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In this thesis three aspects of the biosynthesis of natural products have 
been considered. In the first case, stable isotope labelling has been used 
in conjunction with nmr spectroscopy to study the biogenesis of 
3_nitropropanoic acid from L-aspartic acid and the post biosynthetic 
cycling of the former compound with 3_nitroacrylic acid. The intermediacy 
of 2_nitrosuCcinc acid has been demonstrated using N labelling. Chiral 

deuterated and 
1 3 c-labelled L-aspartic acids have been prepared and their 

stereochemical fate determined and discussed in terms of the likely 
mechanism of formation of 3_nitropropanoic acid. The use of chiral amide 
derivatives to distinguish pro R and pro S deuter9iofl by deuterium nmr and 
the secondary isotope effect of deuterium on the C nmr resonance of the 
metabolite were used. Finally, the role of 3_nitroacrylic acid was 
determined to be that of a post bi osy

nthetically cycled product rather than 
an intermediate and these findings have been discussed in the context of 
the post biosynthetic cycling of 3_nitropropanoic acid and its unsaturated 

derivative. 

In the second study the biosynthesis of the pyrimidine ring of thiamine 

(Vitamin B 1  ) 
in SaccharOm ces cerevisiae has been studied using stable 

isotopes in conjunction wit M.S. Since the metabolite is only produced in 
microgram amounts, a method has been developed for the cleavage of thiamine 
using the enzyme thiaminase I from Bacillus thiaminolyticus. This method 
was then applied to a stable isotop investigation whichdimonstrated that 
amination of the pyrimidine ring at the 4 position occurs prior to ring 
formation. A precursor which contains all the necessary nitrogen atoms is 

thereby,  implicated and.the results have been discussed in terms of 
potential biosynthetic precursors. 

Finally, the cleavage of bNA in a low water environment containing an ionic 
surfactant has been studied. While restriction has been shown to occur 
using a range of restriction enzymes, some apparent increase in specificity 
as evidenced by reproducible cleavage at certain nominally equivalent sites 
and not at others has been observed, preliminary studies on the structure 
of the low water system suggest that the DNA may be constrained and the 
implications for the restriction enzyme cleavage of any modification in DNA 
structure have been considered. The potential of increased specificity for 
isolation of specific DNA fragments and its likely implication for the 
cloning of enzymes has been discussed. 
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Introduction 

The study of the biosynthesis of primary and secondary metabolites is 

crucial to an understanding both of how biologically important 

products are formed and, perhaps more importantly, of how such 

pathways and products can be manipulated in order to facilitate 

improved yields, better growth and even, in some cases, novel product 

formation'. 

Traditional studies of the biosynthetic pathways in both prokaryotes 

and eukaryotes concentrated upon feeding radiolabelled early 

precursors and isolating the required product 2 . A complex 

degradation pathway is then necessary in order to determine the 

precise site of incorporation of labelled atoms in the compound of 

interest. This, essentially chemical approach, yielded a great deal 

of information concerning the biosynthetic interrelationships between 

compounds and groups of compounds. 

The next stage in this strategy was the synthesis of putative 

intermediates containing a radioactive label which could then be fed 

and their incorporation tested as above 3 . By such methods, details 

of the major biosynthetic pathways were elucidated and educated 

estimates made as to likely biosynthetic intermediates. while this 

approach is sensitive, general, powerful and provides substantial 

insight into the route of formation of naturally-occurring compounds, 

a number of limitations - both in a practical sense and inherent in 

the technique - are clearly present. First of all, while 

multiple-labelled compounds can be used, their analysis provides no 

information on the biosynthetic relationship of one atom to another 

throughout the pathway, i.e. there is no way of determining bond 
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formation, bond breaking or bond retention between any two atoms in a 

biosynthetic pathway. For this reason, while a mechanism of 

formation of a compound can often by inferred from the data obtained 

in radiochemical experiments, proof of the proposed mechanism is 

rarely possible except in cases where stereospecific tritium loss or 

retention can be demonstrated. Perhaps more crucially, there are no 

suitable radioisotopes of nitrogen available and it is, to all 

intents and purposes, invisible to radiochemical techniques. On a 

practical level, the synthesis of specifically single- or multiple-

radiolabelled compounds can pose considerable laboratory problems and 

the complex degradation pathways which are necessary in order to 

determine the site of labelling are frequently inconvenient and 

technically demanding. 

The advent of high resolution nuclear magnetic resonance (nut) and 

mass spectrometry (ins) opened up a new potential avenue of research. 

Biosynthetic precursors and intermediates could be prepared which 

contained a non-radioactive isotope ( 13 C, 2 H, ' 5N) and the position 

of the label in the product could then be determined directly4 . 

Furthermore, both nmr and ins can be used to determine multiple 

incorporation directly. The former is particularly powerful for 

determining not only the site of incorporation, but also the 

incorporation (or otherwise) of adjacent atoms. Thus, for example, 

stereospecific deuterium incorporation can be determined directly by 

preparation of suitable chiral analogues 4  and the presence of 2 H, 15N 

or 180  adjacent to 	can be determined directly by consideration of 

the 13 C nmr resonance of the carbon of interest 5 . A considerable 

volume of very valuable and specialised work has been, and continues 

to be carried out using stable isotopes in conjunction, principally, 

with nmr and, to a lesser extent, with ins. In addition, the handling 
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and preparation of precursors and intermediates which, contain a 

stable isotopic label is far easier practically than the 

corresponding radiolabelled compound. 

There are, however, a number of limitations which are principally a 

consequence of the sensitivity of the detection systems used. Nmr is 

basically an insensitive technique which requires milligram amounts 

of material and low dilution of isotopic enrichment in order that the 

effects can be visualised in the spectrum. This precludes the study 

of many important compounds which are produced in only small amounts 

and intermediates which are poorly incorporated either per se or as a 

result of the form in which they are presented to the organism under 

investigation. Ms is substantially more sensitive than nmr with 

microgram amounts of material often sufficient and thus suitable for 

measurements of isotopic enrichments where only small amounts of 

material are available. This is still considerably more than is 

required for radiochemical studies. In addition, despite recent 

advances in soft ionisation techniques such as chemical ionisation 

(CI) and fast atom bombardment (FAB), a significant number of 

compounds are simply not amenable to analysis using ms. A further 

limitation is imposed because ins, unlike nmr, is not a selective 

technique - confining its application to situations where the 

dilution of isotopic species is low. The information provided by ins 

is, even in the best designed experiments, generally much less than 

that available from mar studies. 

In parallel with the chemical approach to the study of biosynthesis, 

a biological approach has also developed. Early studies involved the 

isolation of species which were deficient in sequential parts of 

biosynthetic pathways and which would therefore accumulate certain 
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intermediates. The creation and characterisation of mutants and the 

examination of their accumulated intermediates from incomplete 

biosynthetic pathways, remains a very powerful weapon in bioorganic 

chemistry'. Such studies are largely haphazard in nature, with the 

control 'being exercised at a later stage during the assay and 

selection of mutants. Frequently, however, suitable assay systems 

are difficult to design or the biosynthetic intermediate from an 

incomplete pathway is often not simply accumulated in a convenient 

form. In an ideal situation, the enzyme which carries out a specific 

transformation in a pathway will accumulate - together with its 

product - in the cell. More usually, the enzymes of interest are 

only produced in extremely small amounts. Under these conditions, 

recent advances in molecular biology offer an opportunity to 

investigate the reactions catalysed by these enzymes in detail. The 

gene which codes for the enzyme is isolated then cloned into a 

suitable piece of carrier DNA (vector); This conjugate is then 

introduced into the cell - where in some cases it may be produced in 

multiple copies - and the protein subsequently overproduced 6' '. The 

overproduced enzyme can then be isolated using traditional protein 

purification techniques and its activity, substrate specificity and 

mechanism of action investigated in detail in vitro". There are 

some difficulties in this latter approach. A great deal of 

preliminary work must be done in order to isolate the gene of 

interest. In many cases, simple strategies for cutting and joining 

the appropriate pieces of DNA to a suitable vector do not exist and 

other more complex techniques must be employed9 . The overproduced 

protein may be difficult to isolate in a highly purified state and 

may be unstable to the purification conditions which must be 

employed. Nonetheless, allowing for these disadvantages, the 

possibilities for rapidly increasing knowledge of existing and future 
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interesting pathways makes this a method which should be considered 

to be essential to the future direction of bioorganic chemistry. 

This thesis investigates three different methodological approaches to 

the study of biosynthetic pathways in prokaryotes, eukaryotes and in 

vitro. The biosynthesis of 3-nitropropanoic acid, a fungal 

metabolite, is investigated using stable isotopes and, principally, 

nmr. The pyrimidine ring of thiamine (vitamin B 1 ) is studied using 

ms. Finally, the in vitro manipulation of DNA in a novel environment 

is considered. 
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Chapter 1 

1. 3-Nitropropanoic acid - Biosynthesis 

1.1 Introduction 

3-Nitropropanoic acid (1) is a toxic compound found in plants of the 

Fabaceae family' and in certain fungi 2 . It has been shown to inhibit 

mammalian succinate dehydrogenase irreversibly and fumarase 

reversibly 3 ' 4 ' 5 . The principal toxicity appears to occur as a 

result, therefore, of depression of energy metabolism through 

tricarboxylic acid cycle inhibition. Indeed, it has been suggested 

that administration of 3-nitropropanoic acid (1) may serve as a 

useful model of brain damage following energy deficiency. 

In plants, it occurs as a glycoside (hiptagin) from which 

3-nitropropanoic acid (1) can be readily released by hydrolysis 7 . 

The glycoside was first isolated in 1920 from Hiptage mandablota 

Gaertht . and later from Carynocarpus laevigata 9 . Acid hydrolysis of 

the glycoside gave hiptagenic acid (3-nitropropanoic acid), carbon 

dioxide, ammonia and a sugar residue 9 . In contrast to fungi, the 

biosynthesis of 3-nitropropanoic acid in plants has been relatively 

little studied. In indigo (Indigofera spicata, (Jacq.) Forsk.) 

malonic acid was found to be a precursor as was 

malonylmonohydroxamate' ° . The label from [2- 14 C]-malonic acid was 

located in both C-2 and C-3 of the isolated 3-nitropropanoic acid and 

the cycling of malonic acid with oxaloacetic acid in the roots was 

suggested. There was no evidence of incorporation of 

[3-14 C]-L---aspartic acid or of constituents of the tricarboxylic acid 

cycle in 3-nitropropanoic acid (1) in indigo" . 



im 

In fungi, the free acid is produced in large amounts (2.4g per litre 

of medium in the case of Penicillium atrovenetum) 12 . Raistrick and 

Stossl also found that the acid was formed in the earliest stages of 

growth then reached a maximum before subsequent decline 12 . 

3-Nitropropanoic acid (1) may be an intermediate in a fungal 

nitrification process where reduced organic nitrogen compounds are 

oxidised rather than nitration occurring directly' 2 . This is 

analogous to the oxidation of ammonia to nitrite carried out by 

Nitromonas bacteria13 . Ammonium salts were found to stimulate 

production while nitrate appeared to be inhibitory ' 2 . This early 

study was followed by an investigation by Birch et al.' 4  on the 

biosynthetic precursors of 3-nitropropanoic acid (1) in P. 

atrovenetum in which [4-' 4 C]- aspartic acid was implicated as a 

direct precursor. The same workers noted that [l-'4C]--alanine  was 

not incorporated while [' 4 C]-sodium bicarbonate was also a precursor 

of the carboxyl carbon atom. Gatenbeck and Forsgren showed' 5  that 

uniform labelled ("C]- aspartic acid was incorporated in a uniform 

fashion and this was suggested to implicate a dicarboxylic acid via 

the tricarboxylic acid cycle. Previously Hylin and Matsumoto t6 , in a 

non-labelled investigation, studied the effectiveness of various 

carboxylic acids as precursors of 3-nitropropanoic acid (1). They 

found that maximal production required the presence of ammonium ion 

and a suitable, four-carbon, carboxylic acid. They implied, from 

these results, that, while aspartic acid (2) may be a..precursor, it 

is effectively deaminated prior to incorporation and the dicarboxylic 

acid thereby formed enters the general acid pool and is subsequently 

incorporated. In addition, iyasggested that hydroxylamine 
(figure 1.7) 

addition to fumaric acid (3)AmaY  be a viable pathway. 

N 



Figure 1.1 BIOSYNTHESIS OF 3-NITROPROPANOIC ACID (1) 
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Such speculation was largely terminated by the double-labelled study 

of Gatenbeck and Forsgren' 5  which showed that [' 5 N, U-' 4 C)-aspartic 

acid was incorporated suggesting that the amino group is oxidised in 

situ. Transamination exchange of the nitrogen of aspartic acid with 

ammonium ions in the medium served to complicate matters, however the 

results were sufficiently unequivocal for the intact incorporation of 

aspartic acid (2) to be generally accepted. This matter was not 

finally settled however until the nmr study of Baxter et al 17  who 

showed that [2-13 C, ' 5N1-aspartic acid was incorporated with 

conservation of the carbon-nitrogen bond. The presence of 

doubly-labelled 3-nitropropanoic acid (1) was determined from the 15 N 

coupled 13 C flint spectrum. These authors also found an upper limit 

for exchange of nitrogen from aspartic acid (2) to the medium of ca 

20%; moreover the lack of enhancement of the C-i and C-2 signals in 

the isolated 3-nitropropanoic acid (1) eliminated the possibility of 

randomisation of the label. Since DL-aspartic acid was fed and the D 

form is incorporated via oxaloacetic acid (with concommitant loss of 

the 15 N label), it is clear that equilibration of the 13 C label into 

C-2 and C-3 of oxaloacetic acid through malate dehydrogenase and 

aspartase activity cannot occur (Fig: 1.1). Similarly, randomisation 

through the tricarboxylic acid cycle is also eliminated as a 

possibility. 

These results substantiate the earlier findings from 14 C labelled 

pyruvic and acetic acid feeding studies' 8 . In this work, [2-' 4 C] 

pyruvic acid was shown to be incorporated equally into C-i and C-3 

with C-2 being about half of this. Such a result is predicted if 

pyruvate is converted to oxaloacetic acid and hence via aspartic acid 

(2) to 3-nitropropanoic acid (1). If a symmetrical, dicarboxylic 

acid was involved then equal labelling of C-2 and C-3 in the, product 



Figure 1.2 	INCORPORATION OF H 	ACETATE INTO 3NITROPROPANOIC ACID (1) 
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would be expected. Examination of the pyruvate-de rived aspartic acid 

in the medium showed that, after subtraction of the contribution from 

C-4, the specific radioactivity and distribution was almost identical 

with that of the isolated 3-nitropropanoic acid (1). Similar results 

with specifically labelled acetic acid (see Fig. 1.2) indicate that 

it too, is incorporated via oxaloacetic acid after metabolism through 

the tricarboxylic acid cycle. 

It should, perhaps, be noted at this juncture, that, in the vast 

majority of cases, feeding of labelled precursors was carried out 

either at the time of innoculation, in the lag phase or early in the 

log phase of growth and isolation of 3-nitropropanoic acid (1) was 

carried out once the stationary phase had been reached. The 

significance of this point will become clear in the later discussion. 

While in situ oxidation of the amino fUnctionality inaspartic acid 

(2) is the biosynthetic route of choice, the nature of the 

intermediates remains unclear. Hydroxylamine has been detected in 

the culture medium", although addition of this compound did not 

promote production of 3-nitropropanoic acid (1) due, presumably, to 

the toxicity of hydroxylamine. Gatenbeck and Forsgren' 5  also 

detected nitrite in the culture medium although neither 

3-nitrososuccinic acid nor -oximinopropionic acid were found to 

stimulate production. Both nitrite and nitrate are produced from 

3-nitropropanoic acid (1.) by an enzyme system isolated from P. 

atrovenetum and production is accompanied by .a loss of the acid in 

the medium in the post-stationary phase of growth". Inorganic, 

oxidised nitrogen compounds appear to be products from the subsequent 

breakdown of 3-nitropropanoic acid (1) rather than biosynthetic 

intermediates. 
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In contrast to the majority of the above results, Shaw and Wang 20 

reported that neither p-alanine (4) nor aspartic acid (2) alone 

stimulated production of 3-nitropropanoic acid (1). These authors 

suggested an inorganic nitrogen precursor was implicated and found 

production to be stimulated both by hydroxylamine and nitrite. It 

should be noted, however, that, in contrast to other studies, these 

workers used shake flasks rather than surface cultures and the 

results were later contradicted by the same author 
21  who suggested 

the composition of the medium to be of prime importance. clearly 

ammonium ion can be incorporated via transamination with oxaloacetic 

acid, but this has been found to occur only to a limited extent. 

A further and related point of interest in the biosynthesis of 

3-nitropropanoic acid (1) is the derivation of the nitro oxygen 

atoms. Shaw and McCloskey have shown" that [1801_  nitrate is not 

incorporated and that exogenous hydroxylamine does not depress the 

incorporation of ( 15 N1- aspartic acid. Lack of incorporation of 

E 18 0]_ nitrate may be due to oxygen exchange of some intermediate 

with water. This question has recently been answered in a further nmr 

study by Baxter and Greenwood22 . In this investigation, cultures of 

P. atroventum were grown in an atmosphere of 18 02/ 6 02  and with 

[ '5 N1- ammonium chloride in the medium. The proton decoupled ' 5N nmr 

spectrum showed three resonances corresponding to 

and 15N1  0
2 indicating that both oxygen atoms of the nitro group 

derive from dioxygen. This suggests involvement of one or two 

dioxygenase enzymes in the biosynthesis23 . 

The isolation of a NADPH-dependent "reductase" enzyme from P. 

atrovenetum which catalyses the conversion of 3-nitroacrylic acid (6) 

to 3-nitropropanoic acid (1)24  implicated the former as a 



Figure 1.3 1.3 PROPOSED BIOSYNTHESIS OF 3 - NITROPROPANOIC ACID (i) 
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biosynthetic precursor (Fig 1.3). While 3-nitroacrylic acid (6) is 

toxic to the culture (being, presumably, an inhibitor of succinate 

dehydrogenase - an activity which 3-nitropropanoic acid (1) itself 

exhibits in vitro), at low levels it reduces the production of 

3-nitropropanoic acid (1) and, furthermore, completely inhibits 

incorporation of [4-14 C]-aspartic acid into (1). In the presence of 

unlabelled aspartic acid, [1-' 4 C]-.3-nitroacrylic acid (6) was 

incorporated by cells of P. atrovenetum (albeit only one third of the 

expected incorporation). The fact that the isolated enzyme, 

11 3-nitroacrylate reductase", is unable to catalyse effectively the 

reverse reaction, oxidation of (ff to. (6)\ has been interpreted as 
evidence of a precursoral relationship. 

The primary precursor of 3-nitropropanoic acid (1) appears, 

therefore, to be L-aspartic acid (2), the nitro oxygen atoms are 

derived from molecular oxygen and the nitrogen is oxidised in situ 

with retention of the carbon-nitrogen bond. Additionally, Shaw et 

24  have shown that 3-nitroacrylic acid (6) may be an intermediate. 

The information available from previous studies, summarised above, 

eliminates a number of possible routes between L-aspartic acid (2) 

and 3-nitropropanoic acid (1). Nonetheless, a number of potential 

pathways and stereochemical possibilities remain viable and some of 

these are outlined in scheme 1.1 

Each of the transformations depicted has some analogy with known 

secondary metabolism pathways. Dehydroamino acids, for example, have 

been reported as fungal metabolites2 25  and intermediates in the 

biosynthesis of certain cyclic and depsipeptides including the 
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commercially important antibiotic nisin from Streptococcus lactis and 

the related subtilin from Bacillus subtilis 26 . 

The failure to incorporate fralanine precludes decarboxylation as a 

first step in the sequence however it could occur at a number of 

oxidation levels as shown in scheme 1.1. In addition, several 

different mechanisms of decarboxylation are possible. 

No definitive literature precedent for the decarboxylation of a 

dehydroantino acid is known, however a pyridoxal phosphate mechanism 

analogous to that involved in cr-amino acid decarboxylation is 

possible which would give dehydro3-alanine. Oxidation to the 

corresponding N-hydroxy dehydroamino acid and thence to 

3-nitroacrylic acid (6) would afford a known in vitro precursor. 

A similar oxidative pathway can occur with decarboxylation of 

N-hydroxy aspartic acid or of nitrosuccinic acid and several types of 

decarboxylative mechanism can be envisaged. Decarboxylation could 

occur directly, generating a carbanion intermediate which is then 

quenched by proton abstraction from water. This reaction could 

proceed with either retention or inversion of stereochemistry at the 

position derived from C-2 of L-aspartic acid. An analogy for direct 

decarboxylation can be found in the reversible action of propionyl 

CciA carboxylase which proceeds with overall retention of 

configuration27 . In contrast, decarboxylation of UDP-glucuronate 

occurs with inversion of configuration at G228. 

An alternative mechanism which involves concerted abstraction of a 

6-proton to give an acrylate is also possible. This mechanism 
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involving antiperiplanar elimination of hydrogen and the carboxyl 

functionality is analogous to that involved in the generation of the 

ethylidene side chain in porphyrin biosynthesis where the pro-S 13 

proton is abstracted (Scheme 1.2)29.  Herbert 30  has proposed a 

similar mechanism for the decarboxylation of L-tyrosine in the 

biosynthesis of xanthocillin and tuberin (Scheme 1.2). In the former 

case the 3-pro-S proton is lost while in the latter it is retained 

and the 3-pp-R is lost. 

The work by Shaw2 ' on the in vitro enzymic reduction of 

3-nitroacrylic acid (6) to 3-nitropropanoic acid (1) suggests that a 

concerted decarboxylation mechanism is possible, the reduction of 

3-nitroacrylic acid (6) could also be interpreted as evidence of a 

post-biosynthetic process akin to the metabolism of (1) in mammalian 

tissue in which 3-nitropropanoic acid (1) and its dehydro derivative 

are in equilibrium 3-5 

A strategy was developed for delineating which of the pathways in 

scheme 1.1 was involved and hence which of the mechanisms discussed 

above is implicated. It is essential, in the first instance, to 

determine at which stage decarboxylation of L-aspartic acid occurs. 

The incorporation of 2-nitrosuccinic acid (5) into 3-nitropropanoic 

acid (1) would preclude decarboxylation at a lower oxidation state 

and eliminate a number of possible pathways outlined in scheme 1.1 

therefore this compound was evaluated first. 

1.2 Nitrosuccinic acid (5) 

1.2.1 Synthesis and feeding 

Attempts to synthesise 2-nitrosuccinic acid (5) directly by nitration 
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of bromosuccinic acid were unsuccessful. Nitrite esters are an 

important side product in the reaction of sodium nitrite with primary 

alkyl bromides and phioroglucinol has been used to minimise ester 

production 31 . Bromosuccinic acid was treated with ethanolic HC1 to 

give the diethylester which was then nitrated with (' 5 N1-sodium 

nitrite in dimethylsulphoxide in the presence of phloroglucinol 

giving [' 5 NJ-DL-nitrosuccinic acid diethylester (20). Attempts to 

hydrolyse the ester gave only a poor yield of the required product. 

The diester (20) was therefore pulse fed to surface cultures of P. 

atrovenetum over 36 hours beginning 48 hours after innoculation. It 

was hoped that by adopting this protocol to obtain maximum 

incorporation with minimum dilution of the label resulting from 

metabolism of 3-nitropropanoic acid (1). 

1.2.2 Results 

The proton decoupled 15 N DEPT (distortionless enhanced polarisation 

transfer) nmr spectrum32  of the isolated 3-nitropropanoic acid (1) 

showed an intense signal at 3.1 ppm with a fourteen fold increase in 

intensity over natural abundance. Incorporation was confirmed by the 

occurrence of 15 N satellites of both methylene signals in the 'H nmr 

of the isolated 3-nitropropanoic acid ( 2 J NH 2.2 Hz, 3  NH 3.7Hz) of 

an intensity corresponding to a twenty-fold dilution of the 15 N 

enrichment from that of the racemic diester. 

1.2.3 Discussion and conclusions 

The incorporation of ( 15 N)_DIL.diethyl nitrosuccinic acid (20) 

suggests that the biosynthesis of 3-nitropropanoic acid (1) involves 

direct oxidation of r-aspartic acid (2). This study does not preclude 
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the possibility that N-hydroxy aspartic acid is also an intermediate 

but it does show that complete oxidation of the amino group of 

L-aspartic acid to a nitro group must occur prior to decarboxylation. 

It has been observed that the C-N bond is conserved in the 

biosynthesis of 3-nitropropanoic acid (1) from L-aspartic acid (2) 

thus the biosynthetic pathway must proceed from L-aspartic acid (2) 

to nitrdsuccinic acid (5) (perhaps via some other oxidised species) 

and thence, after decarbo4d.ation, to 3-nitropropanoic acid (1). 

Furthermore, the non-intermediacy of -alanine is confirmed. 

1.3 Stereochemistry of nitrosuccinic acid incorporation 

While nitrosuccinic acid (5) has been shown to be an intermediate, 

its stereochemistry remains unclear. The incorporation of deuterium 

atoms from L.-[2,3,3- 2 H3 ]-aspartic acid (19) will serve to further 

delineate which of the pathways shown in scheme 1.1 is correct. 

1.3.1 Feeding 

L-[2,3,3-2 H3 ]-Aspartic acid (19) was administered to cultures of 

P. atrovenentum in three equal amounts (8 mg) at 42, 48 and 54 hours 

after inoculation. 3-Nitropropanoic acid (1) was isolated after 72 

hours as described in the experimental section. 

1.3.2 Results and discussion 

The 2 H nmr spectrum of 3-nitropropanoic acid (1) derived from the 

feeding of perdeuterated L-aspartic acid (19) showed two peaks at 
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2.97 ppm and 4.69 ppm due to deuterium incorporation at C-2 and C-3 

respectively. Deuterium is therefore retained at both C-2 and C-3 

positions of 3-nitropropanoic acid (1). If inversion of 

stereochemistry had occurred at the carbon derived from C-2 of 

L-aspartic acid (2) during the course of formation of nitrosuccinic 

acid then no retention of deuterium at the 3 position of the 

metabolite (1) would be expected. It follows, then, that the 

stereochemistry of L-aspartic acid is retained in the oxidation which 

gives nitrosuccinic acid. This, together with the previous result 

from 15 N-nitrosuccinic acid (5), implies that the biosynthetic 

pathway involves oxidation of L-aspartic acid (2) to give 

t.-nitrosuccinic acid prior to decarboxylation. The retention of H-2 

of L.-aspartic acid (2) eliminates the possible intermediacy of 

dehydroaspartic acid derived intermediates (route (a) of Scheme 1.1) 

in the biosynthesis. The mechanism and stereochemistry of the 

decarboxylation however remains unclear. 

1.4 Mechanism of decarboxylation 

To evaluate which of the two plausible decarboxylation mechanisms 

(direct decarboxylation or decarboxylation with loss of a 8-hydrogen 

yielding an acrylate intermediate) is involved, the retention of the 

hydrogen atoms from C-3 of L-aspartic acid (2) in the biosynthetic 

conversion was examined. Measurement of hydrogen retention or loss 

can be determined by snaking use of the 0-isotope shift effect on the 

' 3 c ninr signal caused by deuteration on an adjacent C atom42 . Each 

deuterium atoni shifts the position of resonance of a directly 

attached carbon nucleus by 0.3 to 0.6 ppm upfield. A deuterium which 

is two bonds away has a similar, though smaller (ca 0.01-0.1 ppm per 
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deuterium) effect43 , although variability has been noted especially 

for carbonyl carbon atoms 44 . The multiplicity of carboxyl 13 C 

resonances can thus be used to determine the extent of deuteration at 

C-2. The incorporation of deuterium from L.-[4-' 3 C, 3-2 H2 1-aspartic 

acid would determine whether an acrylate intermediate is involved in 

the biosynthesis of 3.-nitropropanoic acid (1) from L-nitrosuccinic 

acid (5). 

1.4.1 Synthesis and feeding 

DL-[4-'3C,. 3_2  fl2  ]-Aspartic acid (19) was prepared by treatment of the 

of diethyl 

with Na' 3 CN followed by acid hydrolysis in 2 HC1. Acetylation 

followed by methylation of the acid groups afforded DL-[4- 13 C, 

3.-2 }12  J-N-acetyl dimethyl aspartic acid. Examination by nmr suggeted 

a deuterium content of 1.7 per molecule with 85% 2 and 15% 2 i! 

species. 

DL.-[4-'3C, 3_2; ]-aspartic acid (19) (24 mg) was pulse fed to growing 

cultures of P. atrovenetum and 3-nitropropanoic acid (1) isolated 

after 96 hours. 

1.4.2 Results and discussion 

The 13  C nmr resonance of the carboxyl carbon of the isolated 

3-nitropropanoic acid (1) showed two distinct peaks at 175.934 ppm 

and 175.925 ppn - a difference of 0.009 ppm. These correspond to do  

and d1  species. The difference between d0  and d2  at the 2 position 

in [1-' 3 C]-3-nitropropanoic acid was determined elsewhere to be of 
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the order of 0.025 ppm (vide infra). The loss of a single deuterium 

implies a concerted loss of H and the carboxyl group thus suggesting 

that an acrylate intermediate is involved. 

Earlier work on tuberin and xanthocillin biosynthesis discussed 

above 30  has determined that the loss of 0-proton is a stereoselective 

process. A similar mechanism may be involved in this case, and if 

so, we would expect either the 3-p-R or the 3-pro-S proton of 

L-aspartic acid (2) would be lost in the biosynthesis of 

3-nitropropanoic acid (1). This was investigated by preparation and 

feeding of chirally deuterated L-aspartic acid and examination of the 

product using 2 H nmr. 

1.5 Stereochemistry of incorporation of L-aspartic acid (2). 

1.5.1 Introduction 

The lack of chirality of 3-nitropropanoic acid (1) means that 

assignment of the C-2 or C-3 hydrogens requires that a chiral 

derivative is prepared to enable the prochiral methylene hydrogens to 

be distinguished. While any chiral derivative might be expected to 

lead to chiral distinctions, stereochemical assignment is more 

complex. Once approach which was considered was the construction of 

a cyclic derivative based on L-lactic acid (Figure 1.4). 

Model-building suggests that both the diastereotopic 3H,, and 3H  and 

2 and 2H. would be sufficiently distinct at 200 MHz in the nrnr 

spectrum. Furthermore, the stereochemistry is locked in the cyclic 

lactic acid derivative and thus the iconformationt might be determined 

by x-ray crystallography. Clearly a significant amount of chemical 
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manipulation of the isolated 3-nitropropanoic acid (1) is required. 

The acid (1) must be converted to a suitable form for derivatisation 

with a chiral agent and protection and deprotection steps with 

retention of methylene proton configuration were essential. 

An alternative method makes use of chiral deuterated Ø-alanine (4) 

for conformational studies 33  . This approach has been applied by 

Young et al. 33  who prepared Ø-alanine (4) with stereospecific 

deuterium incorporation from the corresponding deuterated aspartic 

acids. The camphanyl amide of Ø-alanine (16), prepared by reaction 

with camphanyl chloride, showed distinction of the 3R and 35 hydrogen 

atoms in the 1  nmr spectrum. In this case the pro-R hydrogen 

resonated at higher frequency than the pro-S and thus, in the case of 

3-nitropropanoic acid (1), it ought to be possible to determine the 

stereochemistry of deuterium incorporation from feeding deuterated 

aspartic acid at C-3 by conversion of the product to Ø-alanine, 

preparing the caznphanyl amides of the corresponding g-alanines and 

comparing with literature values. Although Gani and Young33  were 

unable to find a suitable derivatising agent for chiral distinction 

at C-2 in fr-alanine  (4), it has been shown34  that the methyl valine 

amides of carboxylic acids can give chiral distinction a to the 

carboxyl group. In addition, Brown and Parker 35  have shown that 

chiral distinction of the C-2 methylene protons can be observed in 

the S-methyl mandelate derivatives of simple carboxylic acids. 

Comparison of the methyl valine amide or the methyl mandelate 

derivative of fr-alanine derived from 3-nitropropanoic acid isolated 

after feeding perdeuterated L-aspartic acid to P. atrovenetum with 

the same Ø-alanine derivatives of known conformation prepared 

independently will confirm both the intermediacy or otherwise of 
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3-nitroacrylic acid (6) in the biosynthesis of 3-nitropropanoic acid 

(1) and elucidate the stereochemistry of the biosynthesis at C-2 of 

the product in an absolute fashion. 

1.5.2 Synthesis 

(a) Attempted synthesis of the cyclic derivative 

Attempted reduction of 3-nitropropanoic acid (1) with lithium 

aluminium hydride did not give any of the expected amino alcohol. 

Reduction with tin in hydrochloric acid gave only a small yield of 

-alanine (4) and this route was clearly of no use when dealing with 

labelled material since further reaction was necessary to prepare the 

cyclic derivative. Reaction of (1) with palladium/charcoal and dry 

ammonium formate 36  gave 6-alanine (4) in good yield. 

L-(+)-Lactic acid (13) was chosen as the chiral agent for 

construction of the cyclic derivative. Reaction of this compound 

directly with 3-nitropropanoic acid (1) however gave a mixture of 

products. The corresponding benzyl ester of lactic acid (13) was 

prepared by reaction with benzyl alcohol in tetrahydrofuran in the 

presence of 1,3-dicyclohexylcarbodimide (DCC) but this material could 

not be condensed with 3-nitropropanoic acid (1) under a range of 

conditions. There may be steric reasons for this. L-(+)-Lactic acid 

(13) was protected by reaction with 2,4 1 -dibromoacetophenone37 . This 

protected derivative also failed to react with 3-nitropropanoic acid 

(1) under a range of conditions including the mixed anhydride 

procedure with triflouroacetic anhydride which activates the acid 

prior to esterification38 . In the light of work described below, 

attempts to prepare cyclic derivatives were abandoned. 
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(b) Chiral L-aspartic acid 

The difficulties in the cyclisation strategy led to a consideration 

of the two alternative methods of determining the route and 

stereochemistry of the incorporation of deuterated L-aspartic acid 

(2) into 3-nitropropanoic acid (1). These both require distinction 

of the pro-R and pro-S hydrogen atoms at 0-2 in the product by 

preparation of .a suitable chiral derivative which can be compared 

directly with an authentic sample of known stereochemistry. 

fr-Alanine was treated with freshly sublimed (-)- camphanic acid 

chloride in aqueous sodium hydroxide and the product isolated as an 

oil which was used without further purification. The N-camphanyl 

-13-alanine (16) was treated with methyl valine and DCC and the 

diderivatised fr-alanine (17) isolated. This product could not be 

crystallised. Examination by 'H niur showed that the pro-R and pro-S 

hydrogen atoms at C-2 and C-3 of the correspondin 3-nitropropanoic 

acid (1) could be distinguished 

turn confirmed the assignments. 

Decoupling of each resonance in 

Deuterated 3-nitropropanoic acid (1) was prepared by deuterated acid 

hydrolysis of bromopropionitrile followed by nitration (vide infra). 

Unfortunately, treatment with ammonium formate and palladium charcoal 

catalyst led to loss of the deuterium atoms and attempts to carry out 

the reduction by other methods in which the deuterium would be 

retained were unsuccessful. The use of chiral -a1anine derivatives 

was abandoned and a method sought whereby distinction of the pro-R 

and pro-S methylene protons could be made without reduction of the 

nitro group of (1). 
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Figure 1.5 
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3-Nitropropanoic acid (1) was converted to the corresponding methyl 

mandelate ester by treatment with trifluoroacetic anhydride then with 

methyl mandelate at room temperature. Esterificatior 11sr?,  

2-ethoxy-l-ethoxy carbonyl-1, 2-dihydroquinoline (EEDQ) or 

dimethylaminopyridine (DIII½P) and dicyclehexylcarbodimide (DCC) gave 

only starting material. Examination by 'H nmr showed that the pro-s 

and pro-S hydrogen atoms at C-3 were distinguishable from one another 

while those at C-2 - remained unresolved (Fig. 1.5). 

The methyl valine amide of 3-nitropropanoic acid was prepared by 

coupling the metabolite with 1.-methyl valine using DCC in THF. The 

'H nmr spectrum showed a complex pattern for the hydrogens at C-2 

characteristic of an AA'BB' system". Decoupling of the resonance 

due to the C-3 hydrogens at 4.72 ppm leads to collapse of the 

virtually symmetrical complex into an AB pattern. A similar pattern 

is obtained for the hydrogen at C-3 and decoupling of the resonance 

due to the hydrogens at C-2 (2.95 ppm) causes a similar collapse. 

(Fig. 1.6). 

Failure to prepare -alanine from 3-nitropropanoic acid (1) with 

retention of deuterium at C-2 of (1) made direct comparison of a 

suitable chiral derivative using 2 H nmr with the same derivative 

prepared with known stereochemistry impossible. Administration of 

chirally deuterated L-aspartic acids and preparation of the 

corresponding methyl valine amides from the isolated 3-nitropropanoic 

acid (1) offered an alternative method of distinguishing 

stereochemistry of the hydrogen atoms at C-2 of (1) derived from 

those at C-3 of L-aspartic acid. 



Figure 1.6  1.6 
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Aspartase catalyses the formation of L-aspartic acid from fumaric 

acid. The reaction is stereospecific, therefore using fumaric acid 

as substrate in deuterated water gives 2S, 3R-[3 2 HJ-aspartic acid 

while 2,3-dideutero fumaricacid(27) is converted to 2S, 
• 	.7J,i 

3S-[2,3-2 H2 ] -aspartic ac{' The dideuterated fumaric acid (27) was 

prepared from diacetylene dicarboxylate by reaction with 

triphenylphosphine in the presence of 2 112 0 followed by hydrolysis of 

the diester40 . The chirally deuterated L.-aspartic acids were then 

prepared by incubation with aspartase as described by Field and 

Young 41 (Fig. 1.7). 

The 'H nmr spectrum of the labelled material showed the expected 

resonances, 	73iT[2_3_rH2 )_aSPartic d1 	- ( 14) giving a 
singlet at 2.65 ppm while the monodeuterated derivative, (2S, 3R) - 

[3-2 H) - aspartic acid (15), gave a 111 doublet at 3.50 ppm (11-2 

0=8Hz) and a 111 doublet at 2.30 ppm (11-3 0=8Hz). Incorporation of 211 

was also confirmed by negative ion FAB mass spectral analysis which 

gave a small molecular ion in each case and significant peaks due to 

loss of 00 2 H and showed that a little (<5%) non-'deuterated material 

was also present. 

Each of the labelled L-aspartic acids was fed to cultures of P. 

atrovenetum in 3 equal amounts (8mg/50cm 3  culture) at 42, 48 and 54 

hours after innoculation. The 3-nitropropanoic acid (1) was isolated 

after 72 hours as described in the experimental section. 

The 3-nitropropanoic acid (1) isolated from the stereospecifically 

deuterated-L-aspartic acid feeding experiments was examined by 211  nEw 

then converted to the corresponding methyl valine amides and examined 
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once again. A sample of (2sL,3_2Ha1_aspattic  acid (15a 	was 

also fed as described above and the derived 3-nitropropanoic acid 

examined by 2 H nmr. A sample of (2S,3R)- 13- 2 H]-aspartic acid (15) 

was fed to two cultures and the 3-nitropropanoic acid (1) isolated 

after 72 and 96 hours then the methyl valine amides compared by 2 H 

nmr. Finally, [4-' 3 C, 3-2 H2  1-L--aspartic acid (18) was administered 

and the 3-nitropropanoic acid isolated after 72 hours and examined by 

13 C nmr of the carboxyl resonance and FAR ins. 

1.5.3 Results 

Examination of 3-nitropropanoic acid (1) obtained from feeding 

- (19) by 2 H mitt showed two peaks at 

2.97 and 4.69 ppm due to deuterium incorporation at C-2 and c-3 

respectively. The methyl valine amides of this compound gave 

resonances at 2.96 ppm and 3.04 ppm due to the pro-R and pro-S 

deuterium atoms at c-2. The deuterium at C-3 was lost by exchange 

during the preparation of this compound. The proportions of the two 

resonances at C-2 were ca 2:1 (Fig 1.8); that at 3.04ppm being the 

smaller. 

The isolated acid (1) from administered (2S,3S)[2 2 H ,  

3-2 H]--L-aspartic acid (14) also showed two resonances in the 2 H nmr 

spectrum at 2.98ppm and 4.70 ppm. The corresponding methyl valine 

amide had a single peak at 3.04 ppm (Fig 1.9). The acid isolated 

after feeding (2S,3R)-[3- 2 H]-L-aspartic acid (15) produced a single 

resonance in the 2 
nmr at 2.99 ppm while the corresponding methyl 

valine amide had a peak at 2.94 ppm and a very small resonance at 

3.04 ppm (Fig 1.9). These results are summarised in Table 1.1. 
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Figure 1.8 
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Figure 1.10 
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In the time course experiments, deuterium was found to be 

incorporated in 3-nitropropanoic acid isolated after 72 and 96 hours 

growth. In the case of the 72 hours isolate, the methyl valine 

amides exhibited a single resonance at 2.94 ppm, and, a very small 

peak at 3.08 ppm (Fig. 1.10). The 96 hours incubation gave 

3-nitropropanoic acid in which the methyl valine amide showed two 

peaks at 2.94 ppm and 3.02 ppm (Fig. 1.10), corresponding to the pro 

R and pro S deuterium atoms at C-2, of approximately equal size. 

These results are summarised in Table 1.1. 

Table 1.1 Results from feeding deuterated aspartic acids to 

P. atrovenetum. 

L.-Aspartic acid 
	

2 H chemical shift of (1) 2 H Chemical shift of 

(ppm) 	 amide derivative 

[2-2 H, 3 2 H1 
	

2.97, 4.69 
	

2.96, 3.04 

(25, 35)[2-2H, 3_2 HI 2.98, 4.70 
	

3.04 

(2S, 3R)13-211 ] 
	

2.99 
	

2.94 

(2S, 3R)[3_2  HI(72h) 2.96 
	

2.94 

(25, 3R)[3_2  HI(96h) 2.99 
	

2.94, 3.02 

1.5.4. Discussion 

The 211  nmr spectrum of the methyl valine amide of 3-nitropropanoic 

acid (Fig. 1.8) isolated from feeding [22H, 3_ 2 112  ]-L-aspartic acid 

(19) suggests that, if an unsaturated intermediate is involved, 

either desaturation or reduction is a non-stereospecific process. 

Both the 3 pro-R and the pro-S deuterium atoms of deuterated 
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aspartates are retained at C-2 of the isolated 3-nitropropanoic acid 

(1) giving resonances at 2.96 ppm and 3.04 ppm in the spectrum of the 

methyl valine amide. Thus stereospecific hydrogen loss and 

subsequent gain is precluded. If 3-nitroacrylic acid (6) is involved 

as a biosynthetic precursor it may be produced by loss of hydrogen 

either in a specific or a random fashion but the subsequent hydrogen 

addition to give (1) must be non-stereospecific process to give a 

mixture of 2 pro-R and 2 pro-S deute rated 3-nitropropanoic acid (1). 

If a saturated intermediate is involved then the retention of 

deuterium from C-2 deuterated L-aspartic acid at C-3 of 

3-nitropropanoic acid (1) implies overall retention of 

stereochemistry at this position. It should be noted that while 

pyridoxal phosphate-mediated interconversion of amino acids and 

cc-keto acids can occur in vivo, this would also cause loss of 

deuterium from C-2 of L-aspartic acid which is clearly not evident in 

this case. 

One of the C-2 deuterium atoms in 3-nitropropanoic acid (1) from the 

perdeuterated aspartate feeding occurs in ca 50% lower abundance than 

the other (Figure 1.8). This observation is important to later 

arguments but, for the moment, it implies that the pro-R and pro-S 

hydrogen atoms at C-3 of L-aspartic acid, even when isotopically 

identical, are not completely equivalent in the biosynthesis of 

3-nitropropanoic acid (1). 

Feeding L-aspartic acids in which either the pro-R or pro-s hydrogen 

at C-3 are replaced by deuterium gives incorporation in both cases. 

This result suggests that any hydrogen loss through the intermediacy 

of an acrylate analogue must be non-stereospecific since either the 
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pro-R or the pro-S can be retained. Preparation of- the methyl valine 

amides of the isolated 3-nitropropanoic acid (1) from each r..-aspartic 

acid feeding shows that a different hydrogen is retained in each 

case. For the pro-R 2  H case, a single resonance at 2.94 ppm (Figure 

1.9) was observed in the chiral amide while in the 3-nitropropanoic 

acid (1) derived from feeding pro-S 2 H aspartic acid the 

corresponding peak is at 304 ppm (Figure 1.9). This is consistent 

with the results from the perdeuterated aspartic acid feeding in 

which resonances were observed at 2.96 and 3.04 ppm. There is a 

small peak in the pro R-2 H feeding at 3.04 ppm corresponding to the 

other isomer which may occur as a result of post-biosynthetic cycling 

of the 3-nitropropanoic acid (1), in a non-stereospecific fashion, 

with 3-nitroacrylic acid (6). It is not possible to determine, by 

inspection, if the deuterium is being retained at C-2 of 

3-nitropropanoic acid (1) with retention of configuration or 

inversion. 

Gani and Young have shown 33  that, in the camphanoyl amide of 

-alanine, the pro-it hydrogen adjacent to the amide occurred at 

higher chemical shift than the pro-S hydrogen. Brown and Parker, in 

a study of stereospecific deuteration35 , found that the S-methyl 

mandelate esters of L-deuterated carboxylic acids showed chiral 

distinction with the pro-R hydrogen at higher chemical shift than the 

pro-S. In the case of the methyl valine amide of 3-nitropropanoic 

acid the deuterium derived from pro-it deuterated L-aspartic acid 

occurs at a higher chemical shift than that from pro-S thus while 

retention is implied, it remains unproven. The retention of 

stereospecificity at C-3 of 3-nitropropanoic acid (1) mentioned above 

however, and the non-intermediacy of the acrylate implies retention 

of configuration at C-2. 
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In the time course experiment, deuterium incorporation from (25, 

3R)-[3-2 H]-L-aspartic acid (15) was observed after 72 and 96 hours 

(Figure 1.10). The corresponding methyl valine amide for 96 hours 

gave two peaks in the 2 H nmr which corresponded to the resonances of 

the products from pro-B deuterated and pro-S deuterated L-aspartic 

acid feedings. Since the "reductase" enzyme is known to be active at 

this time and not at 72 hours (vide infra) this suggests that 

post-biosynthetic randomisation of the stereochemistry at C-2 of 

3-nitropropanoic acid (1) is occurring. There are two possible 

explanations for this observation. In the conversion to 

3-nitroacrylic acid (6), one hydrogen is lost. If the loss is 

stereospecific then this hydrogen must be the pro-B hydrogen from 

L-aspartic acid (such a stereospecific loss may be due to an isotope 

effect). The addition of hydride from NADPH, to form 

3-nitropropanoic acid (1) occurs with inversion of configuration so 

the pro-R derived site is now deuterated. This will lead to a 

population of pro-B and pro-S deuterated 3-nitropropanoic acids (1) 

and hence two peaks in the methyl valine amides. A second 

possibility is that the hydrogen loss and subsequent gain is a 

completely random process which leads to a population of pro-R and 

pro-S deuterated 3-nitropropanoic acids (1) of approximately equal 

amounts. However, the nmr suggests that more of the pro-R derived 

deuterium is present than the pro-S and this implies that 

randomisation does not occur and consequently that inversion is the 

preferred mechanism. 

The carboxyl resonance in the ' 3 C mar spectrum of 3-nitropropanoic 

acid (1) derived from feeding DL- [4 ---13  C, 3- 
2 112 1-aspartic acid (18) 

has already been shown to be shifted by 0.009 ppm - indicative of a 
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single deuterium loss. This implies that if any (1-' 3 C, 

2- 2  H 2  1-3-nitropropanoic acid is present, then it is in insufficient 

amounts to be detected by the 0-isotopic shift effect on C-i. The 

FAD ins of the isolated 3-nitropropanoic acid (1) shows significant 

ions at iiv'z 118, 119, 120, 121 and 122. Non-labelled 

3-nitropropanoic acid (1) gives ions at.Wz  118, 119 and 120 due to 

M-1, M and Mi-i respectively. The relative ratios are as shown in 

Table 1.2. From the intensities of the ions in the reference 

spectrum, it is possible to determine the contribution of each of the 

labelled 3-nitropropanoic acids to each of the ions observed. These 

results are detailed in Table 1.2. .A small contribution due to 

E1_13 C, 2- H2  1-3-nitropropanoic acid is apparent. 

Table 1.2 FABms of 3-nitropropanoic acid (1) and 3-nitropropanoic 

acid from (4-' 3 C, 3-2 H2 ]-L-aspartic acid feeding. 

Label in (1) 	 ion (nVz) 

118 	119 	120 	121 	122 

EM-i] 13 	2 CO3  H0 	33254 

EM) ' 3 CO3  2 H0 	 8812 

EM-i-li 13 CO3  ii 	 546 

EM-i] 13 CO3  2 H 	 7038 

[M] 13 CO3  2 H0 	 145 

[ni-i] 13 CO3  2 H0 	 9 

13 	2 En-li 	C, H1 	 359 

EM] ' 3 C, 2 H1 	 9.5 

EM+ii '3C, 2ii 

EN-li '3C, 
2  H 

2 
	 457 

EM] 
13 C, 2  H 

2 
	 121 
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1.5.5 Conclusions 

It has been shown that feeding L-aspartic acid (2) containing 

deuterium in either the pro-R or pro-S positions at C-3 leads to 

stereospecific incorporation at C-2 of 3-nitropropanoic acid (1). 

The experiment with perdeuterated L-aspartic acid, where both 2 

pro-it and 2 pro-S deuterons appear in the product effectively 

precludes the possibility that an acrylate intermediate is involved 

since, in this case, the àverall reaction would be required to be 

non-stereospecific and this is at variance with the results from the 

stereospecifically labelled aspartic acid experiments. This implies 

that a saturated intermediate is involved. The most plausible 

mechanism would involve complete oxidation of the amino functionality 

of L-aspartic acid (2) followed by decarboxylation with retention of 

configuration at C-2 of the resulting 3-nitropropanoic acid (1). 

The occurrence of an ion in the FAB ins of 3-nitropropanoic acid (1) 

derived from feeding [4_13  C, 3_2  H2  ]-DL-aspartic acid which contains a 

' 3 C label and two deuterium atoms is further confirmation of the 

pathway. This result implies that L-aspartic acid (2) is 

incorporated into 3-nitropropanoic acid (1) with retention of the C-H 

bonds at C-3 of L-aspartic acid (C-2 of 3-nitropropanoic acid). 

I 	Subsequent loss of deuterium may occur as a result of 

post-biosynthetic cycling (vide infra) which produces [1-'3C, 2_ 2 
 Hi

and [l-' 3.C, 2-2 H0 1-3-nitropropanoic acid. This implies that the 

post-biosynthetic cycling does not occur with retention of 

configuration and that either inversion or scrambling occurs with 

ultimately, complete loss of deuterium from 3-nitropropanoic acid 

(1). 
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while an isotope effect cannot be excluded, the inequality of the 

peaks in the perdeuterated L-aspartic acid (2) feeding would imply 

that, in an isotopically identical situation, there is a degree of 

specificity exhibited in the post biosynthetic cycling with the pro-it 

deuterium lost preferentially. 

Finally, the isolation of 3-nitropropanoic acid (1) from cultures of 

P. atrovenetum at different times after innoculation and feeding with 

(2S, 3R)-[3-2 H]--L-aspartic acid (15) and the examination of the 

corresponding methyl valine amides sheds light upon the 

stereochemistry of the proposed post-biosynthetic cycling of 

3-nitropropanoic acid (1) with the 3-nitroacrylic acid (6). When 

isolated soon after feeding the 3-nitropropanoic acid (1) contains 

deuterium stereospecifically at C-2. When 3-nitropropanoic acid (1) 

is isolated 96 hours after incubation then two peaks are observed in 

the 2 H nmr spectrum of the methyl valine amides corresponding to 

deuteration at the pro-R and the pro-S positions. This suggests that 

"reductase" activity is not present early in the growth cycle of P. 

atrovenetum and the enzyme is only formed late in the growth cycle. 

Furthermore, either the post-biosynthetic cycling randomises the 

label or that inversion occurs during the cycling. If the latter is 

the case then the pro-R hydrogen from L-aspartic acid is retained 

during hydrogen loss. These results are summarised in figure 1.11. 

The greater peak size of the pro-it derived resonance implies that 

scrambling (which could only produce, at best, a 50:50 mixture) 

cannot be occurring and that inversion is the likely mechanism. 
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1.6 Post-biosynthetic cycling 

Post-biosynthetic cycling of 3-nitropropanoic acid (1) via the 

acrylate (6) will necessarily result in loss of hydrogen at C-2 and 

C-3. The earlier evidence for the incorporation of 3-nitroacrylic 

acid (6) suggests that a concerted pathway with loss of H from C-3 

may be involved in the decarboxylation of L-asparatic acid (2) to 

give 3-nitropropanoic acid (1). An alternative, suggested by the 

incorporation experiments from stereospecifically deuterated 

L-aspartic acid, is that (1) and (6) are in post-biosynthetic 

equilibrium in the cell. 

The occurrence of (l-' 3 C, 2-2 H1-3-nitropropanoic acid in the presence 

of normally biosynthesised 3-nitropropanoic acid (1) can be 

determined by the secondary isotope effect induced in the C-i niur 

signal of the carboxyl by deuterium labelling 3 bonds away 42 . 

1.6.1 Synthesis and feedin 

The synthesis of [1-' 3 C, 2-2 H2 1-3-nitropropanoic acid (7) was carried 

out by insertion of the 13 C label fairly early in the synthetic 

sequence. While such methods are generally, not preferred, attempts 

to insert a label at a later stage were unsuccessful. 

Tosylation of 2-nitroethanol was carried out successfully in 

tetrahydrofuran/triethylamine to give the tosyl derivative (21) after 

an initial failure using pyridine as solvent. It was found, however, 

that substitution of the tosyl group by cyanide in dimethyl formamide 

and 18-crown-6 was only accomplished in low yield (<10%) and this was 



unacceptable. The substitution reaction failed completely in 

dimethyl sulphoxide45  both - at room temperature and at 110 ° C. Direct 

preparation of 3-nitropropionitrile from 2-nitroethanol using 

triphenylphosphine, potassium cyanide and a phase transfer catalyst 46  

was also unsuccessful. 

A second approach to the synthesis was made via 

1-(N,N-dimethyl)-amino--2-nitroethene (22). The enamine (22) was 

readily formed by reaction of nitromethane with dimethylformamide 

dimethylacetal in dimethylfonuamide. Attempts to add 

iodoacetonitrile 47  or bromoacetic acid to nitromethane in a 

base-mediated condensation gave only starting material. 

Hydrolysis of 3-bromopropionitrile (8) with hydrochloric acid gave 

3-bromopropanoic acid (9) which was isolated in good yield. This 

compound could, in turn, be nitrated with sodium nitrite in 

dimethylsulphoxide to give (1) in about 50% yield. The conditions 

and time for the nitration had to'be carefully controlled, stirring 

at room temperature for 2 hours being found to produce the optimum 

yields. Longer periods of time or higher temperatures gave mixtures 

of products. These reactions were repeated with the incorporation of 

a deuterium label at C-3. 3-Bromopropionitrile (8) was hydrolysed 

with deuterium bromide to afford the corresponding acid which was 

then treated with sodium nitrite in dimethylsulphoxide as described 

above to afford the deuterated 3-nitropropanoic acid (10). This 

material was taken up in aqueous sodium carbonate buffer (pH 10) and 

stirred at room temperature overnight in order to exchange any 

deuterium incorporated at C-3 of the final product. Examination by 
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nmr and mass spectrometry showed that only C-2 was deuterated. The 

'H nmr spectrum showed a small triplet at 4.45 ppm and a large 

singlet corresponding to hydrogens at C-3 whilst the resonance for 

those at 0-2 was a small triplet at 2.65 ppm whose integral suggested 

90% deuteration. It should be noted, however, that although fast 

atom bombardment ( FAa) mass spectrometry with a glycerol matrix gives 

a peak due to [2-2 H2 ]-3-nitropropanoic acid (10) initially, (121, Ff) 

the deuterium atoms gradually exchange with hydrogen atoms in the 

glycerol while the sample is on the probe (nvz 119, if). After a 

period of 30 minutes, virtually no deuterium is left in the sample. 

Since 3-bromopropionitrile (8) could be effectively converted to 

[2-2 H2 ]-3-nitropropanoic acid (10) by this route, the remaining 

problem was the preparation of [1- 13 C]-3--bromopropionitrile. 

Reaction of dibromoethane with sodium cyanide in dimethylsuiphoxide 

gave the dinitrile rather than the mononitrile under a range of 

conditions. 

An alternative method which retained the strategy of nitration as the 

final step in the synthetic procedure was the hydrolysis of 

3-hydroxypropionitrile (11) with deuterium bromide giving deuterated 

3-bromopropanoic acid (9) which could be nitrated as outlined 

previously. 3-Hydroxypropionitrile (11) was prepared from sodium 

cyanide and 2-chloroethanol. This reaction was most successful 

(>60%) in the presence of phase transfer catalyst (18-crown-6) and 

at 80-90° ' ° . Heating of the product with hydrobromic acid 

afforded 3-bromopropanoic acid (9) in reasonable yield. This 

reaction sequence was carried out using [' 3 C] sodium cyanide to give 

[ 1-13 c1 -3-hydroxypropionitrile (24) which was refluxed with deuterium 
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bromide to give [1-' 3 C, 2-2 H2 1-3-bromopropanoic acid (12). Nitration 

with sodium nitrite afforded E1-' 3 C, 2-2 H2  1-3-nitropropanoic acid (7) 

(Figure 1.12). The ' 3 C and deuterium incorporation was verified by 

mass spectrometry (nvz 122,r(, 121,M-F). 

P. atrovenetum (ATCC 13351) was assayed for "reductase" activity at 

various times after inoculation as described by Shaw" . Activity was 

found to be present in mycelium harvested between 96 and 120 hours. 

Dark grown mycelium and cultures grown in shake flasks did not 

contain any active enzyme. - It has subsequently been noted" that 

cultures of P. atroventum secrete an enzyme capable of oxidising 

3-nitropropanoic acid (1) to 3-carboxyacetiijy6'i\ The mechanism 

proposed for this oxidation involves isomerisation to the aci-nitro 

compound and such a transformation is clearly not possible with 

3-nitroacrylic acid (6). 

[1- C, 2_2  H2  1-3-Nitropropanoic acid (7) was fed to growing cultures 

of P. atrovenetum 24 hours after innoculation and incubation 

continued for a further 76 hours. 3-Nitropropanoic acid (1) was 

isolated and the product analysed by 13 C nmr. 

1.6.2. Results 

The ' 3 C nmr of the isolated 3-nitropropanoic acid (1) gave two 

resonances due to the -,ca rboxyl group with a difference of 0.0123 ppm 

(Fig 1.13(a)). The sample was spiked with synthetic [l-' 3 C, 2-2 H2 ] - 

3-nitropropanoic acid (7). In this case, the carboxyl resonance in 

the 13 C nmr spectrum consisted of three components with chemical 

shift differences of 0.012 and 0.016ppm (Fig 1.13(b)). 
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The FAB mass spectrum of the isolated 3-nitropropanoic acid (1) shows 

peaks at nvz  119 (Mi and 118[i4-1[ and 121 and 120. The latter two 

are due to (N- I and [N-lr ions of singly deuterated, ' 3 C-labelled 

3-nitropropanoic acid (1). There is also a very small peak at nVz 

122 which corresponds to the uncycled dideuterated compound (Fig. 

1.14) at ca. 5% over background. 

1.6.3 conclusions 

The ' 3 c nmr spectrum of the carboxyl resonance of the isolated 

3-nitropropanoic acid indicates a mixture of C-2 monodeuterated and 

non-deuterated material. This implies that at least one deuterium is 

lost from the C-2 position of the fed metabolite. The nmr and ins 

data from this experiment implies that (1) and (6) are rapidly 

inte rconve rted. 
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1.7 3-Nitroacrylic acid reductase 

while in the above experiments post-biosynthetic cycling of 

3-nitropropanoic acid (1) and 3-nitroacrylic acid (6) appears to 

occur the reaction has been claimed by thaw to be non-reversible 24 

when isolated enzyme is used. It was therefore important to prepare 

3-nitroacrylic acid (6) and to incubate this material with the 

isolated enzyme in deuterated water in order to determine if any 

specificity is inherent in the reaction. Also in view of the in vivo 

result the claimed irreversibility of the reaction in vitro was also 

worth reinvestigation. 

1.7.1 Synthesis, enzyme isolation and results 

3-Nitroacrylic acid (6) was synthesised as described by Shaw" and 

the purified product stored under nitrogen at 0 ° C until required. 

The reductase enzyme was isolated and assayed according to the 

procedure outlined by Shaw24 . A time course study of the fungi 

showed that the reductase was present between 84 and 110 hours after 

inoculation. The crude ammonium sulphate-precipated enzyme (40%-65% 

saturation) was used since attempts to purify the enzyme further 

using DEAE Sephadex resulted in loss of activity. 

The enzyme was incubated with the acrylate (6) and NADPH at pH 7.3 

over a period of 2 hours and monitored spectrophotometrically at 231 

24 	Examination of the product isolated by ether extraction after nm 

this time showed it to be identical with an authentic sample of 

3-nitropropanoic acid (1). When the incubation was carried out in 

deuterated water, deuterium incorporation was detected only at C-3 as 

assessed by 'H and 2 }T nmr. (4.76 ppm,CHDN02). 
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In agreement with Shaw's results incubation of 3-nitropropanoic acid 

with the crude enzyme preparation in deuterated water and NAt) or NADP 

failed to show any incorporation of deuterium. This result is 

summarised in Figure 1.15. 

1.7.2 conclusions 

The results described above confirm that, tinder a range of 

conditions, the reaction catalysed by "3-nitroacrylic acid reductase" 

is irreversible in vitro. Furthermore, it appears that hydrogen 

incorporation at C-2 and C-3 occurs regiospecifically with the former 

presumably derived from NN)Pn and the latter from the water (Fig 

1.16). There is, however, no information about the stereospecificity 

of the addition in this experiment. The regiospecificity of the 

reaction implies that the enzyme is not succinate dehydrogenase and 

this confirms the study by Shaw 24  in which succinic acid was found 

not to be a substrate. A likely mechanism would involve abstraction 

of a proton from the medium at C-3 followed by hydride attack from 

NADPH at C-2 or, possibly, if attack in a Michael fashion at C-2 

follbwed by If quenching of the intermediate stabilised carbanion. 

1.8 3-Nitropropanoic acid biosynthesis - conclusions 

This study has demonstrated that 3-nitrosuccinic acid (5) is an 

intermediate in the biosynthesis of 3-nitropropanoic acid (1) from 

L-aspartic acid (2). A range of biosynthetic pathways which require 

a dehydroamino acid intermediate are thereby eliminated. The first 

step in the biosynthesis has been shown to be oxidation of the amine 

functionality (possibly via N-hydroxy-L-aspartic acid) to give 
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3-nitrosuccinic acid (5) with retention of stereochemistry followed 

by decarboxylation. Retention of a single deuterium in 

3-nitropropanoic acid (1) from administration of f 

3_2 H2  ]-L.-aspartic acid (18) initially suggests that loss of the 

carboxyl group is a concerted process with loss of H from C-3. 

Further investigation by ins however suggests that a non-acrylate 

pathway is operating. 

Feeding of deuterated L-aspartic acids (14,15,19) has shown that an 

unsaturated acrylate cannot be a biosynthetic intermediate. 

Deute ration of both the pro-R and the pro-S hydrogens at C-3 

independently in L-aspartic acid gives 3-nitropropanoic acid (1) 

stereospecifically labelled at C-2 thus implying that, if 

desaturation/resaturation is part of the pathway then the process 

must be stereospecific. This result is precisely opposed to the 

observation that, on feeding perdeuterated L-aspartic acid (19), the 

label at C-2 of 3-nitropropanoic acid (1) is present in both the 

pro-R and the pro-S positions thus implying scrambling of the label 

in a desaturation/resaturation process. It is clear from these 

results, therefore, that 3-nitroacrylic acid (6) cannot be a 

biosynthetic intermediate and is thus involved only in post 

biosynthetic cycling. 

An indirect confirmation comes from a time course feeding of (2S,3R) 

- E3_2H] - aspartic acid (15). When 3-nitropropanoic acid (1) is 	 2 

isolated from the culture before it has begun to produce the 

"reductase" (72 hours), the deuterium is located stereospecifically 

at C-2. Investigation of the metabolite produced after feeding (25, 

2  3R)-[3-H1-L-aspartic acid (15) to a culture which is producing 
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reductase (96 hours) shows deuterium incorporation at both the pro-R 

and pro-S positions at C-2 implying post-biosynthetic cycling and 

scrambling of the label at C-2. This may result if the 

post-biosynthetic cycling is a non-stereospecific process or if it 

occurs with inversion. 

while conclusive proof of retention of stereochemistry in the 

conversion of L.-aspartic acid (2) into 3-nitropropanoic acid (1) has 

not been presented, clearly the process is stereospecific and occurs 

via 3-nitrosuccinic acid (7) in which stereochemistry is retained. 

Studies on other systems by Gani and young  33 and Brown and Parker 35 

suggest by comparison of 2 H nmr data that the overall process may 

involve retention of configuration at C-2. 

In the post-biosynthetic cycling with 2 pro-R deuterated material the 

2-pro-R hydrogen from 3-nitropropanoic acid (1) appears to be lost 

preferentially. The 3-nitropropanoic acid (1) isolated after cycling 

has occurred has deuterium in both the 2 pro-R and 2 pro-S positions 

suggesting that inversion or scrambling has occurred. Random 

scrambling of the label would give, at best, a 50:50 mixture of 2 

pro-R and 2 pro-S deuterated material and the 2 pro-S deuterated 

material could never predominate. Since the 2  H nmr spectrum of the 

methyl valine amides shows that the 2 pro-S deuterium species 

predominates then the cycling must occur with inversion. The same 

effect could occur, however, as a result of an isotope effect with 

the C-2 H bond preferentially retained. This would still only result 

in, at best, a 50:50 mixture of the R and S deuterated acid. 
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1.9 Future work 

While these results have served to delineate a substantial amount of 

detail about the biosynthesis of 3-nitropropanoic acid (1) from 

L-aspartic acid (2), a number of factors remain to be investigated. 

While conservation of stereochemistry rather than inversion seems 

likely, this remains to be proven conclusively. Oxidation of 

stereochemically deuterated -alanines of known conformation may 

provide a means of confirming the stereochemistry of the product. 

Administering [1-' 3 C, 2-2 H2 1-3-nitropropanoic acid to the culture and 

isolation of [1- 13  C, 2_2H  1-3-nitropropanoic acid suggests that 

3-nitropropanoic acid (1) and 3-nitroacrylic acid (7) are cycled in 

vivo. The isolated reductase enzyme shows specificity in its 

catalytic activity but the stereochemistry of the process is unclear. 

The stereochemistry of the cycling process can be investigated by 

feeding 3 pro-S deuterated L-aspartic acid in a time course 

experiment and determining the stereochemistry at C-2 of 

3-nitropropanoic acid (1) after cycling. If scrambling is occurring 

then both pro-R and pro-S hydrogens will be labelled while if 

inversion occurs then only the original uncycled material will 

contain deuterium. This will also serve to confirm any putative 

isotope effect in the recycling process. The second half of the 

cycling process can be investigated in vitro by incubating the 

reductase enzyme with 3-nitroacrylic acid (6) and NPDP2 H and finding 

if the isolated 3-nitropropanoic acid (1) is stereochemically 

deuterated at C-2 by preparation of the corresponding methyl valine 

amides as before. 
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The nature of any other intermediates remains unclear. While 

acrylate-type compounds have been eliminated N-hydroxy--t.-aspartic 

acid remains a potential biosynthetic precursor. The instability of 

this compound militates against synthesis and feeding as a means of 

determining if it is an intermediate in the biosynthetic pathway 

between L-aspartic acid (2) and 3-nitropropanoic acid (1). 
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Chapter 2 

2. Thiamine 

2.1 Introduction 

(Fig. 2.4 

The biosynthesis and physiological role of thiamine (30 ), has been 

extensively studied and reviewed5052 ; Thiamine (30) was isolated in 

1926 from 100 kilograms of rice bran and subsequently 

synthesised54 ' 55 . It exists in vivo largely as its diphosphate (3l)(Figj.2) 

(thiamine pyrophosphate, cocarboxylase) in which form it is the 

cofactor for decarboxylation of pyruvic acid 56 . In addition, in 

animal tissue, small amounts of free thiamine, thiamine monophosphate 

and thiamine triphosphate are also found 5 ' - 

2.1.1. Chemistry and Physiology 

The chemistry and physiology of thiamine (30) have been extensively 

studied 5052 ' 57 , indeed early work on this vitamin was based upon 

isolation of an anti-beriberi factor from rice. tJgai demonstrated 

that benzoin formation from benzaldehyde can be catalysed by 

thiamine 58 ' 59  (30) and subsequent studies showed that it could 

catalyse the decarboxylation of pyruvate non-enzyrnically. 

Thiamine pyrophosphate (31) can carry out three types of reaction, 

non-oxidative decarboxylation of a-keto acids, oxidative 

decarboxylation of ct-keto acids and formation of u-ketols (acyloins). 

The mechanism of the reactions of thiamine (30) is a consequence of 

the characteristics of the two ring systems and, in particular, the 
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Biological activity of thiamine 
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The mechanism of thiaminase I activity 
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thiazole ring. Initik progress in this area resulted from Breslow's 
Fig. 2M 

discovery" that H-2/6f Ehe thiazolium ring would readily exchange 

into deuterium in deuterated water. This suggests that the reactivity 

of thiamine (30) occurs as a result of reaction at a c-2 car banioñ 

The mechanism shown in Fig 2.1 was postulated 1 . This was 

subsequently substantiated by the observation that several 

2ct-hydroxyalkylthiainine pyrophosphates function, as expected, as 

intermediates when added to suitable enzyme preparations62 ,63• 

The mechanism of nucleophilic substitution on thiamine (30) has been 

extensively studied - in particular the reaction with aqueous 

sulphite ion64 . Thiamine (30) also reacts readily with nucleophiles 

such as aniline in the presence of an enzyme, thiaxninase I to give 

66 
the pyrimidyl aniline analogue 

65, 	(32). An analogous mechanism to 

that proposed for bisuiphite cleavage of thiamine has been suggested, 

viz. nucleophilic addition across the 1,6 bond of the pyrimi.dine ring 

creating a dihydropyrimidine intermediate which can then be 

substituted at the benzylic methylene with elimination of the 

thiazole followed by addition of bisulphite (or some other 

nucleophile) and reversal of the 1,6 addition giving a substituted 

pyrimidine (Figure 2.2). Hutter and Slama 67  have recently tested 

this mechanism by preparing a -chloropyrimidine which, they 

postulate, forms an enzyme-substrate complex then eliminates chloride 

thus remaining irreversibly bound to the enzyme as an inhibitor of 

activity. It appears, therefore, that thiaminase 1 reacts with 

thiamine after first forming a 1,6-pyrimidyl enzyme intermediate 

rather than any other mechanism which would have a strict requirement 

for the 4-amino functionality in the ring68  or may lead to hydrogen 

exchange at the benzylic methylene. The importance of this 

observation will be discussed in greater detail below. 
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2.1.2 Biosynthesis 

The biosynthesis of thiamine (30) has been the subject of significant 

scientific endeavour since its discovery and structural elucidation. 

Work has been reviewed frequently with reviews by Brown and 

Williamson", Leder5 ' and Young 52  being the most recent. This 

present work is concerned with the biosynthesis of the pyrimidine 

ring of thiamine (30) in yeast (Saccharcmyces cerevisiae) therefore 

studies carried out in prokaryotes (in particular, Escherichia coli) 

will be referred to only briefly and where they shed light or provide 

contrast to the biosynthesis in yeast. The biosynthesis of the 

thiazole moiety in yeast will be dealt with since it has some bearing 

on studies of the pyrimidine pathway. 

In the thiazole ring in prokaryotes, the nitrogen atom and the 

adjacent carbon are derived from tyrosine 69,70  with the remaining 

five carbon unit coming from pyruvate" and a triose 72 . The sulphur 

atom comes from cysteine 73 ' 74 . In eukaryotes, the thiazole ring is 

derived from glycine and a 2-pentulose 75  (Figure 2.3). As a result 

of labelled glycerol and glucose feeding experiments, White and 

Spenser 75  proposed that incorporation could occur by the oxidative 

pentose phosphate pathway via D-ribulose-5-phosphate or by the 

non-oxidative pentose phosphate pathway by way of 

xylulose-5-phosphate. The proportions of the label from specifically 

labelled glucose found in the product thiazole are dependent upon 

which of the two pathways predominate. This result is relevant to 

their later studies on the biosynthesis of the pyrimidine ring of 

thiamine. 
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In the biosynthesis of the pyrimi.dine moiety, a different set of 

precursors 1i: involved in prokaryotes as compared with eukaryotes. 

In procarytes, the pyrimidine moiety and purines share a common 

biosynthetic precursor i.e. 5 1 -aminoimidazoleribonucleotide (5'-AIR). 

Formate is therefore incorporated into C-2 of the ring. 

In yeast, however, incorporation of formate is at C-4 although a 

minor pathway has been suggested which involves C-2 incorporation' 6. 

In a detailed study of the yeast pathway by Grue Sorensen et al. 

which made use of specifically [ ' 4 C]-labelled glucose, glycerol and 

formate the biosynthetic pathway shown in fig 2.4 was elucidated 7 6 . 

Two different routes were postulated to operate - one in which C-4 is 

formate derived, C-2 is from C-2 or 0-3 of glucose, C-V is from C-i 

or 0-2 of glucose and C-S' is derived from 0-6 of glucose. The 

proportions of C-i and C-2 incorporated and the site of incorporation 

are dependent upon the relative proportions of the oxidative and 

non-oxidative pathways which operate (as seen inthe thiazole 

experiments earlier) and convert glucose to either 

xylulose-6-phosphate or to ribulose-6-phosphate. These results were 

confirmed using labelled glycerol. In the minor pathway C-2 was 

derived from formate, C-2' was from some unknown source and C-4 and 

C-S derived from C-i or C-2 of glucose with the proportions dependent 

upon the oxidative and non-oxidative pathways as described above. 

All the other carbon atoms and the nitrogens in this pathway are from 

some unknown source. On the basis of these experiments, Grue 

Sorensen et al. 76  suggested that the biosynthetic breakdown of each 

pathway implicated similar intermediates. In each case a C 2  unit 

derived from C-i, C-2 of a pentose unit is linked, via the C-2 of the 

pentose, to two nitrogen atoms one of which, in turn, is attached to 

a formate-derived carbon atom (figure 2.5). 
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Both pathways may, therefore, have the same biosynthetic precursor 

unit. A 5-aminoimidazole unit was proposed as a possible precursor 

which could be cleaved in either of two ways in order to give the 

appropriate partial structure which could then be elaborated to give 

thiamine (30). Further work by the same group 77 
 on the biosynthesis 

of purines in yeast showed that purines and thiamine (30) do not 

share a common precursor. The carbon skeleton of the purines of 

Saccharomyces cerevisiae were shown to arise from bicarbonate, 

formate and glycine and therefore a common precursor does not exist 

for purines and the pyrimidine ring of thiamine in yeast. 

Other studies78  have shown that N-3 and N-4 in both yeast and E. coli 

are derived from glutamine. Tazuya et a1 79  have recently shown 

however that administered histidine dilutes the incorporation of 

[' 5 r4]-ammonium chloride in yeast. These workers suggested, 

analogously to the situation in prokaryotes, that an imidazole ring 

(that of histidine rather than 5'-AIR) may be a precursor of both 

carbon and nitrogen atoms of the pyrimidine moiety. 

It is clear, therefore, that many of the details of the biosynthesis 

of the pyrimidine moiety of thiamine (30) remain unknown and 

therefore warrant detailed investigation. It is clearly important to 

determine the nature of any intermediates which lie between the 

pentose unit and the pyrimidine ring. Since, in the major proposed 

pathway, C-4 is derived from formate, the amino functionality (C-4 1 ) 

could be introduced after or prior to pyrimidine ring formation. A 

putative precursor in the former case, analogous to the purine 

atnination pathway, would be the desamino pyrimidine. 

while such an investigation might be carried out using a 
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radiolabelled precursor, ease of handling and simplicity of assay 

would suggest that the corresponding deuterated or (' 3 C)-labelled 

compound may offer advantages. In order to make use of such a 

precursor it is important to determine if the product thiamine (30), 

which is produced in very small amounts, can be assayed accurately 

using mass spectrometric techniques. 

This study is, therefore, designed firstly to develop a reliable 

method for determining stable isotope incorporation from labelled 

precursors into the pyrimidine moiety of thiamine in Saccharomyces 

cerevisiae. The method developed necessarily requires that 

incorporation will be monitored by mass spectral examination of 

either the intact thiamine (using Fast Atom Bombardment - FAR) or of 

a suitable volatile derivative (using Electron Impact (El) or 

Chemical Ionisation (CI). 

The technique developed can then be applied to a study of the 

intermediacy of a 4-desandno pyrimidine in the biosynthesis. Initial 

results from Tazuya et al 78  suggest that glutamine is a precursor 

and, under these circumstances, amination could be a post-cyclisation 

event. If, on the other hand, the imidazole ring of histidine is a 

direct precursor", then the 4-amino functionality is likely to be 

present in this precursor and post-cyclisation amination will not 

occur. 

2.1.3. Analysis and mass spectrometry 

While administering stable isotope precursors combined with mass 

spectrometry of the biosynthetic product have a number of advantages 
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over radiolabelled investigations - direct analysis of the product 

with little modification necessary, simplicity of precursor synthesis 

and product isolation - a number of disadvantages are also inherent 

in the technique. The sensitivity of mass spectrometry is 

considerably less than that of radionucleotide detection. The 

molecule must be presented in a form suitable for analysis. While 

soft ionisation techniques such as Fast Atom Bombardment (FAR) have 

greatly increased the range of molecules which can be detected and 

successfully analysed by ms, a problem nonetheless remains in certain 

cases. It should be noted that, while pyridinium cations have been 

shown to be amenable to analysis by FAR ms 80 , thiamine itself has 

never been investigated using this technique. 

The detailed analysis of thiamine (30) derived from . a labelled 

precursor by mass spectrometry is, in principle, simpler than the 

complex degradation and assay procedures required by radioisotope 

incorporation experiments. It is necessary, however, to separate the 

desired compound from other components and, while protocols for 

dealing with very small amounts of thiamine (30) in, for example, 

foodstuffs exist, the final separation generally makes use of high 

performance liquid chromatography (hplc) 81 . The use of ms linked to 

hplc is still at a fairly primitive stage and, although it has 

tremendous potential for the detailed analysis of vitamins and other 

micronutrients82 , the method of choice is gas chromatography mass 

spectrometry (gc/ms). This technique requires that the thiamine (30) 

be presented in a volatile form. 
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2.2. Assay of tMamine 

2.2.1 Introduction 

Since most studies of the biosynthesis of thiamine (30) have made use 

of radioisotopes, the standard methods of cleavage adopted have 

concentrated upon separation of the individual carbon atoms. In a 

very few cases 1514  and 13 C labelling has been carried out and these 

have made use of suitable volatile thiol derivatives. In particular, 

de Moll and Shive°3  investigated the origin of the sulphur in the 

thiazole part of thiamine by gc/ms using E 34 S]-sulphate and 

L-[sulphane-34 S]-thiocystine as labelled, non-radioactive precursors. 

White used ' 3 C and 2  labelled sugars 71  and 1514  labelled L-tyrosine 

to investigate the biosynthesis of the thiazole ring which was 

cleaved from thiamine using bisuiphite then taken up in 

triflouroacetic anhydride/methylene chloride prior to g.c/ms 

analysis. While this cleavage gives a volatile thiazole derivative, 

the pyrimidine part of the molecule forms an involatile sulphonate 84  

which is clearly unsuitable for gc/ms analysis. 

Direct analysis of the pyrimidine part of thiamine has been carried 

out by reaction of thiamine in a sealed tube with a suitable 

alkylthiol85 ' 86 . Thiamine is particularly susceptible to 

nucleophilic attack with concomitant liberation of substituted 

pyrimidine, however the reaction with alkylthiols requires high 

temperature and pressure. An alternative hydrolysis reaction is 

catalysed by the enzyme, thiaminase I, (thiamine: base 

2-methyl-4-aminopyrintidine-5-metheny1 transferase E.C. 2.5.1 . 2)65  

66 ' 67  which has been isolated and characterised. 
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Our strategy was, therefore, to determine, firstly, if thiamine can 

be assayed directly by FAB ms. If this technique is unsuitable then 

ins linked to gc becomes the method of choice, for which a suitable 

volatile pyrimidine derivative would be required. 

2.2.2. Direct ma 

The analysis of thiamine (30) and thiamine pyrophosphate (31) was 

carried out using FAB-ms The samples were taken up in water and 

examined in a glycerol matrix under negative and positive ionisation 

conditions. In neither case could a molecular ion or the pyrimidine 

part of the molecule be detected under negative conditions. Under 

positive FAB, however, the molecular ion was seen for both compounds 

together with a fragment at 123 due to the pyrimidine part of the 

thiamine molecule. The fragmentation could be followed with peaks at 

110 and 93 corresponding to loss of CH  and NH 2 , however detailed 

fragmentation was lost in background. It would appear, therefore, 

that while direct analysis of thiamine (30) and thiamine 

pyrophosphate (31) is possible there are, nonetheless, difficulties 

in obtaining detailed spectra of the pyrimidine moiety in FAB mode. 

In addition, small levels of incorporation of isotopes would be very 

difficult to detect given the high level of background noise in the 

spectrum. 	 - 

Both thiamine (30) and thiamine pyrophosphate (31) can be detected by 

electron impact (El )ms This technique was used to elucidate the 

fragmentation pathway of thiamine using daughter ion analysis. This 

gave the breakdown pathway shown in fig 2.6. Of particular interest 

is the loss of CH3 CN from the substituted pyrimidine moiety. This 
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Mass spectral fragmentation of Thiamine (El) 
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can occur by one of two pathways as shown thus unambiguous assignment 

of all the fragments is not possible. The detection limit for 

thiamine and thiamine pyrophosphate by El-ms was rather poor with ca 

10 pg of material required in order to obtain a suitable spectrum. 

This is more than the total amount of thiamine produced in a 50 cm 3 . 

culture of Saccharomyces cerevisiae. In addition to minimise 

background interference, thiamine (30) has to be in a purified form 

for ins analysis. The best protocol involved thiamine (30) (or the 

pyrophosphate (31)) being absorbed onto an ion exchange column then 

eluted with aqueous buffers. A more efficient and effective strategy 

is based upon preparation of a suitably volatile thiamine (30) 

derivative which can then be examined directly by gc/ms 

2.2.3 Isolation and Cleavage of thiamine from yeast. 

Saccharomyces cerevisiae was grown on a supplemented vitamin-free 

medium as described in the experimental section and found, by hplc, 

to produce ca 2-3pg of thiamine (30) per 50cm 3  of culture after 24 

hours growth. Considerable losses were noted if purification by ion 

exchange was attempted. A protocol was developed for isolation of 

- 	thiamine (30) based upon methods of White and Spencer 87  and is shown 

in scheme 2.1. Attempts to reproduce the work of White and others 8 ' 

in which thiamine (30) is cleaved with an alkylthiol then analysed 

directly by gc,kis were unsuccessful. Reaction of thiamine (30) with 

ethanethiol in a sealed tube at elevated temperature produced a range 

of volatile products in which the peaks due to the pyrimidine thiol 

(33), while discernible, were almost swamped by those of other 

compounds and fragments. Various conditions and thiols were 

attempted with little success. 
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The breakdown of thiamine (30) can be catalysed by the addition of 

sodium metabisulphite 84 . In a model reaction 0.1 mole equivalent of 

sodium metabisulphite was reacted with thiamine (30) and aniline in 

60% aqueous ethanol and the mixture heated under reflux. The 

isolated product was found, from ms, to be the required aniline 

pyrimidine compound 88 
(fig. 2.7). The gc/ms characteristics of the 

compound were investigated and conditions developed under which it 

could be purified and analysed (see experimental section). The 

thiamine extract from yeast in 60% aqueous ethanol was treated with 

0.2 pg of sodium metabisulphite and excess aniline then heated as 

described previously. A control experiment was also carried out in 

which a similar sample of pure thiamine was treated in an identical 

manner to the yeast-derived sample. In neither case was any material 

corresponding to the aniline derivative (32) detected by ins 

Repetition of the experiment under a range of conditions (different 

incubation times, temperatures, sealed tube reactions) also failed to 

give any of the required compound. The difficulties apparent in this 

approach led to consideration of an alternative procedure based on 

the enzymatic hydrolysis of thiamine. 

Thiaminase I was isolated from Bacillus thiaminolyticus as described 

by Wittliff and Airth66  . The bacterlumwas grown on nutrient agar 

slants and then transferred to nutrient broth and grown in shake 

flasks for 20 hours. An aliquot was then transferred to the defined 

medium of Douthit and A1rth89  and shaken for a further 20 hours. The 

enzyme activity was assayed by monitoring production of the aniline 

derivative (32) spectrophotometrically89  as described below. 

Initially the enzyme was active against both thiamine (30) and 

thiamine pyrophosphate (31), however, the activity against the latter 
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substrate was found to diminish fairly rapidly with storage at -25°  

in buffer (Table 2.1). Activity diminished even more rapidly when 

the enzyme was stored at 0 0  thus the loss in activity was not solely 

a result of the freezing of the protein. The crude enzyme mixture 

may contain a labile pyrophosphatase as well as thiaminase I. 

Alternately thiaminase I may exist in two forms; the more stable of 

which uses thiamine (30) as substrate while the less stable can also 

(or only) cleave the pyrophosphate (31). 

Thiamine pyrophosphate (31) present was hydrolysed prior to 

incubation, incubations were monitored spectrophotometrically, and 

enzyme was discarded after one month and fresh stocks reisolated. 

The purification procedure developed included dialysis of the 

ammonium sulphate precipitated protein at 0 0  overnight. This led to 

a large variation in the activity of the freshly isolated protein. 

Attempts to purify the enzyme by Sephadex column chromatography as 

described by Wittliff and Airth66  gave only inactive fractions. The 

crude precipitated protein was therefore desalted by concentration in 

an Zmicon filter then made up to the original volume with distilled 

water. This procedure minimised the amount of time the enzyme was 

held at 00  and gave enzyme of consistently higher activity than that 

obtained after dialysis. These findings confirm those of Hutter and 

Slama6 ' who also found prolonged exposure to dialysis conditions led 

to enzyme inactivation. 
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Table 2.1 Activity of thiajuinase I with thiamine and thiamine 

pyrophosphate as substrates. 

Activity* 

Time 	 Thiamine 

id 
	

1.00 

[0W!;] 

32d 
	

0.70 

Thiamine pyrophosphate 

1.00 

0.92 

0.58 

* Activity at id taken as 1.00. 

Crude thiamine isolate was incubated with thiaminase I and aniline 

and the formation of the pyrimidine aniline product monitored 

spectrop4otometrically66 . The aniline-pyrimidine adduct (32) was 

extracted into ethyl acetate. Drying the ethyl acetate extract with 

magnesium sulphate led to complete loss of the pyrimidine/aniline 

compound (32) therefore sodium sulphate was used, the solution 

filtered and the filtrate concentrated by removing the ethyl acetate 

in a stream of nitrogen. The residue was taken up in 20pl of ethyl 

acetate and half of the volume applied to the gc/ms. Direct injection 

into the ms spectrometer gave El spectra corresponding to the 

pyrimidine moiety and the thiazole ring, however when a BP-5 packed 

column was used, the pyrimidine/aniline compound appeared to be 

preferentially adsorbed. Capillary column gc4ns enabled the required 

product to be separated. when the incubation was repeated using 

similar amounts of pure thiamine (30) under identical conditions the 

same gc/ms profile was observed. The isolation and analysis protocol 

outlined in scheme 2.2 was therefore adopted. 
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2.3 Biosynthetic studies 

2.3.1 Introduction 

Having developed a method for the analysis of microgram amounts of 

thiamine from S. cerevisiae, the biosynthesis of the pyridimine 

moiety could then be studied. The stage in the biosynthesis at which 

aiuination at C-4 occurs was investigated by preparation and 

administration of normal and deuterated 2-methyl-4-hydroxy-

5-hydroxymethyl pyrimidine (34). This compound was chosen by analogy 

with the purine biosynthetic pathway where inosine monophosphate is 

aminated to give adenosine monophosphate or via xanthosine 

monophosphate to give guanosine monophosphate 90 . In both cases, a 

hydroxyl functionality is present at the point of amination. The 

question being addressed, therefore, is whether a cyclised pyrimidine 

(analogous to inosine monophosphate) is aminated or if the amine 

functionality is present prior to cyclisation as is the case for the 

pyrimidine moiety in prokaryotes. 

The synthesis and incorporation of normal (35) and deuterated 

2-methyl-4-amino- 5-hydroxymethyl pyrimidine (36) must be carried out 

in order that it may be used as a standard. If the deuterated amino 

compound (36) - which is a known precursor - is not incorporated to 

an extent sufficient to permit examination by ms then there would be 

little point in attempting to study the incorporation of the 
_- 

BJ-2--methy1-4-hydroxy-5-hydroxymethylpyriipjdijj( 34). If this 

were the case, the corresponding ' 4 C or tritiated compound would have 

to be used. 



The most convenient position to incorporate a label was considered to 

be at C-5' by preparation of a suitable derivative which could be 

reduced using a deuterated reducing agent such as sodium 

borodeuteride or lithium aluminium deuteride. 

The chemistry of 4-hydroxypyrimidines has been extensively 

reviewed91 . They can exist in a keto or an enol form (lactinvlactam 

isomerisation) and this clearly has a significant effect on the 

chemistry both of the ring itself and on any substituents attached to 

i 92  t . In normal pyrimidines, the 2, 4 and 6 positions of the ring 

are electron deficient. Substitution with any group which is 

electron releasing (eg. hydroxyl) will give the pyrimidine a more 

aromatic character. The chemistry of 2, 4 and 6 hydroxylated 

pyrimidines is similar giving, for example, principally N-substituted 

products in alkylation reactions. This is a direct consequence of 

keto-enol tautomerism and the favouring of the keto form. In 

addition, it has been reported that 4-hydroxypyrimidines'; can 

associate in solution because of hydrogen bonding 93  and this may have 

an effect upon reactions at the 5-position. 

2.3.2 Synthesis of 2-methyl-4-amino-5-hydroxyiuethy1 pyrimidine 

Acetamidine hydrochloride was treated with sodium ethoxide to 

generate the free base then reacted with ethoxymethylene 

malonitrile94  (38) to afford immediately 2-methyl-4-aminopyrimidine-

5-carbonitrile (39) as a dense precipitate which was recrystallised 

from ethanol. This product was converted to the corresponding 

aldehyde (40) by treatment with Raney nickel in formic acid". The 

aldehyde had identical tic characteristics to the nitrile in 

chlorofonty'methanol (4:1) but was identified on tic by spraying with 
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Z4_dinitropheny1hydiaihe. The crude aldehyde was reduced using 

sodium borohydride to afford the corresponding 5-hydroxymethyl 

compound (35) which was characterised by nnir and ins. The aldehyde 

could also be reduced with sodium borodeuteride to afford the 

monodeuterated product (36) (scheme 2.3). The extent of deuteration 

was determined by 'H nmr spectroscopy and found to be ca 90% single 

deuteration at the C-S" position. 

2.3.3 Synthesis of 2-methyl-4-hydroxy-5-hydroxymethyl pyrimidine (34) 

The first attempt to prepare deuterated 2-methyl-4-hydroxy. 

'LroEethyfpyrinndinè' (37) made use of the corresponding 

5-ethyl ester (41) which can be -  prepared easily from acetarnidine and 

thethylethoxymethyfénemáläfe 6  This gave 

(41) in reasonable 

yield. Attempts to reduce the ester using sodium borohydride under a 

variety of conditions (eg. with polyethylene glyco1 97 , with methanol 

and tert-butanol98 , with excess borohydride99 , in the presence of 

calcium chloride' 00 , diglyme with lithium bromide' ° ') gave only 

starting material. Direct reduction with lithium aluminium hydride 

in tetrahydrofuran' °2  afforded 

however the yield was low (< 20%) therefore alternative methods were 

investigated. 

ethyl 2-methyl-4-ch1oropyrimidine-5-carylate(42) 
Attempted preparation of' 	

- 	reaction with 

thionyl chloride gave no isolable product. The hydroxy group could 

be readily substituted with a chloro group by reaction with 

phosphorus oxychloride' °3 . It was found to be important to keep the 

reaction at ice temperature during quenching of excess reagent and 

work up otherwise hydrolysis to give the non-chlorinated product 



occurred. Ethyl 2-methyl-4-chloropyrimidine-5- carboxylate (42) was 

unstable and thus was used rapidly after minimal clean up. 

Reaction of (42) with sodium methoxide in methanol' °4  gave ethyl 

2-methyl--4- methoxypyrimidine-5--.carboxylate (43) which could be 

readily reduced with sodium borohydride in the presence of methanol 

and t-butanol98  to afford the corresponding 5-hydroxymethyl compound 

(44). The mono deuterated compound (45) could be prepared by 

reaction with sodium borodeuteride under identical conditions. 

Unfortunately attempts to regenerate the 4-hydroxy analogue (37) by 

heating with trifluoroacetic acid or with hydrochloric acid (6N) gave 

only starting material and this route was abandoned. 

Cyanoethoxymethylene acetate' 05  (46) was reacted with acetamidine 

hydrochloride to afford 2-methyl.-4-hydroxypyrimidine-5-

carbonitrile94  (47) however attempts to reduce this compound to the 

corresponding aldehyde (48) using Raney nickel gave only starting 

material. 

Treatment of 2-methyl-4-amino-5-EroxymeE ipyrfiiddiEë (35) with 

hot hydrochloric acid gave the corresponding 4-hydroxy compound (34) 

in good yield. The same reaction carried out with the [51_2fl] 

analogue (36) showed retention of the deuterium in reaction times up 

to 30 minutes (80% retention by ms) however longer reaction times led 

to exchange. This method was, therefore, used to prepare 

2-methyl-4-hydroxy-5_hydroxymethylpyrjjji (34) and 

(51_2 HI-2-methyl-4- hydroxy-5-$ to 	thylyrfiiãI 	(37). 

Hydrolysis of the 4-amino aldehyde (40) to the corresponding 

4-hydroxy aldehyde (48) using 6N hydrochloric acid was carried out 

but the yield was poor (00%). 
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The mass spectral analysis of 2-methyl-4-amino--5-hydroxymethy1 

pyrimidine (35) gives the expected fragmentation pattern (scheme 2.4) 

with loss of OH followed by ring cleavage or loss of the benzylic 

Cu2 . 

In the case of the corresponding 4-hydroxy compounds (34) and (37), 

fragmentation involves loss of H 2  0 (scheme 2.5) giving an [M-OH] at 

123. In the deuterated analogue (37) fragments 123 [N-oD1 and 124 

[M-OH) are observed clearly. A most characteristic fragment occurs 

as a result of loss of CHO. The accepted mechanism for such a loss 

in phenolic compounds ' ° 6  involves elimination of oxygen together with 

its adjacent ring carbon atom. Substantial hydrogen scrambling 

occurs with CHO loss and this is confirmed in the case of the hydroxy 

pyrimidine by loss of deuterium from C-S' (scheme 2.5) which may 

occur by a similar mechanism to thatshown. Further fragmentation 

then occurs as expected. Such fragmentation and the loss of 

deuterium suggests that the keto form is preferred. 

2.3.4. Results 

Protiated and deuterated 2-methyl-4-amino-5-hydroxymethyl pyrimidine 

(35) (36)and 2-methyl-4-hydroxy-5-hydroxymethyl pyrimidine (34),(37) 

were fed to growing cultures of Saccharomyces cerevisiae. The 

isolated thiamine (30) was incubated as before, in the presence of 

aniline, with freshly prepared thiaminase I and the crude ethyl 

acetate extract examined by capillary gc,4ns. 

Peaks due to the molecular ion at 214 and a major fragment at 122 

were examined for deuterium incorporation. The background figure for 

the N + 1 peak in the unlabelled feeding trial is 4.5% for 215 and 

1.8% for 123 (Fig.2.8(a)). The product from feeding the labelled 

4-amino pyrimidine (36) shows increases to 12.5% and 9.1% for each of 
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these peaks respectively (Fig. 2.8(b)) corresponding to net 

incorporation of 8% and 7.3%. Feeding the corresponding 5-deutero 

4-hydroxy compound (37), at the same level gave no net incorporation 

(Figure 2.8(c)). 

When the level of administered [5'-2H1-2-methyl-4-hydroxy.-5-- 

d7rthy1pyine (37) is increased, an inhibitory effect on 

the growth of the yeast is observed. At 8 mg/50cm3  of culture, 

normal growth is observed, however at 25 mg/50cm 3  of culture, growth, 

as assessed by optical density of cells, is reduced by 60% while at 

50mg/50cm3  of culture, virtually no growth occurs. 

2.3.5. Discussion 

These results suggest that 2-methyl-4-hydroxy-5.ãrothy1rijjdine  

'(34), while a yeast growth inhibitor, is not a precursor 

of the pyrimidine moiety of thiamine. This implies that the 4-amino 

group is not incorporated subsequent to pyrimidine ring formation. 

The lack of incorporation would also suggest that the enzymes which 

are involved in the biosynthesis of thiamine have a relatively high 

substrate specificity the 4-hydroxy compound is not incorporated to 

form an oxythiamine analogue of thiamine (30) as might be expected if 

the substrate specificity were fairly low. However, it should be 

noted that oxythiamine has been shown to be toxic 107  and it may be 

formed in amounts too small to detect while being sufficient to 

prevent yeast growth. The oxythiasnine analogue has not been tested 

as a substrate for thiaminase I and may not be cleaved although the 

postulated mechanism does not require a 4-amino functionality. 
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Spenser et al. have already noted 77 
 that, in contrast to prokaryotes, 

the ring skeleton of the pyrimidine in thiamine (30) and the purines 

in yeast do not have a common precursor. Since the purines have been 

shown to have a common biogenesis in eukaryotes and prokaryotes, 

(from bicarbonate, formate and glycine), it necessarily follows that 

the carbon skeleton of the pyrimidine moiety of thiamine and that of 

purines in yeast are not linked. A unit which contains all three 

nitrogens already would appear to be favoured by this result. The 

attachment of a nitrogen to the formate-derived carbon at C-4 is 

clearly an early biosynthetic step occurring prior to pyrimidine ring 

formation. 

2.3.6. conclusions 

A method has been developed which can be used to study the 

biosynthesis of thiamine (30) at the microgram level using gcns and 

stable isotopically labelled precusors. Such a method has certain 

advantages over radiochemical methods including the ease of precursor 

preparation and the direct analysis of the product thiamine without 

the necessity of complex degradation and analysis of breakdown 

products. While this method is considerably less sensitive than 

using radiolabelled biosynthetic intermediates, when late precursors 

are being studied and where good incorporation would be expected, the 

levels of labelled material are adequate. From the background 

observed in this present .series, an incorporation of the order of 6% 

is required in order to be easily detected over background using 

gc/ms. 

The method developed has'been used to investigate the possible 

intermediacy of 2-methyl-4-hydroxy-15 	(34) in 



mum 
the biosynthesis of the pyrimidine moiety of thiamine. The 

corresponding 4-amino compound (35) is clearly incorporated, as 

expected. The apparent non-incorporation of the 4-hydroxy compound 

(34) eliminates it as a precursor of the '4-alninopyrimjthn1 and, 

hence, of thiamine (30). The result implies that post-ring ainination 

does not take place and that the 6 atom skeleton proposed by Spenser 

et al. 76  involving an amino functionality on the formate-derived 

carbon atom or a histidine precursor 79  may be correct. 

2-Methyl-4-hydroxy-5-hydroxymethylpyrimidine (34) is, however, a 

potent inhibitor of growth of yeast ' ° 8 . The precise nature of this 

inhibition is unclear however, the 4 1 -amino group of the pyrimidine 

ring is essential to thiamine pyrophosphate coenzyme activity and the 

4-hydroxy analogue of thiamine has been shown to be totally inactive 

as a coenzyme 109
. If the biosynthetic pathway is capable of 

incorporating 2-methyl-4-hydroxy-hãro 	thpiinidinth (34) to 

make the corresponding 4-hydroxy thiamine analogue, then this may 

account for the observed inhibition of growth although this analogue 

was not detected in the incubate. The 4-hydroxy analogue of thiamine 

causes a 50% decrease in the activity of pyruvate decarboxylase after 

simultaneous incubation of the enzyme with thiamine pyrophosphate and 

110 the analogue 	. 	 ' (34): 

may thus be incorporated into 4-hydroxythiataine and then act as an 

inhibitor of cell growth as a consequence of its effect on 

thiamine-dependent enzymes or on the biosynthesis of thiamine itself. 

Below the level necessary for inhibition, it appears not to be 

substantially incorporated although a failure to detect it may be due 

to the failure of thianunase I to cleave the '4-hydroxythiamxne 

analogue or to the low levels formed. 
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A more detailed investigation of the biological effect of 

2-methyl-4-hydroxy-5-hydroxymethy]4yriinidii -i& (34) is clearly 

warranted, as is a study of the biosynthetic pathway between the 

pentose unit and the complete pyrimidine ring of thiamine (30). 
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Chapter 3 

3. studies in the Genetic Manipulation of Biosynthetic Pathways 

Modifying the activity of restriction enzymes - a preliminary study. 

3.1 Introduction 

Biosynthetic pathways are composed of individual steps mediated by 

one or more enzymes. The detailed study of the individual steps (and 

hence the intermediates) involved in the biosynthesis of a particular 

product is crucial to understanding the mechanism and the factors 

affecting the production of the biosynthetic target molecule. Many 

studies have been carried out using mutants which contain blocks in 

the biosynthetic pathway and hence accumulate particular 

intermediates" 0 . Such an approach is relatively tedious and, 

essentially, random. 

In many cases the enzymes for any particular biosynthetic step in a 

pathway are strictly controlled. The sequence of amino acids in the 

enzyme are coded for by groups of three bases (codons) in ribonucleic 

acid (Wa) which in turn are read directly from the corresponding 

deoxyribonucleic acid (DNA). control of the expression of the gene 

for a particular enzyme generally takes place at the DNA level. Most 

of the DNA in a cell is accumulated in the nucleus however, small, 

autonomously replicating circular pieces of DNA (plasmids) exist in 

cells. Plasmids can be replicated many times over in the cell, they 

are also passed on to daughter cells and the protein they code for is 

produced by the cell using the normal cellular apparatus. 



Furthermore, the production of this protein is not generally subject 

to the control factors which govern normal chromosomal cellular 

protein production thus it can be overproduced and subsequently 

111-1.1.3 isolated 	- 

It is clearly implicit in the above that the simple introduction of a 

piece of DNA into a cell will not result in transcription and 

translation to give the protein which is coded for by the DNA. The 

DNA which codes for a particular protein (enzyme) in a biosynthetic 

pathway must be located and isolated. The isolation process is 

carried out using enzymes which recognise and cleave DNA at specific 

sites (Type II restriction enzymes). A great number of these 

restriction enzymes with different site specificities have been 

isolated' 13 . A plasmid* is then opened up using the same restriction 

enzyme(s) and the piece of isolated DNA inserted and ligated, thus 

reclosing the plasmid. The ends of the insert and the plasmid must 

be compatible to ensure maximum incorporation (ligation) and this 

means that they ought to be cut with the same restriction enzymes. 

From the point of view of the plasmid, this is easily accomplished by 

preparing a suitable strong promoter with a series of restriction 

sites following it. There is however rib guarantee that a unique 

restriction site occurs at the beginning of the gene to be inserted. 

In such cases, more complex manipulation using linkers must be 

carried out. The extra piece of DNA which is introduced into the 

plasmid must be placed under the control of a suitable mechanism (a 

promoter) which directs the cellular machinery to produce large 

* Note: A plasmid is an autonomous, self-replicating piece of closed 
circular DNA which carries the piece of DNA of interest into the cell 
and then infiltrates the cellular machinery so that the protein coded 
for is produced. Multiple copies of plasmi.ds can occur in any one 
cell thus leading to overexpression. 
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amounts of the corresponding RNA otherwise no protein will be 

synthesised. The modified plasmid is introduced into the host cell 

and, if successful, is replicated and produces large amounts of the 

required enzyme which can be isolated and studied. 

This is a greatly simplified picture however. In the preliminary 

stage of the process the DNA sequence which codes for the protein of 

interest must be uniquely identified and then excised from the 

genomic DNA molecule. This latter procedure can involve a large 

number of manipulations since suitable restriction sites are rarely 

conveniently placed in natural sequences. 

It would thus, clearly be of value to be able to modify the activity 

of restriction enzymes so that particular sites can be favoured or 

disfavoured. There are a number of observations which suggest that 

this may be possible. In the case of a large piece of DNA derived 

from phage lambda (ca 43 k base pairs), the cleavage of the DNA at 

its known restriction sites by the enzymes EcoRI and Hind III is not 

a simple process. Some preference is shown for particular 

sites '14 ,:115• Additionally, a non-specific endonuclease which 

generally cleaves DNA at random, nonetheless shows preferences for 

particular base sequences'". A further group of site-specific 

restriction enzymes (notably Nar I,Nae I, Sac II and Xma III) show 

dramatic site preferences between recognition sites in the plasmid 

pBR322. No correlation with surrounding nucleotides has been 

observed and the reason for these differences remains unclear. If it 

is possible to further modify restriction enzyme specificity in a 

predictive and reproducible fashion in order to get cleavage at 

certain recognition sites only or, indeed, to alter slightly the 

recognition sites themselves, then alternative cloning strategies may 
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be possible with concomitant advantages in the study of natural 

product biosynthesis. The activity of certain restriction enzymes 

can be modified by the presence of organic solvents or in high salt 

concentrations' 17 '

118 . Such "star" activity generally leads however 

to a loss in specificity and greatly increased frequency of cleavage. 

One possibility is to constrain either the cleavage sites in the DNA 

or the activity of the enzyme such that certain sites are disfavoured 

compared with others thereby increasing the specificity of the 

enzyme. 

Enzymes have frequently been used in an immobilised form and, more 

recently, in low water 	 A favoured method of creating low 

water systems is to dissolve the enzyme in a very small amount of 

water and then to distribute this aqueous solution into an apolar 

organic solvent (generally an alkane) in which a surfactant (eg 

sodium dioctyl suiphosuccinate (ADT)) has been dissolved. The 

surfactant serves to protect the enzyme from the organic solvent and 

causes the formation of very small water droplets in which the enzyme 

is encapsulated (fig 3.1). These droplets comprise a 

thermodynamically stable system which is optically transparent is of 

low viscosity and is termed a reversed 	 The water 

droplets are generally of the order of 2-20nm. in diameter and the 

interfacial area is very large (tens of in 2  per cm3 ). These systems 

have been used to "solitilise" enzymes in organic solvents, to enable 

organic substrates to come into contact with enzymes and, on 

occasion, to improve enzyme stability and efficiency. In addition, 

novel enzyme activity has been noted in certain cases' 22 . 

Despite the small size of reverse micelles (typically of the order of 

10-15 run), large enzymes' 23 , nucleic acids' 	and even bacterial 
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cells' 25  have been taken up in reverse micelle systems and found to 

function normally. The precise nature of the system in these cases 

remains unclear, however it seems likely that conformational 

restraints on both the enzyme and the nucleic acid exist. 

These conformational restraints on large molecules may lead to a 

modification in the substrate specificity of the entrapped enzyme or 

changes in the availability of the substrate. In the case of 

restriction enzymes and nucleic acids, this may lead to unusual 

fragments due to changes in the recognition site or in partial 

disfavouring of certain sites due to the folding of the DNA molecule 

in the reverse micelle system. In this study we examined the action 

of a series of type II restriction endonucleases on DNA in reverse 

micelles to see if enzyme activity is retained in these systems and, 

if so, then whether modification of site specificity is exercised. 

3.2 Results 

3.2.1 Cleavage of plasmid pIJC 8 

The plasmid pUC 8 is a member of the family of pUC plasmids developed 

by Messing et al' 26 . It is derived from pBR322 - the first unnatural 

plasmid vector constructed with specific defined characteristics. 

The pUC series contain the replication origin and ampicillin 

resistance gene of pBR322 with a portion of the p-galactosidase (lac 

Z') gene of E. coli. The value of pUC plasmids resides in the number 

of unique restriction sites within the lac gene. When the plasmid is 

transformed into a suitable strain of E. coli, blue colonies are 

produced on plates which contain a specific indicator. The cells 
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with the plasmid are also resistant to ampicillin. The insertion of 

foreign DNA by ligation into one (or more) of the unique restriction 

sites in the lac gene usually inactivates the gene and hence results 

in colourless colonies which retain ampicillin resistance. This 

insertional inactivation is a very powerful technique for rapidly 

monitoring the integration of a plasmid containing a desired insert 

113,127 into cells 	- 

The agarose gel electrophoresis of the fragments from the cleavage of 

the plasmid pUC8 with a range of restriction enzymes in both aqueous 

buffer and in sodium dioctylsulphosuccinate (AOT) (Fig. 3.2) reverse 

micelle systems is shown in Fig. 3.3. The puC 8 plasmid has single 

restriction sites from Barn HI, Hind III and Eco RI and three sites 

for the enzyme Hae II (Fig. 3.4). Both Lam HI and Eco RI give 

principally a single linear fragment from the range of partially 

supercoiled and fully supercoiled DNA. Supercoiled, nicked, 

(partially supercoiled) and circular plasmid DNA migrate at different 

rates through the agarose gel hence the series of bands obtained in 

the non-restricted sample. Cleavage with EcoRI under normal 

conditions, gives a major linear fragment of ca 2.7k. base pairs and 

some bands due to partially relaxed (nicked) DNA. In the reverse 

micelle system a single fragment of linear DNA is observed for both 

enzymes together with other nicked fragments observed in the natural, 

unrestricted nucleic acid. 

Restriction with Hind III should, as above, give a single linear 

fragment of 2.73k base pairs and this is observed in the aqueous 

buffer system. In the reverse micelle, however, no cleavage is 

observed and a pattern identical to that of unrestricted plasmid is 

seen (Fig. 3.3). 
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Figure 34 
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The cleavage of pUC 8 with Rae II gives 3 fragments as shown in fig 

3.3. In both the aqueous buffer and the reverse micelle systems the 

expected fragment sizes are observed although, in the latter, 

fragments symptomatic of incomplete cleavage are also found. 

3.2.2. cleavage of lambda and lambda blo 1 

Lambda bio 1 is a double stranded linear DNA with a molecular weight 

of the order of 31.5 x 10 6  Daltons and 12 base pair single stranded 

cohesive ends128 . It contains two genes of the biotin operon (bio A 

and bio B) (Fig. 3.5). Lambda bio 1 was prepared in Edinburgh in the 

course of other work and the availability of this material and 

accurate mapping of the restriction sites in the DMA sequence made it 

a convenient model for our studies. The restriction map of lambda 

bio 1 is shown in figure 3.5. 

Treatment with Hind III in aqueous buffer gave the expected fragments 

(Table 3.1). when this was repeated in 50 mm surfactant, once again, 

fragments of the expected sizes were seen after electrophoreseis. At 

100mM, surfactant concentration, however, cleavage at a single site 

only appears to occur. 
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Restriction map of lambda biol 
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Table 3.1 	cleavage of lambda bio 1 DNA with Hind III 

Aqueous buffer 	Reverse micelle (50mM) 	Reverse micelle (100 mm) 

(k.base pairs) 	(k.base pairs) 	 (k.base pairs) 

	

23.1 	 23.1 	 23 

	

2.0 	 2.0 	 25 

	

2.3 	 2.3 

	

7.8 	 7.8 

	

0.5 	 0.5 

	

0.1 	 0.1 

	

6.6 	 6.6 

	

4.3 	 4.3 

Cleavage with Eco RI, Hae II and Barn HI at 100mM surfactant 

concentration and in aqueous buffer gave the expected fragment sizes 

only. 

Cleavage of normal lambda DNA with Hind III in 100 mM surfactant gave 

fragments at about 24k base pairs, 4.3k base pairs and 2.0k base 

pairs rather than the expected fragments. The effect of pH upon the 

efficiency of cleavage was monitored using Hind III and lambda bio 1 

at pH 7 and pH 9. No cleavage was observed at p11 9, however the 

expected fragments were found at pH 7 in the reverse micelle. The 

incubations were carried out at 50mM surfactant concentration. 

3.2.3 cleavage and annealing of lambda Hind III 

The specificity of the restriction enzymes was further tested in the 
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reverse micelle environment by incubating lambda nra, which had 

already been exhaustively digested with Hind III, with Eco RI and Barn 

Hi. Incubation in the reverse micelle appeared to promote reversible 

annealing of the cohesive ends and to circumvent this samples were 

heated to 65° C prior to gel electrophoresis. In both 50mM and 100mM 

xo'r, incubation with both enzymes gave only fragments of an identical 

size to those observed in a double digest in aqueous buffer. It would 

appear, therefore, that with smaller pieces of DNA, all the 

restriction sites for Eco RI and Barn Hl are available for cleavage. 

3.3 Measurement of reverse micelle size 

The size of samples of nucleic acid in reverse micelles was measured 

by photon correlation spectroscopy (PCS). This technique relies upon 

the scattering of a beam of light by a dilute micellar solution. The 

scattering intensity increases with increasing size and concentration 

of particles and with refractive index differences between the solvent 

and the dispersed phase. The diffusion of particles in and out of a 

small volume (ca 0.1 mm 3 ) can be measured and give information that 

can be used to relate fluctuations in scattered light intensity to the 

diffusion coefficient and hence to the hydrodynamic radius of the 

particles. The output is transformed into an exponential decay curve 

which is analysed to obtain the radius. An optimal sampling time for 

particles of a specific size exists and thus, in a bimodal system, two 

(or more) runs with different sampling times are necessary in order to 

obtain realistic data. In the case of nucleic acids in reverse 

micelles, the nucleic acid-containing micelles were considerably 

larger than those which contain water only, therefore multiple scans 

were necessary. 
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The reverse micelles which contained only water and surfactant were 

found to be of the expected sizes with diameters of the order of 10 

run. When reverse micelles which contain lambda were examined, 

diameters of the order of 250-300 rim were routinely observed. When 

samples containing puC 8 or small fragments (<9k base pairs) were 

examined, results were variable but rapid aggregation appeared to 

occur and the size of the particles in solution outstripped the range 

of the instrument. 

3.4 Discussion 

3.4.1 Restriction of WC 8 

The plasthic pUC 8 is a small (2.7k base pairs) circular piece of DNA 

which exists in both supercoiled and relaxed forms. Repeated freezing 

and thawing and the action of certain enzymes results in nicks in one 

of the chains giving rise to various relaxed and semi-coiled forms of 

DNA. Plasmid DNA in vivo is negatively supercoiled and, because of 

its small, compact nature, migrates more quickly in agarose gel 

electrophoresis than more relaxed forms. The rate of migration of DNA 

is thus a measure of the degree of supercoiling as well as the size. 

Under normal conditions, plasmid DNA will exist in a number of forms 

varying between completely supercoiled and totally relaxed. This, in 

turn, gives rise to a series of bands when the sample is examined by 

agarose gel electrophoresis. In addition, ethidium bromide 

intercalates into DNA and generates positive superhelical turns. 

Clearly, once the DNA strands are cut through completely by the action 

of a restriction indonuclease a linear piece of DNA results and 

supercoiling cannot occur. 
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The identical size of the cleavage product from incubation of puc 8 

with Eco RI and Barn Hi in reverse micelles shows that cleavage at 

extra sites - as sometimes occurs in the presence of high salt 

concentrations and organic solvents - is not a feature of the action 

of restriction enzymes under these conditions. The efficiency of 

cleavage is, however, reduced in the reverse micelle system and 

complete digestion does not occur. However, while cleavage at more 

than one site appears not to occur, the precise site of restriction is 

unknown and these results in themselves do not indicate that site 

specificity is retained in this system. The failure of Hind III to 

cleave pUC 8 in the reverse micelle suggests either that the enzyme is 

particularly susceptible to the reverse micelle environment or that 

the plasmid is folded in such a way that the recognition site for Hind 

III is not readily available. Given the proximity of the Hind III 

recognition site to the Eco RI and the Barn Hl recognition sites (fig. 

3.4), the latter explanation would appear to be less likely. 

All three restriction enzymes require Mg 2+  and the exchange with Na 

in the reverse micelle system may reduce drastically the amount of 

Mg 
2+ available and thus substantially diminish the activity. This 

may. account for the prolonged (ca 12 hours) incubation times required 

to achieve comparable cleavage to the aqueous system. 

The restriction of pUC 8 with an enzyme which cuts at more than one 

site (Hae II), to produce the expected range of fragments together 

with partial cleavage products does however indicate that restriction 

is occurring at the same recognition sites in the reverse micelle 

system as in aqueous buffer. The major fragment (1.934k base pairs) 

and a linear whole piece are clearly present however, there is also 

some indication of a fragment of between 2.73 k base pairs (linear) 
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and 1.934 k base pairs. This piece of DNA may arise as a result of 

incomplete cleavage at either of the three sites in conjunction with 

complete cleavage at one other (Fig. 3.5). No fragment of 0.787 k 

base pairs was detected suggesting that complete restriction at site C 

is not occurring. These results, therefore imply that restriction 

occurs readily at site B giving the linear whole fragment. Further 

restriction at sites A and C does occur but at different rates thus 

giving rise to fragments of 2.304k base pairs and 2.351 k base pairs 

(which would be indistinguishable on the gel) and, where both are cut, 

a fragment of 1.934 k base pairs corresponding to the major fragment 

in the normal aqueous buffer incubations. Both of the small fragments 

(0.417 and 0.370 k base pairs) are also observed. 

The results from the single restriction site enzymes and using Hae II 

suggest that the specificity of restriction enzymes remains high in a 

reverse micelle environment. Clearly Hind III is either more 

sensitive to the reverse micelle system or its restriction site is not 

readily available. This latter option is supported by the results 

from Rae II digestions. Clearly all three sites in the plasmid are 

not equal and, while this may be due to some greater degree of 

specificity invoked by the environment, the net effect is that of 

preferential cleavage at certain of the sites. It is noteworthy that 

the base sequence surrounding the Rae II sites A and B are similar 

while that of site C has a higher level of thymidine residues. 

3.4.2 Restriction of lambda bio 1 

The cleavage of lanla bio 1 in aqueous buffer gave fragments of the 

expected sizes. The same experiment carried out with Eco Ri and Barn 

Hi again gave the expected fragements at 100Mm surfactant 
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concentrations. when this incubation was carried out with Hind III, 

only two fragments of approximately equal sizes were observed. This 

would suggest that Hind III restriction is occurring at one of three 

possible sites in a reproducible fashion, when the cleavage was 

repeated using normal lambda without the biotin insert incomplete 

cleavage was also evident although different fragments were observed 

on this occasion. When the Hind III experiment with lambda bio 1 was 

repeated at 50 mm surfactant concentration, the expected restriction 

pattern was seen. These results suggest that the amount of surfactant 

present has a direct effect on the specificity of cleavage. The 

micelle size and the amount of free water is dependant upon the ratio 

of water to surfactant with less free water being present at higher 

surfactant concentrations. From the point of view of the Hind III 

experiments, this lack of free water may cause conformational 

restraints upon the DNA thus only allowing a relatively small number 

of sites might near the centre of the lambda bio 1 to be exposed. 

Initial cleavage at one of these sites will not lead to dissociation 

and subsequent cleavage at other sites because the DNA is held so 

tightly in the reverse micelle environment. In the case of normal 

phage lambda, the absence of the biotin insert would appear to expose 

other sites, in particular, that at 4300 base pairs. 

The cleavage of lambda bio 1 using the other restriction enzymes (Eco 

Ri and Barn Hi) are difficult to justify in terms of the above 

analysis. All three restriction enzymes have restriction sites in the 

similar domains and thus should all be subject to the same 

difficulties of enzymes-DNA interactions as Hind III in carrying out 

the cleavage. It is possible that the environment has having an 

effect upon the enzyme itself (as suggested earlier by the experiments 

with puC 8). The noticable difference observed between lambda and 
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lambda bio 1 hydrolysis would suggest that a relatively small 

alteration in the composition of the DNA substrate has a considerable 

effect on the cleavage. Hind III is a relatively large enzyme (m.w. 

80,000 Da) compared with Eco RI (2 x 37,000 Da) this may have an 

effect upon the amount of free water available and hence on the 

cleavage at different sites. The lowered availability of ng2  in the 

reverse micelle system may also be more crucial to Hind III than to 

the other enzymes. 

Certain restriction enzymes are particularly susceptible to the 

presence of high salt concentrations (which can occur in impure MYF 

reverse micelle systems) or organic solvents. In enzymes such as Eco 

RI and Hind III this can induce "star" activity in which some 

specificity is lost and restriction occurs at sites other than the 

generally recognised restriction sites. Clearly this is not happening 

in this case. 

The rate of cleavage at different sites in lambda DNA can vary as much 

as 14 fold with Hind III and Eco R1 115 , however even such differences 

in rate do not explain why only a single site is apparently cleaved at 

100 RIM surfactant concentration.with Hind III and no abnormal effect 

is noted with Eco El. Other enzymes (in particular Nar I, Nae I, Sac 

II and Xma In) exhibit even greater site specificity with fifty-fold 

and greater differences observed between certain sites in lãnda. 

Conformational restraints upon the DNA or the enzyme (or both) would 

appear to be a likely explanation for the results observed. It 

remains possible, however, that local bass sequences may cause certain 

sites to be considerably less accessible than others and that the 

cleavage sites for Bind III are particularly susceptible to this 

conformational constraint. 
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3.5 conclusions 

This study was designed to find out if DNA could be cleaved in a 

specific and reproducible fashion using restriction enzymes in reverse 

micelles and to examine whether the site-specificity of restriction 

was altered under these conditions. In most cases, cleavage produces 

identical fragments both in small, plasmid DNA and in large modified 

lambda DNA. The exception occurs with the enzyme Hind III which has 

very low activity in the reverse micelle enviroment with plasmid DNA 

and cleaves at a single site only in lambda bio 1 DNA. This may 

simply be due to the low activity of the enzyme per se, however this 

would not explain the reproducible nature of the cleavage in the 

multiple site modified lambda. Furthermore, in normal phage lambda 

without the biotin genes insert, the cleavage is, once again, abnormal 

but in a different manner to that observed for the modified lambda. 

It is more likely therefore, that the principal cause of the 

differences observed is inherent in the DNA rather than the enzyme. 

Since many of the overall cleavage domains are similar for the 

different restriction enzyme sites, a more localised effect would 

appear to be indicated. The nature of the restriction sites 

themselves is not sufficiently different to explain the results thus 

it may be some reflection of the neighbouring base sequences. The 

exchange of ?1g2  with Na in the reverse micelle system with 

concomitant lowered availability of Mg 2  may be more important to some 

enzymes than to others. The size of the restriction enzyme, the 

amount of water it requires to order around itself and the nature of 

the active site may be of particular importance. 

While the specificity of the enzymes appears to be maintained in 

reverse micelles it remains to be proven that the site of recognition 



-118- 

and cleavage is precisely identical in aqueous and reverse micelle 

systems and further work involving, perhaps, sequencing of the termini 

of fragments is necessary to confirm this observation. 

Further studies are also necessary to determine if there is an optimal 

surfactant/water ratio for a range of restriction enzymes and if the 

sites of cleavage can be predicted. Also of interest may be the 

cleavage of DNA using "non-specific" endonucleases such as 

deoxyribonuclease I (E.C. 3.1.21.1). While this enzyme is used for 

general DNA assays, it does exhibit some substrate specificity' 6  and 

it may be possible to tailor this specificity to certain types of 

sequences, eg CG-rich regions which are associated with particular 

parts of the gene. Certain sequences of nucleotides are conserved in, 

for example, the Shine-Dalgarno (S-D) sequence which occurs prior to 

the bacterial start codon for a gene. Careful manipulation of the 

enzyme and the conditions of incubation may lead to greater, 

reproducible specificity of cleavage. 
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Experimental 

General methods 

Starting materials from commercial sources were used without further 

purification unless otherwise indicated. Solvents were either Analar 

grade or redistilled prior to use with the exception of ethyl acetate, 

chloroform, petroleum ether and diethyl ether which were laboratory 

grade. Organic extracts were dried with anhydrous magnesium sulphate 

or anhydrous sodium sulphate prior to evaporation. Comparison of 

synthesised material with commercially available samples or with 

literature values (m.pt., ms, nmr etc.) was carried out whenever 

possible. Melting points are uncorrected. 'H nmr spectra were 

obtained on a Bruker spectrometer operating at 80.13 ?4.Hz. or on a 

Bruker WH200 operating at 200.13 MHz. ' 3 C Nmr ipectra were obtained 

on the latter instrument at 50.32 M.Hz. 2  H and 5 N nmr spectra were 

obtained at 40 and 36.5 M.Hz respectively. Mass spectra were obtained 

routinely on a Kratos 74530 or MS60!ass spectrometer operating in CI, 
fleil 	indicatedthiTheMmsng 	 p 

El 
	

L  or FAB mode.A  Capillary gc4ns was carried out using -an BPI - 

capillary column (12.5m x 0.33mm i.d.) connected to a Kratos 74560 mass 

spectrometer. Photon correlation spectroscopy was carried out on a 

Malvern 7026 spectrometer at the Institute of Food Research, Norwich, 

by Alan Mackie. 

Plasmid and lambda DNA was obtained either from a connuercial source or 

from Dr • N. Murray, Department of Molecular Biology, University of 

Edinburgh. Restriction enzymes were obtained from commercial sources. 

Cultures of Penicillium atrovenetum and Saccharauyces cerevisiae (M'CC 

29403) were obtained from the Commonwealth Mycological Institute, Kew 
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Gardens. The former was maintained on Czapek Dox slants and 

subcultured as little as possible since this was found to result in 

the loss of 3-nitropropanoic acid synthesising capacity. The yeast 

was maintained on agar slants and subcultured every 4-6 weeks. Fresh 

slants were used for each experiment. 

Penicillium atrovenetum was grown on modified Raulin Thom medium as 

described by Shaw20 . Saccharomyces cerevisiae was grown on Difco 

vitamin free medium supplemented with pantothenic acid, biotin and 

myo-inositol 7 - 5-. The -isolation- of--thiaminase L was carried out from 

Bacillus thiaminolyticus which was grown in the defined medium of 

Douthit and Airth89 . 	 - 



"A sample of the amino acid (19, 200mg) in water (1 

cm3 ) was neutralised to pH 7.6 (NaOH, 414) then cooled 

in ice and treated with acetic anhydride (140pl). The 

pH was adjusted to >5 (NaOH, 4W) and the mixture was 

treated again with acetic anhydride (140pl) and the pH 

adjusted to >5 (NaOH, 4W). The mixture was stirred 

for 30 mm. then applied to an ion exchange column (1R 1  

120(H), 20 Mesh, 2 x 30 cm). The eluate was freeze 

dried to afford the acetate as an oil. A sample of 

the acetate was treated with diazomethane in methanol 

then evaporated to dryness in vacuo to afford the 

acetylated dimethylester. & (80MHz, CDC1 3 ), 6.74 

p.p.m. (1H, br.d., 3=7.8Hz, NH), 4.76 p.p.m. (1H, d, 

3=8.4Hz, CH (anómeric).), 3.67 p.p.m. (3H, S, CO 2 cH3 ), 

3.60 p.p.m. (3H, D, 3=3.9Hz, 13 cD2 cH3 ), 2.68 p.p.m. 

(0.3H, cHDs-cH2 ), 1.96 p.p.m. (3H, S. NHCOCH3 ). 

Apparent deuteration ca. 85%. ins (El) Wz, 206 (?t, 

13 c d2 ), 205 (r4, 13 C, d1 ), 204 (M 	13 C, d1 ). 

Apparent_deuteration ca. 60% d 2 , 20% d1 , 20% 
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( 4- ' 3 C13-2 H2 12-2 n1-DL-1½.spartic acid (19): Diethylacetamide malonate 

(21.7g, 0.1 moles) and formaldehyde (4.0%, 8.2 cm 3 ) were added to a 

solution of dimethylamine (15 en?, 0.1 moles.) in glacial acetic acid 

(15 cm ) at 0°C. The reaction mixture was left at room temperature 

for 30 minutes, made alkaline by addition of sodium hydroxide solution 

(20%) and the Mannich base crystallised out (27.4g). This produce was 

dissolved in ethanol (60 cm3 ) and treated with methyl iodide to give 

the corresponding methiodide. The methiodide (4.2g. 10 m.moles) was 

dissolved in water and added to a solution of (' 3 CI-sodium cyanide 

(0.6g, 12 m.moles) in water (20 en?) and the mixture heated under 

reflux for 16 h. The reaction mixture was evaporated to dryness in 

vacuo then treated with 2  H (20% in 2 112 0) for 18 h. The reaction was 

evaporated to dryness in vacuo, the residue dissolved in methanol and 

the sodium iodide removed by filtration. Addition of pyridine in two 

stages gave [4-' 3 C, 3 2 H2 , 2-2 H]-Dtr-aspartic acid (19) (0.97g, 73%). 

1-(4-methyltoluenesulphonyl)-3-nitro-ethane (21): A solution of 

2-nitroethanol (4.75g, 0.052 moles) in dry, redistilled 

tetrahydrofuran (25cm3 ) was cooled in an ice bath then treated with 

triethylamine (2cm3 ) and 4-toluenesulphonyl chloride (10.5g, 0.55 

moles) and the mixture allowed to reach room temperature and stirred 

overnight. The reaction mixture was filtered, applied to a column of 

- 	 silica (Kieselgel 60-230 Mesh) and eluted successively with hexane, 

hexane/ethyl acetate (60:40), ethyl acetate, methanol and ethanol. 

The alcoholic fractions were combined and evaporated under reduced 

pressure to afford an oil which slowly solidified. The crude material 

was recrystallised from chloroform/ethanol to afford a purified 

product (5.24g, 47%) <_(80 MHz, CDC13 ), 7.20ppn (211, d, 3 - 8Hz, 

m.pt. 122-124°d 
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aromatic), 6.72ppm (211, d, .3 = 8Hz, aromatic), 3.52ppm (3H, 5, 013 ), 

3.05ppm (2H, t, 3 	6Hz CU2  NO2 ), 2.60ppm (2H, t, .3 c  6Hz, 012  OTs) ms 

(El) nVz,  213 [M1. 

1-N,N-dimethylamino-2-nitroethene (22) Nitromethane (5g. 0.1 moles) in 

dry dimethyl formami.de (100 Ca?) was treated with N,N-dimethyl 

fonnamide dimethylacetal (11.1g. 0.12 moles) and pyrrolidine (0.04g. 

0.6m.moles). The mixture was heated to 70-80 ° C for 3h by which time 

the initially pale yellow solution had turned deep red. Dimethyl 

formamide was removed by distillation in vacuo with the temperature 

kept below 40° C. The residual red oil was triturated with isopropanol 

to afford an orange solid which was recrystallised from ethanol to 

give pure i-N,N-dimethylamino-2-nit roe thene (22, 6.1g. 54%) m.pt. 

92-4°C 6 (8014Hz, CDC1 3 ), 7.80 ppm (1H, d, J = 8Hz, GIN02 ), 6.15ppm 

(1H, d, .3 = 8Hz, CH-N (CR3 ) 2 ), 2.85 ppm (313, 5, N-CE3 ), 2.55ppm (311, 

S, N-Cl3 ) ins (El) nVz,  116  EM']., 71 EM-NO2 ), 58 EM-GINO2 ). C4 H, 0N202  

requires C, 41.4%; H, 8.6%, N, 24.1%. Found C, 41.9%; H, 8.3%; N, 

23.8%. 

, 32; 1-3-Bromopropanoic acid (23): 3-Bromopropionitriie (0.2g 

l.Sm.moles) was treated with deuterium bromide (37% in 2;.o 4 cm? 

and the mixture refluxed for 3h then allowed to cool, diluted with 

2  H2 (5cm3 ) and extracted with diethyl ether (10cm3  x 3). The 

ethereal extracts were combined, dried and evaporated under reduced 

pressure to afford an oil with identical tic characteristics to an 

authentic sample of 3-bronopropanoic acid' 29  (23, 0.22g) ins n/z 156 

[M'j, 110 (M-0O2 H]. 

[2_2; 1-3--Nitropropanoic acid (10): Crude [2- 2 H, 

3_2 112  1-3-bromopropanoic acid (22) (0.2g. 1.3m.moles) from the above 
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reaction was added to a suspension of sodium nitrite (0.16g, 

2.3m.moles) in dry dimethylformamide (3cm3 ) at 0° C. The mixture was 

allowed to reach room temperature and stand for 3h. then diluted with 

water (5cm3 ), acidified (6 N hydrochloric acid, 1cm 3 ), dried and 

evaporated under reduced pressure to afford a brown 6i1 which was 

purified by sublimation (60-65° , 0.1mm) to give-------------  - 
m.pt.63-64°C, lit ,63-65° 

[2-2 H2.]-3-nitropropanoic acid (10, 0.08g, 50%) which was identified by 

tic 	 comparison with an authentic sample. 6 (80 14Hz, 

(cD3)2CO) 4.45 ppm (211, t, 3=7.5Hz, d, 3=6Hz, cH2 NO2 ), 2.65ppm (0.2H, 

t, 3=7.5Hz, cH2 CO2 H). 

3-Hydroxypropionitrile (11): (a) A solution of sodium cyanide (0.31g, 

6.3m.moles) in water (5cm3 ) was treated dropwise with 2-chloroethanoi 

(0.6g, 7.4m.moles), and the mixture stirred at 45 ° C for lh. The 

reaction mixture was heated to 550 C and stirred for a further 3h., 

allowed to cool to room temperature, treated with citric acid (10%, 

San3 ) and extracted with ethyl acetate (10cm3  x 2). The organic 

layers were combined, dried and evaporated under reduced pressure to 

afford an oil (0.26g) which appeared, from 'H nmr, to contain only 

about 20% of the desired product. Prolonged heating gave a mixture of 

products. 

(b) A mixture of sodium cyanide (1.55g,. 31.5 m.moles) and 18-crown-6 

(0.159, 0.55m.moles) was treated with 2-chloroethanol (3.0g. 

37.0m.moles) and water (10cm3 ) and the reaction stirred at 80-90 ° C for 

3h. The mixture was allowed to cool to room temperature, treated with 

citric acid solution (10%, 25cm3 ) and extracted with ethyl acetate 

(50cm3  x 3). The organic fractions were combined, dried and the 

solvent removed by evaporation under reduced pressure, giving a crude 
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product (2.8g) which was distilled under reduced pressure to afford 

pure 3-hydroxypropionitrile (11, 1.64g, 63%). B.pt. 74-76 ° C/lm, lit 

130 107-109° C/12mm. 6 (80MHz, CDC1 3 ), 3.85ppm (2H, t, 3=6Hz, cH2 -OH) 

2.80ppm (211, t, 3=6Hz, cH2 cN). ir v 3350cnf' (OH stretch), 2250cn1' (C 

N stretch). 

3-Bromopropanoic acid (9): (a) 3-Hydroxypropionitrile (11) (0.3g. 

4.2m.moles) in hydrobromic acid (40%, 5cm 3 ) was refluxed for 2 hours. 

The reaction mixture was then allowed to cool to room temperature and 

extracted with ethyl acetate (5cm 3  x 3). The organic fractions were 

combined, dried and evaporated to dryness to afford a crude product 

which was crystallised from aqueous ethanol to give (9) (0.32g. 62%) 

m.pt. 62-63° C, lit 129  62.5 - 63.5° C. 6 (60MHz, cD3 cN) 2.5ppm (2H, 

t, 3 = 6Hz, CH2 Br), 1.7ppm (2H, t, 3=6Hz, CH 2 0O2 H) which was identical 

to an authentic sample. 

(b) 3-Bromopropionitrile (8) (0.1g, 0.75m.moles) in hydrochloric acid 

(20%, 3cm3 ) was refluxed for 3h. then allowed to cool to room 

temperature and extracted with ether (5cm 3 x3). The ethereal extracts 

were combined, dried and evaporated to dryness in vacuo to afford the 

product as an oil which solidified overnight (0.06g). 

Recrystallisation from aqueous ethanol gave pure 3-bromopropanoic acid 

(9, 0.045g, 40%) which had identical tic, m.pt. and nmr 

characteristics to an authentic sample. 

3-Nitropropanoic acid (1): 3-Dromopropanoic acid (9) (0.77g, 5manoles) 

in dry dimethylsulphoxide 410cm3 ) was treated with sodium nitrite 

(0.55g, 8m.moles) and the mixture stirred at room temperature for 

1.5h. The reaction mixture was then poured into ice ,water (10cm3) 



-125- 

acidified to pH 1-2 with 6N hydrochloric acid and extracted with ether 

(10cm3  x 3). The ethereal extracts were combined, dried and the 

solvent removed by evaporation in vacuo to afford a mixture of 

starting material and the desired product. The crude mixture was 

sublimed at 60-65°/0.lmm and the crystalline sublimate recrystallised 

from chloroform to afford 3-nitropropanoic acid (1, 0.15g, 25%) which 

was identified by comparison (m.pt, ms, tic, nmr) with an authentic 

sample. M.pt. 62-64 ° C lit 131  63-65° C. 6 (80MHZ, CD3 CN),4.45ppm (2H, 

t, 3=7Hz, CH NO 2 ), 2.65ppm (2H, t, 3 = 7Hz, cH 2 CO2 H) ms (FAB -Ye) n/z 

119 (M) - , 118 (N-H) - . 

[ 1-'3 c1 -3-Hydroxypropionitrile (24): A mixture of [' 3 CJ-sodium cyanide 

(0.1g. 2.0 m.moles), 2-chloroethanol (0.25 cc 3 ) and 18-crown-6 (0.03g. 

0.11pmoles) was stirred at 90°C for 3h. The cooled reaction mix was 

absorbed on dry silica (2g) and eluted with ethyl acetate (2 cm 3  x 5). 

The organic eluate was evaporated under reduced pressure to afford the 

crude product as an oil (0.08 g). The product had identical tic 

characteristics to an authentic sample of 3-hydroxypropionitrile (11) 

and was used without further purification. 

[l-' 3 c)-(2-2 ; , 3-2 H2  1-3-Bromo-propanoic acid (12): [1- 13 C1-3-

Hydroxypropionitrile (0.1569, 2.0 m.moles) in deuterobromic acid (40%, 

3.0 cm?) was refluxed for 2 hours. The reaction was allowed to cool 

to room temperature, diluted with 2 ;•O (3.0 cm?) and extracted with 

ether (10 c? x 3). The ethereal extracts were combined, dried and 

the solvent removed by evaporation under reduced pressure to afford a 

brown oil which solidified upon agitation and cooling (0.12 g). This 

crude product had identical tic characteristics to an authentic sample 

of 3-bromopropanoic acid and was used without further, purification. 
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[1-' 3 C,2-2 H2 ]-3-Nitropropanoic acid (7): crude bromopropanoic acid 

(12) from the above reaction (O.lg) was added to a suspension of 

sodium nitrite (0.075g) in dry dimethylsuiphoxide (5 cm 3 ) and the 

mixture stirred at room temperature for 1.5h. The reaction mixture 

was then diluted with water (10cm3 ), acidified to pH 1-2 with 

hydrochloric acid (6N) and extracted with ether (15 cm3  x 5). The 

ethereal extracts were combined, dried and evaporated to dryness in 

vacuo to afford the crude product (35 mg) which was recrystallised 

from chloroform to give [1- 13 C, 2-2 H2 1-3-nitropropanoic acid (7, 
t'4 , 63-6  

0.025g, 28%) m.pt. 62-3°C 	 (8014Hz, (CD3  ) 2 C0) 4.45 ppm 

(211, br, CH2 NO2 ). ins (FAB -i-ye) nVz  122  [IC],  121 [M-lf. 

3-.Nninopropanoic acid (4): (a) 3-Nitropropanoic acid (1) (15 mg, 0.125 

m.moles) was added to tin powder (80mg) in hydrochloric acid (35%, 3 

en?) and the mixture refluxed for 2 hours. The cooled reaction 

mixture was evaporated to dryness in vacuo to afford a solid residue 

which was washed repeatedly with ether to leave a colourless solid (4 

mg) with identical tic and nmr characteristics to authentic 

3-aininopropanoic acid (4). 

(b) A stirred solution of 3-nitropropanoic 

acid (1) (0.06g, 0.5 iu.moles) in dry methanol (3 cii?) was treated with 

palladium on charcoal (10%, 0.1g) and the suspension added to 

anhydrous ammonium formate (0.14g, 2.3 m.moles). The reaction was 

stirred at room temperature for 20 min then filtered through celite 

and evaporated to dryness under reduced pressure to afford a 

colourless crystalline solid (0.058g) which was identified by 

comparison (m.pt., tic, 'H nmr) with an authentic sample of 

3-aminopropanoic acid (4). 
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3-Nitropropanoic acid methylmandelate ester (25): (a) A stirred 

solution of 3-nitropropanoic acid (1) (0.12g. 1 m.mole) in 

dichioromethane (5 cm3 ) was treated with 2-dimethyl aminopyridine (5 

mg 0.04 m.moies), S-(+)--methyl mandelate (0.25g. 1.5 m.moles) and 

1,3-dicyciohexylcarbodiimide (0.15g, 0.73 m.moles) at 0°C. The 

reaction mixture was stirred at 0°C for 5 mm. then allowed to warm to 

room temperature and stirred for a further 3h. The reactIon mixture 

was then filtered and the solvent removed by evaporation in vacuo to 

afford an oil (0.21g) which appeared, from tic and nmr to consist of 

starting material. 

3-Nitropropanoic acid (1) (0.055g, 0.46 m.moles) in dry 

tetrahydrofuran (3 cm 3 ) was treated with 

1-ethoxycarbonyl-2-ethoxy-1, 2-dihydroquinoimne (0.14g, 0.57 m.moles) 

and S-(+)-methylmandelate (0.08g, 0.48 m.moles). The reaction mixture 

was stirred at room temperature for 5 d after which time examination 

by tic indicated that only starting material was present. 

3-Nitropropanoic acid (1) (0.1g, 0.8 m.moles) was treated with 

triflouroacetic anhydride (0.18g, 0.8 m.moies) and the mixture shaken 

for 2 mm. then intermittently over 1 h. R-(--)-Methyl mandelate 

(0.2g, 0.85 m.moles) was added and the reaction mixture left standing 

at room temperature overnight. The reaction mixture was then cooled 

to 0°C, neutralised (pH 7-9) with potassium hydroxide (3N) and 

extracted with ethyl acetate (5 cm? x 3). The organic fractions were 

combined, dried and evaporated to dryness in vacuo to afford an oil. 

The crude material was purified by preparative tic using 

chlorofowethanol (95:5) as the mobile phase to afford 

3-nitropropanoic acid methyl mandelate ester (25, 0.,08g, 37%) m;pt. 
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120-122°C 6(80MHz, C 6 ;) 7.00 ppm (SH, aromatic), 5.50 ppm (1H, 5, 

CH-CO 2 C113 ), 3.90 (111, m (AA'B2 ), C112 NO2 ), 3.70 ppm (111, m (AA'B2 ) 

GiNO2 ), 3.40 ppm (311, 5, CO2  CH3 ) 2.45 ppm (2H, t, 3=10Hz, CH2 CO2 R). 

ms (CI) ITVZ,  267 (PiJ. 

3-Nitropropanoic acid methyl valine amide (26): 3-Nitropropanoic acid 

(1) (0.2 g, 1.7 ra.moles) in dry tetrahydrofuran (5 cm3 ) was treated 

with L.-valine methyl ester (0.33g, 2.0 m.moles) generated from the 

corresponding hydrochloride by shaking an ethyl acetate suspension 

with saturated sodium bicarbonate. 1,3-Dicyclohexylcarbodiimide 

(0.2g, 1.0 m.moles) was added and the reaction mixture stirred at room 

temperature for 2 h. The filtered reaction mixture was evaporated in 

vacuo to afford an oil which was purified by flash chromatography 

using chloroforenethanol as the mobile phase, giving an oil which 

slowly crystallised. Crystallisation from ethyl  acetate/hexane gave 

3-nitropropanoic acid methyl valine amide (26, 0.208g, 53%) m.pt. 

42-44°C. 6(200M Hz, CDC13 ) 6.25 ppm (in, d, 3=9Hz, NH), 4.70 ppm, (311, 

m (AA'B) CH2 NO2 ).4.60 ppm (in, dd, 3=10Hz, 5Hz, CH-NH), 3.75 ppm (311, 

s, CO2 CI), 2.86 ppm (211, m, (AA'B), CH2 CO2 H), 2.14 ppm (111, in, 

0.92 ppm (3H, d, 3=5.5 Hz, CH), 0.89 ppm (311, 6, 3=5.5 Hz, 

CH) ins (El) Wi, 232 [14k ], 172 [M-0O2 CH3 J, 125 [1727NO2 ]. Exact mass 

measurement gives 232.1069 corresponding to C9 111  6 N2  O. 

[2_2 11,3-2 11]-Fumaric acid (27): Dimethylacetylene dicarboxylate (2.1 

g, 14.8 m.moles) in tetrahydrofuran (10 ca?, preshaken with 0.5 cm 3  

deuterated water) was cooled to 0°C then treated dropwise with 

triphenylphosphine (3.9 9, 15. m.mles) in dry tetrahydrofuran (4 cm?). 

The initially colourless solution turned deep red and was allowed to 

warm to room temperature over 30 mm. then refluxed for 3h. The 

reaction mixture was then allowed to cool to room temperature, dried 



-129- 

and evaporated to dryness in vacuo to afford an orange solid which was 

purified by sublimation to give [2- 2 H, 3-2 H)-dimethylfumarate (28, 

0.78g) m.pt. 90-92°C ins (El) 134 (M1, 115 {M-OCH 3 I. A sample of 

this product (0.5 g, 0.34 m.nioles) was treated with aqueous sodium 

hydroxide (10 cm 3,  12%) and the reaction mixture stirred at room 

temperature for 72 h. The reaction was cooled in ice, acidified (pH 

1-2) with hydrochloric acid (6N) and the product isolated by 

filtration and crystallised from aqueous ethanol [2_211, 3-'HI-fumaric 

acid (26, 0.4g, 36%) m.pt. 298-300°C lit40  299-300°C ins (El) nvz 118 

[?4], 100 [M-H2 0]. 

[2S-2 H,3S-2 H]-L--Aspartic Acid (14): [2- 2 H, 3-2 H]-Fumaric acid (27) 

(0.4g, 3.5 m.moles) in water (5 cm3 ) was treated with magnesium 

sulphate heptahydrate (0.08g. 0.3 m.moles) and ThIZMAI base (0.11g) 

then a solution of ammonium chloride (0.38g, 7.0 m.moles) in water (5 

cm3 ) was added. The mixture was made up to 20 cm  with water, 

adjusted to pH 8.0-8.5 by addition of aqueous sodium hydroxide (2N) 

then treated with aspartase (4 units) and the mixture incubated at 

30°C for 10 d. The incubate was then immersed in boiling water for 30 

mm., cooled and treated with cupric sulphate heptahydrate (0.85g, 3.5 

m.moles) and the blue precipitate isolated by filtration. The solid 

was suspended in water (10 a?) and treated with hydrogen sulphide for 

3-4 mm. The black precipitate was removed by filtration through 

celite and the filtrate treated with ethanol (20 cm3 ) and stored at 

0°C for 4d over which time [2S- 2 H, 3R-2 H]--L-aspartic acid (14) 

crystallised out and was isolated by centrifugation (0.11g, 24%) 6(80 

11Hz, Na OD/D20) 2.65pjn (s, 3R-H) ms (FAD 1-ye) 136 ro,/z (MJ, 

90[M-cO2 H]+ , 72(-NH2 ] 1 . 	 $ 
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[3R-2 H]-L--aspartic acid (15): Fumaric acid (0.8g, 6.9 m.moles) was 

added to a mixture of magnesium sulphate heptahydrate (0.15g, 0.6 

m.moles) and ThIZMA. base (01.11g) in deuterated water (10 cm 3 ). The 

mixture was heated at 80°C for 10 mm. then allowed to cool to room 

temperature. The same procedure was carried out for a solution of 

ammonium chloride (0.74g. 15 m.moles) in deuterated water (5 cm?). 

Both solutions were evaporated to dryness in vacuo and the former 

dissolved in deuterated water (15 cm 3 )and added to a solution of the 

latter in deuterated water (10 cm 3 ). The combined mixture was 

adjusted to pH 8.1 with sodium deuteroxide (214) then incubated with 

aspartase (2 units) at 30°C for lOd. After this time the reaction 

mixture was treated in an identical fashion to that described above 

with cupric sulphate heptahydrate (1.9g. 7.0 m.moles) and 

[3S-2 H]-L-aspartic acid isolated as colourless crystals (15, 0.26g, 

28%). msVz (FAB +ve), 135 (1€], 89_[M-CO2 H], 71[-M2] + 
SH  (80. MHz, NaOD/02 0), 2735 p. p iIJ 

d., 3=8 Hz, GiD), 3.55 p.p.m. (1H, d, 3=8 Hz, CH-NH 2 ).\ 
troacrylic acid (6) : Fuming sulphuric acid (12.3g, 90%, 0.15 

moles) was added dropwise to a stirred solution of fuming nitric acid 

(lO.Og, 90%, 0.15 moles) at 0°C. The reaction mixture was stirred 

vigorously at 0°C while chlorosulphonic acid (17.0g, 0.14 moles) was 

added slowly over 2-3h and the evolved nitryl chloride was collected 

in an acetone/CO2  trap. Nitryl chloride was allowed to warm and 

bubbled into stirred glacial acrylic acid (6.4g, 0.09 moles) at 0°C. 

The reaction mixture was stirred at 0°C for lh and then stored at 0°C 

until required. 

A sample of 2-chloro-3-nitropropanoic acid prepared above (0.7g. 4.6 

m.moles) in dry ether (50cm3 ) was treated slowly with anhydrous sodium 

acetate (0.439, 5.2 m.moles) and the reaction mixture,heated under 
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reflux for lh. The solution was then allowed to cool to room 

temperature and reduced by evaporation in vacuo to afford an oil 

which was purified by flash chromatography on silica using redistilled 

chloroform as eluant. The purified product was crystallised from 

redistilled chloroform to afford 3-nitroacrylic acid (6) as off-white 

crystals (0.08g. 15%) m.pt. 135-136°C lit 132 134-136°C. 8(80MHz, 

CD3 CN) 7.25 ppm (111, d, .1 - 12Hz CHNO 2 ), 6.55 ppm (XH, d, a - 12Hz, 
CHCO2 H) ins ni/z (FAa -ye) 117 IMV, 116 [M-H]. 

3-Bromopropionitrile (8): Dibromoethane (0.71g, 5 m.moles) in dry 

dimethyl sulphoxide (20 cm?) was treated with sodium cyanide (0.30 g, 

4.8 m.molés) and the mixture stirred at 110°C for lh. After this time 

the reaction was allowed to cool to room temperature, quenched with 

citric acid solution (15%, 20 cii?) and extracted with ethyl acetate 

(20 cm  x 3). The organic layers were combined, dried and evaporated 

in vacuo to afford an oil which was identified by comparison (tic, 

ir, ms) with an authentic sample of succinonitrile. 

[2_2; J-3--Nitroproparioic acid (10): 3-Hydroxy propionitrile (11) 

(0.2g, 2.8 m.moles) in deuterium bromide (40%, 5 cii?) was refluxed for 

2h. The reaction mixture was allowed to cool to room temperature, 

diluted with deuterated water and extracted with ether (10 cm  x 3). 

The ethereal extracts were combined, dried and evaporated to dryness 

in vacuo to afford an oil which solidified overnight and was identical 

(tic) to an authentic sample of 3-bromopropanoic acid (9). 

Crude 3-broiuopropanoic acid (9) prepared above was dissolved in dry 

dimethylsulphoxide (10 cm3 ) and treated with sodium nitrite (0.3g). 

The reaction mixture was stirred at room temperature for 1.5h then 

diluted with water, acidified with hydrochloric acid (2N) and 

extracted with ether (10cm 3  x 5). The ethereal extracts were 
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combined, dried and evaporated to dryness under reduced pressure to 

afford an oil which was taken up in buffer (15 cm?, p1110) and stirred 

at room temperature overnight. The reaction mixture was acidified 

with hydrochloric acid (2N) and extracted with ether (10 cm? x 5). 

The ethereal extracts were combined, dried and evaporated to dryness 

in vacuo to afford an off-white crystalline solid which was 

recrystallised from chloroform to afford (2-2 1ç1-3-nitropropanoic acid 

(10, 0.05g, 15%) which was identified by comparison (tic, m.pt.) with 

an authentic sample. 6(80M.Hz, CD 3 CN), 4.65 pn (211, br.m., CH2 NO2 ) 

ins nVz (FAB, -ye) 121 [if],  120 [M.-ffl. 

13-2 H2 ]-3-Nitropropanoic acid (28): 3-Nitropropanoic acid (1, 0.05g. 

0.42 m.moles) in deuterated water (2 cm3 ) was treated with anhydrous 

sodium carbonate (0.03g, 0.28 m.moles) and the mixture allowed to 

stand at room temperature. After 24 h the reaction mixture was 

acidified (deuterium chloride, 35%) to pH 1-2 and extracted with ether 

(5 cii? x 3). The ethereal extracts were combined, dried and 

evaporated to dryness under reduced pressure to afford 

[3-2 ;]-3-nitropropanoic acid (28, 0.04g). The identity of the 

product was confirmed by comparison (tic, m.pt) with an authentic 

sample. The 'H nmr indicated that ca 70% exchange had occurred at C-3 

with no exchange at C-2 6(80MHz, CDC1 3 ) 4.4 ppn (0.611, t, 3 8 Hz, 

01 
2 N0 ) 

[2_2 H2  1-3-arninopropanoic acid (29): [22; 1-3-Nitropropanoic acid 

(0.02g, 0.17 m.moles) in methanol (3 cii?) was treated with anhydrous 

ammonium formate (0.035g, 0.55 mawles) and 10% palladium on charcoal 

(0.02g) and the mixture stirred at room temperature for 30 mm. The 

reaction mixture was then filtered through celite and evaporated to 

I. 
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dryness in vacuo to afford a colourless solid (0.02g). Examination by 

nmr and ins showed this sample to be identical with an authentic 

sample of 3-aminopropanoic acid (4) with no deuterium incorporation. 

N-Camphanoyl-3-aminopropanoic acid (16): (a) 3-Aminopropanoic acid 

(0.09g, 1 m.mole) in dichloromethane (5 cm 3 ) was treated with 

triethylamine (0.14g, 1.5 m.nioles) and (-)-camphanyl chloride (0.23g, 

1.1 m.moles) at 0°C and the reaction mixture stirred for 3h. Further 

camphanyl chloride (0.12g, 0.5 m.moles) was added and the reaction 

mixture stirred at room temperature overnight however tic examination 

after this time showed that no reaction had occurred, ins (FAB, we) 

n/z 198 [7(]-camphanic acid, 153 [i'i-co2 n]. 

(-)-Camphanyl chloride 

(0.27g, 1.2 m.moles) in toluene (1 cm 3 ) was treated with a solution of 

3-aminopropanoic acid (0.08g, 0.9 m.moles) in aqueous sodium hydroxide 

(0.5 cit?, 2N plus 0.75 cm3 , 3N) and the mixture stirred at room 

temperature overnight. The reaction mixture was washed with 

chloroform, the aqueous layer acidified (p13 1-2) with 614 hydrochloric 

acid and then extracted with chloroform (2 cm3  x 3). The chloroform 

extracts were combined, dried and evaporated to dryness under reduced 

pressure to afford an off white solid which consisted of starting 

material and camphanic acid only. 

Freshly sublimed 

(-)-camphanyl chloride (0.09g. 0.45 m.moles) in toluene (0.2 cm3 ) was 

treated with a solution of 3-aminopropanoic acid (0. 0254g, 0.3 

m.moles) in aqueous sodium hydroxide (0.17cm3 , 2N plus 0.17cm3 , 314) 

and the mixture stirred vigorously for 3 h. The reaction mixture was 

extracted with chloroform 2 cr1? X 3) and the aqueous portion acidified 

(pH 1-2) with 614 hydrochloric acid then extracted with chloroform (5 

I 
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cii? x 3). The organic phase was dried and evaporated to dryness under 

reduced pressure to afford an oil which slowly solidified (0.085g). 

The crude material was recrystallised from chlorofonnv40-60 0  petroleum 

ether to afford N-camphanoyl-3-aminopropanoic acid (16) (0.055g. 65%) 

m.pt 129-131°C lit 33 128_1300. 6(80MHZ, cDCl 3 ) 7.0 ppm (1H, br.s, 

COOH) 3.5 ppm (211, m, CJçNHCO), 2.7 ppm (2H, t, 3 - 6 Hz, CH2 CO2 H), 

1.8 pp (211, m, camphamyl 0) 1.7 ppm (211, in, camphanyl 	1.1 (611, 

S, camphanyl 2 x Cr13 ), 0.8 ppm (3H, s,camphanyl CH) ins (El) nt/z 269 

W1. 

N-Camphonyl-3-aminopropanoic acid methyl valine amide (17): 

N-Camphonyl-3- aminopropanoic acid (0.050g, 0.18 m.ntoles) from the 

above reaction in dry tetral-iydrofuran (2 cii?) was treated with 1, 

3-dicyclohexylcarbodiimide (0.05g, 0.24 m.moles) and added to methyl 

valine (0.05g, 0.3 m.moles) in dry ethyl acetate (4 cm3 ). The mixture 

was stirred at room temperature overnight then filtered and evaporated 

to dryness in vacuo to afford a crude product which was purified by 

flash column chromatography on silica gel (Kieselgel H type 60) using 

chloroform as the mobile phase. The purified product was 

recrystallised from chlorofonnv40°-60 0  petroleum ether to give 

N-camphonyl-3-aninopropanoic acid methyl valine amide (17, 0.04g, 56%) 
-a- 

rn.pt.142-144°C\6(8OriHz, CDC1 3 ), 7.0 ppm (H, d, .1-10Hz, NHCO Camphanyl), 6.25 

ppm (1H, brs, NH-methyl valine), 4.5 ppm (1H, dd, 3 = 6Hz, CH2 Moo) , 
2.4 ppm (2H, m, CH2 CONH), 1.8 ppm (211, m, cançhonyl CH2 ), 1.7 ppm (2H, 

M, camphonyl 	1.1 ppm (6H, s, 2 xCI), 0.8 ppm (3H, 5, caniphonyl 

C1). ins (El) nVz382 [1€]. 
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Feeding experiments 

11-13 C,2-2 H2 1-3Nitropropanoic acid (7). Penicillium atrovenetum was 

cultured on Czapek Dox slopes and then grown in modified Raulin Thom 

medium (50 cm3  x 2) in static culture. Growth was maintained in the 

light at 30°C for, 24 h. and the culture then treated with (1-' 3 C, 

2_2; 1-3-nitropropanoic acid (7) (10 mg per flask) and the incubation 

continued for a further 72 h. the mycelium was removed by filtration, 

the medium acidified with conc. hydrochloric acid (ca pH 1-2) and 

extracted with ether (100 cm3  x 5). The ethereal fractions were 

combined, dried and evaporated in vacuo to give a yellow crystalline 

solid which was recrystallised from chloroform to afford 

3-nitropropanoic acid (1, 80 mg). 6 400 MHz, (CDC1 3 ) carboxyl region 

only 173.334 ppm, 172.716 ppm. ins (FM -ye) nvz  122 (small), 121, 120. 

Deuterated aspartic acids 

Modified Raulin Thom medium (50 cm 3  x 2) was inoculated with 

Penicillium atrovenetum from Czapek Dox slopes and the culture 

incubated under static conditions at 30°C for 42 h. then pulse fed 

with the deuterated L-aspartic acid in distilled water at 42, 48 and 

54 h. after innoculation (total 20 mg). The flasks were worked up as 

described above 96h. after the initial inoculation and 

3-nitropropanoic acid isolated and recrystaflised from chloroform. 

In the time course experiments, flasks were worked up 72 and 96h. 

after inoculation and the 3-nitropropanoic acid isolated as described 

above. The product was examined by 2 H nmr spectroscopy (see table in 

results and discussion). 
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3-Nitropropanoic acid methyl valine amides: 3-Nitropropanoic acid (1) 

isolated from the Penicillii.im atrovenetum was treated with 

1,3-dicyclohexylcarbodiiuij.de (1.1 mol. equiv) and with methyl valine 

(1.1 mol. equiv.) in dry THF/ethyl acetate (1:1) and the reaction 

mixture stirred at room temperature overnight. After this time the 

reaction mixture was filtered and the solvent removed in vacuo to 

afford the crude product which was purified by flash column 

chromatography using chloroform/methanol as the mobile phase. The 

product was identified by comparison (tic) with an authentic sample 

prepared previously. 

5 xqJ-Nitrosuccinj.c acid (5): Modified Raulin Thom medium (50 cm 3  x 2) 

was inoculated with Penicillium atrovenetum a described above. The 

cultures were treated with [ 15N]-nitrosuccinic acid (20 mg) after 42, 

48 and 54h. and the 3-nitropropanoic acid (1) isolated after 96h. as 

described above. The recrystaflised sample was identified by 

comparison (tic) with authentic 3-nitropropanoic acid. 

Isolation of 3-Nitropropanoic acid reductase 

The method of Shaw24  was used, with the exception that cultures were 

grown in a static state in the light since dark-grown cultures failed 

to produce reductase activity in crude extracts. 

The crude mycelium from cultures grown in modified Raulin Thom medium 

(2 x 50 cm3  per extraction) were harvested at various time intervals. 

Crude extracts were prepared from the frozen mycelium by grinding and 

extracting the mycelium at 0°C in phosphate buffer (pH 7.2). The cell 

debris was removed by centrifugation at 0-4°C (3,000 g, 20 mm.) and 
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the crude extract assayed for enzyme activity (see below). Activity 

was found in extracts from mycelium harvested between 84 and 110 

hours. 

Extracts which possessed activity were combined and treated with solid 

ammonium sulphate (24.2g/100 cm3 ) to 40% saturation then centrifuged 

(20,000g, 20 mm.) and the supernatant retained. Treatment with 

additional ammonium sulphate (18.8aJ100 cm 3 ) to 65% saturation and 

centrifugation (20,000g, 20 rain.) gave a pellet of protein which was 

resuspended in phosphate buffer (0.05M) then dialysed at 2-4°C 

overnight. By this method, from 2g of mycelium, sufficient enzyme was 

isolated to hydrolyse 1 pmole of N1DPH per mm. The partially 

purified enzyme extract was stored frozen at -15°C until used. 

Assay of 3-nitropropanoic acid reductase. 

The assay procedure followed was essentially that of Shaw24 . The 

assay mixture contained potassium phosphate (pH 5, 100 pmoles) NPIDPH 

(0.3 pmoles), 3-nitroacrylic acid (3.0 p moles), enzyme extract (0.3 

cm3  equivalent to 0.075 g of wet mycelium) made up to a final volume 

of 1.5 cne with water. The oxidation of WIDPH was monitored 

spectrophotometrically at 340 rm. 

Incubations with 3-nitropropanoic acid reductase. 

The enzyme was incubated with 3-nitroacrylic acid (6) in both water 

and. deuterated water in the presence of stoicheometric amounts of 

NADPH. The reaction was monitored spectrophotometrically and the 

3-nitropropanoic acid isolated by acidification (pH 17.2, 6W 
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hydrochloric acid) and extraction into ether. The ethereal extracts 

were dried and evaporated to dryness in vacuo and the product 

identified by comparison (tic) with an authentic sample of 

3-nitropropanoic acid. 

Ethyl 2-methyl--4-hydroxypyrimidine-5-carboxylate (41): Acetamidine 

hydrochloride (1.24g, 0.013 moles) was added to an ice cold solution 

of sodium (01. 30g, 0.013 moles) in ethanol (10cm3 ) and the mixture 

stirred at 0°C until the acetamidine had dissolved. The reaction 

mixture was filtered through celite, treated with 

diethylethoxymethylene malonate (2.84g, 0.13 moles) and stirred at 0 0  

for 3h. The reaction was then treated with a further aliquot of 

sodium (0.30g. 0.013 moles) in ethanol (10 cm3 ) and stirred at room 

temperature overnight. The ethanol was removed by evaporation in 

vacuo and the yellow residue suspended in water (20 cm3 ) washed with 

ether (10 cm? x 2) and the ether washings discarded. The aqueous 

portion was acidified with glacial acetic acid to pH 5-6 then 

extracted with ethyl acetate (20 cm3  x 3). The organic -fractions were 

combined, dried and evaporated to dryness in vacuo to afford the crude 

crystalline product which was recrystallised from acetone to afford 

ethyl 2-methyl-4-hydroxypyrimidine-5-carboxylate (41) 1.18g. (50%) 

m.pt. 190-192°C, lit96  191°C 6(8014Hz, cDc].3 ) 8.7 ppm (0.67 H, s, Cu 
aromatic), 7.25 ppm (0 .33H, 5, CH aromatic), 4.50 ppm (2H, q, 3 7Hz, 

CR2 ) 2.60 ppm 	s, aromatic Cu3 ), 1.35 ppm (311, t, 3 = 7Hz, CH 0' 
ms (El) nvz 182 [1?]. 

Ethyl 2-methyl-4-chloropyrimidine-5-carboxylate (42) 

(a) Ethyi.2-methyl-4-hydroxypyrimidine-5-carboxylate (41) prepared 

above (0.1g, 0.55 m.moles) was treated with phosphorous trichloride 

(0.25 cm3 ) then sealed in a tube and heated to 100°C for 30 mm. 
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Excess phosphorous trichloride was removed by evaporation under 

reduced pressure and the residue treated with ice water, neutralised 

with solid sodium carbonate and extracted with ethyl acetate (5 cm3  x 

3). The dried, evaporated organic fraction gave a white crystalline 

solid which was identical with starting material (tic). 

Ethyl 2-methyl-4-hydroxypyrimidine-5-carboxylate (41) (0.11g. 0.55 

m.moles) in chloroform (0.5 cm3 )was treated with thiony]. chloride 

(0.5 cm3 , 0.8g, 6 m.moles) and the reaction mixture heated under 

reflux for 2h. then cooled in ice, treated dropwise with ice water, 

neutralised with solid sodium carbonate and extracted with ethyl 

acetate (5 cii? x 3). The dried and evaporated organic fraction gave a 

brown oil which appeared, from tic, to contain a number of products. 

Ethyl .2-methyl-4-hydroxypyrimidine_5_carboxylate (41) (1.0g, 5.5 

m.moles) was treated with phosphorous oxychloride (8 cm3 , 13 g, 0.85 

moles) and heated to 78-80°C for 3h. Excess phosphorous oxychioride 

was removed by evaporation under reduced pressure and the residue 

cooled in ice and treated with ice water. The reaction mixture was 

then neutralised with sodium bicarbonate and extracted with chloroform 

(20 cm3  x 3). The organic fractions were combined, dried and 

evaporated to dryness under reduced pressure to afford the product as 

an oil which was purified by flash chromatography to give 

ethyl 2-methyl-4-chloro pyrimidine-5-carboxylate (42) 0.42g (38%). 

This product was unstable.in  the presence of light and air and 

analytical data could not be obtained. Vacuum distillation led to 

decomposition. 6 (80 MHz, CDC1 3 ) 9.0 wn (1H, S, CU aromatic), 4.4 

ppn (2H, q, 3=7Hz, Cu2 ) ins (El), nvz 200 (Kt  1, 165 IM-ClJ. 



-140- 

Ethyl 2-methyl-4-methoxypyrimidine--5-carboxylate (43): 

Ethyl •.2-methyl-4-chloropyrimidine-5--carboxylate prepared above (42, 

0.1g. 0.5 m.moles) in methanol (5 cm ) was treated with sodium 

methoxide (0.03g, 0.06 m.moles) and the mixture stirred at room 

temperature for 4 h. The reaction mixture was then filtered and 

evaporated to dryness in vacuo and the residue treated with water (5 

cm3 ) then extracted with ethyl acetate (5 cm 3  x 3). The organic 

fractions were combined, dried and evaporated to dryness under reduced 

pressure to afford a mixture of the ethyl and methyl esters of 

2-methyl-4-methoxypyrimidine-5-carboxylate (43) (0.085g) m. pt. 100-101 

ref73  101-102 8(80MHz, CDC1 3 ) 9.4 ppm (1H, s, aromatic CH), 4.7 ppm 

(ill, q, J = 7Hz, CO2 CH2 ), 4.4 ppm (311, 5, OCR3 ), 4.2 ppm (1.911, s, 

CO2 CH3 ), 3.0 ppm, (311,s, aromatic CR3 ), 3.0 ppm, (311, s, aromatic 

1.65 ppm (1.511, t, J = 7Hz, CO2 CH2 CR3). Separation of the two 

esters by tic was not possible therefore the crude product was used 

without further purification. 

2-methyl-4-methoxy-5-hydroxymethylpyrimidine (44): The mixture of 

esters prepared above (0.1g) in t-butanol (3 ci?) was treated with 

sodium borohydride (0.03g, 0.8 m.moles) and heated to 80°C. Methanol 

(1.5 cm3 ) was added dropwise and the reaction mixture then refluxed 

for 3h. After this time the reaction mixture as allowed to cool to 

room temperature, acidified (pH 1-2, 2N hydrochloric acid), 

neutralised with saturated sodium bicarbonate and extracted with ethyl 

acetate (10 cii? x 3). The organic fractions were combined, dried and 

evaporated to dryness in vacuo to afford the crude product which was 

purified by flash column chromatography using chloroform/ethanol as 

eluant to give 2-methyl-4-methoxy-5-hydroxymethyl pyrimidine as a 

colourless crystalline solid (44, 0.04g), 8(8014Hz, C0ç1 3 ), 8.5 ppm 

(1H, s, CH aromatic), 5.3 ppm (1H, brs, OH), 4.65 ppm (2H, 5, CH2OH), 
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4.10 ppm (311, s, 0Q13 ), 2.9 ppm (311, s,CH3 ) ins (El), nvz 155 (Mi-11, 

140 (M-M3  1. 

HI -2-Nethyl-4-znethoxy-5-hydroxymethylpyrimidine (45) : The 

deuterated material was prepared in an identical fashion to the 

non-deuterated compound by reduction of the mixture of methyl and 

ethyl esters of 2-methyl-4-methoxypyrimidine-5-carboxylate (43) with 

sodium borodeuteride. The product was isolated as a colourless 

crystalline solid with identical tic characteristics to the 

non-deuterated compound. 8 (8011Hz, OX13 ) 8.50 ppm (1H, 5, CH 

aromatic) 4.65 ppm (111, 5 CEf 4 HOH), 4.10 pm (311, s, CQ, 2.90 ppm 

(311, s, CR3) ins (El) aVz  156 [MI-1], 141 [N-CR3 ]+ - 

2-methyl-4-hydroxy-5-hydroxymethylpyrimidine (34): 

(a) Ethyl-2-methyl-4- hydroxypyrimidine-5-carboxylate (41, 0.46g, 2.5 

m.moles) in dry tetrahydrofuran (50 cii?) was added to a suspension of 

lithium aluminium hydride (0.45 g, 12 m.moles) in dry tetrahydrofuran 

(20 cii?) and the mixture stirred at room temperature for lh. then 

refluxed for 45 mm. until a faint yellow colour was observed. The 

reaction mixture was cooled in ice, treated dropwise with water (0.5 

cii?) and the precipitate collected by filtration then added to 

phosphoric acid (d 1.71, 1.05 cm 3 ) in water (50 cm3 ). The reaction 

mixture was heated at 100°C for 30 mm. and the hot solution filtered, 

neutralised with aqueous sodium hydroxide (OA  M) and evaporated to 

dryness under reduced pressure to afford a colourless residue. This 

solid material was extracted with boiling ethanol (60 cm 3  x 3, 20 

rain.). The ethanolic extracts were combined and evaporated to dryness 

to afford a colourless solid which was recrystallised from dioxane to 



-142- 

give 2-methyl-4-hydroxy-5-hydroxymethylpyrinddine (34) 0.02g, (6%) 

m.pt. 213-215°C, lit...  212-213°C 6(8011Hz, d 6 -.DMSO), 7.80 ppm (1ff, 5, 

CH aromatic) 4.30 ppm (2H, 5, CH2 OH), 2.54 ppm (3ff, S, 	C1) ins 	(El) 

iiy'z 140 EM1, 123 (14-OH1, 82 
(floff_QJ3Qflf 

(b) 2-Methyl-4-amino-5-hydroxymethylpyrimidine (35, 0.2g, 1.4 m.noles) 

was taken up in hydrochloric acid (6N,m 5 cue) and the reaction 

mixture heated under refiux for Sh. then evaporated to dryness in 

vacuo. The colourless product was crystallised from ethanol/ethyl 

acetate to afford 2-methyl-4-hydrox7-5-hydroxymethylpyrimidine (34) 

0.16g (82%) which had identical characteristics (tic, m.pt, nmr) to an 

authentic sample prepared above. 

_2 H2  1-2-flethyl-4-hydroxy-5-hydroxynthylpyrimidine (37): The above 

reaction was repeated using lithium aluminium deuteride and the 

product isolated and recrystallised as before (37) 0.025g, (7%) m.pt. 

213-214°C 6(80MHz, d 6 DMSO) 7.80 ppm (1H, 5, CH aromatic), 4.30 ppm 

(0.5ff, 5, CIfHOH), 2.54 ppm (3ff, s,-CH) ins (El) m/z 142 [flJ 124 

(M-CM], 83 (M-H2 0-cH3 cN1 

Cyanoethoxymethylene acetate (46): Ethylcyanoacetate (28.25g, 0.25 

moles) triethylorthoformate (36g, 0.25 moles) and acetic anhydride 

(51g, 0.5 moles) were refluxed together for 1.5 h. then unreacted 

starting material distilled off at 160°C. The residual oil slowly 

solidified giving yellow crystals which were recrystallised from 

ethanol to afford cyanoethoxymethylene acetate (46) 13g (30%) m.pt. 

121-123°C lit ..  122-123°C 6(80MRz,cDC13 ) 7.9 ppm (111, s, CH), 4.25 

ppm (4ff, 2xq, 3 = 7Jz, Cff x 2), 1.3 ppm (6ff, 2xt, 3 = 7Hz, ac x 2). 
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2-Methyl-4-hydroxypyrimidine-5-carbonitrile (47): Acetamidine 

hydrochloride (6.7g, 0.07 m.moles) was added to a solution of sodium 

(1.7g. 0.07 m.moles) in ethanol (35 cm3 ) at 0°C. After shaking to 

dissolve the acetamidine, the mixture was filtered through celite and 

the clear filtrate treated with cyanoethoxymethylene acetate (5.6g, 

0.03 m.moles). The reaction mixture was stirred at room temperature 

for 2h. then stored at 0°C overnight and the orange/yellow crystals 

which formed were isolated by filtration, and recrystallised from 

ethanol to afford the intermediate dimer (49) 3.75g (28%) 8(80 MHz, 

CDC1 3 ) 7.8 ppm (1H, s, CH), 2.0 ppm (3H, 5, 013 ) 1.95 ppm (3H, 5, 

0). A sample of this product (1.5g, 7.7 m.moles) in ethanol (10 

cm3 ) was treated with hydrochloric acid (0.514, 15 cm and the 

solution heated to 100°C for 10 mm. then allowed to cool to room 

temperature overnight. The colourless crystals were isolated by 

filtration, washed with ice water and dried to afford 

2-methyl-4-hydroxypyrimidine -5-carbonitrile (47) 0.4g, (38%) m.pt. 

230-232°C lit 104  233-235°C 8(80MHZ, Cd 3 ) 8.7 ppm (iN, 5, CH 

aromatic), 2.75 ppm (3H, 5, CH 3)  ins nVz (El) 135 [7?],  107 [n.a)] 

2-methyl-4-aminopyrimidine-5-carbonitrij.e (39): Acetamidine 

hydrochloride (0.8g. 8.5 m.moles) was added to a solution of sodium 

(0.21g, 9.1 m.moles) in ethanol (4 cm3 ) at 0°C. The mixture was 

shaken to dissolve the acetamidine, filtered through celite and the 

clear filtrate treated with ethoxymethylene malonitrile (0.5g. 4.1 

m.moles). A dense precipitate formed immediately which was separated 

by filtration and crystallised from ethanol to afford 

2-methyl-4-aminopyrimidine--5-carbonitrile (39), 0.23g (42%) 6(80MHz, 

2 H2 0+2 HC1) 8.75 ppm (111, s, Cl! aromatic), 2.85 ppm (311, 5, 013 ) ins 
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(El) nVz  134 [?.1], 94 [n-a13 cNJ 	C6 H6 N4  requires C, 53.7%; H, 4.5%; 

N, 41.8%. Found C, 53.4%, H, 4.6%; N, 42.0%. 

2-Methyl-4-aminopyrixnidine-5-carbaldehyde. (40) t Raney nickel (0.25g) 

was activated by stirring with aqueous sodium hydroxide (2N, 6 cm 

for 30 min. then the aqueous portion decanted off and the residue 

washed with water (10 cm3  x 2). The active catalyst was added to the 

nitrile prepared above (39, 0.5g, 1.1 m.moles) in formic acid 

(98-100%, 2.5 cm3 ) and the mixture stirred at 80-100°C for 45 mm. 

The reaction mixture was then filtered through celite and the celite 

washed with ethanol/Water (3:2, 5 cm 3  x 2). The filtered reaction 

mixture and the washings were combined and the ethanol removed by 

evaporation in vacuo to leave an aqueous portion which was neutralised 

with sodium bicarbonate and extracted with ethyl acetate (10 cm3  x 4). 

The organic fractions were combined, dried and evaporated to dryness 

to afford the aldehyde as an off, white solid which was crystallised 

from ethanol to afford 2-methyl-4-aminopyrimidine-5-carbaldehyrje (40), 

0.075g m.pt. 192-194°C, lit133 , 195-196°C. 6 (80MHz, d 6 -DMSO) 9.8 ppm 

(1H, s, 010), 8.6 ppm (IN, s, CH aromatic), 2.4 ppm (311, s, C11) ins 

(Er) nVz, 137 [t4] 109 ffl-001. 

2-Methyl-4-amino-5-hydroxymethy]. pyrimidine (35) 

2-Methyl-4-aminopyrimidine-5-carbaidehyde (40, 0.5g, 3.7m. moles) in 

methanol (25cm3 ) was treated with sodium borohydride (0.2g. 5.3 

m.moles) and the reaction mixture stirred at room temperature for 30 

nun. The reaction was then treated with further sodium borohydride 

(0.1g, 2.6 m.moies), stirred at lOOm temperature for 30 minutes, then 

quenched with hydrochloric acid (2N, 3.2 cm 3 ). The solution was 

evaporated to dryness under reduced pressure and the çesidue extracted 
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with hot ethanol (10cm3  x 3). The ethanol extracts were combined and 

evaporated to dryness in vacuo to afford a colourless solid which was 

recrystallised from ethanol to afford 2-methyl--4--amino-5-

hydroxymethylpyrimidine (35) 0.48g (93%) m.pt. 198-200°C lit' 33  

193-194°C 6(80 M.Hz.,d6  DM80) 8.50 ppm(2H, br.s, NH2 ), 8.05ppn 

(111,s, Cu aromatic), 4.35ppm (2H,S,CH 2 ), 2.50ppm (3H,s,CIç) ins (El), 

nvz 139  U?],  122 (N-OH], 110 [M-MO). 

1 _2 
H1-2-Methyl-4-amino-5-hydroxymethylpyrjnhjdine (36) 

2-Methyl-4-aminopyrimidine-5-carbaldehyc3e (40, 0.1g, 0.7 m.xnoles) in 

methahol (8cm3 ) was treated with sodium borodeuteride (0.04g, 0.95 

m.moles) and the reaction mixture stirred at room temperature for 30 

minutes. The reaction was treated with further sodium borodeuterjde 

(0.02g. 0.48 m.moles) and stirred at room temperature for 30 minutes 

then quenched with hydrochloric acid (2N, 0.6 cn?) and evaporated to 

dryness in vacuo. The residue was extracted with hot ethanol (5cm 3  x 

3) and the ethanol extracts combined then evaporated to dryness under 

reduced pressure to give the crude product which was recrystallised 

from ethanol to afford [5'-'HI-2-methyl-4-amino-5-
lit  1, 	3i' 

hydroxymethylpyrimidine (36), 0.075g (76%). nt.pt. 196-1980c -16 (80MHZ, 

DM80 8.5ppm (2H, br.s, NH2 ), 8.05ppn (1H,s,CH aromatic), 4.35ppn 

(111, 5, CHD), 2.50ppm (3H, s,CH) ins (El) nvz, 140 (74) 110 (N 

-CHDOH), 82 [123 - 013  Cr4]. 

H J-2-Methyl-4-hydroxy-5-hydroxymethylpyrjnujdine (37): ,_2 H]-2- 

Methyl-4-amino-5-hydroxymethylpyrimidine (36) (0.3g, 2. 16m.moles) was 

added to hydrochloric acid (6N, Scn?) and the reaction mixture treated 

at 100 1c for 30 win. After this time the reaction was evaporated to 

dryness in vacuo and the residue recrystallised from ethanol/ethyl 
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acetate to afford [51- 2  H ]-2-methyl-4-hydroxy-5-hydroxymethylpyrjnudjne 

(37) 0.26g (77%) m.pt. 198-200°C 6(400 MHz, d 6  DMSO) 7.8 ppm (1H, s, 

CH aromatic) 4.20 ppm (1.1H, 5, CIfHOH), 2.50 ppm, (3H, s, dc) ins 

(El) nVz,  41 (MI, 124 [H-OH]. Heating for >45 mm. lead to 

substantial loss of deuterium as measured by ins 

2-Methyl-4-amino-5-methylanilinopyriznidine (32) (a) Thiamine (1, 

0. 5g, 1.48 m.moles) in ethanol/Water (3:2, 12cm3 ) was treated with 

aniline (0.14g, 1.50 m.moles) and sodium metabisulphite (0.0g, 0.15 

m.moles) and the mixture refluxed for 1 h. The cooled reaction 

mixture was acidified (6N hydrochloric acid), washed with ether, 

neutralised (4N sodium hydroxide) and extracted with ethyl acetate 

(20cm3 x3). The ethyl acetate fractions were combined, dried and 

evaporated to dryness under reduced pressure to afford an oil (0.15g) 

which was purified by preparative tic using chlorofozittnnethanol (9:1) 

as the mobile phase and recrystallised from ethanol to afford 

2-methyl-4-amino-5-methylanilinopyriinidine (32), 0.08g. m. pt. 

168-170°C, lit 88  167-169°C ins, (El), n/z 214 [J 122 [N - C 6 HNHJ 

(b) Thiamine (1, 6.01g, 0.03 m.moles) was incubated with thiaminase x 
in phosphate buffer (pH5, 2cm3 ) containing aniline (0.005g. 0.06 

m.moles) and the appearance of (32) followed spectrophotometrically at 

248 mu. After incubation overnight at 37°C, the mixture was 

acidified, (6 N hydrochloric acid) washed with ether, neutralised (2 N 

sodium hydroxide) and extracted with ethyl acetate (2cm x 3). The 

ethyl acetate fractions were combined, dried and the solvent removed 

by a stream of nitrogen. The residue was examined by capillary gc4ns 

and found to be identical to the authentic product prepared above. 
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2-Methyl-4-amino-5-methylsulphonatepyrimidine (50) 

Thiamine hydrochloride (1, 0.5g, 1.48 m.moles) in water (2cm3 ) was 

treated with sodium metabisuiphite (0.3g, 1.6 m.moles) and the 

solution heated in a boiling water bath for 10 minutes. The cooled 

reaction mixture was left standing at room temperature overnight and 

the white crystals which formed were isolated by filtration, washed 

with ice water and dried in vacuo to afford 2-methyl-4-amino-5.-. 

methylsuiphonatepyrimidine (50), 0.30g (98%). 
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Isolation of thianilnase I. 

Bacillus thiaminolyticus from nutrient agar slopes was grown initially 

in nutrient broth in a shake culture for 20 h at 35°C. An aliquot 

(5cm3 ) was then transferred to the 100cm3  of the defined medium of 

Douthit and Airth87  and the culture grown in shake culture at 37°C for 

a further 20h. The culture was then centrifuged (30,000 rpm, 15 mm.) 

at 0-4°C. The precipitate was discarded and the supernatant treated 

with ammonium sulphate (to 75% saturation, 516g l') at 0-4 ° °C. The 

precipitate which formed after 5-6h. was collected by centrifugation 

(30,000 rpm 20 mm), taken up in distilled water and desalted using an 

Amicon filter unit. Desalting by dialysis led to an extract of low 

activity. The enzyme was stored frozen in aliquots at -20°C. 

Assay of thiaminase I 

The assay procedure was essentially that of Douthit and Airth 7 . 

Sodium phosphate buffer (0.1m, pH 5.8) and aniline (11.5 x 10 4 M, 10 

p11100 cm3 ) was treated with thiamine (5 x 10 7M, l7mg/100cm3 ) or 

thiamine pyrophosphate (5 x 10 n, 23mg/ 100cm3 ) and an aliquot of the 

crude enzyme (0.2cm3  /2cm3 ) and the formation of the anilinopyrimidine 

product followed spectrophotometrically at 248nm. Activity against 

thiamine pyrophosphate was found to diminish more rapidly than 

activity against thiamine itself over a period of months (vide infra). 

Production of thiamine by Saccaromyces cervisiae 

The growth of the yeast in the thiamine-free medium was monitored 

using a haemocytometer. A short lag phase (2h) was followed by a 
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rapid growth phase lasting a further 7h. and this was followed by a 

static phase. After 20h. the incubate contained ca 3 x 10 

cells/cm'. Thiamine was isolated from the yeast cells after 20h. by 

boiling the centrifuged cells in 0.1 N hydrochloric acid (5cm3 ). They 

were centrifuged and extracted once again and the pH of the 

supernatant adjusted to ca 6.5. The supernantant was then incubated 

with takadiastase which also possesses phosphatase activity. A sample 

of the supernatant (5cm3 , 25%) was analysed for thiamine using hplc. 

Thiamine was converted to its thiochrome derivative by the addition of 

potassium ferricyanide (0.3M, 3cm3 ) in sodium hydroxide (3.75M). The 

mixture was then shaken vigorously for 2 mm. and left to stand in the 

dark for 10 Mn. after which time it was filtered through a millipore 

filter (0.45 pm) into a vial for hplc analysis. Standard solutions of 

known thiamine concentration were treated in an identical fashion. 

Ten microlitres from each sample was injected on a 25cm x 4.6mm p - 

Bondapak C18  column using water : methanol (7:3) as mobile phase and 

running at 2cm3,kdn. Peaks were detected using a Perkin-Elmer t.S-5 

luminescence spectrometer fitted with a 8pl flow cell with excitation 

at 365nm and emission at 435nm. Calibration curves were constructed 

by plotting peak heights against concentration. Using this method, 

the amount of thiamine per 50cm3  incubation was found to be ca 2.4pg. 

Capillary gcAtts analysis of thiamine as its aniline derivative 

The thiamine isolated from yeast cells as described above were treated 

with thiaminase I as described previously and the pyrimidine/aniline 

derivative (32) extracted into ethyl acetate then blown to dryness in 

a stream of nitrogen. The residue was taken up in ethyl acetate 
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(204) and a sample (54)  injected onto a BPI fused silica capillary 

column (12.5m x 0.3m i.d.) The temperature programme used started at 

70°C and increased at 30 04ni.n. to 220°C then at 5 04nin to 280°C. The 

total ion current was monitored however it revealed little about the 

required product therefore ions of 214-215 (the M peak for the 

aniline derivative) and 122-123 (N-aniline) were also monitored. The 

column output was measured directly using a Kratos ms 80 RFA mass 

spectrometer operating in the El mode. Under these conditions, the 

aniline pyridine compound (32) had a retention time of 8mm. 



-151- 

Cleavage of nucleic acids in reverse micelles 

Samples were prepared in duplicate containing 1 p1 buffer (50 mm NaC1, 

100 mM Tris Cl pH 7.5, 100 mm MgCl2 , lO nfl dithiothreitol), enzyme (1 

pL ca lOu), DNA (1-2 p1, lpg) and then made up to 10 p1  with sterile 

distilled water. One sample was treated with a solution of sodium 

sulphosuccinate dioctyl ester (A(YT) in hplc grade hexane (100 mm or 50 

mM) and vortexed vigorously until visually clear while the other was 

vortexed. Both samples were then incubated at 37°C overnight. After 

incubation the samples were placed at -25°C for 2h or at -78°C for 30 

mm. then treated, while still cold, with water (10 p1) and loading 

buffer (2 4ul). Following centrifugation in an eppendorf centrifuge 

(15000 rpm, 5 mm.) the aqueous phase was removed and applied to a 1% 

aga rose gel containing 0.5 pg/cm3  ethidiunt bromide. Bands were 

visualised by ultraviolet illumination. 

In the annealing experiments, samples were incubated as described 

above with and without enzyme and the reversibility of the annealing 

process demonstrated by heating the sample to 65°C prior to gel 

electrophoresis. 
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D,L.Diethyl [ 15 N)nitrosuccinate is efficiently incorporated into 3-nitropropanoic acid (1) by cells of Peniciliium 
atrovenetum; incorporation of i42.3.32H3IasPartate into (1) with retention of the C-2 deuterium of the amino acid 
allows assignment of the chirality of the intermediate. 

3Nitropropanoic acid (1) is a toxin produced by a number of 
fungi' and several plants of the family Fabaceae.2 The 
biosynthetic routes to this metabolite, although not charac-
terised in detail, appear to be markedly different in the two 
types of organism. 3  The fungal pathway is of especial interest 
since 3-nitropropanoic acid is implicated as a key intermediate 
in the nitrification pathway of Aspergillus and f-'enicillium 

strains. 4  Previous investigations with P. atrovenetum have 
shown that the amino nitrogen and carbons-2. -3 and -4 of the 
L-aspartate skeleton are incorporated as an intact unit 57  and 
that both oxygens of the nitro group are derived from 
dioxygen. 8  On this basis, three distinct routes from L-aspartate 
to (1) are possible in theory (Scheme 1). While route (a), via 

-alanine, can be discounted by the failure to incorporate label 
from 13.alanine into (1), 5  the alternative routes, involving 
decarboxylation either of N-hydroxyaspartate (2), or of 
nitrosuccinate (3), have proven difficult to test because of the 
instability of these compounds. 9  We have examined the 
incorporation of ' 5 N from D,L-diethyl [15N]nitrosuccinate into 
(1), reasoning that in vivo hydrolysis of the diester would be 
slow enough to liberate small quantities of the free acid within 
the cells and that subsequent incorporation of (3), while it 
would not preclude N-hydroxyaspartate as an earlier inter-
mediate, would show that complete oxidation of the amino 
group of aspartate to a nitro group precedes decarboxylation. 

Accordingly, D,c-diethyl [lsN]nitrosuccinate was prepared 
by treatment of diethyl bromosuccinate with Na' 5NO2 (94 

atom % 15N) in the presence of phloroglucinol'° and the 
diester was pulse fed to surface cultures of P. atrovenetum 
over a period of 36 h beginning 48 h after inoculation. The 
tH4ecoupled 15N DEPT n.m.r. spectrum of the isolated 
3-nitropropanoic acid in deuteniomethanol showed an intense 
signal at 3.4 p.p.m. (relative to MeNO2) corresponding to a 
14-fold increase of the 15N signal over natural abundance. The 
enrichment of the nitro nitrogen was also evident from the 
appearance of 15N satellites of both methylene,signals in the 
Ji nm.r. tpectrum of the metabolite (21N11 2.2 Hz, 31nu 3.7 

Hz) which corresponded in intensity to a 20 fold dilution of 
15N enrichment from the racemic diester. 

The stereochemistry of the intermediate nitrosuccinic acid 

was determined indirectly by examining the incorporation of 
deuterium from t[2,3,3.2H 3]aspartic acid (98 atom % 2H) 
into (1). The 2H n.m.r. spectrum of the enriched 3-nitropro-
panoic acid shows that deuterium is retained at both the 2-and 
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Figure 1. 55.3 MHz 2H N.m.r. spectrum of 3-nitropropanoic acid 
obtained from material biosynthetically enriched with 2l1 from 
L[2,3,3.2H3]aspartic acid, The spectrum was measured on a 1 M 

solution in acetone, spectral width 600 Hz, acquisition time 0.85 s, 
2000 transients. 

3-positions of the metabolite (Figure 1).t If inversion of the 
stereochemistry at the carbon derived from the C-2 of 
L-asparatate had occurred in the formationrof nitrosuccinic 
acid then no retention of deuterium of the 3-position of (1) 
would be expected. It follows that the stereochemistry at the 

t Partial toss of 211 derived from the 2-position of L_12.3,3- 2Hlasapar-
tate may arise through aspartate aminotransferase activity' or by 
chemical exchange at a later stage in the pathway. In a control 
experiment (data not shown) the intensity ratio of the 2}-j  signals for 
3-nitropropanoic acid isolated from a culture grown in medium 
containing 20% 21120 was Ca. 1: 1, indicating that no significant 
exchange of 2H  at C-3 occurred during isolation of the metabolite. 

J. CHEM. SOC., CHEM. COMMUN., 1988 

C-2 of L-aspartate is probably retained in themetabolic 
oxidation of the amino acid to nitrosuccinic acid. 

On the basis of these results it appears evident that the 
biosynthetic pathway involves oxidation of L-aspartate to 
L-nitrosuccinate prior to decarboxylation [route (c) in Scheme 
I  and that the subsequent steps do not involve loss of the H-2 
of this intermediate. The mechanism and stereochemistry of 
the decarboxylation step are however unknown. 
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Correlation of the Energies of 7t-Bonds between Carbon and Other Elements with 
E.S.R. Hyperfine Coupling Constants 
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A linear correlation is found between C=A it-bond energies in compounds of the type HC--AR (or HGEAR_ 1 ) and 

(3-proton hyperfine coupling constants for the corresponding radicals H 3C–AR (or H 2C=AR... 1 ): an empirical method 

is therefore available for either estimating n-bond energies from e.s.r. data or predicting hyperfine coupling 

constants from bond energy data. 

We have found that a linear correlation (r = 0.96) exists 
between C=A n-bond energies (estimated as the difference 

E(C=A) - E(C–A); A is an element) and the 0-proton 
hyperfine coupling constants in the corresponding radicals 

H 3C–AR (or 1-1 1C=AR_ 1 ). [We have taken the (3-proton 
couplings of methyl groups as the maximum, on the basis of a 

Bcos 20 dependence (i.e. as the value of B, since 0 = 0 for 
maximum coupling), in order to relate, them directly to 
couplings in radicals of the type l-1 1C=AR_ 1 , where the 

geometry forces 0 = 0.1 The data used in the correlation are 

collated in Table 1. 
Our qualitative interpretation of this is that as the formation 

of a n-bond requires overlap between a singly occupied C(2p) 
orbital and a singly occupied A(np) orbital, so part of the 

hyperfine coupling mechanism for (3-protons involves hyper- 

conjugation, which, in the cases considered here, requires 
overlap between a doubly occupied carbon-based group 
orbital of n-symmetry and a single occupied A(np) orbital: a 
relationship between these processes therefore appears 
reasonable. 'We attribute the intercept on the plot to the fact 
that our simple difference method does not separate the 
strengthening of the C–A a-bond due to the change in 
hybridisation between C(spt)–C(sp') and C(sp 2)=C(sp2), 
which will therefore be included in the derived n-bond 
energies. 

However, our main point is that this correlation may be 
used in a purely empirical way for predictive or interpretive 
purposes, by employing either equation (1) or (2), as 
illustrated by the following examples which relate to some 
areas of current interest. 


