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Abstrad- This paper describes a Hidden Markov Model 
(HMM)-hased method of automatic transcliption of MIDI (Musi- 
cal Instrument Digital Interfaee) signals of performed music. The 
problem is formulated as recognition of a given sequence of Buc- 
tuating note durations to find the most Likely intended note se- 
quence utilizing the modem continuous spwch recognition tech- 
nique. Combining a stochastic model of deviating note dnra- 
tions and a stochastic grammar representing possible sequences 
of notes, the maximum likelihood estimate of the note sequence 
is searehed in terms of Viterbi algorithm. The same principle is 
succesfully applied to a joint problem of bar line allocation, time 
measure recognition, and tempo estimation. Finally, durations of 
consecutive n notes alp combined to form a “rhythm vector” rep- 
menting tempo-free relative durations of the notes and treated 
in the same framework. Significant improvements compared with 
conventional “qnantization” techniques are shown. 

I. INTRODUCTION 

Automatic transcription of music performed on MIDI mu- 
sic insuuments has wide applicability including score printing, 
automatic playing of music pieces, aids for music composi- 
tion and arrangement. and educational purposes. The problem, 
however, is not simple even though the pitch of each note is 
known in the MIDI format; music note durations in human per- 
formance fluctuate and intended time values are not easily re- 
trieved from the observation. 

The conventional way of treating this problem is quantization 
of observed note durations, music being played synchronously 
with metronome at a specified tempo [I]. It basically fits frac- 
tional note durations to the specified time resolution. This sim- 
ple method is not applicable to music performances without 
metronome and changing tempo. Transcribed score far from the 
intended score is often (almost everytime) experienced among 
the users. Because of low performance of this method, new 
quantization models have been investigated [2]. 

On the other hand, trained humans can easily transcribe per- 
formed (relatively simple) music even when the tempo slowly 
changes. This problem, thus, is considered to essentially 
involve rhythm pattem recognition utilizing top-down infor- 
mation, while the above previous works took bottom-up ap- 
proaches. 

From this point of view, we previously introduced stachastic 
modeling based on Hidden Markov Model (HMM) for recogni- 
tion of the rhythm pattern from given performed music [3] [4] 

Fig. 1. Distribution of performed note durations. 

since the rhythm recognition problem is analogous to continu- 
ous speech recognition and Hidden Markov Model(HMM)[5] 
fits both problems. This framework was extended to tran- 
scribe music from performance with changing tempo (without 
metronome), tempo estimation, bar line allocation, and time 
measure recognition all at the same time. Our approach, first 
published in Japanese before this English publication, has been 
already applied to onset time quantization in jam sessions[6]. 

We also discuss “rhythm vector”, a tempo-free rhythm ob- 
servation feature, in combination with HMM to enable rhythm 
recognition of performance without estimating the tempo. 

11. STOCHASTIC MODELING 

A. Model offluctuating note durations 

The duration of music notes played by human deviates from 
the ideal length notated in the score even when the metronome 
signal is heard. Hereinafter, we call “length” for the ideal (nom- 
inal, intended, time value) duration of a note and “duration” for 
its 0bSe”d (performed) duration. Fig. 1 shows the distribution 
of durations of eighth-notes, quarter-notes, and dotted quarter- 
notes in music pieces performed on a MIDI keyboard by 50 
players with a specified tempo (96 by metronome, i.e., one beat 
= 480 ticks). The note duration is defined as the IO1 (inter- 
onset-time interval). 

This figure implies that the fluctuation can be modeled by 
a Gaussian distribution around the ideal length. When the in- 
tention is identified by i (equivalent to the state number in the 
next subsection) at timet, the performed duration, zt .  is mod- 
eled by a probability density function (pdf), b, (z t ) .  When 
the sequence of intentions is identified by a time sequence 
Q = [ q 1 7  qz: .  . . . Q N ) .  the probability of observing the en- 
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. .  

C. Model integration bj HMM 
L - L  

The models of fluctuatine durations and Dossible note se- 

can be compared to a stochastic language model in modern con- 
tinuous speech recognition technology. 

This aspect is modeled as stochastic generation of intended 
note length sequences which underlies generally in music de- 
pending on genres, styles, and composers. We use two types 
of rhythm pattern generation models to characterize possible 
rhythms as follows: 

Note length is predicted from pre- 
ceding (n - 1) notes in the probabilistical sense. This model 
covers any rhythm patterns and can give a certain probability 
while grammatical constraint is rather weak for small n. 

The “rhythm vocabulary” 
consists of all known rhythm patterns for a unit time (typ., one 
measure). This model well represents known rhythm patterns 
while unknown pattems are substituted by similar existing pat- 
terns. 

As shown in Fig. 2, both models are represented by proba- 
bilistic state transition networks where each state is associated 
with an intended note lengths. Labeling all distinct states with 
integral numbers, 1; 2, ’. ’, S, probability a ij of transition from 
state i to j characterizes grammatical constraints. 

The probability that state number changes along a time se- 
quence Q = {ql; q 2 : .  . . i q,v} (qt:  integer) is thus given by 

P ( Q )  = 7iqo n aqt-lqt where nt denotes the initial probabil- 

ity of starting the state transition with state i .  
We trained model parameters A = { a u }  of both rhythm 

grammar models through statistical estimation. The n-gram 
model was trained using approximately SO000 notes in MIDI 
data of classical and jazz music and smoothed by linear combi- 
nation of probabilities from 1-gram (unigam) through (n-1)- 
gram. The rhythm vocabulary model consisted of 267 one-bar- 
long rhythm patterns obtained from 88 music pieces including 
children’s songs and folk songs. Connection probabilities be- 
tween vocabulary words were also obtained from the number 
of occurrences in the data. 

Note n-gram Model: 

Rhythm Vocabulary Model: 

N 

t=1 

111. RHYTHM RECOGNITION 

A. Inverse problem 
Our problem is to find the time sequence of state numbers 

in the state transition network, Q, that gives the maximum a 
posteriori probability, P(QIX), given a sequence of observed 
durations, X. According to the Bayes theorem: P(Q1X) = 

P(X’Q)P(Q), maximizing P(QIX) is equivalent to finding 

Q = argmaxP(XJQ)P(Q) among all possible Qs. Since the 

integrated model is represented by an HMM, the optimal se- 
quence of states is efficiently found through the well-known 
Viterbi algorithm for searching the best path in the probabilistic 
transition network. The sequence of intended notes is estimated 
in the maximum likelihood sense as the sequence of notes asso- 
ciated to the states along the best path. This process is referred 
to rhythm recognition of performed music. 

B. Rhythm recognirion performance 
A typical result of HMM-based rhythm recognition is shown 

in Fig. 3 andcompared with that of quantization by “XG- 
works” from YAMAHA Corp. when played in a specified 
tempo. While simple quantization of XGworks inseaed nu- 
merous wrong rests and ties, HMM almost correctly estimated 
musical rhythms including triplets. Table I shows the recog- 
nition rates of correct note lengths, counting all substitutions, 
insertions and deletions as errors. “Pause-neglected” recogni- 
tion scores mean compensated scores ignoring deceptive pauses 
caused by repeating notes, staccatos, etc. 

C. Constant tempo esrimation 
Unknown constant tempo is estimated in the same framework 

as stated above. Multiple rhythm-dependent HMMs each rep- 
resenting a different tempo are run to find the maximum like- 
lihood tempo among tempo-dependent models. In our experi- 
ments, 6 parallel models were used to represent logarithmically 

P(X) 

Q 
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THE RHYTHM RECOFNVION RATES [I] 

method 

Bigram HMM 
Quantization (XGworks) 40.7 

TABLEII 
COASTANT TEMPO ESTtMATlON RESULTS [BEATS/MIN.] 

Player# I 2 3 4  5 
TrueTempo 98.4 93.3 99.2 127.1 106.3 
Estimated 95 95 95 120 107 
Piaver# 6 7 8 9  10 
TrueTemp 116.4 111.7 99.9 109.3 65.2 
Estimated 120 107 95 107 67 

Fig. 5. Model of time measures. 
Fig. 4. Model of changing tempo. 

BAR Fig. 6. Model for lwaling bar lines. 

equally spaced tempos between 60 and 120 beats per minute 
(i.e., 67, 76, 85, 95, 107 and 120 beatshin.) and simultane- 
ously recognized the rhythm Q and tempo T, i.e., maximizing 
P(XIQ,T)P(QIT)P(T) in respect to Q and T for the given 
X. Table II shows a few examples of tempo estimation of per- 
formances by I O  players who played a piece shown in Fig. 7. 

D. Fluctuating tempo estimation 
The same framework with slightly modified models can han- 

dle fluctuating tempos. As shown in Fig. 7, models of different 
tempos are loosely coupled with appropriate probabilities. The 
maximum likelihood path found through the Viterhi search in- 
dicate the recognized rhythm and instantaneous tempos. 

One extreme example is shown in Fig. 7 where the fluctuat- 
ing tempo is successfully detected ranging from 40 to 120 beats 
per minute. At the circled notes in the figure where the true 
tempo is slower than 67, the true tempo is equivalently trans- 
lated to the doubled tempo with halved note lengths to find best 
matched model within prepared tempos between 67 and 120 
heatdmin. 

E. Measure estimation 
Estimation of measure and location of bar lines are also pos- 

sible by using the HMM in a similar way. As depicted in Fig. 5 ,  

Fig. 8. An example of -recognized measure A: True score, B: Miuecog- 
nized but rather reasonable result. 

one of multiple models representing different measures (e.g., 
3/4 and 4/4) is found to yield higher likelihood for the given 
rhythm pattern. Each of these measure models has been trained 
with music data of the same measure. 

Bar location is also estimated simultaneously in the same 
framework. As shown in Fig. 6, a special rhythm vocabu- 
lary model containing the starting rhythms and up-beat patterns 
in the first bar precedes the general rhythm vocabulary model 
consisting of general 2-beat-long rhythm patterns and bar lines 
used as an eternal loop. The Viterbi algorithm finds the optimal 
rhythm estimation with optimal bar locations. 

In experimental evaluation of these models, IO out of IO  test- 
ing music tunes of 4/4 measure and 8 out of IO testing tunes of 
3/4 measure were correctly recognized. Fig. 8(b) shows one 
of 2 misrecognized results which looks rather reasonable in the 
rhythm pattern sense. Correct recognition of this example re- 
quires higher knowledge such as: 3-bar phrase is rare in simple 
tunes. 

IV. RHYTHM VECTOR APPROACH 

A. Rhythm vector 
We have discussed absolute note duration xt as the observed 

feature in the HMM-based modeling. The use of relative dura- 
tions of consecutive notes is discussed in this section. 

Rhythm is primarily perceived as the relative length of con- 
secutive notes. To define a tempo-free feature yt instead of 
xt, 3 consecutive notes durations are coupled to form a 3- 
dimensional vector ( x ~ - ~ ;  X * , X ~ + ~ ) ~  and normalized so that 
the sum of components is unity. By normalization, this tempo- 
free 3-dimensional “rhythm vector” yt = (yt-~:yt, y t + ~ ) ~  is 
mapped inside a triangular domain on a 2-dimensional plane. 

Rhythm vector is considered to preserve tempo-free rhythmic 
intension in performance. Fig. 9(a) shows the plots of rhythm 
vectors calculated from the score shown as Fig. 9(c) and com- 
pared with Fig. 9(b) observed in human performances of the 
same score. 
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I. 

Fig. 9. 
plots, B: Performance by human. C Score. 

Rhythm vectors plotted an a two-dimemiom1 plane. A: Thoretical 

B. HMM-based rhythm recognition 

Replacing the observed absolute duration (101) of each note 
by “‘rhythm vector” in the HMM-based framework, tempo-free 
automatic transcription of MIDI data can be realized without 
preparing multiple HMMs for covering various tempos. A re- 
lated idea was suggested in music pattern recognition purpose 
using the ratio of consecutive note durations to define a tempo- 
invariant encoding[7]. Hidden states correspond to the distinct 
points in Fig. 9(a) and integers are assigned to them to repre- 
sent the state number. The observed vector distributing around 
the ideal position is modeled by a 3-dimensional pdf, bi(yt), 
i denoting the state number. The transition probability, a , j ,  

from state i to state j is the probability of occurring of 4 con- 
secutive notes, x ~ - - ~ , x ~ - ~ , x ~ , x ~ + ~ .  2 of which in the middle 
are shared by the both states. These model parameters can be 
trained through the similar procedure as already stated for the 
1 -dimenstional observation case. 

This method can be further improved by incorporating the 
absolute note durations. Since the rhythm vector is free from 
the absolute length of notes, the tempo is not uniquely deter- 
mined. For example, when a rhythm vector is recognized as 
1 : 2 : 2, there are multiple possible note descriptions such as 
“Q H H and “E Q Q (H=half note, Qquarter note, =eighth 
note). Another problem is that one misrecognized rhythm vec- 
tor may halve or double all following note lengths in decod- 
ing from the recognized rhythm vector sequence to the note 
description. These problem is avoided by giving prior infor- 
mation of intended approximate tempo or by including abso- 
lute note length in the feature vector for the HMM (i.e. hidden 
states corresponds notes for description). An alterntive solution 
to these problems is to select a path among N-best HMM trace- 
back hypotheses with near-constant tempo. This can be easily 
realized by calculating the instantaneous tempo by the ratio of 

the observed IO1 and the decoded note. 

V. DISCUSSION 
Multi-voice music transcription: Though this paper has fo- 

cused on transcription of single-voice music performed with a 
MIDI instrument, multi-voice music can be handled in the same 
framework. A chord can he identified as multiple notes started 
at the almost same timing (within a short time span) and over- 
lapped in durations. As for multi-voice music such as counter- 
point (fugues, cannons, etc.) can be also modeled by replac- 
ing the IO1 along one voice by inter-onset interval between all 
voices. Such kind of “inter-voice rhythm” vocabulary can be 
acquired from a large amount of music data for training. Af- 
ter obtaining a single-voice transcription, it can be converted 
into a multi-voice music score taking into account the observed 
duration of each note. 

Styles and genres: Obviously, the present approach relies 
on statistical characteristics of music both inrhythm vocabulary 
and n-gram approaches. This means music styles, genres, and 
composers can be reflected in these stochastic models to obtain 
better recognition abilities. 

Weight adjustment: It should be noted that note duration 
modeling and rhythm vocabulary or n-gram modeling can be 
weighted depending on the purpose. If it is known beforehand 
that the player is not skillful in keeping the tempo and plays a 
relatively simple music, we can emphasize the rhythm vocab- 
ulary or n-gram constraints by giving a larger weight to a,j in 
logarithmic likelihood calculation. 

VI. CONCLUSION 
We have discussed automatic rhythm recognition of MIDI 

signals of performed music through stochastic modeling note 
durations using HMM, the main technique for modern speech 
recognition. This can successfully estimate the sequence of 
intended note values (lengths), tempo (whether fixed and un- 
known or fluctuating), the time measure, and the bar locations 
all in the same modeling framework. Rhythm vector has been 
also introduced to enable tempo-free music transcription. Fu- 
ture works will include overall multi-suge integration of multi- 
voice transcription from MIDI signals covering tempo, time 
measure and bar location estimation, and integration with a 
multi-pitch detection technique for music transcription from the 
sound. 
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