decisions in order to properly exploit

their potential. A number of algorithms have been created in order to identify ISEs automati-

cally based on the source code of an application, handling the fine-grain decisions by way of

heuristic merit functions. These algorithms have enabled the rapid construction of ISEs for a

particular application, putting the problem into computational costs rather than engineering.

Both AMD and Intel have recently produced ISEs in the form of XOP [5] and AVX [6] respec-

tively, demonstrating the relevance of application-specific instructions even with GPPs. These

GPP ISEs are not as complex as those considered for ASIPs, and focus more on vectorising

common complex operations than creating instructions with a single purpose. In this thesis ISE

is examined relative to low-complexity baseline RISC architectures.

1.2 The Problem

The major concern with using ISE when constructing a combined hardware-software design is

that of the speed and quality of the design work that can be achieved. The major challenge for

increasing the efficacy of ISE is to:

• Reduce the time taken to produce a working system (architecture, microarchitecture, and

tool-chain) through design automation.

• Increase the quality (lower area, lower energy, higher acceleration) of the specialised

system.

At the time of writing this thesis, there are still engineers employed at companies such as ARM

and ST Microelectronics who perform application-specific ISE design on a manual basis. The

manual approach represents the slowest but highest-quality trade-off in engineering cost versus

design quality. Automated synthesis of ISEs including identification, implementation, and

exploitation is an extremely important avenue of research, to reduce the manual effort and

hence engineering cost of utilising the technique. It is the central goal of AISE research to

increase the efficacy of the methodology until it equals, and eventually surpasses that possible

by manual design. The following sub-sections give more detail on the concerns in question

when considering automatically synthesised ISEs.

1.2.1 Engineering Time

The manual effort required in order to include ISEs in a design is considerable, and requires

several distinct “deliverables” to be produced in order to be part of a practical design solution:

• The semantics of ISEs including instruction encoding (dependant on the baseline archi-

tecture), function (usually a collection of “data-flow” as directed graphs), and assembler

4

mnemonic syntax.

• An implementation of ISEs as a structural extension to the baseline architecture, usu-

ally via a pre-defined extension interface. These must implement the semantics defined

above.

• Additional tool-chain support for mapping the application software to the extended hard-

ware, and potentially simulation of the extended hardware for testing & verification.

Time to market constraints often dominate the engineering trade-offs made in the design, with

embedded applications requiring a fast turn-around from the conception of the application to

the realisation of the device. Automated ISE (AISE) accelerates not only the application in

question but the generation of the above deliverables also. This makes AISE especially attrac-

tive where the automated process can derive instructions of a suitably high quality with respect

to design concerns compared to the manual approach. The major limiting factor to AISE is the

tractability of the search problem. In its most naive form the identification problem alone has

a search space size of 2n, where n is the number of operators in the basic block being anal-

ysed. This intractability of the search space as a whole gives rise to the need for heuristics and

search-space pruning; two methodologies used extensively in AISE algorithms.

1.2.2 Acceleration

Acceleration of the application when executing on the extended architecture has for a long time

been the principal concern of ISE methodologies, despite it being only one of several design

concerns for real-world solutions. The individual ISEs will cover a number of operations that

would otherwise have been performed via the baseline RISC instruction set. This in effect

packs sets of operators together in a manner which exploits a combination of serial and parallel

acceleration. Serial acceleration is possible when two or more operators in sequence have the

ceiling of the sum of their latencies less than the sum of the latencies of the RISC instructions

required to execute them. Parallel acceleration is the more classical case similar to instruction-

level parallelism as considered in VLIW, wherein multiple operators are independent from one-

another and have their inputs available in an overlapping time-frame; referred to henceforth as

“Operator Level Parallelism” (OLP).

Second-order speedup effects are possible, such as reduction of register pressure and hence

spill code due to ISE-internal values being passed by wire, rather than via the register set. ISEs

can also be combined with scratch-pad memories, further reducing the pressure on the register

file. When taken together, this plethora of potential customisation can lead to a significant

acceleration of the application; assuming a suitable portion of the application lies in frequently

executed loops which are of a form suitable for ISE mapping.

5

1.2.3 Area

The process of reducing the area that ISEs utilise has not been neglected by researchers.

Whether area is FPGA slices or millimetres of silicon area is an important contributor to the

bottom line. Higher silicon area can contribute two-fold to higher monetary costs:

• In silicon the area has a direct price-tag attached per unit consumed, although often there

is a specific limit which engineers are encouraged to get as close to as possible but not

exceed.

• The larger an ASIC design is, the more likely an individual unit is to contain a fabrication

flaw which will render that unit useless or lesser-functioned.

Several factors interact to determine the merit of using FPGA instead:

• FPGA implementation is generally a lot more expensive than ASIC when considered in

high-volume, as most application-specific designs are.

• Regardless of volume, the size of the hardware design will determine the size of the

FPGA required to contain it.

• Baseline processors in FPGA can lead to better baseline performance, but ISEs within a

standard LUT FPGA will be of very poor performance.

• Some FPGA units contain a selection of arithmetic units as hard macros, and so fitting

the design not only to the area but to the FPGA microarchitecture becomes essential.

ISE in FPGA is generally of lower efficacy than ISE in ASIC standard-cell technology.

There is no reason to discount FPGA entirely as industry is making good progress in increasing

the number of hard-macros available and the routing hierarchies. This thesis concentrates on

silicon implementation, and hence any reference to area is standard cell area, in a commercial

130nm process.

Resource-sharing is absolutely essential to improve the cost-benefit performance of ISE.

There are two major scenarios in ISE to exploit through resource sharing: Inter-ISE resource

sharing wherein units from one ISE are shared with another, and intra-ISE resource sharing,

wherein units are time-multiplexed between temporally separate sections of the ISE. These two

methods are henceforth referred to as “spatial” and “temporal” resource sharing. Another area

reduction technique, less beneficial but still substantial enough to note is that of replacing units

not on the critical path of an ISE with higher latency, lower area equivalents. This is considered

here to be more of a concern to developers of products such as DesignWare, than those using

them to produce ISEs.

ISE is inherently an extension technique and therefore will never reduce the area of the

baseline core under extension. However, the design space as seen by application engineers

6

should include a number of potential baseline cores. ISE could produce a solution which

when compared to an equivalently performing (acceleration and energy) general purpose core

does have lesser area. This is due to a better fit between the hardware and software, meaning

the hardware does not have to use generalised acceleration techniques such as out-of-order

execution which can add a large amount of area. Dynamic scheduling hardware is a major

contributor to the inefficiencies of GPP.

Regardless of whether area is represented by FPGA cells or silicon area, there will generally

be an increase in power consumption for an increase in area. Power consumption alone is

generally not of great importance other than ensuring the source is not overloaded by any peak

consumption. Power though, is a direct contributor to energy consumption.

1.2.4 Energy

When purchasing a mobile device, one of the primary concerns is often the question of how

long the battery will last. As mobile devices shrink in size and their functional complexity

increases, this inevitably places more and more drain on batteries. The SoC components of a

mobile device such as a cell phone is not necessarily the entirety of its energy consumption;

analogue components also play a large part in many instances. The SoC components do con-

sume a significant enough proportion to warrant addressing the energy costs of executing an

application. In addition, newer techniques such as software radio are placing more and more of

the functional burden on the digital elements; this will further push SoC components into the

fore in energy considerations.

The scenario is further complicated by developments in process technology tending to-

wards the lower (sub-micron and beyond) nodes, changing the rules of thumb engineers can

use when designing circuits. The progress in fabrication makes the problem of balancing en-

ergy consumption with other concerns an ever more complex one. The major shift is in the

ratio of dynamic versus static power consumption, with dynamic power largely being handled

with clock gating and static power requiring ever more audacious techniques to reduce it as it

becomes more and more the dominant factor. This thesis largely focuses on the 130nm tech-

nology node, and leaves tackling newer process sizes to further work.

ISE can be used in reducing the energy consumption of an ASIP, but the process must be

carefully managed so that the ISEs actually benefit rather than reduce the energy performance.

If large ISEs are employed, the possibility that they will not lend themselves well to resource

sharing is a real concern. Without efficient resource sharing, ISEs can bloat a design and result

in a considerably worsened cost-benefit than just selecting a more capable baseline core. The

energy cost is one of the concerns which can be worsened by poorly designed or implemented

ISEs. In order to improve the efficacy in terms of energy consumption therefore, we need both a

microarchitecture capable of efficient resource sharing and an algorithm capable of measuring

and manipulating those microarchitectural elements with an impact on energy.

7

Fig. 1.1: A diagram showing how the different contributions cover the efficacy concerns of
AISE. Light blue areas are concerns, and the dark blue areas are the contributions made in this
thesis.

1.3 Contributions

The contributions made in this thesis are in several categories spanning the levels of design

consideration in a hardware-software co-design.

In order to derive the low level performance of a realistic implementation, a microarchitec-

tural solution to ISE dubbed the “Configurable Flow Accelerator” (CFA) is introduced and used

as the basis for later exploration and analysis. The properties of this accelerator are explored

in order to demonstrate that it is a viable design for implementing ISEs, and to determine the

potential for performance improvement across the axes of design concern. The CFA is demon-

strated repeatedly to be a cost-effective design for ISE implementation.

Introduced alongside the CFA is a process of temporal partitioning dubbed “CFA Stagger-

ing”, due to its similarities with loop staggering (software pipelining). Staggering is demon-

strated on average to reduce the area of CFA implementation by 37% for only an 8% reduction

in acceleration.

Following the exploration of cost mitigation within the proposed CFA microarchitecture,

this work moves to address the issues of identification, in particular determining whether the

heuristics used within the ISEGEN algorithm are in fact efficacious in identifying ISEs which

are implemented as CFAs. The first effort in this vein is concerned with the original algorithm,

and is divorced from the idea of CFAs. There is a weighting vector located at the heart of

8

the ISEGEN algorithm which has previously been cited [7] as having a single static optimal

value. A methodology for finding a good static weighting vector for ISEGEN is proposed and

demonstrated. Up to 100% of merit is shown to be lost or gained through the choice of vector.

Also demonstrated is that good ISEGEN weighting vectors are application-specific, and that in

order to use a single vector across multiple benchmarks a small amount of performance must

be lost from some of them. This motivates the use of feature-based dynamic vector selection,

although this is not explored in this thesis. A maximally efficacious vector is located for the

set of benchmarks and architecture targeted herein, to demonstrate that the vector is different

from that given in [7] and to provide a suitably tuned heuristic for later work in this thesis.

The original ISEGEN algorithm is prone to performing a considerable amount of fruitless

search, due to being unaware of when an invalid ISE will converge on a valid solution during

the algorithm’s execution. This thesis presents an early-termination modification which greatly

reduces the ISEGEN algorithm’s execution time, especially in the presence of larger graphs

where the early termination heuristic is particularly efficacious. ISEGEN early-termination is

shown to improve the runtime of the algorithm by up to 7.26x, and 5.82x on average. It is

shown that whilst there are pathological conditions in which the early termination may reduce

the quality of a result, these conditions do not occur in any of the benchmarks tested. This

modification of the ISEGEN algorithm contributes to the concerns involving the time of the

designer or engineer, as it reduces the amount of time taken for an engineer to evaluate a

particular instance of an application’s source code for suitable ISEs.

The CFA microarchitecture is pipelined with the potential to initiate operations with an is-

sue latency of one cycle. Modelling the performance impact of overlapping independent ISEs

in a CFA is investigated as a potential alternative to other I/O pipelining techniques. Instead

of giving inputs and reading outputs for a single large ISE over several cycles, each ISE must

only use a single cycle to perform input or output, and will generally be smaller for a given I/O

constraint. If smaller ISEs can be used, area and energy consumed will be less and the efficacy

of the ISE solution will be increased. New heuristics are produced to allow the ISEGEN algo-

rithm to be aware of the additional acceleration obtained through overlapping templates, hence

making it able to better exploit the temporal parallelism in the ISEs it produces. Pipelining

is shown to increase acceleration by up to an additional 1.5x. The new pipeline heuristic is

also shown to have better stability with regards to the weighting vector used versus the orig-

inal combinational heuristic, in addition to producing better results. Two pipeline scheduling

heuristics are evaluated within the greater context of the new pipeline merit heuristic, and a

“shortest-first” policy is demonstrated to generally produce better schedules in the benchmarks

evaluated.

In the earlier work to demonstrate the use of the CFAs in several applications, a near-linear

correlation is demonstrated between the power consumed by a CFA and its standard cell area.

It is also shown that CFAs can have a beneficial or detrimental effect on the energy perfor-

9

mance of a particular hardware-software co-design. In order to make the ISEGEN algorithm

aware of the potential energy effects, a heuristic is produced using the relationship described

in the earlier section 4.2. The new heuristic can be used to determine the “energy merit” of

a particular ISE, utilising the integral of power versus time to model the energy cost of using

a particular ISE when implemented as a CFA. The new heuristic is placed into the ISEGEN

algorithm and evaluated with regards to several benchmarks, and found to produce better solu-

tions across nearly all of them. The energy-aware heuristic reduces the energy used by a CFA

implementation of a set of ISEs by an average of 1.6x, up to 3.6x. In fact, even though the CFAs

are not constrained with regards to area, the new heuristic actually manages to produce a better

acceleration for most of the applications than the original combinational heuristic does. The so-

called energy heuristic actually makes improvements in acceleration, area, power, and energy

in most benchmarks. This improvement does not come at the cost of engineering time either,

as coincidentally the new heuristic is found to take less time to converge on its solution than

the original combinational heuristic. The same process as before is used to demonstrate that

a common and stable weighting vector exists for this heuristic, and like the pipeline heuristic

this common vector is shown to be more stable than the combinational heuristic.

Compiler transformations are an important source of potential optimisation, and their ef-

fects when combined with ISEs are only just beginning to be understood. This thesis presents

a transformation-space exploration, in which ISEs are produced after a range of source-code

transformations are performed. The methodology for combined exploration of source transfor-

mation and ISE is demonstrated to improve the acceleration of the result by an average of 35%

versus ISE alone. It is also demonstrated that there is a critical link between the efficacy of

source transformation and the efficacy of the resulting ISE identification. Transformation and

ISE overlap in where they obtain performance improvement from. Wherever transformations

are ineffective, ISEs are shown to be generally more effective in accelerating. Source transfor-

mation comes with a lower cost than ISE, so this work shows that it is important to perform a

zealous evaluation of potential software transformations in tandem with ISE identification.

Low-power embedded processors used for media applications often perform calculations

for fractional numbers using fixed-point representations. This thesis performs an evaluation

of applications implemented in both fixed- and floating-point arithmetic, with regards to the

absolute performance of the solution that would be produced in a design utilising ISE. It is

demonstrated that the fixed point designs provide the best trade-off in execution time, area,

power, and energy. With the higher baseline power and energy performance of the floating

point solution, benefits from ISEs in energy consumption are relatively greater for floating

point than for fixed point. It is therefore shown that wherever floating point is utilised, ISEs

can be used to significantly reduce both the execution time and energy cost of a design.

Contributions have been made across the spectrum of concerns for ISE; the efficacy of all

design concerns have been addressed in one form or another, and improvements made in all

10

cases. Exploration into the ancillary concerns of ISE design such as source transformation

has been produced, promoting a holistic approach to ISE wherever possible: In a hardware-

software co-design utilising ISE, both sides of the design must be evaluated together in order

to produce a better design.

1.4 Document Structure

This thesis is organised as follows:

• Chapter 2 introduces and describes the background material (empirical, practical and

theoretical) required to understand the motivation and implementation of the work of

this thesis.

• Chapter 3 describes efforts in the field of specialised computer architecture, specifically

those relevant or related to the work performed in this thesis.

• Chapter 4 introduces the Configurable Flow Accelerator (CFA) ISE implementation, ex-

plores the strengths and weaknesses of the implementation as originally conceived, and

introduces a temporal-partitioning algorithm for compressing the latency and resources

of a CFA implementation.

• Chapter 5 looks at an existing high performance ISE identification algorithm (ISEGEN),

with an eye towards increasing its efficacy for both the “classic” combinational ISE ex-

ploration and more specific situations such as energy optimisation and pipelined mi-

croarchitecture. In addition to improving the scenario-specific quality of the algorithm’s

output, the runtime of the algorithm itself is reduced by introducing search early termi-

nation.

• Chapter 6 is concerned with the form in which an application’s software is delivered to

the AISE methodology, in particular with regards to the software transformations and

number formats utilised. In the latter case techniques from chapter 5 are applied as ap-

propriate to determine if they are more or less efficacious than the original combinatorial

methodology.

• Chapter 7 concludes this thesis with a critical analysis of the work performed therein and

suggestions for future continuation of this effort.

1.5 Summary

In this chapter, a general introduction to the contents of this thesis has been covered. Special

consideration has been given to design concerns this work is intended to address by improving

the efficacy of ISE:

11

• Engineering Time.

• Acceleration.

• Area Cost.

• Energy Cost.

This chapter has introduced and motivated the process of processor specialisation via ISE, in

particular the engineering concerns that will be encountered, so that these may be directly

addressed in later chapters. Contributions made in addressing these concerns and the structure

of this thesis hereon have been covered, and now we progress to providing the background

information necessary to understand this thesis.

12

13

2 BACKGROUND

“I was born not knowing and have had only a little time to change that here and there.”

– Richard Feynman

This chapter covers a review of the material necessary as background to understand the moti-

vation and implementation of the efforts contained in this thesis.

2.1 Embedded Processors

General purpose processors (GPP) tend towards high-power, deep pipelining, large die-size,

and high clock frequency; embedded processors on the other hand tend towards the exact op-

posite:

• Pipeline depths tend to be limited in order to reduce the cost of a flush; the degree of

speculative hardware used in GPP is much greater than embedded cores, which tend

towards simpler branch prediction schemes.

• Clock frequencies tend to be lower as a product of the shorter pipelines, as deeper

pipelines also tend to burn a lot more static power through driving feedback in latches.

• On-die sizes of embedded processors tend to be smaller, as in general embedded pro-

cessors are not provided as fabricated products; rather as IP blocks for integration in a

system-on-chip design.

Embedded processors can largely be divided into three classes, although there is some

overlap:

• Non-extensible, Non-reconfigurable cores. These are a slowly dying breed of cores

which tend to favour higher performance serial processing and general purpose execution

to some degree. These may include some application- or domain-specific acceleration

functions. Examples include the Pentium-M at the high end of performance and cost,

or the ARM 7TDMI at the lower end. These cores can generally only be externally

accelerated, through the use of co-processors.

• Extensible Cores. These cores may undergo extensions to the architecture and mi-

croarchitecture pre-fabrication, in order to accelerate a particular application or domain.

These are usually referred to as ASIP.

• Configurable Cores. These cores are defined with computing fabrics at the microarchi-

tectural level which are reconfigurable post-fabrication. The degree of reconfigurability

14

Fig. 2.1: A simplified system-level view of ARC 700 family architecture, demonstrating the
pre-verified baseline core and its connection to ISE hardware through custom registers and
arithmetic units.

varies from the less mutable microcode specification, to fully dynamically reconfigurable

architectures.

The following sections cover the relevant details of the latter two classes, with respect to

the problems addressed by the research detailed herein.

2.1.1 Extensible Processors

Extensible processors contain a number of variable components, essentially opening up de-

sign spaces inside the processor core for exploration by the designer of an ASIP-based system.

Extensions to registers and supporting arithmetic logic are implemented outside of a prefab

baseline core, the latter implementing all of the expected basic RISC functionality. In this

manner, users may make the best use of the degrees of freedom provided, with the knowledge

that their extensions will not make unpredictable timing changes to the core as a whole. Ar-

chitectures are extended by implementing extensions in SystemC or Verilog with respect to

the architecture’s extension interface. Some extensible processors have supporting tool-chains

which allows for an engineer-guided exploration of the application to determine a partitioning

between software execution on the original architecture, and hardware execution through ISEs.

Examples of Extensible processors include the ARC 700 (See figure 2.1), Tensilica’s XTensa,

and Altera’s NiosII.

The intention with extensible processors is to create architectural extensions prior to fabri-

cation, which are thereon fixed in their purpose to accelerate specific application components.

Whilst this approach appears on the surface to provide the best potential for cheaply minimis-

ing the area-delay products and other such metrics, there is a widely recognised problem in

the design process. Application sources must be mature or predictable enough to permit an

15

early specialisation of the architecture through extension. Once the hardware design is fixed,

any changes to the application may invalidate previous assumptions about timing and data-

flow which contributed to the efficacy of the overall HW/SW combination. The problem of

the flexibility of an architecture becomes key, and therefore precludes very complex data-flow

acceleration due to a possible mismatch between the identified extensions and an application

at a later stage of its development. The Tensilica XTensa approach to this problem is to cre-

ate a range of complexity in the ISEs generated. When the application drifts from its original

specification the less complex ISEs are still able to be mapped for a performance advantage.

At this point though, the benefit of the larger ISEs is lost entirely. The static ISEs cannot be

reconfigured to match the structure of the new software.

2.1.2 Reconfigurable Processors

Reconfigurable Processors are an attempt to address the problems of application drift during

the design process, as they allow for more flexibility in the acceleration microarchitecture at

the cost of more control logic. Examples include the Xilinx combined FPGA/PowerPC, the

Stretch S5000 and S6000 processors, and the ARM OptimoDE. This list is given in order of

granularity; that is the level at which reconfiguration is possible. Without doubt, the most flexi-

ble in terms of achievable function space is the FPGA solution, wherein ISEs are implemented

in an FPGA surrounding a hard-macro processor core. There are several inefficiencies to the

FPGA approach, all stemming from the high degree of complexity and latency inherent in the

interconnect of the gate array.

DSP applications will include a great deal of integer (fixed-point) and potentially floating

point arithmetic, for which the mapping from an FPGA to the required structure is rather in-

efficient when compared to the direct gate-implementation of an ALU for that operation. The

bitstream required in order to maintain the instance of such a direct implementation of an oper-

ator versus the FPGA equivalent will always be far smaller, as all that is required is potentially

a mode (operation select) as opposed to a bitstream maintaining the entire structure of the ALU.

The next level of architectural flexibility is based off this coarse-grained FPGA idea, providing

a regular collection of arithmetic operators with a mesh routing fabric. The approach of com-

bining both high and low flexibility components gives such products a considerable advantage

in cost-benefit in their targeted domain versus FPGA alternatives.

Most reconfigurable processors at present require the engineer to manually select and re-

place sections of source code with ISEs that utilise the various reconfigurable fabrics available

to the architecture. The addition of design automation in this process can, if it provides solu-

tions of equal quality or better than an engineer in a manual process in the same time, provide

a great improvement in design cost.

16

2.2 Design Space Exploration

Hardware / Software Co-design [2] is the phrase used to describe the inclusion of both hard-

ware and software elements simultaneously in the design of an embedded system. It was the

original idea from which more recent topics such as Design Space Exploration (DSE) [8] were

inspired, and fundamentally forms the basis on which this thesis rests. A number of engineering

methodologies [2] for the combined system-level design of hardware and software have been

published. Such methodologies tend to involve manual analysis of the constraints of a par-

ticular problem, and really do not provide much in the way of design automation. Through a

structured and methodical design process centered around the preservation of design flexibility

and efficiency the designer performs all of the trade-offs themselves. Whilst this approach of-

fered a considerable advantage over classical software engineering for embedded system level

integration, it does not attempt to address the dwindling efficiency of the engineer themselves.

With ever increasing numbers of design trade-offs available, the engineer is swamped with

complexity.

Design-Space Exploration [8] is an attempt to properly formalise the trade-offs inherent in

an embedded application design. Constraints such as execution speed, power use, cost, and

complexity are made functions of axes of design, which represent the potential dimensions in

which a design may develop. There is a space defined by these dimensions, but by no means

is this space straightforward to explore. A large degree of trial-and-error is required in the

process, placing a premium on making small changes to a design and observing the effects

that has on its various performance metrics. In addition, the various levels of hardware and

software co-design spread the space across multiple levels of abstraction, further increasing

the complexity of attributing performance to particular “features” of the design. What is more,

performance functions over the space are often exceptionally discontinuous and non-linear for

continuous regions of the space. Whilst original efforts in manual design space exploration

have been very promising, generally these efforts were reduced to a mechanised brute-force

evaluation of contiguous regions of the design space at-once, with a degree of controlled itera-

tion and movement within the space provided by the engineer atop the design process. It soon

became apparent that there were more effective means of automating this process by taking the

engineer out of the loop in order to make a wider guided evaluation of the space.

Meeting speed constraints means that no further increase in speed is useful for its own

sake. In certain cases excess speed may be “spent” in reducing other design costs. So long as

hardware and software together meet the minimum speed requirements, application deadlines

will be met and the system built around the core will be able to communicate and process data.

No stalls will occur due to system-level deadlines missed by the core, and power will have

been reduced overall. For example, if execution speed exceeds requirements, the clock speed

of the ASIP may be reduced, reducing power and hence energy consumption. These secondary

concerns have additional design spaces of the configurable core available to be explored for

17

satisfactory areas; for example clock gating [3], dynamic voltage scaling [9], and unit pruning.

The “second order” effects of core extension are not always beneficial and often hard to predict

with any accuracy. Adding more logic to a core can for example increase the critical path and

force a reduction in the overall clock speed. Such a complicated web of non-orthogonal trade-

offs forms a space which can only be explored efficiently through the aid of iterative automated

means.

2.3 Instruction Set Extension

Instruction Set Extension (ISE) is the process of adding new instructions to a baseline core

in order to improve the performance of the core with respect to a particular application or set

of applications (domain). The approach requires work in a number of distinct areas: those

of architecture (instruction set design), microarchitecture (the hardware implementing the ar-

chitecture), and compiler (in order to map applications to the new architecture). These three

problems have been addressed manually for some time, with engineers using profiling and

manual inspection of application code to determine the best application of ISE. RISC archi-

tectures have formed the basis of most ISE-driven approaches for a considerable time. Their

basic architecture is able to efficiently cover the non-ISE component of the application with-

out expending excessive amounts on resources attacking things like dynamic instruction-level

parallelism. Most high-performance execution is performed by ISEs and not by the general

purpose component of the design, which makes dynamic OLP-exploiting hardware redundant.

ISE affects all the main axes of design concern (acceleration, area, power, energy, engineer-

ing cost). The guiding metric in deriving extensions is often still application execution speed;

designers will add ISEs that “cover” the hottest (most frequently executed) sections of their

application code. The intention is that by partitioning of the application code into areas cov-

ered and not by ISEs, sections of microarchitecture can be dedicated to the servicing of these

new ISEs. This is an example of the application of Amdahl’s law; by covering the dominating

areas of program code with acceleration the useful effect of the optimisation is maximised for

a given application. This approach is ostensibly one of design-space exploration, but in a less

classical sense since the opportunities for extension are not bounded so much by design space

constraints as by the data-flow structures present in the application code and their potential for

mapping to specialised microarchitecture, often referred to as an “Application Functional Unit”

(AFU). This aside, there are some constraints which can be thought of as defining the design

space when considered with the structure of the application code; these are:

• The number of register file ports for input and output; this ultimately defines the band-

width to and from the ISE hardware, giving the number of words that can be read to and

written from an ISE per cycle. This is commonly referred to as the “I/O Constraint”.

• That the data-flow covered by an ISE is able to be scheduled; more specifically that

18

there are no mutual dependencies introduced by new instructions (i.e. an instruction that

both reads from and writes to another instruction, ISE or otherwise). This is commonly

referred to as the “Convexity Constraint”, as it is represented by the convexity of the

data-flow graphs commonly used to define ISEs structurally.

• That the number of ISEs defined can actually be encoded in the space available in the

instruction word fields. E.g. there exist opcodes or sub-opcodes free for defining as

instruction set extensions, and the number of these is statically finite. This is somewhat

relaxed where dynamic hardware reconfiguration is possible, as opcodes can be re-used

during execution.

• That the power and energy consumed by ISEs does not excessively overload or drain the

supply available to the core.

• That the resources employed by ISEs, in cells or silicon area, does not exceed the maxi-

mum allowable by the particular technology and budget in question.

These constraints are derived from different levels in the design hierarchy; convexity being

a requirement of the compiler, encoding space being a requirement of the architecture, I/O

being a requirement of the microarchitecture. Some constraints are set purely by the cost of

producing a given design, and a further meta-constraint is that the time cost of deriving the

instructions does not exceed whatever limit is set by the desired time-to-market and human

resources budget. Given that the finally selected architecture (instruction set) impacts all ele-

ments of the hardware-software co-design, care must be taken to fix each constraint only as it is

found to be either necessary or beneficial to the outcome. This represents a “Phase Ordering”

problem in the design flow: What constraints should be fixed and what should remain mutable

at what stage in the design process. The proper division of the design space into (preferably

orthogonal) concerns is essential for determining an answer to this problem.

2.3.1 Abstract Problem Definition

For the sake of both manual and automated analysis, it is necessary to define an abstract formal-

ism of the data-flow which will be examined for ISE candidates. Since the aim of ISE is to take

a section of code and convert it to a structural representation, a structural graph representation

is a good formalism for this purpose. Application code and ISEs are themselves represented as

a Data-Flow Graph (DFG). Application code DFGs are derived directly from basic blocks from

within the compiler representation of the application. DFGs are defined as G = (V,E), wherein

V is the set of vertices representing operations and E is the set of data-flow edges connecting

the operations in G. Vertices of DFG are referred to as “nodes”, which may or may not be

coverable by the particular ISE methodology in question. For example, throughout this thesis

memory operations are not coverable, and so will never be included in an ISE. Other nodes

19

are not represented in the DFG, specifically those involved in control-flow. For this reason, all

performance figures given in this thesis with regards to this model are concerned only with the

data-flow portion of an application, not the control-flow.

When calculating the impact of an ISE formalised in this fashion, the difference between

the sum of the latencies of all the nodes in an ISE minus the sum of the latencies of all the nodes

in the critical path of the ISE constitutes the speedup in cycles. The software and hardware

latencies of a particular node reflect the number of cycles the node will take to execute on

the baseline RISC processor and as a synthesised functional unit in an ISE, respectively. The

hardware latency is generally lower than the software latency in standard-cell approaches, but

in FPGA the extension logic can sometimes be slower than the baseline processor. The speedup

of implementing a particular DFG G as an ISE is calculated as follows:

λ sw(G) = Sum of all software latencies of nodes ∈ G.V

λ hw(G) = Sum of all hardware latencies of nodes ∈ critical path of G.V

speedup cycles(G) = λsw(G)−λhw(G)

The total software cycles taken by an application in the data-flow domain is calculated in a

similar manner. First the application is profiled to get per-basic-block execution frequencies.

For each basic block, the number of software cycles is calculated by summing the software

latencies of all the nodes in the DFG for that basic block. This value is multiplied by the profiled

execution-count for that basic block and is added to the total. Taking the same approach but

including the speedups calculated as above, the ISE-accelerated cycle count can be calculated.

This is the method used in all experiments in this thesis. In all experiments in this thesis

other than that of section 6.2 the node latencies are set to those of the EnCore processor [10]:

both hardware and software latencies are the same, due to the baseline and extension being

implemented in the same standard-cell technology.

2.3.2 The Software Emulation Fallacy

When performing ISE for any given baseline core, we are weighing up the cost of the new

extensions (in area or power) versus the benefit (in acceleration or power). It is very important

to keep in mind what you are using for a baseline, and the continuum of design from that

baseline to any other design point currently under consideration.

Wherever a baseline has simple RISC-like operations which are not covered by hardware

functional units, software emulation is usually used to provide these operations to compilers.

An example of this is the GNU libfpe (Floating Point Emulation Library) provided as a part

of the GCC compiler infrastructure. The libfpe software provides floating point operations in

terms of a series of integer operations. Most architectures will then be able to use to provide

floating point calculation in the absence of floating point functional units. When the cycle-

counts for software-emulated operations are included as the software latencies of nodes in ISE,

20

the resulting speedup when considering a single ISE design point is grossly misrepresented. In

order for ISE identification algorithms (or indeed manual ISE) to honestly represent the merit

of ISE, the baseline for extension should always consider the software latency of each operation

represented as being the integer ceiling of an individual hardware functional unit that could be

included. ISE as represented in the literature (see section 3.2) does not generally consider the

simple instructions which could be added, rather opting to cover as large an array of complex

arithmetic as possible in order to obtain a design point of high merit.

It is important when designing an ASIP to perform some degree of design-space exploration

outside ISE, both before and after the ISE is performed and often with a degree of iteration.

Citing the speedup obtained by complex ISEs when software-emulated operations are included

in the software latency calculations will invariably provide an extremely high speedup where

these operations are included in ISEs. Including a scalar hardware functional unit to cover the

software emulated functions would provide a large degree of this speedup. Even the design-

space of a single scalar functional unit is complex and results in a number of potential solutions;

a simple integer multiplier itself has several potential structures for implementation at different

cost/benefit points. For this reason and others, ISE alone is not a holistic solution to designing

ASIP, but instead one powerful technique within a number of other techniques which overlap

with regards to their impact on the function of cost versus benefit. In this work, software

latencies are always assumed to be as if there were a scalar hardware functional unit; this

avoids misrepresenting the speedups by including the benefit from simple scalar extensions

before addressing the complex approach of ISE.

2.3.3 Separation of Concerns

As discussed earlier, ISE design is a DSE problem at heart, and one with various separable con-

cerns; acceleration, power, energy, area, code size, and engineering time. It has been demon-

strated that the orthogonalisation of concerns [11] is necessary for a thorough exploration of

the potential design points.

With regards to acceleration, the following properties of an ISE design will contribute to

its efficacy:

• Operation-level/Spatial parallelism. Parallel instances of arithmetic hardware are used

in order to perform multiple operations at-once, as allowed by dependencies.

• Aggregation of clock period surplus present in most arithmetic functions. In par-

ticular, bitwise functions have a hardware latency far below the clock period in most

cases.

• Issue latency between data-independent ISEs. Scheduling ISEs to have the minimum

21

possible distance between independent instances will allow these to be temporally paral-

lel.

• Reduced register-transfer overhead, due to the increased locality of communication
within the functional unit used to represent the ISEs. Wherever a value is passed

between nodes in an ISE, register pressure is reduced. The opposite may occur with

wider ISEs, which may actually increase the pressure through requiring a large number

of live registers for input and output.

Power and energy performance will depend heavily on the microarchitectural implementa-

tion selected, and the size of ISEs used. Some work (see section 4.2.1 for a review) has been

done by others to characterise the power and energy concerns of ISEs. The following properties

of an ISE design point will effect these concerns:

• Number and complexity of arithmetic units used in ISE microarchitecture. Domi-

nant in non-sub-micron designs, power will depend on the number of concurrently pro-

cessing arithmetic units. This is naturally at odds with the spatial parallelism described

under acceleration above, and adding more arithmetic units will always increase power.

Power though, is only one factor of energy. Addition of more arithmetic units may de-

crease energy through acceleration. This trade-off is investigated in later sections 4.2,

5.5, and 6.3.

• Number and width of flip-flops used in ISE microarchitecture. Dynamic and static

power are the dominant factors in processor power consumption, and the registers used

in making a synchronous circuit are the source of these factors. Dynamic power is the

major contributor in designs above 90nm, with static power becoming dominant below

this technology node. Deeper pipelines are a major contributor to the power and energy

consumed by a design.

• Clock Gating. The granularity of clock gating is of particular importance to ISE, and

will have a large impact on the efficacy of maintaining both low power and energy con-

sumption when using ISE.

• Power Gating. whilst harder to apply than clock gating and not yet investigated at all in

the context of ISE, power gating should prove useful in the future for shutting down ISE

when not in use.

Code size is generally impacted positively by ISE where the baseline architecture is RISC

with a single instruction word size (by far the most common case). Each instance of an exten-

sion instruction should cover at least two operations, so wherever an ISE is used it will bring

down the overall number of instructions directly. The decrease in register pressure covered un-

der acceleration above will also contribute a reduction in code-size where spill code is removed.

22

Engineering time is not really a function of any point in the design space, but is still a rel-

evant design concern for any practical application of ISE. The use of ISE in a purely manual

design methodology is fairly impractical for all but the simplest efforts, due to the effort in-

volved. Both time-to-market deadlines and human resource limitations will govern the amount

of time that can be spent designing any application of embedded computing. Design automa-

tion is absolutely critical in order to make ISE an industrially viable technique; the production

of extended architecture, microarchitecture, and compiler by automated means is a major goal

of ISE research. Automating as much of the design process as possible frees up human re-

sources for more creative tasks, decreases the time-to-market, and delivers a higher quality

through reducing error from the human element. SoC are becoming more and more complex,

with the human designer being placed higher and higher atop a pyramid of abstractions allow-

ing them to govern the design through high level specifications and constraints. The transition

from manual to automated design echoes similar developments elsewhere in computing and

manufacturing across history, and is a sign of increasing technological maturity.

2.3.4 Amdahl Limit

When considering the impact of a particular ISE technique with respect to the application

code that is being examined, it is useful to have a measure of the maximum possible

acceleration possible. Amdahl’s law provides an effective tool using which we can address

this problem directly: By subtracting the runtime of coverable nodes from the total runtime

and considering the original runtime divided by the reduced runtime. This ratio is then the

acceleration that would be obtained if all the area coverable by ISE were reduced to zero

latency; effectively infinite acceleration for the hardware element. Whilst this is definitely an

idealistic performance measure, it does represent an asymptote which is not possible to

surpass without addressing the problem of making more of the application coverable by the

ISE methodology in question.

Sall: Number of software cycles consituting the entire DFG. Scov: Number of software cycles

constituting DFG vertices coverable by ISE. coverable(V): Sub-set of all dfg vertices (nodes)

in V coverable by ISE. V : Vertices of DFG. Accellimit : Amdahl limit for ISE acceleration for

the given DFG represented by V. Sall = ∑v∈V λsw(n)

Scov = ∑v∈coverable(V) λsw(v)

Accellimit = Sall/(Sall−Scov)

2.3.5 Micro-architecture

When considering extension logic rather than a full-custom solution, there must be an interface

between the extension logic and the baseline logic. In this case we consider only the extension

of a RISC pipeline, which can be achieved in multiple ways:

23

• Coprocessor; extension logic is implemented as a coprocessor with a separate register

file and control flow. A coprocessor is suited to extensions covering large contiguous

blocks of code, such as whole functions. Coarsest granularity of extension and highest

overhead in accessing extensions. This might not be considered as ISE so much as just

“extension”, but coprocessor operations are often referenced by special instructions on

the master core.

• Loose coupling; extension logic is implemented in a block of logic lacking control-flow

via memory mapped I/O control and DMA. Suited to extensions covering large areas of

memory with similar or identical data-flow operations. Medium granularity of extension

and medium overhead in accessing extensions. Extensions may be accessed via ISE or

reading and writing to memory-mapped extension logic.

• Tight coupling; extension logic is integrated directly into the pipeline of the host core,

via the register file and extensible sections of the decode stage in the pipeline. Finest

granularity of extension and lowest overhead in accessing extensions. Extensions are

always ISE in this context, operated using special instructions added to the baseline ISA.

In this research, we only consider the third type of integration: extension logic tightly coupled

with the baseline core’s pipeline. Keeping the logic inside the host core allows smaller sections

of code to be usefully executed in extension logic due to the lack of overhead in accessing the

extension logic. The following descriptions cover the kinds of extension logic which may be

used in such a system with tightly coupled extensions. These can also be used with the coarser-

grained interfaces, but are particularly suited to pipeline integration due to their lack of control

flow and relative simplicity compared to higher-function extension.

Pure Combinational ISE

Pure combinational implementation implies that there is no clocking of the internal logic of

the ISE, with this instead being governed external to the extension logic with the baseline core

asserting the values on the inputs of the ISE, waiting a number of cycles, then registering the

output for write-back to the register file. The ISE itself is just a collection of combinational

functional units connected by wires in an isomorphic fashion to the DFG it is intended to

implement. Resource sharing may be achieved by the insertion of multiplexers on the wires

between functional units, to change the shape of the graph being implemented by routing data

between functional units on a per-opcode basis.

Algorithms to automatically derive fine-grain ISEs from application code have used the

single-ISE pure combinational implementation as a model for estimating the speedup obtained

from a given candidate ISE. This estimation faces some error in the face of both wire delays

and multiplexing delays due to routing and resource sharing, but this is generally considered to

be minimal when compared to the dominant latency of the functional units themselves.

24

Purely combinational ISEs are the simplest of all ISE implementations, drawing virtually

no static power as registers are not employed in their implementation. The lack of registers

in purely combinational ISE does cause limitations with regards to their potential throughput,

as the data initiation interval (DII) of such an ISE is equal to the number of cycles (or integer

ceiling thereof where this is non-integer) that the ISE takes; generally the integer ceiling of the

critical path latency. Whilst the area is not bloated with the addition of registers, the lack of

such can lead to an implementation which does not achieve an efficacious trade-off between

the acceleration afforded and the cost (in area, power, and energy) of implementing the ISE.

More sophisticated approaches can yield better results, as is now discussed.

Pipelined ISE

The addition of pipeline registers to combinational ISEs allows for designs with issue latencies

lower than the critical path of the entire ISE. This can be especially useful:

• When the ISE is to be executed in the body of a potentially parallel loop, the DII of the

loop body may be decreased by up to a factor of the number of pipeline stages.

• When two or more data-independent ISEs are to be executed with an issue latency that

is less than the critical path latency of the first ISE, their execution may be overlapped in

the same hardware module. For this reason, resource sharing should often be combined

with pipelining, so that structural hazards are not introduced.

The addition of registers will add to the power requirements of the circuit. This is a space

which can be explored and traded off as required by a designer.

Configurable Compute Accelerators

Configurable compute accelerators [12] are a particular realisation of the idea of coarse-grain

reconfigurability, specifically targeted at obtaining the greatest speedup for the minimum die

area and with the maximum effective flexibility. CCA are effectively a microarchitecture for

implementing reconfigurable ISE. The CCA itself is much like the microarchitecture one would

expect to implement a single ISE, except it may have any of its potential combinations of

subgraph and node operation induced as an ISE. This function of dynamic reconfiguration is

achieved through the use of a LUT connected to the CCA, which for a given CCA opcode

and arguments looks up the correct configuration of the CCA and induces it. The majority

of the existing work [12, 13, 14, 15, 16] on CCA has concentrated on the use of CCA with

transparent dynamic translation hardware. The authors of the work state that this is because

it is possible to implement hardware to recognise sequences of instructions which may be

dynamically translated into a configuration line in the CCA LUT, and used from that point

onwards to accelerate the application without translation overhead.

25

Fig. 2.2: Domain-specific CCA derived for Audio-based Benchmarks, in [13].

Work has been done to establish an initial foray into the DSE of CCA configurations [15],

but this was neither guided by heuristics nor automated. Exploration was also only performed

over a small number of applications, application domains, and DSE parameters. It was deter-

mined that even for this small manual exploration the effort expended was well worth the re-

sults: CCA performance for application specific accelerators was far higher than CCA designed

with pure generality in mind. Domain specific acceleration with CCA is also well motivated

by this study, as it is shown that for a relatively small overhead over the application-specific

CCA, all applications in a benchmark domain may be accelerated to similar levels by a single

domain-specific CCA. See figure 2.2 for an example of a domain specific CCA, as produced

for the audio domain in [13].

Work to determine the usefulness of exploring the additional axis of operator bit-width

[16] has shown the CCA to be particularly efficient in the case where there is low-bit-width

arithmetic and exploitable OLP. Low-width operators may be combined through relevant carry

propagation into larger widths to deal with both thin and wide data in the same reconfigurable

unit. This approach is adopted by the previously mentioned Stretch S6000 [17], the ISEF of

which is effectively a massively over-specified non-transparent CCA.

ISE Memories

As mentioned earlier one of the desirable properties of ISE is the reduction of register pressure

that can be obtained through encompassing large numbers of operations that would otherwise

be passed by register with single ISEs. There are two further instances that through using

single-cycle memories with ISE, pressure on the register file can be reduced:

• Where values are to be passed between ISEs (and are not otherwise required to be used

by baseline RISC operations), then it is possible to use a local scratch-pad in the ISE

microarchitecture to store the values rather than passing them via the register file. This

26

reduces both the amount of pressure on the main register file and the number of register

file I/O ports required to implement a given ISE.

• Where the same value is used by successive ISEs (such as a constant), it may be stored

after it is transferred to the ISE the first time such that successive instances do not require

it to be transferred again.

In the face of an interrupt driven environment such as might be expected in a modern embedded

OS like Linux, consideration must be given to what happens to the internal state of ISE when

a context switch or interrupt is encountered by the extended processor. This is because the

interrupt may change the state of the ISE memory, causing incorrect results to be produced.

For this reason interrupt code should either be prevented from modifying the state of ISEs, or

the state should be included in process control blocks and maintained for any context switch.

ISE memories are not explored here, in favour of greater depth of analysis in other areas.

2.3.6 ISE Example
By way of an example, consider the following C code:

#define SIZE 4

int a[SIZE][SIZE] = { {1,2,3,4}, {5,6,7,8}, {9,10,11,12}, {13,14,15,16} };

int b[SIZE][SIZE] = { {16,15,14,13}, {12,11,10,9}, {8,7,6,5}, {4,3,2,1} };

int c[SIZE][SIZE];

matmul(a,b,c)

int a[SIZE][SIZE], b[SIZE][SIZE], c[SIZE][SIZE];

{

int i,j;

for(i = 0; i<SIZE; i++)

{

for(j = 0; j < SIZE; j++)

{

c[i][j] =

(a[i][0] * b[0][j]) +

(a[i][1] * b[1][j]) +

(a[i][2] * b[2][j]) +

(a[i][3] * b[3][j]);

}

}

}

int main(int argc, char **argv)

{

matmul(a,b,c);

printf("c: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d\n",

c[0][0], c[0][1], c[0][2], c[0][3], c[1][0], c[1][1], c[1][2], c[1][3],

c[2][0], c[2][1], c[2][2], c[2][3], c[3][0], c[3][1], c[3][2], c[3][3]

);

return 0;

}

After converting the application to a DFG, the main kernel of this small program is the basic

block at the innermost part of the loop (executed 16 times). Figure 2.3 illustrates the DFG form

of this inner loop basic block.

27

Fig. 2.3: DFG of Matrix Multiplication Inner Loop Body, with one possible (8-in, 1-out) ISE
candidate hi-lighted. The ISE would take 15 cycles in software, or 6 cycles in hardware.
Arithmetic transformation of the ISE could reduce this to 5 cycles; GCC has not balanced
the adds into a binary tree.

Even with this simple example, we can make observations on the various facets of ISE

design. With hardware and software latencies for multiply and add considered as three and

one cycle respectively, the major contribution of the ISE will be acceleration through operator

level parallelism. There is no room in the latencies for serial overhead to accumulate between

the two operators in the critical path. The critical path latency for this instruction is six cycles,

running between the leftmost multiply and across the bottom row of additions. This could

be reduced to five if some arithmetic transformation had occurred, since the three additions

are in serial. The software execution speed of this ISE is fifteen cycles, meaning that for the

area covered the ISE is roughly a factor of three faster than its original software representation.

Note that the same reduction in cycles would have been achieved without including the addition

operations in their current state, due to their serial arrangement. This is therefore also a simple

counterexample to the assumption that “bigger is better”, made in some recent ISE work [18].

The smaller 4-multiply ISE would use less area, and less power, whilst providing the same

acceleration as the maximal clique [18] represented by the ISE in figure 2.3. Assuming the

minimal 4-multiply ISE, the DFG is reduced from 33 to 24 cycles; a speedup of 1.375x.

The Amdahl limit for this example is the sum of all the software latencies (33 cycles),

divided by the same sum minus the number of cycles coverable by ISE (16 cycles); giving a

factor of 2.06x. This means that for the given DFG, and allowing only arithmetic nodes to be

covered by ISE, the acceleration can never rise above 2.06x. Software transformations can help

to increase this factor, and these are discussed later. It is difficult to discuss the area, power, and

energy concerns of this example in any detail due to not yet introducing a microarchitecture.

This will be covered in chapter 4. The identification of an ISE in such a simple example is a

relatively trivial task for both manual and automated means. The unconstrained design space

of this example with only 9 nodes to cover is still 29 or 512 design points, although not all

of these points will satisfy constraints. This should serve as an illustration of how complex

28

the identification problem becomes when there are 100 or more coverable nodes, as in many

application kernels.

2.4 Automated Synthesis

The task of taking a high-level specification of a system and lowering it to a design which

may be fabricated has historically been the remit of engineers and their tools. As time goes

on, the ability of the tools to perform work which would otherwise have been performed by

the engineers has progressed further and further, to the point now where few of the low-level

details are actually controlled directly by the engineers. Instead of lowering the design directly,

the high level specification is taken by engineers and converted to a machine-readable format

(such as Verilog). Automated synthesis tools then take the machine-readable design and lower

it depending on the constraints and libraries provided by the engineers. Several different do-

mains of automated synthesis are available to engineers when producing an ASIP, and these

are described during this section.

2.4.1 Automated Instruction Set Extension

The automation of ISE exploration has been actively studied in recent years, leading to a num-

ber of algorithms e.g. [19, 7, 20, 21] which derive the partitioning of hardware and software

under microarchitectural constraints. Work is still being performed in defining the full space of

exploration even in purely arithmetic ISA design [22]. Work to include better models in tools

has allowed for better decisions about the performance and feasibility of extensions [23], but

further work is required.

Most current approaches to automated ISE incorporate two phases:

1. Identification; whereby formalisations of basic blocks are analysed to produce ISEs in

the form of DFG. Current algorithms use a combination of register file ports, bandwidth

to other on-chip-memories, number and size of operations to constrain this problem,

effectively a search technique. In order to guide the search, an abstraction of the speed

of such operators in hardware is used to deduce the delay of the operation in software

(the sum of all its nodes) and in hardware (the sum of the nodes in the critical path).

2. Selection; whereby the identified ISEs of the previous phase are organised in terms of

their performance, via Pareto-optimal ordering [24], greedy selection of the as many best

performing templates as will fit in the coding space, or a knapsack formulation based on

cost-benefit.

Algorithms differ in the result quality and runtime generally by trading off greed for speed.

Some approaches like the Tensilica XPRES [25] compiler will identify a massive number of

non-orthogonal ISEs in order to provide a large degree of freedom in the selection. On the other

29

hand, algorithms like the Atasu [20] and ISEGEN [7] formulations focus on modelling some

aspect of the microarchitecture (most often delay), and then greedily identify the largest and

best performing template for each basic block. This process is then repeated for the remainder

of the basic block. This is an example of the trade-off between greed and speed, as it provides

space reduction in both the identification and selection phases. In addition, selection phases

have the benefit of orthogonal templates; the performance may simply be summed over the set

selected.

This approach is somewhat flawed in the face of wire-delays, and in larger templates the

algorithms will become less and less accurate at predicting the actual delay of an ISE. This

flaw is as a product of the automated ISE algorithms currently blindly targeting ASIC imple-

mentation of the resulting extensions, a process which is wildly affected by a number of design

concerns outwith the control or speculation of current automated ISE algorithms. The mapping

of ISEs to an existing CFA would permit far more accurate analysis of the delays inherent in

mapping a particular extension. This is because the hardware is already realised and may be

modelled in terms of its actual, empirically determined performance.

The exploration approach of using a range of tools, iteratively operating on a canonical

system-level ADL is described as “Compiler-in-Loop Design-Space Exploration” [26]. It was

originally motivated [27] through the discovery that iterative and methodical exploration of

ASIP design is beneficial in decreasing time-to-market. CoSy [28] and LISATek [29] tools

feature in many such frameworks; figure 2.4 illustrates such a combination.

Fig. 2.4: The Compiler-in-loop methodology for ASIP design space exploration.

General formulation as DFG-subgraph-inducement or DFG Partitioning algorithm. Dis-

cussion of semi-greedy approach.

30

2.4.2 ISEGEN Algorithm

The ISEGEN AISE Algorithm, first presented by Biswas et al.in [7, 30], is an adaptation of

the Kernhighan-Lin circuit partitioning algorithm. The goal of the algorithm is to partition a

given DFG into hardware and software cuts. The algorithm only addresses the identification

phase of the process, assuming selection will be performed after ISEGEN is run over the entire

application. ISEGEN includes a compound heuristic which includes the standard ISE merit

model (see section 2.3.1), the expected constraints (convexity, I/O), and additional metrics to

represent what the authors describe as the “designer’s objective”:

• Large Cut; solutions are weighted towards larger cuts, with the algorithm preferring

growth into areas where growth potential is higher. This corresponds to growth in a

vertical direction.

• Independent Cuts; solutions are weighted towards cuts containing multiple disconnected

components. This corresponds to growth in a horizontal direction.

This compound heuristic is weighted by a vector to select a particular linear multiple for each

component. The heuristic is used to provide a merit to every node which could be toggled in

a given iteration of the algorithm. The algorithm allows intermediate iterations in search to

violate constraints, in the hope that the algorithm will eventually settle upon a valid solution.

ISEGEN is particularly suitable for extension and use in the work of this thesis, because it is

flexible in the heuristics used to both explore the design space and ultimately determine the

ISEs for selection. Heuristics may be extended arbitrarily with procedural code, but we must

be careful to keep the runtime of the heuristic low as it sits at the very core of the ISEGEN

kernel.

Put simply, the algorithm is comprised of three nested loops. The outermost loop sets the

working cut to the previous best cut (or the original DFG), performs the middle loop, and then

checks to see if the result has improved. If it has not, the loop is ended, else it continues

up to a pre-defined number of iterations to attempt to improve the result further. The middle

loop executes so long as there are unmarked nodes. A marked node is a node which has been

toggled from software (standard instruction set) to hardware (part of an ISE), or vice-versa,

for the current execution of the middle loop. Each iteration of the middle loop first calls the

innermost loop to determine the merit of toggling every unmarked node. The node with the

highest toggling merit is toggled and marked. The best cut is updated to equal the current cut if

the latter meets design constraints and is of improved or equal merit to the former. The process

continues until the outermost loop detects no improvement in the best cut.

31

Algorithm Definition

The following pseudo-code is transformed from the description in [7] in order to make it both

easier to understand and to match the implementation undertaken for this work. The original

description has ambiguities which make the algorithm somewhat recondite on first inspection,

and the implementation made for this work has a small difference in order to improve the

efficacy of the search.

The algorithm is comprised of two merit functions (M(C) and Mtoggle(n,C)), two sub-

functions (SetInitialConditions() and CalcImpactO f Toggle(n,C)), and a main function

(ISEGEN(C,DFG)).

ISEGEN is comprised of three loops nested within one-another. The very innermost loop

iterates through all unmarked nodes (a node being marked once it is selected as the best node

from said loop) and determines the toggle merit for each using the compound heuristic dis-

cussed earlier. The node with the highest toggle merit (Mtoggle(n,C)) with respect to working C

is toggled from hardware to software or vice-versa depending on its original state. The next

loop out repeats this process of selecting and marking nodes until all nodes are marked. Nodes

are toggled in the working cut and the best cut obtained in the current outer-loop iteration is

updated, if the working cut is valid per the constraints specified. The very outermost loop re-

peats the mark-and-toggle approach up to five times, unmarking the nodes and storing the best

cut obtained from the inner loops when a better cut is observed as per the cut merit function

(M(C)). Three cuts are therefore generally active at any time in the algorithm: The innermost

loop uses working C which may violate constraints but performs the vast majority of the search

guided by Mtoggle(n,C), the middle loop uses best C to store the best valid cut obtained from

the innermost loop, and the outermost loop uses last best C to store the best valid cut obtained.

The algorithm can be seen as a process of promotion, with cuts flowing from the innermost loop

to the outermost if they first meet constraints and second are the best cut observed. Allowing

working C to violate constraints allows the algorithm to escape local maxima, being drawn

away by the heuristics of Mtoggle(n,C) to explore further areas than would be approached if the

entire search was guided purely by M(C).

The merit function governing the promotion of cuts between iteration levels is the cut merit

function, M(C). It is defined as follows:

λ sw(C) = Sum of all software latencies of nodes ∈C

λ hw(C) = Sum of all hardware latencies of nodes ∈ critical path of C

M(C) = λsw(C)−λhw(C)

The weighted compound heuristic Mtoggle(n,C) is used to govern the order of selection

of nodes for toggling from hardware to software or vice-versa. It is comprised of five sub-

heuristics, each contributing a merit which when combined with the weightings gives a single

scalar weighting to each unmarked node in the DFG under analysis. The toggle heuristic is

32

comprised as follows:

savedcycles(C) =

{
M(C) if C is convex

−∞ if C is not convex

io(C) = (C.Iise−Nin)+(C.Oise−Nout)

convexity(n,C) =

{
+num neighbours in cut(n,C) if n /∈C

−num neighbours in cut(n,C) if n ∈C

db down(n) = minimum distance down of n from barrier nodes.

db up(n) = minimum distance up of n from barrier nodes.

largecut(n,C) =

{
+|db up(n)−db down(n)| if n /∈C

−|db up(n)−db down(n)| if n ∈C

CS(n,DFG) =set of connected subgraphs in DFG excluding that containing n

f ragcut(n,C) =

{
maxcs∈CS(n,DFG)critical path latency(cs) if n ∈C

0 if n /∈C

Mtoggle(n,C) = (α1 · savedcycles(C))− (α2 · io(C))

+(α3 · convexity(n,C))+(α4 · largecut(n,C))+(α5 · f ragcut(n,C))

The original algorithm does not have the additional merit check at line 13, which led to

that version requiring more iterations in order to settle upon a solution. Testing of this addi-

tional check confirms that in all cases this slightly modified algorithm performs faster than the

original. The original algorithm description is ambiguous with regards to the toggling of nodes

versus the addition and removal of nodes from best C and working C. The cut working C

does not appear in the original algorithm description, instead being implied through ambigu-

ous references to “Toggling” a node outwith any cut. The explicit exit from the main loop

at line 20 is also not covered in the original description, but is implied through unmarking

the nodes only if the conditional statement at line 16 is true. The algorithm would originally

have spun through the outermost loop without effect if said conditional ever evaluated to false.

NUM ITERATIONS for the original algorithm was stated in [7] to be five, but generally the

algorithm exits before this.

The ISEGEN algorithm is quite a departure from the original Kernighan-Lin min-cut algo-

rithm; the original KL algorithm toggled vertex pairs, with a graph which is initially divided

into two same-sized partitions. The result of the original KL algorithm is two partitions of equal

33

SetInitialConditions(C,DFG)
00: C.Oise⇐ 0
01: C.Iise⇐ 0
02: foreach(node n ∈ DFG)
03: n.Itoggle⇐ Inputs(n)
04: n.Otoggle⇐ Out puts(n)
05: endfor

CalcImpactO f Toggle(n,C)
00: C.Oise⇐C.Oise +n.Otoggle
01: C.Iise⇐C.Iise +n.Itoggle
02: n.Otoggle⇐ n.Otoggle
03: n.Itoggle⇐ n.Itoggle
04: foreach(node m ∈ Parents(n)∪Siblings(n)∪Children(n))
05: Update m.Otoggle and m.Itoggle as per rules of [7].
06: endfor
07: Update data-structures for O(1) evaluation of M(C) and convexity(n,C)

toggle(n,C)
00: if(n ∈C)
01: remove n from C
02: else
03: add n to C
04: endif

mark(n)
00: n.marked⇐ true

unmark all(DFG)
00: foreach(unmarked node n ∈ DFG)
01: n.marked⇐ f alse
02: endfor

34

Algorithm 1 The ISEGEN algorithm main function.
ISEGEN(C,DFG)
00: SetInitialConditions()
01: last best C⇐C
02: for(i=0, i < NUM ITERATIONS, i++)
03: working C⇐ last best C
04: best C⇐ last best C
05: while(∃ unmarked nodes ∈ DFG)
06: foreach(unmarked node n ∈ DFG)
07: Calculate Mtoggle(n,working C)
08: endfor
09: best node⇐ Node with Maximum Mtoggle
10: toggle(best node,working C)
11: mark(best node)
12: CalcImpactO f Toggle(best node,working C)
13: if(working C satisfies constraints AND M(working C) >= M(best C))
14: best C⇐ working C
15: endif
16: endwhile
17: if(M(best C) > M(last best C))
18: last best C⇐ best C
19: unmark all(DFG)
20: else
21: i⇐ NUM ITERATIONS
22: endif
23: endfor
24: C⇐ last best C

35

size with a minimised edge weight connecting them. ISEGEN search (and the derivative used

here) does not result in partitions of equal size. The major similarity between the K-L min-cut

algorithm and ISEGEN is the iterative improvement of the solution based on heuristics, starting

from a trivially determined base case.

Computational Complexity

The work published on ISEGEN claims that the algorithm has a worst case complexity of

O(|V |.|E|), the reasoning being as follows:

1. The Merit function Mtoggle(n,C) may be calculated in O(p) time, where p is the max-

imum number of neighbours (parents, children, and siblings) of a node. All of the

Mtoggle(n,C) components may be calculated in constant time with exception of the M(C)

and convexity(n,C), which take O(p) time.

2. The loop at lines 6:8 of ISEGEN(...) calculates Mtoggle(n,C) for up to all the nodes in the

graph, e.g. |V |. The complexity of this loop is therefore O(p.|V |). Since O(p) ∈O(|V |),
O(p.|V |) ∈ O(|V |2) ∈ O(|E|) (note this is the original reasoning; see later comments).

3. The complexity of CalcImpactO f Toggle(n,C) called at line 12 of ISEGEN(...) is O(p+

|E|)∈O(|E|) due to the updating of data structures at line 7 of CalcImpactO f Toggle(n,C).

4. The loop at line 5 of ISEGEN(...) is iterated a maximum of |V | times, with the body

being O(|E|) complexity; therefore this loop has complexity of O(|V |.|E|).

5. The outermost loop has a constant-bounded number of iterations (at most 5), hence not

affecting the overall asymptotic worst case runtime, therefore the algorithm has a worst

case runtime ∈ O(|V |.|E|).

Whilst the logic of this reduction appears sound, the claim of O(|V |2) ∈ O(|E|) is not valid

in this context, and the reasoning behind this reduction is not given in any of the published

literature. Due to the acyclic topology of DFG, the number of edges in a graph is not an

asymptotic upper bound for the number of vertices squared. The assumption that O(|V |2) ∈
O(|E|) is for a strongly connected graph, which acyclic graphs invariably are not due to the

very property of being acyclic. Therefore, the runtime complexity of ISEGEN is considered

to be O(|V |3) throughout this thesis; a runtime complexity which is still polynomial and hence

not subject to the massive intractability of the underlying space which is ∈ O(2n).

2.4.3 HDL Synthesis and Analysis

The synthesis from HDL (or from a higher level as appropriate) is a matter of taking the HDL

description in a form which may be mapped to hardware, and lowering it until it is in a form

which may be used to either fabricate the design described or program it into a reconfigurable

36

fabric such as an FPGA. HDLs normally have a subset of their semantics that for a particular

synthesis technology is deemed to be ”synthesisable”. Care must be taken by engineers at-

tempting to write a synthesisable design that they use only the language constructs which may

be lowered to structural representations.

There are a wide array of tools available to help in this process, generally working from

either the Verilog [31] or VHDL [32] languages at the top level and producing either an FPGA

bitstream or a GDS-II schematic at the bottom level of the flow. Tools from Synopsys and

Cadence usually feature in such a flow targeted at producing standard-cell implementations of

designs, and the work of this thesis follows this trend by making use of the DesignCompiler

and associated DesignWare libraries offered by Synopsys.

Most ASIC designs undergo a degree of iteration with regards to the synthesis flow. In

order to facilitate feedback in the design process, various analysis can be used to create pre-

fabrication reports on aspects of the design being synthesised. DesignCompiler produces re-

ports on timing, area, clock gating, and power. The latter is achieved through combination

of the PowerCompiler component of DesignCompiler, and switching information obtained

through simulation. ModelSim from Mentor Graphics provides HDL simulation functional-

ity throughout this thesis. When performing evaluation of HDL throughout this thesis where

timing, area, power, or energy is referenced it has invariably been derived through synthesis

using the DesignCompiler and a commercial 130nm standard cell library implementation.

2.5 Resource Sharing

To avoid bloating the die area with large numbers of extension instructions, it is important to

identify and exploit commonality between instructions and, where possible, to share hardware

resources when this represents a good trade-off between die area and execution time. Brisk et

al.[33] have explored an approach based on finding the longest common sub-string, in order

to determine which parts of a pipelined data path may be shared. This work was extended by

Zuluaga et al.[34] in order to introduce parameters to control the process of merging data paths

for resource sharing. The latter work has a focus more on parameter exploration, allowing for

integration into a design space exploratory framework. Other approaches to resource sharing

include [35], which utilises the graph-theoretical concept of cliques to accelerate the resource-

sharing process. All (re-)configurable microarchitectures are inherently resource-sharing, as

the same functional unit may be mapped to a number of distinct ISEs over time. The only

difference between a resource-shared ISE microarchitecture which is not dynamically con-

figurable and a resource-shared ISE microarchitecture which is configurable, is the means of

changing the control signals governing the multiplexor selection and enable lines. The various

costs involved (latency, area, and power) will generally govern whether a resource-shared ISE

microarchitecture will be made configurable.

37

2.6 Compiler Transformations

Compiler transformations attempt to find a better representation of the semantics which have

been input to the compiler as the code under compilation. These can occur at all levels of

abstraction: source code, intermediate representation (SSA, RTL, etc), or Assembly Language.

Different transformations apply at different levels, and some can be applied at multiple levels

with varying efficacy. The combination and order of transformations is one that has undergone

considerable research since compilers were invented, and continues to this day.

Early efforts to combine compiler transformations and ISE have been targeted at transform-

ing CDFG towards a more efficient arithmetic structure [36]. This operates post automated ISE

(AISE), so does not directly contribute to the design space search but improves upon the result.

In [37] it is shown that an exploration of if-conversion and loop-unrolling source-to-source

transformations is successful in enabling better performing AISE. This work utilises control-

flow transformations to move larger regions of the target application into the AISE algorithm at-

once. The work in [37] demonstrates that new search methods and heuristics can be developed

to control the application of transformations, with respect to the new set of goals inherent in ISE

as compared to code generation. Transformations once targeted at the back-end would attempt

to limit increasing basic block size due to register pressure. Now in ISE the drive is towards

the largest possible basic block size for analysis. Note that the use of these transformations to

increase the block size will also increase the run-time of the ISE algorithm, which for ISEGEN

is subject to runtime ∈O(|V |3). These must therefore be applied judiciously, or blocks may be

made intractable to identification.

Source to source transformations have the useful property of being highly portable and

widely applicable. Transformations from C to C have been used in a variety of contexts, op-

timising applications at the highest level so that they fit better in a variety of performance

criteria. In [38] source to source transformations are used to optimise the performance of I/O

operations. In [39] and [40] the focus of the optimisations is energy efficiency, and minimising

redundant or wasteful operations. Formal verification is another attempted application of such

transformations [41], whereby a program is iteratively transformed until it matches a speci-

fication. Of considerable relevance to this thesis, are cases where transformations have been

used to explore the design space of multi-core optimisation for compute-intensive embedded

applications. Examples include the work done locally in [42] or elsewhere in [43, 44].

There are tools and frameworks available for the construction and exploration of source to

source transformations. Notably ROSE [45], Transformers [46], and COLOTool [47]. These

provide the basic structures and transformations in order to allow a user to integrate them for

the optimisation of C and C++ applications.

A empirical study of how combining adaptive compilation and machine learning is effective

in exploring the design space of source to source transformations, is covered in both [47] and

[48].

38

Transformations are essential to explore the data and process level parallelism inherent in

any application. This section has demonstrated that compiler transformations should form an

integral part of any strong framework to automatically extend an ISA.

2.7 Summary

This chapter has covered a variety of work necessary to understand and motivate the research

performed in this thesis. The broad spectrum of instruction set architectures has been covered

in order to demonstrate the context in which embedded processors exist, and their main dif-

ferences from general purpose processors. Three somewhat overlapping classes of embedded

processor have been defined, with the main contribution of this thesis falling into the domains

of extensible and configurable cores. The main properties of these domains have been out-

lined, along with their potential for application-specific hardware/software co-design. The

next chapter covers more specific details of embedded processors touched upon in this chapter.

The methodology by which processor designs may be defined through iterative exploration is

outlined: Design Space Exploration, which in this thesis is concerned with producing a hard-

ware/software co-design to fulfil the functional and performance requirements of a particular

application.

Instruction Set Extension (ISE) is introduced, which considers a hardware/software co-

design as two partitions and facilitates the movement of function between the software and

hardware partitions in order to benefit performance in a number of axes. The major constraints

on ISE have been presented, which are either related to costs due to the extensions (area, power,

energy) or constraints on the original core (register file ports, encoding space, scheduling lim-

itations). An abstract definition as used in algorithmic exploration was defined, allowing the

performance of ISE to be calculated based upon a simple linear equation and hence provide a

basis for determining the merit of an ISE. The need to explore design spaces other than just

ISE has been detailed, with particular reference to software emulation as an example source of

misleading performance statistics. The need to address processor customisation as a holistic

problem was stressed. Different areas of concern have now been identified (acceleration, area,

power, energy, engineering time) and properties of ISE which are relevant to these were de-

tailed. The Amdahl limit of ISE which is a theoretical maximum obtainable speedup through

ISE was defined based upon the abstract model; this gives an asymptote of acceleration perfor-

mance which cannot be surpassed (or realistically even reached) with just ISE.

Microarchitectural interfacing between host processors and extensions were covered and

divided into three groups defined by the degree of communication overhead brought about by

their distance from the host core’s register file. Different microarchitectural implementations of

ISE were covered; combinational, pipelined, and reconfigurable structures and their properties

have been discussed. The latter may of course be combined with either of the former. The use

39

of scratch-pad memory in ISEs was touched upon, but this is not generally explored further in

this thesis. A simple example of ISE identification based upon the abstract model and a matrix

multiplication benchmark has been detailed to better illustrate the mechanics and specifics of

the problem.

The techniques of automated synthesis used to automatically produce a hardware design

based upon application and direct specifications has been covered. A major relevant area of au-

tomated synthesis now covered in detail is automated ISE, its separation into identification and

selection phases, and the ISEGEN algorithm to perform ISE identification. The further pro-

cessing of HDL descriptions of hardware into actual fabrication definitions has been described

also. Resource sharing of hardware components has been outlined as a useful technique to

reduce the cost of fabrication without excessively impacting the performance of the design.

Finally, exploration of software transformation has been introduced as being important to both

the quality of the executable code and to automated synthesis where application code is used,

as in AISE.

This thesis now moves on to a more detailed look at some of the work related to the efforts

undertaken herein.

40

3 RELATED WORK

“The best way to get a good idea is to get a lot of ideas.”

– Linus Pauling

A number of approaches similar to that explored in this thesis have been explored by other

people in the fields of DSE, ISE, and ASIP design. This chapter attempts to give an insight into

those similar works which are relevant to the work undertaken herein.

3.1 ASIP Design Space Exploration and Co-Design Frameworks and Languages

DSE was introduced in section 2.2, and covers a great deal of alternative techniques and design

methodologies. The concept of taking design as a space of choices is applicable to a number of

approaches, and has spawned a number of languages and frameworks to allow for such work

to be performed. Means of exploration vary from altering numerical or otherwise enumerable

parameters, to direct modification of high-level structural and behavioural descriptions of a

design. The common feature in all cases is a degree of abstraction between the fine-grain detail

of the underlying ASIP design and the method by which the designer explores alternatives. The

following are languages and tools which can be used to explore the design space of extensible

processors to some degree.

3.1.1 Verilog

Perhaps the most pervasive of the RTL languages which may be used for design-space explo-

ration is the Verilog Hardware Description Language, described in [31]. The Verilog language

provides enough flexibility to be used for simulation, synthesis, and verification of digital cir-

cuits; later extensions to the language have also included support for analog and mixed-signal

applications in the form of Verilog-AMS. The most recent incarnation of pure Verilog is the

2005 revision (IEEE Standard 1364-2005), which largely applies small refinements to the 2001

revision as covered in [31]. Despite the succession of new editions of Verilog, many designers

prefer to use the older editions of the language such as Verilog-95, as the synthesisable subset

is more explicit and hence less ambiguous in its mapping between language and synthesised

structure. For example, the EnCore [10] processor is written entirely in Verilog-95 despite

having been designed and implemented between 2006 and the present. More recently, the

SystemVerilog language has been introduced as the successor to Verilog. SystemVerilog adds

new types, software engineering semantics such as interfaces, and most significantly an object-

oriented programming model. DSE using Verilog can be approached in a number of ways;

utilising preprocessors, language constructs, or manipulation of behavioural descriptions. Di-

41

rectly manipulating structural descriptions is rather too low-level to be considered in design

space exploration, but it certainly plays a major role in producing synthesisable designs and is

often the subject of both preprocessor and parameterised manipulation.

Verilog itself defines a number of preprocessor directives allowing for parameterised dupli-

cations, inclusions, and definitions of any code. These are combined with the ability to perform

calculations through macros at compilation time, providing a rich interface for DSE to be per-

formed on either behavioural (high-level) or structural designs. A variety of alternatives for

the preprocessor are available, and most synthesis tools also incorporate a preprocessor pass in

their compiler. Often the separate preprocessors are used to perform multi-level preprocessing,

wherein parameters and definitions are propagated to the source before it is processed by the

synthesis tool. This allows for the design to be pre-processed to a parameterised form still

containing macros and definitions where appropriate, so that it may be understood following

initial parameterisation. In addition, the two-pass approach allows for more complex macros to

be introduced, but can sometimes be rather complex to manipulate accurately which can lead

to errors.

Verilog provides parameters which allow for a module to be modified based upon parame-

ters passed to it on instantiation, which are effectively defined as constants within that module.

This can be used in a way very similar to the preprocessor directives already described, with

the major difference being that the parameters are a part of the language semantics and not the

preprocessor. Default parameters can be provided and then overridden as required for reuse of

a particular design, or DSE in general. The choice of using preprocessor directives or parame-

ters is one subject to ongoing debate, but the general consensus is that preprocessor directives

are better suited to system-wide constant definitions, whereas parameters are better suited to

constant definitions local to a module [49].

ISE design exploration and implementation can be performed in Verilog, and the tools

covered later in this thesis all use Verilog as a target language when constructing synthesisable

models of the ISEs produced.

3.1.2 VHDL

The major competitor to Verilog is VHDL (Very high-speed integrated circuit Hardware De-

scription Language), and the two languages share a lot of similar semantics and functionality.

VHDL used to cover a higher-level set of behavioural abstractions than Verilog, but this has

become less true as both languages have been further developed. VHDL includes both be-

havioural and structural semantics for describing hardware, a variety of data types, and modular

engineering features in the same way that Verilog does. VHDL is generally rather more ver-

bose than Verilog since its original purpose was in specification, whereas Verilog was originally

intended for simulation. Like Verilog, VHDL has undergone a series of revisions culminating

in the most recent IEEE Standard 1076-2008 [32]. The basic design units in VHDL are the

42

entity and architecture, which together are equivalent to the Verilog module in the sense that

they declare ports and contain definitions of how that component should behave and how it is

structured.

With regards to DSE, VHDL can be both preprocessed and parameterised in a similar way

to how Verilog can. The VHDL preprocessor is not generally included in the compilation of

the VHDL itself, and must be run prior to compilation. A number of VHDL preprocessors ex-

ist, and many have equivalent features to those of the Verilog preprocessor directives allowing

a similar approach to parameterised DSE. Parameterisable components in VHDL can also be

created using generics, which can be used in the same way that parameters can in Verilog with

regards to reusable designs and design space exploration. Differentiation is made in VHDL

between constants and values used to parameterise modules, whereas both are parameters in

Verilog. The choice of whether to use Verilog or VHDL in DSE or indeed ASIC design in gen-

eral is largely down to the existing IP and tools available to the engineer, and which language

they have the most experience in.

3.1.3 SystemC

At a higher level than the HDL languages discussed so far, SystemC is an extension of C++

via a library of classes and macros, defining an event-driven simulation kernel through which

hardware can be evaluated. Verilog and VHDL are suited to describing the lower layers of

design abstraction all the way down to gate-level models. SystemC is better suited to system-

level modelling. The most recent standard for SystemC is the IEEE 1666-2005 standard [50];

this represents the culmination of efforts by the Open System C Initiative (OSCI) who are gen-

erally in charge of the definition of the language. Despite the fact that it is essentially a C++

library, SystemC is often referred to as a language due to the semantics of using the libraries

themselves. There are methods to perform high-level synthesis from SystemC to lower-level

descriptions such as Verilog or VHDL, and these can be mapped further to ASIC (GDS-II) or

FPGA (bitstream) hardware implementations. This is generally not used where performance

is critical, as the degree of control over resulting circuit structure is less than that available in

Verilog or VHDL unless RTL semantics are used. When using RTL semantics, simulation is

typically slower than that of Verilog and VHDL simulators and there is a considerable syntac-

tical overhead. SystemC is well suited to the integration of existing components into a system

level design, and may be combined with Verilog models for this purpose [51], yielding more

accurate timing feedback than if the entire design is defined in SystemC.

For DSE, SystemC can be used as a functional language to perform co-exploration of

system-level organisation and algorithm design. SystemC can also make use of the C pre-

processor or C++ semantics to enable parameterisable DSE. Exploration will only allow for

cycle-accurate performance modelling when functional description is used: Using high-level

synthesis of a functional model to determine timing is not a reliable way of determining per-

43

formance if it is eventually implemented structurally in an RTL fashion. Improvements are

being made to commercial SystemC high-level synthesis, so it may be more suitable for high

performance hardware implementation in the future. Several case studies have been made us-

ing SystemC for DSE. One concludes that it is well suited to exploration of SoC designs using

Transaction Level Modelling (TLM) [52]. TLM provides a high-level approach to modelling

communication between components, allowing for greater simulation speeds than RTL. Sys-

temC is better used for DSE where the design is to be explored at a system level, where the

design space is largely defined by the number and organisation of pre-defined components.

SystemC has been used to facilitate DSE of application-specific ISE for specific applications;

for example in [53] and [54].

3.1.4 SA-C

Single-Assignment C (SA-C) otherwise known as “Sassy” [55] is a language based on C which

attempts to incorporate the features from existing imperative and functional languages which

enable accurate dependency analysis and hence mapping onto parallel hardware. Sassy is in-

tended to exploit both coarse-grain (e.g. loop-level) and fine-grain (e.g. operator-level) par-

allelism. The language has explicitly parallel loop structures (e.g. foreach), and has removed

both pointers and recursion in order to ensure the tractability of a structural mapping. Arrays

are the mainstay of data storage in Sassy, and the language includes semantic constructs for

concise creation and manipulation of arrays, which are promoted to first-class objects. The

support of multi-dimensional arrays enables image and video processing. Array window-

ing semantics are included in order to allow algorithms implemented in Sassy to detail the

memory scope required. Scalar variables are considered as wires, not memory locations; the

Von-Neumann model of computing is deliberately avoided in Sassy in favour of an approach

allowing direct circuit generation.

The circuits derived from Sassy are emitted in VHDL, utilising parameterised libraries.

Handshaking control signals occur both between the components emitted as a Sassy circuit,

and between accelerators and the core they are hosted by. Loose coupling introduces a number

of cycles overhead versus a more tightly coupled solution. In general the further an accelerator

is from the data-path of the host core, the more cycles will be wasted in handshaking and data

transfer. For this reason, large portions of code (and data) must be offloaded to accelerators

outwith the host core in order to actually gain an advantage through their use.

Loops and arrays are closely related in the Sassy language, which is what leads to the ease

of mapping large-scale parallelism from loops to a reconfigurable architecture utilising FPGA

as streaming coprocessors as in [56]. This approach is not one of instruction set extension,

but is very closely related due to the use of DFG as an intermediate abstraction, for both pro-

gram structure and application-specific reconfigurability. It would be trivial to adapt existing

ISE techniques to operate on the DFG representation in the current Sassy compiler, and the

44

process would not be plagued by the problems inherent in performing AISE on C source; e.g.

referential ambiguity. Sassy has been touted [55] as appropriate for a variety of highly par-

allel computing platforms including SMP and vector processors, the latter of which can be

considered a close relative of application-specific ISE. The SA-C compiler is unfortunately not

available for free download and so can not be modified for use with ISE and AISE without a

large degree of effort re-implementing the entire language. DSE using Sassy is largely replaced

with transform space exploration, as the mapping from Sassy source code to FPGA is direct in

the current implementation. Compiler pragma’s may be used to explore a number of different

transformations upon the intermediate representation, including but not limited to strip mining,

unrolling, and fusion [56].

3.1.5 Handel-C

Another extended subset of C intended for hardware generation is the Handel-C [57] language,

originally designed in the Oxford University Computing Laboratory and later developed by

Celoxica, Catalytic, Agility, and more recently Mentor Graphics. The most notable language

features of Handel-C are arbitrary bit-width expressions and variables, plus communication

and parallelism semantics borrowed from the Communicating Sequential Processes (CSP) lan-

guage [58]. The SA-C language is designed with image processing explicitly in mind. Handel-

C has been designed for more general hardware applications. The academic Handel-C imple-

mentation [59] differs from SA-C in that it does not map to a number of coprocessors; instead

it maps the entire application to a single FPGA circuit which is coupled to and controlled by

a transputer [60]. A simple example also exists in [59] of constructing an entire ASIP via

transformations over a Handel-C program, so the language has potential for various hardware-

software co-design applications. Handel-C has been used for image processing, neural net-

works, video processing, database servers, and other applications. Compilation in Handel-C

is performed by a set of transformation rules, borrowed from CSP; a program is converted to

IR form and then sequentially transformed by these rules until it reaches a so-called “normal

form”, representing the final state of the program as it is to be mapped into hardware. Control

flow is converted into state machines wherever possible, and the normal form of the program is

able to be immediately converted into a net-list which may then be compiled to hardware. Vari-

ables become flip-flops and expressions become combinational logic, which is different from

the SA-C approach wherein variables are considered as wires and storage is via array memory

only.

DSE using the Handel-C language is similarly achievable as in SA-C: the language itself

can be used to perform algorithmic exploration, and the transformations which are performed

over the resulting language can be controlled to a degree to allow different reductions of the

same Handel-C program to distinct hardware. A preprocessor and the language itself may also

be used to form a parameterised space by which a design may be evaluated in various axes.

45

The use of Handel-C for constructing an ASIP is covered in [59], but the transformation steps

taken are not automated and require a considerable degree of forethought and intervention in

the design process. The separation of the hardware element and the software element is not

implied by the original program, and is instead governed by the set of transformations used to

convert the original program to a lowered form.

3.1.6 ROCCC

The Riverside Optimizing Compiler for Configurable Computing (ROCCC) [61] is a C or For-

tran to FPGA compilation framework allowing for properly structured loop nests in programs

to be transformed to FPGA circuits. ROCCC takes C as input and emits a combination of

VHDL (to program the FPGA) and C (to execute on a host processor); a combination which

the authors of [61] term a “Configurable System on Chip”. ROCCC is built on top of the ex-

isting SUIF [62] and MachineSUIF compiler frameworks, utilising the existing compiler and

intermediate representation for the hardware analysis. This integration of hardware generation

software with existing compiler infrastructure is a common theme in automated hardware-

software co-design, where the language used was not designed for the purpose (e.g. C and

Fortran). Loop unrolling is employed to expand loop bodies so that when they are converted

to hardware, effective use is made of available loop-level parallelism. Note that this is convert-

ing loop-level parallelism to operator-level (OLP). Area estimation of the hardware resulting

from unrolling is used to govern the number of times the loop is unrolled before conversion

to hardware. Profiling is used to determine which of the loops in an application are “hot”, so

that hardware construction is targeted only at those sections of code which will benefit appli-

cation acceleration. ROCCC is intended for data-flow heavy applications, as the acceleration

provided by its hardware generation only benefits data-intensive loop sections. There is no

provision for general control flow as in Sassy [55] or Handel-C [57]. Loop statements are the

only control-flow construct covered by hardware, and these are converted into the control logic

of the resulting accelerator, governing the buffers and data-path contained therein.

DSE utilising ROCCC can be performed using C preprocessor directives such as definitions

and macros; additionally the source code itself can be manipulated in order to get feedback on

the performance of the application in a hardware-software co-design. SUIF compiler optimisa-

tions are employed in order to improve the suitability of the IR for hardware synthesis, although

this is not made controllable for transformation space exploration purposes. The COLOTool

[47] is an extension of SUIF which enables source-source transformation, which could be com-

bined with the ROCCC to achieve transformation exploration (although this combination is not

covered in the literature). Work has been performed to explore the design space of Discrete

Wavelet Transforms with ROCCC in [63]. Accelerators produced by ROCCC are somewhat

similar in structure to the CFA described later in this thesis, in that they contain a pipelined

data-path to cover the code offloaded to the accelerator.

46

3.1.7 SPARK

The SPARK framework is another C to VHDL tool-chain [64], also building on existing com-

piler technology which was originally developed to extract and map parallelism. In a manner

similar to SA-C [55], the SPARK system does not allow pointers or recursion. These language

features both inhibit the construction of hardware by requiring mapping to a full memory space

and stack. Since the compiler technology behind SPARK was developed by the same people

who developed SPARK itself, they have had a high degree of control over its customisation to

suit the high-level synthesis application it has been ultimately applied to. The SPARK compiler

uses DFG and Hierarchical Task Graphs (HTG) to form its intermediate representation; these

are innately excellent representations for hardware synthesis as they allow for a direct structural

mapping. No translation from SSA form to structural form is required, since the application is

immediately converted to a structural form from the AST. Hardware in the SPARK framework

is generated as an extension to an existing processor, utilising FPGA technology to implement

DFG that are controlled via memory-mapped registers. These DFG are maintained by state

machines which are also generated by the synthesis process, but the host processor is the only

component capable of actual control flow.

The original SPARK compiler technology was heavily oriented towards exploiting paral-

lelism, and contains a swathe of transformations which are intended to improve the quality

of the IR and increase parallelism. CSE, IVA, Folding, Function inlining, Operator Chaining,

Loop transformations, Percolation, and Trailblazing may all be applied in order to explore the

transform space of the source code. As per other C-based high level synthesis frameworks,

preprocessor directives or C semantics may be used to parameterise the source and perform

parametric DSE. Algorithmic exploration may also be performed manually, which will indi-

rectly effect the structure and hence cost/benefit trade-off of the accelerator hardware. The

DFG and HTG forms used in the SPARK IR would be very suitable for AISE analysis, but

the authors of SPARK have not yet investigated this potential. The distance of the accelerators

from the core adds overhead in data-transfer and control, which could be alleviated by moving

the system to a tightly coupled approach such as ISE.

3.1.8 DWARV

The Delft Workbench Automated Reconfigurable VHDL (DWARV) generator [65] is yet an-

other C to VHDL framework, designed with the intention of targeting the MOLEN polymor-

phic processor (described later in section 3.3). The DWARV generator is constructed in a

similar fashion to ROCCC and SPARK, in that it is based upon existing compiler technology

(SUIF2 [66]) and intended to exploit operator-level parallelism. The DWARV tool translates

code to Hierarchical DFG (HDFG), then performs a hardware-software partitioning of the code

and emits pragma-annotated C, denoting the parts of the source that should be implemented

47

as hardware. The HDFG is similar to the combination of HTG and DFG used in SPARK.

The annotated source is then processed by the MOLEN tool-chain to produce the lowered

hardware-software co-design. Limitations on the implementable subset of the source language

(C) include only allowing single-dimension arrays, disallowing all compound types, and not

including floating point operators. Control flow may be implemented within the accelerators

produced, but these are constrained to for (iteration) and if (selection) constructs. DWARV

is generally better suited to arbitrary application domains, whereas other C-VHDL synthesis

frameworks are generally better suited to DSP.

Suitability of DWARV to DSE is identical to that of SPARK or ROCCC: the C preprocessor

and the C language itself may be used to perform a degree of DSE or algorithmic exploration.

Source-level transforms may also be used, whether these be manually applied or evaluated

through an exploration framework such as COLOTool [47].

An empirical comparison of ROCCC, SPARK, and DWARV in the context of FPGA-based

reconfigurable design is covered in [67]. It should be noted that the work performed was done

at Delft, who are the creators of DWARV. The conclusion is that DWARV covers the largest

subset of C, with the fewest restrictions on how this subset may be used. DWARV does not

allow for designer-applied transformations to be used, which limits the DSE potential of the

DWARV framework somewhat. ROCCC is claimed to be the hardest to target code for, as

it covers the most restricted subset of C and the windowing strategy with regards to arrays

supposedly presents further difficulties. It is wise to note that none of these frameworks allow

for seamless translation of arbitrary C code to VHDL; good performance requires a degree of

knowledge on the part of the software engineer of the underlying microarchitecture. DWARV

claims to target software engineers without any knowledge of the hardware, which has led to

it being the easiest to work with according to [67]. Despite these observations on the ease

of use of DWARV, the study of [67] concludes that the best performance is to be obtained

with SPARK, due to the transformations applied to hardware and FPGA-local storage. SPARK

requires the most knowledge about the underlying hardware when retargeting.

3.1.9 LISA

Architecture Description Languages (ADL) are an extremely potent tool for performing DSE

over a number of architectural alternatives, when designing an ASIP. The LISA [68] language

is one of the most widely used ADL in use today, allowing a description of the entire processor

including both behavioural and structural elements to be created as a “Golden Model”. The

golden model may then be used with the LISATek tool [29] developed by CoWare [69] as the

basis for generating a number of deliverables that are generally required in an ASIP design:

• Synthesisable Verilog or VHDL model of the core, allowing ASIC or FPGA implemen-

tation of the core described.

48

• Instruction Set Simulator, able to execute binaries compiled for the machine description

given.

• Compiler based upon the CoSy [28] compiler construction system, allowing C/C++ to

be compiled for the architecture. The work in [70] describes the generation process.

The complexity of description required depends on the degree of accuracy required in sim-

ulation, and whether or not the model is to be synthesised. Cycle-accurate simulation and

synthesisable RTL can be achieved by describing the pipeline structure. The bare minimum

description requires details of the instructions, their mnemonics, encoding, and operation se-

mantics. This allows for a basic compiler and instruction-set simulator to be generated. More

recent additions to the LISA language (now at version 2.0) include the ability to describe RFU’s

[71], allowing for dynamic reconfiguration to be included in the processor specification.

LISA is a powerful tool for design space exploration, as much early work can be performed

using a purely behavioural description. The “golden model” can be slowly lowered to a more

specific structural specification once features are determined. DSE of reconfigurable processor

elements is performed in [71], and earlier efforts to use LISA to perform DSE on standard

processors proved successful also [72] [73]. A book exists describing the process of performing

architectural DSE using the LISA language [74]. AISE efforts can generate LISA descriptions

of new instructions, and the LISATek tool-chain can be used to perform empirical evaluation

of the extended processor. The author of this thesis has encountered various problems with

the quality of the synthesised Verilog and VHDL, and so the language was not adopted for the

work described in this thesis. More recent work on LISA has focused on improving the quality

of the RTL generated [75].

3.1.10 MESCAL

The Modern Embedded Systems, Compilers, And Languages (MESCAL) group [76] at the

Gigascale research center do not present a single software framework, but instead present a

methodology for the design of ASIP. The methodology was derived from consultation with

“leading industrial experts” and empirical evaluation of the software frameworks available.

The methodology breaks down to a number of points, described in [77]:

• Judiciously Using Benchmarking; The use of benchmarks to determine the perfor-

mance of an architecture is essential to determining its practical use and performance.

• Inclusively Identifying the Architectural Space; Identifying the mutable features of

the architectural design space is important to ensure all options are evaluated.

• Efficiently Describing and Evaluating the ASIP; The means by which design space

exploration is facilitated effects the amount of work expended in describing the options

49

available to the designer. Using an ADL such as LISA [29] in order to both describe and

evaluate the ASIP can provide a large improvement in productivity and accuracy over

more manual methods.

• Comprehensively Exploring the Design Space; Leaving no stone unturned with re-

gards to the scope of DSE is very important in order to ensure that the best design is

obtained.

• Successfully Deploying the ASIP; Deploying an ASIP commercially includes providing

documentation, compiler, and simulator at a minimum. The quality of all this supporting

work is very important to the success of deployment for an ASIP; again ADL such as

LISA [68] supporting specification-driven generation of all these additional deliverables

can prove invaluable.

One example of work utilising the MESCAL methodology is that of [78], wherein the

methodology is followed in the development and use of an Integer Linear Programming based

tool for exploring an FPGA multiprocessor design space. A network of processors connected

using a hierarchy of buses and FIFO is constructed and evaluated, and this represents a sin-

gle design point in the exploration undertaken. The tool developed takes an application as a

task graph, and attempts to maximise the throughput of the application-specific multiprocessor

design with respect to the application.

3.1.11 Lime & Liquid Metal

The Liquid Metal project at IBM is a recent attempt to extend Java with further semantics to

aid in the mapping of the language to a spatial hardware implementation. The language that is

currently the focus of this project is called Lime, which is a high-level object-oriented language

backwards compatible with Java [79]. The long term goal of the Liquid Metal project is to “JIT

the hardware”, meaning that on a hybrid CPU/FPGA system, the FPGA will be reprogrammed

in real-time given the same kinds of dynamic information that existing JIT compilers rely on

in order to optimise code as it runs. The Lime language can currently be compiled to run on a

standard Java VM or on FPGA hardware; a combination can also be used, with the intention

that the transition between the two execution modes be seamless. The Liquid Metal Runtime

(LMRT) is the software which synchronises the two domains of execution, and handles the

loading of FPGA sections on the fly.

Lime introduces new types similar to those in Kava [80], but with less complex type rules

and compatibility with existing Java. Most notable is the value enum, which provides an im-

mutable bounded value with a default value (these cannot be null). Iterators may be derived

from the enumerable types, and can be used with for-each semantics to provide explicit def-

initions of parallel code. Arrays may also be referenced using the value enum type, ensuring

50

accurate static size and bounds analysis, and enabling bit-level analysis. Lime also allows for

user-defined operators, such that new operations can be defined through method definition.

The Lime tool-chain includes a compiler which converts Lime source-code into either byte-

code for a JVM or Spatial IR (SIR), which is an intermediate representation particularly suited

to hardware synthesis. SIR is a DFG-based IR, perfectly suited for exploiting spatial paral-

lelism (OLP) where this is identified. Nodes of the SIR graph are filters, which are connected

by edges representing communication channels (implemented by buffers). Each filter repre-

sents a single method from the original Lime program, edges between these represent method

parameters and return value.

A high-level SIR compiler lowers the SIR from the form presented by the Lime com-

piler and performs some optimisations, mostly exposing spatial parallelism. Layout is then

performed to map the lowered SIR to FPGA resources as appropriate, and finally the RTL is

emitted and synthesised in order to obtain bitstreams for the FPGA.

The Lime language may be used to explore the design space of the FPGA implementation

used in the mixed-mode execution of the applications written in it. Whilst code transformations

are employed in the tool-chain, further source-level transformations can be explored manually

by an engineer. The object-oriented nature of the language combined with the static semantics

and analysis also make for effective tools with which to implement parameterised DSE. The

SIR used for the Lime language could be retargeted for use in ISE, and the additional semantics

in Lime could be as useful to automated ISE design as they are to automated FPGA data-path

construction.

3.1.12 Trimaran

Compiler and simulator technology is a critical part of many DSE frameworks, and one of the

most commonly used systems in DSE is Trimaran [81]. The Trimaran infrastructure consists

of:

• The OpenIMPACT compiler, which translates source code to the Lcode IR.

• The Elcor compiler, which translates the Lcode IR combined with a machine descrip-

tion in MDES format to the REBEL IR, or to native code in one of the available backend

architectures.

• The Simu simulator, which takes a machine description in MDES format with an ap-

plication in REBEL IR format and produces performance statistics.

The Lcode IR is a machine independent assembly form which exposes the instruction level par-

allelism of the underlying application. Classical loop-level transformations such as unrolling,

and super- and hyper-block formation are used to optimise the OLP available in the Lcode IR.

51

The REBEL IR is immediately formed from the Lcode IR in the frontend of the Elcor com-

piler, and is processed by classic scalar optimisations (DCE, CSE, CP, etc), then mapped onto

the machine-description given through the MDES information supplied. Automated mapping

of ISEs is possible by defining the acyclic DFG representing the ISEs, and the opcode format

in the MDES format. Elcor processes the REBEL intermediate representation and replaces all

isomorphic graphs with the new custom instruction. This feature makes Elcor and hence Tri-

maran a very attractive option to AISE developers and those wishing to perform DSE within

the space of acyclic fine-grained ISE. Vectorisation can also be automatically exploited, as-

suming the vector capabilities can be defined within the MDES format. Clustered architectures

are supported too, and the compiler provides automated mapping for these. Once the Elcor

compiler is finished mapping the code, it can emit it either in a native instruction set or in

REBEL IR format. The latter format can be used in the Simu HPL-PD simulator to get early

performance statistics, through parameterisation and simulation of the HPL-PD parametric ar-

chitecture. Whilst the HPL-PD architecture does not cover all possible architectures, it gives an

easily targetable polymorphic architecture which may be used for early feedback on the suit-

ability of architectural features to a particular application, and hence is useful for early DSE.

DSE in the Trimaran framework is easily facilitated using the MDES machine description for-

mat; essentially an ADL in its own right, MDES allows for a range of machine features to be

defined and then used in the compilation and simulation process. An example of DSE using the

Trimaran framework is in [82], which performs exploration of VLIW ASIP with coarse-grained

functional units.

3.1.13 Other Languages and Frameworks

This section has so far covered only a select few of the languages and frameworks which may

be exploited for the purpose of design space exploration. These have been selected to give a

cross-section of the available approaches to hardware-software co-design. Some other notables

include:

• Streams-C [83]; Another implementation of streaming extensions to C utilising the

Hoare CSP model. Streams-C is constituted of a number of annotations (hidden from

the standard C compiler by comments) and C library functions. The version covered in

[83] is intended to target FPGA accelerator cards on the PCI bus in standard PC hard-

ware.

• Optimus [84]; A more recent descendant of languages such as Handel-C and Streams-C,

Optimus comes from the same group at IBM that developed Lime [79] and is intended

to be used to efficiently target streaming applications towards FPGA implementations.

Optimus is not a language but a synthesis framework which operates off the same SIR

intermediate representation as the already discussed Lime language. The SIR in [84] is

52

generated from the StreamIt [85] language rather than from Lime, although it could be

generated from a number of other languages.

• EXPRESSION [86]; An ADL which may be edited directly or edited by a GUI, which

allows for architectural DSE in a similar manner to LISATek [29] by generating a simu-

lator and compiler for the architecture specified.

• LLVM; An extremely well documented and powerful compiler framework including

the Apple-sponsored clang C compiler, which provides a much higher caliber of static

analysis than has previously been available in free compilers such as GCC. Contains

intermediate representations in a DFG structure, which in itself is essential to the auto-

mated hardware-software design process. LLVM will almost certainly feature in future

projects to perform hardware-software co-design, as it is maturing rapidly into a reliable

platform for compiler development.

• One of the earlier but mature attempts to formalise DSE for an application-specific VLIW

architecture is [87], from work at HP Labs in 1996. The work focuses on parameterising

a VLIW architecture and exploring the parameter space with regards to a number of

kernels and applications as benchmarks. Exhaustive search is performed to determine

the space, and the resulting performance graphed to provide insight into the trade-offs.

A similar approach is adopted in many experiments throughout this thesis.

3.2 Automated Instruction Set Extension

When the process of identifying and selecting ISEs is made algorithmic through computerised

processes, it is referred to as Automated ISE (AISE). The following are alternative approaches

to AISE than the ISEGEN algorithm already covered, which are included to paint a picture of

the diversity present in this field.

3.2.1 Linear-Complexity MISO Identification

One of the simplest approaches to AISE is given in [88] and later in more detail in [89], wherein

the MaxMISO algorithm is presented. A MaxMISO is a Maximally expanded Multiple-Input-

Single-Output graph, which is generated by selecting a single node to output from and iterating

backwards over the fan-in to that node and its predecessors. This process is repeated until a

barrier predecessor which is unimplementable (e.g. LD/ST) is encountered. Input port con-

straints are not considered by the algorithm due to the idea that these should be relaxed, having

been identified as a bottleneck in previous works. The output port constraints are never vio-

lated by this algorithm due to the inclusion of only a single output node; essentially ensuring

the output port constraint by construction. A similar effect may be noted with regards to the

53

convexity constraint, in that the algorithm only produces nodes which are topologically de-

fined by a tree expanding backwards from the output node; at no point is a solution considered

where there is a hole between one node and a predecessor of it. The linear complexity of this

algorithm is due to only considering each node once for inclusion or exclusion, and further

many nodes in the graph are not even considered in most cases. This low complexity leads

to a sub-optimal exploration of the design space, especially in the situation where application

basic blocks present parallel data-flow where there is more than a single output. Vector-like

operations are not well exploited by this algorithm as these require multiple outputs as well

as inputs, which means many great opportunities for acceleration are missed. This deficiency

is motivated in [89] by the supposed lack of register file I/O in embedded processors; in real-

ity more modern embedded processors allow a large number of I/O ports in order to exploit

larger, more effective complex instructions. This algorithm suffers from a similar problem as

that of [18], in that it exploits properties of the search space to reduce the search complexity.

The algorithm is not cognisant of the actual performance of the ISEs identified, and instead

assumes that maximally-sized candidates will confer the greatest advantage. An extension of

the MaxMISO idea is presented in [90], wherein a similar algorithm to that of [89] and [88] is

presented. The only differences between the algorithm of [90] and the work of Pozzi et al. is

that in [90] the algorithm is extended to iteratively derive all SubMaxMISO (SMM) subgraphs

of MaxMISO which have greater potential to satisfy realistic input port constraints, with the

intention that these subgraphs be further combined to form the ISEs for the application.

3.2.2 Linear-Complexity MIMO Identification

A natural evolution of the MaxMISO idea is to allow multiple outputs, which is the strategy

employed in [91]. A MIMO is a Multiple-Input Multiple-Output subgraph of a DFG, with

the property that it is constructed as the union of a number of MISO graphs. This hierarchi-

cal construction is what contributes to the linear complexity of the approach in [91], since

the combination of a number of disjoint MaxMISO will produce an ISE which is convex by

construction. In order to preserve the linear complexity of the algorithm, this hierarchical ap-

proach is adopted wherein each node is treated as the root of a MISO, and a spiral search is

performed [92] on the DFG to produce MIMO from combining MISO defined by each node.

The spiral search is based on the concept of the Archimedean spiral line, which is defined by

a point moving with constant speed along a line rotating around one end at a constant angular

velocity. This concept is used in [91] by making the seed node O (the node from which the

search grows the MIMO) the center of a spiral, and mapping all other nodes onto integer lev-

els above, below, and parallel to the seed node based upon the original graph topology (and

hence dependencies which could lead to a convexity violation). The graph is constructed by

considering nodes on the level intersecting a spiral outwards from O, and nodes which respect

a certain property P are included in the graph. MaxMISO or SMM can be combined if the dif-

54

ference in their level is either zero or one, because this guarantees convexity of the combined

MIMO. During construction, the resulting MIMO is always convex; this limits the potential

for combination of disjoint portions of the graph, and this essentially is the limiting factor of

this algorithm. The linear complexity is ensured by only allowing graphs to grow outwards

from a pre-determined point. The search stops once no further nodes can be added without

violating the convexity constraint, and has no consideration of register file port I/O at all. In

addition, the point O from which each graph is grown is arbitrary and difficult to correlate with

the ultimate desired properties of the graph; a random selection seems to be favoured in the

literature [91]. Whilst the algorithm is linear in complexity, the solutions are likely to perform

poorly and on I/O limited architectures will often be invalid. Where graphs from an application

present large open areas of data flow without any barrier nodes, and where architecture has no

I/O limitations (e.g. where I/O to ISEs is pipelined), this algorithm will perform reasonably

well. Where data-flow is fragmented by memory or other barrier operations, and where I/O is

limited per-ISE, this algorithm is likely to perform poorly. Addition of further heuristics and

constraints to this search is largely impossible as the algorithm relies on topological concepts

in order to guarantee correctness by construction. This is an extension of the ideas of [89],

and suffers from the same problems as [18]; using structural properties of the graph to reduce

the search space leads to inflexibility of the algorithm when new constraints and optimisation

objectives are required.

3.2.3 Integer-Linear Programming Methodology

The Atasu AISE algorithm [20] generates DFG templates through conversion of DFG to a set

of constraints in ILP, followed by solution of that program. The algorithm was implemented

by the author of this thesis in an early effort at implementing AISE, as a tool built into a CoSy

compiler using the lp solve library [93]. Each DFG from the application (taken from expres-

sions in [93] as these represent side-effect free sections) is converted into an ILP program,

representing the design space available and the two constraints used to ensure that resulting

ISEs are implementable: register file I/O and convexity. In addition to the constraints, a goal

function is also expressed. For this algorithm, the goal is the estimated serial time of execution

in cycles of the instructions covered by the template, minus the estimated critical path of the

template. This is the same model as is presented in section 2.3.1, and is common to many AISE

algorithms because it is considered generally accurate. The constraints in [20] are expressed in

boolean, and must be translated to integer-linear form using a variety of equivalent operations

involving integer-linear operations such as addition and inequalities. This in effect translates

a boolean search problem in O(2n) into a linear search problem in an equivalent sized space,

which may then be approached by the advanced constraints-based search of the ILP solver. The

quality of the solution is in part down to the quality of the ILP solver, and ultimately the search

space remains exponential. The freeware lp solve solver performed sufficiently for the smaller

55

DFG approached in [93], but larger templates require the more sophisticated algorithms of a

commercial solver such as CPLEX. The ILP approach to AISE is not strictly deterministic for

this reason, and the result if found is only guaranteed to satisfy constraints; the quality of the

result is largely dependent on the efficacy of the ILP solver. It is also difficult to extend the

approach to include further heuristics in the objective because of the complexity this adds to

the ILP. Following the generation of templates from basic blocks, in [93] the templates are

checked for isomorphism with one another using the NAUTY [94] graph isomorphism library,

then ranked using the product of their estimated usage and per-execution gain as per [20]. The

top N of these instructions are then recorded alongside their performance estimates for inclu-

sion in results, where N is defined by the encoding space available. Whilst the majority of the

work in this thesis is with regards to the ISEGEN [7] algorithm, the latter transform work is

done using the original Atasu ILP [20] algorithm implementation from [93], due to framework

availability.

3.2.4 Fast Clustering AISE Algorithm

Verma et al.have taken a new approach to the problem of partitioning a graph into hardware

and software partitions. An algorithm is proposed [18] which imposes a requirement of mono-

tonicity upon the merit function (classically, and in their algorithm, limited to speedup in cycles

only). Through the monotonicity of the relationship between speed-up and graph-size, the al-

gorithm [18] is able to greatly reduce the underlying search space that the algorithm must

operate over. A DFG of the application is first processed to find its clusters (groups of opera-

tors which may always be contained together in one ISE), and turned into a cluster graph. The

cluster graph represents all nodes of the original DFG in classes; if nodes x and y are in a class

together, then in an ISE which includes x, y can also be included without breaking convexity,

and vice-versa. The resulting cluster graph compresses each class into a single vertex, and an

edge is placed between every pair of classes which could be merged into a single ISE without

violating convexity. This cluster graph has significantly fewer edges than the original basic-

block DFG. Following the production of the cluster graph, it is then processed for maximal

cliques (maximally-connected sub-graphs of the cluster-graph which are not sub-graphs of an-

other maximally-connected sub-graph). These maximal cliques correspond to maximal valid

subgraphs of the original basic-block DFG.

An issue with the monotonicity requirements of the algorithm are that extension of the merit

function requires monotonicity in any further merit consideration. It is also questionable that

the monotonicity of even this simple merit function can hold in all cases. For example, in most

RISC processors (as are required by the algorithm), the clock-frequency is normalised around

a single arithmetic instruction’s latency. The clock-period defining operation often given in

the literature is multiply-accumulate. Regardless, this operation will have a hardware latency

very close to the software latency. There is the possibility that wiring added to route in a new

56

node in an already crowded graph will add to the total latency of the operator so much that

the operator itself is now slower in hardware than software. If this effect is repeated (serially)

then the possibilities are that ultimately the larger a graph gets, the slower the graph gets than

software execution. Whilst this problem is endemic to all AISE approaches at present, the

tendency to produce the largest possible graphs will run into wire delay problems more often

than approaches which equally favour smaller ISEs. Empirical examples of the fallacy of this

“bigger is better” approach follow later, in sections 5.4, 5.5, and 6.3.

For the purposes of this thesis, a variety of metrics for the merit of the instruction set

extensions generated are expected to be used together. This will produce merit functions which

are non-linear and non-monotonic; at this point this algorithm will no longer be able to support

the intended merit functions and will fail to produce a good quality of ISE. For this reason,

despite the smaller design space and execution time of this algorithm it has not been adopted

for the research discussed later in this document.

3.2.5 Polynomial-Complexity Identification and Selection

The work of [95] converts the problem of ISE generation into one of combined identification

and selection, through exploiting the relationship between the graph-theoretical properties of

vertex dominators and convex sub-graphs. All DFG subgraphs within a particular I/O con-

straint are enumerated using the concept of k-vertex dominator nodes, wherein a set of k ver-

tices dominate a number of nodes. The value of k is determined by the number of inputs or

outputs to a graph. An additional constraint is imposed in order to aid in search, in that any

input to an ISE w must have a node v within the ISE such that there exists at least one path

from the DFG root (artificially introduced single predecessor node to all DFG inputs) to v that

includes w but no other input of the ISE.

The algorithm uses the idea that the set of inputs and outputs to a cut define the convex

cut itself, and this is proven in [95]. This in itself proves that the search space represented by

convex ISE is actually polynomial in the number of inputs and outputs, rather than exponential

as when identification is considered as an arbitrary partitioning problem. By selecting a set

of inputs and outputs, a cut is defined through calculating the k-vertex dominator nodes of

each output and including every node on the path between those nodes and the output in the

cut. The construction of a cut from inputs and outputs selected guarantees that the inputs will

remain as selected, but new outputs may be introduced by the process. Through exhaustive

enumeration of the potential inputs and outputs using k-vertex dominators to define the cuts

between, this approach explores the space in O(nNin+Nout) time. This naive approach is not

entirely suitable for larger basic blocks [95], so incremental construction utilising additional

pruning is introduced to approach larger DFG. The complexity of the incremental algorithm

is the same as the naive algorithm, but pruning can be employed to reduce the value of n.

Cuts including forbidden nodes are immediately discarded, and cuts with output v wherein an

57

ancestor w of v is a forbidden node can immediately exclude all ancestors of w from the set

of potential inputs. The incremental search recursively selects all outputs o, and then an input

from the set of k-vertex dominators of each selected o, then another output, and so on.

This algorithm of whilst lower in complexity than some other approaches has a high worst

case memory requirement. As the cuts are being explored, all non-pruned combinations of

input and output will be stored on the stack due to the recursion employed. The exhaustive

enumeration of all valid ISEs within a DFG can be combined with arbitrary heuristics to select a

combination of those ISEs for implementation. This enumeration places a large computational

burden on the ISE selection process to evaluate each of the candidates for inclusion. The

ISE selection process can be made equivalent to the knapsack problem. The problem is NP-

complete and hence optimal solution becomes intractable for larger problem sizes, i.e. the

number of ISEs provided to the selection stage. This approach therefore has a high memory

requirement, and additionally seems to transfer the burden of NP-complete runtime complexity

to a later stage in the ISE generation process. For this reason, the algorithm of [95] is avoided

in favour of the ISEGEN [7] algorithm in the work of this thesis.

3.2.6 Tensilica XPRES

The Tensilica XPRES compiler [25] separates the customisation of an ASIP into three areas

which effect the ISA and microarchitecture somewhat orthogonally: VLIW, Vector Operations,

and Instruction Fusion. Customisations are defined in the TIE (Tensilica Instruction Extension)

language, which is processed by the TIE Compiler to produce a compiler tool-chain, simulator,

and RTL which is used to extend one of the XTensa (e.g. XTensa LX [96]) processors. The

XPRES compiler is able to analyse an application written in C or C++, producing a range of

alternative designs represented as TIE descriptions organised in a Pareto-optimal [24] trade-

off function between the cost (area) of a design and the resulting performance improvement

(generally acceleration).

The AutoTIE approach utilised in the XPRES compiler is covered in [97]. The approach

differs from other major AISE techniques by including all three of the mentioned areas of cus-

tomisation. Other approaches only really utilise the Instruction Fusion approach which is ISE

as defined in section 2.3.1. The AISE methodology used in [97] has some similarity to the

approach required when using [95], in that thousands or millions of potential ISEs (and other

architectural customisation options) are generated before they are combined into the space of

potential design-points. These design-points are evaluated through performance estimation

and pruned to form the Pareto-optimal function of cost versus performance. The Fused In-

structions (ISEs) differ from those generated in approaches already covered in that DFG are

considered with loop-dependency information, which innately reduces the search space from

that considered by most AISE algorithms. Combining the loop information into the architec-

ture customisation space means that the DFG are not blown up in size by transformations such

58

as unrolling which are generally required to obtain good results with other AISE algorithms.

Customisation options are generally abstracted as resources, with each resource represent-

ing a microarchitectural component such as a functional or other hardware unit. Resources

are organised into classes like an OO language, with some base classes representing groups of

standard operations and new classes used to represent ISE. Resources are parameterised with

additional properties such as the vector length they have to process (hence duplicating the op-

eration a number of times), and the element size that they operate on (hence optimising the

data-path for a specific width). ISEs can be made vectorised by defining a fusion of operations

as a new class, and then parameterising it with a vector size greater than one. This allows for

smaller ISEs to be expanded across loop iterations without loop transformations, and is part

of the reason why the Tensilica approach favours a large volume of smaller ISEs. Hardware

resources are shared between ISEs as much as possible, further improving the quality of the

designs produced. A further optimisation is the extension of the memory interface with arbi-

trary width memory operations. TIE therefore has a coverage of extension greater than most

other techniques, most of which (e.g. [95], [7], [20]) class memory operations as barriers to

ISE identification. Memory operations are not fused to other operations, but their extension

and customisation does underly a significant portion of the impressive performance obtained

by XPRES, since memory operations represent a large portion of the unapproachable barrier in

other AISE techniques.

The efficacy of the Tensilica XPRES approach therefore motivates the automatic DSE of

processor (architecture and microarchitecture) features other than covered by scalar ISE, due

to the efficacy of this technique in addressing a large range of applications.

3.2.7 Other Algorithms

The ISE problem has been studied by a great many people, with a number of relevant for-

mulations having been published between the early nineties and the present day. This section

has attempted to address a cross-section of the broad spectrum of algorithmic approaches for

the fine-grained identification and selection problems. There exist other notable works which

deserve at least a brief mention:

• An attempt to analyse the limits on ISE acceleration performance is performed in [98],

addressing the question of how much mapping just data-flow to ISE (and leaving con-

trol flow to the baseline core) can accelerate applications. Unrolling and other OLP-

enhancing transformations are employed, with the result that in general a maximum of

6x acceleration is generally achievable under absolutely perfect circumstances.

• The separation of instruction-set extension algorithms into those that solve the problem

exactly (e.g. locate the optimum ISE) and those that solve the problem approximately

(e.g. attempt to locate a good ISE without searching the entire space) is covered in

59

[21]. Various algorithms are proposed and evaluated, and the intractability of the exact

approach is demonstrated.

• The encoding of custom instructions is considered as the main criteria for selection from

a set of candidates in [99]. The EXPRESSION [86] framework is utilised to compare

a heuristic method of encoding-based selection versus an ILP formulation of the same

problem. The heuristic method performs much faster than the ILP formulation, and

produces results of roughly equal merit. The authors of [99] note that the variety of

encodings employed may increase the complexity and hence critical path of the decoding

unit, although they claim that since they replace existing complex instructions it is a like-

for-like trade-off. This claim is not empirically proven, so it is hard to determine exactly

what the trade-off looks like.

• The question of whether or not architectures designed to exploit operation-level paral-

lelism such as VLIW can actually benefit from ISE also designed to exploit the same is

addressed in [100]. The results demonstrate that VLIW issue width and register file size

can both be reduced where AFU are employed, and that AFU have considerable use to

accelerate an application even in the face of OLP exploiting architectures such as VLIW.

• A fairly standard processor extension approach utilising rapid prototyping is taken in

[101], with the interesting difference that the evaluation is performed for Prolog bench-

marks amongst others. Most ISE approaches use only small C benchmarks to evaluate

their approach.

• Customising a processor for not just one but many similar applications is a valid real-

world problem which when solved can increase the profit margins for a particular ASIP.

The work of [102] attempts to address the acceleration of whole application domains

using AISE. The work also presents methods of generalising AFU hardware to cover

a wider array of subgraphs, including wild-carding which causes FU in AFU to cover

a wider range of operations than was originally identified. AFU in [102] are multi-

cycle and do not contain registers for pipelining, but instead make extensive use of serial

gains from combining bitwise operators. Results are between 1.4x and 2.4x at maximum

resource usage. The AISE identification algorithms and infrastructure used in [102] were

originally covered in [103].

• A divide-and-conquer approach utilising a variant of the popular A* algorithm called

“Divide and Conquer A*” (DCA*) is used in [104] to perform a heuristic-based parti-

tioning of a DFG into ISE and software components. Like ISEGEN [7], the algorithm

may be parameterised with an arbitrary heuristic for search guidance. Strangely the work

of [104] chooses not to quantify application performance enhancement from the exten-

sion generated, rather examining code size which is reduced by between 5% and 25%

60

depending on the number of templates utilised. The algorithm is compared against A*

with an equivalent heuristic, and the DCA* algorithm performs considerably better.

• Many AISE approaches (e.g. [7, 20, 21] use simple models of speedup, (see section

2.3.1) whereas the work of [105] attempts to guide the search for ISEs using a cycle-

accurate simulator and is effectively a semi-automated iterative refinement technique

similar to the Compiler-in-Loop [26] technique popularised by LISA [29] and CoSy

[28]. The work of [105] introduces another ADL; the Unified Processor Specification

Language (UPSLA), which is claimed to be descriptive enough to model even complex

architectures such as the PowerPC 604. Despite the recent (2004) publication of the

work [105], ISEs explored are only “Instruction Pairs”, i.e. the coalescing of only two

instructions into an ISE. This approach yields a best-case acceleration of 28.5%, and

code-size reduction of 12.8%, which is interesting as a benchmark for minimalist ISE

design. It should be noted that this was achieved using encryption benchmarks, which

are commonly found to be the best accelerated benchmarks in AISE studies.

• A general, single formulation of identification and selection is attempted in [106], but

the use of the guide and cost functions is not a good fit with many algorithms. A lot of

algorithms (e.g. ISEGEN [7], Atasu ILP [20]) tend to use a single merit function and

are not divided between identification and selection in the manner described (full enu-

meration & pruning). There is still scope for a lot of innovation in the instruction set

extension problem, and the approaches currently attempted do not entirely encapsulate

the potential for the future. This author feels that such a generalisation of the problem

only helps in abstract understanding, not in actual algorithm design or in understanding

existing algorithms. Whilst the attempt at generalising ISE algorithm design is not en-

tirely useful, the rest of the paper is a good (albeit somewhat incomplete) comparison of

techniques not covered here.

One of the main contributions in ISE research not extensively covered here is the higher-

level block- or loop-level graph processing. In this thesis the author has decided that a finer-

grained approach is necessary in order to properly reap the benefits of reconfigurable tech-

nology. Coarser-grained blocks are generally harder to balance for resource utilisation and

sharing. The reason is that when you select larger blocks, you have less control over the data-

flow within those blocks which for best results should be implemented using resource-shared

microarchitecture. A round-up of some of these coarser techniques exists [106], but this is also

incomplete. The field of AISE has become so populated in the last ten years that it is nearly

impossible for a single study to cover them all; a Google search for “Instruction Set Extension

Algorithm filetype:pdf” returns “about 94,900” results at the time of writing. What has been

presented here should represent a suitable sampling from this massive space, and in particular

includes the most popular cited works.

61

3.3 Microarchitectural Solutions

3.3.1 Field Programmable Gate Arrays

Several vendors provide reconfigurable hardware which falls under the class of microarchi-

tecture called Field Programmable Gate Arrays (FPGA), which replaced many other pro-

grammable logic devices in many consumer and prototype applications. These are perhaps

the most popular but misunderstood form of reconfigurable microarchitecture, generally owing

to their continued development towards heterogeneity in the cells present in the hardware. At

first, the only FPGA cell was generally only a K-bit look-up table implemented in SRAM, in

which the table was directly programmed via the bitstream with the logic values to be induced

under each of the 2K possible input values. Configurable routing is combined with this to form

the entire space covered by the bitstream used to program the FPGA devices.

Xilinx [107] were the first company to commercially exploit FPGA, providing the first

model (XC2064) as early as 1985. This early design contained only 64 cells each contain-

ing two 3-bit look-up tables, which was equivalent to fewer gates than most competing pro-

grammable logic devices at the time; two years later Xilinx had increased the gate equivalence

to 9000, which was competitive. Modern designs by comparison have the equivalent of many

millions of gates, in order to keep the FPGA devices competitive in terms of scale with other

ASIC and ASIP approaches available. More recent developments involving coarser-grained

programmable blocks are perhaps the most misunderstood aspect of FPGA. Units such as mul-

tipliers, floating point units, RAM and ROM are integrated directly into the programmable

fabric of the FPGA in order to increase the performance of those functions.

A range of different FPGA are available to buy depending on what domain (e.g. DSP, Cryp-

tography) the fabric is intended to be programmed for. This approach was probably motivated

by early work [108] which demonstrated that creating an array of different FPGA topologies

increased the efficiency of FPGA with regards to particular applications. Earlier still, work

[109] had concluded that using heterogeneous combinations of LUT size also improves perfor-

mance. The introduction of hardwired logic into FPGA to provide improved performance from

coarse-grained configurability is a logical continuation in this trend of heterogeneity. In this

manner the line between FPGA and reconfigurable ASIP systems is forever being blurred, es-

pecially with the introduction of full processor cores into the reconfigurable fabric. A range of

interconnects is possible between these integrated processor cores and the reconfigurable fab-

ric, covering the full spectrum from coprocessor to tight coupling described earlier in section

2.3.5.

Instruction set extension is possible, and the performance benefits have been the subject of

academic interest for some time, e.g. in [110]. FPGA technology has a well-deserved reputa-

tion for high cost and energy consumption, with relatively low performance when compared to

an ASIC solution. This is because they represent the most flexible of the reconfigurable archi-

62

tectures, and this reconfigurability must come at a cost. It is unlikely that even with the advance

of coarser-grained FPGA devices that these will ever reach the same levels of performance that

standard-cell design can achieve. The flexibility and re-programmability does though afford the

devices significant advantages, versus the “single-shot” approach of ASIC fabrication. Once

an ASIC design is produced, errors discovered cannot be fixed without a re-spin of the design

(at significant cost). This is likely to drive the continuing adoption of FPGA in prototyping,

low-volume systems, and anywhere else that the cost of an erroneous ASIC design would be

greater than the increased cost of FPGA.

3.3.2 MOLEN

The combination of a hardwired processor and reconfigurable FPGA fabric does not necessarily

define the resulting architecture absolutely, as the various mechanisms for combining the two

are subject to a degree of design decision as per section 2.3.5. One architecture intended to

trade off the various strengths and weaknesses of the different communication mechanisms

is the MOLEN processor [111]. The MOLEN processor needs to utilise only four additional

instructions in order to facilitate the computation of sections of application code on the FPGA

fabric, which is essentially treated as a co-processor.

The additional instructions are not associated with any particular application-specific func-

tion, but are instead used to configure (c-set) and initiate (execute) application-specific func-

tions through the instantiation of microcode. Microcode controls the reconfigurable proces-

sor (RP), in addition to the movement of data to and from the GPP core and the RP (movtx

and movfx). This constant space of additional instructions avoids the apparent “opcode explo-

sion” encountered in some works utilising ISEs on a one-to-one basis between extensions and

functions. The prototype produced in [111] utilises a Xilinx Virtex-II Pro FPGA, using the

embedded PowerPC core as the GPP and the rest of the FPGA as the RP.

An arbiter exists in the FPGA fabric also, which performs an initial fetch and decode on

each instruction from the stream before determining whether to send it to either the GPP or RP.

When the RP is active the arbiter sends instructions to the PowerPC to put it into a wait state,

whilst the arbiter feeds the appropriate microcode signals to the RP to execute the mapped

function. The major problem with this approach is that the per-operation speed on the original

GPP is greater than that on the RP (FPGA), in addition to the overhead in communicating

the values via extension registers to the reconfigurable fabric. The implication of this is that

sections mapped to the RP must be both large and contain a high degree of OLP, in order to

amortize the overhead from running code on the RP.

Code to be mapped to the RP is not automatically identified, but instead the support soft-

ware relies on pragma’s annotated on the original (C) source code to perform the mapping.

As per other synthesis techniques, only a subset of the language may actually be mapped to

the RP, but this includes some memory operations so the fragmentation often caused by these

63

are not a major factor. In the latest work on MOLEN [112] the prototype architecture obtains

between 1.56x and 3.18x speedup (over the FPGA-embedded PowerPC) on MPEG2 encode

and decode. These speedups were obtained with considerable manual effort; first annotating

the program, and then constructing custom microcode for the RP.

Reconfigurable processor SoCs organised in a very similar fashion include GARP [113],

NAPA [114], and PipeRench [115] amongst others.

3.3.3 Custard

Soft processors attempt to combine the flexibility of FPGA with the more productive program-

ming model used for standard microprocessors, through instantiating an ASIP within the FPGA

fabric (not using a hardwired core but the FPGA itself). The CUStomisable Threaded ARchi-

tecture (CUSTARD) [116] is an example of such an approach. CUSTARD has a CoSy [28]

compiler allowing for C code to target any of the potential instantiations of the soft-processor

when implemented on an FPGA. The multi-threading is implemented in a similar way to In-

tel’s hyper-threading; in effect the register file is duplicated M times for M threads, allowing

for rapid interleaving between different contexts without copying the contents of the register

file to and from memory. The CUSTARD prototype allows for M to be any power of two, and

additionally allows the register width, file I/O ports, and number of registers to be customised

within encoding limitations. Certain forwarding paths may also be enabled or disabled based

upon the threading configuration used, further optimising the area (and delay) of the instan-

tiated microarchitecture. The architecture itself may be extended with ISEs, which the CUS-

TARD compiler can both identify and exploit. The exact means of ISE identification is not

covered in the literature [116], other than to state it is based on static analysis. Additional

custom FU’s are added to the pipeline (tightly coupled) alongside the ALU of the original

architecture and within the forwarding paths of the processor.

The use of AISE contributes a maximum of 3.55x cycle reduction in the case of the AES

benchmark, but the different configurations vary considerably in terms of maximum clock

speed reported by the FPGA tool-chain. There is no discernible correlation between features

utilised and the resulting clock delay, as in some cases the use of more complex features seems

to result in a lower critical path. This is likely a result of the non-linear and non-optimal map-

ping algorithms used in the FPGA tool-chain; the maximum clock speed varies significantly,

from 19MHz to 30MHz in the technology used in [116]. Interestingly, the use of ISE adds prac-

tically nothing to the area (slices) utilised by the design; across all cases covered in [116] the

difference between the baseline configuration and the configuration utilising ISE is on average

3%. The custom instructions identified are both few and largely comprised of table look-ups,

which are not the standard “arithmetic” type operations one would expect of an AISE approach.

It is quite odd to see such an advantage gleaned from such a small number of simple ISEs, but

this is likely due to the coverage of constant variables with look-up tables.

64

3.3.4 ADRES

Citing the greater performance of coarser-grained reconfigurable architectures than is achiev-

able using standard FPGA microarchitecture, the ADRES architecture [117] combines VLIW

and a reconfigurable matrix (RM) in tightly-coupled combination. The major motivation for

this is that word-level configurable units are more readily optimised for their ultimate function

at the time of synthesising the hardware, versus the bit-level reconfigurability afforded by most

FPGA. Flexibility is lost in this trade-off, however, it is considered that since the applications

intended to be run on this architecture are largely word-level also, the additional flexibility lost

is not actually generally useful. The hottest (most frequently executed) sections of code are

mapped to the RM, with the VLIW maintaining the control-flow and overall function of the

remainder of the application.

The paper of [117] presents not only the architecture, but also the tool-chain which targets

it. Despite ADRES being tightly coupled via one of several register files, the architecture is

referred to as having a processor-coprocessor model. The nomenclature is due to the additional

register files present in the RM, and because the RM can utilise the VLIW memory channels to

directly access memory without first loading it into the shared register file. Resource sharing is

applied between the baseline VLIW core and the RM, in that some of the reconfigurable cells

(RC) share their functional units with the VLIW scalar instructions. The VLIW core and RM do

not operate concurrently, which disrupts the idea that the RM is a co-processor in any standard

definition; in addition the RM does not have standard control flow operations, which may only

be executed through the VLIW core. Predication is present in each RC to enable some degree

of control-flow in the RM. Multiplexors controlled by configuration memory determine the

flow of data between different RC in the RM, the RC having been set to a particular operation

by the same configuration memory. The memory hierarchy is shared between both the VLIW

core and the RM, since the memory channels are resource-shared between the two components.

Evaluation in [117] is performed by creating a microarchitectural design instance of the

ADRES architecture, which in itself is a template for a class of designs and not a specific

design. The design chosen is similar to the MorphoSys [118] reconfigurable architecture. For

a small selection of four kernels, speedup observed is between 2.8x and 6.4x. Acceleration is

obtained by combination of streaming, pipelined loop iterations, and operator-level parallelism.

The results obtained appear to be of roughly the same order of magnitude as standard ISE

obtains, with a slightly higher worst-case due to the inclusion and exploitation of loop-level

pipeline parallelism and streaming of operands outwith the register file.

3.3.5 Annabelle and Montium: Chameleon

Streaming applications cover a wide range of domains, enough so that designing architectures

specifically with streaming in mind can impart benefit to an array of potential applications.

65

Annabelle is one such architecture, constituting a heterogeneous tiled architecture built around

a Network-on-Chip, which acts as the main interconnect between the various tiles. One tile pro-

cessor (TP) developed for this architecture is Montium, a domain specific reconfigurable core.

The combination of Anabelle with four tiles containing Montium TP is called Chameleon, and

is covered in [119]. The Chameleon architecture is intended to address a wide array of stream-

ing DSP applications from software radio to image processing, through reconfiguration of the

Montium tiles on a per-application basis. Each Montium tile contains five ALU with four in-

puts and two outputs, each having individual register files allowing for state to be maintained

between operations. In addition there are ten data memories which operands to the ALU can be

read from and written to, and a routing network allowing for communication between the ALU,

Memories, and the NoC interface. With four Montium TP in the Chameleon architecture, there

are a total of twenty ALU available to be used in a reconfigurable fashion when performing

stream processing and DSP. An ARM 9 processor sits on an AMBA bus (connected to the

NoC) in the Annabelle architecture to facilitate general control flow and the addition of further

ASIC components which accelerate specific functions such as Viterbi decoding. Only the TP

are connected to the NoC directly; other components such as the ASIC and memory channels

(including DMA) are on the AMBA bus. Each Montium TP constitutes about 1.8mm2 in a

130nm process, leading to a fairly high area requirement compared to some ISE-based ASIP

such as XTENSA [96] or EnCore [10]. ALU only support integer or fixed-point arithmetic,

as these are the data types used in most DSP algorithms implemented for embedded devices.

The Montium and hence Chameleon architectures place a premium on memory transfers, citing

their massive contribution to power consumption when these climb the memory hierarchy and

make their way off-chip. This is the main reason why the Chameleon architecture contains so

much on-chip memory, as it is assumed the locality of most streaming DSP applications will

have enough temporal and spatial locality to exploit such memory. Since the ALU contain no

pipeline registers, the critical path of the TP and hence the whole Chameleon architecture is

configuration-sensitive, and fell between 140MHz for an FIR filter and 100MHz for an FFT.

Power consumption for an FFT butterfly was noted to be of the same order of magnitude for

a single Montium TP and an ASIC implementation of the function. FPGA implementations

of the same function were between 13x and 20x higher power consumption, largely due to

the overhead incurred in implementing the word-level operations in a bit-level fabric. Using

the ARM 9 processor alone the power consumption was around 10x higher. The power con-

sumption of the full Chameleon architecture will naturally be higher once the whole system is

considered, but this was not directly examined in [119].

3.3.6 QuickSilver Adaptive Computing Machine

The QuickSilver Adaptive Computing Machine (ACM) [120] is the first commercially available

“Fractal Architecture”, so called due to the topology of the chip routing layout. QuickSilver is

66

comprised of clusters, with the smallest being a four node cluster containing an arithmetic unit,

bit manipulation unit, finite state machine unit, and scalar unit. These four units are arranged

around a central Matrix INterconnect unit (MIN) which connects the heterogeneous units to

one another and to a parent node. The next cluster size is sixteen nodes, and this is where

the fractal layout comes into play: four sets of four clusters are arranged in a topologically

identical fashion to how the original four nodes are arranged in a cluster, leading to a total

of five MIN components in the sixteen-node cluster. This arrangement can be continued up

in powers of four, hence describing the architecture as fractal because it is topologically self-

similar, and the root (middle) node of such an arrangement is used for communication with

the ACM. The combination of all MIN are essentially a Network-on-Chip, allowing for data

to be routed between the various nodes in the ACM. The mapping of software to hardware is

performed through an augmented dialect of C called “SilverWare” [121]; the augmentations

include spatial and temporal extensions to assist in the mapping. Ultimately the entire appli-

cation is written using SilverWare, and the tool-chain is used to create a mapping (which may

utilise dynamic reconfiguration) which may instantiate and drive the various algorithmic ele-

ments on nodes in the ACM. Each node is a fairly large unit, intended to cover a whole kernel.

Every node is largely comprised of local memory, constituting around 75% of each node by

area [121]. Arithmetic units are similar to the Montium TP [119], in that they contain a number

of parallel ALU, essentially able to implement whole DSP-like functions such as FIR and FFT

spatially. Bit manipulation units are intended for functions such as code generation, packet dis-

crimination, and linear feedback shift registers. State machine nodes can implement arbitrary

state machines as required for protocol implementation. Scalar nodes are essentially scalar mi-

croprocessors, allowing for any legacy C-code to be executed within the ACM where this may

not be effectively mapped to any other node in the device. All nodes allow for variable-width

data to be used. Multiple nodes of the same type can be used to implement a function or state

machine which cannot fit into a single node, and the same function or state machine can be

time-sliced on a lesser number of nodes if resources demand it.

3.3.7 XTENSA

At the time of writing, Tensilica have produced a vast swathe of pre-customised version of their

XTensa CPUs [96], which they now choose to refer to as Data-plane Processing Units (DPU)

due to their data-flow centric customisation. As covered earlier when studying the XPRES

extension mechanism for the customisable variants of the Tensilica CPUs, Tensilica allow for

customisation in three axes: VLIW, Vector Operations, and ISE. The cores reflect this cus-

tomisability, allowing for all of these configurations and extensions to be rapidly applied to the

XTensa processor to produce a suitable ASIP. The logical separation between “configuration”

and “extension” here is that configuration covers the inclusion, exclusion, or parameterisation

of an existing CPU component, whereas extension involves the construction of a new CPU

67

component such as ISEs specified in the TIE language. Configuration options include:

• Standard scalar functional units such as multipliers and FPU.

• Cache sizes.

• Use of VLIW and Number of VLIW ways.

• Zero-Overhead-Looping (ZOL).

• Number of pipeline stages (5 or 7).

• Various DSP engines (Vectra, HiFi2, ConnX) acting as coprocessors.

• Number of memory channels (Load/Store units).

• Memory Management Unit.

Extension options are fewer, and include the ISEs specified in TIE, additional register files,

and I/O interfaces. The major distinction between a configuration and an extension is that the

latter includes some structural information, whereas the former only requires a finite number

of parameters to specify for each option. Earlier it was cited that the three customisation axes

are largely orthogonal, meaning that they can be used to complement one another resulting

in efficacy in the order of the product of their individual performances. When including the

additional features above the space overlaps considerably, and the onus is on the designer to

select the correct set of additional functionality over the baseline core that will best accelerate

his application. All of these features are of course covered in the simulators, but some of the

above options (e.g. the DSP engines) are not covered in the XPRES analysis and so require

manual comparison between the XPRES-generated design points and points including these

more complex computation engines. When this thesis was written Tensilica are offering two

main microarchitectures, which are similar but distinct in their potential for customisation:

The XTensa LX3 [122] and the XTensa 8 [123]. The latter is a more lightweight relative of the

former, and does not include quite as many potential customisations. Configuration features

exclusive to the XTensa LX3 include pipeline depth, the various DSP engines, VLIW, and

variable numbers of memory channels. The XTensa 8 is purposely kept lightweight to occupy

the low-power low-cost end of the spectrum, whereas the LX3 covers higher performance areas

of the trade-off space; the two overlap in terms of their potential configurations and where this

is the case the 8 will outperform the LX3. Tensilica represent the current state-of-the-art in

terms of processor customisation and are likely to do so until other manufacturers include the

same degree of flexibility in their architectures, without compromising performance through

excessive generality as with FPGA. Tensilica’s offerings have found use in various consumer

embedded electronics, but also in supercomputer design due to their exceptional performance

advantages in application-specific roles. The Lawrence Berkeley National Laboratory recently

68

proposed an XTensa-based supercomputer for computing weather dynamics [124], obtaining

over ten petaflops (10,000,000,000,000,000 flops) using 3.84 million cores. The construction

costs and energy consumption are both orders of magnitude (10x or more) less than comparable

machines using Intel or AMD GPP, demonstrating that customisable cores have worthwhile

application outside of embedded devices.

3.3.8 Stretch

The XTensa microarchitecture is open to extension outwith the options advertised by Tensilica,

and some companies have chosen to partner up with Tensilica in order to develop more diverse

ASIP solutions than those currently available. The XTensa DPU do not natively contain in-

struction set reconfigurability, and so the Stretch company has developed a technology dubbed

the Instruction Set Extension Fabric (ISEF) in order to allow dynamically defined data-flow

computation to be covered by single instructions. The latest in this series is the Stretch S6000

[17] SoC, the main processor of which is essentially the XTensa LX processor [122] core with

a “Second Generation” ISEF tightly coupled into the dual issue VLIW pipeline. The ISEF

itself consists of 4096 ALU capable of 2x4 bit standard arithmetic operations including mul-

tiplication; these can be chained up in order to perform operations of arbitrary bit widths. In

addition there are 64 8x16 bit multipliers which may also be chained into larger widths, 64KB

of single-cycle-memory “IRAM” split into 2KB chunks, a DMA channel to load the memory-

mapped IRAM, and multiplexors and shifters to transfer data around the ISEF. The intention

is that an entire loop kernel body can be mapped onto the ISEF including memory accesses,

but the ISEF is still fed by a 32-element 128-bit register file (which may be sub-element par-

titioned arbitrarily). The IRAM therefore should be used to store intermediate values, stream

data (such as a single macro-block of pixel values), filter coefficients, and various constants;

all of these may be fed to the unit via DMA hence freeing up the processor for other oper-

ations whilst the ISEF is communicating with memory. It is not stated in the literature how

the DMA “frees up” the main CPU, but it is likely that this just means that the ISEF can be

calculating one iteration whilst the values are being loaded for the next. VLIW implies that

there is not out-of-order execution allowed, and tight coupling implies that the ISEF will not

operate independently from the main pipeline. The S6000 is intended for Audio and Video ap-

plications, and a programmable accelerator is provided in combination with the ISEF-extended

XTensa core as a co-processor. The programmable accelerator provides a range of additional

high speed functions including the Tensilica HiFi2 audio engine [96], plus Encryption, Entropy

Encoding, and Motion Estimation accelerators. This range of application specific functional-

ity present in the S6000 SoC allows it to encode a single high definition h264 stream or four

standard definition streams in real time at 345MHz. The real strength of the architecture is in

providing an off-the-shelf solution for media streaming using modern codecs, demonstrating

the efficacy of partially reconfigurable ASIP when addressing a whole domain of applications.

69

3.3.9 Other Microarchitectures

• The PACT eXtreme Processing Platform [125] (XPP) which constitutes a coarse-grained

reconfigurable accelerator is combined with the static data-path LEON processor in

[126]. The XPP is normally used in a loosely coupled fashion, but in [126] it is used to

provide a reconfigurable instruction set extension microarchitecture by tightly coupling

it to the LEON data-path. The result is somewhat similar to the Stretch [17] devices.

• The RAW Processor [127] is a tiled multiprocessor in which the interconnect is directly

exposed to every contained processor via the RAW ISA. Any CPU in the RAW Processor

may reconfigure and utilise the communication network via this ISA, to facilitate the flow

of information between cores. Network access is a first-class member of the instruction

set, and can be used as a source or destination for an instruction instead of a register.

The RAW Processor is intended to be a proof of concept solution to the problem of

increasing chip resources and wire delay; the tiled chip and network combination is

infinitely scalable in terms of the wire delay as the longest link is the distance between

two adjacent cores. In addition to the dynamic network, parts of the RAW processor’s

cores can be statically connected via a static network in a manner similar to FPGA place

and route in order to create software circuits.

• Kress arrays [128] are a generalisation of systolic arrays, sometimes referred to as recon-

figurable data-path units (rDPU). Communication between elements in an rDPU is done

between nearest neighbour, The number and type of PE is determined at fabrication time;

the routing and selection of operations is done at configuration time. For example, the

work of [128] has an rDPU which contains every integer and bitwise operation accessi-

ble in C on every PE. Kress arrays are sometimes referred to as “anti-computers” due to

their lack of control flow, but this is perhaps a misnomer as all existing implementations

rely on a host core for control signals.

Of course the contents of this review cannot be all-inclusive; almost every institution or com-

pany which has approached the issue of next-generation reconfigurable or application-specific

microarchitecture has generated a new design. This review is intended to cover a sub-sampling

of the space of explored options to demonstrate the commonality and diversity simultaneously

present in the spectrum of designs.

3.4 This Work In Context

The umbrella hypothesis for this thesis is that: “The efficacy of ISE can be increased by im-

proving the microarchitecture, identification algorithm, and software form”. In particular we

are looking to reduce the cost-benefit ratio when using ISE with respect to engineering time,

acceleration, and energy.

70

3.4.1 The Need For Predictable Microarchitecture Cost and Benefit

In order to allow an algorithm to explore trade-offs in a design which will ultimately un-

dergo synthesis, some generalisations must be made. A good algorithm to explore the space

of ISE designs must have some model of the costs it is trying to minimise, be that the time

taken to run the application, the area of ISE implementation in silicon, or the energy ex-

pended to run the application. Existing academic ISE algorithms discussed in this chapter

[88, 91, 18, 20, 89, 90, 92, 95] do not have any way to predict the costs of their resulting imple-

mentation as they have no model of the microarchitectural implementation. The Configurable

Flow Accelerator introduced later is an attempt to provide an easily modelled microarchitec-

ture, the cost(s) of which may be integrated into the algorithm identifying ISEs as in later

section 5.5. The CFA is an explicitly-microcoded and instructed variant of the CCA discussed

in section 2.3.5. The CCA identifies common sequences of instruction to implement on the

fly as a single new instruction, however due to the instruction stream being a lowered form

free of much dependency information it cannot achieve the same degree of efficacy as a static

approach. This is the reason for the differences between the CCA and the CFA. Moreover the

additional hardware required for a CCA to dynamically identify, store, and replace instructions

on the fly is not required with a CFA.

3.4.2 Reducing Engineering Time

Prior work regarding the construction of algorithms for AISE have taken note of the trade-

off between the run-time of the algorithm and the quality of the result produced. The least

(linearly) complex algorithms such as MaxMISO [88] and MaxMIMO [91] are cheap in terms

of runtime but the results produced are not good: exploration is performed in terms of false

constraints put upon the search space in order to obtain a lower run-time. A similar problem

is true of the more complex clustering approach of Verma et al.[18]: the requirement for the

merit function to be monotonic with respect to the number of DFG nodes in a cut is only true

when you consider the problem definition and not the reality of the intended use of the result.

Complexities arising from the implementation of larger ISEs (such as routing, or other non-

linear effects not modeled by ISE algorithms) contribute directly to undermining the hypotheses

embodied by these algorithms. This work instead looks to take an already-proven algorithm [7]

based on the guidance of heuristics representing realistic engineering concerns, and looks to

improve its runtime by further making it aware of pathological conditions in its state that would

normally cause fruitless search. Taking a good algorithm and improving its runtime without

forcing additional constraints upon it that might otherwise disrupt the quality of its result.

71

3.4.3 Reducing Area

Having introduced a new microarchitecture for implementation of ISE, and having that mi-

croarchitecture explicitly exploit inter-ISE (spatial) resource-sharing by default, further reduc-

tions in area via resource sharing are still desirable. The original CCA work [12, 13, 14, 15, 16]

explored inter-ise sharing explicitly, as this was what the unit was designed for. It was not

shown that any attention was given to resource sharing intra-ISE, which could further allow

for a reduction in area without increasing runtime. Such efforts would add considerable com-

plexity to the CCA dynamic scheduling hardware, and would not reduce the size of the CCA

as much as increase the size of ISE possible to execute on it. With the CFA static-analysis

approach, we are able to focus on application-specific optimisation: optimising the area for the

statically induced ISEs of a known application. The later section 4.3 looks at this trade-off and

presents an algorithm for it.

3.4.4 Improving Acceleration

The original paper on the ISEGEN algorithm [7] gives a single static weighting vector to cal-

ibrate the heuristic used to guide the search. Ad-hoc observations made during the initial

implementation of this algorithm demonstrated that this was not in fact the case, motivating

further examination of the vector. We therefore perform a parameter-sweep exploration in sec-

tion 5.2 to locate a better static vector to provide a baseline in other work performed here. This

provides both an accurate measure of the efficacy of the original algorithm, and a methodology

for further experiments to calibrate and evaluate new ISEGEN heuristics, as in sections 5.4 and

??.

Pipelining has been explored in other work with regards to ISE identification [18, ?, 129],

but it has been with regards to the pipeline scheduling of inputs and outputs for a single large

ISE rather than the identification of multiple ISEs which are able to be scheduled in an over-

lapping fashion. These works are interested in trying to make sections covered by ISE as large

as possible, hypothesising that larger ISEs are better for runtime. Whilst this “bigger is better”

mentality is occasionally true for acceleration, there are again many occasions where it is too

costly to pursue with regards to other constraints such as area, and energy. Previous efforts also

involve increasing the effort required by a rather massive degree due to increasing the size of

the problem being processed by AISE. For example in one attempt to schedule I/O over multi-

ple cycles ?? the AISE algorithm had to be run repeatedly, once for each I/O constraint. Here

we hypothesise that rather than identifying single large single ISEs, multiple smaller ISEs can

instead be identified to increase the acceleration available at a given I/O constraint. Section 5.4

explores this hypothesis.

72

3.4.5 Reducing Energy Requirements

Exploration of low-power ASIP microarchitecture ([130], [27]) has been a subject of academic

and commercial interest for several years. In [131] the energy saving effects with regards to the

register file are examined when forwarding is employed, and up to 25% is found to be saved.

More directly relevant work includes [132], which was performed for FPGA and soft cores.

Whilst the analysis of the energy effects in FPGA fabric is useful, the question of what effects

ISE has when using standard cell libraries is also an important one. The energy effects of

combinational ISE in a standard cell technology are modeled in [133], and the work examines

energy savings in utilising a few (up to seven) large combinational ISEs. The ISEs produced

[133] are for some reason extremely low power in comparison to the host core (supposedly less

than 1% of the execute stage alone), which is claimed to be due to the simplicity of the AFU

circuits in comparison to the synchronous core (described only as “ARM-like”). No absolute

energy measurements are made in [133], preferring instead to cite the factor of change.

Energy estimation for extensible processors is explored in [134], but the approach is a

statistical one which must be trained. As mentioned in [133], where RTL models are available

as opposed to the C models used in [134] a statistical approach is not necessary as the hardware

may be synthesised and analysed directly. Both [133] and [134] are concerned with building

power models based on sub-components of ISE microarchitecture, as opposed to the approach

taken here in section ??. The work in this thesis directly measures the power and energy

performance of the whole system in order to evaluate the energy performance of the CFA

microarchitecture. Here a new energy heuristic is integrated directly into the ISE identification

algorithm, in order to identify ISE targeting energy reduction as well as acceleration.

3.4.6 Software and Hardware: Chicken and Egg

When we are designing application-specific hardware directly based on the structure of appli-

cation software, manipulating the structure of the software becomes akin to manipulating the

structure of the hardware. As with hardware, a single function in software might have multiple

possible realisations internally whilst still maintaining the same external behaviour.

Compiler transformations as discussed in section 2.6 are automated means of manipulating

the source code of an application, which in the context of AISE would also mean changing the

ISEs generated. Some early work was performed [37] to determine the effects of if-conversion

and loop-unrolling transformations. The work presented here in section 6.2 formalises the

number and sequence of transformations as a space to be explored, and performs a large-scale

sampling of said space. With a single starting source, many thousands of alternative versions

are produced in order to determine the effect that source transformation may have.

The use of floating or fixed point in a particular design is also a matter of transformation,

and since the trade-off has not been studied with regards to ISE, we do so here in section

73

6.3. The experiment is to determine whether ISE is disruptive to the traditionally held rules of

thumb regarding the choice of number format.

3.5 Summary

This chapter has taken a cross-section of the state of the art in processor DSE and the microar-

chitectural basis upon which this can take place. Both academic and industrial offerings have

been covered, demonstrating both the intellectual and commercial interest present in this field.

This thesis now moves on to the introduction of a new microarchitectural solution and

design methodology, to be used in the remainder of this thesis where appropriate.

74

75

4 THE REAL WORLD: ENABLING AND OPTIMISING HARDWARE

SYNTHESIS

“Reality is merely an illusion, albeit a very persistent one.”

– Albert Einstein

This chapter introduces the CFA microarchitecture, and a mechanism called “CFA Stagger-

ing” for improving the cost-benefit of CFA designs through temporal partitioning. The CFA is

demonstrated to be a cost-effective design for ISE implementation. Staggering is demonstrated

on average to reduce the area of CFA implementation by 37% for only an 8% reduction in

acceleration.

4.1 Introduction

As the previous chapters have covered, there are a very large variety of design options which

may be combined in various ways to produce a near-infinite number of design points. Au-

tomatic DSE in this space is therefore currently prone to a considerable amount of ad-hoc

pruning, largely by throwing out large classes of microarchitecture entirely from the explo-

ration process in favour of a smaller subset of options. High-level constraint decisions such

as which classes of microarchitecture to include, cost limits, and the application itself are the

major top-level inputs of an engineer to DSE [26]. The DSE process is able to instantiate a par-

ticular instance of a design, synthesise it, and retrieve important statistics which are then used

to determine the merit of that design [97]. For this reason, in order to perform DSE for the work

in this thesis, both the exploration process and the domain over which exploration is performed

must be defined in such a way as to allow for this to proceed without human intervention. For

our purposes, ISE is just a restricted form of DSE concerned only with the construction of a

suitable set of ISEs in the proposed microarchitecture. The aim of all the work contained in

this thesis is to make the process of ISE more efficacious, and this has to start with the choice

of microarchitecture.

The “Combinational Flow Accelerator” (CFA) microarchitecture introduced here has sev-

eral differences to the unclocked combinational logic implied by many ISE approaches. Inter-

ALU connections in a CFA are made at clock boundaries (referred to as echelons), rather than

in an ad-hoc unclocked fashion. This means that no multi-cycle latency ever exists, as all paths

within a CFA are single-cycle which is easier to synthesise and verify. Even in work such as

[23] where pipelining is used to mitigate I/O constraints, the pipelining effort is targeted at in-

creasing ISE I/O and so generating larger ISEs. Here, we are interested in an architecture that is

able to obtain comparable throughput with smaller and hence cheaper ISEs. Reconfigurability

76

is a core component of the CFA, although in this thesis reconfigurability is evaluated only as a

mechanism for implementing resource-sharing. Previous work performed [102] for the combi-

national ancestor of the CFA, the “Configurable Compute Accelerator” (CCA) has shown that

a selection process similar to that used herein is readily adaptable to perform domain-specific

acceleration rather than application-specific. The CFA is aimed to build upon an array of prior

work including the CCA and the ISEGEN algorithm [16, 14, 15, 102, 7], as has been covered

in previous chapters. Having the potential for domain-specific acceleration already proved for

CCA, we investigate further methods of making ISE more cost-effective and generally effica-

cious via CFA.

Whilst the CFA has not been specifically studied before, it is a worthwhile candidate for

use in the remainder of the research so long as it has cost within an acceptable range of the

baseline core that it is intended to extend [10], and is comparable to acceleration expected

of ISEGEN and other ISE approaches [7][20][21]. Performance optimisation for embedded

processors is subject to an exponential decay in the return on area when using commercial

ISE [97]. We therefore confirm in section 4.2, that the CFA also exhibits this trend, as a

due diligence concerning the viability of the technology in the real world. Commercial and

industrial products require further costs to be considered than just the gate area consumed.

With the ever-increasing demand for massively multifunctional mobile devices such as mobile

phones, power and energy consumption are now also first-class considerations. The effects of

CFA-based ISE on power and energy are hereafter evaluated, in order to demonstrate that the

CFA is efficacious in those domains. As per area, the power and energy consumption should

not dwarf the baseline or this approach can never be taken seriously in a realistic context.

Observations made in this first empirical section are used to guide later efforts in improving

the efficacy of the CFA automated design process.

The echelon-based structure within the CFA enables a particularly straightforward process

of temporal resource sharing; sharing hardware resources between operations at a different

time in the same ISE, as opposed to between different ISEs. Temporal resource sharing is

sometimes referred to as intra-ISE resource sharing, whereas spatial resource sharing is referred

to as inter-ISE resource sharing. Section 4.3 covers this temporal partitioning approach, called

“CFA staggering” due to its similarity to the loop staggering approach for increasing OLP. The

effects of this technique on the performance of the CFA design is studied in the latter section

of this chapter.

77

Fig. 4.1: Very generalised CFA, illustrating the Verilog modules and connection in the mi-
croarchitecture. The red arrows indicate the data plane, and the blue indicate the control plane.
Boxes labelled rA-rL are input registers, grouped into the 4-element vectors used in the En-
Core [10] extension interface. Boxes labelled rM-rT are output registers, again grouped as per
the EnCore. ALU are single-function; although control exists to select sub-functions such as
operand type, each ALU node performs only a single arithmetic operation.

4.2 Configurable Flow Accelerators

The microarchitecture selected for this work is the CFA, a variant of a previously studied

[16, 14, 15] reconfigurable ISE implementation. The CFA and the process by which it is

constructed are now introduced. The CFA is demonstrated to be a cost-effective design for ISE

implementation.

4.2.1 Introducing the CFA

Industry’s demand for flexible embedded solutions providing high performance and short time-

to-market has led to the development of configurable and extensible processors. These pre-

verified application-specific processors (ASIP) build on proven baseline cores while allowing

for some degree of customisation through user-defined instruction set extensions (ISEs) imple-

mented as functional units in an extended microarchitecture.

The CFA discussed throughout this document is a specific microarchitectural construction

similar to the CCA, but with some critical differences. The term CFA has been coined to distin-

guish this work’s contribution from that of Mahlke, Clark et al.[16, 14, 15] concerned with the

CCA. Figure 4.1 illustrates the microarchitecture of a single, very generalised CFA. As with

CCAs, multiple CFAs may be utilised in a single processor data-path in order to better cover

acceleration opportunities. CFAs do not include dynamic translation hardware [12], preferring

78

to allow for a reconfigurable ISA accessible at the architectural level. The baseline instruction

stream is used by CCA to extract complex operations dynamically. The instruction stream,

however, provides a lowered and hence less efficacious representation for complex operation

extraction, than higher-level compiler intermediate representations [135]. In place of the CCA

LUT, the CFA has a similar construction called the “Microcoded Control Unit” (MCU). The

MCU is mutable on the fly using special instructions to move horizontal microcode from mem-

ory into the MCU. In this way the MCU may be initialised with microcode embedded in the

executable binary, inserted statically at compile time.

More explicitly, the CFA is a reconfigurable functional unit (RFU) comprised of a number

of “echelons”, in sequence. Each echelon contains a number of single-function 32-bit scalar

ALUs, where every input of each is programmable on the fly via the beforementioned MCU.

Figure 4.1 demonstrates a CFA containing three echelons, each having six ALUs of a single

cycle latency each. Where ALUs are multi-cycle (e.g. Multiplication, Division), units are

pipelined and their routing skips over multiple echelons until they reach a point at which they

can return their result to a permutation module. The permutation and routing modules consist

of a number of registered multiplexors, one for each input to an ALU that follows.

An echelon is therefore N 32-bit M-input multiplexors, followed by N registers, followed

by ALUs with total of N inputs, each attached to one register. M equals the number of inputs

to the multiplexor layer, and N represents the number of outputs. The echelon comprises a

single clock cycle. In order to prevent the critical path of an echelon from exceeding the clock

period, the number of inputs to a multiplexor is capped, and hence there is a worst case for

the latency possible. Moreover, multiplexors from N=2 to N=limit are synthesised up front in

order to determine the range of latency. The ALUs are all pre-synthesised with input latencies

equal to the largest possible multiplexor delay, to guarantee that we can meet the clock period.

In order to configure the CFA for an instruction, we therefore require several lines of mi-

crocode: one for each layer of the CFA that is used. The microcode includes fields to control

each of the multiplexors and the register-enable that they feed. For example in figure 4.1 we

would have four lines of microcode to control each of the permutation layers. The first of these

would be taking 12 inputs (grouped here as three four-element vectors as per the EnCore exten-

sion interface), amounting to 4 bits (ceil(log2(numbero f elements))) per multiplexor, of which

there would be twelve. Setting each of these fields would route the selected echelon input to

the appropriate ALU input. Registers are also required to be enabled, which in this case adds

an additional 12 bits to the line. The first line of microcode for figure 4.1 is therefore (12*4) +

12 = 60 bits.

Between the ALU-internal pipelining and the permutation and routing modules we have

the balanced pipeline that constitutes the CFA. Where there are multiple results expected from

an ISE running on the CFA, or where the result is expected to be returned in fewer cycles than

the CFA pipeline constitutes, there are additional unclocked multiplexors from the results of

79

such operations to forward their result directly to the final stage of the CFA.

CFAs by their very programmable nature implicitly share resources between ISEs; a single

CFA is intended to cover many different extension instructions. Configuration memory in the

MCU selects the routing and permutation required at each stage in the CFA pipeline. CFAs are

designed to allow for exploiting temporal parallelism as well as spatial: CFAs are pipelined to

allow single-cycle initiation interval, whereas CCAs are combinational and have a multi-cycle

issue latency.

CFAs are constructed by a greedy algorithm similar to the greedy algorithm used to solve

the knapsack problem. Modifications are made because the “cost” of two ISEs merged into a

single CFA is not additive due to resource sharing, as illustrated in algorithm 2.

Algorithm 2 CFA Construction Algorithm, used to convert ISEs as DFGs into a CFA model
under area and latency (represented as multiplexor input width) constraints, and select a good
combination for implementation. As implemented in the uarchgen tool.

1. Instantiate an empty list L of the CFAs to be included in the final hardware model.

2. The list of ISEs is converted to CFA Object Models, and ordered descending by their
impact on application acceleration (merit), to produce the list S of candidate single-ISE
CFAs.

3. If a limit is imposed on the maximum number N of ISEs, the list S is reduced to only the
top N by merit.

4. Iterate through the list S in order; for each CFA C ∈ S:

(a) Merge C with all CFAs in L to create a new, list M.

(b) If no CFAs yet exist in L and if C meets area constraints, add C to L and move to
next C ∈ I.

(c) Remove any CFAs in M which has area (including sum of CFA ∈ L) greater than
the area constraint, or a permutation and routing module with input width greater
than the width constraint.

(d) If M is empty, all merged CFAs either broke area or input width constraint, so add
C to L.

(e) If M is not empty, Locate the merged CFA in M with the least area increase from
merging with C. Add this back into L, replacing the original CFA merged to create
the new CFA.

5. Take the now-populated list L and emit each CFA Object Model as a Verilog structural
model with associated synthesis flow scripts and test-bench.

The width constraint of algorithm 2 must be set to ensure that the latencies of the permu-

tation and routing modules (see figure 4.1) do not have excessive latency (and hence require

further pipelining). In practice this limits the size of individual CFAs, but if a single CFA

breaks the input width multiple CFA will be generated instead. Throughout this thesis, the

width constraint is set to 38, as this has been found to perform well with the 130nm standard

80

cell libraries used. Without this limit, the CFA latencies for ISEs can wander outwith those

prescribed by the model described in section 2.3.1, due to excessive multiplexing delay.

Algorithm 2 and the CFA structure are related, as the echelon structure of the CFA allows

for the resource-sharing (CFA merging) used in the DSE process to operate in a very simple

fashion: Where an asynchronous design would have to deal with real-numbered latencies dur-

ing resource sharing, when two CFAs are merged all that needs to happen is iteration through

the echelons of one CFA adding ALU from the other where these are not already present. The

runtime of the CFA “Merging” process is therefore very low; linear in the number of ALU

in the largest of the two CFAs merged. When constructing a single-ISE CFA such as before

merging in algorithm 2, there is a directly implied assignment of ALU operand source and

sink. ALU source operands are mapped to the first echelon where all inputs are available. An

ALU sink operand is mapped to the echelon existing at the cycle resulting from adding the

source cycle to the number of cycles (integer) that the ALU takes to produce a result. Prior

to CFA construction all ALU types which are to be used (e.g. Add, Multiply, etc) are taken

from DesignWare and synthesised. Pipeline registers are added to ALU where necessary and

timed to preserve the clock frequency desired. Input and output delays are included in ALU

module synthesis constraints to allow for multiplexing time. Each ALU hardware latency (in

cycles) is therefore known in advance. This preparation allows the CFA construction to operate

in the knowledge that the design will close timing, removing the need for feedback from CFA

DesignCompiler synthesis. The I/O delay allowance generally increases the area of each ALU

by a little to produce a faster implementation, but is necessary to close timing in the face of

multiplexing delay. Having pipeline registers pre-balanced for the clock frequency required

removes the need for further re-timing when the CFA is synthesised, and so makes Design-

Compiler synthesis faster; fast synthesis is a desirable property when attempting to perform

DSE.

Additional optimisation of CFA merging could be undertaken by relaxing the ASAP map-

ping ALU to echelon, but the emphasis here was placed on creating a fast baseline automated

C-to-gates flow:

An application is taken and processed by ISEGEN for suitable ISE candidates. A subset of

these ISE candidates, which fulfil area constraints when combined together into CFAs are se-

lected. The effect on cycle count is calculated for the CFA-based ISEs selected, via the model

of section 2.3.1 The CFA(s) are then emitted as a synthesisable Verilog extension to a baseline

core. Gate-level synthesis combined with RTL simulation and power analysis tools are then

used, to determine the area and power performance of the generated microarchitecture. Further

calculations detailed later in this section are performed based on the cycle counts and power

measurements to produce energy consumption results. Figure 4.2 illustrates the flow used for

the experiments in this section, and indeed in future sections where synthesis is used to deter-

mine power and area. The flow is entirely automated, performing design space exploration over

81

Fig. 4.2: Tool-chain Flow for Experiments: Green indicates tools developed for the work of
this thesis, by the author. Yellow indicates existing commercial tools taken to complete the
flow.

multiple constraints in order to locate a suitable microarchitecture. CFA can be (re-)configured

post-synthesis, although this feature is not the focus of this thesis. CFAs are treated here simply

as a microarchitecture for the implementation of a statically known set of ISEs. This section is

concerned with validating this basic design flow.

Power consumption is an extremely important factor in todays high-speed mobile embed-

ded devices. The use of Instruction Set Extension (ISE) has been frequently proposed as a

potential solution for acceleration of application execution, and a fair amount of work has been

done to determine the energy performance of standard combinational ISEs.

Exploration of low-power ASIP microarchitecture ([130], [27]) has been a subject of aca-

demic and commercial interest for several years. More directly relevant work includes [132],

which was performed for FPGA and soft cores. Whilst the analysis of the energy effects in

FPGA fabric is useful, the question of what effects ISE has when using standard cell libraries

is also an important one. The energy effects of combinational ISE in a standard cell technology

are modelled in [133], and the work examines energy savings in utilising a few (up to seven)

large combinational ISEs. The ISEs produced [133] are for some reason extremely low power

in comparison to the host core (supposedly less than 1% of the execute stage alone), which

is claimed to be due to the simplicity of the AFU circuits in comparison to the synchronous

core (described only as “ARM-like”). Due to the lack of any absolute power measurements

[133] in favour of relative comparisons it is hard to make any concrete comparisons between

that work and this. In [133] the energy saving factor is found to be just above the acceleration

factor. Energy estimation for extensible processors is explored in [134], but the approach is a

statistical one which must be trained. As mentioned in [133], where RTL models are available

as opposed to the C models used in [134] a statistical approach is not necessary as the hardware

may be synthesised and analysed directly. Both [133] and [134] are concerned with building

power models based on sub-components of ISE microarchitecture, as opposed to the approach

taken here which involves directly measuring the power and energy performance of the whole

system in order to evaluate the energy performance of the CFA microarchitecture. In [131]

the energy saving effects with regards to the register file are examined when forwarding is em-

ployed, and up to 25% is found to be saved. The reduction in energy due to reduced memory

access and register file pressure is not considered in the work presented here, but all ISEs with

82

a depth of two or more operations should make such savings; they remove the need for at least

one temporary variable to be maintained in a register. The energy model contained herein is

therefore somewhat conservative in predicting energy benefits from CFA-based ISE.

It has been found in this work that the use of CFAs can make energy consumption either

better or worse, largely depending on the area of the CFAs used. In the best case for energy,

47% is saved from the baseline energy consumption in addition to an increase in speed of 81%.

This confirms that it is possible to have both acceleration and an increase in energy efficiency

when using automatically synthesised CFAs to implement ISE in standard cell technology.

4.2.2 CFA Design Space Exploration Methodology

In order to demonstrate the performance effects of ISE when combined with a standard micro-

processor, a selection of tools have been utilised. The combination of such tools into a flow is

given in figure 4.2. The locally developed tools, specific to ISE and CFAs are:

• gcc.emitcdfg; A modified version of GCC which takes applications as input and produces

XML-formatted DFG representing the application. The GNU Profiling extensions to

GCC are used to determine the per-basic-block execution counts, which are annotated

onto the emitted XML.

• isegen; An implementation of the ISEGEN [7] algorithm, taking XML-formatted DFG

as input and producing XML-formatted partitioned DFG as a result. The partitions di-

vide each software DFG into a number of ISE candidates and the remaining software

(baseline) operations.

• uarchgen; Performs the selection phase of ISE generation, in the form of algorithm 2

which takes as input the XML-formatted partitioned DFG and the design constraints

(area, width, maximum number of ISEs). Once selection is performed the tool emits

a fully-synthesisable structural Verilog model of the CFA microarchitecture (see figure

4.1). We thereon have an implementation of the selected ISEs, profiled cycle counts for

hardware and software, and a behavioural test-bench to stimulate the CFAs for power

analysis.

DesignCompiler, PowerCompiler, and ModelSim were used for the synthesis from struc-

tural RTL Verilog to gates, the simulation of the RTL model, and power analysis of the gate-

level model. The full tool-chain used in this experiment is given in figure 4.2. The baseline

core used in this work is a 32-bit five-stage EnCore microprocessor [10] with a maximum clock

frequency of 250MHz in the 130nm standard-cell libraries used. EnCore is capable of having

instruction-set extensions with twelve inputs and eight outputs tightly coupled with the main

core. Power analysis of the EnCore has determined that it has a dynamic power consumption

of 70uW/MHz, and static power consumption of 0.45mW. This corresponds to an operational

83

power consumption of 17.95mW at 250MHz (including caches). The EnCore takes 1mm2 in

the 130nm process used. A floating point unit (FPU) has been synthesised to support the base-

line case in each of the benchmarks which utilise floating point. In the process used, the single-

precision FPU consumes 26.8mW (107uW/MHz) dynamic power, 0.36mW static power, and

0.132mm2 gate area. These power measurements are used to represent the power consumed

whilst operations not assigned to instruction set extensions are processed. The FPU is included

in the model for benchmarks which utilise floating point. To determine the average energy

consumption per application with both baseline and extended cores, the number of software-

only clock cycles is profiled through a linear model: The latencies of instructions in each basic

block are added up and multiplied by the execution count of the basic block. These values are

summed over all basic blocks to produce a total cycle count for the application executed in

software. This cycle-count calculation is as per the model of section 2.3.1.

The number of cycles removed per-ISE is modeled in a similar manner: The number of

cycles taken by an ISE in hardware is subtracted from the number of cycles in software, and

is multiplied by the number of uses of that ISE. Seven kernels and one large application were

selected as benchmarks for analysis in this manner. The kernels selected were taken from the

SNURT [?] and UTDSP [136] Suites. The suites were chosen due to their being familiar to

the author through previous work with ISE. When dealing with kernels, it is important to con-

centrate on the kernel itself and not any surrounding ”test harness” execution, in order to avoid

obscuring the results. The kernels represented here are clean, straightforward implementations,

with little overhead from test harness code. Kernels of this sort ought to be very similar from

one benchmark suite to the next. Any a-priori optimisation for classical computer architectures

would be unsuitable.

These kernels are chosen as a representative set of functions which one may expect to be

implementing in a DSP environment. With the ISEs in this thesis covering only data-flow,

these are the kernels one would expect to actually glean a benefit from their use. The kernels

represent a range of complexity, number format, and OLP:

• SNURT CRC (Cyclic Redundancy Check; Integer). Fairly low OLP; simple implementa-

tion of the CRC algorithm. Contains significant control-flow which breaks up up sections

of dataflow. Largest graph size is 24 nodes.

• SNURT JFDCTINT (JPEG Forward-DCT; Integer). High OLP; quite flat implementation

of an integer forward-DCT as used in the JPEG standard. A realistic target for ISE, as

similar algorithms are used in various forms of media encoding and decoding. The lack

of control flow puts a larger strain on the ISEGEN algorithm, as graph sizes are up to

101 nodes - significant when considering the search space size for the problem definition

is 2101.

84

• UTDSP FFT 1024 (1024-point Fast Fourier Transform; Floating Point). Medium OLP;

A very common algorithm in DSP, straightforward implementation of the algorithm with

no optimisation. Largest graph size is 35 nodes: towards the upper end of what an

exhaustive algorithm could explore.

• UTDSP FIR 256x64 (256x64 Finite Impulse Response Filter; Floating Point). Very high

OLP; main body of this kernel is very wide and flat, and would normally represent a

very good target for vectorisation via SIMD. The algorithm itself is very simple, and

provides a good baseline for how well ISE can perform in the face of embarrassingly

parallel applications. Largest graph size is 185 nodes.

• UTDSP IIR 4x64 (4x64 Infinite Impulse Response Filter; Floating Point). Medium OLP;

of similar level to the FFT 1024. Again, a very common algorithm in DSP, somewhat

similar to FIR but here has a smaller window size which narrows the OLP. Largest graph

size is 34 nodes.

• UTDSP LATNRM (32x64 Normalised Lattice Filter; Floating Point). High OLP; this is

the most complex and largest of the benchmarks here, but does not contain the greatest

amount of OLP. The largest graph size is 426 nodes, far outside the realm of something

many AISE algorithms could even process. This is included to stress the algorithm to

its limits; the largest graph is both wide and tall, representing a considerable amount of

complex data-flow.

• SNURT MULT 10x10 (10x10 Matrix Multiplication; Floating Point). Medium OLP;

Conceptually the simplest benchmark here, somewhat similar to FIR in structure. A

generic operation that would appear repeatedly in a DSP setting. Largest graph size is

58 nodes.

The application selected is the FAAD AAC (Free Advanced Audio Decoder; Fixed Point/In-

teger). This larger application has been selected to determine the effectiveness of this synthesis

technique on a real-world application, rather than just small kernels.

Each benchmark is first processed by the gcc.emitcdfg and isegen tools to produce a profile-

annotated list of DFG and their partitions into ISEs and software (RISC operations). At this

point, the uarchgen tool is run without any area restrictions to determine the maximum area

required to implement the instructions using the CFA microarchitecture. The uarchgen tool (see

algorithm 2) is then run again with incremental area constraints, from 0.1mm2 to the maximum

area used in steps of 0.1mm2. The larger AAC application is sampled at 0.5mm2 intervals past

8.5mm2 due to the uneventful continuum of results past that point, and the long time taken

by DesignCompiler to synthesise larger designs. Most acceleration has already been exploited

before this point so this does not effect the quality of the results. The resulting CFAs are

processed by Design Compiler to produce an SAIF (Switching Activity Interchange Format)

85

forward-annotation file. The test-bench produced by uarchgen for each constrained design

point is used to stimulate the CFAs under test in ModelSim, which produces an SAIF back-

annotation file. The back-annotation SAIF is read back into PowerCompiler, and a power report

is produced giving the average dynamic power consumption and static power consumption.

Once dynamic and static power consumption has been determined, the values are combined

with the other measurements to produce an overall result for energy consumption for each

design point. A description of this energy efficiency model follows.

Energy Efficiency Model Variables
F : Clock Frequency (250MHz)

Esw: Software-only (baseline) energy consumption.

Ehw: Energy consumption after extension.

Psw: Combined dynamic and static power consumption for the baseline processor during exe-

cution.

Psw cg: Power consumption for the baseline core whilst CFAs are active (reduced compared to

Psw due to clock-gating).

Phw: Power consumption of CFAs during ISE execution.

Phw cg : Power consumption for CFAs when ISEs are not being executed.

Csw: Number of cycles for software-only execution.

Ccov: Number of software cycles covered by CFAs.

Chw: Number of cycles spent executing ISEs on CFAs.

Energy Efficiency Model

Esw = (Csw/F)∗Psw

Ehw = (((Csw−Ccov)/F)∗ (Psw +Phw cg)

+

((Chw/F)∗ (Phw +Psw cg))

The model assumes clock-gating with a single enable signal for the entire extension logic

at-once; hence dynamic power for CFAs will be consumed only when units are actively pro-

cessing extensions. In addition, the EnCore is clock-gated such that the dynamic power is 95%

less than peak when CFAs are executing ISEs.

4.2.3 Analysis of the Efficacy of CFA

In this subsection we present and discuss the results produced in the experiment described in

the previous subsection.

86

AAC (FAAD)

Ultimately the goal of ISE synthesis techniques is to enable automated synthesis for large

applications, such as those used in consumer embedded electronics. FAAD represents a valid

example of such an application, and in order to prove the validity of the above CFA design

process it is used here with exactly the same tools and methodology as has been used with

the kernels. The first observation made was one outside of the original experiment. Despite

presenting around a hundred times more DFGs to the isegen tool, the runtime was less than that

of some of the “smaller” kernel benchmarks. Since the runtime of isegen is sensitive more to

the size of individual graphs than to the number of graphs in an application, large applications

are tractable assuming they do not contain any excessively large basic blocks. Since unrolling

was not employed for this larger application, the size of the basic blocks are not large enough to

cause problems for the analysis performed here. The kernels of FAAD are comparable in scope

and function to the kernels in the UTDSP benchmark suite. It should then still be tractable to

process FAAD with ISEGEN, if unrolling were performed. Manual unrolling was employed

for the kernels due to a lack of GIMPLE-level loop unrolling in the version of GCC used. It

was not feasible to manually unroll the critical subsections of FAAD in the time available.

Unrolling of FAAD would result in higher acceleration and energy savings results, but the

results presented here are still valid if not optimal.

The uarchgen CFA construction process (algorithm 2) explained earlier in this section is

fast due to its partially greedy approach. The design space (figure 4.3) generated by the uarch-

gen has the characteristic shape [97] generally encountered in acceleration-area trade-off. Less

than five seconds was required in all cases for uarchgen to process each design point and emit

results, and the runtime is approximately linearly correlated with the area limit used. At the

very low areas, there is not enough area to properly accelerate critical subsections. At around

0.8mm2 acceleration of the compute kernels begins to become effective, with the area expend-

able becoming enough to approach the hottest subsections of the FAAD codec. Due to the large

volume of different kernels and potential ISEs, the trade-off between area and acceleration be-

comes near-linear between 1.8mm2 and 5.8mm2 with a gradient of 5.2%/mm2. At 5.8mm2

(51.3% acceleration) the return on expending more area becomes massively diminished, with

the remaining 7.31mm2 (to the maximum 13.11mm2 of the space contributing only an extra

4.26% to application acceleration (maximum acceleration for all ISEs 55.52%). This is typical

of other ISE methodologies [97], and the emergence of this trend in these results is a good

validation of the synthesis technique.

Energy results for FAAD do not demonstrate a massive benefit, but there is a subsection of

the graph (0.8mm2 to 2.6mm2) in which there is a small advantage from the use of ISE. From

this subsection of the graph there are two points of particular note:

1. At 1.8mm2 the energy consumption is 10.9% improved over the baseline, in addition to

87

Fig. 4.3: Acceleration and Energy per-area-constraint for AAC Decode (FAAD). The acceler-
ation series demonstrates the classic exponential decay in return (acceleration) on investment
(gate area). The energy series demonstrates a net saving in energy from the use of CFAs be-
tween 0.8mm2 and 2.6mm2. Including energy in our exploration allows us to take this cost into
consideration when selecting a design point.

an acceleration of 30.7%. This is the best case for energy consumption.

2. At 2.6mm2 the energy consumption is 1% improved over the baseline, in addition to an

acceleration of 36.5%. This is the best case for acceleration where energy performance

is not worsened.

With this synthesis methodology the energy improvements are small for this full application,

however, the energy is at least not worsened for a considerable stretch of the graph. One

might expect that energy would increase with addition of acceleration hardware, however, the

reduction in delay effectively offsets the increase in power until around 2.6mm2. At that point

the increase in power for the larger CFAs constructed past this point is in excess of the energy

benefits from lower delay. If lower energy rather than acceleration were desired from a design

synthesised in this fashion, the clock frequency could be reduced by the acceleration factor, and

voltage could be reduced by the square of the clock frequency reduction. It should be noted

again that this work does not involve any scaling of the clock or voltage.

88

Fig. 4.4: Energy per-kernel and per-area-constraint. The uarchgen tool area constraint, is set
from 0.2mm2 up to the maximum for each kernel, in 0.1mm2 increments. The only kernel not
receiving a net energy saving over its entire series is SNURT JFDCTINT. For it, the power
requirements of the larger OLP-exploiting ISEs cause the CFA to become an energy burden
after CFA area grows above 1̃.4mm2.

Kernels

The energy efficiency of the CFA-based ISE generated for each application and area combina-

tion gives the percentage of energy relative to the baseline EnCore when using ISE based upon

the CFA microarchitecture to accelerate it. The graph in figure 4.4 gives the energy efficiency

of the CFAs produced at each of the application/area constraint pairs. We can see that kernels

obtain considerably better improvement in performance than FAAD, but this is largely due to

their number format and smaller scope as we now discuss.

The JFDCTINT benchmark is the closest to the FAAD application in terms of the trend

observable in its energy performance under CFA-based ISE. It is also a fairly large portion of a

real-world application (JPEG encoding), and does not include the FPU. The EnCore consumes

a very small amount of power (17.95mW) without an FPU. Extensible cores which consume

more power (in the same process as this) will obtain a larger energy improvement factor, as-

suming they are judiciously clock or power gated as per the energy model of this section.

Those kernels which include the FPU have a baseline power of 45.11mW, which increases

the relative energy efficiency of CFAs versus the baseline core. This experiment was previ-

ously performed without the FPU consideration, and those floating-point benchmarks which

89

Fig. 4.5: Acceleration per-kernel and per-area-constraint. The uarchgen tool area constraint, is
set from 0.2mm2 up to the maximum for each kernel, in 0.1mm2 increments. As per figure 4.4
the FIR and LMSFIR series share similar features, because they share similar code. The FIR
function alone is more trivially accelerated than the additional least-mean-squares processing
of LMSFIR, as FIR contains wide OLP. These kernels generate only a few ISEs due to their
compact nature. There are not enough ISEs generated to exhibit the power-law which results
in the exponential decay of ROI seen in figure 4.3. The selection process (algorithm 2) is
less efficacious in the face of fewer ISEs, breaking monotonicity here for FIR, LMSFIR, and
JFDCTINT.

now see only positive benefit demonstrated a trend closer to that of FAAD. Even without the

FPU consideration, many of the kernels were still much better aided by ISE than FAAD is.

JFDCTINT itself receives a considerable positive energy benefit for some portion of the area,

so other forces are in play than the inclusion or exclusion of an FPU.

The graph shows that all but one (JFDCTINT) of the smaller kernels receive energy benefit

up to and including their area limit. The concentration of OLP-rich computation in the ker-

nels, versus the more sparse OLP in FAAD is a large contributor to the difference in trends.

Specifically, the Amdahl acceleration limit described in section 2.3.4 is on average 2-3x higher

for these kernels than they are for FAAD. The individual kernels are more regular, leading

to a number of similar ISE structures. The regularity is especially strong after the unrolling

effort undertaken for these individual kernels, which was not performed for FAAD. The regu-

larity leads to very effective resource-sharing between the resulting similar ISEs and so smaller,

lower power CFAs result. FAAD on the is very diverse, containing kernels with very different

90

data-flow, convolution and encoding being two examples. The resulting diversity of ISE struc-

ture inhibits effective resource sharing. FAAD is also very big, with “live” code-size larger

than the largest kernel (JFDCTINT) by a factor of around 1000. A larger portion of the FAAD

application is therefore not at the maximum “hotness” for the application, as the execution time

is spread around the source-base.

An interesting feature we can see in figure 4.4 is the similarity of the trends for FIR and

LMSFIR, which share very similar sections of code. We can see the same shape in the trade-off

being made between energy and acceleration versus power. In particular, features at 1.7mm2

and 2.4mm2 are due to the inclusion of a particularly large ISE that appears in both kernels,

but does not benefit acceleration as well as a combination of smaller ISEs. The lack of mono-

tonicity in figure 4.4 is somewhat problematic, and is due to the sub-optimal greedy approach

of algorithm 2. Kernels will, however, be the most prone to this lack of monotonicity, as they

contain a fewer number of much higher-coverage ISEs. Real applications such as FAAD ex-

hibit a trade-off curve much closer to the monotonic function expected [97].

Deriving from the observations made on energy effects here, and in [132], alongside the

model of energy efficiency given earlier in this work we present the following heuristic; any ISE

which satisfies the following inequality should contribute a positive benefit to energy efficiency:

Cise sw: Cycles taken to execute this ISE in software.

Cise hw: Cycles taken to execute this ISE in hardware.

Cise sw/Cise hw ≥ (Phw +Psw cg)/(Psw +Phw cg)

This will be used in work later in this thesis, to be added to the ISE identification (isegen)

tool’s heuristic in order to optimise directly for energy consumption, rather than acceleration.

For the purposes of acceleration, we can see from figure 4.5 that an iterative evaluation of

design points between zero and the maximum desired (or possible) area is beneficial to choos-

ing a suitable design point, as algorithm 2 does not produce a completely monotonic series

for area versus acceleration. Larger CFAs do not benefit acceleration much over their smaller

counterparts in all cases, and sometimes a lower acceleration results at higher areas outwith

the maximum (FFT, FIR, LMSFIR). Energy effects are also sometimes better at lower than the

maximum acceleration possible, for example in MATMUL. Whilst the lack of monotonicity

in area versus acceleration is a little disappointing, as has already been covered it is somewhat

inevitable using the greedy algorithm 2 and a small number of ISEs. We would not expect the

graph of energy versus area to be monotonic, however, because energy is not the selection ob-

jective. For now we can see, however, that the CFA-based ISEs are capable of reducing energy

as seen in other related work, that the acceleration produced is of a level also seen in other

related work, and that algorithm 2 functions acceptably and with more efficacy as the size of

the problem increases.

91

Benchmark Average Area:Power Ratio σ

SNURT CRC 30.7:1000 0.51
SNURT JFDCTINT 31.17:1000 1.13

UTDSP FFT 26.57:1000 2.16
UTDSP FIR 22.12:1000 2.64
UTDSP IIR 24.44:1000 2.22

UTDSP LATNRM 24.41:1000 2.37
UTDSP MULT 23.92:1000 3.04

FAAD AAC 31.66:1000 0.81

Tab. 4.1: Average ratios of area (mm2) to power (mW) in the eight benchmarks tested, with
associated standard deviations over the samples in each.

Correlation between CFA Area and Power

These results also show a good correlation between the area and dynamic power of CFAs,

as shown in table 1. Integer benchmarks CRC, JFDCTINT, and FAAD have a very similar

area:power ratio, as do the other floating point benchmarks. This correlation is useful in de-

signing heuristics which are energy-aware, as estimation of area is already reasonably accurate

when treated as a “sum of parts” for the individual module areas. This correlation will be used

in further work to improve the identification algorithm (isegen) heuristics in order to direct the

search towards energy-efficient CFAs.

92

4.2.4 Conclusions

This section has been concerned with determining the various performance effects of CFA-

based ISE. A number of conclusions regarding these effects may be drawn:

• This work demonstrates empirically that it is possible to obtain both a reduction in en-

ergy consumption and acceleration by utilising ISE in standard cell technology. Energy

reduction of 54.4% was obtained in combination with acceleration of 83.3% in one case

(LATNRM); similar performance was noted in other kernels.

• Small kernels obtain greater improvements in both energy and acceleration than larger

applications.

• There is a near-linear correlation between the die area of CFAs and the power consumed

by them when active.

• CFAs which are smaller tend to have better energy efficiency due to the lack of fine-grain

clock gating.

• There is a diminishing return on energy savings as the size of the extension logic in-

creases, in addition to similar diminishing returns on acceleration. This is particularly

true of larger applications.

• The CFA microarchitecture and construction algorithm 2 employed here are valid for

large applications, and produce a more monotonic trade-off curve in such an event.

The CFA construction used in this section is now carried forwards into future sections as the

microarchitectural basis of the ISE considered in this thesis.

93

4.3 CFA Staggering Methodology

CFA designs are sometimes prone to becoming considerably deep, with the functional units

closest to the inputs being the most heavily shared and the latter units being under-utilised. In

order to address this issue, a methodology for dividing a CFA up into successive temporal par-

titions and further merging these new subdivisions is now proposed and evaluated. Staggering

is demonstrated on average to reduce the area of CFA implementation by 37% for only an 8%

reduction in acceleration.

4.3.1 Trading off Space for Time

Combinational ISE can make use of a number of distinct techniques for reducing the latency of

a particular instruction; most notably accumulating differences between the clock period and

operator latency in serial, and utilising parallelism between operators. CFAs do not make use

of the serial overhead accumulation because of the echelon-based resource sharing. Instead

CFAs may make use of pipelining (temporal) and operator-level (spatial) parallelism. The

former temporal parallelism can only be exploited where there are two instructions utilising

CFAs executing in an overlapping fashion, which whilst not uncommon is not the case in all

situations. In addition, initiation intervals between the two overlapping instructions are not

always a single cycle. These observations lead to the idea that temporal parallelism can be

traded off with temporal resource sharing, further improving the cost-benefit performance of

the CFA microarchitecture for a given application. The later section 5.4 studies the potential

for temporal parallelism in ISE, whilst this chapter continues to ignore it in favour of exploring

only the acceleration from spatial parallelism as per the common model of section 2.3.1. It

was noted during the earlier work performed for this thesis that some CFAs were extremely

large compared to their EnCore host core. Overhead is up to a factor of 15x in some cases (e.g.

in the presence of a large and diverse application such as FAAD). The temporal parallelism

potential of the CFAs produced were noted to be often much greater than the potential temporal

parallelism of the underlying applications. A method was required to trade off a CFA’s potential

parallelism for a reduction in area, as potential which cannot realistically be mapped is not

useful in a design.

The ISE templates as DFG which are given as inputs to the CFA construction process out-

lined in section 4.2 will all be meeting input and output port constraints. The process proposed

herein is to take each ISE and further partition it. The process is similar to the loop staggering

transformation performed as a compiler optimisation for VLIW and other architectures craving

OLP and better data-locality [137]. The major difference between loop staggering and CFA

staggering is that the former is done in order to increase OLP or data locality in a loop struc-

ture, and the latter is done to increase resource sharing and does not improve OLP. An example

of CFA staggering can be seen in figure 4.6. The original ISE is taken and partitioned into

94

sub-ISEs by dividing the critical path into pieces with length targeted at a given cycle interval

I, using algorithm 3.

Algorithm 3 Staggering Algorithm.
d f g stagger(DFG, I,SUBS)
00: SUBS⇐{}
01: foreach(node n ∈ DFG)
02: n.input delta⇐ cycle at which n reads inputs
03: endfor
05: min cycle delta⇐ 0
06: max cycle delta⇐ I
07: while(∃ unmarked nodes ∈ DFG)
08: repeat delta⇐ f alse
08: working C⇐{}
09: foreach(unmarked node n ∈ DFG)
10: if(n.input delta >= min cycle delta AND n.input delta < max cycle delta)
11: if(adding n to working C will meet I/O constraints)
11: add n to working C
12: mark(n)
13: else
12: repeat delta⇐ true
13: endif
13: endif
14: endfor
15: add working C to SUBS
11: if(repeat delta == f alse)
16: min cycle delta⇐ min cycle delta+ I
17: max cycle delta⇐ max cycle delta+ I
13: endif
18: endwhile

The complexity of the algorithm is (where V is the set of vertices ∈ DFG) O(|V |2/I) in

the worst case, which represents the case where a DFG is a single dependent string of unary

operations with no OLP. This pathological case does not represent the more likely candidates

for analysis, which generally form a set of partially balanced trees. Another way of expressing

this complexity is (where CP is the critical path of DFG) O(|V |.CP/I), and since CP is almost

always less than 20 cycles and N must be at least 1, in the general case the algorithm can be

said to have complexity of O(|V |). This linear complexity is a great advantage of the algorithm,

which is kept simple so as to promote rapid evaluation of design points in an iterative DSE

scenario.

In the example of figure 4.6, the length targeted is a single cycle. Operators longer than a

single cycle may cause staggering to produce subgraphs with a latency longer than the target,

by up to the latency of the operator minus one cycle.

The relevance of I in algorithm 3 is to the potential temporal parallelism of the underlying

95

Fig. 4.6: Staggering applied to a simple DFG. The DFG is divided into temporal partitions, as
indicated by horizontal lines. The CFA representation is shown on the right, demonstrating the
DFG represented in the CFA after construction based upon the temporal partitions extracted
from the DFG on the left after staggering.

target application; specifically it is related to the data initiation interval (DII) of a particular ISE

within the target application. This algorithm was designed such that where the DII is known for

a particular ISE, the value I can be set to balance the result latency of the resulting CFA against

the required DII. In many cases, I should be set to the hardware latency of the ISE in question

divided by the DII required. This balancing can yield the result wherein the ISE can still be

executed to yield the targeted DII, but with a temporally partitioned DFG such that partitions

of the ISE would be interleaved in time in order to achieve the desired result. Staggering could

therefore be combined with the approach given in section 5.4 in order to maintain low DII for

just the ISE where this is useful. ISE overlap may be ignored, and staggering can be used

just to improve resource-sharing efficacy and hence area utilisation under the original model of

section 2.3.1. This section evaluates such a scenario, and whether or not the CFA staggering

algorithm affects the acceleration performance disproportionately for the saving made in area.

We also examine the correlation between this trade-off and I. Further work should examine the

efficacy of CFA staggering when used with pipelined ISE and when using software pipelining

to schedule the resulting subdivided ISE. There was unfortunately not time to investigate such

approaches in the course of constructing this thesis.

4.3.2 Comparison to Other Techniques

There exist a number of similar approaches to that taken here, each having a slightly different

goal and methodology. The common factor between all of the approaches discussed is that they

represent data-flow as a DFG in their analysis.

In [138] the aim is to produce temporal partitioning for data-flow implemented in an FPGA

fabric, with the overall goal of reducing the amount of area used without excessively increas-

ing the execution latency of the underlying functions. The work further attempts to reduce the

number of temporal partitions required to implement larger data-flow in a given area constraint

by temporal resource-sharing of the FPGA coarse grain functional units within a single tempo-

96

ral partition. The temporal partitioning, resource sharing, and scheduling of the resources are

all integrated into a single algorithm in order to try and remove the inefficiencies of a phased

approach. Whilst this work is similar to the approach we take here, the problem is not entirely

the same. The need to reduce the number of temporal partitions for latency purposes holds the

fore in [138]. In the work presented here there is no pressing need to reduce the number of

partitions, as the reconfiguration between temporal partitions is instantaneous. In [138], tem-

poral partitions must be activated by a bitstream reprogramming of the FPGA. Here we need

only pass a different sub-op to the pre-configured CFA unit. There is of course a small constant

overhead in using more sub-ops, as the CFAs must be microcoded for each sub-op before it is

used. In [138] the reconfiguration must occur at every switch between one temporal partition

and another. CFAs in contrast, by virtue of having multiple sub-ops and persistent microcode

for each, amortize reconfiguration time over multiple executions of a sub-op. The main sim-

ilarity between [138] and the work presented here is in the temporal resource-sharing of the

functional units between temporal partitions.

The reality of FPGA reconfigurability is that new temporal partitions cannot in fact be

switched between in a few nano-seconds, as is assumed in [138] and other work. In [139], the

work attempts to include the significant reconfiguration delays into the analysis and generally

reduce the number of reconfigurations as a priority. Both temporal and spatial resource sharing

are applied between modules used in operators, dubbed as “cores”, to try and fit a given DFG

into an area constraint without requiring reconfiguration. The work concludes that in the case of

reconfiguration, the time taken to execute the DFG is dwarfed by the time taken to reconfigure

the FPGA.

Moving away from the inefficiencies of hardware virtualisation in FPGA, the work of [140]

is the closest to the work presented here. The work concentrates on generating ISEs for a pre-

existant RFU, through iterative temporal partitioning. The work presented here concentrates on

temporal partitioning in order to generate the original RFU, however, the approaches taken are

otherwise similar. In [140] the focus is on mapping ISEs which have been identified without

strict adherence to the constraints of the RFU and which would be impossible to map with-

out further partitioning. The RFU in question, dubbed AMBER [141] is very similar to both

CCAs and CFAs, with the exception that AMBER supports the same set of operations at each

functional unit node within the RFU. CCA support a non-homogeneous set per node, but again

allow sharing of the same node between a number of operations. CFAs on the other hand

allow only one operation per node and instead perform operation selection through having a

wider permutation and routing network. The resource sharing algorithm in [140] operates by

attempting to map a selected partition to the AMBER RFU; if not enough resources are avail-

able two different strategies may be used in order to remove nodes from the oversized partition

into a new partition. HTTP or “Horizontal Traversing Temporal Partitioning” starts with the

temporally leading nodes of a partition and moves nodes to the new partition breadth-first until

97

constraints are violated, at which point the partitioning begins again on the remaining portion

of the original partition. VTTP, the vertical counterpart to HTTP, is a depth-first version of

what is otherwise the same approach. The approach taken in the work presented here is very

similar to the HTTP method, but operates without the constraints of an existing RFU because

we are attempting to build a new RFU (CFA), not map to an existing one.

4.3.3 Determining the Efficacy of Staggering

The uarchgen tool was modified to include algorithm 3, operating after DFG have been canon-

icalised and before the CFAs themselves are generated through algorithm 2. Figure 4.2 from

section 4.2 covers the same ISE design flow as used in this methodology. In order to evaluate

the efficacy of staggering, a range of benchmarks with varying complexity are necessary:

• FAAD (Free Advanced Audio Decoder; full application).

• SNURT JFDCTINT (JPEG Integer DCT; kernel).

• UTDSP ADPCM (ADPCM encode and decode; linked kernels).

• UTDSP COMPRESS (DCT-based image compression; linked kernels).

• UTDSP EDGE DETECT (image edge detection; kernel).

• UTDSP FFT 1024 (1024-point fast-Fourier transform; kernel).

• UTDSP FIR 256x64 (256x64 finite impulse response filter; kernel).

• UTDSP IIR 4x64 (4x64 infinite impulse response filter; kernel).

• UTDSP LATNRM 32x64 (32x64 normalised lattice filter; kernel).

• UTDSP LMSFIR 32x64 (least mean squares finite impulse response filter; kernel).

• UTDSP LPC (linear predictive coding; linked kernels).

• UTDSP MULT 10x10 (10x10 matrix multiplication; kernel).

• UTDSP SPECTRAL (power spectral estimate of speech; linked kernels).

For each benchmark, the C source code is run through application profiling, DFG extrac-

tion, and ISE generation phases. Each DFG in the unique set is then processed by algorithm

3 with I = 1 and the resulting set of staggered DFGs is then canonicalised and synthesised

into CFA Verilog models. The performance of the resulting CFAs with respect to their original

benchmark is recorded as per the model detailed in section 2.3.1. Subgraphs induced as the

result of the staggering process are modelled as individual ISE when using the model from

2.3.1 to determine the performance. This model does not include the temporal parallelism

98

(pipelined) aspect of CFA performance. The model is used in this methodology to show the

acceleration of staggered CFAs when used as a mechanism for implementing combinational

style ISE. If the staggering approach described herein does not greatly detract from the combi-

national performance of the ISE, then it follows that it will also not detract from the temporally

parallel performance of pipelined CFAs.

All generated CFAs are synthesised through a Synopsys DesignCompiler RTL to Gates

flow, whereupon the area is also recorded alongside the acceleration and staggering interval I

associated with them. The libraries used are once again a 130nm standard cell implementation

from a popular commercial library provider.

This methodology is repeated with I = 2, I = 3, I = 4, and I = 5 in order to study the

relationship between staggering latency (I), CFA area, and ISE efficacy. Each setting for I will

constrain the construction process to target a different maximum number of cycles for the CFAs

being constructed, and will result in a different configuration of resource sharing with respect

to the original identified DFG partitions and the CFA design which they ultimately are mapped

to. These results are graphed and analysed in the following section.

4.3.4 Evaluation of Staggering Efficacy

Two graphs have been produced from the results of the above methodology to determine the

efficacy of this staggering process. The first shows the acceleration in figure 4.7; each bar

represents the maximum acceleration obtainable by the ISE methodology, and is subdivided

into the acceleration obtained at each staggering level and with staggering disabled. The second

graph in figure 4.10 shows the die area at each staggering point and with staggering disabled;

these are divided into different bars because the area itself is not monotonic with respect to

staggering level.

The most striking feature of the staggering which can be seen in figure 4.7 is that staggering

even down to a single cycle does not dramatically limit the performance of the resulting CFAs

with respect to the targeted application. In the least negatively affected case (UTDSP FFT

1024), the loss due to staggering between baseline and I = 1 is zero. This can be explained

due to the great regularity in the FFT instructions, in that at each temporal partition of the

instructions contains a number of operations which all start and end at the same point in time,

meaning that there is no overhead due to splitting up the operations temporally. An example

from UTDSP FFT 1024, of staggering leading to no overhead, is demonstrated in figure 4.8.

The most negatively affected case (UTDSP Edge Detect) has a number of irregular ISEs,

wherein a number of operations which start at the same time finish at different times, and

there are further operations which immediately depend on the results of the shorter operations.

Timing overhead is therefore introduced when these instructions are broken down into temporal

partitions. An example of this irregularity-induced overhead is demonstrated in figure 4.9, as

taken from the UTDSP Edge Detect benchmark. Even in this most affected case, the overhead

99

Fig. 4.7: Acceleration for staggering interval of 1-5 cycles, and without staggering (baseline).
In all cases the acceleration lost through staggering at the most aggressive interval (1 cycle)
is minimal. A maximum of 22% is lost, in EDGE DETECT. This graph demonstrates that
staggering at any interval does not excessively stunt acceleration potential.

Fig. 4.8: Staggering as applied to an ISE identified in the UTDSP FFT1K benchmark, with
I = 1. Horizontal lines delineate the temporal partitions produced by the staggering algorithm.
The result has no temporal overhead compared to the original.

100

Fig. 4.9: Staggering as applied to an ISE identified in the UTDSP EDGE DETECT benchmark,
with I = 1. The result has one cycle of temporal overhead compared to the original. The
multiplication operation has a 3-cycle latency, and all other operations in this graph have a
1-cycle latency. Horizontal lines delineate the temporal partitions produced by the staggering
algorithm. The staggering algorithm at I = 1 has missed the opportunity to execute the greater-
than operation at the second cycle of the multiplication operation. At I = 2 or above the two
operations would be in the same temporal partition, and there would be no overhead.

from staggering with I = 1 compared to the original baseline is only a relative loss of 22%

from the acceleration versus no staggering, when a saving of 29% is made from the extension

gate area (0.21mm2). In this worst observed case for acceleration loss, relatively more is saved

from the extension area than is lost from the acceleration.

The large application examined (FAAD AAC Decoder) has a particularly wide array of

areas represented in the different staggering levels, however, there is not a vast difference in

the actual acceleration resulting from the I = 1 staggered and baseline versions of the CFAs

constructed. The different CFAs constructed for these two points (two for I = 1 and six for the

baseline), only differ by 3% in terms of acceleration but differ by a full 9.41mm2 in terms of

their gate area in the 130nm process used. Two effects need to be explained here: The first is

the massive difference in area between the I = 1 staggered CFAs and the baseline; the second

is the very minimal difference in acceleration between same. Both of these effects can be

explained through the greater size and diversity of FAAD, and the greater time it takes for the

application to execute. The FAAD application is an audio decoding application, which means

that it is extremely repetitive over a number of distinct tasks (Decode, IDCT, Re-Encode). In

FAAD, many of these tasks share similar but non-identical structure. When I = 1 staggering

is employed the structure is reduced to simply the number and type of different operations

required in each temporal step, with no dependent operators whatsoever within the CFA. This

“maximally flattened” CFA is not only the smallest possible with this technique, but is also

the best able to exploit resource sharing both inter- and intra-ISE. Different ISEs have their

complex structure effectively removed and reduced to the number of each ALU type required,

removing the structural complexity from inter-ISE resource-sharing efforts. There is the same

effect on structural complexity when considering the intra-ISE equivalent. With I = 2 and

above, operators which exist in two different temporal partitions will only be shared if they

101

begin on the same cycle level in a CFA, as per the construction algorithm of section 2. This is

the main contributor to the factor of just over two times area increase between I = 1 (2.49mm2)

and I = 2 (5.6mm2).

The original purpose of this staggering methodology was to allow for a balance to be struck

between the temporal parallelism potential and the temporal resource sharing present in a CFA

implementation of a number of ISEs. Insofar as this goal is concerned, it has been proven

here that arbitrary scaling of the staggering interval I (related to the DII as discussed earlier)

does not have a major negative impact on the non-pipelined acceleration of ISEs. The best and

worst cases above aside, the average loss in acceleration between baseline and I = 1 across all

benchmarks tested is only 8%. On the other hand the area is decreased on average by 37%, or

1.42mm2.

102

Fig. 4.10: Die area for staggering interval of 1-5 cycles, and without staggering (baseline), when utilising a 130nm process. The large application tested
(FAAD) obtains a much greater area saving than the kernels. This is due to the range of complexity apparent in faad which contains a number of
distinct kernels. Staggering inherently reduces complexity, greatly improving the resource-sharing in FAAD compared to the more homogeneous kernels.
Staggering is more applicable to real applications where CFA are intended to be shared between kernels. FAAD obtains a reduction from 11.9mm2 to
2.49mm2, removing 79% of the area. The average lost is 1.42mm2, or removing 37%. Standard deviation across all benchmarks is 2.54mm2. Average lost
across just the kernels is 0.756mm2, with a standard deviation of 0.88mm2.

103

4.3.5 Conclusions

The study of CFA staggering performed in this section has demonstrated that:

• Staggering can save up to 79% in cell area in the best case (FAAD), losing only 3% from

the acceleration afforded; at the opposite extreme a maximum of 22% of acceleration is

lost with a 29% cell area saving.

• The greatest area savings are to be had when the staggering interval (I) is set = 1, as this

allows the maximum degree of resource sharing both intra- and inter-ISE.

• From the point of view of acceleration when considering the ISE are non-overlapping

(combinational model from section 2.3.1), staggering does not appear to drastically de-

bilitate the acceleration performance and in some cases the acceleration is untouched

regardless of staggering performed.

• Visual examples have been given of the effect of CFA staggering on graphs from appli-

cations, which directly support the results obtained herein in both area reduction and the

preservation of acceleration.

• CFA Staggering is far more effective in the face of a diverse and ISE-rich application

partitioning, owing to the inefficiency of the non-staggering CFA design process in the

face of diversity.

Staggering is examined again in section 6.3, where staggering is combined with other new

techniques developed in the following chapter to determine how it interferes with other merit

objectives.

104

4.4 Summary

In this chapter the CFA, the process by which one is automatically designed, and a method of

compressing the area utilised through temporal partitioning and resource-sharing are covered.

The CFA is demonstrated to be a cost-effective design for ISE implementation. The CFA

design achieves both acceleration and energy reduction, achieving up to 2.6x in the former

and 1.54x in the latter, albeit in separate cases. The pursuit of both acceleration and energy

reduction is a possibility, which will be considered and improved upon in the next chapter. The

technique of ISE identification used in this chapter is of the simple combinational heuristic

outlined earlier in this thesis in section 2.3.1. The efforts that follow from here concentrate on

tuning and modifying this heuristic to produce a better quality of ISEs. There is a relationship

between the area of CFAs, the power that they hence consume, and the acceleration afforded.

This relationship determines whether and how much an ISE implemented in a CFA will actually

benefit energy consumption. This observation will be used in the next chapter to address energy

efficiency in the ISEGEN identification heuristic.

In the case of an FPU being contained within the baseline core (i.e. when floating-point

benchmarks are considered), beneficial energy effects from CFA use appear to be more pro-

nounced due to the more power-hungry baseline. Two effects are in play with regards to the

energy consumption: the time the application takes to execute, and the power consumption

of the architecture during execution. When an FPU is included, the power of the architecture

executing a “software” partition is greater than that executing one in “hardware”. A more in-

depth exploration of the effect of number format on ISE/CFA design and implementation is

undertaken in the final chapter of this thesis.

Staggering is demonstrated on average, to reduce the area of CFA implementation by 37%

for only an 8% reduction in acceleration. Staggering has been shown to be a very effective

means of reducing the die area of a CFA implementation, and owing to this ought to also

reduce the energy consumption of the design in turn. It is also likely, however, that staggering

will interfere with the objectives of identification heuristics tuned for particular axes of concern

such as energy efficiency. The energy effects of staggering have not been explored at this point,

but will be in the final chapter of this thesis. Up to this point it has been determined that

staggering can reduce area by up to 79% with only 3% reduction in acceleration; moreover

that staggering is more effective with larger and more complex applications. This chapter

has therefore proven the staggering technique to be a good approach to improving the cost-

benefit efficacy of the ISE/CFA combination in realistic scenarios, with regards to area and

acceleration.

105

106

5 BRIDGING THE GAP: IMPROVING ISE IDENTIFICATION

“Strive for continuous improvement, instead of perfection.”

– Kim Collins

This chapter is concerned with the improvement of the ISEGEN algorithm through the location

of better heuristic weighting vectors, the acceleration of the execution of the algorithm itself

through judicious use of newly added early-termination, and the development of new heuristics

to target new domains of architectural concern. A methodology for finding a good static weight-

ing vector for ISEGEN is proposed and demonstrated. Up to 100% of merit is shown to be lost

or gained through the choice of vector. ISEGEN early-termination is introduced and shown to

improve the runtime of the algorithm by up to 7.26x, and 5.82x on average. An extension to the

ISEGEN heuristic to account for pipelining is proposed and evaluated, increasing acceleration

by up to an additional 1.5x. An energy-aware heuristic is added to ISEGEN, which reduces the

energy used by a CFA implementation of a set of ISEs by an average of 1.6x, up to 3.6x.

5.1 Introduction

The ISEGEN algorithm has already been introduced and thoroughly described earlier in section

2.4.2, but what has perhaps not been stressed enough is the sheer magnitude of the space

over which it operates. Without considering the constraints-imposed pruning such as I/O and

convexity, the search space is a massive 2number o f nodes; graphs from application kernels tend

to fall at between 10 and 200 nodes, or a state-space of between 106 and 1060 points. The latter

already falls squarely into intractable territory for a brute-force algorithm. At the extreme end

of this scale, encryption applications with control-flow flattened out can have as many as 500-

1000 nodes. The number of points in the resulting state-space is between 1070 and 10221 times

the estimated minimum number of atoms in the universe. In such a space, there is ample room

for acceleration-equivalent alternatives to be produced for nearly all design points. For any set

of ISEs with an acceleration merit M, there will be different sets of ISEs with an acceleration

merit within 1% of M. If you can reach a particular acceleration merit with the combinational

heuristic, it is likely that a different heuristic could find a design of equal acceleration merit, but

with improved merit in other areas such as standard cell area, power, and energy consumption.

Previous work such as that of [7] has demonstrated considerable interest not just in the

ability to produce a valid result from this massive space, but also in the quality and cost of

that result when considering concerns other than acceleration. Examples include power, area,

energy consumption, design time, and inter-ISE independence (to enable overlapping ISEs).

The original ISEGEN paper [7] made the observation that the algorithm was prone to favouring

particular structures wherever they may exist in an underlying DFG, which ultimately makes

107

the output of ISEGEN more amiable to isomorphism-based resource sharing such as employed

by the CFA construction process described in the previous chapter. The ISEGEN identification

is referred to [7] as having a behaviour similar to that of expert designers, who would also

favour selection of similar ISEs in order to facilitate resource sharing. The ISEGEN algorithm

has then already been observed to mimic well the expertise of a trained (human) engineer in

producing ISEs which provide ample acceleration and are amenable to resource sharing. We

now look at the modification of the algorithm to further improve the efficacy and add further

consideration for other design concerns.

At the heart of the ISEGEN algorithm is a compound heuristic, with several different (and

potentially conflicting) objectives. In order to weight the different objectives by their relative

importance or rank, a vector is used as in many compiler heuristics to form a dot-product with

the compound heuristic values as a vector yielding a single scalar “merit”. The published work

on ISEGEN [7] states that a single weighting vector they give is the optimal. Early work with

the algorithm demonstrated to the author of this thesis that in fact better weighting vectors

exist. The first section of this chapter is concerned with locating a more effective weighting

vector, so as to ensure later comparisons to the combinational results are done with regards to

a well-tuned representative baseline.

Before addressing a change of focus for the algorithm objective, repetitive and redundant

behaviour in traces of the ISEGEN algorithm were observed during the heuristic weighting

analysis, which led to the development of early-termination mechanisms to improve the time

taken to produce a result. The second section of this chapter covers the details of this approach,

which considerably reduces the algorithm runtime without impairing the quality of its result.

This same heuristic contains in addition to components governing only the “merit” of

adding or removing single nodes, a component which gives the merit of a graph as a whole.

This component of the heuristic is extensively modified to reflect different design objectives

than the simple “number of cycles removed”: Energy and Pipelining are both addressed in this

manner within the third and fourth sections of this chapter.

108

5.2 ISEGEN Heuristic Weighting Analysis

The ISEGEN algorithm [7] includes a weighted heuristic used to guide the choice of nodes to

toggle from hardware to software during its search for ISE candidates. This work performs

a parameter-sweep over the weighting factors of this heuristic, in order to determine the best

static vector amongst those explored and whether a dynamic approach such as machine learn-

ing would be otherwise appropriate. This work has determined that there exist settings that

perform relatively well for all benchmarks, but for an optimal performance a dynamic approach

is necessary. In this study there was not a single vector which achieved optimum performance

on all benchmarks. The methodology presented for finding a good static weighting vector for

ISEGEN demonstrates that up to 100% of merit is shown to be lost or gained through the choice

of vector.

5.2.1 The ISEGEN Heuristic Weighting Vector

The ISEGEN algorithm is effectively a reworking of the Kernighan-Lin circuit partitioning al-

gorithm, allowing for a range of weighted heuristics to be used to guide the search for a suitable

partitioning. The algorithm is described in detail in section 2.4.2; the particular weighting of

the heuristics as described in that section is not something to which particular attention has

been paid, other than to state in the original paper [7]:

“The relations between the weights α1, α2, α3, α4, and α5 have been determined exper-

imentally to be as follows: α3 = α4, α1 = 4 ·α3, α2 = 2.5 ·α1, and α5 = 25 ·α1. Thus, by

using large factors, the speedup component is favored, the I/O violations are heavily penalized

and ISE exploration is allowed to expand in the horizontal direction after the vertical direction

has been already explored. We arrived at the above relations by studying the range of values

each component can have and identifying the points in the iterative improvement steps where

the weights must create a difference in the gain in order to induce a change in the cut growth

pattern.”

It was noticed by the author of this thesis that the performance derived from using these

weights from the original paper [7] did not actually result in the best performance of the algo-

rithm. For different graphs, different weights appeared to perform better. In order to determine

if a better heuristic weighting was available and if a dynamic approach could yield better re-

sults, a parameter-space exploration experiment has been performed. Five benchmarks from

the UTDSP and SNURT suites along with the FAAD Advanced Audio Codec have been anal-

ysed by the ISEGEN algorithm over a large space of heuristic weightings. The results show

that the original cited weightings [7] are not optimal, and there no single weighting vector was

found that achieves the greatest acceleration in all of the applications and constraints tested.

The latter fact motivates the investigation of a dynamic approach, but that is not explored dur-

ing the course of this thesis and is left for further work.

109

5.2.2 Weighting Vector Space Exploration Methodology

The ISEGEN algorithm has been implemented in the isegen tool, which allows for parameters

such as the heuristic weights and number of I/O ports to be passed via the command line. The

original ISEGEN toggling heuristic uses five different heuristics in order to determine the merit

of toggling a particular node from software to hardware or vice-versa. Section 2.4.2 contains a

detailed break-down of the function of these heuristics, referred to here as savedcycles (α1), io

(α2), convexity (α3), largecut (α4), and fragcut (α5). In order to produce a single scalar “merit”

value for the search to steer between toggling different nodes, the heuristics are combined as

follows: node merit = (α1 · savedcycles)− (α2 · io)+(α3 · convexity)+(α4 · largecut)+(α5 ·
f ragcut) Initial manual exploration in addition to the anecdotal description provided in the

original paper [7] suggest that an exponential rather than linear scale of potential weights will

produce a better weighting vector for a given number of samples. It was decided for reasons

of tractability that since each run of isegen would take up to ten minutes to complete, only six

different values could be considered. Covering six values per vector-element leads to a space

containing 7776 points to be evaluated. Values ∈ {0, 1, 2, 4, 8, 16} were chosen, representing

an exponential scale of weightings rather than a linear one. In this way, the sub-heuristics are

assigned to different orders of magnitude: A single-unit change at one order of magnitude will

always outweigh a single-unit change at an order below it. The exponential scale in effect

assigns the sub-heuristics to tiers of importance; with zero representing the complete exclusion

of a sub-heuristic. In this way, we can determine both a suitable weighting vector, and whether

any should be excluded entirely.

Register file input and output port constraints of 8-in, 8-out (8/8) and 4-in, 4-out (4/4)

are used to determine whether the best observed weightings are different between different

I/O constraints. Other studies of ISE have used more varied constraints here; however, the

purpose here is not to prove the efficacy of the ISE algorithm but the efficacy of weights used

to parameterise it. We only need to determine whether common vectors can be used effectively

between different I/O weightings.

Assuming ten minutes per execution of ISEGEN, the 7776-point space would take fifty-

four days to evaluate a single benchmark using a single process on a single CPU. This is at the

upper end of tractability for a non-distributed approach.

In order to accelerate the execution of these experiments, the Edinburgh Compute and Data

Facilities (ECDF) cluster “Eddie” was used to perform evaluation of points in parallel. At the

time of performing this work, the Eddie cluster configuration was that:

• Scientific Linux 4.5 64-bit is the basic operating system available to all nodes.

• Sun Grid Engine manages the available resources (nodes) to ensure a fair allocation

between users.

110

• 246 nodes are available.

• Each node is housed in an IBM x3550 server chassis.

• Each node has 16GB of RAM.

• Each node has 250GB of HD for fast node-local disk I/O.

• A storage-area-network provides an additional 275 Terabytes of storage.

• 128 nodes contain 2 Intel “Woodcrest” Xeon 5160 3.0 GHz dual-core CPUs each.

• 118 nodes containing 2 Intel “Harpertown” Xeon X5450 3.0 GHz quad-core CPUs nodes

each.

• There are a total of 1456 cores.

• Total theoretical throughput is 12 Teraflops.

Using a cluster, the evaluation of the multiple applications and large design spaces is greatly

accelerated by distribution of the parameter sweep across many processor cores. Each param-

eter space exploration is trivially mapped to the cluster through the specification of an array

job, which takes a single program and passes a different index to each new instance. A file

containing the weighting vectors, one per line, is used to parameterise the execution of the

isegen tool for each design point. This is done via scripting, by mapping the array job index to

a line number and hence distinct vector from the space outlined above. The Sun Grid Engine

scheduler then manages the execution of the isegen tool with regards to the 7776 different static

weighting vectors.

Applications chosen for evaluation were:

• SNURT CRC; Cyclic Redundancy Check. Naive implementation, not tuned for auto-

mated ISE.

• SNURT FFT1K; Fast Fourier Transform - 1024 points. Naive implementation, not tuned

for automated ISE.

• SNURT JFDCTINT; JPEG Integer DCT. Mostly straight-line implementation containing

large basic blocks with moderate OLP.

• UTDSP FIR; Finite Impulse Response. Loop unrolled sixteen times to create a large

degree of OLP.

• UTDSP LMS FIR; Least Mean Square Finite Impulse Response. FIR loop unrolled

sixteen times as per simple FIR above to create a large degree of OLP where possible.

111

• FAAD AAC; Advanced Audio Codec. Full codec application, left untransformed and

with moderate OLP.

These applications were selected in order to represent a range of different algorithms with

different control and data flow biases, operator level parallelism, and memory transfer require-

ments. The sparse selection as compared to other work such as the previous chapter is due to

the expense of performing such exploration.

Results are finally ordered ascending by acceleration, forming a monotonic graph for each

application and I/O constraint. These graphs are presented in section 5.2.3, alongside further

discussion of their implications. In order to determine the best common vector, the set of

vectors comprising the top 1% of the speedup obtained for each application are taken and the

intersection across the sets calculated. If the intersection contains any elements, then these are

given as the best static weighting vector. If no common vector exists, one percent more of the

results is taken (i.e. 2%) and the intersection is again examined; this process is repeated until

a common weighting vector is located. The results from this process are also discussed in the

evaluation below. The number of percent required to obtain a common static weighting vector

is referred to as N during the evaluation. The value of N is considered to represent the stability

of the heuristic’s performance as a whole, with regards to the domain N is measured for. Lower

values of N indicate that the heuristic is more efficacious for a wider range of inputs, when

using a single static vector.

Resulting from this process, we have monotonically ordered parameter-space graphs for

each application and I/O constraint, as well as a series of vectors which form the best individual

and best common vectors for the applications and constraints. These results should allow for a

discussion of the effects of the heuristic based on the applications in question, and give insight

to future development of new heuristics.

5.2.3 Evaluation: Analysis of Parameter Space

Execution of the parameter space exploration for all the applications and constraints took a total

of five days real-time, clocking up around 200 days of single-CPU compute time. A preliminary

observation at this point is that cluster computing is very advantageous in performing trivially

parallel large-scale sampling efforts. Figures 5.1 and 5.2 contain the monotonically ordered

graphs for point index versus application speedup for I/O constraints 4/4 and 8/8 respectively.

All the graphs contain a wide spread of effect from the weighting vector used. The correct

selection of a vector is important, covering 20% of the total acceleration achieved in the least

affected case (SNURT CRC at 8/8) and 100% in the most effected (UTDSP LMSFIR at 4/4).

The specific vectors to use are dependent on the benchmark in question, but similar benchmarks

tend to favour similar vectors. Stepping in the graphs plus variety in the underlying designs

demonstrates levels of merit-equivalent designs with room for further design concerns to be

112

(a) FAAD AAC (b) SNURT CRC

(c) SNURT FFT1K (d) SNURT JFDCTINT

(e) UTDSP FIR (f) UTDSP LMSFIR

Fig. 5.1: Parameter Sweep Space (I/O: 4/4), Monotonically Ordered by Speedup Factor. The
graphs show the distribution of the acceleration resulting from different ISEGEN weighting
vectors. The choice of weighting vector affects the quality of the result massively; 100% of
potential acceleration by LMSFIR is covered by the choice of weighting vector. These graphs
show acceleration is generally lower and more sensitive to the choice of vector, than those for
I/O 8/8 (figure 5.2).

113

(a) FAAD AAC (b) SNURT CRC

(c) SNURT FFT1K (d) SNURT JFDCTINT

(e) UTDSP FIR (f) UTDSP LMSFIR

Fig. 5.2: Parameter Sweep Space (I/O: 8/8), Monotonically Ordered by Speedup Factor. The
graphs show the distribution of the acceleration, resulting from different ISEGEN weighting
vectors. The acceleration is generally higher, and less sensitive to the weighting vector, than
those for I/O 4/4 (figure 5.1).

114

included. We do not need to explore as much space as we have, as linear equivalents exist in

the vector space with regards to their effect on the heuristic. A number of common vectors are

covered here, and ultimately we settle upon three sets which are generally the most efficacious

seen for the conditions we encounter and the space we have explored: 4/4, 8/8, and combined.

The more generalised a scenario you need a static vector for, the less specifically efficacious

it will be. This motivates the pursuit of a dynamic approach such as machine learning. These

issues are all now discussed in depth.

It follows from the variety of trends observable in the graphs that there is a dependence

between properties of the DFG being analysed and the best weighting vector to be used. Since

each application tested is comprised of a large number of DFG of varying sizes, where a dy-

namic heuristic weighting is used it should almost certainly vary between each DFG in a partic-

ular application. Similar kernels (UTDSP FIR and LMSFIR) demonstrate very similar weight-

ing preferences, despite the differences between them. The similarity of FIR and LMSFIR

results again suggests that there is a correlation between the properties of the DFG in question

and the best heuristic weighting vector.

From examination of the results, the “stepping” of the results in most benchmarks represent

a number of designs achieving the same merit. The number of steps in each graph corresponds

to the number of potential merit levels which ISEGEN has located with modification of the

heuristic weighting vector. Of particular note is the size of the lowest performing step, often

representing close to zero performance improvement. In the case where the heuristic repeat-

edly drags the search into invalid sections, the algorithm will rarely settle upon a cut which

passes the outer-loop check becoming the best cut. In such cases, the algorithm tends to hit the

maximum iteration limit without actually having created any useful cuts. For example, creating

one or more serial cuts exploiting minimal OLP. It is interesting to note the size of the lowest

step when comparing the results of 4/4 and 8/8 I/O constraints. In the case of lower I/O (4/4),

the algorithm has more problems with the misguided heuristics. The toggle selections made in

such a case tend to break I/O constraints, before nodes have coalesced enough to be convex.

In the larger 8/8 case, more room is available in the I/O constraints for graphs to coalesce to a

convex cut through this pseudo-random selection. The choice of a heuristic weighting vector

is therefore particularly important when the I/O constraints are considerably lower than the I/O

of potential maximal ISE in a given DFG.

The notion espoused earlier in this chapter was that for a given observed merit M there

should be a number of design alternatives that obtain M. The stepping of the graphs in combi-

nation with multiple distinct designs per step confirms the existence of these merit-equivalent

designs. Further heuristic development should be able to widen the design concerns to in-

clude merit other than acceleration, and identify more holistically efficacious designs without

sacrificing acceleration.

All of the graphs exhibit a degree of stepping as already discussed, but what determines the

115

threshold between one step and another can be seen by examining the relationships between the

weighting vector elements before and after a particular knee. UTDSP FIR contains potentially

the most prominent knee, between points 3000 and 4400 in the 4/4 graph; the difference over

these points covering 79% (1.05x to 1.75x from a maximum 1.89x) of the total acceleration

obtainable over all weighting vectors. The main difference around the knee is the propensity

of a zero-weighting for the savedcycles component of the heuristic. Of a total 1296 samples

having zero savedcycles weighting, 1086 (84%) of these resulted in acceleration amounting

to less than ten percent of the maximum achieved; the greatest acceleration achieved with a

zero-weighted speedup heuristic was 76%, obtained for six vectors including the full-zero (all

heuristics disabled). The five vectors not being full-zero have disabled all heuristics except for

fragcut, which has all potential weightings across the five vectors. It would seem that in the case

where no other heuristics are active, fragcut has no impact for this benchmark. With SNURT

JFDCTINT at 4/4, there is not really a knee in the graph. Rather there is a progression, which

for all intents and purposes would evade the “by inspection” approach to finding a suitable

vector posited by Biswas et al.[7]. The lack of large discrete steps in the graph indicate that

there is a complex relationship in play, making manual exploration intractable. Looking once

more at the savedcycles heuristic, we can see that all of the weighting vectors disabling this

heuristic fall below 50% of the maximum acceleration available (1.24x out of 1.49x). The

remaining weighting vectors have a loose trend of higher savedcycles weighting correlating

to a higher speedup. This correlation is not absolute, demonstrating the importance of the

weighting elements’ relative values.

The top speedup for SNURT JFDCTINT I/O constrained to 4/4 (1.49x) is obtained by 61

different weighting vectors. These 61 vectors contain 45 with a savedcycles weighting of 16

(the maximum), 14 with a savedcycles weighting of 8, and 2 with a savedcycles weighting of 4;

again this demonstrates the importance of a high weighting of the savedcycles heuristic. Due to

the linear properties of the heuristic, scalar multiples of a weighting vector are equivalent and

will yield the same result. One of the vectors with a savedcycles of 4 is repeated in those with

a savedcycles of 8 (4,1,8,0,1,1⇒ 8,2,16,0,2,2). Of the vectors with a savedcycles of 16, 10 are

repeated in those with a savedcycles of 16. The number of unique (e.g. excluding equivalent)

vectors obtaining the maximum for SNURT JFDCTINT is therefore 50. The linear equivalence

has been confirmed here and henceforth will be used to reduce the number of weighting vectors

that need be tested. Wherever a vector does not contain the maximum possible value (16 in this

case) for one of its elements, scalar multiples of the vector up to and including that containing

the maximum possible value can be represented by the lower-value vector. From the original

7776 vectors, the number of non-equivalent vectors is 4652; a reduction of 40% in the vectors

which need to be evaluated. In order to determine a more general understanding of the relative

weightings, this analysis now turns to locating a common best weighting vector.

Common vectors across all benchmarks are shown in table 5.1; the table details the vector,

116

along with the performance achieved in each of the benchmarks studied. Across all bench-

marks, a range of N = 14% was required in order to get a common vector. Lower ranges were

required across the 4/4 (N = 10%) and 8/8 (N = 8%) cases considered alone. Different, more

efficacious static weighting vectors are possible for such narrower domains. This again demon-

strates that a dynamic approach would be better suited than a single static vector. Just using

two different vectors for 4/4 and 8/8 would raise the efficacy by up to 6%.

117

Vector CRC (4/4) CRC (8/8) FAAD (4/4) FAAD (8/8) FFT1K (4/4) FFT1K (8/8) FIR (4/4) FIR (8/8) LMSFIR (4/4) LMSFIR (8/8) JFDCTINT (4/4) JFDCTINT (8/8)
8,1,2,4,0 1.300000 1.300000 1.320000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.720000

16,2,4,8,0 1.300000 1.300000 1.320000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.720000
8,1,4,4,0 1.300000 1.300000 1.320000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.720000

16,2,8,8,0 1.300000 1.300000 1.320000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.720000
16,1,1,8,2 1.300000 1.300000 1.330000 1.380000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.640000
8,2,2,1,1 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.450000 1.730000

16,4,2,1,2 1.300000 1.300000 1.330000 1.390000 1.300000 1.310000 1.770000 2.580000 1.430000 1.640000 1.450000 1.720000
16,1,0,4,4 1.300000 1.300000 1.310000 1.350000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.700000
8,2,8,0,2 1.300000 1.300000 1.330000 1.390000 1.280000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.720000
8,1,0,4,0 1.300000 1.300000 1.320000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.700000

16,4,4,1,2 1.300000 1.300000 1.330000 1.390000 1.300000 1.310000 1.770000 2.580000 1.430000 1.640000 1.450000 1.730000
8,1,1,2,1 1.300000 1.300000 1.320000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.700000

8,1,16,2,2 1.300000 1.300000 1.320000 1.380000 1.300000 1.300000 1.770000 2.580000 1.410000 1.640000 1.470000 1.700000
16,2,0,8,0 1.300000 1.300000 1.320000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.700000
8,2,0,0,2 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.730000

16,2,2,8,0 1.300000 1.300000 1.320000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.700000
8,1,16,4,1 1.300000 1.300000 1.290000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.640000
16,4,0,1,2 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.450000 1.720000
8,1,1,4,0 1.300000 1.300000 1.320000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.700000
4,1,0,0,1 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.730000

16,2,1,4,2 1.300000 1.300000 1.320000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.700000
16,4,1,1,2 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.450000 1.720000
16,1,0,8,2 1.300000 1.300000 1.330000 1.380000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.650000
16,2,16,0,4 1.300000 1.300000 1.330000 1.380000 1.280000 1.320000 1.770000 2.580000 1.410000 1.640000 1.490000 1.720000
16,4,2,2,2 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.450000 1.720000
4,1,16,2,0 1.300000 1.300000 1.310000 1.390000 1.280000 1.320000 1.770000 2.580000 1.410000 1.640000 1.470000 1.700000
8,1,8,0,2 1.300000 1.300000 1.330000 1.380000 1.280000 1.320000 1.770000 2.580000 1.410000 1.640000 1.490000 1.720000
8,2,1,1,1 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.450000 1.720000
8,2,0,1,1 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.450000 1.720000

16,2,2,4,2 1.300000 1.300000 1.320000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.700000
8,2,16,1,1 1.300000 1.300000 1.330000 1.390000 1.280000 1.300000 1.770000 2.580000 1.410000 1.640000 1.470000 1.720000
4,1,8,2,0 1.300000 1.300000 1.330000 1.390000 1.280000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.700000

16,4,4,0,4 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.730000
16,4,16,0,4 1.300000 1.300000 1.330000 1.390000 1.280000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.720000

(continued over)

118

Vector CRC (4/4) CRC (8/8) FAAD (4/4) FAAD (8/8) FFT1K (4/4) FFT1K (8/8) FIR (4/4) FIR (8/8) LMSFIR (4/4) LMSFIR (8/8) JFDCTINT (4/4) JFDCTINT (8/8)
8,2,2,0,2 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.730000

16,4,0,0,4 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.730000
8,1,0,2,1 1.300000 1.300000 1.320000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.700000
8,2,1,0,2 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.730000

8,2,16,0,2 1.300000 1.300000 1.320000 1.390000 1.280000 1.300000 1.770000 2.580000 1.410000 1.640000 1.490000 1.720000
16,4,0,2,2 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.450000 1.720000
8,2,16,2,1 1.300000 1.300000 1.330000 1.390000 1.280000 1.300000 1.770000 2.580000 1.410000 1.640000 1.470000 1.700000
8,1,16,0,2 1.300000 1.300000 1.320000 1.380000 1.280000 1.300000 1.770000 2.580000 1.410000 1.640000 1.490000 1.720000
16,4,2,0,4 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.730000
16,4,16,2,2 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.670000 1.450000 1.720000
16,4,8,2,2 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.450000 1.730000
16,2,0,4,2 1.300000 1.300000 1.320000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.700000
8,2,8,1,1 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.670000 1.450000 1.720000

16,1,2,8,2 1.300000 1.300000 1.330000 1.380000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.640000
4,1,8,0,1 1.300000 1.300000 1.320000 1.390000 1.280000 1.300000 1.770000 2.580000 1.410000 1.640000 1.490000 1.720000

8,2,16,4,0 1.300000 1.300000 1.330000 1.390000 1.280000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.700000
16,4,1,2,2 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.450000 1.720000
16,4,16,1,2 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.670000 1.450000 1.720000
4,1,4,0,1 1.300000 1.300000 1.330000 1.390000 1.280000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.720000

16,4,1,0,4 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.730000
16,2,1,8,0 1.300000 1.300000 1.320000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.700000
4,1,1,0,1 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.470000 1.730000

16,4,8,1,2 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.450000 1.730000
16,4,4,2,2 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.450000 1.730000
8,2,4,1,1 1.300000 1.300000 1.330000 1.390000 1.300000 1.320000 1.770000 2.580000 1.430000 1.640000 1.450000 1.730000

Tab. 5.1: Common vectors at a maximum loss (N) of 14%, the minimum required to obtain common vectors across all benchmarks tested.

119

Vector CRC (4/4) FAAD (4/4) FFT1K (4/4) FIR (4/4) LMSFIR (4/4) JFDCTINT (4/4)
2,1,16,0,0 1.300000 1.300000 1.280000 1.830000 1.430000 1.460000

Tab. 5.2: Common vector at a maximum loss (N) of 10%, the minimum required to obtain a
common vector across all benchmarks with I/O constraint 4/4.

Vector CRC (8/8) FAAD (8/8) FFT1K (8/8) FIR (8/8) LMSFIR (8/8) JFDCTINT (8/8)
4,16,16,1,1 1.300000 1.390000 1.320000 2.700000 1.650000 1.690000
4,16,8,1,1 1.300000 1.390000 1.320000 2.680000 1.650000 1.690000
4,16,1,1,1 1.300000 1.380000 1.320000 2.680000 1.650000 1.690000
4,16,0,1,1 1.300000 1.380000 1.320000 2.680000 1.650000 1.690000
2,2,16,1,0 1.300000 1.370000 1.320000 2.720000 1.650000 1.690000
4,16,4,1,1 1.300000 1.380000 1.320000 2.680000 1.650000 1.690000
4,16,2,1,1 1.300000 1.370000 1.320000 2.680000 1.650000 1.690000

Tab. 5.3: Common vector at a maximum loss (N) of 8%, the minimum required to obtain a
common vector across all benchmarks with I/O constraint 8/8.

For each benchmark, there are a number of weighting vectors which obtain the maximum

acceleration observed in this experiment. It should of course be noted that there may be weight-

ings other than those tested which obtain even better results, since the vectors tested here are

not exhaustive; exhaustive evaluation would require testing an infinite number of vectors. This

work has already proven that there is no single optimum vector, and that the vector quoted as

optimal in [7] (4,10,1,1,100) is less efficacious than some of the vectors demonstrated herein.

120

5.2.4 Conclusions

The exploration performed herein has evaluated a large number of ISEGEN weighting vectors,

and has come to the following conclusions:

• A poor choice of vector can dramatically reduce the quality of the result. In the most stark

example seen here (LMSFIR), 100% of the potential acceleration was not exploited in

around 1/3 of the vectors tested under 4/4 I/O. Most other benchmarks in the 4/4 suffer

from a similar problem, with many losing nearly all acceleration in the face of a bad

vector.

• The cited EPFL weighting vector [7] (4,10,1,1,100) was not the best under the configu-

ration used herein, but may have been for theirs.

• A common static weighting vector is possible without massively compromising the indi-

vidual result, although this may be due to the largely DSP-like nature of the benchmarks

examined with exception of CRC.

• Even more efficacious vectors may exist; the exploration here was non-exhaustive, as

the number of potential weightings is infinite. In the range of vectors between (0,0,0,0,0)

and (16,16,16,16,16), there are 1419857 vectors. We have only sampled 7776 of those,

or 0.54%.

• Dynamic vector configuration via machine learning could close the gap between the

common vector and top individual vector performance, but is likely to require being

applied on a per-DFG basis in order to be effective.

• Per-DFG is likely to increase the efficacy, possibly above the top individual single-

benchmark merit seen here. The fact that there is a significant difference between the

static common-vector and the static per-benchmark best vector indicates that there would

be a further improvement from making the vector specific to each DFG.

We now have a methodology for locating a static best common-vector which will be used

further when developing new heuristics; the vectors derived in this section will be used as the

baseline (control) for the combinational heuristic from hereon.

121

5.3 Search Early Termination

The ISEGEN algorithm is comprised of a three nested loops, with each performing search

for a new ISE candidate at different levels. The innermost loop is governed by the heuristic

discussed in section 5.2 and selects the nodes that should be toggled between hardware and

software partitions. The outer loop keeps track of the best legitimate candidate obtained so

far. The worst case runtime of ISEGEN is O(|V |3) as discussed in section 2.4.2, hence the

execution time of the algorithm for larger graphs is rather excessive. Twenty hours of compute

time is not unusual for the algorithm running on a typical personal computer in 2010 for a graph

containing 500 nodes and 500 edges. Judicious early termination of the search yields savings

in execution time, but care must be taken that the search would not have reached a significantly

higher merit design point if it had not been terminated. This section creates and evaluates a

method of early termination for the ISEGEN algorithm, whilst demonstrating that the early

termination does not adversely effect the quality of the result. ISEGEN early-termination is

and shown to improve the runtime of the algorithm by up to 7.26x, and 5.82x on average.

5.3.1 Faster ISE Analysis Through Shortcuts

For ISE analysis to yield the best possible results, as large a scope as possible must be provided

to the search process. It is a widely accepted idea that the larger an ISE is, the better its

performance will ultimately be. This assumption is not necessarily true, and in the presence of

wire delays and routing congestion this assumption can easily be overwhelmed. It is, however,

a certainty that if a larger scope is provided to ISE analysis, the results produced will be of

the same acceleration performance or better assuming the algorithm is optimal. This can be

trivially proven by the fact that the larger scope contains the smaller scope, and hence any

ISE that could be identified in the smaller scope could also be identified in the larger. Results

derived from a wider scope will not suffer from unguided ad-hoc partitioning or limitations on

code transformations that would otherwise be required. The more global a scope that an AISE

algorithm makes feasible, the less greedy the analysis will be.

At the most coarse grained level, the ISEGEN implementation utilised here already avoids

analysing DFG which have been profiled as having a zero execution count. This avoids unnec-

essary processing of DFG which are a part of the application source code but that are redundant

so far as the actual application’s execution is concerned. This high-level change contributed

between a 2-5x acceleration in the execution of the ISEGEN tool runtime, but is not evaluated

here. Largely dependent on the redundancy inherent in each application, the change is guaran-

teed not to have any effect on the model execution time either with or without ISE. It is not so

much a form of early termination as of input sanity checking; the latter stage of ISE selection

would discard any zero-executed ISEs anyway so producing them is not a useful exercise. The

following modifications to introduce early termination reduce the runtime for a single DFG,

122

rather than just reducing the number of DFG that are processed in total.

One existing termination check already introduced between the original ISEGEN paper

[30] and the later publication [7], is that the main search loop should be terminated if the result

does not change between iterations. The bounded constant number of iterations (set to six in

the original paper, and five in the latest) would seem to have been largely introduced to allow

for complexity analysis of the algorithm. Without the bounding, the worst-case run-time of the

algorithm is infinite. In practice the result very rarely changes past the third iteration of the

outer loop, and so the early termination check on the outer loop [7] saves around two fifths of

the algorithm execution on average. This is an example of using the properties of the algorithm

to limit its execution time: The outer loop resets the state to the last valid cut at the beginning

of each iteration. If the valid cut does not change in an iteration, ISEGEN will just repeat the

same fruitless search for as many outer-loop iterations as are run from that point.

Examining the ISEGEN algorithm of section 2.4.2, the three major input-dependent con-

tributors to the runtime are the three nested loops which constitute the main body of the algo-

rithm.

The innermost loop is not a good candidate for early termination as this is the heuristic

evaluation loop of the search algorithm. To cut the innermost loop short could very severely

debilitate the efficacy of the algorithm in an uncontrollable and highly input-dependent fashion.

The next loop out, the continuation of which is predicated on having unmarked nodes

remaining in the DFG, has potential for early termination due to required criteria for synthe-

sisable and schedulable ISEs. It has been noted in this thesis that this loop has a tendency to

“wander off” into wholly invalid areas of the search space after a number of iterations explor-

ing valid points. In cases examined prior to the experiments of this section, the search rarely

returned to a valid point of the space after having moved into an invalid area. Invalid points

result from one of two constraints being violated:

• Convexity Constraint; wherein an ISE must not contain any holes, that is an ISE where

the output of any node passes through an uncovered portion of the DFG and back into

the ISE. This will not be possible to schedule on the target RISC architecture.

• I/O Constraint; wherein an ISE must have fewer than a set limit of inputs and outputs.

For every full execution of the innermost loop, it is possible to check if any of the nodes do

not violate the constraints above. If no nodes are valid, then perhaps an early termination of

the middle loop is appropriate. In order to avoid a greedy approach, certain properties of the

problem and algorithm can be used. The convexity constraint may at times be violated in the

search for a convex solution, as in some cases it is the only way for search to expand past

a certain local minima. Of the rare cases observed where search did return from an invalid

solution to a valid one, convexity was usually the constraint which was originally broken.

123

Convexity is therefore not a valid constraint to trigger early termination, as it is sometimes

necessary to violate it in order to improve a solution.

Fig. 5.3: Example of pathological topology required for early
termination to change the result versus standard exploration.
Given an I/O constraint of 3/3 and assuming nodes are added
to the hardware partition in alphabetical order, early termi-
nation would stop at {A,B} (I/O: 3/1) whereas the original
algorithm would progress to {A,B,C,D,E,F} (I/O: 1/1)

The output constraint has similar issues, in that the search may expand horizontally violat-

ing constraints, and then be made valid through the addition of further operators reducing the

number of outputs. The input port constraint however has the property that when toggling from

software to hardware, the number of inputs will usually either remain the same or increase so

long as operator nodes all consume the same or more inputs than they produce outputs. This is

the case in all of the binary and unary operations under analysis in the isegen tool implementa-

tion produced here. That is, the relationship between toggling software nodes to hardware and

the number of inputs is often monotonic. This means that where only software nodes remain

unmarked in an iteration of the middle loop, if all of the nodes will increase the number of

inputs past the constraint there is no point continuing the middle loop, as all the following cuts

will violate the input constraint. Since cuts are only propagated from the middle loop to the

outer loop when they meet constraints, this further search will never actually impact the algo-

rithm’s progress other than to increase its execution time. Where any hardware nodes remain

there is the possibility that these may be applied in sequence to bring the input count back

within constraints, and so such a shortcut may not be taken if hardware nodes remain. It should

be noted that this is only a heuristic, as graphs exist which could cause this methodology to

terminate search when a better solution could have been found. These graphs are rare how-

ever, as they need to encompass several different properties in order to present the condition

wherein the ISEGEN algorithm will early-terminate with ill effect. Figure 5.3 demonstrates

such a graph and details the conditions required to cause the early termination presented here

to miss out on an acceleration opportunity.

A different approach can be taken with hardware nodes; where these exist in the set of

unmarked nodes, the sum of their inputs when treated alone provides an absolute upper limit

on the number of inputs which could be removed by toggling these to software. The number

of inputs in the current cut, minus the sum of the inputs of the unmarked hardware nodes,

124

yields a heuristic minimum number of inputs that might result from their toggling. Calculating

the minimum number of inputs in combination with moves from software to hardware that may

occur, is much harder to achieve. The heuristic minimum allows for the early termination check

to be made more effective by allowing termination to occur when the number of inputs rises

above a level where it cannot possibly be reduced to a number within the input port constraint.

At the beginning of each iteration of the innermost loop, we first set a flag to indicate that

the loop should early-terminate. When the unmarked nodes are iterated over, if a software node

is found which when toggled will maintain the input constraint, the early-terminate flag is set

to false. The sum of all hardware nodes individual input edges is also calculated during this

process; if the number of inputs in the current cut minus the sum of the hardware node inputs

is less than or equal to the input constraint, the early-terminate flag is set to false. If neither the

software nor hardware nodes yield the potential for satisfying the input constraint, the iteration

is terminated.

The body of the algorithm is therefore modified to include the new termination checks,

and becomes as in algorithm 4. The early termination check which is intended to reduce the

running time of the ISEGEN algorithm itself incurs a runtime cost. Evaluation must determine

that this cost is not overly significant, or at least less so than the search steps it removes. The

checks have been deliberately kept simple in an attempt to maintain a benefit from their use in

as wide a range of cases as possible.

5.3.2 Validation and Evaluation of Early Termination Approach

The isegen tool must first be modified to reflect the changes hi-lighted in algorithm 4. For

the purposes of this validation experiment, the ISEGEN implementation is run over the en-

tire SNURT benchmark suite, and the entire UTDSP kernels benchmark suite. Loops in the

UTDSP kernels are manually unrolled where this is appropriate, e.g. where loop bodies are

independent. This unrolling provides a range of sizes of DFG within the benchmarks, from

very small to very large; this in turn can be used to derive a trend between the size of graph and

the saving in ISEGEN execution time from the early termination introduced here. In addition,

the FAAD “Free Advanced Audio Decoder” application is used to represent a real-world appli-

cation as might be processed by the algorithm. The machine used to run the experiment is an

unloaded Intel Core2 Duo (E6300) clocked at 1.86GHz, with 2GB of RAM, running Scientific

Linux on kernel 2.6.18. The timing measurements have been taken using the time command;

the isegen tool loads the input and output filenames, heuristic weights, and constraints from

the command line and exits after processing, non-interactively. The I/O involved in file ma-

nipulation has been profiled and found to be insignificant compared to the ISEGEN algorithm

itself, which constitutes over 99% of the runtime even in small tests. The input and output port

constraints are set to 8 each respectively, as this represents a commonly accepted trade-off.

In order to determine the relative efficacy of the early termination, the following modes are

125

Algorithm 4 The main function of the ISEGEN algorithm, with middle-loop early termination
added to reduce the runtime of the algorithm by removing redundant search. The additions are
marked in bold. When early termination triggers, the control flow leaves the middle loop at
line 22 and rejoins the outer loop at line 32.

ISEGEN(C,DFG)
00: SetInitialConditions()
01: last best C⇐C
02: for(i=0, i < NUM ITERATIONS, i++)
03: working C⇐ last best C
04: best C⇐ last best C
05: hw inputs max⇐ 0
06: early terminate⇐ true
07: while(∃ unmarked nodes ∈ DFG)
08: foreach(unmarked node n ∈ DFG)
09: Calculate Mtoggle(n,working C)
10: if(n.in cut)
11: hw inputs max⇐ hw inputs max + n.num inputs
12: else
13: if(n.input delta + working C.num inputs <= MAX INPUT PORTS)
14: early terminate⇐ false
15: endif
16: endif
17: endfor
18: if(working C.num inputs - hw inputs max <= MAX INPUT PORTS)
19: early terminate⇐ false
20: endif
21: if(early terminate)
22: break
23: endif
24: best node⇐ Node with Maximum Mtoggle
25: toggle(best node,working C)
26: mark(best node)
27: CalcImpactO f Toggle(best node,working C)
28: if(working C satisfies constraints AND M(working C) >= M(best C))
29: best C⇐ working C
30: endif
31: endwhile
32: if(M(best C) > M(last best C))
33: last best C⇐ best C
34: unmark all(DFG)
35: else
36: i⇐ NUM ITERATIONS
37: endif
38: endfor
39: C⇐ last best C

126

timed for each benchmark:

• Without the new middle-loop early termination (baseline).

• With the new middle-loop early termination (early termination).

Every timing measurement is repeated three times, in order to compensate for any jitter that

might be encountered. The resulting three measurements are combined to form a mean average

for each combination of benchmark and termination mode, which is then used in the following

evaluation.

A bash script is used to initiate the tests automatically over the settings above, and only one

instance of the isegen tool is run at a time. The combination of 2 different termination modes,

3 repetitions, and 31 benchmarks leads to a total of 186 timing measurements. These are left

to run on the single machine used in the experiment over the course of several days.

In order to ensure that the output of the algorithm is not affected by the early termination

changes, the output of each of the termination modes for each benchmark is cross-checked for

equivalence. If the assumptions made in the description of subsection 5.3.1 are true, the result

of running ISEGEN should not change due to any of the early termination employed here. The

topology and conditions detailed in figure 5.3 which could lead to the early termination making

the result less efficacious will be detected by this check.

5.3.3 Evaluation of Validatory Results

Following the 186 runs of the isegen tool as outlined in the above experimental methodology,

the results of all the combinations of termination strategies for each benchmark were compared

for equivalence. In no case was the result given by the isegen tool different depending on the

termination mode used. The early termination methodology improves the run-time of the tool

by a significant degree, as is now discussed in more detail.

127

Benchmark Baseline Time (s) Early Termination Time (s) Tool Speedup Factor Benchmark Speedup Factor #DFG Active Max(#nodes) Max(#edges)
SNURT insertsort 0.02 0.02 1 1.15 10 13 12

SNURT fibcall 0.02 0.02 1 1.17 6 13 12
SNURT matmul 0.08 0.08 1 1.32 25 17 18
SNURT select 0.08 0.08 1 1.05 51 14 14

SNURT bs 0.09 0.09 1 1 87 41 40
UTDSP edge detect 0.12 0.12 1 1.42 29 32 29

SNURT qurt 0.12 0.13 0.92 1.12 34 28 22
UTDSP histogram 0.12 0.12 1 1.2 19 23 23

SNURT sqrt 0.18 0.18 1 1.11 48 22 20
SNURT qsort 0.2 0.2 1 1.12 77 16 18

SNURT ludcmp 0.22 0.22 1 1.15 36 18 19
SNURT minver 0.23 0.23 1 1.13 67 18 16

SNURT crc 0.24 0.24 1 1.05 44 24 24
UTDSP fft 1024 0.5 0.47 1.06 1.82 20 35 44

SNURT fir 0.52 0.52 1 1.18 44 28 36
UTDSP iir 4 64 0.66 0.65 1.02 1.57 19 34 47

SNURT lms 0.72 0.72 1 1.13 58 26 34
SNURT fft1 0.78 0.72 1.08 1.24 48 38 47

SNURT fft1k 0.84 0.81 1.04 1.28 45 35 51
UTDSP spectral 0.92 0.88 1.05 1.6 41 37 55
UTDSP adpcm 4.36 3.19 1.37 1.37 88 64 85

SNURT adpcm test 5.28 4.99 1.06 1.14 197 84 137
UTDSP mult 10 10 6.17 4.07 1.52 1.75 19 58 104

UTDSP lpc 9.47 10.64 0.89 1.39 70 72 117
SNURT jfdctint 252.95 125.48 2.02 1.71 8 101 152

FAAD fixed 710.43 408.21 1.74 1.6 1190 154 257
UTDSP fir 256 64 1036.69 350.81 2.96 2.8 14 185 260
UTDSP compress 1085.45 345.88 3.14 1.3 53 148 236

UTDSP lmsfir 32 64 65948.79 9078.6 7.26 1.6 15 469 694
UTDSP latnrm 32 64 66744.16 12998.68 5.13 1.83 15 426 740

Tab. 5.4: Results of Early Termination Evaluation, ordered by time taken at baseline. Tool speedup factor is the factor by which the runtime of the
ISEGEN tool was improved using the early termination heuristic. Benchmark speedup factor is the factor by which the benchmark was accelerated by
ISEs identified. This table demonstrates the relationship between the time taken at baseline, and the number of nodes (or edges). The runtime of the basic
algorithm is O(|V |3) where V is the set of vertices (nodes). The algorithm with early termination also has a polynomial run-time, but with an apparently
lower exponent than the original. This is made evident by the polynomially increasing relative difference, between the baseline and early-terminating
algorithms, as node count increases.

128

All of the savings in execution time can therefore be considered as zero-cost, other than the

additional work required to implement the extra tests in the isegen tool. This refinement of the

ISEGEN algorithm confers only positive effects on the runtime of the analysis by removing

only redundant computation from the search.

Table 5.4 gives all of the results obtained, including information on the dimensions of the

underlying DFG in the benchmarks processed.

Despite the additional cost incurred in calculating the termination conditions, in most cases

the time taken by the early-terminating runs of the isegen tool were shorter than the time taken

by the baseline version. The Tool Accel column from table 5.4 gives the factor that the isegen

tool was accelerated by. The most notable result from the benchmarks in figure 5.6 is the

UTDSP LPC benchmark, wherein the early termination mode leads to a higher isegen tool

runtime than the baseline. This is due to early termination taking some time to calculate due

to the non-trivial number of nodes and edges in the largest graph, and the fact that the early

termination does not remove very much search from this benchmark. The only other example of

this effect is SNURT QURT seen in figure 5.7, which falls to the same pathological condition.

This effect only occurs in smaller benchmarks, with the largest benchmarks having gleaned a

tool runtime benefit in all cases. The more nodes that a DFG has, the more likely it is to trigger

a condition where toggling of any remaining nodes cannot lead to a valid solution. In both

cases, where tool runtime has been increased, it is not by a large amount: just over a second

for UTDSP LPC and less than a second for SNURT QURT. This in comparison to the savings

made in other benchmarks is rather insignificant when considered in terms of the cost of an

ASIP engineer’s time.

The best example in terms of both absolute and normalised (percent of total) saving for the

early termination is the SNURT LMSFIR benchmark. This benchmark is reduced from 1099

minutes at the baseline; over eighteen hours, to 151 minutes when using the new early termi-

nation method. This is a reduction of 7.26x in runtime, reducing the runtime of the isegen tool

enough that an engineer can explore considerably more design points in the time available to

them for any similarly complex application. The UTDSP LMSFIR isn’t the longest application

to process in the baseline setting of all those tested, but is very close; only thirteen minutes

separate the baseline runtime of UTDSP LMSFIR and UTDSP LATNRM. The largest DFG in

UTDSP LMSFIR is 469 nodes and 694 edges including non-coverable operations, as detailed

in table 5.4 figure 5.5 illustrates the size and complexity of this DFG.

By far the greatest impact on the ISEGEN algorithm runtime is the size of an individual

DFG for processing, since this is subject to O(|V |3) runtime as discussed in section 2.4.2.

The number of DFG in a benchmark only contributes to the overall runtime linearly, because

the ISEGEN algorithm itself runs with scope of only a single basic block. Benchmarks with

greater numbers of DFG may therefore take much less time to process than benchmarks with

fewer. This is due to the complexity of an application being innately partitioned into basic

129

Fig. 5.4: Time taken per termination strategy, for benchmarks taking more than an hour to
process. These benchmarks obtain the greatest benefit from early termination; the maximum
benefit shown here being 7.26x. This could allow an engineer to explore around the same
factor more design points. Average saving is 921.8 minutes, with a standard deviation of 36.83
minutes.

Fig. 5.5: DFG for UTDSP LMSFIR which is the major contributor to the large runtime of
the ISEGEN algorithm when run on this benchmark. There are 497 nodes and 694 edges,
contributing directly to the runtime of the ISEGEN algorithm. This figure is not intended to
illustrate the fine-grain detail of the DFG, but rather demonstrate the size and complexity of
the problem faced by ISEGEN for a realistic kernel. This complexity is the result of loop-
unrolling the original LMSFIR benchmark to expose OLP. The early terminating algorithm
makes feasible the exploration of DFGs with higher OLP, a necessary feature where higher
ISE performance is desired.

130

blocks when processed by the ISEGEN algorithm. These results demonstrate that the early

termination method is more effective in reducing the runtime of larger DFG. Looking at the

trace of search in baseline and early termination modes it is apparent that the early termination

mode removes a vast swathe of fruitless search. The baseline search massively exceeds the

input (and output) constraints before falling back to the same final cut as when using early

termination.

Taking the mean average factor of acceleration weighted by the time taken at baseline, the

early termination accelerates the runtime of the isegen tool by a factor of 5.82x. Splitting the

results as per figures 5.7 (short), 5.6 (medium), and 5.4 (long); taking the same weighted aver-

age as for all benchmarks, the early termination achieves 1.02x, 2.48x, and 6.01x respectively.

This approach therefore has greater application in benchmarks taking longer to process, which

in itself is a useful feature as it directly competes with the O(|V |3) runtime of the original

algorithm.

The longest benchmark to process is the UTDSP LATNRM benchmark, taking 1112 min-

utes (over 18 hours) in the baseline and 216 minutes (under 3.5 hours) using early termination.

The largest DFG in this benchmark is 426 nodes and 740 edges, which contains more edges

than the slightly shorter UTDSP LMSFIR benchmark, but fewer nodes. The tool acceleration

of 5.13x is likely to have been smaller than the UTDSP LMSFIR benchmark’s 7.26x because

the early termination is more effective in the face of a high number of nodes, and should not

be effected by the number of edges. This said, there is not a concrete correlation between the

number of edges and the tool acceleration imparted, as the results for UTDSP FIR and UTDSP

COMPRESS from table 5.4 demonstrate. Early termination contributes a slightly better advan-

tage to the UTDSP COMPRESS benchmark despite that benchmark having more DFG, and a

lower maximum number of nodes. The lack of a direct correlation between number of nodes

and edges versus ISEGEN runtime is down to the topological differences in the underlying

DFG. Different topologies of nodes and edges will lead to different search behaviours. In some

cases solutions will be found in the first outer iteration of the ISEGEN algorithm, in others it

will take several iterations for this to be realised. Where several iterations are taken, more com-

pact combinations of hardware nodes lead to less effect from the early termination due to the

hardware-node element of the check. Since this component of the early termination assumes a

worst-case “flattened” organisation of the nodes in order to avoid analysis of topology, it will

let the graph grow further into invalid sections before termination is triggered. Graphs which

intrinsically lead the search towards flatter (non-serial) ISEs will therefore obtain the greatest

benefit from this early termination strategy.

The early termination mode has very little use in benchmarks taking less than a second to

complete, as in figure 5.7. In many of these, the time taken using early termination is the same

as the baseline. In the benchmarks taking the same time, all ISEs identified are identified in

the first outer iteration of the ISEGEN algorithm. At no point in these cases does the search

131

Fig. 5.6: Time taken per termination strategy, for benchmarks taking between one second and
an hour to process. Savings made are less than those for figure 5.4, and more than those of fig-
ure 5.7. This graph shows an application that is negatively impacted by the early-termination:
UTDSP LPC. This benchmark unfortunately gains more overhead from the early termination
checks than it saves. Such overhead is only very slight. Average saving for results on the left is
0.6 seconds with a standard deviation of 1.39 seconds. Average saving for results on the right
is 464 seconds with a standard deviation of 297 seconds.

Fig. 5.7: Time taken per termination strategy, for benchmarks taking less than a second to
process. These benchmarks are the least improved by early termination, because they contain
the smallest DFGs. Like the larger UTDSP LPC benchmark of figure 5.6, SNURT QURT
is made a little slower to analyse by early termination. The observation that most of these
very short benchmarks are not worsened is vindicating to the early termination method. This
graph demonstrates that the conditions for such ill performance are more idiosyncratic than just
having small DFGs. Average saving is 0.01 seconds, with a standard deviation of 0.02 seconds.

132

encounter a condition where it is violating the input port constraint. The DFG are all so small

that the calculation of the early termination condition does not add a measurable overhead to

the time taken to run the isegen tool.

By far the largest benchmark tested here in terms of either number of DFG or lines of code,

is the FAAD AAC decoder. It represents a realistic application, as it might be processed (with-

out any source transformation) in order to quickly increase its performance through application

specific processing. The largest executed DFG in the FAAD application is 154 nodes and 257

edges. Larger DFG exist in the source, but they all exist in dead code sections so far as the

version configured for this work is concerned (fixed point). Of the 4324 DFG contained in the

FAAD source code only 1194 of these are actually considered “live” by the isegen tool, since

they have been profiled with an execution frequency greater than zero. The FAAD source code

contains many potential configurations, and in this case the configuration used has only cov-

ered around a quarter of the source code available. This is of course a fully functional version

of the FAAD decoder, and is configured in such a way as to mimic a version of the decoder

that could be executed on the EnCore [10] processor. The early termination mode gives a 1.74x

improvement (43% reduction) over the baseline ISEGEN runtime. This amounts to a reduction

from 11:50 (m:s) to just 6:48, saving over 5 minutes. Since this version of FAAD has had no

source transformations applied and is presented to the AISE tool-chain as-is, there is potential

for loop-level transformations such as unrolling to be applied in order to increase the ISE ac-

celeration from the achieved 1.67x. The early termination introduced makes the exploration

more tractable; as graphs get larger through OLP-exposing transformations the reduction in

tool runtime versus the baseline gets more pronounced, which encourages the exploration of

these more fruitful spaces.

Whilst it would still be possible to generate a set of DFG which would strain the algorithm

to produce a runtime complexity ∈ O(|V |3), it is demonstrated in these results that for real-

istic applications and benchmarks the runtime of the ISEGEN algorithm can be dramatically

reduced from the worst case using early termination.

133

5.3.4 Conclusions

Having now thoroughly evaluated the effects of the new early termination methodology, the

following conclusions are apparent:

• Early termination dramatically reduces the runtime of the ISEGEN algorithm; up to

7.26x in the best case, 5.82x on average.

• Early termination is generally more effective in both absolute and relative terms with

larger node-counts:

• The size of an individual DFG has a higher-order contribution (cubic) to the runtime

than the number of DFG (linear). Early termination applies to the former, and this is the

reason for the growing relative and absolute efficacy with growing DFG node count.

• The mechanism by which early termination can fail to produce the same result as the

baseline algorithm has been identified, however:

• At no point during evaluation did the early terminating and original algorithm differ in

their result during this analysis.

Henceforth, in this thesis, the ISEGEN algorithm is only used with early termination enabled.

The ability to explore several times more design points is worth more than the slight difference

in output that the algorithm has to the baseline in rare circumstances, which were not even

observed here. The approach outlined in this section has addressed well the concern of engineer

time, as by making the algorithm faster the engineer’s productivity can be increased by the same

factor.

134

5.4 Pipeline Aware Identification

In this section we look at the issue of making the identification algorithm aware of the benefit

in overlapping the execution of independent ISEs. An extension to the ISEGEN heuristic to ac-

count for pipelining is proposed and evaluated, increasing acceleration by up to an additional

1.5x.

5.4.1 When Serial is also Parallel

Pipeline or temporal parallelism is the overlapping of independent operations in a pipeline,

after the processor hardware has determined that the serial instruction stream contains two

or more operations which may be overlapped in time in order to reduce their overall execution

time. Temporal parallelism accounts for a large degree of the performance available in both em-

bedded and GPP cores. Different mechanisms exist for performing the necessary dependency

checking, some of the earliest mechanisms being Score-boarding [142] (developed in 1964 for

the CDC6600) and Tomasulo’s Algorithm [143] (developed in 1967 for the IBM Model 91’s

FPU). Both of these mechanisms in modified forms have found use in modern-day processor

cores, and so their relevance continues to this day. The common features of processors which

make use of these techniques are:

• Multiple and/or multi-stage (pipelined) functional units.

• Functional unit result latency greater than a single cycle.

These features in themselves are common to nearly all processor cores, hence the reason why

so many processors feature mechanisms for dynamically exploiting temporal parallelism.

In the context of ISE, there is a design-choice to be made with regards to the amount

of pipelining applied to the microarchitecture implementing the ISEs. Purely combinational

ISEs are implemented as multi-cycle functional units containing no synchronous registers. The

same arithmetic function may also be implemented with a number of registers to allow for

an issue latency or “data initiation interval” (DII) less than the critical path of the original

ISE. The lowered DII allows for both temporal parallelism and resource-sharing of the AFU

representing the ISE. Adding registers in this fashion is a trade-off between the area added

by flip-flops to the design, the static and dynamic power required by those flip-flops, and the

increase in acceleration which may result from pipelining.

There are a number of different ways temporal parallelism may be exploited by a processor,

depending on microarchitecture:

• Where functional units (both baseline and extension) are implemented in non-overlapping

microarchitecture, both may be active at the same time.

135

• Where functional units have a DII less than their critical path due to pipelining, multiple

instructions may be “in flight” within the unit.

• Where functional units share microarchitecture spatially, if these units are pipelined the

units may again have multiple instructions “in flight”, as the resources should be arranged

in such a fashion that successive instructions do not generate a structural hazard.

All of these scenarios require that there are not other hazards (data, control) preventing them

from occurring. The latter point above covers the scenario represented by CFAs, where multiple

ISEs are implemented in a single pipelined functional unit. ISEs sharing a single CFA may

execute (in-order) with a single-cycle DII. Longer instructions may hold up shorter ones, and

so scheduling is important in such a situation.

Scheduling itself is dependent on the operations available in the instruction set, including

extensions. Other work in this field cites [144] the lack of repeating isomorphic ISEs as the

reason for not performing pipelining on AFU; this is only true when ISE do not share resources

and are data-dependent.

It is important not to confuse the different approaches to exploiting pipelining in ISE anal-

ysis, as the term “pipelining” has also been used to denote the use of multiple-cycle input and

output to a combinational ISE ([18] [23]), otherwise known as “Distrubuted I/O” [129]. The

work of [129] claims to remove the I/O constraint, but this is misleading as this simply con-

verts the discrete single-cycle I/O constraints to a more continuous bandwidth constraint. The

I/O constraint is indeed removed in the identification algorithm of [129]. Maximal ISEs are

identified, regardless of their potential fit with the actual bandwidth available. This is better

represented in the work of [145] where the bandwidth constraint of the register file is used to

shape the search process, using a modified version of the Atasu et al.ILP-based AISE algorithm

[20].

As we have already shown with the earlier section 4.3, splitting up a larger ISE into smaller

partitions does not necessarily lead to a massive decrease in performance. The earlier work

of [18] and [23] are both using pipelining to make ISEs as large as possible, with the general

concept that “bigger is better”. In the work presented in this section, we are simply looking

to make better use of a smaller area through inter-ISE temporal resource sharing. Because we

are not relaxing I/O constraints through pipelining here, but rather using pipelining to overlap

consecutive ISEs in time, the ISEs in question do not get any bigger in general.

Modification of the ISEGEN algorithm is performed in this section, to include pipeline

scheduling within its calculation of the merit function heuristic component savedcycles. The

original algorithm including the merit heuristic functions can be seen in section 2.4.2. The

savedcycles component is originally a direct embodiment of the model from section 2.3.1.

It is a part of both the inner and outer merit calculations in the ISEGEN algorithm, and is

used in isolation to determine the worth of a partition with respect to an induced cut. The

136

Fig. 5.8: Example DFG to demonstrate heuristics, containing four ISEs and no software nodes;
ISE Hardware Latencies: A=2, B=4, C=3, D=8. Software latency: 35 cycles, Hardware (com-
binational) latency: 17 cycles. Tables 5.5 and 5.6 illustrate the scheduling of this DFG with
regards to the ISE identified therein.

savedcycles heuristic is extended to include a pipeline model, and a scheduler including a

modifiable scheduling heuristic. As each new ISE is explored, the entire basic block is sched-

uled each time the savedcycles heuristic is evaluated, in order to direct the search towards sets

of ISEs which schedule better when combined. The process is somewhat greedy, as there is

no backtracking once an ISE has been identified. The new heuristic should regardless provide

ISEs which are better than their purely combinatorial counterparts for scheduling on a pipelined

implementation.

The approach presented here can be seen as an alternative to distributed I/O, relying on

further partitioning of ISEs and the pipelining and forwarding of the processor to increase the

throughput of extensions. The increased partitioning allows for resource-sharing algorithms to

trivially overlap hardware inter-ISE stage by stage, since the same pipeline stage will not be

active at the same time for any two different ISEs in a single-issue architecture. This is one of

the principal assumptions of the CFA construction algorithm covered in section 4.2.

5.4.2 Pipeline Model and Scheduling Heuristic

The pipeline model employed is based heavily on the operation of the EnCore pipeline, and the

extension pipeline developed for the Castle revision (see section 7.2) of the EnCore microar-

chitecture. The model is comprised of the following rules:

• Only one operation (baseline or ISE) may be issued each cycle.

• Only one operation (baseline or ISE) may commit each cycle.

• Operations may not overtake one-another; no out-of-order execution is permitted.

• Baseline operations are not pipelined, and only one ALU of each type is available.

• ISE implementations are fully pipelined, and hence may be issued one per cycle.

137

Stage 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Fetch B C A D

Decode B C A D
Execute 0 B C A D
Execute 1 B C A D
Execute 2 B C D
Execute 3 B D
Execute 4 D
Execute 5 D
Execute 6 D
Execute 7 D
Memory B C A D

Writeback B C A D

Tab. 5.5: Pipeline Schedule for DFG using ASAP-LF heuristic (see figure 5.8). 15 Cycles total;
11 cycles in Execute Stages; 6 cycles saved over combinational due to allowing independent
ISEs to overlap in their execution.

• ISEs may arbitrarily overlap in the pipeline where dependencies allow.

• Baseline and ISEs may not overlap.

• Baseline instructions may not overlap one another.

• Forwarding between dependent operations is immediate between the commit of the first

instruction and the issue of the second.

Two separate heuristics are used to perform the pipeline scheduling:

• ASAP-SF: Operations are issued as soon as possible (ASAP) (e.g. when their inputs

are available), and in the case where multiple operations are ready to be issued these are

issued with the shortest latency first (SF).

• ASAP-LF: Operations are issued ASAP, and where multiple operations are ready these

are issued longest latency first (LF).

An example schedule of ISEs and baseline instructions for a given DFG (See figure 5.8) as

per the ASAP-SF heuristic is given in Table 5.6. The same DFG with respect to the ASAP-LF

heuristic is given in Table 5.5.

Note that the model indicated above replaces entirely the model presented in section 2.3.1;

both baseline and extended performance are processed with respect to this pipeline model and

scheduler.

5.4.3 Determining the Efficacy of the Pipelining Heuristic

To show that the pipelining heuristic is actually useful, it is necessary to demonstrate that it

is somehow superior to the existing combinational model used in the ISEGEN algorithm. It

is possible that the existing combinational heuristic can be calibrated with a suitable heuristic

138

Stage 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Fetch A C B D

Decode A C B D
Execute 0 A C B D
Execute 1 A C B D
Execute 2 C B D
Execute 3 B D
Execute 4 D
Execute 5 D
Execute 6 D
Execute 7 D
Memory A C B D

Writeback A C B D

Tab. 5.6: Pipeline Schedule for DFG using ASAP-SF heuristic (see figure 5.8). 15 Cycles total;
11 cycles in Execute Stages; 6 cycles saved over combinational due to allowing independent
ISEs to overlap in their execution.

weighting vector as covered in section 5.2 to derive good templates for pipelining. The software

and hardware latencies used in this section have been modified from those in 5.2 to better reflect

those of the Calton EnCore [10] implementation, a low-cost processor core. This therefore will

bring the results obtained here closer to those which may be expected in the microarchitecture

developed within the project that this work is contained in. This, and the requirement that

the pipelining performance be measured also, requires a re-running of the parameter space

exploration as covered in section 5.2. Three different runs are required in order to evaluate the

new pipelining heuristic (and scheduling heuristic subcomponent):

• Combinational heuristic, including both ASAP-SF and ASAP-LF acceleration results for

the ISEs generated in addition to the combinational model acceleration.

• Pipelining heuristic using ASAP-SF scheduling heuristic, including all three results (ASAP-

SF, ASAP-LF, combinational) for acceleration.

• Pipelining heuristic using ASAP-LF scheduling heuristic, including all three results

(ASAP-SF, ASAP-LF, combinational) for acceleration.

As per the methodology of section 5.2 results are sorted in order of acceleration, and the

top N% is taken, increasing N until at least one common vector is found across all benchmarks.

To determine whether or not the new pipelining heuristic is actually effective at guiding the

search towards good pipelined ISEs, the value of N for the combinational heuristic but using

the pipeline acceleration performance to order results is taken. The same measurement of

N is taken for both the ASAP-SF and ASAP-LF scheduling heuristics to measure pipelined

performance, but using the combinational model to actually guide the search. N represents

the loss in acceleration required in order to produce an acceleration result within N% of the

maximum observed across all benchmarks.

139

The values for N obtained when using the combinational heuristic with respect to both

pipeline scheduling modes’ acceleration represent the value to beat when using a pipeline

heuristic in the actual search. The same process is therefore repeated with each of the pipeline

heuristic modes, getting the N values for the combinational, ASAP-SF, and ASAP-LF accel-

erations when using each of the pipeline heuristic modes. If the value for N is lower when

using the pipeline heuristic corresponding to the acceleration metric N is produced for, then

the pipelining heuristic in question is more stable with regards to a static weighting vector.

N represents the stability of the heuristic with regards to the weighting vector. Higher N

represents less commonality between the vectors obtaining the better results in the different

benchmarks. N is not the complete picture with regards to the benefits of using this pipelin-

ing heuristic. Also of interest is the pipelined acceleration provided by the ISEs identified:

both the best result seen regardless of N, and the result obtained with regards to N. These ac-

celeration metrics must be taken for both ASAP-LF and ASAP-SF pipeline schedule models,

and the combinational model for the search guided by the combinational model heuristic. For

the searches guided pipelining heuristics, only the combinational model and relevant pipeline

schedule model acceleration performance is taken. It is assumed that opposing pipeline models’

heuristic and acceleration performance are not important in the latter analysis of the heuristic

efficacy.

The same suite of benchmarks are used as in section 5.2, both to aid in comparison and

because the infrastructure to run these benchmarks is already available due to this earlier work.

Several observations can be made with this further data which are not directly relevant to the

evaluation of the pipelining heuristics. Most interesting is the potential effect of changing the

latencies of operations on the heuristic weighting vector; whether or not the best vectors seen

remain the same, and whether the same value for N is required in order to locate a common

vector for the combinational model heuristic.

Due to the observations made in the earlier section 5.2 regarding the linear equivalence

of weighting vectors in the space analysed therein, those vectors which are equivalent have

been reduced to remove all linearly equivalent duplicate vectors. The space in section 5.2 is

7776 points. However, the number of samples taken for each combination of benchmark and

heuristic herein is only 4652 points. This has reduced the amount of computing required by

about 1/3.

5.4.4 Pipeline Heuristic Results and Evaluation

The relationship between the heuristic used to guide the search, the weighting vector used,

and the resulting acceleration in a particular model is a complex one. This relationship is the

main focus of this evaluation. There are thirty-six graphs in this section, and each reflects a

benchmark’s heuristic space when the results are monotonically ordered by the performance

model result obtained (combinational, pipelined longest first and pipelined shortest first). We

140

discover here that the pipelined heuristic requires new weighting vectors, that it is better suited

to providing pipeline-aware designs than the original heuristic, and that pipelined designs sig-

nificantly reduce the I/O required to reach a particular level of merit. These points are now

discussed in depth, relating their discovery to the evidence obtained during this experiment.

Figures 5.9 and 5.10 reflect the performance of the ISEGEN algorithm guided by the com-

binational heuristic, including the performance of the resulting ISEs when scheduled using the

two pipeline models (LF and SF). As would be expected of the models used, the pipeline perfor-

mance is always greater than the combinational performance. The combinational performance

is the same as the pipelined performance where no overlap can be exploited. This equality is

true of all heuristics and vectors when applied to the SNURT CRC benchmark at 8/8, since the

I/O allows for all parallelism to be absorbed intra-ISE, giving no opportunity for the inter-ISE

parallelism which would be exploited by pipelining. FAAD and SNURT FFT1K at I/O 8/8 are

similarly effected, but in each case there are occasional points wherein the pipelined perfor-

mance exceeds that of the combinational due to some degree of available inter-ISE parallelism.

The pipeline heuristic only distinguishes itself from the original combinational heuristic when

there is at least one ISE already identified in a DFG, and there are operations parallel to the

already identified ISE(s). The new heuristic will then impart a merit boost to the speedup

component of the ISEGEN heuristic. This boost will be equal to the additional cycles saved

through scheduling the new operation overlapping with the original ISE(s). For the bench-

marks and I/O settings noted as having little advantage from pipeline scheduling of the ISEs

derived using the combinational heuristic, no significant advantage is yielded through using the

new pipeline-aware heuristic. This can be observed for SNURT CRC in figure 5.12 and 5.14

for the larger 8/8 I/O, where there is absolutely no difference between the different measures

of merit. Figures 5.11 and 5.13 for I/O of 4/4 demonstrate that the pipelined merit outweighs

the combinational merit in some places. Ultimately the pipelined merit only reaches the same

level (1.3x) that the combinational heuristic achieved in figure 5.9. Both FAAD and SNURT

FFT1K at I/O 8/8 have the same issue, in that there is little to no inter-ISE parallelism to exploit

if the intra-ISE parallelism is fully exploited; the top 5% of weighting vectors in both of these

benchmarks in all speedup heuristics present points which are the same merit, pipelining or

not. These benchmarks have not been transformed with any loop unrolling, and represent a set

of smaller DFG as might be present in an application.

FAAD and FFT1K present a different picture at I/O 4/4, where the positive effects of

pipelining begin to show. At lower I/O, the potential for inter-ISE parallelism is increased

because less of the width of data-parallel DFG can be incorporated into a single ISE. Figure

5.9 demonstrates that with the combinational speedup heuristic and using pipeline scheduling

on the resulting ISEs, performance is generally a little better when pipelining even at the top

5% of weighting vectors. At the high end, performance is improved by less than one percent in

FAAD (1.57x - 1.58x), and by a similarly marginal amount in SNURT FFT1K (1.31x - 1.32x),

141

(a) FAAD AAC (b) SNURT CRC

(c) SNURT FFT1K (d) SNURT JFDCTINT

(e) UTDSP FIR (f) UTDSP LMSFIR

Fig. 5.9: Parameter Sweep Space (I/O: 4/4) With Original Heuristic, Monotonically Ordered
by Speedup Factor on Combinational Performance Samples. These graphs demonstrate the
relationship between increasing combinational performance, and the performance of the same
design point when scheduled with pipelining. For every “step” of acceleration there are a
number of different pipelined performances. This implies that a more complex heuristic is
required to properly exploit pipelining. The potential of the approach is considerable where
OLP is also, adding up to 1.5x additional acceleration in the case of FIR. Less data-parallel
benchmarks such as CRC see no benefit.

142

(a) FAAD AAC (b) SNURT CRC

(c) SNURT FFT1K (d) SNURT JFDCTINT

(e) UTDSP FIR (f) UTDSP LMSFIR

Fig. 5.10: Parameter Sweep Space (I/O: 8/8) With Original Heuristic, Monotonically Ordered
by Speedup Factor on Combinational Performance Samples. These graphs demonstrate the
same effect as in figure 5.9 but with a higher I/O constraint of 8/8. In particular we can see that
the difference between the combinational and pipelined performance has been considerably
reduced because more OLP is absorbed intra-ISE rather than inter-ISE. A benefit still exists
with using pipelining at this level, as the peaks for pipelined performance are still higher than
those for combinational.

143

(a) FAAD AAC (b) SNURT CRC

(c) SNURT FFT1K (d) SNURT JFDCTINT

(e) UTDSP FIR (f) UTDSP LMSFIR

Fig. 5.11: Parameter Sweep Space (I/O: 4/4) With ASAP-SF Pipeline Heuristic, Monotoni-
cally Ordered by Speedup Factor on ASAP-SF Pipeline Performance Samples. These graphs
demonstrate once again the non-linear relationship between the combinational and pipelined
schedule, caused by the presence or lack of dependencies inter-ISE. Where dependencies exist
between two ISEs, the difference between combinational and pipelined performance is negated.
This effect summed over all the ISEs in each benchmark account for the non-linearity. The
pipelined heuristic has a slightly higher ceiling of acceleration for pipelined design points than
the original heuristic from figure 5.9.

144

definitely not a robust enough improvement to motivate the technique for these smaller DFG.

Figures 5.11 and 5.13 demonstrate that when using the pipeline heuristic to actually guide the

search roughly the same results are obtained. For these smaller DFG the use of any pipeline

scheduling for guiding search or for just exploiting the result of search is fairly useless. The

use of the pipelining heuristic does not damage the search at least.

The benchmarks containing a larger degree of operator level parallelism present a far

more interesting picture with regards to the difference between the pipeline-aware and orig-

inal speedup heuristic. SNURT JFDCTINT, and UTDSP FIR and LMSFIR all contain wide

DSP-like kernels, performing a large amount of data-parallel operation. For this reason, in

both I/O settings, the gap between the pipelined and combinational ISE is significant. The

inter-ISE parallelism becomes more readily exploitable at higher I/O. Most interesting regard-

ing these results is the tendency of the combinational and pipelined ISE performance to diverge

more when using the pipelined heuristic for speedup than when using the combinational. The

combinational performance at the high end of the pipeline-heuristic weighting vectors is con-

sistently lower than it is at the high end of the combinational heuristic weighting vectors, and

the pipeline scheduled performance is higher. This effect is not limited to the high end of the

weighting vectors either. The SNURT JFDCTINT benchmark presents the most subtle diverg-

ing of the two series. It is still significant enough to demonstrate that the pipelined speedup

heuristic does impart an advantage in selecting better ISEs for pipelined implementation.

The greatest performance improvement for the combinational heuristic guided SNURT

JFDCTINT 4/4 ISEs are 1.77x for the combinational schedule, 1.92x for the ASAP-LF pipelined

schedule, and 1.95x for the ASAP-SF pipelined schedule, as in figure 5.9. When using the

ASAP-LF heuristic, the maximum combinational schedule performance drops to 1.71x but

the ASAP-LF pipelined schedule performance rises to 1.93x, as in figure 5.13. More signifi-

cantly, when using the ASAP-SF heuristic, the maximum combinational schedule performance

drops to 1.72x but the ASAP-SF performance rises to 2.00x, as in figure 5.11. This observa-

tion confirms the idea that optimising directly for combinational performance does not lead to

pipeline-friendly ISEs, and that the performance of pipelined ISEs if utilised in a combinational

context will be bad. The two heuristics’ objectives do not correlate well enough to assume that a

well-performing solution with respect to one will produce good results for the other. This in it-

self motivates the use of a speedup merit heuristic specific to pipelining. Further, the ASAP-SF

heuristic is superior to the ASAP-LF heuristic in the pipeline model used herein for the SNURT

JFDCTINT benchmark. Differentiation between the two heuristics in acceleration is less pro-

nounced but still significant for SNURT JFDCTINT when considered for the I/O constraints

of 8/8, where the potential for pipelined (inter-ISE) parallelism to be exploited is reduced. Un-

der the combinational heuristic, the best performance is 2.10x for the combinational schedule,

2.17x for the ASAP-LF schedule and 2.19x for the ASAP-SF schedule (figure 5.10). Under the

ASAP-LF heuristic, the best performance is 2.09x for the combinational schedule and 2.19x

145

for the ASAP-LF schedule (figure 5.14). Under the ASAP-SF heuristic the best performance

is 2.10x for the combinational schedule and 2.22x for the ASAP-SF schedule (figure 5.14).

Again, the use of the appropriate pipeline schedule heuristics in search contributes to a slight

worsening of the ISEs for combinational schedule, and a slight improvement in the ISEs for

pipeline scheduling. The scheduling of ISEs shortest-first (ASAP-SF) again performs better

than the longest-first alternative under this larger I/O constraint.

Greater advantages at higher I/O constraints can be seen in the UTDSP FIR and LMSFIR

benchmarks, which share similar structure in their computational kernels. Both benchmarks

have a considerable degree of OLP, and contain large graphs which hold significant potential for

exploiting both intra- and inter-ISE parallelism. In the best case for the original combinational

heuristic, the FIR benchmark at an I/O of 8/8 obtains 3.05x acceleration for the combinational

schedule, 3.25x for the ASAP-LF schedule, and 3.29x for the ASAP-SF schedule. The same

benchmark and I/O under guidance of the ASAP-LF heuristic obtains a maximum of 2.99x

acceleration for the combinational schedule and 3.34x for the ASAP-LF schedule. Under guid-

ance of the ASAP-SF heuristic, the combinational schedule reaches 2.97x and 3.34x for the

ASAP-SF schedule. The LMSFIR benchmark with the combinational heuristic reaches 1.76x

acceleration for the combinational schedule, and 1.81x for both the ASAP-LF and ASAP-SF

schedules. Using the ASAP-LF heuristic acceleration is 1.72x for a combinational schedule,

and 1.82x for the ASAP-LF schedule. With the ASAP-SF heuristic acceleration is 1.72x for the

combinational schedule, and 1.81x for the ASAP-SF schedule. Once again, the use of pipeline-

aware heuristics either maintains or improves the performance of the ISEs under ASAP-LF and

ASAP-SF scheduling. The combinational schedule does have more trouble exploiting the ISEs

in question, but the negative impact is generally by around the same amount that the pipelined

result improves by. This technique is not intended to be used for combinational ISE scheduling

anyway; rather it is to be used when extending for architectures having a pipelined implemen-

tation of ISEs, or when deciding whether the inclusion of pipeline registers is worthwhile when

designing an ASIP.

Nearly all of the benchmarks show the greater efficacy of pipeline-aware scheduling and

search heuristic at lower I/O levels, and the UTDSP FIR/LMSFIR benchmarks show the great-

est benefit of all. At an I/O constraint of 4/4 guided with the combinational heuristic the FIR

benchmark obtains a maximum acceleration of 2.06x for the combinational schedule, 2.91x for

the ASAP-LF schedule, and 2.97x for the ASAP-SF schedule. Under the ASAP-LF heuristic

the combinational schedule reaches 1.98x acceleration, and the ASAP-LF schedule reaches

3.03x. The ASAP-SF heuristic obtains 1.99x acceleration under the combinational schedule,

and 3.07x acceleration under the ASAP-SF schedule. Similarly, the LMSFIR benchmark un-

der the combinational heuristic at an I/O of 4/4 achieves 1.50x acceleration in a combinational

schedule, and 1.71x acceleration in both ASAP-LF and ASAP-SF schedules. Using the ASAP-

LF heuristic LMSFIR reaches 1.47x under combinational scheduling, and 1.70x using ASAP-

146

(a) FAAD AAC (b) SNURT CRC

(c) SNURT FFT1K (d) SNURT JFDCTINT

(e) UTDSP FIR (f) UTDSP LMSFIR

Fig. 5.12: Parameter Sweep Space (I/O: 8/8) With ASAP-SF Pipeline Heuristic, Monotonically
Ordered by Speedup Factor on ASAP-SF Pipeline Performance Samples. As per the previous
comparison between figures 5.9 and 5.10, these graphs should be compared to those of figure
5.12. The comparison again demonstrates reduced efficacy of pipeline scheduling where a
higher I/O absorbs OLP intra-ISE rather than pipelining absorbing it inter-ISE.

147

LF scheduling. With the ASAP-SF heuristic the maximum acceleration under combinational

scheduling is 1.48x, and under ASAP-SF scheduling is 1.74x. Once again, the pipeline-aware

heuristic reaches the best performance using ASAP-SF.

The relationship between the combinational and pipelined performance is not well corre-

lated because of the two components which add to the ultimate acceleration obtained in each

scheduling mode. With purely combinational scheduling, only the intra-ISE parallelism con-

tributes to the acceleration imparted by a set of ISEs within a basic block. With pipelining,

both intra- and inter-ISE parallelism contribute, wherein a dependency between two ISEs im-

mediately removes any potential for inter-ISE parallelism. The non-linear relationship between

combinational and pipeline scheduled ISEs visible in the graphs presented throughout this sec-

tion are a result of this second order effect. Strongly accelerating ISEs under a combinational

schedule tend towards wider operation-parallel individual ISEs, and generally larger ISEs be-

cause the inclusion of a dependency between two ISEs does not damage acceleration. Strongly

performing ISEs under a pipelined schedule tend towards less width, and a generally smaller

number of nodes covered than combinational ISEs. This leads to the tendency to have more,

and smaller ISEs identified under the pipeline heuristic than the combinational. These exploit

available OLP through a mixture of intra- and inter-ISE parallelism, whereas combinational

ISE can only exploit OLP intra-ISE. Where I/O constraints are lower, the combinational ISEs

have a harder time exploiting the OLP, which accounts for the deterioration of the quality of

combinational ISEs under stringent I/O constraints. Pipelined ISEs on the other hand allow for

the available OLP to be exploited inter-ISE by overlapping ISEs in time. Exploiting OLP inter-

ISE has overhead in comparison to intra-ISE, especially in single-issue architectures since the

issue and commit of instructions must take structural hazards into account.

Examining the maxima in the weighting vector spaces is useful as it demonstrates the

maximum efficacy of the ISEGEN algorithm when used with different heuristics. A more

pragmatic measure of the efficacy of using the new heuristics to exploit inter-ISE parallelism

is observation of the maximum acceleration obtained when using the same weighting vector

across all benchmarks. A dynamic approach to setting the weighting vector could achieve

the maximums already presented, assuming a correlation between the weighting vector and

features of the DFG analysed could be found and exploited. Since this is not the purpose of

this work, the common-vector approach must be taken instead.

As outlined in the methodology, the weighting vectors which obtain a result within the top

N% of the acceleration observed throughout the vector weighting space for all benchmarks are

the common weighting vectors. The minimum value of N required to obtain common weight-

ing vectors is a measure of how stable the heuristic is across different programs; generally

speaking, lower N is better as it means the heuristic is more general, and be better for a wider

array of benchmarks. That the new pipeline heuristics and scheduling lead to a higher merit

for the resulting instructions has been established. Determining the stability, or efficacy of the

148

(a) FAAD AAC (b) SNURT CRC

(c) SNURT FFT1K (d) SNURT JFDCTINT

(e) UTDSP FIR (f) UTDSP LMSFIR

Fig. 5.13: Parameter Sweep Space (I/O: 4/4) With ASAP-LF Pipeline Heuristic, Monotonically
Ordered by Speedup Factor on ASAP-LF Pipeline Performance Samples. Comparison of these
graphs with those of figure 5.11 shows that the difference in performance between LF and SF
is small in terms of absolute performance. LF and SF scheduling do present different trends,
demonstrating a difference between the ISE design points being produced. As discussed in
the text, the LF scheduling presented here is less effective than SF. The difference in absolute
performance is slight, but the SF heuristic has better stability.

149

new heuristics across multiple benchmarks, requires calculation of N.

Interestingly, with the slightly different node latencies of this section versus those in section

5.2 the combinational heuristic common weighting vectors change, indicating that the weight-

ing vectors are dependent on the relative software and hardware latencies of operations used

in analysis. In prior results there were a large quantity of common weighting vectors and the

minimum N required in order to obtain a result for combinational heuristic and schedule was

N = 14%. In these results, there is only a single common weighting vector and the minimum

N = 10%. This is not directly relevant to testing the efficacy of the pipeline heuristics, but

it does imply that the original heuristic’s stability is dependent on node latencies. This con-

firms conclusions made in section 4.2, that there cannot be a single optimal static weighting

vector. Different DFG structures have been demonstrated in section 4.2 to impact the optimal

heuristic vector, and now different node latencies have also. This further motivates the future

investigation of a dynamic approach to the weighting vector.

For the combinational heuristic with regards to the ASAP-LF schedule, common vectors

were obtained at N = 11%; with the ASAP-SF schedule, common vectors were obtained at

N = 9%. These are roughly the same as the N for the heuristic with regards to the origi-

nal combinational heuristic, indicating that by the selection of weighting vectors the original

combinational heuristic can be used to identify instructions which are amenable to pipeline im-

plementation. The vectors identified for the combinational and pipeline schedules are different,

meaning that the objective is distinct in purpose. The most significant difference between the

common vectors identified is that in all cases of the common vectors identified for the pipeline

schedule, the “large cut” heuristic is weighted as zero, meaning that it is effectively removed

from analysis. This is in keeping with the earlier observation that the more efficacious pipeline

scheduled ISEs tend to be smaller, and more plentiful.

For the ASAP-LF heuristic with regards to the combinational schedule, common vectors

were obtained at N = 19%, indicating that as would be expected the heuristic which favours

pipelined solutions does not lead to good acceleration when the resulting ISEs are used in a

combinational schedule. The ASAP-LF heuristic used with the ASAP-LF schedule, however,

leads to N = 13%, which is initially discouraging. Even with a maximum loss of 13% from

the maximum obtained in each vector space, the resulting acceleration with regards to ASAP-

LF scheduling is still better than the combinational heuristic. For example, FIR obtains 3.01x

ASAP-LF acceleration using the common vectors of the combinational heuristic at N = 11%,

whereas it obtains 3.13x using the common vectors of the ASAP-LF heuristic at N = 13%.

Even though the common vector loses a little more of the maximum obtainable with the ASAP-

LF heuristic rather than the combinational heuristic, the results are still consistently better.

The ASAP-SF heuristic has common vectors for the combinational schedule at N = 15%,

which again is considerably higher than the original combinational heuristic; the use of pipeline

aware heuristics where combinational implementation is to be used is therefore a consider-

150

(a) FAAD AAC (b) SNURT CRC

(c) SNURT FFT1K (d) SNURT JFDCTINT

(e) UTDSP FIR (f) UTDSP LMSFIR

Fig. 5.14: Parameter Sweep Space (I/O: 8/8) With ASAP-LF Pipeline Heuristic, Monotoni-
cally Ordered by Speedup Factor on ASAP-LF Pipeline Performance Samples. This should
be compared with the graphs of figure 5.12, to demonstrate the difference between SF and LF
scheduling. The difference is lower at this higher I/O than that between figures 5.11 and 5.12
due to the inter-ISE parallelism being less significant. At higher I/O OLP is first absorbed
through parallelism intra-ISE, leaving less OLP for this pipelined method to exploit inter-ISE.

151

ably bad idea, as not only are the maximum accelerations obtained considerably less, common

weighting vectors make the situation even worse due to a larger value of N. The ASAP-SF

heuristic when used with the ASAP-SF schedule presents a very encouraging value for N = 6%,

Not only does the ASAP-SF heuristic and schedule achieve the greatest maximum acceleration,

but it also has common vectors for weighting the ISEGEN merit function that obtain within 6%

of those maximums. For example, FIR achieves a 3.01x acceleration using the combinational

heuristic common vectors at N = 9% and ASAP-SF schedule, whereas the ASAP-SF heuristic

achieves 3.25x using the common vectors at N = 6%.

Looking at the results for this technique we can see that the pipelined technique does not

have as much of a lead compared to the original combinational technique at the higher I/O.

With higher I/O comes higher exploitation of the OLP available in a given applicatio DFG

intra-ISE. That is, a single ISE is better able to exploit the OLP available as it is able to be

wider. Whether or not pipelining will impart benefit at even higher I/O will depend entirely on

how much OLP is available to be absorbed by ISE: If enough OLP exists that a multitude of

high-I/O ISEs may be allowed to overlap in their execution, then pipelining will be beneficial.

It is not sufficient to say that this technique would or would not be effective at higher I/O,

but rather than for a given I/O there will be a related level of OLP required for pipelining to

be of use. As a trivial limit, the OLP must require at least two ISEs (with respect to the I/O

constraint) to exploit fully in order for this pipelined identification to be of increased efficacy

versus the original technique.

152

5.4.5 Conclusions

After evaluating this new heuristic for ISE identification in the face of a pipelined microarchi-

tecture, the following conclusions can be made:

• The new pipelining heuristic is more effective than a properly tuned version of the orig-

inal combinational heuristic in deriving independent and hence instruction-parallel ISEs

for overlapping within a single DFG. This is because:

– The original (combinational) heuristic does not achieve as large a maximum per-

formance under the pipelined schedule regardless of vector; although this is slight

(less than 10% relative in all cases) it is consistent in that no benchmark has the

opposite effect.

– The “stability” of the pipelining heuristic when used in ASAP-SF mode, i.e. the

maximum amount in percent one must lose from the total performance of any single

benchmark in order to obtain a common static weighting vector is only 6%, which

is the best seen so far. The ASAP-LF heuristic has a rather higher value of 13%

which contends its suitability, but it still produces better results than the original

heuristic.

• Inter-ISE parallelism is significant, contrary to assertions made in other efforts. At 4/4

the benefit conferred through using pipelined ISE is up to an additional 1.5x (raising

acceleration from 2x to 3x for the OLP-rich FIR benchmark).

• Work which has only attempted to derive benefit from overlapping ISEs with higher

(8/8 and above) I/O constraints will see little benefit from this approach unless sufficient

additional OLP is exposed:

• There is a finite amount of OLP available in a given DFG analysed for ISE identification,

and this “slack” may be taken up by either a lower I/O such as 4/4 with overlapping

(pipelined) ISE microarchitecture, or a higher I/O without.

• There is no strong correlation between pipelined and combinational acceleration merit

for a given weighting vector. The relationship is highly nonlinear due to structural issues

not visible in the graphs produced. Sets of ISEs with greater numbers of inter-ISE depen-

dencies will have lower pipelined acceleration; the combinational model of scheduling

is not so affected.

• This pipeline-aware heuristic is also an alternative (in terms of exploiting lower I/O bet-

ter) to the previously suggested multi-cycle I/O exploitation of [23]. The approach pre-

sented in this section should be cheaper in terms of algorithm run-time because as the

153

authors of [23] state, their approach requires multiple executions of the ISEGEN algo-

rithm; generally sixteen or more. This is because their work did not actually change the

ISEGEN algorithm itself, but rather the context in which it is used.

• The ASAP-SF schedule largely beat the ASAP-LF schedule in terms of maximum per-

formance, and in addition to the greater stability of that heuristic under a static common

weighting vector it is safe to say that for our configuration this is the more efficacious

scheduling heuristic.

• Using the pipeline-aware heuristic when the end result is not to be temporally paral-

lel (i.e. is the basic combinational microarchitecture) is detrimental to the result: This is

because the pipelining heuristic favours inter-ISE parallelism, whereas the standard com-

binational heuristic favours intra-ISE parallelism. The objectives of identifying ISEs for

pipelined and non-pipelined microarchitectures are different.

Pipelining is not used in the remainder of this thesis, as another objective (energy efficiency

in the combinatorial model) is first examined and found to be of more interest in terms of the

potential benefit to the result. This section has proven that there is considerable merit to this

approach, and it warrants further attention.

154

5.5 Energy Aware Identification

Earlier in this thesis (section 4.2), it was determined that there is a near-linear relationship

between the area occupied by an instruction and the energy it consumed in operation. The

relationship was expanded to a heuristic, which it was claimed could be used in order to produce

more energy-efficient ISE implementations, when realised via the CFA microarchitecture. In

this section, it is demonstrated that the relationship between area and power can indeed be

exploited. ISEs result which are more capable of shrinking the integral of runtime versus

power, leading to an overall decrease in energy consumption. This energy-aware heuristic

reduces the energy used by a CFA implementation of a set of ISEs by an average of 1.6x, up to

3.6x.

5.5.1 Better Value ISE: Making ISEGEN Optimise for Energy

In the earlier section 4.2, a near-linear relationship was determined between the silicon area

consumed by a CFA and the power it would consume during execution. Of particular inter-

est is table 4.1, which demonstrates that the specific values for a range of benchmarks, with

regards to the number of milliwatts consumed per mm2 of die area. The variability present

in the table is due to the difference in power consumption between floating point and integer

operators, wherein the benchmarks utilising only integer operations get at most 25% better

power performance per mm2.

The following relationship was determined to be a suitable heuristic for introduction into

the DSE process used in order to design application-specific CFAs, from section 4.2.2:

Cise sw: Cycles taken to execute this ISE in software.

Cise hw: Cycles taken to execute this ISE in hardware.

Psw: Combined dynamic and static power consumption for the baseline processor during exe-

cution.

Psw cg: Power consumption for the baseline core whilst CFAs are active (reduced compared to

Psw due to clock-gating).

Phw: Power consumption of CFAs during ISE execution.

Phw cg : Power consumption for CFAs when not executing ISEs.

Cise sw/Cise hw ≥ (Phw +Psw cg)/Psw

Any ISE which satisfies this inequality should contribute a benefit to energy efficiency, with

respect to the model described in section 4.2.2. In order to extend ISEGEN with this heuristic, it

is used to replace the existing M(C) speedup merit heuristic which is used in both the weighted

and unweighted merit calculations of ISEGEN, with a new heuristic:

energy saved = (Cise sw/Cise hw)− ((Phw +Psw cg)/Psw)

155

That is: the difference between the ratio of software to execution time, minus the ratio of the

power consumed during ISE execution to that consumed during baseline instruction execution.

A larger number indicates a greater energy saving, through a reduction in the integral of the

power versus time function of the architecture.

In order to make the isegen tool able to estimate Phw, a number of derivations must be made

from any DFG cut (ISE).

First, the CFA representing the ISE must be modeled including the configuration memories,

permutation and routing layers, and pipelined operators as appropriate. A CFA would normally

be constructed to cover multiple ISEs. For this heuristic, the model is instantiated to cover only

a single ISE. Afterwards identification, selected ISEs are combined into a smaller number of

CFAs by the uarchgen tool. The power estimates will have wandered somewhat after uarchgen,

due to resource-sharing removing the 1:1 mapping of ISEs to CFAs.

Second, the area of the constructed CFA must be estimated; a process already contained

within the uarchgen tool which has been provided with the areas of the individual components

of the CFA, parameterisable with dimensions where this is appropriate (e.g. the permutation

and routing networks, and the MCU configuration memories). The areas of the units used in a

particular CFA design are added together to produce an estimate of area, which has been found

to be an accurate (to within 15% for designs evaluated) estimate of the area consumed after

the RTL is converted to gates. This area is the gate area, so is the die area consumed if the

utilisation of the finished design were 100%. For the purposes of this work, the area is simply

used to predict the power used by the CFA when active. As discussed, a correlation between

the area consumed by a CFA and its dynamic power has been established earlier in this work

in section 4.2. Table 4.1 gives the ratio of area to dynamic power for a range of benchmarks

tested in the same 130nm process for which the component areas have been provided to the

CFA construction process. The parts of uarchgen which are concerned with construction of

CFAs and calculating area have been copied into the isegen tool. The augmentation makes

isegen able to construct a CFA object model for and estimate the area of any valid DFG cut

when implemented as a CFA. The average value of the correlation from area to power is taken

from the results in table 4.1, and multiplied by the area in order to derive the estimate for

power used as Phw in the new heuristic. The other values in the heuristic are either available

from existing functions within the isegen tool (e.g. Cise sw and Cise hw), or are provided as static

values to the analysis (e.g. Psw and Psw cg).

5.5.2 Determining the Efficacy of the CFA Energy Optimisation Heuristic

In order to determine whether or not the new heuristic is effective, comparisons must be made

between the cost and the benefit provided by the original heuristic and this new energy optimi-

sation heuristic. This does mean that once again the weighting vector sweep must be performed

156

using the new heuristic so that the best weighting vector amongst those tested can be located.

For this purpose, the ECDF “Eddie” cluster is used again as per the methodology of sections

5.2 and 5.4. All 4652 linearly distinct points in the weighting space are evaluated using the new

energy-aware heuristic in place of the original. Both 4/4 and 8/8 I/O constraints are explored,

and the benchmarks used are identical to earlier experiments utilising “Eddie”, as these repre-

sent a good cross-section of functionality. Since the software and hardware latencies used in

this experiment are identical to those used in the earlier pipeline heuristic experiment (section

5.4) the weighting space results for the combinational heuristic are re-used here so that redun-

dant work is not performed on the cluster. The same tools are used for this stage as in previous

experiments; isegen is the only tool used on the cluster.

At this point, the 4652 points each in the weighting spaces for both the original combina-

tional heuristic and the new energy optimisation heuristic have been evaluated, and acceleration

derived for each using the model of section 2.3.1. The top ten results by acceleration for each

combination of benchmark, heuristic, and I/O constraint (24 combinations) are taken and syn-

thesised to obtain power results. The DesignCompiler, PowerCompiler, and ModelSim tools

are used to synthesise the CFA Verilog models and test-benches from the uarchgen tool as per

the methodology in section 4.2.2. Using the model presented in section 4.2.2, an estimated

figure for energy is produced for each of the 240 synthesised sets of CFAs with respect to a

single run of their original applications. FPU power is included as before in results for FIR,

LMSFIR, and FFT1K as these utilise floating point. Applications vary quite greatly in their

absolute performance, so all results are normalised against the baseline (non-extended) per-

formance. Once performance is known for each of the 240 points, the sets of 10 originally

produced are combined to form arithmetic averages from which to compare the efficacy of the

original combinational and new energy-aware heuristic. Performance figures covered are ap-

plication acceleration, application ISE coverage, acceleration over ISE coverage, power, and

energy.

Determining the stability of the new heuristic requires evaluation of the value of N as

discussed in earlier experiments (sections 5.2 and 5.4): The percentage lost from the maximum

acceleration observed, which must be accepted in order to acquire a common weighting vector

for all benchmarks tested. A lower value of N indicates a more stable heuristic.

5.5.3 Energy Heuristic Results and Evaluation

A concern when creating this heuristic was that the added runtime complexity required in order

to estimate the power for a particular ISE could be prohibitive. In reality the runtime of the

isegen tool is not usually increased. For the most complex benchmark tested so far (e.g. that

with the largest number of nodes in a single basic-block DFG), UTDSP FIR, the execution time

of the isegen tool goes from 8:35 to 6:25 (m:s) when using the energy-aware heuristic instead

of the original one. The reason for the decrease in execution time is not immediately obvious,

157

since the heuristic is being made more complex. The ISEGEN algorithm is an approximate

search algorithm [21]. The ISEGEN search may therefore be shortened by the new heuristic

reducing the number of steps taken to settle on a solution. If the algorithm converges on a non-

improving solution faster due to the increased complexity of the heuristic, then the execution

time can be reduced in the way seen here.

The results of the weighting vector-space sweep for the energy-aware heuristic are pre-

sented in figures 5.15 and 5.16. The shape of these graphs should be compared to figures 5.9

and 5.10 from the previous experiment, which represent the weighting vector spaces for the

original heuristic that the energy heuristic is being compared to.

Despite the new heuristic being intended to optimise for energy, in several cases a better

acceleration has been produced also. For all benchmarks except UTDSP LMSFIR, the top

design points (those produced at the top-performing end of the weighting vector space) have

greater acceleration under the new energy-aware heuristic, than with the original heuristic. The

energy-aware heuristic encompasses a different aspect of acceleration merit than the original;

the actual ratio of software to hardware ISE latency forms the merit, rather than the difference

in cycles. This new heuristic therefore favours smaller ISEs than the combinational heuristic.

The expansion to the largest possible ISE will in most cases cause the ratio of software to

hardware to decrease, in addition to a reduction in the number of output ports used per-ISE.

The weighting vector spaces for the original and new are similar in shape, but with some

important differences. A large portion of the vector space results is close to (within 10% of)

the maximum acceleration obtained in that benchmark. This was not the case with the original

heuristic. This is not a trivial result, as it means that the algorithm is much less sensitive to the

weighting vector with regards to producing a better result. It is as if the entire vector space had

been flattened towards higher acceleration, and this is as a result of using smaller ISEs. One

major derivation that can be made from this is that smaller ISEs are more effective in general,

and this is because smaller ISEs contain less complex structure and are hence less sensitive to

partitioning. This flies in the face of assumptions made in work such as [18], that larger ISEs

are always better, and supports the commercial Tensilica approach [25] along with other small-

ISE approaches. These results imply that a more effective and stable heuristic with respect to

evaluating ISE merit, is the ratio of software to hardware latency of an ISE. This is rather than

the difference between them, as is the case under the original heuristic based on the model in

section 2.3.1. The CFA design though, does not allow for serial operations to contribute to the

merit of the result through clock period surplus aggregation. Both hardware and software node

latencies are integer, so as to facilitate the construction of CFA hardware as per algorithm 2.

All operations in CFAs both start and finish on a clock boundary, where registers are situated

to provide pipelining.

Whilst the ISEGEN toggle heuristic is parameterised by a weighting vector, the replace-

ment of the last best C solution maintained by the algorithm at each iteration is determined by

158

(a) FAAD AAC (b) SNURT CRC

(c) SNURT FFT1K (d) SNURT JFDCTINT

(e) UTDSP FIR (f) UTDSP LMSFIR

Fig. 5.15: Parameter Sweep Space Under Energy-Optimisation Heuristic (I/O: 4/4), Monoton-
ically Ordered by Speedup Factor. These graphs should be compared to those of figure 5.1.
The major difference between this figure and figure 5.1, is the vertical space which each series
occupies. The energy-aware heuristic is less sensitive to the correct setting of the static weight-
ing vector. In figure 5.1 up to 100% of the acceleration was lost if a bad weighting vector was
chosen; in this, at most 64% is lost. Again, the worst case for sensitivity is LMSFIR.

159

(a) FAAD AAC (b) SNURT CRC

(c) SNURT FFT1K (d) SNURT JFDCTINT

(e) UTDSP FIR (f) UTDSP LMSFIR

Fig. 5.16: Parameter Sweep Space Under Energy-Optimisation Heuristic (I/O: 8/8), Monoton-
ically Ordered by Speedup Factor. When compared to the original heuristic used in figure 5.2
we again see the flattening of the range, indicating that the energy heuristic is more stable than
the original. Comparing these graphs to those of 5.15 we can see that the increased I/O has
also increased the stability of all but one benchmark. FFT1K gets less stable here than under
4/4 I/O. Due to a single larger ISE identified early in the process, the potential for variation is
reduced due to a larger portion of the vector space leading to the same result. The higher I/O
of 8/8 enabled this large ISE to occur. Once again the idea that “bigger is better” in ISE is con-
tradicted. Particularly striking here is the CRC benchmark, which through the energy-aware
heuristic is almost completely stable throughout the entire vector space.

160

(a) I/O: 4/4 (b) I/O: 8/8

Fig. 5.17: Comparison of Acceleration Normalised to Baseline for Original and Energy Heuris-
tics. All but one benchmark obtain acceleration greater than under the combinational heuristic.
This is in addition to the reductions in power and energy shown in figures 5.18 and 5.17, so we
are obtaining a slightly better acceleration for a much lower cost.

the M(C) function alone. In this section, the M(C) function was originally that detailed in sec-

tion 2.4.2 but has now been replaced with the energy-aware heuristic. In particular, the effect

of changing M(C) can be seen in the graph for SNURT CRC at 8/8. Almost the entire graph

sits at the top acceleration observed. We would expect at least one fifth of the graph to display

rather more varied behaviour, because the new heuristic would be zeroed out in the weighting

vector. Under the original heuristic, the graph displayed worse acceleration where the speedup

merit element was nullified. Whilst one benchmark behaving in this manner does not provide

any concrete conclusions, it does seem that the M(C) whole-cut merit function performs better

using the energy-aware heuristic.

There is no cross-benchmark trend immediately visible in the values of the weighting vec-

tors for the top ten results for each benchmark. The best ten weighting vectors within each

benchmark’s results are, however, similar. After performing the same analysis as in previous

sections, a common vector {1,2,16,0,1} was located at N = 5%, the lowest N for a common

vector across all benchmarks tested for any heuristic so far. This is to be expected given the

observations already made on the shape of the weighting vector space graphs; much of the

weighting vector space results in ISEs close to the maximum performance observed.

The energy-aware heuristic effectively works on three axes of concern at once, which are

connected to one-another as design concerns in the architecture as was detailed in the earlier

section 4.2. Area lies at the top of this chain, in that it is the metric which we can actually

control directly by inclusion or exclusion of nodes in an ISE. When ISEs are combined to form

a CFA, the average size of the ISEs will generally determine the area consumed by a CFA, and

hence the power it consumes. In all cases examined here, the area of the CFA is reduced along

161

(a) I/O: 4/4 (b) I/O: 8/8

Fig. 5.18: Comparison of CFA Power for Original and Energy Heuristics. The power of the
CFA is largely proportional to its area, and the energy heuristic utilises this in reducing the
overall energy of the solution. FAAD obtains the greatest reduction because of the diversity
of its various kernels. The same effect is observed in the graphs of section 4.3; FAAD obtains
a massive reduction in area compared to the single kernels. By identifying smaller ISEs, the
energy-aware heuristic reduces their complexity and hence improves resource sharing. The
reduction in complexity is tied to the reduction in size, which also reduces total area. The
reductions in power are the largest contributor to the energy savings the energy-aware heuristic
obtains, but not the only contributor.

with the number of CFAs (multiple units are used when multiplexors gets too wide). In terms

of cost, the area used could be as important as the power and execution speed. The holistic

improvement in costs afforded by the energy-aware heuristic is definitely a useful property,

and an improvement on the original heuristic.

Largely proportional to the area reduction of CFAs, is the power reduction of CFAs; a

concept which was used to develop the heuristic used herein. Figure 5.18 demonstrates the

power reduction of CFAs across all benchmarks. The greatest benefit is seen for the FAAD

application, which for I/O: 8/8 achieves a 4x reduction in power through the use of the energy-

aware heuristic. Through identifying smaller and faster (higher acceleration factor) ISEs, the

area and hence the power is reduced considerably as these ISEs better share resources owing to

their lower complexity. Higher I/O makes the energy-aware heuristic relatively better compared

to the original. At 4/4 the power is reduced on average by a factor of 1.45x. At 8/8 the power is

reduced on average by a factor of 1.77x. This is because at 4/4 the ISE candidates are already

around half the size of those at 8/8. The energy-aware heuristic favours smaller, faster ISEs in

order to achieve lower power. The smaller 4/4 ISE candidates are closer to the smaller ISEs

generated by the energy-aware heuristic. Being closer to begin with, there is less room for

improvement. This is not to say that the energy-aware heuristic is unable to utilise higher I/O.

This is demonstrated by the improvement in acceleration when moving from 4/4 to 8/8 using

the energy-aware heuristic. The energy-aware heuristic is just able to apply larger I/O more

162

(a) I/O: 4/4 (b) I/O: 8/8

Fig. 5.19: Comparison of ISE coverage (percent of full benchmark) for Original and Energy
Heuristics. Between 4/4 and 8/8 a trend emerges; higher I/O leads to lower overall coverage
of the code by ISEs, when using the energy-aware heuristic, versus the original. By covering
a smaller quantity of code with ISEs having a higher acceleration factor (see figure 5.20) the
resulting application acceleration is maintained or improved, at a lower cost. The new heuristic
is apparently more successful in this trade-off at the higher I/O of 8/8.

judiciously.

Power is only one factor in reducing the energy of the extended hardware/software co-

design, falling squarely under hardware. The other side of the coin is concerned with the actual

use of the ISEs defined with respect to the software they extend. The acceleration of a bench-

mark can be considered as two different factors: the coverage of the application by ISEs, and

the acceleration of the covered area. This presentation has a lot in common with the Amdahl

Limit defined in section 2.3.4, which considers the maximum amount of the application which

can be covered by ISEs and an infinite speedup of those coverable areas.

In figure 5.19, the resulting ISE coverage of the application is shown with the old and

new heuristics; in figure 5.20 the acceleration obtained over the covered portion is shown.

Combining the two numbers appropriately we reach the results presented in figure 5.17. There

is no absolutely common trend between all the benchmarks for coverage, but for the most part

the energy-aware heuristic results in a smaller portion of coverage. The exceptions here are

UTDSP FIR and LMSFIR at I/O: 4/4, which both have a larger coverage under the energy-

aware heuristic. The extremely data-parallel nature of these benchmarks which share FIR filter

code is the cause of the increase in coverage using the energy-aware heuristic. Where an ISE

has a single node which is not operation-parallel, as is often the case in complex instructions,

the original heuristic will likely include it whereas the energy-aware heuristic will not.

By way of example, consider the expression x = (a ∗ b)+ (c ∗ d), which is a 4-input, 1-

output expression. The + is not operation-parallel, and would likely be included under the

163

(a) I/O: 4/4 (b) I/O: 8/8

Fig. 5.20: Comparison of Acceleration Over Covered Area for Original and Energy Heuris-
tics. The energy-aware heuristic tends to favour ISE which are individually faster than the ISE
that would be identified by the original heuristic. As seen here once again, the energy-aware
heuristic is rather more effective versus the original at the higher I/O constraint. FFT1K and
JFDCTINT at 8/8 are the most affected in this regard, obtaining ISEs that are 2x higher accel-
eration over the area covered, than those identified by the original heuristic. Referencing figure
5.19 we see that this is in tandem with a nearly 2x reduction in the area covered. The two
effects cancel out in terms of acceleration, but the resulting ISEs are much smaller and hence
cheaper under the energy-aware heuristic.

original heuristic but excluded with the energy heuristic (resulting in a 4-input 2-output ISE).

This effect leads to the increase in coverage because the new heuristic favours expansion of

new ISEs in a breadth first fashion, which allows for a greater coverage of the LMSFIR and

FIR filter code at 4/4. Where FIR and LMSFIR have greater coverage, they have lower accel-

eration. The extremely flat nature of the FIR operation (which has very little depth in its DFG)

is what led to this effect. The original heuristic has no depth to explore, and hence performs a

similar exploration to the energy heuristic, which unfortunately falls short. It is likely that data-

flow flattening source-transformations such as software-pipelining performed prior to ISEGEN

analysis under the original heuristic would therefore also result in lower-area, lower-power,

lower-energy extensions with a similar or better acceleration. It is unclear, however, how these

would compare with the more complex approach of this energy-aware heuristic. With lower

coverage resulting from extensions as are favoured by the energy-aware heuristic, higher ac-

celeration over the covered area is likely. This in itself is proof that the heuristic is working

as intended, as this is in line with the original observations: smaller extensions with a higher

acceleration are better for energy consumption. The same is largely true for application accel-

eration. Unlike other works such as [18] this result directly disproves the notion that the larger

an individual ISE is, the better it is for acceleration.

The intended bottom line improvement in this work, is the actual energy consumption of

the combined hardware-software co-design, when using CFAs for ISE implementation. We

164

(a) I/O: 4/4 (b) I/O: 8/8

Fig. 5.21: Comparison of Energy Normalised to Baseline for Original and Energy Heuristics.
The combined effect of ISEs identified under the energy-aware heuristic is a reduction in en-
ergy. In more complex cases such as FAAD, the effect is considerable, and a 3.6x reduction in
energy is made. This is in combination with a slight increase in acceleration in most cases. The
energy-aware heuristic fails to improve LMSFIR energy due to having reduced both coverage
(figure 5.19) and acceleration over the covered area (figure 5.20). The resulting decrease in
application acceleration is greater than the decrease in power (figure 5.18).

have already demonstrated that in all but one case (UTDSP LMSFIR) the energy-aware heuris-

tic outperforms or equals the acceleration obtained by the original heuristic. In the case of

LMSFIR the drop in acceleration leads directly to the inefficacy of the energy-aware heuristic

in reducing energy. Area and power are still reduced for LMSFIR, but not by enough to counter

the ill effect of the lower acceleration. LMSFIR is 0.90% greater energy using the energy-aware

heuristic than the original. This is the only case where the original heuristic outperforms the

energy-aware heuristic on energy.

The energy-aware heuristic has been shown to reduce the area and power in all instances

tested. Figure 5.21 demonstrates the energy consumption of the designs resulting from the two

heuristics and in all cases but LMSFIR the result is an energy saving. Under both heuristics,

all benchmarks apart from FAAD are reduced to energy consumption below the baseline. The

average energy consumption versus the baseline over all benchmarks is 115% for the original

heuristic, and 72.31% for the energy-aware heuristic. The energy-aware heuristic has taken the

domain represented by these applications together, and turned the CFA-based ISE effect from

a net energy loss to a net energy gain. This is particularly striking as it is also done in tandem

with a small increase in acceleration.

This experiment has demonstrated therefore that it is possible to make use of a more so-

phisticated heuristic to make improvements without having to trade off different axes. In many

cases here, it was possible to improve all axes at once: Area, Power, Acceleration, and En-

165

ergy. This is important in itself, as it demonstrates that the improvement in energy is not just

through an improvement in acceleration. The improvement is through a holistic refinement of

the structure in the resulting ISEs, across all axes of concern. The quality of the ISEs with

regards to their implementation as CFAs has been improved by imbuing the ISEGEN algo-

rithm with a notion of the costs of the resulting architecture. Through employing smaller and

higher acceleration-factor ISEs the new heuristic reduces energy by an average of 1.6x versus

the original heuristic, whilst maintaining the same or better overall acceleration in most cases.

Cases where the new heuristic fails to raise the bar on performance, may be better addressed

with further component modifications to the M toggle(n,C) compound heuristic.

The performance of the new lower-energy ISE candidates would contribute positively to

the area-energy-acceleration trade-off of the kind explored in section 4.2. The function of

area to energy demonstrated in the earlier section 4.2 would be skewed downwards, as the

individual ISE candidates are themselves lower energy. This is verified later in section 6.3. An

exploration of the effects of CFA staggering as outlined in section 4.3 would also be interesting

in determining if the benefits of using the energy-aware heuristic remain post-staggering. This

is also examined in section 6.3.

166

5.5.4 Conclusions

This section has looked at the idea of producing more energy-efficient ISE through modification

of the merit calculation heuristic to include the effects of energy as observed in prior work. In

particular, the following conclusions are made:

• The energy heuristic introduced here works particularly well in its intended purpose; that

of reducing the energy of a CFA-based ISE design through consideration of the energy

effects in the identification algorithm.

• Versus the original heuristic, the average improvement in energy consumption is 1.6x. A

maximum of 3.6x improvement was observed for FAAD at 8/8.

• The new heuristic was effective at reducing energy in all of the cases observed, except

for LMSFIR.

• Where the new heuristic produces greater energy consumption than the original, it is

only by 0.90%. Further work on the compound ISEGEN heuristic may be successful in

overcoming such cases.

• The energy-saving effect works through several different engineering factors: area (and

hence power), proportion of application covered, and the acceleration over the ISE-

covered section. It would probably be more correct to call this a holistic heuristic, rather

than an energy heuristic.

• The major effect seems to come from reducing area and hence power, ultimately making

the new heuristic favour smaller ISEs with more acceleration per area/power.

• The energy heuristic is the most stable under a static weighting vector seen so far, with

N = 5%.

• The demonstration of energy concerns in this section shows that the “bigger is better”

mentality taken by some approaches is not completely valid if we do not consider the

cost of the acceleration produced.

• Despite applying this energy-aware approach at the localised level of a single DFG/ISE/CFA,

it still works in aggregate when multiple CFAs are merged. The idea that multiple smaller

CFAs merged together create a smaller set of merged CFAs has now been confirmed.

• An energy-based selection heuristic would allow this to be properly extended to include

an area-limit, as the efficacy of the existing selection heuristic based on acceleration

alone is likely to be worse in comparison.

167

• The energy-aware heuristic ought to be useful for non-CFA ISE, assuming a model is

available for area and the same correlation between area and power is present in the

representative microarchitecture.

The energy heuristic is included in the later section 6.3 to provide a counterpoint to the combi-

national heuristic when performing work to determine the energy efficiency of floating versus

fixed point number formats.

168

5.6 Summary

This chapter has proposed and evaluated four novel ways for improving the ISEGEN identifi-

cation algorithm:

• A methodology for obtaining a more effective static weighting vector.

• Early termination, considerably reducing ISEGEN run-time in more complex cases.

• An energy-aware heuristic, able to focus the algorithm on energy reduction.

• A pipeline-aware heuristic, able to turn identification towards ISEs which can be sched-

uled in an overlapping fashion to provide greater acceleration.

All of these efforts have been successful in increasing the efficacy of the ISEGEN algorithm

with regards to the engineering concerns outlined in chapter 1.

The baseline ISEGEN algorithm itself has been tuned to a higher performance than it orig-

inally had through location of a new weighting vector, different to the one previously claimed

by the original authors of the algorithm [7].

The time taken by the ISEGEN algorithm has been considerably reduced, dramatically in

many cases, and without compromising the quality of the result. Whilst there is the potential

for differences between the original and early-terminating versions of the algorithm’s output,

no example of this was observed in the benchmarks examined. Beyond seven times runtime

reduction were observed using the early termination heuristics. Both the trend observed and

analysis of the original algorithm’s runtime show that the saving will become both absolutely

and relatively more significant as the size of DFG analysed grow.

The pipelined structure of the CFA (and any other microarchitecture capable of pipelined

ISE execution) is exploited through a new pipelining heuristic embedded in the ISEGEN iden-

tification algorithm. In addition to demonstrating the benefits of pipeline scheduling on inde-

pendent ISE and the potential for this to be used as an alternative to other OLP-consuming

techniques, the pipelining heuristic was more successful and stable than the original combina-

tional heuristic in producing such designs.

The energy consumption of CFAs as modelled in earlier experiments was introduced as

yet another modification to the ISEGEN algorithm’s heuristic. The identification process was

hence steered towards smaller, higher acceleration-factor, more cost-effective ISEs. Consider-

able energy reductions are effected through the identification algorithm favouring smaller ISEs

with a greater acceleration ratio, rather than a greater number of cycles removed. In most cases

the new algorithm managed to reach even greater acceleration than the original “bigger is bet-

ter” heuristic managed to reach. The consideration of energy and implication for the structure

of identified ISEs is offered as evidence that the “bigger is better” school of thought in ISE is

naive with regards to any other engineering concern than pure acceleration.

169

Considerable advances in efficacy have now been reaped in these areas attacked; this thesis

now moves on to examining the effect of source code form on the AISE process.

170

6 FORM OVER FUNCTION: SOURCE TRANSFORMATION

“Form ever follows function”

– Louis Sullivan

This chapter looks at the effects of source code transformations and number formats on AISE

performance. Different representations of the same application are processed by AISE to see if

any particular trends emerge that can be exploited. A methodology for combined exploration of

source transformation and ISE is presented, and demonstrated to improve the acceleration of

the result by an average of 35% versus ISE alone. Floating point is demonstrated to perform

worse than fixed point, for all design concerns considered here, regardless of ISEs employed.

6.1 Introduction

The AISE process operates with the source code of the application in question as a major

input. Those familiar with compiler technology are aware of the fact that any given function

(for example an algorithm) can be given multiple forms. This is basically saying that there are

many equivalent ways of doing the same thing; this is of interest because the form in which a

function is represented has considerable sway over a compiler’s ability to produce an efficient

implementation. This is the basis of source-level transformation.

Tools exist to allow for large swathes of transformation spaces to be defined and explored

with a source-to-source preprocessing of the application in question. Whilst originally intended

as a preprocessor to enable such transformations in a compiler, we can also use these tools to

set up and explore transformation spaces with regards to AISE. The next section in this chapter

uses this approach with an older version of the tool-chain than used in prior experiments, in an

effort to make observations we can use to further increase the efficacy of ISE. In particular, the

process of software transformation is cheap in comparison to the process of ISE. The former

affects only software and the latter requires hardware support. This means that it is important to

determine whether a relationship exists between the work performed in software transformation

and the cost-benefit of ISEs resulting from AISE.

The choice of number format is a decision usually falling on the side of fixed point when

embedded processors are considered; the alternative of course is floating point (and generally

the IEEE-754 single and double-precision form). It has been said that “floating point is for

people who don’t know their data”, because the use of floating point is considerably more ex-

pensive and often less accurate than properly designed fixed point. Being properly designed

is of course very important, and therein lies the real trade-off: floating point is supposed to be

cheaper in terms of engineer time, and fixed-point is supposed to be cheaper in terms of hard-

ware required. The former point is trivially true assuming you don’t mind a little inaccuracy in

171

your data. The latter point could be disrupted by ISE technology. To determine the trade-offs

inherent in the choice between the two number formats when also considering ISE, the final

section of this chapter performs DSE using the tool-chain from earlier chapters. Staggering

and the energy heuristic are explored in addition to the original heuristics to give a clearer

understanding of their behaviour in combination.

172

6.2 Transform Space Exploration

In this section we look at the combined space of source code transformation and ISE, looking

for trends which will enable further work involving this combination. A methodology for com-

bined exploration of source transformation and ISE is presented, and demonstrated to improve

the acceleration of the result by an average of 35% versus ISE alone.

6.2.1 The Need for Source-to-Source Transformations in ISE

Compiler transformations at any level have the potential to be used to manipulate the syntax

and semantics of a program in a way that will not affect its function. A trivial example is

constant sub-expression elimination which removes redundant operations by taking constant

expressions and reducing them to a constant value. A program that has been transformed

should not differ in black-box behaviour, with exception of the time it takes to execute and the

resources (memory and processing) it consumes. The exception is the benefit we are actually

looking for when we employ transformations; whilst not all transformations are beneficial to

optimisation, we use them because we hope that they are. Where hope in this context becomes

reality is largely governed by heuristics in the compiler, which make guesses on which transfor-

mation to apply in order to obtain a benefit. In the absence of heuristics from prior knowledge

of the area we are trying to optimise for, large-scale sampling of the transformation space is

required to get an idea of the lay of the land. The combination here of ISE with prior source

transformation warrants such an approach. So herein we perform a large-scale sampling of the

transformation space and process it with an ISE tool. In this manner we hope to get an idea of

how source transformations can be used to optimise the source to make it more amenable to

ISE.

A very simple worked example now follows to motivate the combination of the two tech-

niques:

As an example, consider the code excerpt in figure 6.1(a). The two functions icrc1 and

icrc are part of the SNURT CRC benchmark and implement a cyclic redundancy check for

an input string stored in the array lin[]. The key features of the code are small for loops in

both functions, which contain conditional branches and perform a larger number of bit-level

manipulation operations. AISE generates new candidate instructions, which result in a 25%

performance improvement over the baseline code.

In figure 6.1(b), the main differences due to source-level transformations of the code in

figure 6.1(a) are shown. While the code is functionally equivalent, it outperforms the code in

figure 6.1(a) by a factor of 1.63x. Loop unrolling has been applied to the for loop in the icrc1

function. This reduces the loop overhead and improves flexibility for instruction scheduling. In

the icrc function, the effects of source-level transformation are more fundamental. for loops in

the code have been lowered into do-while loops and, most important, bit-packing and hoisting

173

unsigned s h o r t i c r c 1 (unsigned s h o r t crc ,
unsigned char onech)

{
i n t i ;
unsigned s h o r t ans = (c r c ˆ onech << 8) ;

f o r (i =0 ; i <8; i ++) {
i f (ans & 0 x8000)

ans = (ans <<= 1) ˆ 4129 ;
e l s e

ans <<= 1 ;
}
re turn ans ;

}

unsigned s h o r t i c r c (unsigned s h o r t crc ,
unsigned long l en ,
s h o r t j i n i t , i n t j r e v)

{
/∗ Some v a r i a b l e d e c l a r a t i o n s ∗ /
/∗ . . . ∗ /

i f (! i n i t) {
i n i t =1 ;
f o r (j =0 ; j <=255; j ++)
{

i c r c t b [j]= i c r c 1 (j << 8 , (u c h a r) 0) ;
r c h r [j] = (u c h a r) (i t [j & 0xF] << 4 |

i t [j >> 4]) ;
}

}

i f (j i n i t >= 0)
cword = ((u c h a r) j i n i t) |

(((u c h a r) j i n i t) << 8) ;
e l s e

i f (j r e v < 0)
cword= r c h r [HIBYTE(cword)] |

r c h r [LOBYTE(cword)] << 8 ;

f o r (j =1 ; j<=l e n ; j ++)
{

i f (j r e v < 0)
tmp1 = r c h r [l i n [j]] ˆ HIBYTE(cword) ;

e l s e
tmp1 = l i n [j] ˆ HIBYTE(cword) ;

cword = i c r c t b [tmp1] ˆ LOBYTE(cword) << 8 ;
}

i f (j r e v >= 0)
tmp2 = cword ;

e l s e
tmp2 = r c h r [HIBYTE(cword)] |

r c h r [LOBYTE(cword)] << 8 ;

re turn (tmp2) ;
}

(a) Original SNURT CRC implementation

unsigned s h o r t i c r c 1 (unsigned s h o r t crc , /∗ . . . ∗ /)
{

/∗ . . . ∗ /

/∗ Loop u n r o l l i n g ∗ /
f o r (i =0 ; i <8; i +=2) {

i f (ans & 0 x8000) ans = (ans <<= 1) ˆ 4129 ;
e l s e ans <<= 1 ;
/∗ . . . ∗ /

}
re turn ans ;

}

unsigned s h o r t i c r c (unsigned s h o r t crc , /∗ . . . ∗ /)
{

/∗ . . . ∗ /

/∗ B i t p a c k i n g ∗ /
s u i f t m p = (cword /∗ . . . ∗ /) |

(j i n i t /∗ . . . ∗ /) >> /∗ . . . ∗ / |
(j r e v & /∗ . . . ∗ /) >> /∗ . . . ∗ / |
(l e n & /∗ . . . ∗ /) >> /∗ . . . ∗ / ;

cword = 1u & s u i f t m p ;

i f (! i n i t) {
i n i t = 1 ;
/∗ Loop l o w e r i n g ∗ /
j = 0 ;
do {

/∗ Computa t ion o f i c r c t b & r c h r . . . ∗ /
} whi le (j <= 2 5 5) ;

}
/∗ B i t unpack ing ∗ /
i f (0 <= ((2 u & s u i f t m p) >> 1u))

cword = ((2 u & s u i f t m p) >> 1u) |
(((2 u & s u i f t m p) >> 1u) << 8u) ;

e l s e
i f (((4 u & s u i f t m p) >> 2u) < 0)

cword = /∗ . . . ∗ /

j = 1 ;
i f (1 u l <= ((8 u & s u i f t m p) >> 3u)) {

/∗ Move loop i n v a r i a n t c o n d i t i o n a l s ∗ /
i f (((4 u & s u i f t m p) >> 2u) < 0) {

/∗ Loop l o w e r i n g ∗ /
do {

/∗ Computa t ion o f cword . . . ∗ /
} whi le (j <= ((8 u & s u i f t m p) >> 3u)) ;

}
e l s e {

/∗ S i m i l a r lowered loop as b e f o r e . . . ∗ /
}

}

i f (0 <= (4 u & s u i f t m p) >> 2u) tmp2 = cword ;
e l s e tmp2 = /∗ . . . ∗ / ;

re turn tmp2 ;
}

(b) CRC after transformation

Fig. 6.1: Original SNURT CRC implementation (a) and after application of source-level trans-
formations resulting in best combined performance (b).

174

EXPR: mirConvert

EXPR: mirConvert

EXPR: mirConvert

EXPR: mirOr

EXPR: mirConvert

EXPR: mirShiftLeft

EXPR: mirConvert

INPUT REGISTER - BB #1 :: EXPR: mirContent

INPUT REGISTER - BB #2 :: EXPR: mirIntConst Val:4

EXPR: mirConvert

INPUT REGISTER - BB #3 :: EXPR: mirContent

Fig. 6.2: Complex instruction template generated for the transformed CRC code in figure 6.1(b)

of loop invariant conditionals transformations have been applied. Bit-packing packs multiple

variables into a single variable of type integer and, on its own, usually degrades performance.

When combined with ISE generation, however, otherwise expensive bit-level manipulation op-

erations for packing and unpacking can be encoded as complex, but fast instructions and yield

an overall performance improvement. In fact, the instruction templates generated for example

6.1(b) are generally more complex than those generated from the baseline code. An example

of such an instruction is shown in figure 6.2 and it implements the mentioned packing/un-

packing operation. Moving loop invariant conditional outside the loop eliminates redundant

comparisons and jumps and further increases performance.

ISE generation based on the transformed code in figure 6.1(b) result in a further 23% im-

provement (over just transformed code), or a total combined speedup of 2.02x over the baseline.

Only a certain part of the performance gain can be directly attributed to code transformations,

the rest is due to the enabling effect of the source-level transformations on the ISE generation.

This short example demonstrates how difficult it is to predict the best source-level transfor-

mation and instruction set extension for a given application. It also shows that high-level code

and low-level architecture optimization cannot be separated, but are tightly coupled. Combined

exploration of both the software and hardware design spaces will generate a significantly better

solution than isolated optimization approaches could consistently produce. Presented now is

an empirical evaluation of this HW/SW design space interaction. It is later shown that a prob-

abilistic search algorithm is able to examine a tiny fraction of the optimization space and still

find significant performance improvements. This is in keeping with the earlier observations

regarding the static weighting vector exploration, in sections 5.2, 5.4, and 5.5.

6.2.2 Transform Space Exploration Methodology

The primary concern of this experiment was to determine which transformations or combi-

nations thereof infer the greatest acceleration to application-specific software under ISE au-

175

Fig. 6.3: The combined but phased searching of transform and ISE design spaces; our experi-
ment methodology as a flow diagram.

tomation. Secondly, the experiment was to find limits for performance gain and loss from the

combined design space defined by transformation and ISE over a baseline design employing

neither. With this information, we are well equipped to properly focus the efforts of future

research towards the most beneficial transformations for ISE.

To represent the transformation design space in this experiment, we use a source to source

transformation tool built upon the SUIF1 [62] compiler framework. Samples are taken with

uniform probability, at random points across the entire space of potential transformation. A

sample in this sense represents a single point in the transformation space, and results in the

ordered set of transformations selected at that sample point to be applied to the code. The tool

generates large volumes of transformed source code samples rapidly from a definition of:

• The source code, in C; for this a variety of single-function benchmarks are tested.

• The Transform Space Definition, as the boolean inclusion or exclusion of transforms

permitted in the space, plus the maximum number of transformation phases for each

sample. The tool supports a wide array of source to source transformations to be used in

the exploration

• The number of samples to take from the transformation space, and hence the number

of transformed source codes to produce. Here this was set to 10,000, however some

sequences of transformation were invalid or produced invalid code and hence were culled

176

from the results. The number of valid transformation sequences is covered in section

6.2.3.

The benchmarks used in this experiment were taken from SNURT[146] and UTDSP[136]

suites. Those taken were as follows:

• SNURT; adpcm, crc, fft1, fft1k, fir, jfdctint, lms, ludcmp, matmul, minver, qsort-exam,

qurt, select.

• UTDSP; edge detect, fft 1024, fft 256, fir 256, fir 32 1, histogram, iir 4 64, latnrm 32 64,

latnrm 8 1, lmsfir 32 64, lmsfir 8 1, mult 10 10, mult 4 4.

We store for each benchmark the entire set of transformed source codes representing that

benchmark after sample points in the transformation space are applied to it. The set of trans-

forms applied at each sample is also stored for later correlation in analysis.

The transforms from which each point is selected are as follows; further information may

be obtained from the SUIF1 documentation [62]:

• Array Delinearization.

• Bit Packing.

• Break Load Constant Instruction.

• Bounds Comparison Substitution.

• Call By Reference Replacement.

• Chain Array References.

• Common Subexpression Elimination.

• Control Simplification.

• Constant Propagation.

• Constant Folding.

• Copy Propagation.

• Dead Code Elimination.

• Default SUIF Transformations.

• Dismantle Array Instruction.

• Dismantle Div Ceil/Floor Instruction.

177

• Dismantle Div Mod Instruction.

• Dismantle Empty Tree For.

• Dismantle Int Abs/Max/Min Instruction.

• Dismantle Abs/Min/Max Instruction.

• Dismantle Multiway Branch.

• Dismantle Non Constant For.

• Dismantle Tree Block.

• Dismantle Tree Block Without Symbol Table.

• Dismantle Tree For.

• Dismantle Tree For With Modified Index Variable.

• Dismantle Tree For With Spilled Index Variable.

• Dismantle Tree Loop.

• Eliminate Enumeration Types.

• Eliminate Struct Copies.

• Eliminate Sub Variables.

• Explicit Load Store.

• Extract Upper Array Bounds.

• Find For.

• Fix Address Taken.

• Fix Bad Nodes.

• Fix LDC Types.

• Full Copy, Forward and Const Propagation.

• Global Variable Privatisation.

• Globalise Local Static Variables.

• Guard For.

• If Hoisting.

178

• Imperfectly Nested Loop Conversion.

• Improve Array Bounds.

• Induction Variable Detection.

• Kill Redundant Line Marks.

• Lift Call Expression.

• Loop Invariant Hoisting.

• Loop Unrolling: 2x, 4x, 5x, and 7x.

• Loop Flattening.

• Mod Ref Annotations.

• Normalisation.

• Pointer Conversion.

• Privatisation.

• Reduction Detection.

• Replace Constant Variables.

• Scalarisation.

• Scalarise Constant Array References.

• Unstructured Control Flow Optimisation.

This set of transformed source codes forms a representative sampling of the entire search

space for that benchmark, each sample is then processed by an automated profiling ISE tool

based on the Atasu et al. Integer Linear Programming method of derivation [20]. The tool

operates in three phases:

• Instrumentation; wherein the ISE tool augments the intermediate representation of the

application with counters for profiling. The CoSy-based tool emits the i686 assembly

for this profiling executable which is then assembled and run using the standard GNU

tool chain.

• Execution; running the instrumented binary records per-basic-block execution frequen-

cies, which are stored in a file for use by the extension phase.

179

• Extension; The IR is augmented with profiling statistics, which are then used to select

the top 4 instructions using the Atasu ILP AISE algorithm [20]. The ISE tool’s profiler

combined with a latency table for the given target architecture produces runtime and

code-size performance metrics for the original transform-space sample. These metrics

and the generated instructions are stored alongside the transformed code and transform-

point definition.

The ILP AISE algorithm used generates data-flow-graph templates through conversion of

basic blocks to a set of constraints in an Integer Linear Program and solution of that program.

A tool built into a CoSy compiler uses the lp solve library to solve such problems, and generate

a set of candidate templates for an entire program. Constraints are declared from each basic

block to generate a template such that:

• The template is convex (i.e. does not have any holes), so that it may be scheduled.

• Input and output port constraints are met (i.e. the number of register input and output

ports are sufficient), so that it may be implemented.

In addition to the constraints, a goal function is also expressed. The goal function for the

Atasu algorithm [20] is the same as the ISEGEN algorithm. See section 2.3.1 for details: The

per-template difference between software and hardware execution time is the per-execution

gain in cycles to an architecture implementing that template. Following the generation of

templates from basic blocks, the templates are checked for isomorphism with one another

using the NAUTY graph isomorphism library, then ranked using the product of their estimated

usage and per-execution gain. The top 4 of these instructions are then recorded alongside their

performance estimates for inclusion in results.

For the purposes of this experiment, we configured the latencies to those of an Intel XScale

PXA270 processor, a current high-performance embedded microarchitecture in 2007 based

upon the ARM 7 instruction set. An input/output port constraint of 8/8 is set, to allow a wide

range of potential ISEs and avoid limitations on our results due to the synthetic microarchitec-

tural constraints set in the ISE algorithm. It has been shown in other work [23, 129] and in the

earlier section 5.4, that pipelining of ISEs is possible to reduce per-cycle register file I/O to suit

actual requirements.

We therefore have for each benchmark, for each of up to 10,000 transformation-space sam-

ple points:

• Source code after transformation.

• Instruction Set Extensions defined as data-flow templates.

• A record of performance in cycles (runtime) and instructions (code-size) before and after

the transformations are applied to the benchmark.

180

• A likewise record of the improvement to each of the performance metrics for each of the

instructions generated by AISE for the transformed source.

• Aggregation of the results of the top four of these instructions to calculate the overall

benefit to the transformed code.

.

So that there is a control point for reference, we ensure that a baseline utilizing no trans-

forms is sampled from the transformation space. Our tool produces as many ISE templates as

it can find within the source code. However, we limit the number used in the results to four.

In this manner, we allow only the inclusion of the best-performing ISEs, such as we hope to

reveal through transformation. Current commercial approaches such as the Tensilica XPRES

[25] tend to use large numbers of small instructions to preserve generality; this experiment

assumes a very application-specific core is desired.

This entire experiment was run on a quad-core machine running Linux 2.6, over the course

of several days in order to allow for the large-scale sampling. The tools are “pipelined” in their

operation to speed up results generation, as illustrated in figure 6.3.

With these results recorded, we go on to make observations on the correlation of transfor-

mation and ISE performance, in how the spaces combine to form the more relevant performance

measure: overall performance.

6.2.3 Evaluation

The graphs of figures 6.4, 6.5, 6.6, and 6.7 require a little explanation, as their presentation is

not immediately obvious. The three bars presented for each benchmark give first the greatest

observed performance (either acceleration or code size improvement depending on the graph)

from transformation alone, followed by the ISE performance without doing any transformation,

followed by the greatest observed performance from combining transformation and ISE.

Peak runtime improvements of 2.70x (SNURT ludcmp), 1.46x and 2.85x (both SNURT

FFT) are seen, for transformations alone, ISE alone and the combination of the two, respec-

tively. Average runtime improvements across both benchmark suites are 1.35x, 1.09x and 1.47x

respectively. It can also be seen that of the 26 benchmarks considered 5 of them see a com-

bined transformation and ISE runtime performance improvement of over 2.0x and only 6 see

an improvement of less than 1.15x.

The graphs for code size are not based on the same sample points that runtime improvement

figures are, but separate transformation sequences that were found to be effective at reducing

code-size. Peak code-size improvements of 1.18x (SNURT minver), 1.46x and 1.95x (both

SNURT CRC) are seen, for transformations alone, ISE alone and the combination of the two,

respectively. Average code-size improvements across both benchmark suites are 1.05x, 1.08x

and 1.15x respectively.

181

ad
pc

m cr
c

fft
1

fft
1k fir

jfd
cti

nt lm
s

lud
-

cm
p m
at

m
ul

m
inv

er

qs
or

t-
ex

am qu
rt

se
lec

t

AV
G

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Transformation Score
ISE Score
Combined Score

Benchmark

R
un

tim
e

Im
pr

ov
em

en
t

Fig. 6.4: Runtime Improvements achieved on the SNURT benchmarks. Combined score in-
dicates the best point in the transformation space observed, for transforms and ISE combined.
The combination is invariably better performing than the techniques in isolation, despite the
potential for transformation to worsen results (see figures 6.8 and 6.9 for illustration).

ed
ge

de

te
ct fft

10
24

fft
 2

56

fir
 2

56

fir

32
_1 his
-

to
-

gr
am

iir
4

64 lat
nr

m

32
_6

4
lat

nr
m

8

1 lm
sfi

r
32

_6
4

lm
sfi

r
8_

1

m
ult

10

_1
0 m
ult

4_

4 AV
G

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Transformation Score
ISE Score
Combined Score

Benchmark

R
un

tim
e

Im
pr

ov
em

en
t

Fig. 6.5: Runtime Improvements achieved on the UTDSP benchmarks. Combined score indi-
cates the best point in the transformation space observed, for transforms and ISE combined.
The combination is invariably better performing than the techniques in isolation, despite the
potential for transformation to worsen results (see figures 6.10 and 6.11 for illustration).

182

ad
-

pc
m cr

c

fft
1

fft
1k fir

jfd
cti

nt lm
s

lud
-

cm
p

m
at

m
ul m

in
ve

r

qs
or

t-
ex

am qu
rt

se
lec

t

AV
G

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
1.9

2
Transformation Score
ISE Score
Combined Score

Benchmark

C
od

e-
si

ze
 Im

pr
ov

em
en

t

Fig. 6.6: Code-size Improvements achieved on the SNURT benchmarks. The reduction in
executable size can be an important factor for cache performance. Once again, combining
transform space exploration and ISE provides a better result than either technique in isolation.

ed
ge

de

te
ct fft

10
24

fft
 2

56

fir
 2

56

fir

32
_1 his
-

to
-

gr
am

iir
4

64 lat
nr

m

32
_6

4
lat

nr
m

8

1 lm
sfi

r
32

_6
4

lm
sf

ir
8_

1

m
ult

10

_1
0 m
ult

4_

4 AV
G

0.97

0.99

1.01

1.03

1.05

1.07

1.09

1.11

1.13 Transformation Score
ISE Score
Combined Score

Benchmark

C
od

e-
si

ze
 Im

pr
ov

em
en

t

Fig. 6.7: Code-size Improvements achieved on the UTDSP benchmarks. The reduction in
executable size can be an important factor for cache performance. Once again, combining
transform space exploration and ISE provides a better result than either technique in isolation.

183

Regarding the number of samples considered in the results, it can be seen in figures 6.8,

6.9, 6.10, 6.11, 6.12, and 6.13, that the number varies between benchmarks. This is because

some of transformation sequences either caused compiler integrity assertions to be triggered,

or in a few cases generated incorrect code. Failing sequences are discarded, but there are still a

great many remaining. Sequences found to produce correct behaviour are used to generate the

results here.

In figures 6.4, 6.5, 6.6 and 6.7 we see that the average results for the SNURT benchmarks

are noticeably higher than for UTDSP. The principal reason for this is that the SNURT bench-

marks are smaller, so the potential selection space is smaller and thus better suited to uniform

sampling. Although we only explore a tiny fraction of the overall search space, we still obtain

very good results. It seems likely that exploring a larger portion of the search space will yield

even better results, especially for larger programs. Larger programs are also likely to benefit

from a more directed search technique that can quickly focus on more promising areas of the

search space, such as that described in work by Franke et al.[47].

This experiment shows that in many cases simply choosing transformations that allow ef-

fective use of ISEs will not give good overall performance. Strong examples of this are the

UTDSP FIR-256 and FIR-32 1 benchmarks, where the best combined performance seen is

given by a set of transformations that did not allow any runtime improvement through ISE at

all. Examples where combined performance is significantly better than either transformations

or ISE alone are SNURT CRC and the SNURT FFT benchmark.

The graphs in figures 6.8, 6.9, 6.10, and 6.11 show the performance for each individual

technique and the combination of the two for every sample point in the search space, for a

small selection of benchmarks. The samples are sorted by the performance of combining trans-

formations and ISE. This allows the ratio of transformation to ISE performance to be seen and

lays bare the correlation between the two individual techniques. The correlation is seen where

either the performance of both individual techniques improve at the same point or where one

gets better but the other gets worse. An example of this correlation can be seen on the left side

of figure 6.10. We can see sets of transformations which promote better ISE performance. The

points perform poorly overall due to the transforms not contributing well to the total accelera-

tion. AISE is apparently able to make up for poorly configured transformation, but that is not

necessarily a good thing. Transformation comes at a far lower cost than ISE. Exploiting the

maximum available (observed) optimisation in the software domain is far cheaper than blindly

applying AISE to poorly performing code.

The coupling of transformation and ISE is important with regards to the slack-absorbing

effect of ISE, but more specific dependencies also exist. A direct example of the coupling

between transformations and ISE is shown in the motivating example, SNURT CRC, with the

bit packing transformation. Sequences that make use of this transform are marked as short

vertical bars in figure 6.8. It can be seen that all the best performing sequences make use of

184

this transformation. At the points where it changes from being turned off to turned on there is

dip in ISE performance and a rise of about the same magnitude in transformation performance.

Transformation performance improves greatly from negligible improvement up to 1.63x, and

ISE performance recovers thereafter. So with appropriate supporting transformations the bit

packing transformation allows both code performance on its own and good ISE performance

for this benchmark.

Figure 6.9 shows an almost ideal set of results (for SNURT FFT1k), where the best set

of transformation sequences when considered alone also allow the greatest gain from ISE.

When the best sequences seen overlap in this way, the combined performance is considerably

improved. Results for SNURT FFT1K move from peaks of 1.11x and 1.14x with individual

techniques, to a peak of 1.28x with combined. Not all sequences give such clean results though,

figure 6.8 (from the motivating example, SNURT CRC) shows patterns that are visible in sev-

eral benchmarks. The best acceleration is given by finding a transformation sequence that both

improves the runtime on the code and does not damage the ISE acceleration factor. The best

sequence seen actually gives ISE performance slightly below that which was achieved on the

baseline code, but overall performance is high due to good runtime improvements from the

transforms themselves. Figure 6.11 show the results from a benchmark where almost none of

the overall improvement comes from transformations but almost entirely from ISE (UTDSP

latnrm-8 1). The graph does still show that whilst the transformations do little to improve

acceleration on their own, ISE efficacy is still affected by the underlying code form.

Figures 6.12 and 6.13 show the performance of the best transformation sequence found so

far as each point in the sample space is evaluated. These graphs are made monotonic without re-

ordering the points so as to show the actual progress of the stochastic transform search. Figure

6.12 shows an example (SNURT JFDCTINT) having the characteristics which led to evaluating

such a large number of samples in the transformation space. The graph contains several steps,

with the highest step not being found until after several thousand samples were evaluated. This

was not typical of most benchmarks; figure 6.13 is an example (UTDSP FIR) that exhibits

the typical behavior. This graph also has steps, but they are much closer together and the

maximum is encountered after about five hundred samples. None of the thousands of sequences

evaluated after that point performed better. This evidence suggests that as with many stochastic

sampling mechanisms, the return on the number of samples explored has an exponential decay.

Considering a smaller number of samples than we have applied here should afford good results

in many cases, but further performance can be gained through wider sampling.

185

Fig. 6.8: Runtime Improvements Per-Transformation for SNURT CRC (based on 7896 runs).
Turquoise tics indicate the points at which bit-packing is enabled. Bit-packing appears to
be an enabling transformation in the last section of this graph; both transformation and ISE
performance increase in tandem steps with the inclusion of bit-packing. Transformations which
both accelerate the underlying code without ISE, and increase the relative acceleration of ISEs,
are of particular interest in this study.

186

Fig. 6.9: Runtime Improvements Per-Transformation for SNURT FFT1K (based on 4892 runs).
Once again there appears to be an enabling transformation, at the highest ten percent of the
space. It was not possible to determine a single transformation responsible, so it is likely that a
combination of transformations are in play simultaneously.

187

Fig. 6.10: Runtime Improvements Per-Transformation for UTDSP Edge Detect (based on 1470
runs). This graph demonstrates the shared exploitation of potential acceleration between ISE
and transformations: where transformations are ineffective, ISE appear to “take up the slack”.
Whilst not apparent in all results, this does suggest that engineers must be careful not to present
a badly transformed application to AISE. The result may well be accelerated by ISE that are
apparently performing well relative to the bad code they are related to. ISE however are much
more expensive than software transformation; flexibility being the very essence of software.

188

Fig. 6.11: Runtime Improvements Per-Transformation for UTDSP LATNRM 8 1 (based on
8882 runs). Once again ISE is offsetting the negative impact of bad transformations, at a
considerable hardware cost. Transformations should be properly explored with regards to their
impact on ISE, and on the application acceleration.

189

Fig. 6.12: Maximum performance found for each point in the sample space for SNURT JFD-
CTINT. Performance within 10% of the maximum is obtained after 10% of the space has been
explored, demonstrating that the quality of the best result observed is roughly logarithmically
related to the number of points explored, on average.

190

Fig. 6.13: Maximum performance found for each point in the sample space for UTDSP FIR-
256. In this case the maximum performance is actually encountered within 10% of the total
space explored. Once again this shows the stochastic sampling of many fewer points in the
transform space should be similarly effective.

191

6.2.4 Conclusions

In this section a methodology for improved ISE generation is presented and evaluated. This

work combines the exploration of high-level source transformations and low-level ISE identi-

fication. Several conclusions can be drawn:

• In this particular tool-chain and with the Atasu algorithm rather than ISEGEN as used

elsewhere in this thesis, an average of 1.47x acceleration was achieved with the combi-

nation of ISE and source transformation.

• The combination of ISE and source transformation is greater than the sum of its parts

in some cases; i.e. the best combined score is better than the product of the ISE and

transformation improvement factors.

• There is a particularly strong need to perform good transformations when AISE follows

after; AISE will often take up the slack where transformations are inefficient. It is far

cheaper to perform source transformations than ISE.

• Source-to-source transformations are not only very effective on their own, but provide

much larger scope for performance improvement through ISE generation than any other

isolated low-level technique.

• Integration of both source-level transformations and ISE generation in a unified frame-

work can efficiently optimize both hardware and software design spaces for extensible

processors.

• Compared to previous work [37], we have covered a much broader array of existing

transformations to get a more global picture of the potential for transformation in im-

proving instruction set extension.

• We have empirically demonstrated that there exists a non-trivial dependence between

high-level transformations and the generated instruction set extensions justifying the co-

exploration of the HW and SW design spaces.

Due to the difference in tool-chain (and indeed AISE algorithm) between this and other

work of this thesis, it is not possible to compare results directly. The above conclusions are

apparent from the work done in this section alone.

Future work should investigate the integration of machine learning techniques based on

program features into the transform-space exploration process.

192

6.3 Floating versus Fixed Point

This section attempts to address the design trade-offs inherent in selecting a number format

for performing arithmetic requiring a decimal point, particularly in combination with ISE im-

plemented using CFAs. A variety of notable points in the trade-off space are modeled and

synthesised to obtain their performance, so as to evaluate them. Techniques developed in

earlier sections 5.5 and 4.3 are included to determine their relative merit in such a scenario.

Floating point is demonstrated to perform worse than fixed point, for all design concerns and

applications studied here, regardless of ISEs employed.

6.3.1 Introduction

Digital Signal Processing (DSP) applications are able to use either floating or fixed point num-

ber formats in order to implement arithmetic including a decimal point. The two formats have

an inherent trade-off in terms of the quality and cost of the result produced:

• Fixed point can be tailored for a specific precision over a covered range, depending on

the position of the decimal point.

• Floating point has a greater dynamic range than fixed point.

• Floating point is generally easier to develop for than fixed point, the latter of which gen-

erally requires macros to be used instead of standard operators available in the language.

This is particularly true in the most common embedded language: C. Additional format

problems such as overflow, underflow, and rounding errors further complicate the issue.

• Fixed point requires only integer units to process, whereas floating point require the more

complex and generally expensive floating point units. Software emulation exists, but is

prohibitively slow.

Floating point is almost always as per the IEEE 754 standard [147], specifying either 32-

(single precision) or 64-bit (double precision). In floating point, the mantissa and exponent of

a decimal number is encoded in separate fields. The exponent defines where the decimal point

lies, hence the name of the format. An additional bit specifies whether the number is positive

or negative. Fixed point has a constant exponent, leaving more room than floating point for a

given bit-width to encode the mantissa. Floating point is generally best used in cases where data

is non-uniformly distributed over the entire range covered by the format. In essence, floating

point numbers are the “general purpose” decimal number format, and for some considerable

time hardware support has generally only been available for the IEEE-754 standard single-

and double-precision formats. Fixed point on the other hand can in many cases be tailored

to a greater precision for a specific range, and it is this that contributes to the engineering

costs associated with writing software utilising fixed point. Much like the specialisation of

193

ISE, the use of fixed-point numbers must be specifically targeted to the application (and even

expression) with which they are concerned. In this manner, it is possible that fixed point is both

more precise and more accurate than floating where it has been properly engineered. Floating

point is still very popular with scientific and other more abstract applications, where the data is

not necessarily well understood or the engineering costs of producing a suitably balanced fixed

point number format outweigh the benefits from added precision.

Hardware tends to vary in its support for floating point, due to the expense of including

such a unit in a processor design. Any decent GPP intended for desktop computing in 2010

will include floating-point support, usually including multiple FPU in order to exploit data par-

allelism. Embedded processors on the other hand tend to take a more conservative approach,

but examples of high-spec floating-point DSP do exist. An example on sale at the time of writ-

ing this thesis is the TigerSHARC ADSP-TS101S: a super-scalar DSP capable of performing

six simultaneous floating-point operations in a single cycle [148]. The engineer-time cost of

floating versus fixed point is hard to quantify, so this is not approached here. What is possible

to quantify is the performance space available through using either floating or fixed point for

a particular kernel or application. Towards this end, this section presents a thorough evalua-

tion of run-time, energy, power, and area performance in both a baseline and several extended

EnCore-based designs. This gives insight into the combination of ISE and decimal number

format, which can be further applied to make informed design decisions in future efforts.

6.3.2 Methodology

It is fairly difficult to present an entirely equivalent example of fixed versus floating point

applied to the same application due to the engineering costs of producing both versions in par-

allel. We have, however, already encountered one application in this work which contains such

configurability: FAAD. In addition, the DSPStone [149] benchmark suite contains fixed- and

floating-point versions of each of the kernels implemented. For the purposes of this evaluation,

the combination of FAAD and the DSPStone benchmarks configured for either 32-bit fixed- or

floating-point are used to represent the two number formats for evaluation.

The same tool-chain and flow are used as in previous sections of this thesis where energy

is to be derived (sections 4.2 and 5.5). The EnCore is once again employed here as the baseline

core for the purposes of measuring relative merit of using ISE.

The benchmarks from the DSPStone suite and FAAD are treated somewhat differently

with regards to the design space evaluated, due to FAAD’s much larger code-base and the more

pronounced trends that are therefore visible. The design points evaluated for each benchmark

in the DSPStone suite are all combinations of:

• Fixed and floating point.

• I/O constraint: 4/4 and 8/8.

194

• Area constraint: 0.2mm2 and unlimited.

• Energy heuristic (section 5.5) and combinational heuristic (section 4.2.2).

• With Staggering (section 4.3) and without.

These configurations of the synthesis flow (uarchgen and isegen tools) lead to thirty-two de-

signs per DSPStone benchmark which are further processed by DesignCompiler using a 130nm

library, as per previous similar experiments in this thesis. The 0.2mm2 is not an arbitrary con-

straint, but rather is the size of the combinational area consumed by the baseline EnCore ex-

cluding memories. This was added into the points for evaluation since prior experiments in this

thesis have demonstrated that without an area constraint, the design trade-offs can be expen-

sive. With FAAD, a different approach is warranted due to the greater size of the application.

Instead of just sampling with the area constraint at 0.2mm2 and unlimited, design points are

taken from 0.2mm2 up to 3.0mm2 in 0.1mm2 increments. Where further area is expendable,

sampling runs from 4.0mm2 up to the maximum in 1.0mm2 increments. FPU area (0.132mm2)

and power (27.16mW) are included in results for designs which utilise scalar floating point.

This is so that the relative cost of using the standard floating point unit can be seen versus the

baseline of integer units only employed in the fixed point designs. Results are grouped into

data series for display as graphs in evaluation:

• DSPStone benchmarks have four series, each series having constant number format and

whether or not staggering is used.

• FAAD has sixteen series, each series having constant every variable except for area con-

straint.

This grouping allows for distinction to be more easily visualised between the different combi-

nations of specification detailed above.

All ALUs used here are taken from the Synopsys DesignWare library, with hardware la-

tencies normalised to a 250MHz clock (4ns). Software latencies are configured to match the

Calton revision of the EnCore [10] processor.

The uarchgen selection heuristic, that used to select the set of ISE templates to implement

as CFAs, is still of the original form detailed in algorithm 2. The energy aware heuristic has

only so far been applied to the isegen tool, leading to potentially misguided results at area

constraints which are not unlimited. This effect is examined in more detail in the following

subsection.

6.3.3 Evaluation

The principal observations required of this experiment are the design performance with regards

to the number format applied to DSP kernels when ISE is considered. Floating point is now

shown to be the more expensive option in all axes, both with and without ISE.

195

Fig. 6.14: DSPSTONE CONVOLUTION design points demonstrating cost versus perfor-
mance. This is the simplest benchmark used here, and the trends are similarly simplified.
Floating point is shown to be more expensive in all axes, especially energy. This is a trend
which is continued throughout all of the benchmarks tested.

196

DSPStone Kernels

The primary concern in most ISE studies is that of the acceleration factor obtained in utilising

ISE with various constraints versus a baseline core. For this work however, absolute cycle

counts are considered since these allow for the dual baselines of fixed- and floating- point.

When looking at the graphs, towards the bottom-left is generally better performance, and

towards the top-right is worse. We can see from the graphs for area versus application cycles

that in all cases, the floating-point designs are slower for a given extension area, versus the

baseline core. Whilst the additional area incurred by the scalar floating point unit is included

in these areas, the number format itself is slower and this leads to one major observation from

the area-cycles graphs: At no point do the fixed- and floating- point series intersect, regardless

of heuristic or staggering. For the given configurations, there was not a single case where the

floating-point design was faster-executing (in absolute cycle terms) than a fixed-point design

of equal or less area cost. This must therefore lead to the conclusion that in terms of area and

cycles, floating-point is always inferior in terms of cost for benefit. In itself, this result will not

surprise many as this has been demonstrated in a scalar context before; this experiment serves

to extend the observation to designs incorporating ISE.

The difference between the baselines on floating- and fixed-point ranges from nothing (in

the CONVOLUTION kernel), to a 29% (93 cycles) difference in runtime in the MATRIX1x3

kernel and a 15% (4000 cycles) difference in runtime in the MATRIX1 kernel. The latter two

observations are the greatest observed DSPStone baseline relative and absolute differences re-

spectively. Before ISE has even been considered, in some cases the consideration of whether

to used fixed- or floating- point should be coloured by the difference in baseline runtime be-

tween the two being around the same magnitude as expected from ISE. This further supports

the conclusions made in section 6.2.4, that it is far more important to evaluate as wide a section

of the HW/SW co-design space, than it is to consider a few features exhaustively. This result

will also not come as a surprise, as it is a foregone conclusion of Amdahl’s law.

From the results presented here, there are a range of different trends with regards to the

effect of ISE on the benchmark depending on the number format used. The most neutral

result contains no difference at all between the floating- and fixed-point versions maximum and

minimum cycles (112 and 80 cycles respectively). The difference in area implementation if the

scalar FPU is considered puts the fixed-point design at an advantage once again even in this

seemingly neutral case. In all other benchmarks as previously noted, the baseline execution-

time of the floating-point version is worse than the fixed-point. There is also an apparent

tendency for the absolute improvement in cycles to be either the same or less for floating-point

versus the fixed-point alternative. These two points in combination lead us to realise that fixed-

point is invariably the better design option with regards to the execution speed, regardless of

the ISE applied. In most cases (FIR2DIM, IIR, LMS, MATRIX1, MATRIX1x3, MATRIX2,

N REAL UPDATES), the fixed-point benchmark not only started with a lower execution time

197

Fig. 6.15: DSPSTONE FIR2DIM design points demonstrating cost versus performance. Con-
firmation of the results of section 5.5 can be seen in all of these graphs by comparing the
Combinational series to the Energy-aware series, without staggering (full). The latter has bet-
ter acceleration, power, area, and energy.

198

Fig. 6.16: DSPSTONE IIR BIQUAD N SECTIONS design points demonstrating cost versus
performance. The jaggedness of the series is because both 4/4 and 8/8 I/O are included in each.
In this case, both floating- and fixed-point fail to produce a useful acceleration at 8/8 I/O, with
the energy heuristic, and a 0.2mm2 constraint. The limit is too severe to enable acceleration at
this point with this heuristic.

but after unlimited AISE the absolute (and relative) difference in cycles had increased yet

further. The only benchmarks evading this effect were CONVOLUTION which is too simple,

and N COMPLEX UPDATES in which there is a particularly parallel structure which is better

exploited in the simpler IR expression semantics of the floating-point. The result that floating-

point is always lower performance for a given extension area would not be the case if the results

presented here did not consider the FPU as part of that area. Several benchmarks would find

intersecting series (meaning that floating-point could be considered of equal or better value at

some point in the trade-off curve) if the area of the FPU was not added to the results. In all of

these cases however, the fixed-point version eventually becomes the best performing solution

at maximum area utilisation since regardless of the area additions (shifting the floating-point

series to the right). The cycle counts are equivalent regardless of this shift, for limit comparison.

The energy consumed for a particular design point depends on the power of any CFAs

used, the power of the baseline core, and the time the application takes to execute in those

two domains. Due to the higher (more than double) baseline power consumed in the FPU-

199

Fig. 6.17: DSPSTONE LMS design points demonstrating cost versus performance. Here in
particular we can see the similar effects, of using the original heuristic and staggering, versus
the Energy-aware heuristic without staggering. With regards to acceleration and area, staggered
points are slightly less accelerating and slightly less large. The energy result still comes out in
favour of the energy-aware heuristic, demonstrating that it is more suited to energy optimisation
than staggering.

inclusive design and the higher cycle count in most cases, the floating-point designs all tend

towards a higher energy for both area and cycle costs versus fixed-point. In terms of the energy-

saving made by using CFAs versus the baseline, the floating-point wins out in both relative and

absolute terms in most benchmarks. Due to the higher power consumption of the floating-point

baseline, removing cycles has a greater impact on the energy consumption than for the already

lower-power fixed-point baseline. Because the integer-only (fixed-point) EnCore baseline is

already so frugal with regards to power and energy consumption, it obtains less improvement

when AISE is employed. The lesson here is that if you are already committed to using floating-

point in a design, AISE will achieve a greater energy benefit than if you had been using a

fixed-point format.

On average, the baseline of floating-point is 3.22x higher energy consumption than the

fixed-point equivalent. The smallest difference is 2.76x in the CONVOLUTION benchmark

once again, as may be expected given the lack of difference in runtime at the limits of ex-

ecution time. The greatest difference is 3.91x in the MATRIX3x1 benchmark, which has the

200

smallest baseline and accelerated cycle count after CONVOLUTION; this suggests that smaller

benchmarks are less predictable in their energy cost. At the opposite limit (i.e. the greatest area

utilisation), not all of the benchmarks obtain the greatest energy improvement. Once again this

demonstrates that there is a diminishing return at higher areas which can reverse a benefit to a

disadvantage if followed too far. In all of the DSPStone results, the greatest area represented

is the design which includes all identified ISEs for that benchmark. Benchmarks which have

their best energy performance at this unlimited point are for the fixed-point series CONVOLU-

TION, IIR, LMS, MATRIX1, MATRIX1x3, MATRIX2, N COMPLEX UPDATES. Similarly

those having their best energy performance at the area limit in their floating-point series are

MATRIX1, MATRIX1x3, and N COMPLEX UPDATES. The N REAL UPDATES benchmark

does not achieve this in either fixed- or floating-point series, but the energy results at the area

limits are rather close to the best obtained. Importantly, for none of the DSPStone bench-

marks examined is there a point at which the energy performance is worse after ISEs/CFAs

are utilised. This would seem to be at odds with earlier results in section 4.2, but due to the

small size and lack of software transformations applied here to the DSPStone benchmarks there

are very few ISEs that could be considered extraneous, or that would worsen an energy result.

When we progress to evaluation of the FAAD application, the power-hungry effect on energy

returns with a vengeance.

We can now move on to examine more specific energy effects of ISE with regards to both

number formats. Relative to the baseline, the average energy improvement made at the area

limit for fixed-point is 1.52x, and for floating-point is 1.70x. The highest energy improvement

obtained is 1.86x (N COMPLEX UPDATES) for fixed-point and 2.16x (CONVOLUTION) for

floating-point. As was noted in an earlier evaluation, the difference is mostly down to the en-

ergy consumption of the baseline in floating-point being higher. Despite the fact that extension

logic then goes on to use floating point units which themselves are higher power than inte-

ger ones, the reduction in runtime outweighs this disadvantage insofar as energy is concerned.

This is examined in more detail further down the page. Another interesting observation is the

difference between floating- and fixed-point energy consumption using the lowest energy CFA

design for each format. The average relative difference is then 2.87x which is lower than the

baseline 3.22x; the application-specific nature of the CFA inclusive designs has narrowed the

gap between the floating- and fixed-point alternatives in terms of energy consumption. The

smallest difference observed is again in CONVOLUTION, of 2.07x; this benchmark also had

the least energy difference between formats at the baseline, a difference of 2.77x. The maxi-

mum difference observed is again MATRIX3x1 at 3.21x, notably less than the previous (base-

line) average and less than the previous maximum of 3.91x, also from MATRIX3x1. We can

therefore conclude that whilst the CFA-inclusive designs narrow the gap between fixed- and

floating-point energy performance, they cannot yet close it entirely. In terms of energy cost,

the fixed-point designs remain the most cost-effective regardless of application-specific design,

201

Fig. 6.18: DSPSTONE MATRIX1 design points demonstrating cost versus performance. Here
again we see barely effective design points at 0.2mm2, for both fixed- and floating-point. The
conditions are identical to the same observation made in Figure 6.16, except this time they
occur for the combinational heuristic both with and without staggering in addition to the energy
heuristic without staggering.

202

Fig. 6.19: DSPSTONE MATRIX1x3 design points demonstrating cost versus performance.

although ISE does appear to help mitigate the difference by producing greater energy savings

for floating-point than fixed-point.

Further observations regarding the energy performance can be made by looking at the

trends in the graphs for energy versus cycles and area. We can see in the graphs that in all

cases the area trade-off is more beneficial at the limits (e.g. worst and best-case) of energy

performance. This does not mean that throwing unlimited area at the problem is actually the

best case. We can see that in most of the graphs, the designs utilising greatest area are usually

a little less efficient with regards to energy consumption than designs using slightly less. This

trend of diminishing and inverting returns is a lot more pronounced in the floating-point data

series, due to the more power-hungry nature of those CFA designs for a specific area limit (see

conclusions of section 4.2). Not all benchmarks suffer from this effect however, in particular

the MATRIX1 and MATRIX1x3 continue to benefit in both cycles and energy up to the limit

of area consumed. From the perspective of cycles a related trend can be observed; The designs

which take the least number of cycles are not always the designs which have the least energy

consumption, as often the power required to scrub out the last few cycles is linearly dispropor-

tionate to the runtime saving made. Again, this effect is most noticeable in the floating-point

series: where it is visible in the fixed-point equivalent, the inverting return on cost is very

203

Fig. 6.20: DSPSTONE MATRIX2 design points demonstrating cost versus performance.

minimal.

We can observe a confirmation of the earlier simple linear relation between power and

area by looking at the graphs of power and area versus cycles: these graphs in all cases are

nearly identical in shape, demonstrating that the simple constant factor derived earlier for power

estimation is indeed valid. Because the graphs for power do not include the additional power of

the FPU, we can see that in some cases CFAs consume less power for a given area in floating-

point rather than fixed-point. Once the additional FPU power and runtime is considered, the

result is the energy observations noted: floating-point invariably consumes more cycles, area,

power, and energy than the fixed-point alternative regardless of application-specific processing

introduced.

Staggering (see section 4.3) was included in this experiment for completeness, to determine

whether it would have much effect when combined with small unexpanded kernels. In this case

it seems to have a fairly small effect on most of the kernels, with the same general trend as has

been observed in prior experiments. The staggering mechanism is intended to act in the face

of deep and very numerous ISE templates. Despite the minimal nature of the kernels examined

herein, their data-flow provides similar opportunities as the benchmarks considered in section

4.3 in terms of the cost-benefit improvement from staggering. Staggering can be seen here

204

Fig. 6.21: DSPSTONE N COMPLEX UPDATES design points demonstrating cost versus per-
formance.

205

particularly strongly in the graphs of cycles versus area; series where staggering is applied end

earlier in the area axis. A small increase in the number of cycles can be noted alongside this

area reduction, for reasons covered in section 4.3. Examples of the effect of staggering can

be seen in all graphs of cycles versus area; perhaps the simplest is CONVOLUTION in which

we can see the fixed-point series bifurcating between staggered and not, with no difference in

acceleration but an 18% saving in area for the staggered design point.

In terms of the efficacy of staggering on the different number formats, the relative effect

seems to be roughly the same per-benchmark regardless of number format. This effect can be

observed in the visual similarities of the two formats’ graph series: you can observe roughly

the same progression in both the fixed- and floating-point series. Staggered series end earlier

(in the area domain) than their full counterparts, and in all cases the effect is roughly the same

in both fixed- and floating-point after the series are transformed to account for the differences

in the formats’ series sizes.

As discussed earlier, the energy aware heuristic from section 5.5 has been applied in addi-

tion to the original ISEGEN heuristic in order to confirm the results of the earlier experiments

under different conditions. Although the results for the DSPStone kernels here are not as pro-

nounced as those seen in the earlier section, the objective of the energy aware heuristic to

reduce total energy is alive and well. For fixed-point in all cases the energy heuristic (without

staggering) generated the lowest energy design. For floating-point in all cases but MATRIX1x3

the same trend is present, and in the case of MATRIX1x3 the original heuristic is only ahead

by less than 1%.

In many of the benchmarks, we can see a tendency for staggering to overwhelm the energy-

aware heuristic. This reduces the ISEs to a set nearly equal in performance, to the set resulting

from staggering over the original heuristic results.

We now move on to looking at a larger slice of the trade-off space with a more fully fledged

application: FAAD.

FAAD Application

When looking at the graphs for cycles versus area and cycles versus power (figures 6.23 and

6.26), the classic exponential decay of return on area (and the linearly related power) is visi-

ble in all series. We can see from the similarity in shape of these two graphs that the area and

power are once again very closely linked, further supporting the conclusions of section 4.2 later

used in section 5.5. It should be noted this area-power relation is not the product of the mod-

elling performed in this experiment to derive energy, but rather are taken from PowerCompiler

simulation of a representative set of ISEs executed in the CFA under examination.

Perhaps the most stark difference between series under the same number format is the

original heuristic at 8/8 I/O in both cases, versus every other series for that format. The same

exponential curve shape is present in even these particularly elongated series, with the more

206

Fig. 6.22: DSPSTONE N REAL UPDATES design points demonstrating cost versus perfor-
mance.

207

erratic trend coming from the selection algorithm having to choose between a smaller number

of larger ISEs. Due to the large size of the FAAD application, a great deal of varied complexity

is present in these instructions which can lead to the selection algorithm behaving rather worse

than normal. We can see that the series in both cases peaks at around 13mm2; more than double

the next nearest for each format. Once again, the complexity of larger ISEs has amounted to a

greater cost with little actual benefit over smaller ones, and the idea of “bigger is better” that

has been espoused by some (e.g. [18]) is well and truly debunked.

In combination with the results obtained in the earlier sections (especially section 4.2), we

can see a trend with regards to the trade-off between I/O constraint, extension area utilisation

when unlimited, and the acceleration produced. First considering only I/O and the limit of

acceleration, we can see from section 4.2 that an I/O of 12/8 leads to a maximum acceleration

of around 52% (for the fixed-point FAAD). From this experiment we can see that I/O of 4/4

yields a maximum of 59.8%, and an I/O of 8/8 yields a maximum of 68.31%. The seemingly

anomalous observation that the 12/8 result is lower than the 4/4 and 8/8 is due to the lack

of good heuristic weighting in section 4.2. We can see from this that being excessively lax

with regards to I/O constraints does not necessarily impart much in the way of acceleration,

and that other factors such as the efficacy of the search can yield far greater sway over the

quality of the resulting design. As with area, there are diminishing returns on relaxing I/O

constraints in many contexts. The relaxed I/O constraints generally lead to larger and more

complex ISEs being identified. Larger ISE are harder to share resources between effectively for

reasons discussed in section 4.3. If one considers staggering to be the reduction of complexity

through reducing the depth of ISE DFG, then reducing I/O is the reduction of complexity

through reducing ISE DFG width. Here we see that the 4/4 fixed-point non-staggered area-

unlimited design consumes only 5.01mm2. The 8/8 equivalent consumes 13.42mm2. The I/O

12/8 templates from the earlier section 4.2 had a less effective acceleration by over 10%, and

their non-staggered area-unlimited implementation consumed 11.9mm2 gate area. Relaxing

I/O constraints therefore is not as important as getting the search algorithm right. There is a lot

of merit in restricting the number of I/O ports during identification as whilst the acceleration

limit is slightly increased for higher I/O, the resulting cost/benefit with regards to the area

needed to reach that limit is considerably worse.

Staggering can be seen here as a shortening of the tail in the various series, ultimately

bringing down the complexity of the underlying ISEs by breaking deep ISEs up into a series

of more shallow ISE intended to be executed in series. The efficacy of staggering where area

is unlimited is demonstrated in section 4.3, and here we can see again that it brings down the

area significantly towards the limit for each series. The 4/4 limit for fixed point is brought

down from 5.01mm2 to 1.32mm2, with a reduction in acceleration from 59.8% to 59.6% which

is so small as to be insignificant. The same 4/4 limit for floating point is brought down from

5.94mm2 to 2.53mm2 with an acceleration reduction from 54.35% to 53.9%, which is nearly

208

identical behaviour to the fixed equivalent. The 8/8 limit for fixed point is taken from 13.42mm2

to 2.34mm2 and 66.34% to 64.28%; the equivalent for floating point goes from 12.53mm2 to

3.73mm2 and 71.54% to 67.48%. Staggering hurts the performance of the higher I/O a little

more, but this is because the higher I/O is far more likely to have had a larger depth on the more

critical ISEs. Combination of staggering and the energy heuristic is examined a little later.

Reducing the I/O limit brings the knee of the graph closer to the y-axis, and staggering

brings the area-limit closer to the y-axis. Further investigation is required to determine why

staggering does not also always bring the knee towards the y-axis, as this result was expected at

this point. This result could suggest that staggering is not always something which is effective

at a particular area utilisation, but rather something which is effective at a certain diversity of

complexity in DFGs implemented on CFAs. The effect on the original heuristic at 8/8 I/O

for both number formats is inarguable: staggering both brings down the area-limit and brings

the knee towards the y-axis. One potential reason for the disparity here is that DFG which are

particularly deep are not particularly high in merit due to a lack of data-parallelism: These DFG

are therefore not considered for inclusion until the more expensive area levels, at which point

they make very little difference (the 0.2% seen earlier, for example). In order for staggering to

be of greater effect and to move the actual knee of the graph, DFG need to be both wide and

deep. Achieving such properties may be more prevalent in the face of new heuristic vectors

tuned to such conditions (favouring deep ISEs as much as wide); this again is left for future

efforts to answer. Having a higher I/O constraint will, however, increase the width of what is in

many cases approximate to a binary tree; the depth of a binary tree is relative to the number of

leaf-nodes, so increasing the I/O constraint from 4/4 to 8/8 should double the depth of binary

trees, and hence provide twice the depth for staggering to operate over.

As far as the new energy heuristic is concerned, this single application explored in this

manner does a great deal to demonstrate the better search behaviour undertaken. We can see

two things which more than anything lift this approach above the original combinational one,

even when staggering is considered:

• The extent of the reduction in total area for the energy heuristic versus the original

heuristic for 8/8 at unlimited area is 13.42mm2-3.58mm2 for fixed point and 12.53mm2-

4.63mm2 for floating point; this comes to 3.74x and 2.70x respectively. The original

heuristic plus staggering is of a similar magnitude, but is slightly more efficacious in this

regard when considered alone, however:

• The acceleration obtained when using the energy heuristic instead of the original heuris-

tic is greater at the lower area in the result of the former. The peak for acceleration for

the original heuristic at 8/8 is 66.34% for fixed-point and 71.54% for floating-point. The

peak for acceleration for the energy heuristic at 8/8 is 68.38% and 72.64%. Whilst these

results are not impressive when considering only the acceleration afforded, once you re-

209

alise that this is done in conjunction with a 3x reduction in area and all resulting energy

implications, the true worth of the energy heuristic is apparent.

The difference between area limits with and without the energy heuristic is somewhat interest-

ing, but hard to make absolute conclusions from with only this one benchmark. The original

heuristic gives a smaller area limit for floating than fixed, whereas the energy heuristic is the

other way round. This is an interesting effect, suggests that the energy heuristic is more in tune

with engineer expectations wherein a floating point design would consume considerably more

area.

Once again we can see that basically the same trends exist for floating and fixed point

arithmetic, and that the two versions of the benchmark achieved roughly the same performance

in terms of relative improvement from ISE versus their baselines. From this we can conclude

that the previously assumed engineering heuristics regarding the use of floating point stand even

in the face of ISE: Floating point is for those who cannot afford the extra software engineering

time of fixed-point, and fixed point is for those who cannot afford the extra hardware cost of

floating-point.

210

Fig. 6.23: FAAD: Extension Area versus Application Cycles; Regular Sampling of Area at 0.1mm2 Target Interval from 0.2mm2 to 3.0mm2, and at
1.0mm2 from 4.0mm2 to maximum. The excess in area of the higher I/O when using the original heuristic is apparent in both floating- and fixed-point. The
maximum size of extension logic for both is remarkably similar, implying that the extension of a floating-point application should be of similar area cost
to an equivalent fixed-point application. The energy-aware heuristic produces a much smaller design in both formats, with floating-point being slightly
bigger than the fixed-point but still largely the same. The effect of staggering on the energy-aware heuristic appears to reduce the result to roughly the same
performance as the result of staggering with the combinational heuristic.

211

Fig. 6.24: FAAD: Extension Area versus Application Energy; Regular Sampling of Area at 0.1mm2 Target Interval from 0.2mm2 to 3.0mm2, and at
1.0mm2 from 4.0mm2 to maximum. It appears with this graph alone that for a given area, the energy resulting from the energy-aware heuristic is greater
than that for the combinational heuristic. Whilst this is true, the acceleration afforded by the designs at the same area in those two heuristics is drastically
different, as seen in the previous figure 6.23.

212

Fig. 6.25: FAAD: Application Cycles versus Energy; Regular Sampling of Area at 0.1mm2 Target Interval from 0.2mm2 to 3.0mm2, and at 1.0mm2 from
4.0mm2 to maximum. Here we can see the cost of acceleration in terms of energy, removing the area question from the picture. This graph demonstrates
the most extreme example of a trade-off knee seen in this thesis. There is a point in every series, some more pronounced than others, where acceleration
goes from improving energy performance, to hurting it. The flattening out in the cycle axis demonstrates the point at which further ISEs cover a trivial
execution, and are really not worthwhile including. This corresponds with the exponential decay of figure 6.23, and confirms that not only are these tails
useless for acceleration, they also actively damage energy, power, and area performance.

213

Fig. 6.26: FAAD: CFA Power versus Application Cycles; Regular Sampling of Area at 0.1mm2 Target Interval from 0.2mm2 to 3.0mm2, and at 1.0mm2

from 4.0mm2 to maximum. The similarity of this graph in shape to figure 6.23 serves to confirm the earlier conclusion that area and power are near-linearly
correlated with CFA designs.

214

6.3.4 Conclusions

Following this study of the differences between fixed and floating point number formats when

utilising ISE, the following conclusions have been made:

• Floating point is the more expensive option in terms of hardware cost; both silicon area

and battery size will need to be greater in the face of floating point.

• Floating point at higher area constraints for AISE can equal or surpass the baseline per-

formance of fixed point in terms of run-time.

• No amount of ISEs as CFAs can make floating-point the same or better energy consump-

tion as the baseline of fixed point.

• The more inefficient (i.e. top half of the area limit for 8/8 I/O) CFA designs cause

fixed point to have a higher energy consumption than floating point, despite executing

considerably faster.

• The energy heuristic is very effective at addressing energy concerns versus the original

heuristic, but probably deserves a different name as it also impacts area, power, and

runtime positively.

• Both heuristics have their greatest energy improvement prior to the area limit, and the

knees representing the best trade-off ratio seen are even lower in terms of area.

• The combination of energy heuristic and staggering is roughly the same as the combi-

nation of original heuristic and staggering in terms of the result. It would seem that

whatever special design considerations take place for the energy heuristic are annulled

by staggering.

• Despite the relatively large comparative cost, floating point CFAs are not prohibitively

expensive, and require extension logic of roughly the same size on average as that pro-

duced for fixed point for roughly the same relative acceleration.

215

6.4 Summary

This chapter has looked at two different areas of source code form which constitute decisions

made at the design time of a system that will effect the efficacy of AISE and hence the whole

design performed during HW/SW co-design.

A range of software transformations were explored in combination with AISE over a num-

ber of different benchmarks, all kernels. In particular, this resulted in two outcomes: The

motivation of further exploration of this space to derive more specific trends, and the acknowl-

edgement that AISE is particularly good at mopping up the inefficacies of transformation at the

expense of area.

The two principal number formats for representing the binary point in a number format

were explored in terms of their performance merit when considering an architecture designed

to include ISE. It has been confirmed that AISE has roughly the same trends in both fixed-

and floating-point. AISE is shown to bring the two formats closer together or further apart in

performance depending on the care taken to select suitable constraints and heuristics.

216

7 CONCLUSIONS

“Each problem that I solved became a rule, which served afterwards to solve other problems.”

– René Descartes

A round-up of the work produced in this thesis follows, making conclusions with regard to the

contributions made in this work and the research leading from here.

7.1 Contributions

A number of contributions have been made in this work, with both engineering and scientific

implications. The umbrella hypothesis for this work has been: “The efficacy of ISE can be

increased by improving the microarchitecture, identification algorithm, and software form”.

Chapters 4, 5, and 6 have addressed the components of this hypothesis directly, with the fol-

lowing contributions made:

• The CFA is demonstrated repeatedly to be a cost-effective design for ISE implementation.

The CFA includes explicit reconfigurability and pipelining, which distinguish it from the

CCA. The full design and synthesis methodology is presented within section 4.2 and is

carried forwards throughout this thesis.

• A temporal partitioning algorithm called “staggering” is proposed and demonstrated

on average to reduce the area of CFA implementation by 37% for only an 8% reduction

in acceleration. Staggering has considerable benefits for the unlimited area consumed

by a CFA when implementing a set of ISEs. Larger applications gain more from the

approach than smaller ones such as kernels so this approach is particularly useful for

realistic applications. Sections 4.3 and 6.3 both investigate the efficacy of staggering.

• A methodology for finding a good static weighting vector for ISEGEN is proposed and

demonstrated. Up to 100% of merit is shown to be lost or gained through the choice of

vector. The work of section 5.2 leads to a solid result which later efforts use as a strong

baseline for comparison. The static heuristic weighting vector promoted in the original

ISEGEN publication [7] is not good in comparison to many of the vectors explored in

section 5.2.

• ISEGEN early-termination is introduced and shown to improve the runtime of the al-

gorithm by up to 7.26x, and 5.82x on average. Through careful analysis of the I/O

constraint and its effects on the ISEGEN algorithm, early termination is added in section

5.3. Due to the polynomial big-O complexity of the section removed by early termina-

tion when triggered, the early termination is more effective with larger DFG as might be

217

encountered in real application optimised heavily to expose OLP. This is a particularly

strong result as it better enables an iterative approach. Around six times more points

on average can be considered in any one period of time, a great result for designers

performing DSE.

• An extension to the ISEGEN heuristic to account for pipelining is proposed and eval-

uated, increasing acceleration by up to an additional 1.5x. The ISEGEN algorithm

originally does not consider any inter-ISE parallelism, such as could be exploited by

a microarchitecture like the CFA which contains multiple pipeline stages as opposed to

one large multi-cycle stage. Two scheduling heuristics are considered in section 5.4, both

performing As-Soon-As-Possible scheduling based on the availability of inputs to oper-

ations, but differing in the event that there are multiple choices on whether to choose the

shortest (ASAP-SF) or longest (ASAP-LF) latency first. Evaluation demonstrates that

the ASAP-SF approach is the strongest, that the new heuristics work better than even a

properly calibrated incarnation of the original heuristic.

• An energy-aware heuristic is added to ISEGEN, which reduces the energy used by a CFA

implementation of a set of ISEs by an average of 1.6x, up to 3.6x. The cost considerations

of automatically adding ISEs to a microarchitecture are usually omitted in AISE identifi-

cation. The energy-aware heuristic is originally presented in section 5.5 and conclusions

are later confirmed in section 6.3. Improvements are made through a combination of

design concerns: energy involves power which ultimately stems from area as shown in

section 4.2, and the time spent in the various sections of the design (CFA and baseline

core). Using this new identification heuristic for area, ISEs became leaner: meaning

smaller ISE covering less area but with a greater individual acceleration factor. This re-

sult both encourages the further investigation of energy effects with ISE, and discourages

the further pursuit of “bigger-is-better” AISE identification philosophies such as that of

[18].

• A methodology for combined exploration of source transformation and ISE is presented,

and demonstrated to improve the acceleration of the result by an average of 35% ver-

sus ISE alone. Source transformations have been in the repertoire of compiler engineers

for decades as an approach to finding a better fit between the code that represents the

software and the hardware on which it is meant to run. An exploration as to the effects

of combining different combinations of source transformations and AISE is performed

in section 6.2 and demonstrates that there is a critical link between AISE and the trans-

formations applied. Transformations when applied wrongly can often lead to a situation

where AISE “mops up” the inefficiency; adding hardware is far less attractive than get-

ting the source transformations right in the first place. This heavily motivates the further

study of combined compiler transformations and AISE, as there are interacting mecha-

218

nisms between the two which must be better understood.

• Floating point is demonstrated to perform worse than fixed point, for all design concerns

and applications studied here, regardless of ISEs employed. Number format is a decision

which has to be made in any project incorporating DSP, amongst others. The original

engineering rule of thumb regarding the trade-offs between the two number formats have

been confirmed in section 6.3 both with and without AISE. Using CFA-based ISE can

reduce the relative gap between the two formats in terms of their runtime speed, but

floating-point will always be a more expensive option in terms of hardware. Anyone

considering this decision for a design should now be better informed to do so when

using ISE in the face of the trends uncovered herein.

219

Fig. 7.1: The Castle revision of the EnCore microarchitecture, with CFA included targeted at
the FAAD application. Yellow boxes along the top are CFA configuration memories. The large
yellow box on the left is the instruction cache memory, on the right is the data cache memory.
Smaller yellow boxes along the bottom are the tag memories for instruction and data caches.
The logic in the bottom half of the “T” is the EnCore itself, whereas the logic along the top is
the CFA.

7.2 EnCore and CFA integrated: Castle

As a proof of concept, the EnCore CPU has been extended with a single CFA targeted at ac-

celerating the fixed-point version of the FAAD application. The integration has been dubbed

the “Castle” revision of the EnCore microarchitecture. The design was submitted to fabrica-

tion in October 2009, and is expected to be complete in the second quarter of 2010, at which

point further tests may be run on the performance of the architecture. The Castle microarchi-

tecture utilises a 90nm standard-cell implementation, unlike the work of this thesis which is

constructed in 130nm. Figure 7.1 illustrates the layout of the Castle chip. The CFA utilised

in the Castle design is estimated to achieve around 1.4x acceleration over the baseline EnCore

architecture via the techniques used in this thesis. Staggering as in section 4.3 was used to

produce the CFA utilised in Castle, further demonstrating the validity of that approach.

Other specifications of the Castle microarchitecture include:

• Die Area: 1.875x1.875mm utilising eight metal layers.

• Instruction Cache Power Saving Scheme.

• Static Branch Prediction.

• 32KB 4-way data-cache and instruction-cache.

• 580MHz typical Fmax.

• 350MHz worst-case Fmax.

• 56uW/MHz including memories and CFA.

220

7.3 Further Work

The conclusions of the various experiments performed for this thesis have shed light on the

potential progression from the current state-of-the-art to a more refined solution to the problems

of ISE efficacy. The areas in which these refinements and alterations may be made are well

defined, but overlap with regards to their application to the techniques outlined in this thesis:

• We have introduced the CFA as a microarchitecture for reconfigurable ISE implemen-

tation, but most techniques or evaluations introduced herein could easily be applied to

a number of other implementations. This in itself forms one likely fruitful avenue of

further work: to compare the efficacy of these techniques on other microarchitectural

realisations (e.g. FPGA, combinational) of ISE. Techniques expected to be applicable

are those of sections 4.3, 5.2, 5.3, 5.4, 5.5, 6.2, and 6.3.

• Dynamic ISEGEN Weighting Vector Tuning, which may be realised via any number of

function-approximation techniques, is very likely to supply additional efficacy to the

ISEGEN algorithm. Work performed for this thesis in sections 5.2, 5.4, 5.5, and 6.3 has

demonstrated the need for a dynamic weighting vector to defeat the inefficiency intro-

duced in finding a common weighting vector. The ability to set a good weighting vector

on a per-DFG or even a per-ISEGEN-iteration basis rather than setting a single static

vector for a whole application is likely to have a significant positive impact on the qual-

ity of the overall result. There are many statistical (e.g. regression) and structural (e.g.

neural networks) approaches to this problem, in addition to iterative approaches wherein

the isegen tool itself would adopt an iterative refinement approach to the weighting vec-

tor. A combination of these approaches is very likely to yield a better result than one in

isolation, so the combination itself should be investigated via experimentation.

• Further improving the CFA microarchitecture, originally conceived as a DSP-accelerating

reconfigurable unit, the CFA has several issues which could be overcome in order to

make it either more effective in the DSP domain, or to be suitable for further domains.

The following is a non-exhaustive list of the potential improvements and modifications

which could and should be investigated:

1. Complex combinational ALU or FPGA inside the CFA to support the efficient in-

clusion of bitwise operators. It has been well established that bitwise operators gain

the greatest advantage from serial slack aggregation, allowing multiple operations

in series to occur in a single clock. This is due to bitwise operations by their very

definition having only a single gate-delay in a combinational circuit.

2. Direct Memory Access and a scratch-pad to allow for streaming, removing pressure

from the register file.

221

3. Less general connectivity to reduce the expense of permutation layers. Rather than

allowing every operator in one echelon to pass its result to every operator in the

next, use application-specific data to prune multiplexors.

4. Internal explicit data-forwarding to counter the inefficiency of forwarding layers

external to the CFA. Such an approach could only cover CFA-CFA forwards.

5. An improved implicit data-forwarding circuit external to the CFA, to effectively

replace the final layer of multiplexing in the CFA and the forwarding circuitry in the

baseline core; this would be a more efficient option, but would require considerable

design effort to produce.

• Energy-aware heuristic inclusion in selection stage as well as in the already implemented

identification stage as in section 5.5, to allow for efficacious selection under constraints

such as encoding or area.

• Heuristic and constraint support for pipelined inputs; contrary to the previous work

of Pozzi and Ienne [23], pipelined inputs (i.e. multi-cycle input to an ISE) could be

modelled internal to ISEGEN rather than iterating over them externally. This would

greatly reduce the run-time of the algorithm with regard to a particular bandwidth, but is

an alternative to the pipelining heuristic presented in this thesis as it addresses the same

problem.

• Less greedy selection algorithm; currently uarchgen utilises a variant of the greedy box-

packing algorithm to construct CFA. Devoting more computation to this problem could

provide better designs.

• Less greedy identification algorithm, in particular search should have a wider context

than a single basic block and ISE. For example, simultaneous identification of multiple

ISEs within a single DFG. This approach would combine well with the new heuristics

presented in sections 5.5 and 5.4, because these could make good use of more global

scope.

• Resolve issues of inaccuracy when using linear models for evaluation, instead of a cycle-

accurate fully-integrated simulation and synthesis. Issues with the linear models include:

– Due to the level at which the DFG are represented (GIMPLE/SSA before any

kind of machine-specific lowering), the determination of Load/Store latency is es-

timated. The problem is that these (and indeed all) DFG nodes have only a single

per-type latency, and no distinction is made between reads from registers (zero

latency), a register move (1 cycle latency) cache (varies depending on level), or

main memory (may have multiple latencies depending on the address mapping).

At present, the load/store nodes are not allowed to be covered because no CFA

222

scratch-pad or DMA exists yet. For the software portion of the execution time

modeled, all loads and stores count as a single cycle of latency. In the face of

function-level register allocation (as in GCC) it is very likely that a great majority

of the loads will be already present in registers at the beginning of each basic block.

– Actual simulation would be useful, but was not possible due to the lack of a working

post-ISE code generator.

– The energy model used should be verified through actual integration with the En-

Core; in particular the energy model relies on forwarding to be better-implemented

than it was with the Castle chip sent for fabrication in 2009, so this at least must be

resolved before the model is entirely ratified.

223

224

BIBLIOGRAPHY

[1] C. Kozyrakis and D. Patterson. Vector vs superscalar and vliw architectures for embed-

ded multimedia benchmarks, 2002.

[2] Jerzy Rozenblit and Klaus Buchenrieder. Codesign - Computer-Aided Software/Hard-

ware Engineering. IEEE Press, New York, 1995.

[3] F. Theeuwen and E. Seelen. Power reduction through clock gating by symbolic manip-

ulation, 1996.

[4] Kurt Keutzer, Sharad Malik, and Richard Newton. From asic to asip: The next design

discontinuity. In ICCD, January 2002.

[5] Advanced Micro Devices. Amd64 architecture programmer’s manual volume 6: 128-bit

and 256-bit xop and fma4 instructions. 2009.

[6] Intel Corporation. Intel advanced vector extensions programming reference. 2008.

[7] Partha Biswas, Sundarshan Banerjee, Nikil D. Dutt, Laura Pozzi, and Paolo Ienne.

Isegen: An iterative improvement-based ise generation technique for fast customization

of processors. IEEE Transactions on VLSI, 14(7), 2006.

[8] F. Angiolini, J. Ceng, R. Leupers, F. Ferrari, C. Ferri, and L. Benini. An integrated open

framework for heterogeneous mpsoc design space exploration. In Design, Automation

and Test in Europe (DATE), Munich, Germany, March 2006.

[9] Gang Qu. What is the limit of energy saving by dynamic voltage scaling? In ICCAD

’01: Proceedings of the 2001 IEEE/ACM international conference on Computer-aided

design, pages 560–563, Piscataway, NJ, USA, 2001. IEEE Press.

[10] Nigel Topham, Oscar Almer, Freddie Qu, and Richard Bennett. The encore cpu: Arc

compatible embedded processor – http://groups.inf.ed.ac.uk/pasta/hw encore.html.

[11] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-Vintecelli. System level

design: Orthogonalisation of concerns and platform-based design. IEEE Transactions

on Computer-Aided Design of Circuits and Systems, 19(12), 2000.

[12] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner. Application specific pro-

cessing on a general purpose core via transparent instruction set customization. In Proc.

37th Intl. Symposium on Microarchitecture (MICRO), pages 30–40, 2004.

225

[13] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner. An architecture

framework for transparent instruction set customization in embedded processors. In

Proc. 32nd Intl. Symposium on Computer Architecture (ISCA), pages 272–283, 2005.

[14] N. Clark, A. Hormati, S. Mahlke, and S. Yehia. Scalable subgraph mapping for acyclic

computation accelerators. In Proc. 2006 Intl. Conference on Compilers, Architecture,

and Synthesis for Embedded Systems (CASES), pages 147–157, 2006.

[15] S. Yehia, N. Clark, S. Mahlke, and K. Flautner. Exploring the design space of lut-based

transparent accelerators. In Proc. 2005 Intl. Conference on Compilers, Architecture, and

Synthesis for Embedded Systems (CASES), pages 11–21, 2005.

[16] A. Hormati, N. Clark, and S. Mahlke. Exploiting narrow accelerators with data-centric

subgraph mapping. In Proc. 2007 International Symposium on Code Generation and

Optimization (CGO), pages 147–157, 2007.

[17] Stretch S6000 Architecture White Paper

http://www.stretchinc.com/ files/s6ArchitectureOverview.pdf.

[18] Ajay K. Verma, Philip Brisk, and Paolo Ienne. Rethinking custom ise identification: a

new processor-agnostic method. In CASES ’07: Proceedings of the 2007 international

conference on Compilers, architecture, and synthesis for embedded systems, pages 125–

134, 2007.

[19] Armita Peymandoust, Laura Pozzi, Paolo Ienne, and Giovanni De Micheli. Automatic

instruction set extension and utilisation for embedded processors. In Proceedings of

the 14th International Conference on Application-specific Systems, Architectures and

Processors, The Hague, The Netherlands., 2003.

[20] Kubilay Atasu, Gunhan Dundar, and Can Ozturan. An integer linear programming ap-

proach for identifying instruction-set extensions, 2005.

[21] Laura Pozzi, Kubilay Atasu, and Paolo Ienne. Exact and approximate algorithms for

the extension of embedded processor instruction sets. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 25(7):1209–1229, 2006.

[22] Ajay K. Verma and Paolo Ienne. Towards the automatic exploration of arithmetic cir-

cuit architectures. In In Proceedings of the 43rd Design Automation Conference, San

Francisco, California, 2006.

[23] Laura Pozzi and Paolo Ienne. Exploiting pipelining to relax register-file port constraints

of instruction-set extensions. In In Proceedings of the International Conference on Com-

pilers, Architectures, and Synthesis for Embedded Systems, San Francisco, Calif, pages

2–10, 2005.

226

[24] Tony Givargis, Frank Vahid, and Jorg Henkel. System-level exploration for pareto-

optimal configurations in parameterized systems-on-a-chip. In ICCAD, pages 25–30,

2001.

[25] Tensilica Inc. The xpres compiler: Triple-threat solution to code performance chal-

lenges. Tensilica Inc Whitepaper, 2005.

[26] M. Hohenauer, H. Scharwaechter, K. Karuri, O. Wahlen, T. Kogel, R. Leupers, G. As-

cheid, and H. Meyr. Compiler-in-loop architecture exploration for efficient application

specific embedded processor design, 2004.

[27] T. Glokler, A. Hoffmann, and H. Meyr. Methodical low-power asip design space explo-

ration. VLSI Signal Processing, 33, 2003.

[28] ACE CoSy Website - http://www.ace.nl/compiler/cosy.html.

[29] CoWare LISATek Datasheet - http://www.coware.com/PDF/products/LISATek.pdf.

[30] Partha Biswas, Sudarshan Banerjee, Nikil Dutt, Laura Pozzi, and Paolo Ienne. Fast auto-

mated generation of high-quality instruction set extensions for processor customization.

In In Proceedings of the 3rd Workshop on Application Specific Processors, Stockholm,

2004.

[31] Ieee standard verilog hardware description language. IEEE Std 1364-2001, 2001.

[32] Ieee standard vhdl language reference manual. IEEE Std 1076-2008 (Revision of IEEE

Std 1076-2002), pages c1–626, 26 2009.

[33] Philip Brisk, Adam Kaplan, and Majid Sarrafzadeh. Area-efficient instruction set syn-

thesis for reconfigurable system-on-chip designs. In DAC ’04: Proceedings of the 41st

annual conference on Design automation, pages 395–400, New York, NY, USA, 2004.

ACM Press.

[34] M. Zuluaga and N. Topham. Resource sharing in custom instruction set extensions. In

Proceedings of the 6th IEEE Symposium on Application Specific Processors, Jun. 2008.

[35] N. Moreano, E.and Cid de Souza Borin, and G. Araujo. Efficient datapath merging

for partially reconfigurable architectures. IEEE Trans. Computer-Aided Design of Inte-

grated Circuits and Systems, 24:969 – 980, Jul. 2005.

[36] Paolo Ienne and Ajay K. Verma. Arithmetic transformations to maximise the use of

compressor trees. In Proceedings of the IEEE International Workshop on Electronic

Design, Test and Applications, Perth, Australia, 2004.

227

[37] Paolo Bonzini and Laura Pozzi. Code transformation strategies for extensible embedded

processors. In CASES ’06: Proceedings of the 2006 international conference on Com-

pilers, architecture and synthesis for embedded systems, pages 242–252, New York, NY,

USA, 2006. ACM Press.

[38] Yijian Wang and David Kaeli. Source level transformations to improve I/O data parti-

tioning. In International Workshop on Storage Network Architecture and Parallel I/Os,

2003.

[39] E. Chung, L. Benini, and G. De Micheli. Energy efficient source code transformation

based on value profiling. In International Workshop on Compilers and Operating Sys-

tems for Low Power, Philadelphia, USA, 2000.

[40] C. Kulkarni, F. Catthoor, and H. De Man. Code transformations for low power caching in

embedded multimedia processors. In 12th. International Parallel Processing Symposium

on International Parallel Processing Symposium, pages 292–297, 1998.

[41] B.D. Winters and A.J. Hu. Source-level transformations for improved formal verifica-

tion. In IEEE Internation Conference on Computer Design, 2000.

[42] Björn Franke and Michael O’Boyle. Combining program recovery, auto-parallelisation

and locality analysis for C programs on multi-processor embedded systems. In

12th International Conference on Parallel Architectures and Compilation Techniques

(PACT’03), New Orleans, September/October 2003.

[43] Heiko Falk and Peter Marwedel. Source Code Optimization Techniques for Data Flow

Dominated Embedded Software. Kluwer Academic Publishers, Dordrecht, The Nether-

lands, 2004.

[44] Victor De La Luz and Mahmut Kandemir. Array regrouping and its use in compiling

data-intensive embedded applications. IEEE Transactions on Computers, 53(1):1–19,

2004.

[45] Markus Schordan and Daniel J. Quinlan. A source-to-source architecture for user-

defined optimizations. In Joint Modular Languages Conference, 2003.

[46] Alexandre Borghi, Valentin David, and Akim Demaille. C-transformers - a framework

to write C program transformations. ACM Crossroads, 2004.

[47] Björn Franke, Michael O’Boyle, John Thomson, and Grigori Fursin. Probabilistic

source-level optimisation of embedded programs. In 2005 Conference on Languages,

Compilers and Tools for Embedded Systems (LCTES’05), 2005.

228

[48] Felix Agakov, Edwin Bonilla, John Cavazos, Björn Franke, Michael F.P. O’Boyle, John

Thomson, Marc Toussaint, and Christopher K.I. Williams. Using machine learning to

focus iterative optimization. In 4th Annual International Symposium on Code Genera-

tion and Optimization (CGO), 2006.

[49] Clifford E. Cummings. New verilog-2001 techniques for creating parameterized models

(or down with ‘define and death of a defparam!). In HDLCON 2002: Proceedings of the

2002 Conference on Hardware Description Languages.

[50] Ieee std 1666 - 2005 ieee standard systemc language reference manual. IEEE Std 1666-

2005, 2006.

[51] Stuart Sutherland. Integrating systemc models with verilog and systemverilog models

using the systemverilog direct programming interface. In SNUG Europe 2004: Proceed-

ings of the 2004 Synopsys Users Group., 2004.

[52] Sami Boukhechem and El-Bay Bourennane. Tlm platform based on systemc for starsoc

design space exploration. Adaptive Hardware and Systems, NASA/ESA Conference on,

0:354–361, 2008.

[53] J. Groschdl. Instruction set extension for long integer modulo arithmetic on risc-based

smart cards. Computer Architecture and High Performance Computing, Symposium on,

0:0013, 2002.

[54] K. Koutsomyti, V.A. Chouliaras, S.R. Parr, J.L. Nunez-Yanez, and S. Datta. Accelerating

speech coding standards through systemc- synthesized simd and scalar accelerators. In

Consumer Electronics, 2006. ICCE ’06. 2006 Digest of Technical Papers. International

Conference on, pages 279–280, Jan. 2006.

[55] Jeffrey P. Hammes, Bruce A. Draper, and A.P. Willem Bhm. Sassy: A language and

optimizing compiler for image processing on reconfigurable computing systems. In in

International Conference on Vision Systems. 1999. Las Palmas de Gran Canaria, pages

522–537. Springer, 1999.

[56] W. Bohm Y, J. Hammes, B. Draper, M. Chawathe, C. Ross, and W. Najjar. Mapping a

single assignment programming language to reconfigurable systems, 2002.

[57] Agility Design Solutions Inc. Handel-C Language Reference Manual.

[58] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677,

1978.

[59] Ian Page. Hardware-software co-synthesis research at oxford, 1996.

229

[60] Jeremy Hinton and Alan Pinder. Transputer hardware and system design. Prentice-Hall,

Inc., 1993.

[61] Zhi Guo, Betul Buyukkurt, Walid Najjar, and Kees Vissers. Optimized generation of

data-path from c codes for fpgas. In DATE ’05: Proceedings of the conference on

Design, Automation and Test in Europe, pages 112–117, 2005.

[62] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Amarasinghe,

Jennifer M. Anderson, Steve W. K. Tjiang, Shih-Weui Liao, Chau-Wen Tseng, Mary W.

Hall, Monica S. Lam, and John L. Hennessy. Suif: An infrastructure for research on

parallelizing and optimizing compilers. SIGPLAN Notices, 29(12), 1994.

[63] Benjamin Arai and Conley Read. Dwt design exploration via roccc. Technical Report,

2005.

[64] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Spark: a high-level synthesis framework

for applying parallelizing compiler transformations. In VLSI Design, 2003. Proceedings.

16th International Conference on, pages 461–466, January 2003.

[65] Y. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev, Yi Lu, and S. Vassiliadis. Dwarv:

Delftworkbench automated reconfigurable vhdl generator. In Field Programmable Logic

and Applications, 2007. FPL 2007. International Conference on, pages 697–701, Au-

gust 2007.

[66] Monika Lam et al. An overview of the suif2 compiler infrastructure –

http://suif.stanford.edu/suif/suif2. Computer Systems Laboratory, Stanford University,

2000.

[67] Arcilio J. Virginia, Yana D. Yankova, and Koen L.M. Bertels. An empirical comparison

of ansi-c to vhdl compilers: Spark, roccc and dwarv.

[68] Vojin Zivojnovic, Stefan Pees, and Heinrich Meyr. Lisa - machine description language

and generic machine model for hw/sw co-design. In in Proceedings of the IEEE Work-

shop on VLSI Signal Processing, pages 127–136, 1996.

[69] CoWare Website - http://www.coware.com.

[70] JJ. Ceng, W. Sheng, M. Hohenauer, R. Leupers, G. Ascheid, H. Meyr, and G. Braun.

Modeling instruction semantics in adl processor descriptions for c compiler retargeting.

In SAMOS, pages 463–473, 2004.

[71] A. Chattopadhyay, W. Ahmed, K. Karuri, D. Kammler, R. Leupers, G. Ascheid, and

H. Meyr. Design space exploration of partially re-configurable embedded processors.

230

In DATE ’07: Proceedings of the conference on Design, automation and test in Europe,

pages 319–324, 2007.

[72] O. Schliebusch, A. Chattopadhyay, M. Steinert, G. Braun, A. Nohl, R. Leupers, G. As-

cheid, and H. Meyr. Rtl processor synthesis for architecture exploration and imple-

mentation. In Proceedings of the Conference on Design, Automation & Test in Europe

(DATE) - Designers Forum, 2004.

[73] H. Scharwaechter, D. Kammler, A. Wieferink, M. Hohenauer, J. Zeng, K. Karuri, R. Le-

upers, G. Ascheid, and H. Meyr. Asip architecture exploration for efficient ipsec en-

cryption: A case study. In Proceedings of the 8th International Workshop on Software

& Compilers for Embedded Systems (SCOPES), 2004.

[74] Andreas Hoffmann, Heinrich Meyr, and Rainer Leupers. Architecture Exploration for

Embedded Processors with Lisa. Kluwer Academic Publishers, Norwell, MA, USA,

2002.

[75] O. Schliebusch, A. Chattopadhyay, E.M. Witte, D. Kammler, G. Ascheid, R. Leupers,

and H. Meyr. Optimization techniques for adl-driven rtl processor synthesis. In IEEE

Workshop on Rapid System Prototyping (RSP), 2005.

[76] The Modern Embedded Systems: Compilers, Architectures, and Languages Project -

http://www.gigascale.org/mescal.

[77] Matthias Gries and Kurt Keutzer. Building ASIPs: The Mescal Methodology. Springer

Publishers, 2005.

[78] Yujia Jin, Nadathur Rajagopalan Satish, Kaushik Ravindran, and Kurt Keutzer. An au-

tomated exploration framework for fpga-based soft multiprocessor systems. In Proceed-

ings of the 2005 International Conference on Hardware/Software Codesign and System

Synthesis (CODES-05), pages pp 273–278, September 2005.

[79] Shan Shan Huang, Amir Hormati, David F. Bacon, and Rodric Rabbah. Liquid metal:

Object-oriented programming across the hardware/software boundary. In ECOOP ’08:

Proceedings of the 22nd European conference on Object-Oriented Programming, pages

76–103, 2008.

[80] David F. Bacon. Kava: a java dialect with a uniform object model for lightweight classes.

In JGI ’01: Proceedings of the 2001 joint ACM-ISCOPE conference on Java Grande,

pages 68–77, 2001.

[81] Trimaran: An Infrastructure For Research In Instruction-Level Parallelism -

http://www.trimaran.org.

231

[82] Bhuvan Middha, Anup Gangwar, Anshul Kumar, M. Balakrishnan, and Paolo Ienne.

A trimaran based framework for exploring the design space of vliw asips with coarse

grain functional units. In ISSS ’02: Proceedings of the 15th international symposium on

System Synthesis, pages 2–7, New York, NY, USA, 2002. ACM Press.

[83] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski. Stream-oriented fpga comput-

ing in the streams-c high level language. In Field-Programmable Custom Computing

Machines, 2000 IEEE Symposium on, pages 49–56, 2000.

[84] Amir Hormati, Manjunath Kudlur, Scott Mahlke, David Bacon, and Rodric Rabbah.

Optimus: efficient realization of streaming applications on fpgas. In CASES ’08: Pro-

ceedings of the 2008 international conference on Compilers, architectures and synthesis

for embedded systems, pages 41–50, 2008.

[85] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. Streamit: A language

for streaming applications. In CC ’02: Proceedings of the 11th International Conference

on Compiler Construction, pages 179–196, London, UK, 2002. Springer-Verlag.

[86] Peter Grun, Ashok Halambi, Asheesh Khare, Vijay Ganesh, Nikil Dutt, and Alexandru

Nicolau. Expression: An adl for system level design exploration. Technical report, 1998.

[87] Joseph A. Fisher, Paolo Faraboschi, and Giuseppe Desoli. Custom-fit processors: let-

ting applications define architectures. In MICRO 29: Proceedings of the 29th annual

ACM/IEEE international symposium on Microarchitecture, pages 324–335, 1996.

[88] C. Alippi, W. Fornaciari, L. Pozzi, and M. Sami. A dag based design approach for

reconfigurable vliw processor, 1999.

[89] Laura Pozzi, Miljan Vuletic, and Paolo Ienne. Automatic topology-based identification

of instruction-set extensions for embedded processors. In In Proceedings of the Design,

Automation and Test in Europe Conference and Exhibition, Paris, 2002.

[90] Carlo Galuzzi, Koen Bertels, and Stamatis Vassiliadis. A linear complexity algorithm for

the generation of multiple input single output instructions of variable size. In SAMOS,

pages 283–293, 2007.

[91] Carlo Galuzzi, Dimitris Theodoropoulos, Roel Meeuws, and Koen Bertels. Automatic

instruction-set extensions with the linear complexity spiral search. Reconfigurable Com-

puting and FPGAs, International Conference on, 0:31–36, 2008.

[92] C. Galuzzi, K. Bertels, and S. Vassiliadis. The spiral search: A linear complexity

algorithm for the generation of convex mimo instruction-set extensions. In Field-

Programmable Technology, 2007. ICFPT 2007. International Conference on, Dec. 2007.

232

[93] R.V.Bennett. Automated asip extension generation through compiler-in-loop architec-

ture exploration, 2006.

[94] Brendan McKay. Practical graph isomorphism. In Congressus Numerantium, vol-

ume 30, pages 45–87, 1981.

[95] Paolo Bonzini and Laura Pozzi. Polynomial-time subgraph enumeration for automated

instruction set extension. In DATE ’07: Design Automation and Test in Europe, 2007.

[96] Tensilica Inc. XTensa Customisable Processors Overview -

http://www.tensilica.com/products/xtensa-customizable.htm, November 2009.

[97] David Goodwin and Darin Petkov. Automatic generation of application specific proces-

sors. In CASES ’03: Proceedings of the 2003 international conference on Compilers,

architecture and synthesis for embedded systems, pages 137–147, 2003.

[98] Paolo Ienne, Laura Pozzi, and Miljan Vuletic. On the limits of automatic processor spe-

cialisation by mapping dataflow sections on ad-hoc functional units. Technical Report

01/376, Swiss Federal Institute of Technology Lausanne (EPFL), 2001.

[99] Jong eun Lee, Kiyoung Choi, and Nikil D.Dutt. Automatic instruction set design through

efficient instruction encoding for application-specific processors. Technical Report 02–

23, CECS, University of California, Irvine, 2003.

[100] Diviya Jain, Anshul Kumar, Laura Pozzi, and Paolo Ienne. Automatically customising

vliw architectures with coarse grained application-specific functional units. In In Pro-

ceedings of the 8th International Workshop on Software and Compilers for Embedded

Systems, Amsterdam, 2004.

[101] Michael Gschwind. Instruction set selection for asip design. In CODES ’99: Proceed-

ings of the seventh international workshop on Hardware/software codesign, pages 7–11,

New York, NY, USA, 1999. ACM Press.

[102] Nathan T. Clark and Hongtao Zhong. Automated custom instruction generation for

domain-specific processor acceleration. IEEE Trans. Comput., 54(10):1258–1270, 2005.

Member-Scott A. Mahlke.

[103] Nathan Clark, Hongtao Zhong, and Scott Mahlke. Processor acceleration through au-

tomated instruction set customization. In MICRO 36: Proceedings of the 36th annual

IEEE/ACM International Symposium on Microarchitecture, page 129, 2003.

[104] Samik Das, P. P. Chakrabarti, and Pallab Dasgupta. Instruction-set-extension exploration

using decomposable heuristic search. In VLSID ’06: Proceedings of the 19th Interna-

tional Conference on VLSI Design held jointly with 5th International Conference on

Embedded Systems Design, pages 293–298, 2006.

233

[105] Uwe Kastens, Dinh Khoi Le, Adrian Slowik, and Michael Thies. Feedback driven

instruction-set extension. SIGPLAN Not., 39(7):126–135, 2004.

[106] Carlos Galuzzi and Koen Bertels. The instruction set extension problem: A survey. In

International Workshop on Applied Reconfigurable Computing (ARC).

[107] Xilinx Website - http://www.xilinx.com.

[108] Vaughn Betz and Jonathan Rose. Using architectural ”families” to increase fpga speed

and density. Field-Programmable Gate Arrays, International ACM Symposium on,

0:10–16, 1995.

[109] Jianshe He and Jonathan Rose. Advantages of heterogeneous logic block architectures

for fpgas. In Custom Integrated Circuits Conference, pages 7–4, 1993.

[110] Partha Biswas, Sudarshan Banerjee, Nikil Dutt, Paolo Ienne, and Laura Pozzi. Per-

formance and energy benefits of instruction set extensions in an fpga soft core. In In

Proceedings of the 19th International Conference on VLSI Design, Hyderabad, India,

pages 651–656, 2006.

[111] Georgi Kuzmanov, Georgi Gaydadjiev, and Stamatis Vassiliadis. The molen processor

prototype. Field-Programmable Custom Computing Machines, Annual IEEE Sympo-

sium on, 0:296–299, 2004.

[112] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and E.M. Panainte.

The molen polymorphic processor. Computers, IEEE Transactions on, 53(11):1363–

1375, Nov. 2004.

[113] T.J. Callahan, J.R. Hauser, and J. Wawrzynek. The garp architecture and c compiler.

Computer, 33(4):62–69, Apr 2000.

[114] M.B. Gokhale and J.M. Stone. Napa c: compiling for a hybrid risc/fpga architecture.

In FPGAs for Custom Computing Machines, 1998. Proceedings. IEEE Symposium on,

pages 126–135, Apr 1998.

[115] S.C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R.R. Taylor, and R. Laufer.

Piperench: a coprocessor for streaming multimedia acceleration. In Computer Architec-

ture, 1999. Proceedings of the 26th International Symposium on, pages 28–39, 1999.

[116] Robert G. Dimond, Oskar Mencer, and Wayne Luk. Custard - a customisable threaded

fpga soft processor and tools. In Proceedings of the 2005 International Conference on

Field Programmable Logic and Applications (FPL), Tampere, Finland, August 24-26,

2005, pages 1–6, 2005.

234

[117] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy Lauwere-

ins. ADRES: An architecture with tightly coupled VLIW processor and coarse-grained

reconfigurable matrix. Field-Programmable Logic and Applications LNCS 2778, pages

61–70, 2003.

[118] H. Singh, Ming-Hau Lee, Guangming Lu, F.J. Kurdahi, N. Bagherzadeh, and E.M.C.

Filho. Morphosys: a reconfigurable architecture for multimedia applications. In Inte-

grated Circuit Design, 1998. Proceedings. XI Brazilian Symposium on, pages 134–139,

1998.

[119] Gerard J. M. Smit, Pascal T. Wolkotte Andre B. J. Kokkele and, Philip K. F. Holzenspies,

Marcel D. van de Burgwal, , and Paul M. Heysters. The Chameleon architecture for

streaming DSP applications. EURASIP Journal on Embedded Systems, 2007.

[120] Frederick C. Furtek, Eugene Hogenauer, and James Scheuermann. Interconnecting het-

erogeneous nodes in an adaptive computing machine. In FPL, pages 125–134, 2004.

[121] Paul Master. A quick look into quicksilver’s acm architecture –

http://www.qstech.com/pdfs/a look into quicksilver.pdf. EETimes, 2002.

[122] Tensilica Inc. XTensa LX3 Product Brief - http://www.tensilica.com/products/xtensa-

customizable/xtensa-lx.htm, November 2009.

[123] Tensilica Inc. XTensa 8 Processor for SoC Design -

http://www.tensilica.com/products/xtensa-customizable/xtensa.htm, November 2009.

[124] Michael Wehner, Leonid Oliker, and John Shalf. Towards ultra-high resolution models

of climate and weather. International Journal of High Performance Computing Appli-

cations, 22(2):149–165, 2008.

[125] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M. Weinhardt. Pact

xpp—a self-reconfigurable data processing architecture. Journal of Supercomputing,

26(2):167–184, 2003.

[126] Jurgen Becker and Alexander Thomas. Scalable processor instruction set extension.

IEEE Des. Test, 22(2):136–148, 2005.

[127] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Ghodrat, Ben

Greenwald, Henry Hoffman, Paul Johnson, Jae-Wook Lee, Walter Lee, Albert Ma,

Arvind Saraf, Mark Seneski, Nathan Shnidman, Volker Strumpen, Matt Frank, Saman

Amarasinghe, and Anant Agarwal. The raw microprocessor: A computational fabric for

software circuits and general-purpose programs. IEEE Micro, 22:25–35, March 2002.

235

[128] Reiner W. Hartenstein, Michael Herz, Thomas Hoffmann, and Ulrich Nageldinger. Map-

ping applications onto reconfigurable kress arrays. In FPL ’99: Proceedings of the 9th

International Workshop on Field-Programmable Logic and Applications, pages 385–

390, London, UK, 1999. Springer-Verlag.

[129] Nagaraju Pothineni, Anshul Kumar, and Kolin Paul. Application specific datapath ex-

tension with distributed i/o functional units. In VLSID ’07: Proceedings of the 20th In-

ternational Conference on VLSI Design held jointly with 6th International Conference,

pages 551–558, Washington, DC, USA, 2007. IEEE Computer Society.

[130] A. Chattopadhyay, D. Kammler, E.M. Witte, O. Schliebusch, H. Ishebabi, G. Geukes,

R. Leupers, G. Ascheid, and H. Meyr. Automatic low power optimizations during adl-

driven asip design. In IEEE International Symposium on VLSI Design, Automation and

Test (VLSI-DAT), 2006.

[131] Ramkumar Jayaseelan, Haibin Liu, and Tulika Mitra. Exploiting forwarding to improve

data bandwidth of instruction-set extensions. In DAC ’06: Proceedings of the 43rd

annual Design Automation Conference, pages 43–48, 2006.

[132] Partha Biswas, Sudarshan Banerjee, Nikil Dutt, Paolo Ienne, and Laura Pozzi. Perfor-

mance and energy benefits of instruction set extensions in an fpga soft core. In VLSID

’06: Proceedings of the 19th International Conference on VLSI Design held jointly with

5th International Conference on Embedded Systems Design, pages 651–656, 2006.

[133] Paolo Bonzini, Dilek Harmanci, and Laura Pozzi. A study of energy saving in customiz-

able processors. In SAMOS, pages 304–312, 2007.

[134] Yunsi Fei, Srivaths Ravi, Anand Raghunathan, and Niraj K. Jha. Energy estimation for

extensible processors. In DATE ’03: Proceedings of the conference on Design, Automa-

tion and Test in Europe, page 10682, Washington, DC, USA, 2003. IEEE Computer

Society.

[135] Christian Laetsch. A multi-layer intermediate representation for ASIP design. Master’s

thesis, EPFL, Lausanne, Switzerland, September 2003.

[136] Corinna G. Lee. UTDSP Benchmarks - http://www.eecg.toronto.edu/ corinna/DSP/in-

frastructure/UTDSP.html, 1998.

[137] Guohua Jin, Xuejun Yang, and Fujie Chen. Loop staggering and compacting: Restruc-

turing techniques for thrashing problem. In ICPP (1), pages 678–679, 1991.

[138] Joao M.P. Cardoso. On combining temporal partitioning and sharing of functional

units in compilation for reconfigurable architectures. IEEE Transactions on Comput-

ers, 52(10):1362–1375, 2003.

236

[139] Christophe Bobda. Temporal partitioning and sequencing of dataflow graphs on re-

configurable systems. In DIPES ’02: Proceedings of the IFIP 17th World Computer

Congress - TC10 Stream on Distributed and Parallel Embedded Systems, pages 185–

194, 2002.

[140] Farhad Mehdipour, Hamid Noori, Morteza Saheb Zamani, Kazuaki Murakami, Koji

Inoue, and Mehdi Sedighi. Custom instruction generation using temporal partitioning

techniques for a reconfigurable functional unit. 2006.

[141] Hamid Noori, Farhad Mehdipour, Kazuaki Murakami, Koji Inoue, and Morteza Sa-

heb Zamani. An architecture framework for an adaptive extensible processor. J. Su-

percomput., 45(3):313–340, 2008.

[142] J. E. Thornton. Parallel operation in the control data 6600. volume 26, 1964.

[143] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. IBM

Journal of Research and Development, 11:25–33, 1967.

[144] Marcela Zuluaga, Theo Kluter, Philip Brisk, Nigel Topham, and Paolo Ienne. Introduc-

ing control-flow inclusion to support pipelining in custom instruction set extensions.

[145] K. Atasu, R.G. Dimond, O. Mencer, and W. Luk. Optimizing instruction-set extensible

processors under data bandwidth constraints. In Design, Automation and Test in Europe:

DATE07, pages 1–6, 2007.

[146] SNU-RT Real-Time Benchmarks - http://archi.snu.ac.kr/realtime/benchmark/.

[147] Ieee standard for floating-point arithmetic. IEEE Std 754-2008, 2008.

[148] Analog Devices Inc. Tigersharc embedded processor adsp-ts101s –

http://www.analog.com/static/imported-files/data sheets/adsp-ts101s.pdf. 2010.

[149] V. Zivojnovic, H. Schraut, M. Willems, and R. Schoenen. Dsps, gpps, and multime-

dia applications - an evaluation using dspstone. In In Proceedings of the International

Conference on Signal Processing Applications and Technology, 1995.

237

	Introduction
	Instruction Set Extension
	The Problem
	Engineering Time
	Acceleration
	Area
	Energy

	Contributions
	Document Structure
	Summary

	Background
	Embedded Processors
	Extensible Processors
	Reconfigurable Processors

	Design Space Exploration
	Instruction Set Extension
	Abstract Problem Definition
	The Software Emulation Fallacy
	Separation of Concerns
	Amdahl Limit
	Micro-architecture
	ISE Example

	Automated Synthesis
	Automated Instruction Set Extension
	ISEGEN Algorithm
	HDL Synthesis and Analysis

	Resource Sharing
	Compiler Transformations
	Summary

	Related Work
	ASIP Design Space Exploration and Co-Design Frameworks and Languages
	Verilog
	VHDL
	SystemC
	SA-C
	Handel-C
	ROCCC
	SPARK
	DWARV
	LISA
	MESCAL
	Lime & Liquid Metal
	Trimaran
	Other Languages and Frameworks

	Automated Instruction Set Extension
	Linear-Complexity MISO Identification
	Linear-Complexity MIMO Identification
	Integer-Linear Programming Methodology
	Fast Clustering AISE Algorithm
	Polynomial-Complexity Identification and Selection
	Tensilica XPRES
	Other Algorithms

	Microarchitectural Solutions
	Field Programmable Gate Arrays
	MOLEN
	Custard
	ADRES
	Annabelle and Montium: Chameleon
	QuickSilver Adaptive Computing Machine
	XTENSA
	Stretch
	Other Microarchitectures

	This Work In Context
	The Need For Predictable Microarchitecture Cost and Benefit
	Reducing Engineering Time
	Reducing Area
	Improving Acceleration
	Reducing Energy Requirements
	Software and Hardware: Chicken and Egg

	Summary

	The Real World: Enabling and Optimising Hardware Synthesis
	Introduction
	Configurable Flow Accelerators
	Introducing the CFA
	CFA Design Space Exploration Methodology
	Analysis of the Efficacy of CFA
	Conclusions

	CFA Staggering Methodology
	Trading off Space for Time
	Comparison to Other Techniques
	Determining the Efficacy of Staggering
	Evaluation of Staggering Efficacy
	Conclusions

	Summary

	Bridging the Gap: Improving ISE Identification
	Introduction
	ISEGEN Heuristic Weighting Analysis
	The ISEGEN Heuristic Weighting Vector
	Weighting Vector Space Exploration Methodology
	Evaluation: Analysis of Parameter Space
	Conclusions

	Search Early Termination
	Faster ISE Analysis Through Shortcuts
	Validation and Evaluation of Early Termination Approach
	Evaluation of Validatory Results
	Conclusions

	Pipeline Aware Identification
	When Serial is also Parallel
	Pipeline Model and Scheduling Heuristic
	Determining the Efficacy of the Pipelining Heuristic
	Pipeline Heuristic Results and Evaluation
	Conclusions

	Energy Aware Identification
	Better Value ISE: Making ISEGEN Optimise for Energy
	Determining the Efficacy of the CFA Energy Optimisation Heuristic
	Energy Heuristic Results and Evaluation
	Conclusions

	Summary

	Form Over Function: Source Transformation
	Introduction
	Transform Space Exploration
	The Need for Source-to-Source Transformations in ISE
	Transform Space Exploration Methodology
	Evaluation
	Conclusions

	Floating versus Fixed Point
	Introduction
	Methodology
	Evaluation
	Conclusions

	Summary

	Conclusions
	Contributions
	EnCore and CFA integrated: Castle
	Further Work

	Bibliography

