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Abstract

For programs that make extensive use of pointers, pointer analysis is often critical

for the effectiveness of optimising compilers and tools for reasoning about program

behaviour and correctness. Static pointer analysis has been extensively studied and

several algorithms have been proposed, but these only provide approximate solutions.

As such inaccuracy may hinder further optimisations, it is important to understand

how short these algorithms come of providing accurate information about the points-to

relations.

This thesis attempts to quantify the amount of uncertainty of the points-to relations

that remains after a state-of-the-art context- and flow-sensitive pointer analysis algo-

rithm is applied to a collection of programs from two well-known benchmark suites:

SPEC integer and MediaBench. This remaining static uncertainty is then compared

to the run-time behaviour. Unlike previous work that compared run-time behaviour

against less accurate context- and flow-insensitive algorithms, the goal of this work is

to quantify the amount of uncertainty that is intrinsic to the applications and that defeat

even the most accurate static analyses.

In a first step to quantify the uncertainties, a compiler framework was proposed and

implemented. It is based on the SUIF1 research compiler framework and the SPAN

pointer analysis package. This framework was then used to collect extensive data

from the static points-to analysis. It was also used to drive a profiled execution of the

programs in order to collect the real run-time points-to data. Finally, the static and the

run-time data were compared.

Experimental results show that often the static pointer analysis is very accurate, but

for some benchmarks a significant fraction, up to 25%, of their accesses via pointer de-

references cannot be statically fully disambiguated. We find that some 27% of these

de-references turn out to access a single memory location at run time, but many do

access several different memory locations. We find that the main reasons for this are

the use of pointer arithmetic and the fact that some control paths are not taken. The

latter is an example of a source of uncertainty that is intrinsic to the application.
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Chapter 1

Introduction

1.1 Motivation

Research on compilers spans many decades, and can be said to have been born with

the first programming language [1]. In the current stage of development and research,

compilers can be divided into two parts: front-end and back-end [2]. The front-end

is the part that takes care of lexical analysis, parsing and semantic analysis. The back

end is the part that, using the results of the front-end, generates an appropriate machine

code to be executed on the hardware.

Compilers often make many optimisations to improve the performance of programs

[2, 3]. These optimisations are made by the back-end using some form of intermedi-

ate code generated by the compiler front-end. Many of these optimisations require

an accurate knowledge of the behaviour of control and data flow of the programs be-

ing optimised. The complete knowledge of how the control and data flows behave

in a program is often hard to obtain due to some features present in some program-

ming languages such as: the use of procedures, complex data types, recursive function

calls, function pointers, among others [4]. The conjunction of these difficulties often

makes the analysis work, and consequently the optimisations, a hard, and sometimes

imprecise task. Although there is much research on this, it still constitutes a challenge.

Perfect data-flow analysis in the general case has been proven to be an undecidable

problem [5]. Thus, solutions to this problem are likely to be approximate. Moreover,

often the most complex, and more precise analysis, which could give better results,

is avoided by compiler designers because of their costs [2, 6]. Many compilers use

simpler and faster analysis resulting in less precise, but faster, results.

In order to perform a data-flow analysis it is first necessary to perform control-flow
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Chapter 1. Introduction 2

and call-graph analyses. Together, the control-flow graph and the call graph describe

all possible relationships among individual instructions and procedures of a program.

The control-flow graph can then be used to perform a data-flow analysis where we try

to know how a program manipulates data at each level of its call graph. The data-

flow analysis describes the behaviour, in terms of uses and definitions, of every data

in every point of the program, thus, establishing the dependences among them [6]. A

subset of data-flow analysis is the points-to analysis. It is performed using a subset

of the variables of a program, namely the pointer variables. It is a difficult analysis

as pointer variables have a very flexible behaviour and can be used as arguments in

procedure calls and can sometimes point to other pointers that can also point to other

pointers, and so on. A precise data-flow analysis, and consequently points-to analysis,

gives a detailed dependence graph describing all possible data dependences among the

instructions in the program.

After knowing the behaviour of all variables of a program, as they are manipu-

lated by procedures and individual instructions, the compiler can try to optimise the

code generated. This optimisation task must respect the control- and data-flow rela-

tionships among instructions exposed by both the control-flow and data-flow analyses

without violating any dependence, in conservative compiler environments. This strat-

egy wastes many possible more aggressive optimisation opportunities and may lead

to a less optimised code. Alternatively, recent compilers use speculative execution as

a means to enable further optimisations. In this kind of execution, possible data and

control dependences may not need to be respected by the compiler. For instance, the

Advanced Load is an optimisation method used in the IntelT M ItaniumT M processor

[7], to reduce the latency of costly load operations. In anticipation that a data item will

be required in the future an advanced load is performed, even without confirmation that

the item will be need. The IntelT M ItaniumT M uses the Advanced Load Address Table

(ALAT) to store information about advanced load instructions that are used while in

speculative execution. In this system the advanced load order is issued by an ld.a in-

struction, which allocates an entry in the ALAT and starts the data transfer. The system

checks the success of the advanced load with a ld.c or chk.a instruction that looks for

the related information in the ALAT. The improvement in performance in the specula-

tive execution of programs is achieved when demand cache misses are executed earlier

and overlapped with computation.

Another important example is Thread-Level Speculation (TLS), which is a tech-

nique that improves sequential program performance by dividing conventional sequen-
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tial programs into multiple small threads [8, 9] and speculatively runs them in parallel.

The monitoring of this execution is done by special hardware that checks the writes of

data by earlier threads against the reads by later threads. If a data flow violation occurs

the later threads that read a value too soon are squashed and restarted to read the right

value.

Both methods are promising uses of speculative execution and both require more

accurate (although perhaps not safe) knowledge of the data flow in the program. In

fact, to exploit such techniques we need a new methodology of data-flow analysis that

takes in account the number of possible behaviours exhibited and their frequency of

occurrence. An understanding of the variation between the static analysis result and the

frequency in which the actual behaviours appear in the normal execution is necessary

to help calculate the improvements of using speculative execution, and so, to justify

its use. This data must be produced in the analysis phase to be used by the optimiser.

So the optimiser can estimate whether the speculation may improve the performance

and use this information as a guide to decide which opportunities of speculative ex-

ecution it will use in the optimisation. There have been some works on how to use

probabilistic analysis techniques [10, 11, 12, 13] to guide the speculative optimisation

of programs. This work is related to those and aims to provide a better understand-

ing of the behaviour of pointer variables and the reasons of why many opportunities of

more aggressive optimisations are lost by conservative compilers during their points-to

analysis. We propose a methodology to analyse and quantify the points-to behaviour,

and specially the differences between static estimations and run-time behaviour, and

understand the reasons for such differences.

1.2 Contributions of this Thesis

This thesis proposes a method to quantify points-to uncertainty in points-to sets of

programs. This method is used to evaluate the uncertainty present in applications from

two very important classes of applications. It does so using context- and flow-sensitive

pointer analysis in order to avoid uncertainty simply due to less aggressive analyses.

The thesis also identifies the main reasons for the discrepancies between the actual

run-time behaviour of such points-to sets and the behaviour expected from the static

pointer analysis. To the best of my knowledge this is the first work that quantifies

points-to uncertainty in this level of detail and qualifies the causes of that uncertainty.

An important result is that discovering the reasons for the discrepancies between
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static and run-time points-to sets can lead to improvements in the precision of points-to

analysis, leading to better and most precise dependence graphs that will give a better

support for future more aggressive speculative optimisations.

1.3 Thesis Structure

This thesis is structured in two parts. Part I has three chapters: Chapter 1 provides

an introduction; Chapter 2 describes the background information about compiler opti-

misations, control- and data-flow analysis and points-to analysis and discusses related

work.

Part II has three chapters: Chapter 3 describes in detail the methodology for quan-

tifying uncertainty in points-to relations; Chapter 4 presents results of static points-to

analysis and the dynamic profiled execution; and Chapter 5 presents conclusions and

discusses future work.



Chapter 2

Background

In this chapter we first present briefly the common compiler analyses related to this

thesis. We then present and discuss in more detail the recent body of research more

directly related with this thesis.

2.1 Compiler Optimisations

Modularity is a powerful methodology to construct good programs. It leads to struc-

tured and easy to understand programs. Modularity is achieved with the use of proce-

dures. These are very useful as they can be seen as interfaces and black boxes and this

concept allows for a better program abstraction, design and maintenance [2]. But the

use of procedures may inhibit code optimisation, producing less efficient codes. One

problem is that procedures make it harder to collect control and data-flow information

[2]. In a less precise analysis a compiler can assume that a procedure can affect (by us-

ing and/or changing) any global variable when it is called and that at any call site, any

arbitrary variables can be provided as parameters of that call. These problems com-

bined with the intense use of procedures and pointers in modern program languages,

can lead to a loss of many optimisation opportunities, generating a poor intermediate

code.

A way to mitigate the effects of problems like the ones exposed above is to perform

some optimisations over the intermediate code generated by the compiler front-end.

These optimisations occur after the compiler back-end performs some analysis over

the intermediate code collecting some data to guide the future optimisation. These

analyses are complex and will give information to guide modifications and/or optimi-

sations in the intermediate code to improve the future machine code. These modifi-
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Chapter 2. Background 6

cations are hardware/architectural dependent. Common optimisations include: loop

fusion, in-lining, suppression of variable aliases, and others. The most sophisticated

ones can even provide more aggressive optimisations like: code parallelisation, specu-

lative execution and so on.

2.2 Pre-requisites of Compiler Optimisation: Analyses

As discussed in Section 2.1 compiler optimisations are key to generating efficient ma-

chine code. Before the compiler can perform optimizations it needs to know how the

program behaves. Collecting knowledge of possible paths (control flow) and variable

usage behaviour and the relationships between them is the first step to before optimiza-

tion. The analysis of the program code gives a description of these behaviours.

2.2.1 Control-flow Analysis

The control-flow analysis is performed over the intermediate code and it construct

control-flow graph which shows possible points to be executed next, at each point in a

program. The following terms are used in control-flow graphs:

• Entry block: It is the block through which all control flow enters the graph.

• Exit block: It is the block through which all control flow leaves the graph.

• Back edge: It is an edge that points to an ancestor node in a depth-first (DFS)

traversal of the graph.

• Critical edge: It is an edge that is neither the only edge leaving its source block,

nor the only edge entering its destination block. These edges have to be split so

a new block is created in the middle of the edge to insert computations on the

edge.

• Abnormal edge: It is the edge whose destination is unknown and it tends to

inhibit optimisation. They exist because of exception handling constructs.

• Impossible or fake edge: It is an edge that has been added to the graph just to

make the exit block postdominate all blocks and it cannot be traversed.

• Dominator: We say that a block M dominates block N if every path from the

entry that reaches block N has to pass through block M.
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• Postdominator: We say that a block M postdominates block N if every path from

N to the exit has to pass through block M.

• Immediate dominator: We say that a block M immediately dominates block N

if M dominates N, and there is no intervening block P such that M dominates P

and P dominates N.

• Immediate postdominator: We say that a block M immediately posdominates

block N if M posdominates N, and there is no intervening block P such that M

posdominates P and P posdominates N.

• Dominator tree: It is a data structure that describes the dominator relationships.

It shows an arc from block M to block N if M is an immediate dominator of N.

• Postdominator tree: Similar behaviour of dominator tree.

• Loop header: It is the target of a loop-forming back edge and it dominates all

blocks in the loop body.

The control-flow analysis is performed over the abstract syntax tree generated by

previous steps of the compiler front-end. An example of small program and its control-

flow graph is shown in Figure 2.1.

For a given program, a control-flow graph G is defined as a finite set N of nodes

and a finite set E of edges. An edge (i, j) in E connects two nodes ni and n j in N.

The notation G= (N, E) is used to describe a control-flow graph G with N nodes and E

edges. So in a program, each basic block turns into a node of the control-flow graph,

and the flows of control between them are the edges of its control-flow graph. The

blocks and nodes are labelled so a block bi corresponds to node ni and an edge (i, j)

connecting basic blocks bi and b j denotes that control goes from block bi to block b j.

The set N has a start node that has no incoming edge and an end node that has no

outgoing edge. In a control-flow graph G = (N, E), a sequence of k edges, k > 0, (ei,

ei+1, ek), means that there is a path of length k through the flow graph.

Another important and related analysis is the call-graph analysis. It describes con-

trol flow relationships among procedures of a program and is performed over the ab-

stract tree. It generates a static call graph where each node represents a procedure

directed edges between nodes represents the calling order of the procedures. So in a

given program P with p1,..., pn procedures, a static call graph of P is the graph G = <

N, S, E, r> with node set N = p1, ..., pn, the set S of a call site labels, the set E ⊆ N x N
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Figure 2.1: An example code and its control-flow graph.
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of labelled edges, and the distinguished entry node r ∈ N (that is the Main procedure).

For each e = <pi, sk, p j>,sk denotes a call site in pi from which p j is called (e.g., the

source code line number of the call site). Figure 2.2 shows an example of a program

and its corresponding call-graph.

Figure 2.2: A program and its corresponding call-graph

2.2.2 Data-flow Analysis

The data-flow analysis collects information about possible flows of data between points

of a program. It uses the control-flow graph and call-graph generated by control-

flow analysis and call-graph analysis. Data-flow analysis is performed using data-flow

equations that compute the possible variable values for each node of the control-flow

graph, and is often described as a difficult and generally intractable task [2, 3]. These

equations compute the possible variable values for each node of the control-flow graph,

using four basic data sets:

• GEN: data items created in a specific basic block;

• KILL: data items invalidated in a specific basic block;

• IN: data items getting into a specific basic block;

• OUT: data items getting out a specific basic block;
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These sets are applied in the basic blocks where nodes are single instructions and

variables are edges.

Its precision depends on many factors and sometimes compilers use less sophisti-

cated data-flow analyses to make it feasible in a production environment. The data-flow

analysis can be flow-sensitive when it takes into account the side effects of different

control paths in the program, and context-sensitive when it takes into account the side

effects of different set of parameters used in different call sites of the same proce-

dure. Another issue that improves the precision of data-flow analysis is the granularity

of individual memory objects and how they are analysed: handling individual scalar

variables and individual fields of complex data structures and even handling dynam-

ically created objects. These three factors, namely control-flow sensitivity, context

sensitivity, and representation and granularity of objects have a significant impact on

the precision and complexity of data-flow analyses solutions. The result of the data-

flow analysis is the data flow graph (DFG). A data-flow graph (DFG) is a graph that

represents data dependences between a number of operations and can expose and rep-

resent data constraints. Figures 2.3, 2.4, 2.5 and 2.6 represent basic blocs with no

data-dependences, true data-dependence, anti-dependence and output dependence re-

spectively.

Figure 2.3: A snippet of a program with no data dependence and its corresponding

data-flow graph.

A DFG is defined as G (DFG) = (V(DFG), E(DFG))) directed graph where V(DFG) is

the set of vertices representing operations and E(DFG) ⊆ V x V is the set of precedence

edges where Ed(DFG) ⊆ E is the set of data dependence edges (values) and Es(DFG) ⊆
E and Ed(DFG) ∩ Es(DFG) = /0.
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Figure 2.4: A snippet of a program with true data dependence and its corresponding

data-flow graph.

Figure 2.5: A snippet of a program with anti-dependence and its corresponding data-

flow graph.

Figure 2.6: A snippet of a program with output data dependence and its corresponding

data-flow graph.
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2.2.3 Points-to Analysis

Points-to analysis is a subset of data-flow analysis that deals specifically with flow of

data through pointer variables. The goal of pointer analysis is to compute for every

program point the set of memory objects that each pointer variable may be pointing to.

For some simple algorithms there is a one-to-one correspondence between a program

point and a source code line, while for context- and flow-sensitive analyses a program

point is a source code line augmented with the context and flow information, so that,

for instance, the same source code line if reached by two different paths can be treated

as two different program points.

The precision of points-to analysis depends on how the analyse algorithm works. It

can be: context sensitive and / or flow sensitive and how it abstract memory granularity.

A context-sensitive algorithm takes in account different sets (values) of parameters

used in a procedure or function and makes new analysis for each call of a procedure

with new sets of parameters because these new values can generate new sub-graphs that

will affect the main graph in the return of the procedure call to the program main flow.

This approach produces a better result. A flow-sensitive algorithm takes in account the

possible many paths due to control-flow structures and procedures and function calls

present in the program, generating sub-graphs that are merged with the may graph.

The granularity is the way which complex data structures like structures and arrays are

abstract as memory location. If they are treated as one simple locations set we have

a less precise representation and consequently less precise points-to analysis. If we

have a detailed abstraction where the individual elements of these complex structures

are treated as individual location sets we have more precise points-to analysis. Another

important thing is how the analysis will treat the dynamically allocated memory objects

like heaps. If it handles this unique location set for all dynamic memory allocated

objects we have a less precise solution and if it handles each new dynamic memory

allocated object as a new location set it produces a more precise result. All these tree

issues can produce smaller points-to sets because they can generate fewer points-to

relationships with less ambiguity. Following the notation in [14] memory objects that

can be individually named are associated with location sets, or locsets for short.

A common representation for pointers and their target memory locations is based

on the notion of points-to relations, which are formed by tuples of the form (p, v),

where p is a pointer and v is some location set. These tuples are sometimes referred to

as a points-to relationship between p and v. More formally, if P and V are the set of
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pointers and location sets, respectively, then R⊂ P X V is a points-to relation and every

tuple (p, v) ∈ R implies that pointer p may point to location set v, which is represented

by p→ v. In languages that allow multiple levels of pointers (i.e., a pointer to a pointer,

such as int **p in C) pointers can be themselves location sets and P ⊂ V. A common

representation for a points-to relation is a points-to graph, which is a tuple G = (N,E)

of N = P ∪ V nodes and E = R edges.

The points-to graph is the result of computing the points-to set for every program

point. This is done by solving a set of dataflow equations using a fixed-point algorithm.

The dataflow equations are derived from the pointer manipulation operations allowed

in the language. For instance, the algorithm in [14] assumes the following four basic

pointer assignment operations:

p1 = &p2; // Address-of assignment.

p1 = p2; // Copy assignment.

p1 = *p2; // Load assignment.

*p1 = p2; // Store assignment.

where p1 and p2 are pointer variables. Note that these do not include pointer arith-

metic, which is allowed in some languages such as C, but is not usually supported in

existing pointer analysis frameworks. We show an example of program code and its

corresponding points-to graph in figure 2.7.

Figure 2.7: A point in the program code and its corresponding points-to graph.

After the dataflow equations have been solved, the resulting points-to graphs at all

program points contain points-to relationships of two types: definitely points-to rela-

tionships (also known as must alias) and possibly points-to relationships (also known

as may alias). A definitely points-to relationship (p, v) at some program point means

that at this pointer p is for certain pointing to location set v. This implies that there

is no edge leaving node p in the points-to graph other than the edge (p, v), or, equiv-

alently, that there is no tuple (p, u) in the points-to relation where u 6= v. A possibly

points-to relationship (p, v) at some program point means that at this pointer p may
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point to location set v, but may also point to at least another different location set u. In

this case we say that there is some uncertainty or ambiguity in the points-to relation.

Finally, changes in the points-to graph after processing some program point can be

of two types: strong updates and weak updates. Strong updates are those that delete

all the existing outgoing edges from a pointer p, while weak updates are those that

simply add new edges without deleting any of the existing edges. For instance, the

update at a program point that contains the assignment p = &v is strong as it deletes all

edges (p, u) that may have existed before this program point. Note that the assignment

p1 = p2, where both p1 and p2 are pointers, is by this definition a strong update (all

previous edges from p1 are deleted) even if p1 is left with several possibly points-

to relationships because of the possibly points-to relationships of p2. As explained

before, weak updates are the source of possibly points-to relationships and they appear

due to a few different reasons.This uncertainty or ambiguity is generated by more than

one possible path that a program can expose during the analyse process. For example

consider the fragment of a program in figure 2.8

Figure 2.8: A point in the program code and its corresponding points-to graph.

The control structure gives two possible ways to the flow according to the value of

the variable e. So, at the end of the control flow structure (if), the analysis merge of the

two points-to graphs of the control flow structure (one generated for the then case and

other generated for the else case), resulting in a new graph with two possible points-to

values for pointer x. Of course, during execution only one value will be taken because

only one path will be taken.
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2.3 Previous Work

In this section we discuss the most relevant work in our research area. As discussed

in the sections before, the program data-dependence analysis is the basis for the alias

and points-to analysis. In a data-dependence analysis we establish the dependence be-

tween operations in epochs of a program. These sets of dependences can be represented

by a data-flow graph. The control-flow graph is used to perform alias analysis using

data-flow equations and it gives the sets of GEN, KILL, IN and OUT. These sets of

variables are used for basic code optimisations. The points-to analysis tries to capture

the behaviour of a special kind of variable: pointer. As a pointer has a characteristic

behaviour and is very flexible in its use, a different and more specific analysis is nec-

essary. The points-to analysis is performed over the data-flow graph and it generates

points-to sets of a program.

2.3.1 Alias Analysis

Alias analysis is key to several code optimisation techniques and there have been nu-

merous studies about it. A review of this extensive literature would be too lengthy and

beyond the scope of this thesis. Here we limit ourselves to work more closely related

to ours. In [15], R. A. Chowdhury et al, study using four alias analysis algorithms:

Address-taken, Steesgaard, Shapiro-Horwitz and assume no alias. It applies the ma-

jor scalar optimisations proposed by them and compare their obtained results (compile

time, optimisations opportunities, optimisations in sequence, optimisations enabled

independently) to compare the precision among these algorithms that use different ap-

proaches. The results of this study helps to the choose which algorithm to use when an

additional accuracy is need. A framework for memory disambiguation that generates

symbolic probabilities of the alias to array references in programs, using the concepts

of dependence analysis is proposed by [11], where the symbolic probabilities are gen-

erated using a cost model to determine whether a data speculation is profitable or not

before applying a set of proposed heuristics for generating the approximate aliasing

probabilities. An algorithm for alias analysis of executable code of a program instead

the source code is described in [16] by S. Debray and R. Muth and M. Weippert, and

it uses a scheme that performs the analysis using the instruction inspection technique

and abstract address sets concept.

An important tool used to represent variable aliases in the analysis process is the

Static Single Assignment (SSA) form [17]. A derivative form of SSA, when there
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are aliases, is proposed in [18] by F. Chow and S. et al, and results in a better SSA

representation called HSSA (Hashed SSA). In [19], R. Lo et al, again an extension

of the method used in SSA forms is proposed, to control alias and give support for

possible speculative code optimisations.

2.3.2 Points-to Analysis

The basic alias analysis generates acceptable results to be used in the optimisation step,

but it is not well suited to handle a special type of variable, namely pointers, which

need a different analysis formulation. Pointers, heaps, and pointer functions, present

in some languages have special behaviours so a different analysis is necessary. This

is called pointer analysis (or points-to analysis) and we describe the most significant

works in this area in this section. An excellent summary of past work can be found in

[5].

A study of the influence of naming schemes and granularity on pointer analysis,

and a new approach that combines profiling techniques and compiler analysis based

on Intel’s ORC for different naming schemes, is proposed in [20] by T. Chen and

J. Lin, W. Hsu and P. Yew, to improve the performance of programs. Basic pointer

assignment statements, dataflow equations for basic statements, and dataflow informa-

tion for basic statements are described in [14]. An interprocedural, flow-sensitive and

context-sensitive pointer analysis algorithm, for multithreaded programs, is proposed

and implemented in the development environment SUIF 1 [21, 22].

In [23], R. P. Wilson and M. S. Lam, partial transfer functions are proposed to

provide context sensitivity to a pointer analysis, by describing the behaviour of a pro-

cedure, taking in account that some alias relationship is held when the procedure is

called. Also low-level representation of memory (memory divided into blocks of con-

tiguous storage in local, global and return variables), locations sets (represent a block

storage) concepts are described and an algorithm for context-sensitive pointer analy-

sis that resumes the effects of procedures using these concepts, is proposed. A new

context-sensitive interprocedural method to points-to analysis, is proposed in [24] by

M. Emami and R. Ghiya and L. J. Hendren, using the concepts of abstract locations,

R-locations and L-locations, basic points to analysis rules, interprocedural rules for

points-to analysis and that handles with function pointers. A Storage Shape Graph

(SSG), which summarises all pointer paths into and through allocated storage that

could arise by execution of any path to the statement after the analysis, and its opera-
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tions (add nodes, add edges, merge nodes) are defined in [25] by M. Hall et al. There,

this structure is used in a proposed algorithm to analyse programs that contain lisp-like

structure. It uses a framework that makes simple references to nodes of control-flow

graph with fixed number of fields, some of which are pointers, and summarises the

information in the SSG. In [26], M. Hind et al, the major tasks performed for three

proposed algorithms (flow-sensitive interprocedural; flow-insensitive intarprocedural

and a flow-insensitive interprocedural) for alias analysis are described. Theses algo-

rithms use call graphs, data-flow equations and sets of variables (MOD, USED, KILL)

to make their analysis. An interprocedural flow-sensitive points-to analysis that uses

non-standard sets of types for storage, typing rules based on this set of non-standard

set of types, storage shape graph and type inferences, is described in [27] by R. Ghiya

and D. Lavery and D. Sehr, and performs a almost linear time pointer analysis.

An extension of [27], that results in a new flow-insensitive pointer analysis algo-

rithm, is proposed in [28] by M. Shapiro and S. Horwitz, and it is more precise because

it produces a smaller set of alias pairs. In [29], R. Ghiya and D. Lavery and D. Sehr,

a framework for memory disambiguation that has many sources and clients together is

proposed. It uses seven methods of points-to analysis (direct memory disambiguation,

simple base and offset indirect (sbo indirect) analysis, array data dependence analy-

sis, interprocedural points-to analysis, global, interprocedural flow-insensitive points-

to analysis, type-based), abstract memory locations (LOCs) and SSA concepts. It was

evaluated using standard benchmarks on the ORC ItaniumT M development environ-

ment. A comparative study of how the data are collected from 27 mid-sized programs

in the points-to analysis is conducted in [30] by P. Anderson et al, and shows the im-

portance of this information in future possible works. An empirical comparison of

the effectiveness of the major pointer analysis algorithms on C programs is described

in [31] by M. Hind and A. Pioli, and the results and empirical data are used in the

executions are used as way to evaluated the different algorithms for points-to analysis.

In [32], E. M. Nystrom and H.S. Kim and W.M. Hwu, a context-sensitive pointer

analysis is studied and its accuracy and scalability are analysed. This analysis is made

in two phases: first a bottom-up step propagates analysis results from callees and

callers and then a top-down step computes the actual pointer data. The pointer analysis

uses Andersen’s Algorithm (bottom-up and top-down context-sensitive solution) and

the problems caused by procedural side effects were removed using concise procedure

summaries that can be removed later if it is necessary.

A modular interprocedural pointer analysis is describes in [33] by K. Olukotun et
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al. It can be combined with other analyses to improve precision of the analysis in

programs with type cast and function pointers. It is based on access-paths and the

authors claim that it can reduce the overhead for context-sensitive transfer functions

and can make the distinction of non-recursive heap objects.

In [34], R. Z. Altucher and W. Landi, methods to improve the quality of def-use

sets for dynamic allocated objects are proposed. They are based in Ruggieri/Murtagh

naming scheme for dynamically created locations concepts using expanded naming

scheme to handle with dynamically allocated locations.

2.3.3 Shape Analysis

A shape analysis to deal with disambiguation of heap-allocated data structures in C

programs is proposed in [35] by R. Ghiya and L. J. Hendren. A context-sensitive

interprocedural analysis method is described using the McCAT compiler to improve

the tests of dependence and for parallelisation giving a more precise heap analysis

giving better and helpful analysis results.

2.4 Probabilistic Points-to Analysis

The analysis methods explained above used to analyse common variables, pointers,

heaps and pointer functions are conservative ones and sometimes this simple alias

and pointer analyses are not sufficient to describe the run-time behaviour of program

variables. In fact, many believe that even advanced static analyses are insufficient to

capture the run-time behaviour. Some enhanced techniques have been proposed to

give a more accurate knowledge of the possible behaviours of these variables. Some

of them use probabilistic rules; others use profiling execution to try to obtain a more

precise picture of this problem. This is mainly because the static analysis assumes that

all control paths can be executed with equal likelihood and that all targets in an alias

or points-to set can be accessed with equal likelihood. So a more aggressive approach,

albeit speculative, is to add probabilities to the alias and points-to relationships. The

use of probabilities and speculation methods may increase the opportunities for opti-

misations even with the risk of executing an incorrect operation.

In [36], M. Fernandez and R. Espasa, the shortcomings of alias analysis by sim-

ple instruction inspection and residue-based global alias analysis is described and to

improve the precision of the analysis it proposes two algorithms (region-based spec-
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ulative alias and profile-guided speculative alias analysis) that speculatively execute

a may-alias analysis with a new variable: the safeness. The shortcomings of static,

dynamic and hybrid disambiguation methods are described in [37] by A. S. Huang,

G. Slavenburg and J. P. Shen, and a speculative disambiguating one, that has better

performance and precision than conservative disambiguation methods, especially for

non-linear patterns of memory access, is proposed and implemented in a VLIW archi-

tecture.

The mechanism to evaluate the degree of dependence of speculative threads and

when to turn off this mechanism is studied in [38] by J. Lin et al. It describes a cost

model to be used by the compiler in the decision and the evaluation of the degree

of dependence is made by probabilistic points-to analysis where the probabilities of

relationships are calculated and the degree of dependences between loop iterations is

qualitatively computed. In [39], T. Chen et al, the way to deal with important issues of

data dependence profiling to avoid the high latency of these tools is described. Issues

like: data dependence detection using shadow variables, handling function calls in the

profiling, the behaviour of the loops and dependence probability are discussed and

some solutions are proposed to increase the efficiency of data profiling.

In [12] the alias relationships are classified in two groups: the ones that must or

definitely point to an address during all possible executions and ones that may or pos-

sibly point to an address that may occur in some executions. This information is not

enough to support more aggressive compiler optimisation because it does not describe

how often these aliases may occur. So it proposes incorporating probabilistic rules and

operations to the points-to analysis to attempt to improve the accuracy of static analy-

ses. This new framework was incorporated into SUIF and MachSUIF and the results

show improvement in the results of pointer analysis in several benchmark programs.

Conventional points-to analysis produces sets of pairs of definitely, definitely not

and may points-to at any point of a program. May points-to are not optimised in many

compilers to ensure correctness. Speculative optimisations can use these imprecise

information especially when it has some data about how often (frequency) this may

points-to occurs. In [13] a probabilistic pointer analysis algorithm is proposed. It pro-

duces statically and probabilistic data about points-to relationships of a program using

linear transfer functions. The results are encoded as sparse matrices and optionally it

can use simple control-flow edge profiling. It supplies pairs of points-to relationships

with their probabilistic data and shows good results even when not using profiling in-

formation and analysing big SPEC2000 integer benchmark programs.
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2.5 Dynamic Points-to Analysis

Using probabilities to further qualify the results of static points-to analysis closes

somewhat the gap between static and run-time results, but there is still a large differ-

ence between the predicted static results and the real behaviour. The following works

try to establish why difference occurs.

In [40], M. Mock et al, the behaviour of pointers in C programs is compared us-

ing pointer analysis algorithms against the real behaviour of pointer variables during

program execution. It shows that scalar pointer analyses produce very different infor-

mation from the run-time observation and this shows that a better knowledge can be

produced by pointer profile data values, which can be used to improve performance of

programs. It is the work that has most similarity with ours. The differences between

them are: [41] makes a comparison between the singleton points-to sets of static anal-

ysis and dynamically collected and our work makes a more specific collection of static

and dynamic points-to sets (not only singleton sets); [41] compares the static result

of three different points-to analysis algorithms and we use only one (the most precise

one). We took in account the sets with unk locations and the sets that analyse dynamic

allocated pointers (heap) and showed that they are a source of possible inaccuracies

and we tried to find out the main culprites of the breakdown between static and run

time results.

The difference is that our work makes a more precise discrimination of points-

to sets with more options and taking in account the sets with unk locations and the

sets that include dynamically allocated variables (heap). We try to find out the main

culprites of the difference between static and run time results.

Experimental data, using different versions of iterative algorithms to solve data-

flow analysis were shown in [41] by K. D. Cooper and T. J. Harvey and K. Kennedy.

The reducibility role is explained using Kam-Ullman time bound; it shows the differ-

ence of behaviour between versions of the iterative algorithms and provides practical

advices to improve performance of interactive solver.

A new approach, that duplicates, isolates, and eliminates hot paths in data-flow

graphs, is proposed in [42] by M. Mock et al. This improves the precision of data flow

analysis by eliminating the unnecessary un-profitable paths and the results show good

improvement in path qualification.

In [43], D. Liang and M. Pennings and M. J. Harrold, study reference information

used in Java programs for knowledge of dereference instances. Run-time collected data
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of dynamic reference information is used as reference information and its precision is

measured and examples where this approach is not adequate are discussed. The data

collected can be used in other similar analyses improving their precision.

The difficulties of dealing with the static alias analysis for modern programs is

described in [44]. It shows those difficulties proving that interprocedural May Alias

is not a recursive problem and that interprocedural Must Alias is not a recursively

enumerable problem showing that those analyses are far from being precise and much

more has to be done specially for dynamically allocated structures.

The still unsolved problems of Pointer Analysis, such as precision; accuracy; scal-

ability and so on are described in [5]. It proposes a better knowledge of the problem

to identify its needs and its issues for optimisations and program understanding tools

using adequate metrics to evaluate it. It suggests that additional information must be

incorporated to future analysis to address the discussed issues.

2.6 Summary

In this chapter the background foundations of our work were explained. We explained

why we need to optimise program codes. Descriptions of the main analyses performed

by the compiler over the intermediate code generated in the first steps of program

code compilation were described and how they are related with each other. The most

relevant research works in alias and points-to analysis were briefly described to supply

an overview of the research in this area.
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Quantifying Uncertainty in Points-to

Relations

In this chapter we will describe our work. The possible reasons for uncertainty when

analysing the use of pointers in a program are described and a methodology to quantify

this uncertainty is presented.

3.1 Uncertainty in Pointer Analysis

Context- and flow-sensitive pointer analysis provides the most accurate static results,

but it still cannot fully disambiguate all pointer de-references in many practical situa-

tions. Some of the most common reasons for this uncertainty are:

Control flow: A problem occurs when different control paths perform different

updates to pointer variables. In this case, without dynamic knowledge of the actual

program behaviour, the static analysis can only assume that both updates are possible

and at the merge point both targets are possible like in the example in figure 3.1.

Pointer arithmetic: A problem occurs when the value of a pointer is updated

through some arithmetic operation, as show in figure 3.2. In this case, even if the

original target of the pointer is well-known, the final target can only be known if the

pointer analysis algorithm has an accurate knowledge of the layout of objects in virtual

memory as we mentioned before. Many time the points-to analysis use a simple repre-

sentation of array as unique location set assigned to the head of the array and any other

position of the array is threaded as an offset position, and this approach can generate

a misinterpretation of the compiler when analysing arithmetic involving pointers and

arrays.

22
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Figure 3.1: The control flow generates two possible address at d = *p (block B4), so

there is uncertainty in that part of the program.

Figure 3.2: The inability of compiler to handle arbitrary arithmetic operations on pointers

can generate imprecise points-to sets when updating the value of p.
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Unavailable procedure code: A problem occurs when the original source code of

a procedure is not available to the pointer analysis algorithm and the procedure takes

a pointer as a parameter. In this case, unless the pointer analysis algorithm has some

prior knowledge about the side-effects (or lack thereof) of the called procedure, the

static analysis can only assume that after returning from the procedure the pointer may

be pointing to any memory object. An example is shown in figure 3.3.
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Figure 3.3: The compiler must have some knowledge of the side-effects in this called

procedure to produce an accurate points-to set of p.

Recursive data structures: A problem occurs when pointers are used to link objects

from recursive data structures, like in figure 3.4. Usually these form well structured

forms such as lists, trees, circular queues, etc. However, traditional pointer analysis is

not designed to recognize such structures and end up collapsing several objects into a

single memory target. Shape analysis (e.g., [45, 35] ) has been specially designed to

handle such cases. This papers goal is to investigate the accuracy of general-purpose

pointer analyses and a study of the effects of shape analysis is beyond its scope.

Aggregates: A problem occurs when pointers are used to access internal parts of an

aggregate (e.g., a structure). As discussed before many compiler use a simple approach

and assign a single location set for the whole structure. Others, like SPAN, assign

single location set for the whole structure and use offset to distinguish the different

fields. Both approaches cause a lost of precision and make the pointer analysis less

precise and it can not disambiguate accesses to different parts of the aggregate in the

example of figure 4.5 where we have an array of aggregate that make the analysis even

more difficult.

Dynamically allocated objects: A problem occurs when pointers are assigned to

dynamically allocated objects that are allocated at the same static code site. In this case

most pointer analyses will simply assign a single name to the static memory allocation
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Figure 3.4: An example of recursive data structure using linked structured objects in

pointers operations.

Figure 3.5: The compiler can’t distinguish difference between the elements type1[21]

and type2[22] of x, an array of aggregate data structure.
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site and will not be able to disambiguate accesses to the (possibly) multiple objects

that are allocated at the site. In fact, many pointer analyses tools are even less accurate

and simply assign a single name to the whole heap area, so that even memory objects

that are allocated at different static code sites end up being aliased. A code example is

shown in figure 3.6.

Figure 3.6: The compiler assigns the same address to both dynamically allocated point-

ers.
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3.2 Quantification Methodology

3.2.1 Source Code Analysis

To collect the static points-to statistics we modify a context- and flow-sensitive pointer

analysis algorithm [14] to count the number of accesses through a pointer de-reference,

and for each access to count the number of possible target locsets as identified by the

points-to graph immediately before the access. When analyzing the source code we

count the number of locsets accessed (used or modified) through a pointer de-reference

as follows. In these examples assume that p is a pointer variable and that *n represents

n levels of indirection (e.g., *2p is equivalent to **p).

• Indirect use of a variable through a pointer de-reference (e.g., ...=*p;): This is

counted as one use via pointer.

• Indirect modification of a variable through a pointer de-reference (e.g., *p =...;):

This is counted as one modification via pointer.

• Multi-level indirect use of variable through a pointer de-reference (e.g., ...=

*np;): This is counted as n uses via pointers. The number of possible target

locsets is counted for each de-reference. For instance, in ...= **p; if p may only

point to a single target locset, but *p may point to two target locsets, and then

we count one use with a single target and one use with two targets.

• Multi-level indirect modification of variable through a pointer de-reference (e.g.,

*np =...;): This is counted as n - 1 uses via pointers plus one modification via

pointer. The number of possible target locsets is counted for each de-reference,

as described above.

• Procedure call (e.g., foo(..., *p, ...);): This is counted as one use via pointer.

Multi-level indirect uses are counted as described above.

• Loops: Accesses within loops are treated as one instance of one of the cases

above.

• Procedures: Accesses within procedures are treated as one instance per calling

context.

Also, languages like C allow right-hand-side expressions and boolean expressions

to contain assignments, such as while (*p=a) or if(a==(*p=b)). Obviously, in this

case we must appropriately account for the embedded modification.
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3.3 Run-time Statistics Collection

To collect the dynamic points-to statistics we further modify the context- and flow-

sensitive pointer analysis of [14] to insert additional profiling code just before accesses

through a pointer de-reference that are identified as having multiple target locsets.

When compiled, this profiling code will record all different run-time memory addresses

touched via these pointer de-references and count the number of accesses to each dif-

ferent address. Each run-time access profiled is given a unique identifier that contains

the source code number, so that we can match the run-time accesses with their static

access. Note, however, that two mismatches between static and dynamic statistics can

happen. First, multiple static accesses identified by the pointer analysis algorithm may

map to the same source code line and, thus, to the same run-time counter. This hap-

pens because the pointer analysis algorithm separates static accesses according to their

context. Second, not all static accesses may appear at run time if that portion of the

code is not executed with the given input data.

3.4 Summary

In this chapter we explained the possible causes of uncertainty during the static points-

to analysis. We propose a methodology to collect and quantify a statically generated

points-to set data as a extension of a SUIF framework package. We also propose a

methodology to modify the original programs code with new commands to generate

profiling data to collect the run-time data.
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Results

4.1 Evaluation Setup

In this chapter we analyse the results of our quantitative study of static and profiled

points-to sets. The results of static analysis are plotted and compared with the results

of profiled execution of the programs. Each case is broken down and analysed, and the

culprits of discrepancies are identified.

4.1.1 Applications

To quantify the uncertainty that is intrinsic to static context- and flow-sensitive pointer

analysis, we used a subset of the SPEC2000 integer benchmarks [46], www.spec.org/cpu2000,

and of the MediaBench benchmarks [47], C. Lee and M. Potkonjak and W. H. Mangione-

Smith that are written in C. These applications are representative of the workloads typ-

ical of workstations and desktop computing and are well-known for their intense use

of pointers in many cases.

The reason why not all programs of SEPC 2000 and Media Bench benchmark were

not used was that they did not complete the static analysis. As we modify the SPAN

package to include a new set of variables that save how many times these variables were

called with the calling context, this new feature sometimes exceeded the maximum size

of a variable name and caused the crash of the running analysis. There was not time to

solve this problem, so we did not use some programs.

For the run-time experiments the input sets used are the standard ones provided

with each suite (ref for SPEC2000). Table 4.1 shows, for each application, the total

number of lines of C code, the total number of location sets and of pointer location sets,

30
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the number of source code expressions that are uses through pointer de-references,

and the number of source code expressions that are modifications through pointer de-

references.

Lines of Total (Pointer) Pointer Pointer

Application Suite Code (KLOC) Location Sets Uses Modifications

164.gzip 9.1 1,750 (246) 113 43

175.vpr 17 3,959 (649) 960 428

181.mcf 1.9 506 (194) 16 13

186.crafty SPEC 12 4,920 (469) 4,716 672

197.parser int 12 3,631 (917) 10,587 83

256.bzip2 2.9 887 (85) 4 0

300.twolf 17.5 5,262 (950) 751 79

epic 7.6 397 (105) 37 13

unepic 7.6 531(242) 18 6

mpeg2enc 8.5 2,179 (455) 116 276

mpeg2dec MediaBench 4.9 1,605 (295) 140 85

g721-enc 1 393 (68) 2 0

g721-dec 1 122 (36) 4 2

gsmencode 5.8 448 (133) 22 0

gsmdecode 5.8 1566 (599) 168 31

Table 4.1: Application characteristics.

4.1.2 Static Analysis

The statistics collection methodology described in Section 3 was implemented on the

SPAN tool [48, 49], which is an add-on to the SUIF compiler [22, 25] that implements

the pointer analysis algorithm of [14].It is a context- and flow-sensitive points-to SUIF

1 package that performs points-to analysis. It works over SUIF1 program interme-

diate code annotation as input and generates a SUIF1 output file with the annotated

pointer information of the analysed program. It uses location sets as abstract model to

representing physical memory locations so the annotated information about pointers is

presented by locations sets. Different locations sets mean different abstract locations
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that mean different physical memory locations. It associates the location sets to all

variables in the program and it includes procedure parameters and heap-allocated vari-

ables. The location set is represented by a unique integer identifier in the output file

so different location sets are assigned to different identifiers. SPAN uses the location

sets to make two kinds of annotations during program analysis: one associated with

variable symbols and a second associated with instructions (de-references one: lod, str

and memcpy) and this second gives information about pointers. Figure 4.1 gives an

example program and two examples of each annotation.

When one de-reference annotation associated with instructions is performed, the

location set information is updated and a new points-to graph is generated as shown in

the figure 4.2.

Many points-to analysis algorithms use the location set notation, but SPAN pro-

duces a more precise points-to information due to its flow- and context sensitive anal-

ysis. When a procedure call occurs SPAN uses the parameters passed in this procedure

call to generate a new intermediate points-to graph and at the return of the point, merge

the intermediate graph with the main points-to graph as shown in the figure 4.3.

We modified SPAN to record all instances of pointer de-references along with the

number of possible targets as identified by SPAN and with the source code line num-

ber. The source code line number is useful for identifying instances where SPAN is

able to distinguish the different calling contexts of the same source line. For example

in the figure 4.4 if we have a procedure g with the parameters x, y and w in epoch of

a program and, in another epoch the same procedure is called but with different pa-

rameter (a, b and c for example). As SPAN is context-sensitive it will execute a new

analysis to take in account possible new points-to values due to the new context. Uses

and modifications via pointer de-references were counted separately.

Uses and modifications through pointer de-references that may find the pointer

uninitialized (according to the SPAN analysis) result in SPAN adding a special loca-

tion set, called unk, to the target set. We decided to count these cases separately. For

instance, a pointer de-reference with two possible targets where one of them is unk is

counted separately from other pointer de-references with two possible targets where

both targets are well-defined user objects. The reason for highlighting the ambiguous

points-to sets that include unk is because this is an important special case that may be

treated differently by optimising compilers and program understanding tools. For in-

stance, an optimizing compiler may choose to ignore the unk target when performing

an aggressive (possibly unsafe) optimization under the assumption that an actual oc-
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Figure 4.1: Example of program in C and location sets annotations.
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Figure 4.2: Example of program in C and points-to graphs.
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Figure 4.3: Example of program in C and an intermediate points-to graph.
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Figure 4.4: Example of program with different procedure call contexts.

currence of the unk target highly unlikely. On the other hand, a program understanding

tool would likely especially flag de-references with possible unk targets as they may

suggest a bug in the code.

Finally, SPAN creates a single locset per context for each dynamic memory allo-

cation call site, and calls these locsets heap.X, where X is a number that identifies the

context. However, it cannot disambiguate further the accesses to different parts of the

memory object. Again, we decided to count these cases separately because this is also

an important special case. In fact, dynamically allocated memory objects seem to often

require specialized analyses [50, 34].

4.1.3 Profiling Environment

To monitor the actual run-time behaviour of static pointer de-references with multiple

possible targets we further modified the SPAN tool to add the necessary profiling code.

More specifically, at each static de-reference where the pointer may have multiple

targets the tool inserts code to record the actual address accessed and to increment a

counter per address seen so far. The resulting instrumented code is converted from the

SUIF [22] file format (.spd) to C code and this code is then compiled for the Intel x86

platform using gcc 3.4.4 and using the -O2 optimization level.

4.2 Experimental Results

4.2.1 Static Pointer Analysis Statistics

We start our study by measuring the amount of uncertainty resulting from the static

pointer analysis. Table 4.2 shows the breakdown of the static accesses through pointer
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de-references according to the number of possible target memory locations, as given

by SPAN. The table presents separate results for uses and modifications. The number

of uses and modifications through pointer de-references in this table are often larger

than those in Table 1 because of the context-sensitivity of the analysis. This can also be

seen from the often great disparity between the number of accesses and the number of

source code lines in Table 4.2. Note that in most cases the number of accesses through

pointer de-references is only a small fraction of all static program references.

From this table we can see that the result of the context- and flow-sensitive static

analysis of SPAN is fairly accurate and can unambiguously identify the target of the

pointer de-references in all accesses for most applications and in more than 90% of

the accesses for all but 3 applications. Across the whole suite 81% of all the accesses

have a single unambiguously identified target. Nevertheless, for some benchmarks

the amount of uncertainty is non-negligible, reaching up to 25% of the accesses for

197.parser. Another observation from these results is that often a large fraction of the

accesses with multiple possible targets have unk as one of the targets (meaning that the

pointer may be uninitialized at this point). The exception is 197.parser. As previously

explained, these represent a special case of uncertainty that may be treated differently

by an optimizing compiler or a program understanding tool. We do not expect any of

these unk targets to actually occur at run-time (Section 4.2).

Finally, we also note from these results that there are often many fewer modifi-

cations through pointer de-references than there are uses (1731 modifications versus

47230 uses). However, per application these modifications have a relatively larger

amount of uncertainty than uses: e.g., 76% of modifications in 197.parser have multi-

ple possible targets versus 24% of uses.

4.3 Profiling Results

4.3.1 Run-time Uncertainty

The first step in quantifying the run-time behaviour of the ambiguous pointer de- ref-

erences is to measure the number of different location sets actually touched by each

static reference. Such results can be directly compared to those of Table 4.2 as these

references correspond to those in white text with grey background in that table. Note

that since the profiling framework annotates source code lines the run-time accesses

reported here correspond to those reported per source code line in Table 4.2. Table 4.3
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Uses (u) and Modifications (m) with N possible targets

(including unk target, including heap target,

Application number of source code lines)

N = 1 N = 2 N = 3 N > 3

gzip u: 277 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

m: 43 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

vpr u: 2488 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

m: 428 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

mcf u: 67 0 (0,0,0) 0 (0,0,0) 6 (0,0,3)

m: 13 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

crafty u: 4970 542 (534,67,59) 2 (2,2,1) 119 (0,26,24)

m: 479 47 (45,11,9) 146 (146,66,13) 0 (0, 0, 0)

parser u: 25178 241 (241,241,35) 36 (0,0,11) 7841 (181,230,259)

m: 20 32 (32,32,6) 0 (0,0,0) 31 (9,4,9)

bzip2 u: 119 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

m: 0 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

twolf u: 3687 6 (6,0,6) 0 (0,0,0) 0 (0,0,0)

m: 77 2 (2,0,2) 0 (0,0,0) 0

Table 4.2: Breakdown of static accesses according to the number of possible target

memory locations. Results for the source code analysis for SPEC2000 programs. The

first number (top-left) in each entry is the total number of accesses in that category.

The numbers in parenthesis are: the number of accesses that have unk as one of the

targets, the number of accesses that have heap as one of the targets, and the number

of static source code accesses (as opposed to per-context). For instance, 186.crafty

has 542 uses through pointer de-references with two possible targets; of these, 534

have unk as one of the targets, 67 have heap as one of the targets; and these 542 uses

appear in only 59 source code lines. The entries in white text with grey background are

those that reflect ambiguity in the static analysis and are instrumented for the run-time

statistics collection.
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Uses (u) and Modifications (m) with N possible targets

(including unk target, including heap target,

Application number of source code lines)

N = 1 N = 2 N = 3 N > 3

epic u: 156 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

m: 13 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

unepic u: 59 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

m: 6 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

mpeg2enc u: 395 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

m: 276 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

mpeg2dec u: 499 8 (8,8,2) 0 (0,0,0) 6 (6,6,1)

m: 75 0 (0,0,0) 0 (0,0,0) 10 (10,10,2)

g721-enc u: 22 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

m: 0 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

g721-dec u: 6 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

m: 2 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

gsmencode u: 154 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

m: 0 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

gsmdecode u: 346 0 (0,0,0) 0 (0,0,0) 9 (0,0,9)

m: 31 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

Table 4.3: Breakdown of static accesses according to the number of possible target

memory locations. Results for the source code analysis for MediaBench programs.

The first number (top-left) in each entry is the total number of accesses in that category.

The numbers in parenthesis are: the number of accesses that have unk as one of the

targets, the number of accesses that have heap as one of the targets, and the number

of static source code accesses (as opposed to per-context).
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shows the breakdown of only those static accesses through pointer de-references that

have 2 or more possible target memory locations according to the number of actual

target memory locations touched. Again, the two sections of the table correspond to

uses and modifications, respectively. Note that some of the static references are not

actually executed with the input sets used. Finally, note that in this experiment a static

reference is said to touch two or more target memory locations as long as at least two

of more of its dynamic instances touch different memory locations.

Uses with N actual targets Modifications with N actual targets

Application NE N = 1 N = 2 N > 2 NE N = 1 N = 2 N > 2

mcf 1 2 0 0 - - - -

crafty 59 1 1 23 17 0 0 5

parser 193 27 0 85 6 1 0 8

twolf 1 5 0 0 2 0 0 0

mpeg2dec 2 0 0 1 1 0 0 1

gsmdecode 0 9 0 0 - - - -

Table 4.4: Breakdown of static accesses with 2 or more possible target memory loca-

tions (Table 4.3) according to the number of actual target memory locations. Results for

the profile analysis. NE stands for static accesses that are not executed. For instance,

of the 59+1+24=84 source code lines with pointer de-references with two or more pos-

sible targets in 186.crafty (Table 4.3), 59 are not executed, 1 has only a single target at

run time, 1 has two targets at run time, and 23 have three or more targets at run time.

The entries in white text with grey background are those that reflect actual ambiguity

at run time. The entries with light grey background are those were the static ambiguity

disappears at run time.
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From this table we can see that some (27% of the executed accesses) of the un-

certainty of the static analysis disappears at run time and actually a single memory

location is accessed. Nevertheless, a significant fraction of the accesses indeed turn

out to point to more than one different memory location at run time. The next section

discusses is more detail the reasons for the differences between static and dynamic

results.

4.4 Causes of Uncertainty

A closer inspection at the actual outcomes of the ambiguous static references reveals

that several factors contribute to the difference between the static and dynamic be-

haviours. Table 4.4 shows the causes for this difference and the number of instances

of each cause. The references here correspond to all of those in Table 3.

Behavior difference Number

Static Actual Cause of cases

2 or more targets Not executed - 282

2 targets Single target Pointer turns out to be always 6

(inclusive unk) initialized

Pointer arithmetic to index into 22

2 targets 3 or more targets array-like object

Use of arrays 2

Use of recursive data structures 5

Use of structure fields 2

3 or more targets Single target Pointer arithmetic to index into 9

array-like object

Control path alternative never taken 28

No change - - 95

Table 4.5: Classification of dynamic accesses according to the difference with respect

to the static behaviour and according to the cause for the difference

From this table we can see two directions of variation: from fewer possible targets

of the static analysis to more actual targets at run time, and from more possible targets

of the static analysis to fewer actual targets at run time. There are two major factors
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affecting those variations. One is the use of pointer arithmetic, which, interestingly,

turns out to produce variations in both directions. Another is the fact that some control

paths are simply not taken at run time. We also note that many variations come from

the use of structures and arrays, which may throw off the static analysis.

4.5 Variations with Input Sets

Finally, to assess the sensitivity of the run-time results with respect to input data we

repeated some of the experiments with the SPEC benchmarks with the train input

sets. Significant variability in the run-time points-to behaviour with different input

data would indicate that techniques that rely on profiling to refine the results of the

static analysis are likely to fail. Naturally, the converse is not necessarily true: little

variability in the run-time points-to behaviour does not guarantee that profiling will

work well for all types of feedback-directed analysis. This occurs when the profile-

directed analysis is not directly driven by the points-to behaviour, but by some other

run-time behaviour. For instance, probabilistic pointer analysis [12] uses the frequency

of path execution to estimate the probability of points-to relations. Nevertheless, little

variability in the run-time points-to behaviour is a good indication that profile-directed

analyses are likely to often work well.

Our experiments show very little to no variability in the run-time behaviour of the

points-to relations between executions with the ref and train input sets. A similar result

was obtained in [40].

4.6 Summary

After analysing each case where we found discrepancies between the static results

and run time ones, we conclude that the static analysis is quite good and only small

improvement in the analysis methodology will make the static analysis even better and

more precise.
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Conclusions and Future Work

5.1 Conclusions

The main goal of this thesis was to discover the causes of the failure of static points-

to analysis and to quantify and characterize the actual behaviour of pointers in the

programs. It also aimed to show how more accurate points-to information can be used

to refine the knowledge of what data sets are used by what parts of the program.

To achieve the first target this thesis systematically quantified the amount of uncer-

tainty due to may-alias points-to relations for two well-known classes of benchmarks.

Unlike previous works [13, 15] that considered pointer analysis algorithms that trade-

off reduced precision for increased scalability, in this thesis we were interested in the

amount of uncertainty that is intrinsic to the applications and that defeat even flow- and

control-sensitive pointer analysis.

We performed our evaluation applying a state-of-the-art context- and flow- sen-

sitive pointer analysis algorithm [21] to a collection of benchmarks from the well-

known SPEC integer [23] and the MediaBench [12] suites. Experimental results show

that for most of the benchmarks this static pointer analysis is very accurate, but for

some benchmarks a significant fraction, up to 25% , of their accesses via pointer de-

references cannot be statically fully disambiguated. We find that some 27% of these

de-references turn out to access a single memory location at run time, but many do ac-

cess several different memory locations. Further analysis shows that the main reasons

for this are the use of pointer arithmetic and the fact that some control paths are not

taken. These results suggest that some further compiler optimizations may be possible

by exploiting the cases where the uncertainty does not appear at run time, but for this

to happen it is necessary to improve the handling of pointer arithmetic and to develop

43
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probabilistic approaches that capture the actual control flow behaviour.

5.2 Future work

We intend to continue this work implementing the possible optimisations that we re-

ferred to in the previous sections. We should use the SUIF framework, ie MACHSUIF

creating new optimisation passes as we need.

5.2.1 Points-to optimisations

As showed in the discovery of the culprits of the breakdown between the static analysis

result and the real behaviour of the pointers in the program, we have some improve-

ment to be done in the static analysis, before work on points-to optimization passes

themselves.

The information supplied by the data-flow and points-to analyses can be used to

perform code optimisations. Conservative optimisations do not violate data-flow de-

pendences, such as site independent constant-propagation, inter-procedural register al-

location, and so on, making a more efficient machine code. But these conservative

approaches may miss many possible optimisations that a more accurate data-flow anal-

ysis, especially points-to one, can expose. So a more aggressive approach to optimisa-

tions can be used. Then with speculative execution it is possible to execute parts of the

code that are data-dependent, even if the correct results are not available. It allows for

further optimisations that increase overall the performance of the program if the right

speculative values are used, but if a wrong value is taken a roll-back mechanism must

recover the result, wasting much time.

We must increase the precision of points-to analysis of aggregated objects mak-

ing possible to distinguish the different fields that compose them. A better way to

deal with pointer arithmetic must be develop to avoid miss interpretation of these op-

erations. And finally, the array manipulation, ie. pointer arithmetic and index into

array-like object must be improved. After tests that confirm the elimination of these

causes of failure we can develop a points-to optimisation pass to be incorporated into

MACHINE SUIF framework. It must use the data collected in the points-to step plus

the generated PDOG. The points-to data will show the pointer variables with multi-

ple possible addresses of uncertainty and their degree of uncertainty. The PDOG will

expose sets of epochs that use those variables and repeat their instances along the pro-
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gram analysis and execution. The optimisation pass will be developed to execute into

multi-core machines. It will execute those epochs with uncertainty points-to variables

in a speculative way. Each epoch will execute with one of the possible value. When

the possible value is achieved the wrong ones will be dropped without prejudice of the

normal execution due to the multiple-core execution.
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