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Abstract
For many speakers of non-standard or minority language varieties, social media

provides an unprecedented opportunity to write in a way which reflects their everyday

speech, without censorship or castigation. Social media also functions as a platform

for the construction, communication, and consolidation of personal and group identi-

ties, and sociolinguistic variation is an important resource that can be put to work in

these processes. The ease and efficiency with which vast social media datasets can be

collected make them fertile ground for large-scale quantitative sociolinguistic analy-

ses, and this is a growing research area. However, the limited meta-data associated

with social media posts often makes it difficult to control for potential confounding

factors and to assess the generalisability of results.

The aims of this thesis are to advance methodologies for discovering and analysing

patterns of sociolinguistic variation in social media text, and to apply them in order

to answer questions about social factors that condition the use of Scots and Scottish

English on Twitter. The Anglic language varieties spoken in Scotland are often con-

ceptualised as a continuum extending from Scots at one end to Standard English at the

other, with Scottish English in between. There is a large degree of overlap in grammar

and vocabulary across the whole continuum, and people fluidly shift up and down it de-

pending on the social context. It can therefore be difficult to classify a short utterance

as unequivocally Scots or English. For this reason we focus on the lexical level, using

a data-driven method to identify words which are distinctive to tweets from Scotland.

These include both centuries-old Scots words attested in dictionaries, and newer forms

not yet recorded in dictionaries, including innovative variant spellings, contractions,

and acronyms for common Scottish turns of phrase.

We first investigate a hypothesised relationship between support for Scottish inde-

pendence and distinctively Scottish vocabulary use, revealing that Twitter users who

favoured hashtags associated with support for Scottish independence in the lead up to

the 2014 Scottish Independence Referendum used distinctively Scottish lexical vari-

ants at higher rates than those who favoured anti-independence hashtags. We also

test the hypothesis that when specifically discussing the referendum, people might in-

crease their Scots usage in order to project a stronger Scottish identity or to emphasise

Scottish cultural distinctiveness, but find no evidence to suggest this is a widespread

phenomenon on Twitter. In fact, our results indicate that people are significantly more

likely to use distinctively Scottish vocabulary in everyday chitchat on Twitter than

when discussing Scottish independence. We build on the methodologies of previous
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large-scale studies of style-shifting and lexical variation on social media, taking greater

care to avoid confounding form and meaning, to distinguish effects of audience and

topic, and to assess whether our findings generalise across different groups of users.

Finally, we develop a system to identify pairs of lexical variants which refer to the

same concepts and occur in the same syntactic contexts; but differ in form and signal

different things about the speaker or situational context. Our aim is to facilitate the

process of curating sociolinguistic variables by providing researchers with a ranked

list of candidate variant pairs, which they only have to accept or reject. Data-driven

identification of lexical variables is particularly important when studying language va-

rieties which do not have a written standard, and when using social media data where

linguistic creativity and innovation is rife, as the most distinctive variables will not

necessarily be the same as those that are attested in speech or other written domains.

Our proposed system takes as input an unlabelled text corpus containing a mixture of

language varieties, and generates pairs of lexical variants which have the same deno-

tation but differential associations with two language varieties of interest. This can

considerably speed up the process of identifying pairs of lexical variants with different

sociocultural associations, and may reveal pertinent variables that a researcher might

not have otherwise considered.
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Lay summary

Social media provides a new platform for the construction of personal and group

identities. In particular, it affords an unprecedented opportunity for speakers of non-

standard or minority language varieties to write in a way which reflects their everyday

speech. The ease and efficiency with which vast social media datasets can be collected

make them convenient for use in large-scale sociolinguistic analyses. While this is a

growing area of research with many technological applications, the limited meta-data

associated with social media posts often makes it difficult to assess the generalisability

of results inferred from these analyses.

The main aim of this thesis is to contribute to overcome this shortcoming and ad-

vance methodologies for discovering and analysing patterns of sociolinguistic varia-

tion in social media text. As an application of these methods, we study how social

factors condition the use of Scots and Scottish English on Twitter. For instance, by

investigating the relationship between support for Scottish independence and distinc-

tively Scottish vocabulary use on Twitter, we find that users who favoured hashtags

associated with support for Scottish independence in the lead up to the 2014 Scottish

Independence Referendum used Scottish lexical variants at higher rates than those who

favoured anti-independence hashtags. Interestingly, however, we also find the use of

Scottish vocabulary to be more prevalent in everyday chitchat on Twitter than when

discussing Scottish independence. Finally, we develop an automatic computational

tool that takes as input text that mixes different language varieties, and generates as-

sociations betweens words from each language that have the same meaning. This tool

can considerably speed up the process of identifying pairs of lexical variants with dif-

ferent sociocultural associations, and reveal pertinent variables that a researcher might

not have otherwise considered.
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Chapter 1

Introduction

This thesis is concerned with patterns of lexical variation on Twitter, and attempts to

account for them in terms of factors relating to the situational context. Large social

media datasets can be used to identify linguistic features which are statistically asso-

ciated with particular geographical regions, demographic traits, ideological stances, or

other sociocultural factors. Once features that index particular sociocultural groups

or ideologies have been identified, we can ask: in what situational contexts are indi-

viduals more likely to use them? The scale and richness of social media data enables

us to discover sociolinguistic associations in a bottom-up, data-driven fashion, rather

than relying on pre-conceived ideas about which features or groups to consider. It also

enables us to test predictions of sociolinguistic theories on a large scale.

Social media writing is often stylistically distinct both from other written genres,

and from speech. Nevertheless, similar effects to those established in traditional so-

ciolinguistic studies of speech have been reported in studies of social media writing.

The use of non-standard words and spellings on Twitter mirrors patterns of variation

in speech, both in terms of their geographical and demographical distributions (Eisen-

stein et al., 2014; Huang et al., 2016), and in terms of the phonological and syntactic

contexts in which they occur (Eisenstein, 2015). Twitter users appear to be cognisant

of who is likely to see their tweets and sensitive to the social meaning of linguistic vari-

ables, since they appear to modulate their linguistic choices accordingly. For example,

individuals with a greater proportion of same-gender ties in their social networks make

greater use of gender-marked variables (Bamman et al., 2014b), and there is evidence

for effects of audience size on usage rates of non-standard and minority language vari-

eties in tweets from the USA (Pavalanathan and Eisenstein, 2015a) and the Netherlands

Nguyen et al. (2015).
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2 Chapter 1. Introduction

This type of research is often complicated by the lack of detailed meta-data as-

sociated with social media posts, which can make it hard to control for different ex-

planatory factors and to know whether results obtained on a particular user sample

generalise to another sample. Another outstanding methodological challenge in this

area is the bottom-up discovery of sociolinguistic variables.

Traditionally, a linguistic variable is any linguistic item than can be realised in

different ways: the set of alternative realisations are the variants. A sociolinguistic

variable is one whose different variants are associated with different social identities

or ideologies. In contrast with traditional sociolinguistic studies, most large-scale so-

cial media studies to date have studied differences across contexts in the frequencies of

individual terms (Doyle, 2014; Bamman et al., 2014b; Jones, 2015; Pavalanathan and

Eisenstein, 2015a). If we instead analyse the relative frequencies of different realisa-

tions of the same variable, we can be more confident that any effects we observe are

effects on how people are choosing to refer to things, and not on which things they are

choosing to refer to.

In this thesis we present two large-scale studies of factors which condition lexical

variation in Scottish tweets, and a system to facilitate efficient, data-driven curation

of lexical sociolinguistic variables. In the first of these, presented in Chapter 4, we

investigated the relationship between support for Scottish independence and the use

of distinctively Scottish vocabulary on Twitter, and found that distinctively Scottish

lexical variants were used at a higher rate by users of pro-independence hashtags than

by users of anti-independence hashtags. However, some questions remained about how

rates of Scottish variant usage are affected by the topic of a tweet and/or the size of its

expected audience. We addressed these open questions in our second study, presented

in Chapter 5. We used a more sophisticated method of analysis to model effects of

audience size and topic on the use of Scotland-specific variants, whilst controlling for

variation in the base rate of Scottish variant usage across different users and variables.

We looked at two groups of users with different overall rates of Scottish usage, and

found audience size and topic to have independent effects on Scottish variant usage in

both groups. The qualitative effects of topic were similar across the two user groups,

demonstrating a clear relationship between the topic of discussion and the odds of

choosing Scottish variants. However, the sizes and directions of the audience effects

were inconsistent across the two groups.

Both of these studies improved upon prior related work by defining the dependent

variable in terms of lexical alternations, and thus better controlling for differences in
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what is being referred to, as opposed to how. We selected the lexical alternations to

analyse by first using a data-driven method to identify distinctively Scottish terms, and

then manually pairing these with Standard English equivalents. The manual pairing

process was labour intensive and required a high degree of familiarity with both lan-

guage varieties, which motivated us to devise a system to facilitate this process.

The task of identifying lexical alternations is similar to bilingual lexicon induction,

but more challenging than the typical case where separate monolingual corpora are

available for the two languages in question, as we want to be able to identify variables

whose variants belong to closely related language varieties including minority lan-

guages, dialects, or sociolects for which monolectal corpora are not necesarily avail-

able and are far from straightforward to create. We therefore developed a system to

identify lexical variables from a single code-mixed corpus, without any pre-specified

labels indicating which linguistic variety a given span of text belongs to. Our system,

described in full in Chapter 6, takes as input a code-mixed corpus and a small set of

seed variables, and returns a ranked list of additional candidate variables. This facili-

tates the process of curating sociolinguistic variables considerably, as researchers only

have to accept or reject candidate variant pairs from a ranked list. In experiments on

three different pairs of English dialects or related language varities, we demonstrate

useful results over a range of hyperparameter settings, with precision@100 of over

70% in some cases using as few as five seed pairs.

1.1 List of main research questions and contributions

For convenience, we list here the primary research questions addressed in Chapters 4

and 5, and summarise our main contributions below.

RQ1: Were Twitter users who supported independence more likely to use distinctively

Scottish variants in their tweets than those who opposed it?

RQ2: Are there independent effects of tweet topic and audience on the use of distinc-

tively Scottish variants?

RQ3: Are topic and audience effects consistent across users sampled on the basis of

having used hashtags relating to Scottish independence, and users sampled on

the basis of having tweeted with a Scottish geotag?



4 Chapter 1. Introduction

The main contributions of this thesis are as follows:

• We establish that both centuries-old Scots words attested in dictionaries, and

Scottish lexical innovations not yet recorded in dictionaries, are in use on Twitter.

• We show that while users who supported independence used distinctively Scot-

tish lexis at higher rates than those who opposed it; it was used by both groups,

and both groups were more likely to use it in everyday chitchat than when dis-

cussing politics.

• We build on the methodologies of previous large-scale studies of lexical variation

on social media, taking greater care to:

– Avoid confounding form and meaning

– Distinguish effects of audience and topic

– Assess whether findings generalise across different user samples

• We develop a new data-driven, computational method to facilitate the identifica-

tion of lexical variables from code-mixed text.

1.2 Structure of the thesis

– Chapter 2 provides background on social media text, Scots and Scottish English,

and our motivations for analysing sociolinguistic variation at the lexical level, as

well as the challenges involved.

– Chapter 3 provides background about the Twitter social media platform, ethical

issues surrounding the use of Twitter data in research studies, and methodolog-

ical challenges involved in the use of Twitter data in social scientific analyses.

Chapter 3 also includes an overview of all the datasets we collected and used in

our studies.

– Chapters 4-6 are each centered on a published paper. Each includes the paper

as published, along with an additional introduction and commentary section to

motivate the work and evaluate its contributions in the context of the thesis, as

well as proposing specific areas for future work pertaining to the topic of the

chapter.
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– Chapter 4 is about Scots and Scottish English use on Twitter in the con-

text of the 2014 Scotland independence referendum, and is based on the

following paper:

Shoemark, P., Sur, D., Shrimpton, L., Murray, I., & Goldwater,
S. (2017, April). Aye or naw, whit dae ye hink? Scottish inde-
pendence and linguistic identity on social media. In Proceedings
of the 15th Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 1, Long Papers (pp.
1239-1248).

– Chapter 5 is about effects of topic and prospective audience size on Scots

and Scottish English use on Twitter, and is based on the following paper:

Shoemark, P., Kirby, J., & Goldwater, S. (2017, September). Topic
and audience effects on distinctively Scottish vocabulary usage in
Twitter data. In Proceedings of the Workshop on Stylistic Varia-
tion (pp. 59-68).

– Chapter 6 is about an automatic method to facilitate the curation of lexical

alternation variables for use in sociolinguistic studies, and is based on the

following paper:

Shoemark, P., Kirby, J., & Goldwater, S. (2018, November). In-
ducing a lexicon of sociolinguistic variables from code-mixed text.
In Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th
Workshop on Noisy User-generated Text (pp. 1-6).

– Chapter 7 concludes this thesis with a more detailed summary of our contribu-

tions and a discussion of directions for future work which could build on these.





Chapter 2

Background

In this thesis we develop and apply methodologies for conducting quantitative varia-

tional sociolinguistic analyses of social media text. We focus in particular on variation

in the use of lexical items which are distinctive to Scots and Scottish English, though

our approach is broadly applicable to other language varieties. In Section 2.1, we dis-

cuss the unqiue constellation of properties which sets social media text apart from both

speech and other written domains, and argue that these properties make sociolinguis-

tic variation a particularly important resource for signalling attitudes and identity on

social media.

In Section 2.2 we discuss the complex relationship between the English and Scots

languages, historical and ongoing changes in attitudes towards the Scots language,

and how these lead to difficulties in categorizing texts as wholly Scots or English. In

Section 2.3 we discuss some methodological challenges in analysing linguistic varia-

tion on social media, particularly in the use of minority languages which do not have

established written norms.

2.1 Social media text

Social media platforms with public APIs provide efficient access to high volumes

of spontaneously produced, informal, conversational text from large and diverse user

bases. The ability to efficiently collect such massive amounts of natural language data

enables the study of infrequent linguistic phenomena, whilst avoiding the Observer’s

Paradox.

The OBSERVER’S PARADOX is a term coined by William Labov to describe the

predicament of trying to systematically observe how people use language when they

7



8 Chapter 2. Background

are not being systematically observed. Labov (1978b, p.209) argues that people tend

to pay greater attention to their speech when aware they are being observed by re-

searchers; and when paying greater attention to their speech they are more likely to

style-shift towards more formal or prestigious linguistic varieties. Hence he advocates

collecting ‘rapid and anonymous observations’ where possible, which requires creative

approaches when vernacular speech is the object of study, but can more easily be done

on a vast scale with social media text.

While not always complete or verifiable, the meta-data that often accompanies

social media text—such as time-stamps, locations, social network connections, names,

and photographs—makes it possible to conduct fine-grained analyses of socio-cultural

correlates of linguistic variation and change, using large-scale, aggregated data sets

(Hovy et al., 2015; Blodgett et al., 2016; Jones, 2015; Grieve et al., 2018). These

large-scale data sets can also be used to identify social categories and sociolinguistic

variables in a transparent, bottom-up manner, rather than relying on researcher intuition

or pre-conceived notions about which features or groups to consider (Eisenstein et al.,

2011; Bamman et al., 2014b; Huang et al., 2016)

From an engineering perspective, better understanding the dynamics of linguistic

variation in social media text can help to improve performance in various tasks such as

document classification (Hovy, 2015), sentiment analysis (Sánchez-Rada and Iglesias,

2019), and hate-speech detection (Mishra et al., 2019).

Social media text is also an interesting object of study in its own right, since dis-

tinctive characteristics of social media interactions may influence users’ choices about

what to say and how to say it in distinctive ways, resulting in different patterns than

those which are found in other modes of language.

2.1.1 Comparison with speech and other written mediums

Social media differs from speech and other written media in several ways, first dis-

cussed in depth by boyd (2008), who characterised ‘networked publics’ (i.e. social me-

dia) as having four properties—persistence, replicability, searchability, and scalabity—

which complicate and shape the ways in which their users interact.

While writing in general is inherently persistent, and recording devices allow peo-

ple to make persistent recordings of speech, we do not typically record our everyday

spoken conversations, whereas social media automatically archives each and every ca-

sual interaction. Not only is every act on social media persistently recorded by default,
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due to their digital nature these records are also easily replicable and searchable, and

scalable in that they can be disemminated to vast numbers of people all around the

world in an instant.

Though television and radio share the property of scalability, their content is usu-

ally designed specifically for public consumption, whereas social media blurs the

boundaries between public and private interactions. Moreover, while the content that is

distibuted on TV and radio is centrally controlled by broadcasting organisations, social

media is decentralised, such that “the property of scalability does not necessarily scale

what individuals want to have scaled or what they think should be scaled, but what the

collective chooses to amplify” (boyd, 2008, p.33).

Together, boyd argues, the properties of persistence, replicability, searchability, and

scalabity result in a lack of spatial, social, and temporal boundaries on social media.

While in the offline world, one would typically present oneself differently depending

on the social context, on social media it is often difficult to control or anticipate the

context in which a message will be seen or interpeted, and social contexts which are

typically segmented in the offline world are collapsed together in networked publics.

Although we might have a good idea of who is likely to read and engage with the

content we post on social media, we often have no way of knowing exactly who will

see a particular post, or when they will see it. For example, on Twitter, posts are public

by default. While there are affordances to target posts towards particular groups or

individuals, unless a user has actively set their profile to private so that only those who

have explicitly ‘followed’ them can see their tweets, then in principle anyone on the

internet could potentially stumble across any of that user’s tweets, at any time after it

has been posted. However, the fact that a tweet could be seen by anyone does not mean

that it will be seen by everyone. The sheer volume of content in social media streams

“creates an attention economy in which people must compete for visibility.” (boyd,

2008, p.32)

To investigate how Twitter users navigate this attention economy with its collapsed

contexts and invisible audiences, Marwick and boyd (2011) interviewed a sample of

Twitter users about how they imagine the audience of their tweets, and how that factors

into what they choose to write. Participants indicated that while they have no way of

knowing exactly who comprises the audience of a given tweet, they do have a men-

tal picture of who they’re addressing, and they modulate the content of their tweets

according to the imagined judgement of this imagined audience. Based on these inter-

views, Marwick and boyd argued that the lack of control over context on social media
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creates a tension between the desire to maintain positive impressions (keeping the most

sensitive potential readers in mind, such as parents, partners, and bosses)—and the de-

sire to seem true or authentic to others. This pressure to appear authentic is reinforced

by the social norms of the Twitter platform, which encourage the sharing of personal

information in order to build and maintain social connections.

The indeterminacy of the audience of a given post, and the fact that it can be repli-

cated and retrieved at any time and divorced from its original context, may give users

an additional impetus to index information about their identity, attitudes, and commu-

nicative goals within the content of the post itself. Since brevity is enforced on Twitter

by a character limit (and encouraged on social media more generally by the attention

economy), lexical choice (as opposed to more expositional strategies) is arguably a key

resource with which users can efficiently convey (or obscure) such information within

their posts. Moreover, relaxed written norms on social media give users a license to

experiment with ways of representing sociophonetic variation orthographically (Eisen-

stein, 2015; Jones, 2015; Tatman, 2015), and the replicability and scalibility properties

of social media have lead to some minority language varieties becoming more visible

to people outside of their offline communities of practise. For instance, Florini (2014)

has analysed how in the absence of reliable physical cues to racial identity on Twit-

ter, many Black American Twitter users align themselves with Black cultural identities

through the use of particular kinds of verbal dexterity, wit, and wordplay which mir-

ror the practise of SIGNIFYIN’ in African-American oral culture. This includes the

use of phonetic re-spellings, slang terms, and textual representations of gesture (e.g.

emoticons) to convey an elaborate oral delivery style. Florini (2014, p. 225) notes that

“The activity of Black Twitter users has not been lost on many bloggers
and journalists, who have generated much discussion and debate about the
existence and nature of ‘Black Twitter.”

In summary, social media is different from other written domains because it is in-

formal but not typically private; and different from informal speech because it is inher-

ently persistent, replicable and searchable, with an ‘invisible’ audience which likely

comprises a mixture of people with whom one would traditionally interact in very

different social contexts. Social media can be conceived of as a stage for the construc-

tion, presentation, reinforcement, and renegotiation of personal and group identities,

and the ability to mine vast quantitities of social media data in real-time provides un-

precedented opportunities to observe how linguistic variation is put to work in these

practices.
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2.1.2 Linguistic variation as a means to negotiate networked audi-

ences

Whereas Marwick and boyd (2011) focused mainly on the choices users make about

what to say in their tweets, this thesis is concerned with the choices that users make

about how to say it: the choices they make about linguistic style, or specifically, their

choice of language variety or register. In a closely related ethnographic study, An-

droutsopoulos (2014) examined how multingual users of the Facebook social media

platform use their choice of language to ‘maximise’ or ‘partition’ the audience of their

posts, as well as how audience members respond to these choices. On analogy with

Marwick and boyd’s observation that some social media users limit the topics of their

posts to those which they believe will be non-offensive to the broadest possible audi-

ence, Androutsopolous noted that posts can also be styled in a way that makes them

accessible to as many members of a user’s network as possible. Similarly, posts can

be tacitly directed towards narrower audiences not only by carefully choosing particu-

lar types of content to include, but also by tailoring the choice of language: “language

style, and more specifically language choice, becomes a key resource by which to bring

together or separate various parts of the networked audience” (Androutsopoulos, 2014,

p.71).

In a large-scale quantitative analysis of the language choices of Twitter users in

Friesland and Limburg (two provinces in the Netherlands where minority languages

are spoken as well as Dutch), Nguyen et al. (2015) provided further evidence that social

media users tailor their language choices with respect to their audiences. They found

that while most tweets from these provinces were written in Dutch, users were more

likely to use a minority language when replying directly to other tweets in which it had

been used, when using hashtags which had previously been used in lots of other mi-

nority language tweets, and when addressing another user who had frequently posted

in the minority language.

While Androutsopoulos (2014) and Nguyen et al. (2015) looked at language choices

on the level of utterances or posts, Pavalanathan and Eisenstein (2015a) focused on the

lexical level. They looked at English language tweets in the US, and found that Twitter

users were more likely to use non-standard terms—both those which are geographi-

cally specific (e.g. jawns, ole, dang) and those which are frequently used across the

USA (e.g.lol, omg, pics)—in tweets directed at smaller, geographically closer audi-

ences.
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In a similar vein to Nguyen et al. (2015) and Pavalanathan and Eisenstein (2015a),

we present in Chapters 4 and 5 two large-scale statistical analyses of factors that in-

fluence minority language use on social media. We are interested in methodologies

which can be applied to cases where it may be difficult to classify a post as belong-

ing entirely to one language variety or another, such as when there is intra-sentential

code-switching, or when the varieties in question share a lot of syntax and vocabulary.

We have therefore chosen to follow Pavalanathan and Eisenstein (2015a) in analysing

variation at the lexical level. We focus on Scots and Scottish English, and consider

effects of topic and political stance, in addition to audience.

2.2 Scots and Scottish English

This thesis is mostly concerned with questions about factors which influence people’s

use of Scots vocabulary on social media, though the methods we apply and develop

here are more broadly applicable to lexical variation across other linguistic codes.

Scotland has been described as something of a ‘paradise’ for sociolinguists (Görlach,

1985), owing to its rich history and diversity of interconnected dialects and sociolects.

There are three historical indigenous languages that are spoken in modern-day Scot-

land: English, Scots, and Gaelic. While Gaelic is a Celtic language, Scots has Anglo-

Scandinavian origins in common with English. The standard variety of English in

Scotland differs from that spoken South of the Scottish border mostly in pronuncia-

tion, but also has some distinctive vocabulary, idioms, and syntactic constructions.

2.2.1 Evolving attitudes towards Scots

At different periods in Scotland’s history, both Scots and Gaelic have enjoyed a status

as the language of prestige, but both were subsequently marginalised, and through-

out the 18th and 19th centuries even strongly and explicitly stigmatised in favour of

English.

In the case of Scots, not only did it lose its prestige after the poltical union of Scot-

land and England, but it came to be seen by its own native speakers as a corrupted form

of English, rather than a language in its own right (Purves, 2002). This attitude per-

sisted throughout the 20th century: for example the Scottish Education Department’s

official language policy on Scots in the 1940s was that it was “not the language of

‘educated’ people anywhere, and could not be described as a suitable medium of edu-



2.2. Scots and Scottish English 13

cation or culture” (quoted by Aitken (1982,2015)). As recently as thirty years ago, the

Scottish writer and broadcaster Billy Kay (1988, p.151) observed:

“I have heard many Scots speakers say that they are only comfortable talk-
ing Scots to someone from the same locality. With everyone conditioned
to some extent by official disdain for the tongue, it takes a strong person
to speak Scots in a formal situation where people may classify them ac-
cording to one or other stereotype as coarse or uneducated; it is also much
simpler to speak English and save yourself the hassle.”

However, the cultural climate in Scotland has begun to evolve since then, with the

devolution of the Scottish parliament in 1997 and the 2014 independence referendum

bolstering political engagement and a sense of national pride. In tandem with the

growth of the Scottish Nationalist movement, momentum has grown behind efforts to

recognise, preserve, and promote the Scots and Gaelic languages. For the first time,

the census of Scotland in 2011 asked about Scots language skills, and over 1.5 million

people in Scotland (30% of the population) reported that they could speak it (Scots

Language Centre, 2013). The previous year, the Scottish Goverment had surveyed a

representative sample of the adult population in Scotland about their attitudes towards

the Scots language, and more than 80% agreed that it plays an important and valuable

part in their heritage, culture, and identity (Scottish Government, 2010).

Against this backdrop of cultural heritage, historical repression, and resurgence

lead by Scottish nationalists, it seems almost inevitable that choices regarding the use

of Scotland’s languages carry political and/or cultural connotations. This inspired us to

investigate usage rates of Scots vocabulary on social media, and their interactions with

stances on Scottish nationalism, as well as the type of audience, and the topic under

discussion.

2.2.2 Difficulties in delimiting distinctively Scottish vocabulary

Defining ‘use of Scots vocabulary’ is complicated by the fact that Scots shares a large

stock of core vocabulary with English, due in one part to their common ancestry, and

also due to having undergone similar patterns of language contact in the Medieval

Period (Macafee, 2003). Given that non-standard spellings which reflect regional pro-

nunciations are a common feature in social media text (Eisenstein, 2015), it can be

difficult to conclusively say whether a particular token such as baw should be classi-

fied as an instance of a Scots word which is cognate with English ball, or as a phonetic

re-spelling representing a Scottish pronunciation of the English word itself.
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Because of the complex intersections among the various Anglo-Scandinavian-derived

language varieries in current use in Scotland, sociolinguists often describe them as a

continuum extending from Scots at one end to Standard English at the other. Most na-

tive Scots are able to code-mix and style-shift up and down this continuum depending

on the situational context (Stuart-Smith, 2003). In the work presented in this thesis,

rather than trying to discrestise this continuum or place tweets or word tokens at spe-

cific points along it, we instead focus on investigating how speakers of Scots and/or

Scottish English modulate their use of identifiably Scottish vocabulary, i.e. lexical

variants which are associated with some variety of Scots or Scottish English, and not

shared with Standard British English.

A similar approach was taken by the makers of the Scottish National Dictionary

(SND) (Grant and Murison, 1931), which documents modern Scots vocabulary and is

available online as part of the Dictionary of the Scots Language (Scottish Language

Dictionaries, 2004). However, as it was last updated in 2005 and is primarily based

upon literary sources, we cannot rely upon the SND as a reference point for identifing

distinctively Scottish lexis in the novel domain of social media text (bearing in mind

that Facebook and Twitter were only launched globally in 2006.)

It is important to note that like English, Scots consists of many different local di-

alects, but unlike English it has no established standard orthography. Moreover, while

Scots has remained a living language in its spoken form, before the advent of social

media the average Scottish person’s exposure to written Scots would have been largely

confined to literary domains such as poetry, folk songs, fictional dialogue, or comic

narrative (Grant, 1931, §18). Scots usage in these domains is often romanticised or

stereotyped and not truly representative of any variety of contemporary spoken Scots.

For many people in Scotland, then, social media may be providing an arena to read and

write in a way that reflects the way they speak for the first time.

In summary, given (1) the wide range of regional variation in spoken Scots, (2)

the lack of any single, widely-recognised orthographic standard, and (3) the fact that

creative and non-standard use of orthography is pervasive on social media; if we want

to gain an accurate and thorough understanding of how distinctively Scottish lexis is

used on social media, we should not base our analysis on outdated or out-of-domain

dictionaries or surveys. Instead, the analyses in this thesis are based on bottom-up,

data driven approaches, which reveal innovative variant spellings, derived forms, and

recent neologisms that would have been systematically excluded had we relied on pre-

existing lexicons.
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2.3 Lexical variation

Broadly speaking, sociolinguistics is concerned with relating linguistic structure to

social structure, or understanding how social and stylistic factors constrain linguistic

variation. A sociolinguistic variable is a set of alternate linguistic forms which have the

same denotational meaning, but differ with respect to the social identities or attitudes

they connote. For example, in his famous department store study, Labov (1978b, Ch. 2)

analysed the social significance of variation in rhotic and non-rhotic pronunciations in

New York City, and concluded (1) that rhotic variants were used more frequently by

speakers with a higher socieconomic status, and (2) that speakers in general were more

likely to use rhotic variants when paying greater attention to their speech.

In principle, the construct of the sociolinguistic variable can be applied at any level

of linguistic analysis (the variants could be phonemes, morphemes, lexemes, syntactic

constructions, etc.). However, sociolinguistic variation at the lexical level has been rel-

atively under-studied, despite it arguably being that which “is most accessible and most

salient for a non-specialist audience” (Durkin, 2012). This relative lack of attention is

due to various methodological challenges which are more pertinent at the lexical level

than at the level of phonology or morphology.

2.3.1 Challenges of analysing variation at the lexical level

Firstly, it is more straightforward to delineate a complete set of the phonological or

morphological units that are available in a given language variety than it is to enumerate

an entire lexicon. Durkin (2012, p.6) argues:

“The lexicon is not a fixed entity, but is almost infinitely extendible, and
the lexicon of each individual is likely to be unique. Thus, in any situation
where we want to measure variation, we cannot make any easy assump-
tions about what the available pool of variants will be.”

Secondly, even once assumptions have been made about the pool of available lex-

ical items, it is by no means straightforward to decide which ones should be concep-

tualised as alternative variants of the same variable, since “a set of words that can

sometimes realize the same basic concept are highly unlikely to be full synonyms”

(Durkin, 2012, p.6). Two words may be semantically equivalent in some contexts but

not in others, or may appear equivalent to a researcher lacking in familiarity with the

language variety in question, but in fact have subtle differences.
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In addition to the problem of appropriately delineating our variables, it is important

that we have enough observations of them to be able to obtain good estimates of their

relative frequencies across the different contexts we are interested in. Moreover, if we

want to make generalisable claims about the factors governing variation at the lexical

level (such as claims about usage rates of distinctively Scottish lexis, as opposed to

claims pertaining specifically to the use of one particular lexical variable), we need to

consider large numbers of lexical items in aggregate (Ruette et al., 2014).

For these reasons, defining lexical variables is an arduous task, and is inherently

subjective, requiring a high degree of familiarity with the language varieties in ques-

tion. Due to these obstacles, it may be tempting to limit the analysis to those variables

which are most salient to the researcher, or else rely on existing catalogues of lexical

variables which have been used in previous studies that did not necesarily deal with

the same domains, communities, or time periods. This may introduce undesired biases

and preclude the full picture of variation from being revealed.

In our work, we attempt to minimise such biases by identifying variables from the

data. In Chapters 4 and 5, we identify terms that are distinctive to tweets from Scot-

land and then manually pair these with Standard English equivalents. Using Twitter

data to identify distinctively-Scottish terms reveals spelling variants as well as novel

lexical items not found in existing Scots dictionaries or word-lists from older stud-

ies. However, the manual process of pairing these with Standard English equivalents

is still labour-intensive and dependent on intuition and experience with both language

varieties. Many distinctively-Scottish terms do not have single-word Standard Enlish

equivalents, some have equivalents which work only in certain contexts, and some

have multiple equivalent forms in Standard-English, which could easily be missed. To

address this problem, in Chapter 6 we introduce a data-driven method to identify pairs

of terms, one of which is distinctive to a particular language variety, and the other

of which is an equivalent term in a second language variety. Familiartiy with both

varieties is still needed to accept or reject the resulting candidate pairs, but manually

checking candidate variables is easier than thinking them up in the first place.

2.3.2 Alternation variables vs. frequency variables

So far I have focused on the traditional kind of variable used in quantitative sociolin-

guistics. Grieve (2015) refers to these as ALTERNATION VARIABLES and contrast them

with FREQUENCY VARIABLES, which are commonly used in the field of corpus lin-
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guistics. Whereas an alternation variable consists of multiple semantically-equivalent

forms and is quantified in terms of their relative frequencies to one another, a frequency

variable is concerned with only a single form, and is quantified in terms of its absolute

frequency (usually normalised with respect to an appropriate measure of sample size).

Studies using frequency variables have tended to focus on the level of syntax, which

shares the issues outlined above with the lexical level and has likewise received rela-

tively little attention from the field of variationist sociolinguistics. Frequency variables

circumvent the issue of precisely defining semantic equivalence between complex lin-

guistic units, while large text corpora make it possible to quantitatively analyse large

numbers of variables. Hence Grieve (2015) advocates the use of frequency variables

in large corpus-based dialectometry studies, arguing that they enable the exploration

of grammatical dialect variation “in a much more systematic and comprehensive way

than had previously been possible”.

Frequency variables have also been used in large scale corpus-based analyses of

lexical variation across different geographical regions, demographic groups, and social

contexts (Doyle, 2014; Bamman et al., 2014b; Jones, 2015; Pavalanathan and Eisen-

stein, 2015a). While these have revealed interesting patterns, great care is required

when attempting to explain these patterns. It is important to consider that differences

in word frequencies can reflect differences in what people are saying, and not only in

how they are choosing to say it. While variation in the prevalance of certain topics or

communicative functions across different social groups or contexts is a worthy object

of study in its own right, we subscribe to Weiner and Labov’s (1983, p.31) view that

“the sharpest analytical conclusions on the conditioning factors that con-
strain linguistic change and variation can be made when form varies but
meaning is constant, rather than when both are varying together.”

A handful of large scale corpus-based lexical variation studies have used alternation

variables (e.g. Gonçalves and Sánchez, 2014; Jørgensen et al., 2015; Huang et al.,

2016), and have both replicated some known patterns and provided new insights. We

have used alternations variables in our studies in Chapters 4 and 5, and in Chapter 6

we present a method to facilitate the curation of such variables.





Chapter 3

Data

The studies presented in this thesis use data collected from Twitter using its public

APIs. These are relatively less restrictive and easier to use than those of other popular

social media platforms, which has arguably led to an over-representation of Twitter

in academic studies on social media. That being said, there have been few large scale

studies about usage of minority language varieties on any social media platform. While

ease of access was naturally a strong motivating factor in our choice of data source, we

consider Twitter a particularly compelling domain in which to investigate the role of

social factors in linguistic variation.

While all tweets are public1, and thus have a potential audience which is boundless

and inscrutable, Twitter does provide affordances to manipulate the likely composition

of a tweet’s audience, or to indicate the author’s intended audience. Twitter users must

learn to strategically employ these affordances in order to target the relevant audience

for each tweet. Linguistic style and language choice are also resources that Twitter

users can draw on in order to target particular sections of their potential audience.

Indeed, Irvine (2002, pp.23-24) conceptualises linguistic style as “the ways speakers

as agents in social (and sociolinguistc) space negotiate their positions and goals within

a system of distinctions and possibilities”. Since Twitter is itself a social space in which

users are constantly negotiating their positions and goals, we consider it an auspicious

stage on which we can observe how stylistic variation and code switching are put to

work in this negotiation process.

Authenticity is highly valued on Twitter (Marwick and boyd, 2011), which may

sometimes provide a license and impetus to emphasise aspects of one’s personal style

or identity through the use of distinctive linguistic variants. Creative and non-standard

1except those posted from protected accounts (see §3.1)
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use of language is further encouraged by design features of the platform itself, such

as the restrictive character limit for posts and the high-volume, real-time feeds which

engender fast-paced interactions. On the other hand, the fact that Twitter provides

unprecedented opportunities to interact with strangers from diverse backgrounds all

around the world can create a competing impetus to use language that is inoffensive

and accessible to as wide an audience as possible. As Pavalanathan and Eisenstein

(2015a, p.188) note, social media platforms “play host to a diverse array of interac-

tional situations, from high school gossip to political debate, from career networking

to intense music fandom”, such that “even though platforms such as Twitter are com-

pletely public, they capture language use in natural contexts with real social stakes.”

The rest of this chapter is structured as follows: in §3.1 we provide a brief overview

of Twitter’s user interface, highlighting key features that enable users to influence a

tweet’s audience. In §3.2 we review ethical issues regarding the collection, analysis,

and sharing of Twitter data. In §3.3 we review what little is known about the demo-

graphics of Twitter’s user base, and discuss issues around assessing and addressing

unintended biases in datasets sampled from Twitter. Finally, §3.4 is a quick reference

guide to all of the datasets we have collected and used across our three studies.

3.1 What is Twitter and how do users manipulate their

audience?

Twitter is a popular social network and microblogging platform, on which users post

short2 messages called TWEETS. While tweets can also include photos and video, this

thesis is concerned only with the text. We will now provide an overview of some of

the key features of the platform, focusing particularly on those which enable users to

target their tweets towards particular sections of their potential audience. We note that

Twitter regularly introduces new features and tweaks existing ones, so while we hope

that this overview will be useful to other researchers, it is always important to verify

what does and doesn’t apply to the time periods relevant to one’s own research.

A user’s tweets appear in reverse chronological order on their own profile page, or

USER TIMELINE. To FOLLOW a user is to subscribe to receive their tweets in your

HOME TIMELINE: the personalised stream of tweets you see when you log into Twit-

2Tweets were originally limited to 140 characters; this character limit was extended to 280 in Novem-
ber 2017 (i.e. after the period covered by any of the datasets used in this thesis).
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ter3. Following relationships can be asymmetrical on Twitter. The users who Follow

you and receive your tweets on their Home Timelines are called your FOLLOWERS;

the users who you Follow and whose tweets appear on your own Home Timeline are

called your FRIENDS.

By default, tweets are public, so while only your Followers receive them in their

Home Timeline streams, anyone (including people without a Twitter account) can view

your User Timeline or find your tweet through Twitter’s search facility. However,

Twitter users do have the option to PROTECT their accounts, which makes their tweets

viewable and searchable only by their Followers. Naturally, our studies are limited

to the analysis of public tweets. In 2014, the year from which most of our data was

drawn, the social media analytics platform Twopcharts4 estimated that just 5.3 percent

of all Twitter users were choosing to protect their accounts.

There are several ways in which users can curate additional timelines not limited

to tweets by their Friends: they can create LISTS of users and see streams consisting

of tweets by those specific users; they can perform a query using Twitter’s search

facility; or they can click on a HASHTAG (see Figure 3.1b). A Hashtag is any sequence

of alphanumeric characters prepended with the ‘hash’ (a.k.a ‘pound’) symbol, e.g.

#PHDchat, #WritingWoes, #7thCupOfCoffee. Twitter automatically makes hashtags

into hyperlinks, connecting to streams of other tweets that contain the same hashtag.

The original intended function of hashtags is to highlight relevant keywords or phrases,

so that these can be used to categorise tweets and thereby help people to follow the

conversation around topics that interest them. Including a hashtag in a tweet therefore

has the potential to extend its audience beyond the sender’s Follower group, increasing

the probability that it will be seen by others with an interest in its subject matter.

The size of a tweet’s audience can also be extended by users other than its author,

through the RETWEET and QUOTE features. To Retweet is to forward a tweet to one’s

own Followers (and to one’s own user Timeline), while the Quote facility enables users

to append a comment of their own before Retweeting.

As well as directing their own tweets towards topic-based audiences through the

use of hashtags, users can also direct tweets towards specific individuals through the

use of MENTIONS. Twitter users are identified by unique usernames called HANDLES,

3Inititally this stream was updated in real time and presented in reverse chronological order, but in
2016 Twitter began to display TOP TWEETS, ranked algorithmly according to how likely the user is to
care about them, nearer the top of the feed, above more recent but lower-ranked tweets. As of 2019
users can choose between a curated or strictly chronological Home Timeline.

4https://web.archive.org/web/20140625055055/http://twopcharts.com/
Twitteractivitymonitor

https://web.archive.org/web/20140625055055/http://twopcharts.com/Twitteractivitymonitor
https://web.archive.org/web/20140625055055/http://twopcharts.com/Twitteractivitymonitor
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Figure 3.1: Fictionalised example tweets illustrating various features that tweet authors

can use to manipulate the likely composition of their audience (NB: while these affordances

affect which streams a tweet is pushed to and thus who is more likely to see it, anybody potentially could

view any of these tweets by visiting the author’s profile or using Twitter’s search facility)

(a) An original tweet without any HASHTAGS or MENTIONS. This tweet would be pushed to the

Home Timeline streams of Ned Stark’s Followers. Throughout this thesis we will refer to this

kind of tweet as a BROADCAST.

(b) A tweet which includes a HASHTAG. This would be streamed to Olenna Tyrell’s Followers

and additionally to users following the #Westeros hashtag.

(c) A tweet which begins with a MENTION. Jon Snow would receive a special notification about

this Mention, and the tweet would be pushed to the Home Timeline streams of only those users

who follow both Ygritte and Jon Snow.

(d) A tweet which includes a MENTION but does not begin with it. Like a broadcast, this tweet

would be pushed to the Home Timeline streams of all of Tyrion Lannister’s Followers, but addi-

tionally Jamie would receive a notification about it.



3.1. What is Twitter and how do users manipulate their audience? 23

which consist of alphanumeric strings prepended by ‘@’, e.g. ‘@justinbieber’, ‘@tay-

lorswift13, ‘@TheEllenShow’. To Mention a user in a tweet is to include that user’s

handle in the tweet text. When a user is Mentioned they receive a special notification

drawing their attention to the tweet.

If a tweet begins with a Mention, that is to say, if the very first token in the tweet

is a user’s Handle (as in Figure 3.1c), then that tweet is pushed to the Home Timeline

streams of only those users who Follow both the sender and the mentioned user.5 Since

April 20146, beginning a tweet with a Mention has also had the effect of excluding

it from the default view of the author’s User Timeline, though anyone visiting the

author’s profile can still reveal such tweets by selecting the alternative ‘Tweets and

Replies’ view7. Including a Mention later on in the tweet text (as in Figure 3.1d) does

not restrict its audience in these ways, but does still generate a special notification for

the Mentioned user.

To summarise, while their audience is never entirely within Twitter users’ control,

they can indicate who individual tweets are intended for, or manipulate who will be

more likely to see them, through the use of Hashtags and Mentions. Other users can

subsequently extend a tweet’s audience by Retweeting or Quoting it, and optionally

introducing Mentions or Hashtags of their own. In this thesis we focus on the use of

Mentions and Hashtags in users’ own original tweets, since we are interested in how

their linguistic choices interact with the audiences they conceive as they are composing

them.

5NB: this was the case throughout the time period covered by all of our datasets,
and is still the case at the time of writing (see ‘Note’ here: https://web.archive.org/
web/20200127211855/https://help.twitter.com/en/using-twitter/types-of-tweets), but
Twitter has considered changing this and may do so in the future (see second footnote
here: https://web.archive.org/web/20200405163231/https://blog.twitter.com/en_us/a/
express-even-more-in-140-characters.html.

6More specifically, while the ‘Tweets and Replies’ tab was introduced to Twitter’s
web interface in April 2014 (see https://blog.twitter.com/official/en_us/a/2014/
your-new-web-profile-is-here.html), on Twitter’s iOS app tweets beginning with Men-
tions were still included in the main view of a User’s Timeline until March 2017, with the change
happening on the Android app some time in between (see https://www.socialmediatoday.com/
social-networks/facebook-and-twitter-trying-out-new-looks-tweetscomments).

7Tweets with initial Mentions are sometimes refered to as ‘Replies’ because their original purpose
was to address other users when replying to their tweets. It is important to note, however, that tweet-
initial Mentions can also be used to initiate conversations (and also for other purposes; see §5.4.4), so
not all tweets which begin with Mentions are actually Replies—though they are nevertheless restricted
to the ‘Tweets and Replies’ tab. It is also worth noting that in March 2017 (which is after the period our
datasets cover) Twitter introduced a mechanism for replying directly to a tweet without using Mentions;
so since then it has not been the case that all Replies are tweets with initial Mentions, either.

https://web.archive.org/web/20200127211855/https://help.twitter.com/en/using-twitter/types-of-tweets
https://web.archive.org/web/20200127211855/https://help.twitter.com/en/using-twitter/types-of-tweets
https://web.archive.org/web/20200405163231/https://blog.twitter.com/en_us/a/express-even-more-in-140-characters.html
https://web.archive.org/web/20200405163231/https://blog.twitter.com/en_us/a/express-even-more-in-140-characters.html
https://blog.twitter.com/official/en_us/a/2014/your-new-web-profile-is-here.html
https://blog.twitter.com/official/en_us/a/2014/your-new-web-profile-is-here.html
https://www.socialmediatoday.com/social-networks/facebook-and-twitter-trying-out-new-looks-tweetscomments
https://www.socialmediatoday.com/social-networks/facebook-and-twitter-trying-out-new-looks-tweetscomments
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3.2 Twitter data: ethical issues

Over the course of conducting the studies included in this thesis, the conversation in

the wider research community around ethical issues with the use of Twitter data has

evolved. While there is still not yet a well-established ethical framework for the use

of Twitter data in sociological research, some guidelines for ethical decision-making

have recently been proposed on the basis of exploratory surveys of Twitter users’ ex-

pectations around the use of their tweets in academic research (Williams et al., 2017;

Fiesler and Proferes, 2018).

Altough Twitter makes tweets freely and publicly available via its APIs, and users

legally consent to this by agreeing to Twitter’s terms of service, we cannot realistically

assume all users to have read and understood these terms. Indeed, survey results indi-

cate that many users are quite naı̈ve about how their tweets may be collected and used

by people beyond their followers. Thirty-four percent of the 564 UK Twitter users

surveyed by Williams et al. (2017) reported being unaware that by accepting Twit-

ter’s terms of service they had provided consent for some of their information to be

accessed by third parties, and almost two thirds of respondents to a similar survey by

Fiesler and Proferes (2018) indicated that prior to the survey they had been unaware

that researchers sometimes use tweets in academic research.

Reassuringly, 84% of those surveyed by Williams et al. were not at all or only

slightly concerned about their tweets being used for research in university settings (vs.

16% who were quite or very concerned), and likewise 80% of Fiesler and Proferes’s

respondents indicated they were not uncomfortable with the idea of their tweets being

used in academic research. Importantly however, both studies suggested that a majority

of users would wish to be asked for their consent beforehand, particularly with regard

to their tweets being quoted in academic research outputs. Both studies also indicate

that a majority of users would be more comfortable with their tweets being quoted if

their identity were to be anonymised.

When quoting tweets in the papers included in Chapters 4 and 6, the decision we

took at the time was to reproduce only the text of the tweets, omitting the user handles

and other metadata. However, this does not actually provide complete anonymity to

the authors, since it is often possible to identify them by looking up the quoted text on

Twitter’s online search facility (importantly though, if the authors have since deleted

the tweets in question or protected their accounts, then their identity will not be recov-

erable in this manner). In light of the recent survey findings and their accompanying
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recommendations, if we were to do something similar in future we would instead seek

prior consent from the users concerned to quote their tweets with attribution, or else

use fictionalised examples, as we have done in Figure 3.1.

Apart from the issue of quoting tweets in publications, there are also important

ethical considerations to be made around the collection and analysis of Twitter data.

Fiesler and Proferes’s respondents tended to feel more comfortable with the idea of

their tweets being used in research if they were part of a large dataset being analysed

computationally, as opposed to a small collection of tweets being read by humans. On

the other hand, they tended to be less comfortable with the idea of their entire tweet

histories being used than with individual tweets, and they also indicated discomfort

with other profile or geolocation information being analysed along with their tweets—

both of which are things we have done in our studies, albeit on a large-scale, aggre-

gate level. While a majority of Fiesler and Proferes’s respondents felt that researchers

should not be able to use tweets in research without user permission, when dealing

with large volumes of tweets, it is infeasible to obtain informed consent from all of the

users concerned. Williams et al. (2017) condone the quantitative anaylsis of large-scale

tweet datasets without seeking user consent, provided findings are presented only in

aggregate form.

Another ethical challenge raised by Williams et al. (2017) is the potential for harm

that could arise as a result of classifying content and users with sensitive labels without

their knowledge. In chapter 4 we infer users’ political stances with respect to Scottish

independence. These could be construed as sensitive labels, though the classification is

made entirely on the basis of hashtags associated with the pro- and anti- independence

campaigns, so arguably in using these hashtags the users we are labelling have already

chosen to publicly associate themselves with a stance on the issue. That being said, in

applying a somewhat crude classification heuristic to a large dataset we are inevitably

missing out on a great deal of context and nuance, which is likely to result in inaccurate

labels for some users. While a small number of mislabeled datapoints may not substan-

tively affect the outcomes of our quantitative analyses, misrepresenting their political

stance could well cause harm to the users concerned. It would therefore be unethical to

store or disseminate any inferred labels that we have associated with identifiable users,

and indeed this is prohibted by Twitter’s Developer Terms8.

When it comes to archiving and sharing data collected from Twitter, there is a ten-

8https://developer.Twitter.com/en/developer-terms/more-on-restricted-use-cases.
html – Accessed 2019-05-03.

https://developer.Twitter.com/en/developer-terms/more-on-restricted-use-cases.html
https://developer.Twitter.com/en/developer-terms/more-on-restricted-use-cases.html
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sion between data protection and user privacy concerns on the one hand, and research

transparency and reproducibility on the other. In its Developer Terms, Twitter advises

that the best way to disseminate content obtained using its APIs to other parties is by

sharing only the tweet or user IDs, such that the other party must then re-request the

content itself using the APIs. This ensures that if a user decides to delete or ‘protect’

a tweet after the intitial dataset is collected, their decision will be respected when it is

subsequently re-used. The downside of this is that if a significant proportion of tweets

in the original dataset become unavailable, it may not be possible to verify results

through reproduction studies.

3.3 Twitter data: demographics and sampling issues

The popularity of Twitter data in social scientific analyses is largely due to the fact

that Twitter makes high volumes of data freely available to the public via APIs. This

makes it possible to quickly and cheaply gather data from large numbers of individuals

(orders of magnitude more than can be reached by traditional sociolinguistic surveys),

and in some cases it is possible to obtain large numbers of datapoints per individual,

covering long time periods and a variety of topics and interlocutors. However, a major

disadvantage of Twitter data is that unlike with datasets obtained using more traditional

methods, we usually have very little information about the individuals in our dataset,

often lacking even coarse demographic categories such as gender, age, ethnicity, na-

tionality, or socioeconomic class. Put succintly by Sloan (2017, p.2): “social scientific

analysis is based on the investigation of group differences, but we can’t easily identify

the groups”.

One thing we do have some ground truth about is the demographics of Twitter users

as a whole. According to data collected by telephone surveys in 2015, adult Twitter

users in the UK skew disproportionately young and male with respect to the the UK

population at large, and are more likely to be in managerial and professional occupa-

tions (Sloan, 2017). Similarly, Twitter users in the USA skewed disprortionately male,

young, affluent and educated in 2014 and 2015, but annual surveys show that US Twit-

ter user demographics are changing over time: between 2012 and 2016, representation

on Twitter increased significantly amongst older people, Whites and Hispanics, those

in rural ares, and those with higher incomes (Duggan and Brenner, 2013; Duggan and

Smith, 2013; Duggan et al., 2015; Duggan, 2015; Greenwood et al., 2016). The differ-

ence in the demographic distribution of Twitter users and that of the wider population
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(plus the difficulty of estimating it, and the fact that it is ever changing) is an issue

when Twitter data is used to make predictions about the offline world (e.g. election

outcomes; Huberty 2015). However, as this thesis is specifically concerned with lan-

guage use on Twitter as an object of study in its own right, it does not matter for us

how representative Twitter is of the general population.

What does matter more is that we are interested in characterising linguistic choices

for a particular subpopulation of Twitter’s user base, and the lack of ground truth infor-

mation available means it is often difficult to infer who belongs to a particular subpopu-

lation. Moreover, it is difficult to determine whether certain sociodemographic groups

may be systematically excluded by the indicators or inference methods we use to try

to sample from that subpopulation. In sections §3.3.1 and §3.3.2, we discuss poten-

tial sources of bias in data sampled from Twitter, the steps we have taken to minimise

them, and what implications they have for the interpretation of our findings.

3.3.1 Defining the sampling universe

A foundational challenge in sociolinguistic research is deciding how to define the SAM-

PLING UNIVERSE, that is, how to circumscribe the subsection of the population that

you wish to study (Tagliamonte, 2006, chap. 2). With traditional sociolinguistic field-

work methods such as surveys and interviews, it can be difficult to gain access to

members of the target community. In a large-scale corpus study using data from Twit-

ter, where most users’ data is publicly accessible via APIs, the challenge does not

lie in gaining access to data from people who belong to the target community, but in

identifying who they are.

User profiles on Twitter are quite minimal: users are invited to provide a brief

public summary about themselves, a location, a website URL, and their date of birth,

all of which are optional and can be left blank. Unlike Facebook, Twitter has never

required users to provide their real names, and users are free to choose creative display

names and change them at will. Users can also upload a profile picture, but again this

is optional and there is no obligation for the picture to be a true likeness of the user.

In our studies we’re interested in regionally specific language varieties, so our tar-

get subpopulations can be defined on the basis of geographical location. Even though

Twitter does provide facilities for users to disclose their location both on their profiles

and in the metadata of individual tweets, only a minority of users opt to do so.



28 Chapter 3. Data

Geotags Twitter offers its users the facility to geotag their tweets, that is, to label

them with a precise or approximate location. If a tweet is tagged with a precise lo-

cation, the exact latitude and longitude is included in the tweet object returned by the

APIs. Alternatively, users can label their tweets with a broader location label (such as

the name of a city or neighbourhood) or, in select locations only, with the name of a

specific landmark or business.

However, only a small proportion of tweets are geotagged: Sloan and Morgan

(2015) reported only 3.1% of users had any geotagged tweets in the 1% Spritzer sample

(see below) for April 2015. Moreover, while for some analyses it may be very useful to

know precisely where a user was at the moment they posted a tweet, individual tweet-

level labels can be misleading when what we really want to know is where the user

lives. Ideally we would identify where a user spends most of their time by considering

multiple geolocated tweets by the same user over a reasonably long time period, but

in a 1% sample we may have very few geotagged tweets per user. An alternative

heuristic employed by Pavalanathan and Eisenstein (2015a) is to infer a user’s home

region based on the geotags of tweets in which they are mentioned by other users. If

a user is only ever mentioned in tweets from one particular locality, it is reasonable

to assume they have strong ties to that area. However, this still requires a sufficiently

large dataset such that there will be many users for whom the dataset contains mentions

by several other users.

Location field Another manner in which Twitter users can disclose geographical

information is through the optional location field in the user profile, though users can

write whatever they wish in this field and there is no requirement that it be accurate, or

even anything to do with location. While we may be able to find many users who do

report locations that we can parse and reverse geocode, this would bias our sample in

favour of people who choose to provide their location in a standard format, and may

systematically exclude those with a greater tendency to use language in non-standard

or locally-specific ways. Clearly, this would be a problem when non-standard and

locally-specific language use is the object of study! Also, as with geotags this will be

noisy data if we want to use it to identify where people are ‘from’, as not everyone fills

it in sincerely, and even if it is sincere, we still don’t know whether it’s people’s current

location, where they grew up, or a location they identify with for some other reason.
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Who discloses their location? Several studies have tried to profile the demograph-

ics of people who share their location via geotags or their user profile.

Pavalanathan and Eisenstein (2015b) linked self-reported first names with aggre-

gate statistics from United States Censuses in order to induce approximate distributions

over ages and genders for users who geotag their tweets to locations in the USA, ver-

sus users who report US city names in the location field on their profile. Compared

with those who geotagged their tweets, a greater proportion of those who provided city

names in their profiles were estimated to be middle aged or older, and the proportion

who had male-associated names was slightly but significantly greater.

Wood-Doughty et al. (2017) used a variety of approaches to infer demographic

attributes in a separate dataset of US tweets, and likewise found that male-tagged users

were significantly more like to fill out their location fields, and significantly less likely

to enable geotagging. They also used census data to predict users’ ethnicity, and found

that Asian- and Hispanic/Latino-tagged users were more likely than White and African

American users to disclose their location, both via geotags, and via the location in

their profile. However, they caution that this could be an artefact of the way they

classify ethnicity: users with a greater propensity for self-disclosure may be easier

to classify as Asian or Hispanic, which then presents a biased view of associations

between behaviour and ethnicity.

Hashtags Rather than using explicit location information, another way to sample

users with ties to a particular region is to query the APIs for tweets which contain

hashtags relating to that region. More generally, sampling on the basis of hashtags is

a common approach when the population of interest consists of tweets relating to (or

users with some connection to) a particular topic or event (e.g. González-Bailón et al.

2011, Conover et al. 2013; Schrading et al. 2015, Sobhani et al. 2017).

Just as the subpopulation of users who disclose their location are not necesarily

represenative of the wider Twitter population, frequent users of hashtags may not be

either. Bruns and Stieglitz (2014) suggest that “accounts that use hashtags regularly

may be ‘Twitter experts’, and different from other users in their behaviour and ac-

tivity.” This is particularly important to bear in mind given that one question we are

specifically interested in is whether people modulate their linguistic behaviour when

including hashtags in their tweets. The answer may be different for people who fre-

quently use hashtags than for those who don’t.
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Another issue to keep in mind when sampling on the basis of hashtag use is that

people use hashtags for a variety of reasons. Although hashtags were originally devised

as a way to categorise tweets by keyword and extend their audience to potentially in-

terested users outside the author’s follower circle, the goal of bringing one’s message

or opinion to a broader audience and addressing people interested in a specific topic

is only one of ten motivations for hashtagging identified in a multimethod study by

Rauschnabel et al. (2019). While the audience-extending function was the most fre-

quent motivation for hashtag use among 141 Twitter users they surveyed, other moti-

vations include amusing other social media users, conforming with the posting style of

peers, being seen to be engaged with trending topics, and even strenghthening bonds

with an inner circle of friends, e.g. by using hashtags to refer to shared experiences

that only they would understand. Hence the intention behind the use of a hashtag may

not always be transparent, and it may not always be valid to assume that including a

hashtag in a tweet indicates a genuine interest in or association with the topic it appears

to index, or endorsement of the stance it appears to represent.

Summary and implications In summary, limiting our sampling universe to those

who do share their location may bias it towards certain sectors of our target population,

and systematically exclude others. Any other feature set we might conceive of to define

our sampling universe would bring its own inherent biases. As noted at the beginning

of this section, defining the sampling universe in such a way that it does not exclude any

sectors of society who are of interest to the study, or include any who are not, is also

a difficult issue for sociolinguistic studies which use traditional survey or interview-

based methods. However, when using Twitter data we have the additional problem of

it also being very difficult to characterise the demographic composition of the sample

we ultimately obtain.

This predicament, which Gerlitz and Rieder (2013) describe as “the fundamental

problem of how to go fishing in a pond that is big, opaque, and full of quickly evolv-

ing populations of fish”, has different implications for different kinds of studies. We

discuss the implications for our own studies in detail in the relevant commentary sec-

tions in Chapters 4-6, but generally speaking, the upshot is we need to be careful about

making quantitative claims, and should not assume that our findings are generalisable

beyond the samples we have.
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3.3.2 Obtaining an unbiased sample

Supposing we did have a well-defined target population whose members could be reli-

ably identified using tweet metadata, how could we retrieve an unbiased sample of this

population?

Streaming APIs The Twitter Streaming APIs offer samples of the Twitter datastream

via two public endpoints: the Sampling endpoint (aka the Spritzer) returns a small

random sample (initially advertised as approximately 1%9) of all public statuses, while

the Filtering endpoint returns public statuses that match one or more filter predicates.

Morstatter and colleagues have assessed the extent to which samples returned by

the Streaming APIs are unbiased representations of the overall population of relevant

tweets, by comparing data collected using these APIs with data collected over the

same time period using the proprietary Firehose stream (i.e. the full stream of publicly

available statuses). Their results indicate that the Sample endpoint is indeed unbiased,

since characteristics of the data it yields closely resemble those of unbiased random

samples drawn from the full Firehose stream (Morstatter et al., 2014).

On the other hand, their analyses did reveal some bias in the way data is provided

by the Filtering endpoint. Specifically, data obtained using the Filtering endpoint is

biased when the volume of tweets which match the query parameters exceeds 1% of the

volume of all tweets. When this happens, the API returns an incomplete sample from

the pool of tweets which match the query. Morstatter et al. (2013) used top hashtag lists

and topics obtained via LDA to characterise the pool of all tweets in the Firehouse data

that match a given set of parameters. They then compared these with the top hashtags

and topics in data drawn from the Filtering endpoint over the same time period with

the same parameters, and in unbiased random samples that they drew themselves from

the Firehouse pool. They found that the topics and top hashtags diverged more from

those of the Firehouse pool in the data from the Filtering endpoint than in their own

samples. These results indicate bias in the sampling mechanism used by the Filtering

endpoint, a conclusion which was corroborated in a similar investigation by Tromble

et al. (2017).

Search API Tweets can also be retrieved using Twitter’s Search API, which searches

against a pool of so-called ‘top’ tweets published in the past 7 days. Twitter’s docu-

9https://web.archive.org/web/20120708200616/https://dev.Twitter.com/docs/api/
1/get/statuses/sample

https://web.archive.org/web/20120708200616/https://dev.Twitter.com/docs/api/1/get/statuses/sample
https://web.archive.org/web/20120708200616/https://dev.Twitter.com/docs/api/1/get/statuses/sample
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mentation does not specify how ‘top’ tweets are chosen.

Analyses by González-Bailón et al. (2014) and Tromble et al. (2017) indicate that

given the same query parameters, the Search API consistently yields a smaller volume

of tweets than the Filtering endpoint of the Streaming API.

Tromble et al. (2017) used logistic regression models to gain insight into what

features Twitter may use to sample data for the Streaming and Search APIs. As input

they used a dataset of tweets from the Firehouse that matched certain parameters. The

dependent variable was a binary variable indicating whether or not each tweet was

returned by an API query using those same parameters. As independent variables they

used a variety of features relating both to the tweet itself (e.g. whether or not it was a

retweet, how many hashtags it contained, whether it contained embedded media) and

to the user who posted it (e.g. the user’s follower count, or the total number of tweets

they had posted).

Tromble et al.’s results suggest that the sampling mechanism used by the Filter-

ing endpoint of the Streaming API differs from that of the Search API. There were

also some striking differences in effect directions and sizes between models built with

different datasets collected a few months apart using the same API. This, they ar-

gue, points to the fundamental problem that “we simply do not know what we do not

know” (Tromble et al., 2017, p.25). While careful comparisons can provide some in-

sights into the extent to which particular attributes are systematically over- or under-

represented in samples returned by different APIs, they can’t be relied upon to inform

future research because “Twitter’s API algorithms can and do change on a regular ba-

sis” (Tromble et al., 2017, p.7).

Summary and recommendations Table 3.1 summarises the pros and cons of each

of the APIs discussed above. The Sample endpoint of the Streaming API is the best

option for collecting an unbiased, representative sample of all activity on Twitter. Since

the 1% sample can be prohibitively small, the Filtering endpoint of the Streaming API

may be more suitable for sampling a dataset with high coverage of tweets which meet

specific criteria, particularly if these criteria are unlikely to ever match much more

than 1% of the total volume of Twitter traffic (e.g. tweets from a reasonably small

geographical area, or tweets which contain niche keywords or hashtags). However,

the Filtering endpoint must be used with caution, as it is far from straightfoward to

determine when and how the samples it provides are biased (Morstatter et al., 2014;

Tromble et al., 2017). As for the Search API, since it is also subject to unknown biases
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Streaming API:

Sampling endpoint

Streaming API:

Filtering endpoint

Search API

X Unbiased sample of

all Twitter traffic

X Repurposable: full

real-time sample can

be archived and post-

filtered

××× Small sample size

(∼1%). Post-filtering on

infrequent phenomena

may yield prohibitively

small samples

××× Technical expertise

and resources needed to

maintain connection

X Can yield larger sam-

ples vs post-filtering the

Sample endpoint

××× May be biased when

>1% of Twitter traffic

matches parameters

××× Requires a substan-

tial amount of additional

work and resources to

identify when it is biased

××× Technical expertise

and resources needed to

maintain connection

X Requires less work

and resources to use

X Can retrieve historical

tweets (up to 1 week)

××× Rate limits result in

low data volumes

××× Search results biased

to favour ‘top’ tweets

Table 3.1: Pros (X) and cons (×××) of Twitter’s APIs for sampling

but yields lower volumes of data than the Filtering endpoint of the Streaming API,

we recommend it only for sampling Tweets which relate to unanticipated events that

occured within the last 7 days, if post-filtering an archive of the Spritzer stream is not

an option.

3.4 Overview of datasets collected

The analyses in this thesis are based on the following six datasets10, all of which are

derived from an archive of Twitter’s ‘Spritzer’ stream (see §3.3.2). The relationships

among these datasets are visualised in Figure 3.2.

10Various filtering/pre-processing steps were applied to each dataset before use; see Chapters 4 to 6
for full details.
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Geotagged-UK (GU) Tweets from the ‘Spritzer’ sample which were posted between

September 1st 2013 and September 30th 2014, and are geotagged to locations

within the UK.

Geotagged-Scotland (GS) The subset of tweets in the GU dataset which are geo-

tagged to locations within Scotland, specifically.

Indyref Tweets (IT) Tweets from the ‘Spritzer’ sample which were posted between

September 1st 2013 and September 30th 2014, and contain hashtags relating to

the 2014 Scottish Independence Referendum

Scottish Geotag Users’ Autumn 2014 Timelines (SG-Users) Tweets which were posted

in August, September, or October 2014 by users from the GS dataset. This

dataset is not restricted to tweets which appear in the ‘Spritzer’ sample; instead

it consists of complete User Timelines for the months concerned, retrieved using

the statuses/user timeline endpoint of Twitter’s REST API in March 2017.

The API returns up to 3200 of a user’s most recent tweets, so the dataset is re-

stricted to users who, as of March 2017, had not posted more than 3200 tweets

since autumn 2014. For other users, their autumn 2014 tweets were no longer

available at the time we collected this dataset.

Indyref Hashtag Users’ Autumn 2014 Timelines (IH-Users) Tweets which were posted

in August, September, or October 2014 by users from the IT dataset. Collected

in the same way as the SG-Users dataset.

US Geotags (G-USA) Tweets from the ‘Spritzer’ sample which were posted between

June 30th 2013 to July 1st 2016, and are geotagged to locations within the USA.

While Twitter’s Terms of Service and the ethical considerations discussed in §3.2

preclude us from sharing these datasets in full, we have made each dataset available

in the form of lists of user and tweet IDs, such that the tweets themselves can be re-

collected for use in future studies via Twitter’s APIs. The lists of IDs for each of

these six datasets are publically available at https://doi.org/10.5281/zenodo.

3517244.

In Chapter 4, the GU and GS datasets were used to identify distinctively Scottish

words. We then analysed relationships between support for Scottish independence and

usage rates of these distinctively Scottish words in the IH dataset.

https://doi.org/10.5281/zenodo.3517244
https://doi.org/10.5281/zenodo.3517244
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In Chapter 5, we wanted to tease apart effects of topic and audience on the use of

distinctively Scottish lexis. Because these analyses were concerned with intraspeaker

variation, we needed more tweets per user. The authors of the tweets in the GS and IT

datasets constitute two samples of users with a connection to Scotland: we know the

users in GS to have been there, while the users in IT care enough about the Scottish

independence referendum to have tweeted about it. So, we collected the SG-Users and

IH-Users datasets, and applied mixed effects models to each of these.

In Chapter 6, we developed an automatic method to facilitate the identification

of lexical variables in code-mixed text. We used the GU dataset to try to identify

Scottish/BrEng variables, and the G-USA for AAVE/GenAm variables. We combined

GU and G-USA to make a dataset for identifying GenAm/BrEng variables.
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#

#

UK Geotags 
1.65M Tweets; 450,000 Users

Scottish Geotags 
165,000 Tweets; 40,000 Users

Indyref Hashtags 
60,000 Tweets; 20,000 Users

Scottish Geotag 
Users’ 

Autumn 2014 
Timelines 
 1M Tweets;  
10,000 Users

Indyref Hashtag  
Users’ 

Autumn 2014 
Timelines 
2M Tweets;  

11,000 Users

1% ‘Spritzer’ sample 
July 2013—2016

Sept 2013—2014 
630M Tweets

USA Geotags 
8.3M Tweets

Figure 3.2: Venn diagram of datasets.



Chapter 4

Distinctively Scottish vocabulary and

Scottish independence

4.1 Introduction

In this paper we investigate how support for Scottish independence correlates with

distinctively Scottish vocabulary usage on Twitter. The extent to which people feel a

sense of Scottish identity has been suggested to have been an important factor in voting

decisions in the 2014 Scottish Independence Referendum. While not all supporters

of Scottish independence identify as Scottish (and many who oppose it do), the 2013

Scottish Social Attitudes survey did indicate a clear correlation between people’s sense

of national identity and their voting intentions in the referendum (ScotCen, 2013).

Moreover, a 2010 Scottish Government survey indiciated that the Scots language is an

important part of Scottish identity (Scottish Government, 2010).

In Labov’s (1978a) famous study of diphthong centralisation on the island of Martha’s

Vineyard, he found that inter-speaker variation in the use of this distinctive phonolog-

ical feature was best explained by the degree to which speakers identified themselves

with the island and the island way of life. A strong sense of Scottish identity may

similarly be indexed through the use of distinctively Scottish vocabulary.

We hypothesised (1) that Twitter users who supported Scottish independence would

be more likely to use distinctively Scottish lexis in their tweets, and (2) that they would

increase this usage when specifically discussing the referendum. Using a large dataset

of tweets covering a one-year period around the 2014 referendum, we identified terms

which are statistically associated with tweets composed in Scotland, as opposed to the

rest of the UK. We paired these with Standard English equivalents, and compared usage
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rates of the Scottish variants across users who had used pro- or anti- independence

hashtags.

This is a somewhat sensitive area, as many people feel agrieved that the Scots

language is often construed as being ‘just for nationalists’, and argue that politicisation

of its use is counterproductive to efforts to promote and destigmatise it (e.g. Uri 2018).

Our quantitative analysis shows that distinctively Scottish lexical variants are used on

Twitter both by pro- and anti-independence users. While those users we infer to be

supporters of independence do indeed use them at higher rates, our analysis suggests

that they are no more likely to use distinctively Scottish lexical variants when tweeting

about the independence referendum than in their general Twitter activity.

4.2 Author contributions

The paper is co-authored by me, Debnil Sur, Luke Shrimpton, Iain Murray, and Sharon

Goldwater. Luke Shrimpton extracted the initial dataset from the Spritzer archive,

and provided guidance with managemdent and processing of the data. Debnil Sur

helped to formulate the research questions, process the data, and conduct preliminary

analyses. As the leading author, I co-supervised Debnil Sur in the initital stages of the

project, produced the final datasets, conducted the final analyses, and wrote the paper.

Iain Murray advised on experimental design and helped to revise the final manuscript.

Sharon Goldwater supervised the project, offered suggestions, and helped to revise the

final manuscript.

4.3 The paper

The paper was accepted for publication at the 2017 EACL conference in Valencia,

where it was featured as an oral presentation. The publication reference is as follows:

Shoemark, P., Sur, D., Shrimpton, L., Murray, I., & Goldwater, S. (2017,
April). Aye or naw, whit dae ye hink? Scottish independence and lin-
guistic identity on social media. In Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics:
Volume 1, Long Papers (pp. 1239-1248).
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Abstract

Political surveys have indicated a relation-
ship between a sense of Scottish identity
and voting decisions in the 2014 Scot-
tish Independence Referendum. Identity
is often reflected in language use, suggest-
ing the intuitive hypothesis that individ-
uals who support Scottish independence
are more likely to use distinctively Scot-
tish words than those who oppose it. In
the first large-scale study of sociolinguistic
variation on social media in the UK, we
identify distinctively Scottish terms in a
data-driven way, and find that these terms
are indeed used at a higher rate by users of
pro-independence hashtags than by users
of anti-independence hashtags. However,
we also find that in general people are less
likely to use distinctively Scottish words
in tweets with referendum-related hashtags
than in their general Twitter activity. We
attribute this difference to style-shifting rel-
ative to audience, aligning with previous
work showing that Twitter users tend to
use fewer local variants when addressing a
broader audience.

1 Introduction

A central idea from sociolinguistics is that people’s
social identity is reflected in their use of language,
and that people modulate their use of language in
order to present particular identities in different
situations. The recent availability of social media
data has raised interest in confirming and extending
these results using large scale datasets. For exam-
ple, Twitter data has been used to examine patterns

of regional variation in general US English (Doyle,
2014; Huang et al., 2015), African American En-
glish (Jones, 2015), and global Spanish (Gonçalves
and Sánchez, 2014), and to study variation asso-
ciated with factors such as race/ethnicity (Jones,
2015; Blodgett et al., 2016; Jørgensen et al., 2015)
and gender (Bamman et al., 2014). These studies
have shown that tweets mirror spoken language in
many ways, such as displaying dialect variation not
only in the use of distinct lexical items, but also in
the use of non-standard spellings to indicate non-
standard pronunciation—in fact, these spellings
even reflect the phonological processes found in
spoken language (Eisenstein, 2015). There is also
evidence that, as in spoken language, individuals
may shift their style of language in response to the
audience. In particular, studies have found that
when the expected audience of a tweet is larger,
Americans use fewer non-standard and local words
(Pavalanathan and Eisenstein, 2015) and Dutch
bilingual speakers of a minority language are more
likely to use Dutch rather than their other language
(Nguyen et al., 2015). A small-scale case study
of a single Scottish Twitter user also provides pre-
liminary evidence that users may modulate their
production of regional variants according to the
topic of the tweet (Tatman, 2015).

Here we present the first large-scale sociolinguis-
tic study of British tweets, and the first to examine
the relationship between sociolinguistic variation
and political views using social media data. We use
a large corpus of tweets to examine the relationship
between users’ linguistic choices and their views
about the 2014 Scottish independence referendum.
The referendum (on whether Scotland should leave
the UK) generated considerable political discus-
sion and an unprecedented turnout of 84.6% of the



electorate, with the ‘No’ (anti-independence) side
taking 55.3% of the vote. The 2013 Scottish Social
Attitudes Survey (ScotCen, 2013) showed a clear
correlation between national identity and voting
intentions (53% of those who identified as ‘Scot-
tish not British’ said they intended to vote ‘Yes’ to
independence, vs. just 5% of those who identified
as ‘British not Scottish’), and there was much dis-
cussion in the popular press about the relationship
between a sense of Scottish identity and support
for Scottish sovereignty.

Although this recent discussion was not centered
on language, there is a long history of scholarly
discourse connecting the use of the Scots language1

and sociolinguistic and political identity (Grant,
1931; Mcafee, 1985; Corbett et al., 2003). If this
connection still holds today, then we might expect
to find that those on the ‘Yes’ side of the debate use
more identifiably Scottish language than those on
the ‘No’ side. We might also expect to find some
modulation of Scottish language use depending on
whether users are discussing the referendum or not.

To examine these questions, we used a data-
driven approach to identify linguistic terms that are
used more in Scotland than in the rest of the UK.
The identified terms include uniquely Scots words
that are attested in Scots literature dating back to
the 1600s and earlier, contemporary regional col-
loquialisms, spelling variants of Standard English
words which reflect Scottish pronunciations, and
acronyms used as shorthand for distinctive Scot-
tish phrases. From these, we selected variables
for which users can produce either a Standard En-
glish or Scottish variant (e.g., DO vs. DAE). We
then classified users as pro- or anti-independence
based on the referendum-related hashtags they used
and asked whether these two groups use Scottish
variants at different rates. We found that the pro-
independence group did use Scottish variants sig-
nificantly more than the anti-independence group,
although the overall rate of Scottish variants is very
low amongst all users.

Next, we compared the use of Scottish variants
in tweets containing referendum-related hashtags
to their use in other tweets. If users are aiming
to project their Scottish identity as part of politi-

1Historically, Scots has been considered a different lan-
guage than English (see §2), though with many cognates and
overlapping vocabulary. Most native Scottish people today
speak some variety of Scottish English, which retains a few
uniquely Scots words but is mainly distinguished from other
varieties of English by its pronunciation.

cal discourse, then we might expect greater use of
Scottish variants in referendum tweets than in non-
referendum tweets. However, previous studies have
suggested that non-standard and local variants are
used less frequently in tweets containing hashtags,
which typically have a larger audience than other
tweets (Pavalanathan and Eisenstein, 2015). This
effect would predict the opposite result—a lower
use of Scottish variants in tweets with referendum
hashtags—and indeed this is the result we found.
So it appears that although pro-independence users
do make greater use of Scottish variants overall,
they do not increase their Scottish usage when en-
gaging in broad-audience political discourse.

To summarize, the contributions of our paper are:
(1) The first large-scale study of dialect variation on
twitter in the UK. We show that in addition to using
Scots in speech and some literary genres such as po-
etry, people are using Scots in informal public writ-
ing. The data-driven approach enables us to iden-
tify Scotland-specific lexical items without relying
on pre-conceived notions of which variables to look
for (cf. Tatman, 2015), and reveals that in addition
to using attested Scots vocabulary, Twitter users
appear to be creatively adapting to the medium
with their use of acronyms for distinctly Scottish
turns of phrase. (2) The first study connecting soci-
olinguistic variables to political stance using social
media data, showing that pro-independence users
have a higher rate of Scottish usage. (3) Further
evidence of Pavalanathan and Eisenstein’s (2015)
claim that Twitter users modulate their language
according to the audience, with local variants being
less likely in tweets directed to larger audiences.

2 Context

‘Scots’ refers to the group of dialects historically
spoken in the Lowlands of Scotland. While Scots
has Anglo-Scandinavian origins in common with
English, by the 16th century its pronunciation, vo-
cabulary, and literary norms had considerably di-
verged from those of English, and Scots had be-
come established as the prestige language in Scot-
land (Kay, 1988).2 However, following the Union
of Crowns in 1603, when King James VI of Scot-
land acceded to the thrones of England and Ireland,

2Previously, Gaelic had been the dominant spoken and
literary language in Scotland. Note that while in medieval
times non-Gaelic speakers referred to the Gaels as ‘Scots’,
what we now refer to as ‘Scots’ is the Anglo-Scandinavian
language which spread at the expense of Scottish Gaelic (a
Celtic language) in the 15th & 16th centuries.



he and his court began to adopt English norms
in their writing. After the Union of Parliaments in
1707, English firmly replaced Scots as the language
of serious or elevated discourse in Scotland (Grant,
1931). While some people still use distinctive el-
ements of Scots in their speech, until recently the
average Scottish person’s exposure to written Scots
would have been largely confined to a select few
literary domains such as poetry and comic narrative
(Corbett et al., 2003). However, social media has
given rise to a new genre of casual, communicative
writing that is potentially visible to large and di-
verse audiences, providing both a platform and an
impetus to express one’s identity through the use of
written language. Below, we provide three example
tweets (each from a different user) which contain
orthographic representations of Scots vocabulary
and/or Scottish English pronunciation. Standard
English variants of Scottish terms are provided in
italics.

(1) No matter how shite [shit] a day you’ve had
just remember there’s always good biscuits in
yer [your] grannies hoose [house]

(2) “Absolute carnage” at polling station earlier.
Bairns [kids] playing, polite grannies, Yessers
and Nos blethering [blathering] to each other.
#VoteYesScotland

(3) #fuckoffscotland hud on we will fuck off but
afore we dae eh challenge ye tae a square go
ya queen loving DIDDY doughnut Sasijs YUP-
TAE
#fuckoffscotland hold on we will fuck off but
before we do I challenge you to a fair fight you
queen loving fools. What are you doing!?

3 Data

Our data was drawn from the Sample endpoint
of Twitter’s Streaming API (a.k.a. the ‘Spritzer’),
which provides a random 1% sample of all public
tweets in near real-time. We started with all tweets
streamed from the Spritzer between 1st September
2013 and 30th September 2014. These dates cover
a year of activity leading up to the referendum, as
well as the day the vote took place (18 September
2014), and immediate reactions. We used a lan-
guage classifier (Lui and Baldwin, 2012) to filter
out non-English tweets, yielding an initial dataset
of 629,431,509 tweets.3 Because we are interested

3One might be concerned that an automatic language filter
could remove some of the heavily Scottish tweets. However,

in the linguistic choices that individuals make in
various contexts, we took steps to remove tweets
which were not originally authored by the individ-
ual who posted them. Retweets (tweets which are
verbatim copies of other tweets) were identified by
a case-insensitive search for the token ‘RT’, and
discarded. Quote tweets (tweets which contain ver-
batim copies of other tweets, but are augmented
with original comments) were dealt with by dis-
carding any text between double quotation marks,
but retaining the remainder of the tweet.

From this initial dataset we extracted three over-
lapping subsets:

The Geotagged-UK (GU) dataset contains all
tweets geotagged to a location in the United King-
dom (1,654,204 tweets by 446,923 distinct users).

The Geotagged-Scotland (GS) dataset con-
tains all tweets geotagged to a location in Scotland
(166,992 tweets by 40,861 distinct users).

The Indyref Tweets (IT) dataset consists of
tweets containing hashtags relating to the 2014
Scottish Independence Referendum.

To construct the IT dataset, we first created a
list of relevant hashtags, starting with the following
five seed hashtags: #IndyRef, #VoteYes, #VoteNo,
#YesScotland, #BetterTogether.4 For each of these
five seeds, we extracted from our initial filtered
dataset a list of all tweets by any user who used
the seed hashtag. We identified the 100 most fre-
quent hashtags in each of these five lists of tweets,
and manually discarded all hashtags which were
unrelated to the referendum, as well as those which
were highly ambiguous (e.g., #Indy, which some-
times refers to the referendum, but also commonly
refers to a genre of music). The resulting list of
referendum-related hashtags is given in Table 1.

Next, we extracted all tweets from our initial
dataset which contain at least one of the hashtags
on this list, yielding 77,708 tweets by 26,019 dis-
tinct users. We then applied a heuristic to filter
out tweets produced by bots and spammers: for

even tweets such as example (3) in §2 are assigned a very
high probability of being English by the filter. Perhaps other
tweets with many Scottish terms were filtered out, in which
case we will underestimate the probability that users choose
Scottish variants. However this issue should not cause us to
find differences in use between different groups where there
are none.

4‘Yes Scotland’ and ‘Better Together’ are the names of
the principal organisations representing the Yes and No vote
campaigns, respectively.



each user in the IT dataset for whom we had at
least 5 tweets in the initial dataset, we computed
the proportion of their tweets that contain URLs,
and discarded users for whom this proportion was
in the 90th percentile. This step filtered out 11,443
tweets by 1389 users.

Note that seven of the hashtags in Table 1
(#voteyes, #bettertogether, #nothanks, #voteno,
#yes2014, #letsstaytogether, and #yesvote) are oc-
casionally used in contexts unrelated to the Scottish
Independence Referendum (e.g. #bettertogether
can also refer to interpersonal relationships). How-
ever, they are distinctive enough that if a user has
also used hashtags which are unambiguously re-
lated to the referendum, then it seems reasonable
to assume that their usage of these potentially-
ambiguous hashtags relates to the referendum too.
Therefore, in order for a tweet containing one of
these seven hashtags to be retained in the Indyref
dataset, we required that its author had also used at
least one other hashtag from Table 1. This criterion
filtered out a further 6601 tweets by 6041 distinct
users, such that the final IT dataset contains 59,664
tweets by 18,589 distinct users.

4 Identifying distinctively Scottish
vocabulary on Twitter

We wish to identify terms that are more likely to be
used by Twitter users in Scotland than in the rest
of the UK. We follow the method of Pavalanathan
and Eisenstein (2015), who used the Sparse Addi-
tive Generative Model of Text (SAGE) framework
(Eisenstein et al., 2011) to identify tweet terms asso-
ciated with metropolitan areas in the United States.
SAGE models deviations in the log-frequencies of
terms in a corpus of interest (here, the GS dataset)
with respect to their log-frequencies in some “back-
ground” corpus (here, the GU dataset). The esti-
mated deviations are regularized to avoid overstat-
ing the importance of deviations in the frequencies
of rare words. Here, we use a publicly available
implementation of SAGE5 to obtain log-frequency
deviation estimates for all terms which occur at
least fifty times in the GU dataset, excluding hash-
tags, mentions, URLs, and stopwords. The terms
with the highest estimates are those which are most
distinctive to tweets geo-located in Scotland.

5https://github.com/jacobeisenstein/jos-gender-2014/

4.1 Scotland-specific terms

Unsurprisingly, many of the Scotland-specific
terms are proper nouns which are topically associ-
ated with Scotland, such as Scottish placenames,
political figures, and sports personalities. There are
also several common nouns (e.g. ‘devolution’, ‘bag-
pipes’) and verbs (e.g. ‘canvass’, ‘invade’) which
are strongly associated with the political or cul-
tural climate in Scotland. These terms occur with
greater relative frequency in the GS dataset simply
because their referents are discussed with greater
relative frequency; not because they are distinct
from the terms that people in the rest of the UK
use to index those referents. However, there are
also many terms with high log-frequency devia-
tions that are linguistically distinctive. To isolate
such terms, we began with the 400 terms with the
highest estimated deviations, and then manually fil-
tered this list, discarding Standard English words,
proper nouns, numerals, and non-standard terms
which had clear topical associations (e.g. ‘devo’:
an abbreviation for ‘devolution’; ‘hh’: an acronym
for ‘Hail Hail’, a football chant used by supporters
of Celtic F.C.). The remaining 113 distinctively
Scottish terms are listed in Table 2.

Almost three fourths of these terms are at-
tested in the Scottish National Dictionary (SND)
(Grant and Murison, 1931) or its online sup-
plement (Scottish Language Dictionaries, 2004),
which catalogue words that are distinctive to Scots
(i.e. those which are not used, or are used dif-
ferently, in Standard English), covering the pe-
riod from the 1700s up to the present day. Many
are also attested in the Dictionary of the Older
Scottish Tongue (Aitken et al., 1990), which cat-
alogues the entire vocabulary of Scots from the
1100s to the late 1600s. Of the attested Scots
words, some are unique to Scots, e.g. BAIRNS

(‘sons/daughters’), GREETIN (‘weeping’); some are
cognates with English words that have fallen out
of common usage, e.g. CRABBIT (‘crabbed’; ‘ill-
tempered’), FEART (‘feared’; ‘frightened/timid’);
some are cognates with English words but have a
wider range of senses, e.g. HUNNERS is cognate
with‘hundreds’, but used more generally to mean
‘lots’ as in “love you hunners”, “there was hun-
ners to do”; and many differ only in form from
their English cognates, e.g. AFF (‘off’) and BAW

(‘ball’).
Of the 29 terms that are not attested in SND, 9

are spelling variants or derived forms of attested



Neutral hashtags: #IndyRef (46,491) #ScotlandDecides (2552) #BBCIndyref (1591) #ScotDecides (934)
#BigBigDebate (676) #ScottishIndependence (583) #IndyPlan (296) #ScottishReferendum (239) #IndyReasons (180)
#IndependentScotland (26)
Yes hashtags: #VoteYes (8463) #YesScotland (1453) #YesBecause (1312) #The45 (908) #YouYesYet (827) #YesScot (670)
#ActiveYes (508) #HopeOverFear (325) #Yes2014 (321) #VoteYesScotland (256) #GoForItScotland (153)
#The45Plus (138) #YesFlash (114) #GenYes (92) #YesVote (76) #1Year2Yes (56) #VoteAye (53) #FreeScotland (52)
#SaorAlba (45) #YesGenerations (39) #RIPBetterTogether (36) #NHSForYes (24) #AnotherScotlandIsPossible (23)
#EndLondonRule (13)
No hashtags: #BetterTogether (2342) #NoThanks (1103) #VoteNo (867) #LabourNo (333) #LetsStayTogether (145)
#VoteNo2014 (92) #UKOK (86) #VoteNoScotland (45) #JustSayNaw (43) #VoteNaw (42) #NoScotland (34)
#DayOfUnity (30) #MaintainTheUnion (9)

Table 1: Hashtags related to the Scottish Independence Referendum and their frequencies in the IT dataset

Scots words, e.g. CANA, CANNY, and CANI are
alternative spellings of the attested CANNAE, and
WANTY is a contracted form of ‘want to’, analo-
gous to the attested GONNAE and GONY. A further
5 are orthographic representations of distinctively
Scottish pronunciations, e.g. ANO (‘I know’), HING

(‘thing’); and 2 are acronyms for distinctively Scot-
tish turns of phrase: GTF (‘Get Tae Fuck’ ) and
MWI (‘Mad Wae It’). The final 13 could be de-
scribed as contemporary Scottish slang, and in-
clude abbreviations: BEVY (‘beverage’)6, DEFOS

(‘definitely’); drug-related lexis: WHITEY, ECCIES;
profanities: BOABY, FANNYS; and everyday af-
fective and descriptive words: DYNO (‘amazing’),
ROASTER (‘idiot’).

4.2 Lexical variables
Our goal is to measure the rate at which people
index their Scottishness (either consciously or sub-
consciously) through the use of distinctively Scot-
tish words, and to find out whether this rate varies
across different groups of users (Yes hashtag users
vs. No hashtag users), or across different contexts
(tweets which contain referendum-related hashtags
vs. tweets that don’t).

Were we to directly compare the frequencies of
our Scottish terms across different sets of tweets, it
would be difficult to untangle differences in the rate
at which users are indexing the referents of those
terms from differences in the rate at which they
are indexing their Scottishness. For example, if
people use the term MASEL (‘myself’) with a lower
frequency in one context than in another, this could
be because they are modulating their use of distinc-
tively Scottish terms in response to the context, but
it could also be because they are modulating the

6While‘bevy’ is also used colloquially for ‘beverage’ in
other parts of the UK, in Scotland it is more frequent and can
additionally be used as a mass noun (“I had so much bevy I
couldn’t even carry it”), and as a verb (“I’d bevy with him
every weekend”).

rate at which they talk about themselves. To avoid
this confound, we instead compare the conditional
probabilities with which Scottish terms are used,
given that their referents are being indexed at all.

We therefore consider only those Scottish terms
for which we can identify semantically equivalent
Standard English variants. We require that each
variant of a given variable indexes the same set of
senses and can occur in the same set of contexts,
so for example we do not include YOUS as a vari-
ant of YOU, since while Scottish YI and Standard
English YOU can index both the singular and plu-
ral second person pronouns, YOUS is only used
for the plural. We also did not include variants of
YES and NO since their use could be influenced by
campaign slogans (e.g., the hashtags #VoteAye and
#JustSayNaw). Our variables are listed in Table 3.

5 Study 1: Scotland-specific vocabulary
usage on either side of the debate

Do tweeters who use Yes hashtags use Scottish
variants at a higher rate than tweeters who use No
hashtags, either when using these hashtags, or in
general?

5.1 Method
We assign users in the IT dataset to two groups, Yes
and No, based on the quantity nu,yes

nu,yes+nu,no
, where

nu,yes is the number of tweets in which user u has
used at least one of the Yes hashtags and none of the
No hashtags in Table 1; and nu,no is the number of
tweets in which u has used at least one No hashtag
and none of the Yes hashtags. The Yes group con-
sists of all users for whom this quantity is greater
than or equal to 0.75, while the No group consists
of all users for whom it is less than or equal to 0.25.
Users for whom the value lies between 0.25 and
0.75 (as well as those for whom our dataset does
not contain any tweets with Yes or No hashtags),
are not assigned to either group. The Yes group



Acronyms: GTF MWI
Closed Class Words: ABOOT AE AFF ATS DAE FAE HAE MASEL MASELF OAN OOR OOT TAE WAE WAN WI WIS YERSEL
YI YIN YOUS
Contractions CANNAE CANNI CANY CANA DEH DINI DINNY DIDNY DOESNY GONNAE GONY ISNY WANTY YER YIR
Discourse Markers: ACH ANAW ANO AWRIGHT AWRITE AWRYT AYE EH NAE NAW OOFT YASS YASSS YASSSS YASSSSS
YIP
Open Class Words: AULD AWFY BAIRNS BAW BAWS BELTER BELTERS BEVY BOABY BOKE BRAW BURD BURDS
CRABBIT DAFTY DAIN DEFOS DOON DUGS DYNO ECCIES FANNYS FEART FITBA FUD GAD GAWN GEES GID GRANDA
GREETIN HAME HAW HING HINK HOOSE HOWLIN HUNNERS JIST LADDIE LASSIE LASSIES MANKY MAW MAWS MORRA
MONGO PISH PISHED PISHING RAGIN ROASTER SARE SHITE SHITEY STEAMIN SUHIN WEANS WHITEY

Table 2: Scotland-specific vocabulary. Standard English equivalents of many words are shown in Table 3.

contains 4,513 users, while the No group contains
1,356 users, which is consistent with the general
perception at the time that the Yes campaign was
much more vocal than the No campaign. To test our
hypothesis that the probability of choosing Scot-
tish variants is, on average, greater for users in the
Yes group than for users in the No group, we esti-
mate the difference between the two groups in the
average probability of choosing Scottish variants,
and conduct a permutation test to approximate the
distribution of this difference under the null hypoth-
esis. We first test whether the Yes group are more
likely than the No group to use Scottish variants
in tweets which contain hashtags that indicate a
stance on the referendum. Subsequently, we test
whether the Yes group are more likely than the No
group to use Scottish variants in general across all
of their tweets.

5.1.1 Test statistic
Let Ug be the set of all users in group g 2 {yes, no}
who have used at least one of the variables in
Table 3. For a given user u 2 Ug, let V be
the set of all variables that u has used in at least
one tweet. We estimate the probability of user u
choosing a Scottish variant of variable v 2 V as
p̂u,v =

nu,vscot

nu,v
, where nu,vscot is the token count

of Scottish variants of v in user u’s tweets, and
nu,v is the token count of all variants of v in user
u’s tweets. Averaging across variables, we obtain
p̂u = 1

V

P
v2V p̂u,v. We then average across users

to obtain the group mean, p̂g = 1
U

P
u2Ug

p̂u. Our
test statistic is the difference between the two group
means, d = p̂yes � p̂no.

5.1.2 Permutation test
We randomly shuffle users between the two groups
(maintaining each group’s original number of
users), and re-compute the value of d using
these permuted groups. We repeat this procedure
100,000 times in order to approximate the distri-

Tweets w/ Yes
or No hashtags

All tweets

Group Yes No Yes No
# Users 3776 1121 4352 1322
# Tweets 10,436 2411 173,171 80,736

Table 4: Number of users and tweets included per
group in the two analyses in Study 1

bution of differences in group means that would
be observable were the difference independent of
the assignment of users to groups. The proportion
of permuted differences which are greater than or
equal to the observed difference between the origi-
nal group means provides an approximate p-value.

5.2 Results

For a tweet to be included in the analysis, it must
contain at least one of the variables in Table 3.
Hence not all users contribute data to the test statis-
tic, as some have not used any of the variables
in their tweets. The number of tweets and users
included in each analysis are shown in Table 4.

The results for the first analysis are shown in the
left column of Table 5. The difference between the
two groups in their average probability of choosing
Scottish variants in tweets that contain polarised
referendum hashtags is statistically significant (p <
0.002). Results for the second analysis are shown
in the right column of Table 5. Once again, the
difference between the two groups is statistically
significant (p < 0.001).

5.3 Discussion

The results show that the Yes group do use Scottish
variants at a significantly higher rate than the No
group, both when using Yes or No hashtags, and
in general. The stronger significance level for the
‘All tweets’ dataset is partly due to its larger size
(see Table 4), which enables better estimates of the



Variable Scottish variants (freq. per million words) Standard English variants (freq. per million words)

ABOUT ABOOT (50) ABOUT (2562)
ALRIGHT AWRIGHT (10), AWRITE (17), AWRYT (17) ALRIGHT (77), ALL RIGHT (4)
BALL BAW (11) BALL (116)
BALLS BAWS (17) BALLS (47)
BIRD BURD (35) BIRD (78)
BIRDS BURDS (31) BIRDS (44)
DEFINITELY DEFOS (27) DEFINITIELY (217)
DIDNT DIDNY (26) DIDNT (563), DID NOT (31)
DO DAE (61) DO (2712)
DOESNT DOESNY (18) DOESNT (433), DOES NOT (33)
DOGS DUGS (11) DOGS (69)
DOING DAIN (17) DOING (590)
DONT DEH (12), DINI (12), DINNY (62) DONT (2880), DO NOT (92)
DOWN DOON (49) DOWN (786)
FOOTBALL FITBA (13) FOOTBALL (289)
FROM FAE (77) FROM (2485)
GIVES GEES (14) GIMME (5), GIVE ME (108), GIVE US (21), GIVES (75)
GOING GAWN (15) GOING (1884)
GOOD GID (82) GOOD (2602)
GRANDAD GRANDA (7) GRANDAD (19), GRANDFATHER (5), GRANDPA (9)
HAVE HAE (9) HAVE (4549)
HOME HAME (22) HOME (832)
HOUSE HOOSE (20) HOUSE (463)
I KNOW ANO (42) I KNOW (556)
ISNT ISNY (16) ISNT (342), IS NOT (151)
JUST JIST (7) JUST (5550)
MYSELF MASEL (14), MASELF (15) MYSELF (553)
OF AE (75) OF (9186)
OFF AFF (82) OFF (1567)
OLD AULD (28) OLD (526)
ON OAN (38) ON (7782)
ONE WAN (33), YIN (28) ONE(2537)
OUR OOR (14) OUR (790)
OUT OOT (181) OUT (3053)
PISSED PISHED (19) PISSED (66)
PISSING PISHING (12) PISSING (32)
SHIT SHITE (428) SHIT (764)
SHITTY SHITEY (25) SHITTY (52)
SOMETHING SUHIN (17) SOMETHING (614)
SORE SARE (13) SORE (140)
THATS ATS (9) THATS (1405)
THING HING (11) THING (749)
THINK HINK (34) THINK (1939)
TO TAE (186) TO (19996), TOO (1629)
TOMORROW MORRA (27) TOMORROW (1183)
WANT TO WANTY (52) WANNA (284), WANT TO (940)
WAS WIS (33) WAS (4197)
WITH WI (85), WAE (116) WITH (4774)
YOU YI (26) YOU (10891)
YOUR YER (237), YIR (11) YOUR (3094), YOURE (915), YOU ARE (342)
YOURSELF YERSEL (11) YOURSELF (193)

Table 3: Variables used in our studies, with each variant’s frequency per million tokens in the GS dataset



Tweets w/ Yes or
No hashtags

All tweets

p̂yes 0.00766 0.01443
p̂no 0.00211 0.00734
d 0.00555 0.00709
p-value 0.00103 0.00001

Table 5: Results of the two analyses in Study 1

usage rates. While the rates are very low overall,
the relative differences are large: the Yes group rate
is more than three times the No group rate when we
include only tweets with Yes or No hashtags, and
approximately twice as big when we include all
tweets. The higher rates in the ‘All Tweets’ dataset
suggest that both groups of users chose Scottish
variants less often when discussing the referendum
than in their other tweets. However, the test we
used does not provide a significance value for the
difference in usage rates across the two datasets. To
establish whether users do modulate their usage of
Scottish variants when discussing the referendum,
we will need a more careful paired design.

6 Study 2: Effects of topic and audience
on Scotland-specific vocabulary usage

Do tweeters choose Scottish variants at a different
rate when using referendum-related hashtags than
in their other tweets?

6.1 Method

We need a statistic that corrects for the fact that
some variables might have higher rates of Scottish
variants than others. For example if users tend to
produce Scottish variants of variable v1 at a higher
rate than for v2, and use v1 more in tweets that
don’t contain referendum-related hashtags, then it
could appear that users are suppressing their Scot-
tish usage in referendum-related tweets when in
fact this is a lexical effect.

Let U be the set of all users who have used at
least one of the variables in Table 3 in both a tweet
that contains a referendum-related hashtag (i.e. a
tweet that belongs to the IT dataset, referred to
hereafter as an Indyref tweet) and in a tweet that
does not contain a referendum-related hashtag (re-
ferred to hereafter as a Control tweet). For a given
user u 2 U , let V be the set of all variables that
u has used in at least one Indyref tweet, and in at
least one Control tweet. Let p̂I,v for user u be the

estimated probability that u chooses a Scottish vari-
ant of variable v 2 V , conditioned on the fact that
she is using variable v in an Indyref tweet. Anal-
ogously, let p̂C,v be the estimated probability that
u chooses a Scottish variant of variable v, condi-
tioned on the fact that she is using variable v in a
Control tweet. The difference in user u’s proba-
bility of choosing a Scottish variant of variable v
in an Indyref tweet and in a Control tweet is then
dv = p̂I,v � p̂C,v. Averaging across all variables,
we define du = 1

V

P
v2V dv.

The null hypothesis is that on average, users are
no more or less likely to choose Scottish variants
in Indyref tweets than in Control tweets. There-
fore, under the null hypothesis, the mean value of
du across all users, d̄u = 1

U

P
u2U du, would be

zero. We perform a one-sample t-test to determine
whether d̄u is significantly different than zero.

We use this method to conduct two separate anal-
yses. In the first analysis, our pool of Control
tweets is the set of all tweets from the original fil-
tered dataset that do not contain any of the hashtags
in Table 1. In the second analysis, we limit our pool
of Control tweets to those which do not contain any
of the hashtags from Table 1, but do contain at least
one other hashtag. This second analysis is designed
to test whether the recent finding that US Twitter
users are less likely to use regionally-specific words
in tweets which contain hashtags (Pavalanathan and
Eisenstein, 2015) applies to Scottish users as well.

6.2 Results
The number of tweets and users that were included
in each analysis are shown in Table 6.

Results for the first analysis are shown in the left
column of Table 7. The difference is statistically
significant (p < 0.01), indicating that on average,
individuals are less likely to choose Scottish vari-
ants when using referendum-related hashtags than
in their other tweets. Results for the second analy-
sis are shown in the right column of Table 7. In this
case, the difference is not statistically significant.

6.3 Discussion
In light of (a) the apparent relationship between
national identity and constitutional preference, (b)
the history of Scots as the prestige language of
a previously-independent Scotland, supplanted by
English in large part due to the birth of the United
Kingdom, and (c) the results of Study 1, which
indicate that pro-independence users choose Scot-
tish variants at a significantly higher rate than anti-



All Controls Controls w/
Hashtags

# Users 11,011 7429
# Indyref Tweets 41,924 35,241
# Control Tweets 693,815 195,145

Table 6: Number of users and tweets included in
the two analyses in Study 2

All Controls Controls w/ Hashtags

d̄u �0.0015 �0.0010
std error 0.0005 0.0006
t-statistic �2.996 �1.758
p-value 0.0027 0.0788

Table 7: Results of the two analyses in Study 2

independence users—it may at first appear surpris-
ing that people are less likely to choose Scottish
variants in tweets containing referendum-related
hashtags than in their other tweets.

It is conceivable that Yes users increase their
rate of Scottish variants in Indyref tweets whilst
No users decrease it, such that their effects can-
cel out; but since Yes users are more prolific in
the IT dataset, if anything we would expect this
imbalance to make the effect even more positive.
The fact that we see a significant negative effect
in spite of the greater number of Yes tweets means
we can be reasonably confident that even if Yes
users aren’t significantly reducing their usage of
Scottish variants in Indyref tweets, they certainly
aren’t increasing it.

It is also worth noting that we did not exhaus-
tively identify every hashtag that has been used in
relation to the referendum, so inevitably there will
be some tweets with referendum-related hashtags
in the Control set (such as example tweet (3) in §2),
and there may also be some non-referendum tweets
in the Indyref set. However, if anything this would
dilute any differences between the two lists, yet we
still find an effect.

The fact that this effect does not reach signif-
icance when we remove Control tweets without
hashtags suggests that the primary reason users are
reducing their rate of Scottish variants in Indyref
tweets is not because of the topic under discussion,
but because the use of hashtags broadens the po-
tential audience. This explanation accords with
Pavalanathan and Eisenstein’s (2015) finding that

amongst Twitter users in the US, non-standard and
regional variants are less likely to be used in tweets
that target larger audiences. Of course, it is possible
that topic has an effect as well, but the present study
does not provide evidence for that conclusion.

7 Conclusion

We presented the first large-scale study of distinc-
tively Scottish language use on social media, show-
ing that this use includes a mixture of traditional
Scots vocabulary, newer Scottish slang, and alter-
native spellings that reflect Scottish pronunciation.
We also studied how users’ language might reflect
their political views and discourse. We showed that
Yes users use Scottish variants at a higher rate than
No users, whether discussing the independence ref-
erendum or not. But overall, users tend to decrease
their use of Scottish variants when discussing the
referendum. This result suggests that although Yes
users generally express a stronger Scottish linguis-
tic identity than No users, they are not choosing to
express this identity strongly in political discourse
aimed at a broad audience. Due to the very low
rates of Scottish variants overall, our data set is too
small to study differences between individual vari-
ables or even conclusively say whether there may
be effects of both topic and audience size on the use
of Scottish language. However, we hope to be able
to answer these questions in future by collecting a
more complete set of data for the particular users
studied here.
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4.4 Comments on the paper

In this paper we have established that use of the Scots language and regionally-specific

terms and spellings is prevalent on Twitter and corresponds to features known in the

linguistic literature about Scots and Scottish English, while we have also identified

some new distinctively Scottish terms which are specific to social media text.

In Study 1 we found that distinctively Scottish variants were used at a higher rate

by users who predominantly used pro-independence hashtags (the Yes group) than by

those who predominantly used anti-independence hashtags (the No group). A limita-

tion of this study is that the IT dataset did not contain enough geotags to characterise

the geographic distribution of the tweets within it (while the GS dataset did not con-

tain enough tweets with indyref hashtags to be used for the main analyses). Since we

lack geolocation information, we can’t rule out the possibility of an imbalance in the

proportions of users who are from Scotland in the Yes and No groups; for example, it

could be that a greater proportion of users in the No group are from outwith Scotland,

and hence less likely to even have the potential to index a Scottish identity through the

use of distinctively Scottish variants.

While the low absolute rates of Scottish variant usage suggest that the IT dataset

does contain many users who do not have these variants in their verbal repertoires at

all, this is less of a concern for Study 2, where we looked at intraspeaker variation.

Study 2 is concerned with relative usage rates by the same set of users across different

contexts, so if many users do not use distinctively Scottish variants at all, this may

affect the size of the effect, but not its direction. However, this study is limited by the

fact that its design does not enable us to distinguish the effect of a tweet being about the

Scottish independence referendum from the effect of the audience-broadening function

of a hashtag.

We address these limitations in Chapter 5, wherein we use a topic model rather than

relying on hashtags to classify the topics of tweets, and we use a more sophisticated

method of analysis to model effects of both audience and topic on the use of Scotland-

specific variants, whilst controlling for variation in the base rate of Scottish variant

usage across different users and variables.
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4.5 Follow-ups and future work

The studies presented in this chapter were replicated by Stewart et al. (2018) on a

dataset of tweets related to the Catalonian referendum. Like us, they found more mi-

nority language use among those who used pro-independence hashtags. However, con-

trary to our Study 2 results regarding usage of distinctively Scottish lexis, they found

that usage of Catalan was more likely in tweets with hashtags relating to the referen-

dum than in other tweets by the same users. A potential explanation for this difference

is the fact that, as Stewart et al. note, the Catalan language plays an integral part in

the Catalonian nationalist narrative; while conversely the Scottish National Party ex-

plicitly promoted a narrative of civic nationalism during their referendum campaign,

deliberately seeking to distance themselves from ethnic nationalism which would base

the case for Scottish independence on claims to a distinctive cultural and ancestral

heritage (McAnulla and Crines, 2017). Civic nationalism focuses more on distinctive

political and economic institutions and practices, and enables any individual resident in

Scotland to legitimately identify as Scottish, regardless of their birthplace, ancestry, or

the language they speak (Soule et al., 2012)1. Furthermore, Catalan enjoys much more

prevalence and prestige within Catalonia than the Scots language does in Scotland:

Catalan is the official language of Catalonia and is very widely spoken there, including

as a medium of education, while Scots is still quite stigmatised even within Scotland,

and only fairly recently gained recognition as a minority language in Scotland.

It would be interesting to conduct similar studies with respect to Scotland’s other

indigenous minority language, Scottish Gaelic. Another potential direction for future

work (which would require a larger collection of geolocated tweets) would be to anal-

yse the geographical dispersion of the different distinctively Scottish variants we have

identified. In the studies presented here we have treated all of these variants as if they

belong to one homogeneous language variety, but in reality the Scots language consists

of multiple dialects, and Scottish English accents also vary regionally. For example,

the variants HING, HINK, and SUHIN all reflect th-debuccalisation, a phonological fea-

ture traditionally associated with working-class speech in Glasgow (Stuart-Smith et al.,

2007). It would be interesting to see whether usage of these variants on Twitter is also

localised, and to what extent dialect levelling has occured. It would also be interesting

1That being said, Mycock (2012) has argued that the SNP’s claim to progressive civic nationalism “is
an aspiration rather than a reality”, noting that they do sometimes opportunistically flag up grievances
around the historical oppression of Scotland’s indigenous languages, and have asserted that the Scots
language ‘is part of our identity and our heritage as a nation’ (Mycock, 2012)
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to investigate whether there are differences in usage patterns between the variant forms

that are attested in Scots dictionaries, and those that are not. Finally, the time dimen-

sion could be exploited to investigate whether usage patterns changed throughout the

referendum campaign and its aftermath.





Chapter 5

Teasing apart topic and audience

5.1 Introduction

In Chapter 4 we found that users tended to reduce their rates of distinctively Scottish

vocabulary usage in tweets which contained hashtags relating to the Scottish Indepen-

dence Referendum. Although our intent had been to test whether users modulate their

usage of Scottish variants when tweeting about the referendum, what we actually mea-

sured in that study was the effect of including referendum-related hashtags in a tweet,

which can function not only as markers of topic but also to broaden the potential au-

dience. In this chapter we present a follow-up study, in which we infer tweet topics

using topic models as opposed to hashtags, and use mixed effects logistic regression

to tease apart the effects of tweet topic and expected audience size (operationalised in

terms of hashtag and mention use) on usage rates of distinctively Scottish lexis in two

datasets of tweets by distinct user samples.

These two datasets cover the same time period but are sampled from two distinct

(though slightly overlapping) populations: users who have posted tweets with Scottish

geotags, and users who have posted tweets containing referendum-related hashtags.

Both of these are populations which we could reasonably expect to include users with

distinctively Scottish variants in their verbal repertoires, but studies suggest that geo-

tags are more likely to be used by younger users (see §3.3.1), while we may assume

that the demographic profile of users of political hashtags is likely to skew older and

diverge from that of the general Scottish Twitter population in other ways. Analysing

these two samples side-by-side enables us to examine how biases implicit in the con-

struction of datasets can substantively affect results.

We find that in both user groups, topic and audience have independent effects on

53
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rates of Scottish variant usage, providing stronger evidence than in previous work that

users are indeed sensitive to their audience. While supporters of Scottish independence

are sometimes accused of ramping up their use of the Scots language in order to accen-

tuate perceived sociocultural differences between Scotland the rest of the UK (Clark,

2018), we observe no evidence for this on a broad scale. In fact, our results indicate that

people are significantly more likely to use distinctively Scottish vocabulary in every-

day chitchat on Twitter than when discussing Scottish indepedence. While the effects

of topic are quantitatively similar across our two user groups, the effects of audience

diverge. For the geotag users, rates of Scottish variant usage follow the pattern pre-

dicted by previous research: lowest among tweets with the largest expected audience,

and rising as the expected audience size shrinks. In contrast, the indyref hashtag group

shows a less consistent and less pronounced pattern which does not align cleanly with

audience size. This highlights the difficulty of sampling representative groups from

social media data, and underscores the importance of replicating studies on distinct

user samples before drawing strong conclusions.

5.2 Author contributions

The paper is co-authored by me, James Kirby, and Sharon Goldwater. As the leading

author, I wrote the code, collected the data, performed the analysis, and wrote the

paper. James Kirby and Sharon Goldwater supervised the project, offered suggestions,

and helped to revise the final manuscript.

5.3 The paper

The paper was accepted for publication at the Workshop on Stylistic Variation at ACL

2017 in Berlin. The publication reference is as follows:

Shoemark, P., Kirby, J., & Goldwater, S. (2017, September). Topic and
audience effects on distinctively Scottish vocabulary usage in Twitter data.
In Proceedings of the Workshop on Stylistic Variation (pp. 59-68).
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Abstract

Sociolinguistic research suggests that
speakers modulate their language style in
response to their audience. Similar ef-
fects have recently been claimed to occur
in the informal written context of Twit-
ter, with users choosing less region-specific
and non-standard vocabulary when address-
ing larger audiences. However, these stud-
ies have not carefully controlled for the
possible confound of topic: that is, tweets
addressed to a broad audience might also
tend towards topics that engender a more
formal style. In addition, it is not clear to
what extent previous results generalize to
different samples of users. Using mixed-
effects models, we show that audience and
topic have independent effects on the rate
of distinctively Scottish usage in two demo-
graphically distinct Twitter user samples.
However, not all effects are consistent be-
tween the two groups, underscoring the im-
portance of replicating studies on distinct
user samples before drawing strong conclu-
sions from social media data.

1 Introduction

Linguistic variation in social media is a growing
research area, with interest stemming both from the
engineering goal of developing tools that work well
across different styles and dialects (Hovy, 2015;
Stoop and van den Bosch, 2014; Vyas et al., 2014;
Huang and Yates, 2014), and from the social sci-
ence goal of studying user behaviour (Bamman
et al., 2014; Eisenstein, 2015; Huang et al., 2016;
Nguyen et al., 2015). However, this type of re-
search is often complicated by the messy nature of
social media data, which can make it hard to con-
trol for different explanatory factors and to know

whether results obtained on a particular user sample
generalize to another sample.

For example, previous studies have suggested
that Twitter users modulate their use of regional and
non-standard language depending on the expected
size of the audience (operationalized as whether a
Tweet contains hashtags, @-mentions, or neither)
(Pavalanathan and Eisenstein, 2015a; Shoemark
et al., 2017). However, these studies did not suffi-
ciently control for possible effects of topic, which
may be confounded with audience size: e.g., users
may use more hashtags when discussing political
events than when discussing daily routines. These
studies also did not look at the degree to which
their results generalize across different populations
of users.

In this work we study two largely disjoint groups
of (mainly) Scottish Twitter users: one group sent
tweets geotagged within Scotland, while the other
used hashtags related to the 2014 Scottish indepen-
dence referendum. We use mixed-effects models
to tease apart the effects of audience and topic on
their choice of Scottish-specific terms. We find
that in both user groups, topic and audience have
independent effects on the rate of Scottish usage,
providing stronger evidence than in previous work
that users are indeed sensitive to their audience.

Nevertheless, our study does not confirm all as-
pects of previous work. When comparing our two
user groups, the effect of topic is qualitatively sim-
ilar: tweets about lifestyle or politics have lower
rates of Scottish usage than “chitchat” tweets. How-
ever, the effects of audience differ between the two
groups. For the geotagged users, rates of Scot-
tish usage follow the pattern predicted by previous
research: lowest among tweets with the largest
expected audience, and rising as the expected au-
dience size shrinks. In contrast, the independence
referendum group showed a less consistent and less
pronounced pattern which does not align cleanly



with audience size. We were unable to find a clear
explanation of this difference. Nevertheless, it
highlights the difficulty of sampling representative
groups from social media data and the need to in-
terpret results with caution until they are shown to
generalize across several different populations.

2 Background

Bell’s (1984) Audience Design theory posits that
intra-speaker stylistic variation is primarily condi-
tioned by the audience of the interaction. Bell
argues that stylistic variation across topics de-
rives from so-called ‘reference groups’ whom the
speaker associates with the topics in question, and
predicts that effects of topic on style variation will
be weaker than direct effects of audience. However,
later studies of spoken conversation (e.g. Rickford
and McNair-Knox, 1994) have suggested that both
topic and audience affect a speaker’s style, and that
topic may even have a greater effect. Topic also
appears to influence stylistic variation in computer-
mediated communication—for example, statistical
associations between lexical features and author
attributes such as gender are often mediated by
the topic of discourse (Herring and Paolillo, 2006;
Bamman et al., 2014).

Our work is primarily inspired by two previous
studies of Twitter users and how their use of re-
gional lexical variants is influenced by either au-
dience (Pavalanathan and Eisenstein, 2015a) or
topic (Shoemark et al., 2017). In the first of these,
Pavalanathan and Eisenstein (2015a) studied lexi-
cal items that were strongly associated with tweets
from specific regions of the US, as determined by
a data-driven approach (Eisenstein et al., 2011).
They found that users were less likely to use these
regional terms, as well as other nonstandard terms,
in tweets containing hashtags, and more likely to
do so in tweets containing @-mentions (i.e., other
users’ IDs). They attributed these findings to style-
shifting in relation to audience size, since tweets
with hashtags are more likely to be viewed by users
outside of the author’s follower group, while by de-
fault tweets which begin with a mention are shown
only to the author, the mentioned user, and their
mutual followers.

While suggestive, there are alternative explana-
tions for this finding. For example, in their study of
Scottish tweets, Shoemark et al. (2017) pointed out
that if users use the word ‘masel’ (a Scottish vari-
ant of standard English ‘myself’) less frequently in

tweets with hashtags, it could be simply because
people talk about themselves less in tweets with
hashtags, not because they are modulating the use
of a regionally specific variant.

Shoemark et al. (2017) focused mainly on ef-
fects of topic rather than audience, but to avoid
similar confounds, they measured the frequencies
of regional variants of lexical variables1 relative to
their standard variants. They found that, amongst
users who tweeted about the Scottish indepen-
dence referendum, both pro- and anti-independence
users decreased their use of Scottish-specific terms
in tweets containing referendum-related hashtags,
compared to other tweets. A follow-up analysis
suggested that this effect might be due to the larger
audience obtained by using referendum-related
hashtags, but the evidence was indirect as the origi-
nal study was not designed to test that hypothesis.

Our work extends these two previous studies by
building models that include factors for both topic
and audience. We follow Shoemark et al. (2017) in
focusing on variables that alternate between Scot-
tish English and Standard English variants, but use
a wider range of topics identified with a topic model
rather than just hashtags. We use mixed-effects
logistic regression in order to establish whether
there are independent effects of audience and topic,
whilst controlling for variation in the base rate of
Scottish-variant usage across different users and
variables. In addition, we explicitly examine how
different methods of sampling users might affect
results, by performing the same study on two user
groups gathered in different ways.

3 Data

3.1 Lexical variables
We use 50 of the 51 lexical variables identified by
Shoemark et al. (2017). Each variable consists of
one or more distinctively Scottish variants and one
or more Standard English variants, all of which are
referentially and syntactically equivalent; examples
are shown in Table 1. From the original 51 vari-
ables, we discard SHIT, since the variant identified
as Scottish-specifc, SHITE, is used at a higher rate
than the Scottish-specific forms of the other vari-
ables (e.g. 27% of SHIT occurences in Shoemark et
al.’s Indyref-Tweets dataset are realized as SHITE;
more than twice the rate of Scottish variant use for
any other variable), and for many users SHIT is the

1A variable is any linguistic item than can be produced in
different ways; the variants are the different realizations.



Variable Scottish variants Std variants

DONT DEH, DINI , DINNY DONT, DO NOT
FOOTBALL FITBA FOOTBALL
MYSELF MASEL, MASELF MYSELF
SOMETHING SUHIN SOMETHING
TO TAE TO, TOO

Table 1: Examples of lexical variables.

only variable for which any Scottish variant use is
observed. This suggests that SHITE is less marked
as ‘distinctively Scottish’ than the Scottish-specific
variants of the other 50 variables.

3.2 Dataset construction

We aim to study Scottish language use, but only
a small proportion of Twitter users disclose their
location, either by including it in their user profile
or by opting to automatically tag their tweets with
geographic coordinates when using a GPS-enabled
device. Moreover, studies have indicated that those
who do share their location are not representative
of the wider Twitter user base (Pavalanathan and
Eisenstein, 2015b; Sloan and Morgan, 2015).

To help assess the generalizability of our find-
ings, we therefore consider two datasets, both
covering the same time period but sampled from
distinct (though slightly overlapping) populations:
‘Scottish Geotag Users’, who have tagged their
tweets with locations in Scotland; and ‘Indyref
Hashtag Users’, who have used hashtags relating to
the 2014 Scottish Independence Referendum. As
we will demonstrate, users in the two samples do
differ in some aspects of their behaviour, empha-
sizing how biases implicit in the construction of
datasets can affect results.

Our two groups of users are taken from the
Geotagged-Scotland (GS) and Indyref-Tweets (IT)
datasets collected by Shoemark et al. (2017). Both
of these datasets were drawn from an archive of
Twitter’s ‘Spritzer’ stream, which provides a 1%
sample of the public data flowing through Twit-
ter, covering the period from September 2013 to
September 2014. The GS dataset consists of tweets
by users for whom the archive contained at least
one tweet which was geotagged with a location in
Scotland, while the IT dataset consists of users for
whom it contained at least one tweet with a hashtag
relating to the 2014 Scottish Independence referen-
dum (see Table 3 in Shoemark et al. (2017) for a
list of hashtags).

As a heuristic to filter out bots and spammers,

IH Users SG Users

(a) N Users 14,572 17,942
N Tweets 4,703,040 1,750,343
N Variables 10,482,683 3,733,133
% Scottish 0.5 1.8

(b) N Users 12,101 11,307
N Tweets 4,674,251 1,678,498
N Variables 10,424,067 3,594,659
% Scottish 0.5 1.8

(c) N Users 10,786 10,103
N Tweets 3,456,277 1,371,694
N Variables 7,689,621 2,878,352
% Scottish 0.7 2.3

(d) N Users 10,784 10,103
N Tweets 2,165,320 1,112,931
N Variables 4,934,186 2,365,496
% Scottish 0.8 2.3

Table 2: Dataset statistics for Indyref Hashtag
Users and Scottish Geotag Users (a) after basic pre-
processing, (b) after discarding users with<50 vari-
able instances, (c) after discarding users for which
there is strong evidence of non-use of Scottish vari-
ants and (d) after labelling audience & topic. ‘%
Scottish’ is the percentage of variables realized as
the Scottish variant.

we computed the proportion of tweets for each user
in the GS and IT datasets which contained URLs,
and discarded users for whom this proportion was
in the 90th percentile. For the remaining users, we
then retrieved a more complete set of their tweets:
for each user we attempted to retrieve all the tweets
they posted in August, September, or October 2014
(excluding retweets), using Twitter’s REST API.
The API allows us to retrieve up to 3200 of a user’s
most recent tweets, so if a user had posted more
than 3200 tweets since autumn 2014, we were un-
able to retrieve their tweet histories for this period.
We obtained complete histories for at least one of
the three months for a total of 18,370 Scottish Geo-
tag (SG) Users, and 14,832 Indyref Hashtag (IH)
Users. We then applied some simple ad-hoc text
filters to remove tweets produced by apps which au-
tomatically share user’s horoscopes or track users’
follower counts, as well as some particularly preva-
lent types of marketing tweets. See Table 2a for
summary statistics after this filtering step. Note
that there are 363 users who are in both datasets.

Next, we removed all users for whom the total
number of observed variable instances was less
than 50 (see Table 2b), as with so few observations
it would be difficult to make reliable inferences
about these users’ usage rates of distinctively Scot-



tish variants.
Finally, since our population of interest is those

who vary between Scottish and standard variants,
we discard individuals for whom we had enough
observed variable instances to conclude that they
probably never used distinctively Scottish variants
of any of our variables. For SG Users, we chose the
threshold of ‘enough observed variable instances’
to be 298, since this is the smallest value n such
that the cumulative binomial probability of seeing
at least one Scottish variant in n variable instances
is ≥ 0.99 (assuming a constant usage rate of Scot-
tish variants of 0.0184, as listed in Table 2b). That
is, if we assume that any user who does use Scot-
tish variants will do so 1.84% of the time, then in
99% of cases where we have observed at least 298
variable instances from such a user, we would ex-
pect a Scottish variant to have been used in at least
one of those instances. For IH Users, we assumed
a constant usage rate of distinctively-Scottish vari-
ants of 0.05, and discarded all those for whom we
had observed at least 870 variable instances and
no Scottish variants. Table 2c provides summary
statistics for the two resulting datasets.

When considering the differences in average
rates of Scottish variant usage across the two
groups, it is important to note that Shoemark et al.
(2017) identified these Scottish variants using the
GS dataset, i.e. the same dataset from which we
drew our Scottish Geotag Users. It is therefore
to be expected that that the Scottish Geotag Users
would use these variants at a higher rate, and it is
important to bear in mind that the Indyref Hashtag
Users may be more frequent users of other distinc-
tively Scottish variants.

4 Topic & Audience

4.1 Audience labelling

We follow Pavalanathan and Eisenstein (2015a)
in assuming that tweets containing hashtags (any
token prepended with the ‘#’ character) typically
have a wider audience than other tweets, since any-
one interested in a particular topic or event can
browse the stream of Tweets which contain associ-
ated hashtags. Conversely, tweets beginning with
@-mentions typically have a narrow audience since
by default they only appear in the feeds of the au-
thor, the mentionee, and users who follow both the
author and the mentionee. Any user @-mentioned
in a tweet (whether at the beginning, or elsewhere
within the tweet) will by default receive a special
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Figure 1: Distribution of tweets with each audience
label in the two datasets.

notification drawing their attention to it.
Pavalanathan and Eisenstein hypothesise that

both kinds of mention serve to narrow the intended
audience, whilst hashtags serve to widen it, relative
to broadcast tweets (i.e., those without hashtags or
mentions, which appear on the feeds of all the au-
thor’s followers). The grounds for hypothesising a
narrowing function for tweet-internal mentions are
less evident than those for tweet-initial mentions,
since tweets which do not begin with a mention are
not limited by default to the feeds of the author and
mentionee’s mutual followers.

We label each variable instance in our two
datasets with three binary variables indicating
whether or not they contain hashtags, initial men-
tions, and/or internal mentions. We then discard
any tweets for which two or more of these indica-
tors are activated, since we do not have intuitive a
priori hypotheses about how combining more than
one of these variables within a single tweet would
affect its intended audience.

Figure 1 shows the proportion of tweets in each
dataset which have each audience label (or which
had multiple labels and were subsequently dis-
carded), and reveals qualitative differences in the
two groups’ behaviour: SG Users post relatively
more ‘broadcast’ tweets, whilst IH Users use rela-
tively more hashtags (which is unsurprising given
that they were selected on the basis of their hashtag
use).

4.2 Topic labelling

We assign topics to tweets using a Latent Dirichlet
Allocation (LDA) topic model (Blei et al., 2003)
estimated with collapsed Gibbs sampling (Griffiths
and Steyvers, 2004) from both datasets combined.
Following Hong and Davison (2010) and others,
we create ‘documents’ by concatenating together
tweets by the same author. To account for possible
topic drift within individuals over time, we group
each user’s tweets by month and model each per-
user-per-month document as a distinct mixture of



topics. We use the inferred topic model parameters
to label each tweet with a topic, as described below.

The corpus was preprocessed as follows: tweets
were tokenised using the Twokenize program2, a
tokeniser designed specifically for Twitter text, and
all non-alphabetic tokens, except for those which
begin with hashtags, were discarded. The vocabu-
lary was then pruned to the 100,000 most frequent
terms across the two datasets. We set the number
of topics, T , to 30, and used symmetric Dirichlet
priors of α = 50

T and β = 0.01 on the multinomial
distributions over topics and terms, respectively3.
The Gibbs sampler was run for 750 iterations.

Upon inspection of the most probable words and
documents for each topic, we deemed that twenty
of the topics could be grouped into three broader
themes, which we describe as ‘chatter’ , ‘lifestyle’ ,
and ‘politics’ . Later, we consider a different group-
ing, where we split off a ‘sports’ theme from the
‘lifestyle’ theme, and an ‘indyref’ theme from the
‘politics’ theme. Table 3 shows the most probable
words (excluding stopwords) for each topic within
these three/five themes. Of the ten topics that we
did not assign to these themes, four could be de-
scribed as spam topics, four as foreign language,
and two as relating to purely stylistic dimensions
as opposed to any particular topic of discussion:
one for distinctively Scottish terms, and the other
for ‘netspeak’-style spellings and abbreviations.

To assign topic labels to individual tweets, we
take a Gibbs sample and then for a given tweet,
each topic t is assigned a weight, defined as

weightt =
∑

w∈w
p̂(t|w)

where w is the bag of words which occur in the
tweet (excluding stopwords and any variant of any
of our variables of interest), and p̂(t|w) is obtained
by maximum likelihood estimation from the Gibbs-
sampled topic-token assignments. Finally, we take
the topic with the highest weight, and label the
tweet with its broader theme. If the topic with the
highest weight is one of the two ‘stylistic’ topics,
we defer to the topic with the next highest weight.
We discard tweets labelled as ‘spam’ or ‘foreign
language’, as well as those for which the highest
weight is not unique, if the topics which share this
weight belong to different themes.

2https://github.com/myleott/ark-twokenize-py
3During development we experimented with values for T

between 10 and 100, and α between 0.015 and 1.5, and saw
little qualitative difference in the themes that emerged, based
on manual inspection of topic keywords.
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Figure 2: Distribution of tweets with each topic
label in the two datasets.

Using this method, we obtain 2.3m broad-topic-
labeled variable instances from SG Users, and 4.9m
from IH Users. Figure 2 shows the distribution of
topics in each data set, and Table 4 gives a break-
down of variable instances by audience-type and
broad-topic-label. IH Users have a much larger pro-
portion of tweets with ‘indyref’ or ‘politics’ labels
than SG Users, which once again is unsurprising,
given how these users were sampled.

5 Method

We use the glmer() function from the lme4 package
(Bates et al., 2015) for R (R Core Team, 2013) to
estimate mixed effects logistic regression models,
predicting Scottish variant usage (yes = 1, no = 0)
from the intended audience size and topic of the
tweet in which a lexical variable occurs. Our four-
level categorical audience factor (initial mention,
internal mention, broadcast, hashtag) is dummy
coded into three binary variables, with broadcasts
as the reference level. Our tweet topic labels are
also dummy coded, taking the ‘chatter’ topic as the
reference level. By specifying random effects for
users and variables, we control for the influence
of different baseline rates of Scottish variant usage
across different users and variables. Hence our
models are of the form

logit{E(y)} = Xβ + Zu,y ∼ Bernoulli

where y is the n × 1 vector of responses from a
Bernoulli distribution, X is an n× p design matrix
for the fixed effects β, and Z is an n × q design
matrix for the random effects u. We do not include
random slopes in our models, since we do not have
enough observations per group to provide stable
estimates of the variances. Our models are fit by
Laplacian approximation to Maximum Likelihood
estimation.



Topic theme Keywords

Chatter

love feel life fucking fuck people shit actually hate omg school gonna time excited oh

time yeah bit oh probably actually maybe seen lot pretty hope haha bad getting stuff

lol love thank xx thanks hope day oh happy lovely xxx ha haha morning beautiful

night happy birthday haha day wait tonight tomorrow hahaha bed getting wee weekend days week

Lifestyle

love song music album world amazing god top white black girl watch band ice looks baby life listen
guy boys

photo watching #xfactor #cbb day #scotland loving posted #gbbo life #glasgow #bbuk #love #edinburgh
love

video #auspol liked game awesome watch time apple iphone play app games phone buy facebook

oh bit news ha twitter story brilliant bbc read book called tv look dear wonder

day time morning night car run food bit nice week train getting tea eat days

tonight day week time tomorrow night glasgow morning looking edinburgh forward coming weeks
hear live

Sports cup win ireland #glasgow2014 irish time team final match scottish round top games race live

game celtic team football season league fans mate goal win play players club player haha

Politics

people read agree question thanks issue debate political article course mean change indeed etc politics

news police pm russia minister russian via eu report ukraine president ebola court uk #ukraine #russia

#ferguson rt obama #ukraine police #cdnpoli ukraine video via mt people news american time america

labour uk ukip cameron party tory ed tax vote tories english mps miliband boris david

people lol look tell money time stop wrong please believe mean job care saying talking

israel #gaza war via isis gaza #isis world people children israeli #israel police hamas support

Indyref #indyref scotland #voteyes #yes vote scottish independence #scotdecides #indyrefpic #bettertogether
salmond #bbcindyref #the45 campaign debate

scotland vote uk labour scottish snp scots union oil party wm country westminster voters voting

Table 3: Topic themes and the top 15 keywords for each topic within each theme

Audience
Topic

Chatter Lifestyle Politics All

(a) Broadcast 598,673 (2.7) 334,143 (2.3) 295,981 (1.8) 1,228,797 (2.4)
Initial Mention 352,981 (3.0) 164,909 (2.9) 188,191 (1.9) 706,081 (2.7)
Internal Mention 92,682 (1.8) 63,242 (1.5) 56,727 (1.2) 212,651 (1.6)
Hashtag 67,630 (1.8) 69,833 (1.4) 80,504 (1.2) 217,967 (1.4)
All 1,111,966 (2.7) 632,127 (2.3) 621,403 (1.7) 2,365,496 (2.3)

(b) Broadcast 308,797 (1.3) 341,592 (0.9) 658,520 (0.8) 1,308,909 (1.0)
Initial Mention 644,459 (1.1) 394,036 (1.0) 1,026,634 (0.6) 2,065,129 (0.8)
Internal Mention 76,403 (0.6) 96,123 (0.5) 203,275 (0.4) 375,801 (0.5)
Hashtag 124,333 (0.7) 197,925 (0.5) 862,089 (0.5) 1,184,347 (0.5)
All 1,153,992 (1.1) 1,029,676 (0.8) 2,750,518 (0.6) 4,934,186 (0.8)

Table 4: Counts of variable instances in the (a) SG Users and (b) IH Users datasets, broken down by
Topic and Audience. In each cell, the percentage of variable instances that are Scottish variants is given in
parentheses.
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Figure 3: Barplots of by-variable BLUPs for SG Users (black bars) and for IH Users (white bars).
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Figure 4: Histograms of by-user BLUPs.

6 Results and Discussion

6.1 Random Intercepts
We begin by constructing null models that predict
the log odds of choosing a Scottish variant using
only intercepts, which we allow to vary randomly
by each user and by each lexical variable. The
estimated variances of the by-user and by-variable
adjustments to the intercept are given in Table 5a,
for SG and IH Users, respectively.

The Best Linear Unbiased Predictors (BLUPs)
of the by-variable random intercerpts (i.e. the poste-
rior estimates, given the data and model parameters,
of the adjustment to the intercept for each variable)
are shown in Figure 3. In both datasets, open class
variables (e.g. GRANDAD, BALLS, DOGS) tend to
have higher rates of Scottish variant usage than
closed class variables (e.g. WAS, OF, YOU).

Figure 4 shows the distributions of by-user
BLUPs. Although the models assume a normal
distribution over the by-user intercepts, the BLUPs
are positively skewed. We suspect the BLUPs re-
flect the fact that our datasets contain a mixture of
two populations: Scottish speakers, who use Scot-
tish variants at a range of rates, and non-Scottish
speakers, who rarely if ever use Scottish variants.
The non-Scottish speakers are responsible for the
large number of users with slightly negative inter-
cepts. Unfortunately there is no straightforward
way to separate these groups (especially for users

with a relatively small number of observations).
However, users with a constant near-zero rate of
Scottish variant usage should, at worst, dilute any
true effects of topic or audience on rates of usage,
but should not change the direction of those effects.

6.2 Random Intercepts + Audience Effects
We now check whether Pavalanathan and Eisen-
stein’s (2015a) reported effects of hashtags and
mentions on the odds of using regional variants in
US tweets, are replicated for distinctively Scottish
variants in our two datasets.

We augment our null models with our dummy-
coded audience factors as fixed effects. For each
dataset, we assess the goodness-of-fit using chi-
square tests on the log-likelihoods. Compared to
the null models with only random effects, including
fixed effects for audience significantly improves
the fit on both datasets (SG: χ2(3) = 643.05, p =
<2.2e-16; IH: χ2(3) = 232.69, p = <2.2e-16).

Parameters of the models with Audience effects
are in Table 5b. Our results for SG Users largely
accord with those of Pavalanathan and Eisenstein
(2015a): Scottish variants are positively associated
with tweet-initial mentions, and negatively associ-
ated with hashtags. Relative to broadcast tweets,
the odds of seeing Scottish variants are about 28%
higher in tweets with initial mentions, and about
17% lower in tweets with hashtags. However, while
Pavalanathan and Eisenstein also found an associa-
tion between the use of tweet-internal mentions and
local/non-standard words in their data, our model
does not show such a relationship in the SG dataset.

In the IH dataset, the audience effects in our
model do not follow the pattern that Pavalanathan
and Eisenstein observed in US tweets. Unlike for
SG Users, there is no association between hash-
tags and Scottish variants, and the effects of men-
tions are in the opposite direction to those found
by Pavalanathan and Eisenstein (2015a). Amongst



IH Users, initial mentions are negatively associated
with Scottish variants, though the effect size is very
small. Internal mentions are also negatively asso-
ciated with Scottish variants, and in this case the
effect is relatively large (in contrast with SG Users,
for whom we found no effect). We discuss possible
reasons for this result in Section 6.4.

6.3 Random Intercepts + Topic Effects
Next, we test for a relationship between the topic of
a tweet and the odds of Scottish variant usage. For
both datasets, models with fixed effects for topic
significantly improve the fit over random-effects-
only models (SG: χ2(2) = 570.48, p = <2.2e-16;
IH: χ2(2) = 1241, p = <2.2e-16).

Parameters of the models are in Table 5c. The ef-
fects of tweet topic are qualitatively similar in each
dataset: relative to ‘chatter’ tweets, tweeting about
the ‘lifestyle’ topic reduces the odds of choosing
Scottish variants by 11% for SG Users and 5% for
IH Users, while tweeting about politics reduces
them by 27% for SG Users, and 39% for IH Users.

6.4 Full Models
For each dataset, including fixed effects for audi-
ence and topic together significantly improves the
model fit, both over the models with fixed effects
for audience only (SG Users: χ2(2) = 508.67, p =
<2.2e-16; IH Users: χ2(2) = 1298.9, p = <2.2e-
16), and over the models with fixed effects for topic
only (SG: χ2(3) = 581.25, p = <2.2e-16; IH: χ2(3)
= 290.6, p = <2.2e-16).

Parameters of the full models are in Table 5d.
When fixed effects for audience and topic are in-
cluded together in the SG model, their effect sizes
barely change. These results suggest that for SG
Users, audience and topic have independent effects
on Scottish usage, and that even after accounting
for topic, the effects of audience size are as pre-
dicted by Pavalanathan and Eisenstein (2015a).

In the full IH model, while most of the fixed
effect sizes are relatively unchanged, a positive as-
sociation between the use of hashtags and Scottish
variants emerges. Thus, the model reveals that the
qualitative behavior of these users is very different
from that of the SG Users. Although topic and au-
dience are both significant factors in the models for
each group, initial mentions and hashtags have the
opposite effects for IH Users as for SG Users (and
for Pavalanathan and Eisenstein’s user sample).

Although they primarily interpret their findings
in terms of audience size, Pavalanathan and Eisen-

stein acknowledge that mentions and hashtags can
affect the composition of the audience in more nu-
anced ways than just its size. As an alternative
explanation for the positive associations they found
between mentions and local/non-standard words,
they suggest that authors may use such words to
express particular identities or stake claims to local
authenticity, specifically when addressing users for
whom such claims are meaningful.

In theory, this account could also apply to the
positive association we find in the IH dataset be-
tween hashtags and local variants: while on the
one hand, the indexing function of hashtags can
be conceived of as broadening the audience of a
tweet, on the other hand it could serve to narrow
the tweet’s intended audience, by explicitly target-
ing it at a circumscribed community. Hence, when
using hashtags associated with communities for
whom the notion of Scottish identity has strong
currency (e.g. people with strong views on indyref,
or supporters of a particular sports team), IH Users
may use Scottish variants initiatively, in order to
emphasise that part of their identity.

Suppose that authors tended to decrease their
use of Scottish variants when discussing most po-
litical issues, but increase it when discussing Scot-
tish independence—either to emphasise their own
Scottish identity, or to accommodate towards an
audience which is likely to contain many Scottish
people. If this were the case, our models would be
unable to account for this variation directly, since
we have grouped indyref and other political issues
together. However, since a large proportion (55%)
of IH Users hashtag tweets are actually about in-
dyref, one way the IH model could account for a
difference between indyref and general politics is
to increase the weight for hashtags. If this were
the case, then including ‘indyref’ as a distinct topic
should improve the model fit and alleviate the im-
pact on the audience weights. To test this hypothe-
sis, we performed a follow-up study where we split
the topics into finer-grained categories.

6.5 Finer-grained topics

We added two topic categories, ‘sport’ and ‘in-
dyref’, which we split off from the ‘lifestyle’ and
‘politics’ categories, respectively (see Table 3).
Contrary to our hypothesis, re-defining the topic
categories in this way made little difference to
the model fit: the log-likelihoods for the new full
model are -174169.4 for SG Users, and -121447.8



Scottish Geotag Users Indyref Hashtag Users

(a) Log-likelihood: -174758.0 Log-likelihood: -122240.2
σ2 users: 2.769 σ2 variables: 2.477 σ2 users: 3.058 σ2 variables: 3.444

(b) Log-likelihood: -174436.4 Log-likelihood: -122123.9
σ2 users: 2.750 σ2 variables: 2.503 σ2 users: 3.039 σ2 variables: 3.443

Fixed Ef. OR 95% CI z Pr (>|z|) OR 95% CI z Pr (>|z|)
@init 1.28 (1.25, 1.31) 21.2 <2e-16 0.96 (0.93, 0.99) -2.8 0.005
@intrnl 0.96 (0.92, 1.00) -1.9 0.052 0.62 (0.59, 0.67) -15.4 <2e-16
hashtag 0.83 (0.80, 0.86) -8.9 <2e-16 0.97 (0.93, 1.01) -1.6 0.111

(c) Log-likelihood: -174472.7 Log-likelihood: -121619.7
σ2 users: 2.758 σ2 variables: 2.472 σ2 users: 3.069 σ2 variables: 3.427

Fixed Ef. OR 95% CI z Pr (>|z|) OR 95% CI z Pr (>|z|)
lifestyle 0.89 (0.87, 0.91) -9.9 <2e-16 0.95 (0.92, 0.98) -3.2 0.001
politics 0.73 (0.71, 0.75) -24.2 <2e-16 0.61 (0.59, 0.63) -33.6 <2e-16

(d) Log-likelihood: -174182.1 Log-likelihood: -121474.4
σ2 users: 2.742 σ2 variables: 2.496 σ2 users: 3.063 σ2 variables: 3.416

Fixed Ef. OR 95% CI z Pr (>|z|) OR 95% CI z Pr (>|z|)
@init 1.27 (1.24, 1.29) 20.6 <2e-16 0.93 (0.90, 0.95) -5.04 <5e-07
@intrnl 0.96 (0.92, 1.00) -1.9 0.052 0.63 (0.60, 0.67) -15.3 <2e-16
hashtag 0.85 (0.82, 0.89) -7.6 <3e-14 1.08 (1.04, 1.12) 3.9 <1e-04
lifestyle 0.90 (0.88, 0.92) -8.7 <2e-16 0.95 (0.91, 0.98) -3.4 <0.001
politics 0.74 (0.72, 0.76) -22.9 <2e-16 0.60 (0.58, 0.61) -34.3 <2e-16

Table 5: Summary of model parameters for the two datasets: (a) random intercepts only, (b) random
intercepts + audience effects, (c) random intercepts + topic effects, (d) full model. σ2 users and σ2

variables are variance estimates for the random intercepts. Fixed Ef. tables show odds ratios (OR) derived
from logit coefficients, with roughly estimated confidence intervals (using approximate standard errors),
and results of Wald’s z-tests.

for IH Users (c.f. Table 5d).
In general, the effect sizes and directions of the

newly defined subtopics are similar to those of the
broad topics from which they were isolated, and
more importantly, changing the topic definitions
has no effect on the audience coefficients for either
user group. This provides some evidence that our
results are not highly sensitive to the precise choice
of topics.

7 Conclusion

This study examined how Twitter users shift their
use of Scottish variants depending on the topic and
audience. We looked at two groups of users with
different overall rates of Scottish usage and found
that both topic and audience affect usage in both
groups. The qualitative effects of topic were sim-
ilar across the two groups, demonstrating a clear

relationship between the topic or genre of discus-
sion and the odds of choosing Scottish variants.
However, the sizes and directions of the audience
affects are inconsistent across the two groups: for
Scottish Geotag Users we found (as in a previous
study) that local variants are used more in tweets
with initial mentions and less in tweets with hash-
tags, but for Indyref Hashtag Users we found the
opposite. The demographics and usage patterns
of these two groups are very different, and one
interesting possibility is that they might be using
the affordances of mentions and hashtags in differ-
ent ways and focusing on different aspects of how
these affect their potential audience. In any case,
our results underscore the need for caution when
drawing broad conclusions from studies of social
media data, until the results of those studies are
shown to hold across a variety of user samples.
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5.4 Comments on the paper

5.4.1 Why use mixed effects models?

While mixed effects models are now well-established in various fields of linguistics

(Baayen et al., 2008; Johnson, 2009; Linck and Cunnings, 2015), they are not so com-

monly used in computational linguistics and NLP. We chose to use them here because

we have multiple observations per user and per lexical variable, and the observations

associated with a particular user (or with a particular lexical variable) are not indepen-

dent of one another.

A standard logistic regression model would not be able to account for the fact that

our datapoints are grouped by user and by lexical variable, and that each user and

each lexical variable has its own idiosyncratic baseline rate of Scottish variant usage.

This problem is intensified by the fact that the number of observations in our dataset

is highly imbalanced both across users (Figure 5.1) and across variables (Figure5.2),

as are the rates of Scottish variant usage (Figures 5.3 & 5.4). Suppose that a consider-

able proportion of the political tweets in our dataset were from one particularly active

Twitter user who tweets primarily, but not exclusively, about politics; and that this user

happened to use distinctively Scottish variants at relatively low rates, compared to other

users, across all topics. In this scenario, a model which treats all variable instances as

independent, with no knowledge of their grouping by user, would over-estimate the

inhibitory effect of the political topic on Scottish variant usage.

Pavalanathan and Eisenstein (2015a) addressed this issue by carefully balancing

their dataset such that each user contributed the same number of tweets containing

a non-standard variant as tweets without a non-standard variant; that is to say, such

that each user had the same baseline rate of non-standard usage (50%). This careful

downsampling procedure necesitates throwing away a lot of datapoints, and was not

feasible for us given that we started out with much smaller corpora (after spam filtering

we had 1.75M tweets by SG-Users and 4.7M tweets by IH-Users, vs. Pavalanathan and

Eisenstein’s 114M tweets.)

Mixed effects models enable us to to fit models using all of the datapoints at our

disposal, while preserving information about which user (and which lexical variable)

contributed which datapoint. By specifying by-user and by-variable random intercepts,

we allow the model to account for idiosyncratic differences in baseline rates of Scottish

variant usage across users and variables, and better describe how audience size and

topic relate to deviations from these baseline rates.
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Figure 5.1: Histograms of number of observations per user in SG-Users and IH-Users datasets.
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Figure 5.2: Bar chart of number of observations per variable in SG-Users (black bars) and

IH-Users (white bars) datasets.
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Figure 5.3: Histograms of overall rate of Scottish variant usage per user in SG-Users and

IH-Users datasets.

B
IR

D

B
IR

D
S

B
A

L
L

S

A
L

R
IG

H
T

G
R

A
N

D
A

D

S
H

IT
T

Y

P
IS

S
E

D

P
IS

S
IN

G

D
O

G
S

D
E

F
IN

IT
E

L
Y

B
A

L
L

Y
O

U
R

S
E

L
F

S
O

R
E

I
K

N
O

W

Y
O

U
R

O
L

D

F
O

O
T

B
A

L
L

M
Y

S
E

L
F

G
IV

E
S

O
U

T

D
O

W
N

O
F

F

H
O

U
S
E

W
A

N
T

T
O

W
IT

H

G
O

O
D

D
O

IN
G

D
ID

N
T

F
R

O
M

H
O

M
E

IS
N

T

D
O

N
T

S
O

M
E

T
H

IN
G

O
N

E

A
B

O
U

T

T
H

IN
G

D
O

E
S
N

T

T
O

M
R

R
O

W

D
O

O
U

R

T
H

IN
K

W
A

S

G
O

IN
G

T
O

O
F

O
N

T
H

A
T

S

Y
O

U

J
U

S
T

H
A

V
E

Variable

0.0

0.1

0.2

0.3

0.4

S
co

tt
is

h
va

ri
an

t
u

sa
ge

ra
te

Figure 5.4: Bar chart of overall rate of Scottish variant usage per variable in SG-Users (black

bars) and IH-Users (white bars) datasets.
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5.4.2 Narrow topic themes

In the paper we considered a model with two additional topic categories, ‘sport’ and

‘indyref’, which we split off from the ‘lifestyle’ and ‘politics’ categories, respectively.

Detailed results for these narrower topic themes were not presented in the paper for

space reasons, so we include them here.

Scottish Geotag Users Indyref Hashtag Users

Log-likelihood: -174169.4 Log-likelihood: -121447.8

σ2 users: 2.748 σ2 variables: 2.496 σ2 users: 3.043 σ2 variables: 3.467

Fixed Ef. OR 95% CI z Pr (>|z|) OR 95% CI z Pr (>|z|)
@init 1.27 (1.24, 1.30) 20.8 <2e-16 0.93 (0.91, 0.96) -4.5 <7e-06

@intrnl 0.96 (0.92, 1.00) -2.2 0.029 0.63 (0.59, 0.67) -15.3 <2e-16

hashtag 0.85 (0.82, 0.89) -7.6 <3e-14 1.06 (1.02, 1.10) 2.8 0.005

lifestyle 0.93 (0.91, 0.95) -5.6 <2e-08 0.96 (0.92, 0.99) -2.5 0.014

sport 0.83 (0.80, 0.87) -9.1 <2e-16 0.90 (0.86, 0.96) -3.5 <0.001

politics 0.74 (0.72, 0.76) -19.2 <2e-16 0.54 (0.52, 0.57) -31.0 <2e-16

indyref 0.75 (0.73, 0.78) -16.1 <2e-16 0.63 (0.61, 0.65) -27.4 <2e-16

Table 5.1: Summary of model parameters in full models using finer-grained topic dis-

tinctions. σ2 users and σ2 variables are variance estimates for the random intercepts.

Fixed Ef. tables show odds ratios (OR) derived from logit coefficients, with roughly es-

timated confidence intervals (using approximate standard errors), and results of Wald’s

z-tests.

In general, the newly defined subtopics behave similarly to the previous topics: for

Scottish Geotag Users, the ‘indyref’ and ‘politics’ topics have almost identical effect

sizes, while for Indyref Hashtag Users, tweeting about the independence referendum

has a slightly smaller effect than tweeting about other political themes, though this is

still large compared with the effects for ‘lifestyle’ and ‘sport’. For both user groups,

the effect of the ‘sport’ topic is slightly greater than that of the‘lifestyle’ topic.
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5.4.3 By-hashtag random intercepts

In the paper, we found hashtag use in general to be associated with higher odds of

choosing distinctively Scottish variants for the group of users sampled on the basis of

having used hashtags relating to the Scottish Independence referendum. Conversely,

we found hashtags to be associated with lower odds of choosing distinctively Scottish

variants for the user group which was sampled on the basis of Scottish geotag use.

To gain some insight into which sorts of hashtags are most associated with higher

or lower odds of Scottish variant usage for each user group, we fit new models in which

we included by-hashtag random intercepts, in addtion to the by-user and by-variable

random intercepts, and then examined the Best Linear Unbiased Predictors of the ad-

justments to the intercept for individual hashtags. For tweets which contain multiple

hashtags, we considered only the first hashtag in the tweet. We coded all tweets in

which no hashtags occur with a ‘NO HASHTAG’ label. Because the frequencies of

individual hashtags have a long-tailed distribution, with the majority of hashtags oc-

curing very infrequently, we replaced all hashtags which occur in fewer than 10 tweets

with an ‘INFREQUENT HASHTAG’ label.

The 20 hashtag labels with the largest positive adjustments to the intercept (i.e.

those most associated with increased odds of Scots usage) and the 20 hashtag labels

with the largest negative adjustments to the intercept (i.e. those most associated with

decreased odds of Scots usage) are shown in Tables 5.2 and 5.3, for Scottish Geotag

Users and Indyref Hashtag Users respectively. Tables 5.2 and 5.3 also give, for each

listed hashtag, the number of tweets which are labeled with that hashtag and with

‘Scottish’ variable instances, and the number which are labeled with that hashtag and

with ‘Standard’ variable instances.

Despite excluding hashtags which occur in fewer than 10 tweets overall, co-occurence

counts of individual hashtags with distinctively Scottish variants are vary sparse; it

is therefore difficult to read much into the results. Although some associations are

clearly spurious (e.g. the three occurences of distinctively ‘Scottish’ variants with

#makeamoviecanadian are instances of ‘aboot’, which also happens to be distinctively

Canadian), it is perhaps worth noting that hashtags relating to the 2014 Common-

wealth Games in Glasgow (#glasgow2014, #commonwealthgames, #closingceremony,

#bbcglasgow2014, #kylie1) are among those with the largest positive BLUPs for both

datasets. The Games were intended to promote national and civic pride, and many of

1Kylie Minogue performed at the Commonwealth Games closing ceremony
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the tweets containing these hashtags do indeed evoke such sentiments, e.g.:

• #commonwealthgames im reckoning im enjoying the commie games probably a

wee bit more than the olympics. lindsay sharp, team tattie tae.

• auld lang syne, bagpipes and some fireworks.. canny help but hae a wee greet

#closingceremony

• glesga... that wis nae bad. #glasgow2014

Most Positive BLUPs Most Negative BLUPs

Hashtag BLUP ‘Scot’/‘Std’ Hashtag BLUP ‘Scot’/‘Std’

#glasgow2014 2.15 16 / 319 #nowplaying -0.77 0 / 622

#commonwealthgames 1.72 7 / 119 #watp -0.50 0 / 56

#yeswindaes 1.19 4 / 6 #fact -0.49 0 / 94

#closingceremony 1.01 4 / 164 #soundhound -0.47 0 / 88

#stillgame 0.90 3 / 31 #rydercup -0.47 0 / 208

#gbbo 0.83 6 / 422 #celtic -0.45 0 / 322

#eh1 0.81 2 / 15 #mwi -0.43 0 / 19

#bbcqt 0.77 2 / 59 #buzzing -0.43 0 / 133

#alsicebucketchallenge 0.69 2 / 31 #mufc -0.40 0 / 235

#sonsofanarchy 0.68 2 / 24 #shazam -0.38 0 / 51

#lad 0.67 2 / 28 #soundcloud -0.35 0 / 180

#pt 0.67 2 / 59 #scenes -0.32 0 / 41

#fuckoff 0.67 2 / 57 #bbuk -0.32 0 / 115

#rip 0.64 3 / 109 #lfc -0.32 1 / 262

#brutal 0.64 3 / 19 #yesbecause -0.32 1 / 453

#fuckoffscotland 0.64 3 / 32 #hmfc -0.30 0 / 139

#yolo 0.64 2 / 43 #fitfam -0.29 0 / 11

#previoustweet 0.64 2 / 65 #bettertogether -0.28 3 / 420

#bigbigdebate 0.61 8 / 404 #shocker -0.28 0 / 15

NO HASHTAG 0.60 18,525 / 977,180 #patronisingbtlady -0.28 0 / 74

Table 5.2: The 20 hashtags with largest positive and negative adjustments to the inter-

cept, for the Scottish Geotag Users dataset.
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Most Positive Blups Most Negative BLUPs

Hashtag BLUP ‘Scot’/‘Std’ Hashtag BLUP ‘Scot’/‘Std’

#makeamoviecanadian 2.94 3 / 23 #gaza -1.25 0 / 2888

#patronisingbtladypic 2.76 4 / 49 #hopeoverfear -1.25 0 / 304

#closingceremony 2.54 34 / 1100 #ferguson -1.25 0 / 3536

#commonwealthgames 2.46 22 / 692 #no -1.10 2 / 1311

#goodish 2.34 2 / 10 #masscanvass -1.02 1 / 97

#glasgow2014 2.27 39 / 1893 #celebritybigbrother -0.90 0 / 54

#lastnightoftheproms 2.17 3 / 83 #england -0.87 0 / 251

#celebritieswhopumpdugs 2.17 11 / 0 #lab14 -0.84 1 / 2118

#ladyalba 2.04 3 / 21 #isis -0.82 0 / 2614

#philosophy 2.00 2 / 100 #mufc -0.79 0 / 1491

#aye 1.96 5 / 40 #uk -0.77 0 / 464

#polsco 1.89 3 / 36 #reddit -0.75 0 / 27

#occupycentralpic 1.88 2 / 19 #skynews -0.74 0 / 372

#murphy 1.86 2 / 8 #freescotland -0.71 0 / 28

#gersco 1.80 6 / 148 #fail -0.71 0 / 140

#bbcglasgow2014 1.72 4 / 123 #indyscot -0.71 0 / 413

#kylie 1.70 2 / 42 #nowplaying -0.70 0 / 766

#arrow 1.68 2 / 52 #explainafilmplotbadly -0.70 1 / 1006

#lies 1.67 2 / 33 #c4news -0.69 1 / 1865

#georgegalloway 1.58 2 / 56 #45andrising -0.69 0 / 100

Table 5.3: The 20 hashtags with largest positive and negative adjustments to the inter-

cept, for the Indyref Hashtag Users dataset.

Some of the other hashtags associated with an increase in the log-odds of Scottish

variant usage are also related to notions of national or regional identity and pride. For

example, #stillgame refers to a popular and critically acclaimed Scottish sitcom set in

a fictional Glaswegian housing estate, while #gersco and #polsco refer to Scotland’s

European Championship Qualifying football matches against Germany and Poland.

Moreover, for both datasets, the top-20 lists of hashtags with the largest positive BLUPs

include hashtags relating to the Scottish independence referendum: #yeswindaes, #bbcqt,

#fuckoffscotland, and #bigbigdebate for Scottish Geotag Users; and #patronisingbt-

ladypic, #ladyalba, #aye, #murphy, #lies, and #georgegalloway for Indyref Hashtag

Users.
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On the other hand, for both datasets the top 20 hashtags associated with decreased

odds of Scottish variant usage also include hashtags relating to Scottish independence

(both pro and anti). So in the end, there is no clear distinction for either group in

the kinds of hashtags which are most and least associated with distinctively Scottish

variant use.

Somewhat disconcertingly, one of the top-10 hashtags most associated with de-

creased odds of Scottish variant usage in the Scottish Geotag Users dataset is actually

an example of distinctively Scottish lexis itself (#mwi). We manually inspected a sam-

ple of tweets that contain those hashtags which are most negatively associated with

Scots variant usage, and observed that many such tweets actually do contain distinc-

tively Scottish vocabulary; just not any of the variants on our list. For example, of the

fifteen tweets in the Scottish Geotag Users dataset which contain the negatively associ-

ated hashtag #shocker, about half of them do contain distinctively Scottish vocabulary,

e.g:

• i canna believe there were birds in the bayview last night #shocker

• think ma maw on 3 blues could of ran quicker than i did tonight #shocker onnit

then

• just tried to get into some randoms car thinking it was mines and the alarms

went off . #shocker #wheresmacar

This does not invalidate the results in the paper, since our unit of observation is

the lexical alternation variable instance, not the tweet. Failing to include some dis-

tinctively Scottish variants in our set of lexical alternation variables does not result in

the mislabeling of any data-points; it merely results in the analysis being based on a

smaller sample of data-points than it could have been. Moreover, the fixed effect of

using a hashtag in the original models is estimated on the basis of many more data-

points than the BLUPs for each of the individual hashtags are here. Of course, ideally

we would like to base our analysis on as many relevant lexical alternations as possible,

but as we discussed in §2.3, identifying these is not straightforward and is a laborious

and time-consuming process. This motivated us to develop a method to facilitate the

identification of lexical alternation variables, which we present in Chapter 6.
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5.4.4 Potential explanations for inconsistent findings

Our mixed-effects models indicate that among SG-Users (i.e. those who were sampled

on the basis of Scottish geotag use), distinctively Scottish variant usage is positively

associated with tweet-initial mentions, while it is negatively associated with hashtags,

and there is no significant distance between the odds of choosing distinctitively Scot-

tish variants in broadcast tweets and in tweets with internal mentions. Conversely,

among IH-Users (i.e. those who were sampled on the basis of having used hashtags

related to the Scottish independence referendum), distinctively Scottish variants have

a slight negative association with tweet-initial mentions, a slight positive association

with hashtags, and a relatively strong negative association with tweet-internal men-

tions. In the Conclusion of the paper, we suggested that these two groups of users

might be using the affordances of mentions and hashtags in different ways and focus-

ing on different aspects of how these affect their potential audience. In this section I

will expand a little upon these hypotheses and how they could explain our findings.

Firstly, we have already shown in Figures 1 and 2 within the paper that there

are considerable differences across the datasets in the relative frequency distributions

of audience markers and of topics. Regarding audience markers, IH-Users not only

posted tweets containing hashtags relatively more frequently than SG-Users did, but

also tweets containing mentions, since the proportions of tweets in which the only au-

dience markers were initial or internal mentions are similar across the two user groups,

but IH-Users posted relatively more tweets with multiple audience markers (i.e. tweets

with both initial and internal mentions, or tweets with both hashtags and mentions).

In fact, tweets with multiple audience markers were the most common kind of tweet

posted by IH-Users in autumn 2014, while for SG-Users it was broadcasts, i.e. tweets

without any hashtags or mentions. Thus we can characterise IH-Users as generally

making greater use of the affordances Twitter provides to target posts towards particu-

lar groups or individuals.

Regarding topics, close to 45% of SG-Users’ tweets were labeled as ‘Chatter’,

which more or less correspond to ‘phatic posts’ (Radovanovic and Ragnedda, 2012),

i.e. posts which have the primary purpose of fostering, maintaining, and reinforcing

relationships, as opposed to sharing information or ideas. For IH-Users, the most

frequent topics were the Scottish independence referendum followed by other political

topics, with only around 20% of tweets being categorized as ‘Chatter’.
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5.4.4.1 Explaining inter-group differences in effects of mentions

A potential explanation for the discrepancies in the effects of initial and internal men-

tions is that our two groups of users differ not only in the relative frequencies with

which they use mentions, but also in the sorts of accounts they tend to mention, and in

their motivations for doing so.

Honeycutt and Herring (2009) analysed functions of mentions in a randomly sam-

pled corpus of English-language tweets, and while the most common function of men-

tions in their dataset was to address other users in order to engage in conversation with

them, they also observed mentions being used to refer to other users (i.e. to talk about

them rather than to them). boyd et al. (2010) point out that in addition to addressiv-

ity and reference, mentions can also have an attention-seeking function, in that they

sometimes appear to be specifically intended to draw the mentioned user’s attention to

the tweet (since users receive notifications about tweets in which they are mentioned).

We therefore propose the following hypotheses:

H1 SG-Users primarily use tweet-initital mentions to engage in conversation with
the mentionee, and their mentionees tend to be individuals in their local peer

group.

H2 SG-Users primarily use tweet-internal mentions to refer to the mentionee.

H3 IH-Users are more likely to use either kind of mention to draw the mentionee’s
attention to the content of the post, and their mentionees are more likely to be

individuals or organisations outwith their own follower group (who would thus

have been unlikely to see the tweet had they not been mentioned in it).

Should these hypotheses turn out to be true, then our results could be interpreted as

entirely coherent with Pavalanathan and Eisenstein (2015a) findings (based on Twitter

users who use geotags in the USA) that socially marked terms are more likely to be

used in conversational messages aimed at narrow, local audiences. According to the

abobe hypotheses, the only category corresponding to conversational messages aimed

at narrow, local audiences would be SG-Users’ tweets with initial mentions, which are

indeed associated with increased odds of distinctively Scottish variant use.

Since tweet-internal mentions do not affect whose Home Timelines a tweet is

pushed to (see §3.1), the audience invoked by a tweet with an internal mentions is

equivalent to that of a broadcast tweet (i.e. the author’s followers)—except that the
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mentionee receives a notification. If SG-Users use tweet-internal mentions primarily

with the intention of directing their followers’ attention towards the mentioned account

as opposed to receiving attention from the mentioned account, then it makes sense that

they would conceive of the audience in the same way they do for a broadcast tweet,

and thus make similar lexical choices to those they would make in broadcast tweets.

Finally, if IH-Users are less inclined to use mentions for conversation or reference,

but moreso to spread information and ideas to influential accounts beyond their imme-

diate social network, then it makes sense that they might want to maximise the acces-

sibility of such posts, and thus be more likely to inhibit their use of socially marked or

regionally specific variants.

5.4.4.2 Explaining inter-group differences in effects of hashtags

Although we were not able to discern any clear systematic differences across the two

user groups in the kinds of hashtags that are most associated with increased or de-

creased odds of Scottish variant usage (see §5.4.3), it could still be the case that the

two groups differ systematically with respect to the frequencies with which they use

different kinds of hashtags, and with respect to their motivations for using hashtags.

In a series of six empirical studies, Rauschnabel et al. (2019) systematically as-

sessed why and how people use hashtags on social media, and uncovered ten distinct

motivations which appear to drive different patterns of hashtagging behavior. Among

the ten identified motivations are one the authors call TRENDGAGING (a portmanteau

of ‘trends’ and ‘engaging’), which is defined as the desire to engage in and be associ-

ated with popular conversations and trendy topics, and is suggested to be driven by the

positive effects on an individual’s self-esteem that are brought about by the feeling of

belonging to an attractive and popular social group. They distinguish trendgaging from

BONDING, which they define as the motivation to show that one belongs to an in-group,

stemming from the universal human need for a more intimate kind of belonging than

can be derived from interactions with new acquaintances. Other identified motivations

include ENDORSING: using hashtags for the prosocial purpose of promoting people,

brands, events, or topics that one identifies with or finds interesting; and REACHING:

using hashtags to share one’s opinion about, raise awareness of, or engage in debates

on important topics, by addressing specific communities of users who are interested in

the relevant topic.

Rauschnabel et al. (2019) relate the ten motivations to five hashtagging ‘styles’

derived from a factor analysis of different kinds of hashtags people use. Their re-
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sults suggest that the trendgaging and endorsing motivations are most associated with

a ‘modern’ hashtagging style characterised by hashtags that are widely popular across

social media; while the reaching and bonding motivations are both strongly associ-

ated with a ‘related’ hashtagging style, characterised by hashtags that are connected

with specific interest groups or communities of practice. Based on their analyses, we

propose the following hypotheses:

H4 SG-Users tend to use hashtags for trendgaging and endorsing, so they use more

hashtags that are widely popular across social media.

H5 IH-Users tend to use hashtags for reaching and bonding, so they use more niche

hashtags to engage with specific communities.

Should these hypotheses turn out to be true, the inhibitory effect of hashtags on

SG-Users’ rates of Scottish variant usage could be explained in terms of the mass

audiences invoked by their relatively frequent use of widely popular hashtags; while

the slight positive association between hashtags and Scottish variant use for IH-Users

could be explained in terms of their bonding motivation, as well as the idea that while

the audience of tweets with niche hashtags is not restricted since they are still pushed

to the feeds of all of the author’s followers, the use of niche hashtags can still serve

as an indicator of the niche audience it is intended for, such that the author may feel

licensed to use lexical choices that resonate specifically with that group, even if they

may be unfamiliar to followers from outwith the group.

While it might seem counter-intuitive that IH-Users would use mentions to solicit

the attention of entities beyond their in-group and hashtags to strengthen bonds within

it, some additional grounding for these hypotheses comes from a systematic litera-

ture review of Twitter use during election campaigns by Jungherr (2016), in which he

notes that Bruns and Highfield (2013) and Conover et al. (2012, 2011) have found that

politically vocal Twitter users frequently reach out across party lines when using men-

tions, while findings by Bode et al. (2015), Hanna et al. (2011, 2013), and Lietz et al.

(2014) indicate that politically partisan users tend to create within-group communica-

tion spaces through their use of hashtags.

5.4.4.3 Reconciling the findings from this chapter with those from Chapter 4

In Chapter 4, our analyses were based on the IT dataset (see §3.4), a smaller collection

of tweets authored by a larger set of Indyref Hashtag Users. We found lower aver-

age Scottish usage rates in tweets containing Indyref hashtags than in the rest of the IT
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dataset, and originally attributed this finding to a posited audience-broadening function

of hashtags (as opposed to the topic being Indyref), since there was no significant dif-

ference in Scottish usage rates between tweets containing Indyref hashtags and tweets

that contained other hashtags. However, the mixed-effects models we have presented

here indicate that when we carefully account for effects of topic, for IH-Users hashtags

are actually associated with higher odds of choosing distinctively Scottish variants.

Nevertheless, the results from this chapter and the previous one are not incoherent.

As we have acknowledged throughout, the studies in Chaper 4 did not enable us to

conclusively distinguish effects of audience and topic. Since our mixed-effects models

have revealed that the negative effect of tweeting about politics is considerably larger

than the positive effect of using hashtags, we can now re-interpret the lower average

rate of distinctively Scottish variant use in Indyref hashtag tweets vs all other tweets in

the IT dataset as being driven by the inhibitory effect of the Indyref topic after all. To

explain the reduction in the difference in rates of Scottish variant use between Indyref

hashtag tweets and control tweets when we restricted the control set to other tweets

which contain hashtags, we can consider the different topic distributions across all

tweets vs. tweets with hashtags. In the IH-Users dataset (in which we have inferred

the topic of every tweet), 56% of all tweets are political, but this proportion rises to

72% in the subset of tweets which contain hashtags. Assuming these proportions are

similar in the IT dataset, the diminished difference in Scottish variant usage rates can

thus be explained by a diminished difference in the proportion of tweets which are

political.

5.5 Future work

A limitation of our paper is its coarse-grained operationalisation of audience size on

the basis of mentions and hashtags. While mentions and hashtags do enable users

to manipulate the likely composition of the audience, the assumption that mentions

invoke narrower audiences than hashtags is rather reductive: the size of the prospective

audience will naturally depend on how widely followed the mentioned user or included

hashtag is. Hence, to better understand the implications of the difference we observed

in audience effects across our two user groups, future studies could incorporate more

nuanced characterisations of audience.

One approach that could be taken is to estimate the popularity of relevant hashtags

based on the frequency with which they occur in a sample of tweets, and of mentioned
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users based on their follower counts, in order to make more fine-grained distinctions as

a better proxy for audience size. Future studies could also operationalise other aspects

of the composition of the prospective audience. For example, following Nguyen et al.

(2015) they could consider the prospective audience’s own Scottish vocabulary usage

rates, estimated on the basis of Scottish vocabulary usage rates in other tweets which

contain the relevant hashtag, or other users who follow (or have also mentioned) the

relevant mentioned user. In case there is little variation in these rates, future studies

could alternatively consider the geographic dispersion of hashtags, and/or followers

or fellow-mentioners of mentioned users. Pavalanathan and Eisenstein (2015a) found

that users in the USA were more likely to use non-standard terms in tweets containing

mentions when the mentioned user was geographically close to the author. Because

this finding held true not only for regionally-specific non-standard terms, but also for

non-standard terms which were widely used in tweets across the USA, they speculated

that the underlying factor behind this geographical proximity effect may in fact be so-

cial tie strength. Another interesting direction for future work would therefore be to

consider a more direct measure of social tie strength between tweet authors and men-

tioned users, perhaps based on a graph of follower relationships or mentions (though

these are particularly tricky to sample; see González-Bailón et al. 2014), or based on

the Smallest Common Hashtag measure introduced by Romero et al. (2013). Romero

et al. found that the frequency of the least popular hashtag that a given pair of users

have both used is highly predictive of the probability of those users having followed

or mentioned each other, thus we propose it could potentially function as a proxy for

social tie strength.

Lastly (though by no means least importantly), our quantitative analysis could also

be complemented by qualitative content analyses looking in detail at particular users

and/or hashtags, as well as surveys or interviews in order to test the hypotheses we put

forward in §5.4.4 about how differences in users’ motivations for using hashtags and

mentions could explain our present findings.





Chapter 6

Lexical variable discovery

6.1 Introduction

In Chapters 4 and 5, we analysed intra- and inter- speaker variation in usage rates of

distinctively Scottish terms. We used a data-driven method to identify distinctively

Scottish terms, but manually paired them with Standard English equivalents. This

manual step was time consuming and required a high degree of familiarity with both

Standard English and Scots/Scottish English. Hence it would be useful if we could

also use data-driven methods to facilitate the identification of pairs of variants from

two specified language varieties, which have the same referential meaning and can

occur in the same syntactic contexts. As well as speeding up the process of curating

lists of lexical variables, such a method could suggest variables that a researcher might

not have otherwise considered.

The task we aim to solve is similar to bilingual lexicon induction. However, state

of the art methods for bilingual lexicon induction (e.g. Conneau et al. 2017; Artetxe

et al. 2018) use separate monolingual corpora for each language. We are interested

in analysing variation in the use of minority language varieties, dialects, registers or

sociolects, for which mono-lectal corpora are often difficult to construct. For closely

related language variety pairs like English and Scots, which share a lot of vocabulary

and are frequently code-mixed within single utterances, it is often impossible to defini-

tively say whether a document belongs to one language variety or the other. Therefore,

unlike in the typical setting for bilingual lexicon induction, we want to be able to induce

lexical variables from a single corpus which contains a mixture of language varieties.

Our task involves not only mapping terms in one variety onto terms in the other, but

also working out which terms belong to which variety.

79
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In this chapter we present a simple method for lexical variable induction from code-

mixed text, which provides researchers with a ranked list of candidate variant pairs that

they only have to accept or reject. We show that with as few as five manually curated

seed pairs, our proposed method can efficiently identify large numbers of additional

variables.

6.2 Author contributions

The paper is co-authored by me, James Kirby, and Sharon Goldwater. As the leading

author, I conceived and developed the method, wrote the code, performed the exper-

iments, and drafted the paper. James Kirby and Sharon Goldwater supervised the

project, offered suggestions, and helped to revise the final manuscript.

6.3 The paper

The paper was accepted for publication at the 4th Workshop on Noisy User-generated

Text at EMNLP 2019 in Copenhagen, where it was featured as an oral presentation and

won a Best Paper Award. The publication reference is as follows:

Shoemark, P., Kirby, J., & Goldwater, S. (2018, November). Inducing a
lexicon of sociolinguistic variables from code-mixed text. In Proceedings
of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-
generated Text (pp. 1-6).
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Abstract

Sociolinguistics is often concerned with how
variants of a linguistic item (e.g., nothing vs.
nothin’) are used by different groups or in
different situations. We introduce the task
of inducing lexical variables from code-mixed
text: that is, identifying equivalence pairs such
as (football, fitba) along with their linguis-
tic code (football→British, fitba→Scottish).
We adapt a framework for identifying gender-
biased word pairs to this new task, and present
results on three different pairs of English di-
alects, using tweets as the code-mixed text.
Our system achieves precision of over 70%
for two of these three datasets, and produces
useful results even without extensive parame-
ter tuning. Our success in adapting this frame-
work from gender to language variety suggests
that it could be used to discover other types of
analogous pairs as well.

1 Introduction

Large social media corpora are increasingly used
to study variation in informal written language
(Schnoebelen, 2012; Bamman et al., 2014; Nguyen
et al., 2015; Huang et al., 2016). An outstanding
methodological challenge in this area is the bottom-
up discovery of sociolinguistic variables: linguistic
items with identifiable variants that are correlated
with social or contextual traits such as class, regis-
ter, or dialect. For example, the choice of the term
rabbit versus bunny might correlate with audience
or style, while fitba is a characteristically Scottish
variant of the more general British football.

To date, most large-scale social media studies
have studied the usage of individual variant forms
(Eisenstein, 2015; Pavalanathan and Eisenstein,
2015). Studying how a variable alternates be-
tween its variants controls better for ‘Topic Bias’
(Jørgensen et al., 2015), but identifying the rele-
vant variables/variants may not be straightforward.

For example, Shoemark et al. (2017b) used a data-
driven method to identify distinctively Scottish
terms, and then manually paired them with Stan-
dard English equivalents, a labour intensive process
that requires good familiarity with both language
varieties. Our aim is to facilitate the process of
curating sociolinguistic variables by providing re-
searchers with a ranked list of candidate variant
pairs, which they only have to accept or reject.

This task, which we term lexical variable in-
duction, can be viewed as a type of bilingual lexi-
con induction (Haghighi et al., 2008; Zhang et al.,
2017). However, while most work in that area as-
sumes that monolingual corpora are available and
labeled according to which language they belong
to, in our setting there is a single corpus contain-
ing code-mixed text, and we must identify both
translation equivalents (football, fitba) as well as
linguistic code (football→British, fitba→Scottish).
To illustrate, here are some excerpts of tweets from
the Scottish dataset analysed by Shoemark et al.,
with Standard English glosses in italics:1

1. need to come hame fae the football
need to come home from the football

2. miss the fitba
miss the football

3. awwww man a wanty go tae the fitbaw
awwww man I want to go to the football

The lexical variable induction task is challenging:
we cannot simply classify documents containing
fitba as Scottish, since the football variant may also
occur in otherwise distinctively Scottish texts, as
in (1). Moreover, if we start by knowing only a
few variables, we would like a way to learn what
other likely variables might be. Had we not known

1Note that it is hard to definitively say whether tweets
such as these are mixing English and Scots codes, or whether
they are composed entirely in a single Scottish code, which
happens to share a lot of vocabulary with Standard English.



the (football, fitba) variable, we might not detect
that (2) was distinctively Scottish. Our proposed
system can make identifying variants quicker and
also suggest variant pairs a researcher might not
have otherwise considered, such as (football, fit-
baw) which could be learned from tweets like (3).

Our task can also be viewed as the converse of
the one addressed by Donoso and Sanchez (2017),
who proposed a method to identify geographical
regions associated with different linguistic codes,
using pre-defined lexical variables. Also comple-
mentary is the work of Kulkarni et al. (2016), who
identified words which have the same form but dif-
ferent semantics across different linguistic codes;
here, we seek to identify words which have the
same semantics but different forms.

We frame our task as a ranking problem, aim-
ing to generate a list where the best-ranked pairs
consist of words that belong to different linguistic
codes, but are otherwise semantically and syntac-
tically equivalent. Our approach is inspired by
the work of Schmidt (2015) and Bolukbasi et al.
(2016), who sought to identify pairs of words that
exhibit gender bias in their distributional statistics,
but are otherwise semantically equivalent. Their
methods differ in the details but use a similar frame-
work: they start with one or more seed pairs such
as {(he, she), (man, woman)} and use these to ex-
tract a ‘gender’ component of the embedding space,
which is then used to find and rank additional pairs.

Here, we replace the gendered seed pairs with
pairs of sociolinguistic variants corresponding to
the same variable, such as {(from, fae), (football,
fitba)}. In experiments on three different datasets
of mixed English dialects, we demonstrate useful
results over a range of hyperparameter settings,
with precision@100 of over 70% in some cases
using as few as five seed pairs. These results indi-
cate that the embedding space contains structured
information not only about gendered usage, but
also about other social aspects of language, and
that this information can potentially be used as part
of a sociolinguistic researcher’s toolbox.

2 Methods

Our method consists of the following steps.2

Train word embeddings We used the Skip-
gram algorithm with negative sampling (Mikolov
et al., 2013) on a large corpus of code-mixed text

2Code is available at github.com/pjshoemark/
lexvarinduction.

to obtain a unit-length embedding w for each word
in the input vocabulary V .3

Extract ‘linguistic code’ component Using
seed pairs S = {(xi,yi), i = 1 . . . n}, we com-
pute a vector c representing the component of the
embedding space that aligns with the linguistic
code dimension. Both Schmidt and Bolukbasi
et al. were able to identify gender-biased word
pairs using only a single seed pair, defining the
‘gender’ component as c = wshe − whe. How-
ever, there is no clear prototypical pair for dialect
relationships, so we average our pairs, defining
c = 1

n

∑
i xi − 1

n

∑
i yi.4 We experiment with the

number of required seed pairs in §5.

Threshold candidate pairs From the set of all
word pairs in V × V , we generate a set of can-
didate output pairs. We follow Bolukbasi et al.
(2016) and consider only pairs whose embeddings
meet a minimum cosine similarity threshold δ. We
set δ automatically using our seed pairs: for each
seed pair (xi,yi) we compute cos(xi,yi) and set
δ equal to the lower quartile of the resulting set of
cosine similarities.

Rank candidate pairs Next we use c to rank the
remaining candidate pairs such that the top-ranked
pairs are the most indicative of distinct linguis-
tic codes, but are otherwise semantically equiva-
lent. We follow Bolukbasi et al. (2016),5 setting
score(wi,wj) = cos(c,wi − wj).

Filter top-ranked pairs High dimensional em-
bedding spaces often contain ‘hub’ vectors, which
are the nearest neighbours of a disproportionate
number of other vectors (Radovanović et al., 2010).
In preliminary experiments we found that many
of our top-ranked candidate pairs included such
‘hubs’, whose high cosine similarity with the word
vectors they were paired with did not reflect gen-
uine semantic similarity. We therefore discard all
pairs containing words that appear in more than m
of the top-n ranked pairs.6

3In preliminary experiments we also tried CBOW and
FastText, but obtained better output with Skip-gram.

4Bolukbasi et al. (2016) introduced another method to com-
bine multiple seed pairs, using Principal Component Analysis.
We compared it and a variant to our very simple difference
of means method, and found little difference in their efficacy.
Details can be found in the Supplement. All results reported
in the main paper use the method defined above.

5See Supplement for comparison with an alternative scor-
ing method devised by Schmidt (2015).

6The choice of m ∈ {5, 10, 20} and n ∈ {5k, 10k, 20k}
made little difference, although we did choose the best pa-



3 Datasets

We test our methods on three pairs of language
varieties: British English vs Scots/Scottish English;
British English vs General American English; and
General American English vs African American
Vernacular English (AAVE). Within each data set,
individual tweets may contain words from one or
both codes of interest, and the only words with a
known linguistic code (or which are known to have
a corresponding word in the other code) are those
in the seed pairs.

BrEng/Scottish For our first test case, we com-
bined the two datasets collected by Shoemark et al.
(2017a), consisting of complete tweet histories
from Aug-Oct 2014 by users who had posted at
least one tweet in the preceding year geotagged to
a location in Scotland, or that contained a hashtag
relating to the 2014 Scottish Independence referen-
dum. The corpus contains 9.4M tweets.

For seeds, we used the 64 pairs curated by Shoe-
mark et al. (2017b). Half are discourse markers or
open-class words (dogs, dugs), (gives, gees) and
half are closed-class words (have, hae), (one, yin).
The full list is included in the Supplement.

BrEng/GenAm For our next test case we re-
created the entire process of collecting data and
seed variables from scratch. We extracted 8.3M
tweets geotagged to locations in the USA from
a three-year archive of the public 1% sample of
Twitter (1 Jul 2013–30 Jun 2016). All tweets were
classified as English by langid.py (Lui and Baldwin,
2012), none are retweets, none contain URLs or
embedded media, and none are by users with more
than 1000 friends or followers. We combined this
data with a similarly constructed corpus of 1.7M
tweets geotagged to the UK and posted between 1
Sep 2013 and 30 Sep 2014.

To create the seed pairs, we followed Shoemark
et al. (2017b) and used the Sparse Additive Genera-
tive Model of Text (SAGE) (Eisenstein et al., 2011)
to identify the terms that were most distinctive to
UK or US tweets. However, most of these terms
turned out to represent specific dialects within each
country, rather than the standard BrEng or GenAm
dialects (we discuss this issue further below). We
therefore manually searched through the UK terms
to identify those that are standard BrEng and dif-

rameters for each language pair: m = 20, n = 20k for
BrEng/Scottish; m = 5, n = 5k for GenAm/AAVE; and
m = 10, n = 5k for BrEng/GenAm.

fer from GenAm by spelling only, and paired each
one with its GenAm spelling variant, e.g. (color,
colour), (apologize, apologise), (pajamas, pyja-
mas). This process involved looking through thou-
sands of words to identify only 27 pairs (listed in
the Supplement), which is a strong motivator for
our proposed method to more efficiently increase
the number of pairs.

GenAm/AAVE While creating the previous
dataset, we noticed that many of the terms identi-
fied by SAGE as distinctively American were actu-
ally from AAVE. To create our GenAm/AAVE seed
pairs, we manually cross-referenced the most dis-
tinctively ‘American’ terms with the AAVE phono-
logical processes described by Rickford (1999).
We then selected terms that reflected these pro-
cesses, paired with their GenAm equivalents, e.g.
(about, bou), (brother, brudda). The full list of
19 open-class and 20 closed-class seed pairs is in-
cluded in the Supplement.

4 Evaluation Procedure

We evaluate our systems using Precision@K, the
percentage of the top K ranked word pairs judged
to be valid sociolinguistic variables. We discard
any seed pairs from the output before computing
precision. Since we have no gold standard transla-
tion dictionaries for our domains of interest, each
of the top-K pairs was manually classified as either
valid or invalid by the first author.

For a pair to be judged as valid, (a) each member
must be strongly associated with one or the other
language variety, (b) they must be referentially,
functionally, and syntactically equivalent, and (c)
the two words must be ordered correctly accord-
ing to their language varieties, e.g. if the seeds
were (BrEng, GenAm) pairs, then the BrEng words
should also come first in the top-K output pairs.

Evaluation judgements were based on the au-
thor’s knowledge of the language varieties in ques-
tion; for unfamiliar terms, tweets containing the
terms were sampled and manually inspected, and
cross-referenced with urbandictionary.com and/or
existing sociolinguistic literature.

Our strict criteria exclude pairs like (dogs, dug)
which differ in their inflection, or (quid, dollar)
whose referents are distinct but are equivalent
across cultures. In many cases it was difficult to
judge whether or not a pair should be accepted,
such as when not all senses of the words were
interchangable, e.g. BrEng/GenAm (folk, folks)
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Figure 1: Precision@100 for various Skip-gram hyperparameter settings.

works for the ‘people’ sense of folk, but not the
adjectival sense: (folk music, *folks music). The
BrEng/GenAm dataset also yielded many pairs of
words that exhibit different frequencies of usage in
the two countries, but where both words are part
of both dialects, such as (massive, huge), (vile, dis-
gusting), and (horrendous, awful). We generally
marked these as incorrect, although the line be-
tween these pairs and clear-cut lexical alternations
is fuzzy. For some applications, it may be desirable
to retrieve pairs like these, in which case the preci-
sion scores we report here are very conservative.

5 Results and Discussion

We started by exploring how the output precision
is affected by the hyperparameters of the word
embedding model: the number of embedding di-
mensions, size of the context window, and mini-
mum frequency below which words are discarded.
Results (Figure 1) show that the context window
size does not make much difference and that the
best scores for each language use a minimum fre-
quency threshold of 50-100. The main variability
seems to be in the optimal number of dimensions,
which is much higher for the BrEng/Scottish data
set than for GenAm/AAVE. Although the preci-
sion varies considerably, it is over 40% for most
settings, which means a researcher would need to
manually check only a bit over twice as many pairs
as needed for a study, rather than sifting through
a much larger list of individual words and trying
to come up with the correct pairs by hand. Results
for BrEng/GenAm are worse than for the other two
datasets, for reasons which become clear when we
look at the output.

Table 1 shows the top 10 generated pairs for
each pair of language varieties, using the best hy-
perparameters for each of the datasets. The top
100 are given in the Supplement. According to
our strict evaluation criteria, many of the output
pairs for the BrEng/GenAm dataset were scored as
incorrect. However, most of them are actually sen-
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Figure 2: Precision@K from K=1 to 300 for each
language variety pair.

sible, and examples of the kinds of grey areas and
cultural analogies (e.g., (amsterdam, vegas), (bbc,
cnn)) that we discussed in §4. These types of pairs
likely predominate because BrEng and GenAm are
both standardized dialects with very little differ-
ence at the lexical level, so cultural analogies and
frequency effects are the most salient differences.

BrEng / Scottish
now / noo
what / whit
wasnt / wis
cant / canny
would / wid
doesnt / disny
cant / cannae
going / gonny
want / wanty
anyone / embdy

BrEng / GenAm
mums / moms
dunno / idk
yeh / yea
shouting / yelling
quid / dollars
learnt / learned
favour / favor
sofa / couch
advert / commercial
adverts / commercials

GenAm / AAVE
the / tha
with / wit
getting / gettin
just / jus
and / nd
making / makin
when / wen
looking / lookin
something / somethin
going / goin

Table 1: Top 10 ranked variables for each language
pair (invalid variables in italics).

To show how many pairs can be identified ef-
fectively, Figure 2 plots Precision@K as a func-
tion of K ∈ {1. . 300}. For BrEng/Scottish and
GenAm/AAVE, more than 70% of the top-100
ranked word pairs are valid. Precision drops off
fairly slowly, and is still at roughly 50% for these
two datasets even when returning 300 pairs.

To assess the contribution of the ‘linguistic code’
component, we compared the performance of our
system with a naı̈ve baseline which does not use
the ‘linguistic code’ vector c at all. Since transla-
tion equivalents such as fitba and football are likely



Baseline Our Method
BrEng / Scottish 0.00 0.71
BrEng / GenAm 0.04 0.32
GenAm / AAVE 0.08 0.74

Table 2: Precision@100 for our method and the
baseline for each language pair.

to be very close to one another in the embedding
space, it is worth checking whether they can be
identified on that basis alone. The baseline ranks
all unordered pairs of words in the vocabulary just
by their cosine similarity, cos(wi,wj). Since this
baseline gives us no indication of which word be-
longs to which language variety, we evaluated it
only on its ability to correctly identify translation
equivalents (i.e. using criteria (a) and (b), see §4),
and gave it a free pass on assigning the variants to
the correct linguistic codes (criterion (c)). Results
are in Table 2. Despite its more lenient evaluation
criteria, the baseline performs very poorly. Perhaps
if we were starting with a pre-defined set of words
from one language variety which were known to
have equivalents in the other, then simply return-
ing their nearest neighbours might be sufficient.
However, in this more difficult setting where we
lack prior knowledge about which words belong to
our codes of interest, an additional signal clearly is
needed.

Finally, we examined how performance depends
on the particular seed pairs we used and the num-
ber of seed pairs. Using the BrEng/Scottish and
GenAm/AAVE datasets, we subsampled between
1 and 30 seed pairs from our original sets. Over
10 random samples of each size, we found sim-
ilar average performance using just 5 seed pairs
as when using the full original sets (see Figure 3).
Performance increased slightly when using only
open-class seed pairs: P@100 rose to 0.77 for Scot-
tish/BrEng and 0.75 for GenAm/AAVE (cf. 0.71
and 0.74 using all the original seed pairs). These
results indicate our method is robust to the number
and quality of seed pairs.

6 Conclusion

Overall, our results demonstrate that sociolinguistic
information is systematically encoded in the word
embedding space of code-mixed text, and that this
implicit structure can be exploited to identify so-
ciolinguistic variables along with their linguistic
code. Starting from just a few seed variables, a
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Figure 3: Mean Precision@K curves for different
sized samples from the original seed pair lists. Each
curve is averaged across 10 random samples of n
seed pairs, for n ∈ {1, 5, 10, 20, 30}.

simple heuristic method is sufficient to identify a
large number of additional candidate pairs with
precision of 70% or more. Results are somewhat
sensitive to different hyperparameter settings but
even non-optimal settings produce results that are
likely to save time for sociolinguistic researchers.
Although we have so far tested our system only
on varieties of English7, we expect it to perform
well with other pairs of language varieties which
have a lot of vocabulary overlap or are frequently
code-mixed within sentences or short documents,
including code-mixed languages as well as dialects.
This framework may also be useful for identifying
variation across genres or registers.
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jana Ivanović. 2010. Hubs in space: Popular nearest
neighbors in high-dimensional data. Journal of Ma-
chine Learning Research, 11(Sep):2487–2531.

John R Rickford. 1999. African American vernacular
English: Features, evolution, educational implica-
tions, chapter 1. Blackwell Malden, MA.

Ben Schmidt. 2015. Rejecting the gender bi-
nary: a vector-space operation. http:
//bookworm.benschmidt.org/posts/
2015-10-30-rejecting-the-gender-binary.
html.

Tyler Schnoebelen. 2012. Do you smile with your
nose? stylistic variation in Twitter emoticons. Uni-
versity of Pennsylvania Working Papers in Linguis-
tics, 18(2):14.

Philippa Shoemark, James Kirby, and Sharon Gold-
water. 2017a. Topic and audience effects on dis-
tinctively scottish vocabulary usage in Twitter data.
In Proceedings of the Workshop on Stylistic Varia-
tion, pages 59–68. Association for Computational
Linguistics.

Philippa Shoemark, Debnil Sur, Luke Shrimpton, Iain
Murray, and Sharon Goldwater. 2017b. Aye or naw,
whit dae ye hink? Scottish independence and lin-
guistic identity on social media. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, EACL’17, pages 1239–1248. Asso-
ciation for Computational Linguistics.

Meng Zhang, Haoruo Peng, Yang Liu, Huan-Bo Luan,
and Maosong Sun. 2017. Bilingual lexicon induc-
tion from non-parallel data with minimal supervi-
sion. In Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence, AAAI’17, pages
3379–3385. AAAI Press.



Supplementary Information

A Full lists of seed variables used

Tables 1 to 3 list the full sets of seed variables that
were used in our experiments.

BrEng Scottish
alright awright
alright awrite
alright awryt

ball baw
balls baws
bird burd

birds burds
definitely defos

dogs dugs
doing dain
down doon

football fitba
gives gees

gimme gees
going gawn
good gid

grandad granda
grandfather granda

grandpa granda
home hame
house hoose

just jist
old auld

pissed pished
pissing pishing

shit shite
shitty shitey

something suhin
sore sare

thing hing
think hink

tomorrow morra

BrEng Scottish
about aboot
didnt didny

do dae
doesnt doesny

dont deh
dont dini
dont dinny
from fae
have hae
isnt isny

myself masel
myself maself

of ae
off aff
on oan

one wan
one yin
our oor
out oot

thats ats
to tae

too tae
wanna wanty

was wis
with wi
with wae
you yi

your yer
your yir

youre yer
youre yir

yourself yersel

Table 1: BrEng/Scottish seed pairs. Left: open-
class; Right: closed-class.

BrEng GenAm
color colour

coloring colouring
colors colours

colored coloured
favorite favourite

favorites favourites
favorited favourited
behavior behaviour
neighbor neighbour

neighbors neighbours
humor humour
rumor rumour

rumors rumours

BrEng GenAm
apologize apologise

apologized apologised
apologizing apologising

realize realise
realized realised
realizes realises

realizing realising
gray grey

theater theatre
theaters theatres

tire tyre
tires tyres

math maths
pajamas pyjamas

Table 2: BrEng/GenAm seed pairs (all open-class).

GenAm AAVE
brother brova
brother brudda

everybody erbody
everybody errybody

everyday errday
everyday erryday
everyone erryone

everything errthang
everything everythang

hundred hunna
hundred hunnid
hundred hunnit

later lata
nothing nuffin
nothing nuttin
partner partna
partner patna
round roun
thing thang

GenAm AAVE
about bou
about bout
after afta

before befo
dont ont

every erry
for fa
for fah
for fo

that dat
the da

there der
there dere
these deez
these dese
they dey
this dis

to tah
with wid
with witt

Table 3: GenAm/AAVE seed pairs. Left: open-
class; Right: closed-class.

B Comparison of methods

B.1 Alternative methods for extracting
‘linguistic code’ component

In addition to the very simple method presented
in the main paper (which we will refer to here as
MEANSDIFF), we tested two additional methods
for combining multiple seed pairs to identify a sin-
gle ‘linguistic code’ component.

The first is a version of the method Bolukbasi
et al. used in their full debiasing algorithm, which
we call OFFSETSPCA.1 We compute the mean mi

of each seed pair (xi,yi) and the offset vectors
mi − xi and mi − yi. We then apply PCA to the
resulting collection of offsets, and set c equal to
the first principal component. We also consider a
simplere variant, INDIVPCA, wherein we define c
to be the first principal component of the set of all
our individual seed vectors; no pairwise informa-
tion is used.

B.2 Alternative methods for ranking
candidate word pairs

As well as the ranking method that we used
throughout the main paper (which we adopted
from Bolukbasi et al. (2016) and will refer to here
as DIFFSIM), we also tested an alternative rank-
ing method devised by Schmidt (2015). Schmidt’s

1Bolukbasi et al.’s method is more general, and can in
principle be used to extract multi-dimensional subspaces us-
ing equivalency seed sets of any cardinality, not just pairs.
This was not necessary for our application.



method, which we will call REJECT, first ‘rejects’
c from each word wi in a candidate pair, project-
ing wi onto the plane orthogonal to c, as w(r)

i =
wi − (wi · c)c. It then defines score(wi,wj) as
the ratio between the similarity of the rejected vec-

tors and the originals:
cos(w

(r)
i

,w
(r)
j

)

cos(wi,wj)

B.3 Results of comparison

Table 4 compares the different methods outlined
above for extracting the ‘linguistic code’ compo-
nent and ranking the candidate word pairs. There
is little difference in P@100 between OFFSET-
SPCA, INDIVPCA, and MEANSDIFF except on
the most difficult dataset (BrEng/GenAm), where
INDIVPCA (the only method that doesn’t explic-
itly use pairwise information) fails entirely. DIFF-
SIM and REJECT perform similarly except on the
AAVE/GenAm dataset, providing some evidence
that DIFFSIM is more robust.2

DIFFSIM REJECT

a)
OFFSETSPCA 0.69 0.64
INDIVPCA 0.70 0.65
MEANSDIFF 0.71 0.68

b)
OFFSETSPCA 0.32 0.30
INDIVPCA 0.000 0.000
MEANSDIFF 0.32 0.30

c)
OFFSETSPCA 0.72 0.47
INDIVPCA 0.74 0.45
MEANSDIFF 0.74 0.47

Table 4: Precision@100 for three methods of ex-
tracting the ‘linguistic code’ component crossed
with two methods for ranking candidate word
pairs. a) BrEng/Scottish, b) BrEng/GenAm, c)
GenAm/AAVE

C Output from our system

Tables 8 to 10 display the top-100 ranked vari-
ant pairs generated by our system for each
language pair. Although there are admittedly
some inconsistencies in the kinds of pairs that
were accepted/rejected, our system clearly re-
turned many more clear-cut lexical alternations
for BrEng/Scottish and GenAm/AAVE than for
BrEng/GenAm. That being said, a lot of the
BrEng/GenAm pairs we rejected do accurately

2However, recall that we tuned our embedding hyperpa-
rameters using DIFFSIM; another setting might yield better
results for REJECT.

reflect cultural differences between the UK and
USA.

D Output from baseline

Tables 5 to 7 show the top-10 ranked variant pairs
generated by the simple cosine-similarity baseline
for each language pair. None of these were judged
to be correct.

Rank Variant 1 Variant 2 Cosine similarity
1 umwandlung auftauchen 0.99
2 verificadas contribuyeron 0.99
3 umwandlung angeschaut 0.98
4 benutzer drehte 0.98
5 donnerstag sonntag 0.98
6 auftauchen angeschaut 0.98
7 harryyy ilysssm 0.98
8 irby pensby 0.98
9 erscheint ihrer 0.98
10 dienstag donnerstag 0.98

Table 5: Top 10 generated variables by the baseline
for BrEng/Scottish.

Rank Variant 1 Variant 2 Cosine similarity
1 tmin tmax 1.00
2 clr ksjc 0.99
3 rbngate wpm 0.99
4 pocus hocus 0.98
5 imma ima 0.98
6 klax rmk 0.98
7 soooo sooo 0.98
8 aiko jhene 0.98
9 til till 0.97
10 clr rmk 0.97

Table 6: Top 10 generated variables by the baseline
for BrEng/GenAm.

Rank Variant 1 Variant 2 Cosine similarity
1 clr ksjc 0.99
2 til till 0.99
3 imma ima 0.99
4 trynna tryna 0.98
5 clr rmk 0.97
6 canceled cancelled 0.97
7 plz pls 0.97
8 cus cuz 0.97
9 horrible terrible 0.97
10 ksjc rmk 0.97

Table 7: Top 10 generated variables by the baseline
for GenAm/AAVE.



Rank BrEng Variant Scottish Variant Score
1 now noo 0.54
2 what whit 0.54
3 wasnt wis 0.51
4 cant canny 0.50
5 would wid 0.49
6 doesnt disny 0.47
7 cant cannae 0.47
8 going gonny 0.47
9 want wanty 0.46
10 anyone embdy 0.46
11 wasnt wisny 0.46
12 wrong wrang 0.46
13 yeah aye 0.46
14 into inty 0.46
15 didnt didnae 0.46
16 into intae 0.45
17 im ahm 0.45
18 does disny 0.45
19 wouldnt widnae 0.45
20 was wisny 0.45
21 nothing nuhin 0.45
22 isnt isnae 0.45
23 your yur 0.44
24 wouldnt widny 0.44
25 ive ahve 0.44
26 doesnt disnae 0.44
27 going gonnae 0.43
28 giving geein 0.43
29 dont dinnae 0.43
30 give gie 0.43
31 dont diny 0.42
32 cant cany 0.42
33 cant cani 0.42
34 good guid 0.42
35 before afore 0.42
36 dont dinni 0.42
37 cannot canny 0.41
38 whats whits 0.41
39 gonna gonny 0.41
40 wasnt wisnae 0.41
41 everyone everycunt 0.41
42 going goni 0.41
43 outside ootside 0.41
44 going gon 0.40
45 cant couldnae 0.40
46 fucking fuckin 0.40
47 was wisnae 0.40
48 did didny 0.40
49 anyone anycunt 0.40
50 round roond 0.40

Rank BrEng Variant Scottish Variant Score
51 does disnae 0.40
52 getting gettin 0.40
53 cant cah 0.40
54 cant couldny 0.40
55 being bein 0.40
56 was wasny 0.40
57 yep aye 0.40
58 wasnt wasny 0.40
59 doesnt doesnae 0.39
60 couldnt couldnae 0.39
61 werent wisny 0.39
62 would wouldny 0.39
63 need needty 0.39
64 abt aboot 0.39
65 youd yed 0.39
66 bloody fuckin 0.39
67 tomorrow mora 0.39
68 going goin 0.38
69 what wit 0.38
70 couldnt couldny 0.38
71 dont dinna 0.38
72 did didnae 0.38
73 coming comin 0.38
74 wouldnt wouldnae 0.38
75 birthdayx brer 0.38
76 gonna gonnae 0.38
77 cannot cannae 0.38
78 cant canni 0.38
79 round roon 0.38
80 cant canna 0.38
81 wouldnt wouldny 0.37
82 taking takin 0.37
83 does doesny 0.37
84 ok awright 0.37
85 just jus 0.37
86 well weel 0.37
87 million hunner 0.37
88 anything anythin 0.37
89 someone somecunt 0.37
90 lots hunners 0.37
91 good smashin 0.37
92 cannot cany 0.37
93 kids weans 0.37
94 football fitbaw 0.37
95 stupid stupit 0.37
96 nobody naebody 0.36
97 photos photies 0.36
98 morning mornin 0.36
99 cannot cani 0.36
100 does doesnae 0.36

Table 8: Top 100 generated variant pairs for British English vs Scots/Scottish English. Pairs we accepted
are in bold, and those we rejected are in italics.



] Rank BrEng Variant GenAm Variant Score
1 mums moms 0.65
2 dunno idk 0.65
3 yeh yea 0.64
4 shouting yelling 0.62
5 quid dollars 0.61
6 learnt learned 0.60
7 favour favor 0.57
8 sofa couch 0.56
9 advert commercial 0.56
10 adverts commercials 0.55
11 petrol gas 0.53
12 vile disgusting 0.52
13 grandad grandpa 0.52
14 ure ur 0.52
15 cos cuz 0.52
16 yeh yeahh 0.51
17 shouting screaming 0.49
18 cos cus 0.49
19 favourite fav 0.48
20 honour honor 0.48
21 mummy mommy 0.47
22 windscreen windshield 0.46
23 emirates stadium 0.46
24 grandad uncle 0.46
25 spoilt spoiled 0.45
26 il ill 0.45
27 nandos sushi 0.45
28 photos pictures 0.44
29 tidy clean 0.43
30 gran grandpa 0.43
31 favourites favs 0.43
32 slag slut 0.42
33 massive huge 0.42
34 gona gonna 0.42
35 netball lacrosse 0.42
36 spelt spelled 0.42
37 folk folks 0.42
38 nearly almost 0.41
39 dunno idek 0.41
40 terrific great 0.41
41 lecturer professor 0.41
42 mep senator 0.40
43 revising studying 0.40
44 nans grandmas 0.40
45 lucozade powerade 0.39
46 cosy cozy 0.39
47 portuguese spanish 0.39
48 films movies 0.39
49 criticise criticize 0.39
50 shops shop 0.39

Rank BrEng Variant GenAm Variant Score
51 lecturer teacher 0.39
52 stuart scott 0.39
53 pavement sidewalk 0.38
54 horrendous awful 0.38
55 loosing losing 0.38
56 cosy comfy 0.38
57 revision studying 0.38
58 toilets bathrooms 0.37
59 bbe bby 0.37
60 shittest shittiest 0.37
61 moustache mustache 0.37
62 guna gonna 0.37
63 wid wit 0.37
64 sympathetic insensitive 0.37
65 morn mornin 0.37
66 bbc cnn 0.37
67 shittest worst 0.36
68 ion ionn 0.36
69 defiantly definitely 0.36
70 loads tons 0.36
71 shouted yelled 0.36
72 granddaughter daughter 0.36
73 favourite fave 0.36
74 retard dumbass 0.36
75 iont ionn 0.36
76 spliff bleezy 0.36
77 fkn fucken 0.36
78 arkham batman 0.36
79 paddys pattys 0.36
80 munching eating 0.35
81 hammered drunk 0.35
82 gatwick airport 0.35
83 cocktails margaritas 0.35
84 prem league 0.35
85 infront front 0.35
86 outreach community 0.35
87 wonna wanna 0.35
88 tenerife cancun 0.35
89 wkend wknd 0.35
90 bedroom room 0.35
91 pundits analysts 0.35
92 council community 0.35
93 gota gotta 0.34
94 amsterdam vegas 0.34
95 truely truly 0.34
96 tidying cleaning 0.34
97 flavour flavor 0.34
98 unbeaten undefeated 0.34
99 een eem 0.34
100 flavours flavors 0.34

Table 9: Top 100 generated variant pairs British English vs General American English. Pairs we accepted
are in bold, and those we rejected are in italics.



Rank GenAm Variant AAVE Variant Score
1 the tha 0.85
2 with wit 0.82
3 getting gettin 0.79
4 just jus 0.76
5 and nd 0.74
6 making makin 0.74
7 when wen 0.74
8 looking lookin 0.73
9 something somethin 0.72
10 going goin 0.72
11 being bein 0.72
12 doing doin 0.72
13 taking takin 0.71
14 working workin 0.71
15 something sumn 0.71
16 someone somebody 0.71
17 watching watchin 0.70
18 having havin 0.70
19 looking lookn 0.70
20 just juss 0.70
21 everyone errbody 0.70
22 that tht 0.69
23 thinking thinkin 0.69
24 everyone everybody 0.69
25 bc cus 0.69
26 coming comin 0.69
27 over ova 0.69
28 thats dats 0.69
29 pushing pushin 0.69
30 someone sumbody 0.68
31 know kno 0.68
32 and n 0.68
33 anyone anybody 0.68
34 never neva 0.68
35 your yo 0.68
36 getting gettn 0.68
37 other otha 0.67
38 yourself yaself 0.67
39 even een 0.67
40 school skool 0.67
41 little lil 0.67
42 with widd 0.67
43 from frm 0.66
44 nothing nothin 0.66
45 bc cuz 0.65
46 about abt 0.65
47 morning mornin 0.65
48 seeing seein 0.65
49 wearing wearin 0.65
50 wanting wantin 0.65

Rank GenAm Variant AAVE Variant Score
51 waiting waitin 0.65
52 another anotha 0.64
53 what wat 0.64
54 putting puttin 0.64
55 something sumthin 0.64
56 until til 0.64
57 keeping keepin 0.64
58 throwing throwin 0.64
59 helping helpin 0.64
60 laying layin 0.64
61 knowing knowin 0.63
62 listening listenin 0.63
63 nothing nuthin 0.63
64 thats thas 0.63
65 staying stayin 0.63
66 shopping shoppin 0.63
67 telling tellin 0.63
68 hoping hopin 0.62
69 playing playin 0.62
70 dont dnt 0.62
71 drinking drinkin 0.62
72 eating eatin 0.62
73 tonight tonite 0.62
74 things thangs 0.62
75 thw tha 0.62
76 wouldve woulda 0.62
77 running runnin 0.62
78 this thiss 0.62
79 work wrk 0.62
80 anymore nomore 0.61
81 showing showin 0.61
82 cannot kant 0.61
83 whats wats 0.61
84 asking askin 0.61
85 my ma 0.61
86 better betta 0.61
87 noting nuthin 0.61
88 my mah 0.61
89 driving drivin 0.61
90 sleeping sleepin 0.61
91 cannot caint 0.60
92 back bacc 0.60
93 to ta 0.60
94 but bt 0.60
95 releasing droppin 0.60
96 dropping droppin 0.60
97 giving givin 0.60
98 nothing nun 0.59
99 starting startin 0.59
100 thay dat 0.59

Table 10: Top 100 generated variant pairs for General American English vs African American Vernacular
English. Pairs we accepted are in bold, and those we rejected are in italics.
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6.4 Comments on the paper

6.4.1 Principal component analysis

In the paper’s Supplementary Information (§B), we presented a comparison of three

methods for defining a ‘linguistic code’ component. These were MEANSDIFF: the

vector difference of the mean of the L1 seed word embedding and the mean of the

L2 seed word embeddings; INDIVPCA: the first principal component of the whole

set of seed word embeddings; and OFFSETSPCA: the first principle component of the

set of vector differences between L1 seed word embeddings and their corresponding

L2 seed word embeddings. These performed more or less equally well, except that

the INDIVPCA method was completely ineffective for the British English / General

American English language variety pair.

Figures 6.1, 6.2, and 6.3 show the seed word embeddings projected onto their first

two principal components, for BrEng/Scottish, GenAm/AAVE, and BrEng/GenAm re-

spectively. In Figures 6.1 and 6.2, the first principal component quite cleanly delineates

the two linguistic codes, but this is not the case for BrEng/GenAm (Figure 6.3). It ap-

pears, then, that the distinction between British and General American English is less

strongly encoded in the embedding space than is the case for our other language variety

pairs.

One potential explanation for this has to do with the composition of the corpora on

which we trained our embeddings:

• The embeddings we used to identify BrEng/Scottish variables were trained on

the concatenation of our SG-Users and IH-Users datasets (see §3.4), which con-

sist of tweets posted in autumn 2014 by users sampled on the basis of hav-

ing used either Scottish geotags or hashtags relating to Scottish independence.

Distinctively Scottish terms are reasonably evenly (though sparsely) distributed

throughout this corpus.

• The embeddings we used to identify GenAm/AAVE variables were trained on

our G-USA dataset, which consists of tweets with USA geotags from the ‘Spritzer’

sample between June 30th 2013 and July 1st 2016. Terms distinctive to African

American English are reasonably evenly distributed throughout this corpus.

• The embeddings we used to identify BrEng/GenAm variables were trained on

the concatenation of our G-UK dataset—which consists of tweets with UK geo-
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tags from the ‘Spritzer’ sample between September 1st 2013 and September

30th 2014—and our G-USA dataset. Terms distinctive to British English are

not evenly distributed throughout this corpus; instead they are predominantly

concentrated within the first sixth of it (i.e. within the G-UK dataset).

Perhaps it is significant that all of the UK tweets (and therefore most instances

of British English variants) are at the beginning of the corpus, whereas the other two

language variety pairs are interleaved throughout their respective corpora. Antoniak

and Mimno (2018) investigated factors affecting the stability of geometric relationships

among word embeddings, and found that randomly shuffling the order of documents

in a training corpus did not substantially change the geometry of the embeddings.

However, they did report that

“anecdotally, we had observed cases where the embeddings were affected
by groups of documents (e.g. in a different language) at the beginning of
training.” (p. 117)

On the other hand, the apparently weaker encoding of the variability between

British and American English may be due to an inherent difference in the nature of

that variability. Both the African American and distinctively Scottish language vari-

eties include numerous distinctive variants of so-called closed-class words, whereas

all of our BrEng/GenAm seed pairs, and most of the additional BrEng/GenAm pairs

we identified using our system, are open-class. Closed-classed words (a.k.a. func-

tion words) tend to be frequent and contextually diverse, and the more a word-form

co-occurs with other word-forms that are distinctive to the same language variety, the

more likely its vector should be to diverge from that of the equivalent word-form in

the other language variety. It may therefore be interesting for future work to explore

the hypothesis that distinctive function words are particularly helpful in providing a

signal during embedding training which helps to distinguish lexical variants associated

with different language varieties. Note that this would not necesarily mean that the

seed pairs we input to our system would need to include function words in order for

it to be effective (indeed, as noted in the paper, we actually observed slight increases

in performance for both BrEng/Scottish and GenAm/AAVE when we did not include

closed-class seeds). Rather, if distinctive function words occur in the training corpus

then these may help to shape the embedding space such that a strong ‘linguistic code’

component emerges, and can then be identified using any reasonable seed-pair set. If

this were the case then our system would generally be less effective for pairs of lan-

guage varieties across which there is little variation in the forms of function words.
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6.4.2 Other related work

In addition to the related works mentioned in the paper, a few others have also ad-

dressed the problem of lexical variable discovery. Before the advent of Word2Vec

(Mikolov et al., 2013) and other neural network based distributional semantic mod-

els, Peirsman et al. (2010) used distributional models based on co-occurence matrices

weighted by Pointwise Mutual Information (PMI). They addressed the same objectives

as we do—automatically detecting words which are distinctive to one linguistic vari-

ety, and pairing them with synonyms from another—but whereas we address both of

these objectives simultaneously within a single module, Piersman et al addressed them

separately. Their cross-lectal synomy detection approach requires as input a list of

words which are known to be distinctive to one of the language varieties in question.

Because the accuracy of their lectal marker system is only around 25%, this means

they still must go through the labour-intensive process of manually filtering its output,

or else obtain a gold standard list of lectal markers from elsewhere. The main advan-

tage of our all-in-one approach is that it obviates this step. Another key difference is

that Piersman et al’s approach is designed to be applied to two separate monolingual

corpora, whereas ours is designed for a single code-mixed corpus.

Gouws et al. (2011) also used PMI-based distributional models to identify semanti-

cally similar pairs of terms across linguistic varieties, focusing on variation across do-

mains, rather than geographical regions. They train two separate distributional models,

one on a ‘common English’ corpus and one on a domain-specific corpus. They then

identify pairs of terms which are semantically similar according to the domain-specific

model but not the ‘common’ English model. Finally, they re-order the remaining pairs

according to their orthographic similarity. An advantage of their method is that it

doesn’t require any seed pairs, but on the other hand it does require two separate cor-

pora. This method could potentially be applied to our own use-case if we were able to

obtain a relatively ‘pure’ corpus for one language variety, and use a code-mixed cor-

pus for the ‘domain-specific’ model; we’d then be looking for pairs of words which are

similar in the code-mixed corpus but not in the single-code corpus. The two corpora

would both need to be from the same domain, or else this method would also return

word pairs consisting of variants from either domain, as opposed to either regional lan-

guage variety. Moreover, if the code-mixed corpus happened to contain other language

varieties beyond the two of interest to the study, pairs including words belonging to

these other varieties would likely also be returned. An advantage of the method we
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propose here is that using a small set of representative seed pairs we can specifiy the

dimension of variation we are interested in. Another advantage of our method is that

while Gouws et al. (2011) focus on pairs of variants which are both semantically and

orthographically similar, our method is also able to identify pairs of words which are

semantically equivalent but whose orthographic forms are completely unrelated (e.g.

kids/weans; pavement/sidewalk).

More generally, while we introduced our task as a special case of unsupervised

bilingual lexicon induction, it also bares close relation to lexical substitution tasks (Mc-

Carthy and Navigli, 2007; Mihalcea et al., 2010; Melamud et al., 2015), where the aim

is to identify alternative words that can be substituted for a target word within a spe-

cific sentential context, while preserving the referential meaning and grammaticality

of the sentence. Special kinds of lexical substitution tasks include text normalisation,

wherein the aim is to identify words which are out-of-vocabulary for a downstream

natural language processing model, and replace them with equivalent in-vocabulary

words (Baldwin et al., 2015; Dirkson et al., 2019; Muller et al., 2019), and lexical sim-

plification, wherein the aim is to identify complex words and replace them with simpler

equivalents (Specia et al., 2012; Paetzold and Specia, 2017; Kriz et al., 2018). Lexical

simplification is perhaps even closer to our task than major-world-language bilexicon

induction is, since deciding which terms should be labeled as belonging to ‘complex’

or ‘simple’ varieties can be far from trivial (Paetzold and Specia, 2016; Yimam et al.,

2018; Lee and Yeung, 2018)1, just as it is far from trivial to decide which terms are un-

equivocally ‘Standard’ English and which are unequivocally Scots or Scottish English

(or African American English, or British as opposed to American, etc.). A key way in

which our lexical variable discovery task differs from the typical lexical substitution

formulation is that we have tasked ourselves with finding substition pairs which work

generally across a variety of contexts, rather than in one specific sentential context.

1That said, in some lexical simplification settings there is an a priori list of complex terms to be
replaced, such that the task is only to identify and rank simplification candidates for those specific
terms; and not to identify which terms can be simplified in the first place.
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6.5 Future work

6.5.1 Better ranking

The performance of our system could potentially be improved by using negative ex-

amples as well as positive ones, and/or combining the ranking of candidate pairs based

on embeddings with rankings based on other features (e.g. string similarity).

6.5.2 Context-sensitive substitutions

Our original motivation for developing a system for curating large sets of lexical so-

ciolinguistic variables was our need to automatically identify, with high coverage in a

large corpus, instances either of distinctively Scottish lexical variants, or of Standard

English lexical variants for which a distinctively Scottish variant could be substituted.

Rather than relying on a set of context-indepedent lexical substitution pairs (however

large), this particular use-case could arguably be better served with a context-specific

approach, which would enable us to consider pairs of word-forms which are inter-

changable in some contexts but not in others, and thereby obtain higher coverage of all

the occasions on which users had the opportunity to use a distinctively Scottish variant.

Lexical simplification systems often follow a pipeline in which the first step (af-

ter the identification of complex words) is to generate context-insensitive candidate

substitutes, and a subsequent step is to decide which of these can replace the target

complex word in its specific sentential context without altering the meaning or gram-

maticality (Paetzold and Specia, 2017). A similar approach could perhaps be applied

for our own use-case: first, the system we have presented here could be used to gener-

ate lexical variant pairs in a context-insenstive manner; we would then need to identify

all instances in our dataset of either member of any of the resulting lexical variant

pairs; and then for each instance we would need to decide whether the other variant in

the relevant pair could really replace the observed variant in this particular sentential

context without altering its referential meaning or grammaticality. Thus one potential

avenue for future work is to explore whether similar approaches to those developed for

Substitute Selection in lexical simplification tasks might be effective for this use-case.

6.5.3 Semasiological variables

Note that this thesis has been concerned with identifying ONOMASIOLOGICAL vari-

ables, i.e. pairs of words which have the same meaning, but differ in their form.
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Another interesting direction for future work might be to identify SEMASIOLOGICAL

variables, i.e. pairs of terms which are identical in form, but differ in their mean-

ings (e.g. the term suspenders in British English denotes a garment used to hold up

stockings and worn around the waist, while in US English this term instead denotes

a garment used to hold up trousers and worn over the shoulders). Where separate

corpora are available for the language varieties of interest, wordforms which exhibit

semasiological variation across these language varieties could be identified by aligning

and comparing word embeddings trained on each corpus, using similar techniques to

those which have been developed for identifying words whose meanings change over

time (e.g. Shoemark et al., 2019).

6.5.4 Leveraging sub-corpus level metadata

Developing an approach for identifying semasiological variables which can be applied

to a single code-mixed corpus (without language variety labels at the word, sentence,

or document level) would be more challenging, of course. However, sub-corpus level

metadata regarding geographic location could perhaps be leveraged as a weak signal

for the likely distribution over language varieties.

A model for incorporating sub-corpus level metadata to learn semantic representa-

tions of words which capture semasiological variation across different contexts has al-

ready been introduced by Bamman et al. (2014a), who used it to produce geographically-

informed word embeddings from a dataset of U.S. tweets. They jointly learned a

‘global’ embedding matrix for the United States as a whole, and additional matrices for

each individual state. The embedding for a particular instance of a word was computed

as the sum of its global and state-specific vectors, such that the state-specific vectors

indicate how the global representations should be shifted to reflect state-specific se-

mantics. Kulkarni et al. (2016) used a similar model to identify statistically significant

semantic differences in British vs. U.S. English.

Geographical metadata could also potentially be leveraged in the onomasiologi-

cal variable induction task we have introduced here. We did not think the approaches

of Bamman et al. (2014a) and Kulkarni et al. (2016) would add much value for the

onomasiological task, since they are designed to reveal geographical differences in

the meanings of individual terms. Suppose we were to use such an approach to train

a ‘global’ embedding matrix using all our UK tweets, along with a Scottish-specific

matrix using just the tweets from Scotland. The global embedding for the term greet-
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ing might have nearest neighbours like card and meeting, while its Scotland-specific

deviation vector might shift it closer to crying and weeping, reflecting the different

meanings of greeting in English and Scots. However, the Scotland-specific deviation

vector for a term like hoose—which does not have a different meaning in the rest of

the UK than in Scotland, but is simply less frequently used in the rest of the UK (where

the Standard English equivalent house is relatively more frequent)—would presumably

not represent much of a shift, since the instances used to learn its Scotland-specific vec-

tor would make up most of those used to learn its ‘global’ vector, and any additional

instances from the rest of the UK would be likely to occur in similar linguistic contexts.

A different approach to leveraging sub-corpus level metadata which perhaps could

be useful for identifying onomasiological variables is to use Doc2Vec, a.k.a. Paragraph

Vectors (Le and Mikolov, 2014), an extenstion of Word2Vec which embeds document

labels in the same space as words. Word and document vectors can be trained si-

multaneously such that vectors representing semantically similar words end up close

together (as with basic Word2Vec), but additionaly vectors representing linguistically

similar documents also end up close together, and vectors representing words which are

strongly associated with particular documents end up close to the vectors representing

those documents (Lau and Baldwin, 2016). Hovy and Purschke (2018) used Doc2Vec

to learn embeddings for cities from location-based threads on the social media plat-

form Jodel. They were able to reproduce regional linguistic distinctions by clustering

the resulting city embeddings, since these were indirectly based on the words used in

the respective cities. Future work could explore whether this method of simultane-

ously learning embeddings for words and geographical regions (or indeed other kinds

of metadata labels) could be used to enhance the extent to which sociolinguistic varia-

tion is encoded in the geometric relationships among word vectors.

If it is the case that our current approach is less effective for pairs of language

varieties which lack distinctive function words (as I tentatively suggested in §6.4.1),

then an approach which leverages additional metadata might be particularly beneficial

for such language variety pairs. An exciting (though entirely speculative) prospect

is that rather than identifying new variant pairs by comparing them with an average

difference vector of representative seed pairs as in the system we have presented here,

using something like Doc2Vec we might instead be able to compare them directly with

the difference vector of the relevant geographical labels—thus obviating the need for

seed pairs entirely.
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Conclusions

In this thesis we sought to answer questions about the use of Scots and Scottish English

on Twitter, and to advance methodologies for analysing patterns of sociolinguistic vari-

ation in social media text more generally. In Chapters 4 and 5 we have presented two

large-scale quantative analyses of extra-linguistic factors which condition usage rates

of distinctively Scottish vocabulary on Twitter, and in Chapter 6 we have proposed a

framework for using word embeddings as a tool to facilitate the curation of lexical al-

ternation variables, which can both save time for researchers and reveal variables they

may not have otherwise considered.

As we discussed in Chapter 2, social media text differs from other written domains

in that it is typically both informal and public-facing, and it differs from everyday

speech in that it is inherently persistent and replicable, often with the potential to be

viewed by anyone in the world at any time after it has been produced. Relaxed ortho-

graphic norms license users to experiment with ways to authentically represent their

speech in written form, and the indeterminacy of the audience may strenghten the im-

petus to index aspects of one’s identity, stance, or affect through linguistic means. For

some speakers of minority language varieties, social media provides an unprecedented

opportunity to write in their native language without being corrected or chastised. So-

cial media has also made minority language varieties such as Scots more visible to

people outside of their offline communities of practise, as audiences on social me-

dia can be much larger and more geographically and demographically diverse than an

individual’s offline social network.

While sociolinguistic studies have traditionally used surveys or interviews to elicit

particular variables of interest in carefully controlled contexts, an alternative approach

is to use large, naturalistic corpora. Corpus-based methods enable the researcher to

103
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avoid the Observer’s Paradox, to collect data from many more ‘informants’ than would

be practical using traditional elictation methods, and, given sufficient volumes of lin-

guistic data and meta-information, a naturalistic corpus can be used to identify social

categories and sociolinguistic variables in a transparent, data-driven way, rather than

relying on intuition to determine which linguistic variables and extra-linguistic co-

variates are worthy of detailed analysis. The abundance of spontaneously produced

informal language on social media, and its public and permanent nature, make it easier

than ever before to collect large datasets for quantitative analyses of subtle sociolin-

guistic phenomena. That being said, various methodological challenges are involved

in quantatively analysing minority language usage on social media.

First, it can be difficult to quantify usage rates of minority language varieties like

Scots which have a high degree of overlap in vocabulary and grammar with another

language variety—especially when these are often code-mixed within a single utter-

ance. For this reason, we chose to focus on the lexical level, measuring usage rates

of lexical variants which are distinctive to Twitter posts from Scotland. Defining the

envelope of variation for a lexical analysis brings its own challenges, as existing dic-

tionaries and word-lists are unlikely to provide good coverage of the innovative words

and spelling variants in use on social media. Furthermore, we have argued for the

use of alternation variables in order to control for variation in denotational meaning

as opposed to form, which requires matching words from one language variety with

denotationally equivalent words from another. Many won’t have single-word equiv-

alents, some will have single-word equivalents that only work in some contexts, and

some will have multiple single-word equivalents that could easily be missed, making

this a particularly arduous task.

There are also challenges involved in collecting social media data, which we dis-

cussed primarily with regards to Twitter in Chapter 3. While it can be difficult to reach

certain populations using traditional sociolinguistic data collection methods such as

interviews and surveys, when collecting large-scale social media datasets it can be dif-

ficult to even determine whether or not the target population has been reached. The

biographical information associated with social media posts in the form of meta-data

or user profiles is limited, and cannot always be taken at face value. Relying on public

self-disclosure to determine demographic information risks systematically biasing the

resultant dataset toward certain subgroups of the target population, and inadvertantly

excluding others. Furthermore, aside from the difficulty of appropriately delineating

the target population in the absence of reliable criteria, the sampling methodologies
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used by Twitter’s APIs are not transparent, and can introduce additional unintended

and unquantifiable biases. Since prior work has indicated that Twitter’s Streaming API

does appear to provide a simple random sample of all Twitter traffic, we opted to post-

filter that in order to collect an unbiased sample of tweets and users which met our

criteria. However, since the Streaming API yields only 1% of Twitter traffic, this did

limit the sizes of the datasets we were able to collect. Due to the ethical concerns we

discussed in §3.3.1, we cannot release our datasets in full, but we have made them

publically available at https://doi.org/10.5281/zenodo.3517244 in the form of

tweet and user IDs, such that they can be re-collected by other researchers for use in

their own studies.

7.1 Contributions

We conducted the first large-scale sociolinguistic study of British tweets, which was

also the first to examine the relationship between sociolinguistic variation and polit-

ical views using social media data. We collected tens of thousands of tweets posted

during the 2014 Scottish independence referendum campaign, and investigated how

people’s usage rates of distinctively Scottish words varied in relation to their views on

Scottish independence, the topic of their tweets, and the size of their target or imag-

ined audience. We established that use of the Scots language and regionally-specific

terms and spellings is prevalent on Twitter and corresponds to features known in the

linguistic literature about Scots and Scottish English, though we also identified some

new distinctively Scottish terms which are specific to social media text (the acronyms

MWI and GTF). We found that people who used hashtags indicating support for Scot-

tish independence tended to use more distinctively Scottish vocabulary than those who

opposed it, but that both groups modulate their usage in relation to the topic and the

likely composition of their audience.

While previous works have suggested that users modulate their usage of non-

standard and geographically-specific language with respect to the size of their audi-

ence, we have taken greater care to control for the potential confound of topic, and to

evaluate the extent to which our findings generalise across different subpopulations.

Our results indicate that audience and topic have independent effects on the rate of

distinctively Scottish usage in two groups of users sampled using different criteria. We

observed a clear relationship between the topic or genre of discussion and the odds

of choosing Scottish variants in both groups, but the sizes and directions of the au-

https://doi.org/10.5281/zenodo.3517244
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dience effects were not consistent across the two groups. Since topic emerged as a

clear conditioning factor, we recommend including it in future studies of factors which

condition variation on social media. While we leave the testing of our hypothesised

explanations for the differences in audience effects across the two user groups to fu-

ture work, in highlighting these differences we hope to stimulate more engagement

with questions about the representativeness of user samples and the generalisability of

findings in quantitative sociolinguistic studies using social media data.

In order to ensure that the effects we measured were truly effects on what lan-

guage variety people were choosing to use to refer to things—and not on which things

they were choosing to refer to—it was necesary to analyse peoples’ relative usage fre-

quencies of different words which mean approximately the same thing (e.g. bairns vs

children). If done manually, the process of identifying terms which are distinctive to

one language variety and then pairing these with semantically equivalent words from

another variety can be extremely labour intensive. Furthermore, if researchers rely on

their own experience and intuition to select the word pairs on which their analyses will

be based, this can lead them to systematically miss datapoints from particular settings

or segments of the community. To facilitate this process we devised a data-driven,

computational method which can make identifying relevant word pairs much quicker,

and can also suggest variant pairs a researcher might not have otherwise considered.

7.2 Future directions

Further to the suggestions we made in Chapters 4 to 6 for future work that could build

on each of the papers individually, we will now propose some more directions for

future work which pertain to the body of work we have presented here as a whole.

7.2.1 Representativeness of variable sets

The lexical variable induction method we introduced in Chapter 6 facilitates the cura-

tion of large sets of lexical alternations. The ability to efficiently gather large sets of

lexical variables for use in quantitative sociolinguistic studies opens the door for future

work to repeat studies of this kind using several different subsets of a larger variable

set, and assess how sensitive the results are to the particular set of variables used.
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7.2.2 Other language varieties

Though the studies we presented in Chapters 4 and 5 were concerned with the An-

glic language varieties of Scotland, the same methodologies could be applied to other

language varieties. Indeed, as dicussed in §4.5, our study on the relationship between

regionally specific language use and support for independence has been replicated with

respect to Catalan (Stewart et al., 2018). In that replication study, the analysis was con-

ducted at the tweet level rather than the lexical level, since compared with Scots and

English, Spanish and Catalan are less commonly code-mixed within a single tweet; and

unlike Scots, Catalan is supported by well-established off-the-shelf language classifi-

cation tools. The same approach could potentially be used for Scottish Gaelic, which

belongs to a distinct branch of the Indo-European family from Scots and English, and

is supported by the Compact Language Detector toolkit1.

On the other hand, there are many minority language varieties which are not sup-

ported by existing NLP tools or which are frequently code-mixed with other varieties,

for which a lexical-level analysis may be necesary. For example, the relationship be-

tween Swiss German and Standard German resembles that of Scots and English in

several ways: Swiss German is a dialect continuum, widely used in everyday speech

throughout the German-speaking regions of Switzerland; but while Standard German

is an offical language of Switzerland, Swiss German is not. Like Scots, Swiss German

lacks a standard written orthography and is rarely used in formal writing (where Stan-

dard German is used instead), but is increasingly being used in informal writing, such

as on social media. Like Scots and English, Swiss German and Standard German have

some vocabulary in common, such that it may not always be possible to unequivocally

asign a short post to one variety or the other. Moreover ‘Swiss German’, like ‘Scots’,

does not refer to a single homogenous variety, but a multitude of dialects. Swiss Ger-

man and Standard German would therefore be an interesting language pair on which

to test our lexical variable induction system. It would also be interesting to investigate

whether or not usage rates of Swiss German lexis on Twitter are conditioned by topic

in the same way as we found for distinctively Scottish lexis. We would not necesarily

expect this to be the case, since Swiss German is widely spoken in most social con-

texts, and is not associated with inferior education or social status in the same way as

Scots sometimes still is.

1https://github.com/google/cld3

https://github.com/google/cld3
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7.2.3 Diachronic analyses

The analyses in Chapters 4 and 5 are based on data from 2014, the year in which the

Scottish Independence Referendum was held. To be sure, this was an interesting time

period in which to study distinctively Scottish vocabulary usage on Twitter, but since

then ‘Scottish Twitter’ has taken off as something of a cultural phenomenon, in many

ways echoing the emergence of the construct of ‘Black Twitter’ (see Florini, 2014).

Tweets employing distinctively Scottish language and humour became increasingly

popular with Twitter users around the world, and then were introduced to audiences

beyond Twitter through their dissementation in listicles (e.g. Bailey, 2015; Robinson,

2019), and eventually in newspaper and magazine comment pieces (e.g. Livingston,

2019; Russell, 2019). By Autumn 2019, the construct of ‘Scottish Twitter’ had be-

come so well established (and so widely adored) that Twitter paid homage to it with a

physical pop-up museum, the ‘Scottish Twitter Visitor Centre’, at the Edinburgh Fringe

Festival2.

It would be interesting, therefore, for future studies to investigate empirically whether

usage rates of Scots and Scottish English have increased since 2014, in tandem with the

rise of ‘Scottish Twitter’ as a cultural phenomenon. If there has been an increase in us-

age, it would be interesting to establish whether this is primarily confined to humurous

tweets, of the sort that are widely shared and celebrated in ‘Scottish Twitter’ listicles,

or whether usage rates have also risen across a range of topics. Future studies might

also investigate whether there are particular Scottish variants whose usage has changed

over time, or whether patterns of moderation with respect to topic and/or audience have

changed since 2014, regardless of whether or not overall usage has increased.

7.2.4 Applications in NLP

In addition to being used to curate variables for use in sociolinguistic studies, other

potential applications of our lexical variable induction system (Chapter 6) include text

normalisation and data augmentation, to improve performance of NLP systems on di-

alects and minority language varieties for which large training corpora are lacking.

Although raw social media text is freely available in abundance, many NLP systems

require labeled training data, and the requisite labels are typically very expensive to

obtain. Even when large social media datasets with the requisite labels do exist, mi-

nority language varieties are typically underrepresented within them. Due to the rich

2https://Twitter.com/TwitterUK/status/1163816121926991873

https://Twitter.com/TwitterUK/status/1163816121926991873
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diversity of styles and varieties that are used in social media text, training separate sys-

tems individually for each of them is infeasible (not least due to the high prevalance

of code-mixing; AlGhamdi et al. 2016). Improving the performance of NLP systems

on minority language varieties is particularly imporant from the standpoint of fair-

ness, given that communities who use these varieties are often disempowered relative

to speakers of the dominant language variety; and developing NLP tools which work

well only for the dominant variety can perpertuate or even exacerbate this imbalance

(Blodgett and O’Connor, 2017). With respect to quantitative sociolinguistic analyses,

improving performance of NLP tools such as Part-Of-Speech taggers and dependency

parsers could enable us to move beyond beyond the lexical level and also identify mi-

nority language usage on the basis of more complex constructions.

One way to improve the performance of NLP systems on texts which are not well

represented by the training data is to normalise such texts as a pre-processing step

before they are input to the system. Lexical substitution is a common approach to text

normalisation (e.g. Gouws et al., 2011), and thus our system—designed specifically for

identifying lexical substitution pairs from a single, unlabelled, code-mixed corpus—

could be useful here.

A drawback of normalisation approaches is that they can obscure the social mean-

ing and pragmatic information encoded in the original lexical choices (Eisenstein,

2013), which for some downstream tasks may be important to preserve. An alternative

solution is to boost the representation of minority varieties in the training dataset by

augmenting it with synthetic examples (e.g. Fadaee et al., 2017). Our system could

potentially be used to produce synthetic examples by taking sentences from the dom-

inant language variety and making lexical substitutions from other dialects or closely

related / frequently code-mixed languages.

Of course, there are inherent limitations to text normalisation and data augmenta-

tion approaches based on lexical substitutions. To quote the Scots grammarian Purves

(2002, p.7): “A passage in English cannot be transformed into Scots simply by substi-

tuting Scots words for English words without reference to structure and idiom.” That

being said, while lexical substitutions may not be sufficient to produce what Purves

considers ‘good Scots’, their use in NLP pipelines may nevertheless help to improve

performance on Scottish social media texts. After all, as Purves (2002, p.9) himself

concedes: “bannoks is better nor nei breid.”3

3An English equivalent to this Scots proverb is ‘half a loaf is better than none’.
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