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Abstract 
Supply Chain Management (SCM) is becoming increasingly important in the modern 

business world. In order to effectively manage and integrate a supply chain (SC), a 

deep understanding of overall SC operation dynamics is needed. This involves 

understanding how the decisions, actions and interactions between SC members 

affect each other, and how these relate to SC performance and SC disruptions. 

Achieving such an understanding is not an easy task, given the complex and dynamic 

nature of supply chains. Existing simulation approaches do not provide an 

explanation of simulation results, while related work on SC disruption analysis 

studies SC disruptions separately from SC operation and performance.  

This thesis presents a logic-based approach for modelling, simulating and 

explaining SC operation that fills these gaps. SC members are modelled as logic-

based intelligent agents consisting of a reasoning layer, represented through business 

rules, a process layer, represented through business processes and a communication 

layer, represented through communicative actions. The SC operation model is 

declaratively formalised, and a rule-based specification is provided for the execution 

semantics of the formal model, thus driving the simulation of SC operation. The 

choice of a logic-based approach enables the automated generation of explanations 

about simulated behaviours. SC disruptions are included in the SC operation model, 

and a causal model is defined, capturing relationships between different types of SC 

disruptions and low SC performance. This way, explanations can be generated on 

causal relationships between occurred SC disruptions and low SC performance. 

This approach was analytically and empirically evaluated with the participation 

of SCM and business experts. The results indicate the following: Firstly, the 

approach is useful, as it allows for higher efficiency, correctness and certainty about 

explanations of SC operation compared to the case of no automated explanation 

support. Secondly, it improves the understanding of the domain for non-SCM experts 

with respect to their correctness and efficiency; the correctness improvement is 

significantly higher compared to the case of no prior explanation system use, without 

loss of efficiency. Thirdly, the logic-based approach allows for maintainability and 

reusability with respect to the specification of SC operation input models, the 

developed simulation system and the developed explanation system. 
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Chapter 1 

1Introduction 

The modern business landscape is highly dynamic and competitive. Firms are faced 

with the challenge of meeting changing customer requirements while keeping costs 

low so as to survive in the global marketplace. In this context, companies can no 

longer compete in isolation from their Supply Chain (SC) partners. It has been 

acknowledged that the business world has now entered an era of SC- rather than 

enterprise-based competition (Harrison and van Hoek, 2008), and thus “supply chain 

management consciousness is accelerating up the corporate agenda” (Storey et al. 

2006, p.757). 

A systemic view of Supply Chain Management (SCM) is becoming prominent, 

and there is a need for SC integration. Achieving coordinated and fully integrated 

supply chains is a challenging task that requires a deep understanding of SCM 

dynamics. The SCM research community has long recognised the significance of 

analysing SCM dynamics. There is an extensive body of work on SCM dynamics in 

the context of SC planning and demand forecasting (Lee et al. 1997; Riddalls et al. 

2000; Hwarng and Xie, 2008). Studies have also appeared on the matter of SC 

configuration considering aspects of SCM dynamics (Akkermans, 2001; Choi et al. 

2001). However, the problem of analysing SC operation dynamics remains 

understudied.  

SC operation dynamics involve the interrelations and the impact of SCM 

decisions and activities of individual SC members on other SC members and the 

supply chain as a whole. They also involve the relationships between disruptive 

events that occur during SC operation, a phenomenon that is not uncommon. In order 
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to understand SC operation dynamics, a mechanism for capturing and explaining 

such causal relationships is needed. Understanding SC operation dynamics is an 

important problem, as it is a prerequisite for supply chain integration. It is also a hard 

problem, given the distributed, dynamic and complex nature of modern supply 

chains. 

Knowledge-based techniques (Stefik, 1995) are useful for analysing complex 

and dynamic systems. They provide transparent and rigorous reasoning mechanisms 

that allow the capturing and explanation of complex behaviours. They also enable the 

diagnosis of problematic situations, which can be supported by valuable 

explanations.  

This thesis proposes a knowledge-based approach for analysing supply chain 

operation dynamics. SC operation is modelled in a declarative fashion and it is 

simulated following rule-based execution semantics. This approach facilitates the 

explanation of simulated SC operational behaviours and performance, and it allows 

for diagnosing problematic SC operation.  

1.1 Research Problem 

Consider a supply chain consisting of several parties that contribute to the delivery of 

products to the final customers. During SC operation, the members of the supply 

chain perform activities giving rise to a flow of products, funds and information 

across the supply chain. They make decisions, act and interact with each other in 

order to fulfil final customer requests. At this operational level, planning and 

configuration issues are considered already defined, while SC members perform 

procurement, manufacturing and replenishment operations. There are 

interdependencies between these operations that are internal to each SC member, 

resulting in complex inter-functional dynamics. There are also interdependencies 

between the decisions, actions and interactions of different SC members, understood 

as inter-organisational dynamics. Overall SC performance depends heavily on the 

successful management of these two types of interdependencies. 

Disruptive events tend to occur during SC operation, such as delays and machine 

breakdowns. These can be caused by and have a direct effect on the decisions, 
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actions and interactions of different SC members. SC disruptions can propagate 

across the supply chain, give rise to new types of SC disruptions and lead to low SC 

performance. These SC disruption-related interdependencies are another facet of SC 

operation dynamics. 

Before defining the research problem, let us mention that we shall use the term 

‘operational behaviour’ to refer to the decisions, actions and interactions of an SC 

member during SC operation. The problem of analysing SC operation dynamics 

involves identifying the interrelationships that lie: 

• between different aspects of an SC member’s operational behaviour 

• between the operational behaviour of different SC members 

• between SC members’ operational behaviour and SC performance  

• between SC members’ operational behaviour and SC disruptions 

• between SC disruptions across the supply chain  

• between SC disruptions and SC performance 

As it will be discussed in Chapter 3, existing work does not address all these points 

in parallel. Our aim is, thus, to support a joint study of these issues. 

1.1.1 Motivating Example 

We will now introduce an example to illustrate and motivate the problem of 

analysing SC operation dynamics. This example will be used throughout the thesis to 

demonstrate aspects of our approach. Consider the supply chain depicted in Figure 

1.1, consisting of eight SC members. These firms interact, make decisions and 

perform activities that support the flow of several types of products along this supply 

chain. There are direct and indirect dependencies between these SC members, and 

several aspects of their SC operational behaviour are interrelated. Furthermore, 

different disruptive events occur during SC operation, and SC performance is low.  

Analysing the SC operation dynamics for this supply chain involves answering 

questions such as: Why does Supplier2 begin a production activity at timepoint 4? 

Why is the cost at Supplier3 1330? What are the root causes of Manufacturer’s low 

on time rate? Why do the products required for delivering at Supplier4 become 
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available late? What are the effects of the damage of products at Supplier1 on the 

entire supply chain and SC performance? Does the delivery delay at Supplier1 cause 

the making delay at Supplier4? The answers to such questions are valuable, as they 

can guide SC improvement and enhance the coordination of activities across the 

supply chain. Identifying the answers to such questions is not an easy task, as supply 

chains are complex systems that consist of members with rich and dynamic 

operational behaviour. Therefore, an intelligent solution is required. 

 
Figure 1.1: A supply chain with complex SC operation dynamics. 

1.2 A Logic-Based Approach 

In order to provide a practical solution to the problem of analysing SC operation 

dynamics, three points need to be addressed: (1) The solution should be tailored to 

the SC operation domain, so that it can be easily used by SCM practitioners. (2) It 

should support the end-to-end analysis of complex supply chains and facilitate the 

experimentation with different SC operation scenarios. (3) It should provide 

automated support, so that questions like the ones presented in the previous section 

can be directly and explicitly answered.  

We address the first point by conceptualising SC operation based on appropriate 

SCM theory and standards. We identify constructs that cover commonly agreed 

aspects of SC operation, while recognising current trends and issues of the field. 
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These constructs are declaratively specified and they can be directly used to model 

SC operation scenarios.  

We recognise simulation as a useful method for addressing the second point, as it 

can provide an insight into the operation of complex and dynamic systems, and 

facilitate what-if analysis. Therefore, we develop a transparent rule-based executable 

model of SC operation and we implement a simulation environment that supports 

instances of this model. The developed system can be used to simulate SC operation, 

measure SC performance and detect SC disruptions. 

The adoption of a logic-based approach contributes towards addressing the third 

point. Utilising the declarative formalism of SC operation constructs and the rule-

based specification of execution semantics, we design a mechanism for generating 

explanations of simulated SC operation. An explanation system is implemented 

which can automatically answer questions on SC operation dynamics, such as the 

ones mentioned for the supply chain of Figure 1.1. 

We name this thorough and practical solution to the problem of analysing SC 

operation dynamics ‘SCOlog’ (Supply Chain Operation dynamics explained through 

a LOGic-based approach). SCOlog employs a logic-based approach to analysing 

supply chain operation dynamics. It consists of a formal model of SC operation that 

is tailored to the domain, an executable model of SC operation and a mechanism for 

generating explanations of simulated SC operation. The value of SCOlog is 

demonstrated through the use of appropriately implemented simulation and 

explanation systems.  

1.2.1 Research Statement 

The hypothesis underlying the research presented in this thesis is as follows: 

SCOlog generates explanations which provide useful insight into 

supply chain operation dynamics and employs a logic-based 

approach to the modelling and simulation of supply chain operation, 

allowing for maintainability and reusability. 

Here, by maintainability it is meant that one can modify the resulting model without 

much effort. By reusability we mean that components of the resulting model can be 
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used in a different context. Usefulness refers to two aspects: the performance of 

SCM experts when explaining SC operation dynamics, and the understanding of the 

domain for non-SCM experts, that result from the use of the tool. 

The thesis claims are as follows:  

1.  Automated explanation support is useful for the task of explaining supply 

chain operation dynamics, allowing for users’ higher (a) time-efficiency, (b) 

correctness and (c) certainty about the explanations provided compared to 

the case where such support is not available. 

2.  The use of automated explanation support improves the performance of non-

SCM experts, with respect to their (a) time-efficiency and (b) correctness 

when explaining SC operation dynamics. The correctness improvement is 

bigger compared to the case where no automated explanation support is 

available, without loss of time-efficiency. This suggests that the use of 

automated explanation support improves the understanding of the domain for 

non-SCM experts. 

3.  A logic-based approach for modelling, simulating and explaining SC 

operation scenarios allows for maintainability and reusability with respect to 

(a) the specified SC operation input models, (b) the developed simulation 

system and (c) the developed explanation system. 

1.2.2 Research Contributions 

The main contributions of this research are outlined as follows: 

• Formal model of SC operation: We conceptualise SC operation by 

identifying structural, behavioural and disruption-related constructs. The 

conceptual model is formalised in a declarative fashion and with the use of 

advanced IT-inspired technical abstractions, such as intelligent agents, 

business processes and business rules. Furthermore, we specify a causal 

model of problematic SC operation, defining causal relationships between 

different types of SC disruptions and low SC performance. The resulting 

formal model is tailored to the SCM domain and is shown to be maintainable 

and reusable.  
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• Executable model of SC operation and implemented simulation system: 

We specify the execution semantics of the formal model in a rule-based 

manner, based on which dynamic behaviours can be driven. Given these 

execution semantics, we provide an algorithm for simulating system-wide SC 

operation. An appropriate simulation system is implemented, consisting of 

modules such as a workflow engine and an SC disruption detector. This 

simulation environment can be used to analyse and experiment with different 

SC operation scenarios, and it is shown to be easy to maintain and reuse.  

• Mechanism for generating explanations of SC operation and 

implemented explanation system: Given the rule-based specification of the 

execution semantics, we describe a framework for explaining dynamic SC 

operational behaviours. We also provide a mechanism for diagnosing and 

analysing problematic SC operation based on the specified causal model. An 

appropriate explanation system is implemented, which automatically 

generates explanations about SC operation dynamics at two levels of detail. 

This automated explanation support is shown to be useful to both SCM 

experts and non-experts. Furthermore, the explanation environment is 

characterised by maintainability and reusability. 

We identify the following research areas that benefit from the work presented in this 

thesis: 

• Supply Chain Management: A thorough and tested framework is provided 

for analysing SC operation dynamics, a problem that is currently 

understudied. The specified formal model of SC operation can also be of use 

in the area of SC modelling. We contribute to the area of SC disruption 

analysis through a powerful method for analysing problematic SC operation; 

this method is tailored to the SCM domain and it is found to be maintainable. 

Finally, the implemented simulation and explanation systems provide a 

practical contribution to the field.  

• Simulation: A generic executable model and a simulation algorithm are 

provided, which can be used for simulating systems consisting of several 

members that think, act and interact. Another contribution is the generic 
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mechanism for generating explanations of simulation results. Furthermore, the 

implemented simulation and explanation systems can serve as solutions 

against which different simulation approaches can be evaluated. 

• Knowledge-Based Systems: We develop a maintainable mechanism for 

generating explanations of the dynamic behaviour of complex systems. This 

mechanism is based on the combination of technologies such as workflows, 

intelligent agents and reasoning engines. We also provide an explanation 

system that is considered to be useful by users. 

1.3 Thesis Structure 

The research presented in this thesis lies at the intersection of Supply Chain 

Management, Knowledge-Based Systems, Workflow Management Systems and 

Multiagent Systems. An overview of these areas is provided in Chapter 2, which 

serves as background knowledge for this thesis. Chapter 3 discusses work that is 

relevant to the problem of analysing SC operation dynamics. SC simulation and SC 

disruption analysis approaches are presented, and research gaps are identified.  

The literature review chapters are followed by two chapters on the research 

methods. Chapter 4 presents the modelling framework proposed in this thesis. SC 

operation is conceptualised through appropriate constructs and formalised in a 

declarative fashion. Chapter 5 details the approach to simulating and explaining SC 

operation, which is driven by the rule-based specification of the execution semantics 

of the formal model. Illustrative examples are provided to show the value of 

automated explanation. 

Chapter 6 provides a detailed evaluation of SCOlog with respect to the research 

claims. We empirically evaluate the usefulness of the approach for explaining SC 

operation dynamics and improving the understanding of the domain for non-SCM 

experts. We also discuss aspects of maintainability and reusability. In the final 

chapter of the thesis we conclude and identify a number of avenues for future 

research. 
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Chapter 2 

2Background 

The research project discussed in this thesis is of a multidisciplinary nature, as it 

attempts to provide a solution to a business problem (i.e. the analysis of supply chain 

operation dynamics) with the use of Artificial Intelligence techniques. This chapter is 

a broad and shallow overview of research areas that are loosely related to this 

project, thus providing the background needed for understanding the context and 

content of this thesis. Alternative approaches to the research problem are not 

presented here – Chapter 3 is dedicated to the in depth discussion of related work. 

The following areas are discussed in this chapter: Supply Chain Management 

(Section 2.1), Business Process Modelling and Workflow Management Systems 

(Section 2.2), Intelligent Agents and Multiagent Systems (Section 2.3) and 

Knowledge-Based Systems (Section 2.4). Basic concepts and trends are explained, 

and the relevance of each theme to this project is highlighted. 

2.1 Supply Chain Management 

A Supply Chain “consists of all parties involved, directly or indirectly, in fulfilling a 

customer request” (Chopra and Meindl 2003, p.4). Figure 2.1 presents a typical 

supply chain, as well as the involved flows of products (downstream), funds 

(upstream) and information (across the supply chain). It is worth mentioning that an 

organisation can be a member of several supply chains, depending on the product. 

There is a wide range of supply chains in the business world, from simple to very 
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complex ones. A simple supply chain may consist of a few suppliers, a manufacturer 

and a customer; a complex supply chain can include several tiers of suppliers of raw 

materials and components, a manufacturer, numerous wholesalers, retailers and 

customers, and several tiers of distributors and warehouses. Figure 2.2 presents a 

complex SC network structure, consisting of multiple tiers across the supply chain, 

and several members within each tier. 

 
Figure 2.1: A typical supply chain 

 
Figure 2.2: A complex supply chain network structure  

(adapted from Lambert and Cooper(2000)) 

Supply Chain Management “involves the management of flows between and among 

members of the supply chain in order to maximise total supply chain profitability” 

(Chopra and Meindl, 2003, p.6). This is not an easy task, especially given the 

complex and dynamic nature of supply chains. The behaviour of individual SC 

members affects the decisions and activities of other SC members, thus influencing 

their performance. Hence, overall SC performance depends on the strategies, policies 

and actions of each participating organisation. However, maximising the local 

performance of participating companies does not guarantee the maximisation of the 
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performance of the entire SC network; on the contrary, it may lower overall SC 

performance. Self-optimising, opportunistic behaviour of individual SC members is 

in conflict with the objectives of SCM (Tan, 2001). This fact makes the task of 

supply chain management particularly hard. 

Choosing appropriate SC performance measures is crucial in order to 

successfully analyse and enhance overall system performance. We can identify three 

SC performance measurement frameworks as the most prominent in the field. First, 

the framework proposed by Beamon (1999) identifies metrics along three categories 

of performance measures: resource, output and flexibility. Resource-related metrics 

involve the efficiency of resource usage, and they include total cost and return on 

investment. Output-related metrics involve customer service, and they include on 

time deliveries, quality and fill rates. Flexibility-related metrics involve how well the 

supply chain reacts to uncertainty, and they include volume and delivery flexibility. 

Second, Gunasekaran et al. (2001) present metrics for performance along two 

dimensions: SC links (i.e. planning, sourcing, production, delivery and customer 

service and satisfaction) and SC levels (i.e. strategic, tactical and operational). Third, 

the Supply Chain Operations Reference (SCOR) model (Supply Chain Council, 

2008) includes a hierarchical framework of SC metrics along five performance 

attributes: reliability, responsiveness, agility, costs and assets. Examples of SCOR-

based metrics for each category include: delivery performance to customer commit 

date, source cycle time, upside deliver flexibility, cost to make and deliver fixed 

asset value. In this work we adopt the SCOR-based framework for SC performance 

measurement for three reasons. First, it is an extensive framework, providing metrics 

for the main aspects of SC performance. Second, given its hierarchical structure, it is 

easy to use in the context of large supply chains with complex operations. Third, it 

explicitly specifies the calculation for each metric, while linking it to involved 

processes. We recognise that the SCOR model suffers from a considerable drawback, 

i.e. the fact that quality aspects are considered only in a limited way. Product quality 

is important in the context of SCM, as it is highly related to customer satisfaction. 

Nevertheless, this is not a limitation for this work, as we focus on quantitative rather 

than qualitative performance metrics, which are easier to measure in an SC 

operational setting. Let us now provide the definitions of two SCOR-based metrics 
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that will be mentioned in chapters 4 and 5. On time rate, which corresponds to 

SCOR’s metric ‘delivery performance to customer commit date’ is the percentage of 

orders that are delivered on the time promised. Cycle time is the average time 

associated with some SCM operation (e.g. make cycle time is the average time 

associated with production). Note that the SCOR model is also discussed in Section 

2.1.4, where its process-related aspects are presented. 

Managing a supply chain requires the management of processes within and 

across organisational borders, such as customer relationship management, customer 

service management, demand management, order fulfilment, manufacturing flow 

management, procurement, product development and commercialisation, and returns 

(Lambert and Cooper, 2000). Given this breadth of scope, the field of SCM is 

characterised as interdisciplinary (Burgess et al. 2006). Areas such as marketing, 

logistics, purchasing, operations management and strategy are closely related to 

supply chain management.  

Event though there has been active research in SCM since the 1990s, the field is 

still developing and far from mature. There is little consensus on the definition and 

the scope of SCM, very often causing confusion. Nevertheless, SCM is typically 

understood in terms of processes (a chain of activities) or systems (interrelated 

processes, concepts, networks and frameworks), and the two most broadly used 

constructs for SCM are process improvement orientation and inter-organisational 

relationships (Burgess et al. 2006). 

2.1.1 Trends in SCM 

A current trend in SCM is a shift from the antagonistic model to a collaborative 

model (Storey et al. 2006), thus there is a requirement for the full alignment and 

integration of supply chains. A systemic and holistic view of SCM is becoming 

prominent, where the supply chain is viewed as a “virtual organization composed of 

several independent entities with the common goal of efficiently and effectively 

managing all its entities and operations, including the integration of purchasing, 

demand management, new product design and development, and manufacturing 

planning and control” (Tan, 2001). Thus, the supply chain should have a common 

mission, goals and objectives as a whole, but at the same time individual SC 
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members can pursue their independent policies. Holistic SCM is in line with the 

observations on current competition that “one of the most significant paradigm shifts 

of modern business management is that individual businesses no longer compete as 

solely autonomous entities but rather as supply chains” (Lambert and Cooper, 2000, 

p.65) and that “firms are finding that they can no longer compete effectively in 

isolation of their suppliers or other entities in the supply chain” (Lummus and 

Vokurka, 1999, p.11). Although the SCM research community promotes a holistic 

view of the field, most of the existing research still focuses on specific SC links or 

nodes, as pointed out by Giunipero et al. (2008). The authors conducted an SCM 

literature review and recognised a necessity for future studies to expand their focus 

beyond one-tier supplier-buyer relationships. Moreover, the practice of SCM is still 

far from the vision of SC integration, as supply chains often fail to behave as one 

entity (Holweg and Pil, 2008). 

Lean SCM is a paradigm widely discussed by both SCM scholars and 

practitioners. Lean thinking refers to the elimination of waste and a focus on value 

(Hines et al. 2004). Lean SCs remove any non-value adding activities along the 

entire SC network and focus on the core aspects of the overall value chain. A shift 

towards a systemic view of lean SCM has been identified by Hines et al (2004), thus 

following the wider trend of holistic SCM. 

Another trend in SCM is agility, which is “the ability of an organisation to 

respond rapidly to changes in demand” (Christopher 2000, p.38). Essentially, agile 

SCs are flexible and responsive to unexpected changes in supply or demand (Lee, 

2004). Agility is an important SC capability given the current business landscape, 

characterised by globalisation, rapid rhythms of change and high degree of 

uncertainty. It is interesting to note that contributing factors towards SC agility, such 

as process, network and virtual integration, as identified by Christopher (2000), are 

closely related to the holistic view of SCM.  

2.1.2 SCM Problems and Dynamics 

Three main categories of SCM problems can be identified: (1) SC planning and 

demand forecasting, (2) SC configuration and (3) SC operation. SC planning and 

demand forecasting is the problem of estimating future demand across the different 

 13



SC tiers, thus feeding the manufacturing plan of each SC member. One of the most 

important problems within this category is the bullwhip effect, which refers to the 

amplification of demand order variability as we move up in the supply chain (Lee et 

al. 1997). SC configuration involves the specification of the SC system’s structure, 

policies and processes in a static way. Selecting suppliers, identifying the location of 

facilities and choosing information exchange mechanisms are problems that fall into 

this category (Chandra and Grabis, 2007). SC operation refers to the actions and 

interactions between SC members, leading to the flow of materials, funds and 

information across the supply chain. It is worth mentioning that these three problem 

categories are interdependent: SC planning decisions affect SC configuration aspects, 

which, in turn, have an impact on the daily SC operation. They are all important, as 

incorrect SC planning and demand forecasting would lead to a sub-optimal SC 

configuration, resulting in operational problems along the SC and low SC 

performance. 

When solving SCM problems, one needs to consider the complex interrelations 

between SC members and the dynamics involved. For example, forecasting future 

demand at some SC node is heavily influenced by demand forecasting practices and 

replenishment policies at subsequent tiers. Similarly, the location of facilities for the 

suppliers of some organisation affects the decision on the location of its facilities. As 

far as SC operation is concerned, external processes, such as suppliers’ or customers’ 

processes, impact an organisation’s internal processes, but these are often neglected 

(Barratt, 2004). Given that this latter problem is understudied, yet important, the 

focus of this thesis is on SC operation dynamics.  

Coordinating activities across the supply chain requires a deep and solid 

understanding of SC operation dynamics, and is a prerequisite for SC integration. 

According to Lee and Whang (2004), workflow coordination is one of the four 

dimensions of SC integration, while Simatupang et al. (2002) recognise logistics 

synchronisation as one of the four modes of coordination that affect operational 

performance and SC integration. This illustrates the significance of understanding SC 

operation dynamics, and motivates our research.  
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2.1.3 SC Disruptions 

The management of SC disruptions across the supply chain is a problem closely 

related to SC operation dynamics. SC disruptions are “unplanned and unanticipated 

events that disrupt the normal flow of goods and materials within a supply chain” 

(Craighead et al. 2007). These events may occur at the organisation level (e.g. 

machine breakdown, damage of products), the supply chain level (e.g. delay or 

unavailability of materials, demand discrepancies, transportation delays) or the wider 

environment level (e.g. natural disasters, terrorist attacks, wars, economical crises). 

SC disruptions can have severe effects on the SC system, typically expressed in 

terms of high costs and low responsiveness. The occurrence of disruptive events 

along the supply chain and the resulting poor performance are becoming more and 

more common, mainly due to SC globalisation and the increased use of outsourcing 

practices. The growing complexity of supply chains makes it difficult to manage SC 

risk and disruptions (Butner, 2010). It follows that SC disruptions and SC risk are 

perceived as one of the most important current and future issues of the field by SCM 

practitioners (Butner, 2010; Melnyk et al. 2009). Similarly, the study of minimising 

SC disruptions and uncertainties is regarded as a fruitful research opportunity (Stock 

et al. 2010).  

In order to effectively mitigate SC risk and manage SC disruptions, one needs to 

understand how SC disruptions affect SC operation at a local and a global level. This 

involves understanding how disruptions may propagate across the supply chain, and 

what impact they may have on individual and overall SC performance. It has been 

argued that “there has been relatively little reported in the important area of 

understanding the system-wide or global impact of SC disruptions both upstream, 

downstream and laterally in the SC system” (Blackhurst et al. 2005, p.4076). For this 

reason, in our research we specifically consider SC disruptions when exploring SC 

operation dynamics. 

2.1.4 SC Modelling 

Supply Chain Modelling assists the analysis of complex supply chains, thus 

facilitating SCM and supporting SC integration. SC modelling is recognised as a 

prerequisite for SC integration (Min and Zhou, 2002; Li et al. 2002). According to Li 

 15



et al. (2002), the main motivations for SC modelling are the following: (1) to capture 

SC complexities by representing the SC in a uniform way, (2) to design and specify 

SCM processes across the entire SC network, (3) to communicate and agree on the 

vision to be shared by SC partners and (4) to reduce SC dynamics during the SC 

design phase. 

A taxonomy of SC models is provided by Beamon (1998) and Min and Zhou 

(2002), consisting of deterministic analytical, stochastic analytical, economic models 

and simulation models in the first case, and deterministic, stochastic, hybrid and IT-

driven models in the latter case. It has been argued that analytical models are often 

too simplistic to deal with highly complex supply chains, while simulation models 

allow for a more “realistic optimisation” in such a case (Hung et al. 2006). As far as 

SC modelling approaches are concerned, we distinguish the operational and agent-

oriented approach, thus covering the two main aspects of SCM, i.e. process 

improvement orientation and inter-organisational relationships. 

Two of the most popular models for SCM, which adopt the operational 

approach, are the Supply Chain Operations Reference (SCOR) model (Supply Chain 

Council, 2008) and the Global Supply Chain Forum (GSCF) framework (Lambert 

and Cooper, 2000; Lambert, 2008). The SCOR model is developed by the Supply 

Chain Council and is a process reference model for the whole SC, thus viewing the 

SC as a chain of processes. It is perceived as a strategic planning tool, particularly 

useful for top managers, and is regarded as a standard by the SCM community 

(Bolstorff and Rosenbaum, 2012). It consists of standard descriptions of SC 

processes, a framework of relationships between them, standard metrics for 

performance measurement and best practices in the field. It is a hierarchical model, 

consisting of three levels of processes, as shown in Figure 2.3:  

1.  Top level: Five distinct management processes are identified at this level, i.e. 

plan, source, make, deliver and return. Planning involves identifying a 

course of action in order to balance supply and demand, and achieve SC 

objectives. Sourcing involves the procurement of goods or services to meet 

planned or actual demand. Making covers production activities, adding value 

to or transforming components to finished goods. Delivering provides 
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finished goods or services to fulfil customer orders. Returns are associated 

with returning or receiving returned products for any reason. 

2.  Configuration level: Processes at this level are classified in two different 

ways. Firstly, three process types are identified: planning, execution and 

enabling. Planning processes align expected resources to meet anticipated 

demand requirements over a specified planning horizon. Execution processes 

make use of resources to change the business state with respect to 

availability of products. Enabling processes support planning and execution 

processes through the preparation, maintenance and management of needed 

information or relationships. The second classification of processes at this 

level is based on the adopted manufacturing strategy, thus distinguishing 

between make-to-stock, make-to-order and engineer-to-order processes.  

3.  Process element level: Processes at this level are a decomposition of 

configuration level processes. Additional information is provided for each 

decomposed process, such as inputs and outputs, related performance 

attributes and best practices.  

 
Figure 2.3: Levels of processes at the SCOR model 
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The Global Supply Chain Forum framework views SCM as the integration of the 

following eight key business processes along the SC (Lambert and Cooper, 2000; 

Lambert, 2008): (1) customer relationship management, (2) customer service 

management, (3) demand management, (4) order fulfilment, (5) manufacturing flow 

management, (6) supplier relationship management, (7) product development and 

commercialisation and (8) returns management. Each of these processes is cross-

functional and cross-firm. The GSCF framework defines strategic and operational 

sub-processes for each of these key business processes, as well as any interfaces 

between them.  

A comparison between the SCOR model and the GSCF framework has been 

conducted by Lambert et al. (2005) across several criteria, such as scope, intra- and 

inter-company connectedness and drivers of value generation. It was found that the 

GSCF framework has a wider scope and is more strategic, focusing on cross-

functional and cross-firm connectedness. On the other hand, the SCOR model has a 

more operational orientation, linking explicitly processes and performance metrics, 

and it is easier to implement. In this work we adopt the SCOR model given its 

operational orientation and coverage of both SCM processes and performance 

metrics.  

2.1.5 Desired Properties of a Solution 

Given the state of the art in SCM, as discussed in this section, we identify the 

following desired properties of a solution to the studied research problem:  

1.  Holistic view: Recognising the trend of holistic SCM on one hand, and the 

limited research on SC-wide behaviours on the other hand, there is a need to 

study system-wide SC operation and overall SC performance. 

2.  Include SC disruptions: Given the close relationship between SC 

disruptions and SC operation dynamics, there is a need for a joint study of 

these two issues. 

3.  Cover standard aspects of SC operation: SCM is characterised by large 

breadth of scope. Therefore, it is important to cover the main aspects of SC 

operation, as well as key SC disruption types. 
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4.  Deal with complex situations: Supply chains can have a complex structure, 

and SC operation decisions and behaviours can be complex. When studying 

SC operation dynamics, one should consider such complexity issues. 

5.  Include flexibility aspects: Given the trend of SC agility, there is a need to 

consider flexibility decisions and behaviours when studying SC operation 

dynamics.  

6.  Facilitate what-if analysis: Supply chains are considered to be dynamic 

systems. Therefore, a solution to the studied problem should facilitate the 

experimentation with different SC configurations. This also requires that 

modifying the specification of different SC configurations should not require 

much effort. 

7.  Maintainability: It should be easy to update a solution to the problem to 

incorporate any theoretical advances, especially since SCM is a field still 

under development. 

2.1.6 Relevance to the Project 

This project focuses on supply chain management, and more specifically SC 

operation. The discussed SCM trends were taken into account when designing a 

solution approach to the research problem. For instance, recognising the importance 

of SC agility, we incorporate decision-making for flexibility purposes, which from 

now on we will call ‘flexibility decision-making’. Furthermore, we consider SC 

performance measures when modelling the domain; particularly, we use SCOR-

based metrics. The SCOR model is also used for modelling the operations of SC 

members in our approach. Finally, we regard SC disruptions as an important aspect 

of SC operation dynamics, and thus we explicitly model, simulate and analyse their 

occurrence.  
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2.2 Business Process Modelling and Workflow 
Management Systems 

Business Process Modelling (BPM) is a widely-used approach that “allows the 

capturing, externalisation, formalisation and structuring of knowledge about 

enterprise processes” (Kalpic and Bernus, 2002). A business process is defined as “a 

structured, measured set of activities designed to produce a specified output for a 

particular customer or market. Implying a strong emphasis on how work is done, it is 

a specific ordering of work activities across time and place, with a beginning, an end, 

and clearly identified inputs and outputs” (Davenport, 1993). There are several 

advantages of business process modelling. Firstly, BPM techniques capture informal 

and abstract activities within an enterprise and make them concrete, thus allowing 

better understanding and communication of business operations. Secondly, formal 

analysis of business processes (e.g. through simulation) can assist performance 

measurement and therefore guide process improvement; this was the main driver 

behind the Business Process Reengineering (BPR) wave of the 1990s. Thirdly, 

business process models can support the design of information systems as well as 

software development.  

Workflow is closely related to BPM and BPR, as it is concerned with the 

automation of procedures within an organisation (Georgakopoulos et al. 1995). 

Management of a workflow involves process modelling and workflow specification, 

process reengineering, and workflow implementation and automation 

(Georgakopoulos et al. 1995). A Workflow Management System (WfMS) is a system 

that “completely defines, manages and executes workflows through the execution of 

software whose order of execution is driven by a computer representation of the 

workflow logic” (Hollingsworth, 1994, p.6). According to Mentzas et al. (2001) 

there are three basic categories of workflow techniques: communication-based, 

focusing on commitments among humans, activity-based, focusing on the work, and 

hybrid techniques. Workflow technologies can be useful in two main ways. Firstly, 

the process execution and enactment support that they offer can automate 

organisational procedures, thus reducing costs and increasing efficiency. Secondly, 
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workflow-based simulation can assist the analysis and the improvement of business 

operations. 

Popular business process modelling techniques and languages include UML’s 

Activity Diagrams (OMG, 2004) and Integration DEFinition language (IDEF3) 

(Mayer et al 1995), as well as the more recent Business Process Model and Notation 

(BPMN) (OMG, 2011), Web Services Business Process Execution Language 

(WSBPEL) (OASIS, 2007) and Process Specification Language (PSL) (Grüninger 

and Menzel, 2003). As far as workflow representation is concerned, Petri Nets are a 

widely used notation (van der Aalst, 1998), while YAWL (van der Aalst and ter 

Hofstede, 2005) is a more recent language. It is also worth mentioning the Workflow 

Reference Model (Hollingsworth, 1994), a standard suggested by the Workflow 

Management Coalition, which identifies the characteristics, functions and interfaces 

of workflow systems. 

A language that supports business process modelling and workflow system 

development is the Fundamental Business Process Modelling Language (FBPML) 

(Chen-Burger et al. 2002). It is a merger of PSL and IDEF3 and provides both formal 

semantics and rich visual modelling methods. These attributes make it useful for 

workflow execution and analysis. FBPML is an activity-based language, which is 

role-aware and that contains communication elements. A model specified in FBPML 

consists of main nodes, junctions, links and annotations. Main nodes represent 

processes (i.e. activities or tasks) within a model, and their declarative definition 

includes the specification of triggers, preconditions and actions. Links and junctions 

specify the control flow of processes within a business process model, thus allowing 

sequencing and branching for selection or parallelisation purposes. The four types of 

junctions available in FBPML (i.e. start, finish, and, or) can be combined to define 

complex structures. And- and or-junctions can be used in a split or joint context, and 

their semantics are formally defined. Figure 2.4 presents an illustrative business 

process model in the FBPML notation.  

 
Figure 2.4: Example of a business process model in FBPML 
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Business process modelling and workflow management are regarded as useful 

methodologies for SCM, especially since SCM is widely understood in terms of 

processes. The advantages of business process modelling discussed earlier still hold 

in a SCM context. It is, thus, not surprising that the SCOR model and the GSCF 

framework adopt a process-oriented view of SCM. Research that applies BPM 

techniques on SCM includes Trkman et al. (2007) and Wang et al. (2010). Trkman et 

al. (2007) utilise business process modelling and simulation for reengineering 

business processes across a supply chain, in an effort towards SC integration. 

Similarly, Wang et al. (2010) present a case study of BPR for a global supply chain; 

to this end, they employ a SCOR-based business process model as a basis for 

identifying problems in the supply chain.  

Workflow technologies can be used in the context of SCM for automation or 

analysis purposes, and hence two streams of relevant research can be identified. The 

first stream of research deals with supporting e-SCs through workflow-enabled 

automation, an issue highlighted by Basu and Kumar (2002). Liu et al. (2005) 

present the architecture of an inter-enterprise workflow SCM information system, 

consisting of a WfMS at each SC member and an integrated interface. Goutsos and 

Karacapilidis (2004) utilise a workflow management module within an open SCM 

system that supports e-business transactions. Research in this area is still in its 

infancy, and it has been argued that “the occasions where WfMSs are consolidated 

with SCM software solutions in the same system or even in many integrated systems, 

are not proportionately numerous” (Tarantilis et al. 2008, p.1311). The second 

research stream employs workflow-based simulation to analyse SC operations. It is 

worth noting that several of the research papers discussed in Chapter 3 (i.e. on SC 

simulation and SC disruption analysis) adopt a workflow-based approach. 

Furthermore, Arns et al. (2002) propose a SC performance analysis framework based 

on Petri nets and queuing networks. Drzymalski and Odrey (2008) model SCOR-

based processes with Petri nets and present a state-space method to calculate the 

remaining time for any order delivery.  
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2.2.1 Relevance to the Project 

In this thesis we adopt a process-oriented approach for modelling the acting 

behaviour of SC members. FBPML is used for formalising SC business process 

models, as it has formal semantics and its declarative syntax supports workflow 

execution. The formalisation of business processes is presented in Section 4.3.2.2. 

We also develop a workflow engine in order to simulate the acting behaviour of SC 

members. Its main operations are discussed in Section 5.1.2.1. 

2.3 Intelligent Agents and Multiagent Systems 

An intelligent agent is defined as “a computer system that is situated in some 

environment, and that is capable of autonomous action in this environment in order 

to meet its design objectives” (Wooldridge 2002, p.15). Intelligent agents have the 

following characteristics: 

• autonomy: ability to operate without the direct intervention of humans or 

others, having control over their actions and internal state 

• social ability: ability to interact with other agents in order to satisfy their 

design objectives 

• reactivity: ability to perceive their environment, and respond to changes in a 

timely fashion in order to satisfy their design objectives 

• pro-activeness: ability to exhibit goal-directed behaviour by taking the 

initiative in order to satisfy their design objectives 

A Multiagent System (MAS) is a system of interacting intelligent agents. Agents 

within an MAS communicate in order to coordinate, whether they are competing or 

cooperating. In the case of cooperation, agents act in order to achieve a common 

goal, while pursuing their individual objectives. 

Multiagent systems have been widely used within the SCM context, as they 

effectively match the nature of supply chains. As Moyaux et al. (2006, p.16) argue, 

“supply chains are made up of heterogeneous production subsystems gathered in vast 

dynamic and virtual coalitions; intelligent distributed systems, e.g. multiagent 
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systems, enable increased autonomy of each member in the SC”. Each SC member 

can be represented by one or more agents with local goals and objectives, while the 

global MAS goals and objectives correspond to the holistic view of the supply chain. 

It is interesting to note that SC members have the same characteristics as agents 

(Moyaux et al. 2006):  

• autonomy: The business operation of a company does not involve direct 

intervention of other companies, and each company has control over its 

actions and internal state. 

• social ability: There is high degree of interaction between SC members. 

• reactivity: Companies need to perceive their environment, especially their 

market and competition, and be flexible enough to respond to it in a timely 

and effective fashion. 

• pro-activeness: Under the goal of maximising their profits, companies can 

take initiatives within their business operation. 

Agent technologies are suitable for tackling all three main SCM problems, either by 

automating, simulating or recommending solutions. SC planning and demand 

forecasting can be facilitated though the advanced reasoning and communication 

capabilities of intelligent agents. Representative work in this area includes Fox et al. 

(2000), Liang and Huang (2006) and Zarandi et al. (2008). The work by Fox et al. 

(2000) is one of the earliest and most highly cited approaches for agent-oriented 

SCM, and it involves a framework for capturing coordination knowledge through 

conversation plans. The authors apply this framework in an SC planning setting, and 

show how demand forecasts are transformed into materials demand plans and 

production plans when communicated across different functions of an organisation. 

Liang and Huang (2006) present an agent-based approach for coordinating inventory 

across the SC and minimising overall SC cost. This coordination is achieved 

centrally through a genetic algorithm-enabled demand forecast agent, and under the 

assumption of full SC information sharing. A similar coordination mechanism is 

adopted by Zarandi et al. (2008), who show that the bullwhip effect can be reduced 

in a fuzzy environment. It is also worth mentioning the Trading Agent Competition 

for SCM (Collins et al. 2010), in which purely self-interested agents compete in a 
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setting with partial information. Each trading agent in the competition is responsible 

for sourcing components from suppliers, making different types of final products and 

selling them to customers. Hence, decisions on forecasting final demand and 

planning SC operations need to be made by trading agents. 

SC configuration is enabled through the agents’ learning and negotiation 

capabilities. MASCOT (Sadeh et al. 2001) is an agent-based architecture that 

supports the dynamic selection of SC partners within an open environment. 

Piramuthu (2005) provides an agent-based solution to dynamic SC formation and 

reconfiguration, in which a supplier is selected for each incoming order; this 

selection is based on the order attributes and is facilitated through machine learning 

techniques. The interaction for forming an SC network is studied by Fox et al. (2000) 

when applying a conversational coordination approach. In this work the choice of SC 

partners may involve negotiation with several rounds of proposals and 

counterproposals. Similarly, a coordinated iterative bidding mechanism is proposed 

by Akanle and Zhang (2008) for selecting a combination of suppliers for a customer 

order. The resulting networks for a set of orders are then clustered to recommend a 

future SC structure. 

SC operation analysis can be facilitated though the reasoning and coordination 

capabilities of intelligent agents. Agent-based modelling is regarded to be useful for 

simulating SC operation, but an explicit study of SC operation dynamics is missing. 

Swaminathan et al. (1998), in one of the first research efforts in this area, suggest an 

agent-oriented modelling framework for SC simulation. They present an agent 

architecture and provide a library of structural and control elements to facilitate the 

specification of simulation models. Their work addresses all flows across the supply 

chain (i.e. products, information and funds), but it does not shed any light on how the 

activities of a single SC member affect other SC members. Allwood and Lee (2005) 

define an agent model for simulating and studying SC network dynamics with 

respect to demand amplification. In this model, each agent represents an SC member 

and consists of a strategic and an operational level, defined through appropriate 

mathematical functions. Even though basic operations are captured (e.g. order 

management, production planning and control, materials management and 

accounting), the dynamics between them and across the SC are not investigated. 
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Ivanov et al. (2010) adopt agent-based modelling within their framework for 

adaptive SC planning and operations control. This framework considers multiple SC 

aspects (e.g. product, functional, organisational, etc.) and includes SC operation 

simulation along these aspects; however, the focus is not on understanding the 

related operation dynamics, but on establishing effective adaptations for the SC 

configuration. 

2.3.1 Relevance to the Project 

Agent-based modelling is highly suitable for SCM, covering important 

characteristics of SC members’ operational behaviour and providing a good 

abstraction of local and global SCM aspects. For this reason we employ intelligent 

agents for representing SC members and their thinking, acting and interacting 

behaviour. This is further discussed in Section 4.3. 

2.4 Knowledge-Based Systems 

A knowledge-based system (KBS) is “a computer system that represents and uses 

knowledge to carry out a task” (Stefik, 1995). KBSs are used to support human 

decision-making, learning and action. Similarly, expert systems are computer 

programs that use knowledge and inference mechanisms for solving problems that 

would normally require the knowledge of a human expert. They mimic the cognitive 

behaviour of a human expert when solving problems and making decisions 

(Giarratano and Riley, 1998). There are two main components of expert systems: a 

knowledge base and an inference engine. The knowledge base contains the 

knowledge needed for problem-solving in a particular domain; this often has a rule-

based form. The inference engine draws conclusions by searching through and 

reasoning on the knowledge in the knowledge base. It is worth mentioning that 

sophisticated expert systems also include an explanation facility, which means that 

they can explain their reasoning for reaching some conclusion. 

There are two central families of inference algorithms: forward and backward 

chaining. Forward chaining works forward from a set of known facts to conclusions 

that can be drawn based on them (Russel and Norvig, 2003). It is a form of data-
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driven reasoning and it is the main idea behind production systems. Backward 

chaining works backward from a goal to a set of facts that support the goal (Russel 

and Norvig, 2003). It is a form of goal-directed reasoning, and it can support 

diagnostic tasks.  

Logic programming is a computer programming paradigm that adopts a 

declarative approach (Russel and Norvig, 2003). This means that instead of encoding 

desired behaviours directly as program code, systems are constructed through the 

formal representation of knowledge. Prolog (Clocksin and Mellish, 2003) is a 

popular logic programming language that has been used in different contexts, 

including expert systems. Prolog programs are executed in a backward chaining 

fashion, while allowing for recursive search. 

Knowledge-based systems can be used to assist or automate human problem 

solving in different ways. Firstly, they provide a means for the diagnosis of complex 

problems; when diagnosis is combined with an explanation facility, the reliability of 

KBSs increases considerably. This point is further discussed in Section 2.4.3. 

Secondly, they can tackle prognosis problems, mainly by devising forward-chaining 

knowledge inference. Thirdly, their transparency and explanation ability can be 

useful in an educational context, such as intelligent tutoring systems. 

Knowledge-based systems can support or automate the decision-making on 

several SCM problems. Lawrynowicz (2007) tackles short-term production planning 

through the use of an expert system. As far as SC configuration is concerned, 

Vokurka et al. (1996) employ expert systems to support the selection of suppliers, 

while Isiklar et al. (2007) utilise rule-based and case-based reasoning for selecting 

third party logistics providers. The improvement of warehouse operations is studied 

by Chow et al. (2005), enabled through RFID-based real-time resource tracking and 

case-based reasoning support for resource management.  

2.4.1 Business Rules 

A business rule (BR) is “a statement that defines or constrains some aspect of the 

business” where the intention is to “assert business structure or control or influence 

the behaviour of the business” (Business Rules Group, 2000, p.4). Typically, 

 27



business rules describe business goals, problems, policies, regulations, etc. (Bajec 

and Krisper, 2005).  

Four categories of BRs are identified by the Business Rules Group: (1) 

definitions of business terms, (2) facts relating terms to each other, (3) constraints 

and (4) derivations. The first two categories are structural assertions, as they describe 

aspects of the structure of the enterprise. The third category involves action 

assertions, as it imposes constraints on behaviour. The fourth category involves the 

derivation of knowledge given existing knowledge; this is similar to knowledge 

inference, discussed in the previous section. The classification provided by the 

Business Rules Group is broad, and there is a tendency in research and practice to 

use the term ‘business rule’ mostly for the last two categories. At the rest of this 

thesis, we will thus use the term ‘business rule’ for these two categories. 

According to the Business Rule Approach (Ross, 2003), BRs should be made 

explicit and they should be expressed in a declarative fashion. Popular languages 

include the Object Constraint Language (OCL) (OMG, 2006) and the Semantics of 

Business Vocabulary and Business Rules (SBVR) (OMG, 2008), while general-

purpose programming languages like Java and Prolog (Clocksin and Mellish, 2003) 

are still being used in the context of business rules. As far as software applications 

are concerned, we regard business rules engines and business rules management 

systems as the most prominent ones. Business rules engines are essentially inference 

engines that allow the execution of BRs; Jess (Friedman-Hill, 2003) is a widely used 

BR engine. Business rules management systems are more complete solutions, 

supporting the storing, execution, monitoring and maintenance of BRs; ILOG JRules 

(ILOG, 2005) and Drools (Browne, 2009) are two representative business rules 

management systems. 

Business rules can be useful in many different ways. First, they can capture 

implicit and informal policies, thus providing an insight into business practices. 

Second, the analysis of current BRs can reveal gaps and problems in the way 

business is done, hence contributing towards business process improvement. Third, 

the analysis of BRs can support the development of information systems. Fourth, 

BRs can be integrated within workflow management systems for both design and 

execution purposes. BRs can trigger or constrain the execution of a business process 
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(Bajec and Krisper, 2005), and they can enable business process agility by 

supporting control flow decisions and process composition, as well as by enforcing 

and adapting constraints on BP data (Graml et al. 2008).  

Business rules can be used in an SCM context to express SC policies and 

practices, and they can contribute in all four ways described above. We recognise the 

relation of BRs and SC workflow execution, and their potential for contributing 

towards SC agility, e.g. through guiding flexibility decision-making. There is limited 

research on the use of BRs for SCM, and most of relevant research papers focus on 

BR modelling. For example, Kim and Rogers (2005) propose an object-oriented five-

view modelling framework, with the aim of improving flexibility for SC modelling. 

The framework includes the integration of business rules, and the authors describe a 

method for extracting business rules from the five-view model through event 

scripting.  

2.4.2 Knowledge-Based Simulation 

Knowledge-based techniques can drive and support simulation in several ways. 

Firstly, a simulation model can be represented in a declarative, knowledge-based 

fashion; this brings the benefit of specifying the structure of the model without 

worrying about how it should be run. Secondly, knowledge-driven simulation 

behaviours and results can be explained to the user, in the form of simple execution 

traces or deeper knowledge about the simulation model; this is particularly useful in 

the case of complex and dynamic systems, where simulation results are non-obvious. 

Thirdly, decision-making at simulation runtime can be enabled through a knowledge-

based approach; this is valuable for dynamic domains, where adaptive and flexible 

behaviours are common. Further advantages of knowledge-based simulation can be 

found in Doukidis and Angelides (1994).  

Research on knowledge-based simulation demonstrates the benefits discussed 

above in different domains. Robertson et al. (1991) propose a logic-based approach 

to ecological modelling, which exploits advantages within the first two categories. 

They represent ecological simulation models in Prolog, and they argue that a 

declarative approach brings benefits of explicit structure, modularity and flexibility 

of use. They recognise the importance of explanations in the domain of simulation 
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modelling, and they include an explanation facility in the implemented system, 

enabled through the declarative approach. Advantages of the third category are 

exploited by Aydemir et al. (2005) for a mechanical engineering problem, i.e. the 

efficient design of tube hydroforming processes. They suggest simulating a tube 

hydroforming process while updating parameters of the process at run time. The 

adaptive aspect of simulation is enabled through a fuzzy knowledge-based controller.  

Knowledge-based simulation can potentially bring all the above benefits to an 

SCM setting: The specification of SC simulation models could be simplified for 

domain experts, explanations could be provided for simulation behaviours and 

results, while SC agility and flexibility aspects could be incorporated in the 

simulation model. However, to our knowledge there is no research investigating 

whether, and to what extent, these benefits hold in the case of the SCM domain. 

2.4.3 Fault Diagnosis 

Fault diagnosis concerns identifying the causal origins of abnormal or undesired 

events or situations. These causal origins are also called root causes or failures, while 

the abnormal events are also called faults or symptoms. Fault diagnosis is an 

important task, as it is a prerequisite for repairing and resolving problematic 

situations. The problem of diagnosis is relevant to several domains, such as 

medicine, finance, software engineering, mechanical engineering and process 

control. Venkatasubramanian et al. (2003) provide an extensive literature review on 

fault diagnosis in the process control domain and they present a generic classification 

scheme of diagnostic methods. This classification is based on the a priori knowledge 

used, which typically covers the set of failures and the relationship between 

symptoms and failures. Three main categories are identified: (1) quantitative model-

based approaches, in which a priori knowledge has the form of mathematical 

functions, (2) qualitative model-based approaches, in which a priori knowledge has 

the form of qualitative functions and (3) process history-based approaches, in which 

there is no a priori knowledge available but such knowledge can be extracted from 

large amounts of relevant historical data.  

Knowledge-based techniques are known to be useful for dealing with diagnostic 

tasks, and they are highly relevant to qualitative model-based approaches. Causal 
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relationships between failures and symptoms can be captured in a causal model, in 

the form of digraphs and fault trees (Venkatasubramanian et al. 2003). This causal 

knowledge can be expressed in the form of rules, thus guiding the diagnostic analysis 

(Isermann, 2006). Expert systems are also applicable to diagnostic problems, and it is 

worth noting that one of the most famous early rule-based expert systems, MYCIN 

(Shortliffe, 1976), was developed for the diagnosis and therapy recommendation for 

infectious diseases. The main advantage of a knowledge-based approach for 

diagnosis is its transparent reasoning and the ability to provide explanations on how 

the fault originated and propagated to the abnormal or undesired event. Deriving 

such explanations is heavily based on the reasoning process for identifying the root 

cause, and thus does not typically require much additional software development 

effort. 

Diagnostic methods can be useful for analysing and repairing SC disruptions. In 

the last few years there has been increasing interest in SC disruption analysis, but 

research in this area is still in its infancy. Some research papers, such as Naim et al. 

(2002), propose managerial frameworks towards SC diagnosis, suggesting specific 

steps for guiding the discussion between SC managers. However, such an approach 

assumes participation, collaboration and trust between different SC members, and it 

is highly time-consuming. Hence, automated SC disruption analysis seems highly 

beneficial; research in this area is discussed in Chapter 3.  

2.4.4 Relevance to the Project 

Recognising the benefits of knowledge-based techniques discussed in this section, 

we adopt a knowledge-based approach for modelling and simulating SC operation. 

This way simulated behaviours and results can be explained. Furthermore, we 

employ business rules for formalising the thinking behaviour of SC members with 

respect to policies and flexibility decision-making. Finally, inspired by knowledge-

based fault diagnosis, we specify a causal model of problematic SC operation, which 

drives SC disruption analysis. 
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2.5 Summary of Background 

This chapter has introduced the main concepts needed as background knowledge for 

understanding the research presented in this thesis. An overview of Supply Chain 

Management was given, and desirable properties of a solution to the research 

problem were identified. We presented business process and workflow modelling 

techniques, emphasising their appropriateness for capturing SCM activities. A brief 

introduction to intelligent agents was provided, and the suitability of agent 

technologies for the SCM domain was also explained. Lastly, we discussed topics 

within the area of knowledge-based systems, such as business rules, knowledge-

based simulation and fault diagnosis; knowledge-based techniques were found useful 

for analysing complex systems, such as supply chains. This chapter served as a 

gentle introduction to concepts and methods that are used in subsequent chapters. 

Work that is more specifically related to ours is discussed in the following chapter. 
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Chapter 3 

3Related Work 

The problem of analysing supply chain operation dynamics has not been thoroughly 

addressed by existing literature so far. Nevertheless, we identify two research areas 

that are relevant to this problem: supply chain simulation and supply chain disruption 

analysis. SC simulation is relevant, as it provides an insight into SC-wide operation 

and allows the analysis of SC performance for different scenarios. SC disruption 

analysis is relevant to the research problem of this thesis, as it investigates the 

propagation of disruptive events across the supply chain. However, both research 

areas provide a partial solution to the problem, as specified in Section 1.1; SC 

simulation approaches cover mostly the first three issues of the problem, while SC 

disruption analysis approaches tackle the last two. This chapter presents a deep and 

narrow overview of related work in these two areas. Different approaches are 

explained, interesting aspects are discussed and research gaps are identified, thus 

highlighting the need for an intelligent solution to the research problem.  

3.1 SC Simulation 

Simulation is a useful technique for analysing supply chain operation, as “it can 

provide an insight into the operation of complex systems and can explore their 

behaviours” (Harrison et al. 2007, p.1243). There are several advantages of SC 

simulation. First, one can test and evaluate the effect of different decisions without 

actual implementation in the real supply chain. Second, simulation allows the study 
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of dynamic behaviours in the supply chain, as opposed to analytical methods. As Min 

and Zhou (2002, p.246) conclude from their literature review on SC modelling, “the 

resurgence of the simulation model is needed to evaluate dynamic decision rules for 

managing an inter-related series of supply chain processes”. Third, one can gain an 

insight into the causes and effects of SC performance through what-if analysis. 

Fourth, simulation can deal with stochastic variables in the supply chain, and it is 

possible to check the impact of unexpected events on the entire supply chain. Last, 

simulation can also serve as a communicative means, encouraging stakeholders to 

exchange thoughts about alternative solutions to SCM problems. Given these 

benefits, simulation is regarded as one of the most powerful techniques for decision 

support in an SCM context (Terzi and Cavalieri, 2004).  

Kleijnen (2005) identifies four types of SC simulation: (1) spreadsheet 

simulation, (2) system dynamics simulation, (3) discrete event dynamic system 

simulation and (4) business games. Even though spreadsheet simulation is not a 

formal and powerful simulation method, it is the most widely used method in 

practice (Chwif et al. 2002). System dynamics is a popular approach for studying 

complex systems. Its basic elements are feedback loops, stocks and flows, and the 

main idea is that levels of certain system variables are controlled by the rates of 

change of other variables. Angerhofer and Angelides (2000) provide a literature 

review on system dynamics simulation in SCM, and they highlight the successful 

application of this paradigm on the study of the bullwhip effect. Discrete event 

simulation captures the dynamic behaviour of a system, the state transition of which 

is guided by the occurrence of events. It is a powerful method that allows the 

extensive quantification of results and the incorporation of stochastic factors. 

Business games, such as the one proposed by Holweg and Bicheno (2002), are useful 

for educating and training users, as well as bringing SC managers together, thus 

supporting SC collaboration. 

3.1.1 Commercial Approaches 

There is a plethora of off-the-shelf SC simulators, as shown in Table 3.1. These are 

simulation tools tailored to the SCM domain with respect to modelling capabilities 

and performance measures. Most of these tools combine simulation and optimisation 
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techniques to help supply chain managers re-engineer their supply chains. They 

satisfy aspects of usability within the context of SCM practice and they typically 

provide powerful statistical analysis of simulation results. However, three main 

drawbacks are identified. Firstly, they do not provide an explanation of simulation 

results. This means that no additional information is provided to justify aspects of the 

simulation output, such as performed SCM activities and measured performance. 

Questions like the ones presented in Section 1.1.1 cannot be directly answered by 

existing simulation tools; this challenging task is instead left to the user. Secondly, 

the analysis of SC disruptions is not supported. In other words, the propagation of 

disruptive events along the supply chain cannot be tracked with the use of existing 

tools, and the causes of problematic situations cannot be automatically identified. 

Finally, SC agility aspects are usually neglected. This means that in many cases it is 

not possible to model and simulate highly flexible operations or decision-making; as 

a consequence, agile behaviours cannot be explicitly analysed.  

IBM SC Analyzer (Bagchi et al. 1998; Archibald et al. 1999) is one of the most 

widely cited SC simulation tools. It combines optimisation and discrete event 

simulation techniques to analyse SC issues such as site location, manufacturing and 

transportation policies, as well as customer service. Optimisation is deployed to 

optimise the SC network’s inventory before or during a simulation run. End-to-end 

SC simulation is enabled, thus a holistic new of SCM is adopted. SC Analyzer can 

model and simulate the following seven SC roles and functions: customer, 

manufacturing, distribution, transportation, inventory planning, forecasting and 

supply planning. The tool’s outputs involve mainly cost, as well as fill rates, return 

rates, etc. SC Analyzer allows for graphical process modelling and animation, 

making it appealing to SCM practitioners. It has been applied to several supply 

chains of different industries, such as food and computer SCs. However, SC 

Analyzer does not provide an explanation facility, and the above-mentioned papers 

offer no account of SC disruption analysis. Moreover, agility aspects are not 

incorporated in the simulation model. Note that this tool is no longer available from 

IBM, as it has been sold to i2, which was later acquired by JDA. 
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 SC 
simulator Input Output 

Simulation 
results 

explained

SC 
disruptions 

SC  
agility

SC 
Analyzer 

customer, 
manufacturing, 
distribution, 
transportation, 
inventory planning, 
forecasting and 
supply planning 

cost, fill rates, 
return rates, 
inventory, etc. 

   

Supply 
Chain Guru 

products, sites, 
demand, policies 
(sourcing, 
transportation, 
inventory policies)

financial reports, 
inventory units, 
customer service 
rates, resource 
utilisation rates 

   

SmartSCOR entities, products, 
resources, 
processes 

static, dynamic, 
gap and causal 
analysis output 

   

e-SCOR SC roles, SCOR-
based processes, 
process categories, 
atomic business 
process blocks 

SCOR metrics    

C
om

m
er

ci
al

 

Supply 
Chain 
Builder 

locations, items, 
inventory, 
shipments 

unclear    

Stefanovic 
et al. (2009) 

supply network 
structure, process, 
business 
environment, 
constraints  

SCOR metrics    

Longo and 
Mirabellli 
(2008) 

stores, plants, 
distribution 
centres, inventory 
policies 

fill rates, on 
hand inventory, 
inventory costs 

    

SCOR 
template 

SCOR processes SCOR metrics    

Umeda and 
Zhang 
(2006) 

types of SC 
members, 
activities, product 
flow strategies 

order lead time, 
part inventory 
volume, part 
shortage rate, 
throughput 

   R
es

ea
rc

h 

Easy-SC enterprise nodes, 
functions, 
transportation 
paths, products, 
resources 

unclear    

Table 3.1: Commercial and research approaches to SC simulation 

 36



Llamasoft Supply Chain Guru (LlamaSoft Incorporated, 2012) is another software 

tool that combines optimisation and simulation. The optimisation component can be 

used to determine the optimal structure and flow of products within an SC network, 

as well as the optimal inventory levels for the identified network and flows. The 

simulation component serves mainly as a validation of the proposed optimal SC 

design, and it can be used to predict and test the effects of the suggested SCM 

changes. The basic elements of a Supply Chain Guru model are the following: 

products, sites, demand, sourcing policies, transportation policies and inventory 

policies. Simulation output includes financial reports, inventory units, customer 

service rates and resource utilisation rates, which are visualised in sum-statistics and 

time series graphs. The visualisation capabilities of simulation input, run and output 

are regarded as considerable strengths of Supply Chain Guru, along with the 

statistical analysis of simulation results. Further advantages include its ability to 

incorporate variability and geographical aspects of SCM, the ease of importing data 

from spreadsheets and databases, as well as the support of what-if analysis through 

the specification of different simulation scenarios. Even though we consider Supply 

Chain Guru to be a powerful SC simulation environment, simulation results are not 

explained, and flexibility decisions are not incorporated in the model. Despite the 

rich output analysis, SC disruptions are not explicitly identified nor analysed.  

IBM SmartSCOR (Dong et al. 2006; Ren et al. 2010) is a supply chain 

transformation platform that tackles the following two SCM problems identified in 

Chapter 2: SC configuration and SC operation. As far as SC configuration is 

concerned, optimisation techniques, such as mixed integer programming, are 

employed for SC network optimisation. As far as SC operation is concerned, SC 

process improvement is sought through process-oriented simulation and analysis. 

The basic elements of a simulation input model are the following: entities (i.e. 

customers, distribution centres, plants and suppliers), products, resources and 

processes. It is worth mentioning two points regarding the SmartSCOR simulation 

model. Firstly, the SCOR model is adopted for specifying processes across the 

supply chain. Secondly, all types of flows are considered between SC members (i.e. 

products, funds and information). Simulation in SmartSCOR is driven by IBM’s 

WebSphere Business Modeller, a widely used software environment for business 
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process modelling and simulation. The use of WebSphere Business Modeller allows 

for rich static analysis (i.e. resource, organisation and general analysis) and dynamic 

analysis (i.e. aggregated, process instance and comparison analysis, as well as 

weighted average case analysis). In addition to these types of analysis, SmartSCOR 

is designed to facilitate two other types of analysis on SC performance simulation 

results: gap analysis and so-called causal analysis. Gap analysis involves comparing 

SC performance results to benchmarks with the use of spider charts. Causal analysis 

in SmartSCOR consists of what-if analysis, policy design through optimisation and 

root cause analysis. Root cause analysis in this case does not involve automated 

diagnosis, as discussed in Chapter 2, but instead the use of fishbone diagrams by 

business experts in order to assist them with the qualitative identification of root 

causes. Even though SmartSCOR recognises the need and usefulness of causal 

analysis for SC operation, the support it provides is limited. We regard this as the 

main shortcoming of this SC simulation tool. Furthermore, SC disruptions are not 

considered within SC operation analysis. As far as flexibility aspects are concerned, 

SmartSCOR allows scripting for special purpose simulation, but it is unclear whether 

and to what extent this includes SC agility. 

Gensym e-SCOR (Barnett and Miller, 2000) is an SC modelling and simulation 

environment that adopts the SCOR model for SC planning purposes. There are four 

basic elements of an e-SCOR model, and they are hierarchically structured: SC roles 

(i.e. base manufacturer, manufacturer, distributor and consumer), SCOR-based 

processes (i.e. plan, source, make and deliver), process categories and atomic 

business process blocks. SC models are simulated in a discrete-event fashion, and 

simulation outputs are based on SCOR metrics. Similarly to other commercial SC 

simulation systems, e-SCOR is a visual tool that is easy to use; for example, 

simulation input can be specified with the use of drag-and-drop blocks. Furthermore, 

e-SCOR allows the definition of business rules, thus allowing the capturing of 

business logic of individual SC members at a lower level of detail. However, it does 

not support the explanation of simulation results, and SC disruptions are not taken 

into account. 

SDI Supply Chain Builder (Phelps et al. 2000; Phelps et al. 2001; Siprelle et al. 

2003) is an SC simulation platform that is part of a wider enterprise simulation 
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toolset. It employs discrete-event simulation techniques for analysing supply and 

distribution channels, and it can be integrated with SDI Plant Builder for studying 

entire supply chains. Its basic SC modelling blocks involve locations, items (i.e. 

materials and resources), inventory and shipments, thus covering consumption, 

ordering, order assignment, order filling and routing. We should note that dynamic 

aspects of SCM are considered, as alternative strategies can be defined for different 

SC conditions; this way, adaptive behaviours can be simulated. However, the papers 

do not discuss what type of simulation output is provided, how SC performance is 

measured and how simulation results are analysed.  

3.1.2 Research Approaches 

The largest body of research in SC simulation focuses on SC modelling issues, i.e. on 

capturing important aspects of SCM and on facilitating the specification of 

simulation input for SC managers. Most approaches propose generic SC modelling 

frameworks, and implement these with the use of general-purpose simulation 

platforms. Given that the focus is mostly on modelling aspects, the problems of 

explaining simulation results and analysing SC disruptions are not addressed, as 

shown in Table 3.1. 

Stefanovic et al. (2009) develop an SC simulation environment by adopting a 

process-oriented approach that utilises the SCOR model. They identify four 

components of an SC model: supply network structure, process, business 

environment and constraints submodel. The authors claim that this modelling 

framework is generic (i.e. it can be applied to any type of supply chain) and close to 

reality (i.e. constraints on resources can be captured). The main component of the 

developed simulation software is a database that contains a process library and a 

collection of previously defined simulation models; this approach facilitates the 

process of specifying simulation input and allows the storage and querying of 

simulation results of different scenarios. However, the capabilities of this querying 

are not made clear in this paper, and the analysis of simulation results is not 

thoroughly discussed. Even though the paper mentions that business rules and 

policies can be defined for each SC member, it is not clarified whether these may 
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cover flexibility decision-making. Furthermore, SC disruptions seem to be outside 

the scope of this paper. 

Longo and Mirabelli (2008) adopt a data-oriented approach for simulating 

supply chains, and they demonstrate it with the use of the discrete event simulation 

software eM-Plant. Their SC simulation model consists of three types of nodes (i.e. 

stores, plants and distribution centres) and four types of inventory policies. Instead of 

simulating this model with the use of library objects provided by eM-Plant, the 

authors implement appropriate methods in the scripting language provided by eM-

Plant, and they propose the use of tables and event generators. They claim that this 

way a flexible, parametric and time-efficient SC simulator can be obtained. As far as 

simulation output is concerned, the following SC performance metrics are used for 

each SC node: fill rates, on hand inventory and inventory costs. For experimentation 

with different scenarios and what-if analysis, the authors propose the use of the 

simulator jointly with appropriate design of experiments and analysis of variance. 

Even though the analysis of variance is a useful statistical technique for testing the 

effect of certain simulation input parameters on SC performance, it does not provide 

an insight into how specific decisions and activities of certain SC members affect the 

behaviour and performance of other SC members and the SC as a whole. We should 

also note that SC agility and SC disruption aspects are not considered. 

SCOR template (Persson and Araldi, 2009; Persson, 2011) is a set of SCOR-

based building blocks in the general-purpose simulation software Arena. The 

objective of this research effort is to ease the process of specifying SC simulation 

input models for SCM practitioners. In order to achieve this, the authors utilise 

SCOR processes and metrics to define appropriate modules in Arena, which can be 

directly used by supply chain managers. The focus of this work is on the modelling 

procedure and usability, while simulation analysis is not discussed. To our 

knowledge, Arena does not provide an explanation facility; therefore, we believe that 

this is the case for simulation with the use of the SCOR template too. Furthermore, 

the authors do not discuss aspects of SC agility or disruptions. 

Umeda and Zhang (2006) describe a generic SC simulation model which they 

implement in the general-purpose simulation environment Extend. They identify the 

following SC members: operational planner, parts supplier, products factory, 
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distribution centre, third-party logistics providers, consumers and retailers. They 

specify activities that each SC member performs and distinguish between three 

product flow strategies: push, pull and hybrid. The simulation output involves the 

following performance metrics: order lead time, part inventory volume at the product 

factory, part shortage rate at the product factory and throughput. Unfortunately, this 

paper does not discuss any advantages of the proposed modelling framework and 

there is no comparison to other approaches. Moreover, issues such as SC disruptions, 

SC agility and explanation of simulation results are not covered. 

Easy-SC is an SC simulation tool for “studying the impact of stochastic 

demands, logistics decisions and production policies on key performance measures” 

(Liu et al. 2004, p.1374). In their paper, Liu et al. (2004) mainly describe the adopted 

modelling framework, consisting of enterprise nodes (i.e. suppliers, distribution 

centres, retailers, manufacturers, customers and carriers), the functions performed by 

enterprise nodes (i.e. source, make, deliver, inventory, transport and finance), 

transportation paths between enterprise nodes, products and resources. Simulation in 

Easy-SC is order-driven, and the tool includes policies and optimisation, which are 

not discussed in depth in the paper. Simulation output and analysis are not described 

in the paper, and SC agility and SC disruptions are not considered. The authors claim 

that Easy-SC allows for easy modelling through a graphical user interface and for 

easy extension, description and integration with other management information 

systems because it is implemented in Java. These claims, however, are not verified in 

the paper. 

Another stream of research aims at facilitating the automatic generation of SC 

simulation models, so that users can correctly define the simulation input, even if 

they do not have advanced knowledge of modelling and simulation techniques. The 

work by Chatfield et al. (2006) and Cope et al. (2007) falls into this category. 

Chatfield et al. (2006) address issues of SC simulation specification, storage and 

model generation, and they present an appropriate object-oriented SC simulation tool 

called SISCO. SISCO users do not explicitly specify SC simulation models, but they 

provide SC descriptions, which are stored in an XML-based format called Supply 

Chain Modelling Language (SCML). The SCML-based descriptions are then 

translated to a Java-based object-oriented simulation model, which can be easily run. 
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Cope et al. (2007) and Cope (2008) adopt an ontology-based approach for 

automatically generating Arena simulation models that are suitable for stochastic, 

dynamic and distributed SC environments. They define a SCOR-based ontology, and 

implement an automatic model generator that parses the ontology and user-defined 

data on the simulation scenario to obtain a fully executable simulation model in 

XML. This XML file is then mapped to appropriate Arena modules, thus allowing 

the execution and analysis of the scenario. Since the objective of Chatfield et al. 

(2006) and Cope et al. (2007) is the automatic generation of SC simulation models, it 

is understandable that they do not focus on simulation analysis aspects. This means 

that they do not explain results and they do not deal with SC disruptions.  

Other research efforts involve the simulation of specific types of supply chains. 

ALADIN (van der Vorst et al. 2009) is a simulation environment for food supply 

chains that is built on the discrete event simulation software platform Enterprise 

Dynamics. There are two main points of added value, as identified by the authors: 

Firstly, it allows the integrated modelling of food quality, sustainability and product 

logistics aspects. Secondly, control structures are explicitly modelled by considering 

decision-making agents, policies and interactions, as prescribed by the modelling 

framework of van der Zee and van der Vorst (2005). ALADIN demonstrates that 

generic SC simulation tools may in some cases not capture all important aspects of 

particular supply chains. However, advanced analysis of simulation results is not 

provided and the paper gives no account of SC agility aspects. 

In Chapter 2 we presented agent-based approaches for simulating SC operation, 

such as Swaminathan et al. (1998), Allwood and Lee (2005) and Ivanov et al. (2010). 

Agent-based modelling is useful for capturing fundamental SC operations and 

decisions made by each SC member, while incorporating SC agility aspects. 

However, to our knowledge, the problem of analysing SC operation dynamics has 

not been addressed by this stream of research. 

3.1.3 Gaps in SC Simulation 

Existing SC simulation approaches have considerable strengths, especially with 

respect to usability. Commercial SC simulators provide graphical user interfaces and 

pre-defined SC building blocks, thus easing the process of specifying SC simulation 
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input. Animation is typically available during a simulation run, and simulation output 

can be statistically analysed and graphically visualised. Another aspect of increased 

usability involves the ability to integrate with other business information systems. 

Additionally, several commercial SC simulators incorporate variability and 

geographical aspects of supply chains. However, simulation is treated as a black box, 

and hence SC behaviours and simulation results are not explained. SC disruptions are 

not explicitly addressed by commercial SC simulators, and SC flexibility aspects are 

only partially considered by some. 

Research on SC simulation consists of generic SC modelling frameworks that 

can be easily used by supply chain managers, while there are also some efforts 

towards the automatic generation of SC simulation models. However, the problem of 

analysing SC operation dynamics and SC disruptions seems to have been neglected 

by the research community. Furthermore, it is not clear to what extent SC agility is 

incorporated in such simulation efforts.  

To summarise, we identify the following three gaps in related work on supply 

chain simulation:   

• SC simulation results are not explained. This means that the problem of 

analysing SC operation dynamics is not directly addressed. 

• SC disruptions are not analysed, and often they are not explicitly modelled. 

This means two things. Firstly, simulated SC behaviours and performance are 

not linked to the occurrence of disruptions. Secondly, the propagation of SC 

disruptions is not investigated, and the effect of SC disruptions on SC 

operation is not made clear. 

• SC agility aspects are typically not incorporated in SC simulation models. 

This means that flexibility decisions and behaviours are not analysed as part 

of SC operation.  
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3.2 SC Disruption Analysis 

There are two main approaches towards SC disruption management: the preventive 

and the interceptive approach. The preventive approach aims at reducing the 

likelihood of occurrence of disruptive events. To this end, robust strategies for 

mitigating SC risk are employed. This subject is typically studied by the Supply 

Chain Risk Management research community. The paper by Christopher and Lee 

(2004) falls into this category, while Tang (2006) provides an extensive literature 

review of the field. The interceptive approach aims at reducing the severity of effects 

of occurred disruptive events through SC monitoring and correction activities. This 

problem has given rise to the relatively new research area of Supply Chain Event 

Management. Illustrative approaches in this area include the ones by Bodendorf and 

Zimmermann (2005) and Bearzotti et al. (2012). 

Understanding the causes and effects of disruptive events on SC operation and 

performance is crucial for both approaches presented above. Supply chain disruption 

analysis is, thus, a prerequisite for supply chain risk and event management. 

Research in this area is still in its infancy; a limited number of research papers have 

been published, all within the last five years. They propose the use of formal 

modelling techniques (i.e. variations of Petri Nets) for representing and analysing SC 

disruptions. Before discussing relevant work presented in Table 3.2, it is worth 

providing a brief introduction to Petri Nets. 

 
Figure 3.1: Illustrative classic Petri Net and variations of time and colour 

A Petri Net (PN) is a graph that consists of places and transitions, which can be 

connected through directed arcs (van der Aalst and van Hee, 2004). Places may 

contain tokens, and the state of a Petri net is indicated by the distribution of tokens 

among its places, i.e. the token marking. Transitions can be fired, consuming tokens 

from the input place and producing tokens to the output place. This way tokens move 
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across the Petri net. A simple Petri net is shown in Figure 3.1. It is worth mentioning 

that Petri nets have formal semantics, allowing for powerful analysis. Apart from 

classic Petri nets, there are several variations, such as Time Petri Nets, Coloured 

Petri Nets and Time Coloured Petri Nets. Illustrative examples are presented in 

Figure 3.1. The time extension allows the description of temporal behaviours, such as 

durations of activities. The colour extension makes it possible to distinguish between 

different token types or values, and thus track behaviours for different case data.  

  Liu et al. 
(2007) 

Wu et al. 
(2007) 

Zegordi and 
Davarzani (2012) 

Effect of 
disruption on 
disruption 

   

Disruption 
root cause     
Effect of 
disruption on 
performance 

   

Causal analysis 

Performance 
root cause    

Different types of disruptions    
Tailored to SCM    
Maintainable    

Table 3.2: Characteristics of SC disruption analysis approaches 

Liu et al. (2007) employ Time Coloured Petri Nets to study cause and effect 

relationships between disruptive events in a supply chain, as well as their effect on 

SC performance. They formalise normal and disruptive events as PN places, and 

event rules as PN transitions. They specify seven basic event patterns to capture 

event relationships (e.g. simple cause-result pattern, and N causes - 1 result pattern) 

that commonly arise in supply chains. A PN can be designed with the use of these 

event patterns as building blocks, thus modelling an SC scenario. Two types of 

analysis can be performed on SC scenarios that are modelled with this approach. 

Firstly, dependency graphs can be developed for a particular PN instance; these 

represent cause and effect relationships between events that were produced from the 

PN instance. This way the consequences and the root causes of disruptive events can 

be traced. Secondly, the developed PN can be simulated, allowing for the calculation 

of performance metrics, such as fill rates and average replenishment time of supply 
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orders. Through the use of simulation, what-if analysis can be performed to support 

SC improvement. The modelling approach proposed by Liu et al. (2007) is powerful, 

especially with respect to the analysis of causal relationships between disruptive 

events. The choice of Time Coloured Petri Nets allows the capturing of temporal 

relationships between events and the representation of a variety of case data. The 

main drawback of this approach is the fact that it is not sufficiently tailored to the 

SCM domain. The seven identified event patterns are of a technical nature, and there 

is no guidance for their use in order to model SC operation and disruptions. This 

means that SC scenarios are modelled on an ad hoc basis, thus limiting the usability 

of this approach for supply chain managers. Another weakness of this work involves 

maintainability with respect to the modelling procedure. Modifying aspects of an SC 

scenario requires considerable modification of the defined model. Given the example 

provided by Liu et al. (2007), modelling a scenario for a small supply chain can lead 

to a large PN representation; this fact makes the task of modifying the specified 

model even more complicated. The paper also does not discuss what type of SC 

disruptions can be modelled and whether causal relationships between different types 

of disruptions can be analysed. Finally, there is no explicit causal analysis between 

SC disruptive events and low SC performance. 

Wu et al. (2007) propose a networked-based modelling approach, called 

DA_NET, to study the propagation of disruptions through a supply chain system, and 

calculate their effect on SC performance. DA_NET is a variation of Petri nets, in 

which attributes can be specified for place and transition nodes, and decision logic of 

transition nodes can be defined. DA_NET operations involve the firing of transitions 

based on the token marking and specified decision logic, thus leading to a new token 

marking in the network and an update of the corresponding attributes. Reachability 

analysis can be performed on DA_NET, identifying the set of place and transition 

nodes that can be reached from a certain initial token marking; for this reachability 

set it is possible to calculate the attribute update. In the context of SCM, DA_NET 

place and transition nodes can be used to model an SC scenario, while SC 

performance attributes (e.g. cost and lead time) can be specified for each node in the 

network. SC disruptions can be analysed in the following way: By placing a token at 

the place node that is disrupted, one can perform reachability analysis, and thus 
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identify how the SC disruption is propagated across the SC network. By calculating 

the attribute update for the identified reachability set, it is possible to measure the 

impact of the SC disruption on SC performance. One of the advantages of DA_NET 

is that it is possible to “analyse sub-networks, as long as the attributes of the place 

and transition nodes are set” (Wu et al. 2007, p.1669); this brings benefits of 

scalability. Unlike the approach proposed by Liu et al. (2007), this approach allows 

to explicitly identify the effect of an SC disruption on SC performance. However, it 

is not specified in the paper whether root causes of low SC performance can be 

identified, especially when there are several root causes of different types of SC 

disruptions. Similarly, DA_NET seems to support only the forward tracking of 

effects of SC disruption, while the backward tracing of root causes of SC disruptions 

is not covered. The main limitation of DA_NET is the lack of conceptual building 

blocks that are specialised for modelling supply chains; this makes the SC modelling 

process difficult for domain experts that do not have experience in PN modelling. 

Furthermore, there is no distinction between different SC disruption types, and 

interrelationships between different disruption types are not considered. In addition, 

the authors recognise the limitations of modularity and big size of the defined 

models; this fact raises maintainability issues. 

Zegordi and Davarzani (2012) extend the approach of Wu et al. (2007) to deal 

with the last limitation. They employ Coloured Petri nets to distinguish between 

different SC disruption types and capture interrelationships between them. The 

proposed modelling approach, called CPND, closely follows the DA_NET approach, 

which is extended in two ways: Firstly, tokens of different colours exist in the 

network; different colours can be used for different SC disruption types. Secondly, 

the flow of coloured tokens through a transition node can change their colour or 

create new tokens of different colours; this way one can model relationships between 

different types of SC disruptions (e.g. one type of disruption gives rise to some other 

type of disruption). Reachability analysis can be performed similarly to Wu et al. 

(2007), thus tracking the propagation of SC disruptions and assessing their effect on 

SC performance. This work shares most of the strengths and weaknesses of 

DA_NET. The only difference is that CPND is sensitive to SC disruption types and 
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interrelationships between them. As in Wu et al. (2007), the main drawback is that it 

is not tailored to the SCM domain, thus perplexing the SC modelling process.  

3.2.1 Gaps in SC Disruption Analysis 

Related work in SC disruption analysis employs formal modelling techniques to 

represent SC operation scenarios and analyse the propagation of disruptions across 

the supply chain. The main strength of the approach proposed by Liu et al. (2007) is 

that causal paths between SC disruptions can be tracked, thus identifying root causes 

and effects of disruptive events. Wu et al. (2007) and Zegordi and Davarzani (2012) 

can identify the effects of SC disruptions on SC performance, which is a 

considerable advantage.  

We identify the following three gaps in related work in supply chain disruption 

analysis:   

• The proposed modelling methods are not sufficiently tailored to the SCM 

domain. This means that the process of SC modelling can be difficult for 

supply chain managers, thus limiting the usability of the suggested 

approaches. 

• The identification of root causes of low SC performance is not covered. This 

is a considerable gap in the case where several SC disruptive events of 

different types lead to low SC performance. 

• There are maintainability issues with respect to the supply chain modelling 

process. The lack of usable and modular SC modelling building blocks means 

that SC scenarios are modelled on an ad-hoc basis, leading to large and 

difficult to manage representations. 

3.3 Conclusions 

This chapter presented work in the areas of SC simulation and SC disruption analysis 

with respect to the research problem addressed in this thesis. Although there is an 

extensive body of work in SC simulation, the problem of analysing SC operation 

dynamics has been underdeveloped. Existing SC simulation approaches focus on 
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usability issues but do not explain simulation results. This is an important gap, as 

understanding the effect of SC decisions and activities of individual SC members on 

other SC members and overall SC performance is a prerequisite for SC improvement. 

SC agility aspects are typically not considered, and SC disruptions are not explicitly 

addressed. 

Recent research efforts in SC disruption analysis provide a useful insight into the 

causes and effects of disruptive events. However, the adopted modelling approaches 

are not adjusted to the area of supply chain management and do not allow for 

modularity, thus raising issues of usability and maintainability. Furthermore, existing 

approaches do not allow the identification of root causes of low SC performance.  

This thesis aims to fill these gaps and allow the analysis of SC operation 

dynamics for both normal and problematic SCM situations. To this end, a logic-

based approach is adopted for modelling and simulating SC operation. Our 

declarative modelling framework is presented in the following chapter. 
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Chapter 4 

4Modelling Supply Chain Operation 

Modelling supply chain operation for the purposes of this research should satisfy two 

requirements. First, the resulting models should cover the most important aspects of 

SC operation dynamics, as identified in Chapter 1, at both the local and the global 

level. Second, their formal representation should facilitate the explanation of the 

dynamics of the domain. The modelling approach presented in this chapter satisfies 

these requirements. We begin by discussing the boundaries of the studied problem 

area, clarifying what is not part of the domain (Section 4.1). We then conceptualise 

SC operation (Section 4.2) by identifying three categories of constructs: structural, 

behavioural and disruption-related. The resulting conceptual models are SCM-

specific and non-technical, and they satisfy the first requirement. The second 

requirement is satisfied by adopting a knowledge-based approach for formalising SC 

operation (Section 4.3). Technical abstractions and declarative specifications of SC 

operation constructs are discussed. The conceptualisation and formalisation of an SC 

example is also presented, illustrating that the proposed approach is useful for 

describing SC operation and the dynamics involved. 

4.1 Scope 

As stated by the research hypothesis specified in Chapter 1, the systems that we 

study are supply chains, and we focus on their operational behaviour. We are 

interested in generic SC operational behaviour, and hence we do not limit this study 
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to some particular business sector (e.g. food SCs). There is also no limitation with 

respect to SC size and structure; instead we consider SCs consisting of any number 

of tiers of varying depth. 

Basic entities in the SC system are the SC members, the market for the SC’s 

final product and the products, funds and information moving across the supply 

chain. SC members are permanent entities in the SC system and they perform 

operational activities, which cause the flow of products, funds and information. 

Similarly, the market for the SC’s final product is a permanent entity and it generates 

orders to the final nodes of the supply chain. On the contrary, products, information 

and funds are temporary entities in the SC, and they can be created, transformed or 

destroyed by SC members. 

We consider the SC system as closed with respect to its environment. The SC 

environment is anything outside the studied supply chain and its flows, such as other 

supply chains (e.g. competing supply chains) and companies that are not directly 

related to the studied supply chain. The wider business environment, as shaped by 

political, economic, social, technological, environmental or legal factors is not taken 

into account, unless it directly affects SC operation.  

We focus on operational aspects of supply chain management and the dynamics 

involved. Recognising that SC operation is affected by decisions on SC planning, 

demand forecasting and configuration, such decisions are implicitly included in this 

research. This means that the decisions on such matters are considered as input to SC 

operation, but the decision-making process on these issues and the related dynamics 

are beyond the scope of this research. For example, in order to study the operation 

dynamics of a particular SC, we take its configuration (i.e. the SC structure) into 

account, but we are not interested in the configuration procedure that led to this 

structure (i.e. the negotiation between different SC members during SC formation).  

In order to study SC operation dynamics, one needs to take into account both 

global (i.e. SC-wide) and local (i.e. SC member-specific) aspects of the domain. 

Therefore, a varying level of detail is adopted for the study of SC operation, 

including e.g. high-level overall SC performance, lower-level production operations 

at some SC member and detailed information on an order placed by some SC 

member. For reasons of simplicity, we do not explicitly consider the organisational 
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structure and the number and locations of sites of SC members. We also regard softer 

business aspects, such as trust and culture, as beyond the scope of this research. 

4.2 Conceptualising SC Operation 

Having clarified the scope of SC operation and, thus, aspects that are not part of the 

domain’s conceptualisation, this section presents the main constructs for 

conceptualising SC operation. These are classified into three categories: (1) structural 

constructs, which are things that exist in an SC and that are highly relevant to SC 

operation dynamics, (2) behavioural constructs, which describe the operational SCM 

behaviour of SC members and (3) disruption-related constructs, which are additional 

constructs, specialising on the description of problematic SC operation. We would 

like to make clear that this conceptualisation is not based on one research paper 

alone, but it has been developed given the wider theory of SCM, as presented in 

Chapter 2. 

4.2.1 Structural Constructs 

There are four main types of structural SC constructs: SC members, physical objects, 

information and events. SC members are the main actors of the SC, and they are 

understood as parties that add value to the SC. Examples of SC members are 

manufacturers, suppliers and wholesalers. Their behaviour, conceptualised in Section 

4.2.2, drives SC operation.  

There are different kinds of physical (material) objects that exist at some SC 

member or travel across the SC: products, resources and funds. The flow of products 

plays a crucial role in SC operation, as the supply chain’s goal is the availability of 

the right products in the right place at the right time. There are several types of 

products at each SC member, such as raw materials, subcomponents, components 

and finished products. These are specified in the corresponding bill of materials 

(BOM), which is a list of parts along with the quantities of each needed to create an 

end product (Reid and Sanders, 2002). Products can be held as inventory at SC 

members and their lifecycle status can be: on order (i.e. items that have been ordered 

and are awaited for receipt), on hand (i.e. items that are available for use or sale), 

 52



reserved (i.e. items assigned to some received order) and in process (i.e. items that 

are assigned to some manufacturing activity and are under transformation to finished 

goods). Categorising inventory according to its purpose, we identify cycle inventory 

and safety stock; cycle inventory is the “average amount of inventory used to satisfy 

demand between receipt of supplier shipments” (Chopra and Meindl, 2003, p.57), 

while safety stock is inventory held to counter uncertainty (Chopra and Meindl, 

2003). Resources are understood as equipment or machinery that is available at some 

SC member to support SC operation. As opposed to products, resources cannot be 

used up and they are not objects of exchange between SC members. They are 

typically characterised by some level of capacity, and their availability constrains SC 

operation. Examples of resources include transportation vehicles and production 

machinery. Funds flow across the SC (upstream) in return for the downstream flow 

of products. Their availability at some SC member is a prerequisite for the SC 

member’s operational behaviour. There are three categories of funds at some SC 

member: receivable (i.e. funds that are awaited for receipt from some customer for a 

specific order), on hand (i.e. funds that are available for use) and payable (i.e. funds 

assigned for the payment of some placed order). 

Information is available at each SC member and can be exchanged between SC 

members to support SC operation. It covers subjects such as orders (placed or 

received), sourcing or production lot sizes, SC partners (existing or prospective), etc. 

Certain information may be sensitive and, thus, only local (e.g. available funds), 

while other information may be happily exchanged in the form of messages (e.g. 

orders). Hence, the source of information at some SC member can be the SC member 

itself or other SC members. Distinguishing between the sources of information is 

useful, as SC members may decide to partially trust information received by other 

SC members. From now on we will call local information of the first type ‘data’, and 

transferred information of the second type ‘facts’.  

Events are incidents highly relevant to SC operation, and they can be the triggers 

but also the consequences of SC operation. They can occur at the global SC level 

(e.g. earthquakes) or at the local SC level (e.g. arrival of ordered items). Events 

occurring at some SC member may be internal (e.g. need for production) or external 
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(e.g. order receipt). Events typically give rise to SC members’ operational behaviour, 

the conceptualisation of which is discussed in the following section. 

4.2.2 Behavioural Constructs 

Three facets of SC members’ operational behaviour are identified: thinking, acting 

and interacting. Thinking refers to the decision-making process of SC members on 

operational matters. It may involve standard, routine decisions, such as when to place 

an order, or flexibility decisions, such as how to react to machinery breakage. This 

reasoning process can be simple or highly complex, and it can be based on 

predefined policies, best practices, recommended responses to specific situations or 

just common sense. As far as policies are concerned, we recognise sourcing and 

making policies as an integral part of SC members’ thinking behaviour; these 

policies can be time- or quantity-based. It is worth mentioning two popular ordering 

policies: the (R,Q) policy, according to which a batch of size Q is ordered when the 

inventory position drops below R, and the (s,S) policy, which dictates that when the 

inventory position drops below s, an amount up to the maximum level S is ordered 

(Axsäter, 2006). SC members’ thinking utilises existing information and drives their 

acting behaviour. 

Acting refers to the extrinsic behaviour of SC members, which causes the flow of 

products, funds and information across the SC. As such, acting is the most important 

aspect of SC members’ operational behaviour. We adopt the SCOR model (Supply 

Chain Council, 2008), as it is a widely accepted reference model of SC operation 

(Bolstorff and Rosenbaum, 2012). We, thus, recognise four areas of operational 

acting for each SC member: source, make, deliver and return. Note that SCOR’s fifth 

area of ‘plan’ corresponds to the thinking behaviour of this conceptual model. We 

also support the varying level of detail proposed by the SCOR model, from the top to 

the configuration level, and from the process element to the implementation level. 

This way, acting behaviour can be captured at different granularity levels. For 

example, sourcing behaviour can be modelled at the top level as ‘source’, at a lower 

level as ‘source stocked product’ and at an even lower level as ‘authorise supplier 

payment for sourced stocked product’. Note that we focus on the execution aspect of 

SCOR’s configuration level, and we encompass all three suggested manufacturing 
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strategies: make to stock (i.e. make products based on demand forecasts), make to 

order (i.e. make products based on received customer orders) and engineer to order 

(i.e. design and make products based on customer specifications). It is worth 

clarifying that the SC members’ acting conceptualisation utilises, but is not limited to 

the SCOR model; this means that we allow for richer or more specialised acting, if 

needed. Acting behaviour typically requires the availability of products, resources, 

funds and information, which are, as a result, transformed. Often an SC member’s 

acting behaviour brings about his interacting behaviour. 

Interacting refers to communication between SC members. As mentioned in the 

previous section, this involves the exchange of information in the form of messages. 

SC members may communicate as part of their standard order management 

behaviour or in order to deal with unexpected situations. Their interaction can be 

simple (e.g. inform about receipt of order) or highly complex (e.g. negotiate on 

changing ordered amount).  

Apart from the three constructs of operational behaviour described above, we 

also identify behavioural meta-constructs on SC performance. As discussed in 

Chapter 2, performance measurement is an important aspect of SC operation, and 

managers wish to understand the dynamics of their SCs with respect to performance 

metrics. We use the SCOR-based framework for SC performance measurement 

(Supply Chain Council, 2008) for the reasons explained in Chapter 2, and recognise 

performance metrics along four SC performance attributes: reliability, 

responsiveness, cost and asset management. The fifth performance attribute proposed 

by the SCOR model, agility, is outside our conceptualisation scope, as it is more 

related to SC re-planning rather than operational activities, and it involves potential 

rather than actual behaviour (Beamon, 1999), thus its measurement is often 

assumption-based (i.e. contingency plans serve as the source of relevant data). We 

support the varying level of detail proposed by the SCOR model, from level 1 to 

level 3. This way, SC performance can be captured at different granularity levels. For 

example, cycle time can be modelled at the top level as ‘order fulfilment cycle time’, 

at a lower level as ‘source cycle time’ and at an even lower level as ‘authorise 

supplier payment cycle time’.  
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4.2.3 Problematic SC Operation 

We conceptualise problematic SC operation with respect to product flow across the 

SC, and we identify two main aspects: problematic situations that arise during SC 

operation and low SC performance. As far as the first is concerned, five types of 

problematic situations are identified: First, delays can occur at some SC member. 

These delays may involve any SCOR-based operational acting area, such as 

sourcing, making, delivering or returning. The delays may refer to the long duration 

of some acting behaviour, its late starting or its late completion. Taking these two 

dimensions into account, we can have source-start delays, make-finish delays, 

deliver-duration delays, etc. Second, quality issues can arise at some SC member, 

involving either resources or products that are available. Such examples are machine 

breakdowns, product damages and errors with items that lead to their destruction. 

Third, SC members can act unusually, possibly as a result of flexibility decisions that 

they make in the case of problematic situations. Such an example is the urgent 

sourcing from a non-standard supplier, i.e. the placement of a rush order to an 

alternative supplier which should be quickly fulfilled so as to avoid a stockout 

situation (Corbett, 2001). Fourth, demand fluctuation can take place, a typical 

example of which is the receipt of big orders (i.e. bigger than usually or expected). 

Fifth, cancellation of order deliveries can take place, which means that the delivery 

of some placed order can be cancelled by the corresponding supplier. Categorising 

these five types of problematic situations based on their source, the first three are 

experienced internally, the fourth is experienced through the demand side and the 

fifth through the supply side. 

As far as low SC performance is concerned, this may involve any of the SCOR-

based performance metrics, at any level of detail. SC performance is understood as 

low when the actual values of the metrics are beyond some threshold defined by the 

SC or the corresponding SC member. An example of low SC performance is cost that 

is higher than a certain value. Another example is perfect order fulfilment that is 

lower than some desired value. For reasons of simplicity, we focus on the following 

subset of cases of low SC performance: high cost, high cycle times, low on time 

rates.  
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These constructs can be used to specify problems that arise during SC operation. 

In order to facilitate the analysis of dependencies between such problems and to 

allow relevant explanation, we define causal relationships between them. We 

understand causal relationships in the following way: A causal relationship exists 

between two problematic situations if one is a possible reason for the other. For 

example, making can finish late because there is a “making duration delay”. A 

“making duration delay” is a possible but not the only reason for the fact that making 

finishes late, as alternative reasons might exist. Moreover, the existence of a “making 

duration delay” doesn’t necessarily lead to a “making finish delay”, as some making 

tasks could be speeded up. 

Before specifying such causal relationships it is worth explaining the general 

model, based on which these are derived. Any type of SC operational acting (e.g. 

making) can be considered as a process, as shown in Figure 4.1. This means that SC 

operational acting has a start and finish time, and it comprises of several steps. It also 

transforms specific inputs into outputs (both of which are usually materials/products) 

and it uses particular resources. Successful SC operational acting depends upon all 

these conditions, and hence it may finish late if any of these is not met. This means 

that SC operational acting may finish late if the required input or resources become 

available late, or if any of its constituent steps has a duration delay. The same 

resources can successively be used for SC operational acting, and thus a resource 

may become available late if it is released late by previous SC operational acting.  

 
Figure 4.1: SC operational acting involves inputs I, outputs O and resources R, 

consists of several steps and has a start and finish time 

According to the SCOR model, there are interfaces between different types of SC 

operational acting (e.g. between making and delivering), allowing the flow of 

products within and across SC members. Figure 4.2 depicts such interfaces in an 
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abstract form, highlighting that the output of some type of SC operational acting can 

serve as the input for the following type of SC operational acting (e.g. made products 

are used for delivering). This means that there is a dependency between the two, and 

hence the input required for some SC operational acting may become available late if 

the output of a preceding linked SC operational activity becomes available late. The 

same type of problem occurs if the amount of the involved output is lower than the 

input needed.  

 
Figure 4.2: Different types of SC operational acting are linked, sharing their inputs 

and outputs 

Based on the above general model, a set of causal relationships has been defined. We 

should clarify that our aim is not to provide an exhaustive list of causal relationships 

for problematic SC operation, but to capture the most important and typical ones. We 

focus on the SC flow of products as a result of sourcing, making and delivering, and 

on the dynamics involved. Resource constraints (e.g. machinery usage) are also taken 

into account. We assume that unusual behaviour is costly, which is a natural 

assumption to make. Given this scope, we identify the following causal relationships: 

1.  Sourcing finishes late because the needed sourced materials arrive late. 

2.  Sourcing finishes late because there is a sourcing duration delay. 

3.  The needed sourced materials arrive late because their delivery finishes late. 

4.  Making finishes late because the needed materials (i.e. production 

components) for making become available late. 

5.  Making finishes late because the needed resources for making become 

available late. 

6.  Making finishes late because there is a making duration delay. 

7.  The needed materials for making become available late because their 

sourcing finishes late. 
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8.  The needed resources for making become available late because the previous 

making in which they were used finished late. 

9.  Delivering finishes late because the needed products for delivery become 

available late. 

10.  Delivering finishes late because the needed resources for delivery become 

available late. 

11.  Delivering finishes late because there is a delivering duration delay. 

12.  The needed products for delivering become available late because their 

making finishes late. 

13.  The needed products for delivering become available late because this 

delivery involves an unusually big order. 

14.  The needed products for delivering become available late because there is a 

shortage due to a previous unusually big order. 

15.  The needed resources for delivering become available late because the 

previous delivering in which they were used finished late. 

16.  Unusual acting takes place due to some other unusual acting. 

17.  Unusual acting takes place due to a flexibility decision. 

18.  A flexibility decision is made because of a problematic situation. 

19.  The special case of a problematic situation that involves the communication 

of a flexibility decision is due to that flexibility decision. 

20.  The cost is high because unusual acting takes place. 

21.  The on time rate is low because some orders are delivered late. 

22.  The cycle time is high because some duration-delays occur. 

Most of these causal relationships are self-explanatory, and hence we will not further 

describe them. However, it is worth discussing the constructs of problematic SC 

operation that they refer to. Causal relationships 1-15 and 21-22 refer to delays, 

while 13 and 14 refer to demand fluctuations. The subject of causal relationships 20-

22 is low SC performance, while 16, 17 and 20 refer to unusual acting. Causal 
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relationships 18 and 19 are more generic and potentially cover all constructs of 

problematic SC operation. 

One can easily observe that there are interdependencies between the identified 

causal relationships. We will demonstrate this through two examples. The first 

example deals with causal relationships for delay-suffering SC operation. Suppose 

that making at some SC member finishes late. This can be because the needed 

materials for making become available late (given 4), which can be due to their late 

sourcing (given 7), and this fact can be due to their late arrival at the SC member 

(given 1). A possible reason for this late arrival is that their delivery by the supplier 

finishes late (given 3), which can be due to a delivering duration delay (given 11). 

Based on this chain of causal relationships, we can conclude that a possible reason 

for the making finish delay at some SC member is a delivering duration delay at his 

supplier. The second example deals with causal relationships for unusual SC 

operation. Suppose that a problematic situation (e.g. error with items) occurs at some 

SC member. This can lead to a flexibility decision (given 18), which can lead to 

unusual acting (given 17). Unusual acting is a possible reason for high cost (given 

20). Based on this chain of causal relationships, we conclude that errors with items 

can result in high cost. 

4.2.4 Conceptual Model Example 

Let us now illustrate the presented conceptualisation approach through an example of 

a conceptual model of SC operation. We refer to the SC introduced in Chapter 1, 

which will be used throughout the thesis as a demonstrating case. We present the 

structural and behavioural constructs, and we discuss problematic operation for this 

supply chain. 

The SC, presented in Figure 4.3, consists of eight main SC members across four 

tiers: Supplier1, Supplier2, Supplier3, Supplier4, Supplier5, Manufacturer, Retailer1 

and Retailer2. There are three additional, secondary SC members that are in charge 

of shipping items for particular SC members: Transporter1, Transporter2 and 

Transporter3 (commissioned by Supplier1, Supplier2 and Supplier4, respectively). It 

is worth mentioning that Supplier5 is not a standard SC member; instead he acts as a 

backup supplier for Supplier4, accommodating urgent orders very quickly but costly. 
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Figure 4.3: Example SC structure 

There are five types of products that flow along the SC: Product1, Product2, 

Product3, Product4 and Product5. SC members provide one or more types of 

products to their customers. Table 4.1 summarises relevant information, along with 

information on the involved BOMs. The products that exist at some SC member as 

inventory have status of the types discussed in Section 4.2.1. For example, P1 items 

at Supplier4 can be on hand, in process or on order. Note that no safety stock is kept 

at any SC member. 

SC member Product Bill Of Materials 

Supplier1 Product1 (P1)  

Supplier2 Product2 (P2)  

Supplier3 Product3 (P3)  

Supplier4 Product4 (P4) P4 = 1 × P1 + 4 × P2 

Manufacturer Product5 (P5) P5 = 1 × P4 + 2 × P2 + 3 × P3 

Supplier5 Product1 (P1), 
Product2 (P2)  

Table 4.1: Products provided by each SC member 

As far as resources are concerned, Supplier1 has one machine for production, 

Supplier2 has three machines, Supplier3 has one truck, Supplier4 has one machine 

and Manufacturer has two machines and four trucks. Moreover, Transporter1 has one 

truck, Transporter2 has three trucks and Transporter3 has two trucks. As far as 

information is concerned, SC members keep information on the subjects discussed in 

Section 4.2.1. For example, Supplier4 keeps information on the following subjects: 

current suppliers for P1 and P2, urgent supplier for P1 and P2, transporter for 
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shipments, standard and urgent sourcing lot sizes for P1 and P2, manufacturing lot 

size for P4, placed orders, received orders, scheduled production activities and 

placed transportation requests. The events that occur at this SC are tightly coupled to 

SC operation. For example, the events that occur at Supplier4 are of the following 

types: need for standard sourcing of P1 or P2, need for urgent sourcing of P1 or P2, 

need for P4 production, scheduled order receipt, scheduled production and order 

receipt.  

The SC members’ thinking behaviour involves policies and flexibility decisions. 

The sourcing and making policies of SC members in this scenario are time-based.  

Supplier1 makes 6 P1 every 3 days, while Supplier2 makes 12 P2 every day. 

Supplier4 makes 6 P4 every 3 days, and sources 6 P1 every 3 days and 16 P2 every 2 

days. Manufacturer makes 4 P5 every 2 days, and sources 4 P4 every 2 days, 8 P2 

every 2 days and 18 P3 every 3 days. Retailer1 sources 3 P5 every 2 days, while 

Retailer2 sources 1 P5 every 2 days. It is worth mentioning that the flow rate of 

products across the SC is fairly stable and the timing and amounts involved in 

sourcing, making and delivering throughout the SC are well-tuned. Flexibility 

decision-making in this SC involves mainly reacting to errors with items. For 

example, Supplier4 decides to urgently source P2 items whenever there is an error 

with P2 on hand items. Moreover, Supplier4 decides to urgently source P1 items 

whenever he is informed about a cancellation of an order delivery for P1. 

The SC members’ acting behaviour involves sourcing, making and delivering. 

The SCOR-based processes that are relevant to this scenario are presented in Table 

4.2, and they all involve stocked products (i.e. all SC members make to stock). Note 

that Table 4.2 also includes some special cases of processes: S1.1u and S1.24u 

involve urgent sourcing, and S1.24u is a combination of receiving and transferring 

sourced products. Figure 4.4 shows the corresponding processes for each SC 

member. The names of some processes in this figure include the involved product; 

for instance, Supplier4’s S1.2p2 receives product P2. It is also worth mentioning that 

the process notation in this figure includes two numbers (at the right-hand corners of 

the process boxes). The number at the upper right corner refers to the process’s cost, 

while the number at the lower right corner refers to its duration. 
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SC operation type Process Code Process Name 

Source S1.1 Schedule Product Deliveries 

 S1.2 Receive Product 

 S1.3 Verify Product 

 S1.4 Transfer Product 

 S1.1u Schedule Urgent Product Deliveries 

 S1.24u Urgently Receive & Transfer Product 

Make M1.1 Schedule Production Activities 

 M1.2 Issue Materials for Production 

 M1.3 Produce 

 M1.4 Package 

 M1.6 Release Product 

Deliver D1.2 Receive Order 

 D1.3 Reserve Inventory 

 D1.11 Load Product on Vehicle 

 D1.12 Ship Product 

 D1 Deliver 

Table 4.2: SCOR-based processes for example SC operation 

The main interaction between SC members in this scenario is for order management 

reasons. This means that they send messages to place orders and make transportation 

requests, to inform about order deliveries, cancellations of order deliveries and 

fulfilled transportation requests. 

We are interested in the following SC performance metrics for this SC: cost for 

each SC member (corresponding to SCOR’s CO1.1 metric) and total SC cost, on 

time rate for each SC member (corresponding to SCOR’s RL2.2 metric) and cycle 

time for each SC member’s source/make/deliver operations (corresponding to 

SCOR’s RS2.1, RS2.2 and RS2.3 metrics, respectively). 
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Figure 4.4: Business process models for example SC 
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As far as problematic SC operation is concerned, the following problematic 

situations can occur in this SC: delays, errors with items, big orders, cancellations of 

order deliveries and unusual processes. The types of unusual processes for this SC 

involve urgent sourcing and delivering, and they include Supplier4’s S1.1u and 

S1.24u processes for P1 and P2 and Supplier5’s D1 process. These problematic 

situations can cause low SC performance. 

The SC operation dynamics of this scenario are complex, as there are several 

products flowing across the SC, and the SC structure implies several dependencies 

between SC members. For example, Supplier4 needs P2 items, which he sources 

from Supplier2. Hence, Supplier2’s making policies and the resulting making 

behaviour affect the availability of P2 at Supplier4. And since Supplier4 uses P2 

items for the manufacturing of P4, Supplier2’s making behaviour indirectly affects 

the availability of P4 at Supplier4. This also means that a making delay at Supplier2 

could be propagated to Supplier4, causing a making delay of P4, which could lead to 

delivery delays and, consequently, result into low on time rate for Supplier4. Another 

example of complex dynamics involves the indirect dependency between Supplier4 

and Manufacturer with respect to P2. Since Supplier2 delivers P2 items to both 

Supplier4 and Manufacturer, the availability of P2 items at Supplier4 indirectly 

depends on Manufacturer’s sourcing policies for P2. 

The conceptual model of this scenario demonstrates that the conceptualisation 

constructs discussed in Section 4.2 are appropriate for describing SC operation in a 

sufficient way. The resulting conceptual model is simple to understand, and it 

focuses on particular aspects of the operation of this SC scenario (e.g. returns and the 

flow of funds are not considered). Nevertheless, it is comprehensive and powerful in 

two ways. First, it expresses the scenario’s richness, including e.g. flexibility aspects 

and urgent sourcing. Second, it captures the scenario’s operation dynamics, 

considering SC members’ behavioural interdependencies with respect to product 

flow. 
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4.3 Formalising SC Operation 

Having conceptualised SC operation, this section presents a knowledge-based 

approach for its formalisation. Structural, behavioural and disruption-related 

constructs are declaratively specified through Prolog-based predicates (Clocksin and 

Mellish, 2003), and illustrative examples are provided. The choice of a declarative 

formalism brings benefits of maintainability and reusability, a point that is further 

discussed in Chapter 6. 

4.3.1 Structural Constructs 

SC members are technically specified through intelligent agents (Wooldridge, 2001). 

There are three main reasons behind this decision. First, intelligent agents’ 

characteristics of autonomy, social ability, reactivity and pro-activeness are highly 

relevant to SC members’ behaviour during SC operation. This has been extensively 

discussed in Chapter 2. Second, an agent-oriented view of SC operation allows its 

study at two levels: the SC member-specific (which corresponds to an individual 

agent) and the global, holistic view of the SC (which corresponds to the multiagent 

system). This is particularly useful for analysing SC operation dynamics. Third, an 

agent-based abstraction of SC members is appropriate for capturing their operational 

behaviour, as conceptualised in Section 4.2.2. This means that an SC member’s 

thinking, acting and interacting can be represented through corresponding intelligent 

agent layers. This is further explained in Section 4.3.2. The predicate-based 

definition of agent-oriented SC members is provided below, along with an example 

(in order to distinguish between the two, the definition is given in bold). Note that the 

following predicate is used to explicitly enumerate SC members; in order to further 

describe SC members (e.g. their policies or their state), separate definitions are 

needed. Such definitions are provided at the rest of Section 4.3 and they include a 

reference to agent-based SC members. 

supply_chain_member(AgentId) 

supply_chain_member(applessupplier) 

Products and resources are entities that exist at some SC member at a certain 

timepoint, and they thus belong to the corresponding agent’s local environment. 
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Their definition is entity-oriented and does not explicitly distinguish between 

products and resources. This generic approach is adopted, as it allows for economy 

when implementing the simulation environment, presented in Chapter 5. The 

predicate-based definition of such entities is provided below, along with one example 

for each (product and resource).  

entity_occ(AgentId, EntityName, EntityId) 

entity_occ(applessupplier, apple, prod_as23) 

entity_occ(applessupplier, truck, res_as2) 

In the case of products, it is important to specify inventory levels at some SC 

member at a certain timepoint. The predicate-based definition of inventory is 

provided below, and it captures information on the inventory status (as described in 

Section 4.2.1), its amount and the corresponding individual entities. The status can 

be on_hand, on_order, reserved or in_process. The form of ListOfEntityIds depends on 

the type of status, and there are three cases: (1) In the case of on_hand inventory 

definition, it includes only the list of their Ids, (2) in the case of on_order or reserved 

inventory definition, it includes the list of their Ids along with the involved OrderId, 

and (3) in the case of in_process inventory definition, it includes the list of their Ids 

along with the involved ProductionId. Two examples are provided to illustrate this 

point. 

inventory(AgentId, Status, EntityName, EntityAmount,ListOfEntityIds) 

inventory(applessupplier, on_hand, apple, 2, [prod_as23, prod_as24]) 

inventory(applessupplier, reserved, apple, 3,  

  [prod_as13/order3, prod_as14/order3, prod_as15/order4a]) 

Other product-related concepts include safety stock and the bill of materials. 

Their predicate-based definitions are provided below, along with illustrative 

examples. Note that BOMList includes information on the components’ entity names 

followed by the amount required for making one final product item. 

safety_stock(AgentId, EntityName, SafetyStockAmount) 

safety_stock(applessupplier, apple, 15) 

bill_of_materials(AgentId, BOMId, EntityName, BOMList) 

bill_of_materials(manufacturer, man_bom1, smoothie,  

  [apple/5, banana/3]) 
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The level of funds at some SC member at a certain timepoint is specified by 

distinguishing between the three funds’ categories, discussed in Section 4.2.1: on 

hand, payable and receivable. The predicate-based definition of funds is provided 

below, along with two examples. Note that the ListOfOrderIds depends on the funds’ 

category, and there are two cases: (1) In the case of on hand funds, it is empty, and 

(2) in the case of payable or receivable funds’ definition, it includes the list of the 

amounts along with the involved OrderId. 

funds(AgentId, FundsCategory, FundsAmount, ListOfOrderIds) 

funds(applessupplier, on_hand, 12000, [ ]) 

funds(applessupplier, receivable, 3000, [2000/order3, 1000/order4a]) 

The information at some SC member at a certain timepoint is specified by taking 

its source into account, as discussed in Section 4.2.1. There are two broad categories 

of specification of information that is created locally by the SC member: generic and 

specialised. Locally created information is generically specified as data, and its 

predicate-based definition is provided below, along with an example.  

data(AgentId, SubjectID, Content) 

data(applessupplier, current_transporter, transporter5) 

Specialised locally created information involves planned sourcing, making and 

delivering, and it includes placed and received orders, scheduled production and 

transportation requests. The predicate-based definition of such information is 

provided below, along with illustrating examples. These definitions are self-

explanatory, and hence we will not further describe them. 

placed_order(OrderId, AgentId, OrderingToAgentId, 

  DestinationAgentId, EntityName, EntityAmount, 

  ScheduledReceiptTime, ActualReceiptTime) 

placed_order(order3, manufacturer, applessupplier, manufacturer, 

  apple, 2, 10, 10) 

received_order(OrderId, AgentId, OrderingAgentId, 

  DestinationAgentId, EntityName, EntityAmount, 

  ScheduledDeliveryTime, ActualDeliveryTime) 

received_order(order3, applessupplier, manufacturer, manufacturer, 

  apple, 2, 10, 10) 

scheduled_production(ProductionId, AgentId, EntityName, 

  EntityAmount, ScheduledProdTime, ActualProdTime) 
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scheduled_production(prod2a, applessupplier, apple, 5, 12, 12) 

transportation_request(TransportRequestId, AgentId, 

  TransportationAgentId, DestinationAgentId, EntityName, 

  EntityAmount, ListOfEntityIds, ForOrderId) 

transportation_request(transp108, applessupplier, transporter5, 

  manufacturer, apple, 2, [prod_as13, prod_as14], order3) 

Information received by other SC members is specified as facts, and its 

predicate-based definition is provided below, along with an example. Note that the 

facts’ content may vary, covering subjects such as the successful delivery of an order 

or the cancellation of an order delivery. 

fact(AgentId, Content) 

fact(manufacturer, cancel_delivery(order3, apple, 2)) 

The predicate-based definition of events that occur at some SC member at a 

certain timepoint is provided below, along with an example. Note that InvokerId refers 

to the invoker of the event occurrence, such as a supply chain member or the 

ProductionId of a scheduled production, while the flag of an event links the event 

occurrence to a specific sourcing, making or delivering operation (more specifically, 

to the corresponding BPM instance, a point that is discussed in Section 4.3.2), if such 

a link exists. 

event(AgentId, EventId, EventName, EventFlag, InvokerId, T) 

event(applessupplier, e28, scheduled_production, bpm-e26, prod2a,12) 

As far as the semantics of the formalised structural constructs are concerned, it is 

worth clarifying three points. First, the SC state at a certain timepoint can be 

thoroughly described through the constructs defined above (i.e. with respect to 

events, entities, information and funds available at different SC members). Second, 

constraints on the SC state can be a prerequisite for SC operation, and specifically for 

SC members’ thinking, acting and interacting (e.g. a resource may be needed for 

acting). Third, the SC state is transformed through SC operation (e.g. interacting may 

update the information available at some SC member). The last two points are 

closely related to the execution semantics of behavioural constructs, and are thus 

further discussed in the following section.  
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4.3.2 Behavioural Constructs 

In Section 4.2.2 we conceptualised that SC members think, act and interact. Mapping 

this conceptualisation to an agent-oriented representation (Wooldridge, 2001), we 

regard each SC member as an intelligent agent consisting of three layers: 

• Reasoning layer: corresponds to the agent’s ability to think and make 

decisions  

• Process layer: corresponds to the agent’s ability to execute processes, and 

thus act upon the environment 

• Communication layer: corresponds to the agent’s ability to receive and send 

messages, and thus interact with other agents 

These three layers are tightly interconnected. Decisions made through the agent’s 

reasoning layer are read by his process layer, thus triggering his acting behaviour. At 

the same time, processes executed through the agent’s process layer change his 

environment, a situation which can initiate the agent’s decision-making through his 

reasoning layer. Furthermore, the execution of processes through the agent’s process 

layer can involve some communicative action, realised through his communication 

layer, while the receipt of some message through the agent’s communication layer 

can be the prerequisite for the execution of certain processes through the agent’s 

process layer. The agent’s reasoning and communication layer are connected in a 

similar way: A decision made through the agent’s reasoning layer might be 

communicated by utilising his communication layer, while the receipt of some 

message through the agent’s communication layer might fire a decision-making 

process through his reasoning layer.  

4.3.2.1 Business Rules 

An agent’s reasoning layer (and hence an SC member’s thinking behaviour) is 

represented through Business Rules (The Business Rules Group, 2000). There are 

two main reasons behind this decision. First, BRs are a generic and expressive 

abstraction that can describe various types of principles that guide SC reasoning, 

such as policies, best practices and flexibility guidelines. Second, BRs are 

appropriate for guiding reasoning at different levels of detail and complexity; a 
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simple and concise BR can support simple decision-making, while the combination 

of several such BRs can effectively lead to highly complex decisions. A generic, 

declarative specification of a BR at some SC member is provided below.  

br(AgentId, BrID, BrType, BrContent) 

The form of a BR’s content depends on its type, and we recognise three types of 

BRs for the context of SC operation: policies, flexibility BRs and process 

preconditions. The general form of a BR’s content is the following: ifthen(IFpart, 

THENpart), where IFpart expresses the conditions of the BR, and THENpart its 

consequences. IFpart is a declarative expression, consisting of conjunctions and/or 

disjunctions of predicates, and it can be highly complex, if needed. THENpart is a list 

of consequences, which can be of reasoning, acting or interacting nature.  

BRs for time- and quantity-based policies follow this formalism, and two 

examples are provided below. The first expresses a time-based production policy, 

according to which there is a need for production every 5 timepoints. The second 

expresses a quantity-based policy, according to which there is a need for production 

whenever on hand inventory drops below 20. The representation of BrContent within 

(R,Q) and (s,S) policies is more specialised and does not follow the general form 

described above. Instead the form of BrContent is rq_policy(EntityName, R, Q) and 

ss_policy(EntityName, SmallS, BigS) respectively. 

br(applessupplier, br_as_m1, policy, ifthen( 

  current_time_multiple_of(5), [create_event(need_for_production)])) 

br(applessupplier, br_as_m2, policy, ifthen( 

  less_or_equal(current_inventory(apple,on_hand),20), 

  [create_event(need_for_production)])) 

The technical specification of flexibility BRs follows the general form of 

BrContent. Conceptually, THENpart defines the reaction to the problematic situation 

described through IFpart. It is worth noting that flexibility-BRs are conceptually 

different from policy-BRs, but there is no computational difference between the two. 

This issue is clarified in Chapter 5, where we specify the execution semantics of 

BRs. We should also mention that we consider the explicit specification of flexibility 

business rules as a strength of our modelling framework, as this way SC agility 

aspects are incorporated. A flexibility BR example is provided below, which 
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specifies that urgent sourcing is needed if the current inventory reaches the safety 

stock level. 

br(applessupplier, br_as_flex1, flexibility_br, ifthen( 

  current_inventory_reaches_safety_stock_level(apple), 

  [create_event(need_for_urgent_sourcing)])) 

Business rules that serve as process preconditions follow the br/4 specification, 

but their BrContent does not follow the ifthen/2 form. Instead, it consists of one 

predicate, which can be negated if needed. Hence, this category of BRs differs from 

the previous two with respect to both conceptual and computational aspects. An 

example of precondition-BR is provided below. 

br(applessupplier, br_as_pr3, precondition, \+ big_order(OrderId)) 

The execution semantics of the formalised business rules are discussed in 

Chapter 5. However, it is worth mentioning that a BR with content of ifthen/2 form is 

executed if the conditions expressed in its IFpart are satisfied, and its execution brings 

about the effects described in its THENpart. Let us now link these semantics to the 

semantics of the structural constructs that were formalised in the Section 4.3.1: The 

conditions of a BR involve the SC state (as described through the definition of 

structural constructs), and the effects of a BR’s execution modify the SC state. 

Business rules represent an SC agent’s reasoning layer in a static way, while its 

decision-making process can be driven through a reasoning engine. Hence, a 

reasoning engine is used by agents to make decisions based on the defined BRs, and 

a logic-based implementation of such a reasoning engine is discussed in Chapter 6. 

4.3.2.2 Business Processes 

An agent’s process layer (and hence an SC member’s acting behaviour) is 

represented through Business Processes. There are three main reasons behind this 

decision. First, we conceptualised SC members’ acting based on SCOR model’s 

processes, which are naturally formalised through BPs. Second, BPs are suitable for 

capturing aspects of SC operational dynamics, given that their preconditions and 

postconditions are formally specified. Third, BP decomposition allows for 

description of SC members’ acting behaviour at different levels of detail.  
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We recognise FBPML (Chen-Burger et al. 2002) as a useful foundation for 

formalising SC business processes, as it has formal semantics, it allows for the 

description of business process models with complex structure, and it facilitates their 

translation into executable workflows. The definitions presented in this section are an 

extension of previous work (Manataki, 2007) that followed FBPML. The declarative, 

predicate-based specification of a BP at some SC member is provided below. A 

process is executed if its preconditions (defined in PreconditionList) and trigger 

conditions (defined in TriggerList) hold. The execution of a process has the duration 

and cost defined in process/8 and it brings about the performance of the actions 

defined in ActionList. The execution semantics of the formalised business processes 

are further discussed in Chapter 5. 

process(AgentId, Pid, PName, TriggerList, PreconditionList, 

  ActionList, Duration, Cost) 

An illustrating example of a BP definition is provided below. It is a process at 

applessupplier, and it involves producing apples. It is triggered for execution at the 

time of a scheduled production (and hence once a scheduled_production event 

occurs) and it is executed if there is information on this scheduled production and if 

one farmer is available. The execution of this process brings about the performance 

of the following actions: apples are created (of an amount as prescribed at the 

scheduled production) and they are added to the in_process inventory. The process is 

executed for 2 timepoints and costs 70 money units. 

process(applessupplier, as_m13, produce_apples, 

  [exist(event_occ(scheduled_production, ProductionId))], 

  [exist(scheduled_production(ProductionId, apple, AppleAmount)), 

   exist(entity_occ(farmer), 1, FarmerId)], 

  [create_entity(internal, apple, AppleAmount, AppleIds), 

   add_items_to_inventory(in_process/ProductionId, apple, 

     AppleAmount, AppleIds)],  

  2, 70). 

We will now explain interesting arguments of process/8. A trigger is an event 

that occurs at the SC agent and that invokes process execution. There are two forms 

of trigger conditions: exist(event_occ(EventName, EventInvokerId)) and 

exist(event_occ(EventName)). The arguments of these predicates refer to event-related 

 73



information, as defined at event/6. If a process has no triggering conditions, then its 

TriggerList is of the form [true]. 

A precondition is a requirement for process execution which makes sure that its 

actions can be carried out successfully by the agent. Preconditions typically involve 

the availability of entities and information at some SC member. There are two forms 

of entity-related preconditions: exist(entity_occ(EntityName), EntityAmount, EntityStatus, 

EntityIds) and exist(entity_occ(EntityName), EntityAmount, EntityIds). The first form is 

mostly used for products (which have some inventory status), while the second is 

mostly used for resources. The produce_apples process example provided earlier 

involved an entity-related precondition of the second type. One precondition form is 

identified for the availability of funds: exist(funds(FundsAmount, FundsStatus)). There 

are five forms of information-related preconditions. Three of these involve placed 

orders, received orders and scheduled productions, while the other two involve the 

existence of data and facts at the SC agent. The respective predicates are provided 

below. 

exist(placed_order(OrderId, OrderingToAgent, DeliveringToAgent, 

  EntityName, EntityAmount, ScheduledReceiptTime)) 

exist(received_order(OrderId, OrderingAgentId, DestinationAgentId, 

  EntityName, EntityAmount, ScheduledReceiptTime)) 

exist(scheduled_production(ProductionId, EntityName, EntityAmount)) 

exist(data(SubjectID, Content)) 

exist(fact(Content)) 

Apart from entity- and information-related preconditions, there are also BR-

based preconditions. The specification of such preconditions within the process 

definition has the form br(BrID), where BrID is a business rule of type precondition 

that is defined through br/4. 

A process’s action is carried out when the process completes its execution, and it 

results into a modification of the world state. Actions typically transform, create or 

delete entities, funds and information, and they cause the occurrence of events. We 

identify four entity-related actions, the predicate-based representation of which is 

provided below. Actions create_entity/4 and create_entity_from_components/5 create a 

number of entities at the same or at a different SC agent, with the difference that 

create_entity_from_components/5 uses up the required components. Action 
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delete_entity/3 deletes a set of entities, while move_entity/4 involves the physical 

movement of a set of entities to some other SC member.  

create_entity(ForAgentId, EntityName, EntityAmount, NewEntityIds) 

create_entity_from_components(ForAgentId, EntityName, EntityAmount, 

  ComponentIds, NewEntityIds) 

delete_entity(EntityIds, EntityName, EntityAmount) 

move_entity(EntityIds, EntityName, EntityAmount, DestinationAgentId) 

Additional actions are identified for inventory management, thus transforming 

the inventory status of products kept in inventory. We identify six inventory-related 

actions, the predicate-based representation of which is provided below. The first four 

transform the inventory status of specific products, while the last two update 

inventory amount. 

add_items_to_inventory(Status, EntityName, EntityAmount, EntityIds) 

remove_items_from_inventory(Status, EntityName, EntityAmount, 

  EntityIds) 

update_items_status(FromStatus, ToStatus, EntityName, EntityAmount, 

  EntityIds) 

include_items_into_inventory(EntityName, Status, EntityIds) 

increase_inventory_amount(EntityName, Status, EntityAmount) 

decrease_inventory_amount(EntityName, Status, EntityAmount) 

Four funds-related actions are identified, and their predicate-based representation 

is provided below. The first two involve the flow of funds for a satisfied order, while 

the rest involve their local status update. 

make_payment(FundsAmount, OrderId) 

receive_payment(FundsAmount, OrderId) 

reserve_payable_funds(FundsAmount, OrderId) 

add_receivable_funds(FundsAmount, OrderId) 

We identify six information-related actions, the predicate-based representation of 

which is provided below. The first two involve the transformation of data, while the 

rest involve placed and received orders, scheduled productions and transportation 

requests. 

create_data(SubjectID, Content) 

delete_data(SubjectID) 

 75



place_order(OrderId, OrderingToAgent, ToDeliverAtAgent, EntityName, 

  EntityAmount, ScheduledReceiptTime) 

record_received_order(OrderId, OrderingAgentId, DestinationAgentId, 

  EntityName, EntityAmount, ScheduledReceiptTime) 

schedule_production(ProductionId, EntityName, EntityAmount) 

create_transportation_request(TransportRequestId, 

  TransportationAgentId, DestinationAgentId, EntityName, 

  EntityAmount, EntityIds, ForOrderId) 

The last actions’ category involves the occurrence of events. These events can 

occur at the SC agent carrying out the action or at some other SC agent, and they can 

take place at the end of process execution or at some later scheduled time. Four such 

actions are identified, the predicate-based representation of which is provided below. 

Note that the occurrence of assigned events means that the events are allocated to a 

specific SC operation BPM through their flag. 

create_event(AtAgentId, EventName, EventInvokerId) 

schedule_event(AgentId, EventName, EventInvokerId, ScheduleT) 

create_assigned_event(internal, EventName, EventInvokerId) 

schedule_assigned_event(internal,EventName,EventInvokerId,ScheduleT) 

One can see that both the conditions and the effects of business process 

execution involve the SC state, as described through the definition of structural 

constructs. Trigger conditions involve the occurrence of events, while preconditions 

involve the availability of entities, funds and information. Similarly, the actions that 

are performed as effects of a BP’s execution involve events, entities, funds and 

information, and thus modify the SC state. 

So far in this section we have discussed the declarative representation of an SC 

agent’s processes. However, a complete and precise, formal model of an SC agent’s 

process layer should also include the junctions in the involved business process 

model (BPM). As discussed in Chapter 2, junctions describe the control sequence of 

the BPs in the BPM, and FBPML suggests a wide range of such connectives. For the 

purpose of this research, the adopted junction types are: start, finish, link, and-joint, 

or-joint, and-split and or-split. The predicate-based specification of a junction within 

an SC member’s BPM is provided below. JType refers to the junction type, PreList is 

the list of processes or junctions that are directly preceding the junction, while 

PostList is the list of processes or junctions that are directly following it. A junction is 
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executed if its execution semantics are satisfied, according to FBPML specification; 

this issue is further discussed in Chapter 5. A junction visual example and its 

declarative specification are following. 

junction(AgentId, Jid, JType, PreList, PostList) 

 
Figure 4.5: Visual representation of a junction 

junction(applessupplier, j4, and_joint, [p6, p7], [p8]) 

As already mentioned, the definitions presented in this section are an extension of 

previous work (Manataki, 2007). Let us now clarify the context of the previous work, 

as well as the size and the content of the extension provided for this PhD project. In 

(Manataki, 2007) the development of a workflow engine for executing simple 

business process models within a single agent was presented. The domain 

representation in this earlier work included five constructs: entities, data, events, 

junctions and processes. For the purpose of this PhD project, the domain 

representation has been extended along four main lines. First, the specification of 

these five constructs has now been enriched to address aspects of the multiagent 

setting. Second, in (Manataki, 2007) we assumed that junctions are preceded or 

followed only by processes. We have now relaxed this assumption to allow junctions 

to be also preceded or followed by other junctions. This way more advanced BPM 

structures can be modelled. Third, the specification of business process preconditions 

and actions with respect to entities and events has been enriched to accommodate 

entity amounts and create or schedule events. Fourth, process preconditions and 

actions now address aspects of a richer domain representation, including placed and 

received orders, scheduled productions, transportation requests, facts, messages, 

inventory and business rules.  

The formalisation approach discussed in this section is useful for representing 

SC members’ acting behaviour; SCOR-based processes of different levels can be 
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formally represented through appropriate business process predicates, and their 

control sequence within a BPM can be specified through the declarative specification 

of junctions. A declarative approach is adopted in order to facilitate the capturing and 

explanation of the dynamics involved. It is worth mentioning that BPMs represent an 

SC agent’s process layer in a static way, while its real-time acting behaviour can be 

driven through a workflow engine. Hence, a workflow engine is used by agents to 

execute processes based on the defined BPMs, and a rule-based implementation of 

such a workflow engine is discussed in Chapter 5. 

4.3.2.3 Communicative Actions 

An agent’s communication layer (and hence an SC member’s interacting behaviour) 

is represented through communicative actions. These actions involve sending and 

receiving messages. The declarative specification of messages is provided below, 

along with an example. Sender refers to the agent that sends the message and 

ReceiversList refers to the agents to which the message is addressed. A message can 

be a reply to a previous message (as denoted at InReplyTo), and it can be 

characterised by a Performative such as inform, refuse, propose, etc. 

message(MessageID, Sender, ReceiversList, InReplyTo, Performative, 

  Content, T) 

message(mes23, applessupplier, [manufacturer], none, inform, 

  cancel_delivery(order3, apple, 2), 12) 

Two basic communicative actions are identified, send_message/4 and 

receive_message/1, and their formal representation is provided below. Note that 

certain BPs of an SC agent can involve the sending of messages, and therefore 

send_message/4 is considered as an action type additional to the ones presented in the 

previous section. The execution semantics of these two communicative actions are 

discussed in Chapter 5. 

send_message(ReceiversList, InReplyTo, Performative, Content) 

receive_message(MessageID) 
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4.3.2.4 SC Performance 

Supply chain performance is measured during SC operation, and its formalisation 

follows the general form of performance_metric(AgentId, Value). The formalisation of 

selected SCOR-based metrics is provided in this section, while the formulas for their 

calculation are discussed in Chapter 5. Note that we declaratively specify a subset of 

the SC performance metrics that were conceptualised in Section 4.3.2.4; this is the 

subset of performance metrics that have been implemented within our simulation 

system: on time rate, cycle time, cost and overall SC cost. 

on_time_rate(AgentId, Value) 

cycle_time(AgentId, source, Product, Value) 

cycle_time(AgentId, make, Product, Value) 

cycle_time(AgentId, deliver, Product, Value) 

total_sc_cost(Value) 

cost(AgentId, Value) 

4.3.3 Problematic SC Operation 

In Section 4.2.3 we conceptualised problematic SC operation through problematic 

situations and low SC performance, and we defined causal relationships between 

them. The formalisation of these aspects is discussed in this section.  

4.3.3.1 Constructs 

Problematic SC operation is formalised in a declarative way. The formalisation of SC 

operational problems is presented in this section, while the reasoning for detecting 

such problems is discussed in Chapter 5. The predicate-based specification of the 

following problematic situations is provided below: process delays (duration-, start- 

and finish-delays), errors with items, unusual processes, big orders and cancellations 

of order deliveries. Note that ProcessInst refers to a particular instance of an SC 

agent’s process that is executed. 

process_duration_delay(ProcessInst) 

process_start_delay(ProcessInst) 

process_finish_delay(ProcessInst) 

error_with_items(AgentId, EntityName, EntityAmount, EntityStatus, T) 

unusual_process(ProcessInst) 
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high_demand(OrderId, ProcessInst) 

delivery_cancelation(OrderId) 

The formalisation of low SC performance, as discussed in Section 4.2.3, is 

provided below: 

high_total_sc_cost(TotalCost) 

high_cycle_time(AgentId, SCORtype, Product, CycleTime) 

low_on_time_rate(AgentId, OnTimeRate) 

4.3.3.2 Causal Model 

The causal relationships presented in Section 4.2.3 are now formalised into a logic-

based causal model. The general form of specifying a causal relationship between 

two problematic situations A and B is possible_reason(A, B), which means that B is a 

possible reason for A. The declarative specification of the identified causal 

relationships follows this general form and it is provided in Table 4.3. Note that the 

numbering corresponds to the numbering of causal relationships in Section 4.2.3. 

It is worth clarifying three points on the defined causal model. First, many of the 

predicates used to refer to problematic situations in the causal model (i.e. A and B 

within possible_reason(A, B)) are different from the predicates defined in the previous 

section. Nevertheless, they are mapped or directly related to the predicates of 

problematic SC operation presented in the previous section. For example, the causal 

model includes the problematic situation make_finish_delay(MProcInst), which is a 

special case of the formalised construct process_finish_delay(ProcessInst) of Section 

4.3.3.1. Another example is needed_source_material_not_available(S12ProcInst), which 

is mapped to process_start_delay(ProcessInst) of a corresponding SCOR-based process 

instance, such as S1.2 for a make-to-stock product or S2.2 for a make-to-order 

product.  

Second, when using the causal model to explain problematic SC operation, one 

should check whether the individual problematic situations mentioned in the causal 

model hold. The point discussed above is useful for this task. For example, when 

using the first causal relationship to explain late sourcing, it should be checked 

whether needed_source_material_not_available(S12ProcInst) holds. For a make-to-stock 

product, this means checking whether there is a process-start-delay of a S1.2-process 

instance, which means checking whether process_start_delay(S12ProcInst) holds. The 
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definition of such rules is not part of the causal model and it is discussed in Chapter 

6. 

Causal 
Relationship Formal Representation 

1 possible_reason(source_finish_delay(SProcInst), 
needed_source_material_not_available(S12ProcInst)). 

2 possible_reason(source_finish_delay(SProcInst), 
some_bpm_process_duration_delay(ProcInst)). 

3 possible_reason(needed_source_material_not_available(S12ProcInst), 
deliver_finish_delay(DProcInst)). 

4 possible_reason(make_finish_delay(MProcInst), 
needed_make_material_not_available(M12ProcInst)). 

5 possible_reason(make_finish_delay(MProcInst), 
needed_make_resources_not_available(M13ProcInst)). 

6 possible_reason(make_finish_delay(MProcInst), 
some_bpm_process_duration_delay(ProcInst)). 

7 possible_reason(needed_make_material_not_available(M12ProcInst), 
source_finish_delay(SProcInst)). 

8 possible_reason(needed_make_resources_not_available(M13ProcInst), 
make_finish_delay(PreviousMProcInst)). 

9 possible_reason(deliver_finish_delay(DProcInst), 
needed_deliver_material_not_available(D13ProcInst)). 

10 possible_reason(deliver_finish_delay(DProcInst), 
needed_deliver_resources_not_available(D111ProcInst)). 

11 possible_reason(deliver_finish_delay(DProcInst), 
some_bpm_process_duration_delay(ProcInst)). 

12 possible_reason(needed_deliver_material_not_available(D13ProcInst), 
make_finish_delay(MProcInst)). 

13 possible_reason(needed_deliver_material_not_available(D13ProcInst), 
unusually_big_order(DProcInst)). 

14 possible_reason(needed_deliver_material_not_available(D13ProcInst), 
unusually_big_order(PreviousDProcInst)). 

15 possible_reason(needed_deliver_resources_not_available(D111ProcInst), 
deliver_finish_delay(PreviousDProcInst)). 

16 possible_reason(unusual_process(UnusualProcInst), 
unusual_process(OtherUnusualProcInst)). 

17 possible_reason(unusual_process(UnusualProcInst), 
flexBR_fire(FlexBR,T)). 

18 possible_reason(flexBR_fire(FlexBR, T), problematic_situation(Situation, 
AgentId, T)). 

19 possible_reason(problematic_situation(just_got_informed(Problem1), 
Agent1, T1), flexBR_fire(FlexBR, T)). 

20 possible_reason(high_sc_cost, 
unusual_processes(ListOfUnusualProcInst)). 

21 possible_reason(low_on_time_rate(AgentId), 
late_delivered_orders(AgentId, ListOfLateDeliveredOrders)). 

22 possible_reason(high_cycle_time(AgentId, SCORtype, Product), 
duration_delayed_processes(ListOfDelayedProcInst)). 

Table 4.3: Causal model of problematic SC operation 

Third, when using the causal model to explain problematic SC operation, and given 

that the task mentioned in the previous paragraph has been done, one should also 
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check whether the specified problematic situations are actually related. For example, 

when using the first causal relationship to explain late sourcing and if a specific S1.2 

process instance has been identified such that 

needed_source_material_not_available(S12ProcInst) holds, it should be checked whether 

this particular process instance is related to the sourcing finish delay. The definition 

of such rules is again not part of the causal model and it is discussed in Chapter 5. 

4.3.4 Formal Model Example 

We will now illustrate the formalisation approach discussed in this chapter through 

an appropriate example. We refer to the SC conceptualised in Section 4.2.4 and we 

present its formal model though the definition of structural and behavioural 

constructs. This formal model will be used in Chapter 5 in order to simulate the 

operation of this SC, and for this reason the formal model of structural constructs 

refers to the SC’s initial state (i.e. at timepoint 0). Behavioural constructs, on the 

other hand, are not modified during simulation, and hence their formalisation is valid 

for any SC state. Illustrative examples of formalised problematic operation for this 

SC will also be provided. Note that due to limited space a subpart of the SC’s formal 

model is provided here; this includes constructs that are specific to Supplier4. SC 

member Supplier4 is specified below. 

supply_chain_member(supplier4). 

The formalisation of structural constructs for Supplier4 at timepoint 0 is the 

following. Note that since we are referring to timepoint 0, some constructs might not 

be relevant, such as information on received orders and events. Some entities and 

inventory available at Supplier4 are declaratively specified below, and the bill of 

materials for Product4 follows. As far as the execution semantics of these constructs 

are concerned, it is worth clarifying that the two on hand Product4 items will be used 

during simulation to satisfy some incoming customer order (i.e. will be used to 

satisfy the preconditions of the corresponding D1.3 business process). 

entity_occ(supplier4, machine, r_sup4_1). 

entity_occ(supplier4, product4, r_sup4_2). 

entity_occ(supplier4, product4, r_sup4_3). 

inventory(supplier4, on_hand, product4, 2, [r_sup4_2,r_sup4_3]). 
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bill_of_materials(supplier4, sup4_bom1, product4, [product1/1, 

  product2/4]). 

 A subset of the information available at Supplier4 at timepoint 0 is declaratively 

specified below, covering aspects like SC partners and lot sizes. The information on 

the production lot size for Product4 will be used during simulation for production 

scheduling; this point is further discussed at the specification of Supplier4’s business 

process sup4_m11. 

data(supplier4, product4_production_lot_size, 6). 

data(supplier4, currenttransporter, transporter3). 

The formalisation of behavioural constructs for Supplier4 follows. Illustrative 

business rules for policies and flexibility at Supplier4 are firstly provided. The 

defined BR br_sup4_3 specifies a time-based policy for Supplier4’s making of P4. 

The execution of this BR causes the occurrence of an event of type 

need_for_production, leading to production scheduling; this point is further discussed 

at the specification of Supplier4’s business process sup4_m11. Note that a time-based 

condition of the form A×K+B is satisfied every A timepoints after timepoint B, and 

specifying a timepoint B is useful for simulation purposes. The specified flexibility 

BR br_sup4_urg1 involves Supplier4’s reaction to errors with P2 on hand items. 

br(supplier4, br_sup4_3, policy, ifthen( 

 current_time_form_of(3*k+15),[create_event(need_for_production)])). 

br(supplier4, br_sup4_urg1, flexibility_br, ifthen( 

 error_with_items(product2, EntityAmount, on_hand), 

 [create_event(need_for_product2_urgent_sourcing), 

  update_lot_size_if_needed(product2_urglot_size,EntityAmount)])). 

A part of Supplier4’s BPM for making Product4 is declaratively specified below. 

Figure 4.6 presents the corresponding BPM, as introduced in Figure 4.4, and the 

formalised junction and business process are marked in red. Let us explain what the 

predicate for process sup4_m11 means: This process involves scheduling the 

production for Product4. It is triggered by an event of type need_for_production, which 

occurs due to the execution of making policy BR br_sup4_3. Information on the 

production lot size for Product4 is needed for this process to execute (remember that 

the specification of this data was formalised earlier). The execution of this process 
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schedules the production of Product4 in the amount dictated by the lot size. There are 

two effects of the process’s execution: information on the scheduled production is 

created and an event of type scheduled_production occurs. It is worth noting that this 

event will trigger the execution of the process following sup4_m11, i.e. sup4_m12. 

 
Figure 4.6: Supplier4’s making BPM 

junction(supplier4, sup4_jm0, start, [], [sup4_m11]). 

process(supplier4, sup4_m11, schedule_product4_production, 

  [exist(event_occ(need_for_production))], 

  [exist(data(product4_production_lot_size, Product4Amount))], 

  [schedule_production(ProductionId, product4, Product4Amount), 

   create_assigned_event(internal, scheduled_production, 

    ProductionId)], 

  1, 10). 

Supplier4’s communicative actions involve sending and receiving messages for 

sourcing and delivering. The definition of process sup4_d111 involves the sending of 

a message for making a transportation request. 

During SC operation (and thus during simulation) SC performance is measured 

and problematic situations are tracked. Illustrative examples of relevant formalisation 

are provided below.  

cycle_time(supplier4, source, product1, 4). 

process_start_delay(bpm-745/sup4_m12). 

4.4 Modelling Summary 

This chapter presented a formal, declarative approach for modelling SC operation. 

We conceptualised the domain by taking into account structural and behavioural 

constructs, as well as problematic SC operation. The conceptual model addresses the 

main aspects of SC operation dynamics, as identified in Section 1.1, in the following 

 84



three ways: First, the model covers all three dimensions (i.e. decision, actions and 

interactions) of SC members’ operational behaviour that were recognised in Section 

1.1. Second, SC performance is modelled at both the local and the global level. 

Third, the SC operation model includes constructs for SC disruptions; this is a 

considerable advantage compared to existing simulation models, as discussed in 

Chapter 3. It also incorporates flexibility aspects, which are increasingly important in 

modern supply chain management, and which are typically not incorporated in SC 

simulation models. Finally, we should emphasise that given this conceptualisation, 

the resulting model is tailored to the SCM domain.  

In this chapter we also formalised the domain by regarding SC members as 

logic-based intelligent agents consisting of three layers: (1) reasoning layer, 

represented through business rules, (2) process layer, represented through business 

processes and (3) communication layer, represented through communicative actions. 

Structural and disruption-related constructs were declaratively formalised, and a 

logic-based causal model was defined, capturing possible reasons for the occurrence 

of problematic situations. We believe that the formal model achieves a good balance 

between conciseness and expressivity. The main advantage of the adopted 

declarative formalism is the fact that it facilitates the explanation of the domain, a 

point that is further discussed in the next chapter. 
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Chapter 5 

5Simulating and Explaining Supply 
Chain Operation 

This chapter presents a framework for simulating and explaining the formal model 

that was introduced in Chapter 4. A rule-based approach is adopted for specifying the 

execution semantics of the formal model, based on which dynamic behaviours can be 

driven. This way the logic-based simulation and explanation of supply chain 

operation are enabled. Section 5.1 answers the question “How is the model 

simulated?” and presents the adopted framework and algorithm. Section 5.2 answers 

the question “How is the simulated model explained?” and distinguishes between 

two levels of explanation: low-level explanation of SC operation, which captures 

interdependencies in a detailed manner, and high-level explanation of problematic 

SC operation, which analyses the propagation of SC disruptions across the supply 

chain. Illustrative examples are used throughout this chapter to demonstrate how the 

suggested simulation and explanation framework help us understand SC operation 

dynamics.  

5.1 Simulating SC Operation 

As discussed in Chapter 3, simulation is a useful method for studying complex 

systems, such as supply chains. SC simulation allows experimentation with different 

SC operation scenarios, thus supporting SCM decision-making. In this section we 
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present the adopted framework for simulating SC-wide operation and we discuss 

aspects of an appropriately implemented simulation environment. Our aim is to fill 

the three gaps identified in existing SC simulation solutions, as presented in Chapter 

3. In order to fill the first gap we adopt a knowledge-based approach, so as to enable 

the automated generation of explanations of SC operation dynamics. A mechanism 

for detecting SC disruptions is also provided, thus addressing the second gap. As far 

as the third gap is concerned, decision-making for agility purposes is simulated with 

the use of a reasoning engine. 

5.1.1 Technical Design & Architecture 

The purpose of simulating SC operation is twofold. Firstly, it provides an insight into 

SC operation dynamics with respect to SC members’ behaviour and the resulting 

flow of products and information. Secondly, it allows the analysis of SC operation 

with respect to SC performance and problematic situations. 

The main simulation input is the formal model of a supply chain. This includes 

the specification of the initial SC state through structural constructs and the 

specification of behavioural constructs for SC agents’ layers. Additional input 

includes information on scheduled problematic situations (i.e. errors with items, 

process duration delays and lot size modifications) and on expected SC performance; 

this information is useful for simulating and detecting problematic SC operation, 

respectively. There are three categories of simulation output: (1) real-time SC 

operation, (2) measured SC performance and (3) detected problematic situations. 

Information on real-time SC operation involves SC members’ behaviour (e.g. the 

firing of sourcing policies and the execution of making processes at a particular 

timepoint) and the flow of products and information (e.g. the movement of goods 

from a supplier to his customer). Measured SC performance and the detected 

problematic SC operation involve aspects discussed in Chapter 4. 

The architecture of the simulation system is presented in Figure 5.1, where three 

main components can be seen: SC world, agents’ resources and analysis tools. The 

SC world consists of a MAS of SC agents, the entities and information available and 

the SC events that occur. An SC agent consists of three layers, as discussed in 

Chapter 4: BRs, BPMs and communication capabilities. In order to exhibit dynamic 
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behaviour, an SC agent uses resources that drive SC simulation. The resources that 

are available to SC agents are: a workflow engine, a reasoning engine and a 

communication environment. As implied by the colours in Figure 5.1, these 

resources are linked to the SC agent’s components: The workflow engine executes 

processes of an agent’s BPM, and thus updates its workflow state. Similarly, the 

reasoning engine reads the SC agent’s BRs and turns them into decisions towards 

actions for each state. The communication environment allows the exchange of 

messages within the SC through an appropriate infrastructure. Lastly, two tools 

analyse the overall SC simulation results: The SC performance calculator computes 

its performance, while the SC disruption detector identifies problematic SC 

operation. 

 
Figure 5.1: Simulation system architecture 

Chapter 4 presented a declarative approach for modelling the SC world. Section 5.1.2 

presents a logic-based approach for implementing the agents’ resources and the 

analysis tools.  

5.1.2 Logic-based Framework & Implementation 

This section explains the main aspects of the implemented simulation system. As 

previously mentioned, a rule-based approach is adopted in order to support the 

automated explanation of SC operation dynamics. This approach is demonstrated 

here for the most important simulation procedures, and the simulation algorithm is 
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provided. More importantly, this section declaratively defines the execution 

semantics of the formal SC model, which was presented in Chapter 4. For this 

purpose we provide abstractions in the following form of production rules 

(Giarratano and Riley, 1998): perform operation: IF Conditions hold THEN enforce 

Effects. This means that an operation is performed if its conditions hold, and its 

performance brings about its effects. The syntax to be used is the following: 

perform operation: 

IF ( holds(Condition1) 

AND … 

AND holds(ConditionN) 

 ) 

THEN ( enforce(Effect1), 

  … 

  enforce(EffectM) 

 ) 

5.1.2.1 Workflow Engine 

The workflow engine is used by SC agents to execute their BPMs. Its three main 

operations involve creating BPM instances, executing BP instances and executing 

junction instances. Before presenting these operations, it is worth clarifying the 

meaning of instances of BPMs, BPs and junctions. Suppose that we have a BPM that 

consists of one process and two junctions. During simulation we may have several 

occurrences of this BPM. This means that the process and each junction may be 

executed several times, possibly at different timepoints. In order to distinguish 

between the individual occurrences of BPMs, BPs and junctions, we refer to their 

instances. These instances follow the BPM, BP or junction specification that they 

correspond to, while being grounded to particular objects; for example a BP instance 

of process sup4_m11 (as presented in Section 4.3.4) has the same attributes as 

sup4_m11. 

The rule for process instance execution is provided below. According to it, a 

process instance is executed if it has been reached, and its trigger conditions and 

preconditions hold. These conditions are explained later on in this section, but it is 

worth mentioning that whether a process instance is reached depends on the 

execution of junction instances within the BPM instance. Once a process instance 

 89



starts its execution, three effects take place: its execution completion is scheduled, its 

actions are scheduled for execution and any entities needed for its execution are 

assigned to it. 

execute_process_instance(ProcessInst, TriggCond, Precond, Actions): 

IF ( reached(ProcessInst) 

AND trigger_conditions_hold(TriggCond) 

AND preconditions_hold(Precond) 

 ) 

THEN ( schedule_execution_completion(ProcessInst), 

  schedule_actions_execution(Actions), 

  assign_entities(ProcessInst) 

 ) 

The preconditions of a process instance hold if each individual precondition 

within this set holds. We have specified rules for the holding of individual 

preconditions of all types discussed in Chapter 4, except for funds-related 

preconditions. Let us provide an example for illustration purposes. The precondition 

exist(entity_occ(EntityName), EntityAmount, EntityIds) holds at some SC agent if a set of 

entities EntityIds of amount EntityAmount and of type EntityName exist at the agent, and 

these entities are not assigned to any process instance execution.  

The trigger conditions of a process instance hold if each individual trigger 

condition holds. We have specified rules for the satisfaction of individual trigger 

conditions of all types discussed in Chapter 4. For example, a trigger condition of the 

form exist(event_occ(EventName)) holds if an event of type EventName occurs at the 

SC agent. 

As far as effects are concerned, the scheduling of the execution completion of 

the process instance takes into account the following: the duration defined in 

process/8 and any process duration delays occurring at run time. The actions 

execution of the process instance is scheduled for the time when its execution is 

completed. Lastly, any identified entities through the process instance’s 

preconditions are assigned to the process instance for the duration of its execution. 

We have implemented the execution of actions of all types discussed in Chapter 

4, except for funds-related actions. The implementation for each action type is not 

further discussed here, but it is worth providing an illustrative example. The action 
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create_entity(ForAgentId, EntityName, EntityAmount, NewEntityIds) involves the creation 

of a set of entities NewEntityIds of amount EntityAmount, of entity type EntityName at 

the SC agent ForAgentId. 

The assignment of entities to a process instance execution guarantees that the 

entities needed for its execution are not used by some other process instance 

execution. Once the process instance execution is completed, the assigned entities are 

released. For example, a machine that is assigned to some production activity A 

cannot be used by some other production activity B at the same time. But once the 

execution of A is completed, the machine can be assigned to the execution of B. 

The rule for junction instance execution is provided below. According to it, a 

junction instance is executed if its type conditions hold (if its type constraints are 

satisfied). The execution semantics for each type of junction follow the FBPML 

specification (Chen-Burger et al. 2002), and we have specified appropriate rules for 

all junction types discussed in Chapter 4. For example, an and-joint junction instance 

has the following two conditions: (1) all process instances directly preceding it that 

have been triggered have also completed execution and (2) all junction instances 

directly preceding it have been executed. Once a junction instance is executed, the 

process instances directly following it are considered to be reached. 

execute_junction_instance(JunctionInst, PostProcessInsts): 

IF junction_type_satisfied(JunctionInst)  

THEN reach(PostProcessInsts) 

The rule for BPM instance creation is provided below. According to it, a BPM 

instance is created once the trigger conditions of its first process instance hold. Its 

effects involve the creation of all process instances and junction instances that it 

consists of. 

create_BPM_instance(BPMInst): 

IF  first_process_triggered(BPMInst) 

THEN (create_process_instances(BPMInst), 

 create_junction_instances(BPMInst) 

 ) 

As mentioned in Section 4.3.2.2, previous work (Manataki, 2007) involved the 

design and implementation of a workflow engine for executing simple business 

process models within a single agent. Since this preliminary work was used as a basis 
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for developing a workflow engine for the PhD project, we should make clear what 

additional work was involved. The workflow engine presented in (Manataki, 2007) 

has been extended along four main lines: First, it has been enriched to be used in a 

multiagent setting, thus allowing the execution of BPMs of multiple agents. Second, 

the workflow engine developed in the context of (Manataki, 2007) allowed the 

execution of a single business process model for one run. The workflow engine 

presented in this section can execute several instances of various BPMs. This was 

achieved mainly thanks to the design and implementation of the above-presented 

procedure for BPM instance creation. Third, additional work involved assigning 

entities to process instance executions, as well as executing junctions that are 

preceded or followed by other junctions. To this end, the specification of process and 

junction instance execution semantics has been accordingly extended. Finally, the 

preliminary workflow engine has been enhanced to allow the execution of richer 

business process specifications, as discussed in Section 4.3.2.2.  

5.1.2.2 Reasoning Engine 

The reasoning engine is used by SC agents to execute their business rules. It enables 

the execution of three kinds of BRs, as presented in Chapter 4: (1) policy- and 

flexibility-BRs of ifthen(IFpart, THENpart) content form, (2) BRs for popular, 

customised policies, such as the (R,Q) policy and (3) process precondition BRs. 

The rule for executing a BR of ifthen/2 content form is provided below. According 

to it, a BR of this type is executed if its IFpart is satisfied (remember that IFpart is a 

declarative expression of the conditions of the BR). Once such a BR is executed, the 

effects specified in the THENpart list are enforced. 

execute_ifthenBR(BrId, IfPart, ThenPart): 

IF br_condition_holds(IfPart) THEN enforce_effects(ThenPart) 

The execution of a BR for a customised policy follows the execution semantics of 

that customised policy. For example, the execution conditions of an (R,Q) policy 

with content rq_policy(EntityName, R, Q) are satisfied if the on hand inventory level of 

product EntityName drops below R, and its effects involve the sourcing of amount Q. 

The rule for executing a BR of type process precondition prescribes that such a 

BR is executed if the conditions expressed through its Content hold. Note that no 
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effects are enforced with its execution; nevertheless, the execution of such a BR can 

lead to the execution of the corresponding process instance, as it contributes to the 

satisfaction of its preconditions. 

5.1.2.3 Communication Environment 

The communication environment allows the agent to read and send messages to other 

SC members. The sending and receiving of inform-messages has been implemented. 

The rule for reading messages is provided below, and it assumes full trust between 

SC members. According to it, a message is read if it is received by the agent; note 

that a message is received by some SC agent if it is addressed to him or if it is 

broadcasted to all SC agents. The effect of reading an inform-message is that its 

content is added to the SC agent’s knowledge base in the form of a fact. 

read_message(MessageId, Content): 

IF received(MessageId) THEN create_fact(Content) 

Sending a message is considered to be an action additional to the ones mentioned 

in Section 5.1.2.1, executed through the communication environment. Once the 

sending of a message is invoked, a message is created (as specified in Chapter 4) and 

it is transferred to its recipients.  

5.1.2.4 Performance Calculator 

The SC performance calculator reads the simulation results for SC operation and 

computes the supply chain performance. We have implemented the calculation for 

following performance metrics that were discussed in Section 4.3.2.4: individual SC 

members’ cost, on time rate and cycle times, as well as total SC cost. The formulae 

for calculating these metrics are presented in this section.  

The formula for calculating an SC agent’s cost is provided below, and it is based 

on the cost of all the process instances of the agent that have completed execution 

(hence ProcessInsti is a process instance that has been executed by Agenti). Note that 

the cost of a process instance is as specified at the corresponding process/8 

declaration.  

i jAgent ProcessInstCost Cost=∑  
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The total SC cost is calculated based on the cost of all SC members, as shown in the 

formula below.  

iAgentTotalCost Cost=∑  

The formula for calculating an SC agent’s on time rate is provided below, and it is 

self-explanatory.  

i

i

i

Agent
Agent

Agent

TotalNumberOfOrdersDeliveredOnTime
OnTimeRate

TotalNumberOfOrdersDelivered
=  

An SC agent’s cycle time for some SCOR operation for some product (e.g. for 

sourcing apples) is calculated based on the average execution time of the 

corresponding BPM (i.e. the sum of the average times of its processes). Note that a 

process’s average time is based on the execution times of the corresponding process 

instances. In the formula provided below, Processi is a process within the BPM of 

Agenti for SCOR operation SCORtypes for product Productp. 

ji s p
ProcessAgent ,SCORtype ,ProductCycleTime Time=∑  

5.1.2.5 Disruption Detector 

The SC disruption detector identifies problematic SC operation, as conceptualised 

and formalised in Chapter 4. The process of detecting certain types of problematic 

situations is simple, while for others it is more complex. Process duration delays and 

errors with items are fed into the simulation system, and hence detecting them is a 

matter of reading the simulation input. Unusual process instances executed are 

identified based on the characterisation of process types as unusual (e.g. if process 

sup4_m11 is declared as unusual, then all its executed process instances are identified 

as unusual). The cancellations of order deliveries are typically communicated 

between SC members through messages, and thus they are tracked through the 

filtering of message content. Start and finish delays of process instances are detected 

by comparing the actual to the expected execution time start or completion, 

respectively. Big orders are detected upon their receipt by comparing the requested 

amount to its expected value. 

Low SC performance is detected by comparing its actual to its expected or 

desired value. This means that there is a requirement for information on the expected 

or desired SC performance for the duration of the simulation. 
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We regard the detection of SC disruptions as an advantage of our approach 

compared to existing work in SC simulation, as presented in Section 3.1. Given that 

managing disruptions across the supply chain is becoming increasingly important in 

modern SCM practice (Melnyk et al. 2009), SC simulation should explicitly address 

SC disruptions.  

5.1.2.6 Simulation Algorithm 

So far we have presented the rule-based operations of different simulation modules. 

But when are these performed and how are they combined in order to simulate SC 

operation? This section answers precisely this question.  

The top-level, centralised simulation algorithm is represented in Figure 5.2 in the 

form of an activity diagram. Two parts can be seen: a cyclic simulation part, which 

shows the sequence of simulations steps for each timepoint, and a part that 

corresponds to the steps at the end of simulation. Note that the user specifies the time 

period for which he/she wants to run the simulation (e.g. 23 timepoints), and hence 

simulation ends once this timepoint is reached. 

The coloured steps in the diagram have already been discussed, and the colour of 

each step corresponds to the module in which it takes place (as in Figure 5.1). The 

white steps involve simulation aspects at the top level, such as initialising simulation 

based on the simulation input, and updating the time at the end of each simulation 

cycle. The “Enforce modifications” step enforces any modifications relevant to the 

current timepoint. These modifications are predefined at the simulation input and, as 

already mentioned in Section 5.1.1, they involve errors with items and lot size 

changes. 

The names of several steps in Figure 5.2 end with “for all”. This means 

executing the step for all SC agents, one after the other. Let us clarify what this 

means. As mentioned in Section 5.1.1, SC agents use three resources (i.e. a workflow 

engine, a reasoning engine and a communication environment) to drive their SC 

operational behaviour. Sections 5.1.2.1, 5.1.2.2 and 5.1.2.3 discussed when and how 

an individual SC agent uses these simulation modules. In order to simulate the 

operation of an entire supply chain, several SC agents need to use these resources. 
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Therefore, the steps with a name ending with “for all” refer to the case where all SC 

agents use these modules sequentially.  

 

 
Figure 5.2: Simulation algorithm 
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The sequence of steps within the simulation algorithm of Figure 5.2 has been 

carefully decided so that SC agents exhibit smooth operational behaviour; for 

instance, assigned entities need to be released before new processes start executing, 

as their execution might require the availability of a previously assigned entity. It is 

worth mentioning that the timing of steps for measuring SC performance and 

detecting SC disruptions is flexible. This means that these steps could be 

implemented to take place at a different stage, while being equally correct or useful. 

Nevertheless, the simulation system implemented for the context of this thesis based 

on the algorithm of Figure 5.2 allows for correct and useful simulations of SC 

operation. This is demonstrated in the following section through an example. 

5.1.3 Running Simulation Example 

We will now illustrate the simulation approach discussed in this chapter for the 

operation of the example SC presented in Chapter 4. We first present the input for 

simulating this SC for 38 timepoints, then we discuss parts of the simulation output 

and, lastly, a walkthrough of the simulation algorithm is explained for a specific 

timepoint and SC member.  

Throughout this section we will refer to particular SC constructs through their 

code names (i.e. their Ids). Many of the code names for the example SC are long and 

may seem hard to read; for this reason we will now explain how to read them. The 

general form of a process id is SCmember_SCORprocess, where SCmember is the 

code name of a member of the example SC, and SCORprocess is the code name of 

the SCOR-based process, as shown in Table 4.2. For instance, sup1_m16 is a process 

within Supplier1 of type M1.6. In the case of sourcing processes, the process id is of 

the form SCmember_SCORprocess_Product, thus also mentioning the sourced product 

involved. For instance, sup4_s11_p2 is Supplier4’s sourcing process of type S1.1 for 

Product2. The general form of a junction id is j_SCmember_SCORProduct_Number, 

where SCORProduct refers to the SCOR operation type, as shown in Table 4.2, and 

the product involved. The ids of junctions of the same SCOR-based BPM, as 

visualised in Figure 4.4, differ only in the assigned Number. For instance, 

j_sup4_sp2_1 is a junction of Supplier4 within the BPM for sourcing Product2 and 

with the assigned number 1. Finally, process instances and junction instances have 
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code names of the form BPMid/ProcessId and BPMid/JunctionId, respectively. For 

example, process instance bpm-250/sup4_s11_p2 is an instance of process 

sup4_s11_p2, and junction instance bpm-250/j_sup4_sp2_1 is an instance of junction 

j_sup4_sp2_1. Note that any alternative code names could be used for the 

formalisation of the example SC, such as numbers; the above code names were 

chosen so that they carry some additional meaning.  

The input for simulating the example SC includes the SC’s formal model, as 

discussed presented in Chapter 4. It also includes information on the following 

scheduled problematic situations: 2 errors with items occur at Supplier1 (at 

timepoints 10 and 31), one error with items occurs at Supplier4 (at timepoint 16), 2 

process duration delays occur at Supplier1 (the first of 1 timepoint for a sup1_m16 

process instance at timepoint 7, and the second of 2 timepoints for a sup1_d13 

process instance at timepoint 15), one process duration delay occurs at Transporter2 

(of 1 timepoint for a trans2_d112 process instance at timepoint 8), Supplier4’s 

sourcing P2 lot size is increased at timepoint 11 and Manufacturer’s sourcing P4 lot 

size is increased at timepoint 28. The last type of simulation input involves the 

expected SC performance up to timepoint 38: total SC cost of 15460, on time rates of 

1 and various values for cycle times (the full list is long and, therefore, it is not 

provided here). 

As far as outputs are concerned, the user is firstly provided with information on 

real-time SC operation. This does not mean full information on each step of the 

simulation algorithm, but rather a selection of information that is interesting to SC 

managers. This includes information on process instances finishing execution and on 

the execution of their actions, on the receipt of messages by SC members, on the 

execution of BRs, as well as on the execution of process instances. Through this 

information the user can have an insight into not only the operational behaviour of 

SC members but also the flow of products and information involved. Figure 5.3 

presents the output for SC operation in timepoint 4. Note that the output for 

timepoint 4 is fairly short, as not much is happening at the beginning of simulation; 

the output for a later timepoint (e.g. 28) is much longer. The user is also provided 

with information on SC performance, as shown in Figure 5.4. The last type of output 

involves problematic SC operation detected, and is shown in Figure 5.5. According 
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to it, several problematic situations of all types occur during simulation at several SC 

members. For instance, the execution of process instance bpm-745/sup4_m12 at 

Supplier4 starts late, order 1170 placed by Manufacturer to Supplier2 is unusually 

big and process instance bpm-251/sup4_s11u_p1 executed at Supplier4 is unusual, as 

it involves urgent sourcing. Supply chain performance is also detected to be lower in 

some cases: The total SC cost is higher than expected, the on time rates for 

Supplier1, Supplier2, Supplier4 and Manufacturer are lower than desired, and the 

cycle times for Supplier1’s making and delivering P1 as well as Supplier2’s 

delivering P2 are higher than expected. 

 
Figure 5.3: Simulation output for timepoint 4 
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Figure 5.4: SC performance output 

We will now present a walkthrough of the simulation algorithm for Supplier4 at 

timepoint 11, clarifying what happens at each algorithmic step. Once the simulation 

cycle for timepoint 11 begins, process instance bpm-211/sup4_s11_p1 completes its 

execution, as scheduled. No finish delay is detected for this execution (1st step of the 

simulation algorithm), and no entities are released (2nd step), as none were assigned 

to its execution. Six actions are executed by Supplier4 as an effect of this process 

instance execution (3rd step):  

1.  The ordered items’ receipt time is scheduled for timepoint 15. 

2.  Order 235 for 6 product1 is placed to supplier1. 

3.  Event 236 of type order_receipt occurs at supplier1. 
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4.  Message 237 with content order(235,supplier4,supplier1,supplier4,product1,6,15) 

is sent to supplier1. 

5.  Event 238 of type scheduled_order_receipt is scheduled for timepoint 15. 

6.  The on order inventory amount for product1 is increased by 6. 

 
Figure 5.5: Detected problematic situations 

Supplier4’s sourcing P2 lot size is increased from 16 to 24, as dictated by the 

simulation input (4th step). Two messages are read by Supplier4 (5th step): First, 

message 232 is read by Supplier4, and therefore the fact 
delivery(54,supplier4,supplier2,product2,16,[r-sup2-53,r-sup2-52,r-sup2-51,r-sup2-50,r-sup2-

49,r-sup2-48,r-sup2-47,r-sup2-46,r-sup2-45,r-sup2-44,r-sup2-43,r-sup2-42,r-sup2-26,r-sup2-

25,r-sup2-24,r-sup2-23]) is added to his knowledge base. This means that Supplier4 

finds out about the delivery of order 54 for 16 items of Product2 (P2). Then, message 

209 is read by Supplier4, and therefore the fact cancel_delivery(123,product1,6) is 

added to his knowledge base. 

The execution of two BRs takes place at Supplier4 (6th step): First, policy 

br_sup4_2 is executed, causing the following: event 250 of type 

need_for_product2_sourcing is created. Second, flexibility BR br_sup4_urg2 is 
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executed, causing the following: event 251 of type need_for_product1_urgent_sourcing 

is created, the lot size for product1_urgent_lot_size is updated to 6, and the on order 

inventory amount for Product1 (P1) is decreased by 6. 

Two BPM instances are created (7th step). The first involves sourcing P2, it is 

created due to event 250 and the created BPM instance includes process instances 

[bpm-250/sup4_s11_p2, bpm-250/sup4_s12_p2, bpm-250/sup4_s13_p2, bpm-

250/sup4_s14_p2] and junction instances [bpm-250/j_sup4_sp2_0, bpm-

250/j_sup4_sp2_1, bpm-250/j_sup4_sp2_2, bpm-250/j_sup4_sp2_3, bpm-

250/j_sup4_sp2_4]. The second involves urgently sourcing P1, it is created due to 

event 251 and the created BPM instance includes process instances [bpm-

251/sup4_s11u_p1, bpm-251/sup4_s124u_p1] and junction instances [bpm-

251/j_sup4_sp1u_0, bpm-251/j_sup4_sp1u_1, bpm-251/j_sup4_sp1u_2]. 

Three junction instances are executed (8th step): bpm-211/j_sup4_sp1_1, bpm-

250/j_sup4_sp2_0 and bpm-251/j_sup4_sp1u_0. The execution of three process 

instances begins till timepoint 12 (9th step): bpm-37/sup4_s12_p2, bpm-

250/sup4_s11_p2 and bpm-251/sup4_s11u_p1. None of these are detected to start 

executing late (10th step). 

It is interesting to note interdependencies between different aspects of 

Supplier4’s SC operational behaviour during timepoint 11. For example, the receipt 

of message 209 on the cancellation of the delivery of order 123 leads to the execution 

of flexibility BR br_sup4_urg2, causing the occurrence of event 251. It is due to the 

occurrence of this event that a new BPM instance is created and process instance 

bpm-251/sup4_s11u_p1 is executed. One can, thus, conclude that the receipt of 

message 209 leads to the execution of bpm-251/sup4_s11u_p1. 

Such interdependencies exist not only between aspects of a single SC member’s 

behaviour, but also between the behaviours of several SC members. Explaining 

interdependencies in the case of complex supply chains over a long time horizon is 

not an easy task, especially when they consist of members with highly active SC 

operational behaviour. We argue that the study of such interdependencies, which 

constitute the dynamics of SC operation, is facilitated through the declarative 

formalisation of SC operation (presented in Chapter 4) and the adoption of a rule-

based approach for implementing a simulation environment (presented so far in this 
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chapter). More interestingly, this study can be automated to provide users with 

answers to questions on SC operation and the dynamics involved. The rest of this 

chapter discusses how the adopted knowledge-based approach allows for the 

automated explanation of SC operation. 

5.2 Explaining SC Operation 

Supply chain operation dynamics can be analysed at two levels of detail: Firstly, 

detailed explanations can be provided about simulation results, so as to gain a deep 

understanding of interdependencies across the supply chain. Secondly, explanations 

at a higher level of detail can be generated on problematic SC operation; this way the 

propagation of SC disruptions can be analysed, and their effect on SC performance 

can be identified. 

5.2.1 Low-level Explanation of SC Operation 

In this section we present the adopted framework for generating detailed 

explanations of supply chain operation. This involves analysing SC operation 

dynamics with respect to the first four points of the research problem, as identified in 

Section 1.1. We discuss implementation decisions, and we provide an example of the 

use of the implemented explanation system. 

5.2.1.1 Logic-based Framework 

The explanation of SC operation at a low level involves explaining the simulation 

results with respect to four topics: (1) SC operational behaviour, (2) the state of the 

SC at a certain timepoint, (3) SC performance and (4) detected problematic SC 

operation. We believe that the most important type of question to ask on these topics 

is “why”.  For example, one might want to find out why a particular process instance 

is executed at some SC member at some timepoint or why a specific product is 

available at some SC member at some timepoint. Similarly, the user might be 

interested to know how the on time rate for some SC member was calculated and 

why a finish delay was detected for a particular process instance. 
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Answering such questions is based on the rule-based execution semantics of the 

formal SC model. We believe that the choice of a declarative approach facilitates the 

explanation process.  Figure 5.6 shows how SC operation can be explained given the 

production rule-based notation for describing execution semantics (as introduced in 

Section 5.1.2). According to it, an operation is performed because all its conditions 

hold, and some Effecti is enforced because the operation is performed. Let us clarify 

that for some Conditionj to hold, the current SC state needs to be appropriate; note 

that the SC state is shaped by the enforcement of performed operations’ effects. 

 
Figure 5.6: Explaining execution semantics 

5.2.1.2 Implementation 

The explanation of simulation results is implemented based on the rule-based 

execution semantics discussed in Section 5.1 and the mapping illustrated in Figure 

5.6. The main idea involves keeping a simulation log that contains causal 

information, and deriving explanations based on this causal information. These two 

matters are further described in this section.  

The simulation log is a report of interesting simulation events (here, by “events” 

we do not refer to SC events but to incidents that take place during simulation), such 

as the execution of process instances and the reading of messages by some SC 

member. This report does not only contain information on the simulation events that 

take place, but also on the reasons for which these take place. These reasons are 

deduced based on the formal execution semantics, as translated in Figure 5.6.  

In our implementation, the simulation log contains information of the form 

fact(SimulationEvent, ListOfReasons, Timepoint). Three illustrative examples follow. 

According to the first fact, the entity r-man-462 of type Product5 is moved at 

timepoint 22 from Manufacturer to Retailer2; this happens because the action of 

moving such an entity is a post-condition of process instance bpm-515/man_d112, 
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which finishes its execution at timepoint 22. According to the second fact, the 

Manufacturer’s on time rate is found to be 0.88 at timepoint 38 because 

Manufacturer delivers 17 orders in total, of which 15 are delivered on time. 

According to the third fact, a finish-delay is detected for process instance bpm-

35/sup1_m16 because its execution is completed at timepoint 9 and not at timepoint 8, 

as scheduled. 

fact(entity_is_moved(r-man-462,product5,retailer2,manufacturer), 

  [post_condition(move_entity([r-man-462],product5,1,retailer2), 

     bpm-515/man_d112), 

   process_finishes_execution(bpm-515/man_d112,22)], 22). 

fact(on_time_rate(manufacturer,0.88), 

  [number_of_delivered_orders(manufacturer,17), 

   number_of_orders_delivered_on_time(manufacturer,15)], 38). 

fact(finish_delay_is_tracked(bpm-35/sup1_m16,supplier1,make,m16), 

  [process_schedule_finish_time(bpm35/sup1_m16,8), 

   process_actual_finish_time(bpm-35/sup1_m16,9)], 9). 

Deriving explanations based on a simulation log that contains such causal 

information is a straightforward task. The process of explaining a simulation event 

SimulationEvent, for which there is relevant information of the form 

fact(SimulationEvent, ListOfReasons, Timepoint) in the simulation log, consists of 

retrieving its ListOfReasons.  

It is interesting to note that each derived reason for some simulation event can be 

further explained following the same explanation process, thus generating a new set 

of reasons, which can in turn be explained, and so forth. This means, that a full 

explanation tree can be produced, if needed. We have implemented the explanation 

process in SICStus Prolog (Intelligent Systems Laboratory, 2003), which allows for 

use of recursion with ease, and facilitates the generation of such an explanation tree.  

5.2.1.3 Running Example of Low-level Explanation 

We will now demonstrate the type of low-level explanations on SC operation that 

can be generated following the framework described above. Consider the operation 

of the example SC that was formalised in Chapter 4 and simulated in Section 5.1.3. 
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Its simulation results can be explained with respect to all four topics mentioned in 

Section 5.2.1.1, but here we will focus on the first two topics.  

The simulation output for timepoint 4, presented in Figure 5.3, includes that 

process instance bpm-7/sup2_m13 starts executing at timepoint 4. There are three 

reasons for this fact: this process instance is reached at timepoint 4, and its trigger 

conditions and preconditions hold at this timepoint. The explanation derived 

following the adopted framework consists of these three reasons. Furthermore, an 

explanation can be generated at a larger depth, thus forming an explanation tree. We 

have generated such an explanation, a part of which is visualised in Figure 5.7. It is 

worth mentioning two points with respect to the generated explanation tree. Firstly, 

most tree nodes refer to SC operational behaviours (e.g. process instance execution) 

while others refer to the state of the supply chain (e.g. availability of a machine). 

Secondly, the generated explanation follows the execution semantics described in 

this chapter.  

Explaining SC operation at a low level is particularly useful when one wishes to 

gain a deep and detailed understanding of overall SC operation. This way, for 

example, one can track which policy fired some making operation, and which 

specific product components were used for that making operation. Moreover, it can 

be discovered when these components arrived and from which supplier. The 

supplier’s delivering operation can be further explained, if needed. However, 

explaining the propagation of problematic situations along the supply chain at such a 

low level can be hard to follow. Therefore, a higher level of explanation is needed for 

problematic SC operation. The process of generating such explanations is described 

in Section 5.2.2. 
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Figure 5.7: Part of an explanation tree for a process instance execution 
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5.2.2 High-level Explanation of Problematic SC Operation 

In this section we present the adopted framework for generating high-level 

explanations of problematic supply chain operation. This includes analysing SC 

disruptions and identifying their effect on overall SC performance, thus covering the 

last two points of the research problem, as identified in Section 1.1. We detail 

implementation decisions, and we discuss illustrative examples to demonstrate the 

value of our approach. 

5.2.2.1 Logic-based Framework 

The explanation of problematic SC operation at a high level involves identifying 

causal relationships between detected disruptions. We identify the following five 

types of interesting questions with respect to causal relationships: 

1.  What is the reason for some SC operational problem?  

2.  What are the root causes of some SC operational problem? 

3.  What is the effect of some problematic situation?  

4.  What are all the effects (direct and indirect) of some problematic situation?  

5.  Given the occurrence of two SC operational problems, does one cause the 

other?  

For example, one might want to find out why a particular order delivery was 

cancelled at some timepoint. Another interesting question could be about the root 

causes of high SC cost or about the set of effects of some error with items that 

occurred at some timepoint. Similarly, the user might be interested to know whether 

the duration delay of a specific process instance at some SC member led to low on 

time rate at some other SC member.  

Answering such questions is based on the causal model that was presented in 

Section 4.3.3.2. We adopt a logic-based approach for specifying the explanation 

semantics of this causal model, as it is a natural choice when referring to causal 

relationships, and because it allows for reusability of the explanation process. The 

logical expression provided below defines when some SC operational problem B is 

the reason for some other SC operational problem A: if B is a possible reason for A 
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(according to the causal model), and both these problems hold and their specific 

occurrences are related. These points are further discussed in the following section. 

possible _ reason(A,B) holds(A) holds(B) related(A,B) reason(A,B)∧ ∧ ∧ →
 

It is worth mentioning that the answering of all five identified types of questions can 

be based on the explanation semantics specified above, thus allowing for economy 

when implementing the explanation process. For instance, the notion of “effect” is 

the inverse of “reason”, and hence if B is identified as a reason for A, then A is the 

effect of B. Furthermore, we can discover indirect reasons for some SC operational 

problem by recursively deriving reasons for it; this way, its root causes can also be 

identified. The transitive nature of the “reason” relationship also holds for its inverse, 

the “effect” relationship. Lastly, there is a causal path between two situations if one 

is the (direct or indirect) reason for the other. The following logical expressions 

describe these points. It is worth pointing out the generic nature of these logical 

expressions, a fact that is further discussed in Chapter 6. 

reason(A,B) effect(B,A)→  
reason(A,B) reason(B,C) reason(A,C)∧ →  

reason(A,B) causal _ path(A,B)→  

5.2.2.2 Implementation 

The high-level explanation of problematic SC operation is implemented based on the 

causal model and its semantics discussed above, and it utilises the simulation log 

than contains causal information. The simulation log is useful for discovering 

whether some specific SC operational problem has occurred (i.e. for checking 

holds/1) and whether two particular SC operational problems are related (i.e. for 

checking related/2).  

We have implemented holds/1 for all types of problematic situations in the causal 

model. Let us give two examples: First, a making operation finishes late if, according 

to the simulation log, a finish delay is detected for a process instance of SCOR type 

M1.6 (which is the last process within the make-BPM). Second, the products needed 

for some order delivery are not available on time if, according to the simulation log, 

a start delay is detected for a process instance of SCOR type D1.3 (which is the first 
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process within the deliver-BPM that requires the availability of products). The 

Prolog-based implementation for these examples is shown below: 

holds(make_finish_delay(ProcInst)):-

 fact(finish_delay_is_tracked(ProcInst, _AgentId, make, m16), 

        _Reasons, _T). 

holds(needed_deliver_material_not_available(ProcInst)):-

 fact(start_delay_is_tracked(ProcInst, _AgentId, deliver, d13), 

        _Reasons, _T). 

Before discussing the implementation of related/2 it is worth clarifying the notion 

of relatedness between two specific problematic situations. In this context it is 

important to think of problematic situations as incidents that occur at some timepoint 

and involve some objects. Two specific problematic situations are typically related 

when they involve the same object. Let us provide a non domain-specific analogy to 

illustrate this point: Suppose that a flat’s kitchen has a leak in January and that the 

same kitchen was flooded the preceding November. These two incidents are not 

related, as the water that leaks in the kitchen is not the same water of the flood (i.e. 

different “water-objects” are involved). This also makes sense given the temporal 

sequence of the two incidents. Such information is useful when one tries to discover 

whether the particular leak caused the flood: Even if a leak is a possible reason for a 

flood, and there was an occurrence of both a leak and a flood in the kitchen, that 

particular leak did not cause that particular flood, as the two incidents are not related.  

Similarly, in the context of problematic SC operation, two situations are typically 

related when they involve the same object. For example, two delayed processes are 

related when they involve the same product or resource, or when they belong to the 

same BPM. A relevant example involves causal relationship 12, which states that 

“the needed products for delivering become available late because their making 

finishes late”. The corresponding possible_reason/2 declaration, introduced in Section 

4.3.3.2, is the following: 

possible_reason(needed_deliver_material_not_available(D13ProcInst), 

  make_finish_delay(MProcInst)). 

The delayed make- and deliver-process instances for this causal relationship are 

related when they involve some common product. The implementation of related/2 

 110



for this causal relationship, shown in the Prolog code provided below, expresses 

precisely this idea. Note that the causal information within the simulation log is 

needed in order to check product_within_process_preconditions/2 and 

product_within_process_actions/2. It is worth mentioning that related/2 has been 

implemented for each possible_reason/2 declaration in the causal model. This 

implementation refers to the causal information within the simulation log. 

related(needed_deliver_material_not_available(D13ProcInst), 

  make_finish_delay(MProcInst)):- 

product_within_process_preconditions(EntityId, D13ProcInst), 

product_within_process_actions(EntityId, MProcInst). 

Additional implementation involves non-causal, conceptual linking between 

problematic situations in the causal model; this is needed in order to support the 

recursive derivation of reasons for some situation. One example is the linking of 

late_delivered_order(AgentId, LateDeliveredOrder) with the corresponding 

deliver_finish_delay(DProcInst). Another example is the translation of a predicate with 

information on a list of items (e.g. unusual_processes(ListOfUnusualProcInst)) into 

several predicates, one for each individual item (e.g. unusual_process 

(UnusualProcInst1)).  

Prolog was used for implementing the high-level explanation of problematic SC 

operation. Its recursive nature matches the transitive character of the “reason” and 

“effect” relationships, and enables the generation of explanation trees. This way the 

five identified questions on causal relationships are implemented in an elegant way. 

This matter is further discussed in Chapter 6. 

5.2.2.3 Running Example of High-level Explanation 

We will now demonstrate the high-level explanation derivation process for 

problematic SC operation. We refer to the example SC that was introduced in 

Chapter 4 and simulated in Section 5.1.3, and more specifically to its detected 

problematic operation. Explanations can be generated for all occurred problematic 

situations and in the form of all five types of questions identified in Section 5.2.2.1.  

The first example involves identifying the direct reason for the start delay of 

Supplier4’s process instance bpm-945/sup4_d13 of type “Reserve inventory”, i.e. for 
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the fact that the needed products for delivering become available late. The reason 

identified by the system is the following: “There is a related make-finish-delay: bpm-

745/sup4_m16”. Figure 5.8 illustrates the two problematic situations in a graphical 

way, and one can see that the making delay at Supplier4 is propagated to his 

delivering operation. Note that the derivation of this explanation is based on causal 

relationship 12, the implementation of which was discussed in the previous section.  

 
Figure 5.8: Propagation of delays at Suppllier4 

The second example involves identifying the root causes for Manufacturer’s low on 

time rate. Two root causes are identified by the system: (1) Transporter2’s process 

instance bpm-110/trans2_d112 of type “Ship product” has a longer duration than 

scheduled and (2) order 274 placed by Supplier4 and received by Supplier2 (through 

his process instance bpm-275/sup2_d12) is unusually big. The generation of this 

explanation involves deriving reasons at a bigger depth, thus forming an explanation 

tree with several layers and branches. Figure 5.9 presents the system’s output for this 

question, which consists of two parts: the second part provides the identified root 

causes, and the first part provides the explanation procedure for identifying the two 

root causes (hence corresponding to a textual form of the explanation tree). The 

propagation of the two identified problems along the supply chain is visualised in 

Figure 5.10 (the propagation is shown from left to right), where the yellow-marked 

problematic situations occur due to Transporter2’s shipping delay and the green-

marked problematic situations occur due to the big order placed by Supplier4. It is 

worth noting three points on this example: First, the provided explanation involves 

linking problematic situations and low SC performance. Second, there is a 

propagation of SC disruptions across several SC members (and tiers), and not just 
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within different operations of a single SC member. Third, one can see that 

Manufacturer’s low on time rate was not his fault, but it was caused by disruptions at 

previous SC tiers, a case that is not unusual in real-world supply chains. We should 

emphasise that existing work in SC disruption analysis, as presented in Chapter 3, 

does not cover the identification of root causes of low SC performance. The example 

presented here demonstrates that our approach fills this gap for complex supply 

chains.  

 

 
Figure 5.9: Explanation output for identifying the root causes of Manufacturer’s low 

on time rate 
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Figure 5.10: Propagation of delays across the SC, leading to low on time rate for 

Manufacturer 

The third example involves identifying one direct effect of the error with P2 items 

that occurs at Supplier4 at timepoint 16. The effect identified by the system is that 

Supplier4 makes a flexibility decision on urgent sourcing for Product2 based on the 

execution of flexibility business rule br_sup4_urg1. Conceptually, this means that the 

error gives rise to urgent sourcing for Product2. This is shown graphically in Figure 

5.11. 

 
Figure 5.11: An error with items leads to a flexibility decision at Supplier4 

The fourth example involves identifying all the effects (direct and indirect) of the 

error with P1 items that occurs at Supplier1 at timepoint 10. The most important 

effects identified by the system, visually represented in Figure 5.12, include the 

following: unusual processes execute at Supplier4 for urgent sourcing for Product1 

(e.g. bpm-251/sup4_s11u_p1), delivered by Supplier5 through unusual process 

instance bpm-279/sup5_d, thus leading to high SC cost. Just like in the case of the 

second example, the generation of this explanation involves deriving effects at a 

bigger depth, thus forming an explanation tree. Figure 5.13 presents parts of the 

generated explanation tree.  
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Figure 5.12: An error with items at Supplier1 leads to urgent sourcing at Supplier4 

 
Figure 5.13: Explanation tree 

The fifth example involves finding out whether the duration delay of Supplier1’s 

process instance bpm-362/sup1_d13 of type “Reserve inventory” causes the make-

finish-delay bpm-745/sup4_m16 at Supplier4. The system’s answer to this question is 
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“yes”, and the causal path between these two problematic situations is identified. 

Figure 5.14 shows the identified causal path in a graphical form.  

 
Figure 5.14: Causal path between deliver duration delay at Supplier1 and making 

finish delay at Supplier4 

The five examples discussed above demonstrate how explanations on problematic 

SC operation are generated. We consider the generated explanations to be powerful 

with respect to three issues: First, the propagation of disruptions is tracked not only 

within an SC member’s different SC operations (e.g. in the first example), but also 

across different SC members and across several SC tiers (e.g. in the second 

example). Second, the tracking of disruption propagation can involve disruptions of 

the same type (e.g. the fifth example involves only delays) or of different types (e.g. 

in the second example a received big order leads to a delivering delay). Third, low 

SC performance is explained and linked to occurred problematic situations (e.g. in 

the fourth example high total SC cost is linked to an error with items).  

The presented explanation examples involved the problematic operation of a 

supply chain with complex operation dynamics, as discussed in Chapter 4. Moreover, 

the studied problematic SC operation included several problematic situations of all 

types, the relationships between which were non-obvious given the simulation results 

presented in Section 5.1.3. These two points make the task of explaining problematic 

SC operation for this scenario hard, yet feasible through our approach. 

The generated explanations are useful, as they reveal how problematic situations 

are propagated across the SC, who is to blame for a certain problematic situation and 

what effects an SC disruption may have. This information is valuable, as it can be 

used to re-design aspects of the SC configuration and improve SC operation. For 

instance, alternative SC members may be sought to substitute a current SC member 
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whose problematic SC operation severely affects multiple SC tiers. Another example 

involves responding to delays by introducing time buffers or additional safety stock 

at some SC member. 

5.3 Simulation and Explanation Summary 

This chapter presented a logic-based approach for simulating and explaining SC 

operation. We declaratively specified the execution semantics of the formal model 

presented in Chapter 4. SC operation simulation was driven based on these 

semantics, and a suitable simulation algorithm was presented. We have accordingly 

implemented a simulation environment, the use of which was demonstrated through 

the simulation of the example SC. We believe that our framework allows for rich 

simulations, covering aspects such as SC members’ behaviour and the resulting 

flows of products and information, measuring overall SC performance, and detecting 

problematic SC operation. The operation of entire supply chains can, thus, be 

studied, even when they have complex structures and dynamics.  

In order to explain SC operation, the declarative execution semantics of the 

formal model were translated into grounded, low-level causal information, which 

was added to the simulation log during run-time. SC operation was explained at a 

low level based on this information, thus clarifying interdependencies within SC 

operation. Moreover, we presented a framework for explaining problematic SC 

operation at a higher level of detail. The generation of these explanations was based 

on the causal model that was formalised in Chapter 4, and it utilised the causal 

information within the simulation log. We have implemented an explanation system, 

and we have used it to answer five types of questions on the problematic SC 

operation of the example SC. In our opinion, the rule-based mechanism for 

generating these explanations is powerful, and the provided explanations are useful, 

as they can guide organised efforts towards SC improvement. This point is further 

discussed in the following chapter. 
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Chapter 6 

6Evaluation 

In Chapter 1 we hypothesised that SCOlog generates explanations which provide 

useful insight into supply chain operation dynamics and employs a logic-based 

approach to the modelling and simulation of supply chain operation, allowing for 

maintainability and reusability. Chapter 4 presented a formal, declarative model of 

the domain, while Chapter 5 provided a rule-based reasoning mechanism for 

simulating and explaining the domain model. This chapter discusses the evaluation 

framework and results with respect to the research claims stated in Chapter 1. We, 

thus, answer the following questions: (1) Is this approach useful for understanding 

SC operation dynamics? (2) Does it improve the understanding of the domain for 

non-SCM experts? (3) Is it maintainable and reusable? 

6.1 Evaluation Criteria & Framework  

The criteria for evaluation have been defined based on the research claims outlined in 

Chapter 1. The thesis claims are as follows:  

1.  Automated explanation support is useful for the task of explaining supply 

chain operation dynamics, allowing for users’ higher (a) time-efficiency, (b) 

correctness and (c) certainty about the explanations provided compared to 

the case where such support is not available. 
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2.  The use of automated explanation support improves the performance of non-

SCM experts, with respect to their (a) time-efficiency and (b) correctness 

when explaining SC operation dynamics. The correctness improvement is 

bigger compared to the case where no automated explanation support is 

available, without loss of time-efficiency. This suggests that the use of 

automated explanation support improves the understanding of the domain for 

non-SCM experts. 

3.  A logic-based approach for modelling, simulating and explaining SC 

operation scenarios allows for maintainability and reusability with respect to 

(a) the specified SC operation input models, (b) the developed simulation 

system and (c) the developed explanation system.  

The evaluation criteria that correspond to each research claim are the following: (1) 

approach usefulness, with three sub-criteria of users’ efficiency, correctness and 

certainty, (2) users’ performance improvement, with two sub-criteria of correctness 

improvement and efficiency improvement and (3) maintainability and reusability. 

Deciding on the evaluation method for each of these claims and criteria is highly 

influenced by their nature. A user-based empirical evaluation is appropriate for the 

first two research claims, as they involve the understanding of the domain for human 

users. An example-driven analytical approach is adopted for evaluating the third 

claim, as it involves qualities of the developed computational and reasoning model.  

6.2 Empirical Evaluation Design 

6.2.1 Scenarios 

One way of empirically evaluating the first two research claims is through real-world 

SC scenarios. This involves representing the operation of a real SC at a satisfying 

level of detail, as well as capturing information on SC performance and occurring 

problematic situations. Unfortunately, getting access to such – often sensitive – 

information is extremely hard. For this reason, typical SC scenarios have been 

developed that cover three requirements: First, they are representative of the SCM 

domain; second, they are complex enough to demonstrate the system’s explanatory 
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power; third, their level of difficulty is appropriate, meaning that their dynamics can 

be understood and explained by domain experts when no system support is available. 

The developed SC scenarios involve the operation of the example supply chain 

presented in this thesis (remember that its formalisation was introduced in Chapter 4, 

while its simulation and explanation was described in Chapter 5). The operation of 

this supply chain has been extensively discussed in these chapters, and therefore we 

will not discuss it any further here. Nevertheless, it is worth repeating a few basic 

points: The example SC consists of eight main SC members across four tiers, and it 

involves the flow of five types of products. Apart from standard SC decisions, 

flexibility decisions are also made during its operation. Problematic situations that 

occur during operation involve delays, errors with items, big orders, cancellations of 

order deliveries and unusual processes; these lead to low SC performance.  

Three simulation scenarios have been developed for the example SC: Scenario1 

(which was simulated and explained in Chapter 5), Scenario2 and Scenario3. 

Scenario1 involves an SC simulation for 38 timepoints, Scenario2 is run for 42 

timepoints, while Scenario3 is run for 38 timepoints. Several problematic situations 

of all types occur at all SC members (apart from Supplier3 and Retailer2) in the 

scenarios; what differs between the three scenarios is the timing, the number, the 

location and the propagation degree of individual problematic situations. It is worth 

mentioning that the task of explaining the problematic SC operation of the three 

scenarios is non-trivial. This is mainly due to the big number and wide range of 

problematic situations that occur, as well as their varying propagation degree (i.e. 

some problematic situations are not propagated, while others are propagated from the 

first to the last tiers of the supply chain, affecting overall SC performance). The 

simulation and explanation of Scenario1 in Chapter 5 demonstrated this fact.  

The three scenarios were carefully designed so that their operation dynamics 

complexity is of the same scale. Scenario1 and Scenario3 are simulated for the same 

time period, and they involve the same number of problematic situations of each type 

(e.g. three processes have a duration delay in both scenarios). Furthermore, there is a 

direct mapping between the propagation of individual problematic situations in the 

two scenarios (e.g. the propagation of a process duration delay at Transporter2 in 

Scenario1 is similar to the propagation of a process duration delay at Supplier2 in 
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Scenario3). As far as Scenario1 and Scenario2 are concerned, Scenario2 has a longer 

simulation horizon but it involves a smaller total number of problematic situations; 

this way a balance is established between the two scenarios. Furthermore, there is a 

direct mapping between the propagation of individual problematic situations in 

Scenario1 and Scenario2 (e.g. both scenarios involve the occurrence of an error with 

items at Supplier4, with similar effects in the two scenarios). 

The supply chain and the scenarios described here are appropriate for evaluation 

purposes, as they satisfy the three requirements discussed at the beginning of this 

section. Firstly, the SC is representative of real-world supply chains, consisting of 

several tiers and involving the flow of different products. Secondly, the complexity 

requirement is satisfied not only through the structure of the supply chain, but also 

given the product-based interdependencies between the SC members (this issue was 

also discussed in Chapter 4) and the simulation time horizon of the scenarios. 

Another complexity factor involves the number, type and propagation degree of 

problematic situations. Thirdly, the pragmatism requirement is satisfied, as domain 

experts can successfully explain the dynamics of the three scenarios even when no 

system support is available. Finding the right balance between the last two 

requirements was achieved through pilot runs with users. 

6.2.2 Tasks & Subjects 

Experiment participants were asked to answer questions on SC operation dynamics 

for one or more of the above-described scenarios. More specifically, the questions 

involve causal relationships between arisen problematic situations in a scenario, and 

they were of the following three types discussed in Section 5.2.2.1: identifying root 

causes, identifying all effects, and identifying the causal path between two 

problematic situations. The questions asked for each scenario cover different aspects 

of SC operation dynamics and different problematic situations, thus avoiding any 

learning effects in the participants. They also have equivalent levels of difficulty (e.g. 

explaining the propagation of one problematic situation across two SC tiers is 

regarded as equivalent to explaining the propagation of two problematic situations 

across one SC tier). Therefore, we consider the questions for each scenario as equally 

important and informative with respect to the explanation performance of 
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participants. The experiment tasks were carefully designed, so that a consistent level 

of difficulty is achieved between questions not only within the same scenario, but 

also across different scenarios. This is particularly important for the evaluation of the 

second research claim, and it is further discussed in Section 6.4. 

The answers were provided by the experiment participants in text. The nature of 

most questions was open (e.g. “The on-time rate of Manufacturer is lower than 

expected. Identify all root causes of this situation.”). The only exception were 

questions on the causal path between two problematic situations, consisting of two 

parts: (1) a closed yes/no question (i.e. “Does situation X cause situation Y?”), and, 

in the case of a yes answer, (2) an open question on the causal path (i.e. “Provide the 

causal path between situations X and Y.”). Participants were given at most 6 minutes 

to answer each question. The time constraint was set for practical reasons, so that 

experiments do not have duration longer than one and a half hour. The 6 minute limit 

was set after pilot runs, and it allows for correct answering in the case where no 

system support is available. 

A total number of 28 people have participated in the experiments for the 

empirical evaluation. We distinguish between two classes of participants with respect 

to their expertise: SCM experts and business experts. SCM experts have a deep 

knowledge of SCM subjects, either from a theoretical or a practical point of view. 

Examples of SCM experts include SCM scholars (from PhD students and young 

lecturers to professors with research experience of more than twenty years), SCM 

practitioners (a logistics manager and a product procurement manager), as well as 

students and holders of an MSc in Logistics and SCM. The class of business experts 

includes scholars and practitioners in the wider area of business and management, 

who do not have SCM expertise. Hence, all subjects with business expertise were 

carefully selected so that they do not have advanced knowledge of SCM; some basic 

knowledge of the domain was, however, allowed. Examples of business experts 

include people working in industry, such as Marketing and Communications 

managers, as well as students and holders of an undergraduate or postgraduate degree 

in an area relevant to Business Administration and Management. 
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6.3 Usefulness of the Approach 

This experiment aims to show that automated explanation support is useful for the 

task of explaining supply chain operation dynamics. The experiment was designed to 

facilitate the comparison between the performance of subjects in two cases: when 

automated explanation support is provided and when such support is not available. 

Tests of users’ efficiency, correctness and certainty were performed to evaluate this 

claim. 

6.3.1 Experimental Setup 

Two SC scenarios were used for this experiment, Scenario1 and Scenario2. As 

discussed in Section 6.2.1, these scenarios involve several problematic situations of 

all types, while maintaining equivalent levels of difficulty when it comes to 

explaining their dynamics. Four questions were asked for Scenario1 (as presented in 

Appendix A) and three for Scenario2, covering the three question types mentioned in 

Section 6.2.2. However, the questions for each scenario focus on different and 

independent groups of problematic situations: Questions for Scenario1 focus on 

delays and big orders that may cause high cycle times and low on time rates, while 

questions for Scenario2 focus on errors with items and cancellations of order 

deliveries, which may cause the execution of unusual processes and high SC cost. 

This differentiation was made in order to avoid any learning effects for the 

participants, and it will be further discussed at the end of this section. 

In this experiment, subjects were asked to answer scenario questions with or 

without automated explanation support. In the case where automated explanation 

support was available, subjects did not interact directly with the developed system 

for asking questions – this way, and given the absence of a graphical user interface 

for the developed system, syntactic mistakes were avoided. Instead, participants 

specified the type of question they wanted to make (e.g. find_all_effects) and the 

subject of the question (e.g. low on time rate), and the experiment conductor typed 

the corresponding Prolog query. We should also note that at the beginning of the 

experiment subjects were provided with information on possible types of questions 

that the system can answer.  
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When automated explanation support was provided, the process of answering a 

question was as follows: Firstly, experiment participants specified the type and 

subject of the question they wanted to make. Secondly, the experiment conductor 

typed the corresponding Prolog query and run it. Thirdly, subjects were provided 

with the system’s answer, which they could copy and paste in the questionnaire, alter 

or completely ignore. If interested, subjects could be provided with information on 

all problematic situations that occurred in that scenario. 

When no automated explanation support was provided, subjects answered 

questions based on the corresponding scenario’s simulation results. The simulation 

results for the experiment’s scenarios were presented to the subjects not through the 

SICStus Prolog’s interpreter window, but instead in appropriately designed HTML 

files. This way, the simulation output was more user-friendly, and the subjects’ 

navigation through the simulation results was facilitated. 

For each subject, three variables were measured for the answering of each 

scenario question: time to answer the question, correctness of the provided answer 

and subjective certainty about the answer. Time was measured on the spot by the 

experiment conductor and the measurement unit is seconds. The correctness of each 

answer was graded from 0 to 10, by comparing it to the ground truth that was 

established during the experimental design. A carefully designed marking scheme 

was devised for this task, rewarding correct but incomplete answers, and deducting 

marks for incorrect answer sub-points, when needed. The certainty about the given 

answer was graded from 0 to 4, and it was specified by the subject in the following 

way: Subjects were told they were participating in a betting game, in which they had 

a number of betting chips available, and they could bet from 0 up to 4 for each 

answer. Since the certainty of subjects about the given answer was self-assessed, we 

regard the measured certainty to be subjective certainty; for reasons of simplicity, 

however, ‘subjective certainty’ is called ‘certainty’ throughout this thesis. An 

average value was calculated for each measured variable over all questions for the 

same scenario answered by each subject. This way, three metrics were available for 

each participant’s explanation performance for each scenario: his average time to 

answer the scenario’s questions, his average correctness and his average certainty.   
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 Group1 Group2 

Scenario1 Y N 

Scenario2 N Y 

Table 6.1: Availability of automated explanation support per group and scenario 

The number of subjects in this experiment was 20, consisting of 14 SCM experts and 

6 business experts. These 20 subjects were split in two groups, Group1 and Group2, 

of equal sizes and proportions with respect to expertise. The rationale behind 

distinguishing between two groups lies in the choice of a between-group comparison 

of subjects’ performance. A within-group experiment setup was rejected, as it would 

severely suffer from a learning effect. All subjects answered all questions for the two 

scenarios, some with and some without automated explanation support. The 

availability of automated explanation support per group and scenario is shown in 

Table 6.1, according to which members of Group1 were provided with automated 

explanation support for Scenario1, but not for Scenario2. Similarly, members of 

Group2 were provided with automated explanation support for Scenario2, but not for 

Scenario1. This way, and given that the tasks for the two scenarios have similar 

difficulty but involve different types of problematic situations, the sample sizes for 

this experiment were doubled. It is worth clarifying that in this experimental design 

there is no learning involved for subjects of any group, as the questions of the two 

scenarios focused on different and independent sets of problems. Let us illustrate this 

with an example: Consider a participant of Group1 who first answered questions for 

Scenario1 with the use of automated explanation; these questions involved delays 

and big orders that caused high cycle times and low on time rates. When this 

participant was then asked to answer questions for Scenario2, he couldn’t use any of 

the knowledge he gained through Scenario1, as the questions for Scenario2 involved 

a different set of problems, mainly caused by errors with items. The fact that no such 

learning takes place is particularly important for the independence between the two 

samples used in our statistical tests. 
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6.3.2 Results 

Tables 6.2, 6.3 and 6.4 contain the average time, correctness and certainty 

measurements, respectively, for all experiment participants in two cases: where 

explanation support is available and where it isn’t. It is worth reminding the reader 

that time values may range from 0 to 360 seconds (as the maximum allowed time 

was 6 minutes), correctness values may range from 0 to 10, while certainty values 

may range from 0 to 4. The table columns illustrate the choice of a between-group 

comparison, while their rows reveal the sample sizes for the two cases compared. 

Based on these values, statistical tests were performed to evaluate the efficiency, 

correctness and certainty of the task of explaining SC operation dynamics. These 

tests are discussed in the following three sections. 

 

 Time with automated 
explanation support 

Time without automated 
explanation support 

201.5 351.25 
149.5 356.5 
222.75 326.5 

280 283.25 
241.5 360 
241 360 

242.75 344.5 
294.5 360 
262.5 315 

Sc
en

ar
io

 1
 

210.5 337.75 
245 295.33 
266 303 
132 282.67 

85.33 246.33 
229 346 

271.67 360 
230.67 340 

122 297.33 
129 332.67 

Sc
en

rio
2 

211 312.67 
Average 213.4 325.54 
Table 6.2: Time for providing answers with and without automated explanation 

support 
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 Correctness with automated 
explanation support 

Correctness without automated 
explanation support 

10 4.25 
10 4.25 
7.5 4.5 
9.5 3 
10 4.25 
10 0.25 
10 3.6 
6 2.25 

10 2.25 

Sc
en

ar
io

 1
 

8.75 0.75 
10 1 

6.67 1.33 
10 1.33 
10 1.33 
10 0.33 
10 2.33 
9 4 

10 1.33 
10 0 

Sc
en

rio
2 

10 2 
Average 9.37 2.22 

Table 6.3: Correctness of answers with and without automated explanation 
support 
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 Certainty with automated 
explanation support 

Certainty without automated 
explanation support 

4 2.25 
3 0.5 

2.75 3.5 
3.25 2.25 
2.75 3.25 
2.5 1 
3.75 1.75 
2.25 0.75 
2.25 2.25 

Sc
en

ar
io

 1
 

3.75 0.5 
3.33 1 
2.67 0 

4 3 
4 3.33 
3 2.67 

2.33 1 
2.33 2 

4 2.33 
4 1 

Sc
en

rio
2 

3 3 
Average 3.16 1.87 

Table 6.4: Certainty about answers with and without automated explanation 
support 

6.3.3 Test of Efficiency 

Statistical hypothesis testing using the t-distribution was conducted to evaluate 

research claim 1a) on time-efficiency, as presented in Section 6.1. The rationale 

behind the adoption of the t-test is explained later on in this section. The hypothesis, 

null hypothesis, independent and dependent variables for this test are provided 

below. 

• Hypothesis: 

Explaining SC operation dynamics with the use of the explanation system 

takes less time compared to the case where the explanation system is not 

available (i.e. when explaining is based on simulation outputs).  

• Null Hypothesis:  
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There is no difference in the time taken to explain SC operation dynamics 

with and without the use of the explanation system. 

• Independent variables: 

– Data: 2 scenarios of complex and problematic SC operation (Scenario1, 

Scenario2)  

– Tasks:  

T1: answer questions on the dynamics of an SC scenario with the use of the 

explanation system 

T2: answer questions on the dynamics of an SC scenario without the use of 

the explanation system 

– Subjects: 20 subjects for T1 and 20 subjects for T2, of which 14 SCM 

experts and 6 business experts  

• Dependent variables: 

– Time taken to perform task T1 versus time taken to perform task T2 

A one-tailed t-test was performed to determine the t value and its corresponding p 

value in order to accept or reject the null hypothesis. A significance level of p < 0.05 

was regarded as an acceptable condition to reject the null hypothesis. The t-test was 

chosen based on the sizes of the two samples, and considering that the population 

variances are unknown (Anderson et al. 2004). Given the choice of a between-group 

comparison of time to perform T1 and T2, the two sample independent t-test was 

performed. Note that the two samples are independent for the reasons explained in 

Section 6.3.1. The t value is given by the following equation:  

1 2

2 2
1 2

1 2

x x
t

s s
n n

−
=

+
 

where ix  is the mean of each sample, is the standard deviation of each sample and 

is the size of each sample. 

is

in

The data of Table 6.2 was used for this test, and the calculated t-value was found 

to be 7.439. This value corresponds to a significance level of p=1.686x10-8, which is 

much smaller than the significance level of 0.05. This means that the null hypothesis 

can be rejected. Hence we can conclude that the efficiency of explaining SC 
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operation dynamics with the use of the explanation system is significantly higher 

compared to the case of no explanation system availability.  

6.3.4 Test of Correctness 

A similar statistical hypothesis test using the t-distribution was conducted to evaluate 

research claim 1b) on the correctness of provided explanations, as presented in 

Section 6.1. The rationale behind the choice of t-test is similar to the one for the test 

of efficiency, discussed in Section 6.3.3. The hypothesis, null hypothesis, 

independent and dependent variables for this test are provided below. 

• Hypothesis: 

The correctness of the explanations of SC operation dynamics when using the 

explanation system is higher compared to the case of no explanation system 

use. 

• Null Hypothesis:  

There is no difference in the correctness of the explanations of SC operation 

dynamics that are provided with and without the use of the explanation 

system. 

• Independent variables: 

– Data: 2 scenarios of complex and problematic SC operation (Scenario1, 

Scenario2)  

– Tasks:  

T1: answer questions on the dynamics of an SC scenario with the use of the 

explanation system 

T2: answer questions on the dynamics of an SC scenario without the use of 

the explanation system 

– Subjects: 20 subjects for T1 and 20 subjects for T2, of which 14 SCM 

experts and 6 business experts  

• Dependent variables: 

– Correctness of explanations for task T1 versus correctness of explanations 

for task T2 

Ground truth: determined by experiment designer 
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Similarly to the test presented in Section 6.3.3, a one-tailed two sample independent 

t-test was performed to determine the t value and its corresponding p value in order 

to accept or reject the null hypothesis. A significance level of p < 0.05 was regarded 

as an acceptable condition to reject the null hypothesis.  

The data of Table 6.3 was used for this test, and the calculated t-value was found 

to be 16.581. This value corresponds to a significance level of p=5.145x10-19, which 

is much smaller than the significance level of 0.05. This means that the null 

hypothesis can be rejected. Hence we can conclude that the correctness of 

explanations of SC operation dynamics that are provided with the use of the 

explanation system is significantly higher compared to the case of no explanation 

system use.  

6.3.5 Test of Certainty 

A similar statistical hypothesis testing using the t-distribution was conducted to 

evaluate research claim 1c) on the subjective certainty about provided explanations, 

as presented in Section 6.1. We chose the t-test for the same reasons that were  

discussed in Section 6.3.3. The hypothesis, null hypothesis, independent and 

dependent variables for this test are provided below. 

• Hypothesis: 

The certainty about the explanations of SC operation dynamics that are 

provided with the use of the explanation system is higher compared to the 

case of no explanation system use. 

• Null Hypothesis:  

There is no difference in the certainty about the explanations of SC operation 

dynamics that are provided with and without the use of the explanation 

system. 

• Independent variables: 

– Data: 2 scenarios of complex and problematic SC operation (Scenario1, 

Scenario2)  

– Tasks:  
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T1: answer questions on the dynamics of an SC scenario with the use of the 

explanation system 

T2: answer questions on the dynamics of an SC scenario without the use of 

the explanation system 

– Subjects: 20 subjects for T1 and 20 subjects for T2, of which 14 SCM 

experts and 6 business experts  

• Dependent variables: 

– Certainty about the explanations for task T1 versus certainty about the 

explanations for task T2 

Similarly to the tests presented in the previous two sections, a one-tailed two sample 

independent t-test was performed to determine the t value and its corresponding p 

value in order to accept or reject the null hypothesis. A significance level of p < 0.05 

was regarded as an acceptable condition to reject the null hypothesis.  

The data of Table 6.4 was used for this test, and the calculated t-value was found 

to be 4.517. This value corresponds to a significance level of p=4.021x10-5, which is 

much smaller than the significance level of 0.05. The null hypothesis can, thus, be 

rejected, and we can conclude that the certainty about explanations of SC operation 

dynamics that are provided when using the explanation system is significantly higher 

compared to the case of no explanation system use.  

6.3.6 Discussion 

An experiment with participants of SCM and business expertise was conducted to 

empirically evaluate the usefulness of automated explanation support provided by 

SCOlog. Experiment participants were asked to answer questions on complex and 

problematic SC operation scenarios with or without the use of the explanation 

system. Time, correctness and certainty measurements were taken for the users’ 

answering process. The collected data was used for three statistical hypothesis tests 

addressing efficiency, correctness and certainty. Based on these tests we concluded 

the following: 
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• The users’ efficiency of explaining SC operation dynamics with the use of the 

explanation system is significantly higher compared to the case of no 

explanation system use. 

• The users’ correctness of explanations of SC operation dynamics that are 

provided when using the explanation system is significantly higher compared 

to the case of no explanation system use. 

• The users’ certainty about explanations of SC operation dynamics that are 

provided when using the explanation system is significantly higher compared 

to the case of no explanation system use. 

It is also worth discussing the magnitude of the difference of means between 

participants’ performance in the two cases (i.e. with vs. without the use of the 

explanation system). As it can be seen from Table 6.2, the average time for 

answering questions without the use of the explanation system was more than 150% 

longer than in the case where the explanation system was available. According to 

Table 6.3, the average correctness of answers provided with the use of the 

explanation system was more than 400% higher than in the case where the 

explanation system was not available. Given the data shown in Table 6.4, the average 

certainty of participants about the answers provided with the use of the explanation 

system was more than 160% higher than in the case where the explanation system 

was not available. 

The above points, along with the results of the statistical hypothesis tests, 

demonstrate that automated explanation support is useful for the task of explaining 

supply chain operation dynamics. It is useful, as it allows SCM and business experts 

to quickly and correctly explain SC operation dynamics, while feeling confident 

about their understanding. 

Additionally, experiment participants were asked to directly assess the 

usefulness of the automatically generated explanations by providing a grade from 1 

to 5. As shown in Appendix B, 1 corresponds to not useful at all, and 5 corresponds 

to very useful. The average grade was found to be 4.61, and this result agrees with 

the conclusions discussed above. 
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6.4 Improvement of Understanding 

This experiment aims to show that the use of automated explanation support 

improves the understanding of the domain for non-SCM experts. More importantly, 

it aims to show that this improvement is bigger than in the case where no automated 

explanation support is available. The experiment was designed to study the 

performance of non-SCM experts in two sets of similar tasks, and test their 

improvement for the second task. Two cases are compared: one where automated 

explanation support was provided for the first set of tasks and one where it was not. 

6.4.1 Experimental Setup 

This experiment was designed to test the performance of participants in two similar 

settings, and study any performance improvement involved. In order to guarantee the 

similarity of the two settings, similar questions were asked on similar types of 

problems in similar scenarios. Let us explain this in more detail: Two SC scenarios 

were used for this experiment, Scenario1 and Scenario3. As discussed in Section 

6.2.1, the operation dynamics complexity of these scenarios is of the same scale. 

More specifically, they involve an SC simulation for the same time period and they 

include the same number of problematic situations of each type. Furthermore, there 

is a direct mapping between the propagation of individual problematic situations in 

the two scenarios. Three questions were asked for each scenario, covering the three 

question types mentioned in Section 6.2.2. Each question for Scenario1 was similar 

to a question for Scenario3. This was achieved by focusing on similar types of 

problems for the paired questions, which were similarly propagated in the two 

scenarios. 

In this experiment, subjects were asked to answer scenario questions with or 

without automated explanation support. The process of answering a question in the 

two cases was as explained in Section 6.3.1. For each subject, two variables were 

measured for the answering of each scenario question: the time to answer the 

question and the correctness of the provided answer. The procedure and units of 

measurement were as described in Section 6.3.1. 
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 Group3 Group4 

Scenario1 Y N 

Scenario3 N N 

Table 6.5: Availability of automated explanation support per group and scenario 

The number of subjects in this experiment was 10, all of which were business experts 

without SCM expertise. These 10 subjects were split in two groups, Group3 and 

Group4, of equal sizes. The rationale behind distinguishing between two groups lies 

on the choice of a between-group comparison of performance improvement. All 

subjects answered all questions for the two scenarios, some with and some without 

automated explanation support. The availability of automated explanation support 

per group and scenario is visualised in Table 6.5, according to which members of 

Group3 were provided with automated explanation support for Scenario1, while 

members of Group4 were not. Moreover, neither of the two groups was provided 

with automated explanation support for Scenario3.  

Before explaining how the improvement of performance was calculated for each 

subject, it is worth clarifying two matters. Firstly, some members of Group1 and 

Group2 for the experiment described in Section 6.3 also participated in the 

experiment described here, as members of Group3 and Group4, respectively. This 

brought practical advantages for the conduction of experiments, as a smaller number 

of participants needed to be recruited. Secondly, in this experiment we are interested 

in the relative rather than the absolute improvement of performance. This way we 

value higher the performance improvement of subjects that did not perform well in 

Scenario1 (e.g. a correctness improvement of 3 units is regarded as more important 

in the case where the initial performance was 2 than in the case where the initial 

performance was 6).   

The improvement of performance (with respect to correctness of answers and 

time to provide an answer) for participants within Group4 was calculated as follows: 

Let βi be the performance for each Questioni of Scenario1, and δi the performance for 

each Questioni of Scenario3 (where Scenario1-Questioni and Scenario3-Questioni are  

paired questions, as explained previously). The relative improvement for each 

Questioni answered by each Group4 subject is then:  
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An average value of performance improvement was calculated over the three 

questions for each subject and each metric. This way, two metrics were available for 

each participant’s performance relative improvement: his correctness improvement 

and his time-efficiency improvement. 

Calculating the improvement of performance for members of Group3 was 

similar, except for one point: Group3 members answered the questions for Scenario1 

with the use of the explanation system. Since the correctness and efficiency of 

explaining SC operation dynamics with the use of the explanation system is 

significantly higher than without it (as concluded from the experiment presented in 

Section 6.3), it would not be sensible nor relevant to compare the performance of 

Group3 participants for Scenario1 and Scenario3. Therefore, the improvement of 

performance for members of Group3 was calculated by comparing their performance 

for Scenario3 to the average performance of business experts when answering 

Scenario1 questions without the use of the explanation system. Note that this average 

was calculated not only over members of Group4, but over all business experts that 

were asked to answer Scenario1 questions without the use of the explanation system 

(either for this experiment or for the experiment presented in Section 6.3). Hence, 

calculating the performance improvement for members of Group3 was as follows: 

Let iζ  be the average performance for each Questioni of Scenario1 over all business 

experts that did not use the explanation system, and  the performance of Group3 

participants for each Questioni of Scenario3 (where Scenario1-Questioni and 

Scenario3-Questioni are paired questions). The relative improvement for each 

Questioni answered by each Group3 subject is then:  

iγ
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An average value of performance improvement was calculated over the three 

questions for each subject and each metric, in the same way as for members of 

Group4. Hence, two metrics were available for each participant’s performance 

relative improvement: his correctness improvement and his time-efficiency 

improvement. 

6.4.2 Results 

Tables 6.6 and 6.7 contain the average relative improvement of correctness and time-

efficiency, respectively, for all experiment participants in two cases: where 

automated explanation support was initially available and where it wasn’t. The 

columns of the tables illustrate the choice of a between-group comparison, while 

their rows reveal the sample sizes for the two cases compared. Based on these values, 

statistical tests were performed to evaluate the improvement of correctness and 

efficiency for explaining SC operation dynamics. These tests are discussed in the 

following two sections. 

Correctness improvement for 
Group3 

Correctness improvement for 
Group4 

3.82 0.11 
3.66 -0.17 
3.94 0.11 
2.95 0.33 
0.32 1.44 

Average = 2.94 Average = 0.367 
Table 6.6: Relative improvement of correctness when automated explanation 

support was previously used (i.e. Group3) and when not (i.e. Group4) 

Time-efficiency improvement for 
Group3 

Time-efficiency improvement for 
Group4 

0.67 7 
7.59 35.01 
4.76 0 
3.08 46 
1.80 2.67 

Average = 3.579 Average = 18.136 
Table 6.7: Relative improvement of time-efficiency when automated explanation 

support was previously used (i.e. Group3) and when not (i.e. Group4) 

 137



6.4.3 Test of Correctness Improvement 

Statistical hypothesis testing using the t-distribution was conducted to evaluate the 

third research claim on improvement of correctness, and more specifically the claim 

that the improvement of correctness when automated explanation support was 

previously used is bigger than in the case where it was not. The hypothesis, null 

hypothesis, independent and dependent variables for this test are provided below. 

• Hypothesis: 

The improvement of correctness of explanations of SC operation dynamics 

when the explanation system was previously used is bigger compared to the 

case where it was not previously used.  

• Null Hypothesis:  

There is no difference in the improvement of correctness of explanations of 

SC operation dynamics when the explanation system was previously used and 

when it was not. 

• Independent variables: 

– Data: 2 scenarios of complex and problematic SC operation (Scenario1, 

Scenario3)  

– Tasks:  

T1: answer questions on Scenario1 with the use of the explanation system 

and then answer questions on Scenario3 without the use of the explanation 

system 

T2: answer questions on Scenario1 and then on Scenario3 without the use of 

the explanation system 

– Subjects: 5 subjects for T1 and 5 subjects for T2, all of whom are business 

experts 

• Dependent variables: 

– Correctness improvement when performing task T1 versus correctness 

improvement when performing task T2 

A one-tailed t-test was performed to determine the t value and its corresponding p 

value in order to accept or reject the null hypothesis. A significance level of p < 0.05 

 138



was regarded as an acceptable condition to reject the null hypothesis. Given the 

choice of a between-group comparison of correctness improvement for T1 and T2, 

the two sample independent t-test was performed. The t value is given by the 

following equation:  

1 2

2 2
1 2

1 2

x x
t

s s
n n

−
=

+
 

where ix  is the mean of each sample, is the standard deviation of each sample and 

is the size of each sample. 

is

in

The data of Table 6.6 was used for this test, and the calculated t-value was found 

to be 3.509. This value corresponds to a significance level of p=0.00856, which is 

much smaller than the significance level of 0.05. This means that the null hypothesis 

can be rejected. Hence we can conclude that the improvement of correctness of 

explanations on SC operation dynamics when the explanation system was previously 

used is significantly bigger compared to the case where it was not previously used.  

6.4.4 Test of Efficiency Improvement 

Given the data of Table 6.7, the average time-efficiency improvement of Group3 is 

smaller than the average time-efficiency improvement of Group4. For this reason, we 

decided to statistically test whether the improvement of time-efficiency when 

automated explanation support was previously used is smaller compared to the case 

where it was not previously used. The hypothesis, null hypothesis, independent and 

dependent variables for this test are provided below. 

• Hypothesis: 

The improvement of time-efficiency for providing explanations of SC 

operation dynamics when the explanation system was previously used is 

smaller compared to the case where it was not previously used.  

• Null Hypothesis:  

There is no difference in the improvement of time-efficiency for providing 

explanations of SC operation dynamics when the explanation system was 

previously used and when it was not. 
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• Independent variables: 

– Data: 2 scenarios of complex and problematic SC operation (Scenario1, 

Scenario3)  

– Tasks:  

T1: answer questions on Scenario1 with the use of the explanation system 

and then answer questions on Scenario3 without the use of the explanation 

system 

T2: answer questions on Scenario1 and then on Scenario3 without the use of 

the explanation system 

– Subjects: 5 subjects for T1 and 5 subjects for T2, all of whom are business 

experts 

• Dependent variables: 

– Time-efficiency improvement when performing task T1 versus time-

efficiency improvement when performing task T2 

Similarly to the test presented in Section 6.4.3, a one-tailed two sample independent 

t-test was performed to determine the t value and its corresponding p value in order 

to accept or reject the null hypothesis. A significance level of p < 0.05 was regarded 

as an acceptable condition to reject the null hypothesis.  

The data of Table 6.7 was used for this test, and the calculated t-value was found 

to be 1.541. This value corresponds to a significance level of p=0.099, which is 

higher than the significance level of 0.05. This means that the null hypothesis cannot 

be rejected. Therefore we cannot conclude that the improvement of efficiency when 

the explanation system was previously used is smaller compared to the case where it 

was not previously used. 

We should emphasise that there was a positive improvement of efficiency when 

the explanation system was previously used. Since this was the case for all members 

of Group3, as shown in Table 6.7, we can conclude that the use of the explanation 

system improves the efficiency of non-SCM experts. This point is useful for the 

evaluation of the third research claim, and it is further discussed in the following 

section. 
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6.4.5 Discussion 

An experiment with participants of business expertise was conducted to empirically 

evaluate the users’ performance improvement achieved through the use of the 

explanation system. Experiment participants were split in two groups to answer 

similar questions on two similar SC operation scenarios. Answering questions on the 

second scenario was preceded by answering questions on the first one, with the use 

of the explanation system (for members of one group) or without (for members of the 

other group). The collected data was used for two statistical hypothesis tests over 

correctness and efficiency improvement. Based on the collected data and these tests 

we concluded the following: 

• Explaining SC operation dynamics with the use of the explanation system 

improves the performance of non-SCM experts, with respect to their 

efficiency and correctness when providing relevant explanations.  

• The improvement of correctness of explanations of SC operation dynamics 

when the explanation system was previously used is significantly higher 

compared to the case where it was not previously used. 

Given these two points, one can conclude that the higher degree of correctness 

improvement achieved through the prior use of the explanation system does not 

come at the expense of time-efficiency. On the contrary, there is a parallel efficiency 

improvement. Hence, the second research claim is satisfied. 

It is worth mentioning the magnitude of the difference of means between the 

relative improvement of performance in the two cases (i.e. with vs. without prior use 

of the explanation system). As it can be seen from Table 6.6, the average correctness 

improvement when the explanation system was previously used was more than eight 

times bigger compared to the case where the explanation system was not previously 

used. 

The findings of this experiment have interesting implications with respect to the 

understanding of the domain for non-SCM experts. We have found that the prior use 

of the explanation system has a positive effect on the users’ future performance for 

explaining SC operation dynamics without such support (i.e. based on simulation 

results). Simply put, non-SCM experts that have previously used the explanation 
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system are faster and more correct in their answers when analysing SC operation 

dynamics without the use of the explanation system. The fact that they are faster and 

more correct indicates that they have better understood the subject of SC operation 

dynamics. We, thus, believe that this suggests that the use of automated explanation 

support improves the understanding of the domain for non-SCM experts. 

6.5 Analytical Evaluation of Maintainability and 
Reusability 

In this section we aim to evaluate the third research claim, and thus show that the 

proposed knowledge-based approach for modelling, simulating and explaining SC 

operation allows for maintainability and reusability. Let us first clarify what is meant 

by these two terms. Maintainability in software engineering is defined as “the ease 

with which a software system or component can be modified to correct faults, 

improve performance or other attributes, or adapt to a changed environment” (IEEE 

Std. 610.12, 1990). In this work we focus on adaptive maintenance, i.e. on the ease 

of modifying the functionality of a software system to adapt to a changed 

environment. Software reuse is the use of existing software artefacts to develop a 

new software system (Krueger, 1992). Hence, in the context of this thesis we 

understand software reusability as the ability of some artefact to be reused for some 

other application, different from the SC operation domain. 

We analytically evaluate this claim with respect to three aspects of this work: (1) 

the SC operation input models, (2) the developed simulation system and (3) the 

developed explanation system. We first discuss some properties of these three 

aspects that contribute towards maintainability and reusability, such as modularity, 

cohesion, coupling, generality and declarative formalism. Then we explain how these 

properties support the maintainability and reusability of each aspect and we provide 

illustrating examples. 

The SC operation models that can be specified following the modelling approach 

discussed in this thesis have the following properties: 

• Formal and declarative: In Chapter 4 we presented the declarative 

specification of the modelling constructs through Prolog-based predicates. 
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The resulting model is formal; this means that it has clear execution 

semantics, as discussed in Chapter 5. The choice of a declarative approach 

also allows for a clear separation between the specified model and its 

execution semantics. 

• Generic: The constructs for conceptualising and formalising SC operation are 

not pertaining to specific SC types or industries, and they can support a wide 

range of SC operation structures and behaviours (e.g. SC members’ decision-

making is captured by generic business rules instead of a fixed set of 

predefined policies). In their vast majority, they are general enough to be used 

for modelling additional domains, different from supply chains. For example, 

business processes can represent clinician activities. 

• Loosely-coupled: The SC operation modelling constructs are clearly 

separated and independent from each other, both conceptually and with 

respect to their formalisation. There are two exceptions to this: the 

specification of inventory refers to specified entities, and business rules that 

serve as process preconditions are tightly coupled with the corresponding 

processes. 

The simulation system that has been developed following the rule-based approach 

discussed in this thesis has the following properties: 

• Modular: The components of the developed system, as presented in Section 

5.1, are clearly separated. This means that each component makes sense when 

considered separately from the others (Robertson et al. 1991). For example, 

the workflow engine and the reasoning engine are clearly separated, both 

conceptually and functionally. It is worth mentioning that the modularity of 

the developed system is enabled through the modelling approach, which 

allows for models with clear structure.  

• Loosely-coupled: The components of the developed system, as presented in 

Section 5.1, are independent from each other, meaning that there are weak 

interconnections between them (Yourdon and Constantine, 1979). The 

system’s loose coupling is imposed by the modelling approach in the 

following way: The execution semantics of each construct, as specified in 
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Section 5.1, are independent from each other; since the internal 

implementation of each system component is based on the execution 

semantics of the corresponding construct, the functionality of each component 

is independent from each other. This means that a component may call the 

service offered by some other component without caring about its internal 

implementation. Let us demonstrate the loose coupling between the workflow 

engine and the reasoning engine through an appropriate example: Consider 

the case of a business process P that includes a business rule R within its 

preconditions. In order to execute P, the workflow engine needs to check the 

satisfaction of R, and thus calls the corresponding service offered by the 

reasoning engine (i.e. execute_precondBR, as presented in Section 5.1.2.2) 

without caring about how execute_precondBR is implemented. 

• Cohesive: The developed simulation system is cohesive, as its components 

contain elements that are tightly related to one another (Yourdon and 

Constantine, 1979). This also means that the responsibilities of the system 

components are highly focused. For example, the purpose of the workflow 

engine is to execute business process models, thus bringing about the acting 

behaviour of SC members; all elements within the workflow engine fit 

conceptually and functionally within this purpose (e.g. the execution of 

actions such as creating entities is part of the SC members’ acting behaviour). 

The modelling approach supports the high degree of cohesion in the following 

way: Each system component is implemented based on the execution 

semantics of the corresponding construct; hence all elements of the 

component are designed and built around aspects of the corresponding 

execution semantics, which are by definition tightly related. 

• Generic: Most of the simulation system components are generic, in the sense 

that they are not specific to the SC operation domain, and thus could be used 

for simulating other domains. For example, the workflow engine could be 

used for the management of health operations. It is worth mentioning that the 

generic character of several system components is imposed by the 

formalisation of the corresponding modelling constructs, which is also of a 

generic nature. 
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The explanation system that has been developed following the logic-based approach 

discussed in this thesis has the following properties: 

• Generic: The process of generating explanations (i.e. low-level explanations 

of SC operation and high-level explanations of problematic SC operation) is 

generic. This means that the functionality of the explanation system is not 

specific to the SC operation domain, and thus could also be used for different 

domains. There are two factors that contribute to the generic nature of the 

explanation system: Firstly, explanations are derived based on relevant 

information in the simulation log, which has the generic form 

fact(SimulationEvent, ListOfReasons, Timepoint). Secondly, the explanation 

derivation consists of generating proof trees given the generic fact/3 

information; these proof trees are devised in a generic way, as already pointed 

out in Section 5.2.2. 

• Declarative: The reasoning for generating explanations for different types of 

questions has been declaratively specified, as discussed in Section 5.2.2. The 

declarative logic programming language Prolog was used for the 

corresponding implementation, allowing for a direct and elegant 

implementation. 

The above properties have been discussed, as they are known to contribute towards 

maintainability and reusability. Software maintainability is supported by modularity, 

loose coupling and high cohesion (Yourdon and Constantine, 1979). In addition, the 

existence of generic constructs, methods, and components within a software system 

may decrease the effort of evolving it to meet changing needs. Software reusability is 

facilitated through formal and generic models and procedures (Prieto- Díaz, 1993). 

Moreover, modularity, loose coupling and high cohesion ease the reuse of individual 

system components. 

6.5.1 Input Model’s Maintainability and Reusability 

The SC operation input model is specified based on the modelling constructs 

identified in Chapter 4 and their execution semantics that support simulation and 

explanation, as discussed in Chapter 5. Note that by the term “input model” we refer 
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to an instantiated SC operation model, which can be used as an input for both 

simulation and explanation purposes. 

Modifying the input model is needed when aspects of the studied SC operation 

are changed, and it involves removing or modifying existing elements of the input or 

adding new ones. The SC operation input model is maintainable in the sense that 

modifying it does not require much effort. This is understood along three points: 

1.  Modifying the input model does not affect much of the existing input 

specification. 

2.  Enriching the input model to include complex and specialised SC behaviours 

does not typically require additional system implementation. 

3.  The task of modifying the input model is conceptually straightforward.  

The first point is supported by the modularity of the modelling constructs in two 

ways. Firstly, the loose coupling of constructs eases the process of removing or 

adding new elements in the simulation input. For example, adding a new policy for 

some SC member consists of simply adding the corresponding br/4 predicate. 

Secondly, the explicit structure of the constructs and their clear, declarative linking 

allows modifying elements of the simulation input in a minimal way. For example, 

consider the case of SC partner change, where some SC member (e.g. manufacturer) 

decides to source from a different supplier (e.g. supplier2 instead of supplier1). 

Modifying the simulation input accordingly involves simply updating the 

corresponding data/3 information without modifying any additional sourcing 

behaviour elements: data(manufacturer, product1_supplier, supplier1) is updated to 

data(manufacturer, product1_supplier, supplier2) and this modification is “read” by the 

corresponding sourcing business processes, as the supplier information is not hard-

coded into the businesses process specification. 

The second point is supported by the generic nature of the modelling constructs 

and their formal and declarative representation. Consider the following example of 

complex flexibility decision-making for some SC member, which involves reacting 

to a situation where a combination of things may hold: either E or the combination of 

any case between A and B, and any case between C and D. This is expressed in 

propositional logic as follows: ((A or B) and (C or D)) or E. This complex and 
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specialised SC behaviour can be captured through the specification of a flexibility 

business rule, the IFpart of which consists of the above logical expression. 

The third point refers to the ease of correctly identifying the elements of the 

input model that need to be updated given some modification of the studied SC 

operation. This is an important issue, especially in the case where domain experts are 

in charge of specifying and modifying the simulation input. The choice of a formal 

modelling approach and the resulting explicit specification of constructs facilitate the 

identification of the corresponding elements of the input model. Furthermore, the 

declarative nature of the modelling approach separates the specification of constructs 

from their execution semantics; hence, when domain experts specify the simulation 

input, they do not need to worry about how the model is going to be run. Lastly, we 

believe that the names of formalised constructs are representative of the domain, and 

thus understandable by domain experts. 

 
Figure 6.1: Merging supply chains SC1 and SC2 results into SC3. In order to specify 

the input model for SC3 we can reuse the input models for SC1 and SC2. 

SC operation input model reusability refers to the degree to which specific parts of 

the model can be reused when specifying the input model for different supply chains 

or SC operation scenarios. The explicit structure of the constructs and their loose 

coupling support reusability, as they allow to easily identify, introduce and remove 

input model elements. We will now illustrate this point through an example. 

Consider supply chains SC1 and SC2 presented in Figure 6.1, and let’s suppose that 

the simulation input for each of these has already been specified (i.e. Input1 and 

Input2 respectively). If we decide to merge these two supply chains into SC3 and 
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study the resulting behaviour as a whole, then the input model for SC3 fully reuses 

Input1 and Input2. In fact, no additional information needs to be specified for SC3 

input model, i.e. Input .  3 Input1 Input2= ∪

6.5.2 Simulation System’s Maintainability and Reusability 

The functionality of the simulation system stems from the modelling framework 

proposed in this thesis in two ways. Firstly, the simulation behaviours are based on 

the constructs formalised in Chapter 4 and their execution semantics defined in 

Chapter 5. Secondly, the system architecture was decided considering the structure of 

the formal model.  

The functionality of the simulation system may be modified along two 

dimensions: On the one hand, modifications may be needed in order to simulate 

additional or modified constructs, and thus deal with a richer domain representation. 

On the other hand, new or modified simulation behaviours may be sought for the 

existing set of modelling constructs; this could include relaxing assumptions made 

when defining the model’s execution semantics. The simulation system is 

maintainable in the sense that modifying it does not require much effort. This is 

understood along two points: 

1.  Maintaining the simulation system does not affect a big part of the existing 

implementation. 

2.  Extending the scope of the simulation system to deal with new or 

complementary aspects of the SCM domain does not require additional 

implementation, as long as these aspects follow the specified execution 

semantics. 

The first point is supported by the system’s modularity, as its loose coupling eases 

the process of introducing new components and removing or modifying existing 

ones. For example, modifying the simulation system to deal with funds (remember 

that funds were conceptualised and formalised in Chapter 4 but they were not 

implemented in the system) involves only one system component: the workflow 

engine would have to be modified to deal with funds-related process preconditions 

and actions. This minor modification would not affect any other system component. 
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Another example involves the introduction of a new component to perform business 

process analysis, and hence detect bottlenecks or unreachable points. The simulation 

system architecture would be modified as illustrated in Figure 6.2, and the new 

component introduction would not affect the internal implementation of any of the 

existing system components.  

 
Figure 6.2: Introducing the new system component does not affect the internal 

implementation of other components 

Two more properties of the simulation system support its maintainability with 

respect to the first point outlined above. Firstly, the high cohesion of individual 

components means that only a small number of components are modified, if not only 

one, when evolving the simulation system’s functionality. Secondly, our declarative 

approach facilitates the direct modification of the execution semantics, as it allows 

for their explicit and separate definition from the specification of the modelling 

constructs. Let us illustrate these points through an example: Let’s suppose that we 

want to relax the assumption of full trust between SC members when they 

communicate. This means that a received inform-message is added to an SC agent’s 

knowledge base only if the sender of the message is someone trusted. Maintaining 

the simulation system to encompass the new requirement on trust involves modifying 

only one system component, i.e. the communication environment, and particularly 

the related definition of execution semantics. This modification is illustrated below, 

and it is worth making two remarks: Firstly, this modification does not affect the 

implementation of any other system component, mainly thanks to the high cohesion 

 149



of the communication component. Secondly, this modification does not require 

changing the definition of the involved constructs, thanks to the separate and 

declarative definition of the execution semantics. 

read_message(MessageId, SenderId, Content): 

IF ( received(MessageId) 

AND trustworthy(SenderId) 

    ) 

THEN create_fact(Content) 

The second point on maintainability is supported by the generic nature of the 

modelling constructs and the corresponding system components. For example, if the 

SCOR model is enriched to include additional processes, these are likely to be 

represented based on the formalisation discussed in Section 4.3.2.2. Consequently, 

and given the well-defined execution semantics for business processes, the workflow 

engine is generic enough to deal with the new SCOR-based processes, and thus no 

additional implementation is required. Another example involves extending the 

scope of the simulation environment to include decision-making on supplier 

selection. The criteria for selecting suppliers could be captured through business 

rules, and the corresponding reasoning could be simulated with the use of the 

reasoning engine. 

Simulation system reusability refers to the degree to which specific components 

of the simulation system can be used in a different system, for a different application. 

The modularity of the simulation system, i.e. the high cohesion of its components 

and their loose coupling, support the system’s reusability, as they facilitate the 

identification and extraction of simulation components in order to use them in a 

different setting. In addition, the generic nature of modelling constructs and system 

components broadens the range of candidate applications. We will now illustrate 

these aspects through an example. As already mentioned in Section 6.5.1, business 

processes can be used to represent clinician activities, and they can be simulated with 

the use of a workflow engine. Given its modularity, the workflow engine can thus be 

reused within a health informatics application. Another similar example is the use of 

business rules and the reasoning engine to simulate decision-making on Customer 

Relationship Management. 
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6.5.3 Explanation System’s Maintainability and Reusability 

The functionality of the explanation system is based on the execution semantics of 

the formalised constructs, as represented by causal information in the simulation log. 

In the case of high-level explanation of problematic SC operation, the generation of 

explanations is also based on the declarative causal model presented in Section 

4.3.3.2. 

The functionality of the explanation system may be modified along two 

dimensions: On one hand, modifications may be needed in order to explain 

additional or modified models (i.e. modified with respect to the modelling constructs 

and their execution semantics, as well as the causal model), and thus deal with a 

richer domain representation and simulation. On the other hand, new explanation 

behaviours may be sought for the existing formalised model; these are understood as 

the answering of additional types of questions. The explanation system is 

maintainable in the sense that modifying it does not require much effort. Let us break 

this claim in two points, referring to the two dimensions discussed above: 

1.  Maintaining the explanation system to deal with new or modified models 

does not require any additional implementation. 

2.  Maintaining the explanation system to answer new types of questions does 

not require much additional implementation. 

The first point is supported by the declarative specification of execution semantics, 

as well as by the generic representation of causal information (i.e. through the 

generic predicate fact/3 in the simulation log, and through the generic predicate 

possible_reason/2 in the causal model). Let us illustrate this point through two 

examples. Firstly, let’s suppose that the workflow engine has been modified to deal 

with funds, as discussed in the previous section. This modification includes the 

ability to add funds-related causal information in the simulation log, based on the 

business process execution semantics. Since this information is specified in the 

generic form of fact/3, no additional implementation is needed in order to explain 

funds-related behaviours. The second example involves explaining a modified 

model. Let’s suppose that the simulation system has been modified to encompass the 

communication requirement on trust, as discussed in the previous section. Updating 
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the execution semantics for reading messages means that the related causal 

information is accordingly updated, i.e. any fact/3 within the simulation log that 

refers to reading a message includes the satisfied trust condition within its list of 

reasons. Nevertheless, the generic form of fact/3 is still preserved, and thus no 

additional implementation is needed in order to explain message-reading behaviours.  

The second point on maintainability refers to answering new types of questions, 

by building on the ones already implemented. This is supported by the choice of the 

declarative logic programming language Prolog, which employs an intelligent 

unification strategy and allows for use of recursion with ease. For example, let’s 

suppose that we want to identify common reasons for two situations. The notion of 

“common reason” can be expressed as follows:  

reason(A,C) reason(B,C) common _ reason(A,B,C)∧ →  

The implementation of common_reason(+A, +B, ?C) in Prolog is almost identical, as 

shown below. Building on the definition of reason/2, only three new lines of code are 

needed. It is also interesting to note the flexibility provided by this implementation: 

By giving the goal common_reason(a, b, C) we can obtain any common reason for two 

specific situations a and b.  

common_reason(A, B, C):- 

 reason(A, C), 

  reason(B, C). 

The explanation system is reusable in the sense that the components for 

generating explanations can be used in a different system, for a different application. 

For example, let’s suppose that we want to explain behaviours for an emergency 

response scenario, simulated through a different simulation system, which keeps a 

simulation log with causal information of the form fact/3. Given this generic 

representation, we can use the current explanation system (without any 

modifications) to answer questions on the emergency response scenario. Hence, by 

utilising the generic reasoning process of the explanation system for answering 

different types of questions, we can identify effects and root causes of specific 

situations in an emergency response scenario. 
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6.5.4 Maintainability and Reusability Limitations 

We recognise that the evaluation criteria of maintainability and reusability are not 

easy to measure and quantify. In Section 6.5 we have discussed these two properties, 

along with appropriate examples. By no means do we claim that SCOlog is fully 

maintainable and reusable; there are cases where maintaining or reusing the input 

model or the simulation and explanation system requires some engineering effort. 

For instance, extending SCOlog to address energy issues through measuring SCM 

carbon footprint would require additional implementation within the SC performance 

calculator. Nevertheless, we believe that the approach presented in this thesis 

satisfies these two criteria for typical modification and reuse cases in the context of 

SC operation.  

6.5.5 Discussion 

Analytical evaluation has been conducted on the third research claim on 

maintainability and reusability. We identified properties of SCOlog that contribute 

towards maintainability and reusability, and we provided illustrating examples along 

three dimensions of this work: (1) the specification of SC operation input models, (2) 

the developed simulation system and (3) the developed explanation system. Based on 

this analysis we concluded that the adopted knowledge-based approach for 

modelling, simulating and explaining SC operation scenarios allows for 

maintainability and reusability. 

6.6 Satisfaction of Requirements & Limitations 

6.6.1 Satisfaction of Requirements 

In Section 2.1.5 we identified seven desired properties of a solution to the research 

problem. We now discuss how the approach proposed in this thesis, and 

consequently the implemented system, cover these properties.  

1.  Holistic view: The SC operation model described in Chapter 4 considers the 

entire SC network, thus representing the operation of several SC members. 

SC-wide behaviours can be simulated and overall SC performance can be 
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measured. The dynamics of system-wide SC operation can be explained, as 

illustrated in Chapter 5. 

2.  Include SC disruptions: The proposed modelling framework considers 

problematic SC operation; SC disruptions and low SC performance are 

explicitly represented. The simulation system architecture includes an SC 

disruption detector, and hence SC disruptions are identified at run time. 

Problematic SC operation can be explained at two levels of detail, thus 

identifying causal relationships between different SC disruptions, as well as 

interrelations of SC disruptions and SCM decisions and activities of different 

SC members. Hence, SC disruptions and SC operation dynamics are studied 

in an integrated way. 

3.  Cover standard aspects of SC operation: We adopt the SCOR model for 

modelling the behaviour of SC members. The SCOR model is a standard of 

the SCM domain (Bolstorff and Rosenbaum, 2012), and it covers the main 

facets of SC operation, such as product sourcing, making, delivering and 

returns. As far as SC disruptions are concerned, we consider problematic 

situations that are experienced from different sources: internally, from the 

supply side or the demand side. Furthermore, experiment participants of 

SCM expertise were asked to evaluate the severity of effects and the 

likelihood of occurrence of three addressed SC disruption types: delays, 

demand discrepancies and errors with items. A grade from 1 to 5 was 

assigned for each, where 1 is not severe/likely at all and 5 is very 

severe/likely, as shown in Appendix B. All three types of disruptions were 

evaluated as having severe effects; the average grade for each SC disruption 

type was, respectively: 4.71, 4.43 and 4.5. The likelihood of occurrence of 

the three types of disruptions was evaluated as medium to considerable; the 

average grade for each SC disruption type was, respectively: 4.21, 3.57 and 

3. 

4.  Deal with complex situations: Complex SC structures, decision-making and 

acting behaviours can be modelled, simulated and explained. The modelling 

framework proposed in this thesis adopts an agent-oriented approach and 

 154



allows the specification of supply chains with a complex structure. Complex 

decision-making at different SC members can be captured through the use of 

if-then business rules. We have used FBPML to specify the acting behaviour 

of SC members; FBPML is an expressive language that can represent 

preconditions and effects of activities and that recognises different types of 

junctions. This way, complex SCM acting behaviours can be represented 

through FBPML-based business process models. These can also be 

simulated and explained, as illustrated through the example supply chain. 

5.  Include flexibility aspects: Recognising the trend of SC agility, we model 

flexibility decision-making as part of the thinking behaviour of SC members, 

and we declaratively specify it with the use of business rules (Section 

4.3.2.1). Flexibility decisions and behaviours can, thus, be simulated and 

explained, as discussed in Chapter 5. The example supply chain used 

throughout this thesis includes such agility aspects, as an alternative supplier 

is used by Supplier4 in urgent situations. 

6.  Facilitate what-if analysis: An SC simulation system has been implemented 

as part of the research presented in this thesis. This simulation system can be 

used to experiment with different SC operation parameters and 

configurations, thus allowing for sensitivity analysis. What-if analysis is also 

supported by the maintainability of the specified simulation input models, as 

demonstrated in Section 6.5.1. 

7.  Maintainability: We have shown that the developed simulation and 

explanation system is characterised by maintainability (Sections 6.5.2 and 

6.5.3). This means that modifying the simulation and explanation 

environment to incorporate SCM theoretical advances would not require 

much effort. 

6.6.2 Limitations of Implemented Solution 

We will now discuss some limitations of the implemented simulation and 

explanation environment. These limitations are not considered to be limitations of 

the research approach, but they are rather related to the actual implementation, as 
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presented in Chapter 5. The majority of these issues can be easily dealt with, and 

they were not addressed in the context of this PhD project due to time limitations.  

Firstly, three aspects of the modelling framework presented in Chapter 4 were 

not fully implemented: funds, SC performance metrics and messages. Funds and 

fund-related process preconditions and actions were not included in the 

implementation. Their incorporation is, however, a straightforward task. As far as SC 

performance metrics are concerned, a subset of the metrics that were conceptualised 

in Section 4.2 are formalised and implemented as part of the SC performance 

calculator. The sending and receiving of inform-messages has been implemented, 

while other message types are not supported by the implementation. Nevertheless, 

inform-messages were found to be sufficient for dealing with typical SC operation 

scenarios. 

Secondly, the implemented solution does not allow the control of two aspects of 

SC scenarios: priorities and non-fixed process cost. By priorities we refer to the 

priorities between business processes that are awaiting to be executed and that are 

competing for the same resource, priorities between competing business rules and 

priorities between resources that can be used by some business process execution. As 

far as process cost is concerned, the current implementation does not allow the 

simulation of business processes with variable cost (e.g. cost depending on the 

amount of entities dealt with by the process). Minor extension of the simulation and 

explanation environment would be sufficient to address these issues. 

Thirdly, there are three BPM-related points that are not covered by the 

implemented workflow engine: validation, process decomposition and loops. Under 

the assumption of correct and conflict-free business process models, workflow 

validation is not required. Process decomposition is not implemented, and hence it is 

not possible to simulate processes at multiple levels at the same time. Loops within 

business process models cannot be dealt with by the implemented workflow engine. 

It is worth noting that we do not regard the last two points as considerable 

limitations, as one can simulate SCOR-based business process models without such 

issues; the example SC case illustrated this. 

Finally, there is a low degree of usability of the implemented simulation and 

explanation environment. There is no graphical user interface available, and no 
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animation is provided at simulation run-time. These are standard features of 

commercial SC simulation tools, as mentioned in Chapter 3, and they are particularly 

useful when the end user is a supply chain manager, with no modelling expertise. 

Nevertheless, the system implementation presented in Chapter 5 is in the context of 

the PhD research project, and it is not intended for a direct use in industry. Increasing 

the usability of the implemented system would require considerable engineering time 

and effort, without directly contributing to the aim of this research. For this reason, 

we consider usability issues to be beyond the scope of this research.  

6.7 Comparison to Related Work 

In Chapter 3 we identified two research areas that implicitly address the problem of 

analysing SC operation dynamics: SC simulation and SC disruption analysis. In this 

section, we examine how the research presented in this thesis relates to these fields, 

comparing it to related work.  

Recognising the usefulness of simulation techniques for studying complex 

systems, SC simulation is employed as part of the solution proposed in this thesis. 

The adoption of a declarative and rule-based approach for modelling and simulating 

SC operation facilitates the explanation of simulation results. This explanation 

facility is the most important strength of this work, compared to related work in SC 

simulation. As discussed in Section 3.1, existing commercial and research 

approaches in SC simulation treat simulation as a black box, and hence do not 

explain SC behaviours and SC performance results. Another advantage of this work 

is the clear modelling and analysis of problematic SC operation, as opposed to 

existing work in SC simulation, which does not explicitly address SC disruptions. In 

addition, this work allows the modelling, simulation and analysis of flexibility 

decision-making, thus capturing SC agility aspects; such issues are typically not 

incorporated in existing SC simulation models. We should make clear that we are not 

claiming that this work is generally superior to related work in SC simulation; 

existing SC simulation approaches have some undeniable advantages, such as high 

degree of usability, and the incorporation of variability and geographical aspects of 

supply chains. We believe, however, that the research presented in this thesis is 
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superior to related work in SC simulation with respect to the problem of analysing 

SC operation dynamics, given the above-mentioned strengths.  

SCOlog allows for a high-level explanation of problematic SC operation, thus 

supporting SC disruption analysis. It also fills the three gaps of related work in the 

field, as identified in Section 3.2. Firstly, the proposed modelling approach is tailored 

to the SCM domain. A clear conceptualisation of SC operation is described, and 

modelling constructs are explicitly specified. To make the resulting models easier to 

build and understand, the SCOR model is used and typical inventory policies are 

captured. Secondly, this work allows the identification of root causes of low SC 

performance, as opposed to related work. This was illustrated through a running 

example in Section 5.2.2.3. Thirdly, the process of specifying SC operation input 

models is characterised by maintainability, as discussed in Section 6.5. This is a 

considerable advantage compared to existing approaches in SC disruption analysis, 

which often lead to large and difficult to manage SCM models. 

The research presented in this thesis allows for a joint study of SC operation 

dynamics and SC disruptions. This means that SC disruptions are not analysed in 

isolation, as they are not considered to be rare, exceptional cases of SC operation. On 

the contrary, we recognise the increasing frequency of occurrence of disruptive 

events in modern supply chains, and we enable their analysis with respect to SC 

operational aspects. 

6.8 Evaluation Summary 

This chapter presented the evaluation framework and findings for the three research 

claims of this thesis. According to our first research claim, automated explanation 

support is useful for the task of explaining SC operation dynamics. In order to 

validate this claim, we conducted experiments with the participation of SCM and 

business experts. Based on these experiments, we found that the users’ efficiency, 

correctness and certainty regarding explanations of SC operation dynamics that are 

provided when using the explanation system is significantly higher compared to the 

case of no automated explanation support.  
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According to our second research claim, the use of automated explanation 

support improves the explanation performance of non-SCM experts. We empirically 

evaluated this claim through experiments with the participation of business experts. 

Based on these experiments, we found that there is a positive improvement of users’ 

correctness and efficiency for providing explanations when the explanation system is 

previously used. More importantly, the correctness improvement is significantly 

higher compared to the case of no prior explanation system use, without loss of 

efficiency. The demonstrated performance improvement of the users suggests that 

the use of automated explanation support improves the understanding of the domain 

for non-SCM experts. 

According to our third research claim, a logic-based approach for modelling, 

simulating and explaining SC operation scenarios allows for maintainability and 

reusability. We validated this claim through analytical evaluation over three aspects: 

(1) the specification of SC operation input models, (2) the developed simulation 

system and (3) the developed explanation system. Illustrative examples were 

provided for each of these dimensions. 

Furthermore, we discussed how SCOlog satisfies certain SCM domain 

requirements, as identified in Chapter 2. A direct comparison to related work was 

also provided, thus highlighting the strengths of this research. 
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Chapter 7 

7Conclusions and Future Work 

The research presented in this thesis tackled the problem of analysing supply chain 

operation dynamics, a problem that has been understudied by literature so far. Yet, 

understanding SC-wide operation dynamics is highly important for coordinating SC 

activities, and ultimately integrating supply chains. To our knowledge, SCOlog is the 

first attempt for an explicit and thorough solution to this problem. 

SC simulation is an area that captures, to some extent, SC operation dynamics. 

However, existing work in SC simulation provides only a partial solution to the 

problem of analysing SC operation dynamics, as it does not allow for the direct 

explanation of simulation results. In order to fill this gap, SCOlog employs a 

knowledge-based approach to SC modelling and simulation. This way automated 

explanation support is provided, which is found to give a useful insight into SC 

operation dynamics. Recognising the trend of SC agility, SCOlog incorporates 

flexibility decision-making and acting. SC flexibility aspects are addressed by a 

limited number of SC simulation efforts, and they are widely neglected in SC 

coordination studies (Chan and Chan, 2010). 

In this work we consider SC disruptions to be an integral part of SC operation 

dynamics. SCOlog explicitly addresses SC disruptions, making it possible to 

simulate the occurrence of disruptive events during SC operation, as well as to 

analyse their causes and effects. There are some recent research efforts towards the 

analysis of SC disruptions, such as (Liu et al. 2007). However, these approaches do 

not allow for the identification of root causes of low SC performance and they suffer 
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from usability problems, as the proposed modelling approaches are not tailored to the 

SCM domain and they are not maintainable. SCOlog fills these gaps, and provides an 

alternative solution to those presented in the literature, while jointly considering 

aspects of SC operational behaviours and SC disruptions. 

7.1 Thesis Summary 

This thesis presented a logic-based approach for analysing SC operation dynamics, 

named SCOlog. An overview of the area of Supply Chain Management was provided 

in Chapter 2, highlighting the importance of understanding system-wide SC 

operation dynamics. This is a complex problem that requires an intelligent solution. 

To this end, SCOlog employs Artificial Intelligence techniques, such as knowledge-

based reasoning, workflows and intelligent agents. Background information on these 

areas was provided in Chapter 2. 

Chapter 3 presented related work on SC operation dynamics classified into two 

research streams: SC simulation and SC disruption analysis. We discussed the 

appropriateness of simulation techniques for capturing the dynamics of complex 

systems, and presented existing commercial and research approaches. The main gap 

identified is the lack of an explanation facility for SC simulation results; the problem 

of analysing SC operation dynamics is, thus, not explicitly addressed by SC 

simulation literature. On the other hand, research in SC disruption analysis explicitly 

addresses the interrelations between disruptive events that occur in a supply chain 

network. The main gap identified in this stream of research involves usability 

aspects, as existing approaches are not tailored to the SCM domain. 

In order to fill this gap, we conceptualised SC operation in Chapter 4 by taking 

structural and behavioural aspects into account, as well as problematic SC operation. 

We formalised the domain by perceiving SC members as logic-based intelligent 

agents consisting of three layers: (1) reasoning layer, represented through business 

rules, (2) process layer, represented through business processes and (3) 

communication layer, represented through communicative actions. Structural and 

disruption-related constructs were declaratively formalised, and a logic-based causal 

model was defined, capturing possible reasons for the occurrence of problematic 

 161



situations. In order to illustrate aspects of the modelling framework, we discussed the 

model of an example supply chain.  

The approach of SCOlog to addressing the identified gap in SC simulation 

literature was detailed in Chapter 5, consisting of a simulation and explanation 

framework. As far as simulation is concerned, we designed a simulation system and 

specified the execution semantics of the formal model presented in Chapter 4. A 

rule-based representation of these semantics was adopted in order to enable the 

explanation of simulated behaviours. A simulation algorithm was provided and 

aspects of the implemented SC simulation system were discussed, along with 

illustrating examples of its use. As far as explanation is concerned, we provided a 

mechanism for translating the specified execution semantics into grounded, low-level 

causal information, which was added to the simulation log during run-time. The 

generation of explanations of SC operation was, thus, driven by this information. We 

also presented a framework for explaining problematic SC operation at a higher level 

of detail, based on the causal model defined in Chapter 4. The implementation of an 

appropriate explanation system was discussed, and its use was demonstrated for the 

example supply chain.  

Chapter 6 provided a thorough empirical and analytical evaluation of our work 

with respect to the three research claims. Appropriate experiments were designed and 

conducted for validating the first two research claims, in which participants of SCM 

and business expertise were involved. The experiment for the first claim investigated 

the performance of subjects when explaining SC operation dynamics. This 

performance was measured with respect to the participants’ efficiency, correctness 

and certainty, and it was found to be significantly higher when using the explanation 

system compared to the case of no explanation system use. This way, the usefulness 

of automated explanation support for SCM experts was demonstrated. The 

experiment for the second research claim demonstrated the usefulness of automated 

explanation support for business experts with no SCM expertise. Based on this 

experiment we found that the performance of subjects when explaining SC operation 

dynamics was improved with the use of automated explanation support, as indicated 

by their correctness and efficiency. More importantly, the correctness improvement 

was significantly higher compared to the case of no prior explanation system use, 
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without loss of efficiency. These findings suggest that the use of automated 

explanation support improves the understanding of the domain for non-SCM experts. 

The third research claim on maintainability and reusability was analytically 

evaluated. We first identified some properties of the specified SC operation input 

models, the developed simulation system and the developed explanation system that 

contribute towards maintainability and reusability, such as modularity, declarative 

and generic nature. We then discussed aspects of maintainability and reusability, 

which were demonstrated through appropriate examples. In this chapter, we also 

compared and contrasted our work to competing approaches, thus demonstrating its 

strengths. 

7.2 Contributions 

This thesis has made the following scientific contributions: 

• Formal model of SC operation: SC operation has been formally modelled 

taking conceptual and representational issues into account. We identified 

structural, behavioural and disruption-related constructs in order to 

conceptualise SC operation in a way that is tailored to the domain. We 

provided a declarative specification of the conceptual model, bringing 

benefits of maintainability and reusability. The resulting model is 

comprehensive and can sufficiently describe real domains. A causal model of 

problematic SC operation has also been defined, capturing causal 

relationships between different types of SC disruptions and low SC 

performance. 

• Executable model of SC operation and implemented simulation system: 

We provided a rule-based specification of the execution semantics of the 

formal model, along with an appropriate simulation algorithm. A maintainable 

and reusable simulation environment has been implemented for analysing and 

experimenting with different SC operation scenarios.  

• Mechanism for generating explanations of SC operation and 

implemented explanation system: A framework for explaining dynamic SC 
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operational behaviours has been provided based on the transparent 

specification of execution semantics. Utilising the defined causal model of 

problematic SC operation, we devised a method for diagnosing and explaining 

problematic SC operation. We have also implemented a maintainable and 

reusable explanation system for the automatic generation of explanations of 

normal and problematic SC operation. This automated explanation support 

has been found to be useful to both SCM experts and non-experts. 

Given the multidisciplinary nature of this work, we make contributions to different 

scientific fields: 

• Supply Chain Management: This is the first attempt to explicitly and 

thoroughly analyse SC operation dynamics. We contribute to the area of SC 

modelling through the formal definition of an SC operation model. We also 

contribute to the area of SC disruption analysis through a maintainable and 

context-aware method for analysing problematic SC operation. A practical 

contribution to the field is made through the implemented simulation and 

explanation systems.  

• Simulation: We provide a new approach to simulating distributed and 

decentralised systems that consist of members with independent reasoning, 

acting and social capabilities. We also provide a generic mechanism for the 

automatic derivation of explanations about simulated behaviours. The 

implemented simulation and explanation systems can serve as solutions 

against which different simulation approaches can be evaluated. 

• Knowledge-Based Systems: We describe a generic mechanism for 

explaining the operation of complex systems in an automated and 

maintainable way. The implemented explanation system is considered to be 

useful by users and it is a practical contribution to the field. 
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7.3 Limitations 

We identify three main limitations of the research presented in this thesis. Firstly, 

stochastic aspects of SC operation are not considered. The assumption of 

deterministic SC operation is a strong assumption. Stochastic parameters of SC 

operation could involve final demand, transportation times, the availability of 

production resources, etc. In order to deal with the high degree of complexity of the 

problem, we decided not to include stochastic aspects in this work. Given that no 

other explicit solution to the studied problem was available, we found it more 

important to investigate the feasibility of a solution and its usefulness in a practical 

setting, even if that would be under the assumption of determinism. Having answered 

these questions, one can move on to incorporate variability aspects in our work. We 

identify two main directions towards such an extension: The first direction involves 

simulating and explaining SC operation models that include probabilities. This would 

require only minor modification of SCOlog. The second direction involves 

simulating multiple instances of SC scenarios, so as to get representative results (i.e. 

given stochasticity). The challenge here is providing aggregated explanation over 

multiple simulated scenarios. To this end, major modification of SCOlog’s 

explanation mechanism would be needed.  

Secondly, this work has focused on analysing the operation dynamics of 

manufacturing supply chains, i.e. supply chains developed around tangible products. 

SCOlog can also be used in the context of service supply chains, but certain 

characteristics that are particular to service supply chains are not currently addressed. 

We believe that this is not a strong limitation for two reasons: (a) The vast majority 

of SCM studies focus on manufacturing supply chains (Burgess et al. 2006; Sengupta 

et al. 2006), and (b) future work towards analysing the operation dynamics of service 

supply chains could be extensively based on the approach presented in this thesis. 

Thirdly, SCOlog provides an approach to the analysis of operation dynamics of 

generic supply chains. This was a deliberate research design choice, as explained in 

Section 4.1. The advantage of this design decision is the generality of the solution 

and the corresponding wide audience. The price to be paid is that SCOlog may not 

satisfy some specific requirements of particular business sectors (e.g. quality issues, 
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which are important in food SCs, are not incorporated in the model). Extending 

SCOlog to address such issues would be an interesting topic to explore. 

7.4 Future Work 

We identify the following avenues of future research in order to advance the 

provided solution to the studied research problem: 

• Stochastic aspects: As mentioned in the previous section, this work makes 

the assumption of deterministic SC operation. One could relax this 

assumption and include stochastic aspects in SCOlog. To this end, 

probabilistic modelling approaches (Bishop, 2006) can be useful. As 

discussed in the previous section, simulating and explaining SC operation 

models that include probabilities can be achieved with minor extension of our 

work. Further work would be needed to extend SCOlog’s explanation 

mechanism in order to provide aggregated explanation over multiple 

simulated scenarios. 

• Industry-specific and service supply chains: There is opportunity to extend 

this work to address aspects that are specific to particular industries or types 

of supply chains. Given the considerable interest in food supply chain 

management (Bourlakis and Weightman, 2004), SCOlog can be extended to 

address specific requirements on food SC modelling, such as the ones 

discussed by van der Vorst et al. (2009). There is also growing interest in 

service supply chains, given the reported increasing importance of the service 

sector (Ellram et al. 2004) and the high degree of servitisation of 

manufacturing (Baines et al. 2009). Extending SCOlog to address structural 

differences in service supply chains, such as heterogeneity and simultaneity 

(Baltacioglu et al. 2007), would therefore be timely. A candidate focus area 

could be telecommunication supply chains, which have been found to have 

complex dynamics and suffer from amplification problems (Akkermans and 

Vos, 2003).   
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• Green aspects: Within the wider global push towards a green economy, 

green supply chain management is an emerging theme in both theory and 

practice (Srivastava, 2007). Advancing SCOlog to incorporate sustainability 

aspects would, thus, be both timely and beneficial. A first step towards this 

direction should address green operations, such as waste management and 

reverse logistics, as well as green metrics, such as carbon footprint. 

• Implementation and large-scale supply chains: The full potential of the 

approach proposed in this thesis can be achieved by addressing the 

implementation limitations discussed in Section 6.6.2. This includes further 

implementation for funds, additional message types and SC performance 

metrics, as well as dealing with priorities and some workflow-related 

engineering. At the same time, SCOlog can be employed for studying the 

operation dynamics of large-scale, complex supply chains. In this context, it is 

possible to perform multi-level analysis through a hierarchical view of supply 

chains and their operation. Conducting a case study in such a setting can 

prove beneficial not only for the involved organisations, but also for 

advancing and adjusting the current solution to real-world, large-scale 

problems. 

It would be interesting to investigate the applicability of SCOlog to new problems 

and domains. Further directions of future work in this context are the following: 

• Teaching SCM: We have empirically shown that SCOlog improves the 

explanation performance of non-SCM experts, thus suggesting an 

improvement of their understanding of the domain. This is a quality that is 

promising within an educational context. Most of the – relatively few – SCM 

teaching tools are based on the beer game (Sterman, 1989) and do not cover 

aspects of SC operation dynamics nor issues related to the propagation of SC 

disruptions. We believe that there is great potential for the developed 

simulation and explanation systems to be jointly used as a teaching tool for 

SCM. We understand that this would require considerable engineering effort 

for improving the usability of the existing systems. In order to provide a 

comprehensive solution to SCM education, one could integrate SCOlog with a 

 167



capability for teaching basic principles and introductory topics in supply chain 

management. To this end, we recognise ontologies (Gómez-Pérez et al. 2004) 

as a useful technology for supporting the teaching of fundamental SCM 

concepts. 

• SC planning and configuration: The provided mechanism for generating 

explanations of simulated behaviours can be adjusted to the context of other 

SCM problems, such as system-wide planning and configuration. Analysing 

SC operation dynamics for dynamically reconfigurable supply chains could 

also be valuable. Agent-based techniques have been successfully employed in 

the past for SC formation problems (Piramuthu, 2005), and hence logic-based 

intelligent agents with improved reasoning capabilities could be useful in such 

a setting.  

• Beyond SCM – Health informatics: Investigating the applicability of 

SCOlog to problems within the medical domain could be highly beneficial. 

Hospitals and clinical environments are complex systems, in which many 

actors with different levels of responsibility think, act and interact. The three-

layered agent-oriented modelling approach of SCOlog, could thus, be 

relevant. Furthermore, it would be interesting to test whether the framework 

for high-level explanation of SC disruptions can be employed for the analysis 

of disruptive events in a medical environment. Lastly, collaboration aspects 

could also be considered; the work by Grando et al. (2011) could be of use 

towards this direction. 

7.5 Concluding Remarks 

This thesis presented a logic-based solution to the problem of analysing supply chain 

operation dynamics. A modelling framework was described for capturing and 

representing fundamental aspects of system-wide SC operation, allowing for the 

definition of declarative, maintainable models that are tailored to the SCM domain. 

A rule-based approach to simulation was employed, based on which an appropriate 

simulation environment was developed. Given this approach, we designed and 

implemented a mechanism for generating explanations of SC operation at two levels 
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of detail. This automated explanation support was empirically evaluated, and it was 

found to provide a useful insight into SC operation dynamics for both SCM experts 

and non-SCM business experts. The adoption of a logic-based approach brought 

advantages of maintainability and reusability, which are of considerable value in a 

rapidly-changing business environment. We believe that this work can serve as a 

basis for exploring further SCM problems and for studying alternative domains with 

complex dynamics.  
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Appendix A 

9Experiment Questionnaire 

Question 1 

Supplier1’s process instance bpm-362/sup1_d13 of type D1.3 (“Reserve Inventory”) 

has a longer duration than normally (i.e. 3 instead of 1).  

What are the direct and indirect effects of this situation on any SC member and the 

SC as a whole? 

 

 
How many chips would you like to bet? 

0 ……… 1 ……… 2 ……… 3 ……… 4 ……… 
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Question 2 

Supplier1’s process instance bpm-35/sup1_m16 of type M1.6 (“Release Product”) 

has a longer duration than normally (i.e. 2 instead of 1).  

What are the direct and indirect effects of this situation on any SC member and the 

SC as a whole? 

 

 
How many chips would you like to bet? 

0 ……… 1 ……… 2 ……… 3 ……… 4 ……… 
 

 

 

Question 3 

The on-time rate of Manufacturer is lower than expected.  

Identify all root causes of this situation. 

 

 
How many chips would you like to bet? 

0 ……… 1 ……… 2 ……… 3 ……… 4 ……… 
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Question 4 

Supplier2 tracks the received order 274 (for 24 product2 placed by Supplier4) as 

unusually big through its process instance bpm-275/sup2_d12. We also have that 

Supplier4 has a low on-time rate.  

Does the first situation (at Supplier2) cause the second one (at Supplier4)? 

 

 
How many chips would you like to bet? 

0 ……… 1 ……… 2 ……… 3 ……… 4 ……… 
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Appendix B 

10Questions for User-based Evaluation 

Part A 

In the scenarios that were used for this experiment there were three main types of 

problems: delays, demand discrepancies and errors with products. 

How common are delays in a Supply Chain, in your opinion? 

1 ……… 2 ……… 3 ……… 4 ……… 5 ……… 
 

How important is the effect of delays on Supply Chain Performance, in your 

opinion? 

1 ……… 2 ……… 3 ……… 4 ……… 5 ……… 
 

How common are demand discrepancies in a Supply Chain, in your opinion? 

1 ……… 2 ……… 3 ……… 4 ……… 5 ……… 
 

How important is the effect of demand discrepancies on Supply Chain Performance, 

in your opinion? 

1 ……… 2 ……… 3 ……… 4 ……… 5 ……… 
 

How common are errors with products in a Supply Chain, in your opinion? 

1 ……… 2 ……… 3 ……… 4 ……… 5 ……… 
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How important is the effect of errors with products on Supply Chain Performance, in 

your opinion? 

1 ……… 2 ……… 3 ……… 4 ……… 5 ……… 
 

 

 

 

Part B 

In one of the scenarios you were asked to answer questions by utilising the 

explanation provided by the tool. 

How useful did you find the explanation provided by the tool, as opposed to 

answering questions without such support? 

1 ……… 2 ……… 3 ……… 4 ……… 5 ……… 
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