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Abstract	

Epigenetic	alterations	including	DNA	methylation	and	microRNAs	may	provide	important	

insights	into	gene-environment	interaction	in	complex	immune	diseases	such	as	

inflammatory	bowel	disease	(IBD).	An	integrative	genome-wide	approach	was	used	to	analyse	

whole	blood	genetic,	DNA	methylation	and	gene	expression	data	in	240	newly	diagnosed	IBD	

patients	and	190	controls.	Using	the	Illumina	450k	array,	differences	in	whole	blood	DNA	

methylation	were	observed	in	IBD	cases	versus	controls	including	439	differentially	

methylated	positions	(DMPs)	and	5	differentially	methylated	regions	(DMRs).	The	top	DMP	

(RPS6KA2,	discovery	Holm	adjusted	p=1.22×10-16,	replication	p=1×10-9)	and	DMRs	(VMP1,	

ITGB2,	TXK)	were	replicated	in	an	independent	cohort	using	pyrosequencing.	Paired	genetic	

and	epigenetic	data	allowed	the	identification	of	methylation	quantitative	trait	loci	(meQTL);	

two	of	the	five	DMRs	(VMP1,	ITGB2)	demonstrated	significant	association	with	genetic	

polymorphisms.	Methylation	in	the	VMP1/microRNA-21	region	was	significantly	associated	

with	two	single	nucleotide	polymorphisms	(cg18942579	-rs10853015	[meQTL	FDR	adjusted	

p=9.4	×	10-5],	cg16936953	-	rs8078424	[meQTL	FDR	adjusted	p=8.8	×	10-5]),	both	of	which	

are	in	linkage	disequilibrium	with	a	known	IBD	susceptibility	variant	(rs1292053).	Separated	

leukocyte	methylation	data	highlight	the	cell	type	of	origin	of	epigenetic	signals	seen	in	whole	

blood.	IBD-associated	hypermethylation	within	the	TXK	gene	transcription	start-site	

negatively	correlated	with	gene	expression	in	whole	blood	and	CD8+	T-cells,	but	not	other	cell	

types,	highlighting	that	cell-specificity	and	gene	location-specificity	of	DNA	methylation	

change	is	critical	when	associating	methylation	and	gene	expression.	These	data	offer	

significant	translational	potential	as	diagnostic	biomarkers.	Least	absolute	shrinkage	and	

selection	operator	(lasso)	modelling	identified	30	methylation	probes	can	be	used	to	

accurately	discriminate	IBD	cases	from	controls	(Area	under	receiver	operating	characteristic	

curve	=	0.898,	sensitivity	=	90.6%,	specificity	=	84.7%).		

MicroRNAs	(miRNA)	are	small	non-coding	nucleic	acids	that	have	the	capacity	to	modulate	

gene	expression.	MiRNAs	have	been	increasingly	implicated	in	many	of	the	important	IBD	

pathogenic	pathways	including	autophagy,	intestinal	epithelial	barrier	integrity	and	the	Th17	

pathway.	In	common	with	all	epigenetic	mechanisms,	miRNA	expression	is	dynamic	and	cell-

specific.	Small	RNA	sequencing	(RNA-seq)	was	performed	on	RNA	extracted	from	CD14+,	
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CD4+	and	CD8+	cells	isolated	from	8	newly	diagnosed	cases	of	ileal	or	ileocolonic	CD	and	8	

age	and	sex	matched	controls.	There	was	a	median	of	2.4	million	reads	per	sample	(range	

132,800-12.8	million	reads	per	sample).	One	microRNA	was	differentially	expressed	in	CD	

compared	with	controls	(hsa-miR-503-5p	log	fold	change	=	0.7,	FDR	adjusted	p	=	9.1	×	10-5)	

in	CD4+	lymphocytes,	however	this	finding	did	not	remain	significant	when	alternative	

normalisation	methods	were	used.	The	small	number	of	cases	used	in	microRNA	analyses	

raises	the	possibility	of	both	type	I	and	II	error,	and	limits	the	ability	to	draw	firm	conclusion	

from	this	series	of	experiments.	

Site-specific	differences	in	DNA	methylation	in	IBD	relate	to	underlying	genotype	and	

associate	with	cell-specific	alteration	in	gene	expression.	This	is	the	most	detailed	

characterisation	of	the	epigenome	carried	out	in	IBD	to	date.	The	findings	strongly	validate	

this	approach	in	complex	disease,	are	replicable,	and	provide	clear	translational	opportunities		

Lay	summary	

Inflammatory	bowel	disease	(IBD)	is	a	chronic	condition	that	affects	young	people.	Typical	

symptoms	include	bloody	diarrhoea,	abdominal	pain,	weight	loss	and	fatigue.	The	condition	

can	be	controlled	(but	not	cured)	by	drugs	that	target	the	immune	system,	most	of	which	have	

significant	side	effects.	Despite	an	ever	increasing	armamentarium	of	drugs,	a	large	

proportion	of	patients	still	require	surgery.	Uncontrolled	chronic	inflammation	in	IBD	

predisposes	patients	to	bowel	cancer.		

Great	progress	has	been	made	in	identifying	genes	that	are	associated	with	developing	the	

condition.	However,	advances	in	genetics	have	not	provided	all	of	the	answers	as	once	hoped.	

This	project	aims	to	look	beyond	the	genetics,	to	study	other	ways	that	way	in	which	genes	

can	be	switched	on	or	off	without	a	change	in	the	underlying	genetic	code	(Epigenetics).	This	

project	will	mainly	focus	on	DNA	methylation;	specific	marks	found	on	the	DNA	that	can	affect	

how	easily	the	gene	can	be	read.	Another	important	facet	of	epigenetics	looks	at	microRNA,	

small	strands	of	RNA	that	can	change	the	way	genes	are	expressed.			

In	this	project	a	large	group	of	newly	diagnosed	patients	(n=240)	and	controls	(n=194)	has	

undergone	analysis	across	the	genome	identifying	a	number	of	genetic	marks	(DNA	

methylation)	that	are	more	or	less	common	in	IBD	patients	compared	to	healthy	people.	

These	data	have	been	integrated	with	matched	data	on	the	underlying	code	(genetics)	and	

whether	genes	are	switched	on	or	off	(expression).	

The	overarching	aim	of	this	work	is	to	identify	a	new	blood	test	(biomarker)	which	can	firstly	

help	diagnose	IBD,	but	importantly	help	identify	which	patients	will	have	a	severe	disease	

course	and	require	powerful	drugs	or	surgery.		
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Chapter	1.	Introduction	

This	chapter	includes	text	from	the	following	publications	for	which	I	am	a	primary	author:	

1. Ventham	NT.	Kennedy	NA.	Nimmo	ER.	Satsangi	J.	Beyond	gene	discovery	in	

Inflammatory	Bowel	Disease:	The	emerging	role	of	Epigenetics.	Gastroenterology.	

2013:	145	(2);	293-308	(License	Number:	3742451069879)	

2. Ventham	NT.	Kennedy	NA.	Duffy	A.	Clark	DN.	Crowe	AM.	Knight	AD.	Nicholls	RJ.	

Satsangi	J.	Comparison	of	mortality	following	hospitalisation	for	Ulcerative	colitis	in	

Scotland	between	1998-2000	and	2007-09.	Aliment	Pharmacol	Ther	2014;	

39(12):1387-97	(Permission	obtained	from	John	Wiley	and	Sons	License	number	

3741880854659)		

3. Kalla	R.	Ventham	NT.	Satsangi	J.	Arnott	IDR.	Crohn’s	disease.	BMJ	2014	349:g6670	

(permission	to	use	within	thesis	included	in	author	copyright	agreement	with	the	

BMJ)	

4. Ventham	NT.	Kalla	R.	Kennedy	NA.	Satsangi	J.	Arnott	IDR.	Predicting	outcomes	in	

acute	severe	ulcerative	colitis.	Expert	Rev	Gastro	Hep.	2014:	9(4):405-15	(Taylor	&	

Francis	is	pleased	to	offer	reuses	of	its	content	for	a	thesis	or	dissertation	free	of	

charge	contingent	on	resubmission	of	permission	request	if	work	is	published)	

	

1.1	Incidence	and	prevalence	studies	

The	inflammatory	bowel	diseases	(IBDs)	Crohn’s	disease	(CD)	and	ulcerative	colitis	(UC)	are	

an	important	health	problem,	with	an	incidence	among	European	adults	of	12.7	and	24.3	per	

100,000	person-years	respectively,	and	prevalence	of	0.5%–1.0%.1	Moreover,	IBD	incidence	is	

increasing	among	adults	and	children	and	in	the	developed	and	developing	world.1–5	In	the	

UK,	IBDs	cost	the	National	Health	Service	approximately	£720	million	(about	$1.1	billion)	per	

annum,	based	on	an	average	cost	of	£3,000	per	patient	per	year	with	around	half	of	the	costs	

attributable	to	relapsing	patients	6,7		

	

1.2	Mortality	following	IBD	

The	extent	of	disease-specific	mortality	in	IBD	remains	contentious.	Most	population-based	

studies	demonstrate	a	similar	or	slightly	increased	mortality	in	patients	with	CD	and	UC	

compared	with	the	general	population.8	Subsequently	other	linkage	analyses,	focusing	on	

patients	requiring	hospitalisation,	have	given	cause	for	re-appraisal.9		In	particular,	real		
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concern	was	generated	by	record	linkage	studies	from	England,	suggesting	markedly	

increased	3-year	mortality	rates	following	admission	for	IBD,	especially	for	in-patients	treated	

medically.10	Strikingly	similar	results	were	demonstrated	in	hospitalised	patients	in	Scotland	

during	the	same	time	period.11,12	

	

Using	data	from	the	ISD	Scottish	Morbidity	Records	database,	the	3-year	mortality	in	patients	

hospitalized	for	IBD	between	1998-2000	and	2007-2009	has	been	compared.13,14	The	linked	

Scottish	Morbidity	Records	database	was	used	to	identify	patients	admitted	with	CD	and	UC	

during	two	periods:	Period	1(1998-2000)	and	Period	2	(2007-2009).	Directly	age-

standardized	mortality	rates	demonstrated	a	decreased	mortality	for	UC	(Period	

1:373/10,000	person	years	[CI	309-437],	Period	2:	264/10,000	person	years	[CI	212-316],	

p<0.0001)	but	were	similar	for	CD	(Period	1:338/10,000	person	years	[CI	282-394];	Period	

2:333/10,000	person	years	[CI	276-390],	p=0.2,	Figure	1).	A	lower	crude	mortality	was	noted	

in	patients	following	elective	surgical	admission	when	compared	with	emergency	surgery	and	

medical	admission	types	(Figure	2).	For	both	CD	and	UC,	multivariable	regression	analysis	

demonstrated	age	and	comorbidity	to	be	significantly	associated	with	mortality.	These	data	

demonstrates	that	overall	3-year	mortality	after	hospitalization	for	IBD	is	high.	While	

reductions	in	3-year	mortality	have	been	observed	patients	admitted	with	UC,	mortality	was	

unchanged	in	CD.			
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Figure	1	–	Mortality	following	hospital	admission	for	IBD.	Age	Standardised	mortality	rates	

(per	10,000	population	per	year)	following	first	admission	with	ulcerative	colitis	or	Crohn’s	

disease	between	two	periods:	Period	1	(1998-2000)	and	Period	2	(2007-2009).	*Standardised	

to	2003	general	Scottish	population.	SRR	=	standardised	rate	ratio,	CI	=	Confidence	interval.	

Adapted	from	Ventham	APT	201414		
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Figure	2	–	Survival	following	admission	for	ulcerative	colitis	according	to	admission	type.	

Unadjusted	3	year	cumulative	survival	following	admission	for	ulcerative	colitis	in	Scotland	

between	2007-2009	according	to	admission	type.	Adapted	from	Ventham	APT	201414		
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1.3	Pathology	and	presentation	

Diagnosing	IBD	can	be	challenging	as	a	result	of	its	widespread	and	often	cryptic	

manifestations.15	Distinguishing	IBD	from	irritable	bowel	syndrome	can	be	difficult,	and	there	

can	be	a	significant	delay	before	diagnosis	of	IBD.16	The	clinical	features	of	IBD	are	related	to	

the	location	of	the	bowel	affected	(Table	1)	and	include	chronic	diarrhoea	(	>4	weeks	+/-	

blood	and	mucus),	nocturnal	defecation,	abdominal	pain	and	weight	loss.15,17	IBD	may	present	

with	non-specific	symptoms	including	malaise,	fever	and	anorexia.	Patients	may	also	present	

initially	with	extra-intestinal	manifestations	(Figure	3)	of	IBD	that	include	arthritis,	aphthous	

ulcers,	skin	(pyoderma	gangrenoum,	erythema	nodosum),	liver	(primary	sclerosis	

cholangitis/primary	biliary	cirrhosis),	or	ocular	manifestations	(iritis,	episcleritis).	The	

natural	history	of	IBD	is	one	of	relapse	and	remission.	Severe	bloody	diarrhoea	occurring	over	

6	times	a	day	with	systemic	signs	of	toxicity	(tachycardia,	fever)	may	signify	acute	severe	

colitis	warranting	urgent	admission.18	Acute	severe	ulcerative	colitis	(ASUC)	effects	

approximately	a	quarter	of	patients	with	UC.19	 	



8	

	

	

Crohn’s	disease	 Ulcerative	colitis	
Montreal	
location	(*	Paris	
modifier)	

Symptoms	
experienced	

CD	–	Montreal	
Behaviour	(*	
Paris	
modifier)	

Symptoms	
experienced	

Montreal	
Extent	(*	
Paris	
modifier)	

Symptoms	
experienced	

Montreal	
Severity(*	
Paris	
modifier)	

Symptoms	
experienced	

L1	–	Ileal	 abdominal	
pain	and	
weight	loss;	
diarrhoea	may	
be	absent;	
Malabsorption	
and	nutritional	
deficiencies;	
acute	
ileitis	disease	
can	mimic	
acute	
appendicitis	

B1	–	
inflammation	

abdominal	pain	and	
weight	loss;	
diarrhoea;	
nutritional	
deficiencies	

E1	–	
proctitis	

Diarrhoea	
+/-	blood,	
tenesmus,	
urgency,	
incontinence	

SO:	
Remission	
(*Never	
severe)	

	

L2	–	Colonic	 Bloody	
diarrhoea;	can	
mimic	acute	
severe	
ulcerative	
colitis;	
obstruction	
due	to	
stricturing	
disease	

B2	–	
Stricturing	

Obstructive	
symptoms:	
distension,	
abdominal	pain,	
vomiting,	weight	
loss,	reduced	stool	
frequency,	frank	
bowel	obstruction	

E2	–	Left	
sided	
disease	

As	above	 S1:	mild	
UC	
(*	Ever	
Severe)	

≤	4	
stools/day	

L3	–	Ileocolonic	 Right	sided	
abdominal	
pain,	
diarrhoea,	
weight	loss	
	

B3	-	
Penetrating	

Perforation	&	
Intra-abdominal	
Abscess	–	Sepsis,	
abdominal	pain,	
fever,	peritonitis,	
symptoms	arising	
from	abdominal	
fistulae	–	
enterovesical:	
recurrent	
UTIs/pneumatouria,	
enterovaginal:	
discharge,	
enteroenteral:	
bacterial	overgrowth	
enterocutenous	:	
discharge	

E3	–	
Extensive	
disease	
(*proximal	
to	hepatic	
flexure)	

As	above	
Acute	severe	
ulcerative	
colitis,	
abdominal	
pain,	
distension	

S2:	
moderate	
UC	

>	4	stools/	
day,	no	
systemic	
toxicity	

L4	–	Upper	
Gastrointestinal	

Can	mimic	
peptic	ulcer	
disease;	can	
present	as	
chronic	gastric	
outlet	
obstruction,	
mouth	
ulceration,	
oesophagitis	

B2B3	–	both	
stricutring	
and	
penetrating,	
either	at	the	
same	or	
different	
times	*	

	 *E4	–	pan	
colitis		

As	above	 S3:	Severe	 >	6	stools/	
day	plus	
systemic	
toxicity	
(pulse	>90	
bpm,	temp	>	
37.5	°	C,	ESR	
>	30,	Hb	105	
g/L	

L4a*	 Proximal	to	
ligament	of	
Treitz	

	 	 	 	 	 	

L4b	*	 Distal	to	
ligament	of	
Treitz	to	distal	
1/3	ileum	

	 	 	 	 	 	

P	-	Perianal	 Recurrent	
perianal	
abscesses	&	
perianal	
fistulae	

	 	 	 	 	 	

Table	1	-	The	Montreal20	and	Paris21(*)	classifications	of	Crohn's	disease	and	Ulcerative	colitis	

respectively.	
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Figure	3	-	Extra-intestinal	manifestations	of	IBD.		Taken	from	Kalla	et	al15	with	permission	
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IBD	is	usually	diagnosed	using	a	combination	of	clinical,	laboratory,	radiological,	endoscopic	

and	histological	investigations.	Biochemistry	may	reveal	raised	inflammatory	markers	

(CRP/ESR),	iron	deficiency	anaemia	and	nutritional	deficiencies	such	as	low	B12	and	folate.	

Stool	cultures	for	clostridium	difficile,	ova	and	parasites	should	be	performed	in	all	patients	

with	chronic	diarrhoea.	

Blood	parameters	may	be	normal	in	IBD	and	faecal	calprotectin	(FC),	a	neutrophil	cytosolic	

protein,	can	determine	the	presence	or	absence	of	intestinal	inflammation.		

	

Ileo-colonoscopy	and	biopsies	remains	the	cornerstone	in	diagnosing	IBD	and	can	help	

distinguish	between	CD	and	UC.	CD	can	affect	from	the	mouth	to	anus,	and	is	associated	with	

discontinuous	colonic	inflammation	and	ulceration,	‘cobblestone’	appearance	and	rectal	

sparing	with	histology	demonstrating	focal/	patchy	chronic	inflammation,	focal	crypt	

irregularity	and	granulomas.22	UC	is	associated	with	continuous	inflammation	extending	

proximally	from	the	rectum,	but	confined	to	the	colon	(with	the	exception	of	backwash	ileitis).	

The	histology	in	UC	reveals	ulceration	and	inflammation	confined	to	the	submucosa;	a	

plasma-lymphocytoid	cell	infiltrate	in	the	lamina	propria,	and	crypt	architectural	distortion	

and	crypt	abscesses	without	granuolmata.	Ileal	biopsies	can	be	useful	in	differentiating	

between	CD	and	UC,	but	in	~5%	of	cases	it	is	not	possible	to	differentiate	CD	and	UC;	here	the	

terms	IBD-unclassified	(IBD-U)	or	indeterminate	colitis	are	used.23,24	Whilst	obtaining	a	tissue	

diagnosis	is	critical,	this	can	be	challenging	when	CD	affects	the	small	bowel,	and	small	bowel	

magnetic	resonance	imaging	(MRI)	is	becoming	the	imaging	modality	of	choice.	Other	

investigation	modalities	include	CT	for	any	extra-luminal	complications	of	CD,	small	bowel	

ultrasound	in	specialist	centres,	small	bowel	capsule	endoscopy	and	small	bowel	enteroscopy	

in	whom	the	clinical	suspicion	for	CD	remains	high	despite	negative	first-line	investigations.25		

	

1.4	Management	of	IBD		

1.4.1	Medical		

Before	considering	medical	therapy,	patients	diagnosed	with	IBD	should	undergo	a	thorough	

nutritional	assessment	and	replacement	of	any	deficient	micronutrients	including	vitamin	

B12,	folate,	iron,	calcium	and	vitamin	D.		
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For	CD,	stopping	smoking	can	be	as	effective	as	immunomodulatory	therapy,	and	reduces	the	

risk	of	relapse	by	65%	compared	to	continuing	smokers	and	patients	should	be	offered	the	

full	remit	of	smoking	cessation	services.26–29	Non-steroidal	anti-inflammatory	drugs	should	be	

discontinued.30–32	The	choice	of	drug	therapy	is	influenced	by	factors	such	as	efficacy,	the	

need	for	inducing	or	maintaining	remission,	side-effect	profile,	long-term	risks	and	patient	

choice.	Patients	with	a	severe	phenotype	should	have	early,	arguably	combined,	

immunosuppressive	therapy.33	

1.4.2	Treatment	of	disease	flare	(Induction	of	remission)	

Enteral	nutrition		

In	adults,	EEN	can	be	poorly	tolerated	but	is	effective	as	first	line	therapy	in	CD.	Guidelines	

recommend	EEN	to	improve	nutritional	status	or	as	first	line	therapy	in	those	individuals	who	

decline	conventional	drug	therapies.34	EEN	is	less	effective	than	steroids	in	inducing	

remission	in	adults(odds	ratio(OR):	0.33,	95%	confidence	interval	(CI)	0.21-0.53).35	EEN	can	

be	useful	prior	to	starting	immunosuppressive	therapy	whilst	confirming	a	diagnosis	of	CD.		

Corticosteroids	

It	is	established	practice	to	use	corticosteroids	to	induce	remission	in	CD	and	UC.	A	meta-

analysis	has	demonstrated	that	glucocorticoids	are	effective	in	inducing	remission	in	UC	

(relative	risk	(RR)	=	0.65,	CI		0.45-0.93,	number	needed	to	treat	(NNT)=3)	and	probably	also	

in	CD	(RR	=	0.46,	CI	0.17-1.28).36	As	a	result	of	the	short-	and	long-term	side	effects,	

corticosteroids	should	not	be	used	to	maintain	remission.37,38	The	action	of	Budesonide	is	

confined	to	the	gut	as	a	result	of	extensive	first	pass	metabolism	and	consequently	has	fewer	

systemic	side	effects.	Budesonide	is	indicated	in	patients	with	mild	to	moderate	CD	confined	

to	the	terminal	ileum	or	the	proximal	colon,		but	is	ineffective	in	maintaining	remission.39		

5-aminosalycilates	(5-ASA)	

5-aminosalycilates	(5ASA)	can	be	used	to	induce	remission	in	mild	and	moderate	UC,	but	are	

not	now	recommended	in	CD.	Topical	5ASA	(enemas,	suppositories)	can	be	used	for	distal	

disease	and	proctitis	in	UC,40	whilst	oral	preparations	(and	combined	oral	and	rectal	

therapy41,	NNT=5)	are	suitable	for	more	extensive	disease	(NNT=6).42			
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Ciclosporin	

Ciclosprorin	can	be	used	for	the	induction	of	remission	in	moderate	to	severely	active	UC.43,44	

Ciclosporin	has	been	used	as	medical	rescue	therapy	at	centres	as	an	alternative	to	Anti-TNFα	

therapies.	The	CONSTRUCT	trial	is	due	to	report	soon,	and	initial	results	demonstrate	no	

difference	between	ciclosporin	and	infliximab	for	rescue	therapy	in	ASUC.		

Biological	therapies			

Anti-TNFα	monoclonal	antibodies	(Infliximab,	Adalimumab	and	Golilumab)	are	effective	at	

inducing	remission	in	moderate	to	severe	CD,	perianal	Crohn’s	and	have	recently	been	

approved	(NICE	ta329)	for	use	in	UC.23,45	Early	use	of	anti-TNFα	agents	(top-down	approach)	

is	associated	with	increased	remission	rates	after	3	years	of	therapy.46–48	NICE	guidelines	

recommend	the	step-up	approach:	using	anti-TNF	agents	only	for	patients	who	have	failed	

conventional	immunomodulatory	therapies.	Current	practice	is	to	undertake	a	rapid	step-up	

approach	for	those	with	a	severe	disease	phenotype.49		

Although	combination	therapy	with	anti-TNFα	agents	and	immunomodulators	carries	risks	of	

non-melanoma	skin	cancer	and	other	cancers	compared	to	monotherapy	(standardised	

incidence	ratio	(SIR),	3.46	[CI	1.08-11.06]	and	SIR	2.82	[CI	1.07-7.44]	respectively),	

combination	therapy	is	superior	to	monotherapy	in	maintaining	steroid	free	clinical	remission	

(56.8%	vs	30%	p<0.001)	with	evidence	of	better	mucosal	healing	(43.9%	vs	16.5%	

p<0.001).50,51	The	optimal	time	for	anti-TNFα	withdrawal	is	currently	unknown	but	an	expert	

panel	review	identified	low	risk	groups	where	timed	withdrawal	may	be	considered.52,53	

Golimumab	is	a	fully	humanised	anti-TNFα		monoclonal	antibody.54	The	PERSUIT	study	

confirmed	its	efficacy	for	induction	and	maintenance	of	remission	in	moderate	to	severe	UC.55	

Golimumab	is	currently	approved	in	England	and	Wales	for	UC,	but	has	not	yet	been	approved	

the	Scottish	Medicines	Consortium	(SMC).	The	GoColitis	trial	(NTC02092285)	is	currently	

evaluating	the	use	of	Golimumab.	

1.4.3	Maintenance	of	remission	

Immunomodulators	

Once	in	remission,	maintenance	therapy	should	be	commenced,	in	order	to	avoid	repeated	

steroid	courses	and	to	attenuate	disease	progression.	Symptoms	alone	are	a	poor	guide	to	the	

attainment	of	remission	and	clinical,	biochemical	(including	FC)	and	endoscopic	factors	

should	be	used	to	determine	‘complete’	remission	and	guide	further	treatment	decisions.	
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Immunomodulatory	drugs	are	effective	at	maintaining	remission	in	moderate	to	severe	CD	

and	in	those	who	are	steroid	dependent.	The	OR	for	maintenance	of	remission	in	CD	with	

thiopurines,	azathioprine	(AZA)	and	mercaptopurine	is	2.32	(CI	1.55	-3.49,	NNT	6)	and	3.32	

(CI	1.40	–	7.87,	NNT	4)	respectively.56	Azathioprine	has	an	established	role	in	the	

maintenance	of	remission	in	UC	(HR	0.60,	0.37	to	0.95),	and	the	NNT	to	prevent	one	relapse	

was	4.57		

The	onset	of	action	of	the	thiopurines	is	slow	(up	to	17	weeks)	and	induction	therapies	

(corticosteroids,	anti-TNFα	agents)	are	often	needed	for	‘bridging’.34	Methotrexate	(MTX)	is	

also	effective	at	maintaining	remission	in	CD	(vs.	placebo,	65%	vs.	39%	,	NNT=4)58,	however	it	

is	teratogenic,	often	poorly	tolerated	and	guidelines	recommend	their	use	only	in	patients	

intolerant	or	refractory	to	thiopurines	or	anti-TNF	agents.23,59	The	optimal	time	for	drug	

withdrawal	has	been	debated,	however	expert	opinion	suggests	drug	discontinuation	4	years	

after	remission.53		Such	decisions	are	often	made	on	an	individual	basis	taking	into	account	

the	risk	of	relapse	against	the	long	term	risks	of	therapy.60	

5-aminosalycilates	(5-ASA)	

5-aminosalycilates	(5ASA)	are	also	used	for	maintenance	of	remission	in	UC.	Oral	5ASA	has	a	

good	NNT	of	4	to	prevent	one	relapse.42	Topical	5-ASA	can	be	used	to	prevent	relapse	in	distal	

disease.61	

1.4.4	Surgical	

In	the	modern	era	of	biologic	therapies,	the	requirement	for	surgery	is	falling,	but	up	to	a	

quarter	of	patients	still	require	surgery	within	5	years	of	diagnosis.62,63	Indications	for	

resectional	surgery	often	result	from	medical	therapy	failure	and	include	treatment	of	

fibrostenotic	disease,	penetrating	disease	(perforation,	intra-abdominal	abscess,	abdominal	

fistulae)	or	evidence	of	colonic	dysplasia	at	surveillance.	Perianal	CD	may	require	surgery	

either	to	drain	sepsis	or	to	control	fistulae.	Ileoceacal	resection	is	considered	a	first	line	

treatment	for	discrete	terminal	ileal	disease.64–66	Anastomotic	recurrence	remains	common.	A	

wide	stapled	side-to-side	anastomosis	is	slightly	superior	to	hand	sewn	end-to-end	

anastomoses	in	preventing	disease	recurrence(OR	0.2,	CI	0.07-0.55).67	The	role	of	medical	

therapy	to	prevent	post-operative	recurrence	is	currently	being	investigated	(TOPPIC	trial).	

The	main	principle	of	surgery	in	CD	is	to	preserve	bowel	length	in	order	to	avoid	short	bowel	

syndrome	and	intestinal	failure.	Operations	including	stricturoplasty	effectively	treat	

strictures	without	the	need	for	resection.	Ileorectal	anastomosis	(IRA)	is	infrequently	
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indicated	due	to	the	high	risk	of	disease	recurrence	in	proximal	small	bowel	and	the	risk	of	

anastomotic	leaks.68			

In	UC,	total	colectomy	provides	a	curative	treatment	and	protects	against	the	elevated	risk	of	

colorectal	cancer	in	IBD	patients.	In	an	inception	cohort,	in	the	first	10	years	following	

diagnosis	the	colectomy	rate	was	9.8%.69	In	the	setting	of	acute	severe	colitis	the	higher	

colectomy	rate	of	~	29%	has	been	unchanged	for	many	years.70	In	this	setting	of	ASUC,	

subtotal	colectomy	is	the	procedure	of	choice,	as	an	elevated	mortality	was	demonstrated	

following	total	colectomy.	Early	results	from	the	CONSTRUCT	trial	indicated	no	significant	

difference	in	quality	of	life	scores	in	patients	undergoing	colectomy	compared	to	those	treated	

successfully	medically.	Bowel	continuity	can	be	restored	in	patients	with	UC	following	

colectomy	with	ileal	pouch	to	anal	anastomosis	(IPAA).		

	

1.4.5	New	Biologic	treatments	on	the	horizon	for	IBD	

1.4.5.1	Biosimilars	

Biosimilars	are	biologically	similar	medicinal	products	that	share	similar	properties,	in	terms	

of	efficacy	and	safety,	to	previously	approved/licenced	drugs.	Of	note,	Infliximab	has	

undergone	20-30	minor	changes	since	it	was	licenced,	and	was	rigorously	assessed	for	pre-	

and	post-modification	comparability.71	Monoclonal	antibody	proteins	can	be	subjected	to	one	

of	several	post-translation	modifications	including	glycosylation,	phosphorylation,	and	

ubinqutinisation.71	

There	are	randomised	data	from	other	diseases	and	oberservational	data	in	IBD	supporting	

the	use	of	CT-P13	(Remisa)	as	a	biosimilar	for	Infliximab.72,73		

1.4.5.2	Integrin/MAdCAM	targeting	monoclonal	antibodies	

Vedolizumab	is	a	monoclonal	antibody	targeting	α4β7	integrin	that	is	variably	expressed	on	

the	cell	surface	of	some	T-lymphocytes	and	B-cells.	The	drug	acts	by	limiting	trafficking	and	

migration	of	leukocytes	to	inflamed	sites	within	the	gut.	The	great	promise	of	the	anti-

mucosal	addressin	cell	adhesion	molecule	(MAdCAM)	antibodies	over	other	biologics	is	the	

specificity	of	vedolizumab	in	targeting	leukocyte	recruitment	within	the	gut,	thereby	limiting	

unwanted	systemic	immunosupression.74	Natalizumab,	which	targets	the	α4	subunit	of	

integrins	α4β7	and	α4β1,	is	efficacious	in	multiple	sclerosis	and	CD,	but	is	associated	an	

unacceptable	risk	of	PML	(progressive	multifocal	leukoenchepalopathy)75	and	may	be	related	
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to	the	off-target	effects	of	non-specific	inhibition	of	leukocyte	traffic	in	other	organs	including	

the	CNS.		Vedolizumab	is	gut	specific	and	there	have	been	no	reported	cases	of	PML.	

Two	large	studies	have	demonstrated	Vedolizumab	to	be	more	effective	than	placebo	for	

inducing	and	maintaining	remission	in	UC	(GEMINI-1)76	and	CD.77	Vedolizumab	has	also	been	

used	in	patients	who	have	failed	anti-TNF	treatment,	with	benefit	seen	at	10	but	not	six	

weeks.78	Ertrolizumab	is	another	humanised	monoclonal	antibody	directed	at	the	β7	subunit	

has	also	been	demonstrated	to	be	effective	in	induction	of	remission	in	UC.79	

1.4.5.3	Interleukin	-12	and	-23	pathway	targeting	monoclonal	antibodies	

The	interleukin	(IL)-12	and	IL-23	pathways	have	been	implicated	in	the	pathogenesis	of	

immune-mediated	diseases	including	CD.	Ustekinumab	is	an	IgG	monoclonal	antibody	

targeting	the	shared	p40	subunit	of	IL-12	and	23	prevents	interaction	with	receptors.	

Ustekinumab	was	first	used	for	the	effective	treatment	for	psoriasis.80	Ustekinumab	was	

beneficial	in	mild-moderate	CD	at	4	and	8	weeks.81	CERTIFI	trial	has	demonstrated	benefit	to	

those	previously	refractory	to	anti-TNF	drugs.82	The	PSOLAR	biologic	registry	in	psoriasis	of	

over	12000	patients	found	no	evidence	of	increased	risk	of	infection	or	malignancy	in	patients	

treated	with	ustekinumab.83		

Other	IL-17	and	IL-23	targeting	drugs	(Briakunumab,	Sucukinumab,	Ixekizumab,	

Broadalumab)	are	under	investigation.	

1.4.5.4	Other	promising	therapeutics	in	the	pipeline	

Mongersen	is	an	anti-sense	oligonucleotide	of	SMAD7	(“Mothers	against	decapentraplegic”)	

that	has	been	developed	for	the	treatment	of	CD.	SMAD7	is	an	intracellular	protein	

upregulated	in	CD	that	binds	to	TGF-	β1,	an	immunosuppressive	cytokine,	to	and	prevents	

TGF	signalling.	84	Orally	administered	Mongersen	(pH	modified	release	in	the	right	colon)	has	

been	shown	to	effectively	induce	remission	in	a	phase	II	trial.84			

	

1.5	The	Genetic	architecture	of	IBD	

IBD	pathogenesis	is	believed	to	involve	an	aberrant	immune	response	to	intestinal	microbiota	

in	genetically	susceptible	individuals.85	Genetic	studies	have	provided	many	candidate	loci	in	

the	last	decade,	and	the	innate	and	acquired	immune	responses	have	been	implicated	in	

pathogenesis.	However,	identified	genetic	factors	account	for	only	a	modest	proportion	of	the	

disease	variance—13.1%	in	CD	and	8.2%	in	UC.86	These	figures	highlight	the	need	for	critical	
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evaluation	of	genetic	discoveries	to	date,	and	indicate	the	importance	of	the	environmental	

factors	in	IBD	pathogenesis;	in	addition	the	intriguing	possibility	arises	that	epigenetics	may	

partially	account	for	the	‘hidden	heritability’	in	IBD.	

In	the	last	25	years	there	has	been	intense	interest	in	identifying	genetic,	and	more	recently,	

epigenetic	changes	that	relate	to	the	pathogenesis	of	IBD.	Few	other	complex	diseases	have	

been	subjects	of	such	extensive	genetic	and	epigenetic	research.	National	consortia	and	

subsequently	large	international	collaborative	research	groups,	such	as	the	International	IBD	

genetics	consortium	(IIBDGC),	have	led	the	way	in	performing	large-scale	appraisals	of	the	

genome	of	patients	with	IBD	(http://www.ibdgenetics.org/).	The	assumption-free	approach	of	

genome-wide	association	studies	(GWASs)	has	helped	to	support	established	etiological	roles	

of	the	innate	and	acquired	immune	system	in	IBD,	and	also	identified	interesting	new	

mechanisms,	such	as	autophagy.87		

	

Findings	from	the	last	25	years	of	genetic	discovery	in	IBD	have	been	put	into	context	by	a	

meta-analysis	of	the	GWAS	and	Immunochip	data.88	The	Immunochip	was	developed	

following	GWASs	of	IBD	and	other	immune	disease;	it	contains	200,000	single	nucleotide	

polymorphisms	(SNPs)	relevant	to	IBD	and	other	immune-mediated	diseases.	The	aims	of	the	

Immunochip	experiments	are	to	replicate	and	fine	map	the	known	IBD	susceptibility	loci,	and	

to	identify	common	links	with	other	immune	disorders.	The	meta-analysis	comprised	more	

than	75,000	cases	and	controls,	and	more	than	1.23	million	SNPs	from	several	centres	

worldwide.	It	identified	a	further	64	loci,	bringing	the	total	number	of	IBD-associated	loci	to	

163—significantly	more	than	any	other	complex	disease.88	More	recently,	a	trans-ancestry	

meta-analysis	(including	9,846	people	of	Iranian,	Indian	and	East	Asian	descent)	has	added	38	

more	loci,	bringing	the	total	number	of	genes	up	to	200.86	The	total	proportion	of	disease	

variance	now	explained	by	genetics	alone	is	13.1%	in	CD	and	8.2%	in	UC.86	

1.5.1	Crohn’s	disease	and	ulcerative	colitis:	A	Genetic	continuum	of	disorders?	

Early	GWASs	identified	IBD	loci	common	and	unique	to	CD	and	UC.89	More	recent	data	

demonstrate	the	increasing	proportion	of	loci	common	to	both	diseases.88	In	Jostins	et	al,	110	

of	163	loci	were	associated	with	both	diseases,	(30	CD,	23	UC	specific),88	in	Lui	et	al	137	of	

200	were	associated	with	both	forms	of	IBD	(36	CD,	27	UC	specific).	86	 		

Specific	genetic	variants	have	been	known	to	associate	with	certain	subtypes	of	IBD,	

nucleotide	oligomerization	domain	2	(NOD2	)	mutations	have	been	associated	with	stricturing	
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ileal	CD,	and	DRB1*01:03	has	been	associated	with	severe	extensive	UC.90–92	A	large	

collaborative	genotype-phenotype	study	of	CD	and	UC	demonstrated	three	loci	associated	

with	disease	location	(NOD2	-	ileal,	MST1	3p21	-	ileal	and	MHC	DRB1*01:03-	colonic	

disease).93	This	study	suggests	that	ileal	and	colonic	CD	are	as	genetically	distinct	from	each	

other	as	they	are	from	UC,	and	that	IBD	should	perhaps	be	classified	into	three	disorders	

rather	than	two:	ileal	CD,	colonic	CD	and	UC.93	A	genetic	risk	score	was	developed	to	assist	

classification	of	patients,	and	predict	patients	who	were	initially	misclassified	with	a	diagnosis	

of	UC	or	CD.93			

Studies	of	gene	loci	shared	by	UC	and	CD	may	provide	insight	into	their	common	pathogenic	

mechanisms.	The	T-helper	(Th)17	and	interleukin	(IL)12-23	pathway	is	well	established	in	

IBD	pathogenesis,	with	susceptibility	gene	loci	IL23R,	IL12B,	JAK2,	and	STAT3	identified	in	

both	UC	and	CD.94,95	Variants	in	IL12B,	which	encodes	the	p40	subunit	of	IL12	and	IL23,	have	

been	associated	with	IBD	and	other	immune	disorders.		

Defects	in	the	function	of	IL10,	an	immunosuppressive	cytokine,	have	also	been	associated	

with	CD	and	UC.	96,97	A	severe,	childhood-onset,	CD-like	form	of	enterocolitis	is	associated	with	

rare	mutations	in	IL10R.	However,	this	disorder	could	be	a	separate	entity	from	idiopathic	

IBD.98,99	Other	susceptibility	genes	that	regulate	immune	function	include	CARD9,	IL1R2,	REL,	

SMAD3,	and	PRDM1.100	Interestingly,	the	well-established	CD-risk	variants	of	NOD2	and	

PTPN22	appear	to	protect	against	UC.	

	

1.5.2	CD-Specific	Susceptibility	Loci	and	Pathways	

Risk	for	CD	has	a	greater	genetic	component	than	that	for	UC,	and	several	CD-specific	

susceptibility	loci	have	been	delineated.	Data	from	Jostins	et	al	increasingly	highlights	the	

relationship	between	the	host	innate	immune	system	and	the	intestinal	microbiota	in	CD.	

GWASs	have	indicated	that	intracellular	bacterial	processing	by	autophagy	is	an	important	

pathogenic	mechanism.	Importantly,	the	association	between	CD	and	NOD2	has	been	

consistently	replicated,	at	the	genome-wide	significance	level;	101	NOD2	has	been	

mechanistically	linked	with	autophagy.102,103	Cigarette	smoking,	a	strong	environmental	factor	

in	CD	risk,	might	affect	NOD2	function.104	Furthermore,	the	product	of	the	CD	susceptibility	

gene	ATG16L1	is	recruited	to	the	plasma	membrane	by	NOD2,	where	it	initiates	bacterial	

internalization	by	autophagosomes.97,101,103		
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Another	gene	involved	in	autophagy-induced	bacterial	killing	is	Immunity-related	GTPase	

family	M	(IRGM).	CD-associated	polymorphisms	in	IRGM	lead	to	reduced	protein	expression.	A	

different	SNP	of	IRGM	protects	against	Mycobacterium	tuberculosis.105,106	The	most	recent	data	

from	Immunochip	studies	indicated	an	overlap	between	IBD	loci	and	complex	mycobacterial	

disease	loci:88	Seven	CD	susceptibility	genes	overlap	with	leprosy	susceptibility	genes,	and	6	

mycobacterium	susceptibility	genes	overlap	with	IBD	loci.	However,	for	several	of	these	

diseases,	the	genetic	associations	have	opposite	effects.88	Genes	involved	in	the	host	response	

to	mycobacteria	that	were	previously	associated	with	CD	include	CARD9	and	LTA.	89,97	Other	

CD-specific	loci	identified	related	to	the	immune	system	include	PTPN22,	IL2RA,	IL27,	

TNFSF11,	and	VAMP3.	97,101	

	

1.5.3	UC-Specific	Susceptibility	Loci	and	Pathways	

Although	UC	susceptibility	loci	have	primarily	included	genes	that	regulate	intestinal	

epithelial	barrier	function,	there	is	recent	evidence	that	human	leukocyte	antigen	(HLA)	

variants	are	involved	in	development	of	UC.88	HLA-DQA1	was	the	locus	most	strongly	

associated	with	UC	(odds	ratio	of	1.44),with	no	corresponding	increased	risk	in	CD.88	The	HLA	

class	II	genes	are	tremendously	diverse	and	control	antigen	presentation	to	T	cells;	they	have	

been	implicated	in	other	immune	diseases.	

Hepatocyte	nuclear	factor	4A	(HNF4A)	regulates	expression	of	cell	junction	proteins	in	the	

intestinal	epithelial	barrier;	variants	have	been	associated	with	UC,	and	also	colorectal	

cancer—a	complication	of	chronic	inflammation	in	patients	with	IBD.107	Rare	SNPs	at	the	

HNF4A	gene	locus,	not	implicated	in	UC,	are	associated	with	maturity	onset	diabetes	(MODY),	

inherited	in	an	autosomal	dominant	fashion.108	Other	UC-associated	genes	that	affect	

epithelial	barrier	function	include	CHD1,	which	encodes	E-cadherin,	and	LAMB1,	which	

encodes	the	lamina	β	subunit	1.	Many	UC	risk	alleles	encode	cytokines	and	inflammatory	

mediators,	including	tumour	necrosis	factor	(TNF)	receptor	superfamily	members	

(TNFRSF14,	TNFRSF9),	interleukins,	and	interleukin	receptors	(IL1R2,	IL8Ra/RB,	IL7R).100	

	

1.5.4	Relationships	with	Other	Diseases	

Jostins	et	al.	reported	that	70%	of	IBD	loci	overlap	with	loci	associated	with	other	complex	

immune	diseases,	such	as	IL23R	variants	associated	with	psoriasis	and	ankylosing	

spondylitis.109–111	However,	these	polymorphisms	sometimes	have	opposite	effects	in	
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different	diseases.	For	example	a	variant	of	PTPN22	protects	against	CD,	but	is	a	risk	factor	for	

type-1	diabetes	and	rheumatoid	arthritis.112	Extra-intestinal	manifestations	of	IBD	also	share	

common	loci,	which	may	explain	their	co-occurrence.	For	example	variants	of	REL,	IL2,	and	

CARD9	are	associated	with	UC	and	primary	sclerosing	cholangitis.89,113	

	

1.5.5	Current	Agenda	for	IBD	Genetic	Studies	

Many	of	the	IBD	loci	identified	so	far	have	not	been	accurately	characterized	or	fine-mapped,	

and	the	candidate	genes	commonly	used	to	describe	them	are	only	putative.	Moreover,	the	

biological	functions	of	their	products,	and	their	complex	interactions,	in	most	cases	require	

delineation.	Studies	are	underway	to	fine-map	loci,	and	functional	studies	are	needed.	Further	

work	is	required	to	determine	how	specific	variants	affect	levels	of	mRNA	and	consequently	

protein,	which	could	provide	further	insight	into	mechanisms	of	pathogenesis.	This	is	likely	to	

take	considerable	time—NOD2	was	identified	over	10	years	ago	and	there	is	still	uncertainty	

about	its	function.114	

GWA	studies	have	excelled	in	identifying	moderate-risk	genetic	variants	with	at	least	5%	

prevalence	in	the	population.	Novel	approaches	are	needed	to	discover	lower-prevalence	

variants	with	higher	effect	size.	Whole-exome	sequencing,	which	covers	only	coding	areas	of	

the	genome,	costs	less	than	whole-genome	sequencing	and	tends	to	afford	higher	depth	

coverage	and	therefore	greater	certainty	about	novel	discoveries.	It	has	been	successfully	

used	to	identify	single	mutations	in	very	early	onset	IBD,115	and	is	perhaps	most	likely	to	

produce	results	in	individuals	with	a	strong	family	history	or	early	age	of	disease	onset.	

However,	many	polymorphisms	that	affect	disease	susceptibility	are	located	in	non-coding	

areas	of	the	genome;	the	ENCODE	project	has	highlighted	the	importance	of	non-coding	

regions	in	disease	risk.116	Exome	sequencing	and	whole	genome	sequencing	are	each	

underway,	with	large-scale	endeavours	at	the	Sanger	Centre	likely	to	report	in	the	near	future.	

(http://www.ibdresearch.co.uk/)	

	

Most	IBD	genetic	analyses	have	been	performed	in	the	white	populations	of	Northern	Europe	

and	America.	More	recently,	there	has	been	a	push	to	expand	this	work	to	other	ethnic	

populations.117	IBD-associated	variants	of	NOD2,	for	example,	are	less	prevalent	in	African	

American	populations,	and	CD-associated	mutations	have	not	been	detected	in	Asian	or	Sub-

Saharan	African	populations.118,119	The	aforementioned	trans-ancestry	meta-analysis86	has	
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demonstrated	population-specific	effects	caused	by	differences	in	risk	allele	frequency	(RAF),	

for	example,	three	coding	variants	of	NOD2	known	to	have	a	large	OR	in	Europeans,	had	a	RAF	

of	0	in	East	Asians.86	Another	difference	was	the	relative	risk	contribution	of	susceptibility	

alleles;	TNFSF15/TNFSF8	variants	have	a	small/modest	effect	size	in	those	of	European	

ancestry	(OR~1.15)	but	a	comparatively	larger	effect	in	people	of	East	Asian	ancestry	

(OR~1.75)	despite	similar	RAF	in	both.	86			

	

Pharmacogenomics	–	the	study	of	how	genomic	factors	affect	the	efficacy,	tolerability,	and	

side-effects	of	a	therapeutic	agent–	remains	high	on	the	research	agenda.	Patients	are	

routinely	evaluated	for	thiopurine	S-methyltransferase	(encoded	by	TPMT)	genotype	and	

phenotyping	prior	to	initiation	of	thiopurine	therapy	is	recommended	by	the	US	Food	and	

Drug	Administration.120,121	There	are	ongoing	attempts	to	predict	patients’	response	to	other	

agents,	based	on	genetic	factors.	A	notable	recent	success	in	this	field	is	the	association	of	an	

HLA	variant	(HLA-DQA1-HLA-DRB1,	OR	2.59)	with	thiopurine-induced	pancreatitis.122	Studies	

supported	by	the	Serious	Adverse	Events	Consortium	aim	to	predict	5-aminosalicyate-

induced	nephrotoxicity	(http://www.ibdresearch.co.uk/5asa/)	and	serious	complications	of	

anti-TNF	therapies	(PANTS	study).	

A	main	goal	of	IBD	research	is	to	develop	disease-specific	therapeutics.	Many	researchers	are	

developing	reagents	to	alter	activities	of	genes	and	pathways	identified	through	GWAS—the	

IL12/23	signalling	pathway	is	one	promising	target.	Ustekinumab,	a	monoclonal	antibody	that	

binds	to	the	shared	p40	subunit	encoded	by	IL12B	described	above,	has	undergone	phase	2b	

induction	and	maintenance	trials	in	patients	with	CD.82	Apilimod	mesylate,	briakinumab	

(ABT-874),	and	SCH-900222)	also	target	components	of	the	IL12/23	signalling	pathway	are	

currently	under	evaluation.123	

	

1.6	From	genetics	to	environment	via	epigenetics	

The	challenge	remains	to	measure	patients’	duration,	intensity,	and	frequency	of	exposure	to	

the	many	environmental	factors	that	potentially	could	contribute	to	IBD	(Table	2),	making	the	

environmental	impact	on	disease	difficult	to	disentangle.124	
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Exposure	 Evidence	for	

causality	

Role	in	natural	

history	

Putative	

mechanisms	

Cigarette	smoking125	 Strong:	+ve	in	CD,	-ve	

in	UC	

Similar	associations	

with		flare	

Effects	on	gut	

mucosa	&	

vasculature		

Appendicectomy126	 Inverse	ass.	with	UC,	

nil	for	CD	

Uncertain	 Removal	of	lymphoid	

tissue	

Use	of	NSAIDS127	 Inconsistent	

observational	data	

Associated	with	

exacerbations	

↓	prostaglandins	and	

blood	flow.		

Oestrogens:	

OCP/HRT	128	

Data	from	

observational	studies	

Uncertain	 Reduction	in	

mucosal	blood	flow.	

Use	of	antibiotics129	 Association	with	CD,	

nil	for	UC	

↓	relapses	for	CD;	nil	

in	UC	

Effect	on	gut	

microbiota		

Deficiency	of	vitamin	

D130	

Minimal	

epidemiological	data	

Not	known	 Immune-mediated	

Polyunsaturated	

fatty	acids		

High	omega-6	:	

omega-3	ratio131,132	

Emerging,	but	

inconsistent	data		

No	current	studies	 Effect	via	

prostaglandin	

production	

↓	of	diet	plant	

fibres133	

Association	with	CD,	

nil	for	UC	

Not	known	 ↓	butyrate,	↓	energy	

for	colonocytes.	

↑	Physical	

exercise134,135	

Associated	with	↓	CD	 Not	known	 ↑	butyrate	&	↑	

microbiota	diversity	

Table	2	-	Environmental	factors	associated	with	increased	IBD-susceptibility	

	

	Epigenetic	factors	could	mediate	gene–environment	interactions	involved	in	pathogenesis.	

Epigenetic	programming	begins	upon	fertilization	and	continues	throughout	life.	Studies	of	

Agouti	mice136	and	the	offspring	of	post-World	war	II	Dutch	famine	survivors137	revealed	how	

the	environment	may	affect	epigenetic	factors.	Dietary	intake	during	pregnancy	may	affect	the	

epigenetic	reprogramming	step	in	offspring	during	early	development;	an	effect	that	may	

persist	for	up	to	2	generations,	although	these	data	have	caused	some	debate	in	the	scientific	
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community.136,138–141	Moreover,	there	is	evidence	for	acquired	epigenetic	changes	with	

aging,142	caused	by	a	range	of	environmental	factors.143	Epigenetics	could	therefore	play	a	

central	role	in	the	pathogenesis	of	IBD	and	other	diseases,	affecting	interactions	among	

genetic	and	environmental	factors	such	as	the	intestinal	microbiome.	

	

Figure	4	–	Schematic	diagram	of	the	potential	role	of	epigenetics	in	disease	pathogenesis.	The	

classic	paradigm	of	genotype	leading	to	phenotype	and	disease	(A)	is	likely	to	be	overly	

simplistic.	In	panel	B,	epigenetics	may	mediate	between	genetics	(blue	box),	environmental	

factors	(green	boxes)	and	the	immune	system	(orange)	to	contribute	to	disease	initiation	and	

propagation.	Taken	from	Ventham	et	al.144	License	Number:	3742451069879		

	

In	IBD	research,	several	key	developments	in	molecular	studies	have	led	us	from	genetics	to	

explore	epigenetics.	GWASs	have	identified	key	epigenetic	regulatory	enzymes,	DNMT3a	and	

more	recently	DNMT3b	as	CD-susceptibility	genes.88,97	Dendritic	cells	that	express	CD-

associated	variants	of	NOD2	fail	to	upregulate	microRNA	clusters	that	regulate	Th1-	and	

Th17-cell	mediated	immune	responses.145	Epigenetic	mechanisms	have	also	been	shown	to	

regulate	the	immune	system.	For	example,	differentiation	of	Th2	cells	requires	epigenetic	

silencing	of	the	IFNG	locus.146		
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Epigenetics	may	be	defined	as	mitotically	heritable	changes	in	gene	function	not	explained	by	

changes	in	the	DNA	sequence.	Gene	expression	can	be	altered	by	changes	to	the	structure	and	

function	of	chromatin	(Figure	5).	The	main	epigenetic	mechanisms	include	DNA	methylation,	

histone	modification,	RNA	interference,	and	the	positioning	of	nucleosomes	(which	will	not	

covered	in	depth).		

	

Figure	5	–	Structure	of	chromatin.	Chromatin	can	exist	in	a	condensed	form	(A)	–	

heterochromatin	and	is	associated	with	transcriptional	repression.	Heterochromatin	is	

associated	with	methylated	DNA,	and	methylated	histone	H3	and	low	levels	of	histone	

acetylation.	Heterochromatin.	Euchromatin	(B)	is	the	relaxed	form	of	chromatin	that	allows	

transcription.	Here	DNA	is	not	methylated	and	specific	histones	are	acetylated	(H4).	Taken	

from	Ventham	et	al.144	License	Number:	3742451069879		

The	epigenome	can	be	regarded	as	both	stable	and	plastic.	The	epigenome	can	be	regarded	as	

stable	as	epigenetic	marks	are	passed	onto	daughter	cells	during	mitosis.147	However,	

stochastic	and	environmental	factors	can	cause	dynamic	changes	to	the	epigenome	over	

time.148	During	mitosis,	the	level	of	fidelity	of	epigenomic	replication	is	much	lower	than	that	

of	genetic	sequence	(error	rate	of	1×106	for	DNA	sequence	compared	to	1×103	for	DNA	

modifications),	leading	to	an	accumulation	of	epigenetic	changes	over	time.149,150	Similarly,	

several	environmental	factors	produce	epimutations	(epigenetic	changes	associated	with	

disease);	factors	relevant	to	IBD	include	smoking,151,152	the	microbiota,153,154	and	diet.138	

Epigenetic	marks	are	reset	during	meiosis;	the	epigenome	is	established	early	in	

embryogenesis	after	undergoing	several	reprogramming	steps,	during	which	the	epigenome	
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is	most	subject	to	modification.147,155	Given	that	the	epigenome	is	reset	during	meiosis,	it	was	

believed	that	epigenetic	marks	were	not	passed	between	generations.		

Although	environmental	exposures	in	utero	can	lead	to	epigenetic	changes	that	persist	for	up	

to	2	generations,	there	is	increasing	interest	in	true	epigenetic	inheritance,	which	lasts	

multiple	generations.156–158	Transgenerational	epigenetic	inheritance	has	attracted	both	

excitement	and	scepticism	within	the	scientific	community,	and	pertains	to	epigenetic	marks	

resistant	to	the	major	reprogramming	steps.124,157	The	most	compelling	evidence	for	

transgenerational	epigenetic	inheritance	comes	from	studies	of	plants:	DNA	methylation-

mediated	silencing	of	the	Lcyc	promoter	causes	variations	in	floral	symmetry	in	Linaria	

vulgaris	(toadflax)	that	are	stably	inherited	over	many	generations.159	Although	additional	

examples	have	been	reported	from	studies	of	plants,	insects,	and	mammals,	the	concept	is	still	

met	with	some	skeptacism.160	Incomplete	erasure	of	epigenetic	mutations	across	generations	

could	contribute	to	familial	predisposition	to	diseases	such	as	IBD.124		

	

1.6.1	DNA	Methylation	

DNA	methylation	is	the	most	widely	studied	epigenetic	modification;	in	this	process,	a	methyl	

group	is	covalently	added	to	cytosines	that	are	part	of	cytosine–guanine	dinucleotides	(CpG).	

Full	methylation	occurs	when	cytosine	residues	on	both	DNA	strands	are	methylated.	CpG	

dinucleotides	are	generally	sparse	within	the	genome	(~1%),	but	are	relatively	concentrated	

in	specific	regions	called	‘CpG	islands’.	CpG	islands	are	defined	as	a	200-base	sequence	

containing	greater	than	50%	CpG	dinucleotides	at	an	observed-to-statistically	expected	ratio	

of	0.6.161	The	areas	where	most	tissue-specific	methylation	appear	to	border	CpG	islands	and	

have	been	termed	‘CpG	shores’.162		

Transcriptionally	repressive	activity	generally	occurs	where	a	gene	has	methylation	of	CpG	

islands	within	promoter	areas,	and	is	an	important	mechanism	of	gene	silencing.163	DNA	

methylation	may	lead	to	transcriptional	repression	by	hindering	access	of	transcription	

factors	to	promoter	regions,	although	many	researchers	believe	the	reverse	is	true:	that	gene	

silencing	subsequently	leads	to	DNA	methylation.164,165		

DNA	is	methylated	by	enzymes	called	the	DNA	methyltransferases	(DNMTs).	There	are	5	

members	of	the	DNMT	family:	DNMT1	(maintenance	of	methylation),	DNMT2	(involved	in	

RNA	methylation),	DNMT3a,	DNMT3b,	and	DNMT3L	(involved	in	new	methylation).	There	is	

evidence	that	these	DNMTs	interact,	and	that	other	epigenetic	mechanisms	can	recruit	DNMTs	
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to	specific	gene	loci.161	Inherited	deficiency	of	DNMT3B	leads	to	immunodeficiency,	

centromeric	instability,	and	facial	anomalies	(ICF)	syndrome,	whereas	complete	lack	of	DNMT	

enzymes	leads	to	embryonic	lethality.	161		

	

Initial	DNA	methylation	studies	in	the	context	of	IBD	largely	focused	on	IBD-related	cancer	

predisposition.	DNA	methylation	changes	in	colonic	epithelial	cells	that	normally	occur	with	

aging	are	accelerated	in	IBD,	possibly	related	to	a	higher	cell	turnover	in	inflammation.166	

Increased	age-related	DNA	methylation,	observed	in	colon	cells	of	patients	with	colitis,	could	

lead	to	genetic	instability	and	cancer	development.166	DNA	hypermethylation	has	been	

demonstrated	in	dysplastic	and	the	surrounding	non-dysplastic	colon	tissues	from	patients	

with	UC,	compared	to	control	subjects	or	UC	patients	without	dysplasia.166		

The	increasing	interest	in	the	role	of	DNA	methylation	in	IBD	pathogenesis	has	occurred	in	

tandem	with	advances	in	platform-based	DNA	methylation	array	technologies,	which	have	

superseded	candidate	gene	methylation	profiling	techniques.	Initial	IBD	epigenome-wide	

methylation	association	studies	(EWASs)	used	platform-based	arrays	to	analyse	peripheral	

blood	samples.	Nimmo	et	al.	analysed	the	methylation	profile	of	peripheral	blood	from	

women	and	children	with	CD	using	the	27K	Illumina	microarray.167	Fifty	genes	demonstrated	

significantly	different	levels	of	methylation	between	patients	with	IBD	and	controls,	including	

some	involved	in	immune	system	activation	(MAPK,	RIPK3,	and	IL21R).	Ontology	analysis	

highlighted	several	pathways	associated	with	IBD,	including	immune	system	processes,	

immune	response,	and	host	response	to	bacteria,	whereas	canonical	pathway	analysis	

indicated	the	involvement	of	Th17	cell	pathways.167	

Another	study	demonstrated	the	tissue-specific	nature	of	epigenetic	marks.168	No	significant	

differences	in	DNA	methylation	were	observed	between	children	with	IBD	and	controls,	based	

on	methylation-specific	amplification	microarray	analysis	of	peripheral	blood.	However,	they	

found	that	peripheral	blood	mononuclear	cells	(PBMCs)	from	the	IBD	patients	demonstrated	

hypermethylation	at	the	TEPP	locus,	which	encodes	testes,	prostate	and	placenta-expressed	

protein	and	is	of	uncertain	relevance	in	IBD.168	A	study	that	analysed	DNA	methylation	in	

Epstein-Barr	virus-transformed	B	cells	from	18	patients	with	IBD	vs	non-affected	siblings	

identified	49	differentially	methylated	CpG	sites.	More	than	half	of	the	differentially	

methylated	loci	contained	genes	that	regulate	immune	functions,	including	several	(BCL3,	

STAT3,	OSM,	STAT5)	involved	in	the	IL-12	and	IL-23	pathways.169		
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DNA	methylation	has	also	been	studied	in	colonic	tissue.	An	EWAS	of	intestinal	biopsy	

samples	from	20	monozygotic	twins	discordant	for	UC	identified	61	differentially	methylated	

loci,	several	containing	genes	that	regulate	inflammation	(CFI,	SPINKK4,	THY1/CD90).	This	

study	had	an	interesting	design,	in	that	after	the	loci	were	identified	in	the	analysis	of	

discordant	monozygotic	twins	(to	exclude	differences	in	genetic	factors)	they	were	validated	

an	independent	cohort.170		

To	overcome	the	heterogeneity	of	cell	types	in	tissues,	a	methylation-wide	profiling	study	of	

whole	rectal	biopsies	from	patients	with	active	and	quiescent	UC	and	CD	was	validated	using	

isolated	epithelial	cells	from	rectal	biopsies.171	Many	differentially	methylated	genes	were	

identified	in	whole	tissue,	encoding	proteins	including	DOK2	(involved	in	IL-4	mediated	cell	

proliferation),	Tap1	(an	MHC	class	I	transport	molecule),	and	members	of	the	TNF	family	

(TNFSF4	and	TNFSF12).	ULK1	was	methylated	only	in	patients	with	CD;	its	product	has	a	role	

in	autophagy.	Genes	identified	as	being	differentially	methylated	in	this	study,	replicated	

findings	from	other	EWAS,167and	have	also	been	identified	as	susceptibility	genes	in	

GWAS94,107	including	CDH1,	ICAM3,	IL8RA,	and	CARD9.		

	

1.6.2	Histone	Modification	

Histones	can	undergo	a	range	of	complex	modifications;	the	N-terminal	amino	acid	histone	

tails	can	be	modified	by	acetylation,	methylation,	ubiquitination,	and	phosphorylation.172	

Different	post-transcriptional	modifications	to	histone	ends	are	thought	to	recruit	different	

co-activators	or	co-repressors,	which	determines	whether	chromatin	is	in	its	relaxed	or	

condensed	form.173		

Histone	acetylation	is	the	most	well	described	post-translational	modification	and	is	regulated	

by	the	levels	and	activity	of	histone	acetyl	transferase	(HAT)	and	histone	deacetylase	

(HDAC).174	In	a	simple	model,	chromatin	is	transcriptionally	active	when	lysines	on	histones	

H3	and	H4	are	acetylated.	Although	it	is	not	exactly	clear	how	acetylated	histones	affect	

transcription,	they	might	change	the	structure	of	chromatin	(acetylation	of	lysine	neutralizes	

the	positive	electrostatic	charge	of	the	histone,	facilitating	the	opening	of	chromatin),	and	

thereby	reveal	binding	sites	for	important	co-activators.175	Overexpression	or	increased	

activity	of	HDACs	can	lead	to	hypoacetylation	and	gene	silencing.		
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Patterns	of	colonic	histone	acetylation	in	rats	with	chemical-induced	(dextran	sulphate	

sodium	(DSS)	and	2,4,	trinitrobenzene	sulphonic	acid)	and	in	biopsies	from	patients	with	CD	

have	been	described.	Inflamed	tissue	and	Peyer’s	patches	from	rats	with	colitis	and	patients	

were	found	to	have	increased	acetylation	of	H4.176	Several	mechanisms	have	been	proposed	

to	link	histone	modification	with	inflammation,	involving	the	innate	immune	response	to	

microbiota.	Butyrate,	an	endogenous	metabolite	formed	during	fermentation	of	dietary	fibres	

by	the	intestinal	microbiota,	is	an	HDAC	inhibitor.	Butyrate	increases	expression	of	NOD2	by	

increasing	histone	acetylation	in	its	promoter	region.154	Toll-like	receptor	4	regulates	

intestinal	homeostasis	by	preventing	excessive	inflammatory	responses	to	commensal	

bacteria,	and	could	be	regulated	by	histone	deacetylation.	153		

	

HDAC	enzymes	can	be	inhibited	by	a	range	of	natural	(e.g.	lactate,	butyrate)	and	synthetic	

compounds,177	and	much	of	our	understanding	of	histone	modifications	in	the	context	of	IBD	

has	come	from	experimental	trials	of	histone	deacetylatase	inhibitors	(HDACi).	HDAC	

inhibitors	have	primarily	been	investigated	in	cancer	research,	but	also	have	anti-

inflammatory	effects.	178	It	is	worth	noting	that	the	enzymes	that	affect	histone	acetylation	

status	(HAT,	HDAC),	do	not	act	exclusively	on	histones,	but	affect	acetylation	of	a	range	of	

proteins,	including	p53,	and	STAT3.179	Therefore,	HDAC	inhibitors	act	not	only	through	

epigenetic	mechanisms,	but	on	multiple	histone-independent	targets,	including	the	

transcription	factor	NFκB	pathway,	cytoskeletal	proteins,	and	cell	cycle	and	apoptosis	

regulators.180,181	Butyrate	enemas	have	been	used	to	treat	patients	with	colitis,	although	HDAC	

inhibition	may	not	be	their	predominant	mechanism	of	action.	Butyrate	has	several	effects	of	

the	gastrointestinal	tract,	including	maintenance	of	barrier	function	and	a	homeostatic	

reduction	in	epithelial	cell	production	of	IL8.182–184	Butyrate	reduces	the	disease	activity	index	

of	patients,	as	well	as	nuclear	translocation	of	NFκB	in	lamina	propria	macrophages.185	Other	

HDACis		have	also	been	shown	to	ameliorate	DSS-induced	colitis	in	mice.183,186	Although	an	

interesting	field	of	research,	histone	modifications	will	not	be	a	focus	of	this	thesis.		

	

1.6.3	RNA	Interference	

MicroRNAs	(miR)	are	single-stranded	non-coding	RNAs	typically	22-nucleotides	and	are	

highly	conserved	throughout	evolution.187	MiRs	with	members	of	the	Argonaut	(Ago)	family	

form	the	RNA	interference-silencing	complex	[RISC].	This	complex	regulates	translation	by	
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binding	to	3’	regions	of	untranslated	mRNAs,	by	directly	inhibiting	mRNA	translation	or	by	

causing	mRNA	degradation	(depending	on	the	degree	of	complementarity	between	the	miR	

and	the	mRNA	target).188		

Following	their	description	in	the	mid-1990s,	a	large	number	of	miRs	have	been	described	

(>1600	in	humans,	see	http://mirbase.org).	miRs	are	transcribed	by	RNA	polymerase	II	into	

hairpin	structures	called	pre-miR.	Pre-miR	is	processed	in	the	nucleus	(by	enzyme	Drosha)	

and	then	the	cytoplasm	by	the	Dicer	enzyme.189	After	processing,	each	miR	may	demonstrate	

complementarity	with	many	different	mRNAs,	and	each	mRNA	may	be	targeted	by	many	

different	miRs.190,191	miRs	regulate	gene	expression	and	thereby	numerous	biological	

processes,	including	cell	proliferation,	differentiation,	and	death.		

Studies	in	animals	have	shown	that	intestinal	miRs	regulate	gut	homeostasis.	Mice	deficient	in	

intestinal	Dicer1,	an	miR-processing	enzyme,	have	disorganized	intestinal	epithelial	crypts	

with	increased	goblet	cells,	rapid	jejunal	epithelial	migration,	and	accelerated	apoptosis.		

Additionally,	mice	deficient	in	intestinal	Dicer1	have	increased	inflammation	and	neutrophil	

and	lymphocyte	migration,	and	reduced	epithelial	barrier	function,	compared	to	mice	not	

deficient	in	Dicer1.192		

A	number	of	studies	have	investigated	differences	in	miRs	between	patients	with	and	without	

IBD.	Changes	in	miRs	in	human	IBD	were	first	described	in	2008.193	In	sigmoid	biopsies	from	

patients	with	active	UC,	levels	of	8	miRs	were	significantly	increased	and	3	were	decreased,	

compared	to	samples	from	patients	without	UC.	miR-192,	normally	expressed	in	colonic	

epithelial	cells,	was	significantly	reduced	in	tissues	of	patients	with	active	UC.193	miR-192	

reduces	expression	of	macrophage	inhibitory	peptide-2α,	a	CXC	chemokine	expressed	by	

epithelial	cells;	its	levels	are	increased	in	colon	tissues	of	patients	with	UC.193		

miR-150	is	upregulated	in	mice	with	DSS-induced	colitis	and	colon	tissues	from	patients	with	

UC;	its	levels	correlate	inversely	with	those	of	its	target	c-Myb,	which	has	a	role	in	

apoptosis.194	Upregulation	of	miR-21,	which	promotes	inflammation,	has	been	reported	in	

several	studies	of	patients	with	active	UC	and	CD	colitis	(but	not	ileitis),	along	with	miR-

155.195–197	miR-196	is	overexpressed	in	the	inflamed	epithelium	of	patients	with	CD	patients	

and	may	reduce	IRGM-mediated	autophagy.198		

Distinct	miR	signatures	have	been	identified	in	peripheral	blood	samples	from	patients	with	

IBD,	compared	to	controls,	and	between	patients	with	CD	vs	UC.199	Several	miRs	have	been	

found	to	be	significantly	up-	or	down-regulated	in	2	or	more	studies,	including	miRs-16,	-21,	-

28-5p,	-149,	-151-5p,	-199-a,	and	-532-3p.199–201	Eleven	miRs	were	also	found	to	be	
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differentially	expressed	between	serum	samples	from	paediatric	patients	with	CD	and	healthy	

children.200		

Further	adequately	powered	studies	are	required	to	identify	IBD-associated	miR	profiles	in	

intestinal	tissues	and	serum,	plasma,	and	separated	blood	cells.	Specific	miR	profiles	might	be	

able	to	predict	IBD	susceptibility,	progression,	and	response	to	therapy.	Moreover,	identifying	

the	targets	of	these	miRs	will	provide	additional	insight	into	IBD	pathogenesis.		

	

1.7	Potentials	pitfalls	in	epigenetic	research		

A	major	hurdle	in	interpreting	results	from	epigenetic	studies	is	to	determine	causality	i.e.	

whether	a	particular	epigenetic	profile	is	cause	or	consequence	of	disease.	Furthermore,	many	

of	these	studies	provide	only	a	snapshot	of	the	epigenetic	profile	after	the	disease	process	has	

been	established,	rather	than	describing	a	temporal	relationship	between	an	epigenetic	

alteration	and	subsequent	disease	development.	The	epigenetic	profile	changes	over	time,	and	

apparent	associations	may	be	a	consequence	of	the	disease	itself,	or	other	environmental	

factors	such	as	medications.202,203	Conditional	correlation	models	have	attempted	to	

determine	how	DNA	methylation	and	genetic	factors	interact	to	cause	diseases.204		

Epigenetic	marks	are	tissue	and	cell-type	specific	and	therefore	selection	of	a	disease-relevant	

tissue	type	is	crucial.	In	IBD	research,	it	has	been	a	major	challenge	to	identify	disease-

relevant	cell	types.	Currently,	interest	is	focused	on	immune	cells	in	the	blood	(such	as	CD4+	

and	CD8+	T	cells)	and	the	intestine	(intraepithelial	lymphocytes).			

Results	from	studies	of	whole	tissues,	such	as	whole	blood	or	colon	biopsy	samples,	are	

difficult	to	interpret	because	of	the	heterogeneity	among	cells,	each	cell	type	possessing	their	

own	epigenetic	signature.	Early	epigenetic	studies	of	IBD	were	mostly	performed	with	whole	

tissues,	with	some	of	the	significant	results	likely	to	be	arising	from	purely	from	differences	in	

cellular	proportions	between	cases	and	controls.	Some	researchers	have	used	in-silico	

methods	to	adjust	for	differing	cell	proportions.205		

	

1.8	Interaction	between	genetics	and	epigenetics	

An	intriguing	field	of	investigation	is	the	relationship	between	genetic	and	epigenetic	factors.	

There	is	evidence	of	co-localization	of	differentially	methylated	CpGs	at	predisposing	SNPs	

identified	at	GWAS.	In	our	own	EWAS	of	CD,	we	demonstrated	enrichment	of	methylation	

changes	within	50	kb	from	GWAS-identified	susceptibility	loci,	including	IL-19,	IL-27,	TNF,	and	
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NOD2.167	In	a	recent	large	methylation	study	of	patients	with	rheumatoid	arthritis,	in	5	of	9	

MHC	genes,	a	specific	genotype	was	associated	with	differential	methylation.206		

This	phenomena	has	also	been	observed	in	studies	of	patients	with	type-2	diabetes	mellitus,	

where	a	specific	allele,	rs8050136,	within	the	obesity	and	diabetes	susceptibility	gene	FTO,	is	

associated	with	increased	DNA	methylation.207	However,	Toperoff	et	al.	associated	a	different	

SNP,	rs1121980,	with	hypomethylation	of	FTO.208		

It	is	not	clear	how	these	SNPs	affect	methylation	of	the	gene.	They	could	increase	the	numbers	

of	CpG	dinucleotides,	or	alter	the	access	of	the	methylation	machinery	to	the	gene.207	Allele-	or	

haplotype-specific	methylation	occurs	more	commonly	with	cis-acting	polymorphisms.209	A	

potential	cofounder	of	the	Illumina	450K	HumanMethylation	microarray,	used	in	most	DNA	

methylation	studies,	is	that	certain	probes	contain	SNPs	or	repetitive	elements	that	can	affect	

methylation	analysis.210		

Variants	in	STAT4	have	also	been	reported	to	alter	its	methylation	(Figure	6	A).	Additional	

evidence	of	haplotype-specific	methylation	has	been	demonstrated	in	the	promoter	regions	of	

IL8RA	and	IL8RB.	Rectal	biopsies	from	patients	with	IBD	were	shown	to	have	increased	

methylation	of	the	CpG	island	closest	to	the	transcriptional	start	site	of	IL8RA—the	proposed	

binding	site	of	transcription	factor	PU.1	(SPI-1).	171	The	risk	allele	rs11676348	alters	a	CpG,	is	

located	between	IL8RA	and	IL8RB	coding	sequences,	and	contains	a	binding	site	for	the	

transcription	factor	STAT3.171	Although	not	specifically	probed	itself	by	the	Illumina	27K	

microarray,	differential	methylation	was	observed	on	either	side	of	rs11676348.171		
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Figure	6	-	The	Relationship	between	Genetic	Polymorphisms	and	Epigenetic	Factors.		

	Epigenetic	features	of	T	cells	in	patients	with	IBD	affect	Th	1	and	Th17	cell	differentiation.	A	-	

STAT4	is	associated	with	several	immune	diseases,	acting	as	a	transcription	factor	for	IL12	

and	IL23	which	leads	to	Th	1	and	Th17	cell	differentiation.211	A	SNP	in	STAT4,	rs7574865,	is	

associated	with	several	immune	disorders,	including	IBD,	rheumatoid	arthritis,	type-1	

diabetes,	and	lupus.212–216	The	rs7574865	risk	variants	(T/T	+G/T)	are	associated	with	

promoter	region	hypomethylation	in	colon	tissues	and	PBMCs	of	patients	with	IBD.	STAT4	

promoter	hypomethylation	was	associated	with	increases	in	STAT4	mRNA	and	could	promote	

the	Th1	phenotype	and	IFNγ	production.217	In	T-cells	from	patients	with	asthma,	STAT4	

expression	is	also	regulated	by	DNA	methylation	at	promoter	regions.	Interestingly	STAT4	

expression	was	markedly	increased	following	treatment	with	a	DNMT	inhibitor.218			

B	-	An	IBD-associated	SNP	in	IL23-R,	rs10889677,	is	associated	with	increased	levels	of	IL-23R	

mRNA	and	protein.	This	could	result	from	reduced	binding	of	microRNAs	Let-7e	and	Let-7f	at	

the	regulatory	3’UTR	region	of	the	rs10889677	risk	variant	(A)	compared	to	cells	from	

patients	without	IBD	(C).219	Reduced	binding	of	Let-7e	and	Let-7f	to	rs10889677	is	associated	

with	increased	levels	of	IL23R	mRNA	and	protein,	potentially	leading	to	sustained	activation	

of	Th17	cells	and	the	chronic	inflammation	associated	with	IBD.219	Taken	from	Ventham	et	

al.144	License	Number:	3742451069879	
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Similarly,	SNPs	can	affect	the	complementarity	of	miR	binding.	IBD-associated	variants	of	

IL23R,	which	has	a	role	in	IL12	and	IL23	signalling,	may	demonstrate	altered	binding	with	

miRs	Let-7e	and	Let-7f,	leading	to	altered	expression	of	IL23R	and	inappropriate	Th17	

activation	(Figure	6	B).	IRGM	mediates	innate	immune	defence	against	intracellular	

organisms,	including	mycobacterium	tuberculosis.106	Variants	of	IRGM	alter	the	binding	site	

for	miR-196	(Figure	7	B).220		
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Figure	7	–	Loci	Identified	in	GWASs	Indicating	Roles	for	the	Innate	Immune	Response	to	the	

Microbiota	and	Autophagy	in	the	pathogenesis	of	CD.		

A	-	Several	CD	risk	alleles	were	identified	in	GWAS	in	genes	that	control	autophagy,	including	

TLR4,	ATG16L1,	IRGM,	and	ULK1.	The	ULK1	locus	is	both	a	CD-susceptibility	locus	and	has	

been	shown	to	be	hypermethylated	in	cells	from	patients	with	CD	compared	to	controls.	171		

B	-	IRGM	encodes	a	gene	that	regulates	the	innate	response	to	intracellular	organisms,	

including	mycobacterium	tuberculosis.	The	CD	risk	allele	rs10065172	is	associated	with	a	

deletion	upstream	of	IRGM.221	This	SNP	had	been	termed	non-causative,	due	to	an	absence	in	

alteration	of	protein	sequence	or	splice	sites.	However,	the	risk	variant	has	an	altered	binding	

site	for	microRNA-196.	Individuals	with	this	SNP	downregulate	IGRM.	The	consequence	is	a	

functionally	reduction	of	autophagy	and	processing	of	the	adhesive	invasive	E	coli,	which	has	

been	associated	with	CD.220	Taken	from	Ventham	et	al.144	License	Number:	3742451069879	
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Another	study	evaluated	the	UC	risk	conferred	by	3	common	allelic	variants	of	3	pre-miRs	

(miR-146a,	-196a	and	-499).	Three	SNPs	(rs11614913,	rs2910164	and	rs3746444)	were	

genotyped	in	170	UC	patients	and	403	control	patients.	The	AG	heterozygous	genotype	of	

rs3746444,	encoding	miR-499,	was	significantly	associated	with	an	increased	risk	of	UC	(odds	

ratio	of	1.51).	The	same	genotype	was	also	associated	with	older	age	of	onset,	left-sided	

colitis,	hospitalization,	and	steroid	dependence.222	

	

1.9	Biomarkers	in	IBD	for	diagnosis	and	prognosis	

A	biomarker	is	defined	as	‘characteristic[s]	that	is	objectively	measured	and	evaluated	as	an	

indicator	of	normal	biological	processes,	pathogenic	processes,	or	pharmacologic	responses	to	

a	therapeutic	intervention.’223	In	the	context	of	IBD,	biomarkers	may	be	used	to	assist	in	

establishing	a	diagnosis	or	to	identify	individuals	who	are	likely	to	develop	a	more	severe	

disease	course.	Many	of	the	currently	available	biomarkers	are	not	specific	for	IBD,	and	are	

general	markers	of	inflammation.	Whilst	specificity	is	critical	when	attempting	to	diagnose	

IBD,	specificity	is	less	critical	for	monitoring	disease	course	after	a	diagnosis	has	been	

established.224	
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Figure	8	–	Biomarkers	for	IBD	diagnosis	and	prognosis	in	specific	situations	(green).	

Reproduced	with	permission	from	Rogler	G	Clinical	Utility	of	Biomarkers	in	IBD.	Current	

Gastroenterology	Reports	2015	17	(26).224		License	Number:	3743150309751.		

1.9.1	Diagnosis	

Biomarkers	are	used	in	clinical	practice	to	assist	in	the	diagnosis	of	IBD.	As	detailed	above,	for	

a	diagnosis	of	IBD	to	be	established,	patients	require	a	combination	of	clinical,	laboratory,	

radiological,	endoscopic	and	histological	investigations.	However,	histology	obtained	from	
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ileocolonoscopy	remains	the	most	important	single	aspect	of	IBD	diagnosis.	Given	endoscopy	

is	an	invasive	test	and	requires	considerable	resources,	a	simple,	easily	assayed	biomarker	

would	assist	in	triaging	those	who	require	an	endoscopy	at	first	clinic	attendance.	Such	a	

biomarker	if	available	in	primary	care	may	also	inform	referral	to	secondary	care.	Lastly,	such	

a	non-invasive	biomarker	may	be	used	in	cases	of	small	bowel	Crohn’s	disease	which	can	

often	be	a	diagnostic	challenge	prior	to	surgery	or	starting	powerful	imunomodulators.	There	

are	few	biomarkers	that	can	distinguish	between	the	two	forms	of	IBD.	

1.9.1.1	Existing	clinical	and	biochemical	markers	

Standard	biochemical	markers	(C-Reactive	protein	(CRP),	albumin)	and	haematological	

markers	(thrombocytosis,	leucocytosis,	high	erythrocyte	sedimentation	rate)	are	used	to	

assist	in	the	diagnosis	of	IBD.224		These	markers	are	non-specific	markers	of	inflammation,	and	

can	be	normal	at	the	time	of	diagnosis,	especially	in	UC.224	A	high	CRP	may	be	indicative	of	

severe	disease	and/or	complicated	disease	at	the	outset.	CRP	is	thought	to	be	superior	to	ESR,	

as	the	latter	can	be	affected	by	other	factors	(haematocrit	in	anaemia	and	polycythaemia,	

pregnancy).225	Other	acute-phase	proteins	(ferritin,	Interleukin-6,	fibrinogen,	α2	globulin,	α1	

antitrypsin)	have	been	used,	but	have	not	superseded	CRP.224		

Serological	antibodies	directed	against	self,	bacterial	or	fungal	surface	antigens	have	been	

used	in	the	diagnosis	of	IBD	and	to	differentiate	CD	and	UC.	The	anti-Saccharomyces	cerevisiae	

antibodies	(ASCA)	is	more	commonly	expressed	in	CD	compared	to	UC,	especially	in	ileal	

disease.226,227	The	perinuclear	anti-neutrophil	cytoplasmic	antibody	(pANCA)	is	more	

commonly	expressed	in	UC.226,227	The	combination	of	pANCA	and	ASCA	has	been	used	to	

differentiate	UC	and	CD	with	a	sensitivity	of	~55%,	which	decreases	further	when	attempting	

to	distinguish	colonic	CD	from	UC.228,229	Other	commonly	used	antibodies	include	anti-

Pseudomonas	flourescens	associated	sequence	I2	antibodies,	anti-outer	membrane	of	porin	C	

(anti-OmpC)	and	antibodies	against	bacterial	flagellin	(CBri1).	Such	serological	markers	are	

relatively	specific	for	IBD,	but	demonstrate	lower	sensitivity.	

1.9.1.2	Faecal	calprotectin	

Faecal	calprotectin	(FC)	is	able	to	detect	intestinal	inflammation	with	a	high	degree	of	

accuracy.	A	study	from	Edinburgh	by	Kennedy	et	al	demonstrated	that	FC	was	able	to	

discriminate	IBD	from	functional	disease	with	a	high	degree	of	accuracy	(AUROC=0.97,	with	a	

threshold	of	>50	μg/g	demonstrating	a	97%	sensitivity	and	0.74%	specificity).230	FC	also	has	

excellent	negative	predictive	value	(0.99),230	and	therefore	can	be	useful	in	deciding	which	
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patients	require	endoscopy.231	A	meta-analysis	of	6	adult	studies	(n=670)	demonstrated	that	

FC	had	a	pooled	sensitivity	and	specificity	of	0.93	(0.85-.097)	and	0.96	(0.79-0.99)	

respectively	for	IBD	and	identified	individuals	requiring	endoscopy	for	suspected	IBD.232	

Notably,	FC	outperforms	the	other	serological	and	biochemical	markers	(e.g.	C-Reactive	

protein)	in	this	context.	An	alternative	faecal	biomarker	used	in	IBD	is	faecal	lactoferrin.233		

1.9.1.3	Using	genetics	to	diagnose	IBD		

Given	the	high	number	of	low	penetrance	genes	associated	with	IBD	and	the	low	overall	

prevalence	of	the	disease	within	the	general	population,	it	is	unlikely	that	genetic	testing	

could	be	used	for	population	wide-screening	of	IBD.227	A	genetic	risk	score	has	been	

developed	to	predict	IBD	type	and	location,	however	the	small	effect	sizes	led	to	low	

predictive	accuracy	and	(AUC	0.6)	even	when	combined	with	clinical	factors	(e.g.	smoking)	

only	6.8%	of	variance	was	explained	in	CD	and	even	less	in	UC	(1.1%).93	The	main	utility	of	

such	a	genetic	risk	score	may	be	to	re-classify	misdiagnosed	patients.93			

1.9.2	Prognosis	

As	detailed	above,	faecal	calprotectin	is	currently	a	highly	useful	currently	available	

biomarker	with	a	high	specificity	and	sensitivity	for	identifying	patients	with	IBD.	Whilst	FC	is	

not	without	its	issues	(poor	patient	compliance,	non-specificity	for	other	forms	of	gut	

inflammation)	it	is	currently	positioned	as	a	biomarker	for	use	in	the	diagnosis	of	IBD.	

Currently	there	are	fewer	clinically	available	biomarkers	to	assist	in	predicting	disease	

prognosis.	This	is	especially	relevant	with	an	increasing	armamentarium	of	new	biologic	

medications	in	discriminating	patients	who	require	such	powerful	immunomodulation	at	the	

outset	(top	down	approach)	compared	to	patients	who	will	have	an	essentially	quiescent	

disease	course	in	whom	the	possible	side	effects	of	such	drugs	would	outweigh	the	benefits.	

1.9.2.1	Existing	clinical	and	biochemical	markers	

Standard	biochemical	markers	such	as	CRP,	white-cell	count,	ESR	and	albumin	are	used	

routinely	to	monitor	disease	course.	CRP	is	known	to	predict	patients	with	a	more	severe	

clinical	phenotype,	including	patients	at	increased	risk	of	requiring	surgery.234,235	Serological	

markers	have	been	used	for	prognosticating.	Positive	ASCA	antibodies	may	increase	the	risk	

complications	in	paediatric	CD,	including	an	increased	risk	of	surgery	by	up	to	10%.224,236	An	

increasing	number	of	positive	serological	antibodies	to	microbial	antigens	may	also	predict	

the	likelihood	of	disease	progression	to	fibrostenotic	and	penetrating	disease.237–239	Using	a	
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panel	of	four	serological	markers	the	number	and	magnitude	of	immune	response	was	able	to		

stratify	risk	of	complicated	disease	from	44.7%	to	82%.240	

	A	specific	scenario	where	significant	research	has	been	directed	to	predict	prognosis	in	the	

short	term	is	acute	severe	colitis	(ASUC).	In	this	context,	clinical	factors	(particularly	stool	

frequency)	and	biochemical	markers	have	been	used	in	scoring	systems.	Perhaps	the	best-

known	scoring	system	is	the	Travis	Score	in	which	high	stool	frequency	(>3	to	≤8	or	>8)	and	a	

elevate	C-reactive	protein(>45mg/L)	at	day	3	of	corticosteroid	treatment	had	an	85%	chance	

of	requiring	colectomy.241	A	second	prominent	clinical	scoring	score	is	the	Ho	score	where	

Stool	frequency,	colonic	dilatation	on	day	3	and	hypoalbuminemia	on	day	1	were	defined	as	

independent	predictors	of	failure	of	corticosteroid	therapy	(i.e.	colectomy).	242	Importantly	

these	scores	have	both	been	validated	in	independent	cohorts.		

1.9.2.2	Faecal	calprotectin	

Faecal	Calprotectin	has	been	used	to	predict	patients	at	risk	of	disease	flare	or	relapse.243	FC	

can	be	used	for	a	surrogate	marker	of	patients	in	deep	remission.244	FC	has	also	been	used	in	a	

prospective,	protocoled	fashion	to	step	up	treatment	(5-ASA)	to	prevent	relapse	in	UC	(DEAR	

study).245		FC	may	also	be	used	to	predict	recurrence	following	ileal	resection	for	CD.246	Fecal	

calprotectin	has	been	studied	in	the	context	of	ASUC,	with	levels	being	significantly	higher	in	

patients	requiring	colectomy,	and	a	trend	toward	higher	levels	in	non-responders	to	

corticosteroids	(p=0.08)	and	infliximab	(p=0.06)	compared	with	responders.247	A	more	recent	

analysis	of	biomarkers	in	444	patients	with	ASUC	from	the	same	center	failed	to	replicate	the	

predictive	ability	of	calprotectin	(p=0.52).248	

1.9.2.3	Biomarkers	from	–omic	technologies		

1.8.2.3.1	Genetic	scores	

As	previously	discussed	above,	several	genetic	loci	are	strongly	associated	with	specific	

patterns	of	disease	location	(NOD2	-	ileal,	MST1	3p21	-	ileal	and	MHC	DRB1*01:03-	colonic	

disease).93	Variants	in	the	CARD15/NOD2	loci	are	associated	with	earlier	disease	onset,	ileal	

disease,	fibrostenosing	behaviour	and	increased	likelihood	of	surgery.249–251	A	meta-analysis	

demonstrated	that	the	risk	of	complicated	disease	increased	when	the	number	of	NOD2	

mutations	increased	from	one	(8%	risk)	to	two	(41%	risk).252	In	addition	to	NOD2,	several	

other	loci	may	also	be	predictive	of	a	more	aggressive	disease	course	in	CD,	including	

ATG16L1,	IL23R	and	DLG5.253	In	a	large	multicentre	GWAS	using	the	immunochip,	NOD2	was	
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again	demonstrated	as	the	most	important	genetic	factor	predictive	of	ileal	disease,	fibrotic	

strictures,	penetrating	disease	and	need	for	surgery,	with	the	frameshift	mutation	being	

particularly	associated	with	deleterious	outcomes.254	Genetic	loci	were	also	able	to	predict	

fistulising	disease	(IL23R,	LOC441108,	PRMD1,	NOD2),	need	for	surgery	(IRGM,	TNFSF15,	

C13ORF31,	NOD2)	and	stenosing	disease	(NOD2,	JAK2,	ATG16L1)	.254			

The	HLA-DRB*0103	variant	has	been	known	for	some	time	to	be	associated	with	extensive	UC,	

and	increased	colectomy	requirement.255–257	The	Multidrug	resistance	(MDR1,	C3435TT	allele,	

ABCB1)	gene	locus	is	also	significantly	associated	with	extensive	disease	in	UC.258	A	genome	

wide	association	study	demonstrated	genetic	loci	(including	HLA,	IL12B	and	TNFSF15)	that	

were	able	to	predict	the	need	for	colectomy.259	This	study	generated	a	risk	score	based	on	46	

SNPs	to	account	for	50%	of	the	colectomy	risk	(AUROC	0.91),	together	with	increased	risk	of	

colectomy	at	3-	and	5	years	(Figure	9).259		
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Figure	9	–	Genetic	risk	score	to	predict	IBD	prognosis		

Haritunians	et	al	classified	patients	into	medically	refractory	ulcerative	colitis	(MR-UC,	

n=324)	and	non-medically	refractory	UC	(non-MR-UC,	n=537)259.	A	genome	wide	association	

study	was	performed	and	a	combination	of	46	single	nucleotide	polymorphisms	accounted	for	

46%	of	the	variance	of	risk	of	colectomy.	Based	on	genetic	data,	four	genetic	risk	scores	were	

devised	(A	to	D,	A-lowest	risk,	D-highest	risk).	The	risk	in	each	group	of	colectomy	was	0%,	

17%,	74%	and	100%.	(Reprinted	by	permission	from	Nature	Publishing	Group:	Nature	

reviews	Gastroenterology	and	Hepatology	(Gerich,	M.	E.	&	McGovern,	D.	P.	B.	Nat.	Rev.	

Gastroenterol.	Hepatol.	11,	287–299	license	number	3742031148208)		

	

Given	the	large	number	of	low	penetrance	genes	associated	with	IBD	susceptibility,	together	

with	the	significant	contribution	of	other	factors	including	epigenetics,	gut	microbiota	and	the	

environment,	genetic	markers	in	isolation	are	unlikely	to	adequately	predict	disease	course	in	

ASUC.227	Recent	advances	in	other	clinical	aspects	of	IBD	genetics	give	cause	for	optimism,	

particularly	‘pharmacogenetics’,	for	example	TMPT	genotyping	prior	to	initiation	of	

thiopurine	medication	and	the	identification	of	specific	HLA	variants	linked	with	thiopurine-

induced	pancreatitis.121,122	

1.9.2.3.2	-omic	scores	

Following	on	from	genetics,	transcriptomics,	or	the	study	of	gene	expression,	is	another	

emerging	field	in	biomolecular	research.	An	elegant	study	from	Lee	et	al.	in	Cambridge	(UK),	
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demonstrated	that	the	gene	expression	profile	of	circulating	CD8+	T-lymphocytes	is	able	to	

accurately	predict	a	relapsing	disease	course	from	a	stable	one	in	patients	with	newly-

diagnosed	IBD.260	The	transcriptome	has	been	studied	in	pediatric	ASUC,	with	41	genes	being	

differentially	expressed	in	those	requiring	second	line	medical	therapy	or	colectomy.261	

Several	genes	overexpressed	in	non-responders	interacted	with	steroid	treatment	on	

pathway	analysis	(CEACAM1,	MMP8).261	Ten	of	the	41	genes	were	predictive	of	non-response	

with	a	sensitivity	and	specificity	of	80%.261	Interestingly,	there	was	differential	expression	of	

ABCC4,	a	gene	in	the	same	superfamily	as	the	aforementioned	MDR1	gene.261	

Recently,	there	has	been	fervent	interest	in	the	role	of	the	gut	microbiome	in	disease	

pathogenesis.	Microbial	dysbiosis,	including	a	reduced	microbiological	diversity	has	been	

noted	in	patients	with	IBD.262	A	study	of	pediatric	ASUC,	albeit	in	small	numbers	of	children,	

indicate	a	reduced	number	of	phylospecies	compared	with	control.263	A	significant	reduction	

in	phylospecies	was	also	seen	in	those	who	failed	first	line	medical	treatment.263		

The	other	emerging	exciting	biomolecular	disciplines	such	as	metabolomics,264–266	

proteomics,	glycomics,267,268	and	epigenetics144	may	also	unearth	promising	markers,	used	to	

predict	disease	course	in	the	future.		

1.9.2.3	Composite	scoring	systems	

Given	the	complex,	multifactorial	nature	of	IBD	pathogenesis,	it	is	unlikely	that	a	single	clinical	

or	biochemical	variable	can	be	used	in	isolation	to	predict	disease	course.	It	is	more	likely	that	

composite	scores	make	up	of	a	combination	of	clinical,	genetic	and	other	data	will	be	most	

fruitful	in	assisting	prognostication	of	disease	course.	In	Crohn’s	disease	a	combination	of	

clinical,	genetic	(NOD2	status)	and	serological	data(ASCA-IgA,	ASCA-IgG,	anti-OmpC,	anti-

CBir1,	anti-I2,	pANCA)	more	accurately	predicted	progression	to	stricturing	or	penetrating	

disease	behavior	compared	with	using	any	single	parameter	alone	(AUC	0.8).269	Another	study	

used	clinical	and	genetic	data	to	predict	requirement	for	surgery	in	CD,	with	progression	to	

surgery	faster	in	those	with	both	clinical	and	genetic	factors	(IL12B).270	
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1.10	Thesis	aims	

The	GWAS	era	has	clearly	demonstrated	that	IBD	has	a	strong	genetic	association,	however	

the	proportion	of	disease	variance	explained	by	genetics	alone	is	relatively	small	(13.1%	in	CD	

and	8.2%	in	UC.86).	Attempting	to	understand	this	‘missing’	heritability	in	IBD	is	high	on	the	

current	research	agenda.	Together	with	the	known	genetic	contribution,	IBD	has	important	

environmental	risk	factors	including	smoking,	diet	and	the	gut	microbiota.	Epigenetics	may	

provide	an	interface	between	genetics,	the	environment	and	disease.	Two	of	the	epigenetic	

mechanisms;	DNA	methylation	and	microRNAs	will	be	the	subject	of	investigation	in	this	

project.	The	purpose	of	epigenetic	research	will	be	twofold;	firstly	an	attempt	to	gain	greater	

understanding	of	IBD	pathogenesis	and	secondly	to	identify	potential	biomarkers	for	IBD	

diagnosis	and	stratifying	patients	at	risk	of	a	more	severe	disease	phenotype.	

1.11.1	Hypothesis	

The	hypothesis	of	this	thesis	is	that	there	are	site-specific	DNA	methylation	differences	

between	patients	with	IBD	and	controls,	and	that	these	differences	may	be	related	to	germline	

variation	and	these	in	combination	may	lead	to	differences	in	gene	expression.	A	secondary	

hypothesis	is	that	differences	in	DNA	methylation	at	specific	loci,	may	be	related	to	disease	

pathogenesis	either	in	a	cause	(through	altered	gene	expression)	or	effect	manner.	Whilst	

implicating	epigenetic	mechanisms	in	disease	pathogenesis	is	very	difficult	without	obtaining	

samples	prior	to	diagnosis	of	IBD	(e.g.	cord	blood	samples/Guthrie	cards	or	using	an	approach	

adopted	in	the	GEM	study	(http://www.gemproject.ca/)),	specific	DNA	methylation	and	

microRNA	marks	may	provide	compelling	biomarkers.	A	major	challenge	confronting	

epigenetic	research	has	been	to	integrate	genetic	and	gene	expression	data.	Disease-

associated	SNPs	may	lead	to	differential	DNA	methylation,	and	consequently	DNA	methylation	

may	be	the	mechanism	by	which	certain	SNPs	confer	additional	risk	of	IBD	susceptibility.	

Additionally	methylation	quantitative	trait	loci	(meQTLs)	have	been	identified.	Attempting	to	

establish	a	link	between	germ-line	variation	and	DNA	methylation	provides	the	rationale	for	

studying	genetics	within	this	study.	A	second	major	hurdle	for	epigenetic	research	has	been	to	

establish	a	relationship	with	gene	expression.	DNA	methylation	in	promotor	regions	is	

associated	with	gene	silencing.	However	the	relationship	between	DNA	methylation	and	

expression	is	likely	to	be	complex.				
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1.11.2	Specific	aims	

The	specific	aims	of	this	project	are:	

1)	To	compare	genome	wide	site-specific	DNA	methylation	in	peripheral	blood	in	IBD	cases	

and	controls	(Chapter	3).	Genome-wide	methylation	is	examined	in	a	large	cohort	of	newly	

diagnosed	cohort	of	IBD	patients	using	the	Illumina	450K	platform.	The	‘methylome’	of	a	

subset	of	patients	is	characterised	in	detailed	by	performing	cell	separation	of	specific	

leukocytes	(CD4+,	CD8+	T-cells	and	CD14+	monocytes).		

	

2)	To	validate	and	replicate	the	genome-wide	DNA	methylation	results	generated	in	Chapter	3	

(Chapter	4).	A	targeted	approach	using	pyrosequencing	is	performed	to	both	technically	

validate	the	technique	and	replicate	findings	in	an	independent	cohort	of	established	IBD	

cases.	Data	from	Chapter	3	are	also	correlated	with	our	previous	DNA	methylation	findings	in	

childhood-onset	Crohn’s	disease.		

	

3)	To	perform	genome	wide	profiling	of	individuals	included	in	DNA	methylation	analyses	and	

understand	between	genetic	and	epigenetic	(DNA	methylation)	factors	(Chapter	5).	A	

genome-wide	association	study	is	performed.	Furthermore,	the	association	between	

quantitative	traits	(DNA	methylation,	gene	expression)	is	assessed	in	relation	to	germ-line	

variation	(meQTLs,	eQTLs).		

	

4)	To	perform	genome	wide	gene	expression	profiling	of	individuals	included	in	DNA	

methylation	analyses	and	attempt	to	understand	the	relationship	between	DNA	methylation	

and	gene	expression.	Data	from	complementary	genome-wide	(microarray)	and	targeted	

(qPCR)	approaches	to	assay	gene	expression	in	the	most	significant	DMRs/DMPs	identified	in	

Chapter	3	is	presented.	Furthermore,	an	in-silico	technique	that	correlates	promotor	region	

DNA	methylation	levels	and	gene	expression	within	established	gene	networks	is	applied	to	

further	delineate	this	complex	relationship	between	methylation	and	expression.		

	

5)	To	utilise	genome	wide	DNA	methylation	data	to	discriminate	IBD	cases	from	controls	and	

to	identify	methylation	profiles	predictive	of	a	more	severe	clinical	phenotype	(Chapter	7).	

Linear	discriminant	analysis	is	used	to	identify	two-probe	methylation	markers	that	can	

discriminate	between	IBD	cases	and	controls.	An	unsupervised	clustering	approach	is	
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performed	to	identify	specific	methylation	profiles	associated	with	a	more	severe	disease	

course	(need	for	surgery	and	immunomodulatory	drugs).	

	

6)	To	compare	microRNA	expression	levels	in	circulating	peripheral	blood	leucocytes	(CD4+,	

CD8+	and	CD14+	cells)	in	IBD	cases	and	controls	(Chapter	8).	Small	RNA	sequencing	is	

exploited	to	provide	a	comprehensive	overview	of	cell-specific	miRNA	expression	in	

circulating	leukocytes.	Differential	expression	of	miRNAs	in	patients	with	CD	and	controls	is	

explored.	MiRNA	gene	targets	and	downstream	pathways	are	explored.		
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Chapter	2.	Methods	

	

2.1	Patients	recruitment	

2.1.1	Patient	selection	

Suitable	newly	diagnosed	and	treatment	naïve	IBD	patients	and	controls	were	pre-identified	

prospectively	from	clinic	and	endoscopy	lists.	In	order	to	recruit	adequate	numbers	of	

treatment	naïve	patients,	patients	were	targeted	pre-diagnosis,	with	symptoms	(bloody	

diarrhoea,	weight	loss)	suggestive	of	IBD.	Postal	patient	information	sheets	were	sent	prior	to	

index	hospital	appointment.	Patients	whose	investigations	were	normal	were	classified	as	

non-healthy	symptomatic	controls.	Additionally	patients	with	an	existing	diagnosis	of	IBD	

were	recruited	using	the	same	method.	Healthy	controls	were	first	approached	by	email	

message	to	University	of	Edinburgh	mailing	list.		

	

2.1.2	Ethics	

Patient	involvement	was	undertaken	within	the	SAHSC	BioResource	framework	with	ethical	

approval	from	the	Tayside	committee	on	Medical	Research	B	(10/S1402/33).	At	clinic	

appointment	patients	were	counselled	and	written	informed	consent	was	obtained	using	the	

SAHSC	BioResource	consent	form.	In	addition,	the	retrospective	patient	samples	and	controls	

used	in	this	project	were	collected	using	the	following	ethical	permission:	Dundee	ethics	

[Tayside	Ethics	committee	226/02]	and	Edinburgh	Ethics	[Lothian	Ethics	committee	

2000/4/192].		

	

2.1.3	Phenotypic	data	acquisition		

A	questionnaire	was	administered	to	each	patient	and	venepuncture	was	undertaken	at	the	

same	time	as	routine	clinical	blood	sampling.	Following	recruitment,	patients	were	followed	

to	index	investigations	(e.g.	colonoscopy),	where	a	clinical,	radiological,	endoscopic	and	

histopathological	diagnosis	of	IBD	was	made	according	to	Lennard-Jones	criteria.271	Disease	

location	and	behaviour	was	classified	according	to	the	Montreal-classification.20	The	following	

phenotypic	data	was	collected	on	prospectively	recruited	patients:	
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Diagnosis,	sex,	date	of	birth,	race,	smoking	status	at	diagnosis	(non,	current,	ex),	smoking	start	

date,	smoking	stop	date,	number	of	cigarettes	per	day,	diagnosis	year,	family	history	of	IBD,	

joint	association/arthritis,	oral	steroids	since	diagnosis,	intravenous	steroids	since	diagnosis,	

anti-TNFα	or	ciclosporin	treatment	since	diagnosis,	immunomodulator	since	diagnosis,	

Montreal	disease	location,	behaviour	(CD),	Crohn’s	disease	surgery,	year	of	first	surgery,	

number	of	operations,	ulcerative	colitis	disease	extent,	ulcerative	colitis	surgery,	surgery	year,	

reason	for	UC	surgery	(dysplasia,	acute,	chronic	disease),	town	of	birth,	rural/urban	location,	

parents	town	of	birth,	where	majority	of	childhood	growing	up,	number	of	years	in	secondary	

education,	people	smoking	in	house	growing	up,	partner/else	smoking	in	home	currently,	

alcohol	exposure	(units	per	week),	type	of	alcohol	consumed,	vaccination	history,	pet	

exposure	whilst	growing	up,	growth	delay/puberty	delay,	detailed	IBD	family	history	included	

of	the	following	medical	conditions	(Psoriasis,	ankylosing	spondylitis,	coeliac	disease,	

colorectal	cancer,	any	cancer,	multiple	sclerosis),	other	medical	conditions,	symptoms	of	IBD	

prior	to	diagnosis,	duration	of	symptoms,	weight	loss,	admissions	with	IBD,	abdominal	

operations,	operations	for	IBD,	tonsillectomy,	appendectomy,	medication	history,	diet,	

pregnancy	since	diagnosis,	contraceptive	pill	use,	NSAID	use,	aspirin	use,	paracetamol	use,	

antibiotic	use,	weight,	height,	bowel	prep	type,	disease	activity	score	(CDAI),	health	

professional	global	assessment,	medication/surgery/endoscopy/histology/radiology	case	

note	review.		

Additional	assistance	with	clinical	phenotyping	and	follow	up	data	was	obtained	from	

database	manager	Hazel	Drummond.		

2.1.4	Patient	samples	

Blood	sample	collection	was	undertaken	at	the	same	time	for	research	and	clinical	samples	to	

minimize	patient	discomfort	from	multiple	venepunctures.	A	21	gauge	butterfly	needle	

(Greiner	,	Frickenhausen,	Germany)	with	30cm	safety	tube	with	Luer	lock	device	was	used	for	

venepuncture.	Blood	samples	were	taken	in	the	following	tubes:	9ml	Z	Serum	clot	activated	

vacuette	(Greiner,	Ger),	9ml	K3	EDTA	vacuette	(Greiner),	9ml	vacuette	Tempus	blood	RNA	

(Greiner,	Ger)	and	PAXgene	blood	RNA	tubes	(BD,	NJ,	USA).	Serum	tubes	were	taken	first	

(including	before	clinical	samples)	to	prevent	reagent	contamination	from	other	blood	tubes	

(e.g.	EDTA).272	Tempus	and	PAXgene	tubes	are	effective	in	preventing	RNA	degradation.273	To	

prevent	backflow	of	potentially	toxic	AB-	RNA	stabilisation	reagent	from	Tempus	vacuette	

tubes	and	PAXgene	tubes	the	following	measures	were	implemented:	butterfly	with	30cm	
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safety	tube;	patients	arm	held	in	downward	position;	tube	held	with	the	cap	uppermost;	

tourniquet	release	after	blood	seen	to	flow	into	the	tube;	and	by	avoiding	contact	of	the	

reagents	with	the	tube	cap	during	venepuncture.	When	using	Tempus	vacuette	tubes	blood	

was	filled	to	minimum	collection	line	(draw	volume)	and	inverted	several	times	for	10-15	

seconds	immediately	after	collection.	Blood	tubes	were	stored	at	4	°C	prior	to	processing.	

EDTA	tubes	were	stored	at	-80	°C	prior	to	DNA	extraction.	The	9ml	Tempus	vacuette	tube	

PAXgene	tubes	were	kept	upright	at	room	temperature	for	2	hours	to	ensure	complete	lysis	of	

blood	cells	prior	to	long	term	storage	at	-80	°C	later	RNA	extraction	respectively.			

Additional	assistance	with	sample	collection	was	obtained	from	clinical	research	nurse	Linda	

Smith,	and	clinical	fellows	Drs	Rahul	Kalla,	Ray	Boyapati	and	Nick	Kennedy.		

	

2.1.5	Serum	collection	

The	9ml	Z	Serum	clot	activated	vacuette	tube	(Greiner,	Ger)	was	stored	at	4	°C	for	at	least	one	

hour	prior	to	centrifugation	to	allow	blood	coagulation.	The	tube	was	subsequently	

centrifuged	at	2,500	×	g/	RCF	(relative	centrifugal	force)	for	15	minutes	at	4	°C.	Serum	was	

aliquoted	into	1500	μL	microcentrifuge	tubes	(Greiner,	Ger)	with	care	not	to	disturb	the	clot	

and	stored	at	-80	°C.	Heavily	haemolysed	samples	were	discarded.	The	collection	method	and	

times	of	blood	draw,	centrifugation	and	-80	°C	storage	were	recorded	contemporaneously	on	

the	Edinburgh	IBD	database.		

	

2.2	Cell	separation	

2.2.1	Peripheral	blood	mononuclear	cells	

A	Ficoll-Paque	(GE	healthcare,	Bucks,	UK)	separation	was	used	to	obtain	peripheral	blood	

mononuclear	cells	(PBMCs)	from	whole	blood.274–277	Ficoll-Paque	contains	Ficoll	PM400,	a	

synthetic	high	molecular	weight	polymer	(containing	sucrose	and	epichlorohydrin)	and	

sodium	diatrizoate.		

	

A	between	of	18	mL	and	36	mL	of	EDTA	buffered	blood	was	used	for	Ficoll	separation,	and	

processed	within	3	hours	of	venepuncture.	Blood	was	diluted	in	a	50	mL	falcon	with	cold	(2-4	

°C)	2nM	EDTA	and	PBS	in	a	3:1	ratio.	The	higher	the	dilution,	the	greater	the	purity	of	PBMCs,	

as	during	aggregation	some	mononuclear	cells	became	trapped	in	the	clumps.	More	than	one	
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Ficoll	separation	was	performed	if	the	blood	volume	was	greater	than	18mls	to	ensure	

adequate	dilution	(using	several	50	mL	falcon	tubes).	The	diluted	blood	was	carefully	layered	

on	top	of	15	mL	of	Ficoll	in	a	50	mL	conical	falcon.	A	25	mL	pipette	was	used	to	gently	layer	

the	blood	down	the	side	of	the	tilted	Ficoll	containing	falcon.	The	solution	was	centrifuged	at	

400	×	g	for	40	minutes	at	20	°C	in	a	swinging	bucket	rotor	with	no	brake.	Following	this	spin,	

the	PBMCs	were	located	at	the	interface	between	Ficoll	and	plasma,	with	the	erythrocytes	and	

granulocytes	forming	a	pellet	at	the	base	of	the	tube	(Figure	10).		

	

	

Figure	10	-	Diagrammatical	representation	of	Ficoll	separation	before	and	after	centrifugation		

(taken	from	Greiner	data	sheet)	274		

The	PBMCs	were	carefully	aspirated	using	a	Pasteur	pipette	leaving	the	interface	undisturbed.	

The	PBMCs	were	placed	within	a	new	50	mL	conical	tube	and	topped	up	with	PBS/EDTA	

buffer	and	centrifuged	at	300g	for	10minutes.	The	supernatant	was	removed	and	the	pellet	

resuspended	in	50mL	of	PBS/EDTA	buffer	(2	mL	of	0.5nM	EDTA	in	500	mL	of	PBS).	Two	

platelet-removing	spins	(200	×	g	for	10	minutes	at	20	°C,	supernatant	[containing	platelets]	

removed	at	each	step)	were	performed	to	increase	the	purity	of	the	PBMCs.	The	subsequent	

pellet	was	resuspended	in	10	mL	of	PBS/EDTA	buffer	and	20μL	was	placed	on	a	

haemocytometer	cover	slip	for	cell	counting.	Cells	were	counted	using	the	automated	

haemocytometer	(PBMC	fresh	program	(medium	sized	cells)	at	a	dilution	of	10).	Following	

automated	count,	each	quadrant	was	manually	adjusted	to	include	or	exclude	cells	

miscounted	by	the	haemocytometer.	Fifty	microliters	of	PBMC	solution	was	also	reserved	for	
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flow	cytometric	analysis	of	lymphocyte	differential	counts.	The	PBMC	suspension	was	again	

spun	at	300	×	g	for	10	minutes	to	pellet	the	PBMCs,	which	were	then	used	for	magnetic	

labelling.		

Following	removal	of	PBMCs	from	the	Ficoll	suspension,	the	plasma	and	Ficoll	was	aspirated	

leaving	the	red	cell/granulocyte	pellet.	This	pellet	was	resuspended	using	50	mL	of	red	cell	

lysis	buffer	and	kept	on	ice	for	10	minutes.	The	lysis	buffer	contained	1000	mL	dH20,	8.3	g	of	

NH4Cl,	1.0	g	of	KHO3	and	1.8	mL	of	5%	EDTA	and	was	filtered	sterilised	following	production	

(20μm	Minisart	(16532)	single	use	filter	unit).	Lysis	was	considered	complete	when	the	

solution	turned	translucent.	The	solution	was	the	centrifuged	at	300	×	g	for	10	minutes	at	20	

°C.	The	supernatant	was	removed	and	further	spins	were	performed	as	above	to	remove	

platelets	(2	×	200g	for	10	minutes	at	20	°C).	The	resultant	pellet	was	resuspended	in	10	mL	of	

PBS/EDTA	buffer	for	cell	counting.	Cell	counting	was	performed	in	a	similar	manner	as	above.	

As	the	cell	count	usually	was	greater	than	1	×	107,	the	10ml	solution	was	usually	split	to	obtain	

a	smaller	volume	containing	1	×	107	cells.	This	small	volume	was	centrifuged	(300	×	g	for	10	

minutes)	to	obtain	a	pellet.	The	supernatant	was	removed	and	the	pellet	was	covered	in	40	μL	

of	RNAlater	(Qiagen)	and	stored	at	-20	°C	for	DNA	and	RNA	extraction.		

2.2.2	Nanobead	Immunomagnetic	cell	separation	

Cell	separation	was	performed	in	2	stages	according	to	the	algorithm	in	Figure	11.	According	

to	PBMC	cell	numbers,	the	PBMCs	were	split	into	two	or	three	(corresponding	to	parts	1	and	2	

on	Figure	11).	Cells	were	resuspended	in	80	μL	per	1	×	107	cells	in	AutoMacs	running	buffer	

(Miltenyi,	Germany	130-091-221)	[scaled	proportionately	according	to	predetermined	cell	

number].	AutoMacs	running	buffer	(Miltenyi,	Germany	130-091-221)	consists	of	phosphate	

buffered	saline	(PBS)	[pH	7.2]	and	0.5%	bovine	serum	albumin.	Cells	were	manually	labelled	

using	20	μL	per	1	×	107	cells	with	microbeads	of	appropriate	CD	antigen	(human	CD14	

microbeads	[130-050-201]	or	human	CD8	microbeads[130-045-201]).	Following	mixing,	cells	

and	microbead	solutions	were	incubated	for	15	minutes	at	4	°C.	The	cells	were	washed	with	1	

mL	of	running	buffer	per	1	×	107	cells	and	centrifuged	at	300	×	g	for	10	minutes	at	4	°C	

(aspirate	supernatant).	The	cells	were	resuspended	in	500	μL	of	running	buffer	before	

proceeding	to	automated	cell	separation	using	the	autoMACS	cell	separator.		

	

Immunomagnetic	cell	separation	was	performed	using	the	autoMACs	Pro	cell	separator	

(Miltenyi,	Germany	130-092-545)	using	magnetic	autoMACs	columns	(130-021-101),	which	
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were	changed	every	14	days	(or	100	separations).	The	‘Possel’	function	was	selected	on	the	

AutoMacs	Pro	to	perform	a	positive	cell	selection.	When	the	cell	suspension	passes	through	

the	magnetised	column,	the	labelled	cells	(e.g.	CD14+)	are	magnetically	retained	within	the	

column.	The	unlabelled	cells	pass	through	the	column	and	are	eluted	into	the	negative	

fraction,	deplete	of	(e.g.	CD14-)	cells.		The	magnetic	field	is	then	removed	from	the	column,	

allowing	the	positive	fraction	of	labelled	cells	(e.g.	CD14+)	to	be	eluted.	During	the	first	stage,	

the	CD14+	and	CD8+	cells	were	eluted,	and	from	both	positive	and	negative	fractions	of	each,	

20	μL	was	placed	on	a	haemocytometer	cover	slip	for	cell	counting	and	50	μL	was	reserved	for	

flow	cytometry.	The	positive	and	negative	cell	solutions	both	were	centrifuged	(300	×	g	for	

10mins)	to	obtain	a	pellet.	For	the	positive	fraction	(i.e.	CD14+	and	CD8+	cells),	the	

supernatant	was	removed	and	the	pellet	covered	in	40	μL	of	RNAlater	and	stored	at	-20	°C	for	

DNA	and	RNA	extraction.		

	

The	negative	fraction	was	used	for	stage	2	of	the	separation.	In	a	similar	manner	to	before,	

cells	were	counted	and	re-suspended	in	80	μL	per	1	×	107	cells	in	AutoMacs	running	buffer.	

From	the	CD14-	fraction,	cells	were	manually	labelled	with	CD4+	microbeads	(20	μL	per	1	×	

107	cells).	The	CD4	antigen	is	expressed	on	a	proportion	of	monocytes	(CD14+,	CD4+),	albeit	

at	lower	levels	than	CD4+	T	helper	cells,	it	is	therefore	important	that	the	CD14	positive	

selection	was	performed	first.	Thus	in	the	CD14-	fraction,	subsequently	CD4	positive	selection	

should	contain	almost	exclusively	CD4+	T	helper	cells	(dendritic	cells	also	express	CD4	

antigen	at	low	levels).	

		

CD19+	microbeads	were	used	on	the	CD8-	fraction.	The	process	of	incubation,	washing,	re-

suspension	and	subsequent	autoMACS	separation	was	the	same	as	above.	The	positive	

fractions	containing	CD4+	and	CD19+	cells	were	counted,	sampled	for	flow	cytometry,	

centrifuged	and	the	pellet	was	covered	in	RNAlater	and	stored	at	-20	°C.	
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Figure	11	–	Flow	chart	of	immunomagnetic	cell	separation.	CD19+	cells		were	either	derived	

from	the	CD8-	fraction	(1)	or	by	splitting	the	initial	PBMC	fraction	into	three	(2).	PBMC	=	

peripheral	blood	mononuclear	cells.		

	

2.3	Flow	cytometry	

AutoMACS	separated	lymphocytes	were	evaluated	using	fluorescent	antibody	staining.	PBMCs	

obtained	from	Ficoll	separation	were	also	evaluated	for	purity	and	lymphocyte	cell	count	

differential.		Cells	in	50	μL	of	buffer	were	stained	with	5	μL	of	the	appropriate	antibody	(see	

Table	3).	After	mixing,	antibodies	and	cells	were	incubated	for	10	minutes	in	the	dark	at	4	°C	

(in	the	refrigerator).	Cells	were	washed	with	1ml	of	buffer	and	centrifuged	at	full	speed	

(14,000rpm)	for	10	minutes,	and	the	supernatant	removed.	Cells	were	re-suspended	

vigorously	in	200	μL	of	4%	paraformaldehyde	(to	prevent	clumping).	Fixed	cells	were	stored	

in	foil	in	the	dark	at	4	°C	for	flow	cytometric	analysis	within	7	days.	CD45RO	PE	was	

additionally	used	for	CD4+	cells	to	determine	the	proportion	of	activated	CD4	cells.	Flow	

cytometry	was	performed	on	FACS	Aria	II	(BD)	with	assistance	from	Ms	Elisabeth	Freyer.		
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Table	3	–	Flow	cytometer	FACS	panel	for	separated	cells	

Cell	type	 Antibody		

PBMCs	stained	 CD4	FITC,	CD14	APCVio770,	CD8	VioBlue,	CD20	APC	

PBMC	unstained	 None	

CD4+	 CD4	FITC,	CD14	APC		Vio770,	CD45RO	PE	

CD14+,	CD14-preCD4	 CD4	FITC,	CD14	APC		Vio770	

CD8+,	CD8-preCD19,	CD19+	 CD8	VioBlue,	CD20	APC	

	

2.4	Nucleic	acid	extraction	

2.4.1	Whole	blood	RNA	extraction	

Whole	blood	RNA	was	extracted	using	the	QIAGEN	QIAamp	Blood	mini	kit	(Qiagen),	which	

extracts	RNA	greater	than	200	nucleotides	long	(mostly	mRNA).	To	minimize	RNA	

degradation	blood	was	processed	within	3	hours	and	stored	at	4	°C	within	this	time.	A	total	of	

1.5	mL	of	fresh	whole	blood	was	taken	from	one	9ml	EDTA	vacuette	tube	and	placed	into	a	15	

mL	falcon	tube.	As	the	columns	are	limited	to	1	×	107	cells,	less	than	1.5ml	of	blood	was	used	

from	samples	of	patients	with	a	significant	leucocytosis.	A	total	of	7.5	mL	erythrocyte	lysis	

was	added	and	stored	on	ice	for	15	minutes	until	red	blood	cells	were	lysed	and	the	solution	

looked	translucent	(vortexed	up	to	twice	to	assist	lysis).	A	Leucocyte	pellet	was	recovered	by	

centrifugation	at	4,000	×	g	for	10	minutes.	The	supernatant	was	carefully	removed	with	

pipette.	A	further	resuspension	of	the	leucocyte	pellet	in	3	mL	of	EL	lysis	buffer	and	

centrifuging	the	sample	at	4,000	×	g	for	10	minutes	was	performed	to	lyse	any	remaining	

erythrocytes.	The	supernatant	was	again	carefully	removed.	The	leukocytes	were	lysed	with	

600	μL	RLT	buffer	with	1:100	β	Mecaptoethanol.	The	plasma	membranes	and	organelles	of	

the	leucocytes	are	effectively	lysed	by	this	rapidly	denaturing	solution,	which	also	inactivates	

RNases,	and	allows	the	recovery	of	intact	RNA.	The	lysate	was	pipetted	several	times	to	

disperse	any	clumps	before	being	transferred	to	the	QIAshredder	spin	column.	The	

QIAshredder	column	was	placed	in	the	microcentrifuge	and	spun	at	maximum	speed	

(14,000rpm)	for	2	minutes.	The	QIAshredder	column	was	discarded	and	600	μL	of	70%	

ethanol	was	added	to	the	flow	through	to	adjust	the	binding	conditions.	600	μL	of	the	sample	

was	transferred	to	the	QIAamp	skin	column.	The	total	capacity	of	the	column	is	750	μL	so	

usually	two	steps	were	required	to	process	the	whole	sample	through	the	column.	The	

QIAamp	column	contains	a	silica-based	membrane	to	which	the	RNA	binds	when	centrifuged	
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at	10,000	rpm	for	15	seconds.	The	contaminants	were	washed	with	700	μL	of	RW1	buffer	

(contains	ethanol	and	a	guanidine	salt,	centrifuged	at	10,000	rpm	for	15	seconds)	and	two	

500	μL	RPE	buffer	washes	(removes	salts,	centrifuged	at	10,000	rpm	for	15	and	180	seconds).	

At	each	stage	the	flow	through	was	discarded	and	a	new	collection	tube	was	used,	care	was	

taken	that	the	flow	through	did	not	come	into	contact	with	the	column	membrane.	A	further	

spin	(maximum	speed	(14,000	rpm)	for	1	minute)	of	the	column	was	performed	to	dry	the	

membrane.	The	RNA	was	eluted	by	adding	30	μL	of	RNase	free	water	to	the	membrane	and	

centrifuging	at	10,000rpm	for	1	minute.	1.5	microliters	of	total	blood	RNA	was	quantified	

using	a	nanodrop	spectrophotometer.	The	absorbance	is	measured	at	260	nm	after	blanking	

with	RNase	free	water.	The	average	of	three	readings	was	used.		

	

2.4.2	Separated	cell	DNA,	RNA,	microRNA	extraction	

The	separated	cell	nucleic	acids	were	extracted	using	the	QIAGEN	Allprep	DNA/RNA	miRNA	

universal	kit	(Qiagen),	which	extracts	RNA	molecules	greater	than	18	nucleotides	long.	Cells	

were	lysed	using	600	μL	RLT	buffer	plus	with	1:100	2,β-mecaptoethanol	together	with	

mechanical	disruption	using	vigorous	pipetting.	The	lysis	buffer,	containing	guanidine	

isothiocyanate,	causes	immediate	denaturing	of	DNases	and	RNases,	preserving	DNA	and	RNA	

for	isolation.	If	there	was	visible	evidence	of	incomplete	lysis	(clumps	etc.	–	occasionally	the	

case	for	PBMC,	granulocyte	and	CD14+	pellets),	cell	lysates	were	passed	through	a	

QIAshredder	column,	centrifuged	at	maximum	speed	(14,000	rpm	for	1	minute).	

2.4.3	Genomic	DNA	isolation	

The	lysate	was	passed	through	an	AllPrep	DNA	minispin	column	(30	seconds	at	14,000	rpm)	

which	(together	with	the	high	salt	concentration	of	the	buffer)	causes	binding	of	DNA	to	the	

column	membrane.	The	membrane	was	washed	once	with	buffer	AW1	(350	μL,	15	seconds,	

14,000	rpm).	Proteinase	K	was	applied	directly	(20	μL)	to	the	membrane	together	with	80	μL	

of	AW1	buffer,	causing	digestion	of	cell	proteins.	A	further	wash	was	performed	using	500	μL	

of	buffer	AW2.	Elution	buffer	(EB,	100	μL),	pre-heated	to	75	°C,	was	applied	directly	to	the	

column	membrane,	incubated	for	1	minute,	and	centrifuged	at	10,000	rpm	for	1	minute	to	

elute	DNA.		
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2.4.4	Total	RNA	extraction	

The	flow-through	from	the	AllPrep	DNA	column	was	used	for	subsequent	Total	RNA	

(including	microRNA)	extraction.	Proteinase	K	(80	μL)	was	used	for	digestion	of	proteins	in	

the	flow-through,	when	incubated	with	ethanol	(350	μL)	for	10	minutes	at	room	temperature.	

A	further	750	μL	of	ethanol	was	added,	and	up	to	700	μL	of	the	solution	was	pipetted	into	a	

RNAeasy	mini-spin	column	and	centrifuged	(maximum	speed	14,000	rpm	for	15	seconds)	in	

three	stages	(as	maximum	capacity	of	RNAeasy	mini-column	is	700	μL).	At	this	stage	RNA	and	

microRNA	was	bound	to	the	spin	column	membrane	(flow	through	discarded	after	each	spin).	

Following	a	wash	step	(500	μL	RPE	for	15	seconds	at	maximum	speed),	an	on-membrane	

digestion	step	was	performed	using	DNAse	I	(10	μL)	and	RDD	buffer	(70	μL),	which	was	

incubated	at	room	temperature	for	15	minutes.	The	DNAse	I	was	stored	at	-20	°C,	and	when	

thawed,	was	carefully	mixed	with	RDD	buffer,	as	it	is	liable	to	physical	denaturing	with	over	

vigorous	pipetting.	DNAse	I	digests	any	residual	DNA	within	the	sample,	helping	to	purify	the	

RNA.	Following	incubation,	500	μL	of	buffer	FRN	(isopranalol	added)	was	used	to	wash	the	

column	(maximum	speed	14,000	rpm	for	15	seconds)	and	also	elutes	microRNA.	Unlike	

previous	steps,	where	flow	through	was	discarded,	here	the	flow-through	(containing	small	

RNAs)	was	reapplied	to	the	column	membrane.	A	further	spin	(maximum	speed	14,000	rpm	

for	15	seconds)	binds	small	RNAs	to	the	membrane.	A	further	two	washing	steps	were	

performed	with	buffer	RPE	(500	μL,	maximum	speed	14,000	rpm	for	15	seconds)	and	100%	

ethanol	(500	μL	,	maximum	speed	14,000rpm	for	2	minutes).	The	column	was	transferred	to	

an	empty	Eppendorf	tube	and	centrifuged	at	maximum	speed	14,000	rpm	for	1	minute	to	dry	

the	column	and	membrane.	The	RNA	and	microRNA	was	eluted	in	two	stages	using	30	μL	of	

RNAse	free	water.	The	RNA	sample	was	stored	on	ice	until	RNA	amounts	are	quantified	using	

the	methods	described	in	section	2.5	and	stored	at	-80	°C.		

	

2.4.5	RNA	isolation	from	Tempus	blood	tubes	

Total	RNA	(including	microRNA)	was	extracted	from	9ml	vacuette	Tempus	blood	RNA	

(Greiner)	using	the	MagMax	for	Stablized	Blood	tubes	RNA	Isolation	kit	(Ambion,	Life	

technology).	Tempus	tubes	were	thawed	from	frozen	(stored	at	-80	°C)	for	30	minutes	on	ice.	

The	contents	of	the	Tempus	tube	(9mL)	were	decanted	into	a	50	mL	conical	tube,	with	the	

remaining	residue	washed	from	the	tube	using	3	mL	of	1X	PBS,	to	make	a	total	of	12	mL.	If	the	

contents	of	the	Tempus	tube	were	less	than	9	mL	(i.e.	less	than	3	mL	of	blood	sampled),	the	
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difference	was	made	up	by	adding	extra	PBS,	to	ensure	the	total	final	volume	equalled	12	mL.	

The	samples	were	vortexed	at	high	speed	(1800	×	g)	for	30	seconds,	before	centrifuging	at	

5000	×	g	for	15	minutes	at	4	°C.	The	supernatant	is	removed	and	4	mL	of	Pre-Digestion	wash	

was	added,	mixed	using	the	vortex,	before	pelleting	the	crude	RNA	(5000	×	g	for	10	minutes	at	

4	°C).	The	supernatant	was	again	removed,	and	the	50	mL	conical	tubes	were	inverted	on	

paper	towel	to	remove	any	remaining	liquid.	The	following	steps	were	performed	to	digest	

protein	and	DNA	within	the	sample.	The	sample	pellet	was	resuspended	with	resuspension	

solution	(117.5	μL)	and	proteinase	(2.5	μL)	was	added.	The	sample	was	mixed	using	the	

vortex	at	gentle	speed,	and	the	sample	was	moved	from	the	50mL	conical	tube	to	a	48	well	

plate.	Ten	microliters	of	TurboDNase	was	added	and	mixed	using	an	orbital	shaker.	The	RNA	

binding	beads	were	bound	to	the	crude	RNA	pellet	for	magnetic	capture.	Twenty	microliters	

of	well	mixed	RNA	binding	beads	were	added	to	the	sample	well,	together	with	50	μL	of	

binding	solution	concentrate.	The	48-well	plate	was	mixed	on	the	orbital	shaker	for	1	minute,	

before	adding	200	μL	of	100%	isopranolol.	The	sample	plate	was	placed	onto	a	magnet,	which	

captures	the	RNA	binding	beads	into	a	pellet	(capture	time	1-3	minutes)	and	the	supernatant	

carefully	removed	with	care	taken	not	to	disturb	the	magnetic	bead	pellet.	The	sample	plate	

was	removed	from	the	magnet	and	washed	twice	with	washing	solution	(2x	150	μL	of	Wash	

Solution	1,	applied	to	each	sample/well,	mixed	on	the	orbital	shaker,	before	repeat	magnetic	

capture	and	removal	of	supernatant,	the	same	process	was	repeated	twice	with	Wash	Solution	

2).	The	RNA	binding	beads	were	dried	by	placing	the	plate	on	an	orbital	shaker	at	room	

temperature	for	2	minutes	(or	longer	if	there	is	remaining	liquid/wash	solution	after	2	

minutes).	To	elute	the	RNA,	80	μL	of	elution	buffer	was	added	to	the	sample	well,	mixed	on	

the	orbital	shaker	for	4	minutes,	before	magnetic	capture	(magnetic	capture	time	3	minutes).	

The	eluted	RNA	solution	was	aspirated	(with	care	taken	not	to	disturb/aspirate	the	beads)	

and	transferred	to	an	RNase-free	container,	quantified	using	methods	above,	and	stored	at	-80	

°C.		

2.4.6	Total	RNA	extraction	from	PAXgene	tubes	

Total	RNA,	including	microRNA,	was	extracted	form	whole	blood	PAXgene	tubes	using	the	

PAXgene	blood	miRNA	kit	(PreAnalytix,	Switzerland).	PAXgene	tubes	were	thawed	at	room	

temperature	and	allowed	to	equilibriate	at	room	temperature	for	up	to	2	hours	to	allow	

complete	cell	lysis.	The	PAXgene	tubes	were	centrifuged	at	3200	×	g	for	10	minutes	

(centrifuging	at	5000	×	g	led	to	tubes	breaking).	The	supernatant	was	decanted	and	4	mL	of	
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nuclease	free	water	was	added	and	the	pellet	resuspended	using	a	vortex	(New	supplied	

haemaograd	closure	device	was	used	to	stop	the	tube).	The	sample	was	centrifuged	again	at	

3200	×	g	for	10	minutes.	The	supernatant	was	decanted,	and	the	top	of	the	tube	wiped	with	

paper	towel,	and	any	remaining	supernatant	removed	using	a	pipette	(incomplete	removal	of	

supernatant	results	in	diluted	lysate	and	affect	RNA	binding	to	columns).	To	each	sample,	350	

μL	Buffer	BM1	was	added	and	the	pellet	resuspended	using	the	vortex.	The	sample	was	

transferred	to	a	1.5	mL	Eppendorf	tube,	and	300	μL	of	Buffer	BM2	and	40	μL	of	Proteinase	K	

was	added.	The	sample	was	mixed	using	the	vortex	and	incubated	at	55	°C	in	a	preheated	

shaker	incubated	at	1000	rpm.	Following	this	incubation,	samples	were	transferred	into	a	

QIAshredder	spin	column	and	centrifuged	at	max	speed	(15,000	×	g)	for	3	minutes.	The	

supernatant	was	transferred	to	a	new	1.5	mL	microcentrifuge	tube	and	700	μL	of	isopranolol	

was	added.	Following	mixing,	700	μL	of	the	sample	was	transferred	to	a	PAXgene	RNA	spin	

column	and	centrifuged	for	1	minute	at	15,000	×	g.	The	flow	through	was	discarded	and	the	

step	repeated	with	the	remaining	sample,	with	the	flow	through	being	discarded	at	each	step.	

The	column	was	placed	in	a	new	2	mL	tube,	and	350	μL	of	buffer	BM3	was	added	to	the	

column	and	centrifuged	at	15,000	×	g	for	15	seconds,	with	the	resultant	flow	through	being	

discarded.	The	on-column	DNA	digestion	was	performed	by	adding	DNAse	I	(10	μL	per	

sample)	to	buffer	RDD	(70	μL)	to	the	column	filter	and	incubating	at	room	temperature	for	15	

minutes.	To	the	column,	350	μL	of	buffer	BM3	was	added	and	centrifuged	at	15,000	x	g	for	15	

seconds,	and	the	resultant	flow	through	being	discarded.	Two	wash	steps	were	performed:	

500	μL	of	buffer	BM4	(centrifuged	at	15,000	×	g	for	15	seconds)	and	again	500	μL	of	buffer	

BM4	(centrifuged	at	15,000	x	g	for	2	minutes).	The	column	was	transferred	to	a	new	tube	and	

centrifuged	at	15,000	×	g	for	1	minute	to	dry	the	column.	The	column	is	placed	in	a	new	1.5ml	

nuclease	free	microcentrifuge	tube	and	40	μL	of	elution	buffer	(BR5)	was	added	directly	to	the	

column	membrane,	and	centrifuged	at	10,000	×	g	for	1	minute.	The	previous	step	was	

repeated	to	elute	in	a	total	of	80	μL.	To	denature	the	RNA,	the	sample	was	incubated	at	65	°C	

for	5	minutes,	before	nanodrop	concentration	estimation	and	stored	at	-80	°C.		

	

2.5	Nucleic	acid	quantification	and	quality	assessment	

2.5.1	Nanodrop	spectrophotometer	nucleic	acid	quantification	

Nanodrop	quantification	was	performed	using	the	NanoDrop	1000	(Thermo	Scientific).	Onto	

the	open	arm	on	the	device,	1.5	μL	of	the	elution	medium	(RNAse	free	water	or	elution	buffer	
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depending	on	protocol)	was	placed	on	the	pedestal.	When	the	arm	is	closed	a	column	forms	

between	the	arm	and	pedestal	as	a	result	of	surface	tension	between	the	two	surfaces.	The	

arm	auto-adjusts	the	distance	from	the	pedestal,	creating	two	pathlengths	for	optimal	

measurement	(measures	@	0.2mm	and	1mm).	A	xenon	flash	lamp	passes	through	the	sample	

which	is	detected	on	the	other	side	of	the	sample	(CCD	detector	[charge	coupled	device]).		

Both	surfaces	were	wiped	before	the	application	of	the	next	sample.	The	process	is	repeated	

with	RNAse	free	water	to	‘blank’	the	sample.	DNA	and	RNA	(1.5	μL)	samples	were	the	loaded	

in	the	same	way	and	quantified	accordingly.		

	

2.5.2	QuBit	flurometery	nucleic	acid	quantification	

The	QuBit	flurometer	uses	molecular	probe	dyes	to	quantify	nucleic	acid/protein	

concentration	of	a	sample,	in	this	case	the	dsDNA	high	sensitivity	Assay	dye.	The	DNA-specific	

dye	fluoresces	when	bound	to	the	specific	molecule,	in	this	case	DNA	(but	not	RNA	or	

protein).	The	dye	binds	to	DNA	by	an	intercalation	of	bases,	after	which	it	confirms	to	a	

different	(more	rigid)	shape	and	fluoresces	intensely.		The	flurometer	detects	the	level	of	

fluorescent	signal	and	coverts	it	into	a	concentration.	The	flurometer	uses	two	standards	(one	

low	concentration	and	one	high	concentration)	to	create	a	standard	curve.	A	master	mix	of	

200	μL	of	buffer	and	1	μL	of	dye	per	sample	was	prepared	(4	pool	samples	and	2	standards	=	

1.2	mL),	and	190	μL	of	this	mix	was	used	for	each	standard	and	199	μL	for	each	sample.	Ten	

microliters	of	each	standard	and	1	μL	of	each	pooled	sample	was	added	to	respective	tubes.	

The	samples	were	incubated	for	2	minutes	before	assessment	on	the	QuBit	flurometer.		

	

2.5.3	Electrophrenography	to	assess	RNA	and	microRNA	quality	

RNA	integrity	is	determined	using	Agilent	2100	bioanalyzer	(Agilent,	Germany)	and	Pico	

LabChips	(Agilent,	Germany).	The	ladder	was	pre-prepared	by	denaturing	the	ladder	at	70	°C,	

cooling	and	adding	90	µL	of	RNAse	free	water.	Prior	to	running	the	assays,	the	electrodes	

were	cleaned	for	5	minutes	using	350	µL	of	RNAse	free	water.		Prior	to	preparing	the	gel,	

reagents	were	allowed	to	equilibrate	at	room	temperature	for	30	minutes.		
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2.5.4	Agilent	RNA	6000	Pico	chip	

A	1.5	μL	aliquot	of	the	RNA	sample	was	added	to	a	small	0.7	mL	tube	and	denatured	by	

placing	on	the	agitating	heat	block	at	70	°C	for	2	minutes	and	subsequently	on	ice.	The	ladder	

RNA	(stored	at	-80	°C)	is	also	denatured	(once	only)	in	the	same	way.	

Preparing	the	Gel	

65	μL	of	filtered	gel	was	placed	into	a	nuclease-free	microcentrifuge	tube.	To	make	up	the	gel	

mix,	1	μL	of	Pico	dye	was	added	to	aliquot	of	65	μL	of	filtered	gel.	The	sample	was	vortexed,	

taking	care	not	to	create	bubbles	(the	solution	is	highly	viscous)	as	the	chip	works	by	

microfluidics	and	any	bubbles	can	disrupt	the	running	of	the	gel.	The	Pico	chip	was	placed	in	

the	priming	station.	9.0	μL	of	gel	mix	was	pipetted	into	the	appropriate	well.	The	station	was	

closed	and	a	1ml	syringe	plunder	was	pressed	until	positioned	under	the	clip.	This	position	

was	maintained	for	30	seconds	before	the	clip	is	released,	allowing	the	plunger	to	recoil.	The	

plunger	was	manually	drawn	to	1	mL,	and	the	station	opened.	Two	further	wells	were	filled	

with	9.0	μL	of	gel	mix.		

Placing	markers	and	samples	into	appropriate	wells	

The	appropriate	wells	were	filled	with	Pico	Conditioning	solution	(9.0	μL,	white),	and	the	

sample	wells	and	ladder	well	were	all	filled	with	5.0	μL	of	Pico	marker	(green).	Following	this,	

1	μL	of	denatured	RNA	sample	and	1	μL	of	the	denatured	ladder	solution	were	added	to	each	

of	the	wells.	The	chip	was	placed	in	the	chip	vortex	at	2400	rpm	for	2	minutes.	The	chip	was	

loaded	into	the	Agilent	BioAnalyzer	for	electropherenograpghy.	Following	loading	of	the	gel	

with	RNA	samples,	the	sample	was	analysed	within	5	minutes.		

	

2.5.5	Agilent	DNA	12000	chip	

The	DNA	chip	was	performed	in	a	similar	way	as	the	RNA	pico	chip	above.	Before	starting	the	

base	plate	was	moved	to	position	C	on	the	priming	station	and	the	syringe	clip	was	moved	to	

the	top	position.	Gel-Dye	mix	was	prepared	by	adding	25	μL	of	the	dye	mix	to	the	DNA	gel	

matrix	vial,	which	was	mixed	using	the	vortex.	9	mL	of	the	gel-dye	mix	was	added	to	the	

appropriate	position	on	the	DNA	chip	and	pressurised	with	1	mL	of	air	in	the	syringe	for	60	

seconds.	The	syringe	plunger	was	held	in	place	by	a	clip	which	was	released	after	the	required	

time,	and	withdrawn	back	to	1	mL	after	5	seconds.	The	priming	station	was	opened	and	9	μL	

of	gel-dye	mix	was	added	to	2	other	marked	wells	designated	for	dye.	Five	microliters	of	

marker	dye	(green)	were	added	to	the	remaining	wells.	1	μL	of	DNA	ladder	was	added	to	the	
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appropriate	well.	1	μL	of	DNA	sample	was	added	to	each	well	as	appropriate	with	empty	wells	

being	filled	with	the	same	volume	of	buffer	(EB	buffer	in	this	case).	The	chip	was	the	vortexed	

at	2000rpm	for	1	minute	before	being	analysed	on	the	BioAnalyzer.		
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Chapter	3.	Whole	Genome	DNA	methylation	in	IBD	

3.1	Abstract	

3.1.1	Introduction	

Epigenetic	alterations	including	DNA	methylation	may	provide	important	insights	into	gene-

environment	interaction	in	complex	immune	diseases	such	as	inflammatory	bowel	disease	

(IBD).	Whilst	whole	tissue	methylation	changes	may	provide	clinically	useful	biomarkers,	

epigenetic	changes	are	cell-type	specific.	This	study	aimed	to	characterise	the	circulating	

methylome	in	IBD,	and	relate	changes	seen	in	whole	blood	to	the	methylation	profile	in	

separated	leucocytes,	gene	expression	data,	as	well	as	our	previous	data	in	childhood-onset	

disease.	

3.1.2	Method	

The	Illumina	450k	array	was	used	to	assess	whole	blood	leucocyte	DNA	methylation	at	over	

485,000	CpG	sites	across	the	genome	in	240	patients	(121	Crohn’s	disease	[CD],	119	

ulcerative	colitis	[UC])	and	191	controls.	Whole	blood	data	was	analysed	after	correcting	for	

batch	effects	and	for	the	cellular	composition	of	the	samples.	Differentially	methylated	sites	

discovered	in	whole	blood	were	also	investigated	in	immunomagnetically	separated	

leucocytes	(CD4+	&	CD8+	lymphocytes,	CD14+	monocytes).		

3.1.3	Results	

There	were	439	differentially	methylated	positions	(DMPs)	meeting	epigenome	wide	

significance	as	defined	as	a	Holm	corrected	p	value	of	<0.05	(uncorrected	p≤1.1x10-7)	in	IBD	

cases	versus	control.	No	markers	were	significantly	different	between	CD	and	UC	following	

correction	for	multiple	testing.			

There	were	5	differentially	methylated	regions	(DMRs)	with	unidirectional	methylation	

change	in	≥3	adjacent	markers	each	achieving	Holm-adjusted	significance	of	p<0.05.	

There	was	significant	enrichment	of	methylation	alteration	around	known	susceptibility	loci.		

Established	as	well	as	novel	pathways	pertinent	to	disease	pathogenesis	are	strongly	

implicated.	The	most	significantly	DMP	in	whole	blood	(RPS6KA2	[corrected	p=1.1	x10-16]	was	

also	hypomethylated	in	monocytes	in	UC	(uncorrected	p=3.5x10-6).	The	most	significant	DMR,	

VMP1/miR21	(most	significant	probe	corrected	p=4.9	x10-14)	strongly	replicates	the	same	

finding	in	our	previous	study.	The	gene	encoding	Beta-2	Integrin	(ITGB2)	was	a	
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hypermethylated	DMR	in	IBD	and	more	specifically	CD	(most	significant	probe	corrected	

p=4.3	x10-4)	compared	with	controls.	

3.1.4	Conclusion		

This	is	the	most	detailed	characterisation	of	the	epigenome	carried	out	in	IBD	to	date	and	

includes	novel	data	exploring	the	circulating	methylome	in	UC.	The	findings	strongly	validate	

this	approach	in	complex	disease,	replicate	and	expand	previous	data,	and	provide	clear	

translational	opportunities.	
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3.1	Introduction		

Inflammatory	bowel	(IBD)	has	a	strong	genetic	contribution,	and	a	meta-analysis	of	genome-

wide	associated	studies	(GWAS)	of	European	and	non-European	patients	with	IBD	has	

demonstrated	200	loci	associated	with	developing	the	disease.86,88	However	despite	this	

tremendous	progress	in	delineating	the	genetic	architecture	of	IBD,	genetics	alone	explains	

only	a	small	proportion	of	disease	heritability	(13.1%	CD	and	8.2%	UC	of	disease	variance).86	

A	number	of	environmental	factors	are	known	to	influence	the	development	and	course	of	

disease;	particularly	smoking,	diet	and	the	gut	microbiota.278	This	has	led	some	investigators	

to	look	beyond	genomics	to	investigate	epigenetics,	as	a	potential	interface	between	genetics,	

environmental	modifiers	and	disease.144	Epigenome-wide	association	studies	(EWAS)	of	

complex	diseases	such	as	Rheumatoid	arthritis,204	type	2	diabetes	mellitus279	and	obesity,280	

are	now	beginning	to	be	published	in	high-impact	scientific	journals.				

DNA	methylation	EWAS	aim	to	determine	the	distribution	of	methyl	groups	at	thousands	of	

specific	positions	across	the	genome	(CpG	sites,	cytosine-guanine	dinucleotide)	with	the	aim	

of	identifying	arrangements	that	are	more	common	to	certain	disease	traits	compared	to	

controls.281	The	biological	significance	of	DNA	methylation,	is	the	association	of	DNA	

methylation	(or	hypermethylation)	occurring	within	regulatory	regions	of	genes	(for	example	

promotors	or	transcription	start	sites)	and	gene	repression	or	gene	silencing.282	Epigenetic	

studies	also	have	important	confounding	factors,	significantly	the	varying	epigenetic	profile	

occurring	in	each	different	cell	type.283	Thus	many	of	the	early	EWAS	discoveries	may	have	

been	more	related	to	changes	in	differing	cell	proportions	in	cases	and	controls	rather	than	

disease-specific	epigenetic	changes.				

In	the	context	of	IBD	we	have	used	the	Illumina	450k	platform	to	assess	genome-wide	DNA	

methylation	patterns	in	treatment	naïve	children	with	Crohn’s	disease(CD).284	This	study	

demonstrated	highly	statistically	significant	differences	in	CpG	sites	that	were	replicable	in	a	

modest	number	of	samples.284	The	most	significantly	differentially	methylated	position	and	

regions	highlighted	genes	implicated	in	disease	pathogenesis.	The	same	study	also	used	two	

DNA	methylation	probes	to	accurately	discriminate	between	cases	and	controls,	indicating	a	

strong	translation	potential.284		

Many	of	the	DNA	methylation	studies	to	date	are	limited	by	small	numbers	and	a	lack	of	cell-

type	specific	information.	This	is	the	first	major	study	of	DNA	methylation	in	IBD	to	include	
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comprehensive	integration	of	genetic	and	gene	expression	level	data,	and	relate	changes	seen	

in	whole	blood	to	the	methylation	profile	in	separated	cells.	A	well	phenotyped	prospective	

cohort	of	newly	diagnosed	patients	allows	the	evaluation	of	DNA	methylation	data	as	a	

potential	biomarker	for	diagnosis	and	stratification	of	disease	progression.		

This	design	of	this	experiment	aims	to	address	two	of	the	major	concerns	current	epigenetic	

research	in	complex	diseases:		

1.	Epigenetic	signatures	arise	from	specific	cells.	Previous	studies	describe	DNA	methylation	

in	heterogeneous	tissues	(e.g.	blood,	gut	tissue),	masking	the	individual	epigenetic	signatures	

that	exist	in	each	cell	type.	We	aim	to	discover	the	specific	cell	type	from	which	these	

epigenetic	signals	may	arise.		

2.	Epigenetic	marks	may	exist	as	cause	or	consequence	of	disease.	Determining	causality	has	

remained	a	major	barrier	for	epigenetic	research.	Recruiting	patients	at	diagnosis	will	record	

the	epigenome	as	near	to	disease	onset	as	possible,	and	limit	the	impact	of	

immunomodulating	drugs	and	chronic	inflammation	on	the	epigenetic	landscape.	

	

3.2	Methods	

3.2.1	Patient	selection	

Patients	and	controls	were	recruited	according	to	methods	2.1	Patients	recruitment.	Patients	

within	3	months	of	diagnosis	were	selected	in	order	to	limit	the	potential	effect	of	chronic	

inflammation	and	immunomodulatory	drugs	on	the	epigenetic	profile.	The	patients	were	

recruited	prospectively	as	part	of	the	IBD-BIOM	inception	cohort	from	gastroenterology	and	

endoscopy	appointments.		

Symptomatic	controls	were	recruited	from	gastroenterology	clinics	during	the	same	period.		A	

further	control	group	consisting	of	healthy	volunteers	with	no	self-reported	gastrointestinal	

symptoms	were	also	recruited.	Additional	patients	and	control	samples	recruited	

retrospectively	fitting	the	newly	diagnosed	criteria	(<3	months)	were	also	included.		

3.2.2	Immunomagnetic	cell	separation	

Sixty	newly	diagnosed,	treatment-naive	patients	(20	CD,	20	UC,	20	controls)	were	selected	for	

detailed	cell	separation	analysis.	DNA	was	extracted	from	whole	blood	and	isolated	

lymphocyte	subtypes	(CD4+,	CD8+,	CD14+	and	CD19+)	separated	using	magnetic	bead	

separation	(AutoMacs	Pro,	Miltenyi)(Section	2.2).		
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3.2.2	Stratified	randomisation	

In	Microsoft	excel	a	column	of	random	numbers	was	created	using	the	rand()	function.	The	

samples	were	ordered	according	to	(i)	diagnosis,	(ii)	sex,	(iii)	smoking	status,	(etc.	age,	age	of	

sample),	(iv)	age	of	patient,	(v)	age	of	sample	and	lastly	the	random	number	(e.g.	low	to	high).	

Following	ordering	of	samples,	each	sample	was	sequentially	numbered	1	to	X	(where	X=the	

number	of	arrays).	The	whole	list	was	ordered	on	array	number	giving	a	stratified	list	of	

random	samples	with	respect	to	position	on	array.	The	arrays	themselves	were	randomised	

(otherwise	bias	toward	the	alphabetically	first	diagnosis,	sex,	smoking	status	on	the	first	

arrays)	by	sorting	each	array	on	the	basis	of	a	random	number	(again	using	the	rand()	

function).	Each	array	was	checked	manually	for	distribution	of	phenotypic	characteristics,	

before	ordering	samples	according	to	array,	followed	by	random	number	(to	ensure	each	

sample	had	a	random	position	on	the	array).	There	was	no	statistically	significant	difference	

in	the	age	of	patient	(Kruskall	Wallis	rank	sum	test	chi	squared	21.7,	df=31,	p=0.9),	age	of	

sample	(Kruskall	Wallis	rank	sum	test	chi	squared	21.7,	df=31,p=0.98),	gender	(Kruskall	

Wallis	rank	sum	test	chi	squared	5.1,	df=31,	p=1)	and	diagnosis(Kruskal	Wallis	rank	sum	test	

chi	squared=2,	df=31,	p=1)	between	arrays		(Figure	12).		
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Figure	12	-	Planning	even	distribution	of	samples	across	450k	microarrays.	Age	of	Patients	

and	Diagnoses	across	microarrays	(y	axis=age,	x	axis=	array	position,	colour	of	boxplot	

corresponds	to	diagnosis,	CD=	Crohn’s	disease,	UC=	ulcerative	colitis,	HL	=	healthy	lab	

volunteer,	HS	=	symptomatic	control)	 	
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3.2.3	DNA	concentration		

DNA	was	required	for	Illumina	microarrays	in	a	concentration	of	50ng/	μL	in	10	μL.	Dilute	

samples	were	concentrated	using	the	speed	vac	concentrator.	The	samples	were	placed	in	1.5	

mL	tubes	with	lids	off	in	a	vacuum	concentrator	for	a	variable	amount	of	time	to	concentrate	

the	samples	depending	on	the	initial	volume.	Following	concentration,	dry	samples	were	

resuspended	with	12	μL	of	buffer	EB	(Qiagen).		

3.2.4	Picogreen	DNA	quantification	

Picogreen	dye	binds	to	double	stranded	DNA,	and	when	excited	by	light	(485nm),	fluoresces	

at	530nm.	DNA	were	quantified	by	sphectroflurometer;	fluorescent	plate	reader	(Qubit,	see	

methods	2.5.2	QuBit	flurometery	nucleic	acid	quantification).		

3.2.5	Bisulphite	conversion	

The	bisulphite	conversion	for	the	450k	microarrays	was	performed	by	the	WTCRF.	Genomic	

DNA	was	bisulphite	converted	using	the	Zymo	EZ	DNA	methylation	Kit	(Zymo,	USA	[high	

profile	plate	kit	used	by	WTCRF,	low	profile	by	MMC]).		See	also	methods	detailed	in	4.2.2	

Bisulphite	conversion.		

3.2.6	Sample	size	and	Power	calculation	

From	the	previous	paediatric	dataset284	the	mean	standard	deviation	across	all	probes	and	of	

the	top	1000	differentially	methylated	probes	(CD	vs	controls)	was	calculated.	The	variance	

across	probes	in	general	followed	a	log	normal	Gaussian	distribution	(Figure	13	Top).	The	

median	variance	across	all	probes	was	0.016	in	cases	and	controls,	however,	there	was	a	

statistically	significant	difference	between	the	variance	of	cases	and	controls	within	the	top	

1000	probes	(Wilcox	rank	test	p=0.02)	and	across	all	probes	(p-value	<	2.2	×	10-16).	The	

median	standard	deviation	was	higher	in	the	top	1000	probes	in	the	paediatric	dataset	

suggesting	higher	inter-individual	variance	in	these	probes	(median	0.04,	vs.	probes	outside	

top	1000,	p-value	<	2.2	×	10-16).		



68	

	

	

	

Figure	13	-	Power	calculation.	Top	-	Distribution	of	beta	values	and	log	transformation.	

Bottom	-	Power	curves	used	to	determine	numbers	per	group	required	to	detect	a	difference	

of	one	standard	deviation	(y	axis=power	(ab	line	at	80%	power),	x	axis	=	effect	size	(standard	

deviation	of	0.02))	
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The	power	to	detect	various	effect	sizes	for	differing	level	group	sizes	can	be	observed	on	

Figure	13	bottom	panel.	For	this	method,	curves	were	modelled	using	an	alpha	error	value	of	

genome	wide	significance	was	set	at	p=	1	×	10−7	using	the	pwr.T.Test	function	with	the	beta	

error	along	the	y	axis	(ab	line	at	80%	power)	and	effect	size	(d)	along	the	x	axis.	For	an	80%	

power	to	detect	an	effect	size	of	a	difference	in	means	of	one	standard	deviation	(median	

standard	deviation	of	top	1000	probes	in	paediatric	dataset=0.04)	was	100	patients	per	group	

(Table	4).	This	was	tested	using	5	random	probes	in	the	top	100	differentially	methylated	

probes	with	a	difference	in	beta	values	between	cases	and	controls	of	+/−	3%	(cg27049094,	

cg01726890,	cg22768358,	cg21328643,	cg27361520).	Using	an	alpha	of	p=1	×	10−7,	beta	of	

80%,	and	an	effect	size	of	the	observed	difference	in	means	the	range	of	numbers	per	group	

was	20-45.	The	variance	and	magnitude	of	effect	size	differs	from	published	estimation	of	

sample	size.202		

	

delta	 Number	per	group	 Power	(%)	

Assuming	SD	of	

0.04	the	%	

difference	in	

mean	beta	value	

0.1	 100	 0.000171	 0.4	

0.2	 100	 0.003715	 0.8	

0.3	 100	 0.051914	 1.2	

0.5	 100	 2.767155	 2	

0.6	 100	 10.85059	 2.4	

0.7	 100	 29.01307	 2.8	

0.8	 100	 55.10669	 3.2	

0.9	 100	 79.09058	 3.6	

1	 100	 93.19707	 4	

1.5	 100	 99.99995	 6	

2	 100	 100	 8	

Table	4	–	Power	to	detect	varying	effect	sizes	with	the	group	size	set	at	100	patients	per	group	
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3.2.7	Data	processing	

Illumina	450K	microarray	data	was	analysed	in	R	statistical	environment	(R	version	3.0.2,	

Vienna)	using	the	lumi285,	methylumi,	minfi,	wateRmelon	and	ChAMP	packages	and	is	

summarised	in	Figure	14.	

	

	

Figure	14	–	Summary	of	Illumina	450k	data	processing.	Note	Houseman	estimation	of	cell	

counts	calculated	independently.	

	

3.2.8	450K	array	design	

The	450K	array	measures	the	methylated	and	unmethylated	intensity	at	each	CpG	site	(the	

array	measures	over	485,000	CpG	sites).	Each	sample	is	measured	in	two	colour	channels	

(Figure	15);	red	and	green.	285,286		There	are	two	distinct	probe	designs	on	the	array:	
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• Type	I	probes:	signals	are	measured	in	the	same	colour	(red	or	green),	one	probe	is	

used	for	the	methylated	signal	and	another	is	used	for	the	unmethylated	signal	

• Type	II	probes:	One	probe	is	used,	with	the	green	signal	measuring	the	methylated	

intensity	and	the	red	signal	measuring	the	unmethylated	intensity.	

	

Figure	15	–	Probe	design	on	the	Illumina	450k	microarray.	Taken	from	minfi	and	ShinyMethy	

bioConductor	tutorial287		

	

3.2.9	Data	output	from	Illumina	450K	microarray	

Unprocessed	data	was	outputted	in	iDAT	files	and	GenomeStudio	files.	The	iDAT	files	contain	

all	raw	bead-level	information	and	are	much	larger,	whereas	the	GenomeStudio	have	probe	

summary	level	information.	Several	downstream	quality	control	measures	require	the	iDAT	

files	as	inputs	(i.e.	background	information);	and	the	lumi	package	can	import	iDAT	files	using	

the	importMethyIDAT	function.	GenomeStudio	data	are	read	directly	into	R	using	the	

lumiMethyR	function.	iDAT	files	can	be	read	into	the	package	mini	using	the	command	

read.450k.sheet	and	read.450k.exp()	to	create	an	RGChannelSet	object	containing	the	raw	

data	from	the	iDAT	files	and	the	phenotypic	data.		

3.2.10	Filtering	of	probes	(methylumi,	lumi)	

The	number	of	detected	CpG	sites	should	be	>450,000	with	485,000	or	more	indicating	98%	

conversion.	Probes	with	a	detection	P	value	of	≥0.01	were	removed.	Individual	samples	with	

>5%	of	probes	failing	were	also	removed.	Probes	containg	a	single	nucleotide	polymorphism	

(SNP)	with	a	minor	allele	frequency	of	≥0.01	(European	population,	1000	Genomes	Project)	

were	also	removed.288		
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3.2.11	Quality	controls	(methylumi)	

Samples	were	removed	if	there	was	a	sex	mismatch	(n=3)	according	to	methylation	on	the	X	

chromosome	(Figure	16).	In	females	with	two	X	chromosomes,	one	X	chromosome	is	

methylated	in	the	process	of	lyonisation.	Consequently	females	will	have	just	over	0.5	

methylation	of	the	X	chromosome	whereas	males	have	much	less.	It	is	therefore	easy	to	

identify	mismatches	in	sex	using	this	method.	Cell	mismatchs	(n=2)	were	identified	using	

principal	component	plots	and	removed.	

	

Figure	16	–	Multidimensional	Scaling	plot	to	detect	sex	mismatches		

	

3.2.12	Colour	probe	adjustment	(lumi)	

The	Illumina	450K	platform	uses	two	colours	(red	and	green)	to	label	the	final	base	based	on	

a	hybridisation	of	methylated	and	unmethylated	probes.285,286		The	final	extended	bases	

ending	in	A	or	T	are	measured	in	the	red	channel	and	those	ending	in	C	or	G	are	labelled	in	the	

green	channel.285,286	This	can	result	in	dye	colour	bias	as	a	result	in	differences	in	scanning	

efficiency	of	the	two	colour	channels.	Colour	adjustment	was	performed	in	lumi	using	the	

function	(lumiMethyC).	The	colour	balance	was	checked	before	and	after	colour	adjustment	

Figure	17.		
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Figure	17	-	Colour	density	plots	following	data	processing.	Y	Axis	=	Density	(0	to	1),	X	Axis	=	

Log2	intensity	of	i)	unmethylated	probes	ii)	methylated	probes	iii)	Two	colour	probes	

3.2.13	Background	adjustment	

Control	probes	have	been	included	on	the	Illumina	450K	array	allowing	an	estimation	of	

background	intensity.	This	background	intensity	is	the	median	intensity	of	the	negative	

control	probes	and	the	data	are	held	within	the	controlData	slot.	As	separate	background	

intensity	data	is	generated	by	the	red	and	green	control	probes,	the	authors	of	the	lumi	

pipeline	suggest	to	correct	for	colour	probe	bias	before	background	adjustment.285,286	

Background	adjustment	was	performed	using	the	function	lumiMethyB,	which	first	
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estimates	the	background	level	of	each	sample	(estimateMethylationBG)	and	corrects	

based	on	the	returned	estimation	(bgAdjustMethylation).286		

3.2.14	Quantile	normalisation	

Methylation	data	from	all	samples	were	normalised	to	a	common	scale	to	allow	comparison	

given	the	large	inter-sample	variation	in	total	methylation.	There	are	several	normalisation	

techniques,	and	some	debate	within	the	literature	regarding	the	most	appropriate	form	of	

normalisation.289	Quantile	normalisation	is	performed	by	ordering	the	probes	according	to	

methylation	intensity	value	in	each	sample,	and	then	taking	an	average	(usually	mean)	across	

all	probes.	The	highest	methylation	intensity	becomes	a	mean	of	all	the	highest	methylation	

intensity	values;	the	second	highest	value	becomes	the	mean	of	all	the	second	highest	values	

etc.	The	new	values	are	substituted	back	in	for	each	sample	according	to	the	rank	within	that	

sample.	The	new	normalised	samples	therefore	have	the	same	distribution	and	are	more	

easily	compared.290	Quantile	normalisation	is	used	commonly	when	analysing	array	data,	

where	expected	changes	are	likely	to	be	due	to	technical	rather	than	biological	variation.	In	

the	lumi	package,	the	lumiMethyN	function	was	used,	with	the	X	and	Y	Chromosomes	

excluded,	using	the	quantile	method.286	

3.2.15	BMIQ	

Beta-Mixture	quantile	dilation	(BMIQ)	is	an	intra-sample	normalisation	procedure	to	correct	

for	intra-array	technical	variation	caused	by	the	two	types	of	probe	design.291		The	two	probes	

have	different	methylation	distributions	and	dynamic	ranges.	291	The	method	used	adjusts	the	

beta	values	of	type	II	probes	to	a	statistical	distribution	of	type	I	probes.	The	process	of	

correction	runs	three	stages;	i)	fitting	a	model	to	assign	probes	to	one	of	a	three	methylation	

states;	ii)	transformation	of	the	type	II	probe	quantiles	into	those	of	type	I	probes	and	iii)	a	

conformal	transformation	of	hemi-methylated	probes.291		

The	BMIQ	function	of	the	wateRmelon	package	was	used	for	correction.292		

CombinedQBMIQ <- BMIQ(CombinedQ) 

3.2.16	Batch	effects	adjustment	(ComBat)	

Batch	effects	are	artefactual	differences	in	array	data	arising	for	technical	reasons,	most	

commonly	when	arrays	are	run	on	different	days,	at	different	sites	or	using	different	array	

lots.	Given	that	the	Illumina	HumanMethylation450K	array	can	assay	12	samples,	any	

experiment	larger	than	this	is	likely	to	incur	batch	effects.		Combating	Batch	Effects	When	
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Combining	Batches	of	Gene	Expression	Microarray	Data	(ComBat)	is	an	informed	method	

where	known	batches	are	adjusted	using	an	empirical	Bayesian	framework.293	Combat	uses	

the	surrogate	variables	analysis	package.294	ComBat	requires	a	model	matrix	with	biological	

variables	of	interest	(in	this	cases	cell	type,	disease	status),	which	is	used	to	inform	the	

algorithm,	allowing	correction	of	technical	variability	(batches)	without	removing	the	

biological	variability	of	interest.	294	

modMat <- model.matrix(~1+SimplifiedDiagnosis*CellType,newPheno) 

ComBat	is	then	performed	using	the	default	parametric	Bayesian	adjustment,	using	the	chip	

number	to	correct	for	batch	effects.294	

NewCombat <- 

ComBat(exprs(CombinedQBMIQ),CombinedQBMIQ$Chip,modMat) 

The	ComBat	function	returns	an	expression	matrix	that	can	be	re-inserted	into	the	

MethyLumiM	object.		

3.2.17	Using	multi-dimensional	scaling	plots	to	determine	the	effect	of	data	

processing	

Multidimensional	scaling,	also	known	as	principle	coordinates	analysis,	is	a	useful	method	of	

visualising	data	at	each	stage	of	processing	.295	MDS	plots	present	the	degree	of	relatedness	of	

samples	as	the	proximity	in	p-dimensional	space.	MDS	initially	assigns	samples	to	arbitrary	

co-ordinates	in	p-dimensional	space.	The	Euclidean	distance	between	each	point	is	calculated	

and	a	stress	function	is	calculated	by	comparing	the	input	data	and	coordinates.	The	R	

function	cmdscale()	is	used	to	create	MDS	plots.		

3.2.18	Differentially	methylated	positions	(DMPs)	

Methylation	status	of	cases	vs.	controls	was	compared	using	the	R	package	limma.296	Linear	

models	of	beta	values	were	constructed	with	disease	status	as	the	coefficient	and	the	

measured	or	predicted	cell	proportions	as	covariates.	Genes	were	annotated	using	the	

IlluminaHumanMethylation.db	package.297	Methylation	beta	values	(ratio	of	methylated	and	

total	probe	intensity	(0	to	1,	or	%	of	methylation))	were	used	to	identify	DMPs.	Although	beta	

values	demonstrate	high	heteroscedasticity	at	the	extreme	high	and	low	methylation	ranges,	

are	more	biologically	intuitive	to	use	that	the	M	value	(log2	ratio	of	methylated	and	

unmethylated	probe	intensity).298		The	Holm	methods	was	used	to	correct	for	multiple	testing,	

with	significance	set	at	p<0.05.299		
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3.2.19	Differentially	methylated	regions	(DMRs)	

Differentially	methylated	regions	(DMRs)	were	calculated	using	an	adapted	Lasso	function	

from	the	CHaMP	pipeline.300	A	DMR	was	defined	as	three	or	more	probes	reaching	Benjamini-

Hochberg	False	Discovery	Rate	(FDR)301	adjusted	significance	(p<0.05)	sharing	the	same	

direction	of	change	(either	all	hypo-	or	hypermethylated)	within	a	2kb	distance	threshold.		

3.2.20	Correcting	for	different	cell	type	using	the	Houseman	algorithm	in	Minfi	

Given	the	potentially	confounding	effect	of	heterogeneous	cell	types	on	methylation	data,	

bioinformatics	methods	have	been	used	to	estimate	whole	blood	cell	proportions	using	DNA	

methylation	data.205,302	The	method	uses	a	reference	dataset	generated	by	Reinius	et	al	that	

studied	the	DNA	methylation	in	healthy	human	blood	cells	(CD4+,	CD8+,	monocytes,	NK	cells,	

B	cells,	granulocytes,	eosinophils)	using	immunomagnetic	separation.303	The	raw	methylation	

data	was	combined	with	Reinius	reference	data.	The	estimateCellCounts	function	in	minfi	

using	defult	settings	was	used.304,305	A	matrix	is	returned	giving	the	estimated	relative	

proportions	of	pure	cell	types	in	a	given	sample.		This	cell	count	data	was	used	as	a	variable	in	

linear	modelling	to	adjust	results	for	cell	count.	It	should	be	noted	this	step	is	done	in	separately	

to	the	normalisation	steps	described	above	and	that	the	minfi	function	applies	its	own	

normalisation	procedures	after	experimental	and	reference	datasets	are	combined.	

3.2.21	Gene	Ontology	analysis	

Gene	ontology	analysis	was	performed	on	DMPs	achieving	Holm-corrected	statistical	

significance	using	goSeq.306	The	same	method	as	has	been	used	elsewhere	to	correct	for	the	

number	of	probes	per	gene	(The	most	statistically	significant	probe	per	gene)	was	performed	

together	with	probability	weighted	function.284,307	A	Benjamini-Hochberg	correction	for	

multiple	testing	was	applied	to	GO	term	results.	

3.2.22	GWAS	co-localisation	

The	proximity	of	differentially	methylated	probes	to	the	163	known	IBD-associated	GWAS	

risk	loci	described	in	Jostins	et	al88	within	range	thresholds	of	25kb,	50kb,	100kb	and	250kb	

was	compared	with	1000	randomly	selected	bins	of	the	same	size	with	matched	probed	

density	using	Wilcoxon	rank	sum	test.	The	same	methodology	was	used	previously	by	Adams	

et	al	in	the	paediatric	dataset.284	As	a	control,	the	IBD-associated	differentially	methylated	

positions	were	also	tested	for	enrichment	in	the	same	way	with	GWAS	data	from	7	other	

diseases;	rheumatoid	arthritis,	psoriasis,	ankylosing	spondylitis,	TB,	type	I	diabetes,	
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Alzheimer’s	disease,	IgG	glycosylation,	colorectal	cancer	and	hair	colour.	The	additional	GWAS	

data	was	obtained	from	the	GWAS	catalogue	(http://www.genome.gov/gwastudies/).		

3.2.23	Epigenetic	clock	

DNA	methylation	data	have	been	used	to	accurately	predict	the	age	at	sampling	of	human	

tissue.142	An	algorithm	developed	by	Hovrath	was	modified	by	Dr	Nick	Kennedy	locally	to	

compare	the	predicted	age	of	samples	based	on	DAN	methylation	data	with	the	actual	age	of	

samples.142	DNA	methylation	data	were	normalised	using	methods	described	by	Hovrath.142	

The	method	used	353	CpGs	to	predict	age.142	Correlation	was	performed	using	Pearson’s	

coefficient.	The	difference	between	actual	and	predicted	age	between	cases	and	controls	was	

compared	using	the	Wilcoxon	rank	test.		
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3.3	Results	

There	were	440	individuals	included	in	the	main	450k	DNA	methylation	experiment.	Figure	

18	details	the	DNA	samples	available	for	methylation	experiments	and	the	overlap	of	

separated	cell	samples	available.	After	removal	of	duplicates,	mislabelled	or	sex	mismatches,	

there	were	431	participants	included	in	whole	blood	450K	DNA	methylation	experiments.		

	

Figure	18	-	Venn	diagram308	detailing	samples	derived	from	each	individual	participant	used	

for	whole	genome	450K	DNA	methylation	profiling		(e.g.	Of	the	440	patients	included,	55	

patients	had	all	4	cell	samples	available	for	analysis,	381	patients	had	whole	blood	DNA	alone.	

3	patients	had	whole	blood	DNA,	monocyte	and	CD4+	DNA	but	not	CD8+	DNA	etc)		

3.3.1	Patient	Demographics	

Patient	demographics	for	the	whole	blood	DNA	methylation	cohort	are	outlined	in	Table	5	and	

Table	6.	Cases	were	well-matched	with	controls	for	age	and	sex.	There	were	more	current	or	

ex-smokers	in	the	CD	group,	and	a	higher	degree	of	inflammation	in	cases	compared	to	

controls	as	would	be	expected	in	a	newly	diagnosed	cohort.		
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CD	

(n=121)	

UC	

(n=119)	

Symptomatic	

controls	(n=74)	

Healthy	

controls(n=117)	

Age	[median(IQR)]	
32.4	

(24.9-50.7)	

34.3	

(25.5-47.8)	

32.8	

(26.4-45.5)	

32.3	

26.4-40.6)	

Females	(%)	 58	(47.9)	 51	(42.9)	 39	(52.7)	 59	(50.4)	

Smoking	

status	

Current	 53	 13	 17	 24	

Ex	 29	 45	 17	 32	

Never	 39	 58	 40	 56	

Unknown	 0	 3	 0	 5	

CRP	 8(2-23)	
11.5	(2-

31)	
0	(0-3.5)	

	

ESR	 18	(5-39)	
5.5	(4.3-

9.8)	
6	(4.5-7.5)	

	

FC	
495	(135-

828)	

760	(660-

950)	
19	(19-37)	

	

Table	5	-	Patient	Demographics	for	patients	undergoing	450k	analysis.	Data	presented	as	

median	and	interquartile	range	except	where	specified.		(CD=	Crohn’s	disease,	UC=	Ulcerative	

colitis,	SC=	Symptomatic	controls,	HL=Healthy	Lab	volunteers,	IQR=interquartile	range,	

CRP=C-reactive	protein,	ESR=Erythrocyte	sedimentation	rate,	FC=	faecal	calprotectin)		
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	 CD	(n=121)	 UC	(n=119)	

Time	between	diagnosis	and	sample	(days,	

median	[IQR])	
48	[7-90.8)	 32	[1-71]	

Treatment	Naïve	(denominator	number	with	

available	data)	
27/69	 37/70	

Oral/IV	steroids	at	sample	(duration	of	therapy	

in	days,	median	[IQR])	
10/69	(8[2-14])	 10/70	(2[1-6.5])	

Biologic	at	sample	(duration	of	therapy	in	days,	

median	[IQR])	
4/69	(4	[2.75-5.25])	 -	

Aza/6MP	at	sample	(duration	of	therapy	in	

days,	median	[IQR])	
10/69	(5[2-10])	 4/70	(5[2-10])	

Topical	therapy	at	sample	(duration	of	therapy	

in	days,	median	[IQR])	
1/69	(1	day)	

11/70	(5[2.75-

13.25])	

Oral	5ASA	at	sample	(duration	of	therapy	in	

days,	median	[IQR])	
3/69	(2[1-5])	 16/70	(2[1-5)	

Table	6	-	Detailed	baseline	data	on	included	patients.	CD	=	Crohn’s	disease.	UC	=	ulcerative	

colitis.	IQR	=	interquartile	range.	6MP=	6-mecaptopurine.	IV	=	intravenous.	Aza=	azathioprine.	

5ASA=	5	aminosalicylate.	

3.3.2	Multidimensional	scaling	plots	according	to	cell	type	

Based	on	the	450k	methylation	data,	MDS	scaling	demonstrated	that	samples	clustered	

closely	according	to	cell	type.		MDS	plots	were	used	to	visualise	data	following	each	of	the	data	

processing	steps	(Figure	19),	and	demonstrated	closer	clustering	according	to	cell	type	

following	ComBat	correction.		
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Figure	19	-	multidimensional	scaling	plots	according	to	cell	type.	Plots	are	demonstrated	at	

each	stage	of	data	processing	demonstrating	good	clustering	following	ComBat	correction.	

This	dataset	includes	Adult	whole	blood	and	separated	cell	data	(CD4+,	CD8+	and	CD14+)	

combined	with	the	Renius	dataset.303		
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3.3.3	DNA	methylation	in	whole	blood	samples	

An	epigenome-wide	association	comparison	was	made	between	IBD	cases	(both	CD	and	UC)	

and	controls	(symptomatic	and	healthy	controls).	There	were	439	differentially	methylated	

positions	in	IBD	cases	compared	with	all	controls	achieving	a	significance	of	p<0.05	following	

Holm	correction	for	multiple	testing.	The	top	ranking	DMPs	in	IBD	versus	control	are	

presented	in	Table	7	and	the	same	information	in	the	form	of	a	Manhattan	plot	(Figure	20)	

and	Volcano	plot,	(Figure	21)	the	latter	displaying	position	of	the	methylation	probe	in	

relation	to	the	gene	and	direction	of	methylation	change.	There	were	412	DMPs	when	

comparing	CD	(Table	44)	to	controls	and	203	when	comparing	UC	to	controls	(Table	45).	CD-

associated	DMPs	demonstrated	a	higher	level	of	statistical	significance	than	UC-associated	

DMPs.	There	were	no	DMPs	that	were	differentially	methylated	between	CD	and	UC	following	

correction	for	multiple	testing	(Table	46),	however	there	was	significant	overlap	between	

IBD,	CD	and	UC	DMPs.	Similarly,	there	were	no	DMPs	that	were	differentially	methylated	

between	symptomatic	controls	and	healthy	volunteers	(Table	47),	as	a	result	both	control	

groups	were	combined	as	a	single	large	control	cohort.					
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Illumina	

450k	

Probe	id	

Chr	
Gene	

symbol	
Δβ	 P.Value	

Holm	

adj.P.Val	

cg17501210 chr6	 RPS6KA2	 -0.08	 2.71E-22	 1.22E-16	

cg18608055 chr19	 SBNO2	 -0.07	 2.02E-20	 4.53E-15	

cg16936953 chr17	 VMP1	 -0.09	 1.33E-19	 1.99E-14	

cg09349128 chr22	 NA	 -0.04	 3.11E-19	 3.48E-14	

cg25114611 chr6	 NA	 -0.04	 1.10E-18	 8.79E-14	

cg12170787 chr19	 SBNO2	 -0.04	 1.18E-18	 8.79E-14	

cg12992827 chr3	 NA	 -0.06	 6.26E-18	 4.01E-13	

cg19821297 chr19	 NA	 -0.06	 3.66E-17	 1.98E-12	

cg12054453 chr17	 VMP1	 -0.07	 3.98E-17	 1.98E-12	

cg01059398 chr3	 TNFSF10	 -0.05	 1.59E-16	 7.13E-12	

cg26470501 chr19	 BCL3	 -0.03	 5.79E-16	 2.29E-11	

cg07398517 chr3	 NA	 -0.04	 6.14E-16	 2.29E-11	

cg26804423 chr7	 ICA1	 0.04	 6.84E-16	 2.36E-11	

cg18942579 chr17	 VMP1	 -0.05	 1.17E-15	 3.74E-11	

Table	7	-	Top	table	of	differentially	methylated	positions	(DMPs)	between	inflammatory	

bowel	disease	(IBD)	cases	and	controls	in	whole	blood.	Δβ	=	difference	in	beta	values	(ratio	of	

methylated	and	total	probe	intensity	(0	to	1)	between	IBD	cases	and	controls,	positive	value	

indicated	increased	methylation	in	cases	compared	to	controls,	negative	values	indicated	

hypomethylation	in	IBD	cases	vs.	Controls		
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Figure	20	–	Manhattan	plot	demonstrating	differentially	methylated	positions	in	IBD	versus	

Control	

	

Figure	21	-	Volcano	plot	of	differentially	methylated	positions	in	IBD	versus	Control.	Colour	

denotes	position	of	methylation	probe	in	relation	to	gene.		
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3.3.4	IBD-associated	differentially	methylated	regions	

Differentially	methylated	regions	(DMRs)	were	defined	as	three	or	more	contiguous	probes	all	

displaying	the	same	direction	of	methylation	change.	Only	statistically	significant	(Holm	p	

<0.05)	probes	identified	in	the	DMP	IBD-case	control	analysis	were	include	in	this	analysis.	

Five	differentially	methylated	regions	were	identified	in	IBD	cases	versus	controls	and	are	

listed	in	Table	8.	There	were	4	CD-associated	DMRs	(VMP1,	ITGB2,	WDR8,	CDC4BPB),	and	2	

UC-associated	DMRs	(VMP1,	WDR8)	compared	with	controls.		

Gene	 Feature	 CHR	 Δβ	
Min	Holm	

adj.P.Val	

DMR	

size	

Probe	

Counts	

Disease	

VMP1	 Body	 17	 -0.09	 5.96E-14	 1150	 4	
IBD,	CD,	

UC	

WDR8	 Body	 1	 0.03	 9.76E-08	 1943	 3	
IBD,	CD,	

UC	

NA	 IGR	 1	 0.04	 1.83E-07	 1997	 3	 IBD	

ITGB2	 5'UTR	 21	 0.04	 3.28E-05	 623	 3	 IBD,	CD	

TXK	 5'UTR	 4	 0.02	 0.00014	 538	 3	 IBD	

Table	8	-	List	of	differentially	methylated	regions	(DMRs)	between	inflammatory	bowel	

disease	(IBD)	cases	and	controls	in	whole	blood.	Where	a	single	p	value	or	beta	difference	is	

presented,	this	represents	the	corresponding	values	from	the	most	significant	probe	within	

the	DMR.	Δβ	=	difference	in	beta	values	(ratio	of	methylated	and	total	probe	intensity	(0	to	1)	

between	IBD	cases	and	controls,	positive	value	indicated	increased	methylation	in	cases	

compared	to	controls,	negative	values	indicated	hypomethylation	in	IBD	cases	vs.	Controls.			
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Differentially	methylated	regions	(DMRs)	

VMP1/	

miR-21	

Vacuole	membrane	protein1	(VMP1)	encodes	a	transmembrane	protein	within	the	Golgi	

body,	endoplasmic	reticulum.309	VMP1	is	an	inducer	of	autophagy	via	interactions	with	

BECN1.310,311		

miR-21,	a	microRNA	is	encoded	at	the	3’	end	of	VMP1,312	where	the	change	in	methylation	is	

concentrated	at	in	IBD.284	miR-21	has	been	linked	with	several	types	of	cancer	including	

colorectal	cancer.313	miR-21	has	been	widely	implicated	in	pathogenesis	of	IBD.314	miR-21	

knockout	mice	have	improve	survival	following	chemically	(Dextran	sulphate	sodium)	

induced	colitis	in	two	studies,315	but	exacerbation	in	TBNS	(2,4,6-trinitrobenzenesulfonic	

acid)	and	T-cell	transfer	models	of	murine	colitis.316	Several	microRNA	screens	have	

identified	upregulation	of	miR-21	in	IBD,	notably	in	cases	with	active	inflammation.193,195–

197,200	

WDR8/	

WRAP73	

WD	(trp-asp)	repeat	protein	family,	antisense	to	Trp73.	The	WD	gene	repeat	motif	make	up	

a	large	family	of	genes	involved	in	several	cellular	and	gene	regulatory	processes,	including	

cell	cycle	progression,	apoptosis	and	signal	transduction.317	Murine	studies	suggest	a	role	for	

WRAP73	in	the	process	of	ossification.317		

ITGB2	

(CD18)	

Integrin	Beta	2	subunit.	Cell	adhesion	and	cell	surface	mediated	signalling.318	Heritable	

defects	in	this	gene	cause	leukocyte	adhesion	deficiency	type	I	characterised	by	severe	

recurrent	infections.319,320	Aberrant	DNA	methylation	at	the	ITGB2	locus	has	previous	been	

demonstrated	in	IBD321	and	other	diseases.322,323	

Anti-integrin	antibodies	have	attracted	interest	as	therapeutics	in	IBD.	Natalizumab	is	an	

anti-alpha4	integrin	antibody	is	efficacious	in	multiple	sclerosis	and	CD,	but	is	associated	an	

unacceptable	risk	of	PML	(progressive	multifocal	leukoenchepalopathy).75	Vedolizumab	is	a	

gut-specific	anti-α4β7	integrin	antibody	efficacious	for	inducing	and	maintaining	remission	

in	UC	(GEMINI-1)76	and	CD.77		

TXK	 TXK	is	a	member	of	the	Tec	family	of	tyrosine	kinases.324		T	cells	express	TXK	and	the	other	

tec	kinases,	which	serve	as	modulators	of	T-cell	receptor	signalling	and	assist	in	cytokine	

production	by	CD4+	effector	T-cells.325	TXK	may	also	have	role	in	T-cell	development	in	the	

thymus.	TXK	has	been	shown	to	be	over	expressed	in	the	circulating	leucocytes	in	Behcet's	

disease	326	including	in	Th1	lymphocytes	accumulating	within	intestinal	lesions.327	An	IBD-

associated	GWAS	locus.88		
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HDAC4		 Histone	Deacetylase	class	II.	Histone	modifications	are	an	important	epigenetic	mechanism	

that	are	associated	with	alternative	conformations	of	chromatin.	Acetylation	of	lysine	on	

histones	H3	and	H4	is	associated	with	transcriptional	activity.174	The	extent	of	acetylation	

are	regulated	by	the	relative	activity	of	the	HDAC	enzymes,	together	with	the	HAT	(histone	

acetyl	transferases).174	Non-specific	HDAC	inhibitors	such	as	butyrate	are	associated	with	

amelioration	of	colitis.182	Alternative	methylation	of	HDAC4	has	previously	been	described	

in	other	situations.323,328,329	

	

Differentially	methylated	positions	(DMPs)	

RPS6KA2	

(RSK3)	

Ribsomal	S6	kinase	A2	is	a	ribosomal	kinase	in	the	serine/threonine	kinase	family.330	Acts	

on	the	intracellular	MAP	kinase	signalling	pathway	(interacts	with	MAPK1	and	3).331	

Thought	to	have	a	role	in	cell	growth,	cell	motility,	proliferation331	and	cell	cycle	

progression,332	although	may	also	act	as	a	tumour	suppressor	gene	in	ovarian	cancer.333	

Alternatively	spliced	isoforms	exist.333	An	IBD-associated	GWAS	locus.88	

SBNO2	 Strawberry	notch	homologue	2	has	an	anti-inflammatory	effect,	by	acting	in	the	IL-10	

downstream	pathway.334	IL-10	induced	SNBNO2	expression	was	found	to	repress	NF-κβ	

(but	not	IRF7)	selectively	within	macrophages.334		A	susceptibility	locus	in	IBD	GWAS.97		

TNFSF10	

(TRAIL,	

CD253,	

Apo2L)	

Tumour	necrosis	factor	superfamily	member	10/TRAIL	acts	as	a	ligand	in	the	TNF	family.335	

This	widely	investigated	cytokine	induces	caspase-8-dependent	apoptosis	in	tumour	but	not	

normal	cells;336	this	property	has	led	to	extensive	investigation	as	a	chemotherapeutic	

agent.337	TRAIL	has	been	implicated	in	intestinal	inflammation	and	demonstrated	to	be	over-

expressed	in	intestinal	epithelial	cell	lines338	and	in	human	mononuclear	cells	in	inflamed	

intestinal	sections.339	

BCL3	 B-cell	CLL/lymphoma	3	is	a	proto-oncogene	acting	as	a	co-activator	through	NF-κβ	and	is	

associated	with	translocation	in	a	specific	form	of	B-cell	leukaemia	(t(14;19)(q32;q13))	340	

IL23A	 Interleukin	23	subunit	A.	The	T-helper	(Th)17	and	interleukin	(IL)12-23	pathway	is	well	

established	in	IBD	pathogenesis,	with	susceptibility	gene	loci	IL23R,	IL12B,	JAK2,	and	STAT3	

identified	in	both	UC	and	CD.94,95	

Table	9	-	Selected	candidate	genes	in	differentially	methylated	regions	and	positions	
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3.3.5	Separated	cell	populations	provide	insight	into	cell-type	of	origin	of	

methylation	signals	see	in	whole	blood		

Flow	cytometric	assessment	demonstrated	high	purity	of	isolated	cell	populations	following	
immunomagnetic	cell	separation	(CD14+	median=92.4%	(IQR	87-94.9),	CD4=97.3%	(93.8-
98.9),	CD8+=88.7	(80.5-93)).	In-silico	validation	of	immunomagnetic	separation	was	also	
performed	using	the	Houseman	algorithm	(CD14	median=98.8%	(IQR	93.71-100.2),	
CD4=98.8	(93.7-101.2),	CD8+=87.2	(75.9-91.5)).	Based	on	methylation	data,	samples	
clustered	according	to	cell	type	on	MDS	plots	(Figure	19).	The	gene	tables	for	each	of	the	DMP	
case-control	analyses	for	each	of	the	separated	cell	types	are	presented	in		 	
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Appendix	1.		

Data	derived	from	cell	population	provides	insight	into	cell-type	of	origin	of	methylation	

signals	see	in	whole	blood;	RPS6KA2,	the	top	DMP	in	whole	blood	is	also	hypomethylated	in	

CD14+	monocytes	(Δβ	-11.7%,	p=5.8	×	10-8,	FDR	adjusted	p=0.009)	whilst	a	probe	from	the	

VMP1	region,	the	top	DMR	was	hypomethylated	in	CD8+	lymphocytes	(cg20458044,	Δβ	-

8.3%,	p=2.3	×	10-6,	FDR	adjusted	p=0.03).	Cell	specific	data	also	demonstrates	a	DMR	present	

in	CD14+	monocytes,	HDAC4	(3	hypermethylated	probes,	1253	bases,	minimum	p	value	=	4.3	

×	10-8,	minimum	FDR	adjusted	p=0.009).	This	is	particularly	interesting	given	HDAC4	is	a	

subclass	of	histone	deacetylase	enzymes,	and	may	indicate	interaction	between	epigenetic	

mechanisms.		

	

3.3.12	Relationship	between	DNA	methylation	and	smoking	

The	beta	values	of	the	top	DMPs	were	plotting	against	smoking	status	as	demonstrated	in	

Figure	22.	In	IBD	cases	there	was	no	difference	in	DNA	methylation	according	to	smoking	

status	(current,	ex,	never)	in	the	top	DMPs	(RPS6KA2	Kruskall	Wallis	p	=0.3,	VMP1	p	=	0.3,	

SBNO2	p	=0.3,	TNFSF10	p	=1).	Interestingly,	in	controls	there	was	a	significant	difference	in	

DNA	methylation	according	to	smoking	status	for	the	top	DMPs	(RPS6KA2	p=	0.002,	VMP1	=	

0.01,	SBNO2	=	0.03,	TNFSF10	p=0.01).	When	smoking	was	additionally	included	as	a	covariate	

in	linear	models	(along	with	age,	sex,	and	estimated	cell	proportions)	there	was	not	a	huge	

impact	on	the	top	DMPs	(Table	48).		
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Figure	22	-	Beta	Methylation	values	for	the	top	methylation	DMPs	according	to	smoking	status	

	

In	a	post-hoc	analysis,	the	present	IBD	DNA	methylation	dataset	was	used	to	investigate	the	

known	effect	of	smoking	on	methylation	status.	A	linear	model	was	used	to	compare	smokers	

and	non-smokers	amongst	all	cases	and	controls,	using	IBD	status	and	cell	proportions	as	co-

variates.	The	differentially	methylated	probes	were	then	compared	with	known	smoking	

associated-probes	published	by	Tsaprouni	et	al	(Table	10).152	The	methylation	difference	also	

strongly	correlated	between	the	two	datasets	(Figure	23).		
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Table	10	-	CpG	probes	correlated	with	Current	Smokers	and	never	smoked	in	Tsaprouni	et	al	

	

Current-	Never	
Adjusted	for	cell	
count	P-	values	
Current-Never	

Tsaprou
ni	

Ventha
m	

Tsaprou
ni	

Ventha
m	

Type	 Probe	ID	 Ch	 Position	 Gene	
Locus	 Δβ	 Δβ	 p	value	 p	value	

Known	
Locus	 cg05951221	 2	 233284402	 ALPPL2	 -13.2	 -11.34	 9.80E-30	 5.04E-34	

Known	
Locus	 cg01940273	 2	 233284934	 ALPPL2	 -12.7	 -8.46	 2.33E-28	 1.67E-29	

Known	
Locus	 cg21566642	 2	 233284661	 ALPPL2	 -17.6	 -8.77	 1.10E-25	 2.52E-33	

Known	
Locus	 cg05575921	 5	 373378	 AHRR	 -27.8	 -13.14	 8.65E-25	 2.13E-37	

Known	
Locus	 cg06126421	 6	 30720080	 IER3	 -12.5	 -10.01	 1.11E-22	 2.44E-27	

Known	
Locus	 cg03636183	 19	 17000585	 F2RL3	 -13.4	 -8.44	 2.78E-19	 1.49E-26	

Known	
Locus	 cg21161138	 5	 399360	 AHRR	 -8.7	 -4.92	 1.04E-14	 2.48E-16	

Known	
Locus	 cg06644428	 2	 233284112	 ALPPL2	 -4.4	 -2.38	 3.17E-14	 1.97E-07	

Known	
Locus	 cg19859270	 3	 98251294	 GPR15	 -3.5	 -1.09	 2.66E-13	 4.74E-09	

New	
Signals	in	
Known	
Loci	

cg03329539	 2	 233283329	 ALPP	 -5.7	 -3.40	 6.28E-12	 6.00E-13	

New	
Signals	in	
Known	
Loci	

cg24859433	 6	 30720203	 IER3	 -5	 -2.57	 6.33E-11	 1.90E-09	

New	
Signals	in	
Known	
Loci	

cg15342087	 6	 30720209	 IER3	 -4	 -2.16	 1.49E-10	 1.95E-06	

Known	
Locus	 cg25648203	 5	 395444	 AHRR	 -6.7	 -3.02	 4.81E-10	 2.57E-11	

Known	
Locus	 cg23480021	 3	 22412746	 ZNF385

D	 13.8	 1.94	 6.86E-09	 0.0561	

New	
Signals	in	
Known	
Loci	

cg13193840	 2	 233285289	 ALPPL2	 -2.8	 -1.28	 5.54E-08	 0.00042	

New	
locus	 cg22717080	 6	 166959505	 RPS6KA

2	 -1.7	 NA	 6.42E-08	 NA	

New	
Signals	in	
Known	
Loci	

cg14817490	 5	 392920	 AHRR	 -7	 -4.50	 2.34E-07	 2.59E-12	

New	
Signals	in	
Known	
Loci	

cg24090911	 5	 400732	 AHRR	 -6	 -2.68	 2.48E-07	 6.03E-09	
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New	
locus	 cg11660018	 11	 86510915	 PRSS23	 -5.6	 -4.04	 2.66E-07	 2.00E-11	

Known	
Locus	 cg19572487	 17	 38476024	 RARA	 -7.1	 -3.41	 6.91E-07	 5.15E-11	

New	
Signals	in	
Known	
Loci	

cg02657160	 3	 98311063	 CPOX	 -2.6	 NA	 1.23E-06	 NA	

New	
locus	 cg20295214	 1	 206226794	 AVPR1B	 -2.4	 -2.74	 1.69E-06	 1.04E-13	

Known	
Locus	 cg21611682	 11	 68138269	 LRP5	 -4.1	 -3.01	 4.12E-06	 1.43E-12	

Known	
Locus	 cg27241845	 2	 233250370	 (ALPP)	 -7	 -3.19	 5.48E-06	 4.53E-09	

New	
locus	 cg03547355	 1	 227003060	 (PSEN2)	 -2.6	 -0.94	 1.28E-05	 0.01837	

New	
locus	 cg02451831	 7	 26578098	 KIAA008

7	 -3.2	 -1.38	 1.34E-05	 0.01598	

Known	
Locus	 cg25189904	 1	 68299493	 GNG12		 -7.9	 -6.16	 1.97E-05	 4.24E-15	

Known	
Locus	 cg03991871	 5	 368447	 AHRR	 -6.2	 -3.21	 2.34E-05	 4.55E-09	

New	
locus	 cg23079012	 2	 8343710	 LINC002

99	 -5.3	 -1.97	 4.40E-05	 1.11E-09	

Confound
ed	by	

Blood	Cell	
Counts	

cg17024919	 3	 21792248	 ZNF385
D	 -6.3	 -1.24	 2.19E-03	 0.13487	

	

	

Figure	23	-	Current	Versus	Never	Smoked	Correlation	of	Beta	Values	with	Tsaprouni	et	al	
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3.3.13	Co-localisation	with	IBD	GWAS	loci	and	other	disease	

There	was	significant	enrichment	of	the	most	highly	differentially	methylated	positions	with	

known	IBD-associated	GWAS	loci.	When	compared	to	randomly	generated	bins	with	similar	

probe	density,	there	was	a	statistically	significant	increase	in	the	enrichment	(Wilcoxon	rank	

sum	test,	bin	size	25kb	p=0.0012,	50kb	p=2.27×10−6,	100kb	p=4.85×10−11,	250kb	1.7×10−20,	

Figure	24).	This	effect	appeared	to	be	specific	to	IBD;	there	was	no	significant	enrichment	

with	GWAS	loci	in	other	related	and	non-related	complex	diseases.	
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Figure	24-	Co-localisation	of	statistically	significant	IBD-associated	differentially	methylated	

positions	(DMP)	and	IBD	GWAS	loci.	A	-Each	facet	represents	a	different	genomic	bin	size	

(25kb,	50kb,	100kb	and	250kb).	There	was	co-localisation	of	IBD-associated	SNPs	(y-axis)	

within	genomic	regions	(i.e.	defined	bin)	containing	highly	statistically	significant	DNA	

methylation	probes	compared	those	regions	containing	methylation	probes	with	lower	levels	

of	statistical	significance	(x	axis,	-log	10	p	value).	P	values	denote	Wilcoxon	rank	sum	

comparison	with	randomly	generated	bins	with	similar	probe	density.	B	–	Enrichment	of	IBD-

associated	SNPs	but	not	of	SNPs	associated	with	other	complex	immune	traits	and	diseases	

within	50kb	regions	containing	IBD-associated	differentially	methylated	positions.		
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3.3.14	Epigenetic	aging	in	cases	versus	controls	

The	epigenetic	age	of	the	samples	was	calculated	using	the	method	described	by	Horvath	

(modified	by	Nick	Kennedy).	142	There	was	a	high	level	of	correlation	between	the	actual	age	

and	calculated	age	based	on	the	methylation	data,	this	correlation	was	highest	for	whole	

blood	and	lowest	for	CD8	cells,	but	is	likely	to	reflect	the	included	number	of	samples	in	the	

analyses	(Figure	25).	There	was	no	difference	in	the	age	acceleration	between	cases	and	

controls	(Figure	26)		

	

Figure	25	-	Epigenetic	aging	correlation	between	actual	age	(X	axis)	and	Predicted	age	(Y	

axis).	Colour	of	points	denotes	diagnosis	
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Figure	26	-	Epigenetic	Age	Acceleration	(y-axis)	in	Cases	versus	Controls	

	

3.3.15	Gene	ontology	analysis	

Gene	ontology	analysis	was	performed	on	the	439	DMPs	identified	in	IBD	versus	controls	in	

whole	blood.	After	removing	unannotated	probes	and	duplicate	probes	with	the	same	gene	

annotation	270	genes	were	included	in	the	analysis.	There	were	54	significantly	enriched	GO	

terms	following	FDR	correction	for	multiple	testing	(Table	11).	Many	of	the	included	GO	terms	

related	to	the	immune	response.		
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category	

No.	genes	
differentiall
y	expressed	
in	category	

Total	No	
of	genes	

in	
category	

GO	term	 P	Val	
FDR	
Adj	P	
Val	

GO:0080134	 47	 1293	 regulation	of	response	to	stress	 1.27E-07	 0.003	
GO:0048518	 119	 4815	 positive	regulation	of	biological	process	 3.41E-07	 0.003	
GO:0044763	 213	 10900	 single-organism	cellular	process	 8.02E-07	 0.005	
GO:0044699	 227	 11972	 single-organism	process	 1.02E-06	 0.005	
GO:0009607	 32	 816	 response	to	biotic	stimulus	 1.61E-06	 0.005	
GO:0001775	 34	 853	 cell	activation	 1.70E-06	 0.005	
GO:0002252	 29	 675	 immune	effector	process	 1.93E-06	 0.005	
GO:0048583	 86	 3212	 regulation	of	response	to	stimulus	 2.38E-06	 0.005	
GO:0048522	 104	 4164	 positive	regulation	of	cellular	process	 2.50E-06	 0.005	
GO:0051179	 120	 5016	 localization	 2.59E-06	 0.005	
GO:0031347	 29	 699	 regulation	of	defense	response	 2.80E-06	 0.005	
GO:0002376	 66	 2336	 immune	system	process	 3.56E-06	 0.006	
GO:0043207	 30	 783	 response	to	external	biotic	stimulus	 5.01E-06	 0.007	
GO:0051707	 30	 783	 response	to	other	organism	 5.01E-06	 0.007	
GO:0002366	 13	 171	 leukocyte	activation	in	immune	response	 5.27E-06	 0.007	
GO:0045321	 27	 635	 leukocyte	activation	 5.86E-06	 0.007	
GO:0002263	 13	 173	 cell	activation	involved	in	immune	response	 6.12E-06	 0.007	
GO:0002682	 44	 1365	 regulation	of	immune	system	process	 1.11E-05	 0.012	
GO:0006810	 99	 4044	 transport	 1.23E-05	 0.013	
GO:0051234	 101	 4156	 establishment	of	localization	 1.45E-05	 0.014	
GO:0070887	 67	 2444	 cellular	response	to	chemical	stimulus	 1.81E-05	 0.017	
GO:0006897	 24	 546	 endocytosis	 2.86E-05	 0.026	
GO:0030099	 17	 316	 myeloid	cell	differentiation	 3.18E-05	 0.027	
GO:0006952	 47	 1610	 defense	response	 3.27E-05	 0.027	
GO:0045638	 8	 77	 negative	regulation	of	myeloid	cell	diff	 3.93E-05	 0.031	
GO:0051049	 48	 1584	 regulation	of	transport	 4.45E-05	 0.034	
GO:0046632	 8	 75	 alpha-beta	T	cell	differentiation	 4.72E-05	 0.035	
GO:0009891	 49	 1645	 positive	regulation	of	biosynthetic	process	 5.25E-05	 0.037	
GO:0009611	 33	 950	 response	to	wounding	 6.13E-05	 0.040	
GO:0010646	 71	 2666	 regulation	of	cell	communication	 6.27E-05	 0.040	
GO:0050776	 31	 885	 regulation	of	immune	response	 6.40E-05	 0.040	
GO:0002684	 29	 818	 positive	regulation	of	immune	system		 6.41E-05	 0.040	
GO:0044422	 150	 7205	 organelle	part	 7.51E-05	 0.042	
GO:1902578	 89	 3663	 single-organism	localization	 7.54E-05	 0.042	
GO:0002521	 19	 413	 leukocyte	differentiation	 7.56E-05	 0.042	
GO:0044765	 86	 3512	 single-organism	transport	 7.67E-05	 0.042	
GO:0051641	 69	 2638	 cellular	localization	 7.72E-05	 0.042	
GO:0046637	 6	 43	 regulation	of	alpha-beta	T	cell	diff	 8.18E-05	 0.042	
GO:0048534	 27	 706	 Hematopoietic/lymphoid	development	 8.27E-05	 0.042	
GO:0016192	 39	 1186	 vesicle-mediated	transport	 8.42E-05	 0.042	
GO:0050896	 152	 7392	 response	to	stimulus	 8.59E-05	 0.042	
GO:0048771	 10	 132	 tissue	remodelling	 8.89E-05	 0.042	
GO:0033365	 27	 744	 protein	localization	to	organelle	 9.73E-05	 0.044	
GO:0050778	 23	 587	 positive	regulation	of	immune	response	 9.78E-05	 0.044	
GO:0002274	 10	 143	 myeloid	leukocyte	activation	 0.000103	 0.046	
GO:0009605	 61	 2303	 response	to	external	stimulus	 0.000108	 0.046	
GO:0045087	 32	 974	 innate	immune	response	 0.000109	 0.046	
GO:0009893	 80	 3185	 positive	regulation	of	metabolic	process	 0.000111	 0.046	
GO:0002697	 17	 371	 regulation	of	immune	effector	process	 0.000115	 0.046	
GO:0006955	 42	 1454	 immune	response	 0.000117	 0.046	
GO:0023051	 69	 2620	 regulation	of	signalling	 0.00012	 0.046	
GO:0032101	 27	 763	 regulation	of	response	to	external	stimulus	 0.00012	 0.046	
GO:1903707	 9	 119	 negative	regulation	of	hemopoiesis	 0.000123	 0.046	
GO:0006950	 85	 3582	 response	to	stress	 0.000123	 0.046	

Table	11	–	GO	term	analysis	of	DMPs	in	IBD	versus	control	in	whole	blood	
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3.4	Discussion		

	

This	study	has	demonstrated	several	highly-significant	site-specific	methylation	changes	in	

IBD	compared	with	controls.	These	findings	are	highly	replicable	both	in	an	independent	

adult	cohort	and	in	our	previous	paediatric	CD	data.	This	study	has	used	a	large	discovery	

cohort	to	demonstrate	DMPs	and	DMRs	and	has	formed	a	detailed	characterisation	of	these	

sites	in	separated	cells.	

	

Disease-associated	differentially	methylated	regions	are	perhaps	the	most	compelling	

evidence	of	a	methylation	difference	in	IBD	versus	controls.	The	top	IBD-associated	DMR,	

VMP1	(vacuole-membrane	protein	1),	was	also	one	of	the	most	significant	DMPs.	VMP1	was	

also	the	principal	finding	in	our	previous	paediatric	dataset,	and	is	validated	here	in	a	

significantly	larger	cohort.	The	majority	of	methylation	probes	in	the	VMP1	area	are	found	

towards	the	3’	end	of	the	VMP1,	in	which	the	primary	transcription	site	for	microRNA-21	

(pre-miR21)	is	located.	This	is	an	exciting	finding	given	that	this	microRNA	and	has	previously	

been	implicated	in	colitis	and	IBD.193,195–197,200,314–316	miR21	is	considered	by	some	to	be	a	“pro-

inflammatory	microRNA”,	however	is	likely	to	have	diverse	actions	within	different	pathways	

in	different	tissues.316	Another	notable	IBD-associated	DMR	is	ITGB2	(integrin	subunit	beta	2),	

the	gene	of	which	has	a	role	in	leukocyte	adhesion,	activation	and	trafficking.318	This	is	

particularly	interesting	given	the	recent	focus	on	strategies	to	therapeutically	target	leukocyte	

adhesion,	namely	vedolizumab,	which	targets	a	different	integrin	subunit	(α4β7).	76,77	

Aberrant	DNA	hypermethylation	at	the	ITGB2	locus	has	previous	been	demonstrated	in	IBD	in	

mucosal321	and	peripheral	blood	leucocyte307	samples	as	well	as	in	other	diseases.322,323	

Interestingly,	the	level	of	ITGB2	expression,	with	three	other	genes,	has	been	used	to	predict	

mucosal	healing	in	ulcerative	colitis.341	Functionally,	the	subunits	of	ITGB2	(CD18,	CD11a	and	

CD11b)	have	been	knocked	out	in	mice,	with	loss	of	CD18	and	CD11a	being	associated	with	an	

attenuation	of	dextran-sulphate	induced	colitis.342	An	older	study	demonstrated	that	

antibodies	directed	against	CD11b/CD18	reduced	gut	inflammation	in	rats.343	Clinically,	an	

hereditary	loss	of	CD18	function	is	known	as	leucocyte	adhesion	deficiency	(LAD-1)	and	

whilst	not	associated	with	gastrointestinal	features,	a	Crohn’s-like	manifestation	has	been	

reported	in	the	literature.344	The	other	DMRs	are	also	of	great	interest:	WDR8	or	WRAP73	(WD	

(trp-asp)	repeat	protein	family,	antisense	to	Trp73)	which	is	involved	in	several	cellular	and	
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gene	regulatory	processes,317	and	TXK	a	tec	kinase	in	the	tyrosine	kinase	family	expressed	in	T-

cells	is	also	an	IBD	GWAS	susceptibility	locus	(Chr	6,	rs6837335)	and	is	highly	expressed	in	

intestinal	lesions	found	in	Bechet’s	disease.327		

Whilst	DMRs	have	been	considered	as	the	hallmarks	of	differential	methylation,	DMPs	should	

also	not	be	overlooked,	especially	given	the	design	of	the	450k	array	may	prevent	certain	

DMPs	from	being	identified	as	DMRs	as	a	result	of	sparse	coverage	in	certain	genomic	regions	

or	the	manner	of	DMR	detection,	the	method	has	yet	to	reach	a	consensus	within	the	

literature.	The	top	DMP	was	RPS6KA2,	a	ribosomal	kinase	in	the	serine/threonine	kinase	

family	330	that	regulate	a	diverse	set	of	cellular	processes	including	cell	growth,	cell	motility,	

proliferation	331	and	cell	cycle	progression.332	RPS6KA2	is	found	within	an	IBD-associated	GWAS	

locus88	(GWAS	data	from	Jostins	et	al,	rs1819333,	p=	6.76	×	1021,	OR	=	1.081)	on	chromosome	

6,	which	also	contains	the	genes	CCR6,	RNASET2,	FGFR10P,	GPR31	and	TCP102L.		Differential	

methylation	of	RPS6KA2	has	previously	been	linked	with	smoking,152	and	although	difference	

in	smoking	status	does	not	explain	the	difference	in	RPS6KA2	methylation	in	IBD	cases	and	

controls	in	this	dataset,	this	may	be	an	avenue	for	future	research	given	smoking	is	a	known	

environmental	modifier	of	the	disease.	Another	of	the	most	DMPs	was	SBNO2,	Strawberry	

notch	homologue	2,	which	appears	twice	in	the	top	10	DMPs,	and	all	4	probes	annotated	to	

this	gene	demonstrate	hypomethylation	in	IBD	cases	compared	to	controls.	SBNO2	is	known	

to	have	an	anti-inflammatory	effect,	by	acting	in	the	IL-10	downstream	pathway.334	SBNO2	is	

found	within	a	IBD-associated	GWAS	locus.97	Other	highly	interesting	DMPs	implicated	in	

well-known	IBD	pathogenic	pathways	include	Interleukin	23	subunit	A	(IL23A),	another	IBD	

GWAS-susceptibility	locus,94,95	and	Tumour	necrosis	factor	superfamily	member	10	

(TNFSF10/TRAIL).			

This	is	the	largest	study	of	DNA	methylation	in	inflammatory	bowel	disease	to	date.	Several	

other	studies	have	investigated	the	DNA	methylation	pattern	in	IBD	cases	compared	with	

controls.	This	includes	our	own	study	into	paediatric	treatment	naïve	Crohn’s	disease.	In	the	

present	study	again	we	have	chosen	to	study	newly	diagnosed	adult	patients,	where	the	

impact	of	chronic	inflammation	and	immunomodulation	drugs	and	surgery	on	the	epigenetic	

landscape	will	be	minimised.	Despite	efforts	to	recruit	newly	diagnosed	patients,	only	half	of	

the	included	patients	(with	available	data,	Table	6)	were	treatment	naïve,	with	the	remainder	

having	been	exposed	to	a	short	period	of	immunosuppressive	therapy	(usually	days).	The	

extent	of	methylation	change	attributable	to	medication	has	not	been	quantified	here,	but	this	



100	

	

together	with	the	temporal	change	in	methylation	profile	with	disease	course	would	be	

worthy	of	further	study.			

Aside	from	the	present	study,	the	next	largest	blood	based	methylation	study	in	IBD	has	been	

published	by	McDermott	et	al.307	Whilst	this	study	used	a	large	cohort	of	both	CD	and	UC	

patients,	the	patient	cohort	had	established	disease	with	varying	degrees	of	disease	activity	

and	immunosuppressive	duration.	Further	strengths	of	our	own	study	over	the	previously	

published	data	is	the	inclusion	of	a	large	control	cohort	of	both	symptomatic	and	healthy	

controls	and	the	large	independent	validation	cohort.307	Like	previous	studies,307,321	the	

present	study	found	no	significant	differential	methylation	between	CD	and	UC.	Some	genetic	

loci	that	were	initially	thought	to	be	CD-	or	UC-	specific	have	since	been	found	to	associate	

with	both	diseases,88	and	IBD	transcriptomics	also	demonstrates	a	largely	shared	gene	

expression	profile	in	both	diseases.345				

The	impact	of	cellular	heterogeneity	on	DNA	methylation	data	is	a	commonly	cited	limitation	

of	EWAS	studies	conducted	using	whole	tissue.346,347	Statistical	techniques	such	as	the	

Houseman	algorithm	are	now	becoming	increasingly	accepted	as	a	robust	method	for	

correcting	for	cellular	heterogeneity.205,302	A	significant	strength	of	the	present	work	is	the	

well-powered	study	of	DNA	methylation	in	a	large	cohort	of	whole	tissues,	with	detailed	

characterisation	of	separated	leukocytes	in	a	subset	with	DNA	methylation	data.	The	small	

absolute	number	of	samples	included	in	the	separated	cell	analyses	limited	the	statistical	

power	to	determine	significant	differences	in	DNA	methylation	between	cases	and	controls.	

Despite	this	limitation,	these	data	provided	tantalising	clues	in	unmasking	the	cell	of	origin	of	

the	DNA	methylation	signals	in	whole	blood.	For	example,	the	top	DMP,	RPS6KA2	was	

differentially	methylated	in	CD14+	monocytes	in	UC,	whilst	VMP1	the	top	DMR	was	

differentially	methylated	in	CD8+	T-cells.	There	are	few	studies	into	DNA	methylation	using	

separated	cells	in	the	context	of	IBD.348	Should	the	primary	aim	of	a	study	be	to	explore	

biology,	then	performing	a	highly	detailed	characterisation	of	the	methylome	in	separated	

cells	is	warranted,	whilst	the	difficulty	in	enriching	samples	for	these	cell	types	makes	them	

less	attractive	as	biomarkers,	and	here	whole	tissue	such	as	blood	may	be	more	useful.	Blood	

has	been	used	as	the	index	tissue	in	this	study	for	several	reasons.	IBD	is	an	immune	mediated	

disease	with	many	of	the	currently	used	therapeutics	targeting	peripheral	leukocytes.	IBD	has	

known	extra-intestinal	manifestations.	Severe,	treatment	refractory	CD	can	be	treated	using	

autologous	stem	cell	transplant349,350	and	CD	has	been	known	to	recur	in	transplanted	

intestinal	tissue351	indicating	that	IBD	is	not	exclusively	propagated	at	the	gut	level.	Unlike	gut	
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based	markers,	peripheral	blood	is	easily	accessible	and	thus	attractive	as	a	non-invasive	

biomarker.	SEPT09,	a	commercially	available	blood-based	biomarker	for	colorectal	cancer	

demonstrating	the	feasibility	of	DNA	methylation	biomarkers	in	GI	disease.352,353		

Several	methodological	aspects	have	been	explored	in	this	chapter.	There	is	some	debate	

amongst	the	epigenetic	scientific	community	regarding	the	most	appropriate	normalisation	

methods	for	Illumina	450k	data.	Marbita	et	al	found	that	quantile	normalisation	and	BMIQ	

was	the	most	effective.289	This	study	also	suggested	that	it	was	necessary	to	correct	for	batch	

effects.	289	A	study	examining	batch	effects	in	gene	expression	arrays	found	that	ComBat	was	

the	most	effective	method	for	correction.354	In	this	chapter	a	combination	of	these	methods	

(rather	than	using	a	complete	‘pipeline’	analysis)	have	been	used.	Principal	coordinate	

analysis	plots	were	used	to	visualise	the	effect	of	these	normalisation	methods	on	the	data.	

	

Reassuringly	this	dataset	independently	validates	previous	work	demonstrating	

hypomethylation	of	specific	probes	related	with	smoking.152	Strongly	statistically	significant	

findings	were	determined	when	comparing	current-	and	ex-smokers	with	non-smokers	and	

the	most	significant	findings	coincided	with	the	previously	published	‘smoking-associated’	

probes.	Moreover	there	was	a	strong	correlation	between	the	level	of	hypomethylation	

between	the	two	datasets.	Interestingly,	one	of	the	most	significant	DMPs	when	comparing	

IBD	with	control,	RPS6KA2	was	defined	by	Tsaprouni	et	al	as	a	‘smoking-associated’	probe.	

However	this	was	not	significantly	differentially	methylated	between	smokers	and	non-

smokers	in	this	dataset,	adding	credibility	that	differential	methylation	of	this	probe	is	

disease-	and	not	smoking-associated.		

	

The	‘epigenetic	clock’	developed	by	Horvath	that	can	predict	age	based	on	DNA	methylation	

data,	has	demonstrated	that	diseased	tissues	from	certain	conditions	have	accelerated	aging	

compared	with	controls.	Such	conditions	include	obesity	and	non-alcoholic	fatty	liver	

disease,355	Down’s	syndrome,356		and	HIV	infection.357	Certain	cancer	tissues	demonstrate	

marked	age	acceleration	(e.g.	luminal	breast	cancer)	whereas	others	demonstrate	negative	

age	acceleration	e.g.	basal	breast	cancer).358	This	dichotomy	may	be	explained	by	mutations	to	

different	pathways;	cancers	with	few	somatic	mutations	exhibit	increased	age	acceleration,	

whereas	cancers	with	p53	mutations	demonstrated	decreased	age	acceleration.358	Whilst	no	

difference	in	age	acceleration	was	seen	in	this	dataset,	this	may	relate	to	tissue	type,	which	is	
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known	to	affect	age	acceleration	within	the	same	individual,359	and	sampling	DNA	methylation	

age	in	gut	tissue	may	yield	different	results.		

	

This	is	the	most	detailed	characterisation	of	the	epigenome	carried	out	in	IBD	to	date.	These	

data	are	further	explored	in	upcoming	chapters	in	this	thesis,	with	regards	to	validation	of	

findings,	application	as	biomarkers	and	the	relationship	between	DNA	methylation	data	and	

genetics	and	gene	expression.			
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Chapter	4.	Targeted	replication	of	whole	genome	DNA	

methylation	findings	in	IBD	

Abstract	

Introduction	

Highly	significant	IBD-associated	differences	in	DNA	methylation	have	been	presented	in	

Chapter	3.	Replication	is	a	critical	requirement	of	genome-wide	and	now	epigenome-wide	

association	studies	in	order	to	limit	the	impact	of	non-biological	(technical)	variation	and	to	

reduce	false	positives.	The	two	aims	of	this	chapter	were	firstly	to	perform	technical	

validation	of	450k	microarray	findings	and	secondly	to	replicate	the	findings	from	chapter	3	

in	an	independent	cohort.		

Methods	

Technical	validation	and	replication	of	450k	array	findings	was	performed	using	

pyrosequencing.	Pyrosequencing	primers	for	the	most	significant	DMP	(RPS6KA2)	and	DMRs	

(VMP1,	IGTB2,	TXK,	and	WRAP73)	were	designed.	Pyrosequencing	was	performed	on	the	

pyromark	q24	platform.	Technical	validation	was	performed	in	a	subset	of	patients	included	

in	450k	microarray	analyses	(n=231).	Replication	was	performed	in	an	independent	cohort	of	

patients	with	established	IBD	(n=240	[CD=121,	UC=119])	and	controls	(n=98).	Further	

replication	of	450k	methylation	results	was	performed	using	previously	published	paediatric	

Crohn’s	disease	data.		

Results	

Technical	validation	was	achieved	with	pyrosequencing	results	strongly	correlating	with	

450k	array	beta	values	for	all	DMP	and	DMRs	tested.	Using	pyrosequencing,	statistically	

significant	differences	in	methylation	were	observed	in	cases	and	controls	with	the	same	

direction	of	methylation	change	demonstrated	on	both	platforms.		

The	450k	methylation	results	from	chapter	3	were	replicated	in	an	independent	cohort	using	

pyrosequencing	with	significant	results	for	the	most	significant	DMP	(RPS6KA2,	IBD	versus	

controls	p=1	×	10-9)	and	DMRs	(VMP1	p=1	×	10-6,	IGTB2	p=2	×	10-7	and	TXK	p=4	×	10-10).		
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There	was	a	highly	significant	correlation	between	the	difference	in	beta	values	for	the	top	

5000	differentially	methylated	probes	between	CD	cases	and	controls	in	the	present	dataset	

and	the	previously	published	early-onset	CD	methylation	data	(Pearson’s	correlation	0.77,	

95%	confidence	interval	0.76-0.78,	p-value	<	2.2×1016).	

Conclusions	

Persuasive	differences	in	DNA	methylation	associated	with	IBD	have	been	technically	

validated	and	replicated	in	more	than	one	independent	cohorts	increasing	confidence	in	the	

results.		
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4.1	Introduction	

Highly	significant	IBD-associated	differences	in	DNA	methylation	have	been	presented	in	

Chapter	3.	Whilst	this	represents	the	largest	study	of	its	kind	in	DNA	methylation	in	IBD	to	

date,	it	remains	critically	important	to	replicate	these	findings.	Lessons	learnt	from	GWAS	

highlight	the	importance	of	independent	replication	cohorts,	in	order	to	account	for	non-

random	technical	biases	and	reduce	the	incidence	of	false	positives.360	Replication	in	

epigenome-wide	association	studies	(EWAS)	is	likely	to	be	as	important	as	in	GWAS,202,361	

especially	given	the	increased	number	of	potential	confounders	in	EWAS.281	Many	of	the	

findings	from	early	EWAS	have	yet	to	be	replicated.281	Pyrosequencing	provides	a	logical	

platform	for	replication	studies	as	large	numbers	of	samples	can	be	analysed	at	specific	

methylation	sites	in	a	targeted	fashion	(Figure	27).			

	

Figure	27	-	Methods	of	DNA	methylation	analysis	(Sample	throughput	versus	genome	

coverage,	reused	with	permission	from	Laird	PW	Nature	Reviews	Genetics	2010;	11:197	

license	number	3770261146857)		

	

The	two	principal	aims	of	this	chapter	were	to		

1. Perform	technical	validation	of	450k	microarray	findings		

2. Replicate	the	findings	from	chapter	3	in	an	independent	cohort		
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4.2	Methods	

4.2.1	Designing	pyrosequencing	probes		

Pyrosequencing	probes	were	designed	using	the	pyromark	assay	design	software	(version	

2.0.1.15,	Qiagen,	Dusseldorf,	Germany).	The	genomic	location	of	relevant	CpG	probes	was	

extracted	from	Illumina	450k	feature	data	and	plotted	in	the	UCSC	genome	browser.	The	DNA	

view	function	was	used	to	generate	raw	sequence	500	bases	around	the	CpG	of	interest.	The	

assay	design	software	was	used	to	design	primers	(with	the	Allow	Primer	Over	Variable	

Position	mode	turned	OFF).	Primer	sets	of	a	score	greater	than	70	were	considered	

(Pyromark	assay	design	own	penalty	system,	scored	between	100	and	0,	zero	being	the	

worst).	Primer	sets	were	closely	scrutinised	for	mispriming	sites	and	checked	for	commonly	

occurring	SNPs	using	ensemble	and	genome	browser	(excluded	if	minor	allele	frequency	

(MAF)	>0.01).	Primers	were	ordered	from	Sigma-Aldrich	(St	Louis,	USA)	with	the	reverse	

primer	being	HPLC	purified	and	biotyinlated	on	the	5’	end.		The	pyromark	Q24	software	was	

used	to	create	pyrosequencing	run	files.	Methylation	ranges	were	increased	from	0	to	100	%	

and	bisulphite	treatment	controls	were	added.	Primers	were	made	up	to	100	μM	using	a	

variable	volume	of	TE	as	directed	by	the	technical	datasheet.	A	stock	solution	of	5	μM	was	

made	up	with	a	twenty	fold	dilution	(30	μL	of	100	μM	in	570	μL	of	TE).	One	microliter	of	5	μM	

stock	solution	was	used	per	25	μL	reaction	to	yield	a	final	concentration	of	0.2	μM.	

	

4.2.2	Bisulphite	conversion	

The	EZ-96	DNA	methylation	kit	(D5003,	Zymo	Research,	Irving	CA	USA)	was	used	to	

bisulphite	convert	DNA	for	pyrosequencing.	An	input	of	500ng	of	DNA	was	used	(10	μL	of	

50ng/	μL).	To	the	initial	DNA,	5	μL	of	M-Dilution	buffer	and	35	μL	of	purified	water	was	

mixed.	The	96-well	conversion	plate	containing	samples	was	incubated	at	37	°C	for	15	

minutes.	Following	the	incubation,	100	μL	of	CT	conversion	reagent	was	added	and	mixed.	A	

foil	lid	was	used	to	seal	the	conversion	plate,	and	incubated	on	a	thermal	cycler	overnight	for	

16	hours	at	50	°C	(lid	heated	to	100	°C),	following	which	samples	were	held	at	4	°C.	The	

samples	were	incubated	on	ice	for	10	minutes.	The	Silicon-A	binding	plate	was	placed	above	

the	reservoir	plate	and	loaded	with	400	μL	of	M-binding	buffer,	to	which	the	samples	were	

added	and	mixed.	The	Silicon-A	binding	plate	was	centrifuged	at	3000	x	g	for	5	minutes.	At	

each	stage	the	flow	through	was	discarded	from	the	plate	reservoir.	Each	sample	was	washed	
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with	500	μL	of	M-wash	buffer	and	centrifuged	at	3000	x	g	for	5minutes.	To	each	sample,	200	

μL	of	M-desulphonation	buffer	was	added	and	incubated	at	room	temperature	for	15	minutes.	

The	samples	were	washed	twice	with	M-wash	buffer	as	previously	described,	with	the	second	

wash	step	using	a	centrifuge	time	of	ten	minutes.	The	sample	was	the	eluted	into	a	96-well	

elution	plate	using	35	μL	of	M-	elution	buffer	(centrifuged	at	3000	x	g	for	3	minutes).	Samples	

were	stored	at	-20	°C	until	the	PCR	was	performed.		

4.2.3	Pre-pyrosequencing	PCR	

Prior	to	pyrosequencing	the	bisulphite	converted	DNA	was	amplified	for	target	sequences	

using	PCR	(PyroMark	PCR	kit,	Qiagen,	Dusseldorf,	Germany).	A	mastermix	was	made	up	of	

PyroMark	PCR	mastermix	(12.5	μL	per	sample),	CoralLoad	concentrate	(10x,	2.5	μL),	RNAse	

free	water	(7	μL)	and	forward	(1	μL)	and	reverse	pyrosequencing	primers	(1	μL)	were	added.	

Within	a	96	well	plate	was	cut	to	3x8	(24	well	pyrosequencer)	1	μL	of	bisulphite	converted	

DNA	was	added	to	each	target	reaction	(in	duplicate),	but	omitted	from	a	no-template	control	

reaction.	The	PCR	protocol	suggested	by	the	manufacturer	was	used	(95	°C	for	15minutes,	45	

cycles	of	30	secs	of	94	°C,	30	secs	of	56	°C,	30	secs	of	72	°C	and	a	final	extension	of	72	°C	for	10	

minutes).	Following	PCR,	the	product	was	checked	on	an	agarose	gel.	The	agarose	gel	was	

produced	by	reserving	150ml	of	800mls	(780	mL	water,	30	mL	0.5X	TBE)	and	adding	2.25g	of	

agarose	to	create	a	1.5%	gel	(microwaved	for	2	minutes	until	boiling,	cooled	under	cold	tap).	

Prior	to	setting	(20	mins	approx.),	15	μL	of	SYBR	Safe	gel	DNA	stain	(Life	Technology)	was	

added	and	mixed.	The	Bioline	hyperladder	1kb	ladder	(5	μL,	London	UK)	was	used	and	5	μL	of	

sample	was	added	to	each	well.	The	gel	electrophoresis	was	run	at	150mV	for	30	minutes.		

	

4.2.4	Pyrosequencing	

A	mastermix	was	created	composed	of	streptavidin-coated	Sepharose	beads	(2	μL	per	sample,	

vigorously	shaken	to	resuspend	beads),	binding	buffer	(40	μL)	and	high	purity	water	(18	μL).	

60	μL	of	the	mastermix	was	added	to	each	of	the	PCR	wells	containing	20	μL	of	PCR	product.	

Strip	cap	tubes	were	applied	to	the	96	well	plate	and	the	plate	was	agitated	on	a	vortex	for	10	

minutes	at	1400rpm	(room	temp)	to	resuspend	the	beads.	The	PyroMark	Q24	Vacuum	

workstation	(Qiagen,	Dusseldorf	Germany)	was	used	to	separate	DNA	strands	and	clean	

samples	prior	to	pyrosequencing.	The	sequencing	primers	were	diluted	to	0.3uM	(1	μL	of	100	

μM	in	333	μL	of	annealing	buffer	(cat	no	979009,	Qiagen))	and	25	μL	of	each	diluted	

sequencing	primer	was	added	to	the	final	pyroMark	Q24	plate	(corresponding	to	same	
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position	in	PCR	plate).		The	PyroMark	Q24	Vacuum	workstation	was	filled	with	the	

appropriate	reagents	in	each	of	the	trays	(70%,	ethanol,	denaturation	solution,	wash	buffer	

and	high	purity	water).	The	vacuum	pump	was	started	and	the	filter	probes	were	initially	

flushed	with	high-purity	water.	The	PCR	plate	was	removed	from	the	vortex	and	within	1	

minute	placed	on	the	workstation	in	the	same	orientation	to	the	PyroMark	Q24	plate.	With	the	

vacuum	switched	on,	prongs	of	the	vacuum	head	were	inserted	into	the	PCR	plate	to	aspirate	

PCR	bead	solution	with	care	taken	not	to	knock	beads	from	the	tips	of	the	vacuum	tool.	The	

vacuum	tool	is	passed	through	each	of	the	solutions	(with	vacuum	on)	containing	70%	

ethanol	(5	seconds),	denaturation	solution	(5	seconds)	and	wash	buffer	(10	seconds,	timed	

rigorously	using	an	electronic	timer).	The	vacuum	headset	was	held	at	a	90°	vertical	angle	for	

5	seconds	to	dry	the	beads.	With	the	vacuum	turned	off	the	prongs	of	the	headset	were	

inserted	into	the	PyroMark	Q24	plate	containing	the	sequencing	primers	and	agitated	to	

disperse	the	beads.	The	tool	was	rinsed	in	high	purity	water.	The	PyroMark	Q24	plate	was	

placed	within	the	plate	holder	and	positioned	in	a	thermal	cycler	at	80°	for	2	minutes.		The	

plate	was	allowed	to	cool	for	2	minutes	before	inserting	the	plate	into	the	PyroMark	Q24	

pyrosequencer.	The	pyrosequencer	cartridge	was	pre-filled	with	the	appropriate	volumes	of	

enzyme	solution,	substrate	solution	and	nucleotides	in	the	respective	slots	within	the	

cartridge.	Samples	were	run	in	duplicate.		

	

4.2.5	Statistical	analysis	

Analysis	was	initially	performed	using	pyromark	q24	software	(2.0.26)	using	default	quality	

assurance	settings	for	peak	height,	width	and	bisulphite	conversion	controls.	Samples	that	

either	passed	or	passed	with	caution	on	quality	assurance	pyromark	software	were	included	

in	analyses.	Data	were	extracted	from	pyromark	software	and	analyses	in	R	(version	3.2.2,	R	

statistical	programming,	Vienna	Austria).	The	coefficient	of	variation	(CV)	calculated	for	

duplicate	samples	and	samples	with	a	CV	of	≤	10%	were	included	in	analyses.	Wilcox	rank	

sum	test	was	used	to	compare	methylation	values	between	cases	and	controls.	Correlation	

between	beta	values	(450k	array	data)	and	methylation	percentages	(pyrosequencing)	was	

performed	using	Pearson’s	correlation	coefficient.		
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4.3	Results	

4.3.1	Technical	validation	of	450k	array	results	using	pyrosequencing		

A	subset	of	the	complete	adult	450k	cohort	was	used	to	technically	validate	the	most	

significant	DMP	(RPS6KA2)	and	DMRs	(VMP1,	IGTB2,	TXK,	and	WRAP73)	identified	using	the	

Illumina	450K	microarray	platform	using	pyrosequencing.	The	demographics	of	the	subset	of	

patients	used	for	pyrosequencing	are	displayed	in	Table	12.		

	

	 IBD	(n=130)	 Control	(n=101)	 p	Value	

Female	(%)	 51	(50.5%)	 47	(36.2%)	 0.3◊	

Age	in	years	 29.2	(25.9-42.4)	 30.7	(26	-38.9)	 0.9†	

Current	Smokers	
(%)	

36	(27.7%)	 20	(19.8%)	 0.2◊	

C-Reactive	Protein	 8.5	(3-33.5)	 2	(1-4.5)	 1.7e-05†	

Albumin	 34	(26.3-38)	 41	(38-43)	 2.3e-07†	

White	cell	count	 8.3	(5.8-12.3)	 5.7	(4.8-12.3)	 6.1e-07†	

Table	12	-	Patient	demographics	of	subset	of	adult	cohort	used	for	technical	validation	studies	

using	pyrosequencing	(Results	are	median	and	interquartile	range	unless	stated,	WCC=white	

cell	count,	CRP=C-reactive	protein,	IQR=	interquartile	range,	IBD=inflammatory	bowel	

disease,	†	=	Wilcoxon	rank	sum	test,	◊	=	χ2	test)		

The	pyrosequencing	results	strongly	correlated	with	450k	microarray	beta	values	for	all	DMP	

and	DMRs	tested	(Table	13,	Figure	28	upper	panel).	Technical	validation	demonstrated	

statistically	significant	differences	in	methylation	between	cases	and	controls	with	the	same	

direction	of	methylation	change	in	pyrosequencing	and	450k	arrays	was	observed	in	the	five	

DMRs	and	top	DMP	(Figure	28,	lower	panel).						
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Figure	28	-	Technical	validation	of	450k	microarray	results	using	pyrosequencing.	The	top	

panel	demonstrates	correlation	between	methylation	percentage	(pyrosequencing)	and	beta	

values	(450k	microarray).	The	red	dots	represent	IBD	cases,	and	the	blue	dots	represent	

controls.	The	bottom	panel	demonstrates	the	methylation	difference	(%)	between	IBD	cases	

(red)	and	controls	(blue)	using	pyrosequencing.	
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Pearson’s	

correlation	

coefficient	

Lower	CI	 Upper	CI	 P	value	

RPS6KA2	 0.89	 0.86	 0.92	 2.2e-16	

IGTB2	 0.8	 0.73	 0.85	 2.2e-16	

TXK	 0.8	 0.71	 0.86	 2.2e-16	

VMP1	 0.55	 0.43	 0.66	 1.2e-12	

WRAP73	 0.75	 0.68	 0.81	 2.2e-16	

Table	13	-	Technical	replication:	Correlation	coefficient	values	between	Methylation	450k	

microarray	and	pyrosequencing	for	same	samples.	CI	=	95%	confidence	interval		

4.3.2	Replication	of	450k	array	methylation	results	in	independent	cohorts	

Two	methods	were	used	to	provide	validation	of	differentially	methylated	positions	and	

regions;	validation	using	an	independent	previously	published	450k	cohort	in	paediatric	

Crohn’s	disease284	and	secondly	using	pyrosequencing	in	an	independent	cohort.		

	

4.3.2.1	Previously	published	Paediatric	Crohn’s	disease	DNA	methylation	

dataset	

There	was	a	strong	correlation	between	the	difference	in	beta	values	between	the	top	5000	

differentially	methylated	probes	in	CD	cases	and	controls	in	the	present	adult	dataset	and	our	

previously	published	early-onset	CD	methylation	data	(Figure	29,	Pearson’s	correlation	0.77,	

95%	confidence	interval	0.76-0.78,		p-value	<	2.2×10-16).284	Table	14	demonstrates	the	top	

DMPs	in	the	present	adult	450k	dataset	with	the	corresponding	probes	beta	methylation	

difference	and	level	of	statistical	significance	seen	between	CD	and	control	in	the	paediatric	

dataset.284		
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Figure	29	-	Correlation	between	DNA	methylation	Beta	values	in	Crohn's	disease	in	the	

present	adult	450k	dataset	and	the	paediatric	Crohn's	disease	dataset	(Appear	in	top	1000	

most	significant	differentially	methylated	probes	in	both	datasets	(blue),	adult	but	not	

paediatric	(red)	and	paediatric	but	not	adult	(green).	 	
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Rank	
CD	 Probe	ID	 Chr	 Gene	

Symbol	 Δβ	CD	
Holm	adj	
P	Value	
CD	

	
Paed	
CD	
rank	

Paed	
CD	Δβ	

Paed		
Holm	adj	
P	Value	

1	 cg175012
10	 chr6	 RPS6KA2	 -0.09	 3.82E-19	 	 2	 -0.11	 1.0E-09	

2	 cg186080
55	 chr19	 SBNO2	 -0.08	 1.00E-16	 	 29	 -0.14	 7.5E-05	

6	 cg093491
28	 chr22	 NA	 -0.05	 7.82E-13	 	 20	 -0.06	 6.3E-05	

3	 cg121707
87	 chr19	 SBNO2	 -0.05	 2.91E-14	 	 39	 -0.11	 1.9E-04	

5	 cg169369
53	 chr17	 VMP1	 -0.10	 1.19E-13	 	 4	 -0.16	 3.0E-08	

7	 cg129928
27	 chr3	 NA	 -0.06	 7.74E-11	 	 3	 -0.10	 2.4E-08	

12	 cg251146
11	 chr6	 NA	 -0.04	 6.84E-09	 	 102	 -0.04	 1.3E-03	

10	 cg024487
96	 chr1	 KCNAB2	 0.05	 2.98E-09	 	 2005	 0.05	 7.7E-02	

4	 cg120544
53	 chr17	 VMP1	 -0.09	 1.15E-13	 	 1	 -0.13	 8.9E-10	

21	 cg073985
17	 chr3	 NA	 -0.04	 3.40E-08	 	 27	 -0.06	 7.4E-05	

19	 cg136196
23	 chr7	 BBS9	 0.04	 2.31E-08	 	 13925	 0.03	 3.2E-01	

65	 cg167241
48	 chr1	 AGL	 0.03	 1.47E-06	 	 45887	 0.01	 5.2E-01	

16	 cg268044
23	 chr7	 ICA1	 0.04	 1.25E-08	 	 13175	 0.03	 3.1E-01	

17	 cg198212
97	 chr19	 NA	 -0.05	 1.83E-08	 	 9	 -0.08	 9.2E-06	

60	 cg229597
42	 chr10	 FRMD4A	 0.04	 1.08E-06	 	 6879	 0.04	 2.1E-01	

13	 cg035461
63	 chr6	 FKBP5	 -0.07	 6.84E-09	 	 59	 -0.08	 6.0E-04	

64	 cg010593
98	 chr3	 TNFSF10	 -0.04	 1.44E-06	 	 12	 -0.07	 1.2E-05	

25	 cg269553
83	 chr10	 CALHM1	 0.04	 4.04E-08	 	 38423	 0.01	 4.9E-01	

32	 cg106362
46	 chr1	 AIM2	 -0.04	 1.41E-07	 	 1736	 -0.05	 6.7E-02	

24	 cg189425
79	 chr17	 VMP1	 -0.05	 4.04E-08	 	 15	 -0.10	 2.5E-05	

Table	14	-	Table	comparing	top	DMPs	in	present	adult	450k	dataset		

	(yellow,	left	of	figure)	with	same	probes	in	previously	published	paediatric	Crohn's	disease	data	

from	Adams	et	al	(orange,	right	of	figure).	The	hatched	areas	related	to	results	for	Crohn’s	disease	

versus	controls.	Paed	=	Paediatric,	adj	=	adjusted,	CD	=	Crohn’s	disease,	IBD	–	Inflammatory	bowel	

disease		
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4.3.2.2	Independent	pyrosequencing	cohort	

The	most	significant	DMP	(RPS6KA2)	and	DMRs	(VMP1,	IGTB2,	TXK,	and	WRAP73)	occurring	

within	annotated	genetic	regions	were	replicated	in	an	independent	cohort	using	

pyrosequencing.	The	demographics	of	the	replication	cohort	can	be	seen	in	Table	15.		

	

	

CD	

(n=121)	

UC	

(n=119)	

Controls	

(n=	98)	

Age	
36.5	

(26.4-47.8)	

36.6	

(27.1-46.7)	

34.9	

(27.3-55.5)	

Females	(%)	 68	(57)	 74	(62)	 65	(66)	

Smoking	

status	
Current	(%)	 18	(15)	 7	(6)	 14	(14)	

Table	15	-	Patient	demographics	of	Independent	pyrosequencing	cohort		(data	presented	are	

medians	(interquartile	range)	except	where	specified)		

	

Significant	differences	in	methylation	were	seen	in	an	independent	cohort	of	IBD	cases	and	

controls,	for	the	DMP	(RPS6KA2,	IBD	versus	controls	p=1	×	10-9)	and	DMRs	(VMP1	p=1	×	10-6,	

IGTB2	p=2	×	10-7	and	TXK	p=4	×	10-10).	The	WRAP73	was	performed	in	a	subset	of	the	

independent	replication	cohort,	but	was	not	performed	in	the	entire	cohort	(IBD	[n=32],	

control	[n=17],	p=0.05,	Figure	70).	Each	assay	demonstrated	the	same	direction	of	

methylation	change	(Figure	30).		
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Figure	30	-	Validation	of	top	differentially	methylated	regions	and	position	using	

pyrosequencing	in	an	independent	cohort.	HC	=	healthy	control.	Wilcoxon	Rank	sum	test	used	

to	compare	groups.		
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When	broken	down	in	to	individual	disease	types,	both	CD	and	UC	demonstrated	methylation	

differences	in	the	same	direction	compared	with	controls	(Figure	31).		

	

Figure	31	–	Replication	pyrosequencing	in	individual	disease	types.	Methylation	differences	in	

Crohn's	disease	(CD)	and	ulcerative	colitis	(UC)	compared	to	healthy	controls	(HC)	and	

symptomatic	controls	(IB)	for	the	top	DMP	(RPS6KA2)	and	DMRs	(VMP1,	ITGB2,	TXK)		
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Discussion	

The	Illumina	450K	has	previously	been	extensively	validated	using	pyrosequencing.362		Like	

other	previous	450k	array-based	DNA	methylation	studies168,284,307,321,	this	study	

demonstrates	the	ability	to	technically	replicate	450k	array	findings	using	pyrosequencing.	

Pyrosequencing	and	450k	array	results	demonstrated	a	high	level	of	correlation	for	the	top	

DMP	(RPS6KA2)	and	most	DMRs	(VMP1,	IGTB2,	TXK,	and	WRAP73).	The	Illumina	450k	

platform	is	now	considered	a	relatively	mature	technology	and	technical	replication	is	

probably	not	required,	and	more	important	is	replication	of	findings	in	independent	cohorts	

(Prof	Stephan	Beck,	oral	presentation,	Infinium	HumanMethylation450	3rd	workshop	–	UCL	

April	2014).	Aside	from	the	present	study,	the	next	largest	blood	based	methylation	study	in	

IBD	has	been	published	by	McDermott	et	al.307	Whilst	this	study	used	a	large	cohort	of	both	

CD	and	UC	patients,	the	study	lacked	an	independent	replication	cohort	in	adult	peripheral	

blood	samples.	Instead	this	study	used	previously	published	data321	from	treatment-naïve	

mucosal	samples	form	children	with	IBD	and	controls.			

In	this	chapter	replication	in	an	independent	cohort	has	been	performed	using	two	methods:	

replication	using	an	independent	adult	cohort	with	pyrosequencing	and	secondly	by	utilising	

the	previously	published	paediatric	CD	450k	data.	The	independent	adult	cohort	used	for	

pyrosequencing	consisted	of	patients	with	established	disease	with	varying	degrees	of	active	

inflammation	and	exposure	to	therapeutics	and/or	surgery.	This	differs	from	the	discovery	

cohort	which	consisted	of	newly-diagnosed	patients.	As	previously	has	been	noted,	when	

designing	EWAS,	the	power	of	the	discovery	cohort	should	be	maximised	by	including	all	

possible	samples,	rather	than	keeping	samples	back	for	replication.202	Similarly,	including	

patients	at	a	different	time	points	in	the	disease	course	demonstrates	that	methylation	

changes	are	not	transient	around	the	time	of	diagnosis.	A	limitation	of	this	work	is	the	limited	

clinical	phenotypic	information	available	for	the	samples	used	in	the	independent	replication	

cohort.	Given	that	these	samples	were	obtained	from	patients	with	established	disease	with	

varying	levels	of	inflammation	at	the	time	of	sampling,	it	would	have	been	interesting	to	

correlate	methylation	data	with	routine	clinical	markers	of	inflammation	such	as	C-reactive	

protein.	An	interesting	subgroup	analysis	of	DNA	methylation	changes	in	mucosal	samples	of	

paediatric	treatment	naïve	IBD	demonstrated	that	following	treatment	of	active	IBD,	patients	

with	disease	in	remission	appeared	to	cluster	with	controls	on	principal	coordinate	analysis	

plots.321		
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A	further	limitation	of	this	validation	work	is	that	all	of	the	samples	included	in	both	

discovery	and	validation	cohorts	all	originate	from	the	same	geographic	location.	It	remains	to	

be	seen	if	methylation	changes	demonstrated	in	Scottish	samples	can	be	reproduced	in	

samples	of	similar	genetic	ancestry	living	in	geographically	remote	areas.	Newly-diagnosed	

IBD	patients	prospectively	recruited	as	part	of	large	consortia	studies	(IBD-

BIOM/CHARACTER)	may	provide	this	opportunity.	Should	it	not	be	possible	to	replicate	these	

findings	in	other	population,	it	may	be	possible	that	local	environmental	factors	lead	to	

specific	epigenetic	profiles,	and	this	may	contribute	to	differential	geographical	incidences	of	

complex	diseases	such	as	IBD.363			

Conclusion	

Persuasive	differences	in	DNA	methylation	associated	with	IBD	have	been	technically	

validated	and	replicated	in	more	than	one	independent	cohorts	increasing	confidence	in	the	

results.		
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Chapter	5.	Integrative	analysis	of	Genetic	and	DNA	

methylation	data	

Abstract	

Introduction	

IBD	has	a	strong	genetic	association	and	200	loci	have	been	associated	with	IBD.	Most	

variants	do	not	directly	affect	protein	structure,	but	may	exert	an	effect	through	alteration	of	

expression	(expression	quantitative	trait	loci).	It	is	also	known	the	genetic	variants	control	

methylation	and	there	has	been	increasing	interest	in	identifying	methylation	quantitative	

trait	loci	(meQTLs).			

Methods	

All	patients	with	450k	methylation	data	(Chapter	3)	were	genotyped	using	the	Illumina	

Human	CoreExome	BeadChip	microarray.	The	MatrixEQTL	package	was	used	to	identify	

meQTLs	and	eQTLs	using	DNA	methylation	data	and	expression	data	from	Chapters	3	and	6	

respectively.	A	GWAS	was	performed	using	Plink.	Mediation	between	genomics	and	

epigenomics	was	investigated	using	the	causal	inference	test.		

Results	

A	GWAS	did	not	demonstrate	any	significant	associations	with	IBD	following	correction	for	

multiple	testing.	Using	the	entire	dataset,	there	were	424,880	significant	associations	between	

SNPs	and	methylation	probes	in	cis	following	FDR	correction	for	multiple	testing.	There	were	

220	IBD-associated	meQTLs	with	an	FDR	adjusted	p	<0.05	(11,557	with	uncorrected	p<0.05)	

and	100	IBD-associated	expression	QTLs.		

When	considering	only	the	439	DMPs	identified	in	Chapter	3,	there	were	326	meQTLs	

including	74	independent	DMPs	and	292	independent	SNPs.	Two	of	the	five	DMRs	(VMP1,	

ITGB2)	demonstrated	significant	association	with	genetic	polymorphisms.	Methylation	in	the	

VMP1	region	was	significantly	associated	with	two	SNPs,	both	of	which	are	in	linkage	

disequilibrium	with	the	IBD-GWAS	SNP	(rs1292053)	(rs8078424,	distance=13072bp,	D’	=1,	

r2=0.43	and	rs10853015,	distance=185198,	D’	=	0.93,	r2=0.43).		
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Conclusions	

In	this	chapter	compelling	associations	have	been	made	between	germ	line	variation	and	DNA	

methylation	and	gene	expression.	VMP1	a	highly	significant	DMR	is	significantly	associated	

with	SNPs	in	linkage	disequilibrium	with	a	known	IBD-susceptibility	allele.	Quantitative	trait	

loci	may	be	a	mechanism	by	which	genetics	contributes	to	disease	variance.	Whilst	IBD-

associated	meQTLs	and	eQTLs	have	been	described,	these	appear	to	exist	independently	of	

each	other.		
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5.1	Introduction	

The	method	by	which	genetic	variants	associated	with	disease	lead	to	functional	changes	that	

cause	disease	is	still	poorly	understood.	Relatively	few	IBD-associated	genetic	variants	

directly	lead	to	changes	in	protein	structure	and	even	fewer	have	subsequently	demonstrated	

biological	effect	in	functional	studies.	Most	variants	described	occur	within	intergenic	or	non-

coding	regions.	Some	of	these	variants	occurring	within	gene	promotor	elements	may	exert	

their	effects	through	alteration	of	gene	expression.364	Such	loci	are	termed	expression	

quantitative	trait	loci	or	eQTLs.	Similarly,	gene	variants	may	exert	their	effect	by	alteration	in	

DNA	methylation	levels,365	by	methylation	quantitative	trait	loci	(meQTLs).	Methylation	at	

some	sites	within	the	genome	is	almost	entirely	under	genetic	control,	and	is	relatively	

common	throughout	the	genome.366	meQTLs	have	been	described	in	a	range	of	diseases	

including	colorectal	cancer,367	bipolar	disorder,368	osteoarthritis,369	rheumatoid	arthritis204	

and	type	II	diabetes	mellitus.366	In	IBD	to	date,	there	has	been	no	systematic	study	that	

investigates	genetic	control	of	DNA	methylation	and	the	assessment	of	disease	risk	for	such	

loci.		

Aims	

The	aims	of	this	chapter	were	

1. to	perform	a	genome-wide	association	study		

2. to	identify	methylation	quantitative	trait	loci	(meQTLs)	in	cis	

a. In	the	entire	dataset	

b. To	identify	disease-associated	meQTLs		

c. To	identify	cis	and	trans	meQTLs	associated	with	DMPs	identified	in	Chapter	

3	

3. to	identify	disease-associated	expression	quantitative	trait	loci	(eQTLs)	in	cis	

4. to	determine	whether	methylation	may	mediate	genetic	risk	
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5.2	Methods	

I	had	assistance	from	Dr	Nick	Kennedy	for	the	processing	and	analysis	of	genotype	data.	

5.2.1	Genotyping	

Genotyping	was	performed	at	the	WTCRF	by	Louise	Evenden	and	Tamara	Gilchrist.	In	total	

432	individual	patient	samples	were	genotyped.	The	Illumina	Human	CoreExome	BeadChip	

microarray	(HumanCoreExome	24v1-0_A)	was	used	to	assess	genotype	at	547,644	loci	

(HiScan	H166).			

5.2.2	Data	processing	

Genotypes	were	called	using	OptiCall370	and	plink371	(excluding	samples	with	less	than	95%	of	

genotyping	complete,	and	SNPs	with	a	genotyping	rate	of	less	than	95%).	A	sex	check	was	

performed	in	plink	that	uses	the	heterozygosity	rates	(Males	have	a	homozygosity	estimate	of	

>0.8,	whereas	females	have	homozygosity	rate	of	<0.2)	on	the	X	chromosome	and	flags	

samples	where	this	does	not	match	the	reported	sex	in	the	PED	file.	Principal	component	

analysis	(PCA)	was	performed	to	assess	the	influence	of	ancestry	on	genotype.	Samples	were	

removed	if	there	was	evidence	of	relatedness	(one	pair	removed	when	Identity	By	Descent	>	

0.1875).	

5.2.3	Genome-wide	association	study	

A	genome-wide	association	study	was	performed	using	Plink	(v1.07)	using	unimputed	data	

(545732	snps)	in	405	individuals.		

5.2.4	meQTL	analysis	

The	MatrixEQTL	R	package	(version	2.1.0)	was	used	to	study	associations	between	genotype	

and	methylation.372	For	cis	associations	a	distance	threshold	of	1Mb	was	used.	SNPs	with	a	

minor	allele	frequency	(MAF)	of	<5%	were	filtered	from	downstream	analyses	(<10%	for	

DMP	associated	meQTLs,	total	SNPs	included	n=241,795).	Associations	with	trans	effects	

were	investigated	within	the	chromosome	(to	save	on	computational	time)	and	across	the	

genome	for	DMPs.	Cis	associations	with	all	methylation	probes	(n=	448,363),	and	additionally	

both	cis	and	trans	effects	were	investigated	amongst	differentially	methylated	positions	

(n=439)	identified	in	chapter	3.	Age	and	sex	were	included	as	covariates,	and	for	specific	

disease-associated	meQTLs,	IBD	was	additionally	used	as	a	covariate	(using	the	
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modelLinear_cross	option).	A	Benjamini-Hochberg	False	discovery	rate	(FDR)	corrected	p	

<0.05	was	used	as	the	threshold	for	statistical	significance	for	disease	associated	meQTLs.301		

5.2.5	Causal	inference	test	

The	causal	inference	test	(CIT)	described	by	Millstein	et	al373	was	used	to	attempt	to	identify	

DNA	methylation	as	a	potential	mediator	between	genetic	variants	and	IBD	disease	status.		

This	technique	has	been	employed	before	for	linked	genetic	and	DNA	methylation	in	the	

context	of	allergy,374	Type	II	diabetes279	and	Rheumatoid	arthritis.204		In	order	to	determine	

mediation	all	of	the	following	criteria	must	be	met:	

1)	Genotype	and	disease	are	associated		L→	T	

2)	Genotype	is	associated	with	methylation	independent	of	disease	L	→	G|T	

3)	Methylation	is	associated	with	disease	independent	of	genotype	G	→	T|L	

4)	Genotype	is	not	independently	associated	with	disease	after	adjusting	for	methylation	L	X	

T|G		

A	similar	methodology	was	used	as	the	previously	published	paper	by	Liu	et	al.204	In	the	first	

step	only	methylation	probes	with	an	association	with	IBD	were	selected	(i.e.	DMPs	from	

Chapter	3).	In	the	second	step,	the	DMPs	were	assessed	for	genetic	association	using	

matrixEQTL	(as	described	above,	FDR	correction	for	multiple	testing).	Finally,	only	those	

DMPs	and	SNPs	satisfying	both	of	the	previous	criteria	(i.e.	meQTLs)	were	entered	into	the	

CIT	algorithm	using	the	R	package	cit.373	The	output	p	values	of	the	CIT	algorithm	were	

corrected	for	multiple	testing	using	Holm	adjustment.	Single	nucleotide	polymorphisms	

(SNPs)	were	assessed	for	linkage	disequilibrium	using	SNAP	using	both	r2	and	D’.375	 	
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5.3	Results	

Using	the	GenomeStudio	default	output,	total	number	of	samples	successfully	genotyped	was	

410	(432	total,	94.90%).	The	locus	success	rate	was	544,092	from	a	total	of	547,644	

(99.35%).	The	total	number	of	genotypes	returned	for	all	samples	was	98.2%.		When	

genotypes	were	recalled	using	OptiCall,	19	samples	failed	genoyping	(413	total,	95.6%)	and	2	

samples	failed	sex	mismatch	(Table	58	–	Samples	that	failed	quality	assurance	testing	either	

by	failing	genotyping).	

5.3.1	Genome-wide	association	study	

A	GWAS	was	performed	in	228	cases	and	177	controls	(212	males,	193	females)	using	data	

directly	obtained	from	genotyping	microarrays	(non-imputed	data).	The	total	genotyping	rate	

was	0.999574.	Following	correction	for	multiple	testing	there	were	no	SNPs	significantly	

associated	with	IBD	compared	with	control	(Table	16).		
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CHR	 SNP	 UNADJ	 GC	 BONF	
20	 rs1009737	 2.98E-06	 2.34E-05	 0.999	
16	 rs9926160	 5.87E-06	 4.10E-05	 1	
16	 rs9930603	 6.66E-06	 4.55E-05	 1	
9	 rs7875833	 1.65E-05	 9.62E-05	 1	
18	 kgp225519	 1.69E-05	 9.82E-05	 1	
16	 rs12709171	 1.78E-05	 0.000103	 1	
1	 rs6691048	 1.85E-05	 0.000106	 1	
1	 rs1894702	 1.85E-05	 0.000106	 1	
4	 rs724454	 2.32E-05	 0.000128	 1	
15	 rs2342120	 3.06E-05	 0.000161	 1	
18	 rs4530229	 3.23E-05	 0.000168	 1	
4	 rs17030327	 4.12E-05	 0.000206	 1	
16	 rs2346254	 4.61E-05	 0.000226	 1	
14	 exm-rs8022503	 5.37E-05	 0.000256	 1	
1	 rs2205895	 5.96E-05	 0.000279	 1	
1	 rs6028	 6.15E-05	 0.000286	 1	
6	 rs946351	 6.19E-05	 0.000288	 1	
23	 exm2268471	 6.30E-05	 0.000292	 1	
6	 rs3806095	 6.82E-05	 0.000312	 1	
3	 rs1461820	 7.08E-05	 0.000322	 1	
14	 rs2178785	 7.84E-05	 0.00035	 1	
20	 rs1381100	 7.99E-05	 0.000356	 1	
23	 rs5971983	 8.03E-05	 0.000357	 1	
6	 rs7764657	 8.35E-05	 0.000369	 1	
3	 rs7646881	 8.59E-05	 0.000378	 1	
18	 rs1561823	 8.64E-05	 0.00038	 1	
23	 rs4421510	 0.000102	 0.000436	 1	
15	 rs12899976	 0.000105	 0.000446	 1	
5	 exm-rs31489	 0.00012	 0.000498	 1	
5	 rs31489	 0.00012	 0.000498	 1	

Table	16	–	Genome	wide	association	study	of	IBD	versus	control	(CHR=chromosome,	

SNP=single	nucleotide	polymorphism,	unadj=	unadjusted	p	values,	GC=genomic-control	

corrected	p	value,	BONF=Bonferroni	adjusted	p	values)		
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5.3.2	Methylation	quantitative	trait	loci	(meQTLs)	

meQTLs	were	identified	in	cis	using	matrixEQTL	using	the	entire	cohort	(regardless	of	cases	

status,	cases	and	controls	combined	together).372		A	cis	distance	of	1	×	106	bp	(1	megabase)	

and	a	p	value	threshold	of	1	×	10-4	was	used.	A	minor	allele	frequency	threshold	of	>10%	was	

used.	There	were	424,880	meQTLs	in	cis	that	were	statistically	significant	below	a	threshold	

of	p	<	1	×	10−4	(FDR	p<0.05),	of	these	there	were	85,727	independent	SNPs.	The	top	meQTLs	

are	presented	in	Table	17	and	Figure	32.	As	a	positive	control,	the	SNP	probes	included	on	the	

Illumina	450K	strongly	associated	with	the	appropriate	SNP	on	the	genotyping	array	(e.g.	

rs715359	and	rs715359).	The	disease	status	was	not	included	as	a	covariate,	and	therefore	

these	meQTLs	are	not	disease-specific	(Figure	33).	A	list	of	574	(550	independent	SNPs)	

meQTLs	derived	from	whole	blood	has	previously	been	published	by	Van	Eijk.376	Of	550	

independent	SNPs,	140	(25.5%)	overlapped	with	whole	blood	meQTL	derived	from	the	

present	dataset.	
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SNP	
SNP	

chr	
SNP	pos	

Methylation	

probe	
meQTL_dist	 pvalue	 FDR	

rs17015259	 chr1	 209982923	 cg26035071	 516	 0.00E+00	 5.80E-302	

rs17266366	 chr6	 157199844	 cg23603995	 1196	 0.00E+00	 5.80E-302	

rs11239157	 chr10	 45078170	 cg02113055	 5650	 0.00E+00	 5.80E-302	

rs9535274	 chr13	 50194394	 cg08779649	 -160	 0.00E+00	 5.80E-302	

kgp10984609	 chr17	 43657257	 cg22968622	 -6322	 0.00E+00	 5.80E-302	

exm1331231	 chr17	 44248837	 cg22968622	 585258	 0.00E+00	 5.80E-302	

exm2253037	 chr17	 44249096	 cg22968622	 585517	 0.00E+00	 5.80E-302	

rs17585974	 chr17	 44249199	 cg22968622	 585620	 0.00E+00	 5.80E-302	

kgp10190983	 chr17	 44288281	 cg22968622	 624702	 0.00E+00	 5.80E-302	

rs2957297	 chr17	 44368212	 cg22968622	 704633	 0.00E+00	 5.80E-302	

rs12974071	 chr19	 41641134	 cg20242889	 323297	 4.6E-302	 1.13E-295	

rs1044516	 chr1	 209959614	 cg26035071	 -22793	 3.5E-299	 8.00E-293	

rs877707	 chr4	 7792662	 cg25817503	 4320	 5.2E-299	 1.16E-292	

rs4963867	 chr12	 25454578	 cg25134647	 -412	 3.0E-292	 6.37E-286	

rs1044013	 chr1	 154243115	 cg14859874	 4850	 1.6E-284	 3.22E-278	

rs652243	 chr11	 107470916	 cg22355889	 9331	 1.6E-283	 2.98E-277	

rs1939900	 chr11	 107471983	 cg22355889	 10398	 1.6E-283	 2.98E-277	

exm2271812	 chr12	 129288534	 cg09035930	 6477	 8.8E-277	 1.60E-270	

rs7611945	 chr3	 125677514	 cg05084668	 22133	 1.1E-271	 1.97E-265	

rs3762352	 chr1	 38156902	 cg24088508	 440	 1.4E-267	 2.35E-261	

	

Table	17	–	Top	table	of	Methylation	probes	that	are	significantly	associated	with	SNPs	

(meQTLs)	in	cis	in	entire	cohort	(cases	and	controls	combined	into	one	cohort).	Only	the	top	

association	for	each	SNP	is	shown.	There	are	a	number	of	methylation	probes	labelled	with	an	

‘rs’	number	and	denote	the	SNP	probes	included	by	Illumina	on	the	450k	microarray	that	have	

been	removed	from	this	table.	A	cis	distance	of	1	×	106	bp	(1	megabase)	and	a	p	value	

threshold	of	1	×	10-4	was	used.	A	minor	allele	frequency	threshold	of	>10%	was	used.		
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Figure	32	–	A	selection	of	the	top	meQTLs	(disease	non-specific)	in	cis	in	entire	cohort	(cases	

and	controls	combined	into	a	single	cohort).	The	title	of	each	panel	denotes	SNP	(first)	

followed	by	methylation	probe.	There	are	a	number	of	methylation	probes	labelled	with	an	

‘rs’	number	and	denote	the	SNP	probes	included	by	Illumina	on	the	450k	microarray.	A	cis	

distance	of	1	×	106	bp	(1	megabase)	and	a	p	value	threshold	of	1	×	10-4	was	used.	A	minor	

allele	frequency	threshold	of	>10%	was	used.		
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Figure	33	-	Top	meQTL	in	cis	(rs4130940	and	rs3936238)	are	similar	in	IBD	cases	and	

controls.	The	title	of	the	panel	denotes	SNP	(first)	followed	by	methylation	probe	(in	this	case	

an	Illumina	SNP	probe).	A	cis	distance	of	1	×	106	bp	(1	megabase)	and	a	p	value	threshold	of	1	

×	10-4	was	used.	A	minor	allele	frequency	threshold	of	>10%	was	used.		

5.3.3	IBD-associated	meQTLs	

meQTLs	were	identified	in	cis	using	matrixEQTL.	A	cis	distance	of	1	×	106	bp	(1	megabase)	and	

a	p	value	threshold	of	1×	104	was	used.	Age,	sex	and	IBD	status	were	used	as	covariates.	A	

minor	allele	frequency	threshold	of	>5%	was	used.	The	MAF	threshold	was	reduced	for	this	

analysis	in	an	attempt	to	be	more	inclusive	of	potential	IBD-associated	SNPs.	There	were	220	

IBD-associated	meQTLs	with	an	FDR	adjusted	p	<0.05	(11,557	with	uncorrected	

p<0.05)(Table	18).	A	Manhattan	plot	of	IBD-associated	meQTLs	is	presented	in	Figure	34.	

There	was	no	overlapping	SNPs	in	the	220	IBD-associated	meQTL	and	the	163	IBD-associated	

SNPs	described	by	Jostins	et	al.88	

	

	

	



132	

	

snps	 SNP	
chr	 SNP	pos	 Meth	Probe	 meQTL_dist	 	 pvalue	 FDR	

exm1617809	 22	 46644177	 cg10231785	 -48263	 	 3.74E-20	 6.19E-14	
exm-rs9261403	 6	 30069525	 cg23934075	 135828	 	 6.91E-21	 1.14E-13	
rs16995069	 22	 46643774	 cg10231785	 -48666	 	 9.76E-19	 8.09E-13	
kgp8465547	 22	 46614274	 cg10231785	 -78166	 	 9.99E-18	 5.52E-12	

exm-rs3891157	 6	 29988439	 cg23934075	 54742	 	 1.76E-16	 5.78E-10	
exm-rs7770505	 6	 30028913	 cg23934075	 95216	 	 1.76E-16	 5.78E-10	
exm-rs9261285	 6	 30036083	 cg23934075	 102386	 	 1.76E-16	 5.78E-10	
exm-rs6923832	 6	 30062058	 cg23934075	 128361	 	 1.76E-16	 5.78E-10	
exm-rs9261257	 6	 30022425	 cg23934075	 88728	 	 2.54E-16	 6.96E-10	
exm1617795	 22	 46643023	 cg10231785	 -49417	 	 2.04E-15	 8.44E-10	
exm-rs9260934	 6	 29957982	 cg23934075	 24285	 	 2.11E-15	 4.95E-09	
rs16995069	 22	 46643774	 cg07012999	 -48672	 	 2.01E-14	 6.65E-09	
rs3796352	 3	 52913279	 cg24616795	 -119612	 	 2.18E-15	 9.34E-09	
rs17331151	 3	 52844534	 cg24616795	 -188357	 	 4.14E-14	 6.29E-08	
exm2256083	 3	 52551010	 cg24616795	 -481881	 	 4.41E-14	 6.29E-08	
exm-rs6923856	 6	 29967529	 cg23934075	 33832	 	 5.79E-14	 9.63E-08	
exm-rs7758512	 6	 29970589	 cg23934075	 36892	 	 9.36E-14	 9.63E-08	
exm-rs6905157	 6	 29971548	 cg23934075	 37851	 	 9.36E-14	 9.63E-08	
exm-rs6926792	 6	 29985849	 cg23934075	 52152	 	 9.36E-14	 9.63E-08	
exm-rs6919617	 6	 29991699	 cg23934075	 58002	 	 9.36E-14	 9.63E-08	

Table	18	-	Top	Table	of	IBD-associated	meQTLs	in	cis		

(age	and	sex	as	covariates).	A	cis	distance	of	1	×	106	bp	(1	megabase)	and	a	p	value	threshold	

of	1×	104	was	used.	Age,	sex	and	IBD	status	were	used	as	covariates.	A	minor	allele	frequency	

threshold	of	>5%	was	used.	There	were	220	meQTLs	in	total	associated	with	IBD	status.		
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Figure	34	-	Manhattan	plot	demonstrating	IBD-associated	meQTLs	in	cis		(gene	annotations	

refer	to	the	methylation	probe,	*=methylation	probe	without	names	gene	annotation).	X-axis	

denotes	SNP	chromosomal	location.			
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	Figure	35	-	cg10231785	cis	meQTL	in	IBD	cases	and	controls	on	chromosome	22.	The	title	of	

each	panel	denotes	SNP	(first)	followed	by	methylation	probe.		

5.3.5	Expression	quantitative	trait	loci	(eQTLs)	

eQTLs	were	identified	in	cis	using	matrixEQTL.	A	cis	distance	of	1	×	10-6	bp	(1	megabase)	and	

a	p	value	threshold	of	1	×	104		was	used.	A	minor	allele	frequency	threshold	of	>10%	was	used.	

There	were	3,518	eQTLs	in	cis	that	were	statistically	significant	below	an	a	threshold	of	p	<	1	

×	10-4,	with	1,975	eQTLS	with	an	FDR	p<0.05.	The	top	eQTLs	are	presented	in	Table	19	and	

Figure	36.	The	disease	status	was	not	included	as	a	covariate,	and	therefore	these	eQTLs	are	

not	disease-specific	(Figure	36).	Of	the	431	independent	whole	blood	eQTLs	published	by	Van	

Eijk	et	al,376	20	SNPs	replicated	with	the	eQTLs	identified	in	the	present	dataset	(5%).	
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snps	
Gene	

expression	
probe	

SYMBOL	 CHR	 beta	 p	value	 FDR	

exm535799	 ILMN_1697499	 HLA-DRB5	 6	 -5.52	 2.91E-60	 1.84E-53	
rs8676	 ILMN_2399463	 VAV3	 1	 -1.49	 1.96E-33	 6.19E-27	

rs11150882	 ILMN_1707137	 C17orf97	 17	 -0.80	 3.45E-32	 7.27E-26	
rs9271170	 ILMN_1715169	 HLA-DRB1	 6	 -3.01	 7.50E-30	 9.81E-24	
rs7143764	 ILMN_1798177	 CHURC1	 14	 -1.50	 7.76E-30	 9.81E-24	
exm-

rs3135388	 ILMN_1697499	 HLA-DRB5	 6	 -3.88	 1.08E-28	 9.77E-23	

rs3129889	 ILMN_1697499	 HLA-DRB5	 6	 -3.88	 1.08E-28	 9.77E-23	
rs14139	 ILMN_1753164	 IPO8	 12	 -0.60	 1.41E-27	 1.11E-21	

rs10760117	 ILMN_3236498	 LOC253039	 9	 -0.80	 1.77E-27	 1.25E-21	
rs9270986	 ILMN_1697499	 HLA-DRB5	 6	 -3.90	 4.77E-27	 2.74E-21	
exm-

rs9271366	 ILMN_1697499	 HLA-DRB5	 6	 -3.90	 4.77E-27	 2.74E-21	

rs11150882	 ILMN_1713803	 C17orf97	 17	 -0.48	 5.30E-27	 2.79E-21	
rs521802	 ILMN_2209115	 MAK	 6	 -0.73	 1.35E-26	 6.58E-21	
rs7316477	 ILMN_1753164	 IPO8	 12	 -0.60	 2.52E-26	 1.06E-20	
rs6487927	 ILMN_1753164	 IPO8	 12	 -0.60	 2.52E-26	 1.06E-20	
rs3135005	 ILMN_1697499	 HLA-DRB5	 6	 -3.52	 3.34E-26	 1.26E-20	
rs11158568	 ILMN_1798177	 CHURC1	 14	 -1.49	 3.38E-26	 1.26E-20	
rs10771752	 ILMN_1753164	 IPO8	 12	 -0.60	 3.58E-26	 1.26E-20	
rs7197	 ILMN_1697499	 HLA-DRB5	 6	 -3.47	 3.96E-26	 1.32E-20	

rs1968871	 ILMN_2205322	 TREML4	 6	 -0.52	 1.14E-25	 3.60E-20	
Table	19	–	gene	expression	probes	associated	with	SNPs	(eQTLs)	in	cis	in	entire	cohort	

regardless	of	case	status		(n=67,	cases	and	controls	combined).	A	cis	distance	of	1	×	10-6	bp	(1	

megabase)	and	a	p	value	threshold	of	1	×	104		was	used.	A	minor	allele	frequency	threshold	of	

>10%	was	used.		
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Figure	36	-	Top	eQTLs	(disease	non-specific)	in	cis	in	entire	cohort	
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5.3.6	IBD-associated	expression	quantitative	trait	loci	(eQTLs)		

There	were	109	IBD-associated	eQTLs	in	cis	in	whole	blood	(Table	20).	There	were	no	

overlapping	SNPs	in	the	109	IBD-associated	eQTLs	and	the	163	IBD-associated	SNPs	

described	by	Jostins	et	al.88	

	

snps	
Gene	

expression	
probe	

SYMBOL	 CHR	 bet
a	 p	value	 FDR	

rs118774	 ILMN_1654663	 LOC642843	 17	 1.11	 2.69E-20	 1.70E-13	
rs1841955	 ILMN_1668521	 LIM2	 19	 1.01	 1.34E-18	 4.23E-12	
rs16913885	 ILMN_1747911	 CDC2	 10	 1.43	 1.76E-16	 3.71E-10	
rs1530947	 ILMN_1774336	 POLE2	 14	 1.42	 1.06E-13	 1.67E-07	
rs11063582	 ILMN_1670353	 RAD51AP1	 12	 0.53	 2.15E-12	 2.58E-06	
rs12809264	 ILMN_1700337	 TROAP	 12	 0.93	 2.81E-12	 2.58E-06	
rs1569579	 ILMN_1720114	 GMNN	 6	 1.26	 2.85E-12	 2.58E-06	
rs2214526	 ILMN_1700337	 TROAP	 12	 0.91	 4.39E-12	 3.47E-06	
rs4888984	 ILMN_1720526	 CENPN	 16	 1.56	 9.62E-12	 6.28E-06	
rs3788994	 ILMN_1720114	 GMNN	 6	 1.22	 9.93E-12	 6.28E-06	
rs2071917	 ILMN_1732198	 UTS2	 1	 0.48	 1.62E-11	 9.30E-06	
rs4733058	 ILMN_1673673	 PBK	 8	 0.69	 2.30E-11	 1.15E-05	
rs4545047	 ILMN_1673673	 PBK	 8	 0.68	 2.36E-11	 1.15E-05	
rs11778759	 ILMN_1673673	 PBK	 8	 0.68	 2.84E-11	 1.28E-05	
rs6598008	 ILMN_1711032	 IFITM5	 11	 0.43	 4.55E-11	 1.84E-05	
rs7927267	 ILMN_1711032	 IFITM5	 11	 0.43	 4.65E-11	 1.84E-05	
rs11754578	 ILMN_1720114	 GMNN	 6	 0.60	 5.58E-11	 2.08E-05	
rs3774473	 ILMN_1767523	 IL17RB	 3	 0.47	 7.37E-11	 2.59E-05	
rs6542248	 ILMN_2202948	 BUB1	 2	 1.26	 2.31E-10	 7.68E-05	
rs17637922	 ILMN_1760247	 CD70	 19	 0.75	 3.42E-10	 0.000105	
Table	20	–	Top	list	of	IBD-associated	eQTLs	in	whole	blood	in	cis		(age	and	sex	as	covariates).	

A	cis	distance	of	1	×	10-6	bp	(1	megabase)	and	a	p	value	threshold	of	1	×	104		was	used.	A	

minor	allele	frequency	threshold	of	>10%	was	used.		

5.3.7	Overlap	between	genetic	variants	associated	with	both	DNA	methylation	

and	gene	expression	

When	considering	the	220	IBD-associated	meQTLs,	there	were	145	unique	SNPs	and	for	the	

109	IBD-associated	eQTLs	there	were	97	unique	SNPs.	There	were	no	overlapping	SNPs	in	the	

list	of	meQTLs	and	eQTLs	in	whole	blood.	For	non-disease	associated	QTLs	(85,727	meQTLs,	

1627	eQTLs)	there	were	1384	overlapping	SNPs.	
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5.3.8	Causal	inference	test	

A	similar	methodology	was	used	as	the	previously	published	paper	by	Liu	et	al.204	

Step	1	–	identify	IBD-associated	DMPs	

In	the	first	step	the	439	Bonferroni-corrected	IBD-associated	DMPs	identified	in	Chapter	3	

were	carried	forward	for	meQTL	analysis.		

Step	2	–	Genotype	dependent	DMPs	

To	identify	genotype-dependent	DMPs,	the	439	significant	DMPs	were	analysed	using	

matrixEQTL	(MAF>10%,	cis	distance	1	megabase,	covariates	age,	sex,	cell	proportions,	no	

disease	covariate,	model_linear)	to	identify	326	meQTLs	(Table	60,	74	independent	DMPs,	

292	SNPs).		
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Table	21	-	Top	list	of	differentially	methylated	positions	(DMPs)	with	genetic	association	

(meQTL).	Only	the	top	SNP	association	is	shown	for	each	methylation	probe.	The	variables	

used	to	search	for	meQTLs	were	as	follows:	MAF>10%,	cis	distance	1	megabase,	covariates	

age,	sex,	cell	proportions,	no	disease	covariates.	The	table	is	ordered	according	to	the	

significant	of	the	DMP	in	the	IBD	vs.	Control	methylation	comparison	(DMP	rank,	P.Value	and	

Holm	Adjusted	P.Value	correspond	to	results	of	linear	modelling	carried	out	in	Chapter	3)	

rather	than	the	significance	test	of	the	association	between	SNP	and	methylation	probe	

(meQTL	rank).	The	results	of	the	significance	test	of	the	association	between	SNP	and	

methylation	probe	are	presented	in	columns	marked	meQTL	P	value	and	FDR	corrected	as	

meQTL	FDR	P	Value.		

	ProbeID	 Chr	 Meth	symbol	 Δβ	 P	
Value	

Holm	
adj	
P.Val	

DMP	
rank	 Top	SNP	 meQTL.	

P	Value	

meQTL.	
FDR	P	
Value	

meQTL.	
rank	

cg16936953	 17	 VMP1	 -0.09	 1.3E-19	 6.0E-14	 3	 rs8078424	 2.9E-07	 8.8E-05	 265	
cg12054453	 17	 VMP1	 -0.07	 4.0E-17	 1.8E-11	 9	 rs8078424	 4.4E-07	 1.2E-04	 284	
cg18942579	 17	 VMP1	 -0.05	 1.2E-15	 5.2E-10	 14	 rs10853015	 3.1E-07	 9.4E-05	 267	
cg02448796	 1	 KCNAB2	 0.04	 1.5E-14	 6.9E-09	 18	 rs546526	 2.2E-13	 2.5E-10	 71	
cg12582317	 17	 NA	 0.05	 5.7E-14	 2.5E-08	 20	 rs886926	 7.4E-35	 1.0E-30	 6	
cg16724148	 1	 AGL	 0.03	 1.2E-13	 5.4E-08	 22	 rs2640911	 3.4E-24	 1.4E-20	 20	
cg01409343	 17	 VMP1	 -0.04	 3.4E-12	 1.5E-06	 45	 rs10853015	 9.1E-07	 2.3E-04	 322	
cg16755922	 17	 FOXK2	 0.04	 1.5E-11	 6.8E-06	 61	 rs11658011	 1.3E-08	 5.9E-06	 176	
cg27023597	 17	 MIR21	 -0.03	 1.6E-11	 7.4E-06	 62	 rs10853015	 9.0E-07	 2.3E-04	 320	
cg02508743	 8	 LYN	 0.03	 4.3E-11	 1.9E-05	 80	 rs2719236	 2.3E-08	 1.0E-05	 184	
cg24469729	 7	 HOXA3	 0.03	 5.3E-11	 2.4E-05	 82	 rs2465276	 7.1E-16	 1.3E-12	 45	
cg14722693	 8	 CSGALNACT1	 -0.03	 6.8E-11	 3.0E-05	 86	 rs10107533	 1.3E-07	 4.5E-05	 232	
cg24707889	 21	 ITGB2	 0.03	 7.3E-11	 3.3E-05	 88	 rs2070946	 2.6E-11	 2.0E-08	 108	
cg08423142	 15	 MYO1E	 -0.02	 7.7E-11	 3.4E-05	 89	 rs17236536	 2.1E-07	 6.7E-05	 252	
cg12807764	 5	 NA	 0.04	 1.1E-10	 4.9E-05	 95	 rs17106769	 3.4E-11	 2.5E-08	 110	
cg02719954	 8	 NA	 0.04	 1.2E-10	 5.5E-05	 97	 rs1438455	 7.8E-11	 5.6E-08	 114	
cg02782634	 17	 VMP1	 -0.03	 1.3E-10	 5.8E-05	 99	 rs10853015	 2.3E-07	 7.3E-05	 258	

Step3	–	Perform	CIT	

The	causal	inference	test	was	performed	using	both	genotype	and	methylation	values	as	the	

potential	causal	mediator.		

Methylation	as	potential	causal	mediator	

When	using	methylation	as	the	potential	causal	mediator	with	genetics	as	the	instrumental	

variable	there	were	no	meQTLs	that	met	the	criteria	for	CIT	following	correction	for	multiple	

testing.	For	the	SNP	rs9789054	on	chromosome	17,	the	corrected	omnibus	CIT	was	p=0.06	for	

methylation	probes	cg12582317	and	cg12229367	(Figure	37).		
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Figure	37	-	rs10853015	association	between	genetics,	methylation	and	disease.	Top	left	panel	

demonstrates	the	association	between	genotype	(X-axis)	and	cg12229367	methylation	(beta-

values,	y-axis).	Top	right	panel	demonstrates	the	association	between	methylation	at	

cg12229367	and	IBD	case	status.	Bottom	panel	illustrates	the	proportion	of	IBD	cases	(left)	

and	controls	(right)	with	each	rs9789054	genotype.		



141	

	

Genetics	as	potential	causal	mediator	

When	using	genetics	as	the	potential	causal	mediator	with	methylation	as	the	instrumental	

variable,	there	were	two	meQTLs	that	demonstrated	a	statistically	significant	CIT.	The	

methylation	probe	cg03951877	(PHACTR1,	phosphatase	and	actin	regulator	1)	and	SNP	exm-

rs1332844	on	chromosome	6	demonstrated	a	significant	meQTL	association	(FDR	p	=	4.3×10-

36)	and	that	phenotype	was	significantly	associated	with	both	methylation	(Holm	p=1.9	×10-6)	

and	genotype	(Holm	p=0.003)	when	taking	methylation	into	account.	The	CIT	test	also	

suggested	that	methylation	was	independent	of	phenotype	given	the	genotype.	The	

methylation	probe	cg26126879	and	SNP	rs678839	pair	demonstrated	a	significant	

association	(meQTL,	FDR	p	=	6.2×10-53)	and	significant	CIT	omnibus	(Holm	p=0.01).	

Phenotype	was	associated	with	both	methylation	(Holm	p	=1.3×10-5)	and	genotype	given	

methylation	(Holm	p=0.01).		

VMP1/miR-21	locus	

Five	of	the	VMP1/miR-21	methylation	probes	were	significantly	associated	with	two	SNPs	

(rs8078424,	rs10853015)	on	chromosome	17	(Figure	38).	Using	the	CIT	with	genotype	as	the	

potential	mediator,	the	VMP1	methylation	probe	(cg16936953)	and	SNP	rs8078424,	there	

was	overall	causal	inference	(p=0.0007).	A	significant	association	between	phenotype	and	

methylation	(Holm	p=	2.2×10-13),	genotype	and	methylation	(FDR	p=	8.8×10-5)	and	genotype	

and	phenotype	given	methylation	(Holm	p=0.0007).	Furthermore	methylation	is	independent	

of	IBD	after	adjustment	for	genotype	(p=0).	Using	CIT	with	methylation	as	the	potential	

mediator,	the	overall	CIT	was	non-significant.	
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SNPs	
Methylat

ion	
probe	

meQTL	
FDR	p	
value	

Meth	
Probe	

CIT	
omni
bus	
P.val	

Pheno.	
assoc.
w.	

Meth	

Pheno.	
assoc.
w.	

Geno.	
Given	
.Meth	

Geno.	
assoc.	
w.	

Meth.	
given.	
Pheno	

Meth.	
indep.
of.	
Phen
o	

.given

.	Geno	

rs10853015	 cg02782634	 7.3E-05	 VMP1	 0.038	 1.2E-10	 0.02	 1.8E-08	 0	

rs8078424	 cg16936953	 8.8E-05	 VMP1	 0.0007	 2.2E-13	 0.0006	 4.7E-10	 0	

rs10853015	 cg18942579	 9.4E-05	 VMP1	 1	 3.3E-15	 0.001	 4.8E-10	 1	

rs8078424	 cg12054453	 0.0001	 VMP1	 1	 6.7E-16	 0.001	 6.2E-10	 1	

rs8078424	 cg02782634	 0.0002	 VMP1	 1	 1.2E-10	 0.02	 1.8E-08	 1	

rs10853015	 cg27023597	 0.0002	 MIR21	 1	 4.0E-11	 0.02	 9.6E-09	 1	

rs10853015	 cg01409343	 0.0002	 VMP1	 1	 1.5E-11	 0.01	 1.5E-09	 1	

Table	22	–	Causal	inference	test	(CIT)	for	VMP1/miR21	locus	(p	values	are	Holm	corrected	for	

7	tests	in	VMP1	locus).	The	meQTL	FDR	p	value	denotes	the	FDR	corrected	P	value	for	the	

association	test	between	genotype	and	methylation.	The	CIT	omnibus	p	value	represents	the	

overall	p	value	for	the	test	(represents	the	highest	p	value	of	the	other	4	tests).	Column	

explanation:	P	value	for	phenotype	association	with	methylation	probe.	P	value	for	Phenotype	

associates	with	genotype	following	adjustment	for	methylation.	P	value	for	Genotype	

association	with	methylation	following	adjustment	for	phenotype.	P	value	for	independence	

test	that	methylation	is	independent	of	phenotype	following	adjustment	for	genotype.		

The	known	IBD	risk	allele	identified	in	Jostins	et	al	on	chromosome	17	(rs1292053)	is	in	

linkage	disequilibrium	with	the	two	SNPs	identified	as	meQTLs	for	the	VMP1/miR-21	locus	

(rs8078424,	distance=13072bp,	D’	=1,	r2=0.43	and	rs10853015,	distance=185198,	D’	=	0.93,	

r2=0.43	[Figure	38	d,	SNAP	version	2.2,	Broad	institute375]).		
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Figure	38	–VMP1	methylation	associates	with	genotype	and	case	status.		(A-	top	left	panel)	

VMP1	(cg16936953)	is	related	to	the	rs8078424	genotype	(FDR	p=8.8	×	10-5)	and	case	status	

(B-top	right	panel).	There	is	some	variation	in	the	genotype	between	cases	and	controls	

(Cochran-Armitage	test	1df	χ2=4.7	uncorrected	p=0.03-	C	middle	panel).		D	-	Linkage	

disequilibrium	plot	in	the	VMP1	region	between	the	Jostins	et	al	IBD	GWAS	SNP	rs1292053	

(green	diamond)	and	the	SNPs	associated	with	VMP1	methylation	(rs10853015,	rs8078424	

blue	diamonds)	.	The	methylation	probes	including	the	VMP1	DMR	are	presented	as	red	

dots.(plot	created	using	SNAP)375			
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Integrin	β2	

Three	of	the	ITGB2	methylation	probes	were	associated	with	three	SNPs	(rs2070946,	

rs9306118,	rs2838738).	Although	there	were	associations	between	methylation	and	

phenotype	and	methylation	and	genotype	and	genotype	and	disease,	there	was	no	evidence	of	

independent	effect	or	overall	CIT	(both	p=1)	(Table	23).	The	ITGB2	SNPs	rs9306118	and	

rs2838739	are	in	LD	(distance=	6247,	r2=	0.562,	D’=0.775).	The	SNP	rs2070946	was	not	

included	in	this	LD	block	using	SNAP.	The	IBD	GWAS	SNP	(rs7282490)	is	approx.	725kb	

upstream	of	the	ITGB2	SNPs	and	is	not	in	LD.		
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Figure	39	-		ITGB2	(cg18663307)	is	related	to	the	rs9306118	genotype		and	case	status	.	

There	is	some	variation	in	the	genotype	between	cases	and	controls	(bottom	panel).	Top	left	

panel	demonstrates	the	association	between	genotype	at	9306118	(X-axis)	and	ITGB2	

cg18663307	methylation	(beta-values,	y-axis).	Top	right	panel	demonstrates	the	association	

between	methylation	at	cg118663307	(beta	values,	y-axis)	and	IBD	case	status.	Bottom	panel	

illustrates	the	proportion	of	IBD	cases	(left)	and	controls	(right)	with	each	rs9306118	

genotype	(y	axis=proportion	of	all	cases).		
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SNP	 Methylation	
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meQTL	
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value	

Meth	
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Pheno.	
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Given	
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Geno.	
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w.	Meth.	
given.	
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indep.of.	
Pheno	
.given.	
Geno	

rs2070946	 cg18663307	 1.2E-15	 ITGB2	 1	 4.9E-09	 0.004	 9.5E-20	 1	
rs9306118	 cg18663307	 4.6E-09	 ITGB2	 1	 4.9E-09	 0.2	 4.4E-12	 1	
rs2070946	 cg24707889	 1.9E-08	 ITGB2	 1	 3.2E-09	 0.04	 1.2E-12	 1	
rs9306118	 cg24707889	 8.8E-08	 ITGB2	 1	 3.2E-09	 0.2	 4.3E-11	 1	
rs2838738	 cg24707889	 2.1E-06	 ITGB2	 1	 3.2E-09	 0.2	 3.7E-10	 1	
rs2838738	 cg18663307	 6.9E-06	 ITGB2	 1	 4.9E-09	 0.2	 1.6E-09	 1	
rs9306118	 cg04321224	 4.5E-05	 ITGB2	 1	 1.4E-08	 0.3	 1.5E-08	 1	
Table	23	-	Causal	inference	test	for	ITGB2	locus		(p	values	are	Holm	corrected	for	7	tests	in	

ITGB2	locus).	The	meQTL	FDR	p	value	denotes	the	FDR	corrected	P	value	for	the	association	

test	between	genotype	and	methylation.	The	CIT	omnibus	p	value	represents	the	overall	p	

value	for	the	test	(represents	the	highest	p	value	of	the	other	4	tests).	Column	explanation:	P	

value	for	phenotype	association	with	methylation	probe.	P	value	for	Phenotype	associates	

with	genotype	following	adjustment	for	methylation.	P	value	for	Genotype	association	with	

methylation	following	adjustment	for	phenotype.	P	value	for	independence	test	that	

methylation	is	independent	of	phenotype	following	adjustment	for	genotype.		
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Discussion	

In	this	Chapter	the	disease-specific	genetic	basis	for	alteration	in	DNA	methylation	and	gene	

expression	was	pursued.	Systematic	genome-wide	data	was	available	for	all	three	analyses	

(genetics,	DNA	methylation	and	gene	expression)	and	was	integrated	to	identify	genetic	

variants	that	impact	upon	DNA	methylation	and	gene	expression.		

When	analysing	DNA	methylation	data	it	is	difficult	to	determine	whether	DNA	methylation	is	

a	cause	or	consequence	of	disease	(i.e.	chronic	inflammation).	A	method	of	inferring	cause	

(Causal	Inference	Test,	CIT)	has	been	developed	by	Millstein373	and	previously	used	on	

epigenetic	data	by	Liu204	and	Yuan279	in	the	context	of	complex	immune	diseases.	Given	that	

many	of	the	hitherto	describe	genetic	variants	do	not	exist	in	amino	acid	altering	positions,	

DNA	methylation	may	be	an	important	intermediary	between	genetics	and	disease.	Two	of	

five	DMRs	described	in	Chapter	3	have	significant	genetic	associations.	The	two	SNPs	that	

associate	with	DNA	methylation	in	the	VMP1/miR-21	locus	are	in	linkage	disequilibrium	with	

a	known	IBD-susceptibility	allele.86,88	This	finding	offers	the	tantalising	possibility	that	the	

known	IBD-susceptibility	SNP	mediates	its	effect	on	disease	via	DNA	methylation.	The	second	

DMR	with	a	significant	genetic	association	is	integrin	beta-2	(ITGB2).	Three	SNPs	associated	

with	ITGB2	methylation	are	relatively	close,	but	not	in	linkage	disequilibrium	with	another	

previously	described	IBD-susceptibility	allele	(rs7282490).	The	main	limitation	in	this	work	

(compared	with	the	previously	published	Rheumatoid	arthritis	study)	is	the	overall	lack	of	

power	to	determine	genetic	associations	between	disease	and	control.	The	lack	of	power	with	

regard	to	genetic	study	makes	the	overall	causal	inference	test	unlikely	to	be	significant	as	all	

tenants	of	the	test	(including	genotype	association	with	disease)	need	to	be	significant	to	

prove	an	overall	effect.	Whilst	this	technique	is	useful	in	understanding	genotype-DNA	

methylation	relationships,	observational	studies	such	as	the	present	work	are	unable	to	

definitively	prove	cause	and	effect.	

	

In	the	adult	whole	blood	cohort,	there	were	220	IBD-associated	meQTLs	and	109	IBD-

associated	eQTLs,	however	no	SNPs	overlapped	between	the	two	and	there	was	no	overlap	

with	known	IBD-associated	SNPs88.	This	demonstrates	that	genetic	variation	has	a	significant	

impact	on	site-specific	methylation,	however	the	same	SNPs	do	not	have	the	same	impact	

upon	gene	expression.	This	reflects	the	wider	scientific	literature	where	meQTLs	and	eQTLs	

largely	exist	independent	of	each	other	and	may	contribute	separately	to	variance	in	disease	
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suseptibility.368,377	The	absence	to	detect	shared	SNPs	between	eQTLs	and	meQTLs	may	in	

part	be	related	to	reduced	statistical	power	with	regard	to	the	gene	expression	experiments:	

only	14	controls	with	whole	blood	RNA	were	available	for	this	experiment.			

	

When	the	DMPs	identified	in	Chapter	3	were	investigated	for	a	genetic	association,	there	was	

only	one	significant	meQTL	in	cis	(CLINK)	and	no	significant	trans	meQTLs	following	

correction	for	multiple	testing.	This	suggests	that	the	DMPs	identified	in	Chapter	3	are	likely	

to	exist	independently	of	germline	variation.	This	work	has	focussed	on	the	local	impact	of	

genetic	variation	on	DNA	methylation	(and	gene	expression)	by	concentrating	on	cis	effects.	

Whilst	some	trans	effects	are	likely	to	exist,	there	is	some	debate	in	the	literature	on	their	

relative	importance	as	trans	or	distal	QTLs	do	not	appear	to	be	reproducible.378	Furthermore,	

the	large	number	of	independent	association	tests	warrants	stringent	correction	for	multiple	

testing.		

	

Independent	of	disease	status,	we	have	also	demonstrated	an	abundance	of	quantitative	trait	

loci	for	both	DNA	methylation	and	gene	expression	in	whole	blood.	meQTLs	are	common	

throughout	the	genome	and	a	study	in	adipose	tissue	demonstrated	that	28.5%	of	CpG	sites	

are	associated	with	SNPs.366	Many	of	the	disease-dependent	and	-independent	methylation	

and	expression	QTLs	were	found	in	the	major	histocompatibility	complex	(MHC)/human	

leukocyte	antigen	(HLA)	region	of	chromosome	6.	The	overrepresentation	of	MHC	eQTLs	in	

whole	blood	has	previously	been	described	in	healthy	individuals.379	It	is	noted	in	the	present	

dataset	that	several	expression	probes	(and	methylated	probes)	are	associated	with	the	same	

SNP.	The	MHC	region	is	known	to	harbour	many	genetic	variants	and	has	complex	and	

extended	linkage	disequilibrium	structures.379	Methylation	and	expression	QTLs	have	

previously	investigated	in	whole	blood	of	healthy	volunteers	using	the	Illumina	27K	

platform.376	When	attempting	to	validate	the	non-disease	specific	QTLs,	a	larger	proportion	of	

meQTLs	validated	(25%)	compared	to	eQTLs	(5%).	The	lack	of	eQTL	validation	may	relate	to	

sample	preparation	methods,	in	particular	the	method	of	whole	blood	collection,	RNA	

extraction	and	globin	clearance	step.		

	

In	this	chapter	a	limited	GWAS	study	was	performed	in	an	attempt	to	identify	or	corroborate	

known	IBD	genetic	associations.	Following	correction	for	multiple	testing,	no	significant	
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associations	were	identified.	Clearly	this	small	dataset	is	underpowered	to	detect	such	

differences.		

	

Conclusion	

In	this	chapter	compelling	associations	have	been	made	between	germ	line	variation	and	DNA	

methylation	and	gene	expression.	Quantitative	trait	loci	may	be	a	mechanism	by	which	

genetics	contributes	to	disease	variance.	Whilst	IBD-associated	meQTLs	and	eQTLs	have	been	

described,	these	appear	to	exist	independently	of	each	other.	
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Chapter	6.	Integrative	genome-wide	analysis	of	gene	

expression	and	DNA	methylation		

Abstract	

Introduction	

Relating	epigenetic	and	expression	data	has	been	a	major	challenge	in	the	field	of	epigenetics.	

Whilst	there	is	a	known	inverse	association	between	methylation	in	gene	promotor	regions	

and	gene	expression,	the	relationship	is	complex	and	unlikely	to	be	binary.	The	three	aims	in	

this	chapter	were:	(i)	to	define	the	genome	wide	expression	profile	in	samples	with	DNA	

methylation	data,	(ii)	to	perform	targeted	expression	profiling	of	DMRs	identified	in	chapter	3,	

and	(iii)	to	attempt	to	integrate	DNA	methylation	and	gene	expression	data.		

Methods	

Treatment	naïve	IBD	patients	and	controls	who	had	previously	undergone	DNA	methylation	

profiling	described	in	Chapter	3	had	gene	expression	profiling	using	the	Illumina	HT12	

expression	microarray	using	RNA	extracted	from	whole	blood	(PAXgene)	and	separated	cells.	

Globin	mRNA	transcripts	were	removed	from	whole	blood	samples	using	GlobinClear.	

Differentially	expressed	genes	were	identified	using	linear	models.	Targeted	gene	expression	

profiling	was	performed	using	qPCR	in	an	established	disease	cohort	using	RNA	extracted	

from	separated	PBMCs	and	Granulocytes.	Functional	epigenetic	modules	were	used	to	

integrate	DNA	methylation	and	gene	expression	data.		

Results	

There	were	47	differentially	expressed	genes	in	IBD	cases	compared	with	controls	in	whole	

blood	following	correction	for	multiple	testing.	There	were	no	differentially	expressed	genes	

in	any	of	the	separated	cell	types	following	correction	for	multiple	testing.	Specific	expression	

of	the	top	DMP	and	DMRs	was	investigated.	Expression	of	RPS6KA2	was	increased	at	one	

probe	and	decreased	at	another	in	IBD	cases.	There	was	decreased	expression	of	TXK	(log	fold	

change	=	-0.4,	uncorrected	p=7.2	×	10-5)	and	WRAP73	(log	fold	change	=	-0.1,	uncorrected	

p=0.005)	in	IBD	cases	which	is	compatible	with	the	hypermethylation	of	these	genes	

described	in	Chapter	3.	There	was	no	difference	in	VMP1	or	ITGB2	expression.	Using	qPCR	for	

targeted	expression	of	the	most	significant	DMP/Rs,	there	was	no	significant	difference	in	the	

expression	of	pre-miR21,	RPS6KA2	and	ITGB2	in	PBMCs	or	granulocytes	between	cases	and	
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controls.	Functional	epigenetic	modules	within	gene	networks	of	biological	relevance	were	

identified	in	whole	blood	for	IBD	as	well	as	CD	and	UC	separately.	

Discussion	

The	relationship	between	DNA	methylation	and	gene	expression	is	complex	and	is	likely	to	be	

cell	specific.	The	location	of	DNA	methylation	change	is	critical	when	associating	methylation	

with	altered	gene	expression.	Cell-specific	changes	in	gene	expression	were	seen	in	the	top	

DMRs	identified	in	chapter	3.	For	TXK	where	hypermethylation	occurs	within	the	

TSS/promotor	region,	a	reduced	gene	expression	in	whole	blood	and	CD8+	cells	was	

accompanied	by	a	statistically	significant	negative	correlation	with	DNA	methylation	in	

matched	samples.	Whilst	similar	convincing	differences	were	not	seen	for	the	other	DMRs/Ps,	

this	may	in	part	be	related	to	type	II	statistical	error	and	reflects	similar	experience	in	the	

wider	field	of	epigenetics.		
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6.1	Introduction	

The	5’-methylcytosine	modification	to	DNA	has	been	known	for	over	half	a	century.380	

However	real	interest	was	ignited	in	the	1970s	when	pioneers	such	as	Riggs,381	Bird382,383	and	

Cedars	and	Razin384	demonstrated	that	DNA	methylation	was	associated	with	altered	gene	

expression.	In	humans,	the	globin	gene	was	found	to	be	unmethylated	in	tissues	expressing	

globin,	but	heavily	methylated	in	non-expressing	tissues.385	

There	are	several	theories	as	to	the	underlying	mechanism	by	which	methylation	effects	gene	

transcription.	DNA-binding	transcription	factors	may	be	unable	to	bind	to	DNA	recognition	

sites	when	CpGs	are	methylated.383	Alternatively,	protein	complexes	(e.g.	MeCP2,	methyl-CpG-

binding	protein	2)	may	preferentially	bind	to	methylated	CpGs	and	act	as	repressors	to	

transcription	by	compacting	chromatin	structure	and	recruiting	co-repressors.383		Mutations	

in	the	MeCP2	gene	on	Chromosome	X	are	associated	with	Rett	syndrome,	a	rare	and	severe	

neurological	disorder.386	

The	relationship	between	epigenetic	modifications	and	overall	gene	expression	is	complex,	

and	unlikely	to	exist	in	a	simple	binary	inverse	relationship.	Most	CpG	islands	within	

transcription	start	sites	(TSS)	are	unmethylated.	It	is	now	relatively	well	established	that	CpG	

island	methylation	occurring	within	promotor	regions	and	transcription	start	sites	(TSS)	

inhibit	binding	of	transcription	factors	related	to	RNA	polymerase	and	thereby	inhibit	gene	

transcription	and	expression.387,388	Methylated	promotor	CpG	islands	are	associated	with	

long-term	repression	of	genes,	for	example	X	chromosome	inactivation	in	females.282,389A	

further	controversy	is	the	order	of	events;	DNA	methylation	may	occur	after	a	gene	has	been	

silenced,	thereby	serving	as	a	mechanism	to	reinforce	or	‘lock’	the	silent	status	of	the	gene.282	

The	murine	Hprt	gene	becomes	methylated	after	inactivation	of	the	X	chromosome.390		

The	field	is	controversial;	methylation	in	promotors	does	not	always	associate	with	gene	

silencing	and	approximately	half	of	promotors	do	not	contain	CpG	islands.388	Many	in	the	

scientific	community	feel	that	methylation	is	a	consequence	of	low	transcription	activity	

rather	than	a	cause.	It	is	not	known	whether	methylation	occurring	out-with	CpG	islands	can	

affect	gene	expression.282	The	relationship	between	expression	and	gene	body	methylation	is	

even	harder	to	unravel,	and	gene	body	methylation	has	been	correlated	with	both	increased	

and	decreased	gene	expression.391	Gene	bodies	generally	have	low	CpG	densities	and	are	

generally	methylated	and	gene	body	methylation	is	a	feature	of	transcribed	genes.	CpG	islands	
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do	rarely	occur	within	gene	bodies,	and	are	generally	unmethylated,	but	can	also	be	

methylated	in	a	tissue	specific	manner.282	

	

With	the	expansion	in	the	number	of		DNA	methylation	studies	with	complementary	gene	

expression	datasets,	there	has	been	a	focus	on	developing	methods	to	integrate	the	two	data	

types.392		The	FEM	package	(Functional	epigenetic	modules)	has	been	developed	as	a	

supervised	method	to	identify	epigenetically	regulated	gene	networks/pathways	based	on	an	

existing	protein-protein	interaction	map.392,393	This	method	has	been	used	to	integrate	27k	

DNA	methylation	data	and	PPI	networks	in	the	context	of	endometrial	cancer394	and	stem	cell	

differentiation.395			

	

6.1.2	Aims	

1. Define	the	whole	genome	gene	expression	profile	in	whole	blood	and	separated	cells	

in	the	same	patients	with	DNA	methylation	data	in	previous	chapters	

a. Determine	the	effect	of	globin	mRNA	on	whole	blood	gene	expression	

profiling	

2. Targeted	gene	expression	profile	of	top	differentially	methylated	regions	

demonstrated	in	previous	chapter	

3. Integrate	DNA	methylation	and	gene	expression	data	

	

6.2	Methods	

6.2.1	Patient	selection	

Recruitment,	sampling	and	cell	separation	of	samples	from	IBD	patients	and	controls	is	

described	in	Chapter	2.	For	Illumina	gene	expression	arrays	a	subset	of	the	same	cohort	as	

used	for	DNA	methylation	array	experiments	(Chapter	3)	was	used.	For	selection	of	this	

subset	of	patients,	priority	was	given	to	study	subjects	with	cell	separation	data.	An	

independent	cohort	of	patients	with	established	IBD	with	separated	PBMC	and	granulocyte	

RNA	was	also	used	for	gene	expression	analysis	using	qPCR	described	in	this	chapter.	There	is	

some	overlap	of	patients	used	in	the	qPCR	and	microarray	experiments.	



155	

	

6.2.2	Whole	Blood	PAXgene	RNA	clean-up	and	concentration	

RNA	extraction	from	PAXgene	blood	tubes	is	described	in	methods	chapter	2.4.6.	Given	that	

the	extracted	RNA	from	PAXgene	blood	tubes	was	eluted	in	Qiagen	buffer	BR5	(Qiagen,	

Dusseldorf)	it	was	not	possible	to	concentrate	RNA	samples	using	a	vacuum	centrifuge	(Speed	

vac).	As	a	result,	the	Qiagen	MinElute	RNA	cleanup	kit	was	used	to	both	clean	up	and	

concentrate	the	whole	blood	RNA	samples	extracted	from	PAXgene	tubes.	The	MinElute	kit	

uses	a	silica	membrane	and	a	column	based	technique	to	purify	and	concentrate	RNA.	The	

column	enriches	the	sample	for	RNA	with	nucleotides	>200nt,	and	therefore	excluded	

microRNAs.	Up	to	10	μg	of	RNA	was	concentrated	for	use	in	downstream	reactions	(maximum	

capacity	45	μg).	In	all	cases,	the	appropriate	volume	of	sample	was	made	up	to	100	μL	with	

RNAse	free	water.		To	the	sample,	350μL	of	buffer	RLT	and	250μL	of	100%	ethanol	was	

added,	and	mixed	by	pipetting.	The	sample	was	transferred	to	the	RNeasy	MinElute	column	

and	centrifuged	at	10,000	×	g	for	15	seconds,	and	the	flow	through	discarded.	To	the	spin	

column,	500μL	of	buffer	RPE	was	added	and	centrifuged	at	10,000	×	g	for	15	seconds,	and	the	

flow	through	discarded.	The	same	step	was	repeated	using	500	μL	of	80%	ethanol.	The	

membrane	was	dried	by	centrifuging	the	empty	column	for	5	minutes	at	maximum	speed	with	

the	lid	open.	The	RNA	sample	was	eluted	in	14	μL	of	buffer	BR5	from	the	PAXgene	blood	RNA	

kit	(centrifuged	for	1	minute	at	10,000	×	g).		The	sample	was	denatured	by	heating	on	a	heat	

block	at	65	°C	for	5	minutes.	

Determine	the	effect	of	globin	mRNA	on	whole	blood	gene	expression	profiling	

6.2.3	Removal	of	globin	mRNA	from	PAXgene	whole	blood	RNA	samples	

Globin	mRNA	was	removed	from	whole	blood	PAXgene	RNA	using	the	GlobinClear	kit	

(Ambion,	Life	Technologies	USA).	Up	to	10	μg	of	total	RNA	derived	from	PAXgene	was	used	

per	GlobinClear	preparation.	PAXgene	RNA	samples	were	extracted	as	described	in	section	

2.4.6	and	concentrated	into	up	to	14	μL	according	to	section	7.2.2.	Prior	to	starting	the	bead	

resuspension	mix	was	prepared	by	combining	per	reaction;	RNA	binding	beads	(10	μL);	RNA	

bead	buffer	(4	μL);	and	100%	isopranolol	(6	μL).	The	Steptavidin	binding	beads	were	

prepared	by	aliquoting	30	μL	of	newly	resuspended	beads	into	a	1.5mL	RNAse	free	tube.	The	

Steptavidin	beads	were	placed	on	a	magnetic	capture	stand	for	3-5	minutes,	and	the	

supernatant	was	aspirated	without	disturbing	the	bead	pellet	and	the	same	volume	of	
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Steptavidin	bead	buffer	was	added.	The	bead	mixture	was	mixed	and	incubated	at	50	°C	for	15	

minutes	in	a	hybridisation	oven.		

After	preparation	of	bind	beads,	1	μL	of	Capture	Oligo	Mix	was	added	to	the	total	RNA	sample	

(in	14	μL)	to	make	up	a	final	volume	of	15	μL.	To	the	sample,	15	μL	of	2X	Hybridisation	buffer	

was	added	and	the	sample	was	mixed.	The	sample	was	incubated	at	50	°C	(in	hybridisation	

oven)	for	15	minutes	to	hybridise	globin	mRNA	and	globin	capture	oligonucleotides.	The	

globin	mRNA	was	removed	by	adding	the	pre-prepared	and	pre-heated	streptavidin	beads	to	

each	sample	(30	μL	per	sample),	mixed	and	incubated	at	50	°C	for	30	minutes.		Steptavidin	

beads	bound	to	globin	mRNA	were	magnetically	captured	by	placing	on	magnetic	capture	

stand,	with	the	aspirated	supernatant	containing	the	globin	depleted	RNA	sample,	which	was	

transferred	to	a	new	tube.		

The	sample	underwent	clean	up	in	a	second	stage	by	binding	the	enriched	RNA	sample	to	a	

second	set	of	magnetic	beads	(Bead	resuspension	mix,	prepared	earlier),	and	washed	twice.	

To	each	sample,	100	μL	of	RNA	binding	buffer	and	20	μL	of	bead	resuspension	mix	(prepared	

earlier)	were	added	and	mixed.	The	sample	was	mixed	and	following	magnetic	capture,	the	

supernatant	was	discarded.	The	beads	bound	to	the	globin	depleted	RNA	were	washed	by	

adding	200	μL	of	RNA	wash	solution,	before	magnetic	capture	and	the	supernatant	discarded.	

The	beads	were	air	dried	for	5	minutes	by	leaving	the	tubes	with	caps	off	on	the	magnetic	

stand	at	room	temperature.	The	globin	mRNA	depleted	RNA	sample	was	eluted	from	the	

beads	by	adding	30	μL	of	pre-warmed	(58	°C)	elution	buffer	and	incubated	at	58°C	for	5	

minutes.	The	beads	were	finally	magnetically	captured	and	the	supernatant	containing	globin	

mRNA	depleted	RNA	was	aspirated	and	transferred	to	a	new	RNase	free	tube.	The	GlobinClear	

RNA	sample	was	quantified	using	the	nanodrop.		

6.2.4	RNA	amplification	and	biotin	labelling	

Total	RNA	extracted	from	separated	cells	(section	2.4.2),	whole	blood	(section	2.4.1),	or	

GlobinClear	PAXgene	tube	(Sections	2.4.6,	7.2.2	&	7.2.3)	was	amplified	using	the	Illumina	

TotalPrep	RNA	Amplification	Kit	(Ambion,	Life	Technology).	Prior	to	amplification	RNA	

quality	was	assessed	using	the	Agilent	BioAnalyzer	(section	2.5.2).	An	input	quantity	of	250ng	

of	RNA	was	used	for	all	amplifications/expression	experiments	based	on	the	nanodrop	

spectrophotometry	result.		At	each	stage	the	appropriate	‘master	mix’	was	made	up	on	ice	

according	to	the	number	of	samples,	in	a	nuclease	free	1.5mL	Eppendorf	tube	by	adding	the	

following	in	order.	The	volumes	of	each	component	specified	below	were	multiplied	
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according	to	the	number	of	samples	to	be	amplified	(+	1.05*nsamples	overage	for	pipetting	

error).	The	master	mix	was	mixed	using	a	vortex	and	briefly	centrifuged	to	collect	at	the	

bottom	of	the	tube,	and	kept	on	ice	until	required.		

i)	Reverse	Transcription	to	Synthesise	First	strand	of	cDNA	

The	volume	required	to	obtain	250ng	of	total	RNA	was	calculated	(maximum	of	11	μL)	and	

inserted	into	an	RNAse-free	0.2mL	strip	cap	PCR	tube	(Ambion).	Nuclease-free	water	was	

added	to	make	the	total	volume	up	to	11	μL.	A	reverse	transcription	master	mix	was	made	up	

according	to	the	appropriate	number	of	samples.	The	master	mix	contained	T7Oligo(dT)	

Primer(1	μL/sample),	10X	First	Strand	Buffer	(2	μL),	dNTP	Mix	(4	μL),	RNase	Inhibitor	(1	μL	)	

and	ArrayScript(1	μL	).	To	each	sample,	9	μL	of	reverse	transcription	master	mix	was	added,	

mixed	by	pipetting	up	and	down	3	times	and	flicking	the	side	of	the	tube	3	times,	and	

centrifuged	briefly	to	collect	at	the	bottom	of	the	tube.	The	samples	were	placed	in	a	

preheated	thermal	cycler	for	2	hours	at	42	°C(lid	temp	50	°C).			

ii)	Second	Strand	synthesis		

Following	incubation	samples	were	removed	from	the	thermocycler,	centrifuged	briefly	and	

placed	on	ice.	The	Second	strand	master	mix	was	made	up	by	adding	the	following	in	order:	

Nuclease	free	water	(63	μL/sample);	10X	Second	Strand	Buffer	(10	μL);	dNTP	Mix	(4	μL);	

DNA	polymerase	(2	μL);	and	RNase	H	(1	μL).	To	each	sample,	80	μL	of	mastermix	was	added,	

mixed	by	pipetting	up	and	down	3	times	and	flicking	the	side	of	the	tube	3	times,	and	

centrifuged	briefly	to	collect	at	the	bottom	of	the	tube.	The	samples	were	placed	in	a	

preheated	thermal	cycler	for	2	hours	at	16	°C	(lid	heat	disabled	between	16	°C	and	room	

temperature).			

iii)	cDNA	Purification	

Prior	to	completion	of	the	incubation,	20	μL	of	nuclease-free	water	(per	sample)	was	

preheated	to	55	°C	using	a	heat	block.	Following	incubation	samples	were	removed	from	the	

thermocycler	and	transferred	to	a	0.6mL	nuclease-free	Eppendorf	tube.	To	each	sample,	250	

μL	of	cDNA	binding	buffer	was	added,	mixed	by	pipetting	up	and	down	3	times	and	flicking	

the	side	of	the	tube	3	times,	and	centrifuged	briefly	to	collect	at	the	bottom	of	the	tube.	The	

sample	was	immediately	transferred	to	a	cDNA	filter	cartridge	within	a	2	mL	tube,	and	

centrifuged	at	10,000	×	g	for	1	minute.	The	flow	through	was	discarded	and	500	μL	of	wash	

buffer	was	added	to	the	cartridge,	and	centrifuged	at	10,000	×	g	for	1	minute.	The	flow	
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through	was	discarded	and	the	empty	cartridge	and	tube	centrifuged	at	10,000	×	g	for	1	

minute	to	dry	the	column.	The	cDNA	was	eluted	using	20	μL	of	preheated	nuclease	free	water	

(55	°C)	added	to	the	cartridge	filter,	incubated	at	room	temperature	for	2	minutes,	and	

centrifuged	at	10,000	×	g	for	1	minute.		

iv)	in-Vitro	Transcription	to	synthesize	cRNA	

The	eluted	cDNA	sample	from	the	previous	step	(~17.5-20	μL)	was	transferred	to	a	labelled	

0.2mL	strip	cap	PCR	tube.	An	IVT	master	mix	was	made	up,	containing:	T7	10X	reaction	buffer	

(2.5	μL/sample);	T7	Enzyme	mix	(2.5	μL);	and	Biotin	NTP	Mix	(2.5	μL).	To	each	sample,	7.5	μL	

of	master	mix	was	added,	and	transferred	to	a	preheated	thermocycler	(3	7°C,	lid	100	°C)	for	

14	hours	for	the	in-vitro	transcription	reaction.	Following	the	14	hour	incubation	(usually	

overnight),	the	sample	was	held	at	4°C.	The	reaction	was	stopped	by	adding	75	μL	of	nuclease	

free	water	to	each	sample	to	a	total	volume	of	100	μL.		

v)	cRNA	purification	

Prior	to	completion	of	the	incubation,	200	μL	of	nuclease	free	water	(per	sample)	was	

preheated	to	55°C	using	a	heat	block.	Samples	were	transferred	to	a	0.6	mL	nuclease	free	

Eppendorf	tube.	To	each	sample,	350	μL	of	cDNA	binding	buffer	was	added,	mixed	before	

immediately	proceeding	to	the	next	step.	To	each	sample,	250	μL	of	100%	ethanol	was	added	

and	mixed.	The	sample	was	immediately	transferred	to	a	cRNA	filter	cartridge	within	a	2	mL	

tube,	and	centrifuged	at	10,000	×	g	for	1	minute	(delay	may	result	in	precipitation	of	sample).	

The	flow	through	was	discarded	and	650	μL	of	wash	buffer	was	added	to	the	cartridge,	and	

centrifuged	at	10,000	×	g	for	1	minute.	The	flow	through	was	discarded	and	the	empty	

cartridge	and	tube	centrifuged	at	10,000	×	g	for	1	minute	to	dry	the	column.	The	cRNA	was	

eluted	using	200	μL	of	preheated	nuclease	free	water	(55°C)	added	to	the	cartridge	filter,	

incubated	at	55°C	for	10	minutes	in	a	heat	block,	and	centrifuged	at	10,000	×	g	for	1	minute.		

6.2.3	Quality	and	quantity	assessment	of	cRNA	

Quality	assessment	using	the	Agilent	BioAnalyzer	

cRNA	samples	were	assessed	using	a	nanoChip	either	using	the	total	RNA	or	mRNA	settings	

on	the	BioAnalyzer	instrument	as	described	in	Chapter	2.	The	expected	gel	appearance	of	

cRNA	is	a	‘smear’,	with	a	distribution	of	cRNA	size	is	expected	between	250	to	5500	

nucleotides,	with	most	cRNA	between	1000-1500	nt.	Samples	were	also	quantified	using	the	

nanodrop	spectrophotometer	(See	Chapter	2).		
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6.2.4	Expression	microarrays		

Expression	microarray	profiling	was	performed	at	the	Wellcome	Trust	Clinical	Research	

Facility	by	Tamara	Gilchrist	and	Louise	Everden.	The	cRNA	samples	were	prepared	to	a	

concentration	of	150	ng/μL.	Illumina	HT12	human	v4	expression	microarrays),	using	a	

hybridisation	time	of	18	hours	at	58	°C.		

6.2.5	Data	processing	and	analysis	

Raw	data	

Data	were	analysed	using	the	lumi285	and	limma396	packages	in	R	(R	foundation	for	Statistical	

programming,	Vienna).	The	raw	data	from	the	Illumina	HT12	array	were	read	into	R	using	the	

lumiR.batch	function.	There	were	some	inconsistencies	in	the	gene	annotation,	therefore	the	

probe	profile	txt.	files	were	used	instead	of	the	gene	profile	files.		The	object	type	created	was	

a	lumiBatch	object.		

Quality	control	

The	general	quality	of	the	raw	data	were	assessed	using	several	functions	(summary,	density	

plot,	pairs	plot	and	cumulative	distribution	function	[CDF]	plot,	density	plot	of	coefficient	of	

variance).	Outlying	samples	were	excluded	on	the	basis	of	cell	type	clustering	principal	

component	analysis	(PCA)	plots	and	presumed	to	have	been	mislabelled.		

Background	adjustment	and	normalisation	

Background	correction	was	performed	using	the	bgAdjust	function.	As	the	probe	profile	file	

does	not	contain	control	probe	information,	control	probe	information	was	added	to	the	

control	data	slot.	Variance	stabilisation	was	performed	to	transform	samples	to	possess	a	

similar	variance.	This	was	required	prior	to	downstream	differential	gene	expression	

statistics.	The	quantile	method	was	used	to	normalise	the	data	(lumiN	function).	Each	cell	

type	was	normalised	separately.		

Data	Analysis	

Data	were	analysed	using	the	R	package	limma	using	a	linear	model	with	age	and	sex	as	

covariates.	Gene	ontology	was	performed	using	goSeq	on	differentially	expressed	genes	(FDR	

<0.05).	Gene	Ontology	analysis	was	corrected	using	with	a	Benjamini-Hochberg	(FDR	p<0.05).		
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Targeted	gene	expression	profile	of	top	differentially	methylated	regions	

6.2.7	Primer	design	

The	NM	(NCBI	Reference	Sequence)	number	for	desired	mRNA	targets	identified	in	previous	

chapters	(e.g.	DNA	methylation)	were	obtained	from	NCBI	Nucleotide	search	engine	

(http://www.ncbi.nlm.nih.gov/nuccore/).	Primers	were	designed	using	the	NCBI	primer	

design	tool	(http://www.ncbi.nlm.nih.gov/tools/primer-blast/)	using	default	options	except	to	

include	exon-spanning	junctions	(limits	amplification	to	mRNA	only)	and	for	primer	pairs	to	

include	at	least	one	intron	on	the	corresponding	genomic	DNA	(to	distinguish	between	

amplification	of	mRNA	and	genomic	DNA	as	the	latter	is	much	longer	due	to	presence	of	an	

intron).	The	in-silico	PCR	tool	on	the	UCSC	genome	browser	(https://genome.ucsc.edu/cgi-

bin/hgPcr)	was	used	to	assess	uniqueness	of	primer	sequences.	The	four	reference	and	target	

gene	sequences	are	displayed	in	Table	24.	The	reference	genes	(GAPDH,	TBP,	SDHAP1,	ACTB)	

were	selected	due	to	their	previous	stability	of	expression	in	leukocytes	(specifically	

neutrophils	and	T-Cells).284,397	

Table	24	-	PCR	Primer	Sequences	

Reference	Genes	 Forward	 Reverse	

GAPDH	 TCATCTCTGCCCCCTCTGCT CGACGCCTGCTTCACCACCT 

TBP	 TGCCCGAAACGCCGAATATA TTTCTTGCTGCCAGTCTGGA 

SDHAP1	 AGGGCATCTGCTAAAGTTTCAGA GATTCCTCCCTGTGCTGCAA 

ACTB	 GCCAGCTCACCATGGATGAT AATCCTTCTGACCCATGCCC 

Target	Genes	 	 	

IGTB2	 AGGAGGAGCTGAGAGGAACAG CTGAGAGAGGACGCACCCG 

Pri-MiR21	 ATGGGCTGTCTGACATTTTGGTA CATTGGATATGGATGGTCAGATGA 

SBNO2	 CAAGATGGCGCCCGAAAC TGGAACAGCTTATCGTGGGT 

RPS6KA2	 GCCACCCTAAAAGTTCGGGA GGGGTGATTCACTTCTGCCA 
WRAP73	 AGTCAGTTCCTGGCAGTTGG ATGTTGTCGTTCCTTGTCGC 

TXK	 TTGTGAGTAGAGCACCGCAG GGCAGCCTCCGTACTTCTTC 

	

6.2.8	qPCR	experimental	work	

Total	RNA	was	extracted	from	separated	cells	as	detailed	in	Chapter	2.	RNA	(500	ng	input)	

was	converted	to	first-strand	cDNA	using	SuperScript	VILO	cDNA	synthesis	Kit	(Invitrogen,	
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Life	Technologies).	A	master	mix	of	5XVILO	reaction	and	10XSuperScript	Enzyme	reagents	

was	created	and	mixed	with	RNA	samples.	Incubations	were	as	follows;	25	°C	for	10	minutes,	

42	°C	for	60	minutes,	and	85	°C	for	5	minutes.	Serial	dilutions	of	the	cDNA	were	performed	

and	1:100	cDNA	was	used	for	qPCRs.	The	Go	Taq	qPCR	kit	(Promega.	WI,	USA)	was	used	for	

qPCRs	in	a	volume	of	25	μL	(5	μL	of	1:100	cDNA	template,	2	μL	primers	[1	μL	forward,	μL	

reverse	primer],	12.5	μL	Go	Taq	master	mix,	5.5	μL	water).	The	MJ	Research	PTC-200	thermal	

cycler	(Quebec,	Canada)	with	Chromo4	(Bio-Rad,	CA,	USA)	was	used	with	the	following	cycles;	

hot-start	activation	95	°C	for	2	minutes,	40	cycles	of	95	°C	for	15	seconds,	60	°C	for	60	

seconds,	dissociation/melt	curve	60-95	°C.	The	proprietary	dye	used	in	the	Go	Taq	kit	has	

similar	spectral	properties	to	SYBR	Green	I	(Molecular	Probes	Inc,	Oregon,	US):	Excitation	at	

580nm	and	emission	at	620nm.398	Data	were	analysed	using	the	Opticon	monitor	3	software	

(Bio-Rad,	CA,	USA).		

6.2.9	qPCR	data	analysis	

Data	were	analysed	in	R	(Version	3.2.0,	R	Statistical	programming,	Vienna	Austria)	using	the	

normqpcR	package.399	The	optimal	reference	genes	were	selected	using	the	geNORM400	and	

NormFinder401	methods.	Differential	expression	was	calculated	using	ΔCT	and	2-ΔΔCT	

methods.402	A	Wilcoxon	Rank	Sum	test	was	used	to	compare	ΔCT	between	cases	and	controls.		

	

Integration	of	Gene	Expression	and	DNA	methylation	data	

6.2.10	Functional	epigenetic	modules	(FEM)	

To	integrate	gene	expression	and	DNA	methylation	DNA,	the	FEM	R	package	was	used	

(Functional	Epigenetic	modules).392	This	supervised	algorithm	aims	to	identify	epigenetically	

regulated	gene	modules	and	pathways	associated	with	disease	status.	The	process	consisted	

of	two	steps	i)	integration	of	methylation	and	expression	data	into	a	protein-protein	

interaction	PPI	network	and	ii)	inference	of	modules	based	on	a	weighted	network	.	The	PPI	

network	containing	8438	genes	annotated	to	NBCI	Entrez	IDs	was	used	as	the	adjacency	

matrix	and	has	been	previously	used	by	package	authors	

(http://sourceforge.net/projects/funepimod/).393,395		Where	several	450k	probes	mapped	to	

a	single	gene,	methylation	values	were	summarised	by	taking	an	average	of	beta	values	of	

probes	mapping	to	within	200bp	of	the	transcription	start	site	(TSS)	or	if	none	present,	an	

average	of	betas	in	probes	mapping	to	the	1st	exon	or	within	1.5kb	of	the	TSS	were	used.		
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Comparison	of	methylation	(and	expression)	at	each	gene	level	was	performed	according	to	

disease	status	(therefore	matched	samples	were	not	necessarily	compared).	Gene	expression	

and	methylation	data	was	scaled	to	avoid	one	or	other	data	sources	overly	biasing	the	

network.		Genes	were	only	included	where	there	was	a	negative	correlation	between	TSS	

methylation	status	and	gene	expression.		Edge	weights	were	assigned	by	taking	the	average	

statistic	of	each	of	the	connecting	gene	nodes.	Gene	networks	with	higher	edge	weights	than	

the	rest	of	the	network	were	defined	as	‘heavy	subnetworks’	or	‘modules’.	A	spin-glass	

community	detection	algorithm	was	used	to	identify	modules	with	the	maximum	edge	

weights.	The	number	of	seeds	was	set	at	100	(default)	indicating	that	the	algorithm	searches	

around	the	top	100	genes.	The	default	parameter	(γ=0.5)	was	used	which	typically	identifies	

modules	containing	10-100	nodes.	The	statistical	significance	was	generated	using	Monte	

Carlo	(MC)	randomization,	which	performs	a	permutation	test	(set	at	1000	permutations).	

Modules	with	a	p	<0.05	were	set	a	significant	following	FDR	correction.		

	

6.3	Results	

6.3.1	Determine	the	effect	of	globin	mRNA	on	whole	blood	gene	expression	

profiling	

The	electrophrenogram	profile	demonstrated	successful	depletion	of	globin	mRNA	as	

indicated	by	the	presence	of	a	smooth	distribution	and	smear	(Figure	40	right	panel)	as	

opposed	to	the	globin	mRNA	peak	and	band	seen	in	uncleared	samples	(Figure	40	left	panel).	

There	was	greater	number	of	detected	probes	in	those	samples	depleted	of	globin	mRNA	

(Table	25).	There	was	a	significant	reduction	in	the	Haemoglobin	Alpha	2	(p=0.001,Figure	

41A),	Delta	(p	=	1.26	x10-8,Figure	41D)	and	Epsilon	(p=0.001	Figure	41	C)	expression	in	

globin	cleared	samples	versus	non-globin	cleared	samples.	There	was	no	difference	in	the	

expression	of	haemoglobin	beta	(p=0.1,	Figure	41	B)	expression	in	globin	cleared	samples	

versus	non-globin	cleared	samples.	
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Figure	40	–	Electrophrenogram	of	sample	8816	before	(8816_cRNA,	left)	and	after	globin	

mRNA	depletion	(8816_GC_RNA,	right).	The	electrophenogram	profiles	demonstrate	the	

characteristic	peak	and	band	caused	by	globin	mRNA	(left	panel)	and	'smear'	appearance	and	

smooth	distribution	following	globin	clearance	(right	panel)		

	
	

Patient	

sample	

number	

PAXgene	sample	

without	Globin	Clear	

Globin	Clear	PAXgene	

sample	

8886	 14,034	 17,221	

8816	 12,603	 17,120	

Table	25	-	Number	of	gene	expression	probes	detected	using	the	HT12	expression	microarray	

in	the	same	two	samples	before	and	after	globin	depletion	using	whole	blood	PAXgene	mRNA	

samples	
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Figure	41-	Relative	expression	of	globin	mRNA	transcripts	in	separated	cells,	whole	blood	

PAXgene	with	and	without	globin	clearance.	HBA2	=	haemoglobin	subunit	α2,	HBB	=	

haemoglobin	β,	HBE	=	haemoglobin	subunit	ε,	HBD	=	haemoglobin	δ.	X	axis	denotes	sample	

type	(CD14	=	CD14+	monocytes,	CD4=	CD4+	T-cells,	CD8=CD8+Tcells,	HELA	=	Hela	Cell	line	

RNA	provided	as	a	control	in	kit,	GC	PAX	=	globin	clear	PAXgene	Whole	blood	RNA,	PAX	=	non-

globin	cleared	PAXgene	Whole	blood	RNA.		

	

6.3.2	Whole	genome	gene	expression	profiling	

Principal	component	analysis	on	unnormalised	whole	genome	expression	data	demonstrated	

tight	clustering	according	to	cell	type	of	the	sample	(Figure	42).	Figure	43	details	the	RNA	

samples	available	for	gene	expression	experiments	and	the	overlap	of	separated	cell	samples	

available.	
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Figure	42	-	Principal	component	analysis	of	whole	genome	expression	data.	Clustering	was	

present	according	to	cell	type.	Mislabelled	samples	were	excluded	based	on	PCA	plots	(data	

not	shown).		
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Figure	43		-	Venn	diagram308	detailing	samples	derived	from	each	individual	participant	used	

for	whole	genome	expression	profiling	(e.g.	28	patients	had	all	4	cell	samples	available	for	

analysis,	21	patients	had	whole	blood	cDNA	alone)		
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6.3.2.1	Whole	blood	gene	expression	profiling	

	6.3.2.1	Whole	blood	Patient	demographics	

The	patient	demographics	of	the	whole	blood	cohort	for	gene	expression	microarrays	is	

displayed	in	Table	26.	There	was	a	non-significant	trend	towards	increased	numbers	of	

current	or	ex-smokers	in	the	IBD	group.		

	

	 CD	 UC	 IBD	 Control	
IBD	versus	

Control	

n	 22	 22	 44	 24	 	

Females	(%)	 10	(45.5)	 10	(45.5)	 20	(45.5)	 8	(33)	 0.5	

Age	At	

Diagnosis	

(median,	IQR)	

26	(22-32)	 36.5	(26-50)	
28.2	(24.8-

38.8)	

31.5	(25.7	–	

41.3)	
0.7	

Smoking	

(current	or	

Ex)	

13	(59)	 12	(57)	 25	(58.1)	 7	(32)	 0.08	

Table	26	-	Patient	demographics	of	patients	included	in	whole	blood	gene	expression	

microarray		(p	values	denote	Fishers	exact	test	for	categorical	variables,	and	Wilcoxon	test	for	

continuous	variable)		

	

6.3.2.2	Results	of	whole	blood	IBD	versus	control	

There	were	47	differentially	expressed	genes	in	whole	blood	in	IBD	cases	versus	control	

following	Holm	correction	for	multiple	testing	(Table	27).	Gene	ontology	analysis	revealed	

116	significantly	enriched	terms	(Table	62).The	expression	of	the	top	DMP	(RPS6KA2,	Figure	

44)	and	DMRs	(VMP1,	TXK,	ITGB2	and	WRAP73)	identified	in	Chapter	3	in	whole	blood	are	

displayed	in	Figure	45	and	Figure	46.		
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IlluminaID	 Gene	symbol	 logFC	 AveExpr	 P.Value	 Holm	
adj.P.Val	

ILMN_1802808	 NA	 0.70	 13.03	 1.11E-08	 0.0005	

ILMN_1663160	 ZNF337	 -0.41	 8.91	 2.24E-08	 0.0011	

ILMN_1723846	 METTL21B	 -0.26	 7.83	 3.72E-08	 0.0017	

ILMN_1764577	 MFNG	 -0.41	 11.02	 6.73E-08	 0.0032	

ILMN_1708323	 ALAS2	 1.81	 10.38	 7.14E-08	 0.0033	

ILMN_1757872	 SGK223	 -0.52	 9.20	 8.10E-08	 0.0038	

ILMN_1651719	 MBTPS1	 -0.28	 9.74	 8.61E-08	 0.0040	

ILMN_1703565	 GLTSCR2	 -0.53	 12.98	 8.95E-08	 0.0042	

ILMN_3242883	 AGAP4	 -0.58	 9.47	 9.61E-08	 0.0045	

ILMN_1789338	 SORBS3	 -0.30	 7.88	 1.17E-07	 0.0055	

ILMN_1654946	 ZSCAN18	 -0.45	 9.15	 1.44E-07	 0.0068	

ILMN_1719204	 PRPF31	 -0.32	 9.59	 1.70E-07	 0.0080	

ILMN_1795428	 WDR59	 -0.32	 9.29	 1.75E-07	 0.0082	

ILMN_3240222	 SGK223	 -0.56	 9.87	 1.87E-07	 0.0087	

ILMN_1755843	 SLC26A8	 0.99	 8.74	 1.99E-07	 0.0093	

ILMN_1683178	 JAK2	 0.38	 8.48	 2.89E-07	 0.0135	

ILMN_1679324	 EIF1B	 0.54	 11.17	 3.12E-07	 0.0146	

ILMN_1766657	 STOM	 0.73	 11.15	 3.15E-07	 0.0147	

ILMN_2050911	 SLC22A4	 0.74	 9.20	 3.22E-07	 0.0151	

Table	27	-	Whole	genome	gene	expression	IBD	versus	control	in	whole	blood.	logFC	=	log	fold	

change.	AveExpr	=	Average	expression.		
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Figure	44	-	Whole	blood	gene	expression	of	the	top	DMP	(RPS6KA2)	in	IBD	cases	versus	

controls		(p	values	are	uncorrected).	There	are	three	different	gene	expression	probes	

annotated	with	RPS6KA2	on	the	Illumina	HT12	microarray.		

	

Figure	45	-	Whole	blood	gene	expression	of	the	top	DMRs	(VMP1,	TXK,	WRAP73)	in	IBD	cases	

versus	controls		(p	values	are	uncorrected)		
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Figure	46	-	Whole	blood	gene	expression	of	the	top	DMRs	(Integrin	β2	subunit,	ITGB2)	in	IBD	

cases	versus	controls		(p	values	are	uncorrected).	There	are	two	different	gene	expression	

probes	annotated	with	ITGB2	on	the	Illumina	HT12	microarray.		

6.3.2.3	Results	of	separated	cell	gene	expression	in	IBD	versus	control	

The	demographics	of	patients	included	in	separated	cell	gene	expression	experiments	are	

detailed	in	the	appendix	(Table	63,	Table	64	and	Table	65).	Following	correction	for	multiple	

testing	there	were	no	significant	differentially	expressed	genes	in	IBD	versus	control	in	any	of	

the	separated	cell	types.	The	top	lists	of	genes	are	detailed	in	the	appendix	(CD14	monocytes	

Table	66,	CD4+	T	cells	Table	67	or	CD8+	T-cells	Table	68).		

6.3.2.4	Separated	cell	gene	expression	for	specific	DMPs	and	DMRs	

The	expression	of	the	top	DMP	(RPS6KA2,	Figure	72)	and	DMRs	(VMP1	[Figure	73],	TXK,	

ITGB2	and	WRAP73	[Figure	74])	were	also	investigated	in	separated	cells.		

6.3.2.5	TXK	

The	reduction	in	TXK	gene	expression	seen	in	whole	blood	(fold	change=	−0.38,	p=7.2	×	10-5)	

was	also	seen	in	CD8+	(Fold	change	−0.41,	p=0.03,	Figure	47),	but	not	other	cell	types.	There	

was	statistically	significant	negative	correlation	between	TXK	gene	expression	

(ILMN_1741143)	and	all	three	DNA	methylation	probes	included	in	the	DMR	in	whole	blood	

(cg02600394	Pearson’s	correlation	=	−0.48	p=	0.001,	cg20981615	corr=	−0.49	p=0.0007,	
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cg17984638	corr=−0.44	p=0.003)	and	CD8+	cells	(cg02600394	Pearson’s	correlation	=	−0.55	

p=	0.0002,	cg20981615	corr=	−0.56	p=0.0001,	cg17984638	corr=−0.7	p=2	×	10-7)	but	not	for	

other	cell	types.		

	

	

Figure	47	-	TXK	(Tyrosine	Kinase)	DNA	methylation	(a,	top	row)	and	gene	expression	(c,	

bottom	row)	in	whole	blood	(Globin	mRNA	depleted),	CD8+	T	Cells,	CD4+	T	Cells	and,	CD14+	

monocytes.	Uncorrected	P	values	derived	from	linear	models	including	age	and	sex	as	

covariates.	Panel	b	demonstrate	correlation	between	TXK	gene	expression	and	DNA	

methylation	in	matched	samples.	The	y-axis	scale	has	been	standardised	for	all	cell	types	to	

provide	a	meaningful	comparison	of	expression/methylation	levels.		
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6.3.2.6	RPS6KA2	

For	RPS6KA2,	there	was	a	slight	decrease	in	whole	blood	gene	expression	in	IBD	cases	

(p=0.05),	but	the	opposite	gene	expression	pattern	was	seen	in	CD4+	cells	(p=	0.3,	Figure	72).		

In	whole	blood	there	was	no	significant	correlation	between	DNA	methylation	(cg17501210)	

and	gene	expression	(ILMN_1790801).	In	CD4+	cells	there	was	a	non-significant	positive	

correlation	between	DNA	methylation	and	gene	expression	(Pearson’s	corr=0.28,	p=0.051).		

6.3.2.7	VMP1	

In	whole	blood,	no	change	in	VMP1	expression	was	seen.	However	in	CD8+	cells,	there	was	an	

increased	gene	expression	in	IBD	(p=0.006,	Figure	73).	In	matched	samples,	there	was	no	

significant	correlation	between	DNA	methylation	and	gene	expression.	This	is	notable	given	

the	whole	blood	‘signal’	is	thought	to	derive	from	CD8+	cells.		

6.3.2.8	WRAP73	

For	WRAP73	(Figure	74)	the	increase	in	expression	in	whole	blood	(p=0.009)	was	also	

mirrored	in	CD8+	cells	(p=0.05),	but	not	the	other	cell	types.	In	whole	blood	there	was	a	non-

significant	negative	correlation	between	DNA	methylation	and	gene	expression	(Pearson’s	

correlation	=	−0.39	p=	0.059).	There	was	no	significant	correlation	in	CD8+	T-cells.		

	

6.3.3	Targeted	gene	expression	profile	of	top	differentially	methylated	regions	

using	qPCR	

6.3.3.1	Patient	selection	for	qPCR	experiments	

The	demographics	of	patients	and	symptomatic	controls	with	separated	PBMCs	and	

granulocytes	are	displayed	in	Table	69	and	Table	70	respectively.	There	was	a	higher	level	of	

inflammation	as	denoted	by	C-reactive	protein	(CRP)	in	the	symptomatic	control	group	

although	this	failed	to	reach	statistical	significance.	
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6.3.3.2	Reference	gene	selection	

Using	the	geNorm	and	NormFinder	algorithms,	the	best	performing	reference	gene	was	TBP	

and	SADPH	for	Granulocytes	and	SADPH	for	PBMCs	(Table	28).		

	

geNorm	 NormFinder	

Gran	 PBMC	 Gran	 PBMC	

ranking	

Step	1	

stability	

M	value	

ranking	

Step	1	

stability	

M	value	

ranking	

Step	1	

stability	

Rho	

value	

ranking	

Step	1	

stability	

Rho	

value	

TBP	 1	 0.08	 2	 0.06	 1	 0.012	 	 	

SADPH	 2	 0.09	 1	 0.07	 2	 0.015	 1	 0.007	

ACTB	 3	 0.11	 5	 0.08	 3	 0.02	 3	 0.01	

UBC	 4	 0.13	 3	 0.07	 5	 0.03	 2	 0.007	

GAPDH	 5	 0.14	 4	 0.08	 4	 0.02	 4	 0.01	

Table	28	-	Reference	Gene	selection	using	geNorm	and	NormFinder	

6.3.3.2	Results	of	targeted	qPCR	of	PBMC	and	granulocyte	RNA	of	DMRs		

The	results	of	targeted	qPCR	of	RNA	from	PBMCs	and	Granulocytes	of	DMRs	identified	in	

Chapter	3	are	displayed	in	Table	29.	

	
	 2^dCt.IBD	 IBD.sd	 2^dCt.Control	 Control.sd	

2^-

ddCt	
2^ddCt.min	 2^ddCt.max	

RPS6KA2	
Gran	 0.62	 1.57	 0.45	 1.52	 1.36	 0.46	 4.04	

PBMC	 0.46	 0.53	 0.28	 0.34	 1.62	 NA	 NA	

Pri-

miR21	

Gran	 4.72	 3.59	 2.56	 2.33	 1.85	 0.15	 22.18	

PBMC	 0.46	 0.54	 0.76	 2.2	 0.60	 NA	 NA	

ITGB2	
Gran	 0.03	 4.72	 0.01	 3.15	 4.72	 0.18	 124.56	

PBMC	 0.36	 0.01	 NA	 0.04	 NA	 NA	 NA	

Table	29	-	2-ΔΔCT	values	from	targeted	qPCR	in	PBMCs	and	Granulocytes	



174	

	

6.3.3.3	RPS6KA2	

In	Granulocytes	there	was	no	statistically	significant	difference	in	RPS6KA2	expression	

between	cases	and	controls	(Wilcoxon	rank	sum	test	p=0.3).	This	was	also	the	case	in	CD	

(p=1)	and	UC	(p=0.07).	There	was	no	difference	in	the	expression	of	RPS6KA2	in	PBMCs	in	

IBD	cases	(p=0.2)	compared	with	controls	(Table	29).	This	was	also	the	case	in	the	individual	

diseases	(CD,	p=0.2,	UC,	p=0.3).		

6.3.3.4	pri-miR21	

In	Granulocytes	there	was	no	statistically	significant	difference	in	pri-miR21	expression	

between	cases	and	controls	(Wilcoxon	rank	sum	test	p=0.8).	This	was	also	the	case	in	CD	

(p=0.5)	and	UC	(p=0.7).	In	PBMCs,	there	was	no	difference	in	pre-miR21	expression	in	IBD	

cases	(p=0.1)(Table	29).	There	was	lower	pre-miR21	expression	in	CD	(p<0.05)	but	not	UC	

(p=0.7)	compared	with	controls.		

6.3.3.5	ITGB2	

In	Granulocytes	there	was	no	statistically	significant	difference	in	ITGB2	expression	between	

cases	and	controls	(Wilcoxon	rank	sum	test	p=0.5).	This	was	also	the	case	in	CD	(p=0.9)	and	

UC	(p=0.3).	In	PBMCs,	there	was	no	difference	in	the	expression	of	IGTB2	in	PBMC	IBD	cases	

versus	control	(p=0.1)(	Table	29).	There	was	also	no	difference	in	expression	of	IGTB2	in	CD	

(p=0.2)	but	not	UC	(p=0.5).		
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Figure	48	-	PBMC	qPCR	results	for	RPS6KA2,	pre-miR21	and	IGTB2	
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Figure	49	–Granulocyte	qPCR	results	for	RPS6KA2,	pre-miR21	and	IGTB2	

	

−2

0

2

CD UC HC
Disease

D
el

ta
C

T
Granulocyte pQCR:RPS6KA2

−10

0

10

20

30

CD UC HC
Disease

D
el

ta
C

T

Granulocyte pQCR:pri−miR21

0

10

20

30

CD UC HC
Disease

D
el

ta
C

T

Granulocyte pQCR:IGTB2



177	

	

6.3.3.6	Relationship	between	qPCR	markers	and	clinical	phenotype	

There	was	no	relationship	between	any	of	the	measured	markers	and	CRP	or	albumin.	There	

was	a	weak	but	significant	positive	correlation	between	gene	expression	and	the	duration	of	

the	disease	(i.e.	time	between	date	of	diagnosis	and	date	of	blood	sample,	Figure,	Figure	77,	

Figure	78).		
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6.3.4	Integration	of	Gene	Expression	and	DNA	methylation	data	

6.3.4.1	Functional	Epigenetic	Modules	(FEM):	Whole	blood	IBD	versus	control		

To	integrate	gene	expression	and	DNA	methylation	DNA,	the	Functional	Epigenetic	Modules	

(FEM)	R	package	was	used.	Protein-Protein	interaction	(PPI)	hotspots	were	identified	

displaying	several	linked	genes	demonstrating	differential	methylation.	In	whole	blood	when	

comparing	IBD	and	controls,	there	were	11	significant	functional	epigenetic	networks	(Table	

30).	Figure	50	demonstrates	the	most	significant	network	(DIABLO)	containing	30	genes	

within	the	network.		

	

EntrezID	

(Seed)	
Symbol	(Seed)	

Number	of	

genes	in	

network	

Modularity	
FDR	p	

Value	

1	 56616	 DIABLO	 30	 3.628882	 0.009	

2	 80331	 DNAJC5	 38	 2.701339	 0.043	

3	 5265	 SERPINA1	 14	 4.457891	 0.006	

4	 1991	 ELANE	 59	 4.583397	 0	

5	 4353	 MPO	 66	 3.873013	 0	

6	 3082	 HGF	 12	 5.652254	 0.002	

7	 566	 AZU1	 13	 4.021772	 0.016	

8	 3674	 ITGA2B	 17	 4.495567	 0.004	

9	 1053	 CEBPE	 12	 3.682455	 0.032	

10	 966	 CD59	 46	 2.791665	 0.026	

11	 4318	 MMP9	 17	 5.140515	 0.002	

Table	30-	Functional	epigenetic	module	for	IBD	versus	control	in	whole	blood.	

Modularity=average	of	edge	weights.	P	Values	are	calculated	using	the	Monte-Carlo	procedure	

(a	permutation	test,	n=1000)		
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Figure	50	-	DIABLO	functional	epigenetic	module	in	whole	blood	(IBD	versus	control).	Inner	

circles	represent	methylation	(blue=hypermethylation/yellow=hypomethylation)	and	outer	

circles	represent	gene	expression	(red=increased	expression,	green=decreased	expression)		

6.3.4.2	FEM:	CD	and	UC	versus	control	in	whole	blood	

FEM	were	also	identified	separately	for	CD	(Table	71)	and	UC	(Table	72)	with	a	significant	

overlap	of	gene	networks	between	the	two	individual	diseases	and	with	IBD.	

6.3.4.3	FEM:	IBD	versus	control	in	separated	cells		

FEM	were	also	identified	in	separated	cells	(CD4+	[Table	74],	CD8+	[Table	73],	and	CD14+	

[Table	75])	and	are	detailed	in	the	appendix.		
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6.4	Discussion	

6.4.1	Targeted	gene	expression	profile	of	top	differentially	methylated	regions	

(DMRs)	demonstrated	in	previous	chapter	

The	location	of	DNA	methylation	change	is	critically	important	when	attempting	to	delineate	

an	association	between	methylation	and	altered	gene	expression.	CpG	island	methylation	

occurring	within	promotor	regions	and	transcription	start	sites	(TSS)	is	known	to	be	

associated	with	reduced	gene	transcription	and	expression.387,388	Therefore	the	most	logical	

approach	for	this	dataset	would	be	to	specifically	investigate	DMPs/DMRs	occurring	within	

the	appropriate	genomic	context	in	promotor	regions/TSS.	The	DMR	TXK	(Tec	tyrosine	

kinase)	is	hypermethylated	in	cases	(beta	difference	+2%)	and	located	between	the	5’	UTR	

and	1st	exon.	There	was	a	statistically	significant	reduction	in	TXK	gene	expression	in	whole	

blood	and	importantly	DNA	methylation	and	expression	data	in	matched	samples	

demonstrated	a	significant	negative	correlation.	Given	that	DNA	methylation	and	gene	

expression	changes	are	likely	to	be	subtle	and	cell	specific,	the	difference	seen	in	whole	blood	

was	only	seen	in	CD8+	T-cells,	again	with	a	significant	negative	correlation	between	DNA	

methylation	and	gene	expression.		The	DMR	ITGB2	is	also	hypermethylated	in	cases	(beta	

difference	4%)	and	located	around	the	transcription	start	site/5’	UTR	and	therefore	would	be	

another	plausible	candidate	to	alter	gene	expression,	but	there	was	no	difference	in	

expression	of	ITGB2.		

The	majority	of	DMPs/DMRs	identified	in	Chapter	3	occur	within	the	gene	body	(see	volcano	

plot,	Chapter	3),	where	the	relationship	between	methylation	and	expression	is	unclear.	

Interestingly	for	VMP1	no	difference	in	gene	expression	was	seen	in	IBD	cases	and	controls	in	

whole	blood	or	CD4+	cells	despite	a	significant	positive	correlation	between	VMP1	

methylation	and	gene	expression.	In	CD8+	cells	however,	there	was	a	reduction	in	VMP1	

expression,	but	no	significant	correlation	between	DNA	methylation	and	expression	in	

matched	samples.	For	the	top	DMP	in	whole	blood,	RPS6KA2	hypomethylation	of	the	gene	

body	was	seen	in	IBD	cases.	For	the	three	annotated	RPS6KA2	probes	included	on	the	gene	

expression	microarray,	two	demonstrated	a	counter-intuitive	reduction	in	gene	expression	

and	one	demonstrated	increased	gene	expression.		
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To	conclude	from	this	work,	at	certain	sites	within	promotor	regions/TSS	and	within	specific	

cell	types,	hypermethylation	was	associated	with	an	appropriate	reduction	in	gene	

expression.	Where	DNA	methylation	change	was	confined	to	the	gene	body	the	effects	on	gene	

expression	were	less	consistent.		There	are	several	possible	reasons	for	this	potential	

disconnect	between	DNA	methylation	and	gene	expression.	Firstly	the	absolute	differences	in	

beta	values	in	IBD	cases	versus	control	are	small.	Whilst	the	beta	differences	seen	in	the	

present	study	are	consistent	with	findings	in	other	complex	diseases,	the	absolute	differences	

may	not	be	enough	to	affect	gene	expression.	Secondly,	the	overall	number	of	subjects	

included	in	the	gene	expression	microarray	experiments	was	small,	and	there	is	a	risk	of	type	

II	error.	A	further	limitation	was	the	potential	imbalance	in	baseline	patient	demographics	in	

this	experiment;	there	were	no	statistically	significant	differences	between	groups,	however	

this	may	be	related	to	the	small	numbers	in	each	group.						 	

In	the	prevailing	scientific	literature	it	has	been	difficult	to	convincingly	link	DNA	methylation	

and	gene	expression	in	complex	immune	diseases.	In	the	complex	immune	diseases	EWAS	

literature	some	studies	have	successfully	correlated	DNA	methylation	difference	with	gene	

expression	whilst	others	have	not.	In	IBD,	Adams	et	al	correlated	hypomethylation	of	the	

VMP1/miR-21	locus	in	peripheral	blood	of	IBD	patients	with	increased	pri-miR-21	expression	

in	blood	and	in	mucosal	biopsy	samples,	but	not	in	matched	samples.284,403	McDermott	et	al	

demonstrated	TRAF6	hypermethylation	in	PBMCs	in	IBD	cases	correlated	with	decreased	

expression	in	a	subset	of	the	same	patients.307	In	Harris	et	al,	DNA	methylation	in	was	

assessed	in	gut	mucosal	samples	of	children	with	UC	and	a	small	subset	had	allied	gene	

expression	data	(5	UC,	5	HC).	Several	genes	demonstrated	epigenetically	associated	gene-

expression	including	ITGB2,	S100A9	(heterodimer	with	S100A8	to	form	calprotectin),	IFITM1,	

SLPI	and	STAT3.321	In	mucosal	samples,	the	expression	of	DOK2	and	FUT7	correlated	with	

gene	expression.171	

	

6.4.2	Integration	of	Gene	Expression	and	DNA	methylation	data	

Attempting	to	demonstrate	an	inverse	correlation	between	DNA	methylation	and	gene	

expression	may	be	over	simplistic	and	methods	such	as	functional	epigenetic	modules392	that	

consider	location	of	DNA	methylation	probes	within	transcription	start	sites	and/or	known	

regulatory	regions	may	be	more	appropriate.	By	using	this	method	we	have	highlighted	

several	gene	networks	of	biological	relevance	that	were	significantly	associated	with	IBD.	
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Functional	epigenetic	modules	do	not	however	take	into	account	differential	cellular	

proportions	and	are	based	on	pre-constructed	gene	networks	(i.e.	not	assumption-free).		It	is	

also	worth	noting	that	analyses	are	not	paired,	i.e.	all	DNA	methylation	and	expression	data	

are	considered	rather	than	only	including	paired	data	from	the	same	individual.		

6.4.3	Globin	clearance	increases	the	number	of	probes	detected	on	downstream	

microarrays	

Alpha	and	Beta	globin	mRNA	is	known	to	effect	whole	blood	gene	expression	arrays.	Globin	

mRNA	transcripts	derived	from	reticulocytes	and	red	blood	cells	(to	a	lesser	extent	as	

anucleate)	make	up	around	70%	of	total	whole	blood	mRNA	transcripts.	These	globin	mRNA	

transcripts	tend	to	dominate	gene	expression	arrays,	and	decrease	the	transcript	counts	from	

cell	populations	of	interest	(i.e.	leukocytes).		

Preparatory	work	was	performed	to	optimise	gene	expression	microarrays	from	whole	blood	

collected	in	PAXgene	tubes.	Total	RNA	obtained	from	whole	blood	storage	media	(e.g.	

PAXgene	or	Tempus	tubes)	contains	a	large	proportion	of	globin	mRNA.	Globin	mRNA	was	

depleted	using	GlobinClear	(Ambion).	This	pilot	work	demonstrated	that	the	total	number	of	

detected	probes	was	increased	following	globin	mRNA	depletion	when	analysed	on	the	

Illumina	H12	expression	array.	Expression	of	haemoglobin	alpha	and	delta,	but	not	beta,	

mRNA	transcripts	was	also	significantly	reduced.		

The	relative	importance	of	globin	clearance	has	been	debated	in	the	literature	with	some	

authors	strongly	advocating404,405	the	process	in	order	to	improve	the	sensitivity	of	

microarray	analysis.	This	methodological	work	was	important	in	informing	later	experiments.	

A	strength	of	this	work	was	that	RNA	taken	from	the	same	PAXgene	tube	was	used	for	both	

the	globin	cleared	and	non-globin	cleared	analyses.	A	limitation	is	that	whilst	certain	globin	

mRNA	transcripts	were	significantly	reduced,	the	beta	globin	transcript	was	unchanged	

indicating	that	the	experimental	process	may	not	have	been	completely	effective	at	removing	

all	globin	mRNA.	Whilst	important	to	recognise	the	potential	impact	of	globin	mRNA	on	

expression	profiles,	the	additional	steps	taken	to	remove	globin	mRNA	(including	clean	up	

steps	either	side)	may	degrade	or	deplete	RNA	samples	if	already	low	quality	and/or	quantity	

as	well	as	incurring	an	additional	consumables	cost.			
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6.4.4	Conclusion	

The	relationship	between	DNA	methylation	and	gene	expression	is	complex	and	is	likely	to	be	

cell	specific.	The	location	of	DNA	methylation	change	is	critical	when	associating	methylation	

with	altered	gene	expression.	Cell-specific	changes	in	gene	expression	were	seen	in	the	top	

DMRs	identified	in	chapter	3.	For	TXK	where	hypermethylation	occurs	within	the	

TSS/promotor	region,	a	reduced	gene	expression	in	whole	blood	and	CD8+	cells	was	

accompanied	by	a	statistically	significant	negative	correlation	with	DNA	methylation	in	

matched	samples.	Whilst	similar	convincing	differences	were	not	seen	for	the	other	DMRs/Ps,	

this	may	in	part	be	related	to	type	II	statistical	error	and	reflects	similar	experience	in	the	

wider	field	of	epigenetics.	Future	work	should	be	directed	at	those	differentially	expressed	

DNA	methylation	regions	that	occur	within	transcription	start	sites.		
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Chapter	7.	Biomarker	development	from	DNA	methylation	

data	

Abstract	

Introduction	

Existing	biomarkers	such	as	faecal	calprotectin	(FC)	are	highly	sensitive	at	detecting	patients	

with	gut	inflammation.	However,	FC	is	not	specific	for	IBD,	and	the	currently	available	

biomarkers	are	less	helpful	in	predicting	disease	prognosis.	The	development	of	biomarkers	is	

a	compelling	translational	application	of	epigenetic	data.		The	aims	of	this	chapter	were	to	

validate	DNA	methylation	biomarkers	previously	identified	in	our	paediatric	study,	and	to	

identify	new	biomarkers	from	the	present	dataset	capable	of	discriminating	IBD	patients	from	

controls,	as	well	as	those	IBD	patients	likely	to	experience	a	more	severe	disease	course.		

Methods	

Paired	methylation	probes	identified	in	the	previous	paediatric	cohort	were	validated	in	the	

present	adult	cohort	using	linear	discriminant	analysis.	The	area	under	the	receiver	operating	

curve	(AUC)	with	and	without	leave-out-one	cross	validation	was	calculated	to	assess	model	

accuracy.	The	CMA	package	in	R	was	used	to	assess	different	methods	of	new	biomarker	

selection.	Unsupervised	consensus	clustering	was	used	to	identify	subclasses	within	the	IBD	

cohort,	and	subclasses	were	assessed	for	need	for	surgery	and	immunomodulator	therapy	

using	Cox	proportional	hazards.		

Results	

The	best	performing	of	the	previously	described	paired	methylation	probe	biomarkers	in	the	

paediatric	study	were	RPS6KA2/VMP1	probes	(cg17501210/	cg12054453)	and	

RPS6KA2/TNFSF10	probes	(cg17501210/	cg01059398)	which	were	able	to	accurately	

discriminate	between	disease	and	control	in	CD	(AUC=0.84/0.81	respectively);	IBD	

(AUC=0.79/0.79)	and	UC	(AUC=0.73/0.71).	Least	absolute	shrinkage	and	selection	operator	

(lasso)	modelling	identified	30	methylation	probes	can	be	used	to	accurately	discriminate	IBD	

cases	from	controls	(AUC	=	0.898,	sensitivity	=	90.6%,	specificity	=	84.7%).	Using	

unsupervised	consensus	clustering,	three	stable	clusters	were	identified	in	the	data	

methylation	data.	The	three	subclasses	were	associated	with	high-,	moderate-	and	low-risk	of	

requiring	surgery	(p=0.01),	emergency	hospital	admission	(p=0.0008)	and	
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immunomodulatory	therapy	(p=0.02).	These	groups	however	were	not	independently	

predictive	of	outcome	and	unlike	existing	clinical	markers.	

Discussion	

DNA	methylation	data	may	be	used	as	diagnostic	and	prognostic	biomarkers.	Putative	

biomarkers	identified	in	this	chapter	require	further	validation	in	independent	cohorts.		
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7.1	Introduction	

The	existing	biomarkers	used	to	diagnose	and	prognosticate	in	IBD	have	been	extensively	

described	above	(Section	1.9).	Briefly,	relatively	good	biomarkers	are	currently	available	to	

assist	in	the	diagnosis	of	IBD	(i.e.	Faecal	Calprotectin	[FC]).	FC	is	a	highly	sensitive	marker	of	

gut	inflammation	(AUROC=0.97,	with	a	threshold	of	>50	μg/g	demonstrating	a	97%	

sensitivity	and	0.74%	specificity).230	Whilst	calprotectin	is	good	at	discriminating	IBD	from	

functional	disease,	calprotectin	has	a	low	specificity	and	can	be	elevated	as	a	result	of	gut	

inflammation	(e.g.	infectious	gastroenteritis,	diverticulitis).	Faecal	calprotectin	sampling	can	

be	challenging	for	both	patients	and	laboratory	staff;	patients	can	find	stool	sample	collection	

messy	and	distasteful,	and	biochemistry	laboratory	staff	are	often	unable	to	process	

insufficient	samples	and	processing	delays	can	hinder	clinical	use.	Therefore	identifying	a	

peripheral	blood	biomarker	that	does	not	rely	on	stool	collection	or	mucosal	biopsy	sample	at	

colonoscopy	would	be	potentially	attractive.	New	blood-based	biomarkers	could	feasibly	be	

used	to	complement	FC.	Furthermore,	future	diagnostic	biomarker	development	should	focus	

on	increasing	specificity	of	a	test	in	identifying	IBD	from	other	inflammatory	conditions,	and	

to	differentiate	CD	from	UC.	

	

Epigenetic	markers	have	been	proposed	as	putative	diagnostic	biomarkers	for	a	range	of	

conditions.	Peripheral	blood	DNA	methylation	of	SEPT09	is	commercially	available	for	the	

diagnosis	of	colorectal	cancer.353	There	have	subsequently	been	several	studies	investigating	

the	use	of	SEPT09	in	colorectal	cancer	screening.406,407	In	Adams	et	al,284	two	methylation	

probes	were	used	to	accurately	discriminate	children	with	CD	and	controls.	Using	linear	

discriminant	analysis,	the	area	under	receiver	operating	characteristic	curve	(AUC)	was	as	

high	as	0.98	which	is	as	good	as	faecal	calprotectin.	A	major	limitation	of	much	of	the	

biomarker	discovery	literature	is	the	lack	of	prospective	validation.		

	

Whilst	FC	performs	well	as	a	diagnostic	biomarker,	there	is	an	unmet	need	for	the	

identification	of	biomarkers	that	can	accurately	predict	the	course	of	disease.	Such	a	

biomarker	may	assist	in	the	identification	of	patients	who	would	benefit	from	early	aggressive	

treatment	with	immunomodulators/biologic	therapies	or	surgery	(‘top-down’	approach),	and	

those	who	could	safely	avoid	the	considerable	toxicity	and	complications	of	such	treatments	
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without	developing	complications	of	IBD.	As	discussed	in	Chapter	1	(section	1.9.2),	existing	

clinical	parameters,241	biochemical	markers	(CRP),	234,235	calprotectin,	243	serological	

markers237–239	and	genetic	risk	scores254	have	all	been	used	to	predict	prognosis.	In	the	field	of	

transcriptomics	which	more	closely	aligns	with	epigenetic	data,	Lee	et	al.	demonstrated	that	

the	gene	expression	profile	of	circulating	CD8+	T-lymphocytes	is	able	to	accurately	predict	a	

relapsing	disease	course	from	a	stable	one	in	patients	with	newly-diagnosed	IBD.260	

	

7.1.2	Aims	

The	aims	of	this	chapter	were:	

1. To	validate	biomarkers	identified	in	paediatric	IBD	by	Adams	et	al	

2. To	identify	novel	biomarkers	using	DNA	methylation	data	that	could	be	used	to		

a. Discriminate	IBD	from	controls	

b. Discriminate	CD	from	UC	

c. Predict	patients	with	a	more	severe	course	

3. To	identify	sub-classes	of	IBD	patients	on	the	basis	of	DNA	methylation	data	based	on	

unsupervised	consensus	clustering.		

	

7.2	Methods	

7.2.1	Validation	of	LDA	analysis	performed	in	paediatric	cohort	published	in	

Adams	et	al	

Biomarkers	identified	in	Adams	et	al	were	validated	in	the	present	adult	methylation	dataset.	

The	previously	published	methylation	probe	pairings	are	listed	in	Table	76.284	Linear	

discriminant	analysis	(LDA)	was	performed	using	beta	values	from	the	entire	adult	whole	

blood	methylation	dataset	using	the	same	methodology	as	previously	described	by	Adams	et	

al.284	The	MASS	package	in	R	was	used	for	linear	discriminant	analyses,	in	which	age	and	sex	

were	included	as	covariates.408The	Area	under	Receiver	operating	curve	(AUC)	was	calculated	

for	each	probe	pair	using	the	ROC	package.409	As	this	was	validation	of	previously	described	

markers,	the	cohort	was	not	split	into	testing/validation	cohorts	and	no	cross	validation	was	

performed.		
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7.2.2	CMA	method	selection	

The	CMA	package410	package	aims	to	address	the		situation	whereby	the	number	of	variables	

vastly	outnumbers	the	number	of	samples,	as	is	common	in	microarray	studies.	The	21	

classification	methods	implemented	in	the	package	were	compared,	and	the	best	performing	

method	selected	based	on	the	area	under	the	receiver	operating	curve	(AUC).	Further	

elaboration	on	the	actual	methods	selected	is	provided	in	the	results	section.		

7.2.3	Unsupervised	Consensus	Clustering	

The	second	method	employed	unsupervised	consensus	(hierarchical)	clustering411	of	median	

beta	values	of	the	methylation	profile	of	IBD	patients	using	the	ConsensusClusterPlus	

package.412,413	The	number	of	stable	clusters	was	assessed	using	the	cumulative	distribution	

function	(CDF)	411	and	the	clest	method.414	Logistic	regression	was	used	to	compare	

individuals	classified	according	to	clusters	and	clinical	outcomes	including	need	for	surgery,	

emergency	admission	and	immunomodualtor	requirement/treatment	escalation.	
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7.3	Results	

7.3.1	Validation	of	LDA	analysis	performed	in	paediatric	cohort	published	in	

Adams	et	al	

Two	of	the	previously	described	44	CpG	pairs	had	to	be	removed	(those	containing	probe	

cg02292450)	as	the	specific	probes	had	been	filtered	during	quality	control	and	data	

processing.	The	AUC	performance	for	discriminating	case	status	ranged	from	between	0.84-

0.52	in	CD,	0.73-0.50	in	UC	and	0.79-0.54	in	IBD.	A	complete	summary	of	the	data	is	presented	

in	Table	77.	The	best	performing	of	the	paired	methylation	probe	biomarkers	described	in	

Adams	et	al284	were	RPS6KA2/VMP1	probes	(cg17501210/	cg12054453)	and	

RPS6KA2/TNFSF10	probes	(cg17501210/	cg01059398)	which	were	able	to	accurately	

discriminate	between	disease	and	control	in	CD	(AUC=0.84/0.81	respectively);	IBD	

(AUC=0.79/0.79)	and	UC	(AUC=0.73/0.71)(Figure	51)		
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Figure	51	–	Top	two	performing	Methylation	probe	pairs	from	Adams	et	al	at	discriminating	

case	status	on	Linear	Discriminant	Analysis	(LDA).	Top	panel	Crohn’s	disease	versus	controls,	

middle	panel	Ulcerative	colitis	versus	controls,	bottom	panel	ulcerative	colitis	versus	controls.	

Red	points	=	controls,	Blue	points	=	cases.	Axes	represent	beta	values	of	the	two	probes	listed	

above	the	panel.		

7.3.2	Novel	diagnostic	biomarker	identification		

Given	that	the	aforementioned	technique	using	LDA	assessed	only	a	proportion	of	top-ranking	

probes	(many	of	which	will	be	co-correlated)	an	alternative	method	of	biomarker	discovery	

has	been	employed.	Using	the	CMA	package,	the	available	methods	of	variable	selection	were	

assessed	(Table	78).	Based	on	AUC,	Lasso	(least	absolute	shrinkage	and	selection	

operator415,416)		was	the	best	performing	variable	classification	method.	The	LassoCMA	

function	was	used	to	perform	the	lasso	algorithm	for	shrinkage	and	selection	of	CpG	probes	to	

be	used	as	putative	biomarkers.	The	cohort	was	arbitrarily	split	into	a	learning	set	(2/3	of	the	

cohort	=	287	individuals)	and	a	testing	set	of	144	individuals.	The	L1	shrinkage	intensity	was	
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tuned	to	provide	the	most	accurate	model,	based	on	the	AUC.	This	involved	altering	the	

shrinkage	intensity	(i.e.	altering	the	number	of	CpG	probes	that	algorithm	could	include	in	the	

model).	The	random	seed	was	fixed	to	generate	reproducible	results.	Both	beta	values	and	M-

values	were	assessed.		

7.3.2.1	IBD	versus	control	

The	lasso	algorithm	was	tuned	to	determine	the	optimum	shrinkage	intensity	(Table	31).	The	

best	performing	shrinkage	intensity	was	a	normalisation	fraction	of	0.06,	which	included	30	

methylation	probes.	This	model	including	30	probes	was	able	to	discriminate	between	IBD	

cases	and	controls	with	a	high	degree	of	accuracy	(AUC		0.898,	sensitivity	0.812,	specificity	

0.847,	misclassification	rate	0.174,	Figure	52).	The	model	included	30	probes	including	

several	of	the	most	significant	DMPs	in	the	case	control	analysis	presented	in	Chapter	3	(e.g.	

RPS6KA2,	VMP1,	and	BCL3)	but	also	some	non-significant	probes	(Table	32).	The	number	of	

methylation	probes	included	in	the	model	could	be	reduced	to	3	probes	(cg175012010	

[RPS6KA2],	cg09349128,	cg25114611),	however	this	led	to	a	reduction	in	specificity	for	IBD	

and	a	higher	misclassification	rate	(AUC	0.87,	sensitivity	0.906,	specificity	0.542	and	

misclassification	rate	0.243).		
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Norm	

fraction	

Number	of	

methylation	

probes	

included	

AUC	 Sensitivity	 Specificity	
Misclassification	

rate	

0.3	 142	 0.881	 0.765	 0.746	 0.243	

0.2	 116	 0.886	 0.765	 0.78	 0.229	

0.15	 95	 0.888	 0.776	 0.797	 0.215	

0.1	 65	 0.897	 0.8	 0.797	 0.201	

0.09	 57	 0.897	 0.824	 0.831	 0.174	

0.08	 45	 0.898	 0.8	 0.847	 0.181	

0.07	 42	 0.897	 0.8	 0.847	 0.181	

0.06	 30	 0.898	 0.812	 0.847	 0.174	

0.05	 22	 0.895	 0.812	 0.831	 0.181	

0.04	 13	 0.889	 0.812	 0.847	 0.174	

0.03	 10	 0.885	 0.788	 0.831	 0.194	

0.02	 5	 0.875	 0.788	 0.763	 0.222	

0.01	 3	 0.87	 0.906	 0.542	 0.243	

Table	31	–	Tuning	of	lasso	algorithm	to	alter	the	shrinkage	intensity	and	thus	the	number	of	

methylation	probes	included	in	the	model.	A	shrinkage	intensity	of	0.06	was	the	optimum:	

this	included	30	methylation	probes	and	demonstrated	the	highest	

AUC/Sensitivity/Specificity	and	lowest	misclassification	rate.		
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Figure	52	–	Lasso	modelling	to	discriminate	IBD	cases	from	controlsTop:	Receiver	operator	

curve	for	Lasso	selected	probes	to	distinguish	IBD	from	controls	using	30	methylation	probes.	

Bottom:	Probability	plot.	0/red	=	controls,	1/green	=	IBD	cases.			
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absolute	
value	of	
regression	
coefficient	

Probe	Id	 Chr	 Gene	
Symbol	

Δβ		
IBD	vs	
Cont	

P.Value	
IBD	vs	
Cont	

Holm	
adj.P.Val	
IBD	vs	
Cont	

1	 6.18	 cg24971181	 chr8	 NA	 -0.003	 0.0001	 1	
2	 5.48	 cg22768358	 chr11	 ZBTB16	 0.02	 7.1E-12	 3.2E-06	
3	 5.03	 cg17501210	 chr6	 RPS6KA2	 -0.08	 2.7E-22	 1.2E-16	
4	 4.65	 cg25114611	 chr6	 NA	 -0.04	 1.1E-18	 4.9E-13	
5	 4.01	 cg26470501	 chr19	 BCL3	 -0.03	 5.8E-16	 2.6E-10	
6	 2.83	 ch.1.4690234F	 chr1	 LGALS8	 -0.002	 0.005	 1	
7	 2.80	 cg07012999	 chr22	 NA	 0.01	 0.005	 1	
8	 2.79	 cg23344935	 chr12	 PRR13	 -0.005	 0.019	 1	
9	 2.37	 cg16246188	 chr11	 ZBTB16	 0.01	 3.0E-09	 0.001	
10	 2.07	 cg04666911	 chr11	 LSP1	 0.02	 4.8E-08	 0.02	
11	 1.91	 cg20364632	 chr6	 NA	 -0.02	 7.6E-10	 0.0003	
12	 1.83	 cg09349128	 chr22	 NA	 -0.04	 3.1E-19	 1.4E-13	
13	 1.60	 cg17927096	 chr10	 NA	 -0.009	 0.0001	 1	
14	 1.43	 cg07242215	 chr4	 COX18	 -0.003	 0.001	 1	
15	 1.21	 cg26247646	 chr1	 KIF1B	 -0.02	 0.0003	 1	
16	 1.05	 cg24312865	 chr10	 PPP2R2D	 -0.003	 0.18	 1	
17	 0.81	 cg22881435	 chr8	 RAB11FIP1	 0.02	 1.1E-11	 4.9E-06	
18	 0.75	 cg07398517	 chr3	 NA	 -0.04	 6.1E-16	 2.8E-10	
19	 0.53	 cg09026415	 chr5	 TMEM161B	 -0.007	 0.0001	 1	
20	 0.47	 cg12582317	 chr17	 NA	 0.05	 5.7E-14	 2.5E-08	
21	 0.43	 cg01543300	 chr19	 TIMM13	 -0.004	 0.003	 1	
22	 0.23	 cg18877969	 chr2	 NMUR1	 -0.003	 0.009	 1	
23	 0.15	 cg20201143	 chr6	 SYNGAP1	 0.01	 1.9E-05	 1	
24	 0.12	 cg02716826	 chr9	 NA	 -0.04	 2.7E-15	 1.2E-09	
25	 0.11	 cg18589102	 chr10	 NA	 0.02	 0.004	 1	
26	 0.09	 cg07533100	 chr16	 NA	 -0.01	 0.12	 1	
27	 0.09	 cg08249698	 chr16	 RBFOX1	 -0.02	 1.6E-05	 1	
28	 0.07	 cg25653947	 chr8	 NA	 0.03	 2.6E-13	 1.2E-07	
29	 0.04	 cg23598089	 chr1	 ATP2B4	 0.03	 1.8E-08	 0.008	
30	 0.01	 cg12054453	 chr17	 VMP1	 -0.07	 3.9E-17	 1.8E-11	

Table	32	-	Panel	of	Methylation	probes	selected	by	lasso	algorithm	to	differentiate	IBD	from	

control.	(Δβ	=	difference	in	beta	values	between	IBD	versus	control,	p.value	and	Holm	

adjusted	p	values	derived	from	linear	models	IBD	versus	control	with	age,	sex	and	estimated	

cell	proportions	as	covariates)		
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7.3.2.2	CD	and	UC	versus	control	

Similar	results	could	be	obtained	for	CD	versus	control	(AUC=0.89,	sensitivity=0.659,	

specificity=0.889,	lasso	norm	fraction=0.13,	42	probes,	Table	79,	Table	80,	Figure	79)	and	

slightly	inferior	results	for	UC	versus	control	(AUC	=0.81,	12	probes,	norm	fraction	=0.03,	

Table	81,	Table	82,	Figure	80).		

7.3.2.2	CD	versus	UC		

For	CD	versus	UC	the	learning	set	was	increased	to	include	3/4	of	the	cohort.	The	best	

performing	model	included	19	methylation	probes	was	able	to	discriminate	CD	and	UC	with	a	

reasonable	degree	of	accuracy	(AUC=0.719,	sensitivity=1,	specificity=0.111,	misclassification	

rate=0.533,	Table	83,	Table	84,	Figure	81).		

7.3.2.3	IBD	prognosis	

The	lasso	approach	was	also	applied	to	the	IBD	cases	alone	in	an	attempt	to	define	models	

associated	with	specific	outcomes	(resectional	surgery	and/or	colectomy,	emergency	hospital	

admission,	need	for	immunomodulatory),	however	no	models	were	identified	with	an	AUC	

>0.5	.		

Using	DNA	methylation	data	to	predict	prognosis	in	IBD	

7.3.3	DNA	methylation	data	and	disease	location	and	behaviour	

Following	correction	of	multiple	testing,	there	were	no	DNA	methylation	markers	that	

predicted	Montreal	disease	location	or	behaviour	in	CD	or	Paris	disease	extent	in	UC	(mm	=	

~1	+	Extent	+	CD8	+	CD4	+	NK	+	BCell	+	Mono	+	Gran	+	EverSmoked	+	Age	+	Sex).	Using	multi-

dimensional	scaling,	there	was	no	obvious	clustering	according	to	disease	location	(CD,	Figure	

82),	behaviour	(CD,	Figure	83)	or	extent	(UC,	Figure	84).		

7.3.4	Unsupervised	consensus	clustering	

An	attempt	to	identify	subclasses	of	IBD	patients	based	on	DNA	methylation	data	

unsupervised	consensus	clustering	was	performed	on	the	top	5000	DMPs	identified	in	the	

primary	analysis	(IBD	versus	controls,	whole	blood).	Kmeans	clustering	based	on	the	Pearson	

correlation	coefficient	was	used	as	the	final	clustering	method,	although	similar	results	were	

obtained	by	using	other	methods	(kmeans	clustering	based	on	Spearman’s	correlation,	

hierarchical	clustering,	PAM	clustering).	Three	stable	clusters	(Figure	53	A)	were	used	for	
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downstream	analysis,	chosen	on	the	basis	of	the	cumulative	distribution	function	(CDF,	Figure	

53	B)	411	and	the	clest	method.414	Survival	analysis	demonstrated	that	the	three	subclasses	of	

IBD	based	on	the	consensus	clustering	formed	high-,	intermediate-	and	low-	risk	groups	for	

requiring	surgery	(resectional	surgery	[CD]	and/or	colectomy)	and	immunomodulatory	

requirement.		The	demographics	of	each	group	are	presented	in	Table	33.	The	results	of	Cox	

proportional	hazards	regression	performed	to	determine	factors	(including	consensus	

subtypes	of	IBD)	independently	associated	with	surgery	and	need	for	immunomodulator	and	

escalation	of	therapy	as	defined	by	Lee	et	al.260		

	

	

Figure	53-	Unsupervised	Consensus	Clustering	to	identify	IBD	subclasses	based	on	DNA	

methylation	data.	Three	stable	clusters	were	formed.		
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Figure	54	-	Survival	analysis	according	to	DNA	methylation	consensus	class.	Top	left	panel	–	

Time	to	surgery.	Bottom	Left	–	Time	until	emergency	admission.	Top	right	panel	–	Time	until	

requirement	for	Immunomodulator	(oral	or	IV	steroid,	anti-TNFalpha	drug,	ciclosporin,	

Methotrexate,	thiopurine).	Bottom	right	panel	–	Criteria	of	treatment	escalation	defined	by	

Lee	et	al260	(surgery,	step	up	to	2	or	more	immunomodulators).		P	values	denote	ChiSquared	

test	for	difference	between	survival	curves	with	2	degrees	of	freedom		
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Group	1	

	(low	risk)	

(n=62)	

Group	2		

(High	risk)		

(n=91)	

Wilcox	p	

value	

(high	risk	

versus	low	

risk)		

Group	3	

(intermediate	

risk)	

(n=87)	

Kruskall-

Wallis	p	

value	(all	

three	

groups)	

Age		
37.6	(27-

50.3)	

30.8	(24.6-

47.7)	
0.1	 33.4	(25-47.4)	 0.3	

Female	(%)	 31	(50)	 36	(39.6)	 0.3	 42	(48.3)	 0.4*	

Follow	up	

length	
18	(13-28)	 19	(7-25)	 0.6	 20	(10-29)	 0.4	

CRP		
3.5	(1.25-

5.75)	
14.5	(4-37.5)	 0.002	 11	(2.25-26)	 0.004	

Albumin		
40	(37.25-

41)	
34	(29-36.75)	 1.7E-5	 37	(33-39)	 1.89E-5	

Haemoglobin		
141	(127-

149.5)	

132.5	(115.5	–	

142)	
0.02	 130	(122-144)	 0.06	

Table	33	-	Demographics	of	three	IBD	subgroups	generated	by	Unsupervised	consensus	

clustering		(data	presented	as	medians	(interquartile	range),	*	=	chi	squared	test)		
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	 Hazard	ratio	 95%	CI	lower	 95%	CI	upper	 P	value	

Surgery	(n=106,	events=	19)	

Consensus	Class	 1.5	 0.8	 3	 0.2	

CRP	 1	 0.99	 1.01	 0.9	

Albumin	 0.9	 0.86	 1.04	 0.3	

Age	 1	 0.97	 1.03	 0.9	

Male	sex	 2.3	 0.74	 6.93	 0.2	

Immunomodulator	(n=107,	n=83)	

Consensus	Class	 0.8	 0.62	 1.12	 0.2	

CRP	 1	 0.99	 1.01	 0.2	

Albumin	 0.9	 0.86	 0.95	 5.2E-5***	

Age	 1	 0.98	 1.01	 0.7	

Male	sex	 0.9	 0.56	 1.40	 0.6	

Escalation	of	therapy	(n=60,	events=28)	

Consensus	Class	 0.8	 0.41	 1.34	 0.3	

CRP	 1	 0.99	 1.01	 0.7	

Albumin	 0.9	 0.78	 0.92	 0.0001**	

Age	 1	 0.97	 1.04	 0.7	

Male	sex	 1.5	 0.60	 3.58	 0.4	

Emergency	admission	(n=100,	events=68)	

Consensus	Class	 1.2	 0.86	 1.7	 0.3	

CRP	 1	 0.998	 1.0072	 0.6	

Albumin	 0.9	 0.87	 0.96	 0.0007	

Age	 0.99	 0.98	 1.02	 0.7	

Male	sex	 0.80	 0.5	 1.3	 0.4	

Table	34	-	Cox	proportional	hazards	model	for	factors	associated	with	poor	outcome	in	IBD.	

Risk	of	surgery	(resection	surgery	in	CD	+/-	colectomy),	need	for	emergency	hospital	

admission,	Time	until	requirement	for	Immunomodulator	(oral	or	IV	steroid,	anti-TNFalpha	

drug,	ciclosporin,	Methotrexate,	thiopurine).			need	for	immunomodulatory	and	escalation	of	

therapy	as	defined	by	Lee	et	al.		
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In	an	effort	to	understand	contributors	to	the	three	subclasses	of	IBD,	the	residuals	of	a	linear	

model	of	cell	proportion	(estimated	using	Houseman	method)	and	smoking	were	

subsequently	used	in	a	further	consensus	clustering	analysis.	Figure	55	demonstrates	the	

effect	of	including	cell	proportion	(Figure	55	A),	and	both	cell	proportion	and	smoking	(Figure	

55	B)	on	the	strength	of	the	clustering.		

	

Figure	55	-	Consensus	Clustering	using	residuals	of	a	linear	model	based	on	cell	proportions	

estimated	by	Houseman	method	and	Smoking	status	

	

7.4	Discussion	

This	study	provides	prospective	validation	of	the	paired	two	probe	methylation	biomarkers	

described	by	paediatric	onset	CD.284	Of	the	44	probes	pairings	described	in	Adams	et	al	tested	

in	this	dataset,	the	best	performing	pairings	were	RSP6KA2/VMP1	and	RPS6KA2/TNFSF10.	

The	strongest	discriminatory	value	was	seen	in	CD,	and	this	may	reflect	the	nature	of	the	

testing	cohort	(CD-only)	in	the	previous	study.	However	there	was	also	good	discriminatory	

value	in	both	IBD	and	UC.	In	the	previous	study,	the	AUC	in	the	early-onset	group	was	as	high	

as	0.98,	however	in	this	study	the	maximum	AUC	was	0.84	in	CD.	As	has	previously	been	

noted,	the	IBD/CD-specific	methylation	pattern	weakens	with	age	and	may	result	from	the	

accumulation	of	confounding	epigenetic	marks	caused	by	aging	and	environmental	exposures	

in	development	from	childhood	to	adulthood.284,417		

Whilst	linear	discriminant	analysis	performed	relatively	well	in	discriminating	IBD	cases	from	

controls,	there	are	other	machine	learning	methods	better	suited	to	such	large	datasets	where	

the	number	of	variables	vastly	exceeds	the	number	of	samples	(so-called	"p	≫	n"	setting).	The	
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CMA	package	was	designed	to	bring	together	the	multiple	methods	available	for	class	

prediction	in	microarray-type	datasets,	and	allow	comparison	and	selection	of	the	best	

performing	method.410	Following	assessment	of	classification	methods,	the	lasso	method	was	

selected.416	Lasso	(least	absolute	shrinkage	and	operator	selection)	an	established	machine	

learning	method	developed	by	Tibshirani416	in	the	1990’s	and	has	been	used	widely	for	class	

prediction	the	biomolecular	setting.	Briefly,	the	model	shrinks	the	absolute	value	of	

regression	coefficients	to	less	than	a	constant,	and	sets	non-relevant	variables	to	zero,	thereby	

producing	a	simpler	model	without	these	variables.416	Using	this	method	a	model	including	30	

probes	was	able	to	discriminate	IBD	from	controls	with	a	high	degree	of	accuracy	

(AUC=0.898)	and	outperformed	the	LDA	techniques.	The	final	30-probe	model	is	easily	

scalable	into	a	high-throughput	pyrosequencing	panel	and	such	a	non-invasive	peripheral	

blood	biomarker	could	be	used	to	stratify	patients	to	further	intrusive	investigations	such	as	

colonoscopy.	Existing	clinically	available	biomarkers	such	as	faecal	calprotectin230	already	

provide	similar	utility	but	are	unable	to	distinguish	the	two	forms	of	IBD.	A	different	19-probe	

methylation-based	panel	may	confer	an	additional	benefit	in	discriminating	CD	and	UC	

(AUC=0.719),	which	can	be	critical	for	decision-making	in	terms	of	medical	and	surgical	

management.	In	this	chapter	the	cohort	was	split	into	a	testing	and	validation	set	rather	than	

using	cross	validation.	Whilst	arbitrarily	splitting	the	cohort	is	robust	method,	the	main	

disadvantage	to	this	is	that	the	power	to	detect	variables	is	reduced	in	a	smaller	dataset.	

Expression	and	genetic	data	derived	in	later	chapters	was	also	incorporated	into	biomarker	

discovery	models,	however	the	high	level	of	statistical	significance	achieved	by	the	

methylation	data	in	discriminating	cases	and	controls	meant	that	the	genetic	and	gene	

expression	variables	was	not	selected	in	the	best	performing	models.		

	

Lee	et	al	used	unsupervised	consensus	clustering	on	CD8+	transcriptomic	data	to	subclassify	

IBD	patients,	and	demonstrated	certain	expression	signatures	were	associated	with	worse	

clinical	prognoses	(need	for	surgery,	treatment	escalation).260	When	the	same	method	has	

been	applied	to	this	whole	blood	DNA	methylation	data,	three	distinct	subclasses	of	IBD	were	

identified,	corresponding	to	a	high-,	intermediate-	and	low-risk	groups	of	a	more	severe	

disease	prognosis.	Using	survival	analysis,	there	was	a	significant	difference	in	the	risk	of	

resectional	surgery	or	colectomy	(p=0.02),	need	for	emergency	hospital	admission	(p=0.008)	

and	for	the	time	to	immunomodulatory	requirement	(p=0.02)	in	the	three	groups.	There	was	

no	significant	difference	when	the	same	criteria	for	escalation	of	treatment	used	by	Lee	et	
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al260	(p=0.2),	however	the	number	of	patients	with	this	level	of	clinical	phenotype	data	was	

small.	Whilst	this	method	subclassifying	IBD	patients	was	initially	hopeful,	on	further	

examination	there	were	several	important	limitations.	Firstly,	when	using	Cox	proportional	

hazards	regression	analysis,	the	consensus	clustering	group	was	not	independently	predictive	

of	need	for	surgery	or	immunomodulatory	use,	whereas	an	existing	clinically	available	

biomarker,	albumin,	was.	Secondly,	a	major	strength	of	the	Lee	et	al	paper,	was	the	lack	of	

differences	in	baseline	characteristics,	disease	extent	and	behaviour	and	key	biochemical	

markers	between	the	two	IBD	subclasses.260	This	was	an	exciting	finding	suggesting	the	gene	

expression	signature	was	not	the	result	of	baseline	differences	in	IBD	subclasses	that	are	

already	known	or	can	be	readily	assayed	in	clinic.	In	the	present	analysis	of	DNA	methylation	

data	however,	the	three	groups	all	demonstrated	significant	baseline	differences,	with	the	

“high-risk”	group	containing	more	males,	younger	patients,	with	higher	baseline	CRP	and	

lower	baseline	albumin	and	haemoglobin	(all	known	to	be	associated	with	worse	prognosis).	

A	further	limitation	of	this	analysis	is	the	known	effect	of	cell	proportion	and	other	factors	

(e.g.	smoking)	on	DNA	methylation	data.	When	differences	in	cell	proportion	and	smoking	

status	were	accounted	for,	the	strength	of	clustering	decreased	significantly.	Lastly,	since	the	

publication	of	Lee	et	al,260	there	have	been	criticisms	of	unsupervised	consensus	clustering	in	

the	literature,	in	particular	the	fact	that	stable	clusters	can	be	derived	from	randomly	

generated	data.418	Taken	together,	this	model	would	not	be	suitable	as	a	biomarker,	given	the	

expense	of	generating	the	methylation	data,	and	that	presently	available	clinical	parameters	

contribute	to	the	clustering	effect	seen	and	may	be	superior	at	predicting	patients	at	risk	of	a	

worse	prognosis.		

Conclusions	

These	data	demonstrate	the	considerable	translational	potential	of	DNA	methylation	data	as	

diagnostic	and	prognostic	biomarkers.	The	underlying	biomarker	signals	may	be	driven	by	

differences	in	cell	proportions	between	cases	and	controls.	Care	must	be	taken	that	in	

developing	biomarkers	from	sophisticated	(and	expensive)	‘-omic’	technologies	such	as	DNA	

methylation	that	the	putative	biomarkers	are	not	merely	a	surrogate	for	easily	obtainable	

simple	clinical	parameters	such	as	white	cell	count.		
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Chapter	8.	MicroRNA	in	IBD	

Abstract	

Introduction	

MicroRNAs	(miRNA)	are	small	non-coding	nucleic	acids	that	have	the	capacity	to	modulate	

gene	expression	through	direct	inhibition	of	translation	or	by	inducing	cleavage	of	mRNA.	

miRNAs	have	been	increasingly	implicated	in	many	of	the	important	IBD	pathogenic	pathways	

including	autophagy,	intestinal	epithelial	barrier	integrity	and	the	Th17	pathway.	In	common	

with	all	epigenetic	mechanisms,	miRNA	expression	is	dynamic	and	cell-specific.	The	aim	of	

this	study	was	to	characterise	miRNA	expression	in	separated	peripheral	blood	immune	cells	

in	CD	compared	with	controls.	

Methods	

Small	RNA	sequencing	(RNA-seq)	was	performed	on	RNA	extracted	from	CD14+,	CD4+	and	

CD8+	cells	isolated	from	8	newly	diagnosed	cases	of	ileal	or	ileocolonic	CD	and	8	age	and	sex	

matched	controls.	A	small	RNA-seq	analysis	pipeline	was	optimised.	TargetScan	and	

DIANA/miRPath	were	used	to	predict	downstream	mRNA	targets	for	differentially	expressed	

miRNAs.		

Results	

There	was	a	median	of	2.4	million	reads	per	sample	(range	132,800-12.8	million	reads	per	

sample).	Several	normalisation	methods	were	tested,	and	filtered	quantile	scaled	

normalisation	was	selected	on	the	basis	of	multidimensional	scaling	plots.	One	microRNA	was	

differentially	expressed	in	CD	compared	with	controls	(hsa-miR-503-5p	log	fold	change	=	0.7,	

FDR	adjusted	p	=	9.1	×	10-5)	in	CD4+	lymphocytes.	Using	different	normalisation	methods	

miR-503-5p	was	no	longer	statistically	significantly	differently	expressed	between	cases	and	

controls.	There	were	no	other	differentially	expressed	miRNAs	in	the	other	cell	types.	

TargetScan	demonstrated	101	gene	targets	for	miR-503	and	DIANA/miRPath	highlighted	61	

related	pathways.		

Discussion	

The	small	number	of	cases	used	in	this	experiment	raises	the	possibility	of	both	type	I	and	II	

error.	Larger	number	of	participants	are	required	to	detect	a	true	difference	or	otherwise	
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between	cases	and	controls.	The	methodology	used	to	generate	these	data	is	useful	in	

informing	future	small	RNA-seq	experiments	in	the	context	of	complex	disease.		
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8.1	Introduction	

MicroRNAs	(miRNAs)	are	non-coding	RNAs	between	18-23	nucleotides	in	length	that	can	act	

as	post-transcriptional	modifiers	of	gene	expression.314	miRNAs	were	initially	described	in	the	

nematode	C.elegans419	in	1993	and	subsequently	Fire	and	Mello	won	the	Nobel	prize	in	2006	

for	their	elucidation	of	the	mechanisms	by	which	miRNAs	affect	gene	expression.420	miRNAs	

have	been	shown	to	regulate	and	influence	many	aspects	of	plant	and	animal	health	and	

disease.421	The	number	of	miRNA-related	publications	is	rapidly	expanding	(Figure	56).		
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Figure	56	–Number	of	miRNA	related	citations	on	Pubmed.org.	A	–	Total	miRNA	publications	

(green)	with	proportion	related	to	“Gastroenterology”.	B	–	miRNA	AND	Gastroenterology	and	

IBD	(purple)	publications.	Normalised	for	total	number	of	PubMed	citations.	Taken	with	

permission	from	Kalla,	Ventham	et	al	with	permission	(License	number	3755840927686)314		

	

miRNAs influence gene expression at the post-transcriptional
level, and may interfere with the process of transcription.58

Single nucleotide polymorphisms (SNPs) in pre-miRNA
sequences are rare, occurring in only 10% of all human
pre-miRNAs, and less than 1% of miRNAs have SNPs in their
functional seed region.53 Therefore functional mutations in
miRNAs are unlikely to be tolerated and negative selection may
occur at these loci.

miRNAs affect gene expression
It is estimated that miRNAs regulate more than 60% of protein
coding mRNAs.59 Each miRNA can target hundreds of mRNAs
resulting in mRNA destabilisation and/or inhibition of transla-
tion. Generally, the overall effect on target protein levels is
subtle and can be thought of as ‘fine-tuning’ of cellular mRNA
expression within a cell.60 61 The combinatorial targeting of
genes by miRNAs in this fashion makes them interesting thera-
peutic candidates that in theory may reduce resistance in dis-
eases such as cancer.62

miRNAs regulate important cellular functions such as differ-
entiation, proliferation, signal transduction and apoptosis and
exhibit highly specific regulated patterns of gene expression.63

A number of applications have been developed to predict
mRNA/miRNA interactions and aid in understanding specific
miRNA targets.64

miRNA regulation
At various stages in miRNA biogenesis, several factors can influ-
ence the development of the mature miRNA. Figure 2 depicts
the various steps of biogenesis that are subject to regulation.
These include regulation of transcription, cleavage of the stem
loop structures by Drosha and Dicer enzymes, editing as well as
regulation of miRNA turnover. The regulatory mechanisms
occurring at each stage have been reviewed elsewhere.18 65 Each
of these mechanisms acts as part of a signalling network that
modulates gene expression in response to cellular or environ-
mental changes.

miRNA gene regulatory networks
Over 5400 miRNAs have now been identified with each
miRNA possessing the ability to target multiple gene transcripts.
miRNAs are members of complex gene regulatory networks
(GRNs) and figure 3 summarises these GRNs, comprising of
feedback and feed-forward loops.66 67 69 Certain subcircuits are
evolutionarily favoured and are termed network motifs.67

Coordinated transcriptional and miRNA-mediated gene regula-
tion is a recurrent network motif and fortifies gene regulation in
mammalian genomes.66 Inflammation driven miRNA circuits
are described in the literature and examples include nuclear
factor-κB (NFκB) and hepatocyte nuclear factor-4α circuits.70 71

Within the NFκB circuitry, transient activation of Src oncopro-
tein triggers an NFκB mediated inflammatory response by
downregulating let-7a and upregulating its direct target interleu-
kin (IL)-6.70 This forms a stable positive feedback circuit across
many cell divisions.70 Similarly the hepatocyte nuclear factor-4α
circuit consists of miR-124, IL6R, STAT3, miR-24 and miR-629
and is essential for liver development and hepatocyte func-
tion.71 Several other examples of miRNAs involved in GRNs
are summarised in a recent review.72

Regulation of miRNAs through epigenetic mechanisms
Emerging evidence suggests miRNA expression can be regulated
by epigenetic mechanisms such as DNA methylation, histone
modifications and circular RNAs (circRNAs).73–76 DNA methy-
lation, the addition of methyl groups at CpG islands by DNA
methyltransferases (DNMTs), is associated with transcriptional
repression. Similarly, acetylation or deacetylation of histones
may alter transcriptional activity.77 The recently established
EpimiR database has collected 1974 regulations between 19
types of epigenetic modifications and 617 miRNAs across seven
species.78 Aberrant DNA methylation of miRNAs has been
demonstrated in various cancers, including lymphoid, gastric

Figure 1 Pubmed microRNA (miRNA) citations in Gastroenterology and
Inflammatory Bowel Diseases (IBD). Search terms used were as follows:
Gastroenterology: (miRNA OR MicroRNA) AND (Gastroenterology OR IBD
OR Inflammatory Bowel Disease OR Crohn’s Disease OR Ulcerative Colitis
OR Colon OR Stomach OR Intestine OR Oesophagus OR Oesophagus OR
Rectum) NOT mirna[author]; IBD: (miRNA OR MicroRNA) AND (IBD OR
Inflammatory Bowel Disease OR Crohn’s Disease OR Ulcerative Colitis)
NOT mirna[author]; miRNA: (miRNA OR MicroRNA) NOT mirna[author];
Each search was run for print publication dates for each year from 2001 to
2014. Citations were normalised to the total number of Pubmed indexed
articles during the same time period (nb, the term microRNAwas
introduced in 2001).

Kalla R, et al. Gut 2015;64:504–517. doi:10.1136/gutjnl-2014-307891 505

Recent advances in basic science

group.bmj.com on April 28, 2015 - Published by http://gut.bmj.com/Downloaded from 
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MiRNAs	have	been	increasingly	implicated	in	many	of	the	important	IBD	pathogenic	pathways	

including	autophagy,422–424	intestinal	epithelial	barrier	integrity425	and	the	Th17	

pathway.422,426	Many	of	the	assumption-free	screens	of	miRNAs	in	IBD	to	date	have	used	

microarray-based	platforms	that	work	by	hybridisation	of	miRNAs	to	complementary	probes	

immobilised	on	a	chip	or	bead.427	More	recently	next	generation	sequencing	(NGS),	

specifically	small	RNA	sequencing	(RNA-seq)	has	been	used	to	characterise	miRNA	profiles.	

RNA-seq	utilizes	massive	parallel	sequencing,	generating	millions	of	small	RNA	reads	per	

sample.427	Small	RNA-seq	has	a	number	of	potential	advantages	over	microarray	platforms.	

RNA-seq	provides	much	more	comprehensive	view	of	the	RNA	sample,	and	profiles	all	species	

of	RNA	(not	confined	to	microRNA).	RNA-seq	outputs	data	as	actual	reads	rather	than	probe	

intensities	used	in	microarrays	(which	often	require	normalisation	and	can	lead	to	batch	

effects).	RNAseq	can	detect	microRNAs	at	very	low	copy	numbers	(rather	than	probe	intensity	

used	in	microarrays),	however	this	is	dependent	on	the	depth	of	coverage.	Microarrays	rely	

on	pre-designed	probes	based	on	previously	described	microRNAs	(also	leading	to	

problematic	probe	redundancy	and	annotation),	whilst	RNA-seq	is	‘assumption-free’	and	is	

not	dependent	on	prior	sequence	knowledge.	RNA-seq	also	allows	discovery	of	novel	

microRNAs.	A	study	comparing	both	methods	demonstrated	RNA-seq	to	perform	better	in	

identifying	low	abundance	transcripts,	genetic	variants	and	differentiating	biologically	

different	isoforms.428	Microarray	use	still	predominates	due	to	its	current	relative	cheap	price	

and	well	defined	data	analysis	pipelines.		

	

Despite	the	advantages	of	the	RNA-seq	technique	described	above,	only	one	study	has	used	

this	technique	in	the	context	of	IBD.429	Lin	and	colleges	used	the	Illumina	platform	to	

sequence	small	RNAs	obtained	from	fresh	frozen	resection	specimens	from	active	and	inactive	

IBD	patients	(CD=9,	UC=10).	The	comparator	group	used	was	diverticular	disease	(n=18).	Of	

44	differentially	expressed	microRNAs,	nine	were	aberrantly	expressed	in	IBD	patients	

compared	to	diverticular	disease	controls.	Four	of	the	nine	differentially	expressed	

microRNAs	were	successfully	replicated	using	qPCR	(miR-31,206,	424,	146a)	and	were	

differentially	expressed	in	formalin-embedded	samples	in	IBD	compared	to	diverticular	

disease,	ischaemic	colitis	and	infectious	colitis.		

	

The	aim	of	this	study	was	to	identify	differentially	expressed	miRNAs	in	circulating	leucocytes	

of	newly	diagnosed	patients	with	Crohn’s	disease	compared	with	controls.		



210	

	

	

8.2	Methods	

8.2.1	Patient	samples	

Patients	were	recruited	as	described	in	the	methodology	section	(2.1.1	Patient	selection).	

Eight	treatment	naïve	patients	with	ileal	(L1)	or	ileocolonic	(L3)	CD	and	eight	age	and	sex	

matched	healthy	controls	were	selected	for	this	study.	Lymphocyte	subsets	(CD4,	CD8	and	

CD14)	were	isolated	from	peripheral	blood	samples	using	immunomagnetic	separation	as	

described	in	Chapter	2	(2.2	Cell	separation).	RNA	and	microRNA	was	extracted	and	quality	

assessed	using	methods	described	in	Chapter	2	(2.5	Nucleic	acid	quantification	and	quality	

assessment).		

8.2.2	Vacuum	concentrating	RNA	samples	

An	input	volume	between	1-6	μL	was	required	for	creation	of	small	RNA	libraries.	As	the	RNA	

samples	derived	from	lymphocytes	were	dilute,	it	was	necessary	to	concentrate	RNA	samples	

to	ascertain	approx.	1000	ng	in	5	μL.	The	samples	were	aliquoted	in	the	required	volume	to	a	

96	well	plate	for	a	total	RNA	quantity	of	2	μg,	therefore	half	of	this	volume	was	taken	to	obtain	

a	total	RNA	quantity	of	1	μg.	Five	mircolitres	of	0.1M	EDTA	was	added	to	each	sample	to	

inactivate	RNases.	The	samples	were	placed	in	eppendorf	tubes	with	lids	off	in	a	vacuum	

concentrator	for	a	variable	amount	of	time	to	concentrate	the	samples	depending	on	the	

initial	volume.	Following	concentration,	dry	samples	were	resuspended	with	6	μL	of	0.1M	

EDTA.		
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Figure	57	–	Overview	of	NEBNext	multiplex	kit	Small	RNA	Library	Prep	Set	for	Illumina.	

Taken	from	https://www.neb.com/products/e7300-nebnext-multiplex-small-rna-library-

prep-set-for-illumina-set-1		
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8.2.3	Small	RNA	library	creation	

The	following	experiments	were	conducted	with	the	help	and	supervision	of	Juan	Quintana	

and	Dr	Amy	Buck	in	the	Centre	for	Immunity,	Infection	and	Evolution,	Ashworth	Laboratories,	

Kings	Buildings,	Edinburgh.	Small	libraries	were	created	using	RNA	from	separated	

lymphocytes	using	the	NEBNext	multiplex	kit	Small	RNA	Library	Prep	Set	for	Illumina	(New	

England	Biolabs).		

8.2.3.1	Ligate	3’	SR	Adaptor	to	RNA	samples	

Initially	the	3’SR	adaptor	was	diluted	1:2	in	nuclease	free	water.	In	a	nuclease	free	tube,	1	μL	

of	the	diluted	adaptor,	input	RNA	(variable	according	to	concentration	of	RNA	samples)	and	a	

variable	amount	of	nuclease	free	water	were	combined	to	add	up	to	6	μL.	Samples	were	

incubated	in	a	pre-heated	thermal	cycler	for	two	minutes	at	70	°C.	The	3’Ligation	buffer	(half	

volume	used,	therefor	5	μL	per	samples),	and	3’Ligation	enzyme	mix	(half	vol,	1.5	μL)	were	

added	to	the	sample	and	incubated	for	1	hour	in	the	thermal	cycler.	

8.2.3.2	Reverse	Transcription	primer	to	remove	excess	unbound	3’	Adaptor.		

Half	volumes	of	SR	RT	reverse	transcription	primer	(0.5	μL	per	sample,	not	diluted)	were	

combined	with	nuclease	free	water	(2.25	μL	per	sample)	and	added	to	the	3’SR	ligated	sample	

and	placed	on	the	heat	cycler	for:	5minutes	@	75	°C;	15	minutes	at	37	°C,	and	15minutes	at	25	

°C.	This	step	is	done	to	prevent	adaptor	dimer	formation;	by	allowing	the	SR	RT	Primer	to	

bind	excess	3’	SR	Adaptor	(single	stranded	DNA)	into	double	stranded	DNA.	As	dsDNA	is	not	a	

substrate	for	T4	RNA	Ligase	1	used	in	the	subsequent	step,	the	5’	SR	adaptor	is	not	added	to	

these	dsDNA	products.		

8.2.3.3	Ligate	the	5’SR	Adaptor	to	the	RNA	sample	

When	used	for	the	first	time,	the	5’	SR	Adaptor	was	re-suspended	from	powder	form	to	

solution	in	120	μL	of	nuclease	free	water.	From	this	an	aliquot	required	for	the	library	was	

taken,	in	this	case	1.6	μL	of	5’Adaptor,	and	diluted	with	1.6	μL	of	water,	providing	1	μL	of	1:2	

diluted	adaptor	for	each	RNA	sample.	Prior	to	adding	to	the	sample,	the	adaptor	was	

denatured	at	70	°C	for	2	minutes	and	immediately	placed	on	ice,	and	used	within	30minutes.	

The	following	components	were	added	to	the	RNA	sample,	1	μL	of	denatured	and	diluted	5’	SR	

Adaptor,	5’	ligation	buffer	mix	(half	volume,	0.5	μL),	and	5’	Ligation	enzyme	mix	(1.25	μL,	half	

volume).	The	sample	was	incubated	in	the	thermal	cycler	for	1	hour.		
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8.2.3.4	Reverse	transcription	of	the	sample	

To	the	adaptor	ligated	RNA	sample,	4	μL	of	first	strand	synthesis	reaction	buffer,	0.5	μL	of	

murine	RNase	inhibitor,	and	0.5	μL	of	Protoscript	II	reverse	transcriptase	was	added	to	the	

sample	and	incubated	for	1	hour	at	60	°C.		

8.2.3.5	PCR	Amplification	

To	the	reverse	transcribed	reaction	mix,	the	following	reagents	were	added:	25	μL	of	

LongAmp	TaqX2	Master	Mix,	1.25	μL	SR	Primer,	2.5	μL	nuclease	free	water,	and	1.25	μL	Index	

Primer	(Primers	1-12,	different	number/barcoded	primer	added	to	each	sample).		Two	

different	PCR	cycles	lengths	were	attempted:	15	and	22	cycle	PCR.	Gel	assessment	

demonstrated	that	22	cycles	provided	a	better	result	(Figure	58).	The	final	protocol	used	is	

summarised	in	Table	35.		

	

Figure	58	–	TBE	polyacrylamide	gel	demonstrating	optimisation	of	PCR	cycle	length	and	input	

RNA	amount	for	small	RNA	library	creation	

	

Table	35	–	Summary	of	thermocycler	settings	for	library	creation		(Taken	from	NEBNext	

multiplex	Small	RNA	Library	Prep	Set	for	Illumina	(Set	1)	Protocol)		

Cycle	Step	 Temp	 Time	 Cycles	

Initial	Denaturation	 94°C	 30	seconds	 1	

Denaturation	 94°C	 15	sec	

22	Annealing	 62°C	 30sec	

Extension	 70°C	 15sec	

Final	Extension	 70°C	 5minutes	 1	
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8.2.3.6	Gel	assessment	of	PCR	purity	and	microRNA	band		

The	purified	PCR	product	was	run	on	a	6%	TBE	acrylamide	gel	(Invitrogen)	using	TBE	

running	buffer	(100mls	of	5X	TBE,	diluted	with	400mls	of	purified	water).	The	PCR	product	

was	mixed	with	5	μL	of	gel	dye.	The	first	well	was	loaded	with	Quick-Load	pBR322	DNA-Mspl	

Digest	(5	μL).	The	following	wells	were	loaded	with	3.5uL	of	appropriate	sample.	

Electrophoresis	was	performed	for	40	minutes	at	180V,	or	until	the	blue	dye	reached	the	end	

of	the	gel.	The	gel	was	carefully	removed	and	put	into	the	TBE	buffer,	and	stained	with	

ethidium	bromide.	The	gel	was	carefully	placed	in	the	syngene	UV	transilluminator	and	image	

capture	performed.		

8.2.3.7	Pooling	of	samples	for	sequencing		

Samples	of	cDNA	were	pooled	prior	to	sequencing	according	to	PCR	product	band	intensity	

and	barcode	primer	(Appendix	6	-	Chapter	8	microRNAs	in	IBD	

Table	85).	Two	pools	were	created	of	high	PCR	band	intensity,	and	two	for	low	PCR	band	

intensity.	Groups	were	compiled	to	ensure	samples	with	the	same	barcode	were	not	pooled	

together.	(Also	group	so	that	in	group	comparisons	could	be	performed	if	there	was	a	problem	

with	sequencing	e.g.	CD14	in	pool	1,	CD4	in	Pool	5,	and	CD8	in	Pool	6).	For	high	PCR	band	

intensity	samples,	the	relative	volume	contribution	to	the	pool	was	reduced	(5	μL)	and	for	

medium	PCR	band	intensity	(Between	7-10	μL).	Low	PCR	band	intensity	all	contributed	10	μL	

to	the	pool	from	each	sample.	

8.2.3.8	Size	selection	of	the	purified	amplified	cDNA	library	on	6%	polyacrylamide	gel	

The	purified	PCR	product	was	run	on	a	6%	TBE	polyacrylamide	gel	(Invitrogen)	using	TBE	

running	buffer	(100	mL	of	5X	TBE,	diluted	with	400	mL	of	purified	water)	to	size	select	

microRNA.	The	pooled	PCR	products	were	mixed	with	blue	gel	loading	dye	(5	μL).	The	first	

well	was	loaded	with	Quick-Load	pBR322	DNA-Mspl	Digest	(5	μL).	The	volume	of	pooled	

sample	was	loaded	according	the	size	of	pool	(e.g.	Pool	1	total	volume	96	μL,	split	between	9	

wells=11	μL	in	each	well,	plus	one	ladder).		Electrophoresis	was	performed	for	1	hour	at	

180V,	or	until	the	blue	dye	reached	the	end	of	the	gel.	The	gel	was	stained	with	ethidium	

bromide	stain	for	2-3	minutes.	The	exposure	to	UV	light	and	ethidium	bromide	was	kept	to	a	

minimum	to	prevent	cDNA	damage	in	the	purified	samples.430	Before	cutting	out	the	size	

selected	band	on	the	gel,	gel	was	imaged	on	a	UV	transilluminator	to	observe	an	expected	

microRNA	band	at	~140bp	(21	nucleotide	microRNA)	and	150bp	(30	nucleotide	RNA)	

corresponding	to	the	adapter	ligated	constructs.	The	gel	was	taken	to	the	dark	room	where	
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the	desired	gel	band	is	cut	out	of	the	gel	using	a	scalpel	blade	with	the	gel	on	the	UV	

transilluminator	(performed	by	Juan	Quintana,	Figure	59).		The	post-cut	gel	was	again	imaged	

to	ensure	that	the	correct	band	had	been	removed.		

	

Figure	59	–	Size	selection	of	purified	amplified	cDNA	library	on	6%	polyacrylamide	gel.	

Expected	microRNA	exists	between	140	and	150	bp	before	and	after	cut.	The	image	shown	is	

Pool	6	(medium	PCR	band	intensity).		

	

The	gel	was	crushed	by	centrifugation	through	a	small	hole	made	in	a	microfuge	tube	placed	

inside	a	larger	Eppendorf	(7	minutes	at	16000RCM).	The	crushed	gel	was	incubated	in	300	μL	

of	water	overnight	at	4	°C	on	a	rotating	incubator	to	elute	cDNA.	Samples	were	then	quality	

assessed	using	the	Agilent	DNA	chip	(Table	36).			

	 Pool	
concentrations	

(ng/	μL)	

Total	
cDNA	in	
15	uL	

Vol	DNA	
added	
(μL)	

EB	
buffer	
(μL)	

Concentration	in	
sample	for	GenePool	

(ng/	μL)	

Pool	1	 5.17	 77.55	 7.25	 7.75	 2.499	
Pool	2	 6.96	 104.4	 5.39	 9.61	 2.501	
Pool	5	 4.9	 73.5	 7.64	 7.36	 2.496	
Pool	6	 3.17	 47.55	 11.83	 3.17	 2.500	
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Table	36	–	Pooled	samples	for	sequencing	

	

8.2.4	Sequencing	

Sequencing	was	performed	using	the	Illumina	HiSeq	2000/2500	platform	(performed	at	

Edinburgh	Genomics).	The	Illumina	HiSeq	uses	the	polymerase-based,	sequence	by	synthesis	

technique.	This	system	uses	a	polymerase	to	amplify	(bridge	amplification)	the	DNA	into	DNA	

colonies	or	‘clusters’.	Four	types	of	florescent	reversible-terminator	base	(RT	base)	are	added,	

corresponding	to	the	four	bases	for	sequencing,	and	the	non-incorporated	bases	are	washed	

away.	A	camera	takes	an	image	of	the	fluorescently	dyes	nucleotides,	and	converts	the	analog	

image	to	digital	output	(analogue	to	digital	conversion).	The	marker	nucleotides	are	

chemically	removed	from	the	DNA,	together	with	the	terminal	3’	blocker,	allowing	the	next	

base	to	be	sequenced.	Therefore	DNA	chains	are	extended	one	nucleotide	at	a	time	(sequence	

by	synthesis	technique).	The	process	is	carried	out	in	parallel	(massively	parallel	signature	

sequencing,	next	generation	sequencing	[MPSS])	and	cameras	with	a	faster	analogue	to	digital	

conversion	rate	have	allowed	increasingly	rapid	sequencing	capabilities.	One	rapid	flow	cell	

lane	(V1	chemistry,	Yielding	approx.	100million	reads	per	lane)	was	used	per	sample	pool	

with	single-ended	reads.	Rapid	mode	provides	a	faster	processing	time,	but	less	depth	of	

sequencing	compared	to	high	output	mode.	Individual	samples	within	the	pool	were	indexed	

using	unique	barcode	sequences	and	the	5’	adaptor	sequences	were	removed.	Data	was	

outputted	in	the	form	of	fastq	files.		
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Figure	60	–	Summary	of	Illumina	bridging	reaction	during	next	generation	sequencing		

(http://seqanswers.com/forums/showthread.php?t=21)		
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Figure	61	Summary	of	Illumina	next	generation	sequencing	

(http://seqanswers.com/forums/showthread.php?t=21)		

8.2.5	Data	processing	

Data	were	processed	in	conjunction	with	Dr	Nick	Kennedy	with	additional	input	from	Dr	Al	

Ivens.		

Fastq	files	consist	four	lines	that	display	the	following	information:	
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1)	Sample	ID	(usually	starts	with	@,	then	instrument	name(),	flowcell	lane()title	number	

within	flowcell	lane(),	x	co-ordinate	within	cluster,	y	co-ordinate	within	cluster,	index	number	

for	barcode	of	multiplex	sample(),	and	number	within	pair(not	applicable	in	this	case,	only	

when	paired	end	reads).		

2)	Raw	sequence	reads	

3)	‘+’	(can	contain	another	sample	identifier)	

4)	Quality	value	based	on	the	ASCII	scale	of	increasing	quality	form	left	to	right	(corresponding	

to	33	to	126)	

!"#$%&'()*+,./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrst

uvwxyz{|}~		

This	can	be	converted	into	a	phred	score	(0-60)	a	measure	of	the	probability	of	a	correct	base	

call	(Phred	+	33).	The	phred	score	is	calculated	from	the	standard	Sanger	variant	(Qsanger	=	-

10*	log10p,	where	p	is	the	probability	of	a	base	call	being	correct).		

8.2.5.1	Quality	assessment	

The	sequencing	data	was	quality	assessed	using	the	Fastqc	program.	Low	quality	reads	were	

filtered	using	CutAdapt	in	the	following	step.		

8.2.5.2	Trim	adaptors/adapters	

During	post-sequencing	processing	the	5’	adaptor	was	removed,	and	the	raw	reads	are	of	50	

base	length.	Given	microRNAs	are	between	18-24	nucleotides	in	length,	this	invariably	means	

that	the	3’	adaptor	needs	to	be	trimmed.	Various	packages	can	be	used	for	this	process,	and	

indeed	this	step	is	incorporated	into	many	of	the	‘complete’	microRNA	processing	pipelines	

detailed	below.	To	remove	adaptors	the	program	Cutadapt	was	used.431	A	permitted	error	

rate	was	tested	(0.1,	0.15,	0.2,	0.3),	and	the	0.1	(=10%)	permitted	error	rate	was	optimal	(this	

is	the	default	for	the	package).	This	package	also	allows	removal	of	sequences	longer	or	

shorter	than	a	specified	length,	which	in	the	case	of	attempting	to	identify	mature	microRNAs,	

was	set	as	17-33nt.	CutAdapt	also	allows	trimming	on	the	basis	of	quality.	Low	quality	ends	

are	trimmed	prior	to	adapter	removal.	

	

The	adaptor	sequence	is:	

AGATCGGAAGAGCACACGTCTGAACTCCAGTCTACACTCTTTCCCTACACGACGCTCTTCCGAT	
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(Reference	https://www.neb.com/~/media/Catalog/All-

Products/33E45F5CD69B497E92C1073F5D551DC7/Datacards%20or%20Manuals/manualE7335.pd

f;	see	http://seqanswers.com/forums/showthread.php?t=40289	)	

8.2.5.3	Align	to	human	genome	and	mapping	to	miRBAse	

The	sRNA	bench	program	(formerly	miRAnalyzer)	was	used	to	align	adaptor	trimmed	reads	

to	the	human	genome	(1000	genomes,	version	37)	and	map	reads	to	miRbase.432	A	bowtie	

index	of	the	human	genome	was	firstly	created	and	placed	in	a	newly	created	seqOBJ	folder.	

The	current	miRBase	list	of	miRNA	sequences	was	downloaded	from	miRBase	and	placed	in	

the	libs	folder	of	sRNAbench	directory.	Genome	mapping	mode	of	sRNA	bench	was	used,	

which	additionally	provides	files	not	included	when	the	library	mode	is	used	(maps	only	to	

reference	sequences	[i.e.	miRBase],	not	genome).	These	include	reads	mapped	to	the	genome,	

but	not	assigned	to	a	reference	sequence,	the	read	lengths,	mapped	antisense	read.	The	

genome	mapping	mode	additionally	provides	the	chromosomal	location	of	mapped	mature	

miRNAs	(may	have	>1	chromosomal	location).	The	mature_sense.grouped.txt	files	were	then	

exported	into	R	for	further	analysis	(using	read.delim).		 		 	

sRNAbench microRNA=hsa species=human_g1k_v37 input=$inFile 

output=$outSubdir > '$logSRB'/$inBn.log 

 

The	following	loop	was	used	to	process	all	samples	(script	written	by	Dr	Nick	Kennedy)	

./doSRNAbench.sh 
 
#!/bin/bash 
 
inDir=./trimmedCA 
 
logSRB=./logSRB 
 
outDir=./outSRB 
 
if [ ! -d $logSRB ]; then mkdir $logSRB; fi 
 
if [ ! -d $outDir ]; then mkdir $outDir; fi 
 
ls $inDir/*.fastq | xargs -i --max-procs 8 bash -c 
'inFile={};inBn=`basename $inFile`;inPath=`dirname $inFile`;echo 
Processing $inFile with sRNAbench;'\ 
 
'outSubdir='$outDir'/`echo $inBn | sed s/\\.fastq$//`;'\ 
 
'if [ ! -d $outSubdir ]; then mkdir $outSubdir; fi;'\ 
 
'sRNAbench microRNA=hsa species=human_g1k_v37 input=$inFile 
output=$outSubdir > '$logSRB'/$inBn.log' 
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Several	software	packages	were	tested	to	mapping	and	alignment	of	miRNA	sequences:	

miRExpress,433	miRDeep*,434	and	The	UEA	Small	RNA	workbench.435	

8.2.5.4	Normalisation	of	data	

It	is	not	possible	to	compare	the	raw	counts	of	microRNA	sequences	(mapped	to	mirBase)	due	

to	the	variance	of	total	number	of	reads	obtained	from	each	sample.	Raw	counts	from	all	

samples	were	normalized	to	a	common	scale	to	allow	comparison.	There	are	several	

normalization	techniques,	and	there	is	a	lack	of	consensus	to	the	best	type	of	normalization.436		

	

	

Figure	62	–	Density	plots	of	log10	expression	of	small	RNAs	using	different	normalisation	

techniques	
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Figure	63	–	Multidimensional	scaling	plots	using	different	normalisation	techniques.	H=	

healthy	control,	C	=	Crohn’s	disease.	Red=	Monocytes	(CD14+),	Green	=	CD4+	lymphocytes,	

Blue	=	CD8+	lymphocytes.	See	text	for	explanations	for	each	normalisation	method.		

	

8.2.5.4.1	Normalize	to	total	mapped	reads	

It	is	possible	to	normalize	data	to	the	total	number	reads	mapping	to	miRBase.	This	is	a	form	

of	simple	scaling	where	RNA	expression	accounts	are	divided	by	the	total	number	of	mapped	

reads	and	multiplied	by	the	mean	total	account	across	all	samples.437(Figure	63	Figure	

unfiltered,	total	norm)	

8.2.5.4.2	Quantile	normalization	

Quantile	normalization	is	performed	by	ordering	the	expression	value	in	each	sample,	and	

then	taking	an	average	(usually	mean)	across	all	microRNAs	(or	probes	etc.).	The	highest	

expression	level	becomes	a	mean	of	all	the	highest	expression	values;	the	second	highest	

value	becomes	the	mean	of	all	the	second	highest	values	etc.	The	new	values	are	then	

substituted	back	in	for	each	sample	according	to	the	rank	within	that	sample.	The	new	

normalized	samples	therefore	have	the	same	distribution	and	are	more	easily	compared.290	
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Quantile	normalization	is	used	extensively	when	analysing	micro-array	datasets.	This	method	

is	employed	when	expected	changes	are	likely	to	be	due	to	technical	rather	than	biological	

variation.	Quantile	normalization	may	not	be	entirely	appropriate	for	the	reason	that	it	is	

based	on	the	strong	assumption	that	all	samples	must	have	identical	read	count	

distributions,437	and	may	be	over	harsh(intrusive)	on	the	data.	

The	following	two	methods	of	normalisation	adapt	this	method	have	been	suggested	by	

Rahmann	et	al.436		Both	methods	discard	microRNAs	which	do	not	reach	expression	levels	of	5	

counts	in	at	least	half	of	the	samples.	The	authors	state	that	below	this	level	of	expression,	no	

meaningful	statistical	interpretation	is	possible	and	therefore	these	microRNAs	are	discarded	

from	further	analysis.		Furthermore,	samples	with	low	overall	read	counts	are	excluded	

(<500,000).	This	constitutes	the	‘Filtered’	samples	in	Figure	63.		

8.2.5.4.3	Quantile	based	scaled	normalization	

This	method	uses	one	experiment/sample	as	the	reference	sample.	The	sample	should	be	one	

where	there	are	high	total	read	counts.	The	authors	of	the	method	suggest	that	the	sample	

with	the	highest	0.75th/third	quartile	should	be	used.	Other	samples	are	then	scaled	to	the	

reference	sample,	using	the	median	of	the	ratios	between	expression	levels	between	the	two	

samples.	(Figure	63,	Filter,	quantile	scale	norm)	

8.2.5.4.4	Capped	quantile	normalization	

This	method	employs	standard	quantile	normalization,	but	does	not	include	‘extreme’	values	

in	this	normalization.	‘The	‘extreme’	values	are	normalized	using	a	scaling	factor	of	the	

median	of	the	ratios	of	the	highly	expressed	(but	not	extreme)	quantiles.		(Figure	63,	Filtered,	

capped	quantile	scale	norm)	

8.2.5.5	Differential	expression		

Differential	expression	was	calculated	using	linear	modelling	using	R	package	limma.	P	values	

are	corrected	for	multiple	testing	using	a	false	discovery	rate	(FDR)	according	to	Benjamini-

Hochberg	and	Holm.301	

8.2.5.6	Identifying	downstream	miRNA	targets	and	pathways	

Putative	messenger	RNA	(mRNA)	targets	of	differentially	expressed	miRNAs	were	identified	

using	TargetScan	(v7.0;	targetscan.org).438	Pathway	analysis	based	on	differentially	expressed	

miRNAs	was	performed	using	DIANA-miRPath	(DIANA-microT-4.0	beta	version).439	
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8.3	Results	

8.3.1	Patient	demographics		

Patient	demographics	are	outlined	in	Table	37.		

	

Table	37	–Patient	demographics	for	patients	in	small	RNA	sequencing	experiment	

	

Crohn’s	disease	

(n=8)	

Healthy	controls	

(n=8)	
p	value	

Age	(median,	IQR)	 27	(20-29.5)	 30	(28.75-30.75)	 0.15	(Wilcox.test)	

Sex	M:F	(%males)	 5:3	(62.5)	 5:3	(62.5)	 1	(fishers	exact)	

Smoking	status	

Current:Ex:Never	
4:2:2	 0:2:6	

Fishers	exact	for	current	

smoking	p=0.08	

CRP	(Median,	IQR)	 72	(55-93.5)	 0	(0-1)	 P=0.0007	

Fecal	Calprotectin	

(Median,	IQR)	
990	(480-1190)*	 Available	on	5/8	patients	and	no	controls	

Disease	location	

L1:L3	
2:6	

	

Disease	behavior	

B1:B2:B3	
4:1:3	

Required	azathioprine	

therapy	Y:N	
5:3	

Required	

Biologic/anti-TNFα	

therapy	Y:N	

3:5	

Required	surgery	Y:N	 2:6	

	

Individual	sample	details,	including	RNA	concentration,	quantity	and	integrity	are	displayed	

in	Table	86.		In	total	four	out	of	48	samples	were	excluded	from	sequencing	for	the	following	

reasons:	two	failed	electrophrenogram	quality	control	(RNA	integrity	number	not	calculable);	
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one	sample	looked	abnormal	on	PAGE	gel	assessment	of	PCR	product	purity;	and	one	sample	

was	lost.		

	

8.3.2	Quality	control	

Sample	fastqc	plots	are	displayed.	Pools	5	and	6	(low	PCR	band	intensity)	demonstrated	

uniformly	higher	quality	than	the	high	PCR	band	intensity	pools	(Pools	1	and	2,	Figure	64).		

	

Figure	64	-	Fastqc	images	of	High	PCR	and	Low	PCR	band	intensity	

	

There	was	a	median	of	2.4	million	reads	per	sample	(range	132,800-12.8	million	reads	per	

sample).	The	number	of	reads	per	cell-type	and	by	case/control	status	is	outlined	in	Table	38.	

Low	quality	reads	were	trimmed	during	the	adaptor	trimming	stage	of	data	processing.	

Samples	with	less	than	100,000	reads	were	discarded	(1	sample)	and	miRNAs	with	less	than	5	

reads	per	sample	were	filtered.	There	was	a	total	of	389	miRNAs	included	in	the	final	

analyses.	The	proportions	of	each	miRNA	in	cell	type	are	displayed	in	Figure	65.	A	large	

proportion	of	the	reads	were	made	up	of	miR-21-5p	reads,	most	notably	for	CD14	monocytes.	

Based	on	density	(Figure	62)	and	MDS	(Figure	63)	plots,	Filtered	quantile	normalisation	

was	used	as	the	normalisation	method.			
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Table	38	-	Total	median	read	counts	(range)	according	to	case	status	and	cell	type	

Median	read	

count(range)	
CD14	 CD4	 CD8	

CD	

2,394,136	

(575,600-

5,620,000)	

771,617	(200,400-

7,132,000)	

2,351,457	

(132,800-

4,145,000)	

Control	

3,364,827	

(2,222,000-

12,790,000)	

3,552,862	

(1,128,000-

11,340,000)	

1,426,372	

(206,800-

4,649,000)	

	

	

Figure	65	-	Proportions	of	miRNAs	(uncorrected)	according	to	case	status	and	cell	type	
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8.3.3	Differentially	expressed	microRNAs	in	different	lymphocyte	in	CD	versus	

controls	

8.3.3.1	CD4	lymphocytes	

Following	correction	for	multiple	testing	(FDR)	there	was	one	miRNA	demonstrating	

increased	expression	in	CD	compared	with	control,	miR-503-5p	(log	fold	change	=0.7,	FDR	

adjusted	p	=	9.1	×	10-5).	This	effect	disappeared	when	other	normalisation	methods	were	

applied	to	the	data	(Table	40).	Another	miR,	miR-223-5p	was	also	almost	statistically	

significant	(FDR	p=0.06),	and	was	statistically	significant	when	different	normalisation	

methods	were	used	(Table	40).		These	miRNAs	also	demonstrated	a	trend	towards	increased	

expression	in	CD8	cells	but	did	not	reach	statistical	significance	(	

Figure	66).	The	top	10	differentially	expressed	miRNAs	in	CD4+	lymphocytes	are	detailed	in	

Table	39.		

	

Table	39	-	Top	list	of	differentially	expressed	miRNAs	in	CD4	lymphocytes	in	CD	cases	and	

controls.	Filtered	scaled	quantile	normalised	data	shown.		

	 logFC	 AveExpr	 t	 P.Value	 FDR	
adj.P.Val	 B	

hsa-miR-503-5p	 0.69	 1.97	 5.23	
9.13E-
05	 0.04	 1.56	

hsa-miR-223-5p	 0.50	 3.63	 4.63	 0.0003	 0.06	 0.51	

hsa-miR-542-3p	 0.48	 2.09	 4.05	 0.001	 0.11	 -0.55	

hsa-miR-574-3p	 0.63	 2.09	 3.99	 0.001	 0.11	 -0.66	
hsa-miR-3614-

5p	 0.59	 2.07	 3.61	 0.002	 0.19	 -1.37	

hsa-miR-182-5p	 1.13	 2.12	 3.42	 0.004	 0.20	 -1.72	

hsa-miR-455-5p	 -0.95	 1.97	 -3.42	 0.004	 0.20	 -1.73	

hsa-miR-3909	 0.36	 2.77	 3.27	 0.005	 0.24	 -2.02	

hsa-miR-26b-5p	 -0.28	 5.19	 -3.18	 0.006	 0.26	 -2.18	

hsa-miR-223-3p	 0.57	 4.11	 3.07	 0.008	 0.27	 -2.38	
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Figure	66	-	Expression	of	miR-223,	miR-542	and	miR-503	according	to	case	status	and	cell	

type.	(Filtered	scaled	quantile	normalisation)		
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	 Filtered,	

scaled	

quantile	

Filtered,	

quantile	

Filtered,	

scaled	

capped	

quantile	

Filtered	

normalised	

to	total	

Unfiltered	

normalised	

to	total	

Filtered	

unnormalised	

miR-

503-5p	

Log	FC	 0.69	 0.16	

	
	

0.03	 0.5	 0.52	 0.28	

FDR	

adj	p	

value	

0.04	 0.002	 1	 0.8	 0.7	 0.5	

miR-

223-5p	

Log	FC	 0.50	 0.06	 -0.07	 0.49	 0.49	 0.08	

FDR	

adj	p	

value	

0.06	 0.04	 1	 0.8	 0.7	 0.8	

Table	40	–	Differences	in	log	fold	change	in	expression	and	FDR	adjusted	p	values	for	top	two	

differentially	expressed	miRs	in	CD4+	using	different	normalisation	methods.		
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8.3.3.2	CD8	Lymphocytes	

There	were	no	differentially	expressed	miRNAs	in	CD8	lymphocytes	following	correction	for	

multiple	testing	(Table	41).	

	

	 logFC	 AveExpr	 t	 P.Value	 FDR	
adj.P.Val	 B	

hsa-miR-1237-
3p	 1.29	 0.92	 3.51	 0.003	 0.7	 -3.95	

hsa-miR-30e-5p	 -0.34	 4.80	 -3.00	 0.009	 0.7	 -4.08	
hsa-miR-6726-

3p	 1.05	 1.68	 2.85	 0.013	 0.7	 -4.12	

hsa-miR-425-3p	 -0.39	 3.18	 -2.84	 0.013	 0.7	 -4.12	

hsa-miR-26a-5p	 -0.32	 6.40	 -2.80	 0.014	 0.7	 -4.13	

hsa-miR-26b-5p	 -0.34	 5.26	 -2.80	 0.014	 0.7	 -4.13	
hsa-miR-374a-

5p	 -0.34	 2.99	 -2.63	 0.020	 0.7	 -4.18	

hsa-miR-186-5p	 -0.38	 4.56	 -2.57	 0.022	 0.7	 -4.20	

hsa-miR-505-3p	 -0.32	 2.78	 -2.55	 0.023	 0.7	 -4.20	
hsa-miR-103a-

3p	 -0.28	 4.96	 -2.52	 0.024	 0.7	 -4.21	
	

Table	41	-	Top	list	of	differentially	expressed	miRNAs	in	CD8+	lymphocytes	in	CD	cases	and	

controls.	Filtered	scaled	quantile	normalised	data	shown.	
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8.3.3.3	CD14	Monocytes	

There	were	no	differentially	expressed	miRNAs	in	CD14	monocytes	following	correction	for	

multiple	testing	(Table	42).	

	

	 logFC	 AveExpr	 t	 P.Value	 FDR	
adj.P.Val	 B	

hsa-miR-3913-
5p	 -1.06	 1.27	 -3.71	 0.002	 0.67	 -3.32	

hsa-miR-3176	 0.39	 1.73	 3.05	 0.01	 0.79	 -3.65	
hsa-miR-509-3-

5p	 -0.71	 0.59	 -2.90	 0.01	 0.79	 -3.73	

hsa-miR-21-3p	 0.34	 3.77	 2.78	 0.01	 0.79	 -3.79	

hsa-miR-424-3p	 0.32	 3.53	 2.78	 0.01	 0.79	 -3.79	
hsa-miR-2277-

5p	 0.42	 2.00	 2.71	 0.01	 0.79	 -3.83	

hsa-miR-100-5p	 -0.45	 3.64	 -2.68	 0.02	 0.79	 -3.85	

hsa-miR-339-3p	 -0.22	 3.14	 -2.60	 0.02	 0.79	 -3.89	
hsa-miR-6513-

3p	 -0.73	 1.40	 -2.47	 0.02	 0.79	 -3.96	

hsa-miR-152-3p	 -0.30	 3.21	 -2.39	 0.03	 0.79	 -4.00	
	

Table	42	-	Top	list	of	differentially	expressed	miRNAs	in	CD14+	monocytes	in	CD	cases	and	

controls.	Filtered	scaled	quantile	normalised	data	shown.	

	

8.3.4	Unsupervised	Hierarchical	Clustering	

Hierarchical	clustering	was	performed	on	the	whole	dataset	and	is	displayed	in	Figure	67	and	

Figure	68.		Figure	67	demonstrates	one	clear	outlier	that	was	excluded	from	further	analysis.	

The	monocytes	appeared	to	cluster	together,	however	there	was	less	defined	clustering	

between	CD4	and	CD8	lymphocytes.	Figure	68	demonstrates	that	samples	did	not	tend	to	

cluster	according	to	the	individual	from	which	the	cells	were	obtained.			
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Figure	67	-	Cluster	dendrogram	of	small	RNA	sequencing	samples	according	to	cell	type	

	

Figure	68	-	Cluster	dendrogram	of	small	RNA	sequencing	samples	according	to	sample	

number	
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8.3.5	Principal	component	analysis	

Principal	component	analysis	demonstrated	accurate	clustering	of	samples	according	to	cell	

type	(Figure	69).		

	

Figure	69	-	Principal	component	analysis	based	on	all	filtered,	scaled	quantile	normalised	data	

according	to	cell	type	
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8.3.6	Target	scan	of	top	differentially	expressed	miR	in	Crohn’s	disease	

Putative	messenger	RNA	(mRNA)	targets	of	miR-503-5p	were	identified	using	TargetScan	

(v7.0;	targetscan.org,	Table	43).438	Pathway	analysis	based	on	mRNA	targets	of	miR-503-5p	

was	performed	using	DIANA-miRPath	(DIANA-microT-4.0	beta	version)439.	There	were	61	

pathways	identified	and	are	presented	in	Table	87.		

Target	gene	 Gene	name	

3P-
seq	
tags	
+	5	

Cumulative	
weighted	
context++	
score	

Total	
context++	
score	

Aggregate	
PCT	

ARL2	 ADP-ribosylation	factor-like	2	 7073	 -1.03	 -1.03	 0.88	
CNTNAP1	 contactin	associated	protein	1	 821	 -0.89	 -0.89	 0.7	
LCE6A	 late	cornified	envelope	6A	 5	 -0.88	 -0.88	 <	0.1	

MAPK8IP2	 mitogen-activated	protein	kinase	8	interacting	
protein	2	 88	 -0.85	 -1.1	 0.16	

TMEM74B	 transmembrane	protein	74B	 33	 -0.75	 -0.91	 0.81	
FAM122A	 family	with	sequence	similarity	122A	 1277	 -0.74	 -0.78	 0.18	
CCNE1	 cyclin	E1	 954	 -0.72	 -0.72	 0.97	
RP11-

144F15.1	 Uncharacterized	protein	 5	 -0.72	 -0.72	 <	0.1	

CYB561	 cytochrome	b561	 10	 -0.7	 -0.7	 <	0.1	
LURAP1L	 leucine	rich	adaptor	protein	1-like	 266	 -0.69	 -0.73	 <	0.1	
CTD-

2207O23.12	 Uncharacterized	protein	 32	 -0.68	 -0.85	 ORF	

INSR	 insulin	receptor	 577	 -0.68	 -0.73	 <	0.1	
CCND2	 cyclin	D2	 66	 -0.67	 -0.81	 0.98	
DGCR2	 DiGeorge	syndrome	critical	region	gene	2	 1754	 -0.64	 -0.65	 <	0.1	
APLN	 apelin	 48	 -0.63	 -0.63	 0.84	

NDUFA4	 NADH	dehydrogenase	(ubiquinone)	1	alpha	
subcomplex,	4,	9kDa	 143	 -0.62	 -0.78	 <	0.1	

AL117190.3	 Oesophagus	cancer-related	gene-2	interaction	
susceptibility	protein;	Uncharacterized	protein	 30	 -0.62	 -0.63	 0.19	

CMC4	 C-x(9)-C	motif	containing	4	homolog	(S.	
cerevisiae)	 87	 -0.6	 -0.6	 0.36	

SLC46A1	 solute	carrier	family	46	(folate	transporter),	
member	1	 580	 -0.6	 -0.68	 <	0.1	

CCND1	 cyclin	D1	 4687	 -0.59	 -0.63	 0.82	
TNFSF13B	 tumour	necrosis	factor	(ligand)	superfamily,	

member	13b	 5	 -0.58	 -0.58	 0.87	

Table	43	–	messenger	RNA	targets	of	miR-503-5p	as	identified	by	TargetScan438	
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8.4	Discussion	

This	chapter	provides	a	detailed	characterisation	of	miRNAs	within	circulating	leucocytes	in	

patients	newly	diagnosed	with	Crohn’s	disease.	As	has	been	demonstrated	using	DNA	

methylation	and	gene	expression	data	elsewhere	in	this	thesis,	based	on	miRNA	sequencing	

data	alone,	samples	cluster	accurately	according	to	cell	type.		When	comparing	CD	cases	and	

controls,	miR-503-5p	was	the	only	differentially	expressed	miR	in	CD4+	lymphocytes	

following	correction	for	multiple	testing.	Interestingly,	the	third	most	differentially	expressed	

miRNA	in	CD4+	cells	was	miR-542,	and	although	not	statistically	significant	(uncorrected	

p=0.001,	FDR	corrected	p=0.1)	arises	from	the	same	cluster	(<10kb)	as	miR-503.	MiR-503	

downregulation	has	been	described	in	several	cancers	and	may	act	as	a	tumour	

suppressor.440–442	MiR-503	has	not	previously	been	investigated	in	the	context	of	IBD.314	

Overexpression	of	the	second	ranking	miR-223	(FDR	corrected	p=0.06)	has	previously	been	

demonstrated	in	colonic	biopsies	in	active	UC	and	inactive	CD196	and	in	biopsies	in	active	

small	bowel	CD.197	In	Rheumatoid	arthritis,	miR-223	was	found	to	be	overexpressed	in	CD4+	

T-cells	compared	with	controls.443	Notably	miR-223	is	known	to	be	associated	with	

granulocyte	differentiation	and	activation.444,445	A	potential	explanation	for	increased	

expression	of	miR-223	may	be	disproportional	contamination	of	CD4+	samples	with	

granulocytes	in	CD	cases	compared	with	controls.		

	

Most	studies	to	date	have	used	a	microarray	based	platforms	in	the	context	of	IBD	miRNA	

research.144,314	The	advantages	of	next	generation	sequencing	have	been	discussed	above.	

Whilst	an	increasing	number	of	papers	utilising	small	RNA	sequencing	have	been	published,	

there	is	not	yet	a	consensus	on	the	optimal	pipeline	for	data	normalisation	and	analysis.436	

Previous	studies	in	human	disease	have	mostly	utilised	the	approach	of	normalising	to	total	

mapped	reads	which	is	likely	to	lead	to	bias	as	a	result	of	changes	in	highly	expressed	miRNAs	

significantly	affecting	lesser	expressed	miRNAs.	Various	normalisation	methods	were	

explored	in	this	study	prior	on	deciding	the	best	method	for	processing	data.	On	the	basis	of	

multidimensional	scaling	and	density	plots,	filtered,	scaled	quantile	normalisation	was	

performed	in	this	study	and	has	previously	been	advocated	by	other	authors.436	MiR-503	was	

a	differentially	expressed	using	filtered,	scaled	quantile	normalised	data	and	the	same	finding	

was	also	seen	when	data	was	normalised	using	filtered	quantile	normalisation,	but	not	other	
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techniques	(Table	40).	The	dependence	on	the	normalisation	method	to	identify	this	

differentially	expressed	miR	reduces	confidence	in	this	finding	raises	the	possibility	of	a	type	I	

error.	Similarly	the	small	sample	size	may	lead	to	a	type	II	error.	As	such	extensive	

downstream	validation	and	functional	work	is	not	warranted	based	on	this	finding.			

	

Whilst	reservations	on	the	validity	of	the	differentially	expressed	miRNA	(503-5p)	have	been	

discussed	above,	putative	downstream	targets	of	this	miRNA	were	investigated	in	order	to	

explore	the	process.	TargetScan	was	used	to	identify	messenger	RNA	targets	of	the	only	

differentially	expressed	miRNA	(miR-503-5p).	An	alternative	method	(DIANA-miRPath)	based	

on	gene	network/pathway	analysis	was	also	performed	for	miR-503.	Most	of	the	top	ranked	

KEGG	pathways	were	cancer	related	(Prostate	cancer,	Melanoma,	Glioma,	Colorectal	cancer)	

but	other	pertinent	pathways	were	included	(mTOR	signalling,	focal	adhesion,	TGF	β	

signalling).		Whilst	such	methods	has	been	widely	used,	there	are	inherent	biases	that	will	

lead	to	over-identification	of	related	biological	processes.446	Much	of	the	current	literature	

relating	to	miRNA	gene	targets	has	been	conducted	in	the	context	of	cancer,	and	therefore	

results	are	likely	to	be	biased	toward	cancer-associated	pathways,	as	was	experienced	in	the	

present	study.446	Therefore	findings	of	associated	target	genes	or	related	pathways	are	likely	

to	be	non-specific	and	should	be	treated	with	caution.		

	

The	strength	of	this	study	is	the	use	of	a	purified	cell	type	to	demonstrate	differences	in	

miRNA	between	cases	and	controls.	Many	of	the	studies	to	date	comparing	miRNA	expression	

on	a	case-control	basis	have	used	whole	tissue,	leading	to	significant	uncertainty	on	the	cell	

type	of	origin	of	differentially	expressed	miRNAs.144,314	Another	positive	aspect	of	this	study	

design	is	the	use	of	age	and	sex	matched	cases	and	controls	and	the	inclusion	of	CD	patients	

with	ileal	or	ileal-colonic	disease.	Given	the	significant	heterogeneity	in	the	disease	itself,	this	

leads	to	increased	uncertainly	on	the	reliability	of	small	datasets	such	as	this.	The	main	

limitations	of	the	study	are	discussed	above;	namely	the	small	overall	sample	size	and	lack	of	

consensus	on	data	normalisation	method.	

		

This	work	has	provided	a	useful	introduction	into	NGS	for	microRNA	research,	however	is	

limited	by	a	small	sample	size.	The	wet-lab	and	bioinformatic	techniques	employed	will	

inform	further	study	in	this	area.	In	the	future	it	may	be	possible	to	sequence	small	RNAs	from	
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larger	numbers	of	separated	cells	form	newly	diagnosed	IBD	patients	to	more	definitely	

address	the	question.		
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Chapter	9.	Conclusions,	implications	and	future	research		

9.1	Conclusions	

9.1.1	Results	of	study	

This	study	has	demonstrated	site-specific	methylation	changes	in	IBD	compared	with	controls	

that	were	strongly	significant	following	stringent	correction	for	multiple	testing.	In	lieu	of	a	

consensus	on	an	accepted	significance	threshold	for	EWAS,	this	study	has	used	a	correction	

method	traditionally	used	in	GWAS.	Using	this	conservative	threshold	439	significant	DMPs	

and	5	DMRs	have	been	identified.	Whereas	many	early	EWAS	results	have	not	been	replicated,	

the	highly	replicable	nature	of	DMPs	and	DMRs	in	independent	cohorts	in	this	study	increases	

the	confidence	in	these	findings.	A	comprehensive	approach	was	employed	to	study	genome-

wide	DNA	methylation,	allied	with	genomic	and	transcriptomic	data	in	matched	individuals	

allowing	truly	integrative	analysis.		

9.1.2	Literature	in	IBD	and	other	complex	immune	diseases	

The	rationale	for	epigenetic	research	in	IBD	is	compelling:	IBD	has	a	significant	genetic	

contribution	and	well	known	environmental	risk	factors.	The	inclusion	of	newly	diagnosed	

patients	minimises	the	potentially	confounding	effect	of	potent	immunomodulation	drugs,	

whilst	still	allowing	exploration	of	the	relationship	between	inflammation	and	DNA	

methylation.	This	is	the	largest	study	of	DNA	methylation	in	IBD	to	date.	Several	other	smaller	

studies	have	investigated	DNA	methylation	in	IBD	including	the	study	into	paediatric	CD	

performed	in	Edinburgh.	McDermott	et	al	307	have	assayed	DNA	methylation	in	PBMCs	of	IBD	

patients	with	established	disease	with	varying	degrees	of	disease	activity	and	

immunosuppressive	duration.	The	present	data	corroborate	that	patients	with	IBD	do	not	

have	systematic	changes	in	methylation	unlike	the	global	hypomethylation	seen	in	systemic	

lupus	erythematosus.447		

9..1.3	Cell	types	&	Gene	expression	

The	impact	of	cellular	heterogeneity	on	DNA	methylation	data	is	a	commonly	cited	limitation	

of	EWAS	studies	conducted	using	whole	tissue	such	as	blood.346,347	Statistical	algorithms	that	

provide	estimated	cell	proportions	and	allow	adjustment	for	cellular	heterogeneity	are	now	

widely	performed	throughout	the	EWAS	literature.205,302	There	are	comparatively	fewer	

epigenetic	studies	with	separated	cell	data,	particularly	disease-relevant	cells	and	this	is	a	

significant	strength	of	the	present	study.348,447–449	Detailed	characterisation	of	matched	
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genetic,	DNA	methylation	and	expression	data	in	separated	leukocytes	has	highlighted	several	

cell-specific	findings.	For	example,	the	top	DMP	in	whole	blood,	RPS6KA2,	was	differentially	

methylated	in	CD14+	monocytes	but	not	CD4+	or	CD8+	lymphocytes,	potentially	unmasking	

the	cell	type	of	origin	of	methylation	signals	seen	in	whole	tissue.	Cell-specificity	may	become	

even	more	relevant	when	analysing	the	relationship	between	methylation	and	gene	

expression.	A	major	finding	of	this	study	is	IBD-associated	hypermethylation	of	the	TXK	TSS	

occurring	specifically	within	CD8+	cells,	with	an	appropriate	negative	correlation	with	

decreased	gene	expression	in	CD8+	T-cells	of	the	same	individual.	Expression	of	TXK,	a	

member	of	the	Tec	family	of	non-receptor	tyrosine	kinases,	in	Th1	T-cells	is	obligatory	for	the	

production	of	interferon	gamma.450	CD8+	T-Cells	have	an	established	role	in	IBD	

pathogenesis260,451–453	with	recent	data	suggesting	that	CD8+	T-Cell	exhaustion	may	be	a	

critical	prognostic	factor	in	immune-mediated	diseases.454		

9.1.4	Origin	of	epigenetic	signals	

Whilst	the	present	study	design	does	not	allow	functional	interrogation	of	the	origin	of	the	

DNA	methylation	profile	seen	here	in	IBD,	it	is	interesting	to	speculate	on	the	origin	of	such	

signals.	The	strong	correlation	between	clinical	inflammatory	markers	and	the	top	DMP/Rs	

perhaps	indicate	that	the	observed	methylation	changes	are	a	consequence	of	inflammation.	It	

is	notable	that	these	signals	endure	in	the	replication	cohort	(Chapter	4)	that	consists	of	

patients	with	established	disease	with	varying	levels	of	inflammation	following	treatment.	

Contrary	to	this	hypothesis	is	the	strong	association	between	germ	line	variation	and	the	

variance	of	methylation	of	two	of	the	five	DMRs	(VMP1/miR-21	and	ITGB2).	The	VMP1/miR-

21	locus	was	the	major	finding	of	the	paediatric	CD	study,	with	miR-21,	a	pro-inflammatory	

microRNA	previously	implicated	in	colitis	being	an	obvious	candidate	for	further	

investigation.	The	novel	finding	is	the	association	of	methylation	in	the	VMP1/mcroRNA-21	

region	with	two	nearby	SNPs	acting	as	methylation	quantitative	trait	loci	(meQTLs).	The	two	

polymorphisms	(rs10853015,	rs8078424)	acting	as	meQTLs	are	in	linkage	disequilibrium	

with	a	known	IBD-susceptibility	GWAS	locus	(rs1292053).	DNA	methylation	may	be	a	

mechanism	by	which	genetic	variants	outside	of	protein	coding	regions	may	contribute	to	the	

disease	phenotype.	In	Rheumatoid	arthritis,	Liu	et	al	used	mediation	analyses	to	demonstrate	

that	methylation	was	the	causal	mechanism	by	which	genotype	conferred	disease	risk.204	

Most	associations	occurred	in	the	major	histocompatibility	complex	region,	known	to	harbour	

many	genetic	variants	with	complex	and	extended	linkage	disequilibrium	structures.379The	
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present	analysis	established	several	of	the	tenants	of	causal	inference	but	not	independence	

of	genotype	and	phenotype	following	adjustment	for	methylation,	a	finding	reflected	in	the	

complex	disease	literature.279	The	strong	association	between	top	ranking	IBD-associated	

DMP/R	and	nearby	genetic	variants	nevertheless	represents	a	major	finding	and	goes	some	

way	to	explain	these	significant	site-specific	methylation	differences	in	IBD	cases	and	

controls.	Further	work	in	larger	cohorts	is	required	to	disentangle	this	complex	relationship	

between	genetics,	DNA	methylation,	inflammation	and	other	environmental	factors.			

9.1.5	Translational	potential	

DNA	methylation	data	offer	immediate	translational	potential	as	biomarkers.	The	SEPT09	

blood-based	DNA	methylation	biomarker	has	been	used	in	diagnosis	and	screening	for	

colorectal	cancer.353,406,407	Adams	et	al	previously	demonstrated	two	methylation	probes	can	

accurately	differentiate	CD	and	controls	and	these	have	been	prospectively	validated	using	

the	present	adult	dataset.284	The	previous	work	has	been	expanded	upon	by	using	lasso,416	an	

established	machine	learning	technique	that	can	help	avoid	over-fitting	in	large	datasets	

where	the	number	of	variables	vastly	exceed	the	number	of	samples.	The	final	30-probe	

model	is	easily	scalable	into	a	high-throughput	pyrosequencing	panel	and	such	a	non-invasive	

peripheral	blood	biomarker	could	be	used	to	stratify	patients	to	further	intrusive	

investigations	such	as	colonoscopy.	Existing	clinically	available	biomarkers	such	as	faecal	

calprotectin230	already	provide	similar	utility	but	are	unable	to	distinguish	the	two	forms	of	

IBD.	A	different	19-probe	methylation-based	panel	may	confer	an	additional	benefit	in	

discriminating	CD	and	UC,	which	can	be	critical	for	decision-making	in	terms	of	medical	and	

surgical	management.	Currently	there	are	no	reliable	prognostic	biomarkers	that	can	identify	

patients	requiring	early	aggressive	treatment	from	those	who	would	experience	a	quiescent	

disease	course	who	could	safely	avoid	the	potentially	toxic	side	effects	of	potent	

immunosuppresants.	There	has	been	some	anticipation	that	emerging	‘–omic’	data	may	

provide	such	a	biomarker.260	In	the	present	work	a	DNA	methylation	signature	that	associates	

with	high-,	intermediate-	and	low-risk	of	specific	deleterious	outcomes	has	been	described.	

Consensus	clustering	has	recognised	limitations418	and	it	is	noteworthy	that	the	methylation	

subclasses	are	not	independently	predictive	of	outcome	and	are	likely	to	be	driven	by	

underlying	differences	in	cell	count	or	other	clinical	parameters.			
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9.1.6	Conclusions	and	implications	

This	is	the	most	detailed	characterisation	of	the	circulating	IBD	methylome	to	date.	Highly	

statistically	significant	and	replicable	site-specific	differences	in	DNA	methylation	have	been	

demonstrated	at	sites	pertinent	to	disease	pathogenesis.	DNA	methylation	may	be	a	factor	of	

underlying	germ	line	variation	and	may	represent	a	mechanism	by	which	genetic	

polymorphisms	contribute	to	disease	variance.	Cell	sorting	of	disease-relevant	immune	cells	

has	highlighted	subtle	cell-specific	relationships	between	DNA	methylation	and	gene	

expression.	The	immediate	agenda	for	epigenetic	research	in	IBD	is	discussed	below.		

	
	
9.2	Future	research	

9.2.1	DNA	methylation		

Whilst	this	is	the	largest	DNA	methylation	dataset	in	whole	blood	in	IBD	to	date,	several	

questions	remain	unaddressed.	Firstly,	although	the	presented	adult	dataset	strongly	

corroborates	findings	from	the	previous	paediatric	CD	data,284	all	of	the	whole	blood	data	in	

IBD	to	date	has	been	generated	in	Edinburgh	using	Scottish	samples.	The	presented	

epigenetic	profile	may	be	driven	by	regional	genetic	or	environmental	factors.144	As	such,	it	

would	be	important	to	repeat	these	experiments	in	large	cohorts	from	other	geographical	

regions	and	other	ancestries.	Ongoing	work	as	part	of	the	IBD-CHARACTER	project	(www.ibd-

character.eu)	will	profile	whole	blood	DNA	methylation	in	400	newly	diagnosed	IBD	patients	

from	Northern	Europe	(Edinburgh,	Oslo,	Linköping,	Orebro,	Zaragoza).	Furthermore,	

collaborations	as	part	of	the	IBD-BIOM	project	(www.ibd-biom.eu)	may	allow	replication	of	

the	present	findings	in	patients	from	Italy	and	USA	(including	a	large	Ashkenazi	Jewish	

population).		

Another	important	question	to	address	would	be	the	disease	specificity	of	the	DNA	

methylation	signals	demonstrated	in	the	present	study	in	IBD.	A	commonly	cited	criticism	for	

this	kind	of	work	is	that	the	observed	changes	may	be	a	consequence	of	inflammation	and	that	

findings	are	not-disease	specific.	A	future	study	design	should	include	samples	from	subjects	

with	other	inflammatory	diseases	such	as	rheumatoid	arthritis.	This	is	particularly	pertinent	

when	developing	disease-specific	biomarkers.			

In	order	to	further	increase	to	power	and	sample	size	for	epigenomic	discovery,	it	would	be	

possible	to	combine	and	meta-analyse	multiple	450k	methylation	datasets.	Meta-analysis	has	

been	a	major	success	in	the	context	of	genomic	study88,97	however	there	are	several	
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differences	with	DNA	methylation	data	that	require	further	consideration.	Firstly	there	are	

significant	and	well-recognised	batch-effects	associated	with	the	450K	Illumina	methylation	

microarray.	Particular	care	must	be	taken	when	combining	such	datasets	such	that	technical	

variation	is	adequately	examined	and	adjusted	for	(if	possible).	Secondly	the	tissue	from	

which	the	data	have	been	generated	must	be	considered	when	combining	datasets.	Whilst	it	

may	be	possible	to	combine	datasets	generated	using	whole	blood	DNA,	it	would	be	difficult	to	

combine	data	generated	in	PBMCs168,307	or	other	cell	types.171,321	Lastly,	any	meta-analysis	

should	be	designed	to	ensure	that	the	included	patients	possess	similar	clinical	characteristics	

to	avoid	the	introduction	of	further	heterogeneity	into	the	study.	This	is	the	main	reason	for	

not	combining	the	adult	and	paediatric	450k	datasets,	despite	both	using	whole	blood	DNA.		

An	interesting	aspect	of	this	thesis	is	the	link	between	genetics	and	DNA	methylation.	In	this	

study	there	was	an	association	between	methylation	and	genotype	for	some	of	the	most	

differentially	methylated	regions.	It	was	not	possible	however	to	demonstrate	that	DNA	

methylation	mediates	the	genetic	effect	on	phenotype	(using	the	CIT	test373,	see	Chapter	5).	

The	major	factor	limiting	this	work	was	the	lack	of	power	for	the	genome-wide	association	

tests.	Another	method	that	it	may	be	possible	to	use	is	Mendelian	randmosiation455	to	link	

genetic	and	DNA	methylation	data.	The	major	advantage	of	this	technique	is	that	paired	data	

are	not	required.	Therefore	it	may	be	possible	to	exploit	the	wealth	of	available	IBD	genetic	

data	to	address	this	question.	

The	main	theme	of	the	work	presented	in	this	thesis	is	a	case	control	analysis	of	IBD	patients	

and	controls.	DNA	methylation	data	may	also	be	used	to	address	other	important	questions	in	

IBD	research.	It	would	be	interesting	to	attempt	to	identify	an	epigenetic	signature	associated	

with	response/non-response	to	particular	therapies,	or	as	an	expansion	to	the	successful	

pharmacogenetics122	studies	aiming	to	identify	polymorphisms	associated	with	drug	toxicity.	

Such	studies	may	be	possible	given	the	large	cohorts	of	IBD	patients	on	anti-TNF	alpha	

monoclonal	antibody	therapy	being	assembled	(PANTS	[https://www.pantsdb.co.uk/],	

biocycle	[http://cordis.europa.eu/project/rcn/193180_en.html]).	Another	homogenous	

group	that	it	may	be	interesting	to	study	would	be	CD	patients	following	ileocaecal	resection.	

The	disease	is	essentially	reset	at	this	point,	and	it	may	be	possible	to	detect	a	methylation	

signature	associated	with	disease	recurrence.	The	large	number	of	patients	collected	locally	as	

part	of	the	TOPPIC	trial	(randomised	trial	of	thiopurine	to	prevent	disease	recurrence	

following	ileocaecal	resection)	may	provide	such	a	cohort.	The	patients	with	severe	refractory	

CD	undergoing	autologous	stem	cell	transplant456	would	be	another	interesting	group	to	
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study,	however	the	very	low	white	blood	cell	counts	resulting	from	treatment	may	make	this	

difficult	to	study	using	whole	blood	samples.		

Lastly,	it	would	be	interesting	to	investigate	to	what	extent	the	DNA	methylation	profile	

changes	during	an	individual’s	disease	and	treatment	course.	During	the	IBD-BIOM	project,	

serial	samples	were	collected	from	the	same	patient	allowing	longitudinal	study	of	the	

methylation	profile.	A	small	study	of	mucosal	DNA	methylation	in	children	with	UC	(n=2)	

suggests	that	the	methylome	reverted	back	towards	that	of	healthy	controls	following	

treatment.321	

9.2.1.1	Hydroymethyl	DNA	methylation		

During	the	course	of	this	research,	collaboration	has	been	developed	with	Cambridge	

Epigenetix	(http://www.cambridge-epigenetix.com/)	for	the	investigation	of	hydroxymethyl-

DNA	methylation.	The	Illumina	450K	platform	used	for	throughout	this	thesis	reports	DNA	

methylation,	but	is	unable	to	differentiate	5-methylcytosine	(5mC)	and	5-

hydroxymethylcytosine	(5hmC).	The	Cambridge	Epigenetix	group	have	developed	(and	

patented)	use	of	oxidative	bisulphite	sequencing	(ox-BS	seq)	that	allows	differentiation	

between	5mC	and	5hmC.457	The	technique	employs	a	subtractive	approach	in	which	standard	

bisulphite	converted	DNA	is	assayed	initially	using	the	platform	of	choice	(to	detect	5mC	and	

5hmC,	i.e.	Illumina	450K/WGBS),	and	then	the	same	sample	is	repeated	following	oxidative	

bisulphite	conversion	(to	detect	5hmC).	This	workflow	is	associated	with	high	costs	as	each	

sample	must	be	converted	and	assayed	twice.	It	remains	unclear	the	overall	value	of	perusing	

this	line	of	research	as	5hmC	will	make	up	a	very	small	proportion	of	overall	DNA	methylation	

in	IBD	index	tissues	(blood,	gut).458	Most	of	the	focus	of	5hmC	research	has	been	focused	on	

brain	tissue	where	5hmC	marks	are	relatively	more	abundant.457,458	5hmC	is	being	studied	in	

other	non-neurological	diseases	including	cancer	research.459–462	Other	modifications	of	

cytosine	include	5-formylcytosine	and	5-carboxycytosine.463	Cambridge	Epigenetix	are	

developing	other	methylation	profiling	platforms	that	may	straddle	the	current	coverage	gap	

between	the	Illumina	450K	array	and	WGBS.	The	new	Illumina	EPIC	methylation	array	will	

similarly	provide	much	greater	coverage	(850K)	and	is	likely	to	supersede	the	450K	array	in	

the	near	future.		
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9.2.2	Whole	genome	bisulphite	sequencing		

As	part	of	the	IBD-CHARACTER	collaboration	links	have	been	made	with	the	Centro	Nacional	

de	Análisis	Genómico	(http://www.cnag.cat/)	for	the	development	of	whole	genome	

bisulphite	sequencing	(WGBS).	Whilst	the	Illumina	450K	array	used	throughout	this	project	

provides	good	genome-wide	coverage	of	relevant	CpG	sites,	it	is	subject	to	the	usual	biases	of	

microarray-based	platforms	and	only	provides	information	on	pre-selected	probes	with	non-

customisable	content.	In	particular	probes	are	biased	towards	cancer	and	inflammatory	

pathways.	The	arrays	are	also	associated	with	higher	levels	of	technical/non-biological	

variation	compared	with	other	microarrays	(genotyping,	gene	expression).	Whole	genome	

bisulphite	sequencing	(WGBS)	allows	assaying	of	CpGs	throughout	the	genome.	WGBS	is	

becoming	an	established	technology	however	at	the	time	of	writing	remains	expensive	and	

data	analysis	is	computationally	demanding.	Sequencing	must	be	performed	in	high	

coverage/depth	(>30x)	in	order	to	be	confident	about	methylation	differences,	which	results	

in	the	generation	of	large	amounts	of	data.	It	is	unclear	at	present	the	niche	in	EWAS	research	

that	WGBS	will	occupy	at	the	present.	It	is	too	expensive	to	perform	large	comparative	studies	

and	use	has	largely	been	confined	to	smaller	separated	and	single-cell	studies.	The	Barcelona	

group	have	published	several	high	impact	papers	using	separated	cells	collected	as	part	of	the	

IHEC	collaboration	(http://ihec-epigenomes.org/)	particularly	in	the	field	of	haematological	

cancers.464–466	An	interesting	experiment	using	this	technology	would	be	to	characterise	the	

differentially	methylated	positions	and	regions	identified	in	this	study	in	detail	in	a	small	

number	of	patients.		The	WGBS	data	also	provides	the	underlying	sequence	so	the	relationship	

between	genotype	and	methylation	could	be	more	thoroughly	explored.		

	

9.2.3	DNA	methylation	in	other	tissues	

There	is	clear	rationale	for	study	of	DNA	methylation	in	circulating	leukocytes	in	IBD.	IBD	is	

an	immune	mediated	disease	with	well-recognised	extra-intestinal	manifestations.15	Much	of	

the	current	armamentarium	of	IBD	therapy	targets	the	peripheral	immune	system123	and	

there	has	been	recent	interest	in	autologous	stem	cell	transplant	as	a	treatment	for	

severe,350,456	refractory	CD.	Lastly,	CD	is	known	to	recur	following	intestinal	transplant	

indicating	IBD	is	not	exclusively	a	gut-based	pathology.351	Whilst	blood	does	appear	to	be	the	

disease-relevant	tissue	to	study	in	IBD,	and	is	appealing	when	developing	biomarkers,	it	

would	nevertheless	be	important	to	study	DNA	methylation	in	the	gut	and	its	relationship	
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with	the	blood	DNA	methylation	profile.	Several	small	studies	have	studied	mucosal	DNA	

methylation	in	a	candidate	gene	fashion,	and	a	small	number	using	a	microarray	

approach.170,171	There	have	been	no	outstanding	findings	that	have	been	replicable	in	more	

than	one	study.144	The	IBD-CHARACTER	project	will	be	using	Illumina	450K	microarrays	to	

assay	DNA	methylation	in	gut	tissue	of	newly-diagnosed	IBD	patients,	and	will	be	in	a	position	

to	perform	integrative	analyses	with	matched	whole	blood	DNA	methylation,	genetic,	blood	

and	mucosal	transcriptome,	microbiome	and	proteomic	data.	One	of	the	critical	issues	when	

looking	to	study	DNA	methylation	in	gut	biopsies	is	the	lack	of	information	on	cell	

proportions/tissue	composition	in	the	healthy	and	disease	state.321,346	In	blood,	there	are	

several	reference	datasets	consisting	of	cell-sorted	methylation	data	from	most	of	the	major	

blood	cell	populations.303	This	has	facilitated	the	development	of	statistical	algorithms	to	

estimate	cell	proportions	based	on	DNA	methylation	data	and	now	adjustment	for	cell	

heterogeneity	is	accepted	(and	expected)	in	the	EWAS	literature.205,302,361	A	study	conducted	

in	Cambridge	attempted	to	perform	cell	separation	in	gut	tissue.348	The	main	difficulty	with	

cell	separation	in	gut	tissue	is	that	epithelial	cells	are	highly	abundant	and	easy	to	isolate,	but	

are	more	likely	to	be	the	bystander	rather	than	the	cell-type	of	interest	in	IBD.	Intra-epithelial	

lymphocytes	by	contrast	make	up	a	very	small	proportion	of	cells	and	are	very	difficult	to	

isolate	using	either	flow	cytometry	or	immunomagnetic	separation.	Whilst	working	with	

Miltenyi-Biotech	on	blood	based	cell	separation	equipment	and	reagents	there	is	a	possibility	

that	a	gentleMACs	cell	dissociator	(order	no.	130-093-235)	can	be	loaned	to	the	department.	

By	using	this	equipment	in	conjunction	with	a	collagenase	enzyme,	solid	tissue	(e.g.	gut	

biopsy467)	can	be	homogenised	into	a	single-cell	suspension	solution	that	can	then	be	used	for	

downstream	analysis	(flow	cytometry/immunomagnetic	cell	separation).	The	first	step	in	

helping	to	inform	whole	tissue	studies	would	be	to	generate	a	reference	dataset	in	healthy	gut	

tissue	in	order	to	provide	an	estimate	of	the	cell	composition.	This	is	likely	to	be	different	at	

different	sites	within	the	colon	and	small	bowel,	and	infiltrating	leukocytes	in	areas	of	

inflammation	will	alter	the	cell	make-up	yet	further.	In	summary,	DNA	methylation	profiling	

in	the	gut	requires	a	greater	understanding	of	the	constituent	cell	types.	Generating	reference	

data	sets	from	separated	intestinal	cells	will	be	difficult	and	likely	to	require	significant	

funding.	A	large	international	consortium	(perhaps	following	on	from	IHEC)	may	be	best	

placed	to	carry	out	this	type	of	work.		

	



247	

	

9.2.4	Other	Future	work	(genetics,	gene	expression,	MicroRNA	and	biomarkers)	

In	addition	to	the	potential	future	work	described	above	relating	to	DNA	methylation,	further	

work	would	be	valuable	in	the	other	‘omics’	disciplines	described	in	this	thesis.	

9.2.4.1	Genetics	

The	genetic	component	of	this	study	was	underpowered	to	detect	differences	in	germ	line	

variation	between	IBD	cases	and	controls.	IBD	genetic	research	now	has	progressed	beyond	

single-centre	research	to	International	collaboratives	(http://www.ibdgenetics.org/).	As	such	

it	would	be	valuable	to	contribute	the	genetic	data	generated	here	for	inclusion	into	work	(i.e.	

meta-analyses)	being	performed	internationally.	The	investigation	into	methylation	

quantitative	trait	loci	has	been	the	most	value	use	of	the	genetic	data	to	the	present	work.	The	

aforementioned	method	of	Mendelian	Randomisation455	may	be	the	next	step	to	take	this	

work.		

9.2.4.2	Gene	expression	

The	gene	expression	part	of	this	study	was	performed	only	in	a	subset	of	patients	included	in	

the	450k	analysis	and	as	such	was	potentially	underpowered	to	detect	differences	in	gene	

expression	between	cases	and	controls.	This	was	in	part	limited	by	the	fact	that	not	all	

subjects	included	in	the	DNA	methylation	study	had	matched	whole	blood	RNA	samples.	In	

the	future	it	would	be	beneficial	to	perform	a	larger	study	including	matched	DNA	

methylation	and	gene	expression	data,	in	order	to	delineate	the	relationship	between	

methylation	and	gene	expression.	As	discussed	in	Chapter	6,	in	my	opinion	rather	than	

perusing	the	‘top	hits’	identified	during	genome-wide	screens,	it	would	be	better	to	target	

genes	where	differential	methylation	occurs	in	gene	promotor/transcription	start	sites.	

Furthermore	it	would	be	interesting	to	collaborate	with	the	Cambridge	group	(Prof	Ken	

Smith,	Dr	James	Lee	et	al)	in	an	attempt	to	replicate	their	work	on	identifying	a	transcriptomic	

signature	in	CD8+	cells	that	can	predict	disease	outcome.260	Lastly,	as	part	of	the	IBD-

CHARACTER	project	transcriptomic	study	will	be	performed	using	the	Ion	Torrent	Ampliseq	

platform	(Life	Technologies).	The	Ion	Torrent	platform	has	been	used	in	a	number	of	next-

generation	sequencing	settings	and	works	by	detection	of	a	PH	change	when	the	appropriate	

base	is	incorporated	into	a	single	strand	of	DNA	(with	subsequent	release	of	a	hydrogen	ion).	

The	major	benefits	of	this	technique	are	a	small	starting	RNA	requirement,	rapid	processing	

time	and	wider	coverage	that	provide	by	microarrays	(e.g.	HT12	array	used	in	this	study)	as	

well	as	the	other	benefits	of	mRNA	sequencing	(see	introduction	to	Chapter	8).		
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	9.2.4.3	microRNA		

As	was	discussed	in	the	conclusions	to	chapter	8,	the	microRNA	aspect	of	this	project	was	an	

exploratory	analysis	and	underpowered	to	detect	differences	between	cases	and	controls.	

This	work	is	subject	to	current	grant	applications	to	perform	small	RNA	sequencing	on	the	

remaining	separated	cell	samples	and	also	on	small	RNAs	derived	from	serum	and	whole	

blood	(PAXgene).		

	
	

9.2.5	Functional	work	

Like	the	large	genetic	studies	in	IBD,	whilst	there	has	been	tremendous	success	in	identifying	

variants	associated	with	disease,	very	little	is	known	regarding	the	functional	implications	of	

the	polymorphisms.	There	is	a	similar	danger	in	the	sphere	of	EWAS	that	large	numbers	of	

differentially	methylated	loci	are	identified	with	a	lack	of	understanding	into	the	underlying	

function	of	these	modifications.	Whilst	this	has	not	be	a	focus	of	this	thesis	there	are	several	

important	functional	experiments	that	would	be	possible	to	further	investigate	the	role	of	the	

key	genes	(VMP1/miR21/RPS6KA2/TXK)	identified	in	this	project.		The	Gastrointestinal	lab	

in	Edinburgh	specialises	in	functional	genomics	and	several	techniques	are	already	optimised	

that	could	be	used	to	explore	these	genes.	Established	gut	(e.g	SW80,	HCT-116)	and	non-gut	

(HEK293,	THP-1)	cell	lines	could	be	used	to	investigate	these	genes.	It	would	be	important	

initially	to	characterise	the	normal	methylation	state	and	gene	expression	levels	of	the	target	

genes	in	the	planned	cell	lines,	as	well	as	characterising	the	genotype	of	key	SNPs	may	form	

meQTLs	with	the	genes	of	interest.	The	genes	could	knocked	down	(for	example	using	small	

interfering	RNA	[siRNA])	or	overexpressed	(e.g.	using	viral	vectors).	There	are	several	DNA	

methyltransferase	inhibitors	such	as	5-azacytidine	and	decitabine	could	potentially	be	used	

experimentally	to	prevent/reduce	levels	of	DNA	methylation,	although	these	are	pan-DMT	

inhibitors	and	would	not	target	specific	methylation	sites.	An	extremely	exciting	new	

technology	is	the	use	of	caspase9/clustered	regularly-interspaced	short	palindromic	regions	

(CRISPR)	to	edit	specific	portions	of	the	genome	and	may	be	used	to	target	specific	

methylation	sites.	Recently	a	group	have	used	engineered	a	fusion	of	transcription-like	

effectors	(TALEs)	and	the	Ten	eleven	translocation	(TET1,	enzymes	that	remove	DNA	

methylation	by	oxidising	5mC	to	5hmC)	enzymes	to	modify	specific	methylated	promotor	
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regions	to	alter	gene	expression.468	Similar	experiments	could	be	performed	in	primary	

cultured	human	blood	cells	(i.e.	immunomagnetically	separated	as	described	in	Chapter	2)	or	

in	Epstein	-	Barr	virus	transformed	human	blood	cells.		
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Appendix	1-Chapter	3	Genome	wide	DNA	methylation	analysis	

Gene	 Position	 CHR	 Δβ	 P	Value	 Adj	P	value	

RPS6KA2	 166970252	 chr6	 -0.09	 1.26E-29	 5.63E-24	

SBNO2	 1130866	 chr19	 -0.09	 3.61E-26	 1.62E-20	

VMP1	 57915665	 chr17	 -0.11	 3.04E-23	 1.36E-17	

SBNO2	 1130965	 chr19	 -0.05	 1.15E-22	 5.16E-17	

VMP1	 57915717	 chr17	 -0.10	 3.52E-22	 1.58E-16	

NA	 50327986	 chr22	 -0.05	 4.81E-21	 2.15E-15	

NA	 101901234	 chr3	 -0.06	 2.73E-18	 1.22E-12	

SOCS3	 76354621	 chr17	 -0.07	 3.63E-18	 1.63E-12	

NA	 12890029	 chr19	 -0.06	 1.92E-17	 8.62E-12	

FKBP5	 35654363	 chr6	 -0.07	 3.42E-17	 1.53E-11	

NA	 35696870	 chr6	 -0.04	 7.67E-17	 3.44E-11	

VMP1	 57915773	 chr17	 -0.06	 1.09E-16	 4.90E-11	

Table	44	-	Top	table	of	differentially	methylated	positions	(DMPs)	between	Crohn’s	disease	

(CD)	cases	and	controls	in	whole	blood	
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Gene	 Position	 CHR	 Δβ	 P	Value	 Adj	P	value	

NA	 35696870	 chr6	 -0.04	 1.12E-16	 5.02E-11	

NA	 101901234	 chr3	 -0.06	 1.35E-16	 6.07E-11	

TNFSF10	 172235808	 chr3	 -0.05	 2.85E-16	 1.28E-10	

SBNO2	 1130866	 chr19	 -0.06	 1.42E-15	 6.36E-10	

NA	 12890029	 chr19	 -0.06	 1.57E-15	 7.03E-10	

AIM2	 159047163	 chr1	 -0.06	 6.96E-15	 3.12E-09	

ICA1	 8201134	 chr7	 0.04	 1.45E-14	 6.48E-09	

RPS6KA2	 166970252	 chr6	 -0.07	 2.22E-14	 9.95E-09	

VMP1	 57915665	 chr17	 -0.09	 2.48E-14	 1.11E-08	

ZEB2	 145172035	 chr2	 -0.08	 5.65E-14	 2.53E-08	

NA	 50327986	 chr22	 -0.04	 2.11E-13	 9.45E-08	

FRMD4A	 13913931	 chr10	 0.05	 2.45E-13	 1.10E-07	

Table	45	-	Top	table	of	differentially	methylated	positions	(DMPs)	between	Ulcerative	colitis	

(UC)	cases	and	controls	in	whole	blood	
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Gene	 Probe	 Position	 CHR	 Δβ	 P	Value	

Holm	

Adj	P	

value	

MNDA	 cg05304729	 158800024	 chr1	 -0.06	 3.44E-07	 0.15	

NA	 cg19683494	 74908142	 chr5	 -0.06	 5.94E-07	 0.27	

ZEB2	 cg10502206	 145182344	 chr2	 0.02	 1.08E-06	 0.49	

NA	 cg02573091	 74908125	 chr5	 -0.07	 1.97E-06	 0.88	

NLRC5	 cg07839457	 57023022	 chr16	 -0.06	 2.81E-06	 1	

TK1	 cg25069807	 76171191	 chr17	 0.03	 4.75E-06	 1	

NA	 cg25730685	 2375010	 chr1	 0.01	 7.07E-06	 1	

SPG7	 cg04879696	 89574810	 chr16	 0.01	 7.66E-06	 1	

TK1	 cg06098276	 76171208	 chr17	 0.04	 1.30E-05	 1	

CENPV	 cg05238069	 16257135	 chr17	 0.01	 1.56E-05	 1	

CAPN5	 cg08103551	 76777993	 chr11	 0.00	 1.67E-05	 1	

ADK	 cg23198334	 76179907	 chr10	 0.01	 2.10E-05	 1	

Table	46	-	Top	table	of	differentially	methylated	positions	(DMPs)	between	Crohn’s	disease	

(CD)	and	Ulcerative	colitis	in	whole	blood	
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Gene	 Probe	 Position	 CHR	 Δβ	 P	Value	
Adj	P	

value	

ROCK1	 cg09449490	 18690843	 chr18	 0.01	 1.17E-06	 0.522723	

PFKFB3	 cg27545615	 6249748	 chr10	 0.03	 1.55E-06	 0.693497	

PIK3R6	 cg00409104	 8762014	 chr17	 0.02	 1.55E-06	 0.696945	

CELF2	 cg11832281	 11211022	 chr10	 0.01	 1.83E-06	 0.818404	

NA	 cg01686975	 138816336	 chr7	 0.02	 2.19E-06	 0.981941	

NA	 cg24448340	 179921042	 chr1	 0.03	 3.00E-06	 1	

TXNDC11	 cg03382501	 11794641	 chr16	 0.02	 3.06E-06	 1	

EFHD2	 cg25978218	 15738732	 chr1	 0.02	 3.08E-06	 1	

CPD	 cg23344321	 28707212	 chr17	 0.02	 4.57E-06	 1	

XPO6	 cg26730763	 28205389	 chr16	 0.01	 5.56E-06	 1	

KIAA1033	 cg13622209	 105501127	 chr12	 0.01	 5.75E-06	 1	

NA	 cg08900384	 72546168	 chr11	 0.02	 6.03E-06	 1	

Table	47	-	Top	table	of	differentially	methylated	positions	(DMPs)	between	Symptomatic	

controls	and	healthy	volunteers	in	whole	blood	
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Illumina	

450k	Probe	

id	

Chr	
Gene	

symbol	
Δβ	 P.Value	

FDR	

adj.P.Val	

cg17501210 chr6	 RPS6KA2	 -0.07	 2.09E-21	 9.38E-16	

cg18608055 chr19	 SBNO2	 -0.07	 2.20E-20	 9.84E-15	

cg16936953 chr17	 VMP1	 -0.08	 1.20E-18	 5.36E-13	

cg09349128 chr22	 NA	 -0.04	 6.81E-18	 3.05E-12	

cg12170787 chr19	 SBNO2	 -0.04	 6.96E-18	 3.12E-12	

cg25114611 chr6	 NA	 -0.04	 1.19E-17	 5.35E-12	

cg12992827 chr3	 NA	 -0.05	 3.58E-17	 1.60E-11	

cg19821297 chr19	 NA	 -0.06	 1.79E-16	 8.04E-11	

cg12054453 chr17	 VMP1	 -0.07	 4.29E-16	 1.92E-10	

cg01059398 chr3	 TNFSF10	 -0.04	 1.78E-15	 7.98E-10	

cg26804423 chr7	 ICA1	 0.04	 4.04E-15	 1.81E-09	

cg02716826 chr9	 NA	 -0.03	 8.06E-15	 3.61E-09	

cg13619623 chr7	 BBS9	 0.04	 1.00E-14	 4.49E-09	

cg18942579 chr17	 VMP1	 -0.05	 1.05E-14	 4.70E-09	

cg03546163 chr6	 FKBP5	 -0.06	 1.72E-14	 7.70E-09	

	

Table	48	-	Top	table	of	differentially	methylated	positions	(DMPs)	between	inflammatory	

bowel	disease	(IBD)	cases	and	controls	in	whole	blood	with	smoking	included	as	a	covariate	

along	with	age,	sex	and	the	estimated	blood	cell	proportions	
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Illumina	450k	

Probe	id	
Chr	 Gene	Symbol	 Δβ	 P.Value	

FDR.	

adj.P.Val	

cg11870956	 chr6	 NA	 0.05	 3.54E-08	 0.009	

cg07215298	 chr2	 HDAC4	 0.08	 4.30E-08	 0.009	

cg17501210	 chr6	 RPS6KA2	 -0.12	 5.75E-08	 0.009	

cg02508743	 chr8	 LYN	 0.08	 1.09E-07	 0.010	

cg17901584	 chr1	 DHCR24	 -0.09	 1.13E-07	 0.010	

cg22610434	 chr1	 CD1C	 0.04	 1.85E-07	 0.013	

cg18931633	 chr8	 CLU	 -0.08	 2.17E-07	 0.013	

cg17192381	 chr18	 BCL2	 0.04	 2.25E-07	 0.013	

cg01799015	 chr19	 PALM	 -0.07	 2.94E-07	 0.015	

cg19458697	 chr2	 NA	 0.03	 3.48E-07	 0.016	

cg19590591	 chr12	 GOLGA3	 0.12	 3.83E-07	 0.016	

cg24843346	 chr8	 NA	 -0.06	 4.18E-07	 0.016	

cg05832823	 chr13	 TBC1D4	 0.07	 5.47E-07	 0.019	

cg12488187	 chr12	 MSRB3	 -0.07	 7.05E-07	 0.022	

cg06996599	 chr6	 C6orf136	 0.06	 7.28E-07	 0.022	

cg26663590	 chr16	 NA	 0.07	 7.82E-07	 0.022	

cg27293155	 chr2	 NA	 0.08	 8.88E-07	 0.023	

Table	49-	Top	Table	of	differentially	methylated	positions	(DMPs)	in	inflammatory	bowel	

disease	(IBD)	cases	and	controls	in	CD14+	monocytes.	
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Illumina	450k	

Probe	id	
Chr	 Gene	Symbol	 Δβ	 P.Value	

FDR.	

adj.P.Val	

cg02478369	 chr17	 NA	 0.01	 7.97E-08	 0.036	

cg04485603	 chr4	 CLOCK	 0.01	 1.86E-06	 0.164	

cg08616681	 chr16	 RHOT2	 -0.02	 1.98E-06	 0.164	

cg00977895	 chr3	 NA	 0.02	 2.09E-06	 0.164	

cg22617703	 chr20	 DNAJC5	 0.02	 2.69E-06	 0.164	

cg18360149	 chr9	 ZNF79	 -0.01	 3.07E-06	 0.164	

cg08540929	 chr5	 NA	 0.02	 3.72E-06	 0.164	

cg17445101	 chr4	 GAK	 0.01	 3.81E-06	 0.164	

cg04587829	 chr17	 FN3K	 0.05	 4.47E-06	 0.164	

cg03850936	 chr6	 NA	 0.07	 4.49E-06	 0.164	

cg08463024	 chr6	 DDX39B	 -0.03	 4.57E-06	 0.164	

cg02976575	 chr7	 LMTK2	 0.01	 5.20E-06	 0.164	

cg26511507	 chr10	 DIP2C	 0.02	 5.27E-06	 0.164	

cg19807612	 chr21	 NA	 -0.01	 5.33E-06	 0.164	

cg14153061	 chr9	 STX17	 -0.06	 5.71E-06	 0.164	

cg24011441	 chr19	 NA	 -0.01	 5.83E-06	 0.164	

cg09977980	 chr17	 EVPLL	 0.02	 6.95E-06	 0.164	

Table	50-	Top	Table	of	differentially	methylated	positions	(DMPs)	in	inflammatory	bowel	

disease	(IBD)	cases	and	controls	in	CD4+	lymphocytes.	
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Illumina	450k	

Probe	id	
Chr	 Gene	Symbol	 Δβ	 P.Value	

FDR.	

adj.P.Val	

cg02985240	 chr1	 ARID4B	 0.07	 2.95E-08	 0.009	

cg04405547	 chr3	 NA	 -0.07	 3.81E-08	 0.009	

cg16339434	 chr11	 NA	 -0.07	 1.21E-07	 0.013	

cg08179431	 chr6	 HFE	 0.11	 1.55E-07	 0.013	

cg07632771	 chr7	 NA	 -0.06	 1.60E-07	 0.013	

cg08831348	 chr19	 EML2	 0.01	 2.23E-07	 0.013	

cg23665802	 chr13	 NA	 -0.08	 2.47E-07	 0.013	

ch.3.38006391R	 chr3	 NA	 -0.01	 2.58E-07	 0.013	

cg01995548	 chr16	 RPL13	 -0.05	 2.76E-07	 0.013	

cg09373727	 chr1	 PTP4A2	 -0.09	 2.81E-07	 0.013	

cg14277403	 chr9	 ANP32B	 -0.10	 3.20E-07	 0.013	

cg10909790	 chr10	 ALOX5	 -0.07	 3.84E-07	 0.014	

cg27141915	 chr19	 IRGQ	 0.05	 4.40E-07	 0.015	

cg18150958	 chr17	 NA	 -0.04	 4.75E-07	 0.015	

cg22801913	 chr11	 C11orf49	 0.03	 5.00E-07	 0.015	

cg13709639	 chr12	 TUBA1B	 -0.09	 5.67E-07	 0.016	

cg02679745	 chr9	 NA	 -0.06	 5.89E-07	 0.016	

51-	Top	Table	of	differentially	methylated	positions	(DMPs)	in	inflammatory	bowel	disease	

(IBD)	cases	and	controls	in	CD8+	lymphocytes.	
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Illumina	450k	

Probe	id	
Chr	 Gene	Symbol	 Δβ	 P.Value	

FDR.	

adj.P.Val	

cg24773560	 12	 IL23A	 0.06	 6.66E-09	 0.003	

cg07215298	 2	 HDAC4	 0.08	 1.57E-08	 0.004	

cg22017309	 11	 RAB3IL1	 -0.04	 2.40E-08	 0.004	

cg18931633	 8	 CLU	 -0.08	 3.67E-08	 0.004	

cg26701810	 2	 NA	 -0.03	 6.00E-08	 0.005	

cg02368508	 16	 TNFRSF17	 0.09	 9.03E-08	 0.006	

cg07457727	 8	 NA	 0.08	 1.25E-07	 0.006	

cg00719771	 6	 NA	 0.11	 1.29E-07	 0.006	

cg00962903	 3	 MECOM	 -0.07	 1.39E-07	 0.006	

cg23216724	 6	 GPR31	 0.13	 1.48E-07	 0.006	

cg25921544	 2	 HDAC4	 0.11	 1.50E-07	 0.006	

cg15020801	 17	 PNPO	 0.07	 1.58E-07	 0.006	

cg05941027	 17	 LIMD2	 0.06	 2.02E-07	 0.006	

cg12992827	 3	 NA	 -0.11	 2.26E-07	 0.006	

cg02508743	 8	 LYN	 0.06	 2.26E-07	 0.006	

cg00779858	 3	 WDR49	 0.07	 2.45E-07	 0.006	

cg17579089	 3	 KIF9	 0.07	 2.57E-07	 0.006	

Table	52	-	Top	table	of	differentially	methylated	positions	(DMPs)	between	Crohn’s	disease	

(CD)	cases	and	controls	in	CD14+	monocytes	



288	

	

	

Illumina	450k	

Probe	id	
Chr	 Gene	Symbol	 Δβ	 P.Value	

FDR.	

adj.P.Val	

cg08936645	 4	 TBC1D1	 0.02	 2.16E-06	 0.4	

cg04587829	 17	 FN3K	 0.04	 5.51E-06	 0.4	

cg24743237	 2	 D2HGDH	 0.03	 6.87E-06	 0.4	

cg00345704	 17	 KRTAP2-3	 0.02	 7.33E-06	 0.4	

cg07652774	 6	 NA	 0.02	 7.89E-06	 0.4	

cg25647784	 17	 WNK4	 0.09	 9.15E-06	 0.4	

cg25904183	 4	 NA	 -0.07	 1.02E-05	 0.4	

cg06521149	 1	 NA	 -0.03	 1.04E-05	 0.4	

cg22460123	 12	 KRT7	 -0.03	 1.11E-05	 0.4	

cg07287949	 17	 NA	 0.04	 1.13E-05	 0.4	

cg16261737	 2	 FN1	 -0.05	 1.38E-05	 0.4	

cg27013382	 2	 NA	 0.03	 1.46E-05	 0.4	

cg17454857	 20	 NA	 0.04	 1.61E-05	 0.4	

cg05063856	 9	 NA	 -0.04	 1.67E-05	 0.4	

cg07649744	 20	 HELZ2	 -0.01	 2.09E-05	 0.4	

cg10827159	 12	 TMEM132B	 -0.02	 2.12E-05	 0.4	

cg20989942	 12	 NA	 0.03	 2.16E-05	 0.4	

Table	53-	Top	table	of	differentially	methylated	positions	(DMPs)	between	Crohn’s	disease	

(CD)	cases	and	controls	in	CD4+	lymphocytes	
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Illumina	450k	

Probe	id	
Chr	 Gene	Symbol	 Δβ	 P.Value	

FDR.	

adj.P.Val	

cg20239639	 1	 LCK	 0.07	 1.08E-06	 0.5	

cg02985240	 1	 ARID4B	 0.08	 2.44E-06	 0.5	

cg16575998	 2	 C2orf61	 0.07	 3.45E-06	 0.5	

cg06713373	 3	 SLC12A8	 0.063	 4.70E-06	 0.5	

cg17181543	 1	 AK5	 0.03	 7.47E-06	 0.6	

cg18338046	 5	 TCF7	 0.10	 8.33E-06	 0.6	

cg08113002	 19	 ASPDH	 -0.10	 9.76E-06	 0.6	

cg09789252	 19	 ASPDH	 -0.11	 1.13E-05	 0.6	

cg00619505	 13	 TMCO3	 0.08	 1.30E-05	 0.6	

cg07702548	 16	 ZC3H18	 0.02	 1.50E-05	 0.6	

cg19145607	 3	 NA	 0.15	 1.72E-05	 0.6	

cg01219426	 11	 MAML2	 0.02	 1.78E-05	 0.6	

cg09053247	 3	 NA	 0.06	 1.84E-05	 0.6	

cg01631226	 22	 NA	 0.06	 1.86E-05	 0.6	

cg04587829	 17	 FN3K	 0.04	 2.19E-05	 0.6	

cg13298528	 11	 CXCR5	 0.07	 2.29E-05	 0.6	

cg13992008	 9	 FAM102A	 0.10	 2.53E-05	 0.7	

Table	54	-	Top	table	of	differentially	methylated	positions	(DMPs)	between	Crohn’s	disease	

(CD)	cases	and	controls	in	CD8+	lymphocytes	
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Illumina	450k	

Probe	id	
Chr	

Gene	

Symbol	
Δβ	 P.Value	

FDR.	

adj.P.Val	

cg26508200	 12	 SSH1	 -0.04	 7.03E-08	 0.03	

cg08272368	 3	 NA	 -0.06	 3.47E-07	 0.08	

cg24843346	 8	 NA	 -0.07	 8.19E-07	 0.1	

cg21120249	 9	 NA	 -0.07	 1.61E-06	 0.2	

cg04999691	 7	 NA	 -0.03	 1.83E-06	 0.2	

cg04152675	 2	 CASP10	 -0.04	 2.18E-06	 0.2	

cg14847009	 1	 KIAA0040	 -0.10	 2.76E-06	 0.2	

cg03270340	 6	 TRIM27	 -0.02	 3.36E-06	 0.2	

cg17501210	 6	 RPS6KA2	 -0.15	 3.49E-06	 0.2	

cg19515398	 8	 NA	 0.07	 4.23E-06	 0.2	

cg00575066	 6	 NA	 -0.03	 5.08E-06	 0.2	

cg14703482	 4	 FGF2	 -0.02	 6.53E-06	 0.2	

cg05380304	 4	 AFAP1-AS1	 0.04	 7.66E-06	 0.3	

cg11906021	 17	 NA	 0.06	 9.18E-06	 0.3	

cg22920418	 19	 RPS5	 -0.03	 1.02E-05	 0.3	

cg15766101	 19	 CCDC61	 -0.02	 1.09E-05	 0.3	

cg23866916	 19	 SBNO2	 -0.08	 1.31E-05	 0.3	

Table	55	-	Top	table	of	differentially	methylated	positions	(DMPs)	between	Ulcerative	colitis	

(UC)	cases	and	controls	in	CD14+	Monocytes	
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Illumina	

450k	Probe	id	
Chr	 Gene	Symbol	 Δβ	 P.Value	

FDR.	

adj.P.Val	

cg18074189	 12	 TMTC1	 -0.06	 2.34E-07	 0.04	

cg07869023	 20	 PCSK2	 -0.06	 3.10E-07	 0.04	

cg21214232	 15	 SNORD115-7	 -0.05	 3.20E-07	 0.04	

cg05483184	 6	 TNXB	 -0.01	 3.96E-07	 0.04	

cg06641503	 3	 ARIH2	 -0.05	 7.66E-07	 0.07	

cg19652483	 6	 FILIP1	 -0.06	 9.81E-07	 0.07	

cg09077443	 11	 NA	 -0.03	 1.29E-06	 0.08	

cg13594903	 9	 STOML2	 -0.03	 1.84E-06	 0.09	

cg08594554	 17	 TTYH2	 0.06	 1.93E-06	 0.09	

cg03638432	 16	 NA	 -0.02	 2.11E-06	 0.09	

cg20302533	 7	 POU6F2	 0.14	 2.40E-06	 0.09	

cg09435170	 4	 NA	 -0.07	 2.53E-06	 0.09	

cg18803306	 20	 NA	 0.07	 2.59E-06	 0.09	

cg08835956	 7	 POU6F2	 0.08	 2.81E-06	 0.09	

cg03139435	 20	 NA	 -0.07	 2.84E-06	 0.09	

cg18850127	 7	 POU6F2	 0.16	 3.10E-06	 0.09	

Table	56	-	Top	table	of	differentially	methylated	positions	(DMPs)	between	Ulcerative	colitis	

(UC)	cases	and	controls	in	CD4+	Lymphocytes	

	

Illumina	450k	 Chr	 Gene	Symbol	 Δβ	 P.Value	 FDR.	
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Probe	id	 adj.P.Val	

cg22108567	 7	 NA	 -0.06	 2.90E-08	 0.01	

cg09033472	 13	 RASA3	 -0.08	 1.28E-07	 0.03	

cg23045404	 17	 NA	 -0.02	 2.95E-07	 0.04	

cg04071118	 20	 FAM83D	 -0.07	 3.94E-07	 0.04	

ch.12.2487434F	 12	 NA	 -0.07	 3.97E-07	 0.04	

cg16339434	 11	 NA	 -0.07	 9.98E-07	 0.08	

cg07091220	 4	 ZNF827	 -0.08	 1.39E-06	 0.09	

cg12785694	 3	 NA	 -0.10	 1.87E-06	 0.09	

cg26819611	 16	 KIFC3	 -0.05	 1.94E-06	 0.09	

cg14277403	 9	 ANP32B	 -0.10	 2.14E-06	 0.09	

cg01966091	 16	 HAS3	 0.05	 2.66E-06	 0.09	

cg16290996	 1	 NA	 -0.07	 3.29E-06	 0.09	

cg02835421	 1	 IPO13	 -0.05	 3.38E-06	 0.09	

cg11733958	 17	 MPRIP	 0.08	 3.58E-06	 0.09	

cg03364486	 8	 NA	 0.09	 3.61E-06	 0.09	

cg01756756	 19	 C19orf12	 -0.05	 3.67E-06	 0.09	

cg09649266	 2	 NA	 0.05	 3.75E-06	 0.09	

Table	57	–	Top	table	of	differentially	methylated	positions	(DMPs)	between	Ulcerative	colitis	

(UC)	cases	and	controls	in	CD8+	Lymphocytes	
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Appendix	2	-	Chapter	4	Targeted	replication	of	Epigenome-

wide	DNA	Methylaiton	findings		 	 	

	

Figure	70	-	WRAP73	independent	cohort	pyrosequencing	
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Appendix	3	-	Chapter	5	Integrative	analysis	of	genetic	and	DNA	

methylation	data	

Table	58	–	Samples	that	failed	quality	assurance	testing	either	by	failing	genotyping	or	by	

failing	sex	check.		

Failed	Genotyping	 Failed	Sex	

check	

Hetrozygosity	
0474CD	 0315HC	 0.12	
P008464-08112011-TB-S001	 0037HC	 0.09	
0157HC	 	 	
P009007-07112013-TB-02	 	 	
P009111-28042014-TB-01	 	 	
P007843-30052012-TB-S001	 	 	
0013HC	 	 	
P009048-08012014-TB-01	 	 	
0740UC	 	 	
P009036-16122013-TB-01	 	 	
P009140-23062014-TB-01	 	 	
0281HC	 	 	
P008646-26062012-TB-S001	 	 	
0026H	 	 	
0131HC	 	 	
P008775-18012013-TB-01	 	 	
0529CD	 	 	
P007860-30052012-TB-S001	 	 	
P009021-02122013-TB-01	 	 	
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Table	59	-	Top	list	of	DMPs	with	genetic	association	(meQTL).	Only	the	top	SNP	association	is	

shown	for	each	methylation	probe.	The	variables	used	to	search	for	meQTLs	were	as	follows:	

MAF>10%,	cis	distance	1	megabase,	covariates	age,	sex,	cell	proportions,	no	disease	

covariates.	The	table	is	ordered	according	to	the	significant	of	the	DMP	in	the	IBD	vs.	Control	

methylation	comparison	(DMP	rank,	Holm	Adjusted	P.Vlaue	correspond	to	results	of	linear	

modelling	carried	out	in	Chapter	3)	rather	than	the	significance	test	of	the	association	

between	SNP	and	methylation	probe	(meQTL	rank).	The	results	of	the	significance	test	of	the	

association	between	SNP	and	methylation	probe	are	presented	in	columns	marked	meQTL	P	

value	and	FDR	corrected	as	meQTL	FDR	P	Value		

ProbeID	 Ch	 Meth	
symbol	

Holm	
adj	
P.Val	

DMP	
rank	 Top	SNP	

meQTL	
P	

Value	

meQTL	
FDR	P	
Value	

meQTL	
rank	

cg16936953	 17	 VMP1	 6.0E-14	 3	 rs8078424	 2.9E-07	 8.8E-05	 265	
cg12054453	 17	 VMP1	 1.8E-11	 9	 rs8078424	 4.4E-07	 1.2E-04	 284	
cg18942579	 17	 VMP1	 5.2E-10	 14	 rs10853015	 3.1E-07	 9.4E-05	 267	
cg02448796	 1	 KCNAB2	 6.9E-09	 18	 rs546526	 2.2E-13	 2.5E-10	 71	
cg12582317	 17	 NA	 2.5E-08	 20	 rs886926	 7.4E-35	 1.0E-30	 6	
cg16724148	 1	 AGL	 5.4E-08	 22	 rs2640911	 3.4E-24	 1.4E-20	 20	
cg01409343	 17	 VMP1	 1.5E-06	 45	 rs10853015	 9.1E-07	 2.3E-04	 322	
cg16755922	 17	 FOXK2	 6.8E-06	 61	 rs11658011	 1.3E-08	 5.9E-06	 176	
cg27023597	 17	 MIR21	 7.4E-06	 62	 rs10853015	 9.0E-07	 2.3E-04	 320	
cg02508743	 8	 LYN	 1.9E-05	 80	 rs2719236	 2.3E-08	 1.0E-05	 184	
cg24469729	 7	 HOXA3	 2.4E-05	 82	 rs2465276	 7.1E-16	 1.3E-12	 45	

cg14722693	 8	 CSGALNA
CT1	 3.0E-05	 86	 rs10107533	 1.3E-07	 4.5E-05	 232	

cg24707889	 21	 ITGB2	 3.3E-05	 88	 rs2070946	 2.6E-11	 2.0E-08	 108	
cg08423142	 15	 MYO1E	 3.4E-05	 89	 rs17236536	 2.1E-07	 6.7E-05	 252	
cg12807764	 5	 NA	 4.9E-05	 95	 rs17106769	 3.4E-11	 2.5E-08	 110	
cg02719954	 8	 NA	 5.5E-05	 97	 rs1438455	 7.8E-11	 5.6E-08	 114	
cg02782634	 17	 VMP1	 5.8E-05	 99	 rs10853015	 2.3E-07	 7.3E-05	 258	
cg21106695	 14	 NA	 7.6E-05	 108	 rs10873477	 1.2E-12	 1.3E-09	 79	
cg13696490	 3	 AADACP1	 1.2E-04	 120	 rs16846748	 3.0E-15	 4.5E-12	 54	
cg21066748	 19	 NA	 3.0E-04	 136	 rs758761	 5.8E-09	 2.9E-06	 164	
cg12053291	 12	 SCARB1	 3.5E-04	 141	 rs3782287	 1.5E-07	 5.1E-05	 239	
cg07168939	 8	 PSCA	 3.9E-04	 143	 rs6471588	 3.8E-09	 2.0E-06	 156	
cg25368647	 5	 MXD3	 5.4E-04	 157	 rs9885210	 4.4E-07	 1.3E-04	 285	
cg26663590	 16	 NA	 7.8E-04	 173	 rs11150675	 2.1E-07	 6.8E-05	 253	
cg12535090	 11	 NAV2	 9.6E-04	 178	 rs4757026	 5.8E-07	 1.6E-04	 298	
cg10241823	 17	 NXN	 1.1E-03	 180	 rs12939584	 2.3E-09	 1.3E-06	 147	
cg05554192	 11	 USH1C	 1.1E-03	 181	 rs1055574	 1.5E-12	 1.5E-09	 81	
cg08791347	 10	 FRMD4A	 1.3E-03	 188	 rs10796127	 9.1E-09	 4.3E-06	 170	
cg20692268	 1	 NA	 1.4E-03	 196	 rs311426	 7.7E-10	 4.6E-07	 137	
cg12229367	 17	 NA	 1.5E-03	 197	 rs886926	 9.2E-15	 1.3E-11	 58	
cg14849578	 12	 SCARB1	 1.6E-03	 201	 rs3782287	 2.3E-07	 7.2E-05	 255	
cg23298114	 8	 EXT1	 1.7E-03	 204	 rs11781245	 3.3E-08	 1.4E-05	 191	
cg18663307	 21	 ITGB2	 2.0E-03	 207	 rs2070946	 4.5E-19	 1.2E-15	 30	
cg23669118	 16	 PTX4	 2.1E-03	 208	 rs2667675	 5.1E-20	 1.7E-16	 25	
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m
eQ
TL.	rank	

Ch
r	 SNP	 Meth	

Probe	

Meth	
Probe	
Symbol	

FDR	P	
Val	

CIT	
omni
bus	
Pval	
Holm	

Pheno.	
assoc.w
.	Meth	
Holm	

Pheno.	
assoc.
w.	

Geno.	
given.
Meth	
Holm	

Geno.	
assoc.	
w.	

Meth.	
given.	
Pheno	
Holm	

Meth.	
indep.
of.	

Pheno
.	

given.	
Geno	
Holm	

1	 8	 rs678839	 cg26126879	 NA	 6.2E-53	 0.01	 1.3E-05	 0.01	 1.7E-
52	 0	

2	 6	 rs9369640	 cg03951877	 PHACTR1	 5.6E-38	 1	 1.9E-06	 0.02	 9.5E-
41	 1	

3	 6	 exm-
rs1332844	 cg03951877	 PHACTR1	 4.3E-36	 0.003	 1.9E-06	 0.003	 1.9E-

38	 0	

4	 21	 rs8127895	 cg13951069	 SLC37A1	 6.6E-36	 0.1	 1.2E-05	 0.1	 1.4E-
38	 0	

5	 21	 rs8134499	 cg13951069	 SLC37A1	 2.4E-32	 1	 1.2E-05	 0.009	 1.3E-
35	 1	

6	 17	 rs886926	 cg12582317	 NA	 1.0E-30	 1	 1.8E-09	 1	 1.4E-
31	 1	

7	 8	 rs2436856	 cg26126879	 NA	 1.3E-29	 1	 1.3E-05	 1	 1.1E-
29	 1	

8	 3	 rs4687267	 cg01526748	 FGF12	 1.0E-27	 1	 1.7E-06	 0.05	 6.8E-
31	 1	

9	 3	 rs12494587	 cg01526748	 FGF12	 1.9E-27	 1	 1.7E-06	 0.03	 1.6E-
30	 1	

10	 11	 rs7103299	 cg04074945	 PHF21A	 3.5E-25	 1	 1.3E-05	 1	 1.7E-
28	 1	

11	 11	 rs3929339	 cg04074945	 PHF21A	 4.8E-25	 1	 1.3E-05	 1	 1.4E-
27	 1	

12	 1	 rs2777840	 cg11847933	 ADCK3	 4.2E-24	 1	 5.1E-06	 1	 2.3E-
27	 1	

13	 8	 rs1055376	 cg26126879	 NA	 1.2E-23	 1	 1.3E-05	 1	 1.8E-
25	 1	

14	 8	 rs571241	 cg26126879	 NA	 1.2E-23	 1	 1.3E-05	 1	 8.8E-
25	 1	

15	 5	 rs4958715	 cg14968553	 GALNT10	 1.2E-21	 1	 1.3E-05	 0.2	 8.6E-
24	 1	

16	 11	 rs2959103	 cg04074945	 PHF21A	 2.6E-21	 1	 1.3E-05	 1	 2.2E-
24	 0	

17	 11	 exm-
rs16938437	 cg04074945	 PHF21A	 2.6E-21	 1	 1.3E-05	 1	 1.5E-

24	 1	

18	 6	 rs394522	 cg15706657	 GPR31	 1.1E-20	 1	 1.2E-05	 1	 5.1E-
23	 1	

19	 6	 rs13219256	 cg03951877	 PHACTR1	 1.4E-20	 1	 1.9E-06	 1	 8.7E-
24	 1	

20	 1	 rs2640911	 cg16724148	 AGL	 1.4E-20	 1	 1.8E-09	 0.5	 1.8E-
23	 1	

	

Table	60	-	List	of	top	DMPs	with	genetic	association	(DMP/meQTLs).	The	meQTL	FDR	p	value	

denotes	the	FDR	corrected	P	value	for	the	association	test	between	genotype	and	methylation.	
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The	table	is	ordered	by	meQTL	ranking	(i.e.	the	most	significant	methylation-genotype	

association).	The	CIT	omnibus	p	value	represents	the	overall	p	value	for	the	test	(represents	

the	highest	p	value	of	the	other	4	tests).	In	Yellow	are	the	results	from	the	CIT	test	to	assess	

whether	genotype	mediates	the	effect	of	methylation	on	disease	susceptibility	(Methylation	

CIT).	Column	explanation:	P	value	for	phenotype	association	with	methylation	probe.	P	value	

for	Phenotype	associates	with	genotype	following	adjustment	for	methylation.	P	value	for	

Genotype	association	with	methylation	following	adjustment	for	phenotype.	P	value	for	

independence	test	that	methylation	is	independent	of	phenotype	following	adjustment	for	

genotype.		 	
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m
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Chr	 SNP	 Meth	
Probe	

Meth	
Probe	
Symbol	

FDR	P	
Val	

CIT	
omni
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val	
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w.	

Geno	
Holm	
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Assoc	
.w.	

Meth.	
given.	
Geno	
Holm	

Meth.	
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.	Geno.	
given.	
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indep.of
.	Pheno.	
given.	
Meth	
Holm	

1	 8	 rs678839	 cg2612687
9	 NA	 6.2E-53	 1	 1	 4.6E-08	 1.7E-52	 1	

2	 6	 rs9369640	 cg0395187
7	

PHACTR
1	 5.6E-38	 1	 1	 7.9E-10	 1.2E-40	 1	

3	 6	 exm-
rs1332844	

cg0395187
7	

PHACTR
1	 4.3E-36	 1	 1	 1.3E-10	 1.9E-38	 1	

4	 21	 rs8127895	 cg1395106
9	 SLC37A1	 6.6E-36	 1	 1	 7.3E-08	 1.4E-38	 1	

5	 21	 rs8134499	 cg1395106
9	 SLC37A1	 2.4E-32	 1	 1	 5.7E-09	 1.0E-34	 1	

6	 17	 rs886926	 cg1258231
7	 NA	 1.0E-30	 1	 1	 2.2E-10	 2.7E-32	 1	

7	 8	 rs2436856	 cg2612687
9	 NA	 1.3E-29	 1	 1	 1.7E-05	 5.3E-30	 1	

8	 3	 rs4687267	 cg0152674
8	 FGF12	 1.0E-27	 1	 1	 1.5E-09	 5.8E-30	 1	

9	 3	 rs1249458
7	

cg0152674
8	 FGF12	 1.9E-27	 1	 1	 9.1E-10	 1.7E-29	 1	

10	 11	 rs7103299	 cg0407494
5	 PHF21A	 3.5E-25	 1	 1	 1.9E-05	 8.3E-29	 1	

11	 11	 rs3929339	 cg0407494
5	 PHF21A	 4.8E-25	 1	 1	 6.7E-06	 2.2E-28	 1	

12	 1	 rs2777840	 cg1184793
3	 ADCK3	 4.2E-24	 1	 1	 2.3E-06	 3.7E-26	 1	

13	 8	 rs1055376	 cg2612687
9	 NA	 1.2E-23	 1	 1	 2.1E-06	 2.1E-26	 1	

14	 8	 rs571241	 cg2612687
9	 NA	 1.2E-23	 1	 1	 1.4E-05	 8.8E-25	 0	

15	 5	 rs4958715	 cg1496855
3	

GALNT1
0	 1.2E-21	 1	 1	 1.6E-07	 8.3E-24	 1	

16	 11	 rs2959103	 cg0407494
5	 PHF21A	 2.6E-21	 1	 1	 1.9E-05	 2.2E-24	 1	

17	 11	 exm-
rs1693843

7	

cg0407494
5	 PHF21A	 2.6E-21	 1	 1	 1.9E-05	 3.9E-23	 1	

18	 6	 rs394522	 cg1570665
7	 GPR31	 1.1E-20	 1	 1	 1.1E-05	 3.9E-22	 1	

19	 6	 rs1321925
6	

cg0395187
7	

PHACTR
1	 1.4E-20	 1	 1	 4.8E-08	 3.3E-22	 1	

20	 1	 rs2640911	 cg1672414
8	 AGL	 1.4E-20	 1	 1	 4.35E-

11	
2.1E-23	 1	

Table	61	-	List	of	top	DMPs	with	genetic	association	(DMP/meQTLs).	The	meQTL	FDR	p	value	

denotes	the	FDR	corrected	P	value	for	the	association	test	between	genotype	and	methylation.	

The	table	is	ordered	by	meQTL	ranking.	The	CIT	omnibus	p	value	represents	the	overall	p	

value	for	the	test	(highest	p	value	of	the	other	4	tests).	In	Green	are	the	results	from	the	CIT	

test	to	assess	whether	methylation	mediates	genetic	risk	of	disease	susceptibility	(Genetics	

CIT).	Column	explanation:	P	value	for	phenotype	association	with	methylation	probe.	P	value	

for	Phenotype	associates	with	genotype	following	adjustment	for	methylation.	P	value	for	

Genotype	association	with	methylation	following	adjustment	for	phenotype.	P	value	for	
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independence	test	that	methylation	is	independent	of	phenotype	following	adjustment	for	

genotype.	

	

Figure	71	-	cg23934075	meQTL	on	chromosome	6	in	IBD	cases	versus	controls	in	cis	(panel	1	

of	2).	The	title	of	each	panel	denotes	SNP	(first)	followed	by	methylation	probe.	
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Appendix	4	-	Chapter	6	Integrative	analysis	of	genome-wide	

gene	expression	and	DNA	methylation	data	

	

category	

No.	genes	
differenti
ally	

expresse
d	in	

category		

Total	No	
of	genes	

in	
category	

GO	term	 P	Val	 FDR	Adj	
P.Val	

GO:0044822	 171	 1156	 poly(A)	RNA	binding	 2.02E-13	 4.09E-09	
GO:0003723	 207	 1530	 RNA	binding	 3.46E-12	 3.50E-08	
GO:0044445	 46	 204	 cytosolic	part	 1.29E-11	 8.71E-08	
GO:0003676	 430	 3756	 nucleic	acid	binding	 2.04E-11	 1.03E-07	
GO:1901363	 596	 5579	 heterocyclic	compound	binding	 3.04E-10	 1.23E-06	
GO:0022626	 27	 102	 cytosolic	ribosome	 4.49E-10	 1.34E-06	

GO:0006614	 28	 108	 SRP-dependent	cotranslational	
protein	targeting	to	membrane	 5.00E-10	 1.34E-06	

GO:0097159	 601	 5655	 organic	cyclic	compound	
binding	 5.31E-10	 1.34E-06	

GO:0045047	 29	 114	 protein	targeting	to	ER	 6.37E-10	 1.43E-06	
GO:0044237	 948	 9698	 cellular	metabolic	process	 9.37E-10	 1.73E-06	

GO:0006613	 28	 110	 cotranslational	protein	
targeting	to	membrane	 9.44E-10	 1.73E-06	

GO:0044424	 1207	 12846	 intracellular	part	 1.76E-09	 2.96E-06	

GO:0072599	 29	 118	
establishment	of	protein	
localization	to	endoplasmic	

reticulum	
2.01E-09	 3.12E-06	

GO:0008152	 1071	 11186	 metabolic	process	 2.34E-09	 3.38E-06	
GO:0005622	 1230	 13167	 intracellular	 4.73E-09	 6.37E-06	

GO:0000184	 29	 120	
nuclear-transcribed	mRNA	
catabolic	process,	nonsense-

mediated	decay	
5.48E-09	 6.92E-06	

GO:0010467	 529	 5002	 gene	expression	 6.43E-09	 7.46E-06	
GO:0019058	 66	 392	 viral	life	cycle	 6.65E-09	 7.46E-06	
GO:0090304	 506	 4745	 nucleic	acid	metabolic	process	 8.80E-09	 9.29E-06	
GO:0043043	 87	 576	 peptide	biosynthetic	process	 9.20E-09	 9.29E-06	

Table	62	-	Gene	ontology	analysis	using	FDR	corrected	differentially	expressed	probes	in	

whole	blood	IBD	versus	control	
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	 CD	 UC	 IBD	 Control	

n	 24	 18	 42	 17	

Females	(%)	 9	(37.5)	 6	(33.3)	 15	(35.7)	 6	(32.3)	

Age	At	Diagnosis	

(median,	IQR)	
27.5	(23-37.3)	 32.5	(26-41)	 30	(24.3-38)	 33	(30-41)	

Smoking	

(current	or	Ex)	
15	(62.5)	 10	(58.8)	 25	(61)	 5	(33.3)	

Table	63	-	CD14	whole	genome	patient	demographics	

	 CD	 UC	 IBD	 Control	

n	 20	 20	 40	 16	

Females	(%)	 9	(45)	 6	(30)	 15	(37.5)	 7	(43.8)	

Age	At	Diagnosis	

(median,	IQR)	
29	(22.5-38.5)	 33.5	(26-50)	

32.5	(23.8-

40.5)	
35.5	(30-42.3)	

Smoking	

(current	or	Ex)	
11	(55)	 10	(52.6)	 21	(53.9)	 3	(21)	

Table	64	-	CD4	whole	genome	patient	demographics	

	 CD	 UC	 IBD	 Control	

n	 18	 18	 36	 14	

Females	(%)	 6	(33.3)	 6	(33.3)	 12	(33.3)	 4	(28.6)	

Age	At	Diagnosis	

(median,	IQR)	
27.5	(23.5-37)	 32.5	(26-48)	 30.5	(24.8-44)	 35	(30.3	-41.8)	

Smoking	

(current	or	Ex)	
11	(61.1)	 10	(58.9)	 21	(60)	 4	(28.6)	

Table	65	–	CD8	whole	genome	patient	demographics	
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IlluminaID	 symbol	 logFC	 AveExpr	 P.Value	
Holm.	
Adj.	
P.Val	

ILMN_1906187	 CAMK1D	 -0.42	 8.64	 4.79E-06	 0.22	
ILMN_1759743	 SLC38A10	 0.30	 8.13	 5.03E-06	 0.24	
ILMN_1695036	 TPPP3	 -0.09	 6.96	 5.64E-06	 0.26	
ILMN_2361603	 NDRG2	 -0.29	 7.54	 6.58E-06	 0.31	
ILMN_1738539	 OPLAH	 0.15	 7.18	 6.95E-06	 0.33	
ILMN_3276676	 NA	 -0.44	 7.50	 1.28E-05	 0.60	
ILMN_1733956	 IARS	 -0.30	 8.09	 1.30E-05	 0.61	
ILMN_1671891	 PID1	 -0.74	 9.73	 1.47E-05	 0.69	
ILMN_2119224	 KIFAP3	 -0.21	 7.46	 1.47E-05	 0.69	
ILMN_2393994	 CSPP1	 -0.16	 7.63	 1.82E-05	 0.85	
ILMN_1679580	 KCNIP4	 -0.09	 6.92	 2.31E-05	 1.00	
ILMN_1809013	 MYL6	 0.23	 13.90	 2.36E-05	 1.00	
ILMN_1725352	 NA	 -0.07	 6.96	 2.48E-05	 1.00	
ILMN_1660166	 NA	 -0.07	 6.96	 2.82E-05	 1.00	
ILMN_2337336	 PVRL2	 0.26	 7.37	 2.87E-05	 1.00	
ILMN_1753249	 DDX10	 -0.24	 8.28	 4.47E-05	 1.00	
ILMN_1761113	 GNL2	 -0.25	 10.18	 4.69E-05	 1.00	
ILMN_1797425	 DDX55	 -0.34	 9.01	 4.85E-05	 1.00	
ILMN_1808395	 ACAP1	 0.40	 8.53	 6.35E-05	 1.00	
ILMN_3242377	 NACC2	 0.26	 7.60	 7.07E-05	 1.00	

Table	66	-	Whole	genome	expression	in	CD14	monocytes	IBD	versus	controls	
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IlluminaID	 symbol	 logFC	 AveExpr	 P.Value	 Holm.Adj.P.Val	

ILMN_1688404	 ZMYM4	 -0.24	 7.80	 1.84E-05	 0.9	
ILMN_1864422	 POU2F1	 -0.21	 7.23	 2.01E-05	 0.9	
ILMN_1664065	 NA	 -0.12	 6.78	 2.90E-05	 1	
ILMN_2219131	 RPS15	 0.27	 7.17	 4.56E-05	 1	
ILMN_1737205	 MCM4	 0.50	 7.99	 5.63E-05	 1	
ILMN_1707493	 RCC1	 0.41	 8.25	 5.89E-05	 1	
ILMN_1696837	 NA	 0.08	 6.72	 9.34E-05	 1	
ILMN_1732296	 ID3	 -0.77	 8.52	 9.47E-05	 1	
ILMN_1673177	 ISM2	 -0.09	 6.71	 0.000116	 1	
ILMN_2411236	 NRCAM	 -0.15	 6.81	 0.000117	 1	
ILMN_1737184	 CDCA7	 0.69	 8.27	 0.000118	 1	
ILMN_1724493	 LYSMD2	 -0.37	 10.20	 0.000129	 1	
ILMN_1679324	 EIF1B	 -0.40	 9.79	 0.000132	 1	
ILMN_1795852	 CCNE1	 0.20	 7.09	 0.000145	 1	

ILMN_3265439	 SPANXA2-
OT1	 0.21	 6.86	 0.000154	 1	

ILMN_1723253	 ZNF222	 -0.16	 6.94	 0.000164	 1	
ILMN_1804907	 OR1F2P	 -0.08	 6.75	 0.000165	 1	
ILMN_3226961	 OAZ1	 -0.13	 6.83	 0.000165	 1	
ILMN_1859942	 NA	 -0.15	 7.08	 0.000179	 1	
ILMN_2334693	 NARF	 0.47	 9.52	 0.000184	 1	

Table	67	-	Whole	genome	expression	in	CD4	T-cells	IBD	versus	controls	
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IlluminaID	 symbol	 logFC	 AveExpr	 P.Value	 Holm.Adj.P.Val	

ILMN_1813314	 HIST1H2BK	 0.57	 8.22	 3.76E-07	 0.02	
ILMN_1796179	 HIST1H2BK	 0.56	 10.06	 3.02E-06	 0.14	
ILMN_2331062	 CBFA2T2	 -0.25	 7.69	 6.89E-06	 0.32	
ILMN_1674763	 NA	 -0.11	 6.46	 1.64E-05	 0.77	
ILMN_1777233	 E2F2	 1.35	 8.62	 1.67E-05	 0.78	
ILMN_1790537	 RMI2	 0.52	 7.61	 4.43E-05	 1.00	
ILMN_2363621	 RBBP8	 0.78	 7.47	 4.52E-05	 1.00	
ILMN_1746403	 GTF2IRD2P1	 -0.32	 7.55	 4.53E-05	 1.00	
ILMN_1673112	 ZNF32	 -0.12	 6.53	 4.59E-05	 1.00	
ILMN_1895853	 NA	 0.13	 6.57	 4.67E-05	 1.00	
ILMN_2176251	 MGME1	 0.41	 8.62	 4.92E-05	 1.00	
ILMN_1658607	 DLEU2L	 0.18	 6.67	 5.17E-05	 1.00	
ILMN_1760410	 NA	 -0.11	 6.44	 5.46E-05	 1.00	
ILMN_1687273	 BMS1P6	 -0.13	 6.74	 6.00E-05	 1.00	
ILMN_2390974	 DNAJB2	 -0.35	 9.82	 6.51E-05	 1.00	
ILMN_1656840	 VPS13D	 -0.22	 7.28	 6.51E-05	 1.00	
ILMN_1672664	 NA	 0.18	 6.85	 6.58E-05	 1.00	
ILMN_2409298	 NUSAP1	 0.57	 7.13	 6.65E-05	 1.00	
ILMN_1813175	 ADGRL1	 -0.48	 7.79	 6.73E-05	 1.00	
ILMN_1671651	 NA	 -0.12	 6.52	 6.90E-05	 1.00	

Table	68	-	Whole	genome	expression	in	CD8	T-cells	IBD	versus	controls	
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Figure	72	-	Cell	specific	RPS6KA2	gene	expression	according	to	cell	type	in	IBD	cases	and	

controls.	Insert	demonstrates	correlation	between	methylation	(beta)	and	gene	expression.		

	

	

	

Figure	73	-	Cell	specific	VMP1	gene	expression	according	to	cell	type	in	IBD	cases	and	

controls.	Insert	demonstrates	correlation	between	methylation	(beta)	and	gene	expression	
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Figure	74	-	Cell	specific	WRAP73	expression	according	to	cell	type	in	IBD	cases	and	controls.	

Insert	demonstrates	correlation	between	methylation	(beta)	and	gene	expression	

	

Figure	75	-	Correlation	between	TXK	gene	expression	and	methylationCorrelation	between	

TXK	gene	expression	for	the	one	probe	represented	on	the	HT12	expression	array	and	

Methylation	at	the	three	CpGs	included	in	the	DMR	on	the	450k	array	(circles/blue	line	=	

“cg02600394”,	triangles/red	line	=	“cg20981615”,	crosses/green	line	=	“cg17984638”)(red	=	

IBD,	blue	=	control)			
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PBMCs	 IBD	
Symptomatic	

control	

P	Value	

(IBD	

versus	

Control)	

n	 64	 17	 	

Age	(median,	IQR)	
32.9	(26.2-

40.3)	
32.2	(27.2-40.3)	 1	

Females	(%)	 35(54.7%)	 12	(70.6%)	 0.2	

Smoker	

(Current/Ex,	%)	

33	(57%)	

(missing=7)	

10	(63%)	

(missing=1)	
0.08	

CRP	(median,	IQR)	
5.5	(1-17)	

(missing=34)	

11	(3.5-70.8)	

(missing=14)	
0.4	

Hb	(median,	IQR)	

129	(118.5-

141.8)	

(missing=30)	

144.5	(138-149.2)	

(missing=12)	
0.02	

Alb	(median,	IQR)	

(missing)	

36	(33.5-39.5)	

(missing=33)	

39.5	(38.3-40)	

(missing=14)	
0.2	

Disease	Duration	

(median,	IQR,	

months)	

3	(1-53.2)	 	 	

Table	69	-	Separated	PBMC	Patient	demographics	for	targeted	qPCR	of	DMRs	
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Granulocytes	 IBD	
Symptomatic	

control	

P	Value	

(IBD	versus	

Control)	

n	 31	 7	 	

Age	(median,	IQR)	 30.2	(24.9-39.8)	 29.5	(22.8-42.7)	 0.9	

Females	(%)	 21(67.7%)	 4	(57.1%)	 0.9	

Smoker	(Current/Ex,	

%)	

16	(59%)	

(missing=4)	

2	(20%)	

(missing=2)	
0.7	

CRP	(median,	IQR)	
7	(0-43)	

(missing=22)	

52	(26.6-78.3)	

(missing=5)	
0.9	

Hb	(median,	IQR)	
111(103.5-135)	

(missing=20)	

120.5	(115-125)	

(missing=5)	
0.8	

Alb	(median,	IQR)	

(missing)	

32.5	(26.75-39)	

(missing=23)	

36.5	(33.5-39.75)	

(missing=5)	
0.6	

Disease	Duration	

(median,	IQR,	

months)	

16	(2-154)	 	 	

Table	70	-	Separated	granulocyte	Patient	demographics	for	targeted	qPCR	of	DMRs	

	

	

	 	



309	

	

	
EntrezID(Seed)	 Symbol(Seed)	

Number	of	

genes	in	

network	

Modularity	
FDR	p	

Value	

1	 1991	 ELANE	 74	 3.983128	 0	

2	 56616	 DIABLO	 7	 4.780265	 0.017	

3	 246778	 IL27	 12	 3.555689	 0.032	

4	 4353	 MPO	 41	 4.722692	 0	

5	 566	 AZU1	 18	 4.01307	 0.01	

6	 5265	 SERPINA1	 14	 4.26562	 0.008	

7	 3082	 HGF	 13	 5.205599	 0.002	

8	 7188	 TRAF5	 7	 4.296099	 0.016	

9	 4680	 CEACAM6	 5	 4.96616	 0.013	

10	 306	 ANXA3	 5	 4.470587	 0.038	

11	 2161	 F12	 9	 4.43636	 0.013	

Table	71	-	Functional	epigenetic	module	Crohn's	disease	versus	Control	in	Whole	blood.	

Modularity=average	of	edge	weights.	P	Values	are	calculated	using	the	Monte-Carlo	procedure	

(a	permutation	test,	n=1000)	
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EntrezID(Seed)	 Symbol(Seed)	

Number	of	

genes	in	

network	

Modularity	
FDR	p	

Value	

1	 80331	 DNAJC5	 45	 2.350306	 0.01	

2	 306	 ANXA3	 5	 4.043512	 0.02	

3	 1991	 ELANE	 87	 3.404352	 0	

4	 56616	 DIABLO	 13	 3.296102	 0.008	

5	 4353	 MPO	 38	 3.457653	 0	

6	 863	 CBFA2T3	 9	 3.658851	 0.016	

7	 5265	 SERPINA1	 14	 3.224906	 0.019	

8	 2161	 F12	 7	 4.677451	 0.011	

9	 3674	 ITGA2B	 7	 5.934862	 0	

10	 3082	 HGF	 12	 4.786923	 0	

11	 4210	 MEFV	 7	 5.7651	 0.002	

12	 1378	 CR1	 5	 4.205504	 0.011	

13	 7188	 TRAF5	 7	 3.479061	 0.021	

14	 4680	 CEACAM6	 5	 3.621719	 0.021	

15	 8915	 BCL10	 9	 4.437442	 0.008	

16	 634	 CEACAM1	 5	 3.621719	 0.037	

17	 4318	 MMP9	 21	 4.114022	 0.001	

18	 54210	 TREM1	 16	 3.982474	 0.003	

19	 3687	 ITGAX	 5	 4.044724	 0.011	

20	 7292	 TNFSF4	 5	 3.560199	 0.039	

Table	72	-	Functional	epigenetic	module	for	UC	versus	control	in	whole	blood.	

Modularity=average	of	edge	weights.	P	Values	are	calculated	using	the	Monte-Carlo	procedure	

(a	permutation	test,	n=1000).			
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EntrezID(Seed)	 Symbol(Seed)	

Number	of	

genes	in	

network	

Modularity	
FDR	p	

Value	

1	 930	 CD19	 9	 1.841151	 0.014	

2	 23495	 TNFRSF13B	 8	 2.160652	 0.001	

3	 3552	 IL1A	 13	 1.834739	 0.002	

4	 22893	 BAHD1	 8	 1.864792	 0.043	

5	 1277	 COL1A1	 49	 1.20666	 0.044	

6	 29760	 BLNK	 19	 1.650736	 0.014	

7	 5592	 PRKG1	 11	 2.46726	 0.004	

8	 608	 TNFRSF17	 8	 2.160652	 0.002	

9	 22936	 ELL2	 66	 1.153672	 0.022	

10	 7349	 UCN	 16	 1.450829	 0.031	

11	 2815	 GP9	 5	 2.057541	 0.018	

Table	73	-	Functional	epigenetic	module	IBD	versus	Control	in	CD8+	T	Cells.	

Modularity=average	of	edge	weights.	P	Values	are	calculated	using	the	Monte-Carlo	procedure	

(a	permutation	test,	n=1000)	
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EntrezID(Seed)	 Symbol(Seed)	

Number	of	

genes	in	

network	

Modularity	
FDR	p	

Value	

1	 1230	 CCR1	 30	 1.349744	 0.04	

2	 6809	 STX3	 12	 1.764312	 0.008	

3	 5824	 PEX19	 17	 1.506995	 0.047	

4	 1280	 COL2A1	 27	 1.720637	 0.015	

5	 2767	 GNA11	 12	 1.680574	 0.029	

6	 3933	 LCN1	 8	 2.392497	 0	

7	 567	 B2M	 28	 1.39469	 0.033	

8	 10333	 TLR6	 15	 1.616574	 0.026	

9	 6457	 SH3GL3	 15	 1.802954	 0.023	

10	 1432	 MAPK14	 32	 1.879617	 0.04	

Table	74	-	Functional	epigenetic	module	IBD	versus	Control	in	CD4+	T	Cells.	

Modularity=average	of	edge	weights.	P	Values	are	calculated	using	the	Monte-Carlo	procedure	

(a	permutation	test,	n=1000)	
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EntrezID(Seed)	 Symbol(Seed)	

Number	of	

genes	in	

network	

Modularity	
FDR	p	

Value	

1	 1604	 CD55	 7	 2.375207	 0.004	

2	 7124	 TNF	 31	 1.739603	 0.001	

3	 911	 CD1C	 6	 1.918549	 0.024	

4	 4634	 MYL3	 55	 1.403718	 0.01	

5	 134	 ADORA1	 8	 1.865922	 0.024	

6	 10666	 CD226	 7	 1.836013	 0.029	

7	 634	 CEACAM1	 5	 2.561193	 0.005	

8	 1824	 DSC2	 6	 1.872248	 0.034	

9	 7412	 VCAM1	 10	 2.500476	 0	

10	 5819	 PVRL2	 7	 1.836013	 0.04	

11	 7881	 KCNAB1	 7	 2.160383	 0.005	

12	 55729	 ATF7IP	 12	 2.1151	 0.008	

13	 7158	 TP53BP1	 15	 1.585348	 0.047	

14	 4004	 LMO1	 6	 1.94922	 0.043	

Table	75	-	Functional	epigenetic	module	IBD	versus	Control	in	CD14+	Monocytes.	

Modularity=average	of	edge	weights.	P	Values	are	calculated	using	the	Monte-Carlo	procedure	

(a	permutation	test,	n=1000)	
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Figure	76	-	Correlation	between	PBMC	pri-miR21	expression	and	clinical	parameters	
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Figure	77	-	Correlation	between	PBMC	RPS6KA2	expression	and	clinical	parameters	



316	

	

	

Figure	78	-	Correlation	between	PBMC	IGTB2	expression	and	clinical	parameters	
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Appendix	5	–	Chapter	7	Biomarkers	

	

gene1	 probe1	 gene2	 probe2	 	 gene1	 probe1	 gene2	 probe2	

ARHGEF3	 cg04389058	 NA	 cg09304397	 	 RPS6KA2	 cg17501210	 HK2	 cg27049094	

ARHGEF3	 cg04389058	 TOLLIP	 cg26599989	 	 RPS6KA2	 cg17501210	 NA	 cg09304397	

ARHGEF3	 cg04389058	 YWHAE	 cg06219337	 	 RPS6KA2	 cg17501210	 NA	 cg09349128	

CDK6	 cg14100946	 NA	 cg05740793	 	 RPS6KA2	 cg17501210	 NA	 cg12992827	

CSMD3	 cg02292450	 MIR1973	 cg22914762	 	 RPS6KA2	 cg17501210	 NMUR1	 cg01616956	

CSMD3	 cg20323509	 MIR1973	 cg22914762	 	 RPS6KA2	 cg17501210	 TOLLIP	 cg26599989	

CSMD3	 cg02292450	 NA	 cg27534567	 	 RPS6KA2	 cg17501210	 YWHAE	 cg06219337	

CSMD3	 cg20323509	 NA	 cg05740793	 	 RPS6KA2	 cg17501210	 ZBTB16	 cg22768358	

GNAS	 cg10011623	 NA	 cg27534567	 	 SOCS3	 cg18181703	 D2HGDH	 cg13613174	

GNAS	 cg01748573	 NA	 cg27534567	 	 TNFSF10	 cg01059398	 NA	 cg21653586	

GNAS	 cg26767990	 NA	 cg05740793	 	 TOLLIP	 cg26599989	 MYO1E	 cg08423142	

GPRIN3	 cg02734358	 D2HGDH	 cg24743237	 	 TOLLIP	 cg26599989	 NA	 cg09304397	

GPRIN3	 cg02734358	 NA	 cg05740793	 	 VMP1	 cg12054453	 Sep-09	 cg01749539	

GPRIN3	 cg02734358	 NDUFS4	 cg12351310	 	 VMP1	 cg12054453	 ITGB2	 cg13315706	

MIR1973	 cg22914762	 GNAS	 cg01748573	 	 VMP1	 cg12054453	 MYO1E	 cg08423142	

MIR1973	 cg22914762	 TNS1	 cg12338137	 	 VMP1	 cg16936953	 MYO1E	 cg08423142	

MIR21	 cg27023597	 NA	 cg21653586	 	 VMP1	 cg12054453	 NA	 cg09304397	

PWWP2B	 cg07733247	 NA	 cg05740793	 	 VMP1	 cg16936953	 NA	 cg09304397	

RPS6KA2	 cg17501210	 Sep-09	 cg01749539	 	 VMP1	 cg12054453	 TOLLIP	 cg26599989	

RPS6KA2	 cg17501210	 ANKRD11	 cg16525838	 	 VMP1	 cg16936953	 TOLLIP	 cg26599989	

RPS6KA2	 cg17501210	 ATP9A	 cg07339236	 	 VMP1	 cg12054453	 YWHAE	 cg06219337	

RPS6KA2	 cg17501210	 HEATR2	 cg10472711	 	 VMP1	 cg16936953	 YWHAE	 cg06219337	

Table	76	-	Methylation	Probe	Pairings	described	in	Adams	et	al	
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Probe	1	 Probe	2	 AUC_CD	 Rank	
CD	 AUC_UC	 Rank	

UC	 AUC_IBD	 Rank	
IBD	

cg18181703	 cg13613174	 0.836	 1	 0.725	 1	 0.787	 1	
cg22914762	 cg12338137	 0.809	 2	 0.713	 2	 0.786	 2	
cg20323509	 cg22914762	 0.752	 3	 0.699	 3	 0.629	 25	
cg20323509	 cg05740793	 0.728	 4	 0.673	 4	 0.627	 26	
cg02734358	 cg12351310	 0.728	 5	 0.671	 5	 0.601	 27	
cg17501210	 cg01616956	 0.715	 6	 0.670	 6	 0.650	 16	
cg01059398	 cg21653586	 0.711	 7	 0.669	 7	 0.655	 14	
cg12054453	 cg26599989	 0.707	 8	 0.668	 8	 0.696	 3	
cg26767990	 cg05740793	 0.694	 9	 0.666	 9	 0.642	 18	
cg16936953	 cg26599989	 0.679	 10	 0.666	 10	 0.633	 24	
cg27023597	 cg21653586	 0.678	 11	 0.666	 11	 0.694	 4	
cg17501210	 cg16525838	 0.672	 12	 0.666	 12	 0.661	 9	
cg17501210	 cg26599989	 0.664	 13	 0.665	 13	 0.635	 21	
cg04389058	 cg26599989	 0.663	 14	 0.663	 14	 0.633	 23	
cg26599989	 cg09304397	 0.656	 15	 0.658	 15	 0.601	 28	
cg17501210	 cg27049094	 0.649	 16	 0.656	 16	 0.642	 19	
cg26599989	 cg08423142	 0.648	 17	 0.653	 17	 0.659	 10	
cg12054453	 cg13315706	 0.648	 18	 0.645	 18	 0.657	 11	
cg22914762	 cg01748573	 0.641	 19	 0.631	 19	 0.688	 5	
cg17501210	 cg12992827	 0.638	 20	 0.627	 20	 0.662	 8	
cg10011623	 cg27534567	 0.636	 21	 0.617	 21	 0.634	 22	
cg04389058	 cg06219337	 0.615	 22	 0.614	 22	 0.547	 36	
cg07733247	 cg05740793	 0.615	 23	 0.608	 23	 0.543	 37	
cg01748573	 cg27534567	 0.615	 24	 0.606	 24	 0.641	 20	
cg04389058	 cg09304397	 0.613	 25	 0.591	 25	 0.558	 32	
cg14100946	 cg05740793	 0.613	 26	 0.585	 26	 0.558	 33	
cg17501210	 cg22768358	 0.603	 27	 0.583	 27	 0.662	 7	
cg12054453	 cg06219337	 0.599	 28	 0.571	 28	 0.654	 15	
cg16936953	 cg08423142	 0.597	 29	 0.569	 29	 0.647	 17	
cg12054453	 cg01749539	 0.596	 30	 0.557	 30	 0.655	 13	
cg12054453	 cg08423142	 0.592	 31	 0.546	 31	 0.684	 6	
cg02734358	 cg05740793	 0.591	 32	 0.540	 32	 0.553	 34	
cg12054453	 cg09304397	 0.588	 33	 0.540	 33	 0.657	 12	
cg17501210	 cg07339236	 0.573	 34	 0.533	 34	 0.517	 41	
cg16936953	 cg06219337	 0.562	 35	 0.531	 35	 0.571	 30	
cg16936953	 cg09304397	 0.560	 36	 0.520	 36	 0.571	 29	
cg17501210	 cg09349128	 0.549	 37	 0.520	 37	 0.563	 31	
cg17501210	 cg09304397	 0.546	 38	 0.519	 38	 0.538	 39	
cg17501210	 cg06219337	 0.546	 39	 0.519	 39	 0.549	 35	
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cg02734358	 cg24743237	 0.544	 40	 0.515	 40	 0.512	 42	
cg17501210	 cg01749539	 0.536	 41	 0.515	 41	 0.531	 40	
cg17501210	 cg10472711	 0.515	 42	 0.504	 42	 0.543	 38	
Table	77	-	LDA	comparing	cases	and	controls	using	paired	methylation	markers	described	in	

Adams	et	al		(AUC=Area	under	Receiver	Operator	Curve)	for	Crohn’s	disease	(CD),	ulcerative	

colitis	(UC)	and	inflammatory	bowel	disease	(IBD).	Rank	denotes	the	ranking	of	the	

biomarker	probe	sets	for	each	disease	group	(ordered	on	rank	in	CD).		
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classifier	 AUC	 Sensitivity	 Specificity	
Misclassification	

rate	

Brier	

score	

Average	

probability	

Method	

of	

ranking	

variables	

Lasso1	 0.865	 0.783	 0.733	 0.239	 0.317	 0.642	 Lasso	

LDA	 0.859	 0.729	 0.786	 0.246	 0.310	 0.707	 T-test	

FDA	 0.859	 0.700	 0.833	 0.241	 0.498	 0.501	 T-test	

Lasso5	 0.854	 0.775	 0.759	 0.232	 0.317	 0.658	 Elastic	

Lasso2	 0.853	 0.775	 0.754	 0.234	 0.317	 0.668	 Boost	

DLDA5	 0.847	 0.688	 0.838	 0.246	 0.434	 0.756	 Elastic	

Lasso4	 0.845	 0.821	 0.686	 0.239	 0.366	 0.592	 Forest	

plr4	 0.844	 0.767	 0.754	 0.239	 0.320	 0.684	 Forest	

DLDA1	 0.844	 0.721	 0.827	 0.232	 0.394	 0.754	 Lasso	

LDA4	 0.844	 0.754	 0.806	 0.223	 0.322	 0.689	 Forest	

FDA4	 0.844	 0.708	 0.853	 0.227	 0.498	 0.501	 Forest	

Lasso	 0.843	 0.767	 0.738	 0.246	 0.319	 0.662	 T-test	

pls_rf4	 0.838	 0.792	 0.728	 0.237	 0.330	 0.687	 Forest	

plr	 0.836	 0.763	 0.743	 0.246	 0.328	 0.678	 T-test	

LDA2	 0.834	 0.738	 0.770	 0.248	 0.336	 0.698	 Boost	

FDA2	 0.834	 0.713	 0.806	 0.246	 0.498	 0.501	 Boost	

DLDA2	 0.826	 0.704	 0.828	 0.241	 0.433	 0.746	 Boost	

LDA5	 0.817	 0.721	 0.733	 0.274	 0.369	 0.692	 Elastic	

FDA5	 0.817	 0.683	 0.765	 0.281	 0.498	 0.501	 Elastic	

DLDA4	 0.817	 0.700	 0.770	 0.269	 0.479	 0.733	 Forest	

QDA2	 0.808	 0.738	 0.759	 0.253	 0.385	 0.711	 Boost	

QDA	 0.805	 0.738	 0.701	 0.278	 0.430	 0.708	 T-test	

Table	78	-	CMA	package	classifier	comparison	methods	ordered	according	to	area	under	

receiving	operating	curve	(AUC).	(Classification	methods	=	lasso	=	least	absolute	shrinkage	

and	selection	operator415,416,	LDA	=	linear	discriminant	analysis469,	FDA	=	Fisher’s	

discriminant	analysis470,	DLDA	=	diagonal	discriminant	analysis469,	plr	=	penalised	logistic	

regression471,	pls_rf	=	Partial	least	squares	random	forest472,	QDA	=	quadratic	discriminant	

analysis)	(Method	of	ranking	variables	=	T-test	according	to	T-statistic,	Forest=	random	

forest473,	Boost=	component-wise	boosting474,	elastic	=	elastic	net475,	lasso	=	lasso415,416).		
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Norm	

fraction	

Number	of	

methylation	

probes	

included	

AUC	 Sensitivity	 Specificity	
Misclassification	

rate	

0.3	 87	 0.858	 0.634	 0.873	 0.221	

0.2	 61	 0.877	 0.634	 0.873	 0.221	

0.16	 48	 0.887	 0.659	 0.873	 0.212	

0.15	 47	 0.889	 0.659	 0.873	 0.212	

0.14	 47	 0.889	 0.659	 0.873	 0.212	

0.13	 42	 0.89	 0.659	 0.889	 0.202	

0.12	 38	 0.888	 0.659	 0.889	 0.202	

0.11	 31	 0.885	 0.659	 0.889	 0.202	

0.1	 26	 0.883	 0.683	 0.889	 0.192	

0.09	 22	 0.879	 0.659	 0.905	 0.192	

0.08	 19	 0.878	 0.659	 0.905	 0.192	

0.07	 12	 0.875	 0.634	 0.905	 0.202	

0.06	 10	 0.874	 0.683	 0.937	 0.163	

0.05	 8	 0.875	 0.683	 0.968	 0.144	

0.04	 7	 0.87	 0.585	 0.952	 0.192	

0.03	 4	 0.863	 0.512	 0.968	 0.212	

0.02	 2	 0.853	 0.36	 0.984	 0.26	

0.01	 1	 0.853	 0.049	 1	 0.375	

Table	79	-	Lasso	CD	versus	HC.	Tuning	of	lasso	algorithm	to	altering	the	shrinkage	intensity	

and	thus	the	number	of	methylation	probes	included	in	the	model.		
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Figure	79	–	Lasso	modelling	to	discriminate	Crohn’s	disease	from	controls.	Receiver	operator	

curve	for	CD	versus	control.	42	methylation	probes	selected	using	lasso	penalized	regression.	

Top:	Receiver	operator	curve	for	Lasso	selected	probes	to	distinguish	CD	from	controls	using	

30	methylation	probes.	Bottom:	Probability	plot.	0/red	=	controls,	1/green	=	CD	cases.			

ProbeId	 absolute	 Chr	 GeneSymbol	 logFC	 P.Value	 adj.P.Val	
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value	of	
regression	
coefficient	

cg17501210	 9.501	 chr6	 RPS6KA2	 -0.08	 2.71E-22	 1.22E-16	
cg05487424	 6.148	 chr2	 RPIA	 0.00	 6.44E-05	 1	
cg03956353	 5.496	 chr1	 EPS8L3	 0.01	 0.002766	 1	
cg03538833	 5.211	 chr3	 LOC152225	 0.01	 0.001368	 1	
cg22881435	 4.375	 chr8	 RAB11FIP1	 0.02	 1.09E-11	 4.89E-06	
cg24319178	 4.156	 chr6	 NA	 0.00	 0.098107	 1	
cg25105536	 3.863	 chr6	 KLHL32	 0.00	 0.00234	 1	
cg03546163	 3.376	 chr6	 FKBP5	 -0.06	 3.93E-15	 1.76E-09	
cg07641807	 2.992	 chr13	 NA	 -0.02	 8.87E-07	 0.397195	
cg17147182	 2.875	 chr2	 NA	 0.00	 0.0024	 1	
cg04691264	 2.737	 chr10	 PTCHD3P1	 0.02	 3.76E-06	 1	
cg14153654	 2.496	 chr1	 TNFRSF9	 0.01	 0.065064	 1	
cg15591678	 2.331	 chr10	 ZNF365	 0.01	 0.000651	 1	
cg12054453	 2.194	 chr17	 VMP1	 -0.07	 3.98E-17	 1.78E-11	
cg17078686	 2.078	 chr2	 POU3F3	 0.01	 0.000924	 1	
cg12357606	 1.572	 chr4	 CORIN	 0.01	 0.00067	 1	
cg19628456	 1.481	 chr6	 HSPA1L	 0.00	 0.052486	 1	
cg25114611	 1.334	 chr6	 NA	 -0.04	 1.10E-18	 4.93E-13	
cg02297838	 1.330	 chr13	 NA	 -0.02	 3.04E-11	 1.36E-05	
cg21383151	 1.293	 chr10	 TBC1D12	 0.01	 0.000129	 1	
cg04138502	 1.036	 chr3	 ADCY5	 0.01	 8.90E-07	 0.398548	
cg16166062	 0.883	 chr10	 NA	 -0.01	 0.006794	 1	
cg07392460	 0.802	 chr2	 NA	 0.00	 0.001946	 1	
cg27389562	 0.778	 chr19	 CEACAM8	 -0.01	 0.008141	 1	
cg04666911	 0.716	 chr11	 LSP1	 0.02	 4.84E-08	 0.02169	
cg03254161	 0.698	 chr17	 DNAH17	 0.01	 0.16172	 1	
cg15877906	 0.662	 chr12	 ATF1	 0.00	 0.712024	 1	
cg01487195	 0.604	 chr10	 BMPR1A	 0.00	 0.061407	 1	
cg15025240	 0.544	 chr2	 M1AP	 -0.03	 5.59E-07	 0.250392	
cg25591573	 0.543	 chr19	 ZNF442	 0.01	 0.000588	 1	
cg14118946	 0.519	 chr9	 NA	 0.01	 0.009499	 1	
cg24430034	 0.474	 chr13	 NA	 0.02	 7.09E-13	 3.18E-07	
cg00382138	 0.437	 chr4	 CFI	 -0.03	 2.45E-11	 1.10E-05	
cg13807509	 0.271	 chr11	 FOSL1	 0.00	 0.015506	 1	
cg01395047	 0.238	 chr3	 TLR9	 0.01	 0.000136	 1	
cg09479241	 0.182	 chr17	 TLCD1	 -0.02	 0.000251	 1	
cg03526905	 0.126	 chr17	 NA	 0.00	 0.134838	 1	
cg25676074	 0.068	 chr8	 NCOA2	 0.01	 0.000218	 1	
cg15118665	 0.068	 chr8	 NA	 0.01	 0.00675	 1	
cg03524147	 0.065	 chr10	 NA	 -0.01	 0.04408	 1	
cg15168577	 0.055	 chr5	 NA	 -0.01	 0.292116	 1	
cg20072241	 0.010	 chr2	 RAB3GAP1	 0.00	 0.208996	 1	
Table	80	-	Panel	of	Methylation	probes	selected	by	lasso	algorithm	to	differentiate	CD	from	

control.	(Δβ	=	difference	in	beta	values	between	IBD	versus	control,	p.value	and	Holm	

adjusted	p	values	derived	from	linear	models	IBD	versus	control	with	age,	sex	and	estimated	

cell	proportions	as	covariates)		

	 	



324	

	

	

Norm	

fraction	

Number	of	

methylation	

probes	

included	

AUC	 Sensitivity	 Specificity	
Misclassification	

rate	

0.2	 84	 0.722	 0.462	 0.862	 0.288	

0.15	 66	 0.733	 0.462	 0.862	 0.288	

0.1	 50	 0.772	 0.333	 0.877	 0.327	

0.06	 27	 0.794	 0.385	 0.923	 0.279	

0.05	 23	 0.803	 0.385	 0.938	 0.269	

0.04	 20	 0.808	 0.41	 0.91	 0.269	

0.03	 12	 0.81	 0.385	 0.938	 0.269	

0.02	 3	 0.806	 0.359	 0.969	 0.26	

0.01	 1	 0.798	 0.179	 1	 0.308	

Table	81	–	Lasso	UC	versus	HC.	Tuning	of	lasso	algorithm	to	altering	the	shrinkage	intensity	

and	thus	the	number	of	methylation	probes	included	in	the	model.	
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Figure	80	–	Lasso	modelling	to	discmrinate	patients	with	ulcerative	colitis	compared	with	

controls.	Top:	Receiver	operator	curve	for	Lasso	selected	probes	to	distinguish	UC	from	

controls	using	30	methylation	probes.	Bottom:	Probability	plot.	0/red	=	controls,	1/green	=	

UC	cases.	
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absolute	
value	of	
regression	
coefficient	

ProbeID	 Chromosome	 GeneSymbol	 logFC	 P.Value	 adj.P.Val	

10.08	 cg25114611	 chr6	 NA	 -0.04	 1.10E-18	 4.93E-13	
1.43	 cg08423142	 chr15	 MYO1E	 -0.02	 7.69E-11	 3.45E-05	
0.85	 cg07398517	 chr3	 NA	 -0.04	 6.14E-16	 2.75E-10	
0.79	 cg22881435	 chr8	 RAB11FIP1	 0.02	 1.09E-11	 4.89E-06	
0.73	 cg19821297	 chr19	 NA	 -0.06	 3.66E-17	 1.64E-11	
0.70	 cg03013636	 chr16	 NA	 0.01	 0.070511	 1	
0.45	 cg17501210	 chr6	 RPS6KA2	 -0.08	 2.71E-22	 1.22E-16	
0.20	 cg04304450	 chr22	 BIK	 0.03	 1.88E-08	 0.008412	
0.05	 cg17515347	 chr1	 AIM2	 -0.05	 1.10E-11	 4.92E-06	
0.04	 cg07035454	 chr8	 OXR1	 0.01	 0.00809	 1	
0.02	 cg13772414	 chr2	 EPHA4	 0.02	 5.14E-07	 0.230221	
0.00	 cg00254470	 chr8	 PVT1	 0.03	 2.85E-06	 1	

Table	82	-	Panel	of	Methylation	probes	selected	by	lasso	algorithm	to	differentiate	UC	from	

control.	(Δβ	=	difference	in	beta	values	between	IBD	versus	control,	p.value	and	Holm	

adjusted	p	values	derived	from	linear	models	IBD	versus	control	with	age,	sex	and	estimated	

cell	proportions	as	covariates)		

	

Norm	

fraction	

Number	of	

methylation	

probes	

included	

AUC	 Sensitivity	 Specificity	
Misclassification	

rate	

0.2	 95	 0.649	 0.667	 0.583	 0.383	

0.15	 80	 0.659	 0.667	 0.5	 0.433	

0.1	 60	 0.667	 0.667	 0.5	 0.433	

0.05	 37	 0.712	 0.792	 0.5	 0.383	

0.03	 25	 0.716	 0.875	 0.389	 0.417	

0.02	 21	 0.714	 0.917	 0.194	 0.517	

0.01	 19	 0.719	 1	 0.111	 0.533	

0.005	 15	 0.718	 1	 0	 0.6	

Table	83	-	Lasso	UC	versus	CD.	Tuning	of	lasso	algorithm	to	altering	the	shrinkage	intensity	

and	thus	the	number	of	methylation	probes	included	in	the	model	
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Figure	81	–	Lasso	modelling	to	differentiate	Crohn’s	disease	(CD)	from	ulcerative	colitis	

(UC).Top:	Receiver	operator	curve	for	Lasso	selected	probes	to	distinguish	UC	from	CD	using	

19	methylation	probes.	Bottom:	Probability	plot.	0/red	=	controls,	1/green	=	UC	cases.			
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absolute	
value	of	
regressio

n	
coefficient	

ProbeID	 Chromosom
e	

GeneSymbo
l	 logFC	 P.Value	 adj.P.Va

l	

3.94	 cg0487969
6	 chr16	 SPG7	 0.006	 7.66E-06	 1	

2.07	 cg0739092
4	 chr1	 PLEKHN1	 0.007	 4.36E-04	 1	

1.71	 cg1349213
3	 chr1	 SMG7	 -0.010	 2.50E-04	 1	

1.49	 cg1050220
6	 chr2	 ZEB2	 0.023	 1.08E-06	 0.49	

1.46	 cg0377646
4	 chr2	 EPHA4	 -0.004	 2.07E-04	 1	

0.78	 cg1796453
2	 chr6	 CDKN1A	 -0.008	 9.16E-05	 1	

0.52	 cg2191101
9	 chr4	 GPR78	 0.030	 8.37E-05	 1	

0.35	 cg1968349
4	 chr5	 NA	 -0.065	 5.94E-07	 0.27	

0.35	 cg0708094
6	 chr16	 LUC7L	 -0.008	 2.30E-03	 1	

0.30	 cg1090471
5	 chr13	 NA	 0.004	 3.56E-05	 1	

0.16	 cg0530472
9	 chr1	 MNDA	 -0.064	 3.44E-07	 0.15	

0.16	 cg2056977
2	 chr2	 NA	 -0.011	 1.63E-03	 1	

0.06	 cg1540971
2	 chr4	 NFKB1	 -0.017	 5.72E-03	 1	

0.06	 cg1254795
9	 chr5	 TRIO	 -0.026	 1.32E-03	 1	

0.01	 cg1818170
3	 chr17	 SOCS3	 -0.042	 2.59E-05	 1	

0.00	 cg1384743
7	 chr9	 NA	 0.005	 4.87E-03	 1	

0.00	 cg1370886
9	 chr17	 CDC6	 -0.006	 2.48E-03	 1	

0.00	 cg0479206
5	 chr15	 TTBK2	 -0.006	 4.85E-04	 1	

0.00	 cg2232227
7	 chr6	 NA	 0.035	 2.18E-04	 1	

Table	84	-	Panel	of	Methylation	probes	selected	by	lasso	algorithm	to	differentiate	UC	from	

CD.	(Δβ	=	difference	in	beta	values	between	IBD	versus	control,	p.value	and	Holm	adjusted	p	

values	derived	from	linear	models	CD	versus	UC	with	age,	sex	and	estimated	cell	proportions	

as	covariates)		
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Figure	82	-	multidimensional	scaling	plot	(MDS)	of	all	methylation	data	according	to	Montreal	

location	in	CD	

	

Figure	83	-	multidimensional	scaling	plot	(MDS)	of	all	methylation	data	according	to	Montreal	

behaviour	in	CD	
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Figure	84	-	multidimensional	scaling	plot	(MDS)	of	all	methylation	data	according	to	Montreal	

extent	in	UC	
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Appendix	6	-	Chapter	8	microRNAs	in	IBD	

Table	85	–	Summary	of	sample	pooling	according	to	PCR	band	intensity	and	barcode	

	
Pool	1:High(CD14:	CDx4,HCx4)	

Volume	

(μL)	

1	 A5	 2	 CD14	 HC	 10	

2	 C6	 3	 CD14	 CD	 10	

3	 A3	 4	 CD8	 CD	 5	

4	 C10	 7	 CD14	 CD	 10	

5	 B5	 8	 CD14	 CD	 5	

6	 B6	 9	 CD4	 CD	 5	

7	 A12	 10	 CD14	 CD	 7	

8	 D5	 14	 CD14	 HC	 10	

9	 B9	 18	 CD14	 HC	 10	

10	 B10	 19	 CD14	 HC	 7	

11	 D6	 20	 CD8	 CD	 10	

12	 C1	 22	 CD8	 CD	 7	

	
Pool	2:High	

Volume	

(μL)	

1	 A2	 3	 CD8	 HC	 10	

2	 A6	 5	 CD4	 HC	 7	

3	 A8	 6	 CD14	 CD	 7	

4	 A10	 8	 CD8	 HC	 10	

5	 D3	 11	 CD8	 HC	 7	

6	 D4	 13	 CD14	 CD	 10	

7	 B7	 14	 CD14	 CD	 10	

8	 B8	 16	 CD4	 CD	 7	

9	 B11	 20	 CD14	 HC	 5	

10	 B12	 21	 CD14	 CD	 5	

11	 C2	 23	 CD14	 HC	 5	
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Pool	5:	Low	(CD4:	CDx4,HCx5)	

C5	 2	 CD4	 HC	

C7	 4	 CD4	 CD	

C9	 6	 CD4	 HC	

C12	 8	 CD4	 CD	

A11	 9	 CD8	 CD	

D2	 10	 CD4	 CD	

B1	 11	 CD4	 HC	

B2	 13	 CD4	 HC	

A1	 14	 CD8	 CD	

A4	 16	 CD14	 HC	

A7	 18	 CD4	 CD	

C3	 25	 CD4	 HC	

	

Pool	6:	Low	(CD8:	CDx3,HCx3)	

C8	 5	 CD8	 HC	

A9	 7	 CD8	 CD	

D1	 9	 CD14	 HC	

B3	 14	 CD8	 CD	

B4	 16	 CD8	 HC	

C11	 19	 CD4	 HC	

D7	 21	 CD8	 HC	

D8	 22	 CD4	 CD	

D10	 23	 CD8	 CD	

D11	 25	 CD4	 HC	

C4	 27	 CD4	 CD	
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Table	86	–	Summary	of	total	RNA	sample	concentration	and	quality	assessment		

PatientI

d	 SampleTypeId	

Concentr

ation	

ng/ul	

Total	

RNA	ng	

Total	

RNA	

in	ug	

RIN	

numbe

r	

8903	 MicroRNA	(CD4)	 50.9	 3054	 3.054	 8.1	
8903	 MicroRNA	(CD8)	 24	 1440	 1.44	 8	

8903	 MicroRNA	(monocy	 266	 15960	 15.96	 NA	

8908	 MicroRNA	(CD4)	 23.5	 1410	 1.41	 8.8	

8908	 MicroRNA	(CD8)	 27.8	 1668	 1.668	 9.1	

8908	 MicroRNA	(monocy	 203.6	 12216	 12.21

6	

8	

8911	 MicroRNA	(CD4)	 49.5	 2970	 2.97	 9.1	

8911	 MicroRNA	(CD8)	 15.1	 906	 0.906	 9.5	

8911	 MicroRNA	(monocy	 90.5	 5430	 5.43	 8.7	

8915	 MicroRNA	(CD4)	 62.7	 3762	 3.762	 8.2	

8915	 MicroRNA	(CD8)	 62.8	 3768	 3.768	 9.2	

8915	 MicroRNA	(monocy	 135.2	 8112	 8.112	 9.2	

8926	 MicroRNA	(CD4)	 60.1	 3606	 3.606	 8.2	

8926	 MicroRNA	(CD8)	 95.8	 5748	 5.748	

	8926	 MicroRNA	(monocy	 90.8	 5448	 5.448	 8.9	

8927	 MicroRNA	(CD4)	 37.7	 2262	 2.262	 NA	

8927	 MicroRNA	(CD8)	 38.8	 2328	 2.328	 8.7	

8927	 MicroRNA	(monocy	 37.9	 2274	 2.274	 8.8	

8929	 MicroRNA	(CD4)	 45.5	 2730	 2.73	 8.1	

8929	 MicroRNA	(CD8)	 11.4	 684	 0.684	 8.8	

8929	 MicroRNA	(monocy	 87.8	 5268	 5.268	 8.9	

8940	 MicroRNA	(CD4)	 39.7	 2382	 2.382	 9.4	

8940	 MicroRNA	(CD8)	 29.8	 1788	 1.788	 9.2	

8940	 MicroRNA	(monocy	 82.3	 4938	 4.938	 8.7	

8954	 MicroRNA	(CD4)	 33.6	 2016	 2.016	 9.4	

8954	 MicroRNA	(CD8)	 50	 3000	 3	 8.5	

8954	 MicroRNA	(monocy	 258.5	 15510	 15.51	 9	

8983	 MicroRNA	(CD4)	 33.8	 2028	 2.028	 8.7	

8983	 MicroRNA	(CD8)	 66.3	 3978	 3.978	 9.4	

8983	 MicroRNA	(monocy	 142.7	 8562	 8.562	 8.6	

8994	 MicroRNA	(CD4)	 64.7	 3882	 3.882	 8.3	

8994	 MicroRNA	(CD8)	 53.4	 3204	 3.204	 8.6	
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8994	 MicroRNA	(monocy	 217.8	 13068	 13.06

8	

9.3	

9003	 MicroRNA	(CD4)	 141.2	 8472	 8.472	 8.5	

9003	 MicroRNA	(CD8)	 28.2	 1692	 1.692	 9.3	

9003	 MicroRNA	(monocy	 232.6	 13956	 13.95

6	

9.4	

9039	 MicroRNA	(CD4)	 35.2	 2112	 2.112	 8.9	

9039	 MicroRNA	(CD8)	 25	 1500	 1.5	 9.7	

9039	 MicroRNA	(monocy	 78.1	 4686	 4.686	 8.6	

9049	 MicroRNA	(CD4)	 47.5	 2850	 2.85	 8.9	

9049	 MicroRNA	(CD8)	 43.2	 2592	 2.592	 9.1	

9049	 MicroRNA	(monocy	 112.5	 6750	 6.75	 8.9	

9050	 MicroRNA	(CD4)	 82.4	 4944	 4.944	 8.6	

9050	 MicroRNA	(CD8)	 76.5	 4590	 4.59	 9	

9050	 MicroRNA	(monocy	 94.7	 5682	 5.682	 9.5	

9054	 MicroRNA	(CD4)	 81.3	 4878	 4.878	 7.9	

9054	 MicroRNA	(CD8)	 58.1	 3486	 3.486	 8.6	

9054	 MicroRNA	(monocy	 101.2	 6072	 6.072	 8.4	
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KEGG	Pathway	 Gene	Name	 Found	
Genes	

-ln(p-
value)	

KEGG	
Pathway	

ID	
Prostate	cancer	 BCL2,	CCNE1,	E2F3,	IGF1R,	MAP2K1,	

PIK3R1,	CREB5,	AKT3,	CCND1	
9	 22.13	 hsa05215	

Melanoma	 E2F3,	IGF1R,	MAP2K1,	PIK3R1,	FGF7,	FGF2,	
AKT3,	CCND1	

8	 21.65	 hsa05218	

Glioma	 E2F3,	IGF1R,	MAP2K1,	PIK3R1,	AKT3,	
CCND1	

6	 12.82	 hsa05214	

Colorectal	cancer	 BCL2,	IGF1R,	MAP2K1,	PIK3R1,	DCC,	AKT3,	
CCND1	

7	 12.78	 hsa05210	

mTOR	signaling	pathway	 PIK3R1,	VEGFA,	ENSG00000164327,	AKT3,	
EIF4E	

5	 11.98	 hsa04150	

p53	signaling	pathway	 CCNE1,	CHEK1,	PPM1D,	CCND2,	CCND3,	
CCND1	

6	 11.85	 hsa04115	

Pancreatic	cancer	 E2F3,	MAP2K1,	PIK3R1,	VEGFA,	AKT3,	
CCND1	

6	 10.8	 hsa05212	

Non-small	cell	lung	cancer	 E2F3,	MAP2K1,	PIK3R1,	AKT3,	CCND1	 5	 10.09	 hsa05223	

Cell	cycle	 CCNE1,	E2F3,	WEE1,	CHEK1,	CCND2,	
CCND3,	CCND1	

7	 8.81	 hsa04110	

Small	cell	lung	cancer	 BCL2,	CCNE1,	E2F3,	PIK3R1,	AKT3,	CCND1	 6	 8.78	 hsa05222	

Bladder	cancer	 E2F3,	MAP2K1,	VEGFA,	CCND1	 4	 8.09	 hsa05219	

Focal	adhesion	 BCL2,	IGF1R,	MAP2K1,	PIK3R1,	VEGFA,	
CCND2,	CCND3,	AKT3,	CCND1	

9	 7.58	 hsa04510	

VEGF	signaling	pathway	 MAP2K1,	PIK3R1,	VEGFA,	AKT3,	PPP3CB	 5	 7.32	 hsa04370	

Chronic	myeloid	leukemia	 E2F3,	MAP2K1,	PIK3R1,	AKT3,	CCND1	 5	 6.53	 hsa05220	

Endometrial	cancer	 MAP2K1,	PIK3R1,	AKT3,	CCND1	 4	 6.16	 hsa05213	

Wnt	signaling	pathway	 WNT3A,	FOSL1,	BTRC,	CCND2,	CCND3,	
CCND1,	PPP3CB	

7	 6.02	 hsa04310	

Apoptosis	 BCL2,	IRAK2,	PIK3R1,	AKT3,	PPP3CB	 5	 5.85	 hsa04210	

Acute	myeloid	leukemia	 MAP2K1,	PIK3R1,	AKT3,	CCND1	 4	 5.72	 hsa05221	

Jak-STAT	signaling	pathway	 PIK3R1,	GHR,	CCND2,	SPRED1,	CCND3,	
AKT3,	CCND1	

7	 5.62	 hsa04630	

C5-Branched	dibasic	acid	
metabolism	

SUCLA2	 1	 4.98	 hsa00660	

Ubiquitin	mediated	proteolysis	 SMURF1,	BTRC,	FBXW7,	TRIM37,	UBE4B,	
SMURF2	

6	 4.77	 hsa04120	

Renal	cell	carcinoma	 MAP2K1,	PIK3R1,	VEGFA,	AKT3	 4	 4.24	 hsa05211	

Axon	guidance	 EFNB2,	SEMA6D,	EPHA7,	DCC,	PPP3CB	 5	 3.11	 hsa04360	
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TGF-beta	signaling	pathway	 SMURF1,	ACVR2B,	SMURF2,	BMPR1A	 4	 2.83	 hsa04350	

Hedgehog	signaling	pathway	 WNT3A,	BTRC,	IHH	 3	 2.78	 hsa04340	

B	cell	receptor	signaling	pathway	 PIK3R1,	AKT3,	PPP3CB	 3	 2.43	 hsa04662	

Thyroid	cancer	 MAP2K1,	CCND1	 2	 2.32	 hsa05216	

Fc	epsilon	RI	signaling	pathway	 MAP2K1,	PIK3R1,	AKT3	 3	 1.65	 hsa04664	

Neurodegenerative	Diseases	 BCL2,	FBXW7	 2	 1.5	 hsa01510	

Thiamine	metabolism	 ENSG00000107902	 1	 1.28	 hsa00730	

ErbB	signaling	pathway	 MAP2K1,	PIK3R1,	AKT3	 3	 1.22	 hsa04012	

Insulin	signaling	pathway	 MAP2K1,	PIK3R1,	AKT3,	EIF4E	 4	 1.2	 hsa04910	

T	cell	receptor	signaling	pathway	 PIK3R1,	AKT3,	PPP3CB	 3	 1.16	 hsa04660	

Taurine	and	hypotaurine	
metabolism	

BAAT	 1	 1.12	 hsa00430	

Valine,	leucine	and	isoleucine	
biosynthesis	

PDHA1	 1	 0.99	 hsa00290	

Protein	export	 SRPR	 1	 0.99	 hsa03060	

Toll-like	receptor	signaling	
pathway	

MAP2K1,	PIK3R1,	AKT3	 3	 0.88	 hsa04620	

Reductive	carboxylate	cycle	(CO2	
fixation)	

SUCLA2	 1	 0.88	 hsa00720	

Prion	disease	 BCL2	 1	 0.7	 hsa05060	

Long-term	potentiation	 MAP2K1,	PPP3CB	 2	 0.57	 hsa04720	

Natural	killer	cell	mediated	
cytotoxicity	

MAP2K1,	PIK3R1,	PPP3CB	 3	 0.51	 hsa04650	

Riboflavin	metabolism	 ENSG00000107902	 1	 0.5	 hsa00740	

Glycolysis	/	Gluconeogenesis	 PDHA1	 1	 0.43	 hsa00010	

PPAR	signaling	pathway	 ACSL4	 1	 0.43	 hsa03320	

MAPK	signaling	pathway	 MAP2K1,	FGF7,	FGF2,	AKT3,	PPP3CB	 5	 0.41	 hsa04010	

Adipocytokine	signaling	pathway	 ACSL4,	AKT3	 2	 0.41	 hsa04920	

Glycan	structures	-	biosynthesis	2	 PIGA	 1	 0.4	 hsa01031	

Purine	metabolism	 AK3L1,AK3L2	 1	 0.39	 hsa00230	
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Phosphatidylinositol	signaling	
system	

OCRL,	PIK3R1	 2	 0.39	 hsa04070	

Adherens	junction	 IGF1R	 1	 0.37	 hsa04520	

Heparan	sulfate	biosynthesis	 HS6ST2	 1	 0.36	 hsa00534	

Glycosylphosphatidylinositol(GPI
)-anchor	

PIGA	 1	 0.36	 hsa00563	

Amyotrophic	lateral	sclerosis	
(ALS)	

BCL2	 1	 0.36	 hsa05030	

Tight	junction	 ASH1L,	PARD6B,	AKT3	 3	 0.34	 hsa04530	

Arachidonic	acid	metabolism	 MAML1	 1	 0.33	 hsa00590	

Long-term	depression	 IGF1R,	MAP2K1	 2	 0.33	 hsa04730	

Basal	cell	carcinoma	 WNT3A	 1	 0.32	 hsa05217	

Polyunsaturated	fatty	acid	
biosynthesis	

BAAT	 1	 0.28	 hsa01040	

Regulation	of	actin	cytoskeleton	 MAP2K1,	PIK3R1,	FGF7,	FGF2	 4	 0.23	 hsa04810	

Cell	adhesion	molecules	(CAMs)	 CNTNAP1	 1	 0.23	 hsa04514	

Inositol	phosphate	metabolism	 OCRL	 1	 0.23	 hsa00562	

ECM-receptor	interaction	 HSPG2	 1	 0.23	 hsa04512	

Fatty	acid	metabolism	 ACSL4	 1	 0.2	 hsa00071	

Pyrimidine	metabolism	 CMPK	 1	 0.19	 hsa00240	

Butanoate	metabolism	 PDHA1	 1	 0.18	 hsa00650	

Glycan	structures	-	biosynthesis	1	 HS6ST2,	MGAT4A	 2	 0.18	 hsa01030	

Oxidative	phosphorylation	 ENSG00000107902	 1	 0.16	 hsa00190	

Pyruvate	metabolism	 PDHA1	 1	 0.15	 hsa00620	

N-Glycan	biosynthesis	 MGAT4A	 1	 0.13	 hsa00510	

Fructose	and	mannose	
metabolism	

ENSG00000107902	 1	 0.13	 hsa00051	

Dorso-ventral	axis	formation	 MAP2K1	 1	 0.13	 hsa04320	

Notch	signaling	pathway	 NUMB	 1	 0.12	 hsa04330	

Neuroactive	ligand-receptor	
interaction	

GPR63,	PTGFR,	GHR,	HTR4	 4	 0.11	 hsa04080	
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Cytokine-cytokine	receptor	
interaction	

VEGFA,	GHR,	ACVR2B,	BMPR1A	 4	 0.11	 hsa04060	

Sphingolipid	metabolism	 FVT1	 1	 0.1	 hsa00600	

Type	II	diabetes	mellitus	 PIK3R1	 1	 0.1	 hsa04930	

Citrate	cycle	(TCA	cycle)	 SUCLA2	 1	 0.09	 hsa00020	

Aminosugars	metabolism	 ENSG00000107902	 1	 0.09	 hsa00530	

Leukocyte	transendothelial	
migration	

PIK3R1	 1	 0.09	 hsa04670	

Gap	junction	 MAP2K1	 1	 0.06	 hsa04540	

GnRH	signaling	pathway	 MAP2K1	 1	 0.05	 hsa04912	

SNARE	interactions	in	vesicular	
transport	

BNIP1	 1	 0.05	 hsa04130	

Bile	acid	biosynthesis	 BAAT	 1	 0.05	 hsa00120	

Calcium	signaling	pathway	 PTGFR,	HTR4,	PPP3CB	 3	 0.03	 hsa04020	

Propanoate	metabolism	 SUCLA2	 1	 0.02	 hsa00640	

Melanogenesis	 WNT3A,	MAP2K1	 2	 0.01	 hsa04916	

Alanine	and	aspartate	
metabolism	

PDHA1	 1	 0	 hsa00252	

Table	87	-DIANA	miRPAth	pathways	of	miR-503-5p	
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