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Lay Summary

This thesis describes the author’s contributions to the study of the Higgs boson

particle at the ATLAS experiment at the Large Hadron Collider (LHC) at

CERN. The author also presents a new analysis technique to identify energetic W

bosons which could signify the presence of new, as yet undiscovered, fundamental

particles being produced in LHC collisions.

The Large Hadron Collider (LHC) is a particle accelerator at CERN in Geneva.

It is the most powerful accelerator on earth, with a circumference of 27 km,

located between 50 and 175 metres underground. Protons are accelerated in

opposite directions through the LHC beam pipe and collide at four points around

the accelerator. When the protons collide they release large amounts of energy

which is converted into heavy particles following the famous equation E = mc2,

which, in turn, decay in a cascade of lighter, more-stable particles. Detectors

surround each collision point and make precise measurements of the final state

particles produced in the collisions. The detectors - in a sense - work like large,

3-dimensional, 100 megapixel digital cameras, taking up to 40 million images per

second. The ATLAS detector is the largest detector at the LHC; it is 46 metres

long, 25 metres in diameter and weighs 7000 tonnes.

The Standard Model (SM) of particle physics currently represents the best

understanding of the Universe on a subatomic scale. The SM provides a

description of all fundamental particles and their interactions to a very high

degree of accuracy. One of the biggest achievements at the LHC thus far has been

the discovery of the Higgs boson particle, which confirms the SM mechanism by

which fundamental particles acquire mass. The search for the Higgs boson started

over four decades ago; it is the last of the fundamental particles predicted by the

SM to be discovered. Its discovery was first announced in 2012 by the ATLAS

and CMS experiments at the LHC.

The Higgs boson is not stable; it decays into other lighter particles almost

immediately after it is produced in a collision. These lighter particles are generally

well understood and can be identified efficiently by the ATLAS detector. The

patterns, or signatures, left by multiple particles within the detector are used
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Lay Summary ii

to infer the presence of a Higgs boson in the collision. There are many sets of

particles that the Higgs boson can decay to. The SM predicts that 58% of the

time the Higgs boson will decay into a bottom quark - anti-bottom quark pair,

written as H → bb̄. However, there are many other processes that present a very

similar signature in the ATLAS detector, making it very difficult to observe the

signature of the H → bb̄ decay directly. However, it is predicted that a Higgs

boson can be produced together with another well particle, the W boson. The

signature of the decay of the W boson particle is well understood, and therefore

easy to identify in the ATLAS detector. This thesis details the search the decay

of the Higgs boson through H → bb̄ where it is produced together with a W

boson at the ATLAS experiment in LHC collisions in 2012. Unfortunately, no

observation of the Higgs boson decaying as H → bb̄ has been made yet.

The LHC was shut down for upgrade to be carried out in 2013 and 2014, and

restarted proton collisions in 2015, at a higher frequency and higher energies than

in previous years. Whilst this means it is possible to produce heavier particles

than before, and potentially discover new particles that are not predicted by the

Standard Model, this does not come without challenges. When the higher energy

and higher momentum particles decay their decay products can end up very close

together in the ATLAS detector making it difficult to determine which decay

process occurred. In this thesis, two possible machine learning techniques are

investigated to improve the efficiency to identify energetic W bosons from their

decay products.



Abstract

The Standard Model of particle physics is currently the most complete theory of

subatomic particles. The discovery of the Higgs boson with a mass of 125 GeV

in 2012 further validated the Standard Model, providing evidence for the theory

that vector bosons obtain non-zero masses through the Higgs mechanism. Studies

are ongoing to determine the exact nature and properties of the Higgs boson. A

Higgs boson of this mass is predicted to decay to a pair of bb̄ quarks with a

branching ratio of 58%, however this decay mode has not yet been observed.

This thesis presents a search for the associated production of a Higgs boson with

a leptonically decaying W boson, WH → `νbb̄, using 20.3 fb−1 of Run 1 data

collected by ATLAS at the LHC from pp collisions at a centre-of-mass energy

of
√
s = 8 TeV. The observed (expected) significance of a Higgs boson with a

mass of 125 GeV for the WH → `νbb̄ process is found to be 2.7σ (1.3σ). The

measured cross section in units of the expected Standard Model cross section has

a best-fit value of µ = σ/σSM = 2.2+0.67
−0.64(stat.)+0.7

−0.59(syst.) = 2.2+0.97
−0.87. The results

are combined with the search for ZH → νν̄bb̄ and ZH → `+`−bb̄ to provide a

best-fit value of µ = σ/σSM = 1.1+0.61
−0.56.

The start of Run 2 of the LHC in 2015 saw the collision energy being raised

to
√
s = 13 TeV, increasing the probability of particles being produced with

a large momentum boost. At these high energies there is also a possibility to

discover new particles and interactions. An extension of the Standard Model, the

Heavy Vector Triplet (HVT) model, describes new heavy vector bosons W ′ and

Z ′, which can decay to pairs of heavy bosons (W , Z or Higgs bosons). If the

W ′ and Z ′ bosons are sufficiently heavy, the hadronic decays of the diboson final

states produce boosted jets. In this thesis, methods for identifying hadronically

decaying boosted bosons are developed, based on techniques that examine the

internal substructure of the jet.

Multiple substructure variables are combined into a single discriminant using two

machine learning techniques: boosted decision trees and deep neural networks.

Simulated events of W ′ → WZ → qq̄qq̄ are used to develop these boosted W boson

taggers. An improvement in the background rejection power, whilst keeping 50%
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of the signal, over previous boosted W boson taggers of up to 13%–when using

deep neural networks–and 36%–when using boosted decision trees–is obtained.

The performance of the new boosted W boson taggers are evaluated in a search

for a narrow WW resonances from the decay of a Z ′ with boson-tagged jets in

3.2 fb−1 of pp collisions at
√
s = 13 TeV collected with the ATLAS detector.
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Chapter 1

Introduction

The story so far: Tim decided to do a PhD. This has made a lot of people
very angry and been widely regarded as a bad move. Image used with permission
from [3], caption adapted from [4].
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Introduction 2

The how and why of the Universe has been a matter of philosophical debate

for many centuries. Many people have devoted their lives to discovering the

underlying physical laws that govern the Universe. This has proceeded through

a combination of theoretical models and experimental observations. One key

breakthrough has been atomic theory—the idea that all matter can be broken

up into constituent atoms1. As it is now widely understood, atoms can be

broken up into fundamental subatomic particles. Understanding the properties

and interactions of these fundamental particles is an important step towards an

explanation of how the Universe works.

The Standard Model of particle physics is currently the most complete theory

describing the interactions and behaviour of the fundamental elementary par-

ticles [6–8]. All the known fundamental particles and three of the four known

fundamental forces are included in the Standard Model, however, gravitational

interactions between fundamental particles are currently not included. Over

many decades, the predictions of the Standard Model have shown exceptional

agreement with experimental observations. In studying high energy proton-

proton collisions at the Large Hadron Collider [9] (LHC), with experiments such as

the ATLAS experiment [10], the Standard Model can be tested to new extremes.

Further validation of the Standard Model with experimental evidence is of crucial

importance in order to ensure that the theory is correct. There is also the

possibility for New Physics to be seen which is not included in the Standard

Model. Simulations of proton-proton collisions are performed according to the

Standard Model expectation, which are compared with data collected by the

detector. Many measurements must be taken to ensure that any observations are

not statistical fluctuations.

One of the challenges in the formulation of the Standard Model was the

explanation of non-zero masses of the fundamental particles, which are forbidden

by certain underlying symmetries of the theory. By incorporating interactions

with the Higgs field, these symmetries are spontaneously broken and the

fundamental particles gain mass [11–14]. Excitations of the Higgs field correspond

to Higgs bosons. The discovery of the Higgs boson was one of the primary goals

1As Richard Feynman once said [5], “If, in some cataclysm, all of scientific knowledge were
to be destroyed, and only one sentence passed on to the next generation of creatures, what
statement would contain the most information in the fewest words? I believe it is the atomic
hypothesis (or the atomic fact, or whatever you wish to call it) that all things are made of
atoms — little particles that move around in perpetual motion, attracting each other when
they are a little distance apart, but repelling upon being squeezed into one another. In that
one sentence, you will see, there is an enormous amount of information about the world, if just
a little imagination and thinking are applied.”
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of the LHC physics program when it began in 2010. In 2012, the ATLAS and

CMS [15] experiments announced the discovery of a new particle in proton-proton

collisions at a centre-of-mass energy of
√
s = 7 and 8 TeV that was consistent with

a Standard Model Higgs boson, with a mass of approximately 125 GeV [16, 17].

Following the discovery of the Higgs boson, studies are required to establish that it

has the properties predicted by the Standard Model. The current measurements

of its spin, couplings, and mass all indicate that it is consistent with these

predictions [18]. However, it has not yet been observed to couple to bottom

quarks. Since a Higgs boson with the observed mass is expected to decay to a

bottom quark-antiquark pair (H → bb̄) almost 58% of the time, this is a vital

measurement to be performed.

At the LHC, there are large backgrounds to the H → bb̄ process. These

backgrounds can be reduced by considering the case where the Higgs boson is

produced in association with a W or Z boson that decays leptonically. This

thesis presents a search for WH → `νbb̄ using 20 fb−1 of data at a centre-of-

mass energy of
√
s = 8 TeV collected by the ATLAS detector during the first

experimental run of the LHC between 2010 and 2013, also known as Run 1 of the

LHC. A combination of this process with ZH → νν̄bb̄ and ZH → `+`−bb̄ is also

presented.

In attempting to observe processes such as H → bb̄, the identification of hadronic

decays is critical. Hadronic decays are observed in the detector as narrow cones of

energy deposits, which are clustered together to form jets, roughly corresponding

to the decay products of a single particle. In the WH → `νbb̄ search, it was

observed that there was greater sensitivity in the regions where the W boson had

a higher transverse momentum (pT). During Run 2 of the LHC, which began in

2015, the higher collision energies of up to
√
s = 14 TeV increases the likelihood

of such high pT particles being produced. New challenges are encountered in

identifying these hadronic final states in this boosted regime. If a heavy particle

decays into multiple jets, these jets can become collimated to the point that they

are clustered together and classified as a single jet. Examining the substructure of

the jet can help to identify so-called subjets, where each of the subjets corresponds

to one hadronic decay.

The need for improved jet substructure techniques is motivated by the potential

for new heavy particles to be produced during the second run, Run 2, of the LHC.

For example, Heavy Vector Triplet (HVT) models [19, 20] extend the Standard

Model and predict the existence of heavy vector bosons W ′ and Z ′, which are
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degenerate in mass. If such particles exist, it is possible that they would decay

into a diboson final state of W , Z or Higgs bosons. In this thesis, the author

presents a method of improving identification of boosted bosons by implementing

machine learning techniques in the form of boosted decision trees and deep neural

networks. These studies are performed in the context of W bosons, considering

simulations of the HVT process V ′ → V V → JJ , where V ′ is a W ′ or Z ′, V is a

W , Z or Higgs boson, and J is a boosted jet corresponding to each of the W/Z

bosons. The performance of these W boson taggers is demonstrated using Run 2

data at
√
s = 13 TeV, corresponding to an integrated luminosity of 3.2 fb−1.

Whilst these studies are performed in the context of boosted W bosons, these

techniques could be applied to other particles, such as the Higgs boson. This

would have direct relevance for H → bb̄ searches.

The work contained in this thesis is a combination of the author’s personal

work and his contributions within the ATLAS Collaboration. In particular,

the WH → `νbb̄ search presented here was done in collaboration with other

members of the ATLAS ‘Higgs Sub-Group 5’ (HSG5) research group. The work

on the boosted boson tagging was performed in part with the Boosted Boson

Tagging research group. In the following outline of the thesis, the author’s

personal contributions are highlighted. In general, plots presented which contain

an ‘ATLAS’ label are public results, and plots without such a label are plots

produced by the author himself. The work presented in this thesis has been

included in two publications from the ATLAS experiment: References [1] and [2],

as detailed in Chapters 5 and 7, respectively.

Natural units are used throughout this thesis, such that c = ~ = 1, and charges

are given in units of the magnitude of the electric charge. The thesis is structured

as follows:

Chapter 2 presents the Standard Model of particle physics and the theoretical

motivation for the Higgs boson. The predicted properties and phenomenology of

the Higgs boson are presented, followed by a review of the discovery of the Higgs

boson and its current status. Properties of the W boson are discussed and the

Heavy Vector Triplet model is introduced.

Chapter 3 introduces the LHC and the ATLAS detector. The separate

components of the ATLAS detector and their role in particle identification are

described in detail. A version of the High Level Trigger (HLT) that runs on

graphical processing units (GPUs), to which the author contributed, is included
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in Appendix A.

Chapter 4 describes Monte Carlo event simulation, and the reconstruction and

identification of physics objects that are used for the analyses in Chapters 5 and 7.

Particular attention is paid to the reconstruction of jets.

Chapter 5 details the search for WH → `νbb̄ production at the ATLAS

experiment using data from proton proton collisions at a centre-of-mass energy
√
s = 8 TeV during Run 1. The results for the ZH → `+`−bb̄ and ZH → ννbb̄

analyses are also presented, and these are combined with the WH result. This

work was performed in collaboration with the HSG5 research group. In particular,

the author worked on multi-jet background estimation and truth tagging of b-jets

for the WH search, and on the development and maintenance of the analysis

framework used to produce a common set of data containers (ntuples) used by

multiple researchers within the HSG5 group.

Chapter 6 covers in detail machine learning and data analysis techniques

implemented in Chapter 7. Two classifiers are introduced: deep neural networks

based on stacked autoencoders [21–23], and boosted decision trees [24, 25]. Data

preparation methods, and methods to tune the hyperparameters of the classifiers

to prevent overfitting are also discussed.

Chapter 7 describes techniques used by ATLAS for identifying boosted W bosons.

The author worked within the Boosted Boson Tagging research group to find

an optimal combination of jet grooming algorithm and jet substructure variable

to use for boosted W boson identification in Run 2. Studies are performed

using
√
s = 8 TeV simulations, with cross checks performed by the author on

√
s = 13 TeV simulations. The author was the sole developer of two machine

learning classifiers presented here that are trained to identify boosted W bosons

at
√
s = 13 TeV. Training, testing and evaluation of these classifiers is described

in detail, using simulations of HVTW ′ and Z ′ diboson decays. Data-to-simulation

comparisons of the W boson tagger in a QCD background enriched region are

performed using selection criteria that are used in the search for Z ′ bosons

decaying to dibosons in ATLAS Run 2 data.

A summary and conclusion of all the results presented in this thesis is given in

Chapter 8.
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Chapter 2

Theoretical Motivation

Cheshire Cat teaches Alice about quantum field theory [26, 27].

7
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2.1 Introduction

The Standard Model (SM) of particle physics [6–8] is a gauge quantum field theory

providing a unified description of all fundamental particles and their interactions

under the known forces, with the exception of gravity. Electromagnetism and

the weak interaction are described collectively by electroweak theory, and strong

interactions are described by quantum chromodynamics (QCD). Electroweak

theory and QCD are combined to form the Standard Model, which models all

particle interactions. Over many decades, the SM has been tested experimentally

and has shown exceptional agreement with data. With the observation of the

Higgs boson at the LHC in 2012, all particles predicted by the Standard Model

have been discovered1.

Summaries of the Standard Model and electroweak symmetry breaking are given

here to motivate the study of the Higgs boson2. The expected properties of the

Higgs boson are discussed and the current status of the experimental results for

the Higgs boson is highlighted in Section 2.4. Some properties of the W boson

are discussed in Section 2.5. These descriptions provide important background to

the search for the decay of the Higgs boson to bb̄ with the associated production

of a W boson in Chapter 5. The Heavy Vector Triplet model describing the W ′

and Z ′ bosons is presented in Section 2.6, and Section 2.7 considers a search for

the Z ′ using boosted W boson identification.

2.2 Formalism of the Standard Model

A key aspect in the formulation of the SM is the interpretation of fundamental

particles and interactions, or forces, as excitations of quantum fields. The

forces are mediated by the exchange of force-carrying gauge bosons, as opposed

to the classical view, where the field mediates the forces. The dynamics and

interactions of the fundamental particles and fields of the SM are described in

terms of a Lagrangian3, L, describing the free and interaction terms separately.

Symmetries obeyed by a Lagrangian imply conservation laws with conserved

currents and quantum numbers, according to Noether’s first theorem [28, 29].

1Studies are ongoing to determine the exact nature of the Higgs boson and ensure it has the
properties as predicted by the Standard Model.

2Unless explicitly specified otherwise, the text refers to a Standard Model Higgs boson.
3The Standard Model Lagrangian is a sum of Lagrangians for each type of interaction.
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These symmetries are global or local transformations applied to the system, or

Lagrangian, that leave it invariant. Symmetry groups contain groups of such

transformations constructed from a set of group generators. In the SM, these

symmetries provide the fundamental interactions. In a gauge symmetry, which

describes local interactions between particles, local symmetry is a requirement.

In this case, the Lagrangian is said to be locally gauge invariant.

A consequence of requiring local gauge invariance is that for every generator

of the symmetry group there is a gauge field included in the Lagrangian that

interacts with the matter fields4. Depending on the symmetry group under

consideration, these represent the photon field, gluon fields or the weak isospin

and hypercharge fields, each of which have corresponding gauge bosons: the

photon, the gluons, and the W± and Z bosons, respectively. The photon and

gluons are both massless, but adding in mass terms to the Lagrangian for

the W± and Z bosons does not preserve gauge invariance; the masses can be

introduced through electroweak symmetry breaking, which is achieved via the

Higgs mechanism in the SM [11–14].

The Standard Model is a locally gauge invariant quantum field theory (QFT)

under the SU(3)C × SU(2)L × U(1)Y gauge symmetry, consistent with both

special relativity and quantum mechanics. SU(3)C is the colour symmetry group

of QCD, and SU(2)L × U(1)Y is the weak-isospin-hypercharge gauge group of

the electroweak interactions, such that electroweak interactions are invariant

under weak isospin SU(2)L and weak hypercharge U(1)Y transformations5. The

electroweak symmetry group is reduced to the U(1)EM symmetry group of

quantum electrodynamics (QED) under spontaneous symmetry breaking, induced

by the Higgs mechanism. In this formalism, the QCD and electroweak interactions

are described by two symmetry groups, each with independent couplings, rather

than a single unified symmetry group. The corresponding forces are described in

terms of fields, with excitations of the fields corresponding to virtual particles.

4In fact, a Lagrangian containing only the free fermion fields, requires the introduction of the
gauge fields and gauge bosons when enforcing local gauge invariance. It also gives an interaction
term between the fermion fields and gauge fields.

5Weak-isospin is defined according to T i = 1
2σ

i, where σi are the three Pauli matrices.
Hypercharge is defined as Y = 2(Q− T 3), where T 3 is the magnitude of the third weak isospin
component and Q is the electric charge.
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2.2.1 Feynman Diagrams and Perturbation Theory

The interactions between particles and fields in QFT can be represented by

Feynman diagrams. Each diagram represents a perturbative contribution to

the amplitude of the transition between two states. The diagrams themselves

consist of a number of lines representing particles, which are joined at vertices

representing interactions. Internal lines in the diagrams correspond to virtual

particles that are exchanged to mediate interactions. A set of Feynman rules are

associated with every particle and vertex within any Feynman diagram6, which

can be used to calculate the corresponding transition amplitude as a perturbation

series expansion. An example of a diagram for a leading order contribution

is shown in Figure 2.1(a). Higher order contributions, or perturbations, can

be included by considering diagrams that include additional interaction vertices

from virtual particles, such as in Figure 2.1(c)-(d). These enter the transition

amplitude as an integral over the four-momenta of all particles within the closed

loop. There are also higher order corrections from real emissions, where for

example, an electron radiates a photon, as shown in Figure 2.1(b). In general,

an infinite number of such additional diagrams exist, and in the path integral

formulation, all possible diagrams must be summed in the calculation of the

overall transition amplitude.

One of the difficulties in QFT is that the higher order calculations, represented by

the loop diagrams, can lead to divergences. All possible energy and momentum

combinations for the virtual particles must be considered, and these integrals

can become infinite. The procedure of renormalisation works by redefining the

charge (effectively the coupling constant) and mass terms in the Lagrangian to

account for loop effects. This results in energy-dependent renormalised values

of the charge and mass, which contain compensating divergences. The new

renormalised values should be used in place of the ‘bare’ charge and mass. This

allows perturbation theory to be used up until an unphysical renormalisation

scale, µR, which sets the cut-off above which loop contributions are included in the

renormalised quantities. Calculations of masses and coupling constants will have

a µR dependence, due to the subsequent perturbative corrections being truncated.

Renormalisation was first introduced in the late 1940s to remove divergences in

QED based on work by Feynman, Schwinger, Tomonaga and Dyson [33]. It was

then shown by ’t Hooft in 1971 that both the electroweak theory and QCD are

6The factors for the different vertices and particles that enter into the transition amplitude
can be found in any of the following References [30–32].
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also renormalisable [34, 35]. QCD exhibits asymptotic freedom of quarks and

gluons within hadrons, where the coupling constant decreases at high energies.

At low energies the coupling constant is large and perturbation theory breaks

down [32].
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Figure 2.1 The leading order Feynman diagram for the process e+e− → e+e− is
shown in (a), with a real emission correction in (b), and two possible
virtual corrections in (c) and (d).

In the following sections, the particle content of the Standard Model will be

introduced, followed by a description of quantum electrodynamics, quantum

chromodynamics, weak interactions, electroweak unification, and the Higgs

mechanism.

2.2.2 Particle Content of the Standard Model

Fundamental particles within the SM are divided into spin-1
2

fermions and

integer-spin bosons. The fermions provide the matter content of the model,
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and the bosons mediate the forces. Each particle possesses a number of charges

corresponding to the fundamental forces they experience: the electromagnetic

force acts on all particles with non-zero electric charge, the weak force acts on all

particles with non-zero weak isospin, and QCD acts on all particles with colour

charges.

The fermions, listed in Table 2.1, are divided into six flavours of leptons and

quarks, which are grouped into three generations of increasing mass. Within

each lepton generation, there is a charged lepton and a corresponding neutrino,

and within each quark generation there is an up-type and a down-type quark. In

addition, each fermion has a corresponding antiparticle that has opposite signs

for all additive quantum numbers. Quarks and charged leptons both interact

through the weak and the electromagnetic forces, whilst neutrinos only experience

the weak force. The fermions are described in terms of fields with left- and right-

handed chiral components (see Equations 2.5 and 2.6). Left-handed leptons from

each generation are grouped into doublets with a total weak isospin of T = 1
2

and a third component of weak isospin of T 3 = ±1
2
, consisting of a charged

lepton and associated neutrino, and right-handed singlets with zero total weak

isospin and T 3 = 0. Left-handed components of the up- and down-type quarks

from each generation are grouped into doublets with T = 1
2

and T 3 = ±1
2
, and

right-handed singlets with zero total weak isospin and T 3 = 0. Antiparticles

have opposite chirality of their corresponding particles and a change in sign of

T 3. The weak force acts on those particles and antiparticles with a non-zero T 3:

left-handed particles and right-handed antiparticles only, excluding right-handed

particles and left-handed antiparticles from weak interactions. Quarks possess

an additional colour charge of red, blue, green (and corresponding anti-colours)

and experience strong interactions. Quarks combine to form colourless hadrons,

which can be classified as either mesons or baryons; mesons contain a quark and

antiquark, and baryons contain three quarks. Quarks have not been observed to

exist as free particles.

The electromagnetic and weak interactions of the fermions are mediated by

the massless photon and the massive W± and Z bosons, respectively, and are

unified within electroweak theory (see Section 2.2.4). The scalar Higgs boson

is predicted by the Higgs mechanism, which gives masses to the fermions, and

the W± and Z bosons, and mediates interactions of particles with the Higgs

field. The W± and Z bosons interact with the fields of the leptons and quarks,

and additionally self-interact. The strong interactions of quarks are described
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by quantum chromodynamics (QCD), mediated via eight massless gluons, which

also self-interact. Of the gauge bosons, only the W± has non-zero electric charge,

and all but the Higgs boson (spin-0) have spin-1.

Fermions Generation Name Charge

1st
Electron (e−) −1

Electron neutrino (νe) 0

Leptons
2nd

Muon (µ−) −1

Muon neutrino (νµ) 0

3rd
Tau (τ−) −1

Tau neutrino (ντ ) 0

1st
Up (u) 2

3

Down (d) −1
3

Quarks
2nd

Charm (c) 2
3

Strange (s) −1
3

3rd
Top (t) 2

3

Bottom (b) −1
3

Gauge Bosons

Photon (γ)

Gluon (g)

Z Boson (Z0)

W Bosons (W±)

Higgs Boson (H)

Table 2.1 Fundamental particles and gauge bosons in the Standard Model.
Charge here refers to the electric charge.

2.2.3 Quantum Chromodynamics

QCD is a non-Abelian gauge theory based on a SU(3) symmetry group that

describes strong interactions, based on the assumption that quarks obey an exact

SU(3) colour symmetry. It is invariant under transformations of the form

q(x)→ q′(x) = eigsαa(x)λaq(x), (2.1)

where x = (~r, t), q(x) represents a quark field, gs is the coupling strength term,

λa (where a = 1, . . . , 8) represents the eight Gell-Mann matrices corresponding

to the non-Abelian generators of the SU(3) colour symmetry group, and αa(x)

are the group parameters that specify the eight generators of the group that

represent the gauge transformations. The λa generators are given by the relation

[λa, λb] = 2
∑

c f
abcλc, where fabc are the structure constants.

Enforcing the local gauge invariance of the QCD Lagrangian requires the

introduction of a massless vector field for each of the eight generators, which
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corresponds to eight massless gluons. These gluons possess colour charge and can

self-interact. The locally gauge invariant QCD Lagrangian is given by

LQCD = q̄j(iγ
µ∂µ −mqj)qj − gsq̄jγµλaGa

µqj −
1

4
Ga
µνG

µν
a , (2.2)

where µ and ν are Lorentz indices (with values of 0, 1, 2, 3)7, qj represents

the quark field (with the flavour of the quark j = 1, . . . , 6), mqj is the mass of

quark qj, and γµ are the Dirac matrices. The strength of the coupling constant

is a function of the four-momentum transfer in the interaction, q2 ≡ −Q2, and is

typically written in terms of the strong coupling constant, αS(Q2) = g2
s(Q

2)/4π.

Ga
µν represents the massless gluon fields, defined as

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gfabcGb
νG

c
ν , (2.3)

where fabc are the SU(3) structure constants, and the third term represents self-

interactions between gluons.

There are two properties of QCD which require further mention: asymptotic

freedom and confinement. As the energy scale of the interaction increases (i.e. an

increase ofQ2), the running coupling constant αS(Q2) decreases. At high energies,

or equivalently at short distances, αS(Q2)� 1, and quarks and gluons behave as

free particles. Importantly, perturbative calculations can be used in this regime

where the quarks interact weakly. Confinement is the hypothesis that quarks and

gluons do not exist as free particles outside of bound colourless states, which is

in agreement with experimental evidence.

There is currently no analytical proof of confinement, however, the observed

behaviour can be explained by considering the situation where a quark and

antiquark are separated. The force between them is mediated via the exchange of

virtual gluons, which are themselves colour charged. The attractive interactions

between the virtual gluons have the effect of forcing the colour field between the

quarks into a ‘tube’. The energy density within this tube is constant at large

distances, thus the total amount of energy in the colour field increases linearly

with separation. This translates to an infinite amount of energy needed to pull

a quark and antiquark apart. It will become more favourable, at some point, to

pull a quark-antiquark pair from the vacuum, creating two new hadrons. This

7Equations presented throughout the thesis use the Einstein summation convention. Indices
labelled with Greek letters imply a sum over values of 0, 1, 2, 3. Roman letters take the values
1, 2, 3, unless otherwise specified.
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process can further continue with these new hadrons, up until the quark and

antiquark have low enough energy to form a colourless hadron. This process is

known as hadronisation. In high energy collisions, such as at the LHC, if a hadron

is given sufficient energy the quarks produced in the hard scatter will move apart,

radiating gluons and qq̄ pairs, producing collimated showers of hadrons, which

are observable in the detector as jets. The jets are identified by clustering energy

deposits and particle tracks from showers in the detector, intending to capture the

decay products from the quarks produced in the hard scatter. This is discussed

in more detail in Section 4.7.

2.2.4 Electroweak Theory

Electroweak theory unifies electromagnetism and the weak force as described by

a SU(2)L × U(1)Y gauge symmetry: a unification of the SU(2) symmetry of

the weak interactions with the U(1) symmetry of QED. One of the challenges

encountered is creating a theory that can provide masses to the W± and Z

gauge bosons, whilst keeping the Lagrangian locally gauge invariant. There

are a number of other phenomena that have to be included in electroweak

theory: fermion flavour change, parity and CP violation. Some of the history

of electroweak unification is given below, leading to a solution that gives mass to

the vector gauge bosons – the Higgs mechanism.

Quantum Electrodynamics

Electromagnetism was the first of the forces to be described by a quantum

field theory: the theory of quantum electrodynamics (QED). QED is a gauge

theory that is invariant under transformations of a U(1) symmetry group,

where the electric charge is the group generator. The Lagrangian for QED

describes the dynamics of the fermions, photons and their interactions. The

Lagrangian for a free particle is given by L = ψ̄γµ∂µψ −mψ̄ψ, where the fermion

fields are described as complex Dirac spinors ψ(x), separated into left- and

right-handed chiral components. Under local U(1) transformations of the form

ψ(x)→ e−iχ(x)ψ(x), where χ(x) is any rotation in U(1) space, this is not invariant,

due to the derivative acting on χ(x), which is non-zero. The unwanted terms from

the gauge transformations of ψ(x) can be absorbed into local transformations

of a new field, Aµ, the electromagnetic field. The Lagrangian is made locally

gauge invariant by replacing the derivative, ∂µ, with a covariant derivative:
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Dµ = ∂µ + ieAµ, where the photon field transforms as Aµ → A′µ = Aµ − 1
e
∂µχ,

absorbing the additional χ(x) terms from the gauge transformation of ψ(x). In

enforcing local gauge invariance and introducing an additional gauge field, the

form of the interaction between the fermions and electromagnetic field is found,

giving the interacting Lagrangian. The photon field couples to the fermion fields

ψ with a coupling constant of α(Q2) = e2(Q2)
4π

, where e(Q2) is the electric charge of

ψ. α(Q2) increases slowly with an increase in Q2, leading to a running coupling

constant. The Lagrangian of QED is then given by

LQED = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν , (2.4)

where γµ represents the Dirac matrices, ψ̄ = ψγ0 is the adjoint spinor, m is the

mass of the electron, and Fµν = ∂µAν − ∂νAµ is the EM field tensor. Notably,

there is no mass term for the photon (i.e. no term of the form 1
2
m2
AAµA

µ) as

this would not be gauge invariant: 1
2
m2
AAµA

µ → 1
2
m2
A(Aµ − ∂µχ)(Aµ − ∂µχ) 6=

1
2
m2
AAµA

µ. This is precisely what the Higgs mechanism addresses for the

electroweak interactions.

Weak Theory

Fermi originally introduced the weak force in 1934 to explain β decay [32, 36, 37].

The weak force was described as a contact force with an interaction strength of

about GF = 1.2× 10−5 GeV−2. The theory was extended to explain observations

in 1957 that parity was not conserved in weak interactions [38, 39]. This was

incorporated by giving the weak force a vector−axial (V−A) structure: the

interaction vertices contain both vector and axial vector components8. This is

equivalent to different couplings for left- and right-handed chiral components.

Fermi’s theory is not valid at energies where Q2 ≈ m2
W , however. The short

range of the interaction indicates that the force should be mediated by a massive

particle. This can be formalised by assigning weak isospin values; left-handed

fermions are assigned a weak-isospin of magnitude T = 1
2

grouped into doublets

with a third component of T3 = ±1
2
, and the right-handed fermions are assigned

T = 0 and T3 = 0, excluding them from the weak interactions. The right-handed

anti-fermions are assigned T = 1
2

and T3 = ±1
2
. Left-handed anti-fermions are

8There are only five possible Lorentz invariant bilinear covariants that can be constructed
with Dirac γ matrices and spinors: scalar, pseudoscalar, vector, vector-axial and tensor. Vector
quantities change sign under parity, but axial vectors do not.
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assigned T = 0 and T3 = 0. In creating a QFT describing these interactions,

local gauge invariance requires three new gauge fields to be introduced: W k
ν

(k = 1, 2, 3), corresponding to three new gauge bosons W 1, W 2 and W 3. The

physical charged W± bosons are given by a linear combination of W 1
ν and W 2

ν .

A third neutral gauge boson, W 3, is predicted as well, which, from experimental

evidence from LEP and SLAC [40], is clearly not the Z boson, since it does not

couple to right-handed particles as the Z boson does. The Z boson is therefore

not accommodated in this field theory.

Since only left-handed particles and right-handed antiparticles participate in the

charged weak interactions, the chiral components are included separately in any

Lagrangian formalism. Within a generation, the lepton fields are described in left-

handed doublets and right-handed singlets, with the doublets containing particles

of different flavour:

ψlLk =

 ν`

`


L

, ψlRk = `Rk, (2.5)

where ` and ν` are the lepton flavours, k is the generation (k=1,2,3), and L and R

refer to the handedness. There is no observed or predicted right-handed neutrino

in the Standard Model.

For quarks, there are two singlets and a doublet for each generation – one for the

up-type and one for the down-type quarks:

qL =

 uk

d′k


L

, q
(u)
R = uRk, q

(d)
R = dRk, (2.6)

where k is the generation and u refers to u, c, t and d′ refers to {d′, s′, b′}, which

are the weak eigenstates of the down-type quark.

Electroweak Unification

In 1961, Glashow first proposed that the weak and electromagnetic forces

could be unified in a single theory by considering a QFT invariant under the

SU(2)L × U(1)Y symmetry group [6]. In addition to unifying the forces, this

allowed for a description of neutral current interactions in the weak sector by

predicting the Z boson. Glashow’s work still did not provide a mechanism to

give masses to the W and Z bosons, however.
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Under this proposal, weak hypercharge, Y , with an associated U(1) symmetry,

replaces the U(1) symmetry of QED. For invariance under transformations of

SU(2)L × U(1)Y , hypercharge must be the same for both chiralities of a particle,

and an associated gauge field, Bµ, is introduced. Thus, the left-handed doublets,

and the right-handed singlets, of the matter fields remain invariant under the

transformations:

ψL → ψ′L = eiαi(x)Ti+iβ(x)Y ψL, (2.7)

ψR → ψ′R = eiβ(x)Y ψR, (2.8)

where Ti = σi/2 are the generators of the SU(2) group and σi are the three

Pauli matrices, αi(x) are the SU(2) group parameters, and β(x) the U(1)Y group

parameter. These transformations preserve the nature of both the weak and QED

interactions. The locally gauge invariant electroweak Lagrangian is given below

in Equation 2.9.

LEW = i
∑
f

ψ̄iγµDµψ −
1

4
W a
µνW

aµν − 1

4
BµνB

µν , (2.9)

where f runs over all flavours, Dµ = ∂µ + igTiW
i
µ + ig′ Y

2
Bµ is the covariant

derivative, εabc is the Levi-Civita symbol, the weak gauge fields are given by

W a
µν = ∂νW

a
ν − ∂νW b

µ − gεabcW b
µW

c
ν , and Bµν = ∂µBν − ∂νBµ is the hypercharge

gauge field. The couplings to the W a
µ and Bµ fields are given by g and g′,

respectively. The third term in W a
µν is a self-interaction term that predicts a

coupling between the W and Z bosons.

The physical W±, Z and photon are found by mixing the W a
µ and Bµ gauge fields:

• W±
µ = (W 1

µ ∓ iW 2
µ)/
√

2 (W± bosons)

• Zµ = cos θWW
3
µ − sin θWBµ (Z boson)

• Aµ = sin θWW
3
µ + cos θWBµ (photon)

Here θW is the weak mixing angle, defined as tan θW = g′/g. Moreover, g sin θW =

g′ cos θW = e, the electric charge. The value of θW must be determined

experimentally, after which it can be used, in conjunction with e, to find the

coupling constants. The ratio of weak-to-EM coupling constants in terms of θW

is found, experimentally, to be sin2 θW = α
αW

= e2

g2
≈ 0.23. From the definitions

of Aµ and Zµ, it can be seen that these fields couple to both the Bµ field and
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the third weak gauge field W 3
µ . The Z boson couples to both chiralities as it has

contributions from both the Bµ field and W 3
µ , but with different strengths. It

has both vector and axial-vector couplings which differ in strength, and therefore

does not preserve parity.

The electroweak Lagrangian (Equation 2.9) is still missing mass terms for the

W± and Z bosons; adding mass terms to LEW is not gauge invariant. Similarly,

for the fermion mass term:

mψ̄ψ = m(ψ̄RψL + ψ̄LψR) (2.10)

is not invariant because of the different transformations of the left- and right-

handed terms under SU(2)L (see Equation 2.7). When Glashow first introduced

the theory, he made the comment in the introduction to his paper that this was

“a stumbling block that we must overlook.” This was resolved by spontaneous

symmetry breaking and the introduction of the Higgs mechanism by Weinberg

and Salam in 1967 [7, 41].

2.2.5 Spontaneous Symmetry Breaking and the Higgs

Mechanism

The electroweak Lagrangian in Equation 2.9 is sufficient for massless W± and

Z bosons. Masses of the W± and Z bosons can be generated through the

Higgs mechanism, a method of spontaneous electroweak symmetry breaking,

proposed by Higgs, Brout and Englert [11–14]. In this model, an additional

scalar field is introduced into the Lagrangian, with a potential that is invariant

under SU(2)L × U(1)Y transformations, and with a non-zero ground state energy,

(or vacuum expectation value (vev)). Weinberg [7] and Salam [41] expanded on

the work of Glashow by introducing this idea of spontaneously breaking local

symmetries into the electroweak theory to form the Glashow-Weinberg-Salam

(GWS) model. Essentially, in the Standard Model, the Higgs mechanism breaks

the SU(2)L × U(1)Y electroweak symmetry, giving mass to the vector bosons in

the process, whilst keeping the U(1) symmetry of QED intact and remaining

locally gauge invariant. A brief overview of this process is discussed below.

The Higgs scalar field is introduced as an isospin doublet of four complex scalar

fields, φ(x), with weak hypercharge Y = 1, total weak isospin T = 1
2
, and T3 = ±1

2
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for the electrically charged upper and neutral lower components, respectively:

φ(x) =

 φ+(x)

φ0(x)

 =
1√
2

 φ1(x) + iφ2(x)

φ3(x) + iφ4(x)

 . (2.11)

The potential of this field is given by

V (φ) =
1

2
µ2φ†φ+

1

4
λ(φ†φ)2, (2.12)

and is illustrated in Figure 2.2. The µ2 term in V (φ) can be either negative or

positive, but λ is required to be positive so that the potential is bounded from

below. For µ2 > 0 the potential is parabolic, and for µ2 < 0 it is shaped like the

bottom of a wine bottle. There is a local maximum at φ(x) = 0, with minima

along the circumference where φ†φ = v2 = −µ2

λ
6= 0. At any of the minima, the

symmetry of the potential is broken. In expressing the ground state, choosing

any three of the four φi independently to be 0 and the other to be v =
√
−µ2

λ

results in no loss of generality.

In the GWS model, the vacuum expectation value, φ0, of φ(x) is chosen as

φ0 ≡
√

1

2

 0

v

 . (2.13)

The motivation for such a choice of φ0 is that any symmetry that it breaks

will generate a mass for the corresponding gauge boson. The minimum of the

potential must correspond to a non-zero vacuum expectation value for only the

neutral scalar field φ0 component of φ(x). The assigned hypercharge and weak

isospin of φ0 breaks both the SU(2) and U(1)Y symmetries, but the U(1)EM

symmetry remains unbroken. This can be seen in the context of the electroweak

transformations given in Equation 2.7. For each of the SU(2) generators Ti, and

the weak hypercharge generator, acting on φ0 is non-zero. The U(1)EM generator,

Q = T3 + Y
2

, is not broken:

Qφ0 =
1

2
(σ3 + I)

 0

v/
√

2

 = 0. (2.14)

Thus, the choice of potential V (φ) has broken the electroweak symmetry, whilst

the electromagnetic symmetry is maintained. Importantly, the neutral component
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φ1 φ2

V (φ)

Figure 2.2 The V (φ) potential of the complex scalar field φ(x), with µ2 < 0.
There are degenerate minima along the circumference of the red
circle. This choice of a non-symmetrical potential spontaneously
breaks the symmetry of the Lagrangian [42].

of φ0 has a non-zero vev, such that the remaining unbroken symmetry leaves the

photon massless. As is shown in the expansion below in Equation 2.16, masses

are obtained for the gauge bosons corresponding to the broken symmetries.

Since the vacuum expectation value is non-zero, φ is redefined such that the

ground state is effectively close to zero, allowing perturbative calculations to be

performed. Excitations about the ground state describe the particles. Where

the vev of the field is zero, such as ψ in electromagnetism, the field already

corresponds to the particle, such as fermions or photons. Since in this case the

vev is non-zero, the field φ is redefined, without any loss of generality, such that

the new vev is close to zero. Excitations about this ground state can then be

calculated. Since φ(x) is a complex field, expanding about the ground state

could be performed in terms of real and complex components, h(x) and ξ(x),

such that an expansion would be about v + h(x) + iξ(x). In the unitary gauge,

α(x) = −ξ(x)/v, the ξ dependence in the Lagrangian disappears. In the unitary

gauge the perturbative calculations can be performed by setting

φ(x) =

√
1

2

 0

v + h(x)

 . (2.15)

where h(x) represents excitations about the ground state, which, as shown in

Equation 2.18, correspond to massive Higgs bosons.
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Particle Masses

The masses of the gauge bosons can be seen explicitly by expanding the

locally gauge invariant Lagrangian about the ground state in Equation 2.15 and

identifying the quadratic terms:

LH = (Dµφ)†(Dµφ)− 1

2
µ2φ†φ− 1

4
λ(φ†φ)2

=
1

2
(∂µh)(∂µh)− λv2h2 +

v2

4
g2W+µW−

µ +
v2

8
(g2 + g′2)ZµZµ︸ ︷︷ ︸

mass terms

+
1

2
g2W+µW−

µ (vh+ h2) +
1

8
(g2 + g′2)ZµZµ(vh+ h2)− λvh3 − λ

4
h4︸ ︷︷ ︸

interaction terms with the Higgs field

+ derivatives + constants,

(2.16)

where Dµ = ∂µ + igTaW
a
µ + ig′ Y

2
Bµ. Reading the mass terms from this gives

masses for the W and Z:

mW =
1

2
gv (2.17a)

mZ =
1

2
v
√
g2 + g′2, (2.17b)

and an additional massive particle from the h2 term, the Higgs boson, with mass

mH =
√

2λv2. (2.18)

The theory also predicts couplings between h(x) and the other gauge fields, such

that the Higgs boson will couple to itself, and the W± and Z bosons, which allows

for indirect couplings to photons too, through intermediate loops of the massive

gauge bosons.

The GWS model has only four free parameters, which need to be determined from

experimental measurements: the weak coupling constant g, the weak hypercharge

coupling g′, and the λ and µ terms in the Higgs potential. From the relation in

Equation 2.18, and mW = 1
2
gv, and the measured values of g and mW , a value of

v is predicted to be v = 246 GeV. From this, a measurement of mH provides a

value for λ.

The masses of the fermions can be given by including Yukawa couplings between
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the Higgs field and the fermions, and included as a separate Lagrangian term

[30]:

LY uk = −Gf

(
ψ̄LφψR + ψ̄Rφ

†ψL
)
, (2.19)

where Gf is the coupling for a given fermion, and ψL, ψR are the fermion doublet

and singlet from Equations 2.5 and 2.6.

Considering the Higgs potential, and expanding around the minimum this

becomes

LY uk = −Gf√
2

(ψ̄LψR + ψ̄RψL)(v + h(x)). (2.20)

Giving a mass for the fermion of mf =
Gfv√

2
in both the charged lepton and quark

sectors.

2.2.6 Summary

The final Standard Model Lagrangian is a sum of all of the Lagrangians from

QCD, electroweak theory, the Higgs sector and the Yukawa terms:

LSM = LQCD + LEW + LHiggs + LY uk. (2.21)

In summary, the Higgs mechanism provides masses to the W± and Z bosons in the

context of electroweak interactions through spontaneous local symmetry breaking.

A new complex scalar field, the Higgs field, is introduced, which mixes with the

gauge fields and generates masses for the W± and Z bosons when spontaneous

symmetry breaking occurs. Three of the four degrees of freedom in the Higgs

field couple to the previously massless bosons and give masses to the W± and

Z bosons, whilst the final degree of freedom predicts a new particle: the Higgs

boson. Yukawa couplings are included between the Higgs field and the fermions,

providing mass terms for the fermions.

2.3 Limitations of the Standard Model

Whilst the Standard Model has been outstanding in many of its predictions,

there are strong indications, both from experimental observations and theoretical

considerations, that the SM is not complete. Some of these are listed here:
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• Neutrino masses – The masses for the neutrinos are not included a

priori. The observation of massive neutrinos by Super-Kamiokande [43]

and SNO [44, 45] can be accommodated by the introduction of the PMNS

matrix [46], which describes the neutrino mixing in weak interactions,

analogous to the CKM matrix in the quark sector [47, 48].

• Matter-antimatter asymmetry – The observable Universe is constituted

almost entirely of matter, with relatively little antimatter. This overall

abundance of matter over antimatter in the Universe is not explained by

the SM. CP violation in the Standard Model can arise through the CKM

and PMNS matrices, although it has only been observed in the quark sector.

The required asymmetry between the number of baryons observed cannot

be accounted for by the CP violation seen so far [20].

• Dark Matter – Based on recent observations by the WMAP [49] and

Planck [50] experiments, ordinary matter accounts for 4.9% of the observed

universe, the remaining Dark Energy (68.3%) and Dark Matter (26.8%) are

not explained by the SM and cosmological models.

• The Hierarchy Problem – This is also known as naturalness. When trying

to formulate a Grand Unified Theory, or introduce New Physics, loop

corrections to the Higgs boson mass diverge at high energies. Without

fine-tuning the parameters this implies that the Standard Model cannot be

used up to high energy scales. Related to the hierarchy problem is the lack

of an explanation for the large differences in masses for each generation of

quarks and leptons. For example, the electron is 200 times lighter than the

muon, and 3500 times lighter than the tau. Gravity is not accounted for

at all, and no explanation is provided for gravity being far weaker than the

three other forces.

2.4 Higgs Boson Phenomenology

The Higgs boson is predicted by the SM to be a scalar, parity conserving particle.

However, its mass is a free parameter in the theory and must be determined

experimentally. Production cross sections and branching ratios of the Higgs boson

are predicted as a function of its mass. Discovering the Higgs boson was one of

the major physics goals at the LHC. Prior constraints on the mass were available

from LEP [51] (mH < 114.4 GeV was excluded at 95% confidence level) and the
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Tevatron [52] (149 < mH < 182 GeV and 90 < mH < 109 GeV were excluded at

95% confidence level). The ATLAS and CMS collaborations both announced on

the 4th of July 2012 that a Higgs-like boson of mass 125 GeV (see Section 2.4.3)

had been discovered [16, 17]. This discovery was based on the decays H → γγ,

H → ZZ∗ → 4` and H → WW ∗ → `ν`ν. The Higgs boson can decay into a

number of additional final states, which are discussed below. Finding evidence in

each of these decays is important to ascertain the nature of the observed boson,

especially in the decays to fermions, such as H → bb̄.

2.4.1 Higgs Boson Production

The production of a SM Higgs boson at hadron colliders can occur in multiple

ways, as shown in Figure 2.3. At the LHC, the dominant production channels

are through gluon fusion (ggF), vector boson fusion (VBF) and Higgs-Strahlung

with an associated vector boson [53].

The associated vector boson production at the LHC is studied in Chapter 5 in

the context of a search for a Higgs boson decaying to bb̄, with a short motivation

for this production mechanism provided here.

The Higgs-Strahlung production mechanism has a significantly lower cross section

than the other production mechanisms, but it offers the benefit of having an

experimental signature of a massive vector boson. In attempting to identify

the decay H → bb̄, there are challenges associated with each of the production

mechanisms, in particular due to large QCD backgrounds. The associated

production with a W/Z boson, where the vector boson decays leptonically,

provides a handle on the large QCD backgrounds.

Of the other production mechanisms, gluon fusion has the largest cross section,

dominated by a top quark loop, due to the large coupling of the top quark to

the Higgs boson. Vector boson fusion can be identified by two forward jets in

the detector, although its cross section is an order of magnitude lower than gluon

fusion. Associated production with a top-quark pair, tt̄H, has a relatively small

cross section, but it can probe the Higgs boson fermion couplings directly, which

is one of the motivations for the search for a Higgs boson in this channel. The

production cross sections at
√
s = 8 TeV are shown in Figure 2.4.
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Figure 2.3 The Higgs production mechanisms at hadron colliders are shown in
(a)-(d). Gluon-gluon fusion (ggF) is shown in (a), where two gluons
interact via top quarks to produce a Higgs boson. Vector boson fusion
(VBF) is shown in (b), where two vector bosons produce a Higgs
boson and two final state quarks. Higgs-Strahlung is shown in (c),
where a W or Z boson is produced in association with a Higgs boson.
tt̄H production is shown in (d), where a top quark pair is produced
in association with a Higgs boson.

2.4.2 Higgs Boson Decays

The Higgs boson is short-lived, with a lifetime on the order of 10−22 seconds9

and thus decays close to the interaction point in the ATLAS detector. It must

therefore be identified from its decay products.

The Higgs boson couples to all massive fermions and massive vector bosons,

including self-couplings. Couplings to gluons and photons are possible indirectly,

through intermediate loops of other particles. An exception to this is the direct

decay of the Higgs boson to the top quark, since the top quark is too heavy. The

9The lifetime is given by τ = ~
Γ . For a Higgs boson of mass 125.09 GeV the predicted decay

width is 4.1× 10−3 GeV, giving a lifetime of 1.61× 10−22 seconds [54].
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Higgs boson can decay into W and Z bosons, via off-shell contributions for W/Z

bosons. The branching ratios for the decay modes as a function of the Higgs

boson mass are shown in Figure 2.4.

The dominant decay channel for a Standard Model Higgs boson with a mass of

125.09 GeV (the combined mass measurement from ATLAS and CMS [55]) is to

bb̄, with a branching ratio of 58.1%. Observing the H → bb̄ process would allow

for a direct measurement of the coupling strength of the Higgs field to fermions.
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Figure 2.4 The branching ratios for different masses of Higgs boson are shown
in (a). The favoured branching ratio at a mass of mH = 125 GeV is
to bb̄. The bosonic channels WW , ZZ and γγ, have lower branching
ratios, but they also have much lower backgrounds. On the right hand
side in (b) the cross sections for the different production mechanisms
at
√
s = 8 TeV are shown [54].

2.4.3 Higgs Discovery and Current Status

Plots of the latest Higgs boson mass distributions for the three discovery channels,

H → ZZ∗ → 4`, H → γγ and H → WW ∗ → `ν`ν, are shown in Figure 2.5 with

the full Run 1 dataset at
√
s = 7 and 8 TeV, corresponding to integrated

luminosities of 4.5-4.6 fb−1 and 20.1 fb−1, respectively.

Subsequent studies have been carried out using more data and improved

techniques to probe the properties of this newly discovered particle. All the

current results provide further evidence for this being the Standard Model Higgs

boson with a spin-0 nature and positive parity [18].
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The most recent results, combined with CMS, can be found in Reference [55].

This uses the combination of H → ZZ, WW , γγ, τ+τ−, bb̄ and µ+µ− using the

full datasets from Run 1. The combined mass measurement from ATLAS and

CMS is 125.09± 0.21(stat.)± 0.11(syst.) GeV with a measured signal strength10

of µ = 1.09± 0.11, in agreement with the SM. ATLAS sees H → τ+τ− decays

with a significance of 4.5σ [56], which, when combined with CMS, increases to

5.4σ and shows evidence of VBF production with a significance of 5.5σ. There

is still no discovery of H → bb̄, although ATLAS sees a significance of 1.4σ at

125 GeV with the full Run 1 dataset [1], with a signal strength of µbb = 0.65+0.43
−0.40.

Combined with CMS there is a significance of 2.6σ with a signal strength of

µbb = 0.69+0.29
−0.27 [55]. A signal significance of 2.8σ is seen for H → bb̄ by the

Tevatron [57].

2.5 W Boson

As this thesis focuses on WH production and the implementation of improved

W boson identification at high transverse momentum, some properties of the W

boson are discussed here. The two charged W± bosons are referred to as the W

boson for most parts of the text, as both are considered at the same time.

W bosons were first discovered in 1983 by the UA1 and UA2 experiments

at CERN [60, 61]. They had been predicted by the GWS model in the

1960s, along the with Z boson. The mass and spin have been measured as

mW = 80.385± 0.015 GeV and spin-1 [20], respectively, from the Tevatron and

LEP.

The W boson decays leptonically to a left-handed fermion and a right-handed

antifermion in the same isospin doublet. The W boson also decays hadronically

to pairs of quarks, except for the top quark, whichare not necessarily in the same

isospin doublet due to CKM mixing. The W boson has a short lifetime on the

order of 10−25 seconds, and as such is identified by its decay products. Leptonic

decays of the W boson account for about 32.6% of all decays, and hadronic decays

for about 67.4%. The W boson decay modes and their branching ratios are listed

in Table 2.2.

There are some experimental benefits from considering leptonic final states;

triggering on electrons and muons can be done with high efficiency with the

10Signal strength is defined in Section 5.1.
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Figure 2.5 Mass plots for the three channels H → ZZ∗, H →WW ∗ and
H → γγ, which contributed to the initial discovery of the Higgs
boson [58, 59]. The plots shown here use the full Run 1 ATLAS
dataset. A clear excess is observed in each of these channels. The
mass of the Higgs boson is estimated from the ZZ and γγ channels,
which have excellent mass resolution.

ATLAS detector. The neutrino cannot be detected in the detector, and thus

missing momentum in an event can be used to identify the W boson decay.

Since the τ is heavy enough to decay hadronically, the W → τν process, where

the τ does decay hadronically, difficult to study experimentally due to the large

backgrounds at the LHC. The leptonic decays of the τ can be identified by the

presence of electrons or muons and missing energy in the event due to neutrinos.

Since there is already missing energy from the neutrinos is the W boson decay,

this process can be misidentified as W → e/µν.
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Decay modes Fraction Γi/Γ

`−ν̄` 10.86± 0.09%

e−ν̄e 10.71± 0.16%

µ−ν̄µ 10.63± 0.15%

τ−ν̄τ 11.38± 0.21%

qq̄ 67.41± 0.27%

Table 2.2 The different decay modes and branching ratios for the W− boson
[20]. The W+ decay modes are given by the charge conjugates of
these. In the table ` refers to the average lepton branching ratio. q
refers to any quark except the top quark.

Hadronic decays of the W boson are identified by two jets. As discussed in

Section 2.2.3, quarks hadronise and are identified by clustering the energy deposits

from the decays; so-called jets. In general, jets are identified by considering a cone

of a specific radius and looking for energy deposits within the detector.

2.6 Heavy Vector Triplet Model

Given the shortcomings of the Standard Model discussed in Section 2.3, many

models beyond the Standard Model (BSM) are proposed. Many of these theories

contain multiple free parameters which must be found from a direct comparison

with data. By considering direct experimental manifestations of these models,

such as new heavy particles or resonances, many of the free parameters can be

neglected. Resonance searches are typically not sensitive to all the free parameters

in the model; they are only sensitive to the parameters which affect the mass of

the resonance, and the interactions that provide the production and decay of

the resonance. The resonance can be given a simplified description in terms of a

phenomenological Lagrangian that only considers the relevant couplings and mass

parameters. The Lagrangian must be constructed to describe the phenomenology

of a broad range of models, but it is not needed to meet any additional theoretical

requirements. If a resonance is found, the observation can be expressed in terms

of this simplified description, and compared with numerous models that allow for

the phenomenological parameters of the Lagrangian to be calculated. One such

model is the Heavy Vector Triplet (HVT) Model A [19, 20].

In the HVT model, a triplet of heavy particles is introduced: the W ′± and

Z ′, which are degenerate in mass and have comparable production rates. In
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Model A, the new triplet field arises from the spontaneous symmetry breaking of

two additional SU(2) gauge groups that reduce to the electroweak gauge group:

SU(2)1 × SU(2)2 × U(1)Y → SU(2)L × U(1)Y .

The parameterisation of the couplings in the HVT Model A Lagrangian allows

for the phenomenological description of a large number of BSM models, and the

generality of the model allows it to be used as a framework for interpreting the

results in terms of these BSM models. The triplet field in Model A couples to

the SM vector bosons, fermions and the Higgs boson, with couplings given by

the parameters g2CF/gV , where g is the SM SU(2)L gauge coupling, CF ∼ 1

is a multiplicative factor of the fermion couplings, and gV is the coupling

strength to the new triplet. The coupling to the Higgs boson is given by gVCH ,

where CH ∼ −g2/g2
V , is a multiplicative factor of the Higgs boson coupling.

The branching ratios of the processes W ′ → WZ, W ′ → WH, Z ′ → WW and

Z ′ → ZH are all approximately 2% for masses in the range 1 to 3 TeV. Cross

sections, branching fractions and particle decay widths are given in Table 2.3 for

a number of HVT signal masses with gV = 1.

Any W , Z and H bosons produced in the decay of the W ′ and Z ′ will have

a large transverse momentum. When particles are produced with momentum

greatly exceeding their mass, their decay products are boosted in the lab frame.

Some of the methods for identifying hadronic decays of such boosted particles are

discussed in the context of the W boson in Section 2.7.

Table 2.3 The resonance width (Γ) and the product of cross section times
branching ratios (BR) with gV = 1, where two vector bosons decay
hadronically in model A for the HVT W ′ and Z ′ for several values of
resonance pole masses (m).

W ′ → WZ Z ′ → WW

m ΓHV T σ ×BR σ ×BR

[TeV] [GeV] [fb] [fb]

1.3 33.3 62.7 28.7

1.6 40.9 23.3 10.6

2.0 51.0 7.6 3.35
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2.7 Boosted W Boson Identification

As mentioned in Section 2.5, the hadronic decay of W bosons often results in two

jets in the detector. If the two jets are sufficiently close in the detector, they can

be clustered together, resulting in what appears to be a single jet [62]. This is

likely to happen in the case of the W boson if it has a high transverse momentum.

Specialised identification methods are thus required for boosted W bosons.

In identifying boosted W bosons, it is important to discriminate between a jet

that comes from the hadronisation of a single quark (QCD backgrounds at the

LHC, for example), and a jet that is made up of multiple quarks. There are a

number of ways of approaching this challenge, as discussed in Chapter 7. These

rely on characterising jet substructure to identify when a jet contains multiple

subjets, where each subjet corresponds to a single quark or gluon. These methods

take advantage of the topology of the W boson decays, where the mass of the

subjets is a lot smaller than the mass of the W boson.

Diboson decays of the W ′ and Z ′ from the HVT model introduced in Section 2.6

are used in Chapter 7 to study boosted W bosons.

The methods developed are not specific to boosted W bosons and are applicable

to Z and Higgs bosons. In the WH(→ bb̄) search shown in Chapter 5, the

highest sensitivity is found in regions where the W boson has a large transverse

momentum. Whilst this search considers leptonic decays of the W boson, the

H → bb̄ process could stand to benefit from the techniques which are presented

here for boosted W boson tagging.



Chapter 3

The LHC and the ATLAS Detector

“The Hadron Collider is a place of science. Various research takes place in the
facility and it offers education to citizens. A city with a Hadron Collider doesn’t
have to worry about education, the facility provides it for all citizens.” - Cities:
Skylines PC Game [63, 64]. Image © 2015-2016 Paradox Interactive AB.
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3.1 Introduction

The Large Hadron Collider (LHC) at CERN is the largest and most powerful

particle accelerator ever built. The high energy proton collisions offer a glimpse

into the conditions present in the primordial Universe, immediately after the Big

Bang, and an opportunity to probe elementary particles and their interactions

at an unprecedented energy scale. The primary goals for the LHC are to test

and verify the Standard Model of particle physics, in particular to study the

Higgs boson, and to find any hints of New Physics. ATLAS is one of two general

purpose particle detectors at the LHC that measure the outcomes of the proton

collisions. The amount of data produced in these collisions is vast, and immense

computational power and storage is required to process the data. This is handled

by a trigger system consisting of multiple levels in hardware and software, and

multi-tiered distributed computing systems.

This chapter gives a brief description of the LHC in Section 3.2, followed by

a description of ATLAS in Section 3.3, and finally the trigger systems and

computational systems are described in Sections 3.4 and 3.5, respectively.

3.2 Large Hadron Collider

The LHC [9] is a subterranean hadron collider at CERN near Geneva on the

border of Switzerland and France. Beams of protons or heavy ions (Pb+) are

accelerated in separate beam-pipes in opposite directions in a 27 km circular

tunnel between 50 and 175 m underground, which previously housed the Large

Electron Positron collider (LEP). These beams are made to collide at four

interaction points within particle detectors, which record the output of these

collisions. The design allows for proton-proton collisions with a centre-of-mass

energy of
√
s = 14 TeV with an instantaneous luminosity of L = 1034 cm−2s−1,

or heavy ions with an energy of up to 2.76 TeV per beam and L = 1027 cm−2s−1.

The instantaneous luminosity, L, is the collision rate per unit area, and defined as

L = 1
σ
dN
dt

, the number of events N detected in a time dt in a given cross section

σ. The LHC is predominantly used for proton-proton collisions, with shorter,

dedicated heavy-ion runs. During 2011 the collision energy was
√
s = 7 TeV

and during 2012 it was
√
s = 8 TeV. In 2015 for Run 2, this was increased to

√
s = 13 TeV.
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The protons used at the LHC are obtained from a hydrogen gas bottle. Electrons

are stripped from the hydrogen atoms by applying an electric field to the gas,

and the remaining protons go through a multi-staged process of acceleration to

reach their maximum velocity. This begins with a linear accelerator, LINAC2,

accelerating the protons up to 50 MeV. They are subsequently injected into the

Proton Synchrotron Booster (PSB) where they reach energies of up to 1.4 GeV.

They are then fed to the Proton Synchrotron (PS) which accelerates them up to

25 GeV, and then into the Super Proton Synchrotron (SPS) which accelerates

them up to 450 GeV. At this point, they are injected into the main LHC ring and

accelerated by 16 radio-frequency (RF) cavities up to their maximum velocity.

The protons are accelerated in bunches and collided at intervals of 25-50 ns. The

layout of the collider is shown in Figure 3.1.

Superconducting magnets are used to bend the path of the protons around the

collider (the beams do not follow a perfect circle; there are straight sections).

There are 1232 dipole magnets, with a field strength of up to 8.3 T, which guide

the proton bunches around the main ring. There are a further 392 quadrupole

magnets of 6.5 T each, which focus the beam, and more specialised magnets at

places such as the beam injection points. The massive field strength of these

magnets necessitates them being superconducting, cooled by liquid helium to an

operating temperature of 1.9 K.

Many of the physics processes that are being searched for at the LHC have a tiny

cross section. In order to study such rare processes, the amount of data collected

must be maximised. One of the ways in which to accomplish this is by increasing

instantaneous luminosity. The instantaneous luminosity depends on a number of

factors including the number of particles per bunch, bunches per beam, and the

horizontal and vertical beam size at the point of interaction, characterised by β∗

functions that are properties of the accelerator and the focussing magnets. The

LHC luminosity design goals are achieved with a maximum of 2808 bunches in

circulation at any one time, each with up to ≈ 1011 protons, and a bunch spacing

of 25 ns (Run 1 from 2010-2012 ran with a bunch spacing of 50 ns [65]). For

any given process, the number of events is dependent on its cross section and

the integrated luminosity. The integrated luminosity, L =
∫
Ldt, is a measure

of the total amount data collected expressed in terms of an inverse cross section

(typically fb−1). During Run 1 of the LHC the ATLAS experiment recorded

4.7 fb−1 at
√
s = 7 TeV and 20.3 fb−1 at

√
s = 8 TeV, and during Run 2 in 2015

3.2 fb−1 of data was recorded at
√
s = 13 TeV. The relation between the rate of
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a type of event and L is given by:

Nevent = Lσevent, (3.1)

where Nevent is the number of a type of event occurring per second, L is the total

integrated luminosity and σevent is the cross section of the event, a measure of

the probability for the interaction. Increasing the luminosity makes additional

proton-proton interactions more likely, known as in-time pile-up, which makes it

more difficult to separate single interactions. Additionally, the high frequency

of collisions (up to 40 MHz in the ATLAS detector), and the inherent latency

of the hardware used in the detectors causes further out-of-time pile-up. This is

discussed in more detail in Section 4.4.

The collisions are recorded by seven detector experiments placed around the

beam at four interaction points (see Figure 3.1). Here, magnets near the

detectors bring the particles from the opposing beams closer to each other in

order to cause a collision. There are two multi-purpose detectors: A Toroidal

LHC Apparatus (ATLAS) Experiment [10] and the Compact Muon Solenoid

(CMS) Experiment [15]. These are used to search for New Physics and provide

Standard Model measurements. The LHC-beauty (LHCb) Experiment [66] is

primarily used for investigating flavour physics and CP violation through b-

hadron interactions. A Large Ion Collision Experiment (ALICE) [67] is designed

to collect data from heavy-ion collisions, which are used to investigate quark

gluon plasma and QCD processes. The LHC-forward (LHCf) detector records

collisions in the forward regions, almost parallel with the beam-pipe, investigating

the origin of ultra-relativistic cosmic rays through neutral pion production. The

TOTal cross-section, Elastic scattering and diffraction dissociation Measurment

(TOTEM) experiment measures the total cross section and the luminosity of

the LHC [68]. The Monopole and Exotics Detector (MoEDAL) [69] experiment

searches for direct evidence of magnetic monopoles and highly ionising massive

(pseudo-)stable charged particles.
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Figure 3.1 Overview of the LHC showing the four main experiments and the
accelerator chain. LINAC2 initially accelerates the protons. They
are then injected into the Proton Synchrotron Booster (PSB), then
from the PSB into the Proton Synchrotron (PS) and on into the
Super Proton Synchrotron (SPS). After this, they are injected into
the main LHC ring and accelerated up to their maximum velocity.
Adapted from [70].

3.3 ATLAS Detector

3.3.1 Overview

The ATLAS detector [10] (Figure 3.2) is the largest particle detector at the LHC,

measuring 44 m in length, 25 m in diameter and weighing 7000 metric tonnes.

It is designed to study many diverse physics processes from both the Standard

Model and Beyond the Standard Model (BSM). One of the most important

goals in the ATLAS physics programme has been the search for the Higgs

boson. Some Standard Model physics goals include precision QCD measurements,

flavour physics and electroweak physics studies. Particles produced in these

interactions leave characteristic patterns within the detector; charged tracks or

energy deposits, for example. The detector thus requires efficient, high resolution

particle reconstruction and identification hardware capable of measuring as many

of the particle properties as possible. Additional requirements include good vertex

resolution for flavour tagging and pile-up rejection, and a fast trigger system for

filtering out uninteresting events.

ATLAS has a forward-backward cylindrical symmetry and near hermetic cov-
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erage. It is divided into three main subdetectors, each of which is designed to

identify specific types of interactions and properties. The detector has an ‘onion’

type structure centred around the point of the collisions with the subdetectors

in numerous layers parallel to the beam (the barrel region) and end-cap regions

perpendicular to the beam. This is illustrated in Figure 3.2.

The Inner Detector (ID) is designed to track the paths of charged particles as

they travel through the detector, and to reconstruct the interaction vertices.

It is subdivided into layers of different technologies, with the highest precision

provided closest to the interaction point, and it is surrounded by a 2 T solenoidal

magnet.

The calorimetry system surrounds the ID and inner solenoid, absorbing and

measuring the energy of interacting charged and neutral particles. The inner

electromagnetic calorimeter measures the energy deposits from showers of

electromagnetically interacting particles, and the outer hadronic calorimeter

measures the energy deposits from hadrons.

High momentum muons have a low energy loss when traversing the detector, and

coupled with their relatively long lifetime of 2.2 µs, are the only charged particles

that are frequently able to pass through both the ID and calorimeters. The muon

system surrounds the calorimeters and ID, extending out to the maximum radius

of the detector. A large toroidal magnet, which gives ATLAS its characteristic

shape (and from which the name ATLAS is derived), bends the trajectory of the

muons so that their momentum can be inferred. The muon system consists of a

number of subdetectors for precise muon tracking.

An illustration of particle interactions moving through the detector is shown in

Figure 3.3.

The following sections describe the ATLAS subdetectors in more detail, the

technologies used and their dimensions.

3.3.2 Coordinate System

A right-handed coordinate system (illustrated in Figure 3.4) is used with the x-

axis pointing towards the centre of the LHC ring, the y-axis pointing upwards

and the z-axis along the beam direction. The polar (θ) and azimuthal (φ) angles

are defined according to these axes. Rapidity and pseudorapidity are used as
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Figure 3.3 Schematic of particle interactions in the detector. Electrons leave
a track in the Inner Detector and shower in the electromagnetic
calorimeter. Photons shower in the electromagnetic calorimeter,
but leave no tracks in the Inner Detector. Protons leave tracks
and showers in the hadronic calorimeter, whilst neutrons are only
detected in the calorimeter. Muons move through all the subdetectors
before reaching the Muon Spectrometer. Neutrinos are not detected
directly. ATLAS Experiment © 2013 CERN.

a measure of the polar angle. Rapidity is defined as y = 1
2

ln E+pz
E−pz , where E is

energy and pz is the z component of the momentum. Pseudorapidity is defined

as η = − ln(tan θ
2
), where vectors perpendicular to the beam axis have η = 0,

increasing as they become more parallel with the beam.

The distance between two particles in the η−φ plane is often used. This is given

by:

∆R =
√

(∆η)2 + (∆φ)2. (3.2)

3.3.3 Inner Detector

The Inner Detector [10] is a tracking detector that measures the paths taken by

charged particles; the curvature of these trajectories allows for the calculation
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z

LHC

Figure 3.4 The ATLAS coordinate system relative to the LHC beam [72]. The
x− y plane is shown in blue. A projection in the x− y plane along
the z-axis is shown in red. The polar angle (θ) and azimuthal angle
(φ) are also indicated relative to the axes.

of the charge and momentum of the particle. The ID is the closest subdetector

to the interaction point, which requires a high granularity detector capable of

precision tracking in order to identify short-lived particles and to reconstruct the

interaction vertices. It consists of, in increasing distance from the interaction

point, a silicon Pixel Detector, the Semi-Conductor Tracker (SCT), which uses

silicon strips, and the Transition Radiation Tracker (TRT), as shown in Figure 3.5.

The Pixel Detector is the smallest and most precise of the three. The SCT and

TRT cover a much larger volume and are further away from the interaction point,

and consequently have a lower granularity. These subdetectors are described in

further detail below.

Pixel Detector The Pixel Detector [10] is found closest to the interaction point

and is the most sensitive and precise part of the ID with about 80 million

electronic readout channels (one per pixel). This provides critical tracking

information required for identifying short lived particles such as b-hadrons, which

decay within a few centimetres of the interaction point. Each pixel is a silicon

wafer with an area of 50 × 400 µm2 and 256 ± 3 µm thick1. Each pixel has an

intrinsic resolution of 10 µm in the R − φ plane and 115 µm along z (barrel)

and R (end-caps). Pixels are reverse-biased p − n diodes; ionising particles

passing through the silicon creates electron-hole pairs, which causes a short pulse

of current, recorded as a hit.

The pixels are arranged into 1744 modules of 46080 pixels each, each with an

area of ≈ 10 cm2, with a combined coverage of 1.7 m2. The Pixel Detector

1About 10% of the wafers are slightly larger at 50× 600 µm2.
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Figure 3.5 A diagram of the Inner Detector barrel region [73]. The pixels offer
the most precise measurements, found right next to the beam-pipe.
The SCT and TRT extend to a much larger radius and cover a larger
volume, but at a lower resolution.

consists of three barrel layers (|η| < 2) and three pixel disks in each end-cap

(|η| < 2.5). The barrel layers contain 1456 modules (for a total of almost 67

million pixels) in three cylindrical tubes 1.4 m long at radii of 50.5, 88.5 and

122.5 mm. The three disk modules in the end-cap region found at |z| = 495, 580

and 650 mm ensure near hermeticity. Each end-cap region contains 288 modules

accommodating approximately 13 million pixels. These detectors are exposed to

huge amounts of radiation which affect the hit efficiency and signal-to-background

noise [74, 75]. The radiation modifies the doping concentration which can lead

to type inversion and a higher required depletion voltage. The leakage currents

are increased, which affects the power consumption and background noise.

An additional barrel layer has been inserted into the Pixel Detector for Run 2,

called the Insertable B-Layer (IBL) [76]. This is placed at a radius of 31 mm,

offering improved vertex resolution and b-jet reconstruction.

Semi-Conductor Tracker The Semi-Conductor Tracker (SCT) [10] is a silicon

strip detector surrounding the Pixel Detector. The SCT operates on a similar

principle to the Pixel Detector; however, long silicon strips are used in place

of pixels. The longer strips allow the SCT to cover a larger area than the Pixel

Detector, 63 m2 compared with 1.7 m2, but at a lower resolution. There are 15912
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silicon micro-strip sensors each consisting of 768 active strips with a strip pitch

width of 80 µm and a length of 6 cm (these are daisy chained to form 12 cm long

sensors). Modules are created from two silicon strip sensors glued back-to-back

at a small relative angle, allowing for a measurement of the coordinate parallel to

the strip. The SCT modules have an intrinsic accuracy of 17 µm perpendicular

to the strips in the R − φ plane, and 580 µm parallel to the beam in z (barrel)

and R (end-cap). As with the Pixel Detector, there are similar effects on the

efficiency and leakage currents due to radiation [77].

The SCT consists of four barrel layers and nine end-cap disks on each side. In

the barrel region, double-sided modules are placed at radii of 299, 371, 443 and

514 mm, aligned parallel to the beam-pipe and perpendicular in φ. The end-cap

disks are centred at |z| = 853.8, 934, 1091.5, 1299.9, 1399.7, 1771.4, 2115.2, 2505

and 2720.2 mm, and extend the coverage of the SCT to |η| < 2.5.

In total, there are 4088 modules (some of which are single-sided) giving about

6.2 million readout channels.

Transition Radiation Tracker The Transition Radiation Tracker (TRT) [10]

is a collection of 370 000 drift chambers forming the outermost part of the ID.

The drift chambers, or straws, are coated2, carbon-fibre reinforced, Kapton tubes

4 mm in diameter and 144 cm in length (39 cm in the end-cap region) with a gold-

plated tungsten wire of diameter 31 µm running down the centre, and filled with

a gas mixture of Xenon (70%), Carbon Dioxide (27%) and Oxygen (3%). Straws

are grouped into modules of 52544 straws in the barrel region, and modules of

122880 straws in the end-cap regions.

The straws are aligned parallel to the beam axis in the barrel region and radially

in the end-caps. There are 73 layers in the barrel region, each consisting of 96

modules, at radii of 554-1082 mm, and |z| = 0 − 780 mm. There are 160 layers

in the end-caps, each consisting of 20 modules, at radii of 615 − 1106 mm and

|z| = 827−2744 mm. Together these modules provide 4.2×105 readout channels.

The straws do not provide tracking information parallel to themselves.

When a charged particle traverses a straw it ionises the gas, freeing electrons,

which drift to the tungsten wire, causing an electric current which is recorded.

The time taken for the electrons to drift to the nearest wire core is used to

2The tubes are coated with a 5 − 6 µm graphite-Kapton surface layer, which protects an
aluminium cathode of thickness 0.2 µm.
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calculate the impact parameter of the charged particle with respect to the anode.

Each straw has an intrinsic accuracy of 130 µm (compared with the straw

diameter of 4 mm), but on average a charged particle with pT > 0.5 GeV and

|η| < 2 will traverse 35 straws (22 in the region 0.8 < |η| < 2.0) [78]. The

combined accuracy allows the TRT to provide measurements of the transverse

momentum of charged tracks to a high degree of precision of approximately

50 µm [10].

The layers of straws are interleaved with polypropylene fibres (barrel region) and

foils (end-caps) so that X-ray transition radiation (TR) is emitted as charged

particles move between the media of differing dielectric constants, which is

subsequently absorbed by the gas in the straw tube. The more relativistic

a particle is the more TR will be emitted; lighter particles, like electrons,

will produce stronger signals than hadrons, for example. The amount of

TR emitted coupled with momentum measurements is used for discrimination

between electrons and pions.

Inner Solenoid The ID is surrounded by a 2 T solenoid magnet used to bend the

trajectories of charged particles moving through the detector, so that momentum

and charge can be deduced using the Lorentz force. However, particles that

are not travelling with high momentum (< 400 MeV) escape detection because

their paths are so tightly curved by the magnetic field that they do not move far

enough away from the interaction point in the radial direction to be detected.

The magnet is 5.3 m long, 2.4 m in diameter, 4.5 cm thick and weighs 5 metric

tonnes.

3.3.4 Calorimeters

The calorimeter system is located outside the solenoidal magnet that surrounds

the ID (Figure 3.6) [10]. The inner layer, the electromagnetic calorimeter (ECal),

is used for the measurement of the energy of photons and electrons. The outer

layer, the hadronic calorimeter (HCal), is used to find the direction and energy

of hadrons, which are reconstructed as jets.

Both the ECal and HCal are sampling calorimeters, which use alternating layers

of an absorbing material and an active sampling material. Particle showers are

induced by high energy particles coming into contact with the dense absorbing

material, which results in multiple lower energy particles interacting with the
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Figure 3.6 The ATLAS calorimeter system [79]. The electromagnetic
calorimeter is composed of the EMEC and the LAr electromagnetic
barrel. The hadronic calorimeter uses scintillating tiles in the barrel
region, and LAr in the end-cap (HEC) and forward regions (FCal).
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sampling material. This produces a signal proportional to the initial energy in

the form of photons or an electric current. The energy of the interacting particle

can be calculated from these measurements in consideration with the length scale

of energy losses for the particles in the material. Electrons (or positrons) lose 1/e

of their total energy in a single radiation length, X0, through bremsstrahlung,

whilst photons have 7/9 chance of producing an e± pair [80]. Apart from neutral

pions, which create electromagnetic showers, hadrons will lose energy through

inelastic interactions, which is parameterised as the mean free path, λ, and gives

the characteristic scale of the hadronic showers, where λ ∼ 35A1/3 gm2 and A

is the atomic weight of the absorption material. Hadronic showers can also be

caused by other nuclear decays.

Calorimeters are also used to infer the presence of particles such as muons and

neutrinos. Muons can leave an ionisation signal that, if the muon is solitary, can

be identified as having come from the muon. This track can then be followed

into the Muon Spectrometer to check that it was indeed a muon. Neutrinos can

also be inferred with the calorimeter by considering momentum conservation of

particles within the calorimeter. This requires high precision, so there must be

little leakage out of the calorimeters.

The calorimeters are designed to stop as many particles as possible, except for

muons and neutrinos. The two parameters X0 and λ are chosen to achieve this

goal, with the ECal having a total thickness of more than 22X0, where the liquid

argon sampling material has X0 = 14 cm, and the lead absorber X0 = 0.5 cm.

The entire calorimeter has a total thickness of approximately 10λ. Coverage of up

to |η| < 4.9 ensures that there is near hermetic coverage within the detector. The

electromagnetic and hadronic calorimeters are described in more detail below.

Electromagnetic Calorimeter The electromagnetic calorimeter [10] is a liquid

argon (LAr) sampling calorimeter with a lead absorber. It covers the range

|η| < 3.2, with the barrel region covering the range |η| < 1.475 and two end-caps

covering 1.375 < |η| < 2.5 and 2.5 < |η| < 3.2. The calorimeter has an accordion

geometry, which provides full azimuthal coverage.

The barrel region is divided into three longitudinal layers of radius between 2.8

and 4 m, and a length of 6.4 m, which are split in half at z = 0 with a gap of

6 mm. The first two layers have the highest resolution, finely segmented into

cells of ∆η × ∆φ = 0.025 × 0.025 (∆η × ∆φ = 0.025/8 × 0.1 for |η| < 1.4 in

the first layer), with a resolution of ∆η = 0.05 in the third layer. The first two
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layers are designed to separate charged and neutral pions and the third for high

energy electrons and photons producing large showers. The end-caps are divided

into two co-axial wheels 0.63 m thick, covering a radius of 0.330 m to 2.098 m,

with a 3 mm gap between the wheels at |η| = 2.5. Granularity reaches up to

∆η ×∆φ = 0.1× 0.1 for 2.5 < |η| < 3.2 in the end-cap region. There are 101760

readout channels in the barrel region and in the end-caps a further 62208.

To correct for energy lost through the calorimeter a presampler is included

before the absorption plates in the |η| < 1.8 region, with a granularity of

∆η ×∆φ = 0.025× 0.1. The presampler adds another 7808 readout channels in

the barrel region and 1536 readout channels in the end-caps.

The ECal should fully contain EM showers to avoid leakage into the hadronic

calorimeters, and as such it a thickness of at least 22X0 in the barrel region,

and 24X0 in the end-caps. However, at the transition between the barrel and

end-caps, 1.37 < |η| < 1.52, the ECal measurements are not used as there is a

large amount of material in front of the calorimeter (about 7X0).

Hadronic Calorimeter The hadronic calorimeter [10] is divided into three

regions covering up to |η| < 4.9. A tile calorimeter in the barrel region

covers |η| < 1.7, hadronic end-caps (HEC) cover 1.5 < |η| < 3.2, and forward

calorimeters (FCal) cover 3.1 < |η| < 4.9.

The barrel region consists of a central barrel 5.8 m long covering |η| < 1.0, and two

extended barrels 2.6 m long covering 0.8 < |η| < 1.7. These barrels are divided

into three layers, extending from a radius of 2.28 m to 4.23 m corresponding to

a mean free path of ≈ 7.4λ (with a maximum of 9.2λ at η = 0 at the outer edge

of the tile region). The tile calorimeter used in the barrel sections uses a steel

absorber and plastic scintillating tiles, which produce photons that are sent along

fibre optic cables and measured by photomultiplier tubes. Tiles are staggered

around the barrel between steel absorption sections in 64 wedge-shaped modules

of size ∆φ ≈ 0.1. Fibre optic cables are arranged into cells of ∆η×∆φ = 0.1×0.1

in the first two layers, with a granularity of ∆η = 0.2 in the third layer. Over

500000 scintillating tiles and fibre optic cables are used.

In the HEC, liquid argon is used as the sampling material, and copper as the

absorption material. The HEC consists of two wheels of thickness 0.8 m and

1.0 m with a maximum radius 2.03 m on either side of the detector. The front

wheels have 24 copper plates of 25 mm thickness and a thinner front plate, and
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the first nine have an inner radius of 0.372 m, and the rest 0.475 m. The back

wheels have 16 copper plates of thickness 50 mm. In both wheels, the copper

plates are separated by 8.5 mm. Each of the two wheels on either end consists of

32 wedge-shaped modules of ∆η×∆φ = 0.1× 0.1 (0.2× 0.2 in the |η| ≥ 2.6). In

total, the HEC has 5632 readout channels.

The FCal uses liquid argon as the sampling material and copper and tungsten

as the absorption materials. It is divided into three layers, the first of which is

used for electromagnetic measurements with a copper absorption material and

radiation length of 27.6X0. The second and third layers are used for hadronic

measurements and have tungsten absorbers, with λ = 3.6. Layers are each 0.45 m

thick with a radius of 0.455 m and are found at |z| = 4.7 m. The FCal has a

total of 1762 readout channels.

3.3.5 Muon Spectrometer

The Muon Spectrometer (MS) [10] is the outermost subsystem, consisting of

three air-core superconducting toroidal magnet systems (one in the barrel region

and two end-caps) and four types of tracking chambers covering a region of up

to |η| < 2.7. Muons have a relatively long lifetime, interact weakly, and are,

in general, produced with relativistic momentum, thus allowing them to pass

through all inner layers of the detector.

The MS extends from a radius of 4.25 m to 11 m. Trajectories of the muons

are curved in the R − z plane by the large barrel toroid magnet (0.5 T) within

the range |η| < 1.4, and by two smaller end-cap magnets (1 T) in the range

1.6 < |η| < 2.7. The MS is designed to measure the muon pT to within 3 GeV for

a 100 GeV muon, and to within 100 GeV for a 1 TeV muon, which corresponds

to a tracking resolution of ≤ 50 µm in the z direction.

The four types of detectors used in the MS cover different radii and pseudora-

pidities. These can be divided into two distinct types: tracking chambers that

offer high precision tracking, and trigger chambers that have a fast response for

triggering and association of muons with a certain bunch crossing. Monitored

Drift Tubes Chambers (MDT) and Cathode Strip Chambers (CSC) are used to

provide high precision tracking and momentum measurements. Resistive Plate

Chambers (RPC) and Thin Gap Chambers (TGC) are less precise, but have a
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much faster readout3. The components are aligned with a precision better than

40 µm using around 12000 optical sensors to measure the component positions.

The magnetic field is monitored with 1800 Hall probes.

There are three concentric barrel layers consisting of MDTs and RPCs with radii

of approximately 5 m, 7.5 m and 10 m. The precision measurements in the barrel

region are performed by the MDTs that cover |η| < 2.0 in the first layer, and

up to |η| < 2.7 in the outer two layers. The RPCs are attached to the MDTs,

covering |η| < 1.05. In the end-caps, three-layered large wheels of CSCs and

TGCs are found at distances of |z| = 7.4, 10.8, 14 and 21.5 m. CSCs are used for

precision measurements in the innermost layer in a region of 2 < |η| < 2.7 and

TGCs cover the region 1.05 < |η| < 2.4.

The MDTs are chambers containing drift tubes 3 cm in diameter, between 0.85

and 6.5 m long, and filled with a combination of Ar-CH4-N2 gas. These work

on a similar principle to the straw detectors in the ID. They have a single gold-

plated W-Re wire, held at a voltage of 3200 V, running through the centre of the

tube. The MDTs are positioned perpendicular to the beam-axis, measuring the

curvature within the R−z plane with a precision of 35 µm per chamber, or 80 µm

per tube. MDTs take up to 20 measurements per track, providing an extremely

precise momentum measurement. There are about 350000 tubes contained within

1152 MDT chambers.

The CSCs are multi-wire proportional drift chambers, filled with a gas mixture of

Ar-CO2-CF4. Each chamber contains interleaving cathode strips placed parallel

and perpendicular to the anode multi-wire layers. The parallel cathode strips

provide precision measurements in the bending plane with a resolution of 40 µm,

whilst the perpendicular cathode strips give measurements in φ with a resolution

of 5 mm. There are 32 chambers in total, providing approximately 60000 readout

channels.

The TGCs operate similarly to the CSCs, with slightly different dimensions,

smaller gaps between electrodes for faster readout, but they only provide

measurements of the φ coordinate. The TGCs have a resolution of 2-6 mm in R

and 3-7 mm in φ. There are 3588 chambers with a readout of 318000 channels.

The RPCs are wire-free, gaseous detectors containing C2H2F4 and C4H10. Two

parallel, highly resistive plates are held at a constant high voltage, with metallic

3The MDT has a response time of 700 ns, the CSC of 50 ns, the RPC of 1.5 ns and the TGC
of 4 ns.
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strips attached to their outer faces. The metallic strips are placed perpendicular

to each other to provide measurements in the bending plane and in the φ

coordinate. They are attached to the MDTs, providing φ measurements that

complement the MDT measurements in the bending plane. The RPCs have a

resolution of 10 mm in both the z and φ coordinates. The 606 RPC chambers

have a combined readout of about 370000 channels.

Outer Magnets Each of the toroid magnets consists of eight coils, arranged

symmetrically in the azimuthal direction, as illustrated in Figure 3.7. The outer

air-core toroidal magnet provides a 0.5 T magnetic field within the barrel region

of the MS [10]. Two smaller magnets provide a 1 T magnetic field in the end-cap

regions. These provide a curvature of the muon trajectory for tracking in the

R − z plane. The toroidal magnet is 25 m long with an inner (outer) radius of

9.4 m (20.1 m). The end-cap magnets are 5 m in length with an inner (outer)

radius of 1.65 m (10.7 m). These magnets are superconducting, operating at

4.7 K.

Figure 3.7 Illustration of the ATLAS magnet system [81]. The barrel region
toroid magnet is shown in red and the two end-cap toroid magnets
are shown in green. The inner solenoid is shown in blue, which is
parallel to the beam-pipe.

3.4 Trigger System

The LHC has a design collision rate of 40 MHz (during Run 1 the increased

bunch-spacing of 50 ns reduced the rate to 20 MHz), and with each event on

the order of 1.5 MB this corresponds to an immense amount of data [10]. It
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is impractical, and not necessary, to store all of this data, which would require

a bandwidth of 64 TB/s. The trigger system is used to reduce the event rate

in real-time to a more manageable level on the order of a few hundred MB/s

to GB/s. A combination of hardware and software-based triggers are used to

perform decisions at high speed.

During Run 1 ATLAS used a three-tier trigger system: the hardware-based

Level 1 trigger (L1), software-based Level 2 trigger (L2) and the software-based

Event Filter (EF). Together L2 and the EF are known as the High Level Trigger

(HLT). For Run 2 the previously distinct elements of the HLT are combined into

a single trigger. Each level in the trigger significantly reduces the data rate, with

only the events accepted by the HLT being stored for offline processing. The L1

trigger is described below, followed by the L2 and EF used in Run 1, and the

HLT for Run 2.

Level 1 The L1 trigger is built from custom electronics and is physically within

the ATLAS detector. It provides fast, coarse identification of high momentum

physics objects like leptons, photons, jets and large missing transverse energy.

The pT thresholds for the triggers change as the running conditions of the LHC

change. A trigger ‘menu’ contains the selection criteria for which events are to be

kept for further processing. The calorimeters and muon trigger chambers (there

is no tracking information used) provide fast readouts with a reduced granularity,

which are compared with the selections in the trigger menu. In addition to this,

the trigger also identifies Regions-of-Interest (RoI) in η and φ, which are used

as seeds for the L2 trigger. The L1 trigger was initially designed to reduce the

initial rate from 40 MHz down to 70 kHz within 2.5 µs per event. For Run 2 this

has been increased to 100 kHz [82].

Level 2 Trigger (Run 1) The software-based L2 trigger further analyses the

RoIs identified by the L1 trigger at a higher resolution. Full detector granularity,

including tracking information, is used within the RoI to identify events of

interest. The RoIs only represent approximately 2% of the total event data.

The L2 trigger was designed to reduce the output from the L1 trigger to 3.5 kHz

within 40 ms per event.

Event Filter (Run 1) The Event Filter has access to the full event data with

reconstruction and analysis of events done in much more detail, almost to the
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level of offline analyses. The Event Filter was originally designed to reduce the

output from the L2 trigger to 200 Hz within 4 s per event, although the actual

achieved rate was higher than 200 Hz during data taking. In 2011, it ranged from

200 to over 300 Hz, whilst in 2012 it was between 300 and 600 Hz [83].

High Level Trigger (Run 2) The HLT in Run 1 was composed of the L2 and

EF running in separate computing farms. These have now been merged together

and run a single unified process in the same software. With the new design the

output rate has been increased to 1 kHz [82]. Currently the HLT uses CPU-

based software; a study was done into the feasibility of instead using Graphical

Processing Units (GPUs) with many hundreds or thousands of processing cores.

This is shown in Appendix A.

3.5 Computational Facilities

The data recorded by ATLAS after trigger selection is on the order of a

few hundred MB/s [10], which still requires a large amount of storage space

and computing power in order to be processed and analysed. ATLAS uses a

multi-tiered distributed computing network that spans multiple countries and

continents [84]. This forms part of the much larger LHC Computing Grid, which

is used by all the LHC experiments at CERN. Not only is this used for analysis

of the data, it is also used for creating Monte Carlo event simulations, which

requires considerable computing resources.

A copy of all data from the LHC is kept at Tier-0, the CERN Data Centre. The

raw data from the ATLAS HLT is transferred directly to this site, where initial

reconstruction is performed, and the data moved to other file formats and copied

to other Grid sites.

Tier-1 consists of high performance computing centres situated around the world.

These are used for storing a large proportion of raw data, reprocessing the

raw data, Monte Carlo production and storage, and offering large scale analysis

capabilities. This provides redundancy and allows for faster access to data.

Tier-2 and Tier-3 are smaller computing centres found at many universities. Tier-

2 sites are used for Monte Carlo production and analyses. Tier-3 sites are used

by small scientific groups, offering access to the resources of the upstream Tiers.



Chapter 4

Particle Identification and

Reconstruction

* No lions have been observed at the LHC as of 2016.
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4.1 Introduction

Many types of particles are produced at the LHC in high energy proton-proton

(pp) collisions. These particles deposit energy in the detector as they move

outwards from the collision point. The measurements of these energy deposits are

used to define physics objects using reconstruction and identification algorithms.

These can refer to individual particles (like photons), collections of particles (like

jets), or the missing transverse energy (any energy or momentum imbalanced in

an event). The reconstruction and identification of physics objects is a complex

task that has many complicated aspects. High energy particles produce radiation,

and decay in the detector, leaving a collection of energy deposits. These issues can

be addressed by employing Monte Carlo simulations to assess the performance

of different reconstruction and identification algorithms, and to model how these

objects change between processes.

This chapter describes how the Monte Carlo simulation is performed, and the

reconstruction and identification algorithms for the physics objects used in the

subsequent chapters.

4.2 Monte Carlo Simulation

During a proton-proton collision, the constituent quarks and gluons, or partons,

within each proton are involved in parton-parton interactions. These interactions

can be separated into the hard scattering process and soft emissions, which can be

treated independently according to the factorisation theorem [85]. Perturbation

theory is used to calculate properties of the hard scatter, but produces divergent

contributions when considering soft emissions. These effects must be considered

separately when simulating the interactions.

Monte Carlo simulations are generated in a series of successive steps, starting with

an initial state, incoming partons that participate in the hard scatter, followed

by the creation of stable final state particles that interact with the detector.

The event generation process is described below.

Parton Distribution Function The parton distribution function (PDF), given

by F (x,Q2), provides the probability of finding a given flavour of parton with
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a fraction x of the momentum of the proton at the energy scale of the hard

scatter, Q, where Q2 ≡ −q2 is the momentum transfer in the interaction. Due

to the non-perturbative nature of QCD, these are not predicted and must be

parameterised in terms of fits to experimental data, including data from the

HERA electron-positron collider at DESY and the Tevatron and LHC hadron

colliders. They are dependent on the energy scale and the quark model being

used. The soft non-perturbative emissions in the proton-proton collisions can

be included in the parton distribution function to contain their divergences;

the unphysical factorisation scale, µF , sets a cut-off below which emissions

are included in the parton distribution function, and above which they are

considered part of the hard scatter. The scaling of a parton distribution

function with µF is described by the DGLAP equations [86–88]. Parton

distribution functions are available from several fitting collaborations such as

CTEQ [89], HERA [90, 91], MSTW [92], and NNPDF [93].

Hard scatter process The hard scatter process of coloured quarks and gluons

from the proton-proton collision are described using Matrix Element calcula-

tions at fixed order in perturbative QCD. The specific process is selected in

the hard scatter, for example, the associated production of the W boson and

Higgs boson.

Parton showering High energy coloured partons from the initial hard scattering

process can be treated using perturbative QCD. These partons fragment into

lower energy objects by emitting QCD radiation. At leading order, gluons can

radiate one or two gluons, or a quark-antiquark pair, and quarks can radiate

gluons, which themselves can then radiate further. This process continues until

the partons reach the factorisation scale, Q = µF , where QCD perturbation

theory breaks down. The ordering of the showering is not strictly defined and

is done differently in some MC generators.

Hadronisation When partons from the showering have reached a low enough

Q2 they hadronise due to colour confinement. The hadrons that are produced

in this step may be unstable. The decay of these unstable particles must

be simulated according to known branching ratios. As an example, in the

Lund string model of hadronisation [94] strings are stretched between coloured

partners until the potential energy is large enough to produce a qq̄ pair. This
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continues until the point that there is no longer sufficient energy to create these

pairs. In the cluster model [95] all gluons are split into qq̄ pairs. After splitting

the gluons, the colourless clusters are identified, which are then decayed to

hadrons.

Initial and final state radiation The incoming and outgoing partons of the

scattering process both emit radiation. Final state radiation (FSR) from

the outgoing partons, in the form of soft and collinear emissions, provides

additional showers in the event, which subsequently results in hadronisation.

Initial state radiation (ISR) from the incoming partons is provided similarly

by a parton shower.

Multiple parton interactions (MPI) Additional soft partons from the protons,

not involved in the hard scatter, can interact, resulting in additional particles

in the final state. This is known as the underlying event, and is not well

described by perturbative methods. Multiple partonic interaction models [96],

tuned to LHC data, are used to simulate this underlying event activity.

In the following chapters, the event generation is done with a number of general

purpose generators. They use different hadronisation models, parton showering

models and treat MPI differently. Pythia 6 [97] and 8 [98], Herwig [99] and

Herwig++ [100] all use LO matrix elements to describe parton scattering with

two initial and two final state partons. Sherpa [101] is used to model events

with more final state partons, describing the perturbative part of the interaction,

at up to next-to-leading-order (NLO) accuracy. In this thesis, a number of

specialist generators are used, for example, Powheg [102–104], AcerMC [105],

Madgraph [106] and MCFM [107]. Powheg provides parton showers with

NLO accuracy. Madgraph and MCFM are used in conjunction with general

purpose generators to provide better estimates (up to NLO) of the cross section,

the matrix elements calculations and the showering process. AcerMC provides

a library of matrix elements for common Standard Model background processes.

The interactions of the outgoing particles with the detector are simulated by

passing each generated event through a full simulation of the ATLAS detector

based on Geant4 [108], which allows for the detector response to be calibrated

and efficiencies to be estimated. The simulation estimates how much energy

is deposited in different parts of the detector along a particle’s trajectory. In

particular, modelling the calorimeter response is a complex and time-consuming
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task. In some cases, ATLFASTII [109] is used instead of Geant4, where the

calorimeter response is parameterised.

4.3 Tracks

Charged particles traverse the Inner Detector leaving a chain of hits in the pixel,

SCT and TRT detectors. These hits are combined to form tracks that show the

trajectory of the particle as it moves through the ID [110, 111].

Track finding is performed using two complementary strategies; the inside-out,

and outside-in algorithms [112, 113]. In the inside-out algorithm, track seeds

are identified in the first three layers of the Pixel Detector and the first layer of

the SCT. These seeds are extended through the SCT to form track candidates

and an initial track fit is performed with a Kalman filter. At this step, outliers

are removed and fake track candidates are rejected by track quality cuts. The

track candidates are extended into the TRT, after which the track candidate is

again fitted with input from the Pixel Detector, SCT and TRT. The outside-in

algorithm is used to improve the tracking of particles that decay at a displaced

vertex. Unused track segments in the TRT are extrapolated into the SCT and

Pixel Detector.

Tracks are defined in terms of five parameters: the closest approach of the track to

the reconstructed primary vertex given by the transverse and longitudinal impact

parameters, d0 and z0, respectively, and the track momentum expressed in terms

of the azimuthal angle φ, the polar angle θ, and the charge multiplied by the

inverse transverse momentum q/pT. Quality criteria require reconstructed tracks

to have:

• pT > 1 GeV,

• impact parameters of |d0| < 2 mm and |(z0 − zv) sin θ| < 10 mm (where zv

is the z coordinate of the primary vertex). For b jet identification these are

tightened to |d0| < 1 mm, |(z0−zv) sin θ| < 1.5 mm for tracks not associated

with the secondary vertex,

• at least seven pixel or SCT hits,

• a track χ2/DOF of < 5.
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Tracks are essential in the identification of charged particles, finding the location

of primary vertices (see Section 4.4) from collisions, and secondary or tertiary

vertices from particle decays.

4.4 Primary Vertex

Vertices are points where the trajectories of at least two reconstructed tracks

point to the same origin. The primary vertex refers to the location of the hard

scatter process. The primary vertex with the largest scalar sum
∑
p2

T, and at least

three associated tracks, is taken as the vertex of the hard pp collision. Secondary

vertices occur some distance away from the primary vertex in the transverse and

beam direction, where particles that were produced in the initial collision decay.

Pile-up

Aside from the hard process of interest, there can be multiple further soft

interactions (low q2) during each bunch crossing, known as pile-up. The number

of these interactions is Poisson distributed with a mean value of 〈µ〉. In-time

pile-up refers to the case where these soft interactions are from the same bunch

crossing. Due to the inherent properties of the detector subsystems, there can

be overlap between separate bunch crossings, or out-of-time pile-up. Some of the

detector subsystems have a read-out integration time which is longer than the

bunch spacing, for example, recording activity in LAr calorimeter components

takes on the order of 500 ns, compared with the bunch spacing of 25-50 ns.

As a result of pile-up, a number of primary vertices, NPV , can be identified in an

event, which gives a good indication of the level of pile-up.

The average pile-up during 2012 was 〈µ〉 = 20.7 [114]. In 2015, for Run 2, there

was an average pile-up of 〈µ〉 = 13.5 (19.6) for a 50 ns bunch spacing (25 ns) [115].

In the MC samples used for the studies in this thesis, in-time pile-up is simulated

by overlaying energy deposits from low q2 pp collisions. The out-of-time pile-up

is simulated by overlaying events with a time shift, which is meant to simulate

the inherent delay of the detector subsystems.
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4.5 Electrons

Electron candidates [116, 117] are identified by matching a track in the Inner

Detector with a cluster of cells in the EM calorimeter. The reconstruction

methods for the electrons and muons described below are given in terms of

the WH → `νbb̄ analysis in Chapter 5. Three electron selection categories are

defined, referred to as loose, medium or tight selection. The looser selections

form a subset of the tighter selections; tighter selections have higher selection

purity. The selection efficiency is dependent on the ET and η of the electron,

increasing for all η values at higher ET. The selection depends on a number of

kinematic properties. A likelihood based identification method [117] combines

the shower shape, hadronic leakage (ratio of energy in the transverse plane in the

hadronic calorimeter to the EM calorimeter), the number of hits in the ID, the

impact parameter, track matching (using cuts on ∆φ, E/p and η) and rejection

of electrons matching photon conversions.

In addition to the likelihood identification, there are cuts applied on the transverse

energy (ET) and |η|, and track and calorimeter based isolation criteria must be

satisfied. The track isolation criteria for the lepton selection requires that the

scalar sum of the track momenta within a cone of radius ∆R = 0.2 that are

not associated with the lepton are restricted to a chosen fraction. This is done

similarly in the calorimeter, considering instead energy deposits within a cone of

radius ∆R = 0.3 that are not associated with the lepton that are below a chosen

threshold. The isolation cuts are used to reduce the number of jets that are

misidentified as leptons, since jets have a wider footprint. The requirements for

each of the categories are given in Table 4.1. Corrections are applied to the energy

resolution, reconstruction and identification efficiencies and calorimeter isolation

to account for mismodelling in MC simulations [118].

4.6 Muons

Muons pass through the ID and calorimeters, leaving minimal energy deposits,

and into the Muon Spectrometer (MS). The muons are identified by the

interactions measured in the MS, and, for |η| < 2.5, matched ID tracks.

Initially, the trigger chambers (see Section 3.3.5) identify activity in the MS [119].

Hits from the surrounding regions in the MDT and CSC are used to reconstruct
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Property Loose Category Medium Category Tight Category

ET (GeV) > 7 > 25

|η| < 2.47

Track isolation % < 10 < 4

Calo isolation % - < 4

Likelihood Very Loose Loose Very Tight

Table 4.1 The requirements for electron selection in the loose, medium and
tight categories. The transverse energy, likelihood criteria and the
track isolation requirements become more stringent as the selection
is tightened. Tight selection introduces an isolation cut on the
calorimeter energy deposits. Where there is a ‘-’, this indicates that
these criteria are not applied.

track segments, which are combined between multiple layers of the MS to identify

tracks. If ID tracks are used for muon identification, the tracks in the MS

are extrapolated to the primary vertex, matched to tracks in the ID, and then

combined into a single track. Isolation criteria are imposed to suppress muons

from hadronic decays and hadrons that continue through the calorimeters (known

as punch through).

Three different strategies are used:

1. Combined : Muons are reconstructed using both the MS and ID,

2. Calo: Muons with pT > 20 GeV are identified in the calorimeter and that

are matched to tracks found in the ID with |η| < 0.1,

3. Standalone: Muons with |η| > 2.5 are identified by the MS but are not

matched to the ID.

As with the electron identification, loose, medium and tight categories are used

to identify muons [120].

The category of muon is based on kinematics of the muon candidates and the

strategy used to identify the candidate. For the loose category, any of the three

strategies above can be used to identify the muon, but for the other two categories

only the combined strategy is used, as standalone and calo muons can be more

easily satisfied by other objects, such as jets. The requirements on the pT, η,

track and calorimeter isolation change between categories and are shown for

the combined identification strategy in Table 4.2. As for the electron, there
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Property Loose Category Medium Category Tight Category

pT (GeV) > 7 > 25

|η| < 2.7 < 2.5

Track isolation % < 10 < 4

Calo isolation % - < 4

|d0| (mm) < 0.1

|z0| (mm) < 10

Table 4.2 The requirements for muon selection in the loose, medium and tight
categories for the combined muon identification strategy.

are corrections applied to the pT, identification efficiency and the calorimetric

isolation.

4.7 Jets

Partons can only exist in a colourless state, which is due to QCD confinement; any

quarks or gluons from the fragmentation of a particle during high energy collision

must hadronise. The hadronisation process produces a collimated shower in the

particle detector. The energy deposits and tracks from these showers can be

clustered together into narrow cones, called jets, to measure the momentum and

energy of the original quark or gluon of origin. The jet mass is calculated by

taking the difference between the sum of the square of the energy Ei and square

of the momenta pi of each of the i jet constituents (the calorimeter clusters or

tracks, as described in the following text), given by the equation

M2 =

(∑
i

Ei

)2

−
(∑

i

pi

)2

. (4.1)

An example of jets identified in an event in the ATLAS detector is shown in

Figure 4.1.

A jet algorithm defines a set of rules for combining the large number of final

state particles from the shower into a single object. There is no strict definition

of a jet, however, but the algorithm used should satisfy a number of criteria.

Two of the most important criteria being infrared and collinear safety (IRC-

safety) [122]. The collinear splitting of quarks and gluons, or soft emissions, can

alter the detailed measurement of the jet mass or pT in IRC-unsafe algorithms,
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Figure 4.1 An event display from a collision recorded by the ATLAS
detector [121]. The yellow cones indicate energy deposits that have
been clustered together and identified as jets.

although the set of reconstructed jets does not change.

Jets can be reconstructed using measurements from either the calorimeter

(calorimeter jets) or from tracks (track jets). In MC simulation, truth jets are

reconstructed from stable particles, with a lifetime τ such that τc > 10 mm [20].

There are two different types of calorimeter-based jet algorithms used in general:

cone based and sequential recombination algorithms. Both of the algorithms

consider jets within a defining radius R, which sets the size of the jets. Typically,

when identifying a one quark decay, a radius of R = 0.4 is used, as in Chapter 5.

In Chapter 7, large-R jets are considered where R = 1.0 or R = 1.2.

4.7.1 Calorimeter Jets

The inputs for the jet algorithms come from three-dimensional clusters formed

from cells in the calorimeters [123]. This proceeds through clustering of

neighbouring cells in the calorimeter in a way designed to capture the particle

showers, whilst suppressing noise from the electronics in the detector and from

pile-up. The algorithm for clustering the cells was developed for use at DØ [124],

and has been adapted for use at ATLAS [125]. Clusters are grown iteratively
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around calorimeter cells with significant seed signals. The ratio of the cell signal to

the average expected noise defines a cell signal significance, ςEM
cell . The thresholds,

in terms of this ratio, for the seeding of, the growth of, and the boundary features

of the clusters are defined in terms of three parameters: {S, N , P}. S is the

signal-to-noise ratio, used for the primary seed threshold, N is the growth control

threshold, and P is the cell filter. These take the default values at ATLAS of

S = 4, N = 2, P = 0, derived from optimisations of the response and the relative

energy resolution for charged pions in test-beam experiments [125]. A set of seed

cells for the clusters with S ≥ 4 are identified initially. Neighbouring cells of the

seeds with a signal-to-noise ratio of N ≤ ςEM
cell < S are considered as secondary

seeds and added to the cluster. Any cells neighbouring any of the seeds with

a signal-to-noise ratio of P ≤ ςEM
cell < N are added to the cluster and define

the boundary of the cluster. Once the clusters are identified, these clusters are

evaluated to identify if they contain multiple effective clusters, in which case they

are split up. Once all cells have been assigned to a cluster, the cluster is split if

there are multiple cells that have energy greater than 500 MeV.

Sequential recombination algorithms are IRC-safe by construction. These

define an algorithm-dependent distance parameter between each pair of clusters,

successively combining together pairs until all clusters are deemed too far apart.

The distance parameter is calculated between each pair of clusters i and j, cluster

i and the beam B, according to

dij = min(k2p
ti , k

2p
tj )

∆R2
ij

R2
,

diB = k2p
ti ,

where ∆R2
ij = (ηi − ηj)2 + (φi − φj)2, and kti and ktj are the transverse momenta

of the clusters being compared. The kt [126], anti-kt [127] and Cambridge/Aachen

(C/A) [128] algorithms each use a variation of this distance parameter: p = 1,

p = −1 and p = 0, respectively.

Sequential recombination algorithms follow an iterative process, finding the

minimum distance parameter at each step. If the minimum distance is between

the two clusters, they are combined by adding their four-momenta and creating a

single proto-jet that replaces them. If the minimum distance is between a cluster

and the beam line, then the cluster is labelled as a jet and removed from the

list of remaining clusters. This continues until all the clusters or proto-jets have

been incorporated into jets. In the case of boosted systems, where the decay
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products become sufficiently close together, multiple particles may be included

in the definition of the jet. By examining the substructure of the jet, some of

the proto-jets can be identified as subjets, which correspond (approximately) to

individual decay products.

The three sequential recombination algorithms have slightly different character-

istics. The kt algorithm tends to cluster together softer particles first. This

follows the QCD evolution of the jet, but can result in irregular shaped jets. The

Cambridge/Aachen (C/A) algorithm clusters on the angular separation only and

does not depend on energy or momentum. This can be beneficial for examining

the substructure of the jet, as de-clustering the jet would reveal subjets at each

step. As the jets become more collimated the de-clustering becomes less efficient

at revealing the subjets. As with kt jets, C/A jets can be irregularly shaped. The

anti-kt algorithm is used for most analyses at ATLAS as they are IRC-safe. The

clustering is performed on hard particles first, giving the jets a conical shape.

Additionally, the jet boundaries are not affected by soft emissions.

An illustration of jets clustered with the kt, anti-kt, and Cambridge/Aachen

algorithms is shown in Figure 4.2. The irregular, complex shapes of the kt and

Cambridge/Aachen algorithms can be seen clearly. The anti-kt algorithm gives

conical shaped jets. In the WH → `νbb̄ analysis presented in Chapter 5 anti-kt

jets with a radius parameter of R = 0.4 are used. Both the Cambridge/Aachen

and anti-kt algorithms are used for the substructure studies of boosted W bosons

in Chapter 7.

4.7.2 Jet Calibration and Corrections

Reconstructed jets based on the calorimeter clusters are calibrated such that the

reconstructed energy matches the true energy on average. The correction and

calibration process can be separated into a number of separate steps [130, 131].

Origin correction Jets are corrected such that they originate directly from the

primary vertex, rather than the centre of the ATLAS coordinate system. This

does not affect the energy of the jet, but it improves the angular resolution.

Pile-up subtraction Two corrections are applied to account for pile-up contri-

butions. A correction is applied using a technique based on jet areas [132],
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(a) (b)

(c) (d)

Figure 4.2 The clustering done with the anti-kt method, shown in (d), produces
conical jets with regular boundaries except for the boundaries
between two jets of approximately equal momentum [127]. Also
shown here are the clustering as performed with the (a) kt,
(b) Cambridge/Aachen, and (c) the cone-based SISCone [129]
algorithms.

which adjusts the pT spectrum by subtracting the average energy deposits

from additional low q2 pp interactions in the event [133]. The jet area, A,

provides a measure of the jet susceptibility to soft emissions. The median of

the momentum density of the jet, ρ = median(pT/A) (for kt jets with R = 0.4),

measures the contributions to the pT due to pile-up. The corrected pT is given

by a pcorr
T = pT − ρA, which allows for jets with large pile-up contributions to

be removed by introducing a pT threshold. Additional corrections are applied

which depend on both in-time and out-of-time pile-up.

Energy Calibration There are two energy calibrations given here: Electromag-

netic and jet energy scale and local cluster weighting calibration. These are

both used for jets in later chapters.
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EM+JES Electromagnetic and jet energy scale (EM+JES) calibration [130,

131] is applied to jets to correct for the differences in response for the hadronic

and electromagnetic showers in the calorimeter, energy lost in dead materials

and out-of-cone effects. Out-of-cone effects refer to particles of a jet that

were not identified by the jet reconstruction. The corrections are pT and η

dependent, taken from simulation, with residual corrections obtained using in-

situ measurements providing corrections to data. An additional calibration,

Global Sequential Calibration (GSC) [130], can be used to correct for the

response based on variables other than pT and η, for example, the fraction of

the jet energy in the third ECal layer and the first HCal layer will be correlated

to energy losses in the poorly instrumented region between them.

LCW In the local cluster weighting (LCW) [130] scheme the clusters are

calibrated first before being used to identify jets, with a finalisation of the

calibration taking place on the jet afterwards. A number of weights are

applied which account for the difference between hadronic and electromagnetic

showers, energy lost outside the cluster and dead material. All weights are

taken from simulation.

The jet energy resolution (JER) is measured in-situ from dijet events in data.

The bisector method projects the imbalance in the dijet pT in the direction

bisecting the two jets [134] and in the orthogonal direction. Differences between

the variance of the two components in simulations and at detector-level in data

are then used to evaluate the energy resolution. The JER uncertainties are found

as functions of pT and η.

The effect of pile-up is further reduced by requiring a cut on the jet vertex fraction

(JVF) [135]. JVF is the pT-weighted fraction of associated tracks that originate

from the hard scatter, where an associated track refers to a track which, when

extrapolated outside the ID, matches a jet identified in the calorimeter within a

cone of size ∆R.

Jets are selected for further consideration after they have passed a number of

quality criteria and kinematic requirements, such as cuts on pT or η.
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4.7.3 Track Jets

Charged particle tracks originating from the primary vertex of the event are

used to define track jets, which are robust against the effects of pile-up [130].

Tracks with pT > 500 MeV and |η| < 2.5 are considered for track jets. The

transverse impact parameter must be |d0| < 1.5 mm, and the longitudinal impact

parameter |z0 sin θ| < 1.5 mm. The tracks are used as input to one of the jet

clustering algorithms, such as the anti-kt algorithm, instead of calorimeter clusters

as explained previously. A track jet must have a pT ≥ 3 GeV, and be within

|η| < 2.5.

4.8 b jet Tagging

Identifying jets originating from b quarks, referred to as b jets, is a challenging

task as there are huge backgrounds from light jets. b quarks hadronise into b

hadrons (B+, B0, Bs, Bd and Λb), which have masses of & 5 GeV and relatively

long lifetimes (an average of 1.568± 0.009 ps over all channels), decaying at a

secondary vertex on the order of a few millimetres away from the beam-line [20].

The dominant decay mode of the b hadrons is to c-hadrons. The c-hadrons have a

lifetime an order of magnitude smaller than b hadrons (apart from the D+ which

is on the same order) and can be identified by a tertiary vertex. A significant

fraction of b hadrons decay directly into an electron or muon with a branching

ratio of b→ c`ν` (where ` is an electron or muon) of 10.67% per lepton flavour [20].

The decays involving muons can be identified by a high pT muon close to the jet

axis. An illustration of a b jet decay is shown in Figure 4.3.

A number of algorithms exist which take advantage of these properties to identify

b jets [136]. The IP3D algorithm uses jets with tracks that have a large transverse

impact parameter d0. The SV1 algorithm is used to identify secondary vertices

from b hadron decays, by considering all tracks associated to this point. It uses

the invariant mass and energy of the tracks and the number of two-track vertices

(two-track pairs forming a good vertex) as discriminating variables. In both

cases, numerous tracks are required to reconstruct the primary vertex accurately,

as pile-up can cause significant errors. The JetFitter algorithm reconstructs the

decay chain topology, finding a common line on which all vertices (primary and

secondary vertices from b hadrons and their daughter c-hadron vertices) lie. The

positions of these vertices are used to reconstruct the b hadron flight path.
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The MV1c [136–138] algorithm combines the IP3D, SV1 and JetFitter algorithms

and the jet pT and η in a neural network. The MV1c algorithm is designed

to offer a high c-jet rejection. The b-tagging algorithm is calibrated using

simulated tt̄ events to find operating points which give average b-tagging

algorithm efficiencies of 50% (tight), 70% (medium) and 80% (loose) for b jets

with pT > 20 GeV.

Figure 4.3 An illustration of an event with a b jet [139]. The b hadron formed
from the b quark decays at a secondary vertex a distance Lxy from the
primary vertex. Tracks that originate from the secondary vertex have
a large transverse impact parameter d0 with respect to the primary
vertex.

Tagging efficiencies

The efficiencies for the b tagging of b jets, c jets and light jets are determined

from both data and simulation. Control regions are defined using regions that

are dominated by tt̄ (for b jets) and D∗ mesons (for c jets and multi-jet events for

light jets). Differences in these control regions between data and MC simulations

are used to derive scale factors as a function of pT and η. To account for the

dependence of this on the MC generator used for the simulation, additional MC-

to-MC scale factors are applied.

The tight (loose) operating points of the MV1c algorithm deliver rejection factors

against c jets of 26 (3) and of 1400 (30) against light jets.
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4.9 Missing Transverse Energy

In many instances, not all of the decay products are detected in an event. This

can be due to neutrinos in the final state of the decay (or perhaps even a new,

unknown particle), energy lost in dead materials within the detector or from

uncovered regions of the detector. The colliding protons have a nearly zero

transverse component, and so the decay products should have almost zero net

total transverse momenta. The negative vector sum of the transverse momenta

from all energy clusters in the calorimeter (within |η| < 4.9) and muon detector

measures the missing transverse momentum Emiss
T [140, 141] (with magnitude

Emiss
T ). The magnitude and direction of Emiss

T can be used to infer the presence

of invisible particles in an event, such as neutrinos.

Corrections to energy clusters associated to reconstructed objects in the event

(jets, electrons, photons and muons) are taken from the object calibrations.

Muons can deposit energy in the muon calorimeters as well as the muon detector,

so these calorimeter deposits are removed to avoid double counting. Pile-up can

have a significant effect on Emiss
T due to the difficulty in associating calorimeter

clusters with the primary vertex.

Missing transverse momentum can also be measured using tracks associated with

the primary vertex, denoted pmiss
T , with magnitude pmiss

T . This is only available

within a region of |η| < 2.4, the coverage of the ID. The track-based pmiss
T is

robust against pile-up, but does not include neutral particles.

4.10 Overlap Removal

A reconstructed particle can sometimes pass the requirements for more than one

type of object. A precedence for identification is defined in order to avoid double

counting. In general, the particle type with a higher identification efficiency will

be chosen. For example, if an electron and a jet overlap within an angle of

∆R < X (where the value of X depends on the analysis), then the jet will be

discarded.

Specific requirements for overlap removal for the WH → `νbb̄ analysis presented

in this thesis is discussed in Chapter 5.
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Chapter 5

V H(→ bb̄) Analysis

B.B. has been observed through vibrating strings, although not at the LHC. Image
from [142].

71
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5.1 Introduction

The largest expected branching ratio of the Higgs boson is to a bb̄ pair, however,

at the LHC there is a large irreducible background in this channel. A better

handle on this process is obtained by considering a Higgs boson produced in

association with a W or Z boson (collectively referred to as V ), where the Higgs

boson decays into bb̄ and the vector boson decays leptonically. Feynman diagrams

for these three processes are shown in Figure 5.1. The final state signature of the

leptonically decaying vector boson provides background suppression over QCD

jet activity due to the added requirement of the muon or electron and missing

transverse momentum from the neutrino, however, this comes at the price of a

lower cross section compared with the gluon-gluon Higgs production mechanism.

Hadronic decays of the vector bosons do not offer a clean signature in the detector

and are not considered in this case.

The ATLAS V H(→ bb̄) search using Run 1 data is described in Reference [1]

with two distinct methods: the nominal results are found using a multivariate

analysis (MVA) which combines a number of variables in a boosted decision

tree (BDT), and as a crosscheck, a cut-based analysis is performed using the

dijet mass, mbb. A mass range of between 110-140 GeV is considered for the

signal region when considering a Higgs boson of mass 125 GeV, since the dijet

mass resolution is around 11% (14 GeV). As the Higgs boson has not yet been

observed in this decay channel, masses other than 125 GeV are considered for

setting exclusion limits. The analysed data is taken from the ATLAS experiment

accumulated during Run 1 of the LHC from proton-proton collisions at centre-

of-mass energies of
√
s = 7 TeV and

√
s = 8 TeV, corresponding to integrated

luminosities of 4.7 fb−1 and 20.3 fb−1, respectively. The author contributed to the

WH cut-based analysis of the
√
s = 8 TeV data, and as such, this is described

in detail here. Brief overviews of the MVA and the cut-based analysis of the ZH

channels are also given, as these affect the WH analysis.

The analysis proceeds by applying a number of selection criteria to enhance the

signal-to-background ratio. The final number of signal and background events in

the data sample are determined by performing a binned maximum likelihood fit.

The focus of this chapter is on the WH → `νbb̄ analysis, however, the results

from the ZH → νν/``bb̄ analyses are also given, and are combined in a binned

likelihood fit to improve the sensitivity of the search.
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Figure 5.1 Feynman diagrams for the three V H(bb̄) channels considered.

At
√
s = 8 TeV the expected V H cross section with next-to-next-to-leading

order (NNLO) QCD and next-to-leading order (NLO) EW corrections for a

Higgs boson with mH = 125 GeV is σ(WH) = 696.6+3.7%
−4.1% fb, and for ZH is

σ(ZH) = 394.3+5.1%
−5.0% fb [54]. The W and Z bosons have branching ratios of

Br(W → `ν`) = (10.86± 0.09)%, and Br(Z → `+`−) = (3.3658± 0.0023)% where

` refers to each lepton flavour individually (not a sum over them), and

Br(Z → νν̄) = (20.00± 0.06)% [20] for the combination of all three ν flavours.

Since the τ is heavy enough to decay hadronically, which is difficult to identify,

hadronic τ decays are not considered. There is no dedicated selection designed

to identify leptonically decaying τ leptons, however, these decays will have some

acceptance in the other leptonic decay channels considered. The three channels

are distinguished from each other based on the number of final state leptons:

• 0-lepton channel: targeting ZH → νν̄bb̄,

• 1-lepton channel: targeting WH → `νbb̄,

• 2-lepton channel: targeting ZH → `+`−bb̄.

Here, ` refers to either an electron or muon. These channels, whilst aiming to

target specific processes, have overlapping contributions, as detailed in Table 5.2.
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5.2 WH Analysis Strategy

TheWH signal region is defined as an event with an electron or muon, at least two

b jets and missing transverse momentum. The largest backgrounds come from

W/Z+jets and tt̄ production. Other significant backgrounds come from single

top quark and diboson (WZ and ZZ) production and multi-jet events. The

backgrounds to the analysis are estimated using both Monte Carlo (MC) and

data-driven techniques, which are discussed in Sections 5.5 and 5.6. Particular

attention is paid to the multi-jet background estimation in Section 5.7.

The analysis procedure is validated by using a similar diboson final state

signature, V Z(→ bb̄), which has a softer pT spectrum and a lower peak in the

invariant mass distribution of the two b quarks. The diboson production has a

cross section that is five times larger than the expected 125 GeV Higgs boson

cross section.

The binned maximum likelihood fit (also referred to as the global likelihood fit)

is used to perform a fit to mbb (in some control regions which are described in

the following text, the fit is performed on the MV1c distribution of the leading

jet in the event) in the dijet mass analysis, or the BDT output for the MVA (see

Section 5.9 for the fitting procedure). The inputs to the likelihood fit are taken

from 81 signal regions and 11 control regions determined by the number of jets

in the event, and divided into bins of the pT of the W or Z boson, as described

in Section 5.4. The primary metric used to identify the presence of a signal is

the signal strength parameter µ = σ/σSM, where σ is the measured cross section,

and σSM is the expected cross section for a Standard Model Higgs boson.

The observed mbb distributions from data are fitted to those from simulated

signal and background processes. The impact of systematic uncertainties on

the shape and normalisation of the expected signal and background processes (as

discussed in Section 5.8) is described in terms of a set of nuisance parameters that

are constrained by Gaussian or log-normal prior probability distributions. The

likelihood is profiled, with the nuisance parameters treated as floating parameters

in the fit, constraining them. An initial fit is performed where estimates of some

of the background normalisations are found by leaving them to float in the fit.

The backgrounds with the corrected normalisation are used for the subsequent

fitting procedures where the nuisance parameters are constrained and the final

event yields are determined. In the text that follows, the results obtained before
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the global likelihood fit are referred to as prefit, and after the fit as postfit. The

analysis is performed blinded, as described in Section 5.3.

5.3 Blinding Strategy

In order to prevent data-driven or personal bias in an analysis it can be performed

‘blinded’. In this type of analysis, the final result in a predefined signal region is

kept hidden until the details of analysis are fully understood and described, such

as the selection criteria and systematic uncertainties.

The analysis presented here was performed blind. The data in the signal dijet

mass window (i.e. 110-140 GeV) was not revealed whilst the analysis procedure

was being validated. The likelihood fits that were performed before unblinding

still included the data, but the postfit signal strength, µ, was not looked at, nor

was the 110-140 GeV region in the dijet mass distributions. In this way, it was

ensured that the fit was performing as it should, without any knowledge of what

the signal looked like. After the fit model was deemed sufficiently well understood,

the data was unblinded.

After unblinding the data, disagreement was seen between data and MC that was

not understood in the regions where the W boson candidate had low transverse

momentum (pWT ) in the 1-lepton electron channel. No cuts or selection criteria

were changed, however, this region is not included in the final global likelihood

fit presented in this thesis.

5.4 Event Selection Criteria

Selections are applied to the data and Monte Carlo samples to enhance the

signal-to-background ratio. Initially, the events are characterised based on trigger

selections, followed by a set of geometrical and kinematic cuts on reconstructed

physics objects, which are detailed in Table 5.1 and motivated in the text below.

5.4.1 Trigger Selection

0-lepton events (targeting ZH → νν̄bb̄) are selected from events that pass an

Emiss
T trigger with a threshold of 80 GeV. The turn-on of the trigger reaches
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maximum efficiency (of almost 100%) at the plateau region where the offline

Emiss
T > 120 GeV1. Below this point the coarse granularity, and resolution, of

the Level 1 trigger results in some events with lower Emiss
T being underestimated

and discarded. 1-lepton selection (targeting WH → `νbb̄) uses two sets of single

lepton triggers. The first set has an electron ET threshold of 24 GeV, muon pT

threshold of 24 GeV and includes track isolation cuts in order to reduce the effect

of high pileup, although this requirement lowers the efficiency of the trigger. The

second set is intended to recover some of this efficiency by removing the track

isolation cuts and imposing much higher thresholds of 60 GeV (electrons) and

36 GeV (muons). The 2-lepton selection (targeting ZH → `+`−bb̄) uses the same

triggers as the 1-lepton selection with additional di-electron and di-muon triggers

with thresholds of 12 GeV and 13 GeV, respectively.

5.4.2 Object Selection

After the initial trigger selection, further selections are performed on the

reconstructed objects in the event. The objects considered are the number of

loose, medium and tight leptons (as discussed in Sections 4.5 and 4.6), the number

of jets (and b jets, specifically) and the Emiss
T in the event. The lepton selections

are slightly different for each of the V H channels as they have different kinematics

and final states; however, they have the same jet selections.

Selections on the number of leptons are as follows:

• the 0-lepton channel must contain no loose leptons,

• the 1-lepton channel must contain one tight lepton and no further leptons,

• the 2-lepton channel must contain two loose leptons, of which at least one

is also a medium lepton.

Jets are reconstructed using the anti-kt algorithm with a distance parameter

of R = 0.4 and calibrated using the EM+JES calibration scheme with a further

correction applied from GSC (discussed in Section 4.7.2). Events with any forward

jets (|η > 2.5|) of pT > 30 GeV are vetoed in order to reduce backgrounds from

top quark processes. Jets that are considered in the analysis, so called selected

1The online Emiss
T trigger does not contain Inner Detector or Muon Spectrometer

information.
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jets, must be within |η| < 2.5 and have pT > 20 GeV. To reduce the effects of pile-

up there is a cut of |JVF| > 0.5 for jets with pT < 50 GeV and |η| < 2.4. Exactly

two or three selected jets are required, and the events are then further categorised

by the number of b jets. Events with more than two b jets are vetoed and at least

one of the b jets must have pT > 45 GeV. In the the 3-jet region, events where

the lowest pT jet is b tagged are also vetoed. The b jets are selected according

to either loose, medium or tight operating points, as discussed in Section 4.8.

Events with 0, 1 or 2 b jets are divided into five regions:

• 0-tag: Events with exactly zero b jets,

• 1-tag: Events with exactly one loose b jet,

• 2-tag: Events with exactly two b jets. In order to improve sensitivity and

to get a better handle on the flavour composition of the tagged jets, this is

subdivided based on the b-jet classification (see Figure 5.2):

– 2L category: 2 loose b jets, one of which can be medium or tight,

– 2M category: 2 medium b jets, one of which can be tight,

– 2T category: 2 tight b jets.

Overlap removal (as discussed in Section 4.10) is performed to prevent objects

being identified as multiple types of objects. The procedure is as follows:

• If an electron and a jet overlap within ∆R < 0.4, the jet is discarded.

• If a muon and a jet overlap within ∆R < 0.4, the jet is discarded if it has≤ 3

associated tracks, as this is likely to have come from a muon; otherwise, the

muon is discarded.

• If a muon and electron overlap within ∆R < 0.2 the muon is discarded if it

is only identified in the calorimeter, otherwise, the electron is discarded.

Any muons, overlapping with a jet, that are discarded are used for jet energy

corrections (see b-jet pT correction in Section 5.4.3) and in the calculation of

Emiss
T . The additional criteria in the muon-jet overlap removal are chosen to

identify the case where a muon from the vector boson decay falls within a jet.
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Figure 5.2 Summary of the event classification criteria as a function of the
MV1c scores for the two highest pT jets. The percentages correspond
to the b-tagging efficiency of the MV1c operating points (OP) which
define the loose, medium and tight jets [1].

5.4.3 Geometrical and Kinematic Selections

Further geometrical and kinematic cuts are applied to reduce specific back-

grounds, which are summarised in Table 5.1. In general, the cuts are looser

for the MVA selection, allowing the BDT to find the optimal cuts using more

information, and at the same time increasing the number of events available for

training.

Events are further categorised based on the magnitude of the transverse

momentum of the vector boson candidate (pVT), taking advantage of the increased

signal-to-background ratio and sensitivity at high pVT . In the 1-lepton channel,

the transverse momentum of the W boson, pWT (with magnitude pWT ), is the

vector sum of the lepton transverse momentum and the Emiss
T . In the 0-lepton

channel the transverse momentum of the Z boson, pZT (with magnitude pZT), is

given by Emiss
T , and in the 2-lepton channel it is the vector sum of the two leptons’

transverse momentum.

In the 0-lepton channel the lowest pVT bin begins at 100 GeV, which is possible due

to a parameterisation of the Emiss
T trigger, allowing for the trigger threshold to

be lowered from 120 GeV without a significant loss in efficiency. In the 1-lepton

channel, only the muon channel is used for the pWT < 120 GeV bins. As discussed

in Section 5.3, the electron channel has large contributions in this region from

the difficult-to-model multi-jet background and is not considered. Only two pVT
bins are defined in the MVA in order to maximise the use of available training

events, and since the MVA is given pVT as a training variable. The pVT bins are
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Variable Dijet-mass analysis Multivariate analysis

Common selection

pVT [GeV] 0–90 90(∗)–120 120–160 160–200 > 200 0–120 > 120

∆R(jet1, jet2) 0.7–3.4 0.7–3.0 0.7–2.3 0.7–1.8 < 1.4 > 0.7 (pVT<200 GeV)

0-lepton selection

pmiss
T [GeV]

NU

> 30 > 30

NU

> 30

∆φ( ~EmissT , ~pmiss
T ) < π/2 < π/2 < π/2

min[∆φ( ~EmissT , jet)] – > 1.5 > 1.5

∆φ( ~EmissT ,dijet) > 2.2 > 2.8 > 2.8
Njet=2(3)∑

i=1

p
jeti
T [GeV] > 120 (NU) > 120 (150) > 120 (150)

See text – –

1-lepton selection

mW
T [GeV] < 120 –

HT [GeV] > 180 – > 180 –

Emiss
T [GeV] – > 20 > 50 – > 20

2-lepton selection

m`` [GeV] 83-99 71-121

Emiss
T [GeV] < 60 –

Table 5.1 Event selections for the different channels. (∗) In the 0-lepton
channel, the lower edge of the second pVT bin is set at 100 GeV instead
of 90 GeV. For the 1-lepton channel, only the 1-muon sub-channel is
used in the pVT < 120 GeV bins. Where there is a value in brackets for

a specific cut (∆R(jet1, jet2) and
Njet=2(3)∑

i=1
p

jeti
T ), the value in brackets

refers to a different cut used in the electron channel. ‘NU’ indicates
that the cut is not used.

given in Table 5.1.

The angular separation ∆φ(j1, j2) between the leading two jets depends on pVT ,

and as such this cut is changed for each bin. These cuts are removed at high

pVT due to the relatively small background contributions.

In the 1-lepton channel, cuts are made on the transverse mass of the W boson,

mW
T , the scalar sum of the full set of reconstructed objects, HT, and Emiss

T .

Due to the presence of neutrinos in the W boson decay, its mass cannot

be reconstructed precisely, therefore the transverse mass is used, defined as

mW
T =

√
2p`TE

miss
T (1− cos(φ` − φmiss)), where p`T and φ` refer to the transverse

momentum and azimuthal angle of the lepton, Emiss
T and its azimuthal angle φmiss.

The mW
T selection is used to identify W bosons and reduce the tt̄ background and

QCD at low mW
T . HT is the scalar sum of the Emiss

T , the pT of the leading two
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jets and lepton. The HT cut is used in the pVT < 120 GeV bin, and the Emiss
T cut

in pVT > 120 GeV, in order to reduce the multi-jet background.

The final discriminant in the cut-based analysis is the dijet invariant mass. Excel-

lent mass resolution of jets is therefore paramount; energy and pT calibrations are

performed to improve this [1]. Energy from muons, which were removed during

overlap removal with jets, is added to the energy of the b jet, minus associated

measurements of the muon energy in the calorimeter. The pT resolution of the

b jets is improved by applying a pT-dependent correction derived from simulated

V H events. This improves the dijet mass resolution by around 14%, resulting in

a dijet mass resolution of around 11% (or ≈14 GeV).

The acceptance and cross section times branching ratio for all three channels after

the full event selection is shown in Table 5.2.

mH = 125 GeV at
√
s = 8TeV

Process σ× BR [fb]
Acceptance [%]

0-lepton 1-lepton 2-lepton

qq → (Z → `+`−)(H → bb) 14.9± 0.70 – 1.1 10.9

gg → (Z → `+`−)(H → bb) 1.3± 0.85 – 0.7 8.1

qq → (W → `ν)(H → bb) 131.7± 6.23 0.3 3.7 –

qq → (Z → νν̄)(H → bb) 44.2± 2.08 3.8 – –

gg → (Z → νν̄)(H → bb) 3.8± 2.51 5.0 – –

Table 5.2 The cross section, σ, times branching ratio (BR) and acceptance for
the three channels at 8 TeV. The qq- and gg-production modes are
shown separately. The branching ratio for Z → `+`− refers to just
electrons and muons, W → `ν to all three lepton flavours and decays
to neutrinos for Z → νν̄. Acceptance is defined here as the fraction
of events remaining after the full 2-tag signal event selection. Other
production and decay modes of the Higgs boson are negligible after
these selections. The uncertainties on σ×BR include scale and PDF
uncertainties on the production cross section and uncertainties on the
branching ratios [1, 54].

5.4.4 Multivariate Analysis

In tandem with the dijet mass analysis, a multivariate analysis (MVA) was

performed using a boosted decision tree (BDT). The BDT takes as inputs

additional kinematic, geometrical and b-tagging properties and accounts for

correlations between these variables.
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Variable 0-Lepton 1-Lepton 2-Lepton

pVT × ×
Emiss

T × × ×
pb1T × × ×
pb2T × × ×
mbb × × ×
∆R(b1, b2) × × ×
|∆η(b1, b2)| × ×
∆φ(V, bb) × × ×
|∆η(V, bb)| ×
HT ×
min[∆φ(`, b)] ×
mW

T ×
m`` ×
MV1c(b1) × × ×
MV1c(b2) × × ×

Only in 3-jet events

p
jet3
T × × ×
mbbj × × ×

Table 5.3 Variables used in the multivariate analysis for the 0-, 1- and 2-lepton
channels. The variables b1 and b2 refer to the leading and sub-leading
b jets according to pT.

In addition to looser selection criteria, there are fewer pVT bins and the electron

and muon sub-channels are combined. Only two pVT bins are used for the 1- and

2-lepton channels: pVT < 120 GeV and pVT > 120 GeV, and only one bin for the

0-lepton channel: pVT > 120 GeV. This provides more events for training the

BDT.

The full list of variables used for the MVA is listed in Table 5.3.

5.4.5 Control Regions

Events in the 0-tag and 1-tag regions are used as control regions to constrain the

main backgrounds. Events in the 1-lepton channel with three selected jets and

2-tags provide a control region since this largely consists of tt̄ events. The 1-tag
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Process Generator

Signal

qq → ZH → νν̄bb̄/`+`−bb̄ pythia8

gg → ZH → νν̄bb̄/`+`−bb̄ powheg+pythia8

qq →WH → `νbb̄ pythia8

Vector boson + jets

W → `ν Sherpa 1.4.1

Z/γ∗ → `+`− Sherpa 1.4.1

Z → νν̄ Sherpa 1.4.1

Top-quark

tt̄ powheg+pythia6

t-channel AcerMC+pythia6

s-channel powheg+pythia6

Wt powheg+pythia6

Diboson powheg+pythia8

WW powheg+pythia8

WZ powheg+pythia8

ZZ powheg+pythia8

Table 5.4 The generators used for the simulation of the signal and background
processes. [1]

control regions and 2-tag signal regions are both included in the global likelihood

fit, however, the 0-tag control regions are not; they are only used to improve the

background modelling.

5.5 Data and Simulated Samples

The data used for the analysis presented here is from pp collision data recorded by

ATLAS with stable beams and all subsystems providing high quality data during

2012, corresponding to an integrated luminosity of 20.3 fb−1 at a centre-of-mass

energy of
√
s = 8 TeV.

Monte Carlo simulated samples are produced to model the signal and the majority

of the backgrounds. The multi-jet background is estimated from data, however,

it does depend on the simulation of other backgrounds. All detector simulations

are produced using the atlfast-II simulation [109].
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The qq-initiated WH and ZH production is simulated with the pythia8 [98]

generator with the CTEQ6L1 [143] PDFs and AU2 tune [144, 145] for the

underlying event. The tune specifies the parton shower, hadronisation, and

multiple parton interactions. QED final-state radiation is simulated with

photos[146]. gg initiated ZH production is simulated to leading order (LO) in

QCD using the powheg generator [102–104] within the MiNLO approach [147]

using the CT10 PDFs [148], interfaced to pythia8 with the AU2 tune.

MiNLO improves the parton showering predictions of powheg by choosing the

renormalisation scale dynamically. The same setup is used for the qq processes

as a crosscheck [149].

The pT distribution of the Higgs boson is different for the two ZH production

processes and requires different calculations. For the qq processes the total

production cross sections and uncertainties are calculated at NNLO in QCD [150–

152], and with vector-boson-pT-dependent NLO electroweak corrections [153,

154]. For gg initiated ZH production, NLO corrections in QCD [155] are also

taken into account. The qq and gg initiated ZH samples are then combined

and weighted according to cross section. In this analysis only the H → bb̄ decay

mode is considered, and the branching ratios are calculated with hdecay [156].

All processes are simulated with a range of Higgs boson masses from 100 to

140 GeV in steps of 5 GeV.

The V+jets backgrounds are simulated at LO in QCD with the sherpa

generator [101] and the CT10 PDFs. The cross sections are calculated at NNLO

for (W/Z)+jets [157].

For tt production the powheg generator is used with the CT10 PDFs, and then

interfaced with pythia6 [97] using the CTEQ6L1 PDFs and the Perugia2011C

tune [144, 145], with the cross section normalised to NNLO [158]. The

Perugia2011C tunes are designed to provide a best-guess prediction of the charged

track multiplicity.

The single top and diboson backgrounds are simulated with powheg in the

same way as for tt, however, the t-channel exchange is simulated with the

AcerMC generator [105] interfaced with pythia6, using the CTEQ6L1 PDFs

and the Perugia2011C tune. For the diboson channel, pythia8 is used

instead of pythia6 [159]. The cross sections are calculated in the following

references [160–162].
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5.6 Backgrounds

The backgrounds to the analysis are taken from simulation, apart from the multi-

jet background, which is estimated from data. The background normalisations

for W+jets and tt̄ are left to float freely in a preliminary global likelihood fit,

with prior constraints applied from theoretical cross sections, which are used to

optimise the initial selection. In subsequent fits these background normalisation

factors are fixed. The diboson normalisation is taken from theory, and the

multi-jet normalisation is estimated from data. Relative background contribution

estimates in the inclusive 2L+2M+2T b tag region, after the global likelihood fit,

are shown in Table 5.5.

pVT bin (GeV) pVT < 90 90 ≤ pVT < 120 120 ≤ pVT < 160 160 ≤ pVT < 200 pVT ≥ 200 Incl.

Z+jets 2.66% 3.17% 1.73% 1.36% 0.85% 2.52%

W+jets 36.4 % 34.4 % 31.2 % 37.2 % 46.6 % 35.5 %

tt̄ 30.3 % 39.4 % 45.8 % 38.5 % 26.9 % 34.5 %

s-top 17.4 % 13.7 % 10.7 % 9.86% 8.55% 15.3 %

V V 1.32% 1.48% 2.07% 3.67% 5.98% 1.64%

MJ (el) 0 % 0 % 2.93% 2.62% 1.09% 2.68%

MJ (µ) 6.65% 2.32% 0.23% 0.15% 0 % 4.53%

Table 5.5 The relative contribution of each major background is shown here in
the inclusive 2-tag region (2L+2M+2T). These values are after the
global likelihood fit. The inclusive MJ contribution in the electron
channel is calculated for pVT > 120 GeV.

5.6.1 W+jets

The W+jets background includes contributions from b jets, c jets and light jets

(l). The W + bb̄ background is irreducible for the analysis, whilst charm, strange,

up and down quarks can be misidentified as heavy flavoured b jets, providing

an additional background contribution. This region is referred to as the W +

heavy-flavour(hf) background, where hf = bb + bc + bl + cc. The entire W+jets

contribution accounts for about 45% of the total background in the inclusive

2L+2M+2T b-tag region, and is particularly dominant where pWT > 200 GeV,

consisting of over 60% of the background.

The relative flavour composition of the jets is not well known. There are

significant contributions to the 1-lepton channel from W + l/cl in the 0 and

1-tag regions. The W + hf background becomes dominant for the 2 b-jet regions,
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increasing as the b-tagging requirement is tightened and pWT increases. Separating

the 2-tag region into 2L, 2M and 2T offers increased sensitivity to the flavour

composition. The c jets and light jets are not directly tagged; a parameterisation

of their probability to be b tagged as a function of pT and η is used. This is

applied as a reweighting factor for truth-c-jets and light jets in simulated W + l,

W + cl and WW backgrounds.

In the 0-tag and 1-tag regions, which have a large contribution from W+light

jets, a mismodelling of the ∆φ(j1, j2) (Figure 5.3) and pWT (Figure 5.4) is seen in

both the electron and muon channels. The source of this is the MC generators;

it is seen in both Sherpa and Alpgen (although an improvement is seen with

NLO generators [163]). A slope in the data-to-MC comparison of these variables

shows a deficit in the low pWT bins and an excess in the higher bins. This effect

is seen in the ∆φ(j1, j2) distributions as well, where high pWT corresponds to low

∆φ(j1, j2) . Subsequently, corrections are applied, parameterised by pWT . The

effect of the corrections in the muon channel for ∆φ(j1, j2) is shown in Figure 5.3

and for pWT in Figure 5.4.
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Figure 5.3 The ∆φ(j1, j2) distribution observed in the 2-jet 0-tag control region
of the 1-muon sub-channel (a) before and (b) after reweighting to
correct the mismodelling of the background Monte Carlo samples.
All the pWT bins are combined.

A strong dependence of the b-tagging efficiency is seen on ∆R between the jet

being considered and the closest jet to it, where large differences are seen between

parameterised tagging and direct tagging for W + cc events with ∆R < 1. As

such, a dedicated correction depending on ∆R is applied to the W + cc events
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Figure 5.4 The pWT distribution in the 2-jet 0-tag control region of the 1-muon
sub-channel (a) before and (b) after ∆φ(j1, j2) reweighting to correct
the mismodelling of the background Monte Carlo samples.

when truth tagging is used (see Section 5.7.2).

5.6.2 tt̄ and single top

The tt̄ background is a major source of background in the 2-jet and 3-jet

categories. The top quark is expected to decay exclusively to Wq (q = d, s, d)

and dominated by Wb, with a measured ratio of Br(t→ Wb)/
∑

q Br(t→ Wq) =

1.014 ± 0.003(stat.) ± 0.032(syst.) [20]. The three major final states of the tt̄

background are determined by the decay of the W bosons: di-leptonic, semi-

leptonic (where one W boson decays leptonically and the other hadronically), or

fully hadronic.

The semi-leptonic decay provides the largest background to the 1-lepton analysis,

although there are also contributions from the di-leptonic decays at low pWT . This

final state produces four jets, two of which are b jets, a single lepton and Emiss
T .

The contribution in the 2-jet region is not significant, but it is the dominant

background for the 3-jet region. The contribution of this background ranges

from between 21% of the total background at high pVT and up to 40% in the

120 < pVT < 160 GeV bin.

The simulations of the top pT from the POWHEG generator interfaced to

PYTHIA produce a spectrum that is too hard. It is corrected by applying a
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correction at the level of generated top quarks in the tt̄ production process.

In addition to tt̄ production, single top production contributes between 14% of

the total background at low pVT , and 7% at high pVT . This occurs in three channels:

• s-channel, where a top and bottom quark are produced by the decay of a

virtual W boson,

• t-channel, where a top quark is produced along with a bottom quark and a

light quark,

• Wt-channel, where the top quark is produced in association with aW boson.

5.6.3 Diboson Processes

Diboson processes, WW , WZ and ZZ, are backgrounds to the search. The

main contribution to the 1-lepton channel comes from W → `ν and Z → bb̄.

Smaller contributions arise from Z → `+`−, through the misclassification or

reconstruction of one of the leptons, and W → qq̄, where the W is mistagged.

The background contribution from the diboson processes is between 1.4% at low

pVT and 5% at high pVT . The V (Z → bb̄) process is predicted to have a cross section

almost 5 times that of V (H → bb̄), which offers an opportunity to validate the

analysis.

5.7 Multi-Jet Background

There is a huge production cross-section from QCD multi-jet (MJ) events, which

is over five orders of magnitude greater than the V H processes [164]. The V H

selections are designed to remove the majority of the MJ events, and although

MJ events have a low acceptance, the huge cross-section means that the MJ

contribution is non-zero. The multi-jet background arises predominantly from

QCD processes where jets and photon conversions are incorrectly identified as

leptons or Emiss
T . It is particularly apparent in the electron channel as jets are

misidentified as electrons more often than as muons. Lepton isolation criteria

provide crucial discrimination between vector boson decay products and multi-

jet events in these situations. The MJ background contribution is measured using

data driven methods as generating sufficient amounts of simulated events would
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be unfeasible. The following sections describe a number of aspects of the MJ

background estimation in the 1-lepton channel. Firstly, the template used to

estimate the multi-jet background is introduced in Section 5.7.1, in Section 5.7.2

a method of increasing the number of events with tight-tagged b jets is discussed.

The normalisation of the multi-jet background is discussed in Section 5.7.3 and

the systematic error calculations are given in Section 5.8.2.

5.7.1 Multi-Jet Template

A multi-jet-enriched template region is defined from a region orthogonal to the

signal region (defined in Table 5.1) by applying all the event selection cuts

and a modified lepton isolation selection, as illustrated in Figure 5.5. Events

with multiple leptons (including the leptons identified with the nominal isolation

requirements and the modified isolation requirements) are vetoed. After these

selections have been applied to both data and all other backgrounds, any

differences seen in the yields between data and the other backgrounds are assumed

to come from multi-jet events, since the region is signal-free. This process is

described below, which provides the shape of the background. For reference, the

shape of the dijet mass from the MJ background is shown in Figure 5.13. The

estimate of the MJ contribution then needs to be extrapolated from the template

region into the signal region and the normalisation is determined through a fit to

data. This is described in detail in Section 5.7.3.

Electrons and muons in the MJ-enriched template region are selected with looser

cuts, inverted track isolation cuts and a looser calorimeter isolation cut. In the MJ

enriched region, in order to identify jets that are being misidentified as leptons,

the isolation criteria are modified to 0.05(0.07) < isotrack < 0.5 and 0.07 <

isocalo for the electron (muon) channel. After overlap removal has been performed

on the leptons identified with the modified isolation, further requirements are

imposed on the isolation cuts to construct nominal and systematic variations of

the MJ template. In the electron channel, the isotrack region is divided into two

regions which have almost the same number of events being selected: 0.05 <

isotrack < 0.12 is used for the nominal template, and 0.12 < isotrack < 0.5 is

used for a systematic variation which is symmetrised to give the up and down

systematic variations. In the muon channel, the full isotrack region is used for

the nominal template, and two regions with an almost equal number of events,

0.05 < isotrack < 0.12 and 0.12 < isotrack < 0.5, are used for the up and down
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Figure 5.5 Lepton selection for the WH analysis in the (isotrack, isocalo)
plane [1]. The green box corresponds to tight lepton selection as
used for the nominal event selection (signal region or SR) and the
blue box is the MJ lepton selection. Nominal MJ electrons are those
in the tighter control region (CR), and those in the looser control
region are used for systematic uncertainty determination. All MJ
muons in the area defined by the blue box are considered as nominal
MJ muons, whilst the tigher and looser control regions are used for
upper and lower systematic variations.

systematic variations, respectively. The nominal template values are shown in

Table 5.6 and the systematics are further discussed in Section 5.8.2.

Property Nominal MJ electron MJ muon

isotrack < 0.04 0.05 < isotrack < 0.12 0.07 < isotrack < 0.5

isocalo < 0.04 < 0.07

Electron selection Tight Medium -

Table 5.6 The modified isolation requirements for lepton selection in the MJ-
enriched template region.

After requiring the two b jets in the event selection, the number of events is

severely reduced, so one b-tag events are used in this two b-tag region (discussed

in Section 5.7.2).

By applying the event selection defined by the MJ template, the initial estimate

of the MJ background is found to be concentrated at low pWT , as can be seen in

Figure 5.6. The HT cut in the pWT < 120 GeV bin reduces the MJ contribution,

but it is still substantial in the electron channel, contributing up to 11% for the

2L category and 6% in the 2T category. As such, since the background cannot

be well modelled or constrained for this bin in the electron channel, it is not used

in the signal selection.
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Case Order Keep µ Keep e Keep jet

∆R(jet, e) < 0.4 1 - Yes No

∆R(jet, µ) < 0.4 2 Ntrk ≤ 3 - Ntrk ≥ 4

∆R(µ, e) < 0.2 3 if not calo µ if calo µ -

Table 5.7 A summary of the overlap removal in the multi-jet selection and the
order in which this is done. Here, Ntrk refers to the number of ghost
matched tracks with pT > 0.5 GeV. In ghost matching, the tracks are
treated as infinitesimally soft, low-pT particles and added to the list of
inputs to the calorimeter jets. They do not affect the jet clustering,
but afterwards it is possible to identify which tracks were clustered
into each jet.
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Figure 5.6 Distributions of pWT in the inclusive 2 b-tag region (2L+2M+2T) in
the electron (a) and muon channel (b). The multi-jet contribution
(shown in pink) is concentrated in the pWT < 120 GeV region.

5.7.2 Truth Tagging

When applying the two b-jet selection many events are removed by the b-

tagging selection. This results in relatively few events from the other simulated

backgrounds in the template region, which makes shape comparisons with data

difficult to perform. Since the MJ contribution is calculated by taking the

difference in yields from all other backgrounds (from MC) and data, this leads

to a poor estimate of the number of MJ events. In order to increase the

number of simulated events available, a method called truth tagging is used.

The basic concept of truth tagging is the promotion of 1-tag events to 2-tag

events, motivated by the similar kinematics seen in these regions. For example,
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a comparison of the shape of the lepton pT in 1-tag and 2-tag events shows good

agreement in the MJ region for the 2L electron channel, as seen in Figure 5.7.

Simulated background events that contain exactly one b jet (passing at least

the loose criteria) and one non-b-jet are promoted to 2-tag events by assigning

an MV1c value to the other non-b-jet such that it passes the b-jet requirement:

the non-b-jet is truth tagged. The assigned MV1c value is estimated from the

2-tag MJ region based on the b-tagged jet’s MV1c value and the rank of the

other jet (leading or subleading) with an accompanying scale factor. The event

is reweighted such that the overall yield and the event kinematics are consistent

with the 2-tag region. The effect of truth tagging can be seen in Figure 5.8, where

a smoother shape is obtained after applying truth tagging.

There are large differences in the kinematics in the electron channel between the

1-tag and 2T-tag regions due to the heavy flavour of the contribution in the 2T

channel compared with the dominant light flavour in the 1-tag region. To correct

for this a reweighting is applied based on the pWT and ∆φ(j1, j2) (as discussed

in Section 5.6.1). An additional correction is applied to account for biasing the

results with truth tagged jets. The details of the truth tagging are given in

Appendix B. The contribution of the truth tagged events accounts for almost

90% of the MJ estimate, with the remaining 10% coming from events that have

two b-tagged jets.
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Figure 5.7 A comparison of electron pT between the 1 b-tag and 2L b-tag
regions shows good agreement. The shape and relative normalisation
motivates the method of truth tagging: promoting 1 b-tag events in
to the 2 b-tag region to increase the number of available events.
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(a) (b)

Figure 5.8 Distributions of ∆R(jj) for (a) W + cl and (b) W+jets MC events
with (TT) and without truth tagging (DT), both normalised to the
event yield. Distributions with the solid lines are with truth tagging.
Truth tagging helps to mitigate the effects of having fewer b-tagged
jets.

5.7.3 Multi-Jet Fitting Procedure

The shape of the MJ contribution is modelled in the region defined by the

MJ-enriched template and then extrapolated in the region where the nominal

event selection is applied (referred to here as the signal region), so as to get the

normalisation correct. The following details how this extrapolation is performed.

In the signal region, the goal is to minimise the sum DATAsig −MJsig − EWsig in

bins of a well modelled kinematic variable, where DATAsig, MJsig and EWsig refer

to the contributions in the signal region from data, the multi-jet background, and

all other backgrounds, including top quark processes, respectively. The estimate

of the MJ contribution in the MJ template region is first calculated using

MJMJ = DATAMJ − EWMJ , (5.1)

where DATAMJ and EWMJ are the contributions in the MJ template region

(i.e. the modified lepton isolation requirements were used). However, since the

normalisation of MJ is not known exactly and it is coupled to the EW background,

scale factors SFEW and SFMJ need to be applied to their distributions in the signal

region. In order to find the correct normalisation, these two scale factors are left

free to float in a fit performed to data in the signal region where the data and

EW are selected using the signal region isolation requirements, and the MJ taken
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directly from the template region:

MJsig = DATAsig − SFEW ∗ EWsig − SFMJ ∗MJMJ . (5.2)

The scale factors are estimated by minimising a χ2 function with Minuit [165].

The fit is performed inclusively in pWT , where, in the signal region, the overall

expected Higgs boson signal-to-background ratio is at the per-mill level, with an

expected MJ yield that is an order of magnitude larger than the Higgs boson

signal yield (all postfit yields are shown in Appendix F). This procedure should

be safe to use as the MJ background is not the dominant background in the

signal region and additionally has relatively large systematic uncertainties (as

calculated in Section 5.8.2) that are larger than the expected Higgs boson signal

yields. The full contribution due to the EW and MJ backgrounds per bin is

SIMsig = EWsig ∗ SFEW + MJ, where EWsig is the contribution in the signal

region.

The fitting must be done using the distribution in data of a variable that provides

stable results. This is performed separately in the 0-, 1- and 2-tag regions for

both 2- and 3-jet selections.

The baseline fitting procedure in the signal region (2-tags) was originally

performed after the HT cut in the two b-tag inclusive region [166], combining all

three exclusive 2L+2M+2T b-tag regions: the inclusive fit region. Mismodelling

was observed after the application of the HT cut (discussed in Appendix C),

motivating a study to investigate whether performing the fit before or after

this cut produced better results2. In addition, a check was performed to see

if performing the fit separately in the 2L/2M/2T b-tag regions (three exclusive

fits) produced more stable fits. The following variables were investigated as the

variable to perform the fit on: Emiss
T , mW

T and p`T. In total this gives 24 fit regions:

{inclusive, exclusive}×{pre-HT cut, post-HT cut}×{Emiss
T , mW

T , p`T}×{electron

channel, muon channel}.

Choice of Fitting Variables

Due to mismodelling of ∆φ(`, Emiss
T ), there were disagreements seen between Emiss

T

and mW
T ; fitting on mW

T improves the mW
T distribution, but gives worse agreement

for Emiss
T , whilst fitting on Emiss

T gives worse agreement for mW
T . The MJ events

2One of the findings was that ∆φ(`, Emiss
T ) is poorly modelled, subsequently affecting the

modelling of mW
T . This is shown in Appendix C, Figure C.2.
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are concentrated at lower values of Emiss
T , whilst it is more broadly distributed

in mW
T . This allows for a greater separation of the MJ contribution from the

other backgrounds, as can be seen in Figure 5.9. Performing the fit on mW
T tends

to underestimate the MJ contribution, especially in the lower mW
T region. A

comparison of the effect on the dijet mass distribution when fitting on Emiss
T

and mW
T is shown in Figure 5.10. The better shape of Emiss

T variable, and

the correspondingly lower uncertainties, motivated the choice of this being the

variable on which to perform the fit.

The inclusive 2-tag fitting procedure assumes that the 2L, 2M and 2T regions

have the correct ratio of events in the inclusive region. This has been shown to

be a good assumption for the MJ background, but not for the EW background.

The muon channel has a small MJ contribution, and illustrates the incorrect

ratios in EW background in Figure 5.11 (a) and (c). However, this adds a lot of

complexity to the analysis, so the exclusive fits are only used for systematics. In

addition, the low event count in the 2T region affects the exclusive fit and the

normalisation, particularly for MJ. The effect of fitting to the Emiss
T distribution

both inclusively and exclusively is shown for p`T in Figure 5.11 (b) and (d). Fitting

before and after the HT cut gives similar results and as such, the original choice

of fitting after the HT cut was kept.
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Figure 5.9 Distributions of Emiss
T and mW

T are shown in (a) and (b),
respectively. These are both fitted to data using the inclusive 2 b-
tag region, after the HT cut. The MJ contribution is concentrated
towards lower Emiss

T , with a much broader distribution in mW
T .
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Figure 5.10 The invariant mass of the two jets in the event, mbb, when fitting
on Emiss

T (a) and fitting on mW
T (b). The signal region is not shown

in the data to keep the analysis blind.

Fitted Distributions

The final fit which provides the normalisation of the MJ contribution in the signal

region is performed on the Emiss
T distribution using the inclusive 2 b-tagging region

for all 2L/2M/2T b-tag regions. The Emiss
T distributions for some tagging regions

are shown in Figure 5.12. The Emiss
T variable is also used for the fitting procedure

in the 1 b-tag region. Scale factors (see Equation 5.2) which are applied to the

MJ yields, obtained in the MJ enriched template region, are shown in Table 5.9.

These scale factors are used to extrapolate the MJ yield into the signal region.

The MJ background in the pWT > 120 GeV bins in the electron channel is found

to be approximately 3% and 2% for the 2L and 2T categories, respectively. For

the muon channel, the contributions from the MJ background in the signal region

with pWT < 90 and 90 ≤ pWT < 120 are between 2% and 7%, respectively, dropping

to negligible levels at higher pWT . The relative MJ background contributions in

the inclusive 2 b-tag region, before the global likelihood fit has been performed,

are detailed in Table 5.8 and after the global likelihood fit in Table 5.14.
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Figure 5.11 Distributions of the muon (left) and electron (right) pT fitted to
Emiss

T and using exclusive fitting (top) and inclusive fitting (bottom)
in the 2L b-tag region.
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Figure 5.12 Distributions of Emiss
T used for the MJ fitting in the electron ((a)

and (b)) muon channel ((c) and (d)). The Emiss
T is shown in the

2M (left) and 2T (right) b-tag regions, scaled by the factor found
when fitting in the inclusive 2 b-tag region.
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2 b-tag inclusive (2L+2M+2T) MJ prefit contributions

Region pVT < 90 90 ≤ pVT < 120 120 ≤ pVT < 160 160 ≤ pVT < 200 pVT ≥ 200

2-jets

MJ (el) - - 3.22% 2.82% 1.08%

MJ (µ) 7.60% 2.71% 0.25% 0.15% 0.00%

3-jets

MJ (el) - - 0.90% 0.92% 0.37%

MJ (µ) 2.36% 0.74% 0.05% 0.16% 0.00%

Table 5.8 The estimated prefit percentage of background events in the 2 b-tag
inclusive region (2L+2M+2T) from multi-jet events. These are based
on the event yields that are provided in Appendix F. These results are
shown postfit in Table 5.14.

Region
Electron Channel (Stat. Error) Muon Channel (Stat. Error)

MJ EW MJ EW

0 b tag 0.942± 0.009 1.029 ± 0.002 1.2 ± 0.1 1.059 ± 0.002

1 b tag 0.88 ± 0.02 1.021 ± 0.004 1.1 ± 0.1 1.034 ± 0.005

2L b tag 0.079± 0.003 1.02 ± 0.01 0.19± 0.02 1.01 ± 0.01

2M b tag 0.08 ± 0.01 1.03 ± 0.02 0.13± 0.05 1.07 ± 0.03

2T b tag 0.096± 0.007 1.0160± 0.0003 0.15± 0.09 1.08 ± 0.03

2 b tag incl. 0.079± 0.005 1.03 ± 0.10 0.16± 0.01 1.0514± 0.0002

Table 5.9 Multi-jet scale factors obtained in different tagging regions for the
electron and muon channel when fitting to the Emiss

T distribution. The
final MJ fit is taken from the inclusive (loose, medium and tight) 2
b-tag region. The error quoted is the statistical error from the fit.
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5.8 Systematic Uncertainties

The main uncertainties to the analysis are discussed in the following sections.

These are divided into experimental uncertainties, multi-jet background uncer-

tainties and Monte Carlo simulation uncertainties. The Monte Carlo simulation

uncertainties include those on all electroweak backgrounds, the tt̄ background,

and the signal. For all the backgrounds, including the multi-jet background,

uncertainties are considered that affect the shape and the normalisation of the

background mbb distribution. Shape uncertainties are assessed in each bin of a

distribution (mbb or MV1c, as will be discussed in Section 5.9) as the difference

between the systematic variation and the nominal value. The normalisation

uncertainties provide an error on the event yield. The uncertainties are included

as nuisance parameters in the global likelihood fit, constrained by Gaussian or

log-normal prior probabibility distributions (referred to as priors). The global

likelihood fit provides an overall systematic and statistical error that is determined

as a combination of all input uncertainties, having been adjusted and constrained

by the fit.

5.8.1 Experimental Uncertainties

The largest uncertainties affecting the dijet mass come from the jet energy scale

(JES) and heavy flavour tagging. There are additional uncertainties that affect

trigger selection, object reconstruction and identification, and the subsequent

energy and momentum calibrations and resolutions. These are discussed below.

The uncertainties on the corrections for the trigger, reconstruction, identification

and isolation efficiencies, and energy resolution when applied to the electron and

muon candidates are less than 1% and therefore negligible.

The uncertainty on the jet energy scale (JES) depends on a number of

independent factors, including the flavour composition of the jet, pile-up

corrections and calibration analyses [130]. Overall, there are 24 components to

account for these sources. For central jets, the total error ranges from ≈ 3% for

jets with pT = 20 GeV, to ≈ 1% for jets with pT = 1 TeV. A further correction to

the b jet energy calibration of 1− 2% is also applied. The jet energy resolution is

considered independently for b jets and non-b-jets [134]. These uncertainties are

η and pT dependent, and can have a large effect, especially for lower pT jets. It
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ranges from 10− 20% for pT = 20 GeV jets to 5% for pT > 200 GeV.

The scale factors for the b-tagging efficiency for the b jets are ≈ 1 with

uncertainties of between 2% (pT ≤ 200 GeV) and 8% (pT > 200 GeV). Half of

the correction applied at low ∆R in the Wcc samples is also used as a systematic

uncertainty.

The integrated luminosity has an uncertainty of 2.8%, and there is a 4%

uncertainty on the number of interactions per bunch crossing [167].

5.8.2 Multi-Jet Systematic Uncertainties

Systematic uncertainties on the shape and normalisation of the MJ contribution

are calculated separately. The general philosophy taken in calculating these

uncertainties is as follows: for the shape uncertainty, the MJ template is changed

by varying the isolation requirements in the MJ template. The statistical error

is represented by the uncertainty from the MJ scale factor fit, provided by

the Minuit χ2 fit. For the 2 b-tag region, the uncertainties are calculated in

each of the 2L/2M/2T regions separately by using the statistical error from

the exclusive fit (fitting in 2L/2M/2T as opposed to 2L+2M+2T). The other

simulated backgrounds used in the MJ calculation are scaled with scale factors

from the global likelihood fit; a further systematic is obtained by removing these

scale factors and observing the change in the MJ yield.

The change in mbb when changing the track and calorimeter isolation can be

seen in Figure 5.13. The difference in each bin between the nominal shape

and the variation is used to define the shape uncertainty. The track isolation

selection in the electron channel is changed to 0.12 < isotrack < 0.5 and the effect

is symmetrised about the nominal shape to give the up and down systematics.

In the muon channel, the isolation cut is chosen to separate the events in

the MJ template into two regions of roughly the same number of events;

the upward variation is found using 0.07 < isotrack < 0.095, and the downward

variation by using 0.095 < isotrack < 0.5. In the electron channel, the calorimeter

isolation requirement is changed to isocalo < 0.04 for the downward variation and

0.04 < isocalo < 0.07 for the upward variation. In the muon channel, changes in

the calorimeter and track isolation requirements show the same variations; no

additional uncertainty is added for the calorimeter isolation change.

Since the MJ scale factor is fitted for each shape variation, there is an
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accompanying normalisation change and a migration of events between the

2L/2M/2T regions. Each of the fits in the 1 b-tag and inclusive 2 b-tag regions

has a statistical error provided by the Minuit χ2 fit. Since there is a migration

of events (and thus jet flavour) between b-tag regions, the statistical errors

on the heavy flavour contribution in each of the 2 b-tag regions are found by

performing the fit in the 2L/2M/2T regions exclusively3 and taking the statistical

error from the Minuit χ2 fit. A second uncertainty is found by comparing the

yields when applying and not applying the EW scale factors that come from the

profile likelihood fit. The normalisation uncertainty is calculated by adding the

statistical errors in quadrature with the change in yields after changing the EW

scale factor. The statistical and EW uncertainties are detailed in Table 5.10. In

general, the errors in the muon channel are quite high due to the relatively small

number of events.

There is an uncertainty introduced when reweighting events that have been

promoted from 1-tag to 2-tag events due to the ∆φ(j1, j2) and pWT mismodelling

described in Section 5.6.1. These are considered as shape uncertainties.

The calculated normalisation and shape uncertainties are listed in Table 5.11.

The MJ contributions in the 2 b-tag 2 jet region are larger than those in the 3-jet

region, and generally have larger uncertainties. In the 2 b-tag 2 jet region for the

electron channel, the MJ contribution is no more than 3% in any pVT bin, with

an uncertainty on the normalisation of between 5-22%, depending on the pVT bin.

In the muon channel, there is a sizeable contribution to the total background in

the lowest pVT bin of up to 7%, however, the contribution to the background at

pVT > 120 GeV is negligible. There is an uncertainty of between 12 and 60% in the

2 b-tag 2 jet region. Given the fairly low contribution to the total background,

these uncertainties do not have a large effect on the sensitivity of the analysis.

5.8.3 Monte Carlo Simulation Uncertainties

The uncertainties for the MC simulation of the following processes are assessed

separately: the tt̄, single top, V+ jets, and diboson backgrounds, and the

Higgs boson signal. The calculation of the systematic effects is focused on the

observables that are used in the global likelihood fit, in particular pVT , the jet

flavour and the dijet mass. For the background, where possible, the uncertainty

33-jet region is done inclusively (2L+2M+2T) as there are a relatively small number of
events in each of the exclusive 2L/2M/2T regions.
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Channel Region Stat error (%) EW error (%) Total (%)

e 2-jet
1-tag 2 1 3

2-tag 2L/2M/2T 10/10/20 5/10/10 11/14/22

e 3-jet
1-tag 3.5 1 4

2-tag incl. 5 3 6

µ 2-jet
1-tag 11 5 12

2-tag 2L/2M/2T 25/25/45 12/34/40 28/42/60

µ 3-jet
1-tag 7 8 11

2-tag incl. 5 13 14

Table 5.10 A summary of the normalisation uncertainties on the multi-jet
background estimation. The statistical error is obtained from the
fit and the EW error is given by the relative changes in yields
when removing the EW scale factors in the fit. These are added
in quadrature to obtain the normalisation uncertainty.

Systematic Description Region Value (%)

SysMJMuNorm
Normalisation µ channel 2 jet 1/2L/2M/2T-tag 12/28/42/60

3 jet 1/2 11/14

SysMJElNorm
Normalisation el channel 2 jet 1/2L/2M/2T-tag 3/11/14/22

3 jet 1/2 4/6

SysMJMuTrkIso isotrack changed 2/3-jet 1/2-tag Shape

SysMJElTrkIso isotrack changed 2/3-jet 1/2-tag Shape

SysMJElCaloIso isocalo changed 2-jet 1/2-tag Shape

SysMJDR Spoof reweighting (el only) 2-jet 2-tag Shape

SysMJPtV Spoof reweighting (el only) 2-jet 2-tag Shape

Table 5.11 Summary of the MJ systematics. The normalisation uncertainties
are given separately for the electron and muon channels and split
into 1-tag, 2L, 2M, and 2T for the 2-jet region, and 1-tag and the
inclusive 2-tag selection in the 3-jet region. The shape uncertainties
are found in the 1-tag and inclusive 2-tag selections for all regions.
isotrack is varied in both channels, and isocalo is varied for the
electron channel. Shape uncertainties are included from the truth
tagging reweighting applied in the electron channel. Half of the
reweighting value of ∆φ(j1, j2) and pT used in the reweighting is
used as a systematic.
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Figure 5.13 Changes in the dijet mass distribution, mbb, from changes to the
track isolation and the calorimeter isolation in the MJ template
used for systematics. In these plots, the solid pink lines show
the nominal selection, and the dotted lines show the systematic
variations. Plot (a) is the result of changing the calorimeter
isolation requirement to < 0.04 (downward systematic), (b) requires
0.04 < isocalo < 0.07 (upward systematic), and (c) has the track
isolation requirement 0.12 < isotrack < 0.5.

is assessed using dedicated control regions in data, which are extrapolated into the

signal region. If this is not possible, then different MC generators are compared

with the nominal ones. A brief overview of each background is given here with a

full description available in Reference [1].

tt̄: Following the discussion in Section 5.6.2, an uncertainty of half of the pT

correction is applied. The normalisation is found from the global likelihood fit,

however, it is determined almost entirely by the large top contribution in the 3-jet



V H(→ bb̄) Analysis 104

region of the 1-lepton analysis. An uncertainty is applied for the extrapolation of

the normalisation from the 3-jet to 2-jet signal region, calculated by comparing

the results from multiple MC generators. A shape systematic is added to the mbb

and pVT distributions by considering the 3-jet to 2-jet ratio.

Single top: Theoretical cross section uncertainties across the different produc-

tion channels have uncertainties between 4% and 7% [168]. Different generators

are used to quantify the uncertainties on the mbb distribution, pVT , and the 3-jet

to 2-jet ratio.

V+jets: Similar methods for calculating the uncertainties are used for both

Z+jets and W+jets. Uncertainties are included to account for the ∆φ(j1, j2) and

pVT corrections discussed in Section 5.6.1. The normalisation and 2/3-jet ratio for

the light jet contribution is taken from simulation, and for the heavier flavours

it is left to float in the final fit. It is not possible to define a control region in

data that is dominated by W + bb; instead generator level comparisons are done

to find uncertainty estimates. The uncertainty on the shape of the dijet mass

distribution is taken from the side band region in data for Z+jets and generator

level comparisons for W+jets.

Diboson: The cross section uncertainty is estimated by varying the parameters

used for the simulation at the parton level. Differences between generators are

also assessed. Uncertainties in pVT come from the comparison of LO and NLO

prediction, and similarly for the 3-jet to 2-jet ratio.

Signal: The uncertainties in the signal processes are all obtained from MC. They

are all calculated for the mH = 125 GeV mass point, and these are used for all

mass points considered in the limit setting. The cross section normalisations are

taken from the theoretical predictions at NLO (the signal simulated is discussed

in Section 5.5). An uncertainty on the branching ratio and the cross section are

considered [156, 169].

The systematic uncertainties for both signal and background are summarised in

Table 5.12. The systematic uncertainties for each process are included as nuisance

parameters in the final likelihood fit. This is discussed in Section 5.9.
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WH Signal (mH = 125 GeV)

Cross section (scale) 1% (qq), 50% (gg)

Cross section (PDF) 2.4% (qq), 17% (gg)

Branching ratio 3.3 %

Acceptance (scale) 1.5%–3.3%

3-jet acceptance (scale) 3.3%–4.2%

pVT shape (scale) S

Acceptance (PDF) 2%–5%

pVT shape (NLO EW correction) S

Acceptance (parton shower) 8%–13%

Z+jets

Zl normalisation, 3/2-jet ratio 5%

Zcl 3/2-jet ratio 26%

Z+hf 3/2-jet ratio 20%

Z+hf/Zbb ratio 12%

∆φ(j1, j2) , pVT , mbb S

W+jets

Wl normalisation, 3/2-jet ratio 10%

Wcl, W+hf 3/2-jet ratio 10%

Wbl/Wbb ratio 35%

Wbc/Wbb, Wcc/Wbb ratio 12%

∆φ(j1, j2) , pVT , mbb S

tt

3/2-jet ratio 20%

High/low-pVT ratio 7.5%

Top-quark pT, mbb, E
miss
T S

Single top

Cross section 4% (s-,t-channel), 7% (Wt)

Acceptance (generator) 3%–52%

mbb, p
b2
T S

Diboson

Cross section and acceptance (scale) 3%–29%

Cross section and acceptance (PDF) 2%–4%

mbb S

Multi-jet

0-, 2-lepton channels normalisation 100%

1-lepton channel normalisation 2%–60%

Template variations, reweighting S

Table 5.12 Summary of the systematic uncertainties on the signal and
background modelling. S indicates that only a shape uncertainty
is assessed.
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5.9 Statistical Analysis

A binned maximum likelihood estimate is used for the statistical model in this

analysis. One of the primary results obtained from the fitting procedure is the

signal strength parameter, µ, a multiplicative factor of the expected signal yield.

The signal yield is normalised to the expected Standard Model Higgs boson cross

section, so any change from µ = 1 indicates a deviation from the SM, and µ = 1

indicates perfect agreement with the presence of a SM Higgs boson. The fit also

constrains the systematic uncertainties and finds the background normalisations.

Three forms of hypothesis testing are employed: exclusion limit setting, discovery

testing and the signal measurement.

In this analysis, the parameters in the likelihood function L(α;x) are separated

into α = (µ,θ), where µ is the signal strength parameter that multiplies

the expected signal yield, and θ represents nuisance parameters (NP) from

uncertainties in the analysis.

As this is a counting experiment, the observed rate of signal and background

events is assumed to follow a Poisson distribution, which is incorporated into the

likelihood function as an overall term of Pois(n|µS(θ;x) +B(θ;x)). Here S(θ;x)

and B(θ;x) represent the total signal and background event yields as functions

of the NPs.

The NPs are constrained by Gaussian prior probability functions, or priors, with

the mean given by the expected value of the NP, and the width given by its

uncertainty. For the normalisation uncertainties, a log-normal prior is used to

maintain a positive probability density function. Some NPs have been determined

from other datasets and are not completely unknown. This knowledge is added to

the likelihood as an auxiliary measurement that increases as the NP is shifted from

the nominal value; a penalty term. Formally, this is given as Pois(m|BCR), where

m and BCR indicate the measured and expected event yield in the corresponding

dataset from which it was estimated.

The combination of the signal and background probability density function for

each bin, the overall Poisson distribution, and the penalty term leads to the
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binned likelihood function of

L(µ,θ;x) =Pois(n|µS(θ;x) +B(θ;x))×[
N∏

b∈bins

µf(θ;x)sigb + f(θ;x)bkgb
µS(θ;x) +B(θ;x)

]
Pois(m|BCR).

(5.3)

The nominal value for µ is found by maximising the log-likelihood estimate

(MLE), lnL(µ,θ);x, for all θ using the Minuit minimisation program [165].

The inputs to the likelihood function for the analysis are taken from the expected

background-only distributions of the invariant mass of the two signal region b jets

in both the 2-tag (2- and 3-jet) and 1-tag regions. As the flavour composition is

not well modelled in the W+jets background, the MV1c distribution of the single

tagged jet in the 1-tag region is also included in the fit, however, only two pVT
bins are used: pVT < 120 GeV and pVT > 120 GeV. In total, this comes to 81 2-tag

regions in the fit, and 11 1-tag control regions.

The binning of the dijet mass distribution is optimised for every Higgs boson

mass point to increase the sensitivity, as can be seen in Figure 5.16. In the tail

regions, wider bins are used to reduce statistical uncertainties, and in the signal

region sensitivity is increased by reducing the bin widths. The transformation

applied to the distributions can be found in Reference [1].

The normalisation parameters for the tt̄ and W/Z+jets backgrounds are left free

to float in a preliminary global likelihood fit. The difference in yields before and

after the preliminary fit is used to provide scale factors, as shown in Table 5.13,

which are then applied to correct the normalisation, and subsequent fits use these

corrected normalisations. The postfit multi-jet background contribution in the

signal region, as a percentage of the total background, is given in Table 5.14.

The effects of the systematic uncertainties on the signal strength parameter are

shown in Figures 5.14 and 5.15. In these figures, the systematic uncertainties

are listed in descending order of their impact on µ̂. The pull of each systematic

uncertainty is given by the deviation of the fitted nuisance parameters θ̂ from

their nominal values θ0, given as the number of standard deviations with respect

to their nominal uncertainties ∆θ: (θ̂ − θ0)/∆θ. The pull of the systematic

uncertainties on µ̂ are shown by the filled circles, and the associated error

bars show the postfit nuisance parameter uncertainties relative to their nominal

uncertainties. The red open circles, and error bars, show the fitted values and

uncertainties of the floating normalisation parameters in the fit, which have a
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Figure 5.14 Impact of the systematic uncertainties on the fitted signal-strength
parameter µ̂ for the 1-lepton channel in the dijet mass analysis.
The systematic uncertainties are listed in descending order of their
impact on µ̂. The largest impact comes from the shape uncertainties
on mjj for the largest backgrounds, W + bb̄ and W + cc̄. The b-
jet energy resolution and the parton showering also have a similar
impact on µ̂. Normalisation uncertainties from the backgrounds
that are left to float in the preliminary global likelihood fit have
a similar impact to each other. The largest pull comes from the
W + bl to W + bb̄ normalisation for pWT > 120 GeV, but the pulls
are generally well behaved and a decrease is seen in the relative
uncertainty on the nuisance parameters . The normalisation of the
largest background, although it has one of the larger impacts on µ̂,
has a normalisation factor of 1 with relatively small errors.
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Figure 5.15 Impact of the systematic uncertainties on the fitted signal-strength
parameter µ̂ for the combined 0-, 1- and 2-lepton channel in the
dijet mass analysis. The systematic uncertainties are listed in
descending order of their impact on µ̂. As seen in the 1-lepton
channel, the largest impact comes from the shape uncertainties on
mjj for the largest backgrounds, W + bb̄ and W + cc̄. However, the
normalisations of the other backgrounds have a relatively larger
impact on µ̂ than in the 1-lepton channel. This is expected since
these backgrounds contribute more in the combined channel. The
normalisation factors themselves are well behaved and are all found
to be close to 1. The b-jet tagging efficiency and b-jet energy
resolution have a relatively large impact on µ̂. The pulls are well
behaved, however, the pull on the Z+ bl to Z+ bb̄ normalisation is
large, although the impact on µ̂ is relatively small.
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Process Scale factor

tt 0-lepton 1.36± 0.14

tt 1-lepton 1.12± 0.09

tt 2-lepton 0.99± 0.04

Wbb 0.83± 0.15

Wcl 1.14± 0.10

Zbb 1.09± 0.05

Zcl 0.88± 0.12

Table 5.13 Normalisation scale factors obtained from minimising the likelihood
that are applied to the tt, Wbb, Wcl, Zbb, and Zcl backgrounds.
These are obtained from the global likelihood fit to the 8 TeV
data using the MVA. Errors include statistical and systematic
uncertainties.

2 b-tag inclusive (2L+2M+2T) MJ postfit contributions

pVT region pVT < 90 90 ≤ pVT < 120 120 ≤ pVT160 160 ≤ pVT200 pVT ≥ 200

2-jets

MJ (el) - - 2.83% 2.43% 1.04%

MJ (µ) 7.01% 2.53% 0.23% 0.15% 0.00%

3-jets

MJ (el) - - 0.87% 0.90% 0.37%

MJ (µ) 2.31% 0.94% 0.05% 0.16% 0.00%

Table 5.14 The estimated postfit percentage of background events in the 2 b-
tag inclusive region (2L+2M+2T) from multi-jet events. These
are based on the event yields that are provided in Table 5.15
and Appendix F. The corresponding prefit estimates are shown in
Table 5.8.

prefit value of one. Both the pulls and normalisation uncertainties refer to the

bottom x-axis.

The blue boxes in Figures 5.14 and 5.15, referring to the top x-axis, show the

effect of the uncertainties in the nuisance parameters on µ̂. Individual nuisance

parameters θ are fixed to their postfit value θ̂ and modified upwards (hatched

boxes) or downwards (open boxes) by their postfit uncertainty, and subsequently

repeating the fit with all other nuisance parameters floating freely.

As discussed above in Section 5.1, a crosscheck is performed to measure the



V H(→ bb̄) Analysis 111

V Z diboson signal strength, µV Z . This factor changes the normalisation of

the diboson contributions with respect to the SM expectation. Higgs boson

production is included as a background here. The results of this are given in

Section 5.10.5.

5.9.1 Input Distributions

The inputs for the dijet mass analysis are the MV1c distributions of the b-tagged

jet in the 1-tag regions and the transformed mbb distribution for the 2-tag regions.

The transformed mbb distribution in the 2-jet region for 2T b tags is shown in

Figure 5.16 (a) and (b). The untransformed mbb distribution in this region, which

is not used as an input, but is a useful illustration of the effect of the fitting, is

shown in Figure 5.16 (c) and (d). Further distributions in the other b-tagging

regions can be found in Appendix D.

5.10 Results

5.10.1 Introduction

Results are obtained using the maximum likelihood estimate fits to data discussed

in Section 5.9. The statistical significance of any observed signal needs to be

quantified in some way. The sensitivity of the result is examined by looking at

the expected significance for a number of hypotheses.

The hypothesis testing is done using a test statistic which characterises the full

dataset as a function of a number of parameters. This allows for compatibility

measurements between the background-only hypothesis, H0, and the observed

data. Test statistics used here are based on the profile likelihood ratio Λ(µ),

where µ is the signal strength. The ratio is defined as

Λ(µ) = (L(µ, ˆ̂θµ)/L(µ̂, θ̂)), (5.4)

where µ̂ and θ̂ maximise the likelihood (such that 0 ≤ µ̂ ≤ µ), and ˆ̂θµ are the NP

values that maximize the likelihood for a fixed µ (conditional maximum likelihood

estimate). A value of Λ(µ̂) = 1 gives perfect agreement with the data, and the

NPs determine the shape. µ̂ is often restricted to be positive as in the case that
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Figure 5.16 The transformed (top) and untransformed (bottom) mbb distribu-
tion in the 2-jet, 2-tag, 120 < pVT < 160 GeV bin with two tight-
tagged b jets in the 1-lepton channel before (left) and after (right)
the fit is performed.

it becomes negative the MLE is effectively µ = 0. Variations of the test statistic

are used for discovery, measurement and exclusion, which are discussed below.

The null-hypothesis, or background-only hypothesis, H0, describes the known

processes. A signal hypothesis, H1, describes H0 in addition to a signal process,

for example, the Higgs boson. The compatibility of the observed data with either

hypothesis is given by the p-value: the probability of observing the data with

equal or greater incompatibility than expected under the null-hypothesis. The p-
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value can be converted into an equivalent significance, Z, which is the probability

of rejecting H0 if it is true. A p-value is computed for each test statistic.

The test statistic used for discovery is

q0 =

−2lnΛ(0) if µ̂ ≥ 0

0 if µ̂ < 0.
(5.5)

Under this scenario, q0 will show any disagreement with the background-only

hypothesis if there are upward fluctuations in the data. The corresponding p-

value, showing the disagreement with the null-hypothesis, is given by

p0 =

∫ inf

q0,obs

f(q0|0, ˆ̂
θ0)dq0, (5.6)

where f(q0|µ, ˆ̂
θ0) is the probability density function of q0 under the assumption

of no signal (µ = 0) and q0,obs is the observed value of q0. In particle physics, the

convention for discovery (the rejection of H0) requires a significance of Z = 5, or

5σ, where σ is one standard deviation, corresponding to p = 2.87× 10−7.

An upper limit on the signal strength is found using a single-sided test statistic

which assumes a null-hypothesis of signal plus background

qµ =

−2lnΛ(µ) if µ̂ ≤ µ

0 if µ̂ > µ.
(5.7)

The corresponding p-value of this test statistic is given by

pµ =

∫ inf

qµ,obs

f(qµ,obs|µ, ˆ̂
θµ)dqµ, (5.8)

where f(qµ|µ, ˆ̂
θµ) is the probability density function of qµ under the assumption

of signal strength µ and qµ,obs is the observed value of qµ. A 95% confidence level

upper limit is found for µ where it satisfies pµ = 0.05.

However, if there is a downward fluctuation in the data, models with little

expected sensitivity can be excluded incorrectly. At ATLAS a modified version

of this is used, the CLs method [170]. Here, rather than pµ, the p-value used is

p′µ =
pµ

1− pb
, (5.9)
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where pb refers to the p-value for the background-only hypothesis (µ = 0).

Incompatibilies with the null-hypothesis (signal+background) are thus down-

weighted if there is also an incompatibility with the background-only hypothesis.

A Standard Model Higgs boson would be excluded at the 95% confidence level if

µ < 1 with p′µ − 0.05.

For measurement of the observed best-fit signal strength µ̂ a double-sided test

statistic is used, under the assumption of a null-hypothesis that includes signal

plus background:

t = −2 ln Λ(µ). (5.10)

. Here, no restraints are placed on the signal strength. The corresponding p-

value gives the compatibility of the data with the signal-plus-background null-

hypothesis. The measurement sensitivity is evaluated by finding the difference in

µ between the nominal value µ̂ and the signal-plus-background hypothesis with

µ = 1.

Expected results are obtained in a similar way with the data replaced by the

expectations from simulation, with all NPs set to the best fit values, also known

as the Asimov dataset [171].

The dijet mass analysis has an expected measurement sensitivity of 1.9σ for

the signal-plus-background hypothesis which includes a 125 GeV Higgs boson,

compared with the MVA-based analysis which has a higher expected sensitivity of

2.5σ, which was the motivation for using the MVA as the main ATLAS analysis in

Reference [1], with the dijet mass analysis used as a crosscheck. All the following

results refer to a Higgs boson mass of 125 GeV, unless otherwise specified.

5.10.2 Event Yields

The event yields in data and from Monte Carlo for the 2- and 3-jet regions with

2T b tags are shown below in Table 5.15. As can be seen for the 2-jet region

there is a large contribution from W+jets and top backgrounds at low pVT . For

the 3-jet region the top background is again the dominant contribution.

The background yields increase in other regions, but the signal yields decrease.

In all regions, the yields in data are within the error on the estimated background

yields. The full set of event yields for all regions is shown in Appendix F.
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Sample 2T-tag

pVT bin (GeV) pVT < 90 90 < pVT < 120 120 < pVT < 160 160 < pVT < 200 pVT > 200

2-jet

Z + l 0.1 0.1 0.0 0.0 0.0

Z + cl 0.4 0.1 0.1 0.0 0.0

Z + hf 43.4 15.3 6.8 1.7 0.5

W + l 2.0 0.4 0.3 0.1 0.1

W + cl 13.8 3.4 2.3 0.5 0.3

W + hf 407.6 116.0 106.3 30.0 27.6

s-top 486.2 106.5 72.9 13.3 4.7

MJµ 136.6 12.8 0.0 0.0 0.0

MJe 0.0 0.0 11.6 2.0 1.1

tt̄ 1172.9 431.8 377.9 44.5 10.3

V V 36.9 12.4 15.4 6.8 6.1

Total Bkg. 2300.0 ± 49.8 698.7 ± 15.5 593.6 ± 15.2 98.6 ± 3.6 50.7 ± 4.2

Total Signal 30.0 ± 11.8 10.0 ± 3.9 15.6 ± 6.1 8.3 ± 3.2 8.7 ± 3.4

Data 2364.0 700.0 591.0 112.0 59.0

3-jet

Z + l 0.0 0.0 0.0 0.0 0.0

Z + cl 0.2 0.0 0.0 0.0 0.0

Z + hf 22.2 6.1 3.7 0.9 0.4

W + l 0.7 0.2 0.1 0.0 0.0

W + cl 4.5 1.1 1.0 0.3 0.1

W + hf 142.7 41.6 48.5 19.7 21.9

s-top 336.0 71.7 50.5 10.5 7.3

MJµ 35.5 1.9 0.0 0.3 0.0

MJe 0.0 0.0 2.4 0.7 0.3

tt̄ 2638.0 642.7 485.4 61.3 15.6

V V 9.2 3.4 5.8 2.8 2.7

Total Bkg. 3189.0 ± 42.6 768.7 ± 15.7 597.5 ± 14.8 96.5 ± 3.8 48.3 ± 4.1

Total Signal 8.3 ± 3.4 3.3 ± 1.3 5.6 ± 2.2 3.4 ± 1.4 4.1 ± 1.6

Data 3161.0 779.0 590.0 101.0 53.0

Table 5.15 Number of events obtained after performing the unconditional fit in
the 1-lepton channel 2- and 3-jet 2T b-tag regions, with a Signal of
mH = 125. The uncertainties are the full postfit errors including all
NPs with priors, floating normalisations, and correlations.
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mH (GeV) Obs. Exp. +2σ +1σ −1σ −2σ

110 1.68 0.99 1.84 1.37 0.71 0.53

115 1.95 1.09 2.03 1.51 0.78 0.58

120 2.74 1.27 2.36 1.76 0.91 0.68

125 3.88 1.63 3.05 2.27 1.18 0.88

130 4.12 2.02 3.76 2.81 1.45 1.08

135 4.47 2.59 4.84 3.61 1.87 1.39

140 5.95 3.70 6.90 5.15 2.67 1.99

Table 5.16 The observed and expected 95% CL upper limits on the cross section
ratio σ/σSM for the 1-lepton channel in the dijet mass analysis for
different Higgs masses, mH .

5.10.3 WH Dijet Mass Analysis Results

In the following, upper limits are placed on the cross section times branching ratio

for a Standard Model Higgs boson, the best-fit signal strength measurements are

calculated, and the significance of the observations is found.

Expected results are obtained by replacing the data by the expectations from

simulation, with all NPs set to the best-fit values, also known as the Asimov

dataset [171].

Confidence Limits

Figure 5.17 shows the 95% confidence level (CL) upper limits on the cross section

times branching ratio, σ/σSM, for the 1-lepton channel and the combination of

the 0-, 1- and 2-lepton channels in the Higgs boson mass range 110–140 GeV.

The observed limit for mH = 125 GeV in the 1-lepton channel is 3.9 times the

SM value, to be compared to an expected background-only limit of 1.6. For the

combined 0-, 1-, 2-lepton channels, the observed and expected limits are 2.1 and

1.1 times the expected SM value, respectively. Numerical values of the limits are

shown in Tables 5.16 and 5.17.

The values obtained in this analysis are compared with those from a number of

analyses in Table 5.19.
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mH (GeV) Obs. Exp. +2σ +1σ −1σ −2σ

110 0.76 0.66 1.23 0.91 0.47 0.35

115 0.77 0.73 1.36 1.02 0.53 0.39

120 1.42 0.84 1.57 1.17 0.61 0.45

125 2.14 1.06 1.98 1.48 0.76 0.57

130 2.48 1.29 2.40 1.79 0.93 0.69

135 2.96 1.71 3.20 2.38 1.23 0.92

140 3.85 2.38 4.45 3.32 1.72 1.28

Table 5.17 The observed and expected 95% CL upper limits on the cross section
ratio σ/σSM for the combined 0-, 1- and 2-lepton channels in the
dijet mass analysis for different Higgs masses, mH .

Signal Strength Results

The individual µ values for the lepton channels are obtained from a simultaneous

fit with the signal strength for each lepton channel floating independently.

Similarly, for the combined (W/Z)H processes, a simultaneous fit with the

signal strength is performed for each of the WH and ZH processes floating

independently. The fitted signal strength values for mH = 125 GeV are shown

in Figure 5.18. The upper plot shows the signal strengths for the three lepton

channels and their combination, and the bottom plot shows the signal strengths

for the WH and ZH processes. As shown in Table 5.2, although the 1-lepton

channel targets the WH process, there is some overlap with other processes,

which accounts for the difference seen in the signal strength for the 1-lepton

channel and the WH process in Figure 5.18. The signal strength in the 1-lepton

channel is higher than the SM expectation at µ1−lep = 2.2+0.97
−0.87, however, when

combined with the 0- and 2-lepton channels this is reduced to µ012−lep = 1.1+0.61
−0.56,

which is consistent with a Standard Model Higgs boson. A similar result is seen

with the WH signal strength and the combined WH and ZH signal strength.

The signal strength obtained in this analysis is compared with those from a

number of analyses in Table 5.18.

Signal Significance

To claim discovery, a signal significance of at least 5σ is the convention used for

discovery, which is equivalent to p = 2.87× 10−7.
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For a Higgs boson with mass 125 GeV in the 1-lepton channel, there is an excess

observed (expected) with a significance of 2.7σ (1.3σ). For the combination of

the 0-, 1-, and 2-lepton channels there is an observed (expected) significance of

2.01σ (1.94σ).

The signal significance obtained in this analysis is compared with those from a

number of analyses in Table 5.19.
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Figure 5.17 Observed (solid) and expected 95% CL cross-section upper limits,
normalised to the SM Higgs boson production cross section, as a
function of mH for the 1-lepton channel (top) and the combined
0-, 1-, and 2-lepton channels, as obtained using the dijet-mass
analysis. The expected upper limit is given for the background-only
hypothesis (dashed). The dark and light shaded bands represent the
1σ and 2σ ranges of the expectation in the absence of a signal.
The numerical values of the data points are shown in Tables 5.16
and 5.17.
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Figure 5.18 The fitted values of the Higgs boson signal strength parameter µ
for mH = 125 GeV for the separate lepton channels and their
combination (top), WH and ZH processes and their combination
(bottom), with the 8 TeV dataset. The individual µ values for
the (W/Z)H processes are obtained from a simultaneous fit with
the signal strength for each of the WH and ZH processes floating
independently.
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5.10.4 MVA Results

The nominal analysis in Reference [1] was performed using an MVA selection for

the 8 TeV data, and combined with a dijet mass analysis for the 7 TeV data.

The results for the combination of the 0-, 1- and 2-lepton channels, which has the

highest sensitivity, are quoted here for comparison with the dijet mass analysis

results. The signal strength values are listed in Table 5.18, and the cross section

limits and significance are listed in Table 5.19.

The 95% CL upper limits on the cross section times branching ratio for a number

of Higgs boson mass points are shown in Figure 5.19. The observed (expected)

limit on σ/σSM for a Higgs boson of mass 125 GeV with the MVA provides

a stronger limit compared to the dijet mass analysis for the 8 TeV data (see

Table 5.19).

The fitted signal strength for the MVA using the 8 TeV dataset is lower than that

of the dijet mass analysis, both of which are consistent with a Standard Model

Higgs boson. The combined signal strength from the 8 TeV dataset and the dijet

mass analysis of the 7 TeV dataset is lower, due to a deficit seen in the 7 TeV

data, but is still consistent with the Standard Model.

The data corresponds to an observed (expected) significance of 1.7σ (2.5σ) for

mH = 125 GeV. When combined with the dijet mass analysis of the 7 TeV data,

this lowers to 1.4σ (2.6σ).

The consistency of the signal strength results obtained from the dijet mass

analysis and the MVA was assessed by using a bootstrap method [172]. A large

number of events are selected randomly from the Monte Carlo samples with the

signal strength is set to µ = 1. These are chosen such that they are representative

of the integrated luminosity of the data used in the main analysis. The fitted µ̂

values for both the dijet mass analysis and the MVA are compared and their

statistical correlation is calculated. Similarly, this is done for the expected

results. The expected results for the dijet mass analysis and the MVA have a

67% correlation, whilst the observed results are statistically consistent at the 8%

level.
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Figure 5.19 Observed (solid) and expected 95% CL cross-section upper limits
on the normalised SM Higgs boson production cross section, as a
function of mH for all channels and data-taking periods combined.
These are obtained using the dijet-mass analysis for the 7 TeV
dataset and the MVA for the 8 TeV dataset. The dashed line shows
the expected upper limit for the background-only hypothesis, the
dotted line shows the injection of a SM Higgs boson with mH =
125 GeV, and the shaded bands represent the 1σ and 2σ ranges of
the background-only expectation.
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Analysis Method Signal strength µ

Dijet mass analysis (8 TeV data only)

1-lepton channel µ = 2.2+0.67
−0.64(stat.)+0.7

−0.59(syst.) = 2.2+0.97
−0.87

Combined lepton channels µ = 1.10+0.43
−0.42(stat.)+0.43

−0.37(syst.) = 1.10+0.61
−0.56

MVA (7 and 8 TeV data)

Combined lepton channels (8 TeV only) µ = 0.65+0.33
−0.32(stat.)+0.28

−0.24(syst.) = 0.65+0.43
−0.40

Combined lepton channels (7+8 TeV)(*) µ = 0.51+0.31
−0.30(stat.)+0.25

−0.22(syst.) = 0.51+0.40
−0.37

CMS [173] µ = 1.0± 0.5

Table 5.18 The best-fit signal strength obtained from a number of different
analyses. The dijet mass analysis of the 1-lepton channel targets the
WH → `νbb̄ process using only 8 TeV data. The remaining results
show the signal strength for the V H(H → bb̄) process, using the
combination of the 0-, 1-, and 2-lepton channels. The superscript
of mbb indicates that a value is found using the dijet mass analysis.
(*) For the analysis of the 7 TeV data, a dijet mass analysis is used.
The CMS result uses the full

√
s =7 and 8 TeV datasets.

Analysis Method σ/σSM Significance

Dijet mass analysis (8 TeV data only)

1-lepton channel 3.9 (1.6) 2.7σ (1.3σ)

Combined lepton channels 2.1 (1.1) 2.0σ (1.9σ)

MVA (7 and 8 TeV data)

Combined lepton channels (8 TeV) 1.4 (0.8) 1.7σ (2.5σ)

Combined lepton channels (7+8 TeV)(*) 1.2 (0.8) 1.4σ (2.6σ)

CMS [173] 0.95 (1.89) 2.1σ (2.1σ)

Table 5.19 The observed (expected) values of σ/σSM and the observed (expected)
significance obtained from a number of different analyses. The
dijet mass analysis of the 1-lepton channel targets the WH → `νbb̄
process using only 8 TeV data. The remaining results target the
V H(H → bb̄) process, using the combination of the 0-, 1-, and 2-
lepton channels. (*) For the analysis of the 7 TeV data, a dijet mass
analysis is used. The CMS result uses the full

√
s =7 and 8 TeV

datasets.

5.10.5 Diboson Crosscheck

The analysis procedures are validated by performing a fit to extract the V Z

signal strength, µV Z . The difference in data in the mbb distribution between all

backgrounds and the diboson backgrounds is shown in Figure 5.20 (a).
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The signal strengths obtained using the dijet-mass analysis at 8 TeV, for both

the 1-lepton channel and the combination of the 0-, 1- and 2-lepton channels is

shown in Figure 5.20 (b).

The observed and expected significances obtained for these channels are shown

in Table 5.20.

The signal strengths and significances obtained with the dijet mass analysis of

the 8 TeV data are compared in Table 5.20 with those obtained with a dijet mass

analysis of the 7 TeV and combined with the MVA 8 TeV analysis. The observed

signal strength is compatible with the Standard Model expectation, validating

the analysis procedure.

Analysis Method Signal strength µV Z Significance

Dijet mass analysis (8 TeV data only)

1-lepton channel µV Z = 1.40+0.27
−0.26(stat.)+0.42

−0.35(syst.) = 1.40+0.50
−0.44 3.5σ (2.7σ

Combined lepton channels µV Z = 0.77+0.11
−0.10(stat.)+0.16

−0.15(syst.) = 0.77+0.16
−0.15 4.7σ (5.7σ)

MVA (8 TeV) combined with dijet mass analysis (7 TeV data)

MVA+dijet mass µV Z = 0.74± 0.09(stat.)± 0.14(syst.) 4.9σ (6.3σ)

Table 5.20 The signal strength µV Z and the observed (expected) significance
obtained from three analyses: the dijet mass analysis of the 8 TeV
data in the 1-lepton channel, the combination of the 0-, 1-, and 2-
lepton channels, and the combined MVA (for the 8 TeV data) and
dijet mass (for the 7 TeV data) analyses. The dijet mass analysis of
the 1-lepton channel targets the WZ → `νbb̄ process. The remaining
results target the V Z(Z → bb̄) process.
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Figure 5.20 Plot (a) shows the distribution of mbb after subtraction of all
backgrounds except for the diboson processes, using the combination
of the three lepton channels in the dijet-mass analysis for the
8 TeV data. All pVT bins, 2- and 3-jet regions and 2-tag b-tagging
categories are summed and weighted by the respective ratios of
expected Higgs boson signal to fitted background in each region.
The contribution of the WH and ZH signal processes with a SM
Higgs boson with mH = 125 GeV is shown with a signal strength of
µ = 1.0. The total uncertainty on the fitted background is indicated
by the hatched band. Plot (b) shows fitted values of the diboson
signal strength µV Z using the dijet mass analysis for the 8 TeV
dataset for the separate lepton channels and their combination.
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5.11 Conclusions

A search has been presented in this thesis for a Standard Model Higgs boson

decaying into bb̄ and produced in association with a leptonically decaying vector

boson. The focus of this work is the WH → `νbb̄ process where the reconstruction

of the dijet invariant mass of the two b quarks from the Higgs boson candidate

is used as the final discriminant. The combination of the associated W and Z

processes are also presented. The results presented are obtained from pp collisions

recorded by the ATLAS detector at
√
s = 8 TeV during Run 1 of the LHC in

2012, corresponding to an integrated luminosity of 20.3 fb−1. This is performed in

tandem with, and as a cross-check of, a multivariate analysis. The two methods

are found to be consistent, with an expected correlation of the signal strengths

obtained with either method of 67%.

The dijet mass analysis uses categories based on the number of leptons, jets,

b jets, and the transverse momentum of the vector boson. Separate analysis

categories, the 0-lepton, 1-lepton and 2-lepton channels, are designed to target

the ZH → νν̄bb̄, WH → `νbb̄ and ZH → `+`−bb̄ processes, respectively. The

analysis method is validated using a measurement of the V Z(→ bb̄) yield.

The results obtained are consistent with a Standard Model Higgs boson of mass

125 GeV decaying to bb̄, however, there is not enough data to be able to make

a statistical claim for discovery. The observed (expected) significance of a Higgs

boson with a mass of 125 GeV in the 1-lepton channel (targeted at the WH →
`νbb̄ process) is 2.7σ (1.3σ). Combining all three lepton channels, an observed

(expected) significance of 2.01σ (1.94σ) is found. The observed significance using

dijet mass analysis is higher than that of the MVA method (1.7σ), however, it

has a lower expected significance (1.94σ as opposed to 2.5σ).

An observed (expected) 95% confidence upper limit on σ/σSM for mH = 125 GeV

in the 1-lepton channel is found at 3.9 (1.6). For the combination of all three

lepton channels, the observed (expected) limit is 2.1 (1.1). Further, a Higgs boson

with a mass of between 110 and 115 GeV has been excluded at the 95% confidence

level. The limits from the MVA are tighter, with observed and expected limits of

1.4 and 0.8, respectively.

The best-fit signal strength for a 125 GeV SM Higgs boson in the 1-lepton

channel using data from
√
s = 8 TeV collisions, obtained with a dijet mass

analysis, is µmbb
1-lep = 2.2+0.97

−0.87. For the combination of the three lepton channels it is
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µmbb
012-lep = 1.10+0.61

−0.56. The MVA signal strength is lower, at µ = 0.65+0.43
−0.40, however,

they are found to be within errors and statistically consistent at the level of 8%.

The reported results from other experiments and combinations are consistent

with these results, as discussed here. An analysis of V H(H → bb̄) was performed

by the CMS experiment [173], reporting an observed (expected) significance

of 2.1σ (2.1σ) and a signal strength of µCMS
bb = 1.0± 0.5. All results from the

tt̄H(H → bb̄) and V H(H → bb̄) Higgs production from ATLAS and CMS have

been combined to obtain an observed (expected) significance for the process

H → bb̄ of 2.6σ (3.7σ) with a signal strength of µATLAS+CMS
bb = 0.70+0.29

−0.27 [174]. A

combined analysis from the CDF and DØ experiments at the Tevatron reported

an excess of 2.8σ [57], and a signal strength of µ = 1.59+0.69
−0.72 [52], using

10 fb−1 of data from proton-antiproton collisions with a centre-of-mass energy

of
√
s = 1.96 TeV.

The combined ATLAS signal strength measured from H → WW , ZZ, γγ, τ+τ−,

bb̄, and µ+µ− for a Higgs boson with a mass of 125.36 GeV using both 7 and

8 TeV data is µ = 1.18+0.15
−0.14 [175]. When combined with the CMS results, a value

of µ = 1.09+0.11
−0.10 is obtained [174]. These results are consistent with the Standard

Model.

5.12 Future Work

The latest V H(→ bb̄) results from ATLAS were presented at ICHEP in 2016 [176].

Using 13.2 fb−1of data collected at
√
s = 13 TeV, an observed (expected) signal

significance of 0.42σ (1.94σ) for a Higgs boson of mass 125 GeV was reported,

with a signal strength of µ = 0.21+0.36
−0.35(stat.) ± 0.36(syst.). These results are

consistent with previous results in the V H(→ bb̄) channels.

The remainder of the Run 2 schedule for 2016, 2017 and 2018 will see proton-

proton collisions at a centre-of-mass energy of
√
s = 13 TeV, producing an

expected 100 fb−1. 2018 will also have a dedicatd Pb-Pb run.

Running at the design centre-of-mass energy of
√
s = 14 TeV, the LHC is expected

to deliver up to 300 fb−1 by 2022 (with an average pile-up of 60). After an

upgrade in 2022 to the High Luminosity LHC (HL-LHC), a total of 3000 fb−1 will

be delivered by 2030 (with an average pile-up of 140) [177]. This additional

data is needed to be able to claim a 5σ discovery of the Higgs boson decaying
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into bb̄. A cut-based study was carried out to determine the sensitivity to the

WH → `νbb̄ and ZH → `+`−bb̄ processes, at the HL-LHC [178], which estimates

an expected sensitivity of 2.6σ and µ = 1 ± 39% for 300 fb−1, and 5.9σ and

µ = 1 ± 19% for 3000 fb−1. These results use a conservative estimate of the

systematic uncertainties. An extrapolation of the expected improvements in the

understanding of the systematic uncertainties, improvements in b tagging and the

use of a multivariate analysis, the significance improves to 3.9σ with µ = 1±27%

for 300 fb−1, and 8.8σ with µ = 1± 14% for 3000 fb−1.



Chapter 6

Machine Learning Techniques

Machine learning, and deep learning in particular, has enjoyed success in recent
times in fields such as image recognition.

129
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6.1 Introduction

In Chapter 7 of this thesis, an analysis is presented which optimises the selection

of boosted, hadronically decaying W bosons at ATLAS. This is accomplished

by making use of machine learning techniques, which describe algorithms

that offer semi-automated, multivariate techniques to build predictive models.

Two machine learning algorithms are employed here for classifying W bosons:

boosted decision trees [24, 25] and deep neural networks, in the form of stacked

autoencoders [21–23].

In general, a machine learning algorithm takes an input dataset, or set of input

vectors, {x} of dimension n, and applies a set of weighted transformations to the

input vector and outputs a vector {x̂} of dimension m, where typically m ≤ n.

Each of the n elements of an input vector are referred to as a feature. The

elements of the output vector can be interpreted individually, or by considering

a linear combination of each element. The goal of the algorithm is to be able

to ‘learn’ a function of a given input dataset, by tuning the weights of the set

of transformations, such that the algorithm can classify or provide predictions

on previously unseen input datasets. In high energy particle physics, the input

dataset is generally a set of observables, either measured or simulated, that

describe a collision event. Regularities in the dataset are used to classify events

as coming from different processes or for the identification of particles. In the

context of the work presented here, these algorithms are used as classifiers, where

the algorithms learn to classify if the input dataset corresponds to a W boson or

a QCD jet.

Training is an essential part of the process of implementing machine learning

algorithms. The weights of the transformations that are applied to an input

vector are determined and tuned by training the algorithms on a set of input

vectors referred to as training datasets, in an attempt to minimise a predefined loss

function. In particle physics, and particularly in the work presented in Chapter 7,

Monte Carlo simulations are used as training datasets. Machine learning can be

separated into broad categories based on the learning paradigm that is used for

training. In supervised learning, the elements of the training dataset are labelled

as belonging to a specific class, such as signal or background. This allows for a

comparison of the classification provided by the algorithm with the true label.

By iteratively updating the set of weighted transformations applied to an input

dataset, the algorithms are trained to classify datasets with greater accuracy.
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Artificial neural networks and decision trees are examples of algorithms which

employ supervised learning. Unsupervised learning overlaps with data mining,

where the goal is to find unknown or hidden structure in the data. The training

datasets used in unsupervised learning are not necessarily labelled. Unsupervised

algorithms include clustering (grouping together data points that are similar and

appear to belong to a particular class) and dimensionality reduction (reducing

the representation of the data into a subset of features that are uncorrelated).

The autoencoders discussed in Section 6.3.2 are used for learning representations

of data and dimensionality reduction in an unsupervised manner.

After an algorithm has been trained, it should be evaluated on a test dataset

that is independent from the training dataset. The performance of the algorithm

when it is applied to these test datasets provides a method of validating that

the training process has been successful. The algorithm should ideally perform

equally well on both the test and training datasets.

Trained algorithms are typically referred to as models, each of which has a number

of tuneable hyperparameters that can additionally affect their performance.

Before training a machine learning algorithm, the input datasets must be

prepared. The preparation includes cleaning the data by identifying missing

or inaccurate values. In the case of algorithms such as stacked autoencoders,

the data must also be standardised. A method known as stratified k-fold cross

validation can be employed to ensure that when training an algorithm, it does not

overfit, whereby it learns to identify patterns in the training dataset and cannot

generalise to other datasets, or underfit, whereby the algorithm is not learning a

suitable representation of the input data. The tuning of the hyperparameters is

another important tool that can be used to prevent overfitting and underfitting.

In previous studies at the LHC, artificial neural networks have proved useful

for identifying boosted top quarks [179]. Deep networks based on stacked

autoencoders have also been used in exotics searches [180]. In this chapter,

artificial neural networks, (stacked) autoencoders and boosted decision trees are

introduced. These techniques are implemented in Chapter 7 for classifying jets

which come from a boosted W boson.

Data preparation, cross validation, algorithm evaluation and hyperparameter

optimisation are also discussed in Sections 6.2 and 6.5. These are common to

both the deep neural networks and boosted decision trees.
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6.2 Data Preparation

In the studies performed in Chapter 7, the datasets consist of a number of collision

events, each with a number of attributes describing the event. The events are

labelled as coming from either signal or background processes. Expanding on

the previous notation of a set of input vectors, these labelled datasets can be

represented as vectors {x, t}. x describes all the events, each of which has n

features, and t contains the corresponding label of the event.

The following sections describe how the datasets are cleaned and prepared. This

involves removing extreme outliers which can negatively impact training and may

sometimes indicate an erroneous value, standardising the values, and splitting the

datasets into orthogonal training and testing datasets, ideally with no missing

values or data.

6.2.1 Cleaning

It is possible that some datasets have extreme outliers. These outliers might be

statistical fluctuations or an indication of an error. Such outliers can have a large

effect on the performance of a classifier if they are used for training. Similarly,

there can be missing values, which again will affect the classifier performance. In

the process of cleaning the data, either these events can be removed or a value

inferred for the missing entries given by an average or some other function.

Part of the cleaning process involves searching for correlations between variables

and choosing which ones are useful for classification purposes. This is covered in

Section 6.5.4.

For some algorithms, such as stacked autoencoders, it is necessary to standardise

or normalise the samples [181]. If there are two input variables that have different

scales, they can affect the classification disproportionately. By scaling all the

input variables to be within a certain range this is mitigated. This is not necessary

for decision tree classifiers [181]. For the training of the stacked autoencoders in

Chapter 7, each variable is standardised to unit variance and zero mean:

x
(i)
std =

x(i) − µx
σx

, (6.1)

where x(i) refers to the i-th entry of the sample, µx is the mean of the variable x,
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and σx is the standard deviation.

6.2.2 Training and Testing Datasets

When implementing a machine learning classifier, it is essential that there

are independent datasets for training and testing. This is to ensure that the

classifier has learnt a model of the training dataset that has captured underlying

relationships that are applicable to new datasets. If the classifier overfits to

the training dataset, random fluctuations in the training dataset are effectively

incorporated into the model. Often the amount of simulated data available for

training and testing a classifier is limited. Such Monte Carlo simulations must

be separated into two datasets for this, and it may be that the dataset chosen for

training is not representative. The relative proportion of signal and background

events should be the same in the training and test datasets as it is in the full

dataset from which these training and test datasets are derived. This is known

as stratification [182]. Another procedure that can be used is cross-validation.

The dataset is split into a number of equal partitions, or folds, all of which are

random. Each partition is used in turn for testing, with the remaining folds

being used for training. In the studies presented here, these two methods are

used in conjunction in what is called stratified k-fold cross-validation [182]. This

can heavily mitigate any bias caused by the partitioning process. The classifier is

trained and tested on each of the folds individually, and the overall performance

of the classifier is obtained by averaging the performance on each of the folds.

6.3 Deep Learning

Deep learning refers to a set of machine learning algorithms that use multiple

processing layers to create a high-level, abstract representation of a given

dataset [183]. By finding complex representations and correlations within the

dataset, models can be created for predictions or classification of unseen datasets.

In the case of high energy physics data, classification models could use low-level

kinematic variables to describe higher-level processes, for example.

Artificial neural networks (ANNs), as described in Section 6.3.1, consist of a

number interconnected neurons, or units, which are arranged into a number of

layers. Each unit applies a transformation to any input it receives and sends
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this output to one or more units in the following layer. Although there is no

strict definition, these types of multi-layer architectures are often considered deep

neural networks when there are two or more layers in between the initial and

final layers [183]. In a multi-layered architecture, each layer essentially computes

a non-linear function of the previous layer, learning an increasingly more complex

function that describes relationships between the features of a given dataset.

Training deep neural networks using supervised learning requires all the samples

to be labelled. When training a neural network, the weight of the transformation

for each unit is adjusted by attempting to minimise a loss function, or error

function. The loss function provides a way in which to quantify how closely the

classifications provided by the algorithm match the target labels. By adjusting

the weights associated with each unit, the accuracy of the classification can be

improved. Typically, these adjustments to the weights are propagated backwards

one layer at a time. Gradient descent methods (described in Section 6.3.1) are

often used to minimise the loss function and adjust the weights, however, the

relative value of the adjustments become smaller at each layer; when there are

sufficiently many layers the earlier layers do not get updated as quickly as other

layers. In general, the training requires a significant number of data points on

which to train.

A solution to the training difficulties encountered for deep neural networks is to

implement a greedy layer-wise approach [184, 185]. Using this approach, a layer

is added to the network and trained, and this trained layer is used as the input

for the subsequent layer. It is said to be “greedy” in the sense that at any point

in the training, only a single layer is considered, and any following layers in the

network are ignored; a locally optimum result is found each time a layer is added.

This can be done in a supervised manner, or, as illustrated in Section 6.3.2, it can

be done unsupervised. Unsupervised learning has the benefit that the network is

able to learn initial features of the training sample. The two learning techniques

can be used in tandem, using the network trained with unsupervised learning as

a set of initial weights for the units in a neural network, which is subsequently

trained with supervised learning. This is also useful given a limited dataset. This

is implemented as a stacked autoencoder, which is described in Sections 6.3.2

and 6.3.3.

In Chapter 7, a deep neural network, in the form of a stacked autoencoder, is

used for classifying boosted W bosons. The following introduces artificial neural

networks, autoencoders, and stacked autoencoders. A software package that
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implements this, AGILEPack, is used in subsequent studies, and is introduced

here.

6.3.1 Artificial Neural Networks

Artificial neural networks were originally inspired by models that sought to

explain information processing in biological systems [186]. Neural networks are

modelled as a number of interconnected neurons, where the connections can be

weighted and adjusted to allow the network to ‘learn’. Mathematically, neural

networks are linear combinations of variable non-linear basis functions, where

each basis function is a non-linear function of a linear combination of inputs

with variable coefficients, which are fitted to the training dataset [187]. Training

the neural network on a set of features of the training dataset allows for such a

function of the inputs to be learnt, identifying complex, non-linear relationships

between a number of attributes of the dataset. Neural networks are often used for

classification tasks, where the classifier predicts if the data belongs to one of K

discrete classes (signal or background, for example). In these classification tasks,

there are K or fewer neurons in the output layer, which correspond to each class.

Figure 6.1 A basic feedforward neural network [183]. In this diagram, the layers
run from left to right, and the neurons per layer run vertically. The
leftmost layer is the input layer, where the neurons labelled xn accept
as input the n features of the data. The ‘+1’ neurons are the bias
units. The right-most layer is the output layer, which may have one
or more unit. In binary classification, the output layer can make
use of a single unit which produces a continuous output, with lower
and higher values indicating the probability of the class. Layer 2 is
a hidden layer.

The basic components of a neural network are single neurons, or units. Each
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neuron takes an input vector x with n features1 and is parameterised by a weight

W , which must be fit to a training dataset. A neural network is comprised of a

number of layers of neurons, with each layer l taking as input the output from the

activation function (defined in Equations 6.2 and 6.3) of neurons in the previous

layer. The left-most layer, or input layer, has x = {x1, . . . , xn} inputs. The

output layer consists of n or fewer outputs. Any intermediate layers are hidden

layers. This is illustrated in Figure 6.1.

In each layer, a neuron may be connected to one or more neurons in the next

layer, or skip the next layer completely. Each neuron accepts a linear combination

of output from the neurons it is connected to in the preceding layer, such that

any layer will consist of M such linear combinations, where M ≤ the number of

neurons in that layer.

Transformations are applied to each input a neuron receives, and each of these is

linearly combined to give a value hW,b(x):

hW,b(x) = f(
n∑
i=1

Wixi + b), f : < 7→ <, for x1, . . . , xn (6.2)

where f(·) is the activation function. The bias term b can be included as a term

x0 = 1, by summing from i = 0 and incorporating it into a weight term W0,

i.e. hW (x) = h(
∑D

i=0Wixi). In the context of the work presented in this thesis,

the function f(·) is given by the softmax function. The softmax function is a

generalised logistic function, defined within [0, 1], operating over a K-dimensional

vector z, given by:

f(zj) ≡ σ(zj) =
ezj∑K
k=1 e

zk
for j = 1, . . . , K. (6.3)

The softmax function has a well-defined derivative, which is used when consider-

ing error propagation, discussed in the following sections. The derivative of the

function is given as

∂σ(zi)

∂zj
=

σ(zi)i(1− σ(zi)), if i = j

−σ(zi)σ(zj) otherwise.
(6.4)

1There is an additional input in the form of a bias term b, which itself takes no inputs.
This is referred to as a bias unit. The bias term is analogous to the intercept term in a linear
equation of the form y = mx+ c.
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Feedforward networks map a set of inputs xn to a set of outputs ym using a set

of linear combinations of multiple neurons, determined by an adjustable weight

vector

W = Wji, (6.5)

where Wji is the weight between neuron i in layer l and neuron j in layer l + 1.

This is illustrated in Figure 6.1.

The value obtained for a single neuron by applying the activation function is

referred to as the activation, a, of the neuron. The activation will depend on the

input the neuron receives from preceding layers. For layer k, the activation of

neuron j is given by the recursive relation:

a
(k)
j =


D∑
i=0

xi, for k = 1

D∑
i=0

Wjizi, for k = 2, . . . , nl

(6.6)

where zj = hW,b(xj) refers to the overall input from the previous layer, i is one of

the D units in the previous layer, j = 1, . . . ,M is the number of neurons in the

current layer, and Wji is the weight between neuron j in layer k + 1 and neuron

i in the current layer, and nl is the total number of layers. Thus, for a given

set of W and x for a neural network, a single real number is output for each

neuron. This method of calculating the activations for each layer sequentially is

known as forward propagation, providing the definition of a feedforward neural

network [187].

Training

The goal of using a neural network for classification is to provide a mapping such

that, given input vectors {x}, where x = {x1, . . . , xn}, the output g(x,W ) = {x̂}
from the neural network matches some set of target output values {t} as closely

as possible. This can be achieved by minimising a loss, or error function, defined

as:

E(W ) =
1

2

N∑
n=1

‖g(xn,W )− tn‖2 . (6.7)

In the case of a weighted input dataset, such as those used in Chapter 7, the

weights are included in the error function.

Minimising E(W ) proceeds by adjusting W . However, E(W ) can have multiple
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local optima. Applying a small update to the weight, W → W + δW gives a

corresponding change in E of

δE ≈ δW T∇E(W ), (6.8)

where ∇E(W ) is a derivative, indicating the greatest rate of increase in E(W ).

The updates of W are done over τ iterations, following W (τ+1) = W (τ) + δW (τ).

In gradient descent optimisation, this update is given by:

W (τ+1) = W (τ) − η∇E(W ), (6.9)

where η > 0 is the learning rate. The learning rate controls the rate at which

weights are updated. In stochastic gradient descent methods [188, 189], the

weights are given random initial values, and updated according to W (τ+1) =

W (τ) + V (τ+1), where V (τ+1) = µV (τ) − η∇E(W ), initialised to random values,

and µ is the momentum.

This can be generalised further to include a regularisation term. In order to

reduce the likelihood of overfitting due to overly large weights, the error function

is redefined as

Ẽ(W ) = E(W )− λ

2
(W )2, (6.10)

where λ decreases the magnitude of the weights, controlling the relative

importance of the weights and the original error function.

The learning rate, momentum, and regularisation are important hyperparameters

that can have a large effect on the training of a neural network. These

hyperparameters are considered in Chapter 7 when optimising the stacked

autoencoders.

Before training begins, the elements of W must be set to initial random values2.

As shown in Equation 6.9, updating W requires calculating the derivative of

the error function with respect to the weights. An efficient way of updating W

is through the back-propagation algorithm [189]. In this algorithm, the updates

to the weights of each layer are dependent on the following layer. The weights

are calculated for the final layer, and then the updates are calculated for each

preceding layer.

2If the weights all start with the same initial values, then all hidden layers learn the same
function.
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For a given layer l, the derivative of E(W ) is given by

∂Ẽ

∂Wji

= δjzi. (6.11)

where Wji is defined as in Equation 6.5, δj is an error term for each unit j in

layer l + 1 (how much a unit is contributing to the error function), and zi is the

output of neuron i in layer l. The error term is defined as

δj =
∂Ẽ

∂aj
=
∑
k

∂Ẽ

∂ak

∂ak
∂aj

. (6.12)

The back-propagation algorithm can be summarised as follows:

1. Calculation of all activations for every neuron for a given input vector x,

propagated forward through the network.

2. Calculate the error function (Equation 6.10).

3. Evaluation of δj for each unit.

4. Back-propagate the δ terms from the output layer through to the input

layer.

5. Evaluate all the derivatives in Equation 6.11 using δ terms and zi.

6. Update the weight vector.

The above method is iterated multiple times in training to reduce the error

function, Equation 6.10, to within a pre-defined threshold.

6.3.2 Autoencoders

An autoencoder is a multi-layered, unsupervised, neural network using back-

propagation trained on a dataset which is not necessarily labelled [23, 183, 190].

The target values of the network are set to the same values as the inputs, allowing

the autoencoder to learn an approximation to the identity function, i.e. hW (x) =

x̂ ≈ x. Limiting the number of neurons in the hidden layers (hidden neurons),

or limiting the number of connections, places constraints on the network, forcing

it to learn a compressed representation of the input. If the events in the dataset
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are independent and identically distributed, this is not likely to work, but if

the dataset is structured and contains correlations between the inputs, then this

method can be used to attempt to find correlations. The following description

is given in terms of the implementation found in the AGILEPack software [191]

used in Chapter 7, and described in Section 6.5.6. Here there is a single hidden

layer in the autoencoder, but multiple hidden neurons.

The autoencoder consists of an encoding step, which encodes values from the

input layer to a compressed representation, and decoding step, which decodes

the compressed representation and reconstructs the output. Encoding maps the

input x into a new representation ϕ(x):

ϕ(x) = f(W1x+ b1), (6.13)

where f is a softmax activation function, and W1 and b1 are the weight and bias

terms, respectively, for the connection between the hidden layer and input layer.

Decoding takes the compressed representation ϕ(x) and maps it onto the original

vector space according to:

ρ(x) = g(W2ϕ(x) + b2), (6.14)

where g is the activation function, and W2 and b2 are the weight vector and bias

term, respectively, for the connection between the hidden layer and the output

layer.

6.3.2.1 Training

As before with the neural network training, an error function (or loss function)

is defined:

L(x) =
1

2n

n∑
i=1

‖xi − ρi(xi)‖2 + λ1‖W1‖2 + λ2‖W2‖2, (6.15)

where λ1 and λ2 are regularisation parameters (usually on the order of 10−4 [192])

which can be optimised to prevent overfitting. Here, stochastic gradient descent

in combination with back-propagation are used to find the weights and bias terms

that minimise the function [188].

The same method of back-propagation is used as described in Section 6.3.1, where

the gradient of the error function in Equation 6.15 is minimised with respect to
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each element of W1 and W2. Using these definitions, the weights and bias terms

can be adjusted using back-propagation for a number of iterations or epochs. In

Chapter 7, the number of epochs is varied to find an optimal value.

6.3.3 Stacked Autoencoders

Autoencoders can be stacked into multiple layers, creating a deep network that

can learn a higher order representation of the data than a single autoencoder.

They are stacked in such a way that the hidden layer of each autoencoder

provides the input to the next layer. Stacked autoencoders can be trained in an

unsupervised manner to learn an initial representation of the data. The final layer

can then feed into a standard feedforward neural network used for classification,

where the stacked autoencoder provides the initial weights for the classifier.

The motivation for using a deep learning approach to identifying boosted W

bosons is that patterns are found in the data automatically, rather than relying

on high-level features that must be constructed individually. Adding additional

layers to a neural network introduces challenges to the training procedure, for

example, when using gradient descent methods the propagation of the updates

to the earlier layers become less pronounced as more layers are added. Using

this method of stacking autoencoders and training them separately mitigates

some of these difficulties by pre-training the network. When the full network is

constructed and trained on labelled data, the initial layers have already learned

a representation of the data and require less tuning than they would otherwise,

allowing deeper networks to be trained more easily, which is especially useful when

there are not many events to be used for training, as is the case in Chapter 7.

This is the motivation for the use of a stacked autoencoder in Chapter 7 to create

a deep learning solution to identifying boosted W bosons.

Training Stacked Autoencoders

In a stacked autoencoder, a greedy layer-wise approach is used for training [184].

At each step, the target vector is equal to the initial the input vector. The

first layer (that is, the first autoencoder) is trained on a set of input vectors

{x} to learn a first order representation of the input. Formally, this is the

training of an autoencoder with weights W (1,1), W (1,2) and bias terms b(1,1),

b(1,2), where the first term in the superscript (i, j) indicates the layer in the stacked
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(a) (b)

(c) (d)

Figure 6.2 The training of a stacked autoencoder follows a greedy layer-wise
approach [23]. In (a) the initial autoencoder has a single hidden
layer h(1) and is trained to reconstruct the input xi. The hidden layer
h(1) is used as an input to the second autoencoder in (b), training a
second layer h(2) to reconstruct the input h(1). In (c), h(2) is used as
the input to a softmax classifier. In (d) the entire classifier is shown,
which takes an input and transforms this through two autoencoders
and a softmax layer to produce a prediction.
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autoencoder, and the second term is the ith layer in the current autoencoder. The

training process is more easily understood by referring to Figure 6.2. Initially, in

Figure 6.2(a), the first autoencoder is trained such that it is able to produce an

output vector h
(1)
W (x) = x̂ ≈ x, where the superscript indicates the autoencoder

number. At this point, all weights and bias terms are frozen before adding a

second autoencoder. The second autoencoder takes as input the units in the

hidden layer of the first autoencoder, and is trained to output a vector ĥ ≈ h, as

shown in Figure 6.2(b). This can continue further to create a network with more

layers. In Figure 6.2(c), the hidden layer from the final autoencoder is fed into

a neural network with a softmax activation function for classification, referred

to as a softmax classifier, with the number of output units proportional to the

number of classes in the dataset. At this point, the complete classifier, consisting

of the stacked autoencoder and a softmax classifier, can be constructed, as shown

in Figure 6.2(d). The classifier formed from this combination is trained further

using standard back-propagation in a supervised manner for a number of epochs,

adjusting the weights of both the (previously frozen) stacked autoencoder and

the final layer of the softmax classifier, in what is known as fine-tuning. The

process of training the network with an unsupervised algorithm can significantly

improve deep learning algorithms [193].

6.4 Decision Trees

Classification and regression trees [24], or decision trees, use a ‘divide-and-

conquer’ approach to classification using supervised learning. For the work

presented here, decision trees are constructed as binary trees, which provide one

of two decisions: signal or background. A decision tree consists of a single root

node, which is connected via a number of intermediate decision nodes, to a set

of leaf nodes, as illustrated in Figure 6.3. The root and internal nodes represent

a single feature or attribute of an input dataset, whilst the leaf nodes represent

classification outcomes. The path from the root node to a leaf node is known as a

branch. At each decision node, a simple criterion is defined, based on the feature

the decision node represents, which splits the current branch into two regions:

signal-like or background-like. This continues until a leaf node is reached. Thus,

each branch specifies a sequence of selection criteria on features of a dataset, which

will classify a single data point as signal or background. In general, applying a

decision tree to a dataset will not fully separate signal and background events at
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178 5 Classification

closely the training events. Such a decision boundary would obviously represent a
highly overtrained classifier and will generalise badly when applied to new events
not included in the training sample. Conversely, if the kernel width is larger, the
SVM output ySVM(x ) in (5.37) is given by a superposition of the kernels between
the event and several support vectors, which smoothes out the decision boundary.
The ‘correct’ size of the kernel width and the cost parameter for wrongly classified
events are the two most important parameters for the training of a support vector
machine. They determine the size of features that can be resolved by the resulting
decision boundary.

5.3.6
(Boosted) Decision Trees

Decision trees are tree-structured classifiers that consist of a series of binary splits as
displayed in Figure 5.10. The tree starts from a root node and is built up of repeating
splits and nodes down to the final or leaf nodes. The set of nodes and splits leading
to a given leaf node is called a branch. An event is classified according to the class
label of the leaf node at the end of the tree branch in which it ends up. For most
decision trees the split criteria are simple cuts on individual observables (features).
Each branch of a decision tree corresponds to a sequence of cuts which classifies
an event as either signal or background, depending on the leaf node class label.
A decision tree hence splits up the multi-dimensional observable space into many
(rectangular) volumes that are attributed to either signal or background.

root
node
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x  > c x < c 

x  < cx < c 
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Figure 5.10 A decision tree is typically a two-
dimensional structure with a single root node,
followed by a set of yes/no decisions (binary
splits) that finally result in a set of leaf nodes.
For classification, a test event is passed from

the root node down the tree and will end up
in a certain leaf node depending on how it re-
sponded to the various split criteria. The event
is then classified according to the class label
of this leaf node.

Figure 6.3 A binary decision tree is shown here with a single root node, followed
by a set of nodes which provide yes/no decisions (binary splits),
ending in a set of leaf nodes which are labelled according to the class
which they are most likely to be able to classify - either signal (S) or
background (B) [182].

the leaf nodes. The goal is to be able to find a suitable choice of selection criteria

such that a large proportion of events are classified as one or the other.

A decision tree is built from the top down, adding a single decision node at a

time, which then spawns two leaf nodes: one leaf node for each class. At each

decision node, the feature from the training dataset is chosen which gives the

greatest separation between background and signal. A common metric for this,

which is used here, is the Gini index [187]. For a given tree T , the Gini index is

calculated for a decision node according to

Qτ (T ) =
1∑

k=0

pτk(1− pτk), τ = {0, 1} (6.16)

where τ refers to the two new leaf nodes which will be created by splitting on

the decision node, k = 0, 1 refers to signal or background, respectively, and pτk

is the weighted proportion3 of events in the training dataset of class k which

will be classified by leaf node τ . When Qτ (T ) = 0.5, its maximum, there is

3In the studies performed in this thesis, the training dataset is weighted according to cross
section, Monte Carlo event weights, the number of events in the Monte Carlo sample, and a pT

reweighting factor.
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no discrimination between classes. The value of Qτ (T ) is evaluated for a given

decision node for all the features of the input dataset which do not exist in the

current branch. This process is repeated for each leaf node until a stopping

criterion is met, such as the number of data points or events belonging to each

leaf node dropping below a threshold, or the training dataset is fully divided

into signal and background. A maximum depth of the tree can be implemented

to prevent the tree from growing too large, which can lead to overfitting. The

maximum depth is a hyperparameter of the decision tree that requires tuning.

After training, the tree will have learnt a function h(x) ∈ {−1, 1}, where −1

indicates background and 1 indicates signal, taken as the weighted majority in

the leaf node. This can be modified to give a probability given by the ratio of

signal and background events in the leaf node.

Decision trees are easily interpretable and are deterministic. However, since they

are sensitive to the details of the dataset, small changes can give rise to vastly

different tree structures [194]. One possible solution to this is to use an ensemble

of trees to improve the generisability and robustness. Ensemble methods are

separated into boosting or averaging ensemble methods, such as boosted decision

trees and random forests, respectively. These are discussed in the following

sections.

6.4.1 Boosted Decision Trees

Boosting is a technique used to combine ensembles of relatively weak base

classifiers to create a significantly stronger classifier [195]. The basic idea is

to train M classifiers, or estimators, on a training dataset in sequence where each

following training iteration uses a modified version of the dataset. In the modified

dataset, any events that were misclassified previously are given a larger weight,

forcing the classifier to focus more on these instances. The final classifier is then

given by a linear combination of all the base classifiers. In the work presented

here, a method of boosting called adaptive boosting, or AdaBoost is used [25].

When using a decision tree as the base classifier, referred to as a boosted decision

tree or BDT, the classification performance can be improved significantly [194].

This is the method employed for the work presented here.

The training dataset is given an initial set of weights (in the datasets used here,

each event is weighted based on a number of parameters of the Monte Carlo

simulation). For the first decision tree these weights are used, thereafter any
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misclassified events are multiplied by exp(αβ), where β is the learning rate and

α is the boost weight. At each iteration, the dataset with the adjusted weights

is used to build the next decision tree. By iteratively adjusting the weights, the

classifier learns a better separation of signal and background. The number of

base classifiers and the learning rate are hyperparameters that can be tuned to

improve the performance. In general, a slower learning rate with an increase in

the number of boosts, or number of classifiers, can help to improve classification.

The AdaBoost classifier calculates a linear combination of m base classifiers,

YM(x) and produces a real value between −1 and 1, with a value nearer to

−1 indicating a more background-like event and closer to 1 a more signal-like

event. Different cuts on the output of the classifier will yield different signal and

background efficiencies, and this must be tuned to each problem individually. The

classifier can also be used to predict the probability of an event being in a specific

class. The predicted class probability for a single base classifier in the ensemble

is given by the fraction of events of the same class in a leaf node. The predicted

class probability from the ensemble is a weighted mean of all class probabilities

of the base classifiers in the ensemble.

6.4.2 Random Forests

In averaging ensemble methods, a number of estimators (in this instance a

decision tree) are created independently and the predictions from each estimator

are averaged. This reduces the variance of the prediction compared with the

individual decision trees. Random forests [196] are one type of averaging method,

which consist of a large collection of de-correlated decision trees.

Decision trees in a random forest are built using data points drawn from the

training dataset using replacement, such that any data point may be used multiple

times when building a single decision tree. Splitting a branch at a given decision

node is done in a randomised way by only choosing the feature on which to

perform the split from a random subset of all features. This increases the bias of

the forest, but the variance decreases from the averaging procedure.

Random forests, and decision tree models in general, can be used to identify

the relative importance of all features in the model. In AdaBoost trees, the

depth of the decision node corresponding to a feature within the tree is used to

assess its importance. Features at a low depth contribute to more predictions
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and have a higher relative importance. In a randomised forest, another method

is used since the depth of a variable is chosen at random. The mean decrease in

impurity (Gini importance) is calculated by taking a sum of the Gini impurity

over the number of splits and averaged over all trees in the ensemble for a given

feature [197]. The averaging of these values over all trees reduces the variance

of the importance, improving feature selection. Random forests are less able to

detect relevant features if their correlation is high, generally only identifying one

of the correlated variables as important and the rest given lower importance [198].

In Chapter 7, random forests are used to select which features are used for training

the BDTs and stacked autoencoders.

6.5 Tuning Classifier Hyperparameters

The classifiers discussed so far learn a set of weights from a fit to the training

dataset, but there are some parameters that must be chosen by hand, such

as the input features to train on and the model hyperparameters. The model

hyperparameters would be the maximum depth of the tree or the learning rate,

for example. Classifiers have a bias, which is given by its average error over

different training datasets, and a variance, which is an indication of how the

classifier changes performance over the training datasets. The parameters have

to be tuned to get the bias and variance as low as possible. The performance

of a classifier must be evaluated on some previously unseen sample to ensure

its generality and to check for over- and underfitting. A number of techniques

are available for assessing and improving the performance of a classifier, some of

which are discussed below.

6.5.1 Classifier Metrics

Model validation requires a scoring function or set of metrics on which to evaluate

its performance. These are often given in terms of error rates, or the number

of correctly classified events. In the work presented here, a number of scoring

functions are defined in terms of the true and false positive rates [199]. True

positives (TP) and true negatives (TN) are those events that are labelled signal

and background which are actually signal and background, respectively. False

positives (FP) and false negatives (FN) are those events labelled as signal and

background that are actually background and signal, respectively. The metrics
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considered in the work presented here are the following:

accuracy ≡ TP+TN

total events
(6.17a)

weighted accuracy ≡
TP

all signal
+ TN

all background

total events
(6.17b)

signal efficiency ≡ TP

total events
(6.17c)

background efficiency ≡ TN

total background
(6.17d)

background rejection efficiency ≡ 1− background efficiency (6.17e)

background rejection power ≡ 1

background efficiency
(6.17f)

Receiver Operating Characteristic (ROC) curves offer a graphical tool for

selecting and evaluating multiple models [182, 200]. These are generally given

in terms of signal efficiency on the x-axis and the background rejection efficiency

on the y-axis. This offers an intuitive way to find a working point, or cut, with a

maximum signal efficiency and background rejection. These are implemented in

the following chapter to find optimal models.

6.5.2 Grid Search

In some cases, it may be that certain parameters or input features can be

eliminated without losing classification performance, or even improving it. A grid

search is a brute-force approach to finding an optimal set of hyperparameters and

input features that maximises a chosen metric. Given a set of possible values for

the hyperparameters and input features, it trains and tests a classifier with every

combination of these. This can be used in conjunction with cross validation to

ensure the validity of the classifier.

6.5.3 Validation Curves

The influence of a single hyperparameter on the classifier can be evaluated using a

validation curve [199]. The value from the chosen metric obtained on the training

and test datasets for a number of values for the hyperparameter are plotted

together to look for indications of overfitting or underfitting. If the scores are

both showing poor performance (low accuracy or signal efficiency, for example),
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this indicates that the classifier is underfitting and not learning any suitable

function of the data. If the training score is high and the validation score is

low this indicates overfitting. In the validation curves plotted in Chapter 7, the

accuracy is chosen as the scoring function.

A similar technique is used to show the performance of a classifier as a function

of training samples. A learning curve shows how the validation score and training

score change. If these are both converging to a low value as the number of samples

increases, then adding more events for training will not be useful.

6.5.4 Feature Selection

Aside from the methods above, where a grid search could be used to find a set

of features, or observed variables in high energy physics datasets, to be used as

inputs for training, there are other methods available. When training a decision

tree, the Gini index (Equation 6.16) gives an indication of how much separation

a given feature will provide. Each feature is then given an importance, or rank,

based on this. This allows for the identification of the most important features

in the training of a BDT or random forest [181, 199]. Unimportant features

can generally be removed without negatively affecting the performance of the

classifier. If multiple features are correlated then there is not necessarily any

informational gain if all of them are used. A visual inspection of the distribution of

the features between signal and background events can also be helpful in deciding

if the variables should be used.

6.5.5 Scikit-Learn

In Chapter 7, Scikit-learn [199] is used to implement a set of BDTs. The

AdaBoost algorithm is used with a decision tree classifier as the base classifier.

The tuning is performed on three hyperparameters: number of estimators (the

number of base classifiers), maximum decision tree depth, and the learning rate.

A grid search is used in conjunction with stratified 10-fold cross validation.

Other software used includes: ROOT [201], root numpy [202], IPython [203],

Pandas [204], Matplotlib [205] and Numpy [206].
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6.5.6 AGILEPack

The studies performed in Chapter 7 employ the AGILEPack software pack-

age [191] to implement a stacked autoencoder with a softmax classifier (as

described in Section 6.3.3) for identifying boosted W bosons. Stacked autoen-

coders with a depth of four layers are used in conjunction with a softmax

classifier. A grid search is implemented to determine the best values for the

hyperparameters: regularisation, momentum, unsupervised training epochs of

the stacked autoencoder, supervised training epochs of the stacked autoencoder

and softmax layer in the fine-tuning step, and the learning rate. The same set

of features in the input dataset are used as for the BDT for consistency. All

training and testing datasets are standardised according to Equation 6.1, and

stratified 5-fold cross validation is used. This was chosen over the conventional

10-fold as each network can take a significant amount of time to train (up to an

hour each), and much longer to train than the BDT. Increasing the number of

folds can decrease the variance, however, this also decreases the fold sizes and

the sample size available for training, which also increases the variance, although

at a lower rate. 5-fold cross validation was chosen as a compromise between the

time needed for training and the variance of the trained networks.



Chapter 7

Boosted W Boson Tagging

Commercial W -jet grooming is available at only £2 for 6 minutes.
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Figure 7.1 Jets are identified as clusters of hadronic activity from the decay
of a parent particle. If a particle decays into two jets, these jets
get closer together at higher momentum. This can result in two
jets being clustered together and identified as a single jet. Adapted
from [207].

7.1 Introduction

At high collision energies at the LHC, particularly during Run 2, W and Z

bosons can be produced with large transverse momenta, or boosted. Hadronically

decaying W and Z bosons are generally identified as two jets within the detector.

However, these jets can become sufficiently close together such that they are

identified as a single jet when the parent particle is highly boosted, as is

illustrated in Figure 7.1. Being able to identify these boosted W and Z bosons

correctly requires specialised techniques that examine the internal structure, the

substructure, of the jets.

The W boson is important for many analyses and decays hadronically 67.5% of

the time. Furthermore, there are many Beyond the Standard Model theories that

predict new heavy particles at the LHC, which decay into boosted W bosons.

Having an efficient way of tagging boosted W bosons is thus well motivated.

These substructure techniques will also be a useful tool in the boosted regime

when considering the WH(H → bb̄) search, by extending these techniques to

boosted H → bb̄ decays [208], and possibly even hadronically decaying W bosons

in this search channel.

A key parameter in jet reconstruction is the radius of the jet R (see Section 4.7).

W bosons decay hadronically into two quarks which generally produce two jets,

which can be captured in a single large-R jet [209]. In this context, large-R

typically refers to a radius of R ≥ 1.0. For reference, many analyses which do not
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consider boosted jets use a radius of R = 0.4, as in Chapter 5. Smaller radius

jets are not able to contain all the activity of the jets, unless the W boson is

highly boosted. The two prong decays of the W boson provide hard substructure

within the jet, as well as soft contributions from pile-up and radiative effects.

Jets from QCD production, which consists of mainly light quarks and gluons

(referred to as multi-jet events), are predominantly soft and do not exhibit the

same hard substructure. Selectively removing the soft radiation within the jet can

reveal the hard substructure more distinctly. This process is known as grooming,

described in detail in Section 7.2. Numerous grooming algorithms are available

which attempt to remove the soft emissions within jets, thereby providing a more

efficient way of discriminating between jets from light quarks or gluons, and

hadronic decays of heavy vector bosons.

Examining the internal constituents of the jet is another useful method that

can reveal the hard substructures within the jet. In substructure studies, the

jets are identified using the kt, C/A, anti-kt algorithms with a large radius [123]

that captures the entire decay. Substructure variables (Section 7.3) are used

to characterise and quantify the hard substructure within a jet, often used in

conjunction with jet grooming algorithms.

The methods that are currently used to identify boosted W bosons at ATLAS can

be broadly separated into jet grooming and substructure techniques, typically in

the context of large-R jets [2, 209–211]. In Reference [2], cut-based methods using

groomed jets and jet substructure variables for tagging boosted W bosons are

presented based on Run 1 MC and data at a centre-of-mass energy of
√
s = 8 TeV,

which provide the baseline technique for ATLAS Run 2 analyses. The results from

this paper advocate the use of a combination of applying a mass cut on a jet that

has been groomed, and a cut on a single substructure variable. This is summarised

in Section 7.5.

The results and recommendations from Reference [2] are re-evaluated at higher

energies of up to
√
s = 13 TeV in Section 7.6. Subsequently, a study into the

use of machine learning techniques is introduced. This is used as a feasibility

study to identify the maximum performance gain over the baseline that can

be achieved using two machine learning classifiers which were introduced in

Chapter 6: boosted decision trees (BDTs) and deep neural networks (DNNs).

This chapter is structured as follows: Grooming algorithms are introduced in

Section 7.2 and jet substructure variables are described in Section 7.3. The
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simulated Monte Carlo samples are listed in Section 7.4. The boosted W boson

tagger based on Run 1
√
s = 8 TeV collisions is discussed in Section 7.5. In

Section 7.6 the W boson tagging is studied in Run 2 conditions at
√
s = 13 TeV

using machine learning (ML) techniques. The setup for the ML taggers and their

results are described in Section 7.7.

7.2 Jet Grooming Algorithms

Jet grooming is a technique to identify hard substructure within large radius

jets. Jet grooming ‘undoes’ the last stages of the jet clustering to enable soft

emissions to be identified and removed. The kt and C/A jet clustering algorithms

(see Section 4.7) cluster on low-pT constituents and angular separation first,

respectively, whereas the anti-kt algorithm clusters on high-pT constituents first.

The kt and C/A clustering algorithms therefore provide valuable information

about the large-scale substructure of the jets. By examining the clustering in

reverse order, the hardest subjets are revealed by the kt algorithm, and those

with a large angular separation are revealed by the C/A algorithm.

Groomed jets generally have better mass resolution than ungroomed jets (up

to ≈ 10% [209] for top quarks). This improved resolution is due to the removal

of soft and wide-angled emissions, essentially reducing the effective jet area and

defining the jet mass (defined later in the text in Equation 4.1) by the hard

substructure. Additionally, since these soft contributions are removed, there is

reduced sensitivity to pile-up. The jet mass for multi-jet events is shifted lower

after grooming, as constituents are removed. In jets from decaying W or Z

bosons this is less pronounced since the higher pT subjets survive, with the smaller

contributions from soft emissions being removed. This is found to be particularly

apparent in the trimming algorithms, discussed below.

There are three main categories of jet grooming algorithms (referred to as

groomers) which are considered for W boson tagging at ATLAS: trimming [212],

pruning [213, 214] and split filtering [208]. The performance of the grooming

algorithms depends on the jet clustering algorithm and the radius parameter, R.

The different groomers are discussed below and illustrated in Figure 7.2.

• Trimming - Trimming algorithms are designed to exploit the difference

in the jet constituents from multiple sources. Pile-up, multiple parton
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(a)

(b)

(c)

(d)

Figure 7.2 Illustrations of the three jet grooming algorithms discussed in
Section 7.2 [211]. (a) is the pruning jet grooming algorithm, (b)
shows trimming, (c) shows the declustering (or splitting) part of
the split filtering grooming algorithm, and (d) is the corresponding
filtering stage.
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interactions and initial state radiation (see Chapter 4) are much softer in

jets than the products of the hard scatter. The original constituents of

large-R jets (C/A or anti-kt) are reconstructed into subjets using the kT

algorithm [126], using R = Rsub as a distance parameter. Subjets which

have pT < fcut × pjet
T , where pjet

T is the pT of the original jet, are removed.

The trimming algorithm with anti-kt, R = 1.0, fcut ≥ 5% and Rsub = 0.3 is

the groomer that was recommended by ATLAS in Reference [210] for top

quark tagging at
√
s = 7 TeV, whilst using Rsub = 0.2 has also been found

to perform well for W boson tagging and pile-up reduction in Reference [2]

at
√
s = 8 TeV. The trimming algorithm with anti-kt, R = 1.0 was also

shown to provide good jet mass resolution and pile-up rejection for top

quark tagging at
√
s = 7 TeV [209].

• Pruning - Pruning algorithms remove relatively small pT constituents,

similar to trimming, with the additional removal of wide-angled constituents

or radiation. The original constituents of large-R jets (C/A or anti-kt) are

reconstructed with the C/A algorithm, cutting on the angular distance

between two subjets (denoted by Rcut) and the fraction of the pT carried

by the lighter subjet (Zcut). During the clustering, pairs of constituents are

considered. If ∆R12 > Rcut× 2M/pT, where ∆R12 is the angle between the

two constituents1 (see Figure 7.3) and M is the jet mass, then the second

constituent is discarded. Additionally, the jet constituent is discarded if it is

soft, having f2 < Zcut, where f2 is the pT fraction of the softer constituent.

The pruning step is performed at each recombination in the jet clustering,

such that the wide-angle and soft terms that are removed are from the

proto-jets (defined in Section 4.7), rather than the original jet. Pruning

with C/A jets, R = 0.8, Zcut =10% and Rcut = 0.5 has been shown to work

well for W boson tagging, as recommended by CMS [215, 216].

• Mass-drop filtering (split filtering) - The algorithm is designed to identify

symmetrical subjets within a jet, where each subjet has a much smaller

mass than their sum. There are two distinct stages to the algorithm: the

splitting stage and the filtering stage. In the splitting stage, the constituents

of large-R C/A jets are declustered using an exact reverse of the initial

clustering steps, splitting the clusters into two pieces at each step. The

mass drop, µ12, (mass of the hardest piece as a fraction of the current jet’s

mass, see Equation 7.1) and momentum balance,
√
y12 (see Equation 7.2),

1In general, the opening angle between decay products is given by 2M/pT ∼ R [209].
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are calculated at each step in the declustering process. The mass drop is

defined as

µ12 =
max(m1,m2)

m12

, (7.1)

where the index 1 (2) refers to the leading (subleading) piece in the

declustering step and m12 refers to the invariant mass of the two pieces.

The momentum balance is defined as

√
y12 =

min(pT1, pT2)

m12

∆R12, (7.2)

where ∆R12 is the angle between the two pieces. If there is a large mass

drop such that µ12 < µmax or the momentum balance is
√
y12 >

√
ymin,

this piece is presumed to be a hard structure and is returned as a subjet2.

Otherwise, the declustering procedure is repeated on the highest momentum

piece. This is continued iteratively.

In the filtering stage, all subjets identified in the declustering process are

reclustered using a new radius parameter Rsub = min(0.3,∆R12), where

∆R12 is the value calculated during the splitting stage in Equation 7.2.

The three or fewer hardest subjets that remain after the declustering and

filtering process are taken as the final constituent subjets of the original

jet. All other subjets are discarded which removes any soft radiation

from the subjets, whilst retaining any hard perturbative radiation from

the decay products. For two prong decays, such as hadronically decaying

vector bosons, the mass drop filtering algorithm with C/A jets of radius

R = 1.2 has been shown to provide good discrimination against QCD

backgrounds [209].

7.3 Jet Substructure Variables

Substructure variables can be categorised into jet shapes, splitting scales,

subjettiness, and centre-of-mass jet shapes (where the jet is at rest, i.e. pjet
T = 0),

as defined in the following sections. The substructure variables are often defined

with respect to the axis of the jet and depend on a distance measure in relation

to this, as shown in Figure 7.3. The jet axis is taken as the axis in the direction of

the jet momentum, unless otherwise specified. N -subjettiness, for example, uses

2µmax and
√
ymin are parameters that need to be configured for the algorithm.
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Figure 7.3 The distance measures used in the calculation of the substructure
variables [2]. This represents a jet cluster in (η, φ) space. The
filled (orange) circles represent the constituents which are clustered
together to form the jet. Here ‘wta’ stands for ‘winner-takes-all’,
which is the axis along the hardest constituent.

the direction of the subjet momentum to define axes of the individual subjets.

7.3.1 Jet Shapes

Jet shapes describe the relative positions and momenta of the jet constituents

independently of subjets, essentially characterising the distribution of the energy

within the jet. The jet shape variables under study in this work are the jet mass,

energy correlation ratios, mass normalised angularity [217], and the planar flow.

Their definitions are described in detail below.

7.3.1.1 Jet Mass

The jet mass was first introduced in Equation 4.1. In two prong decays, such as

hadronic W boson decays, the jet mass can be approximated as

M2 ≈ pT1pT2∆R2
12.. (7.3)

7.3.1.2 Planar Flow

The planar flow [217] P quantifies the geometric distribution in η and φ of the

jet energy perpendicular to the jet axis and how uniform the distribution is. P
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is defined as

P = 4× det(Iab)

Tr(Iab)2
, (7.4)

where Iab is a matrix of momentum correlations,

Iab =
1

M

∑
i∈J

pi,api,b
Ei

, (7.5)

and i is the index taken over all jet (J) constituents and a, b are the components

of the pT of the ith jet constituent perpendicular to the jet axis. QCD jets are

expected to be more isotropic than jets from W boson decays, having a value

close to P = 1. W boson decays will have P < 1.

7.3.1.3 Energy Correlation Variables

Energy correlation variables are used to identify N -prong jet substructure (or

N hard subjets) by considering the energy and pair-wise angles of the jet

constituents. (N + 1)-point correlators are defined which are sensitive to N -prong

substructure. The energy correlation variables considered here are defined in

terms of ratios of the 1-point, 2-point and 3-point energy correlation functions of

the jet. The energy correlation functions are given by:

ECF1(β) =
∑
i∈J

pTi , (7.6a)

ECF2(β) =
∑
i<j∈J

pTipTj(∆Rij)
β, (7.6b)

ECF3(β) =
∑

i<j<k∈J

pTipTjpTk(∆Rij∆Rik∆Rjk)
β, (7.6c)

where i is the index of the jet constituent in the jet J , and β is the weight of

the angular separation between jet constituents. The 1-point energy correlation

function, ECF1(β), is approximately the jet pT. If β = 2, then ECF2(β = 2) is

equivalent to the jet mass in a two prong decay. In the results presented here a

value of β = 1 is used.
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The energy correlation variables are converted into the dimensionless ratios:

e
(β)
2 =

ECF2(β)

ECF1(β)2
, (7.7a)

e
(β)
3 =

ECF3(β)

ECF1(β)3
. (7.7b)

The e
(β)
2 term is sensitive to radiation from jets with a single hard core, and e

(β)
3 to

radiation from jets with two hard cores. For a jet with a single hard core, e
(β)
2 6= 0,

whilst e
(β)
3 → 0. For two hard cores, both of these values will be non-zero, but

they will grow at different rates, such the ratios between the two quantities can

be useful to discriminate between single and two prong decays.

The quantities e
(β)
2 and e

(β)
3 are combined into the ratios C

(β)
2 [218] and D

(β)
2 [219,

220]:

C
(β)
2 =

e
(β)
3

(e
(β)
2 )2

, (7.8a)

D
(β)
2 =

e
(β)
3

(e
(β)
2 )3

. (7.8b)

These two variables have been shown to provide good separation between decays

with one or two hard cores. For example, in W boson tagging, these both

produce distributions which tend to peak at lower values than seen in multi-

jet backgrounds, allowing for good separation between these processes [2] (see

Figure 7.13 later in this chapter).

7.3.2 Splitting Scales

Splitting scale variables are designed to quantify the relative momenta and

mass of subjets within a jet. They are defined from subjets identified through

examining the clustering history of the jet, and the subsequent reclustering of

the constituents using either the kt or C/A algorithm. The variables that are

considered here, and defined below, are
√
d12,

√
z12, YFilt, mass drop

√
µ12

and momentum balance
√
y12. The variables

√
µ12 and

√
y12 are defined in

Equations 7.1 and 7.2.

The splitting scale
√
d12 is calculated for a jet (re)clustered with the kt-clustering
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algorithm [221]. It is the kt distance between the two proto-jets of the final

clustering step: √
d12 = min(pT1 , pT2)×∆R12, (7.9)

where 1 and 2 are the two proto-jets.
√
d12 can be used to distinguish the products

of the W boson, which tend to have a symmetric energy distribution and larger

values of
√
d12, from QCD jets, which are more asymmetric on average. The

dimensionless YFilt variable is given by:

YFilt =
√
d12/M. (7.10)

The dimensionless variable
√
z12 is a mass-related variation of

√
d12 [222], given

by:

√
z12 =

(
d12

d12 +M2

) 1
2

. (7.11)

7.3.3 Subjettiness

Subjettiness discriminates between jets that exhibit well-formed substructure and

those that do not. A boosted jet containing a W boson decaying to two quarks

should have two distinct hard subjets with an invariant mass of approximately

80 GeV. Boosted QCD jets of this mass can originate from a single hard parton,

acquiring mass through large angle soft splittings. Subjettiness attempts to

exploit this difference by identifying the number of hard subjets within the

boosted jet.

N -subjettiness (τN) variables consider the subjet multiplicity, describing the

degree to which the jet substructure resembles N or fewer subjets [223, 224].

The constituents of the jet J are clustered with the exclusive kt algorithm into

exactly N subjets, defining N subjet axes aN . The τN variables are defined as

a sum over all of the original jet constituents, multiplied by the pT-weighted

distance between each constituent and its nearest subjet. If the constituents are

localised near the subjet axes, a lower τN value is obtained, describing how well

the jet can be described as having N or fewer subjets.
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The subjettiness variables relevant for two prong decays are defined as:

τ0(β) =
∑
i∈J

pTi∆R
β
0 , (7.12a)

τ1(β) =
1

τ0

∑
i∈J

pTi∆R
β
a1,i
, (7.12b)

τ2(β) =
1

τ0

∑
i∈J

pTimin(∆Rβ
a1,i
,∆Rβ

a2,i
), (7.12c)

where i is the sum over the constituents of the original jet J , ∆R0 is the original

jet radius, ∆RaN ,i is the angular separation between jet constituent i and the axis

of one of the N exclusive subjets, τ0 is a normalisation factor, and β provides a

weight to the angular separation.

When calculating τ1 and τ2, the jet constituents are reclustered using the kt

algorithm into exactly one and two subjets, respectively. The labels a1 and a2 in

Equations 7.12b and 7.12c refer to the axes of the subjets in these two cases, and

∆Ra1/2,i is the angular distance between jet constituent i and the subjet axes.

For τ2, min(∆Ra1,i,∆Ra2,i) is the distance between the jet constituent i and the

closest subjet.

For two prong decays, the kt algorithm usually identifies two subjets with all

jet constituents clustered around their axes, having relatively small angular

separation. This translates to much smaller values of τ2 than τ1. Whereas for one

prong decays there should be a similar value for both τ2 and τ1.

An alternative implementation of this method can be defined with a different jet

axis definition in the determination of ∆RaN ,i. In the standard definition, the

subjet axis is used. In the ‘winner-takes-all’ definition, the hardest constituents

of the subjets are chosen, instead of the subjet axes, as the aN axes in

Equations 7.12b and 7.12c (see Figure 7.3). This choice has shown improved

discrimination power in recent studies [225].

The dimensionless ratio of τ2 and τ1 is useful in identifying two prong decays,

defined as

τ21 =
τ2

τ1

, τwta
21 =

τwta
2

τwta
1

. (7.13)

The superscript ‘wta’ denotes that the ‘winner-takes-all’ axes are used. As for

the τ2 variable, the W boson decays should exhibit smaller values of these ratios.



Boosted W Boson Tagging 163

7.3.4 Centre-of-Mass Jet Shapes

The centre-of-mass jet shapes use jet constituents that are transformed from

collider coordinates into the rest frame of the jet. This includes properties such

as thrust major and minor axes (Tmaj/min) [226–229], Fox-Wolfram moments [230],

sphericity and aplanarity.

The jet sphericity and aplanarity are a measure of the jet topology. This is

described in terms of an eigenvector problem, where the jet sphericity tensor Sα,β

must be diagonalised.

Sα,β =

∑
i p

α
i p

β
i∑

i |~pi|2
, (7.14)

where α, β = {1, 2, 3} correspond to the x, y and z components of the momenta

of the jet energy clusters in the jet rest frame.

Diagonalisation of the tensor yields three eigenvalues and eigenvectors, con-

strained by λ1 ≥ λ2 ≥ λ3 and λ1 + λ2 + λ3 = 1.

The sphericity S and aplanarity A are given by linear combinations of the

eigenvalues.

S =
3

2
(λ2 + λ3), A =

3

2
λ3. (7.15)

The sphericity is a measure of the sum of the squares of the transverse momenta

of the jet constituents with respect to the event axis (the first eigenvector). By

construction, 0 ≤ S ≤ 1. Two back-to-back subjets in the jet rest frame have

S → 0, whereas an isotropic distribution of energy clusters would have S → 1.

The more jets there are in an isotropic distribution, the more spherical it will be.

The aplanarity is a measure of the transverse momentum component out of the

jet plane constrained to the range 0 ≤ A ≤ 1
2
. A planar event, where there is

a highly directional distribution of the clusters has A → 0, whereas an isotropic

distribution has A → 0.5. The QCD background is expected to more spherical

and isotropic than W boson decays.

The substructure variables defined here are summarised in Table 7.1. Examples

of the substructure variables are shown in Figure 7.13 for the datasets defined in

the following section.
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Variable W boson QCD

Jet mass M M → 80 GeV M << 80 GeV

Planar flow P P � 1 P → 1

Energy correlation C
(β=1)
2 Peak closer to 0 for W bosons

Energy correlation D
(β=1)
2 D

(β=1)
2 � C

(β=1)
2 , peak closer to 0 for W bosons√

d12 Symmetric distribution Asymmetric

YFilt Asymmetric, skewed to lower values Asymmetric, skewed to higher values
√
z12 Asymmetric, skewed to higher values Asymmetric, skewed to lower values

τ21 Peak closer to 0 for W bosons

τwta
21 Lower values for W boson

Sphericity S S → 1.0 S → 0

Aplanarity A A→ 0.5 A→ 0

Table 7.1 Summary of the jet substructure variables described in Section 7.3.

7.4 Monte Carlo Samples

The Monte Carlo samples used for these studies consist of one set of samples

generated for
√
s = 8 TeV and another set generated for 13 TeV, corresponding

to conditions during Run 1 and Run 2, respectively. The samples are discussed

in further detail below and the 13 TeV samples are listed in Table 7.2. The

samples are produced with the same generators in both cases, but with different

tunes and PDFs. All generated MC events are passed through a Geant4 [108]

simulation of the ATLAS detector [109]. In the following, the
√
s = 8 TeV

samples are those used in the cut-based W boson tagging studies in Reference [2]

which are discussed in Section 7.5. The
√
s = 13 TeV samples are those used for

the machine learning studies presented in Section 7.6.

For the
√
s = 8 TeV samples, the pile-up in events is emulated by overlaying

the generated hits with hits taken from minimum-bias events in data. In the
√
s = 13 TeV samples, pile-up is not overlaid. It has been shown that there is

only a weak dependence of the jet substructure and jet grooming algorithms

(in particular the trimming algorithms) on pile-up, and as such this is not

considered [2, 231]. A further consideration is due to the reweighting procedures

that are used to account for pile-up. One of the concerns in the training of

the ML taggers that are used is the number of available events for training and

testing, and the reweighting for the pile-up contributions will effectively reduce

the number of events available.

In the presented analysis, a number of different jet collections, using different
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clustering and grooming algorithms, are reconstructed for each event. In order

to ensure that the same jets are being identified in different collections, the jets

in each of these collections are matched within a radius of ∆R.

The collection of ungroomed C/A jets with R = 1.2, intended to capture the

entire decay of a hadronically decaying boosted W boson in a single jet, are

used for the initial selection. Further selections are applied on the collections

of groomed jets (including trimmed, pruned and split filtered jets) with radii of

between R = 1.0 and R = 1.2.

Signal Samples

Samples of high-pT W bosons are obtained at
√
s = 8 TeV from generated

W ′ → WZ → qq̄`+`− events with different W ′ masses between 400 and 2000 GeV.

The MC samples are generated using Pythia8 (8.165) with the AU2 [232] tune

and the MSTW20080LO [233] PDF set.

The signal samples for the process W ′ → WZ → qq̄qq̄ are simulated at
√
s = 13 TeV for multiple W ′ masses between 1.5 TeV and 3 TeV. These are

generated with Pythia8 (8.186), using the A14 [234] tune and the NNPDF2.3LO

PDF set [93]. The properties of the bottom and charm hadron decays are

simulated with EvtGen (1.2.0) [235].

The W ′ boson signal sample has a much harder pT spectrum than the multi-jet

background. In order to have a more uniform comparison, the W ′ samples are

reweighted such that the pT of the highest momentum ungroomed C/A (R = 1.2)

jet matches that of the multi-jet background sample introduced below. This is

illustrated in Figure 7.4.

Background Samples

Background samples of high-pT multi-jet events are generated. These are

generated in sets according to the pT of the leading ungroomed C/A (R = 1.2) jet

in the event: JZ4: [400, 800] GeV, JZ5: [800, 1300] GeV, JZ6: [1300, 1800], and

JZ7: [1800, 2500]. All of these samples are weighted by their relative cross-

sections to produce a smoothly falling pT distribution. For
√
s = 13 TeV,

the samples are produced using Pythia with the same tune and PDF as the
√
s = 13 TeV signal samples. The

√
s = 8 TeV samples are produced using
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Pythia with the same tune as the
√
s = 8 TeV signal samples, and the CT10 [89]

PDF set.

The total cross sections and number of events created for the
√
s = 13 TeV signal

and background samples are listed in Table 7.2.
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Figure 7.4 The
√
s = 13 TeV W ′ signal and multi-jet background leading

ungroomed C/A (R = 1.2) pT distributions before and after pT
reweighting has been applied to the signal.

7.5 Run 1 W Tagger

7.5.1 Introduction

To achieve an optimal separation of boosted W bosons and the QCD background,

the jet grooming algorithms and jet substructure variables introduced earlier in

this chapter were studied, based on Run 1 conditions at
√
s = 8 TeV [2]. In

these studies, the boosted boson tagging was performed using a mass window

requirement on the groomed jet mass, combined with a subsequent cut on a jet

substructure variable. This is referred to as the cut-based tagger in the following.

The results from these studies were presented as the baseline recommendation

for identifying boosted W bosons in Run-2 analyses at ATLAS [2]. These

recommendations are evaluated on
√
s = 13 TeV MC samples in Section 7.6,

from which the groomer is chosen for the machine learning implementation in

Section 7.7.
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Sample, mW ′ (GeV) Cross section (fb) Filter Eff. # Events

W ′ → WZ → qq̄qq̄ mass points (GeV)

1500 32.33 1 30000

1700 17.78 1 29000

1800 13.42 1 30000

1900 10.27 1 29000

2000 7.87 1 50000

2100 6.12 1 30000

2400 2.97 1 30000

2500 2.37 1 30000

2600 1.89 1 30000

2800 1.23 1 29000

2900 0.99 1 29000

3000 0.81 1 29800

Multi-jet JZx samples

JZ4 2.55× 108 5.3× 10−4 1997000

JZ5 4.55× 106 9.2× 10−4 1995000

JZ6 2.58× 105 9.4× 10−4 1997000

JZ7 1.62× 104 3.9× 10−4 1990000

Table 7.2 The
√
s = 13 TeV MC samples used for the machine-learning-based

W tagging studies. Listed here are the cross sections, filter efficiencies
and number of events of each of the samples used. The JZx samples
refer to different pT slices of the multi-jet background which are given
in the text, where x runs from 4 to 7. In the JZx samples, generator
level cuts are applied on the jet pT. The filter efficiency is the fraction
of the total phase space that this specific sample corresponds to, with
the generator level cuts.
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7.5.2 Event Selection

Event selections are defined based both on ungroomed and groomed jets. The

ungroomed jet, regardless of the grooming algorithm under consideration, is

reconstructed using the C/A algorithm with a radius parameter of R = 1.2.

Unless otherwise indicated, the jet being referred to in the following text is the

reconstructed jet with no jet calibration applied. Correlations between the W

boson pT and its jet substructure are accounted for by categorising the events

by the pT of the leading ungroomed C/A jet with R = 1.2, using stable, truth

level particles as inputs. This large-R C/A jet is used as a rough identification of

the hadronically decaying W boson. Since jets reconstructed with each grooming

algorithm could potentially have different pT, this ensures that each grooming

algorithm is compared in the same region of phase space.

Preselection

Selection is first performed based on the ungroomed C/A jet, thereafter the

selection is based on groomed jet properties. The leading ungroomed R = 1.2

C/A truth jet must be within |η| < 1.2 and have pT > 50 GeV, such that it

is within tracking acceptance. Events where the ungroomed reconstructed C/A

jet is within ∆R = 0.9 of the ungroomed C/A truth jet are used for the pT-

based reweighting. The truth matching also allows for the jet mass response of

uncalibrated jets to be evaluated.

The leading groomed reconstructed jet must be within |η| < 1.2 and have less than

99% of the total energy of the jet in the EM cluster. This removes contamination

from Z → ee events which are far more collimated. The leading reconstructed

groomed jet must be within ∆R < 0.75 × R of the leading groomed truth jet,

where R is the radius of the grooming algorithm. Approximately 2% of W bosons

are unmatched using this procedure.

The substructure of the W boson jets is expected to be correlated with the

pT. As such, bins are defined using the generated pT of the highest pT jet, as

reconstructed by the C/A algorithm, before any grooming has been applied. The

ranges are defined in terms of the truth pT (ptruth
T ) of the leading jet: 200-350 GeV,

350-500 GeV and 500-1000 GeV.
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Selection

After the preselection, a jet mass window is defined as the smallest mass window,

calculated over a binned mass histogram, that contains 68% of all signal events.

This mass window is based on the groomed jet mass and is different for each

groomer. All events where the leading groomed jet has a mass outside the mass

window are removed; this removes a large portion of the background. The mass

windows for three pT ranges in Table 7.5. An example of the jet mass distribution

for one of the groomers is shown in Figure 7.10. The mass window gives a

baseline signal efficiency of εGW = 68%, where ‘G’ indicates that grooming has been

applied, but no substructure variables have been considered yet. The background

efficiency of the mass cut, εGQCD, is defined as the fraction of background events

passing preselection that fall within the 68% mass window. Minimising εGQCD

is used as the primary criterion for assessing the performance of the grooming

algorithm here.

Finally, a cut is applied on a substructure variable. The value of the cut is chosen

such that it gives a signal efficiency of εG&T
W = 50%, where ‘T’ stands for ‘Tagger’

(the substructure variable) and indicates that a cut has been applied and the

jet has been groomed. After applying this cut, the inverse of the background

efficiency, or the background rejection power, is calculated and used as the metric

of performance for this combination of groomer and substructure variable. The

background rejection factor is given by

Background rejection power = 1/εG&T
QCD. (7.16)

7.5.3 Tagger Optimisation

Initially, jet algorithms were selected with more than 500 configurations of

grooming algorithms with different choices for the parameters such as R, Rsub,

as shown in Table 7.3. The 27 best performing grooming algorithms were chosen

based on the minimisation of εGQCD. This was performed separately for every pT

bin.

Each of the selected 27 jet collections were tested in combination with 26 different

substructure variables, as presented in Section 7.3. For each of these combinations

of groomer and substructure variable the background rejection power at 50%

signal efficiency was used to evaluate their performance in every pT bin.
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Trimming configurations

Jet algorithms R Rsub fcut (%)

C/A, anti-kt 0.6, 0.8, 1.0, 1.2 0.1, 0.2, 0.3 1, 2, 3, 4, 5, 7, 9, 11, 13, 15

Pruning configurations

Jet algorithms R Reclust. alg. Zcut (%) Rcut

C/A, anti-kt 0.8, 1.0, 1.2 C/A 10, 15, 20, 25, 30 1
100

, 1
10

, 1
8
, 1

4
, 1

2
, 1.0

Split filtering configurations

Jet algorithms R Rsub µmax ycut

C/A 0.8, 1.0, 1.2 0.3, min(0.3, ∆R
2

) 67, 78, 89, 100 0.06, 0.07, ..., 0.20

Table 7.3 Details of the different trimming, pruning and split filtering
configurations used for the jet grooming algorithms. All combinations
of these parameters were explored in Reference [2].

7.5.4 Results

The results of the study in Reference [2] show that a pairwise combination

of the groomed jet mass and a single substructure variable can achieve 50%

identification efficiency for W bosons with pT > 200 GeV, whilst keeping the

multi-jet background selection efficiency at only 2-4%. The best performing

grooming algorithm configuration is the anti-kt, R = 1.0 trimmed jet groomer

with fcut=0.05 and Rsub =0.2, and is thus the recommended strategy proposed in

Reference [2]. Energy correlation variables C
(β)
2 and D

(β)
2 , and the N -subjettiness

ratio τwta
21 all provide equally good performance over the entire pT range which

was evaluated.

Four of the 27 jet collections (given in Table 7.4) were selected for further study.

These four collections showed consistent performance over the full pT range, with

roughly equal efficiencies for each algorithm in each pT bin. The effect of pile-

up is evaluated by the correlation between the average groomed jet mass, 〈M〉,
and the number of primary vertices, NPV. For ungroomed jets, an increase of

≈ 2 GeV per additional vertex is seen in 〈M〉, whilst for the groomed jets this

is almost negligible, as shown in Table 7.5. The anti-kt, R = 1.0 trimmed jet

groomer with fcut=0.05 and Rsub =0.2 displays less dependence on pile-up than
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the other groomers do, with an increase of 0.1 − 0.2 GeV per additional vertex.

This algorithm is referred to as R2-trimming.

The best three performing substructure variables over all pT ranges for the four

jet collections were consistently found to be τwta
21 , C

(β=1)
2 and D

(β=1)
2 (as defined

in Equations 7.13, 7.8a and 7.8b, respectively). The cut values for these are

shown for R2-trimming in Table 7.5. These cuts give background rejection powers

of ≈ 50, corresponding to εG&T
QCD ≈ 2%, with relative systematic uncertainties of

between 16% (low pT bin) and 25% (high pT bin).

Grooming configuration εGQCD δ〈M〉/δNPV

anti-kt, R = 1.0, trimmed, fcut= 0.05, Rsub = 0.2 (11± 1)% 0.1− 0.2 GeV

anti-kt, R = 1.0, trimmed, fcut= 0.05, Rsub = 0.3 (16± 1)% 0.5− 0.6 GeV

C/A, R = 1.0, pruned, Zcut = 0.15, Rcut = 0.5 (16± 2)% 0.9− 1.1 GeV

C/A, R = 1.2, split-filt,
√
y12 = 0.15, Rsub = 0.3 (13± 1)% 0.1− 0.3 GeV

Table 7.4 The four best performing grooming configurations and their back-
ground efficiencies, and pile-up dependence for εGW = 68% in the
range 200 < pT < 350 GeV. The uncertainty on εGQCD indicates
combined statistical and systematic uncertainties. δ〈M〉/δNPV
indicates the average increase in 〈M〉 per additional primary vertex
(δNPV). Ungroomed jets showed an increase of ≈ 2 GeV per
additional vertex.

Variable
Tagging criteria in pT range (εG&T

QCD%)

200–350 GeV 350–500 GeV 500–1000 GeV

εGW = 68% mass range 61–93 GeV 71–91 GeV 73–91 GeV

εG&T
W = 50%

C
(β=1)
2 < 0.18 (3.5%) < 0.13 (2.1%) < 0.10 (2.1%)

D
(β=1)
2 < 1.14 (3.1%) < 1.23 (2.6%) < 1.35 (2.3%)

τwta
21 < 0.32 (3.1%) < 0.36 (3.0%) < 0.40 (2.6%)

Table 7.5 The mass windows for calibrated R2-trimmed jets that provide εGW =
68%, and the requirements on the three substructure variables that
result in the lowest background efficiencies εG&T

QCD (indicated as a
percentage in bracketed terms), when combined with the mass window
requirement. These cuts are chosen such that εG&T

W = 50%.



Boosted W Boson Tagging 172

7.6 Run 2 Tagger Crosscheck

7.6.1 Introduction

The work introduced in Section 7.5 was based on MC simulations using Run 1

conditions at
√
s = 8 TeV. The conditions during Run 2 at

√
s = 13 TeV

are somewhat different and particles can obtain a greater boost in pT. The

recommendations from the Run 1 studies were derived as functions of pT up to

1 TeV. However, higher pT ranges need to be explored. A crosscheck of the Run 1

recommendations as applied to Run 2 MC is shown in Section 7.6.2.

The cut-based tagger introduced for the Run 1 studies presented in the

previous section is limited to using simple two-variable taggers: the mass of

the groomed jet, and a single substructure variable. A method of combining

several substructure variables, using machine learning classifiers from Chapter 6,

is investigated in Section 7.7 to create machine learning (ML) taggers. Two

types of ML tagger are presented: deep neural networks that are based on a set

of stacked auto-encoders, and boosted decision trees. These taggers are used in

conjunction with the same groomed jet mass requirement as the cut-based tagger.

The baseline grooming algorithms and substructure variables are tested using

the W ′ → WZ → qq̄qq̄ signal process and a multi-jet background (listed in

Table 7.2), using jets with transverse momentum pT > 200 GeV. The grooming

algorithms are first evaluated using the same criteria as defined in Section 7.5.2:

the minimisation of the background efficiency εGQCD. The grooming algorithm

that performs the best is chosen for further studies in Section 7.7.

7.6.2 Event Selection

The majority of the preselection criteria are the same as those given in

Section 7.5.2, with additional truth matching of the selected jets and the parent

W boson to reduce background from Z boson jets when considering the signal

samples:

• at least 2 tracks from the primary vertex are required,

• the leading, ungroomed, truth C/A jet must have pT > 50 GeV and |η| <
1.2 (to be within tracking acceptance),
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• background events where the leading ungroomed C/A jet is within a cone

of radius ∆R = 0.75×R (where R is the radius parameter of the grooming

algorithm) of the above truth, ungroomed jet are used for the pT reweighting

of the signal sample,

• the leading groomed jet must be within |η| < 1.2 (such that large-R jets

are within tracking acceptance),

• the leading groomed jet must be matched within a cone of radius ∆R =

0.75 × R of truth W boson parent, where the truth W boson parent has

pT > 5 GeV,

• the leading groomed jet must be matched within a cone of radius ∆R =

0.75×R of the truth groomed jet,

• a 68% mass window selection is applied to the mass of the leading

reconstructed groomed jet.

The four grooming algorithms that were recommended in Section 7.5, given in

Table 7.4, were re-evaluated on
√
s = 13 TeV MC samples.

7.6.3 Crosscheck Results

In the Run 1 cut-based studies (Section 7.5) the performance of the tagger was

evaluated in three pT bins. In the crosscheck of the cut-based results using
√
s = 13 TeV MC, an additional high pT bin of 1000-1500 GeV is used. The

performance of multiple cut-based taggers using three of the jet groomers, with a

68% mass window cut on the groomed jet mass and the pairwise combination with

multiple substructure variables, is shown in Figures 7.5 and 7.6. The performance

of the C/A, R = 1.2 split-filtering groomer with
√
y12 = 0.15 is compared with the

anti-kt, R = 1.0 trimming groomer with fcut= 0.05 and Rsub = 0.2 in Figure 7.7.

The background rejection factors in these figures show similar results to the Run 1

cut-based taggers in Section 7.5.4.

From these background rejection power plots (Figures 7.5 and 7.6), it is observed

that the variables C
(β=1)
2 and D

(β=1)
2 offer the highest rejection factors, typically

within a range of 40-50, over all pT bins. The variable τwta
21 offers a high rejection

power of between 35 and 40 for all groomers in the bins where pT > 500 GeV

(and the lowest pT bin for the R2-trimming configuration). Apart from the pT bin
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350 < pT < 500 GeV, shown in Figure 7.5(b), the R2-trimming groomer shows

very consistent performance in all three of these variables, and in general has

higher background rejection power than the other groomers. The full ROC curves

of the background rejection power for three of the groomers in combination with

the variables C
(β=1)
2 , D

(β=1)
2 and τwta

21 are shown in Figures 7.8 and 7.9. Based

on these results, anti-kt, R = 1.0 trimmed jets with fcut= 0.05 and Rsub = 0.2

was chosen as the default groomer to be used for the BDT and DNN W boson

taggers in Section 7.7.
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Figure 7.5 Background rejection power (1/εG&T
QCD) for W boson identification for

different combinations of jet grooming algorithms and substructure
variables. There is a 68% mass window cut on the groomed jet mass
and a cut on the substructure variable, which gives a signal efficiency
of 50%. Plots (a) and (b) show the rejection power for events with
a leading ungroomed C/A jet with 200 < pTruthT < 350 GeV, and
350 < pTruthT < 500 GeV, respectively. Additional definitions for the
substructure variables on the x-axis can be found in Appendix G.
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Figure 7.6 Background rejection power (1/εG&T
QCD) for W boson identification for

different combinations of jet grooming algorithms and substructure
variables. There is a 68% mass window cut on the groomed jet mass
and a cut on the substructure variable, which gives a signal efficiency
of 50%. Plots (a) and (b) show the rejection power for events with
a leading ungroomed C/A jet with 500 < pTruthT < 1000 GeV, and
1000 < pTruthT < 1500 GeV, respectively. Additional definitions for
the substructure variables on the x-axis can be found in Appendix G.
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Figure 7.7 Background rejection power (1/background efficiency, or 1/εG&T
QCD)

values for W boson identification when using different combinations
of jet grooming algorithms and substructure variables. There is a
68% mass window cut on the groomed jet mass, followed by a cut
on the substructure variable, which gives a signal efficiency of 50%.
These show the rejection power for events with a leading ungroomed
C/A jet with 400 < pTruthT < 1200 GeV. Additional definitions for
the substructure variables on the x-axis can be found in Appendix G.
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Figure 7.8 (a) Background efficiency versus signal efficiency and (b) back-
ground rejection power versus signal efficiency for multiple grooming
configurations and the best performing substructure variables where
500 < pTruthT < 1000 GeV. The maximum signal efficiency is
restricted to 68% due to the mass window cut on the groomed jet
mass. The inset enlarges the area around 50% signal efficiency,
which is the working point for these studies.
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Figure 7.9 (a) Background efficiency versus signal efficiency and (b) back-
ground rejection power versus signal efficiency for multiple grooming
configurations and the best performing substructure variables where
1000 < pTruthT < 1500 GeV. The maximum signal efficiency is
restricted to 68% due to the mass window cut on the groomed jet
mass. The inset enlarges the area around 50% signal efficiency,
which is the working point for these studies.
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7.7 BDT and DNN W Boson Taggers

The goal of the machine learning algorithms presented here is to create a model

that can separate a boosted W boson in a W ′ decay from a multi-jet background

by learning a general representation of the W ′ and multi-jet MC samples, which

can then be applied to data. The idea is to combine a number of substructure

variables into a single discriminant by using boosted decision trees and deep

neural networks to create W boson taggers. In the following, these are referred

to as BDT W taggers and DNN W taggers, respectively, and collectively as

Machine Learning (ML) taggers. The methods employed to develop these taggers

are discussed below.

Initially, the same selection criteria are applied as in Section 7.6.2. Using the

results from the crosscheck in Section 7.6, the jet grooming algorithm used here

is that with anti-kt, R = 1.0 trimmed jets with fcut= 0.05 and Rsub = 0.2. After

applying the 68% mass window selection criterion on the leading groomed jet

(as shown in Figure 7.10), several substructure variables are selected for use in

the ML taggers. The choice of variables used in the ML taggers is based on a

number of criteria: a) the performance of these variables when used pairwise

with the groomed jet mass cut, b) the correlations between the variables and the

sample type (signal or background), and c) their relative importance as reported

by a random forest classifier. The selection of the variables is performed in

Section 7.7.1.2.

Once a subset of variables has been selected, the hyperparameters of the classifiers

are tuned (as discussed in Section 6.5). The tuning step effectively requires

several models to be trained, which are compared with each other to find an

optimal model. The ML taggers are then evaluated against the cut-based taggers

in Section 7.7.3.

The ML taggers are trained within a range of 400 < pT < 1200 GeV and contain

background events from the JZ4 and JZ5 MC datasets (defined in Section 7.4).

The motivation for choosing this pT range was to ensure there were enough events

available for training the BDT and DNN taggers, and additionally, that the event

weights associated with the higher pT MC background samples are close to 1 for

the training of the DNN W taggers. The selection of training and testing samples

is discussed in Section 7.7.1.
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Figure 7.10 Distributions of the leading groomed jet’s mass with no selection
on the mass applied. The solid vertical lines represent the 68%
mass window for the signal sample. Shown here is the mass of the
leading ungroomed C/A jet with 400 < pTruthT < 1200 GeV.

7.7.1 Training and Testing Samples

In this analysis, stratified k-fold cross validation (see Section 6.2.2) is used. The

MC samples are cleaned and split into 75% for training and 25% for testing; this

is done k times (k = 10 for the BDTs and k = 5 for the DNNs). Further, the

performance is heavily affected by the hyperparameters chosen for the model, the

input features that are used and how the samples are weighted. For the DNNs,

the variables are scaled to a mean of zero and a standard deviation of one. Each

of the data preparation techniques is addressed in the following subsections.

7.7.1.1 Stratified Cross Validation

After preselection, shown in Section 7.6.2, and the mass window requirement,

there are a significant number of events that are kept; however, these events need

to be processed further and there is a subsequent reduction. In some cases, a

variable is not defined and is given a default value that has no physical meaning;

these events are removed from the training sample during cleaning. The number

of events passing the selections is shown in Table 7.6.

The 10-fold (for the BDTs) and 5-fold (for the DNNs) stratified cross validation
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Selection Background Signal Total

Raw number of events 3293505 354483 3647988

Preselection 2015119 93291 2108410

Mass window and pT requirement 185902 57252 243154

Cleaning 158054 53971 212025

Table 7.6 The number of events available for the BDT and DNN training. The
cutflow shows how many events are removed after preselection has
been applied, the 68% mass window requirement and a 400 < pT <
1200 GeV cut on the anti-kt, R = 1.0 trimmed jets with fcut= 0.05
and Rsub = 0.2, and finally the number of events removed in cleaning.

folds are created after the preselection has been done, the mass window cut

has been applied, and the datasets are cleaned. For each fold this translates to

approximately 158000 training events (40000 signal and 118000 background) and

53000 testing events (14000 signal and 39000 background). In order to check that

the folds were representative, the mean value and standard deviation of each fold

was compared with the full dataset. These values are shown in Appendix H.

7.7.1.2 ML W Tagger Input Variables

14 variables are initially considered as inputs for the ML taggers. In machine

learning classifiers, adding more input features to the model does not necessarily

increase the performance; a subset of the features is often sufficient. In order to

find a set of variables to use as inputs, a number of sources were considered: a

visual inspection of the distributions of the variables (as shown in Figure 7.13),

the performance of the variables in the cut-based method (as shown in Figure 7.7),

the correlations between these variables (as shown in Figure 7.11), the feature

importances from a random forest classifier (as shown in Figure 7.12), and the

performance of the ML taggers in testing.

Considering the results in Figure 7.12, it is observed that the top variables from

the cut-based method, C
(β=1)
2 , D

(β=1)
2 and τwta

21 , are the top performing variables

here. The variable
√
d12 is the next best variable, and has a similar importance

to τwta
2 . The thrust variables and sphericity do not perform well, and are thus

not considered further. The remaining variables do not have vastly different

importance and it is not clear from this plot alone which of them should be

chosen.
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The linear correlations between the top performing substructure variables (after

the mass window cut and jet grooming) and the class label (i.e. signal or

background) are computed and shown in Figure 7.11. The three variables
√
d12,

√
z12 and YFilt are all correlated, as expected, since they are all variants of√
d12. τwta

21 and τwta
2 are also highly correlated, however τwta

2 has a lower feature

importance and potentially less information. Aplanarity has a correlation with

the thrust variables and sphericity; however, it is kept as an input variable as it

has a much higher feature importance. Additional considerations are that
√
z12

and YFilt both have a jet mass dependence, and µ12 is dependent on the grooming

algorithm.

Considering the above results, the following variables are dropped:
√
z12, YFilt,

µ12, τwta
2 , thrust variables and sphericity. Therefore, the final set of variables

chosen for the inputs to the BDTs and DNNs is: C
(β=1)
2 , D

(β=1)
2 ,

√
d12, τwta

21 , P

and A.

The variables used for training and testing the DNNs, standardised to a mean of

zero and a standard deviation of one, are shown in Figure 7.14.

7.7.2 BDT and DNN W Tagger Tuning

To tune the hyperparameters (see Section 6.5), a grid search is performed over

multiple parameter combinations and all cross validation folds to find the optimal

choice. In the results tables that follow, the accuracy or score of the model is

quoted, which is defined as the weighted average of all the correct predictions

(see Equation 6.17c).

BDT Parameters

Three hyperparameters are tuned for the BDTs, where training the BDT takes

on the order of a minute for each configuration of hyperparameters3. The values

used in the grid scan are given below:

• base classifiers: Decision Tree Classifier with depth ∈ {3, 4, 5, 6, 8, 10, 15},

• number of estimators ∈ {20, 35, 50, 65, 80},

• learning rate ∈ {0.1, 0.2, 0.3}.
3Training was performed using an Intel Core i7 2600S CPU with 16 GB of RAM.
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Figure 7.11 The matrix plots show the linear correlation coefficients between
the possible feature inputs for the BDT and DNNs. There is a
68% mass window cut on the groomed jet mass, where the groomed
jets are anti-kt, R = 1.0 trimmed jets with fcut= 0.05 and Rsub

= 0.2. Here the correlations are shown for separate signal and
background samples where the leading ungroomed C/A jet has
400 < pTruthT < 1200 GeV. The general features in the correlations
are the same between signal and background.
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Figure 7.12 The feature importances taken from a Random Forest Classifier
with 500 trees.

The effect of the maximum tree depth on the overfitting of the BDTs is evaluated

by considering the validation curves that are shown in Figure 7.15. These results

indicate that trees with a maximum depth of greater than five are overfitting,

and as such, all trees with a depth greater than five are excluded. The top five

hyperparameter sets from the grid scans, excluding those with maximum depth

greater than five, are listed in Table 7.7.

ID Max. depth Learning rate No. estimators
Ave. Ave. Bkg.

Accuracy rej. power

31 5 0.1 35 0.81 61.5

35 5 0.2 20 0.81 60.7

32 5 0.1 50 0.81 58.8

30 5 0.1 20 0.81 58.2

40 5 0.3 20 0.81 56.9

Table 7.7 Training parameters and background rejection power for the top 5
BDTs with 400 < pTruthT < 1200 GeV. The final two columns give
the average accuracy and background rejection power at 50% signal
efficiency obtained when running over all of the training folds.
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Figure 7.13 The distributions of the input variables used in the BDTs. These
have the 68% mass window cut applied to the leading groomed jet,
where the leading C/A R = 1.2 jet has 400 < pTruthT < 1200 GeV.
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Figure 7.14 The distributions of the input variables used in the DNNs. These
have the 68% mass window cut applied to the leading groomed jet,
where the leading C/A R = 1.2 jet has 400 < pTruthT < 1200 GeV.
These distributions have been standardised such that the combined
signal and background sample has a standard deviation of 1 and a
mean of 0.
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Figure 7.15 Validation curves (see Section 6.5.3) for the BDTs, showing
accuracy as a function of the maximum depth of the tree. The
shaded bands show the the standard deviation of the mean accuracy
of all 10 cross validation folds, and the vertical line indicates the
optimal maximum depth of five. The diverging curves indicate that
there is a high variance problem. BDTs with a large maximum
depth are learning the training sample well (the training accuracy,
or training score), but are not generalising well. From this plot, it
can be seen that a high value for maximum depth gives inconsistent
results. There is a 68% mass window cut on the groomed jet
mass. Shown here are the plots for combined signal and background
datasets where the leading ungroomed C/A jet has 400 < pTruthT <
1200 GeV.
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DNN Parameters

For the DNNs, fewer hyperparameters were tested, due to the relative time taken

to train each model, which is on the order of 30 minutes to an hour4. However,

some guidelines from the author of the software that was used, AGILEPack, were

used to narrow down the search space [192]. The list of hyperparameters tested

(as discussed in Sections 6.3.1 and 6.3.2.1) are:

• logarithm of the learning rate ∈ {−10,−8,−6,−4,−2},

• momentum ∈ {0.7, 0.85},

• logarithm of the regularisation (or shrinkage) ∈ {−10,−7},

• unsupervised training epochs ∈ {20, 60},

• supervised training epochs ∈ {40, 80}.

The top five sets of hyperparameters from the grid scans are shown in Table 7.8.

The accuracy and background rejection power given is the average over all folds

of the test datasets.

ID Momentum
Log Log learning Unsup. Sup. Ave. Ave. bkg.

regularisation rate epochs epochs accuracy rej. power

35 0.7 -10 -6 60 80 0.69 52.3

32 0.7 -10 -6 20 40 0.69 50.7

17 0.7 -10 -8 60 40 0.690 50.6

33 0.7 -10 -6 60 40 0.69 50.5

12 0.85 -7 -10 20 40 0.70 50.2

Table 7.8 Training parameters and background rejection power for the top 5
DNNs with 400 < pTruthT < 1200 GeV. ‘Unsup.’ and ‘Sup.’ refer to
the number of unsupervised and supervised training epochs. The final
two columns give the accuracy and background rejection power at 50%
signal efficiency obtained when running over all of the training folds.

4The same hardware was used for training the DNN classifiers as for the BDT: Intel Core
i7 2600S CPU with 16 GB of RAM.
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7.7.3 Results

The training of the BDTs produces a decision function that provides discrimina-

tion between signal and background events. Each event is assigned a value by the

decision function of between −1 and 1 with a corresponding signal probability,

which is then used to determine if it is signal or background; the value of the

decision function at which an event is deemed signal is chosen such that it meets

a given threshold on the signal-to-background ratio. The decision functions for

the top three variations of the BDTs from Table 7.7 are shown in Figure 7.16

(a,c,e). A good separation between signal and background is observed on the

uncleaned samples (i.e. only event selection has been applied, no events with

outliers are removed). The predicted signal probability (see Section 6.4.1) is used

as a class discriminant for the BDTs, as shown in Figure 7.16 (b,d,f). Again, a

good separation is seen between signal and background.

The classification probabilities from the top three DNNs listed in Table 7.8

are shown in Figure 7.17. There is excellent separation between signal and

background, and in general the model has prediction probabilities that are

different from the BDTs. However, there is a larger overlap, with both

distributions having a long tail, especially the signal. This means that there

is more chance of rejecting a signal event.

The ROC curves in Figures 7.18 and 7.19 show the signal efficiency versus

1−background efficiency and signal efficiency versus background rejection power

for the best BDT and DNN taggers, respectively. In each of these, the

performance on the uncleaned MC dataset is shown. The top performing cut-

based taggers are shown for comparison; in all cases the BDTs and DNNs

outperform them. At 50% signal efficiency, the highest background rejection

power is just over 50 for the DNN taggers, just over 60 for the BDT taggers, and

around 45 for the cut-based taggers.

7.7.4 Discussion

All top five BDT taggers have similar background rejection power, although there

is a large variance in the performance when considering all configurations tested.

BDTs with a maximum depth of greater than five have higher rejection power

(of up to 1200 in some cases), but they heavily overfit the training sample. This

could potentially be addressed by training with more events, since the number
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Figure 7.16 Plots on the left show the decision functions for the top three
performing BDTs where 400 < pTruthT < 1200 GeV. This shows
the scores assigned during to training to signal and background
events. Plots on the right show the signal probability corresponding
to the configurations in the left-hand side plots when testing on the
uncleaned dataset, after preselection.
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Figure 7.17 Plots (a)-(c) show the signal probability for each event as classified
by the top three performing DNNs where 400 < pTruthT < 1200 GeV.

of events needed to populate each base classifier in the BDT doubles for every

additional layer.

In the signal distributions in Figure 7.16 (the red line) it is observed that there is

a small peak in the background at low values. These low values are found to come

from lower pT events that have large Monte Carlo weights, as shown in Figure I.1

in Appendix I. These events are found in the JZ4 background sample. The lowest

regions where the BDT signal discriminant is < 0.16 contain only ≈ 0.02% of the

total background events, however, these events have much larger weights than

the other regions, as shown in Figure I.2 in Appendix I. After weighting the

distributions, this low region contribution accounts for almost 12% of the total

background. BDT signal discriminant is plotted against the jet pT in Figure I.3

in Appendix I, which suggests that high pT jets are more likely to be tagged as

boosted W bosons. A possible explanation for this is the Monte Carlo weights

being used in the training of the BDTs. Since the low pT background events have

larger weights, the BDT will focus more on discriminating against these events.



Boosted W Boson Tagging 193

W
G&T ε

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Q
C

D
 J

et
s

G
&

T
 ε

1-

0.9

0.92

0.94

0.96

0.98

1

wta
21τ

=1)β(

2C

=1)β(

2D

BDT ID 31 (dep=5, lr=0.1, est=35)

BDT ID 35 (dep=5, lr=0.2, est=20)

BDT ID 32 (dep=5, lr=0.1, est=50)

BDT ID 30 (dep=5, lr=0.1, est=20)

BDT ID 40 (dep=5, lr=0.3, est=20)

DNN ID 35 (m=0.7, lr=2.48E-03,
 u=60, s=80)

DNN ID 32 (m=0.7, lr=2.48E-03,
 u=20, s=40)

DNN ID 17 (m=0.7, lr=3.35E-04,
 u=60, s=40)

DNN ID 33 (m=0.7, lr=2.48E-03,
 u=60, s=40)

DNN ID 12 (m=0.85, lr=4.54E-05,
 u=20, s=40)

<1200 GeVTruth

T
 = 13 TeV, 400<ps

68% mass window cut applied

=0.2
sub

=5%,Rcutf
Trimmed

 R=1.0 jetstanti-k

0.4 0.45 0.5 0.55 0.6
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Figure 7.18 The ROC curves show the signal efficiency on the x-axis and the
background efficiency on the y-axis for the top five performing
BDTs, the top five performing DNNs and the top three substructure
variables. A 68% mass window cut is applied on the groomed jet
mass. The corresponding background rejection plot is shown in
Figure 7.19.

For the DNN taggers, although all top five configurations provide similar back-

ground rejection power, there is less variance over the full set of hyperparameters

that were tested, compared with the variance seen in the BDT taggers. This

can be explained by the smaller set of combinations in the grid search. For a

number of combinations of hyperparameters, the DNN taggers do not converge,

particularly when the learning rate is set to larger values.

Aside from showing a large gain in background rejection power, the ML taggers

showed an increase in performance over a relatively large pT range of 800 GeV.

The ML taggers are not, however, pT independent, and training them in smaller

pT bins is expected to improve the performance overall; although this would

require a lot more simulated events. Additionally, the boundaries between the

pT bins need to be considered such that the classification efficiency is continuous

over the boundaries. The results here consider events where the leading jet has

pT of up to 1200 GeV, but this should be extended for searches of resonances

beyond 3 TeV. At higher pT some variables will quite likely change behaviour
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Figure 7.19 The ROC curves in (a) show the signal efficiency on the x-axis
and the background rejection power on the y-axis for the top five
performing BDTs, the top five performing DNNs and the top three
substructure variables. A 68% mass window cut is applied on the
groomed jet mass. At 50% signal efficiency the BDT and DNN
obtain a background rejection power of ≈ 60 and ≈ 50, respectively,
compared with ≈ 45 for the single substructure variables.

and the setup used here would need to be re-evaluated.

In the next section, the BDT and DNN taggers offering the highest background

rejection power are applied to the HVT Z ′ → WW → qq̄qq̄ search. This is used

as an opportunity to validate the results obtained here using data.

7.8 HVT Z ′ Prospects

Many extensions to the SM predict diboson resonances that would be accessible at

the energies achieved during Run 2. One such model is the Heavy Vector Triplet

model (HVT) [19], which introduces additional heavy W ′± and Z ′ bosons. This

model is used as the signal process when developing the ML W boson taggers in

this chapter. The W ′ and Z ′ can decay into diboson resonances. Hints of such

a heavy diboson resonance were found during Run 1 when an excess of events
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with a global significance of 2.5σ was seen at 2 TeV from hadronic decays in WZ

events [236], however, this has not been confirmed in Run 2 [237].

Searches for diboson resonances can benefit from improved identification of

boosted vector bosons. One such search is the diboson resonance search at

ATLAS at a centre-of-mass energy of
√
s = 13 TeV presented in Reference [237],

using data collected in 2015 by ATLAS from pp collisions at
√
s = 13 TeV,

corresponding to an integrated luminosity of 3.2 fb−1. This analysis focuses on

the decay of TeV scale resonances with a mass of between 1.2 and 3 TeV, which

decay into highly boosted W and Z bosons. A Z ′ of masses between 1.38−1.6 TeV

is excluded at 95% CL from the analysis of the Z ′ → WW decays. This analysis

has since been updated to include a further 12.3 fb−1 (for a total of 15.5 fb−1) of

data collected by ATLAS in 2016 [238]. With this additional data, a Z ′ of masses

between 1.2 − 1.8 TeV are excluded at 95% CL. These analyses both use the

same selection criteria and assess systematic uncertainties in the same way. The

application of the ML taggers to the process Z ′ → WW → qq̄qq̄ is investigated

in the following sections and validated using the 2015 dataset, corresponding to

an integrated luminosity of 3.2 fb−1.

The signal process Z ′ → WW → qq̄qq̄ is simulated at
√
s = 13 TeV in the same

way as the W ′ → WZ → qq̄qq̄ process in Section 7.4. The same set of mass

points is also created. The dominant background contribution is from multi-jet

events; the samples used here are listed in Table 7.2.

A subset of the event selection criteria used in Reference [237] is applied

to simulated events and data. The identification of the vector bosons in

Reference [237] uses large-R groomed jets and the substructure variable D
(β=1)
2

(described in Section 7.3.1.3) in order to identify the boosted W bosons. In the

application of the ML taggers, D
(β=1)
2 is replaced by a class prediction probability

from the BDT and DNN W boson taggers developed above. In the following

sections, the input variables used in training and the output of the ML taggers

are shown for data and Monte Carlo.

A summary is given below of the object reconstruction and event selection

from [237], and the modifications that are made to the selection criteria for the

evaluation of the ML W boson tagger. This is followed by comparisons of data

and Monte Carlo simulations. Finally, prospects and future steps are discussed.
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7.8.1 Object and Event Selection

The primary goal is to identify two high pT large-R jets that are consistent with

a W boson. Large-R jets with R = 1.0 are reconstructed from clusters using

the anti-kt algorithm. These jets are trimmed using the same configuration used

in Section 7.6: anti-kt, R = 1.0, fcut ≥ 5% and Rsub = 0.2. Two groomed

large-R jets are required, one of which has pT > 450 GeV and the other at least

pT > 200 GeV, and have a separation in rapidity of |∆y12| < 1.2. The two jets

must both be within |η| < 2.0, and have a jet mass of greater than 50 GeV. The

mass of the dijet pair, mJJ , is required to be greater than 1 TeV. An approximate

transverse momentum balance between the two jets, as expected from a heavy

object decay, is enforced by the cut
pT1
−pT2

pT1
+pT2

< 0.15, where the subscripts 1 and 2

refer to the leading and subleading jets, respectively.

Any events with electrons or muons (using the medium working point and loose

isolation criteria from Sections 4.5 and 4.6) are rejected. Additionally, any events

with a large missing transverse momentum of Emiss
T < 250 GeV are rejected.

A 30 GeV symmetrical mass window is defined using the trimmed jet mass,

centred on the mass peaks of the W boson observed in the simulated MC, after

local cluster weighting calibration of the jet mass (see Section 4.7.2), of 84 GeV.

Both the leading and subleading groomed jets must have a mass within this

window. Note that the definition of the mass window used here is different from

that used in the previous sections.

After the mass window requirement, the identification of the jet as a W boson is

performed: a cut-based method as described in Reference [237], similar to that

presented in Chapter 5, or using an ML W tagger. In the cut-based method, a

cut on D
(β=1)
2 , in conjunction with the W mass requirement, is applied such that

there is a 50% signal efficiency.

For both jets, there is a requirement of ntrk < 30 (the number of tracks associated

with the ungroomed jet which corresponds to the large-R groomed jet), which

has been shown to provide discrimination between W boson and multi-jet events,

improving the expected signal sensitivity in Reference [237] by 30%. This is

applied for each jet after the substructure cut and the mass window requirement.

In order to compare the search results when using the cut-based W tagger and the

ML taggers, the cut on D
(β=1)
2 is removed for both jets and replaced with a cut

on the output from either the BDT or the DNN. As shown earlier in Figures 7.16
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and 7.17, the output from the BDT/DNN is a continuous variable. A cut must be

chosen on these output variables such that a given selection efficiency is obtained.

For the ML W boson tagger, the BDT and DNN configurations chosen are the

best performing configurations trained in the range 400 < pT < 1200 GeV, as

shown in Section 7.7.2 (the first entries in Tables 7.7 and 7.8).

7.8.2 Data-to-Monte Carlo Comparisons

The output of the ML taggers is evaluated after the mass window requirement

and all other event selection criteria listed in Section 7.8.1. Before the boosted

W boson selection has been performed, the region is heavily dominated by QCD

backgrounds. This offers an opportunity to compare the output of the taggers

on data and background simulations. In the following, a Z ′ of mass 1.2 TeV is

considered as the signal. A cut on the invariant dijet mass of 1.1 < mJJ < 1.3 TeV

is implemented. This mass cut corresponds to a majority of the corresponding

large-R jets having a range of 500 < pT < 700 GeV.

The variables used as inputs for the two ML W boson taggers for the leading

and subleading jets are shown in Figures 7.20 and 7.21, respectively, where the

signal process is a Z ′ of mass 1.2 TeV. These distributions are shown after the

mass window cuts have been applied, but without a cut on the ML tagger output

or the ntrk variable. The distributions show excellent agreement between the

background expectation and data, and there are no substantial differences seen

between the two jets. A comparison of these variables with those used for training

the BDT and DNN taggers (shown earlier in Figures 7.13 and 7.14) reveals some

differences. The differences seen between the signal distributions in Figures 7.20

and 7.21, compared with those used for training, is because of the different Z ′

masses used. There is a slight shift in the peaks in the distributions of τwta
21 ,

compared with the training samples. The peak of D
(β=1)
2 in the signal sample

used for training is centred around 1, as opposed to about 1.3 here, and has a

greater separation from the background.

The output of the BDT and DNN taggers shows excellent agreement between the

multi-jet background expectation and data in the QCD enriched region, as seen

in Figure 7.22.

The 50% signal point is re-derived here for D
(β=1)
2 , the BDT W tagger and the
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Figure 7.20 The distributions of the input variables which are used as inputs
for the ML W tagger for the leading jet after preselection in the
HVT Z ′ →WW search. A Z ′ of mass 1.2 TeV is considered here,
and an invariant dijet mass requirement of 1.1 < mJJ < 1.3 TeV
is imposed.
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Figure 7.21 The distributions of the input variables which are used as inputs for
the ML W tagger for the second-to-leading jet after preselection in
the HVT Z ′ → WW search. A Z ′ of mass 1.2 TeV is considered
here, and an invariant dijet mass requirement of 1.1 < mJJ <
1.3 TeV is imposed.
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Figure 7.22 Plots (a) and (b) show the output of the BDT and DNN taggers
for the leading jet in background, data and for the HVT model with
a Z ′ of mass 1.2 TeV. An invariant dijet mass requirement of
1.1 < mJJ < 1.3 TeV is imposed. Below this in plots (c) and (d)
the output is shown for the subleading jet. Good agreement is seen
between data and the background estimation.

DNN W tagger on the leading jet5. Similar conclusions to Section 7.7.3 are found.

There is a lower gain in background rejection power for the BDT tagger, however.

There is approximately the same gain of about 10% for the DNN tagger. The

gain in background rejection power after selecting the leading jet is shown in

Table 7.9.

7.8.3 Discussion of Results

The selection criteria reduce the number of background events drastically when

tagging both jets (a factor in the range 1000-2000), and as such, it is difficult

5In the analysis in Reference [237], the working point for the D
(β=1)
2 cut is pT dependent.
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No-tag 1-tag

Pre-tag selection D
(β=1)
2 < 1.22 BDT> 0.53 DNN> 0.49

Signal events 67± 1.3 33± 0.9 33± 0.9 33± 0.9

Background events 136540± 476 3791± 66 3300± 58 3450± 61

Signal efficiency (%) - 50± 3 50± 3 50± 3

Bkg. efficiency (%) - 2.8± 1.79 2.4± 1.80 2.5± 1.80

Bkg. rejection gain (%) - - 13.0± 1.40 9.0± 3.90

Table 7.9 Event yields after selecting the leading jet in the event at 50% signal

efficiency with a cut on the D
(β=1)
2 variable, and the BDT and DNN

W boson taggers. The signal here is a Z ′ of mass 1.2 TeV, and there
is a dijet invariant mass cut of 1.1 < mJJ < 1.3 TeV. No cut on ntrk
is applied here. As can be seen in the final row, there is a gain in
background rejection for the BDT and DNN W boson taggers over the

D
(β=1)
2 selection on the order of 10%. The statistical errors quoted

are due to limited Monte Carlo events.

to provide a statistically conclusive comparison of the impact of the ML taggers

on the event yields after requiring two W bosons. With the available QCD

simulated events, after the first jet is tagged, there are between 3300 and 3500

background events passing the selection, however, after the second jet is tagged,

this is reduced to just over 100 events. At this point the statistical uncertainties

on the background efficiency and rejection are larger than the absolute yield.

In the event selection in the cut-based analysis there is a further cut on ntrk at

this point, reducing the background yield further. With more simulated events

it will be feasible to estimate the gain in sensitivity using the ML taggers in this

analysis. The results from Table 7.9 after tagging a single jet, indicate that, given

more simulated background events, there is likely to be a significant gain in the

sensitivity over using a single substructure variable.

7.8.4 Discussion and Conclusion

The systematic uncertainties in the diboson search in Reference [237] are

calculated differently for the signal and background processes. The smoothly

falling dijet invariant mass in the multijet background is modelled with a

parametric function with three parameters that are determined by a binned

maximum likelihood fit. The uncertainties on the background expectation are

determined by a maximum likelihood fit to the dijet mass spectrum. However,

there are known differences in the fit parameters between data and simulation for
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the shape. These differences will need to be addressed when implementing the

analysis with the ML taggers.

For each signal process, the systematic uncertainties with the largest effect

on the signal expectation are the jet mass and pT, and D
(β=1)
2 , and on the

integrated luminosity. The scale uncertainty on D
(β=1)
2 is assessed using data-

to-MC comparisons of track and calorimeter measurements of D
(β=1)
2 . Similar

methods are used for the scale uncertainties on the jet mass and pT. The

scale uncertainties for D
(β=1)
2 , the jet mass and the jet pT are 5%, 6% and 5%,

respectively. The systematic uncertainty on their resolutions are 20% each.

The signal uncertainties are included as nuisance parameters in a binned

maximum likelihood fit, using the parameterised background expection as the

background, and a template from simulation for the signal shape.

To estimate the effect of systematic uncertainties on the background when using

the ML taggers a similar method to the current estimate can be used. A

control region must be constructed to assess how well the output from ML tagger

describes the data, and the uncertanties estimated by a fit to data in this region.

For the signal systematic uncertainties there are additional considerations. Six

substructure variables are used, each of which will introduce its own uncertainty

to the output of the ML tagger. Since the final discriminant is the dijet invariant

mass, and only a cut is applied to the ML tagger, the changes to the shape of

the ML tagger output should be assessed. This can be done by varying the input

distributions and observing the change to the distribution.

The increased signal yield that can be achieved using the ML taggers, coupled

with more data being collected, will provide not only an increased signal

sensitivity, but also allow for the signal systematics to be constrained. The aim

of this study is to assess any potential gains from ML tagging, and as such,

the study of associated systematic effects is beyond the scope of this thesis. A

possible approach to evaluating the systematics for the ML taggers is to test the

ML taggers with the up and down systematic variations of the individual input

substructure variables. The systematic studies of all the substructure variables

has not yet been performed, however, D
(β=1)
2 systematics have been calculated in

Reference [237]. Systematics are calculated using data-to-simulation comparisons

of the ratio of D
(β=1)
2 measured using tracks and energy clusters. Similar methods

could be used here.
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In Reference [237] (and introduced in Section 7.8.1) an additional variable, ntrk,

is used in the boosted boson identification and offers good discrimination against

QCD backgrounds. However, it has been shown to be poorly modelled [239, 240]

and it introduces large systematic uncertainties. The variable is used in the cut-

based analyses in References [237, 238] as it offers an increase in the sensitivity of

30%, which is large enough to offset the systematic uncertainties. Including this

variable in the ML taggers could further improve their performance, although

the effects of the systematic uncertainties will need to be assessed carefully. An

initial assessment of the improvement offered by including this variable in the ML

taggers showed a difference in background rejection power of around 20%.

The improvements shown in this proof of concept show that this search can stand

to benefit by using the ML taggers. The gain in signal sensitivity will need to be

quantified when more data and more simulated QCD samples become available,

however, these initial results are promising. The ML taggers show potential

for increased identification efficiency at higher pT, as discussed in Section 7.7.4,

which is especially relevant for searches for heavy mass particles that decay into

W bosons. These gains in signal sensitivity and high pT performance will have a

direct impact on the setting of exclusion limits, and, in particular, setting upper

limits on the cross section of a given signal process. Currently, the Z ′ from HVT

model A (with gV = 1), is excluded at 95% CL for masses between 1.2−1.8 TeV,

but the ML taggers could be used to extend this to higher mass points.

The techniques shown here are general, and can be used for identifying boosted Z

bosons or Higgs bosons. The improved identification efficiency will benefit many

physics searches where these boosted bosons are present.
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Chapter 8

Conclusions

The second Timeless Test ended with the submission of this thesis. Image © ES-
PNCricInfo Ltd. [241]
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The final missing particle in the Standard Model of particle physics, the elusive

Higgs boson, was discovered in 2012, almost 50 years after it was first predicted

by Brout, Englert and Higgs. Finding evidence of the Higgs boson decaying into

b quarks is an important undertaking towards further validating the Standard

Model of particle physics and determining the exact nature of the Higgs boson.

In this thesis, a search has been presented that considers a Higgs boson produced

in association with a W boson, where the Higgs boson decays to bb̄ and the

W boson decays leptonically. The search is performed using data from proton-

proton collisions at a centre-of-mass energy of
√
s = 8 TeV collected by the

ATLAS experiment at the LHC, corresponding to an integrated luminosity of

20.1 fb−1. The reconstructed invariant mass of two b-quark jets was used as the

main criteria for the analysis, the so-called dijet mass analysis. The combination

of the WH → `νbb̄, ZH → νν̄bb̄ and ZH → `+`−bb̄ production modes was also

presented. In the WH → `νbb̄ search, particular attention was drawn to the

multi-jet background estimation and the corresponding systematic uncertainties,

where the author made a large contribution to the analysis.

A Standard Model Higgs boson decaying to bb̄ is not observed in the search

presented. An observed (expected) 95% confidence upper limit on the measured

cross section, in units of the expected Standard Model cross section, σ/σSM ,

for mH = 125 GeV in the WH → `νbb̄ channel is found at 3.9 (1.6). For the

combination of all three channels, the observed (expected) limit is 2.1 (1.1).

The observed (expected) significance from WH → `νbb̄ for a Higgs boson with a

mass of 125 GeV is 2.7σ (1.3σ). When combined with the associated Z boson

channels, an observed (expected) significance of 2.01σ (1.94σ) is seen.

These results are consistent with a Standard Model Higgs boson of mass

mH = 125 GeV; however, not enough data was available to make a conclusive

statistical claim as to whether or not the Higgs boson does decay to bb̄. Data

taken during Run 2 of the LHC will be essential in the measurement of this decay.

Run 2 of the LHC began in 2015 with proton-proton collisions at a centre-of-

mass energy of
√
s = 13 TeV. Heavily boosted particles are likely to be produced

in these high energy collisions and bring additional challenges to analyses. For

example, a boosted Higgs boson decaying to bb̄ becomes more difficult to observe

due to the collimation of the two b-quark jets. This challenge is not unique to

Higgs boson decays, and generic techniques are required for identifying hadronic

decays of boosted bosons. Methods of combining jet grooming algorithms with a
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jet substructure variable have been presented, with a focus on boosted W bosons

in
√
s = 13 TeV collisions. These boosted W boson taggers form a baseline

identification technique against which further improvements can be tested.

This thesis presented a study of the potential gain in identification of boosted W

bosons by using machine learning techniques. Two machine learning algorithms

have been implemented: boosted decision trees (BDT) and deep neural networks

(DNN). These algorithms are used to combine six substructure variables into a

single discriminant that can be used to separate boosted W bosons from a QCD

multi-jet background. Improvements of the BDT and DNN W boson taggers over

the baseline W boson taggers in the background rejection power at 50% signal

efficiency of between 36% and 13%, respectively, have been achieved in testing.

No systematics have yet been considered for these W boson taggers. Possible

improvements to these methods were also discussed.

The Standard Model of particle physics, although exceptionally successful, has

a number of shortcomings. Many new physics models, containing additional

particles or interactions, have been proposed to address some of these limitations.

The high energy collisions during Run 2 have the possibility to produce heavy

particles predicted by these new physics models. Narrow diboson resonances

have been considered in this thesis in the context of a Heavy Vector Triplet

model, which predicts heavy W ′ and Z ′ bosons that can decay into boosted W

bosons. The selection from the Z ′ → WW → qq̄qq̄ search (where Z ′ has a mass of

1.2 TeV) is used as a way to validate the BDT and DNN W boson taggers. Using

Run 2 data corresponding to an integrated luminosity 3.2 fb−1, these W boson

taggers are compared with a baseline selection that uses a single jet substructure

variable. Data-to-Monte Carlo comparisons show good agreement for both of the

W boson taggers in a QCD background enriched region. The performance of

the W boson taggers as applied to this analysis is in agreement with the results

obtained in testing.

Run 2 of the LHC promises to deliver an immense amount of data, up to 100 fb−1,

at higher energies than ever before. Many exciting and interesting prospects to

further measure the properties of the Higgs boson and to search for New Physics

lie ahead.
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Appendix A

GPU-based HLT

A.0.1 Graphics Processing Unit

Graphics Processing Units (GPUs) are primarily used for graphical applications

and computer physics engines [242]. However, due to their highly parallel

architecture they have found use in high performance computing. Current GPUs

from NVIDIA have thousands of processing cores, far more than are found in

multi-core server 1 or desktop CPUs, which typically have up to eight cores.

The GPU cores are effective at processing data in parallel with many concurrent

threads, whilst the CPUs are designed to run fewer threads, faster. GPUs are

able to produce performance in the TeraFLOPs range.

The parallel computing platform used on NVIDIA GPUs is called CUDA

(Compute Unified Device Architecture) [243]. This provides a framework for

accessing the GPU through C/C++ code. CUDA is only available for NVIDIA

hardware, however, and it changes between hardware versions. Another more

general framework that can be used for this as well called OpenCL [244]. This

is not supported or maintained by NVIDIA, so whilst it can be used to run on

NVIDIA devices it is not able to use the specialised NVIDIA features. It does offer

the ability to port code between architectures and can also be run on multi-core

processors.

The features and implementations in NVIDIA GPUs differ between architectures,

but the overall schema is the same. Threads are run on the GPUs in groups called

warps which are collections of 32 threads, which are then grouped into thread

blocks, which in turn are grouped into grids (see Figure A.1) [245, 246]. All

threads in a warp must execute the same instructions, or kernel. The maximum

sizes of the thread blocks and grids are limited by the maximum number of

1The Intel Xeon-Phi multi-processor has 48 cores.
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threads and warps that the GPU can run at once and by the number of thread

blocks a single Streaming Multiprocessor can run. The GPU is split into a

number of Streaming Multiprocessors (SM) which each contains a number of the

cores. The memory on the GPU is divided into local or global memory, shared

memory and registers. Registers are limited to a single thread, shared memory

is available to a thread block and global memory is available to all threads. The

speeds of the different memories decrease with increasing scope, but the largest

bottleneck comes from copying data from the host device to the actual GPU

memory. Generally, code that is written to run on a normal CPU has to be

rewritten and redesigned to run optimally on a GPU [245, 247].

Figure A.1 The abstraction of threads being grouped into blocks that are grouped
into grids in the CUDA programming framework.

Two recent architectures are Fermi [248, 249] and Kepler [250, 251]2. Fermi offers

32 (version 2.0) or 48 (version 2.1) cores per SM and Kepler has up to 192 cores per

SM. There are general increases to the amount of memory, the maximum number

of threads and the scheduling. Kepler offers dynamic parallelism so threads can

spawn new threads, no longer relying on the CPU to do this.

GPUs offer access to hundreds of cores with thousands of threads, which can be

used to do parallel processing on a large scale where SIMT (Single Instruction

Multiple Threads) can be utilised. Algorithms where a single instruction can be

carried out on multiple data or where all data is independent are good candidates

to be run in parallel. GPUs offer a lot of on-device memory that can be accessed

from the host device at high speed. However, these can be difficult to program

optimised code for and the memory management can be restrictive. The time

taken to read and write data between the host memory and GPU memory is a

lot slower than processing time in many cases, so this adds a further constraint.

2At the time this study was done Kepler was the most recent. Maxwell and Pascal have
since superseded it.
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A.0.2 ATLAS Trigger System

The basic outline of the ATLAS trigger was given in Section 3.4. Some of this is

expanded on here in the context of the GPU-based HLT.

Triggers make fast decisions about whether or not to keep events. Events that do

not contain interesting physics or do not pass quality requirements are discarded.

The LHC has a design collision rate of 40 MHz, which must be reduced to ≈ 1000

Hz by the trigger system (for Run 2). Triggers also help to reject QCD multi-jet

events and keep low cross section events.

There are three hardware and software triggers implemented in the ATLAS

detector:

• Level 1 (L1) is a hardware based trigger,

• Level 2 (L2) is a software based trigger,

• and the Event Filter (EF) is also based in software.

L2 and EF together are known as the High Level Trigger (HLT).

When a region-of-interest (RoI) is identified by the L1 trigger, the data are

transferred to Readout Buffers (ROB) that store the data pending the L2

trigger decision. The ROBs are detector specific each containing partial event

information.

The L2 trigger runs fast software algorithms to analyse the RoIs from L1. L2 has

access to the full granularity of the detector within the RoI including tracking

data. The Readout Buffers are grouped into Readout Systems (ROS) that contain

data from all parts of the detector and the L2 trigger can access any of this data.

The L2 trigger is the first level of the trigger system to get access to data from

the pixel and SCT detectors. The data from the pixel and SCT modules is stored

in ROBs, which is handled by Readout Drivers (ROD). The ROBs are encoded

into a bytestream, which must be decoded when the L2 trigger wants access to

the module information. The decoded information must be analysed to find all

the modules with hits, the hits clustered and converted to actual spacepoints.

The decoding and clustering lend themselves to parallel processing, however, the

decoding is currently done sequentially. A previous study was done where the

bytestream decoding is parallelised at the level of ROB fragments, but it was
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highlighted that this could be parallelised further by moving to the level of module

readouts. The same study did the clustering in parallel as well. This study used

NVIDIA Tesla C2050 GPU cards to run the data preparation in parallel, showing

massive speed gains over CPU based methods.

The EF uses seeds from the L2 trigger, but has access to the complete set of data

for tracking, typically running the same sort of analysis as offline reconstruction

software. The Event Builder combines all the fragments from the ROBs to give

the EF access to the full event. Events that pass the full trigger system are

written into data streams and stored offline.

The L2 and EF were originally designed such that they would be standalone

using different software and provide slightly different functionality. The current

upgrade of the ATLAS trigger system will see L2 and the EF merged and done on

a single node, instead of having high-speed network connections between L2 and

EF nodes [252]. This reduces time spent decoding data and running the same

software on different nodes. The EF does not need to decode the data in the RoI

if L2 has already requested it. This allows the entire HLT to benefit from parallel

processing done at the L2 level. In addition, the hardware needs to be upgraded

to increase processing power and speed to deal with increased luminosity at the

LHC. The use of GPUs for the HLT upgrade is studied.

A.0.3 GPU HLT Studies

Previous studies were performed on NVIDIA Tesla C2050 (Fermi 2.0 architecture)

High Performance Computing (HPC) cards at RAL [253, 254]. The benchmark

software used was written to perform the data preparation chain for the Pixel

and SCT detectors, going from the incoming bytestream to calculating regions

of interest and finding the associated spacepoints. These Tesla cards are 2nd

generation CUDA cards from NVIDIA with the Fermi 2.0 architecture. The

current top of the line HPC cards from NVIDIA use the Kepler architecture.

The Kepler K20 card should give much better performance in theory, offering

more cores, memory, and threads. However, the benchmark code was written

and optimised for the Fermi range.

The testing was done on an NVIDIA Kepler K20, NVIDIA GeForce GT 650M

(Kepler architecture), an NVIDIA GeForce GT 630M (Fermi 2.1 architecture) and

a first generation NVIDIA Tesla C1050. The initial results showed that without
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Method Name Card Type Register Shared Memory Block Size

Pixel Clustering Fermi 630M 83% 100% 100%

Kepler K20 50% 73% 100%

SCT Clustering Fermi 630M 77% 36% 33%

Kepler K20 64% 27% 25%

SCT Space Points Fermi 630M 65% 100% 17%

Kepler K20 59% 73% 12.5%

Table A.1 Theoretical occupancy limits for the NVIDIA Kepler K20 and
NVIDIA Fermi 630M GPUs. The occupancy limits are shown for
the three most expensive methods in the HLT benchmark code and
are calculated separately for the registers, shared memory and block
size limitations.

significant optimisation of the software (i.e. using it in the same configuration),

Kepler K20 does not perform well, even being outperformed by laptop GPUs

(630M). Whilst this is not a good indication of the actual performance of the

hardware, it is a good indication of the amount of effort that has to go into

maintaining the code for this. If the Kepler cards were to be used for the HLT

upgrade, the code for this would have to be redone whenever the architecture or

card was changed in the future.

NVIDIA profiling tools were used for optimising the code and finding bottlenecks

[255–257]. Finding the pieces of code that take the longest to run and then

analysing those methods in detail is a useful way of approaching this. One of the

indicators of performance is the occupancy. This gives an indication of how close

the card is to being fully utilised. Having a low occupancy increases idle time

for the GPU and lowers throughput. It is dependent on how many threads are

actually being run and how well the shared memory and registers are being filled

and distributed. Occupancy can be defined as the active number of threads / the

maximum number of threads possible. In general, newer GPUs have more cores

than a CPU, which run at lower clock speeds. If a GPU has a low occupancy it

is likely that it will run more slowly due to the slower clock speeds. The number

of threads per block and the memory usage have been analysed on the different

cards using NVIDIA’s profiling software, Visual Profiler, to find the occupancy,

as shown in Table A.1.

The different methods in the benchmark software are analysed separately. The

methods are ranked according to their run-time and are similarly ranked between

architectures, but the occupancy changes. This is due to a number of factors:
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the maximum number of threads changing between architectures, the number of

registers (fast memory allocated to a single thread) assigned to each thread, not

making proper use of shared memory and the thread block sizes being too small.

The thread block sizes range from 32 up to 256. The block sizes of 32 do not

come close to the maximum allowance and the Streaming Multiprocessors are

heavily underutilised. Reducing the number of registers per thread will increase

the number threads being run at once and increase the occupancy, at the cost of

slower memory access, but this needs to be tested and quantified [258].

The theoretical occupancy for the most expensive three methods in the data

preparation was calculated for both the 630M and the Kepler and these are listed

below. The three methods, pixel clustering, SCT clustering and SCT space point

making, were found to have the theoretical occupancies listed in Table A.1.

Changing the number of threads per block and the number of blocks per grid

to optimise theoretical occupancy did not show big improvements. A big

improvement has been seen by changing the number of blocks per grid to a

multiple or factor of the number of Streaming Multiprocessors on the GPU (two

for the 630M and 13 for the K20) and by changing the number of threads per

block to a multiple or factor of the number of cores per Streaming Multiprocessor.

The results for the K20 are quantified in Figure A.2. Overall, this sees a decrease

in actual computation time of a factor of about 10% for the 630M and 33% for

the K20. There are relatively large memory copy overheads on K20 that are not

yet understood that add significantly to the overall run-time. These add up to

about 3.5 s for the K20, whereas these are only about 100 ms for the 630M. The

time per method and the calls to each method are both decreased by changing

the thread and block sizes.

The benchmark software has some built-in timing methods that are less accurate

than the profiling software; however, it is the only comparison that was available

with the Tesla C2050 GPU. The mean processing time for the C2050 is 9.868

ms, divided amongst all calls to the methods which is still much lower than

the optimised results for the 630M. The 630M sees a mean processing time

of approximately 20 ms and for the K20 it is higher at 23 ms. The K20

showed dramatic improvement on this benchmark after the HLT code was tuned,

dropping to 23 ms from 37 ms. This benchmark is not accurate, however it does

give an indication of performance increase.

Parts of the bytestream decoding and clustering code were rewritten to increase
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a)

b)

Figure A.2 Comparison of the run-times for the different methods of the HLT
benchmark software on the a) NVIDIA GeForce GT 630M and b)
NVIDIA Kepler K20 GPUs. The largest areas of improvement are
highlighted.

the occupancy and be more efficient, with substantial gains seen in some methods

(see Figure A.3). Additional changes were made to the algorithms in order to

take advantage of NVIDIA Kepler’s Dynamic Parallelism [259], whereby threads

can launch other threads.

Figure A.3 A substantial decrease in run times after optimising the bytestream
decoding and clustering to more efficiently occupy all cores on the
GPU and reduce the number of calls to different methods.
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A.0.4 Conclusion and Summary

There is a strong case for using GPUs for the HLT at ATLAS. Significant gains

can be achieved. There can be substantial changes needed to maintain this

performance when moving to newer generations of the hardware. However, this

is unlikely to be required often, if at all, and since these GPUs would be in the

HLT farm at CERN, there is no added constraint of having to write the software

to run on multiple setups.

Currently, one of the major bottlenecks in this solution is the relatively slow

transfer of data to the GPU. This will improve as the GPUs move to faster

memory technologies, but this will likely remain the bottleneck. Some additional

constraints are due to the difficulty of merging the GPU-based code with the

current software framework used by ATLAS, ATHENA. Which processes to

offload to the GPU needs to be investigated, as not all processes are suited to

running in parallel.



Appendix B

Truth Tagging

The truth tagging method generates a random MV1c value for a jet such that it

is forced to pass the loose cut (a number greater than 0.4050). This is described

below:

1. Each jet is tagged with an efficiency dependent on its MV1c value and

kinematics. Loop through all the MV1c bins and find the efficiency of the

jet as if its MV1c value was the median of these two bins. Add all the

efficiencies together where the jet passes the loose cut to get the efficiency

that it passes the loose cut. The actual MV1c value for the jet isn’t known

(hence the spoofing) so a number of values in different OPs are used to

evaluate the efficiency.

2. Get a random value for the jet corresponding to the cumulative efficiency

of this jet passing in each MV1c OP bin.

3. Then calculate a weight value by looping through each MV1c bin until the

cumulative efficiency passes the random value above. This is then taken as

the final MV1c value of the jet. If the random value does not match any

of the above conditions, the MV1c value corresponding to the loose cut is

used.

Once an MV1c value is found for the jet a scale factor is applied to account for

the efficiency of forcing the jet to pass the loose cut.

A weight is calculated to account for the truth tagging, which takes the probability

of the second jet failing, provided the first passed, and vice versa and adds these

two values. The jet is tested in each of the MV1c bins and the tagging efficiency

is calculated, and this is multiplied by an additional scale factor (SF) taken from

the b-tagging calibration interface [137, 138]. The failure weight, wf , is given
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by the scale factor multiplied by the efficiency for the jet when it does not pass

the loose cut. The pass weight, wp, is the sum of all products scale factor and

efficiency for the jet in each of the bins of the MV1c operating points from loose

to tight. The overall weight is then given by w = wp(j1)∗wf (j2)+wp(j2)∗wf (j1),

where j1/2 refers to the leading or sub-leading jet in the event.



Appendix C

Mismodelling of HT and

∆φ(l, Emiss
T )

Mismodelling can be seen after the HT selection cut is applied. In particular, the

HT cut broadens most kinematic distributions, shifting the peaks and removing a

large part of the multi-jet background. The transverse mass of the W boson, mW
T ,

has much worse modelling after theHT cut (see Figure C.1), which originates from

the angular variable ∆φ(l, Emiss
T ) (the angle between the neutrino and the lepton

in the W decay), which itself is poorly modelled (see Figure C.2). When cutting

on HT this mismodelling becomes more pronounced due to the low number of

events. The source of the broadening distributions is the result of the multi-jet

contribution being removed, which in most distributions has a pronounced peak.

The shifting of the peaks of the distributions is due to the HT cut removing softer

contributions from the leptons, jets and Emiss
T .
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Figure C.1 Distributions of mW
T before (a) and after (b) the HT cut in the

electron channel with 2 tight b-tags.
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Figure C.2 Poor modelling of ∆φ(`, Emiss
T ) is seen in both the electron (shown

here in (a)) and muon channels. This leads to poor modelling in
the mW

T distribution as well (b). Shown here is the distribution in
the 2 medium b-tag region.



Appendix D

Input Distributions for WH → `νbb̄

The input distributions in the 1-lepton channel for the global fit are shown

here. The MV1c distribution is used in the 1-tag region and the transformed

mbb distribution is used for the 2-tag regions.

221



Input Distributions for WH → `νbb̄ 222
E

v
e
n
ts

20

40

60

80

0.4

120

3
10×

Data 2012
=1.0)µVH(bb) (

Diboson
tt

Single top
Multijet
W+hf
W+cl
W+l
Z+hf
Z+l
Uncertainty

1050×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 2 jets, 1 tag

<90 GeVV

T
p

MV1c(b) OP

D
a
ta

/P
re

d

0.9

1

1.1

80 70 60 0.2 0

(a) Prefit, pVT < 90 GeV

E
v
e
n
ts

20

40

60

80

0.4

120

3
10×

Data 2012
=1.0)µVH(bb) (

Diboson
tt

Single top
Multijet
W+hf
W+cl
W+l
Z+l
Uncertainty
Pre­fit background

490×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 2 jets, 1 tag

<90 GeVV

T
p

MV1c(b) OP

D
a
ta

/P
re

d

0.95

1

1.05

80 70 60 0.2 0

(b) Postfit, pVT < 90 GeV

E
v
e
n
ts

5

10

15

20

25

3
10×

Data 2012
=1.0)µVH(bb) (

Diboson
tt

Single top
Multijet
W+hf
W+cl
W+l
Z+l
Uncertainty

400×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 2 jets, 1 tag

<160 GeV
V

T
120<p

MV1c(b) OP

D
a
ta

/P
re

d

0.9

1

1.1

80 70 60 0.2 0

(c) Prefit, pVT > 120 GeV

E
v
e
n
ts

5

10

15

20

25

3
10×

Data 2012
=1.0)µVH(bb) (

Diboson
tt

Single top
Multijet
W+hf
W+cl
W+l
Z+l
Uncertainty
Pre­fit background

190×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 2 jets, 1 tag

<160 GeV
V

T
120<p

MV1c(b) OP

D
a
ta

/P
re

d

0.95

1

1.05

80 70 60 0.2 0

(d) Postfit, pVT > 120 GeV

Figure D.1 The MV1c distribution in the 2-jet, 1-tag region and the pVT <
90 GeV (top row) and pVT > 120 GeV (bottom row) intervals used
as an input for the global fit in the 1-lepton channel before (left)
and after (right) the fit is performed.
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Figure D.2 The MV1c distribution in the 3-jet, 1-tag region and the pVT <
90 GeV (top row) and pVT > 120 GeV (bottom row) intervals used
as an input for the global fit in the 1-lepton channel before (left)
and after (right) the fit is performed.



Input Distributions for WH → `νbb̄ 224

Transformed

0.2 0.4 0.6 0.8 1

E
v
e
n
ts

 /
 3

0
 G

e
V

0.8

400

600

800

1000

1200

1400

1600

1800

2000

2200
Data 2012

=1.0)µVH(bb) (
Diboson
tt

Single top
Multijet
W+hf
W+cl
W+l
Z+hf
Uncertainty

60×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 2 jets, 2 Medium tags

<90 GeVV

T
p

Transformed
bb

m

0.2 0.4 0.6 0.8 1

D
a
ta

/P
re

d

0.8

1

1.2

(a) Prefit, 2 Medium tags

Transformed

0.2 0.4 0.6 0.8 1

E
v
e
n
ts

 /
 3

0
 G

e
V

0.8

400

600

800

1000

1200

1400

1600

1800

2000

2200
Data 2012

=1.0)µVH(bb) (
Diboson
tt

Single top
Multijet
W+hf
W+cl
W+l
Z+hf
Uncertainty
Pre­fit background

30×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 2 jets, 2 Medium tags

<90 GeVV

T
p

Transformed
bb

m

0.2 0.4 0.6 0.8 1

D
a
ta

/P
re

d

0.8

1

1.2

(b) Postfit, 2 Medium tags

Transformed

0.2 0.4 0.6 0.8 1

E
v
e
n
ts

 /
 3

0
 G

e
V

0.8

400

600

800

1000

1200

1400

1600

1800 Data 2012
=1.0)µVH(bb) (

Diboson
tt

Single top
Multijet
W+hf
Z+hf
Uncertainty

40×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 2 jets, 2 Tight tags

<90 GeVV

T
p

Transformed
bb

m

0.2 0.4 0.6 0.8 1

D
a
ta

/P
re

d

0.8

1

1.2

(c) Prefit, 2 Tight tags

Transformed

0.2 0.4 0.6 0.8 1

E
v
e
n
ts

 /
 3

0
 G

e
V

0.8

400

600

800

1000

1200

1400

1600

1800 Data 2012
=1.0)µVH(bb) (

Diboson
tt

Single top
Multijet
W+hf
Z+hf
Uncertainty
Pre­fit background

20×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 2 jets, 2 Tight tags

<90 GeVV

T
p

Transformed
bb

m

0.2 0.4 0.6 0.8 1

D
a
ta

/P
re

d

0.8

1

1.2

(d) Postfit, 2 Tight tags

Figure D.3 The mbb distribution in the 2-jet, 2-tag, pVT < 90 GeV region
with two medium tagged b-jets (top row) and two tight tagged b-
jets (bottom row) used as an input for the global fit in the 1-lepton
channel before (left) and after (right) the fit is performed.



Input Distributions for WH → `νbb̄ 225

Transformed

0.2 0.4 0.6 0.8 1

E
v
e
n
ts

 /
 3

0
 G

e
V

0.4

0.8

300

400

500
Data 2012

=1.0)µVH(bb) (
Diboson
tt

Single top
Multijet
W+hf
W+cl
W+l
Z+hf
Uncertainty

60×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 2 jets, 2 Medium tags

<120 GeV
V

T
90<p

Transformed
bb

m

0.2 0.4 0.6 0.8 1

D
a
ta

/P
re

d

0.5

1

1.5

(a) Prefit, 2 Medium tags

Transformed

0.2 0.4 0.6 0.8 1

E
v
e
n
ts

 /
 3

0
 G

e
V

0.4

0.8

300

400

500
Data 2012

=1.0)µVH(bb) (
Diboson
tt

Single top
Multijet
W+hf
W+cl
W+l
Z+hf
Uncertainty
Pre­fit background

30×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 2 jets, 2 Medium tags

<120 GeV
V

T
90<p

Transformed
bb

m

0.2 0.4 0.6 0.8 1

D
a
ta

/P
re

d

0.8

1

1.2

(b) Postfit, 2 Medium tags

Transformed

0.2 0.4 0.6 0.8 1

E
v
e
n
ts

 /
 3

0
 G

e
V

0.2

0.4

0.6

0.8

1

300

350

400

450
Data 2012

=1.0)µVH(bb) (
Diboson
tt

Single top
Multijet
W+hf
Z+hf
Uncertainty

40×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 2 jets, 2 Tight tags

<120 GeV
V

T
90<p

Transformed
bb

m

0.2 0.4 0.6 0.8 1

D
a
ta

/P
re

d

0

0.5
1

1.5

2

(c) Prefit, 2 Tight tags

Transformed

0.2 0.4 0.6 0.8 1

E
v
e
n
ts

 /
 3

0
 G

e
V

0.2

0.4

0.6

0.8

1

300

350

400

450
Data 2012

=1.0)µVH(bb) (
Diboson
tt

Single top
Multijet
W+hf
Z+hf
Uncertainty
Pre­fit background

20×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 2 jets, 2 Tight tags

<120 GeV
V

T
90<p

Transformed
bb

m

0.2 0.4 0.6 0.8 1

D
a
ta

/P
re

d

0

0.5
1

1.5

2

(d) Postfit, 2 Tight tags

Figure D.4 The mbb distribution in the 2-jet, 2-tag, 100 < pVT < 120 GeV
region with two medium tagged b-jets (top row) and two tight tagged
b-jets (bottom row) used as an input for the global fit in the 1-lepton
channel before (left) and after (right) the fit is performed.
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Figure D.5 The mbb distribution in the 2-jet, 2-tag, 160 < pVT < 200 GeV
region with two medium tagged b-jets (top row) and two tight tagged
b-jets (bottom row) used as an input for the global fit in the 1-lepton
channel before (left) and after (right) the fit is performed.
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Figure D.6 The mbb distribution in the 2-jet, 2-tag, pVT > 200 GeV region
with two medium tagged b-jets (top row) and two tight tagged b-
jets (bottom row) used as an input for the global fit in the 1-lepton
channel before (left) and after (right) the fit is performed.
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Figure D.7 The mbb distribution in the 3-jet, 2-tag, pVT < 90 GeV region
with two medium tagged b-jets (top row) and two tight tagged b-
jets (bottom row) used as an input for the global fit in the 1-lepton
channel before (left) and after (right) the fit is performed.



Input Distributions for WH → `νbb̄ 229

Transformed

0.2 0.4 0.6 0.8 1

E
v
e
n
ts

 /
 4

0
 G

e
V

0.4

0.8

300

400

500

600

700 Data 2012
=1.0)µVH(bb) (

tt
Single top
W+hf
W+cl
Uncertainty

160×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 3 jets, 2 Medium tags

<120 GeV
V

T
90<p

Transformed
bb

m

0.2 0.4 0.6 0.8 1

D
a
ta

/P
re

d

0.5

1

1.5

(a) Prefit, 2 Medium tags

Transformed

0.2 0.4 0.6 0.8 1

E
v
e
n
ts

 /
 4

0
 G

e
V

0.4

0.8

300

400

500

600

700 Data 2012
=1.0)µVH(bb) (

tt
Single top
Multijet
W+hf
W+cl
Uncertainty
Pre­fit background

70×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 3 jets, 2 Medium tags

<120 GeV
V

T
90<p

Transformed
bb

m

0.2 0.4 0.6 0.8 1

D
a
ta

/P
re

d

0.8

1

1.2

(b) Postfit, 2 Medium tags

Transformed

0.2 0.4 0.6 0.8 1

E
v
e
n
ts

 /
 4

0
 G

e
V

0.4

0.8

300

400

500

600

700 Data 2012
=1.0)µVH(bb) (

tt
Single top
W+hf
Uncertainty

130×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 3 jets, 2 Tight tags

<120 GeV
V

T
90<p

Transformed
bb

m

0.2 0.4 0.6 0.8 1

D
a
ta

/P
re

d

0.5

1

1.5

(c) Prefit, 2 Tight tags

Transformed

0.2 0.4 0.6 0.8 1

E
v
e
n
ts

 /
 4

0
 G

e
V

0.4

0.8

300

400

500

600

700 Data 2012
=1.0)µVH(bb) (

tt
Single top
W+hf
Uncertainty
Pre­fit background

60×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 3 jets, 2 Tight tags

<120 GeV
V

T
90<p

Transformed
bb

m

0.2 0.4 0.6 0.8 1

D
a
ta

/P
re

d

0.8

1

1.2

(d) Postfit, 2 Tight tags

Figure D.8 The mbb distribution in the 3-jet, 2-tag, 100 < pVT < 120 GeV
region with two medium tagged b-jets (top row) and two tight tagged
b-jets (bottom row) used as an input for the global fit in the 1-lepton
channel before (left) and after (right) the fit is performed.
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Figure D.9 The mbb distribution in the 3-jet, 2-tag, 120 < pVT < 160 GeV
region with two medium tagged b-jets (top row) and two tight tagged
b-jets (bottom row) used as an input for the global fit in the 1-lepton
channel before (left) and after (right) the fit is performed.
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Figure D.10 The mbb distribution in the 3-jet, 2-tag, 160 < pVT < 200 GeV
region with two medium tagged b-jets (top row) and two tight
tagged b-jets (bottom row) used as an input for the global fit in the
1-lepton channel before (left) and after (right) the fit is performed.
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Figure D.11 The mbb distribution in the 3-jet, 2-tag, pVT > 200 GeV region
with two medium tagged b-jets (top row) and two tight tagged b-
jets (bottom row) used as an input for the global fit in the 1-lepton
channel before (left) and after (right) the fit is performed.



Appendix E

Event Yield Ratios

The following tables show the ratio of the yields after unconditional fits over the

prefit yields for the separate lepton channels. These are further separated for the

different tagging regions.
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Sample
1-tag

100 < pVT < 120 GeV pVT > 120 GeV

2-jet

VH 1.08 1.06

VV 1.0 1.0

tt̄ 1.39 1.43

s-top 1.3 1.11

W+l 1.04 0.99

W+cl 1.13 1.11

W+hf 0.83 0.68

Z+l 0.99 0.94

Z+cl 0.87 0.87

Z+hf 1.1 1.08

MJ 1.35 0.56

Total 1.04 0.98

3-jet

VH – 1.07

VV – 1.0

tt̄ – 1.28

s-top – 0.99

W+l – 0.97

W+cl – 1.05

W+hf – 0.74

Z+l – 0.88

Z+cl – 1.03

Z+hf – 0.9

MJ – 1.04

Total – 0.99

Table E.1 Table of post unconditional fit over prefit yields for 0-lepton 2 and
3-jet 1-tag events in the dijet mass selection.
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Sample
2L-tag

100 < pVT < 120 GeV 120 < pVT < 160 GeV 160 < pVT < 200 GeV pVT > 200 GeV

2-jet

VH 1.11 1.12 1.12 1.11

VV 1.04 1.06 1.1 1.08

tt̄ 1.42 1.48 1.41 1.41

s-top 1.27 1.1 1.05 1.0

W+l 1.01 1.0 1.01 1.02

W+cl 1.15 1.15 1.13 1.1

W+hf 0.86 0.8 0.77 0.71

Z+l 1.01 0.99 0.97 0.95

Z+cl 0.91 0.91 0.88 0.86

Z+hf 1.18 1.14 1.16 1.07

MJ 0.99 1.22 1.22 1.22

Total 1.1 1.08 1.06 1.0

3-jet

VH – 1.1 1.1 1.12

VV – 0.98 1.0 0.94

tt̄ – 1.35 1.28 1.26

s-top – 1.01 1.01 0.97

W+l – 1.0 1.01 1.0

W+cl – 1.09 1.07 1.06

W+hf – 0.79 0.82 0.81

Z+l – 0.91 0.92 0.89

Z+cl – 1.06 1.07 1.02

Z+hf – 1.05 1.01 0.96

MJ – 0.53 0.53 0.53

Total – 1.1 1.06 0.99

Table E.2 Table of post unconditional fit over prefit yields for 0-lepton 2 and
3-jet 2L-tag events in the dijet mass selection.
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Sample
2M-tag

100 < pVT < 120 GeV 120 < pVT < 160 GeV 160 < pVT < 200 GeV pVT > 200 GeV

2-jet

VH 1.11 1.12 1.12 1.13

VV 1.06 1.08 1.09 1.15

tt̄ 1.38 1.51 1.5 1.45

s-top 1.22 1.15 1.2 1.05

W+l 1.1 1.06 1.1 1.03

W+cl 1.16 1.18 1.19 1.21

W+hf 0.89 0.82 0.83 0.78

Z+l 1.08 1.07 1.05 1.01

Z+cl 0.93 0.93 0.89 0.93

Z+hf 1.15 1.15 1.12 1.12

MJ 0.99 1.22 1.22 1.22

Total 1.17 1.17 1.13 1.08

3-jet

VH – 1.12 1.12 1.11

VV – 0.96 0.99 0.97

tt̄ – 1.34 1.32 1.37

s-top – 1.02 1.07 1.03

W+l – 1.13 1.09 1.09

W+cl – 1.02 1.07 1.12

W+hf – 0.8 0.86 0.85

Z+l – 1.11 0.97 0.96

Z+cl – 1.04 1.11 1.08

Z+hf – 1.04 1.1 1.05

MJ – 0.53 0.53 0.53

Total – 1.16 1.13 1.07

Table E.3 Table of post unconditional fit over prefit yields for 0-lepton 2 and
3-jet 2M-tag events in the dijet mass selection.
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Sample
2T-tag

100 < pVT < 120 GeV 120 < pVT < 160 GeV 160 < pVT < 200 GeV pVT > 200 GeV

2-jet

VH 1.1 1.1 1.1 1.11

VV 1.04 1.08 1.09 1.1

tt̄ 1.38 1.46 1.5 1.33

s-top 1.24 1.15 1.07 1.15

W+l 1.0 1.0 1.0 1.0

W+cl 1.2 1.11 1.13 1.11

W+hf 0.83 0.89 0.82 0.81

Z+l 1.0 1.0 1.0 1.0

Z+cl 0.88 0.88 0.88 0.88

Z+hf 1.13 1.12 1.12 1.08

MJ 0.99 1.22 1.22 1.22

Total 1.18 1.17 1.12 1.04

3-jet

VH – 1.1 1.11 1.1

VV – 0.98 0.9 0.95

tt̄ – 1.39 1.33 1.27

s-top – 1.06 1.11 0.96

W+l – 1.0 1.0 1.0

W+cl – 1.11 1.11 1.11

W+hf – 0.9 0.91 0.92

Z+l – 1.0 1.0 1.0

Z+cl – 0.88 0.71 0.88

Z+hf – 1.07 1.07 1.06

MJ – 0.53 0.53 0.53

Total – 1.22 1.11 1.04

Table E.4 Table of post unconditional fit over prefit yields for 0-lepton 2 and
3-jet 2T-tag events in the dijet mass selection.
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Sample
1-tag

pVT < 120 GeV pVT > 120 GeV

2-jet

VH 2.18 2.14

VV 1.0 1.04

tt̄ 1.12 1.13

s-top 1.11 1.03

W+l 0.97 0.96

W+cl 1.12 1.13

W+hf 0.86 0.76

Z+l 1.01 0.96

Z+cl 1.0 1.0

Z+hf 1.0 1.0

MJe – 1.34

MJµ 0.99 1.0

Total 1.03 1.02

3-jet

VH 2.21 2.16

VV 1.0 0.94

tt̄ 1.0 1.01

s-top 1.02 0.99

W+l 0.98 0.97

W+cl 1.09 1.08

W+hf 0.74 0.86

Z+l 1.02 1.0

Z+cl 1.0 1.0

Z+hf 1.0 1.0

MJe – 0.8

MJµ 0.99 1.0

Total 0.99 0.99

Table E.5 Table of post unconditional fit over prefit yields for 1-lepton 2 and
3-jet 1-tag events in the dijet mass selection.
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Sample
2L-tag

pVT < 90 GeV 90 < pVT < 120 GeV 120 < pVT < 160 GeV 160 < pVT < 200 GeV pVT > 200 GeV

2-jet

VH 2.26 2.26 2.26 2.21 2.32

VV 1.0 1.0 1.0 1.04 1.12

tt̄ 1.14 1.15 1.15 1.16 1.15

s-top 1.12 1.1 1.07 1.03 1.05

W+l 0.95 0.96 0.95 0.96 0.97

W+cl 1.11 1.12 1.14 1.12 1.12

W+hf 1.01 0.91 0.86 0.84 0.71

Z+l 0.99 0.97 1.0 1.0 1.0

Z+cl 1.0 1.0 1.0 1.0 1.0

Z+hf 1.0 1.0 1.0 1.0 1.0

MJe – – 0.93 0.89 0.91

MJµ 1.0 1.0 1.0 1.0 –

Total 1.06 1.05 1.04 1.03 0.97

3-jet

VH 2.23 2.35 2.24 2.42 2.23

VV 1.0 1.0 1.0 1.0 0.95

tt̄ 1.02 1.03 1.06 1.06 1.04

s-top 1.04 1.04 1.02 1.04 1.03

W+l 0.97 0.96 0.97 0.97 0.96

W+cl 1.09 1.07 1.09 1.09 1.07

W+hf 0.85 0.92 0.97 0.99 0.97

Z+l 1.0 1.0 1.0 1.0 1.0

Z+cl 1.0 1.0 1.0 1.0 1.0

Z+hf 1.0 1.0 1.0 1.0 1.0

MJe – – 1.03 1.0 1.0

MJµ 1.0 1.0 1.0 – –

Total 1.01 1.02 1.04 1.05 1.02

Table E.6 Table of post unconditional fit over prefit yields for 1-lepton 2 and
3-jet 2L-tag events in the dijet mass selection.



Event Yield Ratios 240

Sample
2M-tag

pVT < 90 GeV 90 < pVT < 120 GeV 120 < pVT < 160 GeV 160 < pVT < 200 GeV pVT > 200 GeV

2-jet

VH 2.34 2.34 2.31 2.3 2.4

VV 1.05 1.08 1.12 1.11 1.2

tt̄ 1.15 1.17 1.18 1.18 1.19

s-top 1.14 1.12 1.1 1.09 1.1

W+l 0.99 0.95 0.96 0.96 1.0

W+cl 1.08 1.09 1.11 1.05 1.13

W+hf 1.05 0.98 0.9 0.86 0.81

Z+l 1.0 1.0 1.0 1.0 1.0

Z+cl 1.0 1.0 1.0 1.0 1.0

Z+hf 1.05 1.09 1.04 1.0 1.0

MJe – – 0.93 0.94 0.99

MJµ 0.84 0.84 0.84 – –

Total 1.09 1.1 1.09 1.07 1.03

3-jet

VH 2.32 2.32 2.29 2.26 2.38

VV 1.0 1.0 1.0 0.93 1.05

tt̄ 1.04 1.05 1.07 1.05 1.06

s-top 1.07 1.07 1.02 1.08 1.07

W+l 1.0 1.0 1.0 1.0 0.94

W+cl 1.1 1.14 1.06 1.11 1.16

W+hf 0.9 0.93 1.04 0.97 1.05

Z+l 1.0 1.0 1.0 1.0 1.0

Z+cl 1.0 1.0 1.0 1.0 1.0

Z+hf 1.0 1.0 1.0 1.0 1.0

MJe – – 1.04 1.05 1.05

MJµ 1.0 1.86 – 1.0 –

Total 1.04 1.05 1.07 1.05 1.08

Table E.7 Table of post unconditional fit over prefit yields for 1-lepton 2 and
3-jet 2M-tag events in the dijet mass selection.



Event Yield Ratios 241

Sample
2T-tag

pVT < 90 GeV 90 < pVT < 120 GeV 120 < pVT < 160 GeV 160 < pVT < 200 GeV pVT > 200 GeV

2-jet

VH 2.3 2.28 2.29 2.29 2.35

VV 1.07 1.07 1.12 1.15 1.23

tt̄ 1.15 1.18 1.19 1.13 1.21

s-top 1.15 1.13 1.1 1.13 1.09

W+l 1.0 1.0 1.0 1.0 1.0

W+cl 1.09 1.08 1.07 0.9 0.91

W+hf 1.1 0.97 0.91 0.87 0.83

Z+l 1.0 1.0 1.0 1.0 1.0

Z+cl 1.0 1.0 1.0 1.0 –

Z+hf 1.02 1.01 1.1 1.1 0.92

MJe – – 1.0 0.81 0.92

MJµ 1.38 1.37 – – –

Total 1.15 1.13 1.13 1.08 1.05

3-jet

VH 2.29 2.34 2.3 2.26 2.35

VV 1.0 1.0 1.0 0.99 0.97

tt̄ 1.03 1.06 1.1 1.08 0.97

s-top 1.09 1.11 1.03 1.05 1.02

W+l 1.0 1.0 1.0 1.0 1.0

W+cl 1.13 1.13 1.13 1.13 0.97

W+hf 0.93 1.0 1.03 1.06 1.09

Z+l 1.0 1.0 1.0 1.0 1.0

Z+cl 1.0 1.0 1.0 1.0 1.0

Z+hf 1.0 1.0 1.0 0.99 1.46

MJe – – 1.03 1.07 1.05

MJµ 1.0 1.01 – 1.0 –

Total 1.03 1.06 1.09 1.08 1.08

Table E.8 Table of post unconditional fit over prefit yields for 1-lepton 2 and
3-jet 2T-tag events in the dijet mass selection.
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Sample
1-tag

pVT < 120 GeV pVT > 120 GeV

2-jet

VH 1.08 1.06

VV 1.0 1.08

tt̄ 1.18 1.15

s-top 1.0 1.0

W+l 1.0 1.0

W+cl 1.11 1.11

W+hf 0.84 0.84

Z+l 1.01 1.0

Z+cl 0.92 0.91

Z+hf 1.11 1.11

MJ 0.18 0.18

Total 1.01 1.02

3-jet

VH 1.08 1.08

VV 0.98 0.95

tt̄ 1.23 1.22

s-top 1.0 1.0

W+l 1.0 1.0

W+cl 1.11 1.11

W+hf 0.84 0.84

Z+l 0.97 0.92

Z+cl 1.13 1.07

Z+hf 0.97 0.93

MJ 0.18 0.18

Total 1.0 0.96

Table E.9 Table of post unconditional fit over prefit yields for 2-lepton 2 and
3-jet 1-tag events in the dijet mass selection.
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Sample
2L-tag

pVT < 90 GeV 90 < pVT < 120 GeV 120 < pVT < 160 GeV 160 < pVT < 200 GeV pVT > 200 GeV

2-jet

VH 1.13 1.13 1.12 1.12 1.13

VV 1.06 1.07 1.07 1.11 1.1

tt̄ 1.21 1.18 1.28 1.19 1.15

s-top 1.0 1.0 1.0 1.0 1.04

W+l 1.0 1.0 1.0 1.0 1.0

W+cl 1.11 1.11 1.11 1.11 1.11

W+hf 0.84 0.84 0.84 0.79 0.84

Z+l 1.04 1.03 1.02 1.01 1.03

Z+cl 0.93 0.93 0.93 0.92 0.93

Z+hf 1.19 1.18 1.17 1.15 1.12

MJ 0.18 0.18 1.0 1.0 –

Total 1.09 1.1 1.1 1.08 1.06

3-jet

VH 1.14 1.13 1.13 1.11 1.11

VV 0.99 1.0 1.01 1.04 0.97

tt̄ 1.25 1.31 1.33 1.17 –

s-top 1.0 1.0 1.0 0.95 –

W+l 1.0 1.0 1.0 1.0 1.0

W+cl 1.11 1.11 1.11 1.11 1.11

W+hf 0.84 0.84 0.84 0.84 0.84

Z+l 0.99 0.96 0.95 0.95 0.95

Z+cl 1.18 1.11 1.1 1.09 1.07

Z+hf 1.13 1.08 1.05 1.01 1.02

MJ 0.18 1.0 0.18 – –

Total 1.11 1.08 1.05 1.02 1.01

Table E.10 Table of post unconditional fit over prefit yields for 2-lepton 2 and
3-jet 2L-tag events in the dijet mass selection.
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Sample
2M-tag

pVT < 90 GeV 90 < pVT < 120 GeV 120 < pVT < 160 GeV 160 < pVT < 200 GeV pVT > 200 GeV

2-jet

VH 1.13 1.13 1.12 1.11 1.13

VV 1.05 1.06 1.08 1.08 1.14

tt̄ 1.2 1.18 1.28 1.2 1.15

s-top 1.0 0.98 0.95 1.0 –

W+l 1.0 1.0 1.0 1.0 1.0

W+cl 1.11 1.11 1.11 1.11 1.11

W+hf 0.84 0.84 0.78 – 0.84

Z+l 1.12 1.11 1.1 1.09 1.06

Z+cl 0.92 0.95 0.96 0.95 0.99

Z+hf 1.17 1.15 1.14 1.13 1.14

MJ 0.18 0.18 1.0 – –

Total 1.14 1.14 1.14 1.12 1.13

3-jet

VH 1.14 1.15 1.12 1.13 1.15

VV 0.97 1.04 0.96 0.94 1.0

tt̄ 1.28 1.3 1.24 1.22 1.5

s-top 1.0 1.03 1.0 – 1.0

W+l 1.0 1.0 1.0 1.0 1.0

W+cl 1.11 1.11 1.11 1.11 1.11

W+hf 0.84 0.84 0.84 0.83 0.84

Z+l 1.07 1.04 1.03 1.03 1.02

Z+cl 1.2 1.1 1.13 1.12 1.18

Z+hf 1.16 1.12 1.08 1.1 1.06

MJ 0.18 1.0 – – –

Total 1.17 1.15 1.09 1.09 1.06

Table E.11 Table of post unconditional fit over prefit yields for 2-lepton 2 and
3-jet 2M-tag events in the dijet mass selection.
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Sample
2T-tag

pVT < 90 GeV 90 < pVT < 120 GeV 120 < pVT < 160 GeV 160 < pVT < 200 GeV pVT > 200 GeV

2-jet

VH 1.11 1.1 1.1 1.09 1.1

VV 1.05 1.04 1.06 1.07 1.11

tt̄ 1.19 1.19 1.25 1.28 –

s-top 1.0 1.0 1.13 1.28 1.07

W+l 1.0 – – – –

W+hf 0.84 0.85 0.84 0.84 –

Z+l 1.0 1.0 1.0 1.0 1.0

Z+cl 0.88 0.88 0.94 0.88 0.88

Z+hf 1.14 1.13 1.11 1.1 1.11

MJ 0.18 0.18 0.18 – –

Total 1.14 1.13 1.12 1.1 1.11

3-jet

VH 1.12 1.13 1.11 1.1 1.11

VV 0.99 0.97 0.98 0.94 0.98

tt̄ 1.27 1.26 1.28 1.15 1.29

s-top 1.0 1.0 0.92 1.0 –

W+l 1.0 – – – –

W+hf 0.84 – 0.84 0.84 –

Z+l 1.0 1.0 1.0 1.0 1.0

Z+cl 0.88 0.88 0.88 0.88 0.88

Z+hf 1.15 1.11 1.09 1.07 1.06

MJ 0.18 1.0 – – –

Total 1.18 1.14 1.1 1.06 1.05

Table E.12 Table of post unconditional fit over prefit yields for 2-lepton 2 and
3-jet 2T-tag events in the dijet mass selection.
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Appendix F

Event Yields in WH → `νbb̄

The following tables contain the event yields for the 1-lepton channel both pre

and post-fit. This is separated into the different b-tagging regions: 1-tag, 2

loose/medium/tight.
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Sample 1-tag

pVT region (GeV) pVT < 120 pVT > 120

2-jet

Z + l 2926.8 455.4

Z + cl 1193.3 151.2

Z + hf 1448.9 181.2

W + l 48 093.7 10 421.4

W + cl 49 714.6 8865.1

W + hf 16 338.4 3920.3

s-top 8418.6 1543.2

MJµ 6607.5 55.5

MJe 0.0 853.8

tt̄ 7827.7 3919.5

V V 1672.9 649.9

Total Background 144242.3 ± 11487.82 31016.3 ± 2745.90

Total Signal 34.4 ± 3.80 19.6 ± 2.30

Data 148390.0 31777.0

3-jet

Z + l 1324.9 188.8

Z + cl 588.2 79.0

Z + hf 690.4 88.5

W + l 18 013.9 4672.3

W + cl 17 295.8 3749.5

W + hf 7240.0 1915.7

s-top 5534.8 1433.0

MJµ 3241.0 25.3

MJe 0.0 381.9

tt̄ 15 652.4 6917.2

V V 894.2 356.4

Total Background 70475.6 ± 6147.76 19807.6 ± 2153.23

Total Signal 12.9 ± 2.02 9.1 ± 1.14

Data 69956.0 19649.0

Table F.1 Number of events obtained before the global likelihood fit in the
1-lepton 2- and 3-jet 1 b-tag regions, with a Signal of mH =
125 GeV. The uncertainties are from the prefit NPs except the
floating normalisations.
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Sample 2L-tag

pVT region (GeV) pVT < 90 90 < pVT < 120 120 < pVT < 160 160 < pVT < 200 pVT > 200

2-jet

Z + l 55.6 20.4 10.3 1.7 0.7

Z + cl 35.0 11.9 5.8 1.1 0.4

Z + hf 81.9 28.7 12.8 2.4 1.0

W + l 908.4 253.7 196.1 56.0 47.2

W + cl 1404.2 364.7 263.1 68.5 43.7

W + hf 1077.6 316.6 269.6 80.1 77.7

s-top 573.7 138.6 106.6 26.9 16.6

MJµ 457.0 54.1 5.1 1.0 0.0

MJe 0.0 0.0 45.5 10.2 2.1

tt̄ 871.8 334.4 361.4 94.6 52.3

V V 68.9 22.1 25.0 9.6 10.3

Total Background 5534.0 ± 513.13 1545.2 ± 139.32 1301.3 ± 121.95 351.9 ± 37.80 252.0 ± 37.06

Total Signal 7.4 ± 0.92 2.6 ± 0.32 3.7 ± 0.44 1.8 ± 0.22 2.1 ± 0.31

Data 5891.0 1570.0 1355.0 375.0 239.0

3-jet

Z + l 24.5 6.8 3.7 0.8 0.5

Z + cl 17.9 4.6 2.5 0.6 0.3

Z + hf 41.9 9.7 6.8 1.2 0.7

W + l 336.5 83.4 75.6 24.9 24.8

W + cl 502.8 118.9 101.3 31.4 25.7

W + hf 480.9 113.3 108.8 40.2 45.9

s-top 389.8 94.3 85.4 28.7 23.9

MJµ 138.3 10.8 1.2 0.0 0.0

MJe 0.0 0.0 11.9 2.5 0.8

tt̄ 1938.2 537.2 533.4 162.9 105.7

V V 31.3 9.7 11.5 5.2 5.7

Total Background 3902.1 ± 477.92 988.5 ± 130.27 942.3 ± 135.03 298.3 ± 43.80 233.9 ± 36.84

Total Signal 2.1 ± 0.36 0.8 ± 0.14 1.3 ± 0.15 0.7 ± 0.11 1.0 ± 0.17

Data 3882.0 1004.0 1051.0 313.0 238.0

Table F.2 Number of events obtained before the global likelihood fit in the
1-lepton 2- and 3-jet 2L b-tag regions, with a Signal of mH =
125 GeV. The uncertainties are from the prefit NPs except the
floating normalisations.
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Sample 2M-tag

pVT region (GeV) pVT < 90 90 < pVT < 120 120 < pVT < 160 160 < pVT < 200 pVT > 200

2-jet

Z + l 4.3 1.5 0.7 0.1 0.0

Z + cl 7.3 2.5 1.2 0.2 0.0

Z + hf 63.5 21.4 9.8 1.5 0.7

W + l 66.4 18.7 13.4 3.6 3.0

W + cl 243.1 63.6 44.8 11.0 6.5

W + hf 702.0 213.3 183.0 54.1 51.0

s-top 521.8 123.3 88.8 19.1 10.5

MJµ 242.4 19.1 1.4 0.0 0.0

MJe 0.0 0.0 26.8 4.9 1.2

tt̄ 1073.5 403.0 387.1 72.4 29.1

V V 44.2 14.0 16.6 6.6 5.7

Total Background 2968.6 ± 251.23 880.4 ± 66.21 773.5 ± 64.67 173.5 ± 18.21 107.8 ± 18.62

Total Signal 11.6 ± 1.36 3.9 ± 0.46 5.9 ± 0.67 2.9 ± 0.34 3.3 ± 0.48

Data 3230.0 984.0 868.0 199.0 116.0

3-jet

Z + l 1.6 0.5 0.3 0.1 0.0

Z + cl 3.0 0.8 0.4 0.1 0.0

Z + hf 30.0 8.0 5.0 1.2 0.5

W + l 22.6 5.8 5.1 1.5 1.4

W + cl 83.5 19.7 17.0 4.8 3.6

W + hf 290.4 73.4 77.1 27.6 30.0

s-top 371.0 83.5 70.0 19.5 16.0

MJµ 70.5 6.6 0.0 0.6 0.0

MJe 0.0 0.0 5.8 2.1 0.4

tt̄ 2484.8 642.3 547.4 119.9 59.1

V V 14.5 4.9 6.3 3.0 3.2

Total Background 3371.9 ± 563.78 845.4 ± 143.26 734.4 ± 129.13 180.3 ± 29.62 114.2 ± 19.64

Total Signal 3.2 ± 0.52 1.3 ± 0.22 2.1 ± 0.25 1.3 ± 0.17 1.5 ± 0.24

Data 3519.0 936.0 780.0 181.0 123.0

Table F.3 Number of events obtained before the global likelihood fit in the
1-lepton 2- and 3-jet 2M b-tag regions, with a Signal of mH =
125 GeV. The uncertainties are from the prefit NPs except the
floating normalisations.
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Sample 2T-tag

pVT region (GeV) pVT < 90 90 < pVT < 120 120 < pVT < 160 160 < pVT < 200 pVT > 200

2-jet

Z + l 0.1 0.0 0.0 0.0 0.0

Z + cl 0.4 0.1 0.1 0.0 0.0

Z + hf 42.6 15.1 6.2 1.5 0.5

W + l 2.0 0.4 0.3 0.1 0.1

W + cl 12.6 3.2 2.1 0.5 0.4

W + hf 372.1 119.0 117.2 34.4 33.2

s-top 424.2 94.2 66.1 11.7 4.3

MJµ 99.1 9.4 0.0 0.0 0.0

MJe 0.0 0.0 11.6 2.4 1.2

tt̄ 1019.9 367.2 316.5 39.2 8.5

V V 34.6 11.6 13.8 5.9 5.0

Total Background 2007.4 ± 184.13 620.1 ± 50.31 533.8 ± 50.25 95.8 ± 11.89 53.1 ± 11.49

Total Signal 13.1 ± 1.62 4.4 ± 0.55 6.8 ± 0.80 3.6 ± 0.45 3.7 ± 0.55

Data 2364.0 700.0 591.0 112.0 59.0

3-jet

Z + l 0.0 0.0 0.0 0.0 0.0

Z + cl 0.2 0.0 0.0 0.0 0.0

Z + hf 22.2 6.1 3.7 0.9 0.3

W + l 0.7 0.2 0.1 0.0 0.0

W + cl 3.9 1.0 0.9 0.2 0.2

W + hf 153.1 41.7 46.9 18.6 20.0

s-top 309.2 64.8 48.8 10.0 7.1

MJµ 35.5 1.9 0.0 0.3 0.0

MJe 0.0 0.0 2.3 0.7 0.3

tt̄ 2551.9 607.8 443.2 57.0 16.1

V V 9.2 3.4 5.8 2.8 2.7

Total Background 3085.8 ± 586.93 726.8 ± 138.12 551.9 ± 108.52 90.6 ± 16.54 46.7 ± 8.72

Total Signal 3.6 ± 0.61 1.4 ± 0.23 2.4 ± 0.31 1.5 ± 0.19 1.8 ± 0.29

Data 3161.0 779.0 590.0 101.0 53.0

Table F.4 Number of events obtained before the global likelihood fit in the
1-lepton 2- and 3-jet 2T b-tag regions, with a Signal of mH =
125 GeV. The uncertainties are from the prefit NPs except the
floating normalisations.
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Sample 1-tag

pVT region (GeV) pVT < 120 pVT > 120

2-jet

Z + l 2954.2 435.4

Z + cl 1192.0 151.1

Z + hf 1454.5 181.0

W + l 46 616.2 10 045.2

W + cl 55 794.8 10 012.5

W + hf 14 001.6 2983.9

s-top 9310.9 1585.4

MJµ 6525.3 55.5

MJe 0.0 1148.2

tt̄ 8806.0 4434.4

V V 1671.1 675.6

Total Background 148326.6 ± 408.00 31708.2 ± 199.06

Total Signal 75.0 ± 30.21 41.9 ± 17.05

Data 148 390.0 31 777.0

3-jet

Z + l 1356.5 188.6

Z + cl 587.6 78.9

Z + hf 689.7 88.4

W + l 17 680.2 4519.5

W + cl 18 774.6 4065.9

W + hf 5370.7 1642.1

s-top 5634.8 1411.6

MJµ 3219.8 25.3

MJe 0.0 304.3

tt̄ 15 718.8 7016.4

V V 893.3 335.4

Total Background 69925.9 ± 270.26 19676.4 ± 132.27

Total Signal 28.6 ± 11.76 19.6 ± 8.04

Data 69 956.0 19 649.0

Table F.5 Number of events obtained after performing the unconditional fit in
the 1-lepton 2- and 3-jet 1 b-tag regions, with a Signal of mH =
125 GeV. The uncertainties are the full postfit errors including all
NPs with priors, floating normalisations, and correlations.



Event Yields in WH → `νbb̄ 253

Sample 2L-tag

pVT region (GeV) pVT < 90 90 < pVT < 120 120 < pVT < 160 160 < pVT < 200 pVT > 200

2-jet

Z + l 54.8 19.9 10.3 1.7 0.7

Z + cl 35.0 11.9 5.8 1.1 0.4

Z + hf 81.8 28.7 12.7 2.4 1.0

W + l 866.7 242.6 186.7 53.7 45.7

W + cl 1562.3 410.0 300.1 76.7 48.9

W + hf 1085.2 288.5 231.6 67.6 55.5

s-top 639.9 153.1 113.6 27.7 17.3

MJµ 456.6 54.2 5.1 1.0 0.0

MJe 0.0 0.0 42.3 9.0 1.9

tt̄ 996.2 384.8 416.9 109.3 60.0

V V 68.8 22.1 25.0 10.0 11.5

Total Background 5847.3 ± 68.90 1615.6 ± 26.10 1350.1 ± 21.23 360.3 ± 7.27 242.8 ± 8.58

Total Signal 16.6 ± 6.65 5.8 ± 2.33 8.4 ± 3.37 3.8 ± 1.55 4.8 ± 1.91

Data 5891.0 1570.0 1355.0 375.0 239.0

3-jet

Z + l 24.5 6.8 3.7 0.8 0.5

Z + cl 17.9 4.6 2.5 0.6 0.3

Z + hf 41.8 9.7 6.8 1.2 0.7

W + l 327.2 80.4 73.5 24.1 23.8

W + cl 549.7 126.6 110.7 34.1 27.4

W + hf 408.0 104.3 105.5 39.9 44.4

s-top 406.5 98.3 86.8 30.0 24.5

MJµ 138.4 10.8 1.2 0.0 0.0

MJe 0.0 0.0 12.3 2.5 0.8

tt̄ 1974.8 553.0 566.2 173.0 110.0

V V 31.3 9.6 11.5 5.2 5.4

Total Background 3919.9 ± 43.70 1004.0 ± 15.94 980.8 ± 16.1 311.1 ± 6.79 237.8 ± 8.72

Total Signal 4.8 ± 1.96 1.8 ± 0.75 2.9 ± 1.16 1.8 ± 0.71 2.3 ± 0.93

Data 3882.0 1004.0 1051.0 313.0 238.0

Table F.6 Number of events obtained after performing the unconditional fit in
the 1-lepton 2- and 3-jet 2L b-tag regions, with a Signal of mH =
125 GeV. The uncertainties are the full postfit errors including all
NPs with priors, floating normalisations, and correlations.
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Sample 2M-tag

pVT region (GeV) pVT < 90 90 < pVT < 120 120 < pVT < 160 160 < pVT < 200 pVT > 200

2-jet

Z + l 4.3 1.5 0.7 0.1 0.0

Z + cl 7.3 2.4 1.2 0.2 0.0

Z + hf 66.4 23.4 10.1 1.5 0.7

W + l 65.5 17.8 12.9 3.5 3.0

W + cl 262.6 69.5 49.7 11.5 7.3

W + hf 735.0 208.4 164.2 46.3 41.4

s-top 597.3 138.0 97.7 20.8 11.5

MJµ 204.1 16.0 1.2 0.0 0.0

MJe 0.0 0.0 24.9 4.6 1.2

tt̄ 1236.0 470.6 456.6 85.4 34.7

V V 46.5 15.2 18.6 7.3 6.9

Total Background 3224.9 ± 50.34 962.8 ± 17.46 837.7 ± 17.73 181.3 ± 4.96 106.7 ± 5.56

Total Signal 27.1 ± 10.76 9.0 ± 3.57 13.7 ± 5.40 6.7 ± 2.62 7.9 ± 3.12

Data 3230.0 984.0 868.0 199.0 116.0

3-jet

Z + l 1.6 0.5 0.3 0.1 0.0

Z + cl 3.0 0.8 0.4 0.1 0.0

Z + hf 29.9 8.0 5.0 1.2 0.5

W + l 22.6 5.8 5.1 1.5 1.3

W + cl 92.2 22.4 18.0 5.4 4.2

W + hf 261.8 67.9 80.0 26.8 31.5

s-top 397.6 89.0 71.3 21.0 17.0

MJµ 70.6 12.3 0.0 0.6 0.0

MJe 0.0 0.0 6.0 2.2 0.4

tt̄ 2593.3 673.4 587.6 126.4 62.9

V V 14.5 4.9 6.3 2.8 3.3

Total Background 3487.1 ± 37.91 885.0 ± 16.48 779.9 ± 14.91 188.0 ± 4.80 121.2 ± 5.69

Total Signal 7.3 ± 2.99 3.0 ± 1.22 4.8 ± 1.93 3.0 ± 1.20 3.6 ± 1.45

Data 3519.0 936.0 780.0 181.0 123.0

Table F.7 Number of events obtained after performing the unconditional fit in
the 1-lepton 2- and 3-jet 2M b-tag regions, with a Signal of mH =
125 GeV. The uncertainties are the full postfit errors including all
NPs with priors, floating normalisations, and correlations.
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Sample 2T-tag

pVT region (GeV) pVT < 90 90 < pVT < 120 120 < pVT < 160 160 < pVT < 200 pVT > 200

2-jet

Z + l 0.1 0.0 0.0 0.0 0.0

Z + cl 0.4 0.1 0.1 0.0 0.0

Z + hf 43.4 15.3 6.8 1.7 0.5

W + l 2.0 0.4 0.3 0.1 0.1

W + cl 13.8 3.4 2.3 0.5 0.3

W + hf 407.6 116.0 106.3 30.0 27.6

s-top 486.2 106.5 72.9 13.3 4.7

MJµ 136.6 12.8 0.0 0.0 0.0

MJe 0.0 0.0 11.6 2.0 1.1

tt̄ 1172.9 431.8 377.9 44.5 10.3

V V 36.9 12.4 15.4 6.8 6.1

Total Background 2299.9 ± 49.76 698.7 ± 15.50 593.6 ± 15.17 98.6 ± 3.61 50.7 ± 4.16

Total Signal 30.1 ± 11.82 10.0 ± 3.91 15.6 ± 6.08 8.3 ± 3.24 8.7 ± 3.37

Data 2364.0 700.0 591.0 112.0 59.0

3-jet

Z + l 0.0 0.0 0.0 0.0 0.0

Z + cl 0.2 0.0 0.0 0.0 0.0

Z + hf 22.2 6.1 3.7 0.9 0.4

W + l 0.7 0.2 0.1 0.0 0.0

W + cl 4.5 1.1 1.0 0.3 0.1

W + hf 142.7 41.6 48.5 19.7 21.9

s-top 336.0 71.7 50.5 10.5 7.3

MJµ 35.5 1.9 0.0 0.3 0.0

MJe 0.0 0.0 2.4 0.7 0.3

tt̄ 2638.0 642.7 485.4 61.3 15.6

V V 9.2 3.4 5.8 2.8 2.7

Total Background 3188.8 ± 42.55 768.7 ± 15.65 597.5 ± 14.79 96.5 ± 3.77 48.3 ± 4.08

Total Signal 8.3 ± 3.37 3.3 ± 1.32 5.6 ± 2.20 3.4 ± 1.35 4.1 ± 1.63

Data 3161.0 779.0 590.0 101.0 53.0

Table F.8 Number of events obtained after performing the unconditional fit in
the 1-lepton 2- and 3-jet 2T b-tag regions, with a Signal of mH =
125 GeV. The uncertainties are the full postfit errors including all
NPs with priors, floating normalisations, and correlations.
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Appendix G

Substructure Variable Definitions

Additional definitions are given here for substructure variables used in Chapter 7.

G.1 Thrust

The jet direction in the centre-of-mass frame defines the thrust axis [226–229].

This is calculated by finding the direction of the unit vector n̂T which maximises

the sum of the momenta of all of the jet constituents: T = max
∑
i |~pi·n̂T|∑
i |~pi|

, which

here is in the longitudinal direction.

The thrust major axis is perpendicular to the thrust axis and is found by

maximising the following equation, given the restriction n̂maj · n̂T = 0.

Tmaj = max

∑
i |~pi · n̂maj|∑

i |~pi|
, (G.1)

The change in definition is such that the projected energy of the most energetic

jet onto the major axis in maximised.

The thrust minor axis Tmin is perpendicular to both the thrust axis and the

thrust major axis. It is found by maximising the following equation subject to

the restrictions n̂min · n̂maj = 0 and n̂min · n̂T = 0.

Tmin =

∑
i |~pi · n̂min|∑

i |~pi|
, (G.2)

where ~pi is the four vector of jet constituent i, and T̂ is the thrust axis. For

a balanced two prong decay this should have a value of Tmin close to 0, which

indicates that the constituents are highly directional. Increasing values of Tmin

indicate a more isotropic distribution.
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The second axis, the “Major” axis, is taken to be perpendicular to the Thrust

axis; but with the requirement that the projected energy of the most energetic

jet onto the Major axis in is maximized [4,5]. Meaning if I took the dot product

between the Major axis and the direction of the most energetic jet, this dot

product would always be maximum (but still keep the Major axis and the Thrust

axis perpendicular). This additional requirement needs to be specified so that

the Major axis is unique (there are an infinite number of perpendicular directions

to a given direction).

The third axis, called the “Minor” axis, is then perpendicular to these two.

However, it turns out that energy flow along this direction is very close to the

minimum energy flow along any axis [4,5].

G.2 Fox-Wolfram Moments

The Fox-Wolfram Moments [230], Hl, are defined as

Hl =
∑
i,j

|~pi||~pj|
E2

Pl(cos θij), (G.3)

where θij is the opening angle between two energy clusters i and j (the jet

constituents), E is the total jet energy in the jet rest frame, and Pl(x) are the

Legendre polynomials.

Each energy cluster is assumed to be a massless pseudoparticle, such that H0 = 1.

Back-to-back subjets in the rest frame give H1 = 0, Hl ≈ 1 for even l and Hl ≈ 0

for odd l. In the studies here, the ratio of the second and zeroth-order moments

is used. In the text this is refered to as FoxWolfram20.

G.3 Dipolarity

Dipolarity [260] is a measure of the colour flow between two hard cores in a jet.

Dipolarity takes as input a jet J , and the two subjets, j1 and j2. These are used

to define the dipolarity D12 as

D12 =
1

∆R2
12

∑
i∈J

pTi

pTj

∆R2
J,i, (G.4)
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Where ∆R12 is the angle between the two subjets j1 and j2, and ∆Ra1,i is the

angle between subjet ji and the centre of the jet J .

Dipolarity is at a minimum when the majority of the radiation from J is between

j1 and j2, and is at a maximum whenever a large amount of radiation is elsewhere.

The ∆R weighting ensures that D12 receives large contributions from any softer

radiation which is away from j1 and j2, reflecting the colour configuration of J .

Colour singlets that decay into two jets are expected to have a smaller dipolarity

than coloured objects.
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Appendix H

Boosted Boson Tagging Decision

Functions and Statistics
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Figure H.1 The matrix plots show the linear correlation coefficients between
the class label (signal or background) and the possible feature inputs
for the BDT and DNNs. There is a 68% mass window cut on the
groomed jet mass. Here the correlations are shown for combined
signal and background datasets where the leading ungroomed C/A
jet has 400 < pTruthT < 1200 GeV. The correlation coefficients for
signal and background are shown separately in Section 7.7.1.2.

H.1 Training Folds Statistics
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C
(β=1)
2

Fold Sig+Bkg Mean Sig+Bkg Std Sig Mean Sig Std Bkg Mean Bkg Std

Full 0.0955 0.0338 0.0671 0.0269 0.1042 0.0308

Train cv 009 0.0950 0.0337 0.0676 0.0260 0.1044 0.0308

Valid cv 009 0.0953 0.0339 0.0678 0.0262 0.1047 0.0310

Train cv 007 0.0950 0.0338 0.0675 0.0260 0.1044 0.0309

Valid cv 007 0.0953 0.0338 0.0679 0.0262 0.1046 0.0309

Train cv 003 0.0950 0.0338 0.0676 0.0261 0.1044 0.0309

Valid cv 003 0.0952 0.0337 0.0677 0.0258 0.1046 0.0308

Train cv 000 0.0950 0.0338 0.0675 0.0260 0.1044 0.0308

Valid cv 000 0.0952 0.0338 0.0681 0.0262 0.1044 0.0310

Train cv 002 0.0951 0.0338 0.0677 0.0261 0.1044 0.0308

Valid cv 002 0.0950 0.0338 0.0675 0.0259 0.1044 0.0309

Train cv 005 0.0951 0.0338 0.0676 0.0261 0.1045 0.0309

Valid cv 005 0.0950 0.0337 0.0677 0.0261 0.1044 0.0309

Train cv 006 0.0951 0.0337 0.0676 0.0260 0.1044 0.0308

Valid cv 006 0.0951 0.0338 0.0677 0.0261 0.1045 0.0309

Train cv 001 0.0950 0.0338 0.0676 0.0261 0.1044 0.0309

Valid cv 001 0.0952 0.0337 0.0678 0.0260 0.1046 0.0308

Train cv 008 0.0951 0.0338 0.0676 0.0261 0.1045 0.0309

Valid cv 008 0.0949 0.0337 0.0676 0.0260 0.1042 0.0308

Train cv 004 0.0951 0.0338 0.0677 0.0260 0.1044 0.0309

Valid cv 004 0.0950 0.0337 0.0675 0.0261 0.1045 0.0307

Table H.1 Statistics for C
(β=1)
2 in the complete dataset after event selection,

and the training and validation samples used for the boosted decision
trees. For the neural network these are standardised such that they
have mean of 0 and a standard deviation of 1.
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D
(β=1)
2

Fold Sig+Bkg Mean Sig+Bkg Std Sig Mean Sig Std Bkg Mean Bkg Std

Full 1.840 0.7006 1.297 0.5344 2.007 0.6595

Train cv 009 1.823 0.717 1.298 0.5177 2.003 0.6866

Valid cv 009 1.828 0.719 1.302 0.5270 2.008 0.6866

Train cv 007 1.825 0.718 1.298 0.5196 2.005 0.6866

Valid cv 007 1.824 0.717 1.300 0.5211 2.003 0.6866

Train cv 003 1.825 0.719 1.297 0.5196 2.006 0.6882

Valid cv 003 1.823 0.713 1.303 0.5213 2.000 0.6817

Train cv 000 1.826 0.718 1.298 0.5204 2.006 0.6868

Valid cv 000 1.822 0.715 1.302 0.5188 1.999 0.6858

Train cv 002 1.824 0.716 1.299 0.5199 2.003 0.6852

Valid cv 002 1.827 0.721 1.299 0.5203 2.007 0.6907

Train cv 005 1.825 0.718 1.299 0.5201 2.005 0.6872

Valid cv 005 1.822 0.716 1.298 0.5196 2.001 0.6846

Train cv 006 1.825 0.717 1.298 0.5203 2.004 0.6862

Valid cv 006 1.825 0.718 1.301 0.5192 2.004 0.6879

Train cv 001 1.824 0.718 1.298 0.5209 2.004 0.6871

Valid cv 001 1.826 0.716 1.300 0.5172 2.005 0.6851

Train cv 008 1.826 0.718 1.301 0.5213 2.006 0.6869

Valid cv 008 1.819 0.716 1.292 0.5162 1.999 0.6856

Train cv 004 1.825 0.717 1.301 0.5224 2.004 0.6866

Valid cv 004 1.823 0.717 1.292 0.5128 2.004 0.6867

Table H.2 Statistics for D
(β=1)
2 in the complete dataset after event selection,

and the training and validation samples used for the boosted decision
trees. For the neural network these are standardised such that they
have mean of 0 and a standard deviation of 1.
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√
d12

Fold Sig+Bkg Mean Sig+Bkg Std Sig Mean Sig Std Bkg Mean Bkg Std

Full 38.86 14.84 49.6110 14.57 35.54 13.26

Train cv 009 39.25 15.12 49.66 14.48 35.70 13.62

Valid cv 009 39.17 15.15 49.67 14.70 35.58 13.55

Train cv 007 39.23 15.14 49.67 14.54 35.67 13.61

Valid cv 007 39.23 15.08 49.62 14.51 35.68 13.55

Train cv 003 39.20 15.12 49.63 14.51 35.65 13.61

Valid cv 003 39.32 15.13 49.76 14.61 35.75 13.57

Train cv 000 39.24 15.13 49.69 14.53 35.67 13.61

Valid cv 000 39.22 15.10 49.56 14.54 35.68 13.58

Train cv 002 39.23 15.13 49.67 14.55 35.67 13.60

Valid cv 002 39.23 15.10 49.62 14.46 35.68 13.60

Train cv 005 39.22 15.11 49.62 14.51 35.67 13.60

Valid cv 005 39.27 15.16 49.77 14.59 35.68 13.60

Train cv 006 39.22 15.12 49.64 14.52 35.67 13.59

Valid cv 006 39.27 15.15 49.72 14.58 35.69 13.62

Train cv 001 39.26 15.13 49.66 14.55 35.71 13.61

Valid cv 001 39.15 15.10 49.66 14.46 35.56 13.56

Train cv 008 39.21 15.13 49.63 14.56 35.65 13.61

Valid cv 008 39.31 15.09 49.76 14.45 35.74 13.58

Train cv 004 39.25 15.12 49.65 14.53 35.69 13.60

Valid cv 004 39.20 15.14 49.71 14.55 35.61 13.58

Table H.3 Statistics for
√
d12 in the complete dataset after event selection, and

the training and validation samples used for the boosted decision
trees. For the neural network these are standardised such that they
have mean of 0 and a standard deviation of 1.



Boosted Boson Tagging Decision Functions and Statistics 265

τWTA
21

Fold Sig+Bkg Mean Sig+Bkg Std Sig Mean Sig Std Bkg Mean Bkg Std

Full 0.4796 0.1744 0.3286 0.1524 0.5263 0.1531

Train cv 009 0.4657 0.1711 0.3271 0.1461 0.5130 0.1522

Valid cv 009 0.4669 0.1711 0.3283 0.1471 0.5143 0.1519

Train cv 007 0.4659 0.1711 0.3270 0.1460 0.5133 0.1522

Valid cv 007 0.4663 0.1710 0.3285 0.1474 0.5133 0.1521

Train cv 003 0.4658 0.1711 0.3268 0.1458 0.5133 0.1522

Valid cv 003 0.4666 0.1709 0.3293 0.1479 0.5134 0.1519

Train cv 000 0.4660 0.1713 0.3270 0.1463 0.5135 0.1523

Valid cv 000 0.4660 0.1705 0.3288 0.1465 0.5129 0.1517

Train cv 002 0.4659 0.1711 0.3274 0.1463 0.5132 0.1523

Valid cv 002 0.4663 0.1710 0.3275 0.1465 0.5137 0.1518

Train cv 005 0.4661 0.1710 0.3276 0.1466 0.5134 0.1520

Valid cv 005 0.4655 0.1712 0.3269 0.1458 0.5129 0.1525

Train cv 006 0.4660 0.1711 0.3269 0.1462 0.5134 0.1521

Valid cv 006 0.4661 0.1710 0.3289 0.1469 0.5129 0.1524

Train cv 001 0.4658 0.1712 0.3271 0.1467 0.5131 0.1522

Valid cv 001 0.4666 0.1706 0.3285 0.1454 0.5138 0.1520

Train cv 008 0.4660 0.1710 0.3273 0.1461 0.5134 0.1521

Valid cv 008 0.4659 0.1712 0.3277 0.1471 0.5132 0.1523

Train cv 004 0.4658 0.1708 0.3280 0.1464 0.5129 0.1520

Valid cv 004 0.4664 0.1718 0.3258 0.1463 0.5145 0.1524

Table H.4 Statistics for τWTA
21 in the complete dataset after event selection,

and the training and validation samples used for the boosted decision
trees. For the neural network these are standardised such that they
have mean of 0 and a standard deviation of 1.
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P

Fold Sig+Bkg Mean Sig+Bkg Std Sig Mean Sig Std Bkg Mean Bkg Std

Full 0.5614 0.2622 0.4036 0.2276 0.6103 0.2528

Train cv 009 0.5293 0.2488 0.3978 0.2175 0.5743 0.2429

Valid cv 009 0.5299 0.2488 0.3984 0.2170 0.5748 0.2430

Train cv 007 0.5292 0.2488 0.3973 0.2169 0.5742 0.2430

Valid cv 007 0.5304 0.2489 0.3997 0.2187 0.5750 0.2427

Train cv 003 0.5288 0.2488 0.3970 0.2172 0.5739 0.2429

Valid cv 003 0.5314 0.2489 0.4006 0.2179 0.5760 0.2430

Train cv 000 0.5294 0.2490 0.3976 0.2173 0.5744 0.2431

Valid cv 000 0.5297 0.2484 0.3989 0.2176 0.5743 0.2424

Train cv 002 0.5292 0.2487 0.3980 0.2178 0.5739 0.2427

Valid cv 002 0.5305 0.2492 0.3978 0.2160 0.5758 0.2436

Train cv 005 0.5296 0.2488 0.3972 0.2173 0.5748 0.2427

Valid cv 005 0.5291 0.2489 0.4002 0.2176 0.5731 0.2435

Train cv 006 0.5295 0.2489 0.3980 0.2175 0.5745 0.2429

Valid cv 006 0.5293 0.2487 0.3977 0.2168 0.5742 0.2429

Train cv 001 0.5293 0.2488 0.3978 0.2173 0.5742 0.2429

Valid cv 001 0.5299 0.2488 0.3983 0.2176 0.5749 0.2428

Train cv 008 0.5294 0.2488 0.3983 0.2174 0.5742 0.2430

Valid cv 008 0.5297 0.2489 0.3967 0.2171 0.5751 0.2428

Train cv 004 0.5294 0.2486 0.3986 0.2173 0.5741 0.2429

Valid cv 004 0.5297 0.2494 0.3960 0.2176 0.5754 0.2431

Table H.5 Statistics for planar flow in the complete dataset after event
selection, and the training and validation samples used for the boosted
decision trees. For the neural network these are standardised such
that they have mean of 0 and a standard deviation of 1.
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A

Fold Sig+Bkg Mean Sig+Bkg Std Sig Mean Sig Std Bkg Mean Bkg Std

Full 0.0539 0.0562 0.0249 0.0311 0.0629 0.0592

Train cv 009 0.0433 0.0423 0.0233 0.0266 0.0502 0.0445

Valid cv 009 0.0436 0.0425 0.0230 0.0263 0.0506 0.0447

Train cv 007 0.0433 0.0424 0.0231 0.0265 0.0502 0.0446

Valid cv 007 0.0436 0.0422 0.0235 0.0265 0.0505 0.0443

Train cv 003 0.0434 0.0424 0.0230 0.0264 0.0503 0.0446

Valid cv 003 0.0435 0.0423 0.0237 0.0269 0.0503 0.0444

Train cv 000 0.0434 0.0424 0.0233 0.0267 0.0503 0.0445

Valid cv 000 0.0434 0.0424 0.0231 0.0259 0.0504 0.0446

Train cv 002 0.0434 0.0423 0.0232 0.0264 0.0502 0.0444

Valid cv 002 0.0435 0.0427 0.0232 0.0268 0.0505 0.0449

Train cv 005 0.0434 0.0424 0.0232 0.0264 0.0504 0.0445

Valid cv 005 0.0433 0.0423 0.0233 0.0268 0.0501 0.0444

Train cv 006 0.0434 0.0423 0.0232 0.0265 0.0503 0.0445

Valid cv 006 0.0434 0.0425 0.0233 0.0264 0.0503 0.0447

Train cv 001 0.0434 0.0424 0.0231 0.0265 0.0503 0.0445

Valid cv 001 0.0435 0.0424 0.0234 0.0266 0.0504 0.0445

Train cv 008 0.0434 0.0423 0.0232 0.0265 0.0502 0.0445

Valid cv 008 0.0436 0.0425 0.0231 0.0265 0.0505 0.0447

Train cv 004 0.0433 0.0423 0.0233 0.0265 0.0502 0.0444

Valid cv 004 0.0436 0.0427 0.0230 0.0264 0.0506 0.0448

Table H.6 Statistics for aplanarity in the complete dataset after event selection,
and the training and validation samples used for the boosted decision
trees. For the neural network these are standardised such that they
have mean of 0 and a standard deviation of 1.
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Sample Signal Background Total

Full 57525 185902 243427

Train cv 009 40478 118540 159018

Valid cv 009 13493 39514 53007

Train cv 007 40478 118540 159018

Valid cv 007 13493 39514 53007

Train cv 003 40478 118540 159018

Valid cv 003 13493 39514 53007

Train cv 000 40478 118540 159018

Valid cv 000 13493 39514 53007

Train cv 002 40478 118540 159018

Valid cv 002 13493 39514 53007

Train cv 005 40478 118540 159018

Valid cv 005 13493 39514 53007

Train cv 006 40478 118540 159018

Valid cv 006 13493 39514 53007

Train cv 001 40478 118540 159018

Valid cv 001 13493 39514 53007

Train cv 008 40478 118540 159018

Valid cv 008 13493 39514 53007

Train cv 004 40478 118540 159018

Valid cv 004 13493 39514 53007

Table H.7 Number of events in the complete dataset after event selection, and
the training and validation samples used for the boosted decision tree
training. Stratified 10-fold cross validation is used here in the region
400 < pT < 1200 GeV.
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C
(β=1)
2

Fold Sig+Bkg Mean Sig+Bkg Std Sig Mean Sig Std Bkg Mean Bkg Std

Full 0.0000 1.000 -0.1113 0.9845 0.8352 1.000

Train cv 000 0.000 1.000 -0.1053 0.9938 0.8366 1.000

Valid cv 000 0.001 1.002 -0.1341 0.9476 0.0398 0.7890

Train cv 001 0.000 1.000 -0.1145 0.9914 0.9234 1.034

Valid cv 001 0.001 1.000 -0.0790 0.9640 0.1792 0.8369

Train cv 002 0.000 1.000 -0.1125 0.9796 0.8411 1.002

Valid cv 002 0.006 0.9972 -0.0778 1.011 1.017 1.059

Train cv 003 0.000 1.000 -0.1146 0.9869 0.8344 1.001

Valid cv 003 0.002 0.9971 -0.1016 0.9690 -0.0622 0.7571

Train cv 004 0.000 1.000 -0.0873 0.9780 0.7104 0.9735

Valid cv 004 -0.010 1.004 -0.1275 1.041 1.046 1.066

Table H.8 Statistics for C
(β=1)
2 in the complete dataset after event selection,

and the training and validation samples used for the deep neural
networks. For the neural network these are standardised such that
they have mean of 0 and a standard deviation of 1.

D
(β=1)
2

Fold Sig+Bkg Mean Sig+Bkg Std Sig Mean Sig Std Bkg Mean Bkg Std

Full 0.0000 1.000 -0.9575 0.6272 -0.1721 0.8049

Train cv 000 0.0000 1.000 -0.9557 0.6281 -0.1721 0.8032

Valid cv 000 0.0020 0.9978 -0.9608 0.6220 -0.1696 0.8098

Train cv 001 0.0000 1.000 -0.9586 0.6316 -0.1692 0.8050

Valid cv 001 -0.0040 1.001 -0.9587 0.6107 -0.1872 0.8053

Train cv 002 0.0000 1.000 -0.9561 0.6303 -0.1682 0.8081

Valid cv 002 -0.0073 0.9931 -0.9639 0.6101 -0.1931 0.7862

Train cv 003 0.0000 1.000 -0.9573 0.6284 -0.1749 0.8020

Valid cv 003 0.0025 0.9950 -0.9513 0.6191 -0.1571 0.8122

Train cv 004 0.0000 1.000 -0.9600 0.6174 -0.1758 0.8060

Valid cv 004 0.0068 1.013 -0.9530 0.6722 -0.1523 0.8105

Table H.9 Statistics for D
(β=1)
2 in the complete dataset after event selection,

and the training and validation samples used for the deep neural
networks. For the neural network these are standardised such that
they have mean of 0 and a standard deviation of 1.
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√
d12

Fold Sig+Bkg Mean Sig+Bkg Std Sig Mean Sig Std Bkg Mean Bkg Std

Full 0.0000 1.000 0.6807 0.9433 -0.1435 0.9042

Train cv 000 0.0000 1.000 0.6823 0.9473 -0.1476 0.9014

Valid cv 000 -0.0025 1.000 0.6719 0.9270 -0.1290 0.9155

Train cv 001 -0.0000 1.000 0.6771 0.9423 -0.1447 0.9028

Valid cv 001 0.0061 1.004 0.7031 0.9503 -0.1332 0.9127

Train cv 002 0.0000 1.000 0.6734 0.9435 -0.1433 0.9075

Valid cv 002 0.0035 0.9971 0.7119 0.9391 -0.1404 0.8884

Train cv 003 0.0000 1.000 0.6790 0.9426 -0.1414 0.9031

Valid cv 003 -0.0002 0.9943 0.6835 0.9409 -0.1512 0.9032

Train cv 004 0.0000 1.000 0.6918 0.9407 -0.1403 0.9060

Valid cv 004 -0.0070 1.005 0.6328 0.9565 -0.1638 0.9005

Table H.10 Statistics for
√
d12 in the complete dataset after event selection,

and the training and validation samples used for the deep neural
networks. For the neural network these are standardised such that
they have mean of 0 and a standard deviation of 1.

τWTA
21

Fold Sig+Bkg Mean Sig+Bkg Std Sig Mean Sig Std Bkg Mean Bkg Std

Full 0.0000 1.0000 -0.9446 0.8179 -0.1060 0.8525

Train cv 000 0.0000 1.000 -0.9392 0.8264 -0.1064 0.8529

Valid cv 000 -0.0030 0.9997 -0.9649 0.7813 -0.1620 0.8078

Train cv 001 0.0000 1.000 -0.9479 0.8198 -0.1043 0.8480

Valid cv 001 -0.0017 0.9989 -0.9295 0.8105 -0.1688 0.8252

Train cv 002 0.0000 1.000 -0.9472 0.8113 -0.1000 0.8537

Valid cv 002 0.0072 0.9987 -0.9215 0.8433 -0.1775 0.8047

Train cv 003 0.0000 1.000 -0.9477 0.8153 -0.1054 0.8547

Valid cv 003 0.0019 0.9983 -0.9196 0.8302 -0.2079 0.7873

Train cv 004 0.0000 1.000 -0.9374 0.8174 -0.1686 0.8105

Valid cv 004 -0.0044 1.004 -0.9663 0.8273 -0.0251 0.8669

Table H.11 Statistics for τWTA
21 in the complete dataset after event selection,

and the training and validation samples used for the deep neural
networks. For the neural network these are standardised such that
they have mean of 0 and a standard deviation of 1.
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P

Fold Sig+Bkg Mean Sig+Bkg Std Sig Mean Sig Std Bkg Mean Bkg Std

Full 0.000 1.000 -0.9735 0.7723 -0.2879 0.9815

Train cv 000 0.0000 1.000 -0.9704 0.7748 -0.2882 0.9817

Valid cv 000 0.0015 1.000 -0.9855 0.7630 -0.2854 0.9815

Train cv 001 0.0000 1.000 -0.9771 0.7756 -0.2868 0.9790

Valid cv 001 -0.0002 0.9993 -0.9595 0.7584 -0.2926 0.9907

Train cv 002 0.0000 1.000 -0.9806 0.7602 -0.2857 0.9825

Valid cv 002 0.0062 0.9940 -0.9320 0.8134 -0.2890 0.9721

Train cv 003 0.0000 1.000 -0.9734 0.7745 -0.2856 0.9829

Valid cv 003 -0.0024 1.002 -0.9786 0.7653 -0.3005 0.9778

Train cv 004 -0.0000 1.000 -0.9659 0.7762 -0.2934 0.9815

Valid cv 004 -0.0051 1.004 -1.0128 0.7587 -0.2718 0.9846

Table H.12 Statistics for planar flow in the complete dataset after event
selection, and the training and validation samples used for the deep
neural networks. For the neural network these are standardised
such that they have mean of 0 and a standard deviation of 1.

A

Fold Sig+Bkg Mean Sig+Bkg Std Sig Mean Sig Std Bkg Mean Bkg Std

Full 0.0000 1.000 -0.5998 0.5160 0.0244 1.039

Train cv 000 0.0000 1.000 -0.5955 0.5221 0.0196 1.033

Valid cv 000 -0.0080 0.9891 -0.6187 0.4833 0.0355 1.045

Train cv 001 0.0000 1.000 -0.6019 0.5167 0.0218 1.035

Valid cv 001 -0.0017 1.002 -0.5941 0.5140 0.0328 1.058

Train cv 002 0.0000 1.000 -0.6012 0.5140 0.0308 1.047

Valid cv 002 0.0098 1.003 -0.5860 0.5251 0.0090 1.010

Train cv 003 0.0000 1.000 -0.6022 0.5090 0.0280 1.043

Valid cv 003 0.0062 1.004 -0.5862 0.5448 0.0161 1.028

Train cv 004 0.0000 1.000 -0.5981 0.5178 0.0218 1.037

Valid cv 004 -0.0063 1.002 -0.6142 0.5095 0.0286 1.050

Table H.13 Statistics for aplanarity in the complete dataset after event
selection, and the training and validation samples used for the deep
neural networks. For the neural network these are standardised
such that they have mean of 0 and a standard deviation of 1.
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Sample Signal Background Total

Full 53971 158054 212025

Train cv 000 43176 126443 169619

Valid cv 000 10795 31611 42406

Train cv 001 43177 126443 169620

Valid cv 001 10794 31611 42405

Train cv 002 43177 126443 169620

Valid cv 002 10794 31611 42405

Train cv 003 43177 126443 169620

Valid cv 003 10794 31611 42405

Train cv 004 43177 126444 169621

Valid cv 004 10794 31610 42404

Table H.14 Number of events in the complete dataset after event selection, and
the training and validation samples for the deep neural network.
Stratified 5-fold validation is used here in the 400 < pT < 1200 GeV
range.
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Figure I.1 Shown here are the leading groomed jet pT distributions in the
background for different values of the BDT output for configuration
31 in Table 7.7. The full background pT spectrum is shown in (a).
In (b), a cut of BDT score≤ 0.16 is applied. In plots (c) and
(d) the pT spectrum is shown for 0.16 < BDT Score ≤ 0.2 and
0.2 < BDT Score ≤ 1, respectively.

273



BDT Results Check 274

Weight

0 1 2 3 4 5 6 7 8 9 10

# 
E

nt
rie

s

0

20

40

60

80

100
310×

Background

<500 (GeV)
T

=13 TeV, 400<ps

(a)

Weight

0 2 4 6 8 10 12 14 16
# 

E
nt

rie
s

0

100

200

300

400

500

600

700

800

Background

<1200 (GeV)
T

=13 TeV, 500<ps

(b)

Weight

0 2 4 6 8 10 12 14 16

# 
E

nt
rie

s

0

50

100

150

200

250

300

Background

<1200 (GeV)
T

=13 TeV, 400<ps

BDT Score<0.16

(c)

Weight

0 2 4 6 8 10 12 14 16

# 
E

nt
rie

s

0

100

200

300

400

500

Background

<1200 (GeV)
T

=13 TeV, 400<ps

0.16<BDT Score<0.2

(d)

Weight

0 2 4 6 8 10 12 14 16

# 
E

nt
rie

s

0

20

40

60

80

100

310×

Background

<1200 (GeV)
T

=13 TeV, 400<ps

0.2<BDT Score<1

(e)

Figure I.2 Shown here are the weight distributions in the background for
different values of the BDT output for configuration 31 in Table 7.7.
The weight distribution in (a) and (b) are for events where the
leading groomed jet has pT < 500 and pT > 500 GeV, respectively.
In (c), a cut of BDT score≤ 0.16 is applied. In plots (c) and (d)
the weight distribution is shown for 0.16 < BDT Score ≤ 0.2 and
0.2 < BDT Score ≤ 1, respectively.
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Figure I.3 The relationship between the assigned BDT class probability, using
configuration 31 from Table 7.7, and the leading groomed jet pT .
Plot (a) shows the signal distribution, and (b) shows the background
distribution.
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tions to associated WH and ZH production at hadron colliders, Phys. Rev.
D 68 (2003) p. 073003, arXiv: hep-ph/0306234 [hep-ph].

[154] A. Denner et al., EW corrections to Higgs strahlung at the Tevatron and the
LHC with HAWK, PoS EPS-HEP2011 (2011) p. 235, arXiv: 1112.5258
[hep-ph].

http://dx.doi.org/10.1140/epjc/s10052-011-1844-6
http://dx.doi.org/10.1140/epjc/s10052-011-1844-6
http://arxiv.org/abs/1108.5602
https://cds.cern.ch/record/1570993
http://www.biography.com/people/bb-king-9364839
http://www.biography.com/people/bb-king-9364839
http://arxiv.org/abs/hep-ph/0201195
http://arxiv.org/abs/hep-ph/0201195
http://cdsweb.cern.ch/record/1363300
http://cdsweb.cern.ch/record/1345343
http://dx.doi.org/10.1140/epjc/s2005-02396-4
http://arxiv.org/abs/hep-ph/0506026
http://dx.doi.org/10.1007/JHEP10(2013)083
http://dx.doi.org/10.1007/JHEP10(2013)083
http://arxiv.org/abs/1306.2542
http://dx.doi.org/10.1103/PhysRevD.82.074024
http://dx.doi.org/10.1103/PhysRevD.82.074024
http://arxiv.org/abs/1007.2241
http://dx.doi.org/10.1103/PhysRevD.89.013013
http://arxiv.org/abs/1310.4828
http://dx.doi.org/10.1103/PhysRevD.47.2722
http://dx.doi.org/10.1103/PhysRevD.47.2722
http://dx.doi.org/10.1103/PhysRevD.47.2730
http://dx.doi.org/10.1103/PhysRevD.47.2730
http://dx.doi.org/10.1016/j.physletb.2003.10.112
http://dx.doi.org/10.1016/j.physletb.2003.10.112
http://arxiv.org/abs/hep-ph/0307206
http://dx.doi.org/10.1103/PhysRevD.68.073003
http://dx.doi.org/10.1103/PhysRevD.68.073003
http://arxiv.org/abs/hep-ph/0306234
http://arxiv.org/abs/1112.5258
http://arxiv.org/abs/1112.5258


BIBLIOGRAPHY 288

[155] L. Altenkamp et al., Gluon-induced Higgs-strahlung at next-to-leading
order QCD, JHEP 02 (2013) p. 078, arXiv: 1211.5015 [hep-ph].

[156] A. Djouadi, J. Kalinowski, and M. Spira, HDECAY: A program for Higgs
boson decays in the Standard Model and its supersymmetric extension,
Comput. Phys. Commun. 108 (1998) p. 56, arXiv: hep - ph / 9704448

[hep-ph].

[157] K. Melnikov and F. Petriello, Electroweak gauge boson production at
hadron colliders through O(α2

s), Phys. Rev. D 74 (2006) p. 114017, arXiv:
hep-ph/0609070 [hep-ph].

[158] M. Czakon, P. Fiedler, and A. Mitov, The total top quark pair production
cross-section at hadron colliders through O(α4

S), Phys. Rev. Lett. 110
(2013) p. 252004, arXiv: 1303.6254 [hep-ph].

[159] P. Nason and G. Zanderighi, W+W− , WZ and ZZ production in the
POWHEG-BOX-V2, Eur. Phys. J. C 74 (2014) p. 2702, arXiv: 1311.1365
[hep-ph].

[160] N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon cor-
rections for t-channel single top quark production, Phys. Rev. D83 (2011)
p. 091503, arXiv: 1103.2792 [hep-ph].

[161] N. Kidonakis, NNLL resummation for s-channel single top quark produc-
tion, Phys. Rev. D 81 (2010) p. 054028, arXiv: 1001.5034 [hep-ph].

[162] N. Kidonakis, Two-loop soft anomalous dimensions for single top quark
associated production with a W− or H−, Phys. Rev. D 82 (2010) p. 054018,
arXiv: 1005.4451 [hep-ph].

[163] S. Hoeche et al., QCD matrix elements + parton showers: The NLO case,
JHEP 04 (2013) p. 027, arXiv: 1207.5030 [hep-ph].

[164] ATLAS Collaboration, Summary plots from the ATLAS Standard Model
physics group, Accessed: 30/06/2016, url: https://atlas.web.cern.
ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/.

[165] F. James and M. Roos, Minuit: A System for Function Minimization
and Analysis of the Parameter Errors and Correlations, Comput. Phys.
Commun. 10 (1975) p. 343.

[166] ATLAS Collaboration, Search for the Standard Model Higgs boson in
produced in association with a vector boson and decaying to bottom quarks
with the ATLAS detector, tech. rep. ATLAS-CONF-2012-161, 2012, url:
https://cds.cern.ch/record/1493625.

[167] ATLAS Collaboration, Improved luminosity determination in pp collisions
at
√
s = 7 TeV using the ATLAS detector at the LHC, Eur. Phys. J. C

73 (2013) p. 2518, arXiv: 1302.4393 [hep-ex].

[168] N. Kidonakis, “Differential and total cross sections for top pair and single
top production”, Proceedings, 20th International Workshop on Deep-
Inelastic Scattering and Related Subjects (DIS 2012), 2012 p. 831, arXiv:
1205.3453 [hep-ph], url: https://inspirehep.net/record/1114754/
files/arXiv:1205.3453.pdf.

http://dx.doi.org/10.1007/JHEP02(2013)078
http://arxiv.org/abs/1211.5015
http://arxiv.org/abs/hep-ph/9704448
http://arxiv.org/abs/hep-ph/9704448
http://dx.doi.org/10.1103/PhysRevD.74.114017
http://arxiv.org/abs/hep-ph/0609070
http://dx.doi.org/10.1103/PhysRevLett.110.252004
http://dx.doi.org/10.1103/PhysRevLett.110.252004
http://arxiv.org/abs/1303.6254
http://dx.doi.org/10.1140/epjc/s10052-013-2702-5
http://arxiv.org/abs/1311.1365
http://arxiv.org/abs/1311.1365
http://dx.doi.org/10.1103/PhysRevD.83.091503
http://dx.doi.org/10.1103/PhysRevD.83.091503
http://arxiv.org/abs/1103.2792
http://dx.doi.org/10.1103/PhysRevD.81.054028
http://arxiv.org/abs/1001.5034
http://dx.doi.org/10.1103/PhysRevD.82.054018
http://arxiv.org/abs/1005.4451
http://dx.doi.org/10.1007/JHEP04(2013)027
http://arxiv.org/abs/1207.5030
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/
http://dx.doi.org/10.1016/0010-4655(75)90039-9
http://dx.doi.org/10.1016/0010-4655(75)90039-9
https://cds.cern.ch/record/1493625
http://dx.doi.org/10.1140/epjc/s10052-013-2518-3
http://dx.doi.org/10.1140/epjc/s10052-013-2518-3
http://arxiv.org/abs/1302.4393
http://arxiv.org/abs/1205.3453
https://inspirehep.net/record/1114754/files/arXiv:1205.3453.pdf
https://inspirehep.net/record/1114754/files/arXiv:1205.3453.pdf


BIBLIOGRAPHY 289

[169] S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive
Observables, (2011), arXiv: 1101.0593 [hep-ph].

[170] A. L. Read, Presentation of search results: the CL s technique, Journal of
Physics G: Nuclear and Particle Physics 28 (2002) p. 2693, url: http:
//stacks.iop.org/0954-3899/28/i=10/a=313.

[171] G. Cowan et al., Asymptotic formulae for likelihood-based tests of new
physics, Eur. Phys. J. C71 (2011) p. 1554, [Erratum: Eur. Phys. J. C73,
2501 (2013)], arXiv: 1007.1727 [physics.data-an].

[172] G. Bohm and G. Zech, Introduction to statistics and data analysis for
physicists, DESY, 2010, isbn: 9783935702416, url: https : / / books .

google.co.uk/books?id=aQBHcgAACAAJ.

[173] CMS Collaboration, Search for the standard model Higgs boson produced
in association with a W or a Z boson and decaying to bottom quarks, Phys.
Rev. D89 (2014) p. 012003, arXiv: 1310.3687 [hep-ex].

[174] ATLAS and CMS Collaborations, Measurements of the Higgs boson
production and decay rates and constraints on its couplings from a
combined ATLAS and CMS analysis of the LHC pp collision data at√
s = 7 and 8 TeV, JHEP 08 (2016) p. 045, arXiv: 1606.02266 [hep-ex].

[175] ATLAS Collaboration, Measurements of the Higgs boson production and
decay rates and coupling strengths using pp collision data at

√
s = 7 and

8 TeV in the ATLAS experiment, Eur. Phys. J. C76 (2016) p. 6, arXiv:
1507.04548 [hep-ex].

[176] Search for the Standard Model Higgs boson produced in association with a
vector boson and decaying to a bb̄ pair in pp collisions at 13 TeV using the
ATLAS detector, tech. rep. ATLAS-CONF-2016-091, CERN, 2016, url:
http://cds.cern.ch/record/2206813.

[177] ATLAS Collaboration, Letter of Intent for the Phase-II Upgrade of
the ATLAS Experiment, tech. rep. CERN-LHCC-2012-022. LHCC-I-023,
CERN, 2012, url: https://cds.cern.ch/record/1502664.

[178] ATLAS Collaboration, Prospects for the study of the Higgs boson in the
VH(bb) channel at HL-LHC, tech. rep. ATL-PHYS-PUB-2014-011, CERN,
2014, url: https://cds.cern.ch/record/1740962.

[179] L. G. Almeida et al., Playing Tag with ANN: Boosted Top Identification
with Pattern Recognition, JHEP 07 (2015) p. 086, arXiv: 1501.05968

[hep-ph].

[180] P. Baldi, P. Sadowski, and D. Whiteson, Searching for Exotic Particles
in High-Energy Physics with Deep Learning, Nature Commun. 5 (2014)
p. 4308, arXiv: 1402.4735 [hep-ph].

[181] S. Raschka, Python Machine Learning, Packt Publishing, 2015, isbn:
9781783555147, url: https : / / books . google . co . uk / books ? id =

GOVOCwAAQBAJ.

http://dx.doi.org/10.5170/CERN-2011-002
http://arxiv.org/abs/1101.0593
http://stacks.iop.org/0954-3899/28/i=10/a=313
http://stacks.iop.org/0954-3899/28/i=10/a=313
http://dx.doi.org/10.1140/epjc/s10052-011-1554-0, 10.1140/epjc/s10052-013-2501-z
http://arxiv.org/abs/1007.1727
https://books.google.co.uk/books?id=aQBHcgAACAAJ
https://books.google.co.uk/books?id=aQBHcgAACAAJ
http://dx.doi.org/10.1103/PhysRevD.89.012003
http://dx.doi.org/10.1103/PhysRevD.89.012003
http://arxiv.org/abs/1310.3687
http://dx.doi.org/10.1007/JHEP08(2016)045
http://arxiv.org/abs/1606.02266
http://dx.doi.org/10.1140/epjc/s10052-015-3769-y
http://arxiv.org/abs/1507.04548
http://cds.cern.ch/record/2206813
https://cds.cern.ch/record/1502664
https://cds.cern.ch/record/1740962
http://dx.doi.org/10.1007/JHEP07(2015)086
http://arxiv.org/abs/1501.05968
http://arxiv.org/abs/1501.05968
http://dx.doi.org/10.1038/ncomms5308
http://dx.doi.org/10.1038/ncomms5308
http://arxiv.org/abs/1402.4735
https://books.google.co.uk/books?id=GOVOCwAAQBAJ
https://books.google.co.uk/books?id=GOVOCwAAQBAJ


BIBLIOGRAPHY 290

[182] O. Behnke et al., Data Analysis in High Energy Physics: A Practical Guide
to Statistical Methods, Wiley, 2013, isbn: 9783527653430, url: https:

//books.google.co.uk/books?id=NWSoAAAAQBAJ.

[183] A. Ng, CS229 Machine Learning: Lecture Notes, Stanford University, 2014,
url: http://cs229.stanford.edu/.

[184] Y. Bengio et al., “Greedy Layer-Wise Training of Deep Networks”, 2007
p. 153, url: http : / / www . iro . umontreal . ca / ~lisa / pointeurs /

BengioNips2006All.pdf.

[185] Y. Bengio, Learning deep architectures for AI, Foundations and Trends in
Machine Learning 2 (2009) p. 1, Also published as a book. Now Publishers,
2009.

[186] F. Rosenblatt, Principles of Neurodynamics, Spartan Book, 1962.

[187] C. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics), 1st ed. 2006. Corr. 2nd printing 2011, Springer,
Oct. 2007, isbn: 0387310738, url: http://www.worldcat.org/isbn/
0387310738.

[188] Y. LeCun et al., “Neural Networks: Tricks of the Trade”, Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1998, chap. Efficient BackProp p. 9,
isbn: 978-3-540-49430-0, url: http://dx.doi.org/10.1007/3-540-
49430-8_2.

[189] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Vol. 1, ed. by
D. E. Rumelhart, J. L. McClelland, and C. PDP Research Group,
Cambridge, MA, USA: MIT Press, 1986, chap. Learning Internal Repre-
sentations by Error Propagation p. 318, isbn: 0-262-68053-X, url: http:
//dl.acm.org/citation.cfm?id=104279.104293.

[190] P. Baldi, Autoencoders, Unsupervised Learning, and Deep Architectures.,
Journal of Machine Learning Research (2012), Proceedings of ICML
Workshop on Unsupervised and Transfer Learning.

[191] L. de Oliveira, AGILEPack: Algorithms for Generalized Inference, Learn-
ing, and Extraction Package, https://github.com/lukedeo/AGILEPack,
2015.

[192] de Oliveira, Luke, Private communication.

[193] D. Erhan et al., Why Does Unsupervised Pre-training Help Deep Learning?,
J. Mach. Learn. Res. 11 (Mar. 2010) p. 625, issn: 1532-4435, url: http:
//dl.acm.org/citation.cfm?id=1756006.1756025.

[194] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Corrected, Springer,
Aug. 2003, isbn: 0387952845.

[195] R. E. Schapire, The strength of weak learnability, Machine Learning 5
(1990) p. 197, issn: 1573-0565, url: http://dx.doi.org/10.1007/

BF00116037.

https://books.google.co.uk/books?id=NWSoAAAAQBAJ
https://books.google.co.uk/books?id=NWSoAAAAQBAJ
http://cs229.stanford.edu/
http://www.iro.umontreal.ca/~lisa/pointeurs/BengioNips2006All.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/BengioNips2006All.pdf
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1561/2200000006
http://www.worldcat.org/isbn/0387310738
http://www.worldcat.org/isbn/0387310738
http://dx.doi.org/10.1007/3-540-49430-8_2
http://dx.doi.org/10.1007/3-540-49430-8_2
http://dl.acm.org/citation.cfm?id=104279.104293
http://dl.acm.org/citation.cfm?id=104279.104293
https://github.com/lukedeo/AGILEPack
http://dl.acm.org/citation.cfm?id=1756006.1756025
http://dl.acm.org/citation.cfm?id=1756006.1756025
http://dx.doi.org/10.1007/BF00116037
http://dx.doi.org/10.1007/BF00116037
http://dx.doi.org/10.1007/BF00116037
http://dx.doi.org/10.1007/BF00116037


BIBLIOGRAPHY 291

[196] L. Breiman, Random Forests, Mach. Learn. 45 (Oct. 2001) p. 5, issn:
0885-6125, url: http://dx.doi.org/10.1023/A:1010933404324.

[197] G. Louppe et al., “Understanding variable importances in forests of
randomized trees”, Advances in Neural Information Processing Systems
26, ed. by C. Burges et al., 2013 p. 431, url: http://media.nips.cc/
nipsbooks/nipspapers/paper_files/nips26/281.pdf.

[198] B. Gregorutti, B. Michel, and P. Saint-Pierre, Correlation and variable
importance in random forests, ArXiv e-prints (Oct. 2013), arXiv: 1310.
5726 [stat.ME].

[199] F. Pedregosa et al., Scikit-learn: Machine Learning in Python, Journal of
Machine Learning Research 12 (2011) p. 2825.

[200] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools
and Techniques, Second, Morgan Kaufmann Series in Data Management
Systems, Morgan Kaufmann, June 2005, isbn: 0120884070.

[201] R. Brun and F. Rademakers, ROOT — An object oriented data analysis
framework, Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 389
(1997) p. 81 , New Computing Techniques in Physics Research V, issn:
0168-9002, url: http://www.sciencedirect.com/science/article/
pii/S016890029700048X.

[202] N. Dawe et al., root numpy: 4.3.0, June 2015, url: http://dx.doi.org/
10.5281/zenodo.18750.
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